
82

Chapter 4

Phase-Controlled Apertures

When a number of slave SCLs are locked to the same master laser, they all inherit

the same coherence properties, as shown in chapter 3. Further, the heterodyne OPLL

configuration allows the optical phase to be controlled by varying the electronic phase

of the RF offset signal, enabling phase-controlled apertures. In this chapter, we

explore applications of such phase-controlled apertures in coherent power-combining

and electronic beam-steering.

4.1 Coherent Power-Combining

High power lasers with ideal (diffraction-limited) beam quality are sought after in a

multitude of applications including scientific research, materials processing and in-

dustrial applications, and research in this direction has been in progress ever since

the invention of the laser. While high power (few kilowatts single mode) fiber laser

systems have been demonstrated [96,97], their output powers will ultimately be lim-

ited by nonlinear effects in the fiber and material damage. An alternate approach

to obtain high power laser radiation with excellent beam quality is by combining

a large number of laser emitters with lower power outputs [98–100]. In particular,

coherent beam-combining (CBC) is a very promising approach to synthesize high-

power optical sources with ideal beam quality. Various coherent beam-combining

schemes have been demonstrated by different groups, including evanescent wave-

coupling, self-organizing [99], injection locking [100], common resonator [101] and
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Figure 4.1. Coherent power-combining scheme using heterodyne SCL-OPLLs. In-
dividual SCLs all lock to a common master laser, thus forming a coherent array.
The outputs of the individual lasers are coherently combined to obtain a high power
single-mode optical beam.

active feedback [102] approaches. While it is desirable to match the relative ampli-

tudes, phases, polarizations and pointing directions of all the component beams to

achieve maximum efficiency in a CBC scheme [98], the precise control over the opti-

cal phase offers the biggest challenge. Various active feedback approaches for phase

control have been demonstrated, where the phase error between the combining beams

is fed back to a servo system that includes phase actuators, which could be optical

phase modulators [100], acousto-optic modulators [102] or fiber stretchers [103].

In this section, we describe an alternative active feedback approach for CBC where

the outputs of an array of SCLs phase-locked to a common master laser are coherently

combined to obtain a single high power coherent optical beam as shown in figure

4.1. The use of SCLs has many distinct advantages such as their compactness, high

efficiency, low cost and high output power, thereby making them attractive candidates

for coherent power combination. The small size and high output powers of SCLs offer

the potential for the combination of a number of SCLs on a single chip, leading to

extremely compact high power sources. The optical phase of each SCL in a coherent

combining scheme can then be controlled electronically, which eliminates the need for

optical phase or frequency shifters that are bulky, expensive and require the use of
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large voltages.

Coherent power combination results in optical beams with superior beam quality

and larger peak intensities as compared to incoherent power addition. There are

two approaches to CBC [98]: (a) the filled-aperture approach where multiple beams

are combined into a single beam using a beam-combiner, and (b) the tiled-aperture

approach, where the outputs of the individual emitters are adjacent to each other.

One of the key aspects in either approach is the control over the relative phases of

the individual emitters at the beam combiner. In this section, we concentrate on the

filled-aperture approach, while tiled-aperture beam-combining and wavefront control

is described in section 4.2.

4.1.1 Experiment

A schematic of the filled-aperture power-combining experiment is shown in figure

4.2(a). Two slave SCLs are locked to a common master laser using fiber-based het-

erodyne OPLLs as shown in figure 2.1. A common RF offset signal (in the range of

∼0.8–1.7 GHz) is fed to each loop. It is only necessary to use a small fraction of the

SCL output in the feedback loop, and the remaining power is used for power combi-

nation. The outputs of the two SCLs are combined using a 2 × 1 fiber combiner, and

the output is measured on an oscilloscope. The result of the experiment with high

power MOPAs as slave SCLs (QPC Lasers, see table 2.1) is shown in figure 4.2(b).

For time <2.5 seconds, one of the lasers is unlocked, and the resultant incoherent ad-

dition results in high frequency oscillations on the oscilloscope at the (time-varying)

beat frequency between the two SCLs.

When both the loops are in lock (time >2.5 seconds), the result is a “DC” signal

that varies very slowly (on the timescale of a few seconds). The combined power is

given by

Pc = P0(1 + cos θ), (4.1)

where θ is the phase difference between the two combining beams. For maximal

power-combining efficiency, we need θ = 0. There are two causes of a deviation from
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Figure 4.2. (a) Coherent combination schematic. Two SCLs are locked to a common
master laser at a common offset, and the combined output is measured on an oscillo-
scope. (b) Experimentally measured combined power using two high power MOPAs
as slave lasers phase-locked to a common master laser. For t < 2.5 seconds, one of
the OPLLs is not in lock, and the result is the incoherent power addition of the two
lasers.
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this ideal value. In fiber-based systems, variations in the differential optical paths of

the two combining beams cause a change in phase; this is the cause of the slow drift.

The differential phase change may be several full waves, especially if fiber amplifiers

are used at the SCL outputs, and a technique to eliminate the effect of this slow

drift is described in the next section. In addition to the slow drift, the combined

power signal also shows fast variations due to the residual phase noise between the

two combined beams. The RMS value of the residual phase error is estimated from

the fast variations in the measurement in figure 4.2(b) to be about 0.39 radians. This

corresponds to a residual phase error of 0.39/
√
2 = 0.28 radians in each OPLL, which

is in excellent agreement with the measured value in table 2.1.

4.1.2 Phase Control Using a VCO

We now describe a novel electronic feedback scheme developed to correct for the

slow drift in the relative phase between the optical beams. The variations in the

differential optical paths traversed by combining beams is traditionally controlled

using a piezoelectric fiber stretcher, an acousto-optic modulator or an optical phase

modulator [100,102,103]. The phase of the phase-locked SCL in a heterodyne OPLL

follows the phase of the RF offset signal, and this allows for the electronic control

over the optical phase. The phase of the RF offset signal can be tuned using an

RF phase shifter, but this method has the same shortcomings as an optical phase

shifter, i.e., insufficient dynamic range to correct for large phase errors [66]. Typical

optical or RF phase modulators have a dynamic range of 2π radians, and complicated

reset-circuitry is often necessary to increase the dynamic range. In the alternative

phase-control scheme described here, the correction signal is provided by an electronic

VCO. In addition to acting as an integrating phase shifter with practically infinite

dynamic range, the VCO also provides the RF offset signal to the heterodyne OPLL.

A schematic of the power-combining experiment with the VCO correction loop is

shown in figure 4.3(a). Two SCLs are phase-locked to a common master laser using

heterodyne OPLLs. While an RF source provides a fixed offset signal to one OPLL,
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(a)

(b)

Figure 4.3. (a) Schematic of the coherent combination experiment with additional
electronic phase control. A VCO provides the offset signal to the second OPLL, and
also acts as an integrating phase shifter to correct for variations in the differential
optical path length. (b) Experimentally measured combined power using external
cavity SCLs at 1064 nm, without (left) and with (right) the VCO loop connected.
The power-combining efficiency with the VCO loop is 94%.
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the offset signal to the other OPLL is provided by a VCO. The nominal free-running

frequency of the VCO is chosen to be equal to the frequency of the RF source. The

outputs of the two lasers are combined using a 2 × 2 fiber coupler. One of the out-

puts of the coupler (the “combined” output) is observed on an oscilloscope, while

the other output (the “null” output) is amplified and fed into the control port of the

VCO. The measured combined power signal, with and without the VCO control loop,

in the power-combining experiment using external cavity lasers (Innovative Photonic

Solutions, see table 2.1) is shown in figure 4.3(b). A stable power-combining efficiency

of 94% is obtained using the VCO phase-correction loop. This efficiency is mainly

limited by the jitter of the free-running frequency of the VCO used in the experiment

and not by the residual phase noise in the OPLL, and can therefore be further im-

proved by the use of cleaner VCOs. The VCO frequency jitter is also responsible for

the occasional cycle slips seen in figure 4.3(b).

4.1.2.1 Steady-State Analysis

We begin by noting that the behavior of SCL 1 in the system shown in figure 4.3(a) is

well understood, both in terms of its steady state and transient performance. There-

fore, we will confine ourselves to the analysis of the OPLL with SCL2, and the effects

of the power combination feedback on this loop. We first find the steady state oper-

ating point of this part of the system. Under steady state, the system can be modeled

as in figure 4.4, where the intrinsic phase noise of the lasers, thermal and mechanical

fluctuations in the fiber, and the phase noise of the VCO are neglected. The 1−cos(.)

term reflects the fact that the output of this detector is out of phase with the com-

bined output in equation (4.1). We assume that the loop filters G2(s) and Gv(s) have

unity gain at DC. We can then write down the equations for the phase “error” signals

θ2 and θv at the outputs of the photodetectors:

ωmt−
(

ωfr
s2 t +

∫

K2 sin θ2 dt

)

+ ωfr
v t+ φv = θ2, (4.2)
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Figure 4.4. Steady-state model for the loop OPLL 2 shown in figure 4.3(a). The
frequency of SCL 1 in its locked state is denoted by ωs1, and φ1,DC represents any
constant phase difference between the lasers at the “null” photodetector input. The
free-running frequencies of Laser 1 and the VCO are ωfr

s2 and ωfr
v respectively. The

frequency of the master laser is ωm.
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so that

θ̇2 =
(

ωm − ωfr
s2 + ωfr

v

)

−K2 sin θ2 + φ̇v. (4.3)

Similarly, at the other photodetector,

ωfr
s2 t+

∫

K2 sin θ2 dt− ωs1t− φ1,DC = θv, (4.4)

θ̇v =
(

ωfr
s2 − ωs1

)

+K2 sin θ2, (4.5)

since dφ1,DC/dt = 0. The VCO phase φv is given by

φv =

∫

Kv (1− cos θv) dt, (4.6)

φ̇v = Kv (1− cos θv) . (4.7)

The steady state phase errors θ2 and θv are found by setting their time derivatives

to zero in equations (4.3) and (4.5), and using the value of φ̇v obtained in equation

(4.7):

θ2,s = sin−1

(

ωs1 − ωfr
s2

)

K2

,

θv,s = cos−1

(

1−
(

ωs1 − ωm − ωfr
v

)

Kv

)

.

(4.8)

Now, we note that ωs1 represents the frequency of SCL 1 when it is locked to the

master laser at a frequency offset of ωRF , so that

ωs1 = ωm + ωRF . (4.9)



91

When this is plugged back into equations (4.8), we find the steady state phase errors:

θ2,s = sin−1

(

ωm + ωRF − ωfr
s2

)

K2

,

θv,s = cos−1

(

1−
(

ωRF − ωfr
v

)

Kv

)

.

(4.10)

Plugging this back into the model in figure 4.4, we find the frequencies of SCL2 and

the VCO in lock:

ωs2 = ωm + ωRF ,

ωv = ωRF .
(4.11)

The above results are consistent with the intuitive interpretation that SCL2 is locked

to the master laser at the offset frequency ωv, and ωv in turn is locked to the frequency

reference ωRF .

The steady-state error θv,s in equation (4.10) represents the phase difference be-

tween the two combining SCLs in equation (4.1), and it is clear that a large Kv is

desirable so that θv,s is close to zero,1 and a high efficiency is achieved. Further, θv,s

can be tuned by varying the free-running VCO frequency ωfr
v .

4.1.2.2 Small-Signal Analysis

We next linearize the phase difference θv about the steady state value θv,s. We drop

the subscript v in θv. The small-signal model for the VCO control system is shown

in figure 4.5. SCL1 is locked to the master laser in OPLL1 and its phase noise φs1 is

given by equation (2.12):

φs1(s) = (φm(s) + φRF (s))
GL(s)

1 +GL(s)
+ φfr

s1(s)
1

1 +GL(s)
, (4.12)

where we have substituted GL(s) for Gop(s), and neglected φe0. The free-running

phase noise of the VCO and the slave SCL2 are denoted by φvn and φfr
s2 respectively.

1The loop locks stably only for θv,s on one side of zero.
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Figure 4.5. Small-signal phase model for the power-combining scheme with the ad-
ditional VCO loop. SCL1 is locked to the master laser in OPLL1, and is not shown
here. PD: Photodetector.

The variation in the differential path lengths traversed by the outputs of SCL1 and

SCL2 produces a phase noise at the fiber combiner, and this noise has the Laplace

transform φP (s). The OPLL open-loop gain is the same as GL, and the gain GV (s)

in the VCO branch is

GV (s) = −Kv sin θv,se
−sτv

s
, (4.13)

where τv is the delay in the VCO branch (from the Null photodetector to the RF

mixer) and θv,s is as in equation (4.10). Note that there is a trade-off in the choice of

the value of θv,s: a smaller θv,s results in a higher power combination efficiency, but

also results in a lower loop gain. The reduction in loop gain can be compensated by

increasing the DC gain Kv.
2

The model in figure 4.5 can be solved for the variation in the output phase θ(s)

to yield

θ(s) =
1

1 +GL +GLGV





φfr
s2 +GL (φm − φvn)

− (1 +GL) (φs1 + φP )



 . (4.14)

2The minus sign in equation (4.13) is present only for bookkeeping; in this case, the system locks
with a negative θv,s.
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The argument s has been dropped from all the terms on the right-hand side. We

substitute for φs1(s) using equation (4.12) to obtain

θ(s) =
1

1 +GL +GLGV

((

φfr
s2 − φfr

s1

)

+GL (φRF − φvn)− (1 +GL)φP

)

. (4.15)

To obtain some physical insight into the above equation, we note that the delay in

the VCO loop τv is typically much larger than the OPLL delay. This limits the VCO

open-loop gain GV , so that the approximation |GL| ≫ |GV | holds at all frequencies.
The denominator in equation (4.15) can then be expressed as (1 +GL)(1 +GV ), and

we can rewrite the equation as

θ(s) ≈ 1

1 +GL

(

φfr
s2 − φfr

s1

)

+
1

1 +GV

(φRF − φvn − φP ) . (4.16)

Firstly, the master laser phase noise does not appear in the equation above. This is

clear, since each slave SCL is locked to the master, and they beat with each other.

Next, the phase noise of the free-running lasers is mainly suppressed by the OPLLs.

Further, the VCO noise and phase noise introduced by differential path length delays

are suppressed by the loop with transfer function GV (s). This is consistent with the

interpretation that the system is the combination of three phase-locked loops: The

slave lasers SCL1 and SCL2 are locked to the master laser using two heterodyne

OPLLs at offsets given by ωRF and ωv respectively; and the VCO (along with other

phase noise sources) is then locked to the RF offset frequency ωRF in a third “outer”

PLL. The laser phase noise is suppressed by the OPLLs, while the phase jitter of the

VCO and the variation φP in the differential optical path length are suppressed by

the third PLL.

4.1.3 Combining Efficiency

The power combination approach presented above can be scaled to a large number of

lasers using a binary tree configuration as shown in figure 4.6. Fiber amplifiers can

be used at the output of each slave SCL to increase the overall combined power. The
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Figure 4.6. Binary tree configuration for the power combination of a number of SCLs
locked to a common master laser in the filled-aperture configuration.

addition of fiber amplifiers increases the delay in the outer VCO loop, but the resultant

bandwidth is still sufficient to correct for the slow fluctuations in the differential

optical path length introduced by the amplifiers. We measured no additional phase

noise when fiber amplifiers with output powers of ∼1 W were used at the outputs

of the SCLs, and this is consistent with observations by other workers using narrow-

linewidth seed lasers [104–106]. Our collaborators at Telaris have demonstrated the

coherent combination of 4 fiber-amplified (35–40 W) semiconductor lasers using this

approach to achieve a coherent and diffraction limited power output of ∼110 W.

The overall power-combining efficiency for two SCLs is affected by the intensity

noise, relative polarizations and relative phase error between the combining beams,

but is mainly limited by the phase noise of the combining beams. From equation

(4.1), assuming that the deviations of the relative phase about the ideal value of zero

are small, the efficiency of combining two optical beams is given by

η =
Pc

2P0

≈ 1− 〈θ2〉
4

. (4.17)

The mean-squared value of the relative phase, 〈θ2〉, has two important contributions:
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(i) the steady state phase θv,s given by equation (4.10), and (ii) the residual phase

noise of both the semiconductor lasers and the VCO, given by equation (4.15). The

value of θv,s can be reduced by the use of cleaner VCOs and by the use of loop filters

to increase the DC gain Kv. The residual phase noise of the SCLs can be reduced by

increasing the OPLL loop bandwidth.

Let us briefly consider the effect of the residual phase error in the loop on the

combination of a large number N of SCLs, e.g., as in figure 4.6. The output of slave

SCL i is

Ei = exp(jω0t + jφ0 + jφi,n), (4.18)

with ω0 and φ0 denoting the frequency and phase of the master laser (offset by the

RF signal), and φi,n is the residual phase error in OPLL i. For simplicity, we have

normalized the amplitude to unity. The total intensity is given by

I =
〈

|E|2
〉

=

〈(

N
∑

i 6=k

exp(jφi,n − jφk,n)

)〉

+N. (4.19)

For i 6= k, φi,n and φk,n are independent identically distributed random variables,

assuming that the OPLLs are identical. Further, we have for a zero-mean Gaussian

random variable X with variance σ2, 〈exp(jX)〉 = exp(−σ2/2). Therefore,

I = N +N(N − 1)e−σ2

φ ≈ N2 −N(N − 1)σ2

φ. (4.20)

The first term on the RHS is the combined power, and the second term denotes

the reduction in efficiency due to residual phase error. The combining efficiency is

therefore

ηc = 1− N − 1

N
σ2

φ. (4.21)

We conclude that the combining efficiency due to the residual phase noise in the

OPLLs does not degrade with N , and reaches the asymptotic value 1 − σ2

φ. Other

sources of noise such as the frequency jitter of the VCOs and phase-front deformations

caused by the optical elements used for beam-combining are analyzed in detail in
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reference [66], and it is shown that minimizing these errors is critical to achieve large

combining efficiencies.

4.1.4 Summary

We have presented an all-electronic active feedback approach for the coherent power

combination of SCLs using OPLLs. Elements of an array of SCLs locked to a com-

mon master laser have the same frequency and phase and can be coherently com-

bined. The phase of the combining SCLs is further controlled using an electronic

VCO to compensate for differential path length variations of the combining beams.

We have demonstrated the coherent combination of various high power SCLs using

this approach, and have achieved a stable power-combining efficiency of 94%. The

electronic feedback scheme demonstrated eliminates the need for optical phase or fre-

quency shifters. It is possible to obtain coherent and diffraction limited power of tens

of kilowatts by the use of fiber amplifiers to amplify the outputs of an array of phase-

locked SCLs. When scaled to a large number of SCLs, the overall power combination

efficiency is likely to be limited by VCO jitter and phase front deformations.

4.2 Optical Phased Arrays

Phased array antennas have had significant success in the RF domain for beam-

forming, steering, communication and three-dimensional imaging applications. Anal-

ogous efforts and advances in the optical domain however, have had limited success.

Past demonstrations of phased array beam-steering have required injection locking

of the individual lasers elements in the array [107], which is inherently unstable and

difficult to scale due to complexity and cost. An alternative method utilizing a single

laser, which is expanded and passed through an array of phase modulators, results in

limited output power [108]. Furthermore, the state-of-the-art for this method utilizes

liquid crystal spatial light modulators, which have limited bandwidths.

The CBC approach developed in this chapter provides an alternative technology

for optical phased arrays and beam-steering that has the potential to overcome the
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Figure 4.7. A one-dimensional array of coherent optical emitters.

fundamental challenges encountered by previous approaches. An array of SCLs is

locked to a common master laser using heterodyne OPLLs, and the individual SCL

outputs are placed side by side to form a larger aperture. Electronic phase shifters are

utilized to control the phase of the offset signal to each OPLL, hence controlling the

phase of each individual laser emitter and enabling electronic control over the optical

wavefront. One can foresee a number of potential applications of this approach,

including adaptive optics, control over the focusing distance, and fast and robust

beam-steering for imaging and free-space data transfer.

4.2.1 Far-Field Distribution

We will limit ourselves to the discussion of a one-dimensional optical phased array, as

shown in figure 4.7. A number, N , of coherent optical emitters are arranged along a

straight line, with interemitter spacing ds. The width of each aperture is da, and the

total width of the optical aperture is D. We are interested in the far-field distribution

of the optical intensity, along the axial direction. The far-field angular distribution of

the field is simply a Fourier transform of the shape (and phase) of the aperture [109],

and can be precisely calculated for the aperture shown in figure 4.7 [68]. Here, we

only describe the salient features of the far-field distribution:3� The far-field distribution consists of several lobes or fringes, each of which has

an angular width θlobe ∼ λ/D, where λ is the wavelength of light. The finite

size of the aperture creates “sublobes” around each lobe, and these sublobes

3This discussion assumes that ds ≫ λ. If this is untrue, the inherent approximation that tan θ ≈
θ, where θ is the angle in the far field, is no longer valid.
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can be made smaller by apodizing the aperture.� The size of each emitter, da, defines an overall angular envelope of width θsteer ∼
λ/da, within which the beam may be steered.� The lobes in the intensity distribution repeat with an angular pitch θpitch = λ/ds.

Since ds is always larger than da, there is always more than one lobe in the far-

field distribution pattern. However, by making the ratio da/ds, known as the

“fill-factor,” close to unity, the optical power can be consolidated into just one

central lobe.� If a linear phase ramp is applied to the aperture, i.e., if the phase of each emitter

is offset from its neighbor by ∆φ, the position of the main-lobe in the far-field

(the “beam”) is given by θbeam = (∆φ/2π)(λ/ds). This is the basis of beam-

steering using an optical phased array. The beam can be steered by a maximum

angle of λ/ds, and an important figure of merit is the number of beamwidths

by which the beam can be steered, given by D/ds.

We use phase-locked SCLs as the coherent emitters in figure 4.7, and the phase of

the laser is controlled by changing the phase of the offset signal in the heterodyne

OPLL. The maximum speed of tuning is determined by the settling time of the loop,

described in equation (2.19).

4.2.2 Experimental Results

The experimental setup for the demonstration of electronic beam-steering using OPLLs

is shown in figure 4.8. Two slave DFB SCLs at 1539 nm (JDS-Uniphase, see table

2.1) are phase-locked to a common master laser (NP Photonics) at an offset frequency

of 1.7 GHz. An RF phase shifter, used in one of the OPLLs, produces a phase shift of

up to π radians. The outputs of the two phase-locked lasers are brought next to each

other using a custom 8-channel single-mode fiber array (Oz Optics, Ottawa, Canada)

with a channel spacing of 250 µm. The distance between the emitters, ds, can be

varied by choosing different channels of the fiber array. The output of the fiber array
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Figure 4.8. Experimental setup for the demonstration of beam-steering using OPLLs.
The slave SCLs in the OPLLs are phase-locked to a common master laser. The phase
of the RF offset signal into OPLL2 is controlled using an electronic phase shifter.

assembly is placed at the focal plane of a microlens array of the same pitch (Leister

Technologies, Itasca, IL), and the resultant far-field distribution is measured using an

infrared camera.

The measured intensities on the camera for the incoherent and coherent addition

of the beams is shown in figure 4.9, for ds = 0.25 mm.4 The corresponding horizon-

tal intensity distributions are shown in figure 4.10(a), where two important features

should be noted. The coherently added far-field distributions show a peak intensity

that is about twice the peak intensity of the incoherent case, and the size of the main

lobe is reduced by a factor of two, as expected. Second, a change in the RF phase

by π radians causes a steering of the beam by one-half the fringe separation, demon-

strating that the change electronic phase results in a change in the optical phase in

a one-to-one manner. Similarly, the horizontal intensity distribution for an emitter

separation of ds = 0.5 mm is shown in figure 4.10(b), showing that the fringe sepa-

4The images in figure 4.9 are not calibrated for the camera’s nonlinear response. The calibrated
traces are shown in figure 4.10.
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(a) (b) (c)

Figure 4.9. Measured far-field intensities on the infrared camera for ds = 0.25 mm,
when (a) one of the OPLLs is unlocked and (b), (c) both OPLLs are locked. The RF
phase is varied between (b) and (c), demonstrating electronic steering of the optical
beam.

ration reduces by a factor of two within the same envelope of the distribution. The

nonideal fringe visibility (the minima do not go down to zero) is mainly a result of

poor camera dynamic range, but other factors such as mismatched optical intensities,

polarization states and residual phase errors in the OPLLs significantly reduce the

visibility.

Modeling the laser outputs as Gaussian beams, the far-field intensity distribution

is theoretically calculated [68] and compared to the experimental result in figure 4.11,

showing excellent agreement. By choosing different channels of the fiber array, the

far-field distributions are measured for different values of the emitter separation ds.

The variation of the experimentally measured fringe separation is plotted against the

inverse emitter separation d−1

s in figure 4.12, and the linear dependence is verified.

4.2.3 Effect of Residual Phase Noise on Fringe Visibility

Finally, we consider the effect of the OPLL residual phase noise on optical sidebands

in the far field. Consider an optical phased array composed of N individual emitters,

labeled 1, 2, . . . , N , where each emitter is a SCL phase-locked to the master laser in

an OPLL with residual phase error σ2

φ. The effect of a varying steady-state phase

error can also be included in this variance. At a point ~r in the far field of the phased
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Figure 4.10. Horizontal far-field intensity distributions demonstrating beam-steering
of half a fringe by an RF phase shift of π radians, for emitter spacings of (a) ds =
0.25 mm and (b) ds = 0.5 mm. The incoherently added intensity distribution is also
shown in (a).
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Figure 4.11. Comparison of the experimental far-field intensity distribution with the
theoretical calculation.
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Figure 4.12. Separation between fringes as a function of the inverse beam separation
d−1

s , compared to theory.
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array aperture, let the field due to emitter i be given by

Ei = ai exp(jω0t+ jφi + jφi,n), (4.22)

where ai and ω0 denote the amplitude and frequency of emitter i, φi is the phase of the

wave at the point ~r (controlled by RF phase shifters), and φi,n denotes the phase noise

due to emitter i, which is not corrected by the OPLL. φi,n is a zero-mean Gaussian

random variable with standard deviation σ2

φ. For simplicity, we will assume that the

amplitudes ai are equal to unity; a more general result can easily be derived. The

total field at the point ~r is given by E =
∑N

i=1
Ei, and the time averaged intensity is

given by

I =
〈

|E|2
〉

=

〈(

N
∑

i=1

exp(jφi + jφi,n)

)(

N
∑

k=1

exp(−jφk − jφk,n)

)〉

. (4.23)

The phases φi are constant over the averaging interval, so that

I =
N
∑

i 6=k

[exp(j(φi − φk)) 〈exp(j(φi,n − φk,n))〉] +N. (4.24)

For i 6= k, φi,n and φk,n are independent random variables. Further, we have for a

zero-mean Gaussian random variable X with variance σ2, 〈exp(jX)〉 = exp(−σ2/2).

Therefore,

I = N + e−σ2

φ

N
∑

i 6=k

exp(j(φi − φk)). (4.25)

The intensity pattern in the far field consists of maxima and minima according to

how the phases in equation (4.25) add up. Let us first assume no phase noise, i.e.,

σφ = 0. At a maximum, all the phases add in phase (φi = φk) to give

Imax = N +N(N − 1) = N2. (4.26)
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At a minimum, we have zero intensity, so that

Imin = 0 = N +
N
∑

i 6=k

exp(j(φi − φk)). (4.27)

We now consider phase noise. With the addition of phase noise, the intensity at

a maximum is

Imax,n = N +N(N − 1)e−σ2

φ ≃ N +N(N − 1)(1− σ2

φ)

= N2 − (N2 −N)σ2

φ, (4.28)

which is also the result for the CBC efficiency in equation (4.21). At a minimum,

Imin,n ≃ N + (1− σ2

φ)
N
∑

i 6=k

exp(j(φi − φk))

= N + (1− σ2

φ)(−N) = Nσ2

φ. (4.29)

We have used equation (4.27) in deriving the above. The ratio of the maximum to

the minimum intensity is therefore

Imax,n

Imin,n

=
N − (N − 1)σ2

φ

σ2

φ

. (4.30)

Note that we have made no assumptions about the location of the N emitters in

the array. We have only assumed that the interference pattern in the absence of

noise produces nulls, an assumption which is valid when the emitters have equal

(or symmetric) amplitudes. The ratio derived above sets an upper bound on the

maximum achievable sideband suppression ratio. In an aperture with emitters of

equal power, the finite size of the aperture creates sidebands. With an apodized

aperture, the strength of these sidebands can be reduced until the above limit is

reached.

The practical realization of optical phased arrays requires a large number of ele-

ments (from tens to hundreds in one dimension), and is a major technological chal-
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lenge. It will require the fabrication of arrays of narrow-linewidth SCLs. For ex-

ample, there has been some progress in the fabrication of large-scale independently

addressable vertical cavity surface-emitting laser (VCSEL) arrays [110, 111]. Inte-

grated OPLLs have recently been demonstrated by various workers [22, 23, 77]. We

believe that it is feasible to use integrated optical waveguides to combine the outputs

of many discrete phase-locked SCLs residing on a single chip to form a single coherent

aperture with narrow spacing between adjacent emitters and electronic control over

the phase of each emitter in the aperture.


