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Abstract

This thesis explores the precise control of the phase and frequency of the output of
semiconductor lasers (SCLs), which are the basic building blocks of most modern
optical communication networks. Phase and frequency control is achieved by purely
electronic means, using SCLs in optoelectronic feedback systems, such as optical
phase-locked loops (OPLLs) and optoelectronic swept-frequency laser (SFL) sources.

Architectures and applications of these systems are studied.

OPLLs with single-section SCLs have limited bandwidths due to the nonuniform
SCL frequency modulation (FM) response. To overcome this limitation, two novel
OPLL architectures are designed and demonstrated, viz. (i) the sideband-locked
OPLL, where the feedback into the SCL is shifted to a frequency range where the
FM response is uniform, and (ii) composite OPLL systems, where an external optical
phase modulator corrects excess phase noise. It is shown, theoretically and experi-
mentally, and in the time and frequency domains, that the coherence of the master
laser is “cloned” onto the slave SCL in an OPLL. An array of SCLs, phase-locked to a
common master, therefore forms a coherent aperture, where the phase of each emitter
is electronically controlled by the OPLL. Applications of phase-controlled apertures

in coherent power-combining and all-electronic beam-steering are demonstrated.

An optoelectronic SFL source that generates precisely linear, broadband, and
rapid frequency chirps (several 100 GHz in 0.1 ms) is developed and demonstrated
using a novel OPLL-like feedback system, where the frequency chirp characteristics
are determined solely by a reference electronic oscillator. Results from high-sensitivity
biomolecular sensing experiments utilizing the precise frequency control are reported.

Techniques are developed to increase the tuning range of SFLs, which is the primary



vii
requirement in high-resolution three-dimensional imaging applications. These include
(i) the synthesis of a larger effective bandwidth for imaging by “stitching” measure-
ments taken using SFLs chirping over different regions of the optical spectrum; and
(i) the generation of a chirped wave with twice the chirp bandwidth and the same
chirp characteristics by nonlinear four-wave mixing of the SFL output and a reference
monochromatic wave. A quasi-phase-matching scheme to overcome dispersion in the

nonlinear medium is described and implemented.
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