Optoelectronic Control of the Phase and Frequency of Semiconductor Lasers

Thesis by

Naresh Satyan

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California

> 2011 (Defended May 16, 2011)

© 2011

Naresh Satyan

All Rights Reserved

In loving memory of Dilip

Acknowledgements

I am grateful for the support, encouragement, and friendship of a large number of people who have made my stay at Caltech productive and enjoyable.

I am thankful to Prof. Amnon Yariv for the opportunity to be a member of his research group, and the freedom to grow as a researcher. He has always been a source of inspiration with his intuition and insight, and being part of his group has allowed me to interact with, and learn from, a number of knowledgeable and talented individuals.

A large part of this work has been collaborative, and I thank the number of researchers with whom I have benefited from working. Dr. Wei Liang was instrumental in helping me develop a good understanding of the theoretical and experimental aspects of optical phase-locked loops. I have enjoyed numerous brainstorming sessions with Dr. George Rakuljic, discussing new ideas and their feasibility and relevance to the real world. I have learned much about experimental system design from Dr. Anthony Kewitsch. More recently, I have enjoyed exploring various facets of optoelectronic control with Arseny Vasilyev, Jacob Sendowski, and Yasha Vilenchik. I have also had the pleasure of collaborating with other groups on some aspects of this work: Firooz Aflatouni and Prof. Hossein Hashemi at the University of Southern California designed custom integrated circuits to phase-lock semiconductor lasers; and Jason Gamba and Prof. Richard Flagan at Caltech helped us demonstrate the feasibility of using our laser sources for biomolecular sensing.

I thank the many current and past members of the research group with whom I have had fruitful interactions. Dr. John Choi and I spent too many hours together in the office, and he taught me how to be an experimentalist. Dr. Reginald Lee has provided stimulating conversations and expert advice every week. I have enjoyed technical and other discussions with Prof. Bruno Crosignani, Prof. Joyce Poon, Prof. Lin Zhu, Dr. Philip Chak, Prof. Avi Zadok, Dr. Xiankai Sun, Hsi-Chun Liu, Christos Santis, Scott Steger, James Raftery and Sinan Zhao. I owe special thanks to Connie Rodriguez for her thoughtfulness and hard work in looking after us. I also thank Alireza Ghaffari, Kevin Cooper and Mabel Chik for their support.

I thank Profs. Bruno Crosignani, Ali Hajimiri, Kerry Vahala, and Changhuei Yang for serving on my candidacy and thesis committees.

I am fortunate to have formed many friendships at Caltech that have helped me explore my interests outside work. Phanish Suryanarayana, Pinkesh Patel, Setu Mohta, and Devdutt Marathe have been wonderful roommates. I have greatly enjoyed the Carnatic music sessions with Shankar Kalyanaraman, Prabha Mandayam and Chithra Krishnamurthy. John Choi and Philip Tsao have introduced me to bad movies and good food. I have enjoyed many great times—on and off the cricket field—with the large Indian contingent at Caltech: Tejaswi Navilarekallu, Abhishek Tiwari, Vijay Natraj, Sowmya Chandrasekar, Krish Subramaniam, Swaminathan Krishnan, Shaunak Sen, Vikram Deshpande, Vikram Gavini, Abhishek Saha, Anu and Ashish Mahabal, Sonali and Vaibhav Gadre, Mayank Bakshi, Mansi Kasliwal, Zeeshan Ahmed, Uday Khankhoje, Ravi Teja Sukhavasi, Bharat Penmecha, Varun Bhalerao, Shriharsh Tendulkar and Srivatsan Hulikal. Thanks to all my regular hiking partners over the years: the Caltech Y, members of my research group, Shankar Kalyanaraman, Mayank Bakshi, Gautham Jayaram, and especially to Tejaswi Navilarekallu, Pinkesh Patel and Shriharsh Tendulkar. Thanks also to Saurabh Vyawahare and Shankar Kalyanaraman for their company on the long bike rides. I made the decision to live in the Los Angeles area without a car, and I owe many thanks (and apologies) to friends inconvenienced by this on occasion.

Finally, I am deeply thankful for the love, support, and understanding of my parents and my family.

Abstract

This thesis explores the precise control of the phase and frequency of the output of semiconductor lasers (SCLs), which are the basic building blocks of most modern optical communication networks. Phase and frequency control is achieved by purely electronic means, using SCLs in optoelectronic feedback systems, such as optical phase-locked loops (OPLLs) and optoelectronic swept-frequency laser (SFL) sources. Architectures and applications of these systems are studied.

OPLLs with single-section SCLs have limited bandwidths due to the nonuniform SCL frequency modulation (FM) response. To overcome this limitation, two novel OPLL architectures are designed and demonstrated, viz. (i) the sideband-locked OPLL, where the feedback into the SCL is shifted to a frequency range where the FM response is uniform, and (ii) composite OPLL systems, where an external optical phase modulator corrects excess phase noise. It is shown, theoretically and experimentally, and in the time and frequency domains, that the coherence of the master laser is "cloned" onto the slave SCL in an OPLL. An array of SCLs, phase-locked to a common master, therefore forms a coherent aperture, where the phase of each emitter is electronically controlled by the OPLL. Applications of phase-controlled apertures in coherent power-combining and all-electronic beam-steering are demonstrated.

An optoelectronic SFL source that generates precisely linear, broadband, and rapid frequency chirps (several 100 GHz in 0.1 ms) is developed and demonstrated using a novel OPLL-like feedback system, where the frequency chirp characteristics are determined solely by a reference electronic oscillator. Results from high-sensitivity biomolecular sensing experiments utilizing the precise frequency control are reported. Techniques are developed to increase the tuning range of SFLs, which is the primary requirement in high-resolution three-dimensional imaging applications. These include (i) the synthesis of a larger effective bandwidth for imaging by "stitching" measurements taken using SFLs chirping over different regions of the optical spectrum; and (ii) the generation of a chirped wave with twice the chirp bandwidth and the same chirp characteristics by nonlinear four-wave mixing of the SFL output and a reference monochromatic wave. A quasi-phase-matching scheme to overcome dispersion in the nonlinear medium is described and implemented.

Contents

Li	st of	Figures	xii
Li	st of	Tables	xx
G	lossa	ry of Acronyms	xxi
1	Ove	erview	1
	1.1	Introduction	1
	1.2	Optical Phase-Locked Loops (OPLLs) and Applications	2
	1.3	Optoelectronic Swept-Frequency Lasers (SFLs)	4
	1.4	Organization of the Thesis	6
2	Sen	niconductor Laser Optical Phase-Locked Loops	8
	2.1	OPLL Basics	8
		2.1.1 Small-Signal Analysis	12
		2.1.2 OPLL Performance Metrics	14
	2.2	Performance of Different OPLL Architectures	16
		2.2.1 Type I OPLL	17
		2.2.2 Type I, Second-Order OPLL	19
		2.2.3 Type I OPLL with Delay	21
		2.2.4 Type II Loop with Delay	23
	2.3	FM Response of Single-Section SCLs	27
	2.4	OPLL Filter Design	28
	2.5	Phase-Locking of Commercial SCLs	31

	2.6	Novel	Phase-Lock Architectures I: Sideband Locking	35
		2.6.1	Principle of Operation	36
		2.6.2	Experimental Demonstration	38
	2.7	Novel	Phase-Lock Architectures II: Composite OPLLs	42
		2.7.1	System Description	42
			2.7.1.1 Double-Loop Configuration	42
			2.7.1.2 Composite PLL	45
		2.7.2	Results	47
			2.7.2.1 Laser Frequency Modulation Response	47
			2.7.2.2 Numerical Calculations	47
			2.7.2.3 Experimental Validation	51
		2.7.3	Summary	54
3	Coh	nerence	e Cloning using SCL-OPLLs	55
	3.1	Introd	luction	55
	3.2	Notati	ion	56
	3.3	Coher	ence Cloning in the Frequency Domain	57
		3.3.1	Experiment	57
		3.3.2	Coherence Cloning and Interferometer Noise	60
			3.3.2.1 Coherence Cloning Model	61
			3.3.2.2 Spectrum of the Laser Field	64
			3.3.2.3 Spectrum of the Detected Photocurrent	68
		3.3.3	Summary	72
	3.4	Time-	Domain Characterization of an OPLL	72
		3.4.1	Experiment	74
			3.4.1.1 Allan Variance and Stability	75
			3.4.1.2 Residual Phase Error, Revisited	79
		3.4.2	Summary	80
4	Pha	se-Co	ntrolled Apertures	82
	4.1	Coher	ent Power-Combining	82

		4.1.1	Experiment	84
		4.1.2	Phase Control Using a VCO	86
			4.1.2.1 Steady-State Analysis	88
			4.1.2.2 Small-Signal Analysis	91
		4.1.3	Combining Efficiency	93
		4.1.4	Summary	96
	4.2	Optica	l Phased Arrays	96
		4.2.1	Far-Field Distribution	97
		4.2.2	Experimental Results	98
		4.2.3	Effect of Residual Phase Noise on Fringe Visibility	100
5	The	Opto	electronic Swept-Frequency Laser	106
	5.1	Introd	uction	106
	5.2	System	n Description	107
		5.2.1	Small-Signal Analysis	110
		5.2.2	Predistortion of the SCL Bias Current	112
	5.3	Experi	imental Demonstration	114
		5.3.1	Linear Frequency Sweep	114
			5.3.1.1 Distributed Feedback SCL	114
			5.3.1.2 Vertical Cavity Surface-Emitting Laser	116
		5.3.2	Arbitrary Frequency Sweeps	118
	5.4	Range	Resolution of the Optoelectronic SFL	119
	5.5	Label-	Free Biomolecular Sensing Using an Optoelectronic SFL $\ . \ . \ .$	122
6	Exte	ending	the Bandwidth of SFLs	129
	6.1	Chirp	Multiplication by Four-Wave Mixing	129
		6.1.1	Theory	130
			6.1.1.1 Bandwidth-Doubling by FWM	130
			6.1.1.2 Bandwidth Limitations due to Dispersion	134
			6.1.1.3 Quasi-Phase-Matching Using Alternating Dispersions	136
		6.1.2	Experiment	140

			6.1.2.1	Chirp Bandwidth-Doubling	140
			6.1.2.2	Dispersion Compensation	142
		6.1.3	Bandwie	dth Extension	147
	6.2	Multi	ple Sourc	ee FMCW Reflectometry	151
		6.2.1	MS-FM	CW Analysis	151
		6.2.2	Stitchin	g	155
		6.2.3	Experim	nental Results	159
		6.2.4	Summar	ry	161
7	Con	clusio	n		163
	7.1	Summ	ary of th	e Thesis	163
	7.2	Outlo	ok		165
Α	Res	idual l	Phase E	rror in an OPLL with Nonuniform FM Response	e 168
В	Fou	r-Wav	e Mixing	g in a Multisegment Nonlinear Waveguide	173
Bil	oliog	graphy			177

List of Figures

1.1	Schematic diagram of a generic phase-locked loop	2
1.2	A frequency-modulated continuous wave (FMCW) experiment. $\ . \ . \ .$	4
2.1	A heterodyne semiconductor laser optical phase-locked loop	9
2.2	(a) Schematic diagram of an OPLL. (b) Linearized small-signal model	
	for phase noise propagation in the OPLL.	10
2.3	Simplified schematic diagram of an OPLL	16
2.4	Bode plots for (a) a Type I OPLL and (b) a Type I OPLL with a	
	propagation delay of 10 ns. The phase-crossover frequency is indicated	
	by the marker in (b)	18
2.5	Type I, second-order OPLL using an active filter	20
2.6	Variation of the minimum variance of the phase error as a function of	
	the normalized gain for a Type I OPLL in the presence of propagation	
	delay.	22
2.7	Variation of (a) the π -crossover frequency \bar{f}_{π} and (b) the maximum	
	stable loop gain $\bar{K}_{L,max}$ as a function of the position of the loop zero $\bar{\tau}_0$,	
	for a Type II OPLL in the presence of a delay τ_L	24
2.8	Variation of the minimum variance of the phase error as a function of	
	the parameter $\overline{\tau}_0$, for a Type II OPLL with delay τ_L	25
2.9	Experimentally measured FM response of a commercial DFB laser with	
	a theoretical fit using a low-pass filter model	26
2.10	Bode plots for (a) a Type I OPLL including the SCL FM response, and	
	(b) the same response with an additional lead filter	30

2.11	Practical OPLL configuration, including a lead filter to increase the	
	phase-crossover frequency and a low frequency active lag filter (imple-	
	mented by the parallel arm) to increase the hold-in range. \ldots .	31
2.12	Phase-locking results using various commercially available SCLs	34
2.13	Cartoon representation of the phase response of a single-section SCL	
	showing the regimes of operation of a conventional OPLL and a sideband-	
	locked OPLL	36
2.14	Schematic diagram of a heterodyne sideband-locked OPLL. \ldots .	37
2.15	Measured FM response of the DFB SCL used in the sideband locking	
	experiment	39
2.16	Beat spectrum between the locked sideband of the slave SCL and the	
	master laser.	40
2.17	Lineshape measurements of the master laser, free-running and phase-	
	locked optical sideband of the slave SCL, using a delayed self-heterodyne	
	interferometer with a frequency shift of 290 MHz	41
2.18	(a) Schematic diagram of the double-loop configuration. (b) Linearized	
	small-signal model for phase propagation.	43
2.19	(a) Schematic diagram of the composite heterodyne OPLL. (b) Lin-	
	earized small-signal model for phase propagation	46
2.20	Experimentally measured frequency modulation of a single-section dis-	
	tributed feedback semiconductor laser and theoretical fit using equation	
	$(2.40). \ldots \ldots$	48
2.21	Calculated two-sided spectral densities of the residual phase error in the	
	loop, according to equations (2.18) , (2.56) and (2.60) . The variance of	
	the phase error is the area under the curves	50
2.22	Measured spectrum of the beat signal between the optical output and	
	the master laser for an SCL in (a) a heterodyne OPLL, and (b) a double- $% \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({{{\bf{b}}} \right)_{\rm{cl}}} \right)_{\rm{cl}} + \left({\left({$	
	loop feedback system shown in figure 2.18	52

2.23	Measured spectrum of the beat signal between the optical output and the master laser for an SCL in (a) a heterodyne OPLL, and (b) a composite	
	PLL shown in figure 2.19.	53
3.1	Individual SCLs all lock to a common narrow-linewidth master laser, thus forming a coherent array. An offset RF signal is used in each loop for additional control of the optical phase	56
3.2	Measured linewidths of the master fiber laser, and the free-running and phase-locked slave SCL.	58
3.3	Measured frequency noise spectra of the master fiber laser, and the free- running and phase-locked slave DFB semiconductor laser. The green curve is the theoretical calculation of the frequency noise spectrum of the phase-locked slave laser using equation (3.1) and the measured loop parameters	59
3.4	Delayed self-heterodyne interferometer experiment	60
3.5	Model of the power spectral density of the frequency noise of the master laser and the free-running and locked slave laser. The OPLL is assumed to be "ideal" with a loop bandwidth f_L .	62
3.6	Variation of the accumulated phase error variance $\sigma_{\Delta\phi}^2(T_d)$ vs. interfer- ometer delay time T_d for various values of the loop bandwidth f_L	65
3.7	Spectral density of the optical field for different values of the loop band- width f_L , calculated using equation (3.15)	67
3.8	Spectral density of the detected photocurrent in a delayed self hetero- dyne experiment using the free-running slave laser, the phase-locked slave laser, and the master laser, for different values of the interferome- ter delay T_d	71
3.9	Spectrum of the beat signal between the phase-locked slave SCL and the master laser.	75

3.10	Measured Allan variance of the beat signal between the slave and master lasers for the locked and unlocked cases. The variance of the RF offset signal is also shown.	76
3.11	Measured Allan variance of the beat signal between the phase-locked slave laser and the master laser, and the theoretical calculation based on equation (3.38)	78
3.12	Residual phase error calculated from the measured Allan variance using equation (3.41).	80
4.1	Coherent power-combining scheme using heterodyne SCL-OPLLs. Indi- vidual SCLs all lock to a common master laser, thus forming a coherent array. The outputs of the individual lasers are coherently combined to obtain a high power single-mode optical beam	83
4.2	(a) Coherent combination schematic. (b) Experimentally measured com- bined power using two high power MOPAs as slave lasers phase-locked to a common master laser	85
4.3	(a) Schematic of the coherent combination experiment with additional electronic phase control. (b) Experimentally measured combined power using External Cavity SCLs at 1064 nm, without and with the VCO loop connected	87
4.4	Steady-state model for the loop OPLL 2 shown in figure 4.3(a)	89
4.5	Small-signal phase model for the power-combining scheme with the ad- ditional VCO loop	92
4.6	Binary tree configuration for the power combination of a number of SCLs locked to a common master laser in the filled-aperture configuration.	94
4.7	A one-dimensional array of coherent optical emitters	97
4.8	Experimental setup for the demonstration of beam-steering using OPLLs.	99

4.9	Measured far-field intensities on the infrared camera for $d_s = 0.25$ mm,
	when (a) one of the OPLLs is unlocked and (b), (c) both OPLLs are
	locked. The RF phase is varied between (b) and (c), demonstrating
	electronic steering of the optical beam
4.10	Horizontal far-field intensity distributions demonstrating beam-steering
	of half a fringe by an RF phase shift of π radians, for emitter spacings
	of (a) $d_s = 0.25$ mm and (b) $d_s = 0.5$ mm. The incoherently added
	intensity distribution is also shown in (a)
4.11	Comparison of the experimental far-field intensity distribution with the
	theoretical calculation
4.12	Separation between fringes as a function of the inverse beam separation
	d_s^{-1} , compared to theory
F 1	Onto destance in facility of a second state of a
5.1	Optoelectronic leedback loop for the generation of accurate broadband
	linear chirps. The optical portion of the loop is shown in blue 108
5.2	Small-signal phase propagation in the optoelectronic SFL feedback loop. 111
5.3	Measured spectrograms of the output of the loop photodetector, for the
	(a) free-running and (b) predistorted cases. The predistortion signifi-
	cantly reduces the SCL nonlinearity. The delay of the MZI is $\tau=28.6~{\rm ns}.113$
5.4	Measured spectrogram of the output of the loop photodetector when
	the loop is in lock, showing a perfectly linear optical chirp with slope
	$100~\mathrm{GHz/ms.}$ (b) Fourier transform of the photodetector output mea-
	sured over a 1 ms duration. $\ldots \ldots 115$
5.5	Measured optical spectrum of the locked swept-frequency SCL. $RBW =$
	10 GHz
5.6	Experimental demonstration of generation of a perfectly linear chirp of
	500 GHz / 0.1 ms using a VCSEL. (a), (b), and (c) Spectrograms of the
	optical chirp slope for a ramp input, after iterative predistortion and the
	phase-locked SFL respectively. (d) Measured optical spectrum 117

5.7	Measured spectrograms of the output of the loop photodetector, illus-	
	trating arbitrary sweeps of the SCL frequency. (a) The reference signal is	
	swept linearly with time. (b) The reference signal is swept exponentially	
	with time. The laser sweep rate varies between 50 and 150 GHz/ms. $\ .$	119
5.8	Schematic diagram of an FMCW ranging experiment with a linearly	
	chirped optical source.	120
5.9	Range resolution measurements using the optoelectronic swept-frequency	
	VCSEL	121
5.10	High- Q mode of a silica microtoroid in air, measured using an optoelec-	
	tronic SFL at 1539 nm.	124
5.11	Whispering gallery mode resonances of a microtoroid in water, measured	
	using optoelectronic SFLs at (a) 1539 nm and (b) 1310 nm. \ldots	125
5.12	Specific sensing of 8-isoprostane using a microtoroid resonator and an	
	optoelectronic SFL at 1310 nm	127
6.1	(a) Schematic diagram of the four-wave mixing (FWM) experiment for	
6.1	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling.(b) Spectral components of the input and	
6.1	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling.(b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil-	
6.1	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling.(b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform.	131
6.16.2	 (a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically filtered to obtain the output waveform. Output power as a function of the input frequency difference, for difference, for difference, for difference. 	131
6.16.2	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131
6.16.2	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131
6.1	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135
6.16.26.3	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135
6.16.26.3	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135
6.16.26.3	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135 137
 6.1 6.2 6.3 6.4 	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135 137
6.16.26.36.4	(a) Schematic diagram of the four-wave mixing (FWM) experiment for chirp bandwidth-doubling. (b) Spectral components of the input and FWM-generated fields. The chirp-doubled component is optically fil- tered to obtain the output waveform	131 135 137

6.5	Schematic diagram of the experimental setup for the demonstration of	
	chirp bandwidth-doubling by four-wave mixing	141
6.6	Experimental demonstration of bandwidth-doubling by FWM	141
6.7	Measured slopes of the (a) input and (b) output optical chirps demon-	
	strating the doubling of the optical chirp slope by FWM	143
6.8	Improvement in the FWM power using a two-segment HNLF	144
6.9	Theoretically calculated output power as a function of the input fre-	
	quency difference for the two-segment dispersion compensated HNLF,	
	compared to the same lengths $(L_{tot} = 200 \text{ m})$ of individual fibers	145
6.10	Experimental demonstration of improved bandwidth using a quasi-phase-	
	matched nonlinear fiber.	145
6.11	Comparison of the normalized experimentally measured FWM power	
	in two individual segments of 100 m each with opposite signs of the	
	dispersion parameter, and the dispersion-compensated two-segment fiber	.147
6.12	Cascaded FWM stages for geometric scaling of the chirp bandwidth.	
	Each stage consists of a coupler, amplifier, HNLF and filter as shown in	
	figure 6.1(a)	148
6.13	Spectral components in a bandwidth tripling FWM experiment using	
	two chirped optical inputs	149
6.14	(a) FWM "engine" for geometric scaling of the chirp bandwidth. The	
	filter is switched every T seconds so that it passes only the FWM com-	
	ponent generated. (b) Output frequency vs. time	150
6.15	(a) Schematic diagram of an FMCW ranging experiment with a linearly	
	chirped optical source. (b) Variation of the optical frequency with time.	152
6.16	Illustration of the MS-FMCW concept	156
6.17	Schematic of a multiple source FMCW ranging experiment. A reference	
	target is imaged along with the target of interest, so that the intersweep	
	gaps may be recovered.	157
6.18	Architecture of a potential MS-FMCW imaging system.	159
6.19	Experimental MS-FMCW results using a DFB SCL.	160

xviii

6.20	Experimental MS-FMCW results using a VCSEL	162
7.1	Schematic diagram of a potential compact integrated label-free biomolec-	
	ular sensor.	166
A.1	Variation of (a) the normalized π -crossover frequency and (b) the nor-	
	malized maximum gain as a function of the parameter b in equation	
	(A.1)	169
A.2	Variation of the integral $\mathcal{I}(b, \bar{K}_F)$ in equation (A.6) as a function of \bar{K}_F ,	
	for $b = 1.64$	170
A.3	Variation of the (a) normalized optimum gain $\bar{K}_{F,opt} = K_{F,opt}/f_c$ and	
	(b) the normalized minimum residual phase error $\sigma_{min}^2 f_c / (\Delta \nu_m + \Delta \nu_s)$	
	as a function of the parameter b , for a first-order OPLL with a SCL with	
	nonuniform FM response.	171
B.1	A multisegment nonlinear waveguide for four-wave mixing	174

List of Tables

1.1	Comparison between electronic PLLs and OPLLs	3
2.1	Parameters of OPLLs demonstrated using commercially available SCLs	32
2.2	Parameters and results of the numerical calculations of the performance	
	of composite OPLLs	50
6.1	Length of HNLF and input power requirements for different output	
	bandwidths and power levels	136

Glossary of Acronyms

- **CBC** Coherent beam-combining
- CCO Current-controlled oscillator
- **DFB** Distributed feedback
- EDFA Erbium-doped fiber amplifier
- **FM** Frequency modulation
- FMCW Frequency modulated continuous wave
- ${\bf FWHM}\,$ Full width at half maximum
- FWM Four-wave mixing
- GVD Group velocity dispersion
- **HNLF** Highly nonlinear fiber
- ${\bf LIDAR}\,$ Light detection and ranging
- MOPA Master oscillator power amplifier
- MS-FMCW Multiple source-frequency modulated continuous wave
- MZI Mach-Zehnder interferometer
- **OCT** Optical coherence tomography
- \mathbf{OPLL} Optical phase-locked loop

 \mathbf{PD} Photodetector

- \mathbf{PLL} Phase-locked loop
- ${\bf RIN}\,$ Relative intensity noise
- \mathbf{RF} Radio frequency
- ${\bf SCL}$ Semiconductor laser
- ${\bf SFL}$ Swept-frequency laser
- **SS-OCT** Swept source-optical coherence tomography
- ${\bf VCO}$ Voltage-controlled oscillator
- VCSEL Vertical cavity surface-emitting laser
- ${\bf VECSEL}$ Vertical external cavity surface-emitting laser