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Appendix A

Residual Phase Error in an OPLL

with Nonuniform FM Response

In this appendix, we calculate the effect of the SCL FM response of the form

FFM(f) =
1

b

(

b−
√

jf/fc

1 +
√

jf/fc

)

, (A.1)

where fc denotes the corner frequency of the thermal response and depends on the

device material and structure, and b = Kth/Kel − 1 denotes the relative strength of

the thermal and electronic responses, on the minimum residual phase error in a Type

I SCL-OPLL. For typical SCLs, b > 0, and fc lies in the range of 0.1–10 MHz. For

example, the fit to the experimental data in figure 2.9 was obtained with b = 1.64

and fc = 1.8 MHz.

The open loop transfer function of a Type I loop with the nonuniform SCL FM

response is therefore given by

Gop(f̄) =
K̄F

jbf̄

(

b−
√

jf̄

1 +
√

jf̄

)

, (A.2)

where the loop gain KF and the frequency are normalized according to

f̄
.
= f/fc,

K̄F
.
= KF/fc. (A.3)
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Figure A.1. Variation of (a) the normalized π-crossover frequency and (b) the nor-
malized maximum gain as a function of the parameter b in equation (A.1).

The π-crossover frequency fπ (frequency where the phase of Gop(f) goes to π) and

the maximum gain (gain at which |Gop(fπ)| = 1 can now be calculated. Setting

∠Gop(fπ) = −π in equation (A.2), we obtain

f̄π = 2

(

b− 1 +
√
b2 + 6b+ 1

4

)2

. (A.4)

Next, setting |Gop(fπ)| = 1, we have

K̄F,max = bf̄π

√

1 + f̄π +
√

2f̄π

b2 + f̄π − b
√

2f̄π
. (A.5)

The behavior of the normalized π-crossover frequency and the normalized maximum

gain as a function of b are shown in figure A.1. f̄π and K̄F,max increase monotonically

with b, and larger values of b and fc therefore lead to higher loop bandwidths.
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Figure A.2. Variation of the integral I(b, K̄F ) in equation (A.6) as a function of K̄F ,
for b = 1.64.

We now calculate the variance of the residual phase error by using equation (A.2)

in equation (2.18), to obtain

σ2
φ =

∆νm +∆νs
2πfc

∫

∞

−∞

df̄
b2|1 +

√

jf̄ |2

|KF (b−
√

jf̄) + jbf̄(1 +
√

jf̄)|2

=
∆νm +∆νs

2πfc
I(b, K̄F ). (A.6)

To understand the behavior of the variance of the phase error, we first note that

σ2
φ scales inversely with fc as expected, since the loop bandwidth increases with fc.

Further, the behavior of the integral I(b, K̄F ) for a given value of b, chosen to be

b = 1.64 to match the experimental result of figure 2.9, is shown in figure A.2. For

this value of b, the maximum stable gain is K̄F,max = 7.36. At low gains, the loop

has little effect, leading to a high phase error. As the gain approaches the maximum

possible value, the phase error again increases since the loop begins to go unstable.

Therefore, there is an optimum value of the gain—K̄F,opt ≈ 2.4 in this case—for which

the variance of the phase error is minimized. The ratio of the optimum gain to the

maximum stable loop gain lies between 0.25 and 0.35.



171

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

b = K
th

/K
el

 − 1 →

K
F

,o
p

t /
 f

c
 →

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−1

10
0

10
1

10
2

b = K
th

/K
el

 − 1 →

σ
m

in
 2

 *
 f

c
 /

 (
∆

 ν
 m

 +
 ∆

 ν
 s

) 
(r

a
d

2
) 
→

(a)

(b)

Figure A.3. Variation of the (a) normalized optimum gain K̄F,opt = KF,opt/fc and
(b) the normalized minimum residual phase error σ2

minfc/(∆νm +∆νs) as a function
of the parameter b, for a first-order OPLL with a SCL with nonuniform FM response.
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The value of K̄F,opt is a function of b, as is the value of the minimum phase

error σ2
min. As b increases, the loop bandwidth is higher, leading to a larger value of

K̄F,opt and a smaller value of σ2
min. The values of the (normalized) optimum gain and

minimum residual phase error vs. the parameter b are plotted in figure A.3. As a

concrete example, consider the experimentally measured FM response of figure 2.9,

for which b = 1.64 and fc = 1.8 MHz. For these values, we obtain

σ2
min

∆νm +∆νs
= 8× 10−7 rad2/Hz. (A.7)
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Appendix B

Four-Wave Mixing in a

Multisegment Nonlinear

Waveguide

In this appendix, we derive a general expression for the power generated by four-

wave mixing in the multisegment nonlinear waveguide shown in figure B.1 for arbi-

trary values of the phase mismatch in each segment.1 This is important in order

to understand practical implementations of the dispersion compensation technique

described in section 6.1.1.3, where it is often difficult to precisely control the value

of the dispersion parameter Dc. Let the waveguide consist of N segments, labeled

k = 1, 2, . . . , N . The length of segment k is given by Lk, and let the propagation con-

stants of the chirped, reference and output fields in this segment be denoted by βch,k,

βR,k and βout,k respectively. The phase mismatch in this segment is therefore given

by ∆βk = 2βch,k − βR,k − βout,k, and related to the value of the dispersion parameter

in the segment by equation (6.13). For the sake of notational simplicity, we assume

that the loss, refractive index, nonlinear susceptibility and the effective mode area of

the different segments are equal. Our goal is to calculate the output field and optical

power generated by FWM at z =
∑N

k=1Lk. We ignore splice losses in this calculation.

We begin by describing a separate frame of reference for the kth segment, denoted

by the position variable zk =
(

z −∑k−1
i=1 Li

)

∈ [0, Lk]. Similar to equation (6.1), the

1A similar calculation has been performed by Inoue [135] for the case of a chain of fiber amplifiers
with different dispersions.
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Figure B.1. A multisegment nonlinear waveguide for four-wave mixing.

electric field in this segment is described by its slowly varying complex amplitude as

E(zk, t) =
1

2
Ak(zk) exp (j(ωt− βkzk)) + c.c. (B.1)

The continuity of the electric field at zk = 0 requires that

Ak(zk = 0) = Ak−1(zk−1 = Lk−1) exp(−jβk−1Lk−1). (B.2)

It is to be understood henceforth that the argument of the function Ak is the variable

zk. We consider the FWM process where the chirped wave of frequency ωch and the

reference wave of frequency ωR generate an output wave with a frequency ωout =

2ωch − ωR, and assume that the chirped and reference waves are undepleted by the

FWM process. For the chirped wave, we have

Ach,k(0) = Ach,k−1(Lk−1) exp(−jβch,k−1Lk−1)

= Ach,k−1(0) exp [−(α/2 + jβch,k−1)Lk−1]

= Ach,1(0) exp

(

−α

2

k−1
∑

i=1

Li − j
k−1
∑

i=1

βch,iLi

)

. (B.3)

Similarly, the reference wave at zk = 0 is given by

AR,k(0) = AR,1(0) exp

(

−α

2

k−1
∑

i=1

Li − j
k−1
∑

i=1

βR,iLi

)

. (B.4)

In the frame of reference we have set up to describe the kth segment, the equation
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for the evolution of the output field is identical to equation (6.10):

dAout,k

dzk
= −α

2
Aout,k − jgA2

ch,k(0)A
∗

R,k(0)e
−3αzk/2e−j∆βkzk , (B.5)

where we have defined g = ncγǫ0Aeff/2. The solution to this differential equation is

Aout,k(Lk) = e−αLk/2

[

Aout,k(0)− jgA2
ch,k(0)A

∗

R,k(0)

(

1− e−(α+j∆βk)Lk

α + j∆βk

)]

. (B.6)

Using equations (B.2), (B.3) and (B.4), we obtain

Aout,k(Lk) =e−αLk/2

[

Aout,k−1(Lk−1) exp (−jβout,k−1Lk−1)− jg

(

1− e−(α+j∆βk)Lk

α + j∆βk

)

×A2
ch,1(0)A

∗

R,1(0) exp

(

−3α

2

k−1
∑

i=1

Li − j

k−1
∑

i=1

(2βch,i − βR,i)Li

)]

,

(B.7)

which can be rewritten as

Aout,k(Lk) = exp

(

−αLk

2
− j

k−1
∑

i=1

βout,iLi

)[

Aout,k−1(Lk−1) exp

(

j
k−2
∑

i=1

βout,iLi

)

−jgA2
ch,1(0)A

∗

R,1(0)

(

1− e−(α+j∆βk)Lk

α+ j∆βk

)

exp

(

−3α

2

k−1
∑

i=1

Li − j
k−1
∑

i=1

∆βiLi

)]

.

(B.8)

We note that the phase term exp
(

−j
∑k−1

i=1 βout,iLi

)

in equation (B.8) has no effect

on the power of the output wave, which only depends on the magnitude of Aout,k as

given by equation (6.14). This term depends on the propagation constants βout,i of

the output wave, and is difficult to evaluate in general. The physics of the process is

mainly determined by the phase-mismatch terms ∆βi. We therefore find it convenient

to define a new amplitude

Ãout,k(zk) = Aout,k(zk) exp

(

j
k−1
∑

i=1

βout,iLi

)

, (B.9)
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and equation (B.8) can be rewritten in the form

Ãout,k(Lk) = exp

(

−αLk

2

)

[

Ãout,k−1(Lk−1)− jgA2
ch,1(0)A

∗

R,1(0)

×
(

1− e−(α+j∆βk)Lk

α+ j∆βk

)

exp

(

−3α

2

k−1
∑

i=1

Li − j

k−1
∑

i=1

∆βiLi

)]

.

(B.10)

Equation (B.10) is the general solution for the output field generated by FWM in

a multiple-segment nonlinear waveguide. The values of the phase mismatch in the

various segments is related to the frequency chirp by equation (6.13), and the output

power is evaluated using equation (6.14):

Pout

(

z =

N
∑

i=1

Li

)

=
ncǫ0Aeff

2

∣

∣

∣
Ãout,N (LN)

∣

∣

∣

2

=
g

γ

∣

∣

∣
Ãout,N(LN )

∣

∣

∣

2

. (B.11)


