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ABSTRACT 

 Noncanonical amino acids are tools for expanding and altering the chemical 

functionalities available within proteins. Much recent work has focused on developing 

biosynthetic means for incorporating noncanonical amino acids into proteins, and 

applications of noncanonical amino acids to many problems in science and engineering are 

emerging. The first portion of this thesis describes established methods to incorporate 

noncanonical amino acids into proteins and efforts to exploit the properties of noncanonical 

amino acids in areas such as protein structure determination, protein and organism 

evolution, modulation of the immune system, and proteomics. Researchers’ creative and 

successful use of this growing toolkit suggests that noncanonical amino acids will continue 

to be a valuable asset for dissecting biological problems and imparting proteins with new 

chemical and physical properties. 

 Biophysical studies with noncanonical amino acids provide a platform for studying 

the effects of atom-by-atom manipulations of amino acid side chains on protein properties. 

The middle portions of this thesis describe work to better understand how protein 

properties are affected by subtle amino acid side chain manipulations. This work was aided 

greatly by the establishment of homoisoleucine as a translationally active analog of leucine 

in bacterial cells. The small side chain differences between leucine, homoisoleucine, and 

the fluorinated amino acid trifluoroleucine allow for detailed studies on how amino acid 

side chain size and fluorination affect protein stability and hydration dynamics. 

Replacement of leucine by homoisoleucine in coiled-coil peptides stabilizes these proteins, 

as shown by elevation of the coiled coil thermal denaturation temperature. The stabilization 

observed when homoisoleucine replaces leucine in the peptides is greater than when 
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trifluoroleucine replaces leucine, suggesting that expansion of side chain volume may play 

a role in protein stabilization irrespective of hydrocarbon or fluorocarbon character. 

 Studies of water-protein interactions using designed coiled coils containing surface-

exposed leucine, homoisoleucine, or trifluoroleucine residues enabled systematic 

examination of the roles that side chain size and fluorination play in dictating solvation 

dynamics. Fluorinated side chains appear to exert a large electrostatic drag on nearby water 

molecules. These results have important implications for the design and engineering of 

fluorinated proteins due to the critical role water-protein interactions play in many protein 

properties and functions. 

 The final portion of this thesis details efforts to engineer the binding properties and 

chemical reactivity of antibody fragments with noncanonical amino acids. The properties 

of the single chain variable fragment form of a model anti-digoxin antibody have been 

studied after replacement of the protein’s methionine residues with methionine analogs 

containing alkyne, azide, and aliphatic side chains. Experiments with antibody fragments 

displayed on the surface of Escherichia coli cells revealed that replacement of the 

methionine residues of the fragment with an analog containing an alkyne side chain 

reduced the fluorescence levels of cells treated with a fluorescently labeled antigen to 

background levels, indicating loss of binding function. Replacement of methionine with 

analogs containing aliphatic and azide side chains left the fluorescence of cells unchanged 

and reduced by a factor of 0.6, respectively. Fluorescence-activated cell sorting of libraries 

of cell surface-displayed antibody fragments enabled the isolation of clones functional in 

multiple amino acid contexts. Cells displaying variants containing alkyne, azide, and 

aliphatic analogs and treated with fluorescently labeled antigen were more fluorescent than 
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cells displaying the methionine form of the parent antibody fragment by factors of roughly 

1.7, 3.5, and 1.3, respectively. Furthermore, the amino acid context used during high-

throughput screening experiments appears to affect the frequencies of mutations occurring 

at various positions within the antibody fragment construct. High-throughput sequencing 

revealed that populations isolated in different amino acid contexts exhibit mutational rates 

differing by greater than twenty percent at some residues in the protein. 

 Characterization of soluble fragments indicated that each noncanonical amino acid 

used in this study modulates the binding kinetics of antibody fragments in a distinct 

fashion. Perhaps most interestingly, fragments containing the azide-containing analog 

azidohomoalanine exhibit improved binding kinetics relative to their methionine-

containing counterparts. Replacement of methionine by azidohomoalanine in several 

variants lowers the dissociation constant of the fragment by up to a factor of two. Chemical 

conjugation of azide-containing fragments to fluorescent dyes and biotin proved facile with 

strain-promoted cycloaddition reactions. Quantifications of the extent of reaction using 

fluorescent dyes revealed that approximately 0.4 dyes had been conjugated per protein, and 

the resulting conjugates were found to retain their binding function in kinetic and Western 

blotting assays. Experiments in which azide-containing fragments were displayed on the 

surface of Escherichia coli cells and subjected to strain-promoted cycloadditions 

demonstrated that the extent of chemical modification and antigen binding can be 

monitored simultaneously and used to isolate cells displaying functional, modified proteins. 

These experiments demonstrate how noncanonical amino acids can be used to modulate 

multiple properties of antibody fragments and illustrate the feasibility of developing and 
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screening libraries of chemically modified proteins. Evolved, functional bioconjugates may 

be applicable to a variety of outstanding diagnostic and therapeutic problems. 
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Abstract  

 Noncanonical amino acids (ncAAs) have the potential to greatly expand the 

chemical functionalities available within proteins. Methodologies for the genetic encoding 

and incorporation of ncAAs into proteins using the protein synthesis machinery from living 

organisms are now quite common, and applications of proteins containing ncAAs are 

emerging in a variety of fields. In this review, we highlight the most widely used 

methodologies for biosynthetic incorporation of ncAAs into proteins. We then discuss 

applications of ncAA incorporation to areas that include protein structure determination, 

protein and organism evolution, modulation of the immune system, and proteomics. 

Numerous successes in these and other fields suggest that biosynthetic ncAA incorporation 

will continue to be a valuable tool for biological science and engineering in the future. The 

ease of incorporation and large functional toolkit available with ncAAs will continue to 

enable researchers from many disciplines to tailor the use of ncAAs to their specific needs. 

 

Introduction  

 Proteins perform an astonishingly broad range of functions in biological systems, 

yet they are usually synthesized from no more than twenty amino acid monomers. While 

the templated synthesis of polypeptide chains provides access to an enormous sequence 

space (1), and posttranslational modifications significantly expand the available functional 

space (2), the chemical diversity of natural amino acid side chains is rather limited from a 

chemist’s perspective. Thus, researchers have focused much effort on the development of 

new methodologies for incorporation of amino acids that are not normally specified by the 

genetic code, or noncanonical amino acids (ncAAs), into peptides and proteins. 
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 Methods for the incorporation of ncAAs into peptides and proteins are either 

chemical, biosynthetic, or some combination of the two. In the area of chemical synthesis, 

solid-phase peptide synthesis has enabled the routine incorporation of virtually any suitably 

protected amino acid into synthetic peptides (3, 4). Small peptides can then be coupled 

together to give full-length synthetic proteins via techniques such as native chemical 

ligation (5, 6). The combination of chemical ligation strategies and biological protein 

production methods in the form of techniques such as expressed protein ligation (7-9) 

further enhances researchers’ abilities to incorporate new chemical functionalities into 

proteins. These nontemplated chemical approaches for incorporation of ncAAs into 

proteins continue to grow in importance to the scientific community. 

 Despite the successes of chemical methods, the natural protein biosynthetic 

machinery of living organisms remains unparalleled in its ability to produce complex, 

genetically templated polypeptide chains in large quantities. For many years scientists have 

imagined that a reworking of the genetic code or the protein biosynthetic machinery could 

enable the biological production of proteins containing a nearly endless variety of ncAAs 

(10) and perhaps even other non-amino acid monomer structures (11). Sequence-specific, 

monodisperse polymers, which are currently challenging or impossible to synthesize using 

traditional synthetic techniques, would be expected to display a wide range of chemical and 

physical properties. Methodological developments over more than fifty years have 

facilitated the biosynthetic incorporation of an ever-increasing number of ncAAs and other 

monomers into proteins. These techniques have begun to allow scientists to investigate a 

vast range of subjects in biology, biological chemistry, and engineering. 
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 In this review, we aim to highlight some of the ways in which scientists have 

employed biosynthetically produced proteins containing ncAAs to study and manipulate 

proteins and biological systems. The section “Biosynthetic Methodologies for the 

Incorporation of Genetically Encoded Noncanonical Amino Acids into Proteins” will 

summarize some important historical and methodological underpinnings of ncAA 

incorporation into proteins using enzymatic machinery found in living organisms. In the 

“Applications” section, we will discuss a number of research topics that have been 

impacted substantially by the use of ncAAs. The subjects highlighted in this review are 

meant to emphasize the creative approaches enabled by manipulation of the genetic code 

and are not intended to cover all areas of application. Finally, in the “Outlook” section, we 

will briefly speculate about potential future uses of ncAAs. 

 

Biosynthetic Methodologies for the Incorporation of Genetically Encoded 

Noncanonical Amino Acids into Proteins  

 Methodologies for biosynthetic incorporation of ncAAs into proteins can be divided 

into “residue-specific” and “site-specific” strategies. An overview of these strategies is 

presented in figure 1.1. In a “residue-specific” strategy, a single canonical amino acid is 

replaced by a ncAA wherever the mRNA encoding the protein specifies the canonical 

amino acid. Figure 1.1a illustrates the resulting “reprogramming” of protein translation. In 

contrast, “site-specific” strategies (figure 1.1b) involve the replacement of a single amino 

acid with a ncAA at a desired location within the polypeptide chain. Usually, this approach 

utilizes suppression of a stop, or nonsense, codon with an appropriately charged suppressor 

tRNA, although some additional approaches have also been explored. 
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Background: key advances that enabled modern ncAA incorporation methodologies. 

Characterization of the components of the biosynthetic protein translation apparatus has 

provided insights into how the genetic code functions and how the code can be manipulated 

to perform unnatural functions. Among the key results in this area are Chapeville and 

coworkers’ “Raney Nickel” experiments (12), which provided strong support for Francis 

Crick’s adaptor hypothesis (13). The adaptor hypothesis proposed that small nucleic acids 

(now called transfer RNAs, or tRNAs) could provide a means by which a sequence of 

nucleic acids could be translated into a corresponding polypeptide sequence, with the 

specific pairing of amino acids and tRNAs ensuring the fidelity of the genetic code. 

Chapeville and coworkers were able to show for the first time that chemical manipulation 

of aminoacyl-tRNAs can alter the way in which an RNA transcript is decoded. The 

researchers treated cysteinyl-tRNACys with Raney Nickel to convert cysteinyl-tRNACys to 

alanyl-tRNACys and compared the results of polypeptide synthesis after supplementing 

ribosomal preparations with cysteinyl- or alanyl-tRNACys and an RNA transcript coding for 

cysteine. Polypeptide synthesis was supported in each case, and polypeptides produced in 

reactions containing cysteinyl-tRNACys and alanyl-tRNACys contained only cysteine and 

alanine, respectively. These results showed conclusively that misacylated tRNAs remain 

substrates of the ribosome and that they support protein synthesis. The ability of the 

ribosome to use misacylated tRNAs in translation implies that ncAA incorporation into 

protein is possible in theory. If a ncAA can be attached to a particular tRNA, the protein 

translation apparatus will likely accept the “misacylated” tRNA as a substrate and place the 

ncAA into a growing polypeptide chain in response to a particular codon. 
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 The “Raney Nickel” experiments also demonstrated the feasibility of performing 

chemistry directly on tRNA molecules, and many groups have since extended the types of 

chemistry that can be performed on tRNAs. In the 1970s, experiments performed in the 

Menninger group demonstrated that (i) Lys-tRNALys could be acetylated specifically at the 

ε-amino group of lysine, and (ii) AcLys-tRNALys could be incorporated into proteins in a 

cell-free protein synthesis system in response to lysine codons (14). These experiments 

were the first to show that chemically synthesized aminoacyl-tRNAs containing a ncAA 

could be utilized by the biosynthetic protein synthesis machinery. Hecht and coworkers 

expanded on the work of Menninger and coworkers by developing a general route to the 

chemical acylation of tRNAs (15, 16). Their method involved chemical synthesis of the 

acylated dinucleotide pCpA, the generation of tRNA missing its last two RNA bases, and 

enzymatic attachment of the acylated pCpA to the truncated tRNA. Further improvements 

to chemical acylation techniques were elucidated in the 1980s (17, 18). These synthetic 

methods have proven crucial in the generation of tRNAs bearing a wide variety of ncAAs 

for use with site-specific ncAA incorporation into proteins. 

 The identification and detailed characterization of aminoacyl-tRNA synthetases 

(aaRSs), the enzymes responsible for joining together amino acids and tRNAs in living 

organisms, have also been crucial for enabling incorporation of ncAAs into proteins. Early 

work (19, 20) by Berg and others established that aaRSs are responsible for catalyzing the 

attachment of tRNA and amino acids using the free energy gained from hydrolysis of 

adenosine triphosphate (ATP) to adenosine monophosphate (AMP) in a two-step process: 

Amino Acid (AA) + ATP
aaRS

AA-AMP

AA-AMP + tRNAAA aaRS AA-tRNAAA + AMP

(Activation)

(Aminoacylation)

(1.1)

(1.2)  
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Characterizations of the enzymatic activities of aaRSs have established that these enzymes 

are extremely important for maintaining the fidelity of protein translation (21) and that 

ncAAs can serve as kinetically efficient substrates of aaRSs (22). These findings imply that 

understanding how to manipulate the enzymatic activities of aaRSs can facilitate the 

specific, enzymatic linkage of ncAAs and tRNAs. 

 Additional characterizations of aaRSs and tRNAs laid the groundwork for adding 

amino acids to the genetic code by adding new translational components to living cells. 

One of the important ways in which aaRSs maintain the fidelity of the genetic code is by 

selectively recognizing and aminoacylating their cognate tRNAs. For example, the 

methionyl-tRNA synthetase (MetRS) must conjugate methionine specifically to tRNAMet 

without aminoacylating any other tRNA (21). This specific recognition is critical for 

maintaining genetic code fidelity, but the mechanisms of specificity are not conserved from 

species to species. As early as 1963, researchers started to realize that the aaRSs from 

different species recognize their cognate tRNAs by distinct mechanisms. Doctor and Mudd 

first observed this phenomenon when they discovered that an aaRS from one species 

cannot always aminoacylate the corresponding tRNA from another species (23). Smith and 

coworkers proposed that the structural basis for these observations is aaRS recognition of 

structural features in tRNA molecules that differ from species to species (24). This 

hypothesis has since been investigated thoroughly using structural and biochemical 

experiments, resulting in the detailed characterization of how cognate aaRSs and tRNAs 

are properly paired in different organisms (25). Another early breakthrough that eventually 

facilitated adding new amino acids to the genetic code was the discovery and 

characterization of suppressor mutations in E. coli (26-28). These mutations, which result 
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in the conversion of a “stop” message into a message coding for an amino acid, were found 

to mutate the tRNA anticodon sequence from nucleotides specifying a sense codon into 

nucleotides specifying a termination codon (24). These findings suggested that using 

codons normally reserved for the termination of protein synthesis to instead specify an 

amino acid could be a way to add an amino acid to the genetic code. The combined 

exploitation of the species specificity of aaRS-tRNA recognition and suppressor tRNAs 

eventually enabled researchers to dictate the coding of a 21st amino acid, first in vitro and 

later in living cells and organisms (see below). 

 

Residue-specific incorporation strategies. Conceptual advances. Even before the 

components of the translation apparatus were characterized, scientists recognized that 

ncAAs could be incorporated into the proteins of multi- and single-celled organisms. These 

earliest examples employed ncAAs that were isosteric or structurally similar to canonical 

amino acids. During the 1950s and 1960s, ncAAs were employed extensively in studies 

that involved microorganisms; this work was reviewed thoroughly in 1962 (29). These 

early experiments, especially those performed in the laboratory of Georges Cohen, laid the 

foundation for later advances in the field. Cohen and colleagues were the first to use a 

medium replacement strategy that we now refer to as a “medium shift.” They also 

demonstrated the utility of auxotrophic strains for achieving high levels of ncAA 

incorporation into proteins. Furthermore, the Cohen laboratory recognized that, “these 

analogs [and surrogates] become powerful tools for the study of: (a) the specificity of the 

protein-forming mechanism and (b) the variation of enzyme activity and affinity that 

occurs with increasing numbers of incorporated analog molecules” (30). These 
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observations are still relevant today. We now know with some level of detail that 

incorporation of a particular amino acid into proteins depends on the ability of the protein 

translation apparatus of a particular cell or organism to tolerate noncanonical substrates. 

“Variation of enzyme activity” by the incorporation of ncAAs is still studied today and 

now forms part of a larger effort to perturb protein structure and function with ncAAs. 

 After the relatively sparse application of ncAAs to scientific problems in the 1970s 

and 1980s (31, 32), researchers began seriously revisiting the idea of incorporating ncAAs 

into proteins residue-specifically in 1990. Hendrickson and coworkers demonstrated the 

complete replacement of methionine by selenomethionine (1, scheme 1.1) in thioredoxin in 

1990 (33). Their approach involved growing methionine-auxotrophic bacteria in medium 

containing a limited supply of methionine but ample amounts of selenomethionine. As the 

bacteria grow, they use up the supply of methionine, forcing incorporation of 

selenomethionine in place of methionine. Induction of protein expression after the 

depletion of methionine in the medium enabled a high level of selenomethionine 

incorporation into proteins. This method for incorporating selenomethionine into proteins 

has been adapted for use with a number of other ncAAs by the Budisa laboratory (22). The 

Tirrell laboratory and others have utilized an alternative approach involving extensive 

washing of bacterial cells in between growth in a medium containing all canonical amino 

acids and protein expression in medium containing ncAAs (34). With these protocols, 

scientists have developed methods for the incorporation of a large set of ncAAs into 

proteins residue-specifically, primarily by engineering E. coli expression hosts and 

aminoacyl-tRNA synthetases. These contemporary residue-specific incorporation 

techniques will be described in the following subsection. 
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Experimental approaches. In most cases, efficient aminoacylation of a tRNA with a 

noncanonical L-amino acid is sufficient to enable the residue-specific replacement of a 

canonical amino acid with the ncAA of interest. Thus, the genetic code can be intentionally 

“reinterpreted” to code for one or more ncAAs by controlling what substrates get attached 

to specific tRNAs. The conceptual approach is depicted in figure 1.1a, and specific 

strategies for intentional tRNA misaminoacylation are shown in figure 1.2. 

 The simplest approach to ncAA incorporation involves replacement of a canonical 

amino acid with a close structural analog in E. coli. With an appropriate analog, a cell 

strain auxotrophic in the amino acid to be replaced, and a technique for depleting the 

canonical amino acid from the medium prior to expression of proteins of interest, 

incorporation of a ncAA at genetically encoded positions can be essentially quantitative (if 

the ncAA is recognized efficiently by the protein translational machinery of the host). 

Figure 1.2a illustrates a typical procedure for the incorporation of homopropargylglycine 

(Hpg, 2, scheme 1.1) in place of methionine in proteins produced by E. coli. Methionine-

auxotrophic E. coli cells are first grown in minimal media containing all twenty canonical 

amino acids. Upon reaching a sufficient optical density, cells are washed to remove 

methionine from the medium and resuspended in the expression medium, which usually 

contains high concentrations of ncAA (in this case, Hpg). Alternatively, cells can be grown 

in medium that contains both methionine in small quantities and a ncAA in large quantities. 

By the time cells have reached an optical density sufficient for protein expression, the 

concentration of canonical amino acid has been depleted, resulting in the same effect as 

removal of the canonical amino acid through washing (this is sometimes called selective 

pressure incorporation). After the medium is depleted of the canonical amino acid to be 
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replaced and supplemented with large amounts of the ncAA, all proteins synthesized within 

the cells will contain ncAAs. If a particular protein is to be studied, standard expression, 

purification, and characterization techniques can be employed to isolate the desired protein. 

On the other hand, if a proteome-wide response to a particular stress or signal is to be 

studied, the set of newly synthesized proteins can be isolated and studied using approaches 

to be described in the “Applications: Proteomics” subsection. 

 Researchers have employed several variations of medium shifts and selective 

pressure incorporation in recent years. The techniques have been extended to mammalian 

cell lines for monitoring the production of newly synthesized proteins (35), and attempts 

have also been made to extend the procedure to yeast expression systems (36, 37). 

Recently, reports have indicated that two or three canonical amino acids can be replaced by 

ncAAs simultaneously in E. coli, allowing for more drastic reinterpretations of the genetic 

code (38, 39). 

 While the medium shift procedure can enable the incorporation of a number of 

ncAAs into proteins, further expansion of the number of translationally active amino acids 

available requires additional engineering of expression hosts. To date, most work in the 

field has focused on altering aminoacyl-tRNA synthetase (aaRS) activity in E. coli to 

enable additional ncAAs to serve as protein building blocks. These approaches, which are 

performed in combination with medium shifts, are summarized in figure 1.2b–d. The 

kinetics of amino acid activation appear to dictate the translational activity of most ncAAs 

(40). When amino acid activation kinetics are slow, ncAAs cannot be joined to tRNA 

molecules at a high enough rate to support protein synthesis. Increasing the concentrations 

of an aaRS by outfitting an E. coli expression strain with a plasmid-borne copy of an 
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endogenous aaRS raises the aminoacylation activity of the host strain, enabling some rather 

poor aaRS substrates to support protein synthesis in the host. Figure 1.2b illustrates this 

strategy for the leucine analog hexafluoroleucine (Hfl, 3) (41). LeuRS overexpression in E. 

coli cells auxotrophic in leucine production enables quantitative replacement of Leu by Hfl. 

 Sometimes simple overexpression of an aaRS is not enough to overcome poor aaRS 

activity toward noncanonical substrates. However, the judicious mutation of an aaRS can 

greatly improve the activation kinetics of nonstandard substrates and thereby lead to more 

ncAAs that can be quantitatively incorporated into proteins. Computational and screening 

approaches have proven useful in this regard (42-44). For example, as shown in figure 1.2c, 

the bulky methionine analog azidonorleucine (Anl, 4) has only very weak translational 

activity in an E. coli host overexpressing wild-type methionyl-tRNA synthetase (MetRS) 

(45). However, when E. coli is outfitted with one of several MetRS active site mutants 

identified in high-throughput screens for translational activity in the presence of Anl, the 

bulky azide amino acid can quantitatively replace Met (46, 47). Kinetic characterizations of 

the mutant MetRSs revealed vastly improved activation of Anl. 

 Occasionally, efficient activation of an amino acid substrate is not sufficient to 

enable the incorporation of a particular ncAA into proteins because of proofreading 

mechanisms in aaRSs. Several aaRSs have a second active site responsible for ensuring 

that tRNAs are aminoacylated with their cognate amino acids; these editing active sites can 

discriminate between amino acids that differ by as little as a methyl group (e.g., valine 

versus isoleucine) and cleave incorrectly aminoacylated substrates (21). However, 

attenuation of aaRS editing activity can substantially increase the promiscuity of the 

enzyme, enabling aminoacylation of a greater pool of substrates. Figure 1.2d portrays such 
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an approach with leucyl-tRNA synthetase (LeuRS) and the substrate norleucine (Nrl, 5). 

Mutation of a critical threonine to a much bulkier tyrosine in the editing active site of 

LeuRS greatly impairs the editing function of the enzyme, leading to high translational 

activity of amino acids known to be activated by LeuRS (48-51). 

 In some ways, manipulating the editing and aminoacylation activities (through 

overexpression and/or mutation) of aaRSs represent complementary approaches to ncAA 

incorporation. These techniques for manipulating aaRSs for residue-specific incorporation 

were all developed in E. coli, but work from the Hang laboratory suggests that mutant 

aaRSs from E. coli can be employed in other microbes such as Salmonella typhimurium 

(52). Site-specific incorporation approaches using mutated aaRS (discussed below) have 

been very successful in mammalian cells, suggesting that residue-specific ncAA 

incorporation approaches in mammalian cells with mutated aaRSs are also worth 

investigating. While most aaRS manipulations are performed via the introduction of 

additional copies of aaRS genes on plasmids, genomic manipulations of aaRSs also hold 

some promise, as evidenced by the recent report of Abdeljabbar et al. (53). Manipulations 

of aaRS activities through aaRS overexpression, mutation, and genomic manipulation and 

the application of these techniques to additional organisms will continue to increase the 

power of methods for the residue-specific incorporation of ncAAs into proteins. 

 

Combining residue-specific incorporation and in vitro protein synthesis. The key 

requirement for achieving the global replacement of a canonical amino acid in a protein is 

usually the efficient aminoacylation of the appropriate tRNA. Several groups have 

approached this aminoacylation problem in conjunction with cell-free protein synthesis, 
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forming a powerful combination because of the precise control over the components of the 

translational machinery possible in cell-free environments. Cell-free protein synthesis with 

chemically acylated tRNAs (54), aaRS-catalyzed tRNA aminoacylation (55), and 

ribozyme-catalyzed tRNA aminoacylation (56, 57) have all been demonstrated with 

residue-specific ncAA incorporation. Several groups have also shown that sense codons 

can be reassigned to residues containing noncanonical backbones such as α-hydroxy acids, 

N-methyl amino acids, and N-substituted glycines (poly N-substituted glycines are also 

called peptoids) (58-63), and the Hecht group has made some progress in engineering E. 

coli ribosomes to accept D-amino acids as translationally active substrates (64, 65). 

Furthermore, powerful nonribosomal methods to synthesize genetically encoded small 

molecules and polymers are also emerging (11, 66). All of these approaches enable the 

production of genetically encoded polymers with compositions that are substantially 

different from those of naturally occurring proteins, and these polymers may have 

properties that are vastly different from naturally occurring biopolymers. Future 

applications of these genetically encoded polymers could prove to be very powerful. 

 

Site-specific incorporation approaches. Conceptual advances. The first examples of site-

specific ncAA incorporations into proteins combined the use of chemical aminoacylation 

techniques, stop codon suppression, and species-specific recognition of tRNA molecules 

using cell-free protein synthesis (67, 68). In 1989, the groups of Chamberlain and Schultz 

each reported strategies for the in vitro incorporation of a single ncAA into polypeptide 

chains in response to amber codons contained within genes coding for proteins of interest. 

A key component in each of these systems was the combination of an in vitro translation 
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system from one species and a suppressor tRNA molecule from another species that was 

not recognized by the aaRSs of the in vitro translation system. The inability of the aaRSs of 

the in vitro translation system to recognize the tRNA (chemically acylated with the ncAA 

of interest) makes the tRNA orthogonal to the translation system, a recurring concept in 

site-specific incorporation of ncAAs into proteins. 

 Although powerful and quite general, chemical aminoacylation techniques used 

with in vitro suppression are limited by the amount of the acylated suppressor tRNA that 

can be generated in a somewhat technically demanding process. For this reason, 

researchers in several laboratories initiated research aimed at the development of stop 

codon (or nonsense) suppression techniques for the incorporation of ncAAs into proteins 

inside living cells or organisms. The move from in vitro to in vivo suppression systems 

required the development of additional orthogonal components to ensure both the fidelity 

of the genetic code and the fidelity of ncAA incorporation at specified locations (69-71). 

Figure 1.3 illustrates the three key criteria that must be met in order to establish the 

orthogonality of additional translational components for nonsense suppression in living 

cells. First, the suppressor tRNA to be added to the cell (figure 1.3a) must not be a substrate 

for any of the wild-type aaRSs already present in the cell in order to ensure that only the 

ncAA of interest is used to decode nonsense codons. Next, the aaRS to be added (figure 

1.3b) must specifically recognize both its suppressor tRNA and ncAA substrates. Finally, 

the ncAA (figure 1.3c) to be added to the genetic code must not be a substrate for any of 

the wild-type aaRSs in the cell. Failure to meet these strict criteria may result in ncAA 

incorporation in response to sense codons, or canonical amino acid incorporation in 
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response to stop codons; both of these situations reduce the fidelity of protein translation. A 

properly functioning orthogonal pair is illustrated in figure 1.3d. 

 This challenging orthogonality problem was solved partially by a number of groups 

before an integrated solution was reported. First, the RajBhandary group reported a system 

in which an orthogonal tRNA-aaRS pair was required for in vivo synthesis of full-length 

genes containing an amber codon (69). In this work, E. coli tRNAGln and GlnRS were 

adapted for use in mammalian cell lines as an orthogonal tRNA-aaRS suppressor pair. 

Differences in tRNA recognition between E. coli and mammalian cells enabled E. coli 

GlnRS to selectively aminoacylate E. coli tRNAGln with glutamine and suppress an amber 

codon in a CAT reporter gene in multiple mammalian cell lines. In 1997, the Schultz group 

reported the first attempt to evolve an orthogonal tRNA-aaRS pair in E. coli (71). They 

described the rational design of an E. coli tRNAGln variant and directed evolution of a 

GlnRS mutant with improved selectivity for the tRNAGln variant compared to wild-type 

tRNAGln in E. coli. Though they did not find a GlnRS variant that could recognize the 

mutant tRNAGln better than the wild-type tRNAGln, their work demonstrated the feasibility 

of engineering recognition patterns in an aaRS-tRNA pair. Efforts to use an S. cerevisiae 

tRNA-aaRS pair in E. coli were also undertaken during this time period (72). While the 

tRNA-aaRS pair was found to be orthogonal in E. coli, no suitable GlnRS mutant capable 

of selectively charging a noncanonical glutamine analog was identified. Furter 

demonstrated the first functioning suppression system able to incorporate a ncAA in 

response to an amber codon in E. coli (70). This system utilized a yeast phenylalanine 

tRNA-aaRS pair to incorporate p-fluorophenylalanine (6) into proteins site-specifically in 

response to an amber codon. Although this system was site-specific with respect to the 
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incorporation of the ncAA, the system fell short of being fully orthogonal because the yeast 

PheRS still recognized phenylalanine (Phe) and incorporated Phe in place of 6 in 

approximately thirty percent of the model proteins expressed, and small amounts of 6 were 

found at other Phe positions within the protein, also. 

 In the late 1990s and early 2000s, researchers developed additional translationally 

active tRNA-aaRS pairs by exploiting kingdom-specific tRNA-aaRS recognition elements. 

While early efforts to establish almost completely orthogonal pairs in mammalian cells 

were achieved with rational design alone (73, 74), most work in E. coli employed directed 

evolution techniques to improve the orthogonality of existing tRNA-aaRS pairs imported 

from other organisms (74, 75). The efforts of Schultz and coworkers were particularly 

important in this regard. Wang and Schultz established a general selection system for 

isolating tRNA-aaRS pairs orthogonal to the translational machinery of E. coli (75). This 

selection system was used with a nearly orthogonal Methanococcus jannaschii tRNATyr-

TyrRS pair to further improve its suppression of amber stop codons in E. coli. The Schultz 

group was also the first to establish high-throughput selection and screening methods for 

isolating aaRSs with altered amino acid specificities (76). Researchers have performed site-

specific incorporation of several dozen ncAAs into proteins produce in E. coli via 

combination of these methods for the generation of orthogonal tRNA-aaRS pairs and aaRS-

amino acid pairs. Early work by the group of Yokoyama demonstrated that the “orthogonal 

pair” strategy could be applied in mammalian cells (77) without the use of evolutionary 

methods. Additional engineering work has enabled the development of site-specific 

incorporation methods in yeast (78) and improvement of strategies applicable to 

mammalian cells (79, 80). These techniques will be described in more detail below. 
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Experimental approaches. Site-specific incorporation of ncAAs into proteins requires the 

use of specialized translational components in conjunction with codon suppression in order 

to “add” an amino acid to the genetic code. Figure 1.4 outlines various ways to achieve this 

goal; most of these approaches involve a suppressor tRNA that is aminoacylated with a 

ncAA of choice. This tRNA, which uses a “nonstandard” codon, is appropriately decoded 

during protein synthesis in either an in vitro or an in vivo translation system. 

 Chemical acylation provides researchers with the most general strategy for 

incorporating ncAAs site-specifically into proteins. If an appropriately designed, 

orthogonal suppressor tRNA is available for a given translation system, it can be 

chemically acylated with a very broad range of ncAAs. When coupled with a gene 

containing the codon to be suppressed, nearly any protein can be synthesized containing the 

ncAA of choice at a specific site. Figure 1.4b depicts this process in an in vitro translation 

system. The in vitro translation system, gene expression, and protein purification are 

essentially the same as in systems lacking the chemically acylated suppressor tRNA. The 

protein yields achievable by using chemically acylated tRNAs in an in vitro translation 

system are usually in the microgram range. However, a number of scientific questions can 

be thoroughly studied even with a small amount of protein containing noncanonical amino 

acids (81). Extensions of chemical acylation to cellular systems have also proven to be 

quite fruitful. As an example of one elegant approach, the Dougherty and Lester groups 

have studied ion channels and other membrane proteins in Xenopus oocytes at length using 

chemical acylation techniques. In their system, depicted in figure 1.4c, an mRNA 

containing a nonsense codon at the site specified for ncAA incorporation and an orthogonal 

suppressor tRNA acylated with a ncAA of choice are injected into the oocyte. 



 19 
Electrophysiology and other techniques can be used to interrogate channel function and 

will be discussed below in the “Applications: Membrane proteins” subsection. 

 The enzymatic, site-specific incorporation of ncAAs into proteins in living cells or 

organisms is technically simpler than chemical acylation-based methods if appropriate 

genetic components are available. Enzymatic approaches in living systems require an 

orthogonal aaRS-tRNA pair that can be expressed in the host cells or organism of interest. 

This pair, and the ncAA to be incorporated in response to the “nonsense” codon (or other 

nonstandard codon), should meet the strict requirements for orthogonality discussed above. 

The ncAA should also be able to access the cytoplasm of the expression host by means of 

passive or active cellular transport mechanisms. If these conditions are met, site-specific 

methodologies become quite powerful. Figure 1.4d depicts the incorporation process in E. 

coli. A plasmid-based system encoding constitutively expressed orthogonal tRNA and 

aaRS genes is transformed into an appropriate strain along with an inducible gene that 

codes for the appropriate “nonsense” or other specialized codon. For strategies related to 

the development of orthogonal tRNA-aaRS pairs the reader is referred to several recent 

reviews (82-87). The resulting system can then be treated essentially like any bacterial 

expression system. After cell growth in minimal (76) or rich medium (88), the ncAA is 

added to the medium and protein expression is induced. Cells are harvested after induction, 

and the protein of interest can then be isolated using standard purification methods. One of 

the primary advantages of this method over residue-specific methodologies is that no 

medium shift is required before expression; the genetic code is manipulated by adding 

translational machinery to cells rather than by manipulation of the extracellular 

environment. However, cellular suppression-based incorporation techniques can sometimes 
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suffer from low protein yields. Incomplete suppression in these systems is very common 

and leads to a reduced amount of full-length protein compared to similarly expressed genes 

encoded entirely by sense codons. Typical yields reported in the literature are in the 1–10 

mg/L range, although improved expression systems have recently been described (88-93). 

 Extensions to the basic strategy of employing an orthogonal tRNA-aaRS pair have 

expanded approaches to incorporating ncAAs into proteins site-specifically. Methods for 

evolving orthogonal tRNA-aaRS pairs in Saccharomyces cerevisiae have been developed 

and applied to site-specific incorporation in this eukaryotic model organism (78). 

Subsequent systems have improved on early work by using genes coding for orthogonal 

tRNAs that incorporate the A and B box elements required for high-level transcription in 

yeast (94, 95). Recent reports have demonstrated that orthogonal tRNA-aaRS pairs can also 

be introduced into the organisms Pichia pastoris and Mycobacterium tuberculosis and used 

to incorporate ncAAs site-specifically into proteins (96, 97). Similar methodological 

extensions have been made to mammalian expression systems. While orthogonal tRNA-

aaRS pairs have not been directly evolved in mammalian systems, they have been imported 

and used for nonsense suppression successfully (77, 98, 99). Again, improvement of tRNA 

expression has facilitated the development of more tRNA-aaRS pairs for incorporation of 

noncanonical amino acids into proteins in mammalian cells (79, 80). 

 Researchers have investigated many additional strategies for improving or 

expanding the scope of site-specific ncAA incorporation into proteins produced in vitro or 

in living cells or organisms. Extensive work to improve the types of ncAAs that can be 

incorporated in response to nonsense codons have focused on the development of new 

aaRS variants, including those based on the recently discovered pyrrolysyl-tRNA 
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synthetase (100-103) and by employing aaRSs possessing expanded or altered editing 

capabilities (104-106). A systematic approach to the creation of mutually orthogonal aaRSs 

has been reported (107), and this methodology may prove especially useful if the genetic 

code is expanded to include large numbers of ncAAs in addition to the twenty canonical 

amino acids. Both in vitro and in vivo attempts to use four-base codons to incorporate 

ncAAs into proteins have proven somewhat successful (108-111), as have attempts to 

incorporate either two of the same or multiple, chemically distinct ncAAs into a single 

protein (109, 112-114). However, the limitations of organism survival place constraints on 

the manipulations that can be made to the protein biosynthesis machinery. The Chin 

laboratory has recently developed a system in which a large portion of the protein 

biosynthesis machinery has been relieved of its requirements to support cellular viability 

(115). Using the same orthogonality concept described above, a set of mRNA-ribosome 

pairs that are separate from the wild-type ribosome and mRNA pools were isolated. By 

freeing the ribosome from its usual responsibilities of supporting all cellular protein 

synthesis, researchers have successfully evolved ribosome variants that enable more facile 

expansion of the genetic code. The most notable of these variants is a ribosome capable of 

efficiently decoding quadruplet codons (116). Building on a previously successful 

improvement of suppression efficiency in orthogonal ribosomes (117), this quadruplet-

decoding ribosome is capable of incorporating multiple ncAAs into a single protein with 

very high efficiency: one amino acid is introduced in response to a four-base codon, and a 

second amino acid is incorporated in response to an amber codon. Future work in 

engineering the ribosome appears to be a very promising approach for improving efforts to 

site-specifically incorporate ncAAs into proteins. 
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Applications  

 Scientists have been extremely successful in inventing and refining techniques for 

genetically encoding ncAAs and incorporating them into proteins. However, developing 

incorporation strategies does not always answer scientific questions, except possibly in 

areas directly related to the study of aminoacyl-tRNA synthetases and the protein 

translation apparatus. In this section of the review, we will describe approaches to protein 

science and engineering that have either been significantly impacted or that could be 

significantly impacted in the future by the employment of ncAAs. We will focus on select 

recent areas of study and refer the reader to earlier reviews (29, 31, 32) and other recent 

reviews (22, 84-87, 118-121) for additional uses of ncAAs. Scientists have developed 

applications of genetically encoded ncAAs covering an extremely broad range of topics. 

 

Protein crystallography. The determination of protein crystal structures using X-ray 

crystallography is an extremely important part of molecular biology and biochemistry. 

While reflection data can be collected from any high-quality protein crystal, the lack of 

heavy atoms in naturally occurring proteins prevents researchers from learning phase 

information from these samples without additional information. This dilemma, known to 

crystallographers as the phase problem, has been solved using a number of approaches over 

the years (122, 123). In the past twenty years, one of the methods of choice for resolving 

the phase problem has become the direct incorporation of heavy atoms into the structure of 

proteins and the application of multiwavelength anomalous dispersion (MAD). This 

technique can be used on proteins by residue-specifically replacing of one of the canonical 

amino acids in the molecule with an amino acid containing a heavy atom. In 1990, 
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Hendrickson and coworkers rediscovered Cowie and Cohen’s 1957 work in which 

quantitative replacement of methionine by selenomethionine (SeMet, 1) was reported (30). 

SeMet is nearly perfect for X-ray crystallography applications because it is almost identical 

in shape to Met and possesses a heavy atom appropriate for MAD phasing techniques. 

Using selective pressure incorporation, Hendrickson et al. were able to demonstrate the 

near-quantitative replacement of Met by SeMet in T4 thioredoxin. Furthermore, reflection 

data acquired with the SeMet-containing proteins indicated, “…that MAD phasing of 

prospective selenomethionyl proteins should be readily feasible since diffraction ratios are 

in excess of those that have proven adequate for related problems” (33). Indeed, the 

application of MAD to SeMet-containing proteins was used successfully twice in 1990 to 

solve the structures of previously uncharacterized proteins (124, 125). Extensions to 

proteins expressed in mammalian (126, 127) and baculovirus expression systems (128, 

129), and other improvements to expression procedures over the years have led to the 

establishment of MAD phasing on SeMet-containing proteins as a method of choice in 

protein crystallography (130-133). MAD has become an indispensible technique for 

modern protein crystallography. 

 Several additional ncAAs containing heavy atoms have been introduced into 

proteins with the aim of improving crystallographic techniques. Residues 7–10 have been 

incorporated residue-specifically into proteins with high replacement of the corresponding 

canonical amino acids. Telluromethionine (7) has been shown to enable the multiple 

isomorphous replacement (MIR) phasing strategy using laboratory radiation sources (134-

136), while selenocysteine (8) can be used in place of (137) or in combination with 1 to 

enable MAD phasing (138). The feasibility of using residues 9 and 10 for structure 
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determination has also been demonstrated (139, 140). Iodinated ncAAs also appear to be 

promising for aiding structure determination efforts. Proteins containing site-specifically 

incorporated p-iodophenylalanine (11) and 3-iodotyrosine (12) have been crystallized and 

used to produce reflection data on laboratory radiation sources (141, 142). Iodine-generated 

single-wavelength anomalous dispersion (SAD) enabled the data to be properly phased, 

and high-quality structures have been determined from these crystals. Although these 

emerging approaches to incorporating heavy atoms into proteins have yet to impact X-ray 

crystallography in the same way as selenomethionine, they may aid future structure 

determination efforts, especially those that can be accomplished in the laboratory rather 

than at a synchrotron. 

 

Nuclear magnetic resonance spectroscopy. Like X-ray crystallography, nuclear magnetic 

resonance (NMR) spectroscopy is a crucial tool for the structural and biophysical 

characterization of proteins. Using isotopic labeling techniques enabling the incorporation 

of 13C, 15N, and/or 2H, into all or part of proteins of interest enables a vast range of studies 

to be performed on proteins of increasing sizes (143-145). These experiments, however, 

can be quite complex due to the number and similarity of chemical shifts present in a single 

experiment. Judicious incorporation of ncAAs residue- and site-specifically into protein 

samples can eliminate some of the complexities inherent in NMR studies of proteins. 

 The lack of fluorine in most biological systems and the ready availability of 

fluorinated amino acid analogs makes 19F NMR an attractive option for simplifying some 

protein NMR experiments (146, 147). Methods for the residue-specific biosynthetic 

incorporation of fluorinated ncAAs into proteins have been used extensively in the 
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generation of 19F NMR samples (147). Fluorinated aromatic residues 6, 13–20 and 

difluoromethionine (21) are examples of some of the probes that have been used in 

experiments (147-150). Aided by the extreme environmental sensitivity of fluorine, 

researchers have used proteins containing these residues to explore several protein 

properties including structure, folding, and ligand binding. Rule, Pratt, Ho, and coworkers 

performed a number of structural studies on D-lactate dehydrogenase (LDH) protein 

samples labeled with fluorinated aromatic amino acids in the late 1980s and 1990s (151-

153). Changes in the 19F NMR spectra of the protein in the presence of ligand or spin-

labeled lipid molecules gave the researchers a better idea of which residues of the protein 

were sensitive to ligand and which residues were involved in membrane contacts. 

 Fluorine NMR has been used in conjunction with folding studies on a number of 

proteins. Ropson and Frieden were the first to report the use of 19F NMR to study protein 

folding (154). They conducted equilibrium folding experiments on the intestinal fatty acid–

binding protein labeled with 6-fluorotryptophan (15). Interestingly, their spectra showed 

the appearance of some peaks only at intermediate urea concentrations, indicative of a 

previously unrecognized folding intermediate in this biomolecule. Since 1992, this general 

technique has been used with numerous proteins in the context of protein folding and 

ligand binding, suggesting that the method is useful for studying proteins with a variety of 

structures (150, 155-162). An important extension of 19F NMR on proteins has been the 

combination of this sensitive spectroscopic method with stopped-flow experimental 

techniques. Hoeltzli and Frieden studied the kinetics of E. coli dihydrofolate reductase 

(DHFR) in the first report of stopped-flow NMR experiments with fluorinated proteins 

(163). In combination with complementary fluorescence and circular dichroism refolding 
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experiments, the researchers determined that DHFR appears to unfold through a pathway 

involving an intermediate state in which individual amino acid side chains gain a large 

amount of mobility while the majority of secondary structural elements remain intact. 

 Although residue-specifically fluorinated proteins enable a wide range of 

experiments, they can sometimes be complicated by sample heterogeneity (fluorination at a 

particular residue is usually no higher than 95%), difficulties in the peak assignments of 

individual fluorine atoms, and perturbations of protein structure and/or function (147, 164). 

Site-specific incorporation of fluorinated amino acids provides an alternative approach to 

the generation of isotopically labeled NMR samples. Furter was the first to report one such 

technique using p-fluorophenylalanine (6), which was substituted site-specifically in 

dihydrofolate reductase (DHFR) expressed in E. coli (70). The Frieden laboratory has 

employed Furter’s method as a complementary approach to global fluorination. Bann and 

Frieden used a combination of site- and residue-specific incorporation of 6 into the 

bacterial periplasmic chaperone PapD and used these proteins to identify at least three 

distinct steps in the folding landscape (165). 

 Two groups have recently developed very efficient expression systems that improve 

on Furter’s method for protein fluorination at aromatic residues, enabling essentially 

quantitative site-specific incorporation of fluorinated amino acids 22 and 23 into proteins 

for NMR studies (91-93). Hammill et al. demonstrated that, like previous 19F NMR work, 

22 serves as an extremely sensitive monitor of the environment surrounding the amino 

acid. Incorporation of the noncanonical residue into nitroreductase and histidinol 

dehydrogenase enabled both short- and long-range detection of ligand binding events. 

Cellitti et al. have employed 19F NMR on site-specifically labeled proteins in combination 
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with other NMR techniques, and in this work the environmental sensitivity of fluorinated 

amino acids is again evident in ligand binding experiments. Li et al. have demonstrated that 

the exquisite sensitivity of 19F NMR also enables site-specifically fluorinated proteins to be 

probed in intact E. coli cells (166). 

 While fluorinated protein samples can help answer many scientific questions, site-

specifically labeled, native proteins would provide scientists with the opportunity to 

investigate a much wider scope of problems. A consortium of scientists at The Scripps 

Research Institute and The Novartis Research Foundation led by Peter Schultz and Bernard 

Geierstanger has developed some very promising approaches to introducing site-specific 

13C, 15N, or 2H labels into proteins (also discussed by Jones et al. (167)). Deiters et al. first 

used 15N-labeled 24 to study sperm whale myoglobin, and isotopically labeled derivatives 

of 24 have since been used to study a thioesterase domain of human fatty acid synthase 

(FAS-TE) (91) and a cytochrome P450 enzyme (168). Cellitti et al. demonstrated the 

incorporation of isotopically labeled, photocaged tyrosine 25 into FAS-TE and showed that 

UV irradiation allowed for essentially complete decaging at multiple amino acid positions 

(91). The group also went on to label FAS-TE at eleven different amino acid positions with 

19F-labeled 23, 15N- and 13C-labeled 24, and 15N-labeled, decaged 25 in order to 

exhaustively study protein-tool ligand interactions. Figure 1.5 depicts a summary of the 

chemical shift data acquired in these studies, which indicates that a number of residues are 

affected by the binding of a tool compound, including amino acids located in disordered 

loops that may have been difficult to identify using other methods. This impressive, 

detailed work indicates a promising future for biosynthetically produced, site-specifically 

labeled proteins in NMR studies. The precedent for studying protein folding and ligand 
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binding has been firmly established using fluorinated amino acids. The advent of improved 

site-specific ncAA incorporation techniques for insertion of fluorinated and native, 

isotopically labeled amino acids should allow for many more detailed protein 

characterizations via NMR in the future. 

 

Protein folding and stability. Proper protein folding and robust maintenance of a specific 

three-dimensional structure oftentimes dictate a protein’s ability to perform additional 

functions such as catalysis or binding. Understanding and quantifying the phenomena 

responsible for maintaining proteins in a specified conformation can provide insight into 

how to stabilize folded structures and how to design and/or engineer proteins with various 

functions. Because folded proteins are oftentimes only thermodynamically stable by only a 

few kilocalories per mol, individual noncovalent interactions such as hydrogen bonds and 

van der Waals contacts can greatly influence whether or not a protein is able to assume a 

folded conformation and the kinetics that dictate the speed at which this conformation is 

reached. Conventional mutagenesis allows for the study of many of the noncovalent 

interactions that govern protein folding and stability, but the limited side chain structures of 

the canonical amino acids do not always allow for a full exploration of these phenomena. 

Incorporating ncAAs into proteins allows for more subtle perturbations than many 

canonical amino acid mutations allow. Researchers have perturbed proteins both locally 

and globally with ncAAs in order to study factors governing protein folding and stability. 

 

Local perturbations. The subtle mutations possible with ncAAs allow investigators to 

perturb a single noncovalent interaction within a large protein structure and study the 
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perturbation’s effects on the overall protein characteristics. In the 1990s, the Schultz 

laboratory published a series of studies demonstrating the utility of in vitro unnatural amino 

acid mutagenesis for studying local aspects of protein stability. Mendel et al. incorporated 

structural variants of leucine, including ncAAs 26–31, at position 133 of T4 phage 

lysozyme (T4L) in order to systematically study several effects including enlargement and 

shrinking of the cavity into which leucine 133 points (169). The researchers discovered that 

sequential removal of methyl groups from position 133 reduced the overall stability of the 

protein in a nonlinear fashion, a phenomenon that could also be reproduced in 

computational studies. These and other findings led the authors to suggest that many 

noncovalent interactions are important in determining protein stability and that a 

combination of modeling and unnatural amino acid mutagenesis could be used in the future 

to shed light on the factors leading to stable, folded proteins. Ellman et al. reported a related 

study examining the effects of backbone mutations at position 82 of T4L (170). In this 

work, the thermal stabilities of T4L variants containing ncAAs 32–42 at position 82 were 

measured used CD spectroscopy and heat inactivation assays. The results indicated that 

both protein backbone conformational restriction and the angle of the restriction are 

important factors in determining protein stability. Cornish et al. investigated the effects of 

β-branched amino acids on the stabilities of two α-helices in T4L using ncAAs and 

computational models (171). Incorporation of β-branched amino acids at two positions in 

T4L resulted in protein stabilization in one case and substantial destabilization in another. 

These findings emphasize the fact that context appears to play a role in the effect a β-

branched amino acid has on protein stability. 
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 Substantial efforts have also been devoted to the study of hydrogen bonds in 

proteins using systematic mutations. Thorson et al. used ncAAs 6 and 37–39 in order to 

study mutations to particular hydrogen bonds in Staphyloccocal nuclease (SNase) (172). 

Mutations of two glutamates to the weak hydrogen bond acceptor 37 and two tyrosines to 

weaker hydrogen bond donor 38 and repulsive lone pair interactor 39 confirmed the 

existence of two glutamate-tyrosine hydrogen bonds. Stability measurements on protein 

variants confirmed that the hydrogen bonds in question were responsible for one to two 

kilocalories per mol stabilization of the folded protein state, confirming previous estimates 

of hydrogen bond strengths. Studies on hydrogen bonds in α-helices, β-sheets, and β-turns 

with α-hydroxy acid analogs of leucine and isoleucine (40 and 41, respectively) 

demonstrated that hydrogen bonds in key secondary structural features can be investigated 

by changing the hydrogen bonding character of the backbone (173-175). These studies all 

demonstrate the utility of backbone variations in assessing the thermodynamic 

contributions from hydrogen bonds involving polypeptide main chain atoms. Thorson et al. 

used noncanonical amino acids to perform a linear free energy analysis on a hydrogen bond 

in SNase (176). The authors focused on the importance of the hydrogen bond mediated by 

the hydroxyl group of tyrosine 27. Substitution of tyrosine by amino acids 16, 42, and 43, 

which have increasingly acidic pKas, confirmed that the side chain of tyrosine 27 serves as 

a hydrogen bond donor in SNase. The use of a series of tyrosine analogs eliminated 

context-dependent, confounding factors that oftentimes complicate the direct assessment of 

the importance of a particular hydrogen bond in a protein. 

 The above studies illustrate the power of atomic-level mutations in the analysis of 

protein stability. However, systematic local perturbation of soluble proteins using ncAAs 
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has become less common in recent years, perhaps because of difficulties in achieving high 

protein yields using in vitro protein production methods, or the availability of alternative 

protein production techniques such as protein semisynthetic methods. The recent site-

specific incorporation of α-hydroxy acids into proteins produced in E. coli may lead to new 

possibilities for protein stability studies in the future (177). Regardless of the future of local 

perturbations of globular proteins, the work outlined above was crucial in setting the stage 

for the study of membrane proteins using extensive unnatural amino acid mutagenesis, a 

topic to be discussed below. 

 

Global perturbations. Global changes in the amino acid composition of a protein allows 

for the study of aggregate effects that may be too small to study individually. The 

fluorination effect has been a heavily studied topic for quite some time (178), including in 

the context of biological systems (179-181). Coiled coils have been a particularly useful 

protein-based system for studying the fluorination effect because the residues mediating 

protein-protein interactions in this system are well defined. Tang et al. have studied 

variants of one such multimeric α-helical protein, A1, containing different degrees of 

fluorination within its hydrophobic core. The investigators found that increasing the 

amount of fluorine-fluorine contacts within the hydrophobic core by substituting leucine 

with trifluoroleucine (44) or hexafluoroleucine (3) led to peptides that were increasingly 

resistant to thermal and chemical denaturation (41, 182). Son et al. found similar trends in a 

model coiled coil system in which isoleucine residues were replaced with 

trifluoroisoleucine (45) residues or valine residues were replaced with trifluorovaline (46) 

residues, although the degree of stabilization differed depending on whether isoleucine or 
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valine was converted into its trifluorinated form (183). Montclare et al. also recently 

reported that stabilization of the model protein A1 is relatively insensitive to the 

stereochemistry of fluorinated amino acids incorporated into the protein (184). Upon 

fluorination, amino acid side chain volumes increase by a significant amount, and size 

increases may be responsible in part for the improved stabilities of fluorinated coiled coils. 

In order to investigate this possibility in more detail, Van Deventer et al. utilized the amino 

acid homoisoleucine (Hil, 29) (185). Hil has a nearly identical side chain molecular surface 

area to trifluoroleucine but retains the aliphatic character of canonical amino acids. 

Interestingly, replacing the leucines in A1 with 29 results in stabilization that is equal to or 

better than the stabilization of A1 that results from replacement of Leu with 

trifluoroleucine. These results suggest that side chain size does play a role in dictating 

protein stability in the context of hydrophobic interactions. However, femtosecond 

timescale experiments performed on proteins containing solvent-exposed fluorinated and 

aliphatic amino acids indicate that solvation dynamics near a protein surface change 

drastically depending on the absence or presence of nearby fluorinated groups (186). Future 

experiments using size-matched aliphatic and fluorinated amino acids may continue to 

enable the elucidation of the unique properties of fluorinated biomolecules. 

 Perturbing the amino acid composition of large proteins can alter protein folding 

and stability significantly, especially when the proteins in question assume more 

complicated structures than coiled coils. Although sometimes global replacement of a 

canonical amino acid within a protein can yield biomolecules with reduced thermal 

stabilities (187, 188) or an increased propensity for aggregation (189), these effects are 

quite dependent on the identity of the protein and the ncAA substitutions made. Oftentimes, 
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such substitutions are tolerated quite well in proteins. For example, Wang et al. report that 

fluorination of murine interleukin-2 (IL-2) at isoleucine residues results in IL-2 molecules 

that are nearly as effective as their nonfluorinated counterparts in mammalian cell 

proliferation assays (190). Budisa and coworkers have proposed using ncAAs as general 

probes of protein folding (191). In one report out of the Budisa laboratory, researchers 

investigated the effects of incorporating (4R)- and (4S)-fluoroproline (47, 48) in place of 

proline in enhanced green fluorescent protein (eGFP) (192). Incorporation of 47 into eGFP 

resulted in proteins located in inclusion bodies of E. coli that could not be refolded. On the 

other hand, incorporation of 48 into eGFP resulted in a protein with significantly faster 

refolding kinetics and overall refolding yields than nonfluorinated eGFP, which the authors 

attributed to 48’s higher Cγ-endo puckering and cis isomerization preferences compared to 

proline. This work provides one of the first examples of a protein that has improved folding 

properties when a ncAA is incorporated throughout its structure. The properties of single-

chain Fv fragments of antibody fragments have also been subjected to proline fluorination 

with 47 and 48 (193). Interestingly, the stability of the scFv was found to be improved 

when proline was replaced with 47, the stereoisomer that was found to be detrimental to 

eGFP folding. Budisa and coworkers recently employed methionine analogs 5 and 49 in the 

study of protein misfolding leading to prion disease (194). In this work, they used 5 and 49 

because of their increased hydrophobicity and hydrophilicity, respectively, relative to 

methionine. Global replacement of methionine by 5 in recombinant human prion protein 

(rhPrPC) resulted in less protein aggregation than in rhPrPC containing methionine. On the 

other hand, replacement of methionine by 49 yielded a much more aggregation-prone 

version rhPrPC than the methionine version of the protein. CD spectroscopy also revealed 
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significant differences in secondary structure and unfolding behavior as a function of 

temperature. These results can be seen in figure 1.6. These interesting experiments suggest 

that the hydrophobicity of the moieties present at positions in the rhPrPC normally occupied 

by methionine can significantly impact how well the protein maintains its folded state, and 

that hydrophilic moieties appear to substantially impact the proper folding of the protein in 

question. Because methionine oxidation results in the formation of more hydrophilic 

functionalities at methionine positions, this work suggests that oxidative stresses may play 

a role in the development of prion disease and other diseases caused by protein misfolding. 

These techniques may also be applicable to studying a number of other cellular proteins 

that can undergo oxidation at methionine residues (195-197). Studying protein stability 

using global perturbations introduced with ncAAs appears to be useful in a variety of 

settings. Both model proteins and more complex proteins can be perturbed in ways such 

that protein stability is either negatively or positively affected. Observing these changes in 

stability provides fundamental information regarding how changing molecular properties 

results in changes to protein properties as a whole and also provides ideas for engineering 

proteins with altered stabilities. Thus, global perturbations provide a complementary 

approach to local, site-specific perturbations. These two approaches add substantial 

capability to researchers’ toolkit for assessing factors contributing to protein stability and 

engineering more stable, faster folding proteins. 

 

Membrane proteins. Membrane proteins play extremely important roles in organisms 

from all classes of life and may comprise upwards of one quarter of all open reading frames 

in the genomes of fully sequenced organisms (198). These proteins also form a large 
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portion of “druggable” protein targets (199-201). However, structural characterization of 

this important set of proteins has continued to be plagued by problems with overexpression 

and crystallization, although there have been some recent advances (for example, see (202-

204)). The dearth of detailed molecular information has necessitated the adaptation of other 

experimental techniques for studying membrane proteins, including the very powerful 

combination of conventional mutagenesis and the patch clamp technique (205). Several 

laboratories have found that employing ncAAs in studies of receptors and ion channels 

further augments the power of more traditional biochemical characterization methods. 

Investigations of topics including channel architecture, the functional significance of 

individual amino acids and noncovalent interactions, and mechanisms of ligand binding 

have been aided significantly with the use of ncAAs. 

 

Exploiting unique functionalities of noncanonical amino acids. Several studies of 

membrane proteins have employed ncAAs to learn about structural and mechanistic 

features of particular channels and receptors. Surprisingly, many of these investigations 

have utilized techniques that take advantage of “highly unnatural” features of noncanonical 

amino acids, an observation that Dougherty made in a recent review (206). Gallivan et al. 

employed biocytin (50) in order to detect surface-exposed residues in muscle-type nicotinic 

acetylcholine receptor (nAChR) (207). This work used information on protein expression 

and the binding of streptavidin probes to proteins present in intact Xenopus oocytes to 

reveal the orientations of several amino acids within the main immunogenic region of the 

nAChR. England et al. employed ultraviolet light-cleavable amino acid 51 and base-

cleavable α-hydroxy acids 32, 40, and 52 in order to investigate characteristics of a portion 
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of the muscle-type nAChR known as the Cys-loop (208, 209). These experiments 

confirmed the functional significance of the Cys-loop in signaling and helped to establish 

the disulfide bond connectivity within the loop. 

 Spectroscopically active ncAAs have proven very useful for studying structural 

features of G protein-coupled receptors (GPCRs). Fluorescent amino acid 53 has been 

employed in FRET studies of the GPCR tachykinin neurokinin-2 (NK2) in order to study 

the structure of the protein (210, 211). In vitro preparations of NK2 containing the 

fluorescent amino acid were exposed to a ligand labeled with a FRET partner. Distance 

constraints within the receptor were determined from measured FRET effects, leading to a 

more accurate picture of the general structure of the receptor. Local mechanistic features of 

the GPCR rhodopsin were recently probed using p-azidophenylalanine 54 as a vibrational 

spectroscopic probe (212). The unique vibrational signature and sensitivity of the azide to 

changes in the local electrostatic environment enabled Ye et al. to investigate structural 

changes in the receptor upon light activation. Placement of 54 at different sites within 

rhodopsin enabled the elucidation of the order of several sequential helix movements as the 

protein assumes its active conformation, leading to a general model for GPCR activation 

(213). This work appears to be extremely promising and should be applicable to any 

number of membrane proteins due to the exquisite sensitivity of azides to local 

environment. 

 Noncanonical amino acids of various sizes have also been employed to examine the 

properties of voltage-gated potassium channels. The mechanism of channel inactivation in 

potassium channel Kv1.4 has been studied in mammalian cells using amino acids bulkier 

than tyrosine (80). The authors observe slower channel inactivation times when a naturally 
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occurring tyrosine residue is replaced by 24 or 55. They argue that these observations 

provide support for a mechanism in which the N-terminus of the channel moves through a 

side pore in the channel to inhibit the flow of ions through the inner pore. A series of 

phenylalanine analogs of various sizes (56–59) was used to examine the importance of a 

particular Phe residue at position 233 within the Shaker voltage-gated potassium channel 

(214). Interestingly, channels containing the large aliphatic amino acid cyclohexylalanine 

60 in place of Phe still retain function, indicating that the size of Phe is the most important 

functional characteristic of the residue in question. Phe analogs of various sizes also affect 

channel behavior in a systematic way, supporting the hypothesis that a Phe to Trp mutation 

at position 233 alters channel function primarily on the basis of its increased bulk. The 

above examples exploit properties of ncAAs that make these residues distinct from 

canonical amino acids. The use of these unique functionalities has enabled the study of a 

wide variety of structural and mechanistic aspects of membrane proteins, and several of 

these techniques should continue to provide insights into the functions of numerous 

receptors and channels. 

 

Atomic-level perturbations. In the absence of three-dimensional structural information, 

meaningful characterization of the role of a particular amino acid or noncovalent 

interaction within a protein oftentimes requires atom-by-atom perturbations. Since the 

Dougherty and Lester laboratories first described the incorporation of noncanonical amino 

acids into membrane proteins in Xenopus oocytes (215), much work involving ncAAs in 

membrane proteins has exploited very subtle perturbations to study aspects of channel and 

receptor function (206, 216). 



 38 
 Atomic-level mutations have revealed important information about the roles that 

individual amino acids play in receptor gating. Hanek et al. reported studies on the nAChR 

investigating the role of a particular valine in the gating of the receptor (217). These studies 

uncovered a “pin-into-socket” binding mechanism within the channel by examining dose-

response curves of channels substituted with amino acids 61–63. Another investigation 

authored by Lummis et al. investigated the role of a particular proline in the gating of a 5-

hydroxytryptamine type 3 (5-HT3) receptor (218). The authors hypothesized that a proline 

residue located in between two transmembrane helices was involved in the gating 

mechanism of the receptor. Although conventional mutagenesis of the channel resulted in a 

loss of receptor gating activity, introduction of amino acids 33, 47, 48, and 64–66 in place 

of proline resulted in functional channels. Interestingly, the effector concentration for half 

maximal response (EC50) of the resulting channels correlate very strongly with the 

propensity for each ncAA replacing proline to assume a cis protein backbone conformation. 

Figure 1.7 depicts the linear relationship observed between cis-trans isomerization and 

receptor activation. Based on this striking correlation and additional studies, the authors 

conclude that the relatively facile cis-trans isomerization of proline, and not any other 

properties of this cyclic canonical amino acid, is responsible for the gating characteristics 

of the 5-HT3 receptor. The data from their studies also led to a proposal of a new model for 

the gating mechanism of the receptor (figure 1.7c). 

 Atomic-level mutations have also provided insight into the importance of particular 

noncovalent interactions within receptors and channels. Hydrogen bonds involving main 

chain and side chain interactions have been particularly well studied. In 1995, Nowak et al. 

made mutations to three tyrosine residues in muscle-type nAChR that included analogs of 



 39 
tyrosine with varying hydroxyl side chain pKas and other amino acids lacking hydroxyl 

groups altogether. Based on dose-response curves of the mutant channels, the authors 

concluded that only one of the residues examined was involved in a hydrogen bonding 

interaction through the hydroxyl group (215). Beene et al. used similar atomic 

perturbations to study four different tyrosine residues present in the 5-HT3 receptor binding 

site (219), finding that each residue plays a unique functional role within the channel. More 

recent work with the 5-HT3 receptor and ncAAs has determined the roles of two highly 

conserved residues within loop A of the ligand binding site, one of which appears to form a 

critical hydrogen bond with the ligand (220). Last, the nicotinic pharmacophore of the 

α4β2 neuronal nAChR was investigated with the help of 40 (221). 

 Hydrogen bonds with main-chain atoms can be perturbed effectively with the aid of 

α-hydroxy amino acids and other ncAAs. Studies of a conserved proline residue within the 

M1 region of ligand-gated ion channel receptors using amino acids 32, 33, 40, 52, and 67 

have suggested that proline is favored for its hydrogen bonding characteristics (222, 223). 

Gleitsman et al. used double-mutant cycles with ncAAs to study hydrogen bonding 

networks in the muscle-type nAChR (224). Their detailed investigations were instrumental 

in correcting homology models that had incorrectly predicted the hydrogen bonding 

patterns based on structures of the acetylcholine-binding protein. Similar studies on an 

aspartate residue participating in several hydrogen bonds (225) and the hydrogen bonds in a 

beta sheet structure (226) of the muscle nAChR have also provided information regarding 

the functional significance of particular hydrogen bonding patterns. 

 Additional ncAAs have been used to examine other important noncovalent 

interactions that play important roles in agonist and antagonist binding events (227, 228). 
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Numerous receptors and channels have a very large number of aromatic residues that 

directly line the binding site, and as early as 1990, aromatic residue-mediated cation-π 

interactions were proposed in acetylcholine-binding proteins (reviewed in (229, 230)). The 

use of ncAAs has contributed greatly to the investigation of potential cation-π interactions 

between ligands and the ligand binding sites of membrane proteins. Zhong et al. first 

described the use of a series of aromatic ncAAs to study ligand binding in the muscle 

nAChR in 1998 (231). Experimental measurements of EC50 values of channels containing a 

number of tryptophan analogs at three positions of the ligand binding site showed very little 

dependence on the tryptophan analog incorporated. However, at the α149 position, the 

EC50 value varied widely depending on the analogs used. Remarkably, comparison of 

experimentally determined EC50 values with fluorinated tryptophan analogs 13–15, 68–70 

and quantum mechanical calculations of cation-π binding strengths of each of these analogs 

revealed a very strong correlation. This strong relationship between ligand binding and 

cation-π binding strength at a single amino acid, depicted in figure 1.8, clearly established 

the presence of a single cation-π interaction in the nAChR. Subsequent studies have 

continued to reveal important characteristics of numerous cation-π interactions in nAChR 

binding events, including differences in the binding of nicotine, acetylcholine, and 

epibatidine to the receptor (232). Cashin et al. compared nicotine and acetylcholine binding 

to the nAChR with the drug epibatidine and established that epibatidine has a cation-π 

interaction similar to acetylcholine (233). Xiu et al. investigated differences between the 

muscle nAChR and the A2B3 form of the α4β2 neuronal nAChR that likely plays a role in 

nicotine addiction (234). One key finding that they reported was the existence of a strong 

cation-π interaction between nicotine and a tryptophan residue in α4β2 homologous to 
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tryptophan α149 in muscle nAChR, which they confirmed with the same series of 

fluorinated tryptophan analogs described above. This cation-π interaction between nicotine 

and tryptophan is absent in the muscle nAChR, explaining a longstanding mystery 

regarding the selectivity of nicotine for neuronal receptors over the muscle nAChR. 

 In addition to the extensive studies on cation-π interactions in nAChRs, researchers 

have employed ncAAs to study potential cation-π interactions in other integral membrane 

proteins. Studies on the Cys-loop family of receptors have revealed that many proteins 

within the Cys-loop family bind ligands using cation-π interactions, but utilizing aromatic 

residues at different structural locations (232, 235-238). Studies on the voltage-gated 

sodium channel Nav1.4 involving ncAAS have also proven fruitful, identifying cation-π 

interaction binding sites for tetrodotoxin, calcium binding, and local anesthetics (239-241). 

Use of ncAAs in the voltage-gated potassium channel Shaker yielded insights into the 

location of a cation-π interaction and the structural conformation of the channel, and these 

findings helped to resolve discrepancies between computational structural predictions and 

previous experimental work (242). Last, McMenimen et al. have demonstrated that the 

tryptophan thought to be responsible for cation-π-mediated magnesium ion blockade in the 

N-methyl-D-aspartate receptor is instead favored for its large, hydrophobic, and flat 

characteristics (243). 

 Research efforts highlighted above demonstrate that investigations of membrane 

proteins with ncAAs can provide a wide variety of structural and mechanistic information 

ranging from atomic to whole-protein distance scales. To date, the majority of 

investigations in this area have focused on ligand- and voltage-gated ion channels, but 

recent reports employing ncAAs in the study of GPCRs (212, 244-246) suggest that efforts 
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to broaden the applicability of ncAAs to a wider range of membrane proteins are underway. 

As long as three-dimensional structural information about membrane proteins remains 

scarce, ncAAs should continue to play an important role in the study of these complex 

biomolecules. 

 

Posttranslational modification mimicry. Although only twenty amino acids are usually 

genetically encoded in proteins, nature has devised a huge number of posttranslational 

modifications that modulate the structure, activity, and localization of proteins (2). The 

precise effects that these modifications have on proteins can be extremely difficult to study 

due to the dynamic nature of many of these modifications in living cells and the challenges 

in purifying or preparing uniformly modified proteins to study in vitro. Proteins bearing 

authentic posttranslational modifications or close structural mimics of these modifications 

can be prepared in conjunction with ncAAs. Both chemical routes and direct incorporation 

of amino acids mimicking posttranslational modifications have been explored and applied 

to the study of posttranslationally modified proteins. 

 

Chemical approaches. Performing chemistry on proteins forms one major approach to 

generating molecules containing posttranslational modifications found in naturally 

occurring proteins. Many protein modification techniques have been developed for the 

chemical transformation of residues found in naturally occurring proteins (247), and some 

of these methods have been exploited in the generation of structures mimicking 

posttranslational modifications. For example, the Shokat laboratory has developed an 

elegant method for modifying cysteine residues in recombinantly produced proteins in such 
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a way that they resemble methyl-lysines (248). Semisynthetic methods such as native 

chemical ligation and expressed protein ligation also provide another efficient chemical 

route to proteins containing posttranslational modifications (5-9). NcAAs provide a 

complementary approach to these methods because of the improved yields that biosynthetic 

protein production offers compared to other preparations of posttranslationally modified 

proteins. Approaches to employing bioorthogonal chemistry for the selective modification 

of biomolecules have recently been reviewed from the perspectives of the range of 

bioorthogonal chemistries explored (249), the particular utility of azide-alkyne click 

chemistry (250), and chemistries that can be performed on ncAAs in proteins (251). 

 Several groups have utilized chemistries introduced by the incorporation of ncAAs 

in order to create mimics of posttranslationally modified proteins. Three separate groups 

have found chemical transformations that lead to dehydroalanine-containing proteins, two 

of which (Seebeck et al. and Wang et al.) involve the use of ncAAs (252-254). The Schultz 

laboratory has demonstrated that analogs of methyl- and acetyl-lysine (71–73) can be 

chemically installed in proteins by performing chemistry on dehydroalanine-containing 

proteins (255), and using dehydroalanine (74) as a chemical handle has been proposed as a 

general starting point for protein modification (256). The Chin laboratory has demonstrated 

the utility of protecting groups in the development of a method for preparing site-

specifically and quantitatively methylated histones. They installed dimethyllysine (75) by 

site-specific incorporation of the protected lysine Nε-tert-butyloxycarbonyl-L-lysine (76) 

and an ingenious protection-deprotection scheme (257, 258). Using the same ncAA (76), 

Virdee and coworkers combined genetic code expansion, intein chemistry, and 

chemoselective ligation to create a method termed GOPAL (genetically encoded 
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orthogonal protection and activated ligation) to synthesize diubiquitin chains that have not 

been chemically accessible by previous means of synthesis (259). The resulting proteins 

were used to solve the structure of a previously uncharacterized diubiquitin conjugate and 

to study the specificities of human deubiquitinases. Eger et al. have also demonstrated the 

utility of a combination of site- and residue-specifically incorporated azide and alkyne 

amino acids 77 and 78 to chemically synthesize diubiquitin molecules using copper-

catalyzed azide-alkyne cycloadditions (CuAAC) (260). This method might be simpler and 

more versatile than the methods described by the Chin laboratory, but the resulting 

structures contain unnatural triazole ring linkages rather than authentic linkages found in 

nature. 

 The complexities of protein glycosylation have inspired a number of approaches to 

the chemical and enzymatic synthesis of sugar-decorated proteins (recently reviewed by 

Gamblin et al. (261)). Part of the appeal of chemical approaches to adding glycans to 

proteins is the ability to precisely define the structure of a glycan prior to attaching it to a 

protein without having to worry about the enzymatic efficiencies of glycosyltransferases or 

potential constraints within the protein translation machinery. Davis and coworkers have 

recently reported two alkene-based routes to glycosylated proteins using chemistry 

described above. Each of these methods leads to the construction of quantitatively 

glycosylated model proteins, although they require the use of proteins containing only one 

cysteine and one methionine each, respectively (254, 262). The Schultz laboratory 

demonstrated the modification of ketone-containing amino acid 79 in the Z-domain of 

staphylococcal protein A with an aminooxy analog of N-acetylglucosamine (263). After 

nearly quantitative reaction with the first sugar, the protein could be enzymatically 
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modified at the glycan with subsequent sugars to produce more complex carbohydrate 

structures. Chemical attachment of multisugar structures to ketone-containing proteins was 

also achieved, although not in quantitative yields. Van Kasteren et al. have used 

azidohomoalanine (77) and homopropargylglycine (2) to “click” sugar structures to model 

proteins using CuAAC (264, 265). Unlike the ketone-mediated couplings, CuAAC 

afforded nearly quantitative yields when complex carbohydrate structures were ligated to 

proteins. CuAAC-mediated glycosylation was also combined with cysteine modification to 

generate doubly glycosylated proteins, although this required the use of proteins containing 

only one methionine and cysteine residue each. Despite these drawbacks, these chemically 

produced glycan mimics were used to study glycan recognition and as probes of glycan-

binding activity in vivo. One especially interesting observation was that neuronal cells in 

rat brain tissue sections appear to selectively bind proteins containing GlcNAc 

modifications, while nearby glial cells do not appear to possess the same binding 

capabilities. Chemical approaches to the generation of posttranslationally modified proteins 

appear to be especially useful in glycoprotein synthesis, and the generality of this approach 

should be very useful for generating quantitatively modified structures for studying several 

outstanding questions in glycobiology. 

 

Direct incorporation approaches. Ribosomal synthesis of proteins containing 

appropriately designed ncAAs allows for the creation of some authentic, genetically 

encoded posttranslationally modified proteins and metabolically stable mimics of other 

modifications. Significant effort has been dedicated to the genetic incorporation of subtle 

posttranslational modifications into proteins. The Schultz laboratory has biosynthetically 
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incorporated sulfotyrosine (80) into proteins expressed in E. coli and used it in a number of 

contexts. In an initial report, they demonstrated the improved inhibition of thrombin by 

sulfo-hirudin versus desulfo-hirudin (266). They also solved the X-ray crystal structure of 

the sulfo-hirudin-thrombin complex using biosynthetically produced sulfo-hirudin (267). In 

this case, the genetic encoding of the modification enabled the generation of large protein 

samples quantitatively sulfated at a specific position, a feat difficult to achieve by any other 

protein production method. More recently, Schultz and coworkers have explored the utility 

of sulfated antibodies in the context of directed evolution (268, 269); these results will be 

discussed below in the “Evolution” subsection. 

 Lysine modifications are particularly important posttranslational modifications. For 

example, lysine acetylation, which results in the amino acid Nε-acetyllysine (81), impacts 

the function of many proteins. A report has described the biosynthesis of proteins 

containing this modification, including the naturally lysine-acetylated protein rat 

mitochondrial manganese superoxide dismutase (100). Chin and coworkers have recently 

applied this strategy to the study of histone acetylation (270). The preparation of histone 

H3 quantitatively acetylated at lysine 56 enabled the mechanistic study of a number of 

previously proposed effects of histone acetylation on histone properties. For example, 

FRET experiments indicated that reconstituted nucleosomes acetylated at lysine 56 of H3 

have DNA breathing increased by seven times over nonacetylated nucleosomes, explaining 

previously observed changes in gene expression from H3 mutants lacking lysine at position 

56. Suga and coworkers have also investigated the effects of lysine acetylation and 

methylation on heterochromatin protein 1 recognition of histone H3 N-terminal peptides by 

reprogramming the genetic code to combinatorially incorporate acetylated and methylated 
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lysine residues into genetically encoded peptides (271). Aside from histone acetylation, 

cyclophillin A (CypA), a protein with important roles in immunosuppression and viral 

infection, is also acetylated in human cells. Using an orthogonal acetyllysyl-tRNA 

synthetase/tRNACUA pair and amber suppression, Lammers et al. produced homogeneously 

and site-specifically acetylated recombinant CypA in E. coli (272). This approach enabled 

structural and biophysical analyses on acetylated CypA for the first time and revealed 

important roles of acetylation on CypA function. These roles include suppression of the 

protein’s catalytic activity, recognition of the HIV-1 capsid, cyclosporine binding, and 

calcineurin inhibition. 

 Xie et al. have genetically encoded a phosphotyrosine mimic in proteins (273). 

While phosphotyrosine is subject to hydrolytic and enzymatic cleavage, amino acid 82 is 

not due to the more stable linkages involved. The single negative charge on the amino acid 

is a reasonable substitute for the doubly charged phosphate group present in 

phosphorylated amino acids. DNA binding studies with a fragment of human signal 

transducer and activator of translation-1 (STAT1) containing amino acid 82 showed that it 

had an intermediate apparent affinity for DNA in between analogous phosphorylated 

STAT1 and unphosphorylated STAT1. These results indicate that the phosphotyrosine 

mimic may be used to study the effects of phosphorylation at specific protein sites, 

although the mimic is not a perfect analog of authentic phosphorylation. The amino acid 

3-nitrotyrosine (83), a residue commonly associated with disease and oxidative damage, 

has also been incorporated into proteins produced in E. coli (274). Studies on the catalytic 

activity of manganese superoxide dismutase (MnSOD) indicate that nitration of a particular 

tyrosine in the protein greatly impacts the catalytic activity of MnSOD, suggesting that 
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future studies of tyrosine nitration in proteins may shed additional light on the molecular 

and cellular effects of this modification. As stated above, protein modification by 

glycosylation is an area of widespread interest. However, biosynthetic incorporation of 

glycans into proteins has been a rather difficult task, and early reports on the subject (275, 

276) have since been retracted (277, 278). One report of the successful incorporation of a 

glycosylated amino acid into proteins using an in vitro translation system has appeared in 

the literature (279), suggesting that future efforts to directly incorporate glycosylated amino 

acids into proteins may yet prove fruitful. 

 More than half a dozen posttranslational modifications or mimics have been 

incorporated into proteins using biosynthetic approaches. These approaches to 

incorporating small posttranslational modifications and chemical approaches to 

incorporating modifications such as glycan structures into proteins appear to be relatively 

straightforward. The successful creation of uniformly modified proteins and elucidation of 

many of significantly altered functional properties of these proteins suggests that ncAAs 

will continue to provide researchers with powerful, specific tools for studying the effects of 

posttranslational modifications on biological processes. 

 

Immune modulation. Collaborative efforts at The Scripps Research Institute have recently 

raised the possibility of using ncAAs as aids in the development of vaccines. Many 

approaches to developing vaccines have previously been described that include the use of 

viruses, T-helper epitopes, and sophisticated adjuvants (280-282), but difficulties remain in 

developing robust immune responses against self-proteins. Grünewald et al. first presented 

the idea of incorporating immunogenic amino acids into self-proteins in 2008 (283). In this 
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work, researchers incorporated p-nitrophenylalanine (pNO2Phe, 84) into murine tumor 

necrosis factor-alpha (mTNF-α) based on previous reports of the highly immunogenic 

nature of nitroaryl groups. Immunization of mice with purified mTNF-α containing 84 

resulted in a very high level of mTNF-α-specific antibodies in the serum of the treated 

animals. In contrast, immunizations using wild-type mTNF-α or a variant containing a 

tyrosine to phenylalanine mutation did not result in significant antibody titers. The utility of 

the immunization procedure was tested using a mouse model of severe endotoxemia. 

Figure 1.9 depicts the results of challenging mice with bacterial lipopolysaccharides. While 

the presence of mTNF-α in the serum usually contributes to septic shock and death of the 

challenged mice, these data indicate that the presence of antibodies against mTNF-α can 

significantly improve the survival rate of the challenge. A follow-up report on this work 

expanded upon the above studies (284). In this work, the investigators found that the site of 

pNO2Phe within mTNF-α affected the strength of the immune response elicited in the 

mouse. They also note, somewhat surprisingly, that antibodies isolated from the serum of 

immunized mice do not necessarily recognize peptide epitopes containing the 

immunogenic amino acid, although further investigation will be necessary to examine this 

finding in more detail. Finally, the researchers incorporated pNO2Phe into murine retinol-

binding protein (mRBP4) and immunized mice with the resulting protein, again finding 

robust immune responses after administration of the proteins containing 84. In each of 

these papers, the authors stress that they have produced immunogenic materials based on 

precise molecular manipulations, an approach not possible with other immunization 

techniques. These results raise the tantalizing possibility that immunogenic ncAAs may 

lead to a general approach to developing therapies involving recognition of a self-protein or 
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other weakly immunogenic protein. While application to treatments for cancer or other 

diseases may still be quite distant, the initial experiments described here show a great deal 

of promise. 

 

Evolution. As far as scientific inquiries have been able to establish, the genetic code has 

remained more or less constant since its establishment in the so-called frozen accident 

(285). Therefore, evolution has operated with a single genetic code for more than one 

billion years (with some minor variations arising along the way (286)). However, there is 

no fundamental barrier to performing evolution experiments with alternative genetic codes. 

Using ncAAs, researchers have recently combined ncAAs and directed evolution to 

investigate new approaches to genetic code expansion and protein engineering. 

 

Evolution of organisms with altered genetic codes. Little is known about how the standard 

genetic code was established. Before becoming fixed, changes to the genetic code likely 

involved either introduction of a new amino acid into proteins or the substitution of one 

amino acid for another within proteins (286-288). These significant changes likely required 

substantial adaptations by the organism in order to accommodate the alterations. Two 

groups have investigated this adaptation process using laboratory evolution techniques. In 

1983, Wong grew tryptophan-auxotrophic Bacillus subtilis on solid media supplemented 

with 4-fluorotryptophan (13) in place of tryptophan (Trp) (289). After just two rounds of 

selection and two more of mutagenesis and selection, Wong isolated a mutant that grew 

logarithmically in a liquid culture supplemented with 13, but only linearly when the 

medium was supplemented with tryptophan. These impressive results demonstrated that it 
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is possible to change an organism’s amino acid preference from a canonical one contained 

in the genetic code to a noncanonical one. Bacher and Ellington performed similar 

selection experiments using E. coli auxotrophic in Trp production and then identified 

genetic mutations in the evolved strains (290). Three thousand hours of serial dilutions in 

liquid cultures containing increasing percentages of 13 in place of Trp resulted in strains 

showing improved growth rates in medium containing 99.97% 12, although these strains 

still showed a growth preference for Trp. Identification and characterization of mutations 

revealed that one mutation in the gene encoding tryptophanyl-tRNA synthetase enables 

improved discrimination against 13, but mutations in other genes conferred improved 

tolerance of the noncanonical substrate to the organism. Bacher et al. also subjected the 

phage Qβ to selection in media containing 95% 6-fluorotryptophan (15) (291). Two 

independent phage lines were subjected to twenty-five rounds of selection. Seven 

mutations became fixed in each of these lines, and, surprisingly, these mutations did not 

involve the alteration of any tryptophan codons. In the case of both E. coli and phage, the 

evolved organisms retained their abilities to grow on tryptophan while acquiring new 

growth capabilities. These results suggest that organisms can adapt to tolerate ambiguity 

within their genetic codes, implying that the “ambiguous intermediate” theory of genetic 

code expansion is plausible (288). Future studies of the ncAA accommodation process may 

shed additional light on the mechanisms by which changes to the genetic code are accepted 

in living creatures. 

 

Directed protein evolution. In the past two decades, scientists have developed a number of 

high-throughput selections and screens enabling the directed evolution of proteins (1, 292-
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295) and higher order protein-based systems (296). These efforts have enabled researchers 

to study the evolution of individual proteins and engineer proteins with new functions 

(297). Most work in this area has focused on exploring the sequence space defined by 

polypeptide chains containing the twenty canonical amino acids. However, two groups 

have employed ncAAs to explore alternative protein sequence spaces using directed 

evolution. The Tirrell laboratory has focused on the development of functional proteins 

fluorinated at leucine positions by substituting trifluoroleucine (44) for leucine. Global 

replacement of leucine in chloramphenicol acetyl transferase (CAT) resulted in a protein 

with greatly reduced half-life of inactivation at 60 °C (188). Two rounds of error-prone 

PCR and screening for mutants with increased activity after prolonged incubation at 60 °C 

yielded a mutant with substantially improved thermostability properties. Interestingly, the 

nonfluorinated mutant protein retained the thermostability of the parent CAT, indicating 

that mutations introduced during the course of evolution allowed the protein to improve its 

properties when fluorinated while retaining its original function. This trend is similar to the 

trend observed when an amino acid in the genetic code of an organism is replaced globally; 

both organisms and proteins appear to first adapt to accept an ambiguous genetic code 

before gaining a preference for the altered genetic code. In another set of evolution 

experiments, Yoo et al. evolved a GFP variant containing 44 in place of leucine using 

eleven rounds of random mutagenesis and screening using fluorescence-activated cell 

sorting (FACS) (189). A summary of the progress observed during the course of the 

directed evolution experiment is depicted in figure 1.10. The fluorescence of cells 

expressing various mutants in the presence of leucine or 44 indicates that nonfluorinated 

GFP mutants retain (and perhaps even slightly improve) their function, similar to the trend 
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observed in CAT evolution. The authors also found a marked improvement in the folding 

kinetics of the evolved GFPs in the absence of fluorination. Interestingly, several of the 

mutations observed in the final isolated mutant were also observed after screening for 

“folding-enhanced” GFP variants (298), suggesting that evolving proteins containing 

ncAAs may be a general method for improving the folding properties of proteins. 

 The Schultz laboratory has recently applied site-specific incorporation 

methodologies to directed evolution problems. Their work to date has focused on using 

ncAAs that are known to have affinities for particular molecules to engineer antibody 

fragments. In an initial report, they described the development of a phage display system 

that can be used in conjunction with an orthogonal aaRS-tRNA pair to encode for antibody 

fragments containing twenty-one amino acids (269). In this paper, they demonstrated the 

utility of encoding sulfotyrosine (80) in a saturation mutagenesis library. Despite an 

expression bias against antibody fragments containing 80, they were able to isolate variants 

from a naïve germline library containing sulfotyrosine after panning for binders against the 

HIV protein gp120. Perhaps these results were not too surprising since naturally occurring 

high-affinity antibodies against gp120 are known to be sulfated (299, 300), but the 

demonstration does prove that ncAAs can be used effectively in phage display applications. 

A follow-up report has shown that functional antibody variants can be isolated from 

saturation mutagenesis libraries of the tyrosine-sulfated 412d antibody fragment (268), 

although affinity maturation of the fragment proved challenging given the high affinity of 

the starting protein. Finally, this technique has also been applied to acyclic sugar binding 

(301). The amino acid p-boronophenylalanine (85) was encoded in a saturation 

mutagenesis library of phage-displayed antibody fragments, and the library was panned 
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against a glucamine resin. Many of the clones isolated after three rounds of panning were 

found to contain amino acid 85. Again, these results might have been expected based on the 

well-known propensity of boronates and diols to form boronate esters. However, these 

proof-of-principle experiments suggest that future libraries of antibody fragments 

containing ncAAs may yield high-affinity binders to antigens that are normally difficult to 

target. Taken as a whole, directed evolution experiments with proteins containing ncAAs 

appear to be promising for evolving proteins with properties that are difficult to introduce 

using only canonical amino acids, including particular molecular recognition and catalysis 

events. Furthermore, both protein and organism evolution experiments with ncAAs may 

provide insights into the kinds of adaptations necessary to maintain evolutionary fitness as 

amino acid compositions are changed or expanded. 

 

Proteomic studies. Labeling and identifying the proteins expressed in biological systems 

can provide great insights into the inner workings of these systems, including spatial and 

temporal information about the proteome (302, 303). Recent work with ncAAs has 

demonstrated that reactive amino acid analogs can function as effective tags for labeling 

and identifying newly synthesized proteins in a range of biological systems. The versatility 

of bioorthogonal chemistry enables the use of the same set of ncAAs for visualization and 

identification of newly synthesized proteins. 

 

Fluorescent labeling of newly synthesized proteins. Although a number of effective 

genetic, enzymatic, and chemical strategies for fluorescently labeling proteins have been 

developed (recently reviewed by Sletten and Bertozzi (249)), most of these approaches 
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have two major shortcomings: the identity of the protein to be labeled must be known in 

advance of the experiment, and the DNA encoding the protein of interest must be 

genetically modified in order to enable labeling. Metabolic incorporation of amino acids 

that can be tagged or visualized in some way provides an approach to labeling newly 

synthesized proteins without genetically modifying the system in question and without 

knowing the identities of the proteins to be labeled in advance. A longstanding strategy for 

labeling and visualization of newly synthesized proteins in living cells and organisms has 

been the use of [35S]methionine in conjunction with autoradiography (304). This method 

has enabled the study of a number of systems without genetic manipulations, but 

experiments involving [35S]methionine must be performed with care due to the inherent 

dangers of working with radioactivity. Recently described approaches to residue-

specifically incorporating reactive amino acids into proteins (for examples, see (46, 47, 

305, 306)) have enabled alternative chemical approaches to visualizing newly synthesized 

proteins in cellular systems. In 2005, Beatty et al. described the chemical modification of 

proteins produced in E. coli containing amino acids 2 (Homopropargylglycine, Hpg) or 86 

using a fluorogenic coumarin dye and copper-catalyzed azide-alkyne 1,3 dipolar 

cycloaddition (CuAAC) to generate fluorescently labeled proteins (307). The researchers 

found high, specific labeling of E. coli only after the cells had been incubated with ncAAs. 

Gel electrophoresis revealed that both an overexpressed recombinant protein and 

endogenously expressed E. coli proteins were labeled, suggesting that incorporation of 

ncAAs occurred in all newly synthesized proteins in the bacteria. 

 The concept of visualizing new protein synthesis proteome-wide using 

bioorthogonal chemistry has been extended to mammalian cells. Beatty, Liu, and 
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coworkers demonstrated that amino acid 2 could be used in mammalian cells as a chemical 

handle for labeling proteins expressed during a specified pulse time of the alkyne-

containing amino acid (35). Aided by the methionine auxotrophy of mammalian cells, the 

technique was applied in several different cell types and studied by microscopy and flow 

cytometry. Fluorescence quantification by flow cytometry revealed that labeling was 

selective for cells that had been exposed to the alkyne-containing amino acid by 

approximately one order of magnitude and that the extent of labeling could be varied by 

introducing small amounts of methionine along with 2. Visualization of the proteome has 

also been extended to labeling multiple populations of newly synthesized proteins using 

multiple pulses of ncAAs. In this work, proteins synthesized during specific time windows 

were distinguished by applying sequential pulses of 2 and 77 (Azidohomoalanine, Aha) to 

mammalian cells in culture. The researchers showed that after the completion of both 

pulses, proteins containing 2 could be labeled with an azide-containing fluorophore while 

proteins containing 77 could be labeled with an alkyne-containing fluorophore and 

visualized simultaneously within the same spatial area (308). 

 Monitoring the production of newly synthesized proteins within cells and 

organisms may shed light on a number of problems, including the localized synthesis of 

new protein populations. One area that has already been investigated using the visualization 

approaches described above is protein synthesis in neuronal dendrites, a poorly understood 

and somewhat controversial subject (309). Dieterich et al. designed fluorescent tags for 

visualization of azide or alkyne-containing newly synthesized neuronal proteins in situ 

(310). Their CuAAC tagging enabled detection of newly synthesized proteins after as little 

as 10 minutes of sample exposure to 2 or 77, and sequential pulses enabled tagging of 
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multiple time-defined populations of newly synthesized proteins. Furthermore, using strain-

promoted azide-alkyne ligation (249), the authors were able to study the diffusion of newly 

synthesized proteins by appending quantum dots to azide-containing neuronal proteins. The 

Flanagan laboratory has used ncAAs to aid their studies of the spatial regulation of protein 

synthesis in neuronal axons and dendrites. Use of 77 and an alkyne fluorophore helped 

confirm that the transmembrane receptor DCC, which regulates axon growth and guidance, 

colocalizes with newly synthesized proteins, revealing its previously undiscovered role in 

translation regulation (311). 

 Studies of protein S-acylation dynamics have also been aided by the visualization of 

newly synthesized proteins (312). Simultaneous monitoring of S-acylation and protein 

turnover in the protein H-RasG12V revealed a palmitate half-life of approximately fifty 

minutes on the protein. The authors note that these results are consistent with palmitate 

half-life values determined using radioactive compounds and suggest that their 

nonradioactive approach to monitoring turnover of this posttranslational modification could 

be applied generally to any cellular S-acylated protein. The successful application of 

ncAAs to study temporal and spatial aspects of protein synthesis and turnover in complex 

biological systems is a significant accomplishment. These promising results suggest that 

further employment of ncAAs to visualize the dynamics of the proteome will continue to 

yield information about where proteins are synthesized within cells and organisms and how 

these proteins are transported and degraded within these systems. 

 Future applications of proteome visualization may benefit greatly from recent 

methodological developments in chemical labeling methods and cell-selective 

incorporation of ncAAs into proteins. CuAAC ligations for the detection of proteins have 
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been quite successful in fixed cells, but their application to live cells may not be possible 

due to the toxic concentrations of copper needed to promote the chemistries involved. 

Strain-promoted azide-alkyne ligations provide a nontoxic alternative to labeling newly 

synthesized proteins, as the reaction of strained alkynes with azides does not require copper 

to promote the labeling chemistry (249, 313). Beatty et al. demonstrated the utility of such 

an approach by designing a set of membrane-permeant cyclooctynes functionalized with 

fluorophores and labeling of azide-tagged proteins in live mammalian cells (314). Multiple 

recent reports of CuAAC using short labeling times and newly developed ligand catalysts 

have demonstrated that glycans on the surface of live cells can be labeled without affecting 

cellular viability (315, 316). These results should also be applicable to the labeling of 

newly synthesized proteins appearing on the exteriors of live cells, but it is unclear whether 

these findings will enable labeling of proteins appearing in the interiors of cells without 

affecting cellular viability. The Lin laboratory has recently demonstrated an alternative 

chemistry for visualization of newly synthesized proteins (317). Use of the methionine 

analog homoallylglycine (87) and an ultraviolet light-promoted reaction with a fluorescent 

tag enables detection of proteins containing 87 within a precisely defined area. The method 

appears to be promising, although further application of the approach will likely require 

improved specificity, and the use of ultraviolet light may limit the method’s use to fixed 

cells. 

 The use of translationally active methionine analogs in the visualization of newly 

synthesized proteins enables researchers to study all newly synthesized proteins within a 

system simultaneously. However, in nature, interactions between different types of cells 

within the same organism or between the cells of multiple organisms may result in very 
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different cellular responses in the components of the interacting systems, leading to the 

problem of determining which cells express particular proteins at a given time. Ngo et al. 

have recently demonstrated an approach to selectively visualize the newly synthesized 

proteins from one cell type in a mixed cell population (318). The key component of this 

method is the use of a mutant methionyl-tRNA synthetase (MetRS) capable of efficiently 

and selectively charging 4 (Azidonorleucine, Anl) onto tRNAMet. When the mutant MetRS 

(termed NLL-MetRS) is expressed in a particular cell type, proteins expressed in the 

presence of 4 incorporate this azide-containing amino acid. In the absence of either the 

mutant synthetase or 4, cells remain unlabeled. Thus, only proteins synthesized in cells 

expressing the mutant synthetase will be tagged with azides upon introduction of 4 into the 

medium. Ngo and coworkers illustrated this concept using a mixed population of E. coli 

cells expressing two different recombinant proteins. Only proteins expressed in the strain 

containing NLL-MetRS were labeled during CuAAC as determined by Western blotting 

and microscopy. This technique was also found to be applicable in a mixed population of 

E. coli and mouse alveolar macrophages. Figure 1.11 depicts the results of labeling 

experiments following the infection of a macrophage culture with various strains of E. coli 

cells. Only E. coli cells expressing the NLL-MetRS were labeled with a TAMRA-alkyne 

probe after fixing the coculture. Macrophages in the same culture were unlabeled, and 

positive and negative controls further proved that both cellular populations were 

synthesizing proteins during the course of the infection and that the labeling in the system 

was very specific. Hang and coworkers have demonstrated the use of cell-selective labeling 

in cocultures of Salmonella typhimurium and mammalian cells (52). Use of Anl or the 

long-chain alkyne analog 2-aminooctynoic acid (AOA, 88) enabled selective labeling of S. 
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typhimurium cells with specificities similar to those observed by Ngo et al. These 

visualization experiments validate the idea of selectively labeling protein populations 

expressed in a cell type involved in interactions with other cells. The combined selectivity 

of ncAA incorporation and CuAAC-mediated fluorescence visualization ensures that a 

minority protein population can be examined in a vast background of other protein 

populations and should be applicable to a wide range of systems involving cell-cell 

interactions. 

 

Protein identification. The same concept of metabolically incorporating chemically 

reactive ncAAs into newly synthesized proteins or more specific protein populations can 

also be extended to protein identification techniques. Tagging newly synthesized proteins 

with affinity purification reagents enables selective separation and enrichment of proteins 

that have been synthesized in a defined temporal or spatial window or within a particular 

cellular population. The resulting samples can then be analyzed using mass spectrometry 

identification techniques. Dietrich et al. first described this technique in 2006, naming the 

resulting approach bioorthogonal noncanonical amino acid tagging (BONCAT) (319, 320). 

In this work, the researchers demonstrated several important principles in the development 

of this technique for use in mammalian cell culture. First, the azide-containing 

noncanonical amino acid azidohomoalanine (77) did not perturb cultured mammalian cells 

significantly. The visible phenotypes of cells remained the same whether or not 77 was 

added to cultures, and the protein populations present in cells incubated with methionine or 

77 were indistinguishable when examined with autoradiograms of one-dimensional gels. 

Second, as was found in fluorescence visualization studies, the tagging chemistry was very 
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specific for proteins that had been synthesized in the presence of 77. Finally, proteins 

tagged with an alkyne-FLAG tag could be enriched from the much larger overall protein 

population with a streptavidin column, digested into smaller peptides on the column, and 

identified using tandem mass spectrometry. Experiments performed in HEK293 cells 

identified proteins from a wide range of gene ontological categories, showing that a highly 

diverse set of proteins can be isolated using BONCAT. Numerous improvements to 

enriching azide- or alkyne-containing proteins have been reported in support of the 

BONCAT method. All of these approaches have aimed to replace the on-column 

trypsinization step of the original BONCAT procedure with separate column purification 

and digestion steps. For example, Kramer et al. reported selective cleavage of newly 

synthesized proteins containing 77 at the azide side chains of the proteins (321). Other 

approaches have involved the synthesis of purification tags designed to enable the use of 

click chemistry to conjugate affinity reagents to azide- or alkyne-containing proteins, and 

enrich tagged proteins under mild conditions using appropriate columns. Nessen et al. 

demonstrated the use of strain-promoted click chemistry for the selective enrichment of 

newly synthesized proteins from E. coli (322). In this work, the use of 77 and a cleavable 

cyclooctyne resin enabled the enrichment and identification of newly synthesized proteins 

from whole-cell lysates. Szychowski et al. designed and synthesized five biotin-azide 

probes that can be cleaved over a wide range of conditions including reducing, mild acidic 

conditions, and ultraviolet irradiation (323). Using a GFP model system, the authors 

showed that an acid-cleavable tag enables highly selective conjugation with alkyne-

containing proteins and leaves a small mass tag on labeled proteins after cleavage, an 

important consideration for proteomic studies. Hang and coworkers have developed several 



 62 
tags that can be used for proteomic studies (52, 324). Application of these tags to labeling 

and mass spectrometric identification of newly synthesized proteins produced in S. 

typhimurium harboring MetRS-NLL in the presence of AOA (88) enabled identification of 

a large number of proteins from complex samples. Furthermore, samples from cocultures 

were enriched for proteins expressed in S. typhimurium, suggesting that the protein 

purification procedure successfully separated alkyne-containing proteins from unlabeled 

proteins. 

 BONCAT represents a potentially significant advance in the field of proteomics. 

The ability to selectively enrich a set of newly synthesized proteins from a larger proteomic 

sample may result in more sensitive detection method for protein subsets of interest. 

Furthermore, as demonstrated in the case of visualizing new protein synthesis, dynamic 

aspects of the proteome may be studied by varying the pulse time and duration of ncAAs or 

by pulsing sequentially with multiple ncAAs. The BONCAT technique may also be used to 

compare proteomes from two or more different cell samples by applying existing 

techniques such as SILAC (303) or by combining ncAA incorporation techniques with the 

use of ICAT (325) or iTRAQ (326) reagents. Finally, protein identification techniques 

appear to be compatible with the selective metabolic labeling strategy of Ngo et al. and 

Grammel et al. (52, 318). Proteomic studies with ncAAs take advantage of several aspects 

of ncAAs including global canonical amino acid replacement, bioorthogonal side chain 

chemistries, and varied aminoacyl-tRNA synthetase selectivities toward these noncanonical 

substrates. These several features enable the application of noncanonical amino acids in a 

broad range of proteomic applications, which should lead to new insights into a number of 

complex biological systems and processes. 
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Outlook 

 The future looks bright for applying noncanonical amino acids to problems in 

protein science and engineering. The question with ncAAs is no longer, “what kinds of 

noncanonical amino acids can be incorporated into proteins?” The range of chemical 

structures employed in experiments with ncAAs is quite impressive, ranging from single-

atom changes of canonical residues to ncAAs containing functional groups rarely, if ever, 

seen in nature. Instead, the question is now, “what types of problems can best be solved by 

incorporating noncanonical amino acids into proteins?” Recent research has hinted at the 

varied applications possible with ncAAs. Researchers have employed noncanonical amino 

acids to investigate problems ranging from atomic-level protein structural questions to 

organism-wide responses to proteins containing noncanonical amino acids, with time scales 

of individual experiments ranging over several orders of magnitude. The broad range of 

experiments performed using noncanonical amino acids suggests that these residues should 

be thought of as possible tools for studying many problems, and not necessarily as essential 

tools for studying any particular problem or class of problem. Generally speaking, good 

candidate problems are ones in which ncAAs offer a route to a substantial increase in the 

quality of information and/or desired protein properties that can be obtained from a 

particular set of experiments without drastically raising the level of difficulty of performing 

these experiments. The several application areas discussed in this review have already 

started to benefit from the use of noncanonical amino acids according to the criteria 

outlined above. These benefits are perhaps most apparent in the areas of X-ray 

crystallography and membrane protein studies, in which a very large amount of data has 
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been acquired using relatively simple approaches that are not possible without the use of 

noncanonical amino acids. 

 A few more questions come to mind regarding research with proteins containing 

noncanonical amino acids. First, aside from the areas discussed above, what additional 

problems might benefit from the use of ncAAs in the near future? Biophysical 

characterizations appear to be among the most accessible problems, especially in light of 

the number of successful uses of ncAAs in X-ray crystallography and NMR studies. 

Fluorescence spectroscopy can benefit from both the direct incorporation of fluorescent 

amino acids and the chemical conjugation of fluorescent labels to reactive chemical 

functionalities in proteins, and proof-of-principle experiments of both of these approaches 

already exist in the literature (for examples, see (104, 327-329); see Merkel et al. for a 

review on the subject of intrinsically blue fluorescent amino acids as tools for protein 

science (330)). Vibrational spectroscopy of proteins performed after the incorporation of 

bonds with unique infrared or Raman signatures should continue to grow in importance for 

protein characterizations. The work of Ye et al. on the membrane protein rhodopsin (212, 

213) is an early example of the effective exploitation of IR-active amino acids (discussed in 

the “Applications” section), and some work with IR-active amino acids in globular proteins 

also shows promise (331-333). Continued application of ncAAs to study the biological 

functions of proteins in living cells and organisms will also continue to grow in importance. 

Along with the visualization and identification of proteomic responses to biological stimuli, 

the precise control of protein function in biological settings is highly desirable. Proteins 

with activities or locations controlled by light have proven to be very powerful over the 

years for studying biological systems (334, 335), and some work suggests that using 
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ncAAs to achieve such photocontrolled systems may yield a number of new tools in this 

area (336-340). Given the large number of selective chemical conjugation strategies 

accessible with ncAAs (249, 251), protein therapeutics may also benefit from applications 

of ncAAs. Several simple strategies for modifying the pharmacochemical properties of 

proteins with ncAAs and selective chemistries have been reported in the scientific 

literature, including examples of protein PEGylation (313, 341-344) and viral surface 

modifications (345, 346). Commercial applications of these conjugation strategies may 

yield more drug-like bioconjugates for use as therapeutics. Furthermore, many more subtle 

changes to protein properties possible with ncAAs, such as those described in conjunction 

with protein stability, membrane proteins, and immune modulation, may facilitate further 

improvement of protein-based therapeutics. 

 What will be the role of in vitro protein synthesis in future work with noncanonical 

amino acids? The ribosomal production of genetically encoded polymers containing 

multiple ncAAs, ester linkages, N-methyl amino acids, and N-substituted glycine residues 

have all been reported in vitro (58-63). Cyclic peptides, which have many advantages over 

linear peptides as therapeutic entities, can be formed with the use of noncanonical amino 

acids in in vitro settings (347-349). These are intriguing molecules, but if the yields of such 

in vitro productions remain low, applications should be considered carefully and should 

provide a definite advantage over chemical peptide synthesis techniques. One proposed use 

of this production approach is as a platform for generating genetically encoded libraries of 

therapeutically relevant peptide drug candidates. These methodologies may complement or 

improve upon existing approaches to generating DNA-encoded chemical libraries (350). 

Genetically templated, highly unnatural molecules may also give researchers tools to 
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examine fundamental aspects of macromolecular folding and evolution. What kinds of 

three-dimensional structures can nonbiological polymers attain, how do they evolve, and 

what do these findings tell us about the functional and evolutionary properties of proteins? 

 Finally, will engineering additional components of the translational machinery 

make a large contribution to the ribosomal production of polymers containing noncanonical 

functionalities? Recent work on the ribosome (64, 65, 116, 117) and elongation factor-TU 

(351) raises the exciting possibility of expanding the translational capabilities of organisms 

or in vitro translation systems far beyond the capabilities of existing protein translation 

machinery. However, even the most promising recent experimental results suggest that 

engineering the translational machinery will require large numbers of incremental 

improvements to existing biological machinery. The limits to how far the ribosome and 

other translational components can be evolved away from their natural functions are still 

unclear, especially when this evolution is performing in living organisms. Performing 

evolution in vitro may be more appropriate for the creation of translational machinery with 

highly unnatural functions, but new in vitro protein expression systems and evolution 

techniques will likely have to be developed in order to enable this challenging type of 

translational apparatus engineering. Regardless of how the protein synthesis machinery is 

engineered, any resulting system should ideally be simple enough to use that it could be 

widely adopted by the scientific community and versatile enough to be employed for the 

generation of a wide variety of genetically encoded polymers. 

 In this review, we have highlighted the use of noncanonical amino acids as tools to 

study scientific problems. With careful experimental design, ncAAs can greatly augment 

scientists’ abilities to address an extremely broad range of questions; the ncAA toolkit is 
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very large and very effective. Research with noncanonical amino acids is poised to move 

beyond the methodological development efforts of a select few researchers to the 

collaborative exploitation of these methods across numerous scientific disciplines. 
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p-fluorophenylalanine. 7, telluromethionine. 8, selenocysteine. 9, β-selenolo[3,2-b]pyrolyl-

alanine 10, [6,7]selenatryptophan. 11, p-iodophenylalanine. 12, 3-iodotyrosine. 13, 

4-fluorotryptophan. 14, 5-fluorotryptophan. 15, 6-fluorotryptophan. 16, m-fluorotyrosine. 

17, m-fluorophenylalanine. 18, o-fluorophenylalanine. 19, 2-fluorohistidine. 20, 
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4-fluorohistidine. 21, difluoromethionine. 22, p-trifluoromethylphenylalanine. 23, 

p-trifluoromethoxyphenylalanine. 24, p-methoxyphenylalanine (also called 

O-methyltyrosine). 25, O-nitrobenzyltyrosine. 26, amino-3-cyclopentylpropanoic acid. 27, 

O-methylserine. 28, tert-leucine. 29, 2-amino-4-methylhexanoic acid (homoisoleucine). 30, 

norvaline. 31, ethylglycine. 32, α-hydroxyalanine. 33, pipecolic acid. 34, N-methylalanine. 

35, cyclopropylglycine. 36, α-aminoisobutyric acid. 37, γ-nitroglutamate. 38, 

p-aminophenylalanine. 39, pentafluorophenylalanine. 40, α-hydroxyleucine. 41, 

α-hydroxyisoleucine. 42, p-fluorotyrosine. 43, tetrafluorotyrosine. 44, trifluoroleucine. 45, 

trifluoroisoleucine. 46, trifluorovaline. 47, 4R-fluoroproline. 48, 4S-fluoroproline. 49, 

methoxinine. 50, biocytin. 51, (2-nitrophenyl)glycine. 52, α-hydroxyvaline. 53, 

3-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-2,3-diaminopropionic acid (NBD-Dap). 54, 

p-azidophenylalanine. 55, dansylalanine. 56, p-bromophenylalanine. 57, 

p-cyanophenylalanine. 58, 3,5-difluorophenylalanine. 59, p-methylphenylalanine. 60, 

cyclohexylalanine, 61, allo-threonine. 62, allo-isoleucine. 63, allo-O-methylthreonine. 64, 

azetidine-2-carboxylic acid. 65, 5-tert-butylproline. 66, 5,5-dimethylproline. 67, 

3S-methylproline. 68, 5,7-difluorotryptophan. 69, 5,6,7-trifluorotryptophan. 70, 

4,5,6,7-tetrafluorotryptophan. 71, sulfated acetyllysine. 72, sulfated dimethyllysine. 73, 

sulfated trimethyllysine. 74 dehydroalanine. 75, dimethyllysine 76, 

N-tertbutyloxycarbonyllysine. 77, azidohomoalanine. 78, alkyne analog of pyrrolysine. 79, 

p-acetylphenylalanine. 80, sulfotyrosine. 81, Nε-acetyllysine. 82, 

p-carboxymethylphenylalanine. 83, nitrotyrosine. 84, p-nitrophenylalanine. 85, 

p-boronophenylalanine. 86, p-alkynylphenylalanine. 87, homoallylglycine. 88, 

2-aminooctynoic acid. 
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Figure 1.1. Overview of strategies for genetically incorporating noncanonical amino acids 

into proteins. (a) Residue-specific incorporation. A set of codons specifying one of the 

twenty canonical amino acids is “reprogrammed” to code for a ncAA. In this case, the six 

leucine (Leu) codons of the E. coli genetic code have been reassigned to the fluorinated 

leucine analog hexafluoroleucine (Hfl, 3). (b) Site-specific incorporation. A stop codon is 

converted into a sense codon. The depicted example shows the amber stop codon being 

reprogrammed to code for O-methyltyrosine (Omt, 24). 
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Figure 1.2. Methods for residue-specific incorporation of noncanonical amino acids into 

proteins. (a) Medium shift procedure to produce proteins containing the methionine (Met) 

analog homopropargylglycine (Hpg, 2). Methionine-auxotrophic E. coli cells are first 

grown in medium containing twenty canonical amino acids. After reaching a particular 

optical density, the culture is pelleted and washed two to three times in an isotonic salt 

solution to remove methionine from the cells. After the final wash, cells are pelleted and 

resuspended in medium containing nineteen canonical amino acids plus Hpg. If a particular 

protein of interest is to be overproduced, protein expression can be initiated by the addition 

of an inducer. (b–d) Additional modifications to expression hosts. Engineering auxotrophic 

E. coli strains enables the incorporation of additional ncAAs into proteins. The examples 

that follow are depicted for the case of overexpressed proteins, but can also be applied in 

the absence of a particular protein of interest for proteomic applications. 

(b) Overexpression of aminoacyl-tRNA synthetase (aaRS). Noncanonical amino acids that 
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are poor aaRS substrates do not support protein synthesis unless the E. coli strain employed 

has augmented aaRS activity. In the case shown here, overexpression of leucyl-tRNA 

synthetase (LeuRS) enables efficient global replacement of hexafluoroleucine (Hfl, 3) in 

place of leucine in a protein of interest (POI). (c) Overexpression of mutant aaRS. When no 

wild-type aaRS can activate a particular amino acid analog efficiently, mutant enzymes can 

be engineered and employed in E. coli expression hosts. Overexpression of a mutant 

methionyl-tRNA synthetase (MetRS) enables the global replacement of Met with 

azidonorleucine (Anl, 4). (d) Overexpression of editing-deficient mutant aaRS. Some 

amino acid analogs are kinetically competent aaRS substrates but are subjected to editing 

after activation or aminoacylation. Altering the editing activity of an aaRS can enable 

incorporation of amino acid analogs that are proofread by the wild-type aaRS. For example, 

overexpression of an editing-deficient LeuRS enables norleucine (Nrl, 5) to replace Leu in 

proteins. 
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Figure 1.3. Orthogonality requirements for adding tRNAs and aminoacyl-tRNA 

synthetases (aaRSs) to a translation system. (a) Transfer RNA orthogonality. The 

heterologous tRNA to be introduced should not be a substrate for any of the endogenous 

aminoacyl-tRNA synthetases in order to avoid the aminoacylation of the tRNA with 

canonical amino acids. (b) AaRS orthogonality. The heterologous aaRS should not 

aminoacylate the heterologous tRNA with canonical amino acids or aminoacylate 

endogenous tRNAs with ncAAs. (c) Noncanonical amino acid orthogonality. The amino 

acid to be “added” to the genetic code should not be a substrate for any of the endogenous 

aaRSs. (d) Orthogonal pair. A properly functioning orthogonal aaRS-tRNA pair performs 

its aminoacylation task efficiently and specifically in the context of the endogenous 

translational machinery. 
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Figure 1.4. Methods for site-specific incorporation of noncanonical amino acids into 

proteins. (a) Suppression of nonstandard codon for site-specific incorporation. An 

aminoacylated, orthogonal tRNA is introduced into a translation system to decode a 

nonsense or other nonstandard codon, resulting in a full-length protein containing a 

noncanonical amino acid at one specified position in the protein. (b–d) Systems for 

employing site-specific incorporation techniques. (b) In vitro translation. Chemically 

synthesized, orthogonal aminoacyl-tRNAs can be employed in conjunction with an in vitro 

translation system to effect site-specific ncAA incorporation. (c) Microinjection into 

Xenopus oocytes. Simultaneous injection of a gene containing a nonstandard codon to be 

suppressed and an aminoacylated, orthogonal tRNA allows for the synthesis of proteins 

containing a site-specifically incorporated noncanonical amino acid inside a living cell. 

Membrane proteins are commonly studied using this technique. (d) Use of an orthogonal 
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pair. E. coli cells outfitted with an additional aaRS-tRNA pair can synthesize proteins 

containing a site-specifically incorporated twentyfirst amino acid. In this case, the aaRS 

enzymatically aminoacylates the tRNA during the course of the experiment, requiring no 

chemical synthesis of aminoacyl-tRNAs. Omt, O-methyltyrosine (24). 
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Figure 1.5. NMR studies of ligand binding employing noncanonical amino acids as 

isotopically labeled probes. (a) Combined chemical shift data of tool compound 17 binding 

to the thioesterase domain of human fatty acid synthase (FAS-TE). Chemicals shift changes 

ΔCS have been scaled as described by Cellitti et al. in order to enable comparison between 

19F, 13C, and 15N NMR experiments (91). Conformational exchange prevented acquisition 

of chemical shift data on some o-nitrobenzyl-tyrosine (oNBTyr, 25) mutants. OMePhe, 

p-methoxyphenylalanine (24). OCF3Phe, p-trifluoromethoxylphenylalanine (23). (b) 

Structure of FAS-TE covalently modified with orlistat (2PX6.pdb) (352). The average 

chemical shift changes induced by the binding of 17 are calculated for each ncAA and 

color-coded for each position: ΔCS < 0.1 ppm, blue; 0.1-0.2 ppm, salmon; > 0.2 ppm, red. 

Disordered loops are indicated by dashed lines. The active site residues Ser-2308, Asp-

2338, and His-2481 are shown in magenta. Adapted from (91) with permission. © 2008 

American Chemical Society. 
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Figure 1.6. Secondary structure analysis and thermal denaturation of recombinant human 

prion protein (rhPrPC) containing methionine analogs. (a) Circular dichroism spectra of 

Met-rhPrPC and its norleucine (Nrl, 5) and methoxinine (Mox, 49) variants at 37 °C and 0.2 

mg/mL in 10 mM Mes buffer at pH 6.0. (b) Thermal denaturation monitored by the 

changes of dichroic intensities at 222 nm as a function of temperature. Note that both the 

secondary structural characteristics and denaturation behaviors are greatly influenced by 

the hydrophobicities of the amino acids incorporated at the Met positions. Adapted from 

(194) with permission. © 2009 National Academy of Sciences. 
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Figure 1.7. Unnatural amino acid mutagenesis on the 5-hydroxytryptamine type 3 receptor 

leads to a new model for receptor gating. (a) NcAAs used in study. These residues were 

incorporated in place of a key proline residue (Proline 8*) within the receptor. (b) The 

thermodynamics of the cis–trans isomerization propensities (ΔΔG(c-t)) of ncAAs and 

receptor activation by 5-hydroxytryptophan (ΔΔG(EC50)) are strongly correlated, 

suggesting that the isomerization properties of the residue at the position of interest are 

critical for forming functional channels. (c) Proposed model for receptor gating. 

Isomerization of the proline residue shown in blue (proline 8*) dictates M2-M3 loop 

conformation, which in turn controls ion flow through the channel. Adapted from (218) 

with permission. © 2005 Nature Publishing Group. 
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Figure 1.8. Use of noncanonical amino acids to investigate cation-π interactions in the 

muscle-type nicotinic acetylcholine receptor (nAChR) using patch-clamp experiments. 

(a) Receptor response to increasing doses of acetylcholine as measured by voltage-clamp 

current traces. The two experiments shown are from oocytes expressing tryptophan (Trp, 

Left) and 5,7-F2-Trp (Right, 68) at α149. Bars represent application of acetylcholine (µM). 

(b) Dose–response relations and fits to the Hill equation for (left to right): Trp; 5-F-Trp 
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(14); 5,7-F2-Trp (68); 5,6,7-F3-Trp (69); and 4,5,6,7-F4-Trp (70). (c) Plot of 

log[EC50/EC50(wild type)] versus quantum mechanically calculated cation–π binding 

ability at α149 for the same residues as in (b). The strong correlation observed confirms 

that residue α149 binds to acetylcholine through a cation-π interaction. Adapted from (231) 

with permission. © 1998 National Academies Press. 
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Figure 1.9. Use of ncAAs to breaking immunochemical self-tolerance. Immunization with 

p-nitrophenylalanine (84) at position 86 of murine tumor necrosis factor-α 

(pNO2Phe86mTNF-α) improves survival of mice in a TNF-α-dependent severe 

endotoxemia model. Kaplan–Meier survival plots of mice receiving active or passive 

immunizations are shown. (a) Mice (eight per group) immunized with 

pNO2Phe86mTNF-α or WT mTNF-α are compared with seven mice receiving sham 

immunizations. The survival advantage of mice immunized with pNO2Phe86mTNF-α (P < 
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0.01) versus WT is shown. (b–c) The survival advantage is preserved when antibodies (b) 

or pooled serum (c) from mice immunized with pNO2Phe86mTNF-α is transferred to other 

mice. Mice (eight per group) injected with 100 µg of purified IgG from 

pNO2Phe86mTNF-α or WT immunized mice were compared with controls receiving 

saline injection. Survival advantage of mice immunized with pNO2Phe86mTNF-α (P < 

0.01) versus WT is shown. (c) Mice (six per group) received 100 µL of pooled serum from 

mice immunized with pNO2Phe86mTNF-α or WT mTNF-α. Survival advantage of mice 

immunized with pNO2Phe86mTNF-α (P < 0.01) versus WT is shown. Adapted from (283) 

with permission. © 2008 National Academies Press. 
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Figure 1.10. Flow cytometric analysis of cells expressing green fluorescent protein (GFP) 

and GFP variants during the course of evolving fluorinated GFPs. Proteins were expressed 

in media depleted of Leu and supplemented with trifluoroleucine (Tfl, 44) (a) or in media 

containing all twenty canonical amino acids (b). Black line, GFPm (parent); blue line, 4.2.2 

(mutant isolated after sequential construction and enrichment of four libraries); gray line, 

8.3.3 (mutant isolated after enrichment of eight libraries); and red line, 11.3.3 (mutant 

isolated after enrichment of eleven libraries). The evolved, fluorinated variants have 
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regained fluorescence, likely through improved folding properties. Adapted from (189) 

with permission. © 2007 National Academies Press. 
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Figure 1.11. Cell-selective labeling in mixtures of bacterial and mammalian cells. 

(a) Fluorescence images of mixed cultures containing bacteria attached to or internalized 

by mouse alveolar macrophages. Infection was performed in medium containing 

azidonorleucine (4). Bacterial cells constitutively expressing the methionyl tRNA 

synthetase variant NLL-MetRS were labeled by TAMRA-alkyne (constitutive NLL), 

whereas cells lacking the NLL-MetRS (wild type) are visible only in the GFP channel (not 

shown). Macrophages were labeled with Mitotracker Deep Red (Invitrogen) and exhibited 

very low TAMRA background emission. In all cases, conjugation of TAMRA-alkyne was 

confined to bacterial cells expressing the NLL-MetRS. (b) Fluorescence images of 

macrophage infection with wild-type bacteria performed in the presence of 

azidohomoalanine. Protein synthesis by macrophages is indicated by strong TAMRA-

alkyne emission from both bacterial cells and macrophages. (c) Macrophages were infected 

with bacterial cells that express GFP under induction with IPTG and that constitutively 

express the NLL-MetRS. Infection was performed in medium containing IPTG and 

azidonorleucine to facilitate bacterial synthesis and labeling of GFP. Total cell lysate from 

the infection was subjected to conjugation with alkyne-functionalized biotin; labeled 

proteins were enriched with streptavidin avidity. Bacterially expressed GFP and 
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mammalian β-actin were followed by immunoblots. Analyses of the lysate (L), unbound 

flow-through (FT), washes (W1, W3, W5) and eluent (E) reveal a separation of bacterial 

and mammalian representative proteins. Bacterially expressed GFP was labeled with 

azidonorleucine and thus subject to conjugation to biotin and enrichment with streptavidin. 

Proteins originating from macrophages, including β-actin, were not labeled with 

azidonorleucine and therefore were not conjugated to alkyne-functionalized biotin. 

Adapted from (318) with permission. © 2009 Nature Publishing Group. 
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Abstract  

 Homoisoleucine (Hil) serves as an effective surrogate for leucine with respect to 

protein translation in bacterial cells. Replacement of Leu by Hil stabilizes coiled-coil 

peptides, as shown by the elevation of the thermal denaturation temperature. The increase 

in denaturation temperature is larger than that observed previously for replacement of Leu 

by trifluoroleucine. 

 

Introduction  

 Noncanonical amino acids (ncAAs) provide useful tools for the investigation and 

control of protein behavior (1-4). Several laboratories have used ncAAs to explore the role 

of hydrophobic forces in stabilizing proteins, including prion proteins, T4 lysozyme, 

chloramphenicol acetyltransferase, green fluorescent protein, and coiled-coil and helix-

bundle proteins (5-12). Here we examine the consequences of introducing the leucine 

surrogate (2S,4S)-2-amino-4-methylhexanoic acid (homoisoleucine, Hil, 2; scheme 2.1) (5) 

into the coiled-coil peptide A1 (figure 2.1) (13). A1 contains six heptad repeats, designated 

(abcdefg), that mediate self-association of the peptide in aqueous solutions. Previous 

studies have shown that replacement of leucine by (2S,4R)-trifluoroleucine (Tfl, 3) or 

hexafluoroleucine (Hfl, 4) at the d positions of the heptad repeats leads to substantial 

stabilization of the coiled-coil structure of A1 (9, 10, 12), presumably through enhanced 

hydrophobic interactions between fluorinated peptide strands. Similar results have been 

obtained in other fluorinated coiled-coil and helix-bundle systems (14-16). 

 Whitesides and coworkers have pointed out that hydrocarbons and fluorocarbons 

exhibit equivalent “intrinsic” hydrophobicities when changes in molecular surface area are 
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taken into account (17). Marsh and coworkers have argued that the “efficient packing” of 

the bulkier fluorinated amino acids in helix bundle cores can be more important than 

fluorination per se (18). Because the molecular surface areas of Hil and Tfl are nearly 

identical (and larger than that of Leu by 14–19 Å2) (19), we imagined that replacement of 

Leu by Hil might stabilize coiled-coil peptides such as A1. 

 

Results and Discussion  

 We first focused our attention on the translational activity of Hil in bacterial cells. 

Schultz and coworkers reported incorporation of Hil into proteins via chemical 

misacylation of suppressor tRNA and in vitro translation (5), but we are unaware of 

previous studies of incorporation of Hil into cellular proteins. E. coli strain LAM1000 (a 

previously reported leucine auxotroph) was cotransformed with expression plasmid pA1EL 

and repressor plasmid pREP4 (10). pA1EL codes for both the protein A1 and a 

constitutively expressed copy of the E. coli leucyl-tRNA synthetase (LeuRS) gene. Protein 

expression was induced in minimal medium depleted of Leu and supplemented with Hil 

(see materials and methods for details). Electrophoretic analysis of whole-cell lysates 

indicated high-level protein expression in media containing as little as 0.25 mM L-Hil, a 

concentration comparable to the concentrations of canonical amino acids in minimal media. 

 ATP-PPi exchange assays confirmed that Hil is activated by the E. coli LeuRS, 

albeit at a rate substantially lower than that characteristic of the natural substrate (table 2.1). 

The reduced rate of activation of Hil is consistent with our observation that Hil supports 

high-level protein expression only when LeuRS is overexpressed in the bacterial host. 
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 A1 samples containing Leu and Hil were purified from 25 mL cultures in yields of 

15.9 ± 2.5 mg L−1 and 10.2 ± 1.1 mg L−1, respectively. Liter-scale expression and 

purification improved the yields of A1 sequence variants containing Hil two- to threefold. 

Liquid chromatography/mass spectrometry (LC/MS) indicated replacement of at least 97% 

of Leu by Hil (see “Determination of amino acid replacement levels” in materials and 

methods). 

 Figure 2.2A shows circular dichroism spectra of 10 µM solutions of the Leu- (Leu-

A1) and Hil- (Hil-A1) forms of A1. Strong minima at 208 and 222 nm confirm that both 

proteins assume α-helical structures; K2D2 (20) analysis indicates helical contents of 

60%–69%, consistent with the fact that the putative heptad repeats constitute 57% of the 

peptide sequence. A1 is expected to exist primarily as dimers under the conditions 

employed here (21). 

 Replacement of Leu by Hil increases the denaturation temperature of A1, as 

expected. Figure 2.2B shows the molar ellipticities at 222 nm of solutions of Leu-A1 and 

Hil-A1 as functions of temperature. Fitting the CD data to a model of a two-state transition 

between folded dimer and unfolded monomer states (22) yielded melting temperatures of 

58.7 ± 0.2 °C and 75.8 ± 0.1 °C for Leu-A1 and Hil-A1, respectively. 

 Table 2.2 compares the extent to which the thermal denaturation temperature of A1 

is elevated by replacement of Leu by bulkier hydrocarbon and fluorocarbon surrogates. 

Replacement of Leu by Hil raises Tm by 17 °C, as compared to 10 °C for replacement of 

Leu by (2S,4R)-Tfl and 22 °C for replacement by Hfl. Expansion of hydrophobic side chain 

volume at the d-position of the heptad repeat constitutes an effective strategy for 
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stabilization of coiled-coil peptides, irrespective of the hydrocarbon or fluorocarbon 

character of the side chain. 

 We do not mean to suggest similar molecular origins for the hydrophobic properties 

of hydrocarbons and fluorocarbons. Although Hil and Tfl behave similarly with respect to 

elevation of the melting temperature of A1, other experiments suggest important 

differences in the behavior of water adjacent to hydrocarbon and fluorocarbon side chains. 

Recent studies via ultrafast spectroscopy indicate a marked slowing of water motions upon 

replacement of Leu by Tfl at solvent-exposed sites (23). In contrast, replacement of Leu by 

Hil is accompanied by increased rates of solvent reorganization.  Much remains to be done 

to elucidate the origins of hydrophobic effects in proteins and other molecular systems. 

 In conclusion, we find that Hil serves as an effective surrogate for Leu with respect 

to protein translation in bacterial cells, and that replacement of Leu by Hil leads to 

substantial stabilization of recombinant coiled-coil peptides. The results reported here also 

highlight the value of amino acid replacement at multiple sites in peptides and proteins; 

replacement of a single Leu residue by Hil in T4 lysozyme has been reported to cause an 

increase of just 1.9 °C in the melting temperature of the protein (5). In contrast, 

replacement of six Leu residues in the putative coiled-coil domain of A1 raises Tm by 

17 °C. 

 

Materials and Methods  

Materials. All chemicals were purchased from Sigma-Aldrich and used as received unless 

otherwise noted. Dry solvents were obtained from commercial suppliers and used as 

received. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was purchased from Gold 
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Biotechnologies; Ni-NTA resin and spin columns were purchased from Qiagen. 

Sequencing grade modified trypsin was purchased from Promega; C18 Zip Tips, and 

Amicon Ultra-4 and Amicon Ultra-15 concentration devices were purchased from 

Millipore. A BCA assay kit was obtained from Pierce Protein Research Products. The E. 

coli expression strain LAM1000 outfitted with the plasmids pA1EL and pREP4 has been 

described previously (10). 

 

Protein expression. For 25 mL and 200 mL scale preparations of Hil-A1 and small-scale 

preparation of Leu-A1, a single colony of LAM1000 transformed with pA1EL and pREP4 

was used to inoculate an overnight culture of M9 minimal medium (M9 salts containing 

glucose (0.4% w/v), thiamine HCl (35 mg L−1), MgSO4 (1 mM), CaCl2 (0.1 mM), and 20 

amino acids (40 mg L−1)) supplemented with ampicillin (200 mg L−1), and kanamycin 

(35 mg L−1). Overnight cultures were diluted into fresh M9 medium containing all 20 

amino acids and allowed to grow with agitation at 37 °C until reaching an OD600 of 

approximately 0.9–1.0. Cells were pelleted at 6000 × g for 7 minutes at 4 °C, washed 3 

times in ice-cold sodium chloride solution (0.9% w/v) and resuspended in fresh M9 

minimal medium lacking leucine. Aliquots of the resuspended cultures were supplemented 

with Hil (0.5 mM) or Leu (0.3 mM), shaken at 37 °C for 15 minutes, and induced by 

addition of IPTG (1 mM final concentration). After 3 hours, cells were harvested by 

centrifugation at 6000 × g for 7 minutes. In the case of small-scale production, cells were 

frozen at −80 °C either before or after addition of Qiagen buffer B (8 M urea, pH 8.0, 

buffered with NaH2PO4 (100 mM) and Tris·Cl (10 mM)). For the case of large-scale 

production, cells were frozen at −80 °C before addition of Qiagen buffer B. 
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 For 200 mL scale production of Leu-A1, a single colony of LAM1000 transformed 

with pA1EL and pREP4 was used to inoculate an overnight culture of 2×YT medium 

supplemented with ampicillin (200 mg L−1) and kanamycin (35 mg L−1). The overnight 

culture was diluted 1:100 into fresh 2×YT supplemented with ampicillin and kanamycin 

and allowed to grow at 37 °C with shaking until reaching an OD600 of approximately 0.9–

1.1. The culture was induced by addition of IPTG to a final concentration of 1 mM. After 

3 hours, cells were harvested by centrifugation at 6000 × g for 7 minutes and frozen at 

−80 °C. 

 

Protein purification. At small scales, the cell pellets were thawed, Qiagen buffer B was 

added as necessary, and the resuspended pellets were incubated at room temperature with 

gentle agitation for at least 1 hour. The pellets were then subjected to 20–40 minutes of 

sonication in an immersion sonicator. In some cases, the pellets were frozen again at 

−80 °C and the above procedure was repeated. The sonicated pellets were then centrifuged 

for 20–30 minutes at 10000 × g, and the supernatants were saved. The clarified lysates 

were then subjected to purification using Qiagen Ni-NTA spin columns according to the 

manufacturer’s protocols (2000 Ni-NTA Spin Handbook) or using Ni-NTA agarose 

according to the manufacturer’s protocols with slight modifications. When Ni-NTA 

agarose was used, Qiagen buffer C was supplemented with 50 mM imidazole, and Qiagen 

buffer E was supplemented with 250 mM imidazole. 

 At large scales, the cell pellets were resuspended in Qiagen buffer B and subjected 

to sonication using a microtip on a Misonix Sonicator 3000. The total sonication process 

time was 10 minutes, with 5 second sonication pulses and 5 second wait periods. The 



 136 
pellets were then frozen again at −80 °C and subjected to a second round of sonication. The 

lysates were clarified by centrifugation at approximately 75000 × g for 10 minutes at 

25 °C. The clarified lysate was then subjected to purification using Ni-NTA agarose with 

buffers as described above. 

 

Peptide mass spectrometry. Small (1–3 µL) samples of Leu-A1 and Hil-A1 eluents from 

the purifications were diluted 50- to 100-fold into sodium bicarbonate (50 mM, pH 7.8) and 

digested overnight by treatment with sequencing grade modified trypsin (5 µL) at 37 °C. 

Portions of these samples were desalted using C18 Zip Tips according to the 

manufacturer’s instructions with one slight modification. Prior to column equilibration in 

0.1% trifluoroacetic acid, columns were wetted with a 50/50 mixture of 0.1% 

trifluoroacetic acid and acetonitrile. The cleaned samples were then analyzed using matrix-

assisted laser desorption ionization (MALDI) mass spectrometry on an Applied Biosystems 

Voyager DE Pro instrument at the mass spectrometry facility of the Caltech Division of 

Chemistry and Chemical Engineering. All peptide masses were found to lie within the mass 

ranges of manufacturer-specified instrument tolerances. See figure 2.3 for typical results. 

 For quantitative analysis, the remainders of the trypsinized samples (not desalted) 

were submitted to the Protein and Peptide Mass Analytical Laboratory (PPMAL) of the 

Beckman Institute at Caltech for liquid chromatography tandem mass spectrometry 

(LC/MS/MS) analysis. The samples were separated on a 6 cm long, 100 µm diameter C18 

column using an Eksigent NanoLC-2D and then immediately injected into an Applied 

Biosystems QStar XL tandem mass spectrometer. Time-resolved data were analyzed using 

Analyst QS software provided by Applied Biosystems. Amino acid replacement levels 
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were determined by using information contained within extracted ion currents (XIC) of 

trypsin-digested protein samples. Peaks corresponding to peptides globally substituted with 

Hil were identified along with peaks corresponding to peptides substituted at only a 

fraction of the Leu positions. Assuming that substitution of Hil in place of Leu is a random 

event, the ratio of the peak areas yields the quantitative replacement level in a given 

sample. A full description of the method is provided below. Where possible, fragmentation 

of abundant peptide ions was used to confirm the sequences of substituted peptides. 

 

Determination of amino acid replacement levels. Liquid chromatography tandem mass 

spectrometry (LC/MS/MS) was used to quantitate the Hil replacement levels in purified A1 

protein samples. Figure 2.4 depicts results from a typical LC/MS/MS experiment. Figure 

2.4A shows the total ion currents (TIC) from the trypsinized Hil-A1, and figure 2.4B–E 

show the mass spectra and mass-filtered extracted ion currents (XIC) from the doubly 

substituted peptide SXEDEAAEXEQK (X = Hil) and the mixture of singly substituted 

peptides SLEDEAAEXEQK and SXEDEAAELEQK. The unsubstituted peptide 

SLEDEAAELEQK was not detected in this experiment. The areas of the XICs permit an 

estimation of the substitution rate. Assuming that replacement of leucine is a random event, 

the distribution of peak areas should follow the binomial distribution, 

 

€ 

A (1− p)2 + 2p(1− p) + p2[ ] , (2.1) 

 

where A is a multiplication factor equal to the sum of the areas of the unsubstituted, singly 

substituted, and doubly substituted peaks. The quantity p is the probability of substitution at 
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a given site, and the three terms in the polynomial represent non-, singly-, and doubly-

substituted peptides. The polynomial also has the property 

 

€ 

(1− p)2 + 2p(1− p) + p2 =1.  (2.2) 

 

The ratios of the areas of two substituted peaks are more relevant in this particular case 

because the total area A cannot be determined from the available experimental data. The 

experimentally accessible peak area ratio of singly to doubly substituted peaks is 

 

€ 

2p(1− p)
p2

,  (2.3) 

 

which can be defined as X. Rearranging equation (2.2) yields the identity 

 

€ 

2p − 2p2

p2
=
2p(1− p)

p2
= X .  (2.4) 

 

Solving for p yields the two roots 

 

€ 

p = 0,  (2.5) 

or  

€ 

p =
2

X + 2
.  (2.6) 
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Substituting the peak area ratio for X in the nonzero root yields the substitution rate. 

 The above analysis was used to determine the substitution of Hil in place of Leu in 

the peptides SLEDEAAELEQK and GSHHHHHHGSMASGDLENEVAQLER. A simpler 

calculation was also made to determine the incorporation of Hil based on the peptide 

AEIGDLNNTSGIR, which contains one leucine residue (The value p can be determined 

from the ratio of the XIC area of the substituted peptide to the sum of the substituted and 

unsubstituted peptide areas). When the XIC contained multiple peaks (often the case when 

searching for peptides of lower abundance), the areas of the clearly distinguishable peaks 

(generally having areas of 10 or more) were summed in order to ensure a conservative 

estimate of amino acid incorporation levels. The identities of the peptides in the 

SLEDEAAELEQK series were confirmed by tandem mass spectrometry. Two samples of 

Hil-A1 produced independently were analyzed to obtain the substitution levels summarized 

in table 2.3. 

 

Protein characterization. To determine protein yields, portions of Leu-A1 and Hil-A1 

produced at small scale and purified using Ni-NTA agarose resin were buffer exchanged 

into acetate buffer (100 mM NaCl, 10 mM sodium acetate, pH 4.0) using Amicon Ultra-4 

concentration devices with a 3000 Da molecular weight cutoff. The concentrations of the 

exchanged samples were determined with a BCA assay kit. 

 Circular dichroism samples were prepared by dialyzing protein samples in Qiagen 

buffer E (containing 250 mM imidazole) against phosphate-buffered saline, pH 7.4. 

Concentrations were again determined using the BCA assay, but prior to performing the 

assay, samples were heated to 42 °C for approximately 20 minutes in order to ensure that 
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samples were fully dissolved. Samples were adjusted to 10 µM by concentration with 

Amicon Ultra-15 concentration devices (molecular weight cutoff = 3000 Da) as necessary 

and dilution in fresh PBS. Circular dichroism spectroscopy was performed on an Aviv 

62DS spectropolarimeter in a 1 mm path length cell. All samples were heated to 42 °C and 

cooled on ice prior to measurement. Each experiment consisted of a wavelength scan 

performed at 1 °C followed by a temperature scan from 0 °C to 94.5 °C in 1.5 °C intervals 

with signal monitoring at 222 nm. During the temperature scans, the sample was allowed to 

equilibrate for one minute prior to performing readings at each temperature step. All data 

was referenced to background scans of PBS buffer acquired under identical conditions. 

Wavelength scans were analyzed using K2D2 (20), and temperature scans were analyzed 

using a Matlab implementation of a model for coiled-coil unfolding described previously 

(22). 

 

ATP-PPi exchange assays. E. coli LeuRS was expressed and purified as previously 

described and its concentration was determined from its absorbance at 280 nm under native 

conditions (24). Assays were run at room temperature in buffer containing HEPES 

(30 mM, pH 6.8), MgCl2 (10 mM), dithiothreitol (1 mM), ATP (2 mM), and [32P]-PPi 

(2 mM, 3 µCi in 200 µL rxn volume). Activation of leucine was performed in solutions 

containing LeuRS (75 nM) and varying Leu concentrations (1.6 to 50 µM), while 

activation of homoisoleucine was measured using a higher concentration of LeuRS 

(300 nM) and varying Hil concentrations (16 to 500 µM). Aliquots (30 µL) were taken 

every 2 (Leu) or 6 (Hil) minutes and quenched in a suspension of activated charcoal 

(3% w/v) containing HClO4 (7% w/v) and inorganic pyrophosphate (200 mM). The 
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charcoal was washed twice in a solution of HClO4 (0.5% w/v) and inorganic pyrophosphate 

(10 mM), and added to 20 mL scintillation vials. Scintillation fluid (5 mL) was added to 

each vial and samples were counted using a Beckman Coulter liquid scintillation counter. 

Data were fitted with nonlinear regression using the program Igor. 

 

Synthesis of homoisoleucine (2-amino-4-methylhexanoic acid, CAS # 3570-21-6). Silica 

chromatography was performed using 230-400 mesh silica gel 60 (EMD). TLC was run on 

Baker-flex silica gel IB-F plates, Rfs are reported under the same solvent conditions as 

columns unless otherwise noted. TLC was examined under UV light for fluorescent 

compounds or alternatively stained with KMnO4, ceric ammonium molybdenate or 

p-anisaldehyde. NMR spectra were recorded on Varian spectrometers (300 MHz for 1H) 

and processed with NUTS NMR software. NMR spectra were referenced to internal 

standards; proton spectra were referenced to tetramethylsilane and carbon spectra were 

referenced to solvent peaks. FAB mass spectrometry was performed at the Caltech 

Division of Chemistry and Chemical Engineering Mass Spectrometry Facility. 

 The following procedure was adapted from O'Donnell and Eckrich (25): 

aminoacetonitrile benzophenone imine (1.21 g, 5.5 mmol), benzyltriethylammonium 

chloride (0.1 g, 0.4 mmol), 50% aq NaOH (0.75 mL, 14 mmol) and toluene (1 mL) were 

combined in a 10 mL round bottom flask which contained a magnetic stir bar. The flask 

was chilled in an ice-water bath and stirred vigorously (~1200 rpm). (S)-2-methyl 

bromobutane (1.15 g, 0.94 mL, 7.6 mmol, 1.4 eq) was added portion-wise via syringe over 

1 hour to the stirred solution. The reaction mixture was stirred for an additional 2 hours at 

0 °C and then allowed to come to room temperature. Stirring was continued at room 
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temperature for 96 hours. The reaction mixture was transferred to a separatory funnel and 

diluted with H2O (20 mL) and CH2Cl2 (40 mL). The aqueous layer was washed 3 times 

with CH2Cl2 (10 mL × 3) and the combined organic layers were washed 3 times with H2O 

(10 mL × 3) and once with saturated NaCl (10 mL). The organic layers were dried over 

Na2SO4 and filtered, and the solvent was removed to yield a yellow oil (1.80 g). 

Purification by silica chromatography (eluting with 6% ethyl acetate in hexanes; Rf 0.18 in 

10% ethyl acetate/hexanes) gave a yellow oil (1.40g, 88%); a mixture of diastereomers. 1H 

NMR (300 MHz, CDCl3) δ 0.73 (dd, 3H J = 4.5, 6.5 Hz), 0.82 (dd, 3H J = 7.5, 14.0 Hz), 

1.00-1.37(m, 2H), 1.41-1.81(m, 2H), 1.82-2.14 (m, 1H), 4.27 (dd, 0.5H, J = 6.3, 8.0 Hz), 

4.31 (dd, 0.5H, J = 6.3, 8.1 Hz), 7.15-7.26 (m, 2H), 7.27-7.37 (m, 2H), 7.37-7.58 (m, 4H), 

7.58-7.82 (m, 2H) 13C NMR (75 MHz, CDCl3) δ 10.724, 10.891, 18.416, 18.699, 28.865, 

28.923, 30.680, 31.086, 41.266, 41.347, 51.037, 51.606, 119.747, 119.899, 127.108, 

127.238, 128.039, 128.789, 129.205, 130.933, 135.007, 135.051, 138.243, 138.294, 

172.259, 172.582. FAB MS calculated for C20H22N2 (M+) 290.1783, observed 290.1787. 

 The following procedure was adapted from Dorizon et al. (26): HCl (1 M, 14 mL) 

was added dropwise to a solution of alkylated aminoacetonitrile benzophenone imine (290 

mg, 1.00 mmol) in diethyl ether (7 mL). The mixture was stirred vigorously at room 

temperature for 24 hours. The aqueous phase was extracted twice with diethyl ether and 

evaporated to give 1-amino-1-cyano-3-methylpentane hydrochloride (180 mg, ~100%). 

This material was dissolved in 6 M HCl (3 mL) and heated to reflux for 72 h. The solution 

was evaporated under reduced pressure to give an off-white solid (168 mg, 93%). 1H NMR 

(300 MHz, CD3OD) δ 0.929 (t, 3 H J = 7.5 Hz), 0.936 (t, 3 H J = 7.5 Hz), 0.979 (d, 3 H 

J = 3.6), 0.999 (d, 3 H J = 3.4), 1.148-1.548 (m, 2 H), 1.554-2.010 (m, 3 H), 3.979 (m, 1H); 
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13C NMR (75 MHz, CD3OD) δ 10.036, 10.265, 17.665, 18.004, 28.846, 29.254, 30.649, 

30.659, 37.601, 37.656, 51.117, 51.133, 171.117, 171.244; FAB MS calculated for 

C7H16NO2 (M+H) 146.1176, observed 146.1205. 
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Scheme 2.1. Amino acids used in study. 1, leucine (Leu). 2, (2S,4S)-2-amino-4-

methylhexanoic acid (homoisoleucine, Hil). 3, (2S,4R)-trifluoroleucine (Tfl). 4, 

hexafluoroleucine (Hfl). 
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Figure 2.1. A1 peptide sequence and helical wheel representation of A1 homodimers. The 

amino acids that comprise the putative heptad repeats are highlighted in gray, with 

additional emphasis on the leucine residues at the d positions. 
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Figure 2.2. Circular dichroism spectra of Leu-A1 and Hil-A1. A) Wavelength scans 

performed at 1 °C. B) Ellipticity at 222 nm as a function of temperature. All experiments 

were performed with 10 µM peptide in PBS, pH 7.4. 
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Figure 2.3. MALDI spectra of tryptic fragments of A) Leu-A1 and B) Hil-A1. The portions 

of the spectra shown encompass the m/z region in which the peptide 

LKNEIEDLKAEIGDLNNTSGIR appears with or without Hil substitution. In the Leu-A1 

sample, the major peak appears at 2441.43 Da (calculated mass: 2442.28 Da). In the Hil-

A1 sample, the largest peak appears at 2483.43 Da (calculated mass: 2484.32 Da), 42 mass 

units away from the unsubstituted peak, corresponding to complete replacement of Leu by 

Hil. A smaller peak at 2469.44 Da (calculated mass: 2470.31 Da) indicates the presence of 

some peptides that contain only two out of three Hil substitutions. 
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Figure 2.4. LC/MS results obtained on trypsinized sample of Hil-A1 (Sample A in table 

2.3). A) Total ion current (TIC) of sample. B) Mass spectrum at time = 24.382 min, 

revealing a doubly charged ion having the mass corresponding to the masses of the singly 

substituted peptides SXEDEAAELEQK and SLEDEAAEXEQK (X = Hil). Calculated 

doubly charged ion 688.33 Da, observed 688.37 Da. C) Extracted ion current (XIC) of 

masses ranging from 688 to 690 amu. The mass filtering reveals a single, well-defined peak 

of integrated area 1.0 × 104 arbitrary units. D) Mass spectrum at time = 25.845 min, 

revealing a doubly charged peak having a mass corresponding to the mass of the doubly 

substituted peptide SXEDEAAEXEQK. Calculated doubly charged ion 695.34 Da, 

observed 695.36 Da. E) XIC of masses ranging from 695 to 697 amu. Again, a single, well-

defined peak is observed and has an integrated area of 4.4 × 105 arbitrary units. The 

sequences of these peptides were confirmed with LC/MS/MS fragmentation. 
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Table 2.1. Kinetic parameters for activation of Leu and Hil by LeuRS 
Substrate[a] kcat [s−1] Km [µM] kcat/Km [rel] 

Leu[b] 15.1 ± 2.2 3.7 ± 1.9 1 

Hil 0.4 ± 0.1 77 ± 65 1/690 

[a] Leu was used as the L-isomer; Hil as a mixture of the D- and L- isomers. The concentrations of 
Hil reported here are those of the L-isomer. Kinetic parameters are reported as averages determined 
from three independent experiments with errors reported as averages of the 95% confidence 
intervals. [b] Parameters determined for activation of Leu are consistent with previous reports; the 
value of kcat measured in this work is within the range of reported values, while the value of Km 
reported here is lower than literature values by a factor of 2–10 (10, 12, 24, 27). 
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Table 2.2. Stabilization of A1 by replacement of Leu with noncanonical amino acids 
Amino acid at d position Leu (2S,4R)-Tfl Hil Hfl[b] 

ΔTm
[a] 0 10 (ref 12) 17 22 (ref 10) 

[a] Increase in melting temperature (as compared to Leu-A1) determined from CD spectroscopy of 10 
µM solutions of peptide in PBS, pH 7.4. [b] 74% replacement of Leu. 
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Table 2.3. Incorporation levels of Hil in A1 samples determined from multiple series of 
substituted peptides 

Peptide series Sample A Sample B 
SLEDEAAELEQK 98.9% 97.1% 
GSHHHHHHGSMASGDLENEVAQLER 99.5% 99.0% 
AEIGDLNNTSGIR 98.5% ND[a] 
[a] Not determined due to insufficient signal of unsubstituted ion. 
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Abstract  

 Water-protein interactions dictate many processes crucial to protein function 

including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. 

Here we examine the effect of surface fluorination on water-protein interactions. 

Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or 

(4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-

chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence 

spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring 

water molecules, slowing water motion at the protein surface. 

 

Introduction  

 The past decade has witnessed substantial expansion in the number and diversity of 

noncanonical amino acids that can be incorporated into recombinant proteins expressed 

in bacterial cells (1-3). Fluorinated amino acids have drawn special attention (4-16) 

because of the unusual solubility properties of fluorinated hydrocarbons. Several 

independent studies have shown that fluorination of coiled-coil and helix-bundle proteins 

leads to enhanced stability with respect to thermal or chemical denaturation (6-12), an 

effect attributed to the hyperhydrophobic and fluorophilic character of fluorinated amino 

acid side chains. 

 Although both classes of compounds are hydrophobic, hydrocarbons and 

fluorocarbons differ in important ways (17-22). The high electronegativity of fluorine 

renders the C-F bond both strongly polar and weakly polarizable (17, 21, 22). The dipole 

associated with the C-F bond exerts strong inductive effects on neighboring bonds (23) 
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and can form reasonably strong electrostatic interactions with ionic or polar groups when 

the two moieties are appropriately positioned. The hydrophobic character of fluorinated 

compounds has been described as “polar hydrophobicity (17),” and is believed to play 

important roles in organic and medicinal chemistry. Furthermore, the C-F bond is 

significantly longer than the C-H bond, and the calculated volume of the trifluoromethyl 

group is about twice that of a methyl group (20). The studies described here constitute an 

attempt to understand more fully the interaction of water with fluorinated molecular 

surfaces, and to provide a sound basis for the use of fluorinated amino acids in the 

engineering of proteins with unique and useful physical properties. 

 The hydration layer adjacent to protein surfaces exhibits properties different from 

those of bulk water; the more rigid and denser structure of the hydration layer plays a 

crucial role in protein structure, folding, dynamics, and function (24-26). Elucidation of 

the dynamic features of this region, on the timescales of atomic and molecular motion, is 

essential in understanding protein hydration. In the past decade, the knowledge of 

hydration on protein surfaces has been extensively expanded by studying the dynamic 

properties of biological water for various proteins containing tryptophan (Trp) or 

synthetic fluorescent amino acids as local probes; the results have revealed 

multicomponent relaxation dynamics spanning a wide range of timescales (25, 27-29). 

The nature of the protein hydration layer can be affected not only by the topographic and 

electrostatic properties of the protein surface (24), but also by the physical and chemical 

properties of individual surface-exposed residues (27, 30). In view of the unique 

properties of the C-F bond and of fluorocarbon–water interfaces (23, 31), we anticipated 

that fluorinated amino acid side chains might exhibit unusual hydration behavior. Here 
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we report studies of local hydration dynamics at fluorinated protein surfaces by 

monitoring the time-dependent fluorescence Stokes shifts of surface-exposed Trp 

residues in coiled-coil proteins with 5,5,5-trifluoroleucine (Tfl, 1; scheme 3.1) residues 

adjacent to the probe. The results are compared to the hydration dynamics at 

hydrogenated protein surfaces with Leu (2) or (4S)-2-amino-4-methylhexanoic acid 

(homoisoleucine, Hil, 3) adjacent to the Trp probe. Hil has approximately the same 

volume as Tfl (20, 21), and although the shapes of the residues differ, the nearly identical 

side-chain volumes of Tfl and Hil allow us to differentiate changes due to fluorination 

from those that result from the increase in side-chain volume that accompanies 

replacement of Leu (scheme 3.1). 

 

Results  

Coiled-coil protein system. The coiled-coil protein A1 (figure 3.1 A and B) was used as a 

model system to examine the effects of fluorinated amino acids on local hydration 

dynamics. The primary structure of A1 contains six copies of a heptad repeat (abcdefg)n, 

where positions a and d are occupied by hydrophobic amino acids. Self-association of the 

peptide juxtaposes the a and d positions and results in the formation of a hydrophobic core. 

Fluorinated Leu analogues have previously been incorporated into the d positions of A1; 

the resulting proteins exhibited improved resistance to thermal and chemical denaturation 

with minimal differences in secondary structure (9, 11, 12). In this work, the surface-

exposed Asp residue at the f position of the third heptad (position 34) was replaced by Trp, 

which serves as a fluorescence probe (figure 3.1C). The Trp variant of A1 was designated 

A1m. In order to examine the effects of fluorinated analogues on the local hydration 
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dynamics, a Leu codon was introduced at one of two positions within A1m. Mutation of a 

serine residue at the c position of the third heptad (position 31) yielded a variant of A1 

designated S31L (figure 3.1D), while replacement of an alanine residue at position b of the 

fourth heptad (position 37) gave the A1 variant A37L (figure 3.1E). Each protein was 

expressed in Tfl, Leu, and Hil form, yielding a total of nine different proteins that were 

examined in detail (see (32) for nomenclature). 

 

Characterization of global structure. Analysis of each protein showed that the overall 

structural properties of the molecules were generally insensitive to genetic mutations and 

incorporation of noncanonical amino acids. Circular dichroism spectroscopy indicated 

that all nine proteins were helical, as determined from the molar ellipticity at 222 

nanometers (figure 3.2) (33); an analysis with K2D2 software showed that the helicities 

of individual proteins range between approximately 40% and 48% (34). These results are 

consistent with the design of the A1 protein (35), in which approximately half of the 

amino acids are located within the heptad repeats expected to form α-helical secondary 

structure. The oligomerization states of the protein samples were determined by 

sedimentation velocity analysis (figure 3.3). Although A1 forms dimers and tetramers at 

neutral pH (11), the variants examined in this study form trimers or hexamers under 

mildly acidic conditions (pH 4). We suggest that protonation of Glu side chains at the e 

and g positions (figure 3.1A) of the proteins decreases the density of negative charges 

adjacent to the hydrophobic core and promotes formation of larger helical aggregates at 

pH 4. A1m, in which the single Trp residue occupies a surface-exposed position, is 

predominantly trimeric in Leu-, Tfl-, and Hil-forms, with a small fraction of hexamers 
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(see figure 3.3). The majority of the S31L samples are present as hexamers, while the 

A37L samples appear to contain mixtures of trimers and hexamers. 

 

Characterization of local structure. The steady-state fluorescence emission spectrum of 

Trp depends on the extent of exposure of the Trp side chain to water (36). All nine 

protein samples showed emission maxima between 349 and 352 nm, close to that of free 

Trp at 353 nm (table 3.1 and figure 3.4). These observations indicate that the Trp residues 

are exposed to the aqueous environment (consistent with the original design), and not 

involved in oligomerization of the proteins. In addition, the steady-state UV-visible 

absorption and steady-state fluorescence emission spectra of each mutant containing Leu 

were nearly identical to the spectra of the corresponding mutant when it contained Tfl or 

Hil (figure 3.4), further confirming that perturbation of the protein structure upon 

replacement of Leu by Tfl or Hil was minimal. 

 The mobility of the probe residue was explored in each protein by measuring fs-

resolved depolarization dynamics (figure 3.5). The anisotropic dynamics were found to 

consist of three components: ultrafast (≤ 500 fs), intermediate (20–80 ps), and slow (≥2 

ns) decays. The ultrafast decays are attributed to fast internal conversion between the first 

two excited singlet states (1La and 1Lb) of Trp, the intermediate decays to local wobbling 

motions of Trp, and the slow decays to tumbling motions of the proteins (28, 37). Similar 

values for the wobbling motions (φTrp) and their cone semiangles (θ) were observed for 

each series of S31L and A37L proteins (table 3.1); see material and methods for details. 

 Both mutation of residues around Trp and fluorination of the protein hydrophobic 

core can affect the environment of the probe and change the protein structure and/or the 
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dynamic properties of the hydration layer. In many cases these properties are related to 

one another. The minimal change in the steady-state fluorescence spectrum caused by 

replacement of Leu by Tfl or Hil suggests similar features of the hydration region probed 

by Trp (e.g., the effective number of water molecules in the hydration shell). In addition, 

the similarity of the Trp wobbling angle of the Leu-, Tfl-, and Hil-forms of the proteins 

suggests similar organization and flexibility of neighboring residues around the probe 

(28). All these features make it possible to compare the dynamic properties of protein 

hydration for most of the proteins in the A1m, S31L, and A37L proteins containing Leu, 

Tfl, and Hil. For A1m-H, we note that the wobbling angle of Trp was found to be 33°, 

which is significantly higher than the 17°–21° wobbling angles determined for all of the 

other proteins. This result indicates that the organization of local residues or the 

flexibility of the local Trp environment in A1m-H differs from that in the other proteins, 

despite the lack of global structural changes observed by circular dichroism or 

sedimentation velocity measurements. The abnormal behavior of the A1m-H variant is 

also observed in the fluorescence lifetime measurements. Every protein except A1m-H 

displayed a short-lifetime component of a few hundred picoseconds, present at all 

wavelengths. These types of quenching processes have been attributed to Trp interactions 

with nearby charged residues (38-40), and the absence of such a feature in A1m-H again 

indicates that this protein has a local structure different from those of the other eight 

proteins. The perturbation of local structure and, thus, local solvent exposure can result in 

different hydration dynamics, making it unreliable to compare the dynamics of A1m-H to 

those of the other A1m proteins. Accordingly, the dynamics obtained for A1m-H were 

not used in the analysis that follows. Small shifts in the fluorescence emission maximum 
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and Trp wobbling angle were observed for A37L-L as compared to A37L-T and A37L-H 

(see table 3.1 and figure 3.4). These differences may be significant enough to alter the 

local environment surrounding the Trp probe, potentially complicating assignment of 

changes observed in the hydration dynamics to a particular effect (e.g., changes in an 

amino acid close to Trp). Despite these concerns, the dynamics results for A37L-L 

remain consistent with the conclusions of the paper (see below). 

 Our stringent standards for comparison of hydration dynamics between modified 

proteins require that there be (i) no global change in protein structure as measured by 

circular dichroism spectroscopy and sedimentation velocity measurements; (ii) no change 

in solvent exposure as measured by steady-state fluorescence maximum (± 1 nm); and 

(iii) no change in local protein structure or flexibility as measured by fluorescence 

anisotropy (± 1°). Seven of the nine proteins prepared in this study met all of these 

criteria, and an additional protein, A37L-L, displayed changes just outside the margin of 

error. Only one protein, A1m-H, showed changes significant enough to require us to 

disregard the hydration measurements observed. Given the subtle effects of the chemical 

environment on hydration dynamics, we will compare hydration results only within 

protein families. Thus, our strongest conclusions will be drawn from observations made 

on the S31L protein variants, and the data for A1m and A37L will be used as 

corroborating evidence. 

 

Ultrafast hydration dynamics. To investigate hydration dynamics at the protein 

surfaces, we utilized a methodology developed by Zhong and coworkers for the 

reconstruction of femtosecond-resolved fluorescence spectra (28, 41). As an example, 



 163 
figure 3.6A shows several representative femtosecond-resolved fluorescence transients 

recorded for A1m-T. The overall decay dynamics is retarded compared to that of free Trp 

in buffer solution. Details of the results for all the protein samples are presented in table 

3.1. The hydration dynamics of the proteins were well represented by triple-exponential 

decays with distinctive timescales of 0.2–0.8, 1.4–6.1, and 10–61 picoseconds. 

Relaxation occurring on a time scale of a few hundred femtoseconds to several 

picoseconds is attributed to fast librational/rotational motions of bulk-type and local 

water molecules around Trp. Observation of the fs component suggests that the Trp probe 

in the test proteins is neither crowded by neighboring residues nor protected from 

exposure to water (27, 28, 42). The slowest phase of hydration dynamics (on the 

timescale of tens of picoseconds) is collective water network rearrangement coupled to 

protein fluctuation dynamics (27, 42-44). 

 Several key features of the results (figure 3.7 and table 3.1) are summarized as 

follows. First, S31L-T and A37L-T, in which Tfl lies close to Trp as well as in the 

hydrophobic core, showed slower hydration dynamics than their Hil and Leu 

counterparts, indicating that the fluorinated surface of the protein slows down the 

hydration dynamics. For S31L-T, the timescales of local and collective water motions (τ2 

and τ3, respectively) are increased by 2–5 times (3.0 and 48 ps) from those of S31L-H 

(1.4 and 10 ps). The overall solvation of S31L-T is slower than that of S31L-L as well. 

However, this difference is manifested as an increase in the contribution of the τ3 

component to the overall solvation of Trp. The 70% increase of the relaxation energy 

(333 cm−1) of the slowest component (E3) compared to that of the nonfluorinated S31L-L 

(194 cm−1) is an indication of the dramatic slowing of hydration dynamics near the 
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fluorinated surface. For A37L-T, τ2 and τ3 are also retarded to a greater extent (3–5 times 

slower) than those for A37L-H. These results suggest that replacement of Leu by Tfl 

increases the residence time of water molecules near the Trp probe and/or the number of 

water molecules influenced by the amino acid side chain. 

 Second, S31L-H and A37L-H showed similar or even faster hydration than their 

Leu counterparts. This result indicates that in the comparison between hydrocarbon 

residues, increasing the hydrophobic surface area results in faster motion of water 

molecules around the residue. It should be noted that, for the S31L series, hydration is 

greatly accelerated when Leu is replaced with Hil. This pronounced hydrophobic effect 

(due to the increase in the size of the residue) on the hydration is counteracted by 

fluorination of leucine, resulting in slowing dynamics for S31L-T. On the other hand, for 

A37L, increasing the size of the hydrophobic surface does not appear to affect the 

hydration dynamics as greatly. Therefore, the retardation of the dynamics upon 

fluorination is much more pronounced for A37L-T than for the corresponding 

fluorination of S31L. Finally, A1m-L and A1m-T, which differ from one another only in 

the nature of their hydrophobic cores, exhibited almost identical hydration dynamics. 

Fluorination of the hydrophobic core of a helix-bundle protein can affect protein 

dynamics (45). However, the nearly identical hydration dynamics for A1m-L and A1m-T 

spanning a few hundred picoseconds indicates that modification of the hydrophobic core 

of A1m does not affect protein motions that are coupled to local hydration dynamics at 

the surface of the protein on the timescales examined here (46). 
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Discussion 

 Protein surfaces are heterogeneous, consisting of polar, hydrophilic, and 

hydrophobic residues, and it is intriguing to consider how the heterogeneous surface 

chemistry affects the behavior of water molecules in the protein hydration layer. Head-

Gordon and coworkers have reported heterogeneous water dynamics in the first hydration 

shell of model peptides (N-acetyl-leucinemethylamide and N-acetyl-glycinemethylamide), 

with faster water motions near the hydrophobic side chains than near the hydrophilic 

backbone (47, 48). Similar results have been reported for molecular dynamics simulation 

studies of a folded β-hairpin peptide (30). In addition, Qiu et al. showed that mutation of 

charged or polar residues of the enzyme staphylococcal nuclease into more hydrophobic 

residues (Ala), resulted in faster hydration dynamics; this result was attributed to the lack of 

strong interaction between the charges (or dipoles) of the mutated protein and the 

surrounding water (27). This observation can be understood in that the elimination of 

specific interactions between hydrophobic residues and water molecules causes a lower 

number of hydrogen bonds between water and a hydrophobic surface compared to those 

near a hydrophilic surface, thus allowing water molecules to reorient more freely. 

Computational studies have suggested that water layers adjacent to extended hydrophobic 

surfaces of low curvature are of lower density than those around hydrophilic and small 

hydrophobic molecules, and are dynamic rather than static (49-56). X-ray reflectivity 

experiments indicate submonolayer water depletion at hydrocarbon and fluorocarbon 

surfaces (57). Our observation of accelerated hydration dynamics around larger Hil 

residues as compared to the smaller Leu is consistent with these experimental and 

computational results, supporting the idea that water molecules neighboring hydrophobic 
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side chains in the hydration layer of proteins are more dynamic than those around polar or 

hydrophilic residues. 

 Even though a simple comparison suggests that Tfl should be more hydrophobic 

than Leu by virtue of its larger surface area, introduction of a Tfl residue adjacent to the 

Trp probe caused retardation of the local hydration dynamics, in contrast to the results 

obtained when Leu was replaced with Hil (figure 3.7). These results suggest that hydration 

dynamics around fluorinated amino acid side chains cannot be explained exclusively by the 

increase in residue size. The C-F bond is assumed not to be involved in hydrogen bonding 

with liquid water, largely because of its low polarizability (17). However, replacement of 

Leu by Tfl introduces a strong dipole at the fluorinated protein surface. Lee and coworkers 

have shown that introduction of CF3 groups reduces the contact angle of water on self-

assembled alkanethiol monolayers (23), an effect that they attribute to dipolar interactions. 

Our results suggest that such dipolar interactions can also slow water motions at fluorinated 

molecular surfaces. 

 Fluorinated compounds are more hydrophobic than hydrogenated compounds of 

equal carbon number (4, 5, 17-21), and the increase in hydrophobic character of 

fluorocarbons has been ascribed to their increased molecular size (18, 58). This 

interpretation appears to be consistent with the observation that the melting temperature of 

A1-Tfl is 13 °C higher than that of A1-Leu (11), while Tm for A1-Hil is increased by 17 °C 

in comparison to A1-Leu. However, the results reported here clearly indicate that the 

chemical nature of the protein surface dictates the dynamics of solvent-protein interactions, 

and that size effects alone cannot explain the altered solvation dynamics observed at 

fluorinated protein surfaces. 
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Conclusions 

 The results reported here show that fluorinated amino acids influence hydration 

dynamics at protein surfaces in a manner quite different from their hydrogenated 

counterparts. In general, water-protein interactions dictate many processes crucial to 

protein function including folding, dynamic motions, interactions with other biomolecules, 

and enzymatic catalysis (26). The slower timescales of hydration dynamics observed near 

fluorinated residues in proteins suggest that some of the water-mediated processes 

processes listed above may be changed upon fluorination. Tailoring the dynamics of 

protein-water interactions by the introduction of fluorinated residues may yield proteins 

with functional properties, such as binding, molecular recognition, or catalytic activities, 

that cannot be achieved with the canonical amino acids. Understanding hydration dynamics 

at fluorinated molecular surfaces is a critical step toward exploiting the properties of 

fluorine in biological systems. 

 

Materials and Methods  

Summary of protein expression and characterization. A1 variants A1m, S31L, and 

A37L were expressed in 2×YT medium (which contains Leu) to yield proteins A1m-L, 

S31L-L, and A37L-L, respectively, in Leu-free M9 minimal medium (12.8 g/L 

Na2HPO4·7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl) supplemented with 19 

canonical amino acids plus Tfl to give A1m-T, S31L-T, and A37L-T, and in Leu-free M9 

medium supplemented with 19 canonical amino acids plus Hil to give A1m-H, S31L-H, 

and A37L-H. The proteins were purified under denaturing conditions and dialyzed against 

10 mM acetate (pH 4)/100 mM NaCl. The extent of replacement of Leu by Tfl in A1m-T, 
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S31L-T, and A37L-T, was determined by amino acid analysis to be 90%–91%. Leu 

replacement by Hil in A1m-H, S31L-H, and A37L-H was analyzed by liquid 

chromatography tandem mass spectrometry and determined to be at least 90% (figure 3.8). 

See below for further details of expression, purification, and incorporation analysis. 

 

Summary of steady-state measurements. Circular dichroism spectra were recorded on an 

Aviv 62DS spectropolarimeter (Lakewood, NJ). Absorption spectra were collected using a 

Cary 500 UV-Vis spectrophotometer and a 0.05 mm path length cuvette. Steady-state 

fluorescence emission spectra were measured using a FluoroMax-2 fluorimeter (ISA-

Spex). 

 

Summary of time-resolved fluorescence measurements. The experimental apparatus for 

time-resolved measurements are detailed below. All fluorescence spectra and transients 

were obtained by the excitation of samples (~550 µM) at 295 nanometers. The lifetime 

components were obtained by global analysis of fluorescence transients collected using a 

time-correlated single photon counting spectrometer. All transients show additional 

multiple-exponential decay (at the blue side) and rise (at the red side) with time constants 

spanning from a few hundred femtoseconds to several tens of picoseconds. In order to 

extract hydration dynamics precisely, we reconstructed apparent and lifetime-associated 

time-resolved fluorescence spectra with eight or nine transients at different wavelengths 

covering the blue and the red sides (figure 3.6B). By fitting these spectra to lognormal 

functions, we traced the time-dependent apparent emission maxima (νs) and lifetime-

associated emission maxima (νl) as plotted in figure 3.6C. Using Δν(t) = νs(t) − νl(t), we 



 169 
correlated the extracted time-dependent spectral shift, Δν(t), to the hydration energy 

relaxation, ΔEs (figure 3.7). 

 

Materials. All restriction enzymes were purchased from New England Biolabs (Beverly, 

MA). D,L-5,5,5-trifluoroleucine (Tfl) was purchased from Oakwood Products (West 

Columbia, SC). DNA oligomers were synthesized at Qiagen (Valencia, CA) or Integrated 

DNA Technologies (Coralville, IA). (4S)-2-amino-4-methylhexanoic acid 

(homoisoleucine, Hil) was prepared according to the methods of O’Donnell and Eckrich 

(59) and Dorizon and coworkers (60). 

 

Plasmid construction. An EcoRI/HindIII fragment of pQEA1 (11) containing the A1 

coding sequence was ligated into EcoRI/HindIII-digested pQE-80L (Qiagen) to yield pQE-

80L/A1. The Asp residue at position 34 of A1 was mutated to Trp by site-directed 

mutagenesis. The resulting plasmid was designated pQE-80L/A1m. A Leu codon was 

introduced into either position 31 or position 37, yielding pQE-80L/S31L and pQE-

80L/A37L, respectively. Plasmid pA1EL (12), which encodes both the protein A1 and a 

constitutively expressed leucyl-tRNA synthetase (LeuRS), was mutated using similar site-

directed mutagenesis techniques. A Trp codon was introduced first at position 34 of A1, 

yielding pA1mEL. Introduction of leucine codons into either position 31 or position 37 

resulted in the plasmids pS31LEL and pA37LEL, respectively. 

 

Expression of fluorinated proteins. M9 medium supplemented with 0.4% glucose, 

3.5 mg⁄L thiamine, 1 mM MgSO4, 0.1 mM CaCl2, 20 amino acids (40 mg⁄L), and 200 mg⁄L 
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ampicillin was inoculated 1:50 with an overnight culture (M9) of Escherichia coli strain 

DH10B transformed with pQE-80L/A1m, pQE-80L/ S31L, or pQE-80L/A37L and grown 

at 37 °C with shaking. After each culture reached OD600 = 0.9–1.0, the cells were harvested 

by centrifugation (6000 × g, 4 °C, 6 min) and washed twice with cold 0.9% NaCl. The cell 

pellets were resuspended in M9 medium containing 19 amino acids (no Leu) and 1 mM 

Tfl. Protein expression was induced 10 min after the medium shift by addition of IPTG to a 

final concentration of 1 mM. After 3 h, the cells were harvested by centrifugation (6000 × 

g, 4 °C, 10 min), and the cells were stored at −20 °C at least 12 h before purification. In the 

case of the protein S31L-T, one sample was made using the procedure for the production of 

proteins containing Hil described below. 

 

Expression of proteins containing homoisoleucine. M9 medium supplemented with 

0.4% glucose, 35 mg⁄L thiamine, 1 mM MgSO4, 0.1 mM CaCl2, 20 amino acids (40 mg⁄L), 

200 mg⁄L ampicillin, and 35 mg⁄L kanamycin was inoculated 1:50 with an overnight 

culture (M9) of E. coli strain LAM1000 transformed with pREP4 and pA1mEL, pS31LEL, 

or pA37LEL at 37 °C with shaking. After each culture reached OD600 = 0.9–1.1, the cells 

were harvested by centrifugation (5000 × g, 4 °C, 15 min) and washed three times with 

cold 0.9% NaCl. The cell pellets were resuspended in M9 medium containing 19 amino 

acids (no Leu) and 0.5 mM Hil. Protein expression was induced 15 min after the medium 

shift by the addition of IPTG to a final concentration of 1 mM. Cells were harvested by 

centrifugation (5000 × g, 4 °C, 15 min), resuspended in Qiagen buffer B (8M urea, 

100 mM NaH2PO4, 10 mM TrisCl, pH 8.0) and sonicated for 10 min total process time 
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with a pulse duration of 5 s and a wait duration of 5 s. The sonicated lysates were frozen at 

−80 °C for at least 12 h before proceeding with purification. 

 

Expression of hydrogenated proteins. Rich (2×YT) medium was used instead of 

supplemented M9 medium. When the culture reached OD600 = 0.9–1.0, IPTG was added to 

a final concentration of 1 mM. After 3 h, the cells were harvested by centrifugation (6000 × 

g, 4 °C, 10 min), and the cells were stored at −20 °C at least 12 h before purification. In the 

case of S31L-L, one sample was expressed using the cell strain LAM1000 containing 

pREP4 and pS31LEL and harvested using the procedure used for the production of proteins 

containing Hil. 

 

Protein purification. N-terminally histidine-tagged A1 variants were purified under 

denaturing conditions by affinity chromatography using Ni-NTA resin (Qiagen, 

Chatsworth, CA) according to the manufacturer’s instructions. For proteins containing Hil 

and for one batch each of S31L-L and S31L-T, the lysates in Qiagen buffer B were thawed, 

sonicated, and then clarified using centrifugation (~75,000 × g, 25 °C, 10 min). Imidazole 

was added to Qiagen buffer C (50 mM) and Qiagen buffer E (250 mM) in order to improve 

purification efficiency. The purified protein solutions were dialyzed against 10 mM sodium 

acetate (pH 4)⁄100 mM NaCl, and were concentrated by ultrafiltration (Amicon Ultra-15 

devices, mwco: 10,000 or 3000, Millipore, Billerica, MA). The protein concentration was 

determined as measured by the absorbance at 280 nanometers of solutions, assuming 

extinction coefficients of 5500 M−1 cm−1 (61). 
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Amino acid analysis and sedimentation velocity analysis. Amino acid analysis of 

fluorinated proteins was performed at the W. M. Keck Facility at Yale University (New 

Haven, CT) on a Hitachi L-8900 amino acid analyzer (San Jose, CA) after hydrolysis at 

115 °C in 70% formic acid. Sedimentation velocity analysis was performed at the National 

Analytical Ultracentrifugation Facility at the University of Connecticut (Storrs, CT) by 

using a Beckman XL-I Analytical Ultracentrifuge at 20 °C. The rotor was accelerated to 

55,000 rpm, and interference scans were acquired at 1 min intervals for 7 h. The data were 

analyzed by using the program Sedfit (62) to obtain normalized c(s) versus sedimentation 

coefficient plots (figure 3.3). 

 

Mass spectrometry. Liquid chromatography tandem mass spectrometry (LC/MS/MS) of 

proteins containing Hil or Tfl was performed at the Caltech Protein and Peptide Mass 

Analytical Laboratory. Trypsinized samples were subjected to liquid chromatography on an 

Eksigent (Dublin, CA) NanoLC-2D using a 6 cm long, 100 µm diameter C18 column, 

followed by MS/MS on an Applied Biosystems (Foster City, CA) QStar XL instrument. 

Data were analyzed using Analyst QS software provided by Applied Biosystems. Hil or Tfl 

incorporation levels were estimated using information contained within extracting ion 

currents (XIC) of trypsin-digested protein samples. For a given sample, a peak 

corresponding to a peptide globally substituted with the noncanonical amino acid and 

coding for multiple leucines was identified, and the related peak corresponding to 

replacement at a fraction of the leucine positions was also identified. Determination of the 

ratio of the partially substituted to globally substituted peak areas allowed for the 

estimation of amino acid incorporation levels assuming that leucines in the fragment were 
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replaced statistically. An example calculation is shown in the subsection “LC/MS/MS 

amino acid incorporation estimates,” which can be found below. 

 

Time-correlated single-photon counting (TCSPC). The protein samples were prepared at 

55 µM concentration in 10 mM acetate (pH 4)⁄100 mM NaCl solution. The TCSPC 

measurements were performed by using femtosecond pulses (<100 fs) from a Ti-sapphire 

oscillator (Spectra-Physics, Mai Tai HP). Laser output, of which the repetition rate was 

attenuated from 80 to 8 MHz utilizing a pulse picker (Spectra-Physics, Model 3980-5), was 

tuned to 885 nanometers and frequency-tripled to 295 nanometers using a time-plate tripler 

(Minioptic Technology, TP-2000B) for selective excitation of Trp. The UV beam, 

vertically polarized using a half waveplate, was introduced to a sample chamber and 

focused onto the sample cell. The residual frequency-doubled beam from the tripler was 

directed to a photodiode to trigger a TCSPC system (PicoQuant GmbH, FluoTime 200). 

Typically, the energy of the excitation pulse (attenuated) at the sample was ~10 picojoules. 

In a right-angle geometry, the emitted fluorescence was collected at a magic angle (54.7°) 

with respect to the vertically polarized excitation beam and focused into a MCP-PMT 

(Hamamatsu, R3809U), which is attached to a double monochromator. The photomultiplier 

tube signal was routed to a time-to-amplitude converter as a start signal followed by a 

constant fractional discriminator (PicoQuant GmbH, SPC 630). To avoid possible 

photobleaching and photodegradation, samples were kept stirring using a micro magnetic 

stirrer. In this configuration, the instrument response has a full width at half maximum of 

~30 ps. Multiexponential decays convoluted with instrumental response functions were 

analyzed using the FluoFit software package (PicoQuant).  
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Femtosecond fluorescence upconversion. The protein samples were prepared at 550 µM 

concentration in 10 mM acetate (pH 4)⁄100 mM NaCl solution. An amplified Ti-sapphire 

laser system (Spectra-Physics, Hurricane X) was used, which produces ~110 fs pulses 

centered at 805 nanometers (fundamental), with a 1 kHz repetition rate and a 0.8 millijoule 

energy. The output beam was split into equal parts to generate the pump and the gate pulse 

trains. For the pump, the fundamental light was used to pump an optical parametric 

amplifier (Spectra-Physics, OPA-800C), the infrared idler output of which was sum-

frequency mixed with the residual fundamental in a 0.5 mm thick β-barium borate (BBO) 

crystal (type I), recompressed with a prism pair, and frequency-doubled to provide the 295-

nanometers pulses in a 1.0 mm thick BBO crystal. The pump pulses were focused, with a 

24 cm focal length lens, on the rotating circular cell (1 mm thickness) containing the 

sample. Typically, the energy of the pump pulse (attenuated) at the sample was ~200 nJ. At 

these energies, the fluorescence signals from samples were linearly dependent on the pump 

energy. To check for sample degradation during experiments, fluorescence spectra were 

periodically measured right after the rotating cell by using a fiber-optic-coupled 

spectrometer (Acton Research, SpectraPro-300i) coupled to a charge-coupled device 

(Princeton Instruments, SpectruMM-256HB) before and after the collection of averaged 

transients for each sample. No difference between the spectra was observed.  

 The forward-scattered fluorescence from excited samples was collected and 

focused by two off-axis parabolic mirrors into a 0.5 mm thick BBO crystal. Cutoff filters 

were placed between the mirrors to reject scattered laser light and pass the desired 

fluorescence wavelengths. The gate pulses, attenuated to 23 µJ⁄pulse, passed through a 

computer-controlled optical delay line and were noncollinearly overlapped with the 
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fluorescence in the BBO crystal. After the crystal, the upconverted signal was separated 

from the gate beam and the fluorescence by using an iris, and was focused on the entrance 

slit of a 0.25 m double-grating monochromator (Jobin Yvon, DH10) equipped with a 

photomultiplier tube at the exit slit. Upconversion efficiency was maximized by angle-

tuning of the BBO crystal. The upconverted fluorescence transients were taken at the magic 

angle (54.7°) of the pump polarization relative to the gate polarization, parallel to the 

acceptance axis of the upconversion crystal, in order to eliminate the influence of induced 

sample anisotropy on the signal. The photomultiplier output was amplified (Stanford 

Research Systems (SRS), SR445) and processed by a gated integrator (SRS, SR250). The 

temporal response of the instrument was typically 350–450 fs. The observed fluorescence 

transients were fit to theoretical functions, using a Scientist nonlinear least-squares fitting 

program (Micromath), for the convolution of the Gaussian instrument response function 

with a sum of exponentials. All experiments were carried out at an ambient temperature of 

~24 °C, and all fluorescence transients were obtained by the excitation of samples at 

295 nanometers. 

 For fluorescence anisotropy measurements, the pump-beam polarization was 

rotated either parallel or perpendicular to the acceptance axis of the upconversion crystal to 

collect the parallel (I||) and perpendicular (I⊥) signals, respectively. These transients were 

used to construct time-resolved anisotropy: r(t) = (I|| – I⊥)/(I|| + 2I⊥). The results of the time-

resolved anisotropy are shown in figure 3.5. The ultrafast depolarization time constant, φI, 

attributed to fast internal conversion between the first two excited singlet states (1La and 

1Lb) of Trp, varies dramatically with the time resolution. This process has a timescale of 

~100 fs (63, 64). The limited resolution of our current apparatus (350–450 fs) does not 
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allow us to fully resolve these dynamics and gives rise to a large uncertainty in the value of 

φI. The variability of φI will impact the fit of φTrp. The uncertainty in the amplitude of the 

anisotropy, rTrp and r∞, is not however affected by the limited time resolution of our data. 

Therefore we use the wobbling cone angle to reveal details about the local crowding near 

Trp. The wobbling cone angle is given by 1 – rTrp /(rTrp + r∞) = [(3cos2q – 1)/2]2 (37), and 

only depends upon the amplitude of the tryptophan wobbling motion and the anisotropy 

due to the rotation of the molecule. 

 

LC/MS/MS amino acid incorporation estimates. LC/MS/MS was used to estimate the 

replacement levels of leucine in some protein samples. Figure 3.8 depicts the total ion 

currents (TIC, figure 3.8A) and three extracted ion currents (XICs, figure 3.8B–D) from a 

digested A1m-H sample. The large peak in figure 3.8B corresponds to a peptide in which 

all of the Leu residues are replaced by Hil, the smaller peak in figure 3.8C corresponds to a 

mixture of two peptides containing one Leu and one Hil residue, and the very small peak in 

figure 3.8D corresponds to a peptide containing only Leu residues. The areas in the three 

XICs allow determination of the extent of incorporation of noncanonical amino acids in 

place of leucine. Assuming that there is a probability p of homoisoleucine substitution in 

place of leucine, the distribution of peak areas should correspond to the binomial 

distribution, 

 

€ 

A (1− p)2 + 2(1− p)p + p2[ ],  (3.1) 
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where A is a multiplication factor equal to the total area of the three peaks and the three 

terms of the polynomial correspond to nonsubstituted, singly substituted, and doubly 

substituted peptides, respectively (the term for singly substituted peaks takes into account 

both positional isomers of singly substituted peptides). Because these three terms represent 

the only combinations of substitutions possible in the peptide, the relationship 

 

  (3.2) 

 

also holds. The ratio between two peaks in a peptide series depends only on the probability 

of incorporation and not on the value of A. Therefore, the ratio of two peaks from 

experimental data can be used in order to get an estimate of p. The ratio of the peak areas of 

singly substituted to doubly substituted peptides is  

 

.  (3.3) 

 

Rearranging the above expression, 

 

,  (3.4) 

 

where X is the experimentally observable ratio of singly substituted to doubly substituted 

peptides. Solving for p gives  
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,  (3.5) 

or 

,  (3.6) 

 

with the root of interest being the nonzero root. Substituting for the ratio of peak areas 

gives an estimate of the incorporation level p. 

 In some cases, peaks corresponding to peptides containing three leucine or leucine 

analogs were observed and used to quantify incorporation levels. In these cases, the peak 

area distribution is represented by 

 

,  (3.7) 

 

with 

 

.  (3.8). 

 

Defining the ratio of doubly substituted to triply substituted peak area as X, substituting X 

into equation (3.8), and solving for p yields the nonzero root 

 

,  (3.9) 
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again enabling an estimation of the incorporation level of noncanonical amino acids in 

place of leucine. In some cases, the tandem mass spectrometry did not enable positive 

identification of all possible positional isomers of a peptide. For example, in some cases, 

only two out of three of the possible doubly substituted positional isomers containing three 

possible substitution locations were identified in the tandem mass spectrometry data. In 

these cases, X was multiplied by an appropriate factor to account for peptides that were not 

observed (again invoking the assumption of completely random incorporation). Using the 

above example, when only two out of three doubly substituted peptides could be identified, 

X was multiplied by a factor of 1.5 in order to estimate what the peak area ratio would have 

been with all three peaks present in equal weights. Using this methodology, the 

homoisoleucine-containing proteins used were found to have 90% or greater Hil in place of 

Leu, and the sample of S31L-T that was analyzed in this fashion contained approximately 

99% Tfl in place of Leu. These results were obtained by examining three separate series of 

peptides from each protein sample. These peptides had the following sequences: 

AEIGDLNNTSGIR, GSHHHHHHGSMASGDLENEVAQLER, and SLEWEAAELEQK 

(A1m), LLEWEAAELEQK (S31L), or SLEWEALELEQK (A37L). 
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H2N COOH H2N COOHH2N COOH

CF3

1 2 3  

Scheme 3.1. Amino acids used in study. 1, 5,5,5-trifluoroleucine (Tfl). 2, leucine (Leu). 3, 

(4S)-2-amino-4-methylhexanoic acid (homoisoleucine, Hil). 
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Figure 3.1. Protein sequence and structure. A) Helical wheel diagram and B) amino acid 

sequence of the A1 protein. The Asp residue at the f position of the third heptad (position 

34) was replaced by Trp to yield a variant of A1 designated Alm. A Leu codon was 

introduced at the c position of the third heptad (position 31, dark blue) or at the b position 

of the fourth heptad (position 37, dark blue) to yield S31L and A37L, respectively. Side 

views of C) A1m, D) S31L, and E) A37L. 
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Figure 3.2. Circular dichroism. Wavelength scans of A1m and variant proteins at 25 ºC. 

The protein samples were prepared at 20 µM concentration in 10 mM acetate (pH 4)/100 

mM NaCl solutions. 
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Figure 3.3. Normalized plots from the Sedfit c(s) analysis for A) A1m-L, B) S31L-L, 

C) A37L-L, D) A1m-T, E) S31L-T, F) A37L-T, G) A1m-H, H) S31L-H, and I) A37L-H. 

The protein samples were prepared at 550 µM concentration in 10 mM acetate 

(pH 4)⁄100 mM NaCl solution. The broad, single peak of the A37L-L trace may be the 

result of an equilibrium mixture between trimeric and higher-order species. It seems likely 

that the breadth of the traces derived from sedimentation velocity analysis of A1m-T, 

S31L-T, and A37L-T is a consequence of incomplete replacement of Leu with Tfl. 
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Figure 3.4. Steady-state UV-visible absorption (red) and fluorescence emission spectra 

(black) of proteins excited at 295 nanometers. The protein samples were prepared at 

550 µM concentration in 10 mM acetate (pH 4)⁄100 mM NaCl solution. 
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Figure 3.5. Time-resolved anisotropy, r(t), of the proteins. All anisotropy decays were 

fitted to r(t) = rI exp(–t/fI) + rTrp exp(–t/fTrp) + r∞, where rI is the initial ultrafast anisotropy, 

rTrp is the Trp motion-related anisotropy (value given in parentheses in each panel), r∞ is 

the offset anisotropy, fI is the initial ultrafast internal-conversion time constant of Trp (≤1 

ps), and fTrp is the Trp-rotational correlation time constant. 
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Figure 3.6. Hydration dynamics. Experimental determination of local hydration dynamics 

at the surface of A1m-T, excited at 295 nm. A) Representative femtosecond-resolved 

fluorescence up-conversion transients. B) Normalized time-resolved fluorescence spectra at 

different time delays. The steady-state emission spectrum is also depicted (dotted line). C) 

Time-dependent spectral shift of the apparent emission maxima (νs) and the lifetime-

associated (population) emission maxima (νl). Inset: entire evolution of νs and νl. 
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Figure 3.7. Hydration energy relaxation. Comparison of the hydration-correlated energy 

relaxation, ΔEs(t), probed by Trp emission. Top panel: The solvation-energy relaxation data 

for A1m proteins. Data for free Trp in the same buffer is also depicted for comparison. 

Middle panel: Solvation energy relaxation data for S31L analogs. Bottom panel: solvation 

energy relaxation data for A37L analogs. Insets: enlargement of the early-time hydration 

behavior. 
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Figure 3.8. LC/MS/MS of trypsinized A1m-H. A) TIC of digested protein sample. B)–D) 

XICs of peptides containing B) two, C) one, or D) no leucine to homoisoleucine 

substitutions in the peptide SLEWEAAELEQK. The ratios of the peak areas obtained in 

the XICs can be used to estimate the extent of leucine replacement in the protein sample. 

Peptide masses: SXEWEAAEXEQK: 2+ ion: 730.86 Da observed, 730.87 Da expected. 

SLEWEAAEXEQK, SXEWEAAEXEQK: 2+ ion: 723.88 Da observed, 723.86 Da 

expected. SLEWEAAELEQK 2+ ion: 716.87 Da observed, 716.85 expected. 
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Table 3.1. Fluorescence emission maxima (λmax), hydration-correlated energy 
relaxation [ΔEs(t)], and depolarization dynamics [r(t)] 

ΔEs(t)* r(t) † 
Sample λmax, nm 

τ1, ps τ2, ps τ3, ps E1, cm−1 E2, cm−1 E3, cm−1 rTrp θ, ° 

Trp 353 0.30 1.5 13 883 682 18 0.196  

A1m-L 352 0.30 2.1 31 610 646 171 0.056 21 

A1m-T 352 0.28 2.5 31 877 568 161 0.049 20 

A1m-H 352  1.9 34 0 2138 500 0.058 33 

S31L-L 349 0.53 3.6 40 580 450 194 0.030 18 

S31L-T 349 0.79 3.0 48 607 375 333 0.044 19 

S31L-H 349 0.21 1.4 10 308 492 344 0.023 18 

A37L-L 352 0.31 1.7 13 685 522 157 0.055 20 

A37L-T 350 0.56 6.1 61 685 324 108 0.030 17 

A37L-H 349 0.34 2.2 21 443 625 128 0.034 17 

* All hydration-correlated energy relaxation dynamics were fitted to ΔEs(t) = E1exp(−t/τ1) 
+ E2exp(−t/τ2) + E3exp(−t/τ3). 
† Refer to materials and methods for anisotropy analysis detail. 
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Abstract  

 Noncanonical amino acids (ncAAs) can be used to modulate the physical and 

chemical properties of proteins. In this work, we examine how ncAAs can be used to 

engineer the binding properties and chemical reactivity of a model anti-digoxin antibody 

fragment in its single chain variable fragment (scFv) form. Experiments with scFvs 

displayed on the surface of Escherichia coli cells revealed that replacement of the 

methionine (Met) residues of the scFv with an analog containing an alkyne side chain 

reduced the fluorescence levels of cells treated with a fluorescently labeled antigen to 

background levels, indicating loss of binding function. Replacement of Met with analogs 

containing aliphatic and azide side chains left the fluorescence of cells unchanged and 

reduced by a factor of 0.6, respectively. Fluorescence-activated cell sorting of libraries of 

cell surface-displayed scFvs enabled the isolation of clones functional in multiple amino 

acid contexts. Cells displaying variants containing alkyne, azide, and aliphatic analogs and 

treated with fluorescently labeled antigen were more fluorescent than cells displaying the 

Met form of the parent scFv by factors of roughly 1.7, 3.5, and 1.3, respectively. 

Furthermore, the amino acid context used during high-throughput screening experiments 

appears to affect the frequencies of mutations occurring at various positions within the scFv 

construct. High-throughput sequencing revealed that populations isolated in different 

amino acid contexts exhibit mutational rates differing by greater than twenty percent at 

some residues in the protein.  

 Characterization of soluble scFvs indicated that each ncAA used in this study 

modulates the binding kinetics of scFvs in a distinct fashion. Perhaps most interestingly, 

scFvs containing the azide-containing analog azidohomoalanine (Aha) exhibit improved 
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binding kinetics relative to their methionine-containing counterparts. Replacement of Met 

by Aha in several variants lowers the dissociation constant of the fragment by up to a factor 

of two. Chemical conjugation of azide-containing scFvs to fluorescent dyes and biotin 

proved facile with strain-promoted cycloaddition reactions. Quantifications of the extent of 

reaction using fluorescent dyes revealed that approximately 0.4 dyes had been conjugated 

per protein, and the resulting conjugates were found to retain their binding function in 

kinetic and Western blotting assays. Experiments in which Aha-containing fragments were 

displayed on the surface of Escherichia coli cells and subjected to strain-promoted 

cycloadditions demonstrated that the extent of chemical modification and antigen binding 

can be monitored simultaneously and used to isolate cells displaying functional, modified 

proteins. These experiments demonstrate how ncAAs can be used to modulate multiple 

properties of antibody fragments and illustrate the feasibility of developing and screening 

libraries of chemically modified proteins. Evolved, functional bioconjugates may be 

applicable to a variety of outstanding diagnostic and therapeutic problems. 

 

Introduction  

 The vastness of protein sequence space provides scientists with ample possibilities 

for mutating and engineering proteins in order to improve their existing functions or 

properties and to impart them with nonnatural characteristics (1-3). Biosynthetic 

incorporation of noncanonical amino acids (ncAAs) into proteins is a powerful approach to 

augmenting or altering the functions of full-length proteins (4-7). Residue-specific 

incorporation of ncAAs into proteins by the global replacement of one or more of the 

twenty canonical amino acids can facilitate large changes in protein properties, either by 
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introducing new chemical functionalities into proteins or by employing subtle side chain 

structures that change the stability, aggregation, or solvation characteristics of proteins (8-

12). Site-specific incorporation approaches also afford opportunities for changing local 

protein properties by making atomic-level changes to amino acid side chains or polypeptide 

backbones (6, 7, 13, 14). However, property changes that result from ncAA incorporation 

are not always readily predictable, and can lead to insignificant or even deleterious changes 

to proteins of interest. 

 The techniques of directed evolution provide a powerful set of tools for engineering 

proteins with more desirable properties. Our laboratory and others have demonstrated that 

directed evolution can be combined with ncAAs to enable the creation of ncAA-containing 

proteins with user-defined characteristics. Using high-throughput screening approaches, 

our laboratory has previously evolved fluorinated proteins to have biophysical properties 

comparable to the properties of conventional proteins. These efforts resulted in the isolation 

of a thermostable fluorinated enzyme and a fluorinated green fluorescent protein with 

folding kinetics comparable to the parent protein (15, 16). The Schultz laboratory has 

combined the use of phage display and antibody fragments containing site-specifically 

incorporated ncAAs to target specific antigens. They were able to create libraries of 

antibody fragments containing the ncAAs sulfotyrosine and p-boronophenylalanine and 

successfully screen these libraries for binders against the HIV protein gp120 (17, 18) and 

the acyclic sugar glucosamine (19), respectively. The results of directed evolution 

experiments performed with libraries of ncAA-containing proteins illustrate the feasibility 

and power of using high-throughput screening techniques to explore unnatural sequence 

spaces in search of molecules with properties of interest (i.e., fluorinated, functional 
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molecules or high-affinity binders against a particular target). The ability to tailor the 

properties of molecules containing ncAAs via directed evolution may be particularly useful 

in the context of protein therapeutics, where candidate molecules must have many 

favorable properties. The chemical reactivity of protein therapeutics is especially critical, 

often simultaneously requiring selective conjugation of proteins to other molecules while 

preserving the original molecule through the reduction or elimination of all undesirable 

reactions with native side chains (20-23). Some recent studies have demonstrated how 

unique chemical handles can be introduced into proteins in the form of ncAAs and 

exploited through selective chemistries (24). However, little work has been done to 

understand how the functional properties of these proteins change after incorporation of 

ncAAs or how directed evolution can be used to manipulate these proteins. 

 In this work, we focus on changing the chemistries of antibody fragments through 

the global replacement of methionine (Met, 1, scheme 4.1) with homopropargylglycine 

(Hpg, 2), azidohomoalanine (Aha, 3), or norleucine (Nrl, 4). Substituting Hpg or Aha for 

Met introduces residues useful for performing bioorthogonal chemical reactions (scheme 

4.2) including copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry (Hpg, 

Aha) and copper-free, strain-promoted cycloadditions (Aha) (25). While replacement of 

Met by Nrl does not introduce any new chemical functionality, it eliminates the thioether 

moiety of Met, an oxidizable group that can pose problems for long-term protein storage 

(26-28). 

 We investigate the directed evolution of antibody fragments containing ncAAs and 

the effects of ncAA incorporation on the binding and chemical properties of these 

therapeutically relevant proteins. Replacing Met with ncAAs changes the genetic code, 
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which can be thought of as changes to the amino acid context or sequence space in which a 

protein exists. We have adapted a previously reported E. coli cell surface display anchor for 

use with ncAAs and used it to engineer ncAA-containing anti-digoxin single chain variable 

fragments (scFvs). This platform enabled us to perform screens of antibody fragment 

libraries using fluorescence-activated cell sorting (FACS) in a number of amino acid 

contexts and study how different ncAA side chains distinctly affect the course of directed 

evolution experiments. Production and characterization of several soluble scFv variants 

containing the different Met analogs highlighted the effects of each analog on antigen 

binding kinetics. Furthermore, examination of the chemical reactivities of scFvs showed 

that azide-containing fragments can be used to create functional conjugates via strain-

promoted click chemistry. Finally, we demonstrate the feasibility of using E. coli cell 

surface display for screening libraries of proteins for functional, chemically modified 

protein variants via flow cytometry. Our findings illustrate how ncAAs can be used to 

manipulate the antigen binding and chemical reactivity of antibody fragments 

simultaneously and suggest new methods for developing functional bioconjugates. 

 

Results and Discussion 

Cell surface display and flow cytometry. The Lpp-OmpA’ E. coli cell surface display 

system was adapted to be compatible with engineering antibody fragments containing 

ncAAs. This system has previously been used to screen libraries of anti-digoxin single 

chain variable fragments (scFvs) using flow cytometry (29-31). We placed the display 

construct under the control of the isopropyl-β-D-1-thiogalactopyranoside (IPTG)-inducible 

T5 promoter in order to avoid potential incompatibilities with residue-specific ncAA 
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incorporation techniques (31). Tight repression was maintained by cotransforming cells 

with two plasmids containing constitutively expressed lacI: derivatives of pQE-80L 

containing display constructs and the repressor plasmid pREP4. 

 Flow cytometry experiments were used to investigate the function of the scFv form 

of a variant of the high affinity murine 26-10 anti-digoxin antibody (32) in multiple amino 

acid contexts. Display of functional copies of the scFv (referred to here as the base 

construct or Base) on E. coli cells after IPTG induction was confirmed by probing induced 

cells with BODIPY FL digoxigenin 5 and measuring fluorescence levels on a flow 

cytometer (figure 4.1A) (33, 34). In contrast, replacement of Met by Hpg resulted in cells 

with near-background levels of fluorescence (figure 4.1B), suggesting that the substitution 

of the alkyne amino acid for Met greatly reduced or eliminated the binding function of the 

displayed scFv. This apparent loss of binding activity served as a starting point for 

investigating whether anti-digoxin scFv variants that function in the Hpg context could be 

identified using directed evolution. 

 

Screening for Hpg-tolerant scFv variants. We used flow cytometry to investigate 

whether Hpg-tolerant variants of Base could be isolated from a library of scFvs. Error-

prone PCR was employed to introduce mutations throughout the majority of the Lpp-

OmpA’-scFv gene (excluding only the N-terminal Lpp portion and C-terminal histidine tag 

of the gene), and the resulting genetic mutants were used to construct a library (Lib1_1a) 

consisting of approximately 5.3 × 105 transformants. Introducing mutations throughout the 

construct allowed us to simultaneously explore the possibilities that either i) display of the 

scFv is impaired by replacing Met with Hpg in the display anchor, or ii) the binding 
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function of the scFv is impaired upon substitution of Met by Hpg. The display anchor 

contains four Met residues (including the initiator Met), and Base codes for four additional 

Met residues. Although few functional binders appeared to be present in the naïve library 

when Met was replaced by Hpg (figure 4.2), screening the library under expression 

conditions in which 20 µM Met was added to the Hpg expression medium (16) enabled 

isolation of a population of mutants tolerant of at least some level of Hpg substitution. Two 

more rounds of sorting for cells able to bind to 5, in which the population to be screened 

was expressed under conditions of near-complete replacement of Met by Hpg, resulted in 

the isolation of a population of cells able to bind to substantial amounts of labeled antigen 

in the Hpg context (figure 4.2). 

 Individual clones were isolated, tested for their ability to bind antigen in the Hpg 

context when displayed on cells using flow cytometry, and sequenced. All ten clones 

randomly selected from the population were functional when Met was replaced with Hpg, 

and every clone contained at least one mutation in the scFv portion of the protein (table 

4.1). The majority of observed mutations involve either the elimination or addition of a Met 

codon within the scFv, and the mutation of the Met at position 80 of the scFv heavy chain 

(H80, Kabat numbering) to leucine appears in every fragment sequenced. Another striking 

result is the frequent isolation of clones containing the same set of three mutations 

involving Met (M(H20)I, M(H80)L, and L(H82C)M); these five clones were found to be 

identical at the genetic level and will be referred to as Mut2. While the majority of 

sequenced clones contained at least one amino acid mutation in the display anchor portion 

of the construct, all isolated clones bound to comparable amounts of digoxigenin probe 

regardless of whether the mutants contained amino acid mutations in their display anchors. 
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A complete list of every amino acid mutation observed in sequenced clones can be found in 

table 4.2. 

 After three rounds of sorting, the isolated population (referred to here as Lib1_1a 

Hpg3x; see (35) for additional nomenclature) retained binding function in the Met context 

while gaining the ability to bind to antigen in a new amino acid context. These results 

suggested that perhaps isolated clones would retain their binding activity after replacement 

of Met with other ncAAs in addition to Hpg. In order to examine this possibility, we 

studied Mut2’s ability to bind to digoxigenin after replacement of Met with Hpg, Aha, and 

Nrl. Flow cytometry revealed that cells displaying Mut2 consistently exhibit higher levels 

of fluorescence than Base in all of the amino acid contexts investigated (figure 4.1), 

confirming the improved function of this clone in ncAA contexts, particularly in the Hpg 

and Aha contexts. Because Mut2 was isolated in the Hpg context in screens aiming only to 

maximize the fluorescence of cells displaying scFvs, we suspected that further 

improvement of the kinetic properties of clones in multiple amino acid contexts might be 

possible with the generation and screening of an additional library of scFv variants. 

 

Screening in multiple ncAA contexts for variants with improved binding function. 

Lib1_1a Hpg3x was amplified using additional error-prone PCR and then used to construct 

a library consisting of 5.6 million transformants, Lib2 (see materials and methods). Lib2 

was subjected to screening after replacement of Met with Hpg, Aha, or Nrl. The use of 

multiple ncAAs during screening allowed us to investigate how different analogs affect 

scFv properties, and whether these effects would be large enough to result in context-

dependent mutations. Four rounds of FACS were performed under increasingly stringent 
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conditions (table 4.3) after library expression in each amino acid context, including the use 

of a kinetic competition procedure in the last two rounds of screening (29) in an attempt to 

isolate clones with the most favorable kinetic properties. After one round of sorting, the 

majority of clones in the sorted populations exhibited high levels of fluorescence, and the 

mean fluorescence of the sorted populations remained high after each round of sorting 

(figure 4.3). Individual clones were picked randomly after three (Hpg and Aha contexts) 

and four (Hpg, Aha, and Nrl contexts) rounds of enrichment, sequenced, and assessed for 

digoxigenin binding function using a method to estimate dissociation constants with cells 

displaying scFvs (29). The majority of clones isolated appeared to have on-cell dissociation 

rates comparable to or lower than that of Mut2 in the same amino acid context (table 4.4), 

and these clones exhibit numerous mutations that add or eliminate Met (ncAA) residues, 

convert small, aliphatic residues to aromatic residues, or convert aromatic residues to small, 

aliphatic residues (table 4.5). Although the mutations observed were similar regardless of 

the amino acid context used during screening, the frequencies with which these mutations 

occurred appeared to be context dependent. 

 

High-throughput sequencing of sorted populations. Differences in the sequences of 

isolated clones prompted us to more fully investigate whole populations of sorted clones. 

We used high-throughput sequencing to characterize samples of Lib1_1a Hpg3x, Lib2 

Hpg4x, Lib2 Aha4x, and Lib2 Nrl4x. Alignment of the sequencing output from each 

sample using the DNA sequence of Base as a reference enabled the calculation of 

frequencies of mutation at each position of the gene. Many positions within the populations 

were mutated at a frequency greater than five percent in at least one sample (table 4.6), and 
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a number of these nucleotide changes result in amino acid mutations within the scFv 

portion of the display construct such as Met additions and eliminations and conversions 

between small aliphatic and large aromatic residues (figure 4.4 and table 4.6). 

 Certain positions within the fragment appear to show ncAA context-dependent 

mutational frequencies in the sorted Lib2 populations (figure 4.4). For example, the 

observed frequencies of M(H20)I, M(H80)L, and L(H82C)M mutations increase from 

Lib1_1a Hpg Sort 3 to the Lib2 Hpg4x and Lib2 Aha4x populations, while these mutations 

are found to have similar or decreased frequencies in the Lib2 Nrl4x population. Mutations 

at position H24, which do not involve the Met codon, are found in over half of the reads 

covering this position in Lib2 Aha4x and Lib2 Nrl4x, while they occur at a much lower rate 

of twenty to thirty percent in Lib2 Hpg4x. We should note that the FACS procedure of 

isolating bright cells from a population does not ensure that all cells displaying scFvs with 

favorable binding properties will be isolated during the course of screening, nor does it 

ensure that bright cells will be isolated with a frequency proportional to their function. 

However, within our ability to limit these factors by oversampling populations to be sorted 

by at least tenfold, we observe amino acid–dependent changes in mutational frequencies. 

These results suggest that the mutations observed here affect scFv function in an amino 

acid context dependent fashion. 

 

Frequent amino acid mutations. Investigation of previously reported crystal structures of 

the Fab form of the 26-10 anti-digoxin antibody (32) revealed that most of the mutations 

identified in this work are located in regions far from the binding pocket of the protein 

(figure 4.4B). These results are consistent with the high affinity of the parent fragment for 
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digoxin and the surface complementarity observed between the binding pocket and the 

steroid portion of the antigen (32). Some of the mutations observed in this study are 

striking because of the frequent addition or elimination of Met (ncAA) residues within the 

scFv. Mutations M(H20)I and M(H80)L have been observed in previous engineering 

experiments with the 26-10 scFv (in the Met context only) (29), albeit only in one out of 

several sequence variants reported. Examinations of VH protein sequences from mouse 

germlines indicate the frequent presence of Met, Leu, and Ile at position H20, and 

predominantly Met and Leu residues at position H80 (36, 37). Perhaps mutations to convert 

Met to other commonly occurring residues at these framework positions become more 

favorable in ncAA contexts due to differences in Met and ncAA side chain properties. In 

particular, the differences between Met and Hpg side chains are quite striking because the 

Hpg side chain has one less rotatable bond than Met, Aha, and Nrl due to the presence of 

the terminal alkyne. The restriction of side chain conformation experienced upon 

replacement of Met by Hpg may partially explain why the clone Mut2 was isolated so 

frequently from Lib1_1a. The Hpg side chain has far fewer possible conformations than the 

Met side chain and may prevent adequate packing of the hydrophobic core upon 

substitution at positions H20 and H80. The mutation of Leu to Met (Hpg) at position H82C 

is more surprising given the structural differences between the side chains of Leu and Hpg 

and the lack of murine germline sequences possessing this mutation (36, 37). Perhaps the 

unique side chain character of Hpg or the position of this residue within a complementarity 

determining region (CDR) makes its insertion at position H82C more favorable or 

tolerable. However, we cannot rule out the possibility that this mutation is not 



 209 
advantageous given its frequent occurrence in parallel with Met elimination mutations that 

appear to be much more beneficial to the scFv. 

 Mutations at positions H20, H80, and H82C seem to be accommodated quite well 

in the Aha and Nrl contexts. However, their slight deenrichment in the Nrl4x population 

suggests that these mutations may not be as favorable with the aliphatic side chain 

compared to their occurrence with other amino acid side chains. The infrequent 

eliminations of Met observed in sorted populations at positions H34 and H100B show that 

not all Met positions within the scFv are intolerant of ncAA side chains. In fact, 

Met(H100B) directly contacts the antigen in the crystal structure of the Fab-digoxin 

complex (32), suggesting that the substituted ncAAs also directly contact the antigen upon 

incorporation. This direct contact with the antigen may be responsible for some of the 

changes in binding behavior observed in soluble scFvs (see below). Mutations at positions 

H24, H27, H29, and H30 are within a region known as the upper core of the scFv (38) that 

is disordered within the uncomplexed 26-10 Fab crystal structure (32). Mutations in this 

region have previously been observed to occur frequently in evolution experiments with the 

26-10 scFv (29). Given the importance of residues within this region for packing the upper 

core, ensuring a stable scFv framework, and ensuring proper orientation of the framework 

relative to complementarity determining regions (CDRs) (38), it seems plausible that the 

mutations observed here have beneficial effects on scFv stability or folding. Destabilization 

or poor protein folding oftentimes accompany ncAA substitutions (15, 16, 39) and may 

make mutations within the upper core very favorable in the amino acid contexts 

investigated here. 
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Kinetic characterization of scFvs produced in soluble form. We further studied the 

functional characteristics of scFvs containing ncAAs by expressing and purifying a number 

of mutants in soluble form (figure 4.5, table 4.7). Mutants for further characterization were 

chosen based on their on-cell dissociation kinetics (table 4.4): we selected the two to three 

mutants with the best koff values measured on-cell and one mutant exhibiting kinetics within 

the central range of koff values observed on-cell. Expression and purification resulted in the 

production of approximately 0.5–5 mg/L pure, monomeric protein for all scFvs produced 

(table 4.8). Each scFv variant isolated from Lib2 was produced in the ncAA context in 

which it was isolated and in its Met form, and Mut2 was produced in all four amino acid 

contexts of interest. Base was also expressed in all four amino acid contexts, but could only 

be purified in Met and Nrl forms. The extent of replacement of Met by ncAAs was 

estimated by MALDI mass spectrometry on trypsinized fragments of scFvs and found to be 

approximately 80%–90% in all samples analyzed (see materials and methods, figure 4.6, 

and table 4.8). 

 Systematic characterization of the kinetic properties of soluble scFvs using surface 

plasmon resonance revealed that the isolated fragments possess a modest range of kinetic 

characteristics that are influenced by amino acid context and amino acid mutations (table 

4.8, table 4.9). These differences manifest themselves almost entirely in the dissociation 

constants of the fragments. The sensitivity of the kinetics to replacement of Met is evident 

in the dissociation constant of Mut2. Incorporation of Hpg in Mut2 increases the 

dissociation rate constant by a factor of four, substitution of Aha lowers (improves) the 

dissociation constant by a factor of two, and incorporation of Nrl leaves the dissociation 

constant essentially unchanged. Interestingly, the dissociation constant of Mut2 in the Met 
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context is the same as that of Base, confirming that screening for scFv mutants functional 

in the Hpg context led to the isolation of clones retaining function in the methionine 

context while adapting to this new amino acid. Variants isolated from Lib2 were found to 

exhibit improved kinetics, with the koff values of the best variants isolated in Hpg and Nrl 

contexts reduced by twofold. Interestingly, the dissociation rate constants of these clones 

were also improved in the Met context compared to Mut2 and Base (also by twofold), 

suggesting that the mutations introduced into these clones are beneficial in multiple amino 

acid contexts; this trend is also borne out in the kinetic properties of other scFvs 

characterized in soluble form (table 4.8). The Aha forms of clones isolated in the Aha 

context had dissociation constants comparable to the koff values of Mut2 containing Aha, 

and in the case of Aha4x4, the Met form was found to have superior kinetic properties to 

the Met forms of Mut2 and Base. The lack of observed affinity maturation in the Aha 

context may be a result of the high affinity of Mut2 and other parent proteins in Aha form. 

 These kinetic characterizations reveal general trends in the effects of substituting 

ncAAs for Met in scFvs: i) compared to Met, Hpg is somewhat detrimental to the binding 

properties of all sequence variants characterized, ii) Aha improves binding affinity 

modestly, and iii) Nrl leaves the binding properties of scFvs unchanged. In all three ncAA 

contexts, we were successful in isolating sequence variants with favorable binding 

properties, demonstrating that sequence spaces containing ncAA analogs of Met still 

include numerous functional proteins. These results also suggest that affinity maturation 

experiments in multiple amino acid contexts can result in the isolation of clones with 

improved functional properties, as demonstrated by our ability to isolate Hpg- and Nrl-

containing fragments with lowered dissociation rates. 
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Chemical modification of scFvs. We attempted to exploit the chemical reactivities of 

Hpg- and Aha-containing scFvs using copper-catalyzed and copper-free click chemistries. 

An initial assessment of the surface accessibility (40) of all potential modification sites 

indicated that many appear to be buried in the interior of the protein (Figure 4.7). In our 

hands, copper-catalyzed azide-alkyne cycloadditions (CuAAC) of ncAA-containing 

proteins with fluorescent dyes appear to be inefficient (figure 4.8, table 4.10), with CuAAC 

on scFvs proceeding in lower yields than CuAAC with control proteins containing Aha or 

Hpg. These results are in line with previous reports suggesting that surface accessibility is 

critical for such reactions (41). However, strain-promoted click modification of azide-

containing proteins with dibenzocyclooctyne-functionalized Alexa Fluor 488 (DIBO 488, 

6) (42, 43) was more successful (Figure 4.9). Quantification of the extent of modification 

with the Aha forms of Aha3x2, Aha4x4, and Aha4x5 showed that roughly 0.4 dyes had 

reacted per protein in the case of Aha3x2 and Aha4x5 (table 4.11). The lack of labeling in 

the case of Aha4x4 may be explained by the absence of a potential modification site at 

position H34; this residue has been mutated from Met to isoleucine in Aha4x4. MALDI 

characterizations of intact and trypsinized protein samples before and after click chemistry 

confirmed labeling and enabled identification of position H34 as a frequent site of 

modification (figure 4.9, figure 4.10). The high number of proteins having multiple 

modifications may result from enhanced reactivity after a single protein site is modified. 

 Multiple experiments confirmed that proteins modified with 6 retain binding 

function. Kinetic characterizations revealed no substantial changes to the kinetic properties 

of chemically modified proteins (table 4.12). Western blotting with the clicked scFvs 

verified that these conjugates can detect the presence of digoxigenin-labeled proteins 
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(figure 4.11, figure 4.12). Probing nitrocellulose membranes with the Aha form of 6-

labeled Aha4x5 enabled fluorescence detection of the BSA-Dig samples down to 

approximately 5 nanograms. Interestingly, when the presence of BSA-Dig was detected 

through the hexahistidine tag of the Aha and Met forms of Aha4x5, the Aha form enabled 

fluorescence detection down to 5 nanograms BSA-Dig, while the Met form was only able 

to detect quantities of 50 nanograms BSA-Dig or greater. The higher sensitivity of the Aha 

form is consistent with the improved kinetic properties of scFvs containing Aha in place of 

Met. 

 

Simultaneous detection of scFv function and modification. The successful modification 

of Aha-containing scFvs with 6 prompted us to investigate the feasibility of using flow 

cytometry to detect function and modification of cell surface-displayed scFvs. Cells 

displaying Aha4x5 in Met and Aha forms were subjected to click reactions with biotin 

cyclooctyne 7 (44) and probed for binding with 5 and modification with streptavidin-

phycoerythrin (SA-PE). Control experiments allowed us to establish that i) many copies of 

the displayed scFvs remain functional after click chemistry, ii) whole-cell labeling with 7 is 

selective for cells displaying Aha-containing fragments, iii) the majority of signal 

associated with SA-PE detection of 7 is due to the display of Aha-bearing scFvs and not 

other cellular proteins, and iv) treating cells with unlabeled digoxin prior to treatment with 

5 blocks binding of the fluorescent probe to the scFvs (figure 4.13). Having shown that 

binding and modification can be simultaneously assessed on whole cells, we used a subset 

of samples to demonstrate separation of various cellular populations via FACS (figure 

4.14). Four-way sorting of a mixture of cells resulted in the isolation of populations of cells 
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binding antigen and possessing modifications, cells binding antigen without possessing 

modifications, cells possessing modifications without binding labeled antigen, and cells 

possessing neither modifications nor binding antigen. These results illustrate the feasibility 

of using FACS to screen libraries of chemically modified proteins. 

 

Conclusions 

 The combined use of ncAAs and E. coli cell surface display provides a powerful 

platform for engineering antibody fragments. Our results demonstrate that highly functional 

scFvs tolerant of ncAA side chains can be isolated from large protein libraries. These 

proteins appear to have gained functionality after ncAA incorporation while retaining their 

original functionality and can be thought of as amino acid “generalists,” in analogy to how 

enzymes tend to retain their activity toward an established substrate while evolving new 

substrate recognition capabilities (45, 46). Previous work has attributed the property of 

ncAA tolerance to robust folding properties (16, 39). In this work, the frequent mutation of 

amino acids located far away from the antigen binding pocket and within flexible regions 

of the protein chain suggests that the protein variants we have isolated may be favored for 

similar reasons. 

 We find that the binding properties of scFvs can be affected by the replacement of 

Met with ncAAs. The side chain properties of Hpg are apparently distinct enough from 

those of Met that two rounds of directed evolution were insufficient to isolate mutants that 

function equally well in Met and Hpg contexts. All of the Nrl-containing scFvs investigated 

here exhibit kinetic properties almost identical to their Met counterparts, suggesting that 

creating and evolving Nrl-containing proteins may provide an alternative route to 



 215 
oxidation-resistant proteins for use in therapeutic settings (26-28). The functional 

consequences of replacing of Met with Aha in anti-digoxin scFvs are striking in that the 

kinetic properties of the scFvs examined here appear to be improved in their Aha forms. 

The Met residue that directly contacts the antigen in the Fab-digoxin complex, M(H100B) 

(32), is conserved in all of the sequence variants characterized in this work. This 

conservation suggests the incorporation of the azide functionality into the binding pocket 

may be responsible for the improvements in the kinetic properties we have observed. This 

view is further supported by the fact that removal of each of the commonly occurring Mets 

(ncAAs) from two other structural locations (H34, H82C), in the scFv variants Aha4x4 and 

Aha4x5 does not appear to eliminate the kinetic improvement accompanying substitution 

of Aha for Met. Employing ncAAs in library designs aimed toward heavily patterning the 

binding pockets of proteins with combinations of a few amino acids (47) may reveal that 

unnatural side chains such as that of Aha have unique molecular recognition capabilities. 

Site-specific incorporation of ncAAs into antibody fragments is known to endow these 

binding proteins with advantages in recognizing targets where specific molecular 

interactions are known to be favorable (17-19), but a more expansive exploration of 

chemical space in binding pockets may yield new classes of binding reagents or general 

insights into how molecular recognition events are mediated. 

 The chemical reactivity of scFvs containing ncAAs provides mild routes to the 

preparation of functional bioconjugates. We achieved reasonably efficient labeling of 

azide-containing scFvs with strained alkynes even in the absence of azide groups predicted 

to be surface accessible, and soluble proteins modified in this fashion retain their function. 

The cell surface display platform utilized to isolate functional sequence variants also 
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provides a means for monitoring the chemical modification state of scFvs. Our FACS data 

suggests that libraries of proteins should be able to be screened for proteins that are both 

functional and amenable to chemical conjugation. The ability to improve protein function 

and chemistry simultaneously in a high-throughput manner may provide an efficient means 

to develop protein-small molecule (20, 21) and protein-polymer conjugates (22, 23) with 

properties useful for biopharmaceutical applications. This approach may be particularly 

useful for systematically studying how the number and location of modification sites within 

a protein impact protein function. Genetically encoding and screening libraries of 

chemically modified proteins may also be applicable to areas including the chemical 

construction of bi- or multivalent protein structures (48), switchable sensors (49, 50), or 

cyclized peptides (51, 52). 

 

Materials and Methods  

Materials.  The plasmids pB18D and pB30D, which encode for the cell surface-displayed 

anti-digoxin single chain variable fragment (scFv) in pBAD18 and pBAD30 vector 

backbones, were generous gifts from Professor George Georgiou (31). The plasmid 

pAK400, which is a standard periplasmic expression vector used with scFvs, was a 

generous gift from Professor Andreas Plückthun (53). The plasmids pQE-80L and pREP4 

were obtained from Qiagen (Valencia, CA). All DNA oligomers were purchased from 

Integrated DNA technologies (IDT, Coralville, Iowa), and all restriction enzymes were 

obtained from New England Biolabs (Ipswich, MA). DNA polymerases for cloning and for 

error prone PCR (Mutazyme II) were obtained from Stratagene/Agilent (Santa Clara, CA), 

and deoxynucleoside triphosphates were obtained from either Stratagene or Roche 
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(Indianapolis, IN). The E. coli cell strains XL-1 Blue and DH10B were obtained from 

Qiagen and Invitrogen (Carlsbad, CA), respectively. The methionine auxotrophic E. coli 

strain TYJV2 was made in-house using the red recombinase gene knockout method of 

Datsenko and Wanner to eliminate the gene metE from the E. coli strain DH10B (54, 55). 

Chemical reagents were purchased from Sigma-Aldrich (Madison, WI) unless otherwise 

noted. Canonical amino acids and L-norleucine (Nrl, 4) were obtained from Sigma-Aldrich.  

L-Homopropargylglycine (Hpg, 2) was purchased from Chiralix (Nijmegen, Netherlands). 

L-Azidohomoalanine (Aha, 3) was synthesized using the method of Link et al. (56) with 

minor modifications. BODIPY FL Digoxigenin 5 used during flow cytometry experiments 

was a generous gift of Professor Patrick Daugherty (originally purchased from Invitrogen), 

and propidium iodide for viability staining was from Invitrogen. Streptavidin-

phycoerythrin (SA-PE) was purchased from EBioSciences. Isopropyl-β-D-thiogalactoside 

(IPTG) was obtained from Gold Biosciences. DIBO 488 6 and TAMRA-Alkyne were from 

Invitrogen. Synthesis of the lissamine-rhodamine azide (57) and biotin cyclooctyne 7 (44) 

have been described previously. Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) and 

3-azidopropanol were gifts from Dr. Janek Szychowski. THPTA was synthesized as 

described previously (58), and 3-azidopropanol was prepared by azide displacement of 

bromine in 3-bromopropanol. GFPrm_AM (55) in alkyne and azide forms were provided 

by Alborz Mahdavi. The amine-reactive version of digoxigenin, 

3-amino-3-deoxydigoxigenin hemisuccinamide, succinimidyl ester, was purchased from 

Invitrogen. Bovine serum albumin was from Equitech Bio. (Kerrville, TX) or Pierce 

(Rockford, IL). Columns used in protein purification and reagents used in Biacore assays 

were obtained from GE Healthcare Life Sciences (Picataway, NJ). Nickel-nitrilotriacetic 
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acid (Ni-NTA) resin was purchased from Qiagen. Dialysis membranes were from 

Spectrum Labs (Rancho Dominguez, CA). Nitrocellulose membrane was from GE 

Healthcare Life Sciences. Alexa Fluor 647-labeled anti-penta His antibodies were 

purchased from Qiagen. Sequencing grade porcine trypsin was purchased from Promega 

(Madison, WI). Desalting columns for purifying mass spectrometry samples were 

purchased from Millipore (Billerica, MA). Zeba spin desalting columns for small-scale 

buffer exchanges were from Pierce, and PD-10 desalting columns for intermediate volume 

buffer exchanges were from GE Healthcare Life Sciences. 

 

Cloning and library construction. The plasmid pQE-80L-antidig-HisGS-Base was 

constructed in several steps. An EcoRI site in pB30D was eliminated via site-directed 

mutagenesis using the primer EcoRIElimFwd (sequence given in table 4.13) and its reverse 

complement EcoRIElimRev. This resulted in the generation of plasmid pJAV2, which was 

sequence verified. The Lpp-OmpA-scFv fusion was then amplified in two steps from 

pB18D. In the first step, an internal HindIII site was eliminated by performing two PCRs. 

The 5’ fragment was amplified using primers Lpp-OmpA-antidigFwd and HindIIIElimRev, 

and the 3’ fragment was amplified using HindIIIElimFwd and Lpp-OmpA-antidigRev1. 

After gel purification, a second amplification with the 5’- and 3’-fragments and primers 

Lpp-OmpA-antidigFwd and Lpp-OmpA-antidigRev2 was undertaken. The purified PCR 

product and pJAV2 were doubly digested using XmaI and HindIII and ligated. After 

transformation of electrocompetent XL-1 Blue cells and selection on plates containing 

chlorampenicol, sequences of clones containing the correctly sized insert were verified with 

DNA sequencing at Laragen (Culver City, CA). The resulting plasmid was designated 
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pJAV2-antidig-RGSHis. This plasmid was used as a template for additional PCR 

amplification of the fusion with Lpp-OmpA-antidigFwd and LppHisRescue. Double 

digestion of pQE-80L and the resulting PCR product, purification, and ligation resulted in 

the construction of the sequence-verified plasmid pQE-80L-antidig-HisGS. Introduction of 

restriction sites into the Lpp-OmpA-scFv fusion gene at locations suitable for library 

construction was accomplished through assembly PCR. Four PCRs were performed in 

which pQE-80L-antidig-HisGS was amplified with the following pairs of primers: 

80LLibFwd and PstIAddRev; PstIAddFwd and PstIElimRev; PstIElimFwd and 

BglIIAddRev; BglIIAddFwd and 80LLibRev. The resulting four PCR products were gel 

purified, mixed, and amplified using the primers 80LLibFwd and 80LLibRev. This PCR 

product was gel purified and doubly digested along with pQE-80L, both with the enzymes 

HindIII and XmaI. The two digest products were gel purified, ligated, transformed into 

electrocompetent E. coli XL-1 Blue cells, and plated on ampicillin plates. Colonies were 

tested for the proper insert size and sequence verified for the desired restriction site 

modifications (PstI and BglII), resulting in plasmid pQE-80L-antidig-HisGS-Base. The 

introduction of these restriction sites shortly after the Lpp portion of the construct and after 

the scFv sequence did not appear to affect the function of the display construct when 

compared to pQE-80L-antidig-HisGS or pB18D. 

 Libraries were constructed using pQE-80L-antidig-HisGS-Base (Lib1_1a) or the 

sorted population Lib1_1a Hpg3x (Lib2) as a template for error-prone PCR. The 

polymerase Mutazyme II from the Stratagene GeneMorph II kit was used to introduce 

errors throughout the length of the Lpp-OmpA-scFv gene at targeted error rates of roughly 

two to five mutations per gene (Lpp and histidine tags excluded from mutagenesis). After 
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an initial error-prone PCR step, additional amplification of DNA was performed using a 

higher fidelity polymerase. The insert and base construct were doubly digested using PstI 

and BglII. After gel purification and ligation, the resulting DNA was used to transform 

~200 µL of electrocompetent E. coli TYJV2 cells containing pREP4. These cells were 

rescued for one hour in 20–25 mL super optimized broth with catabolic repression (SOC), 

followed by inoculation into a large amount (0.25–1.0 L) of 2×YT medium containing 

ampicillin (200 mg/L) and kanamycin (34 mg/L) (2×YT KA). Before growing cells, small 

amounts (~0.5–50 µL) of the broth were distributed on agar plates containing ampicillin 

and kanamycin in order to estimate the total number of transformants in the library. The 

libraries were grown at 37 °C until surpassing an OD600 of 1.0, and plates were incubated at 

37 °C until colonies were large enough to count. Plasmid DNA was isolated from large 

amounts of culture volume (~200 mL) using a Qiagen Maxiprep kit. Aliquots of cells 

containing the library were stored at a 1:1 ratio with cell stock buffer (65% glycerol 

(vol/vol), 25 mM Tris, 100 mM MgSO4, pH 8.0) and frozen at −80 °C. In the construction 

of the first library (Lib1_1a), two separate transformations were performed (1 and 1a), 

aliquoted, and maxiprepped. Colony counts indicated that transformation 1 yielded about 

4.5 × 105 transformants, while transformation 1a yielded roughly 7.7 × 104 transformants. 

Random picking of ten clones revealed nine with the proper insert. Sequencing of these 

transformants using the primer 80LLibFwd revealed an approximate error rate of 

2.7 mutations per kilobase, or 3.0 per gene. Construction of Lib2 resulted in approximately 

5.6 × 106 independent transformants. Restriction fragment analysis of twelve clones 

showed that all twelve transformants selected had the proper inserts. Sequencing of ten 

clones using 80LLibRev revealed an approximate error rate of 4.2 mutations per kilobase, 
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or 4.7 per gene, in Lib2 relative to Base (this includes mutations acquired during the first 

round of screening). 

 Miniprepped plasmid DNA isolated from sorted libraries was transformed into 

fresh TYJV2 cells and grown on plates containing ampicillin and kanamycin. Individual 

colonies were randomly picked from plates, subjected to medium shifts and flow cytometry 

experiments to determine binding function on-cell (see below), miniprepped, and 

sequenced. The scFv portions of DNA from the variants to be studied in soluble form were 

PCR amplified using primers AntidigpAK400Fwd and AntidigpAK400Rev with the 

exception of clone Nrl4x3, which contained a mutation within the priming region of 

AntidigpAK400Fwd and was therefore amplified in the forward direction with the primer 

AntidigpAK400FwdNrl4x3. After PCR amplification, all PCR products and the vector 

pAK400 were digested with SfiI. Ligation of scFv genes and vector were performed using 

the New England Biolabs Quick Ligation Kit and transformed into electrocompetent 

DH10B cells. These cells were grown on agar plates at 30 °C containing chloramphenicol 

(35 mg/L) and one percent glucose. Resistant colonies were grown at 30 °C in liquid 

culture containing chloramphenicol and glucose, miniprepped, tested for the desired inserts, 

and verified by sequencing. 

 

Expression of cell surface display constructs. Protein expression of all cell surface-

displayed sequence variants and library populations to be studied via flow cytometry was 

performed using a standard medium shift procedure suitable for cell surface display (59). 

On the day of expression, cells harboring the sequence variants or populations of interest 

were grown at 37 °C in M9 minimal medium (M9 salts containing glucose (0.4% w/v), 
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thiamine hydrochloride (35 mg/L), MgSO4 (1 mM), CaCl2 (0.1 mM), and 20 amino acids 

(40 mg/L)) supplemented with ampicillin (200 mg/L), and kanamycin (35 mg/L) (M9 KA 

Glucose 20AA). Upon reaching an OD600 of roughly 0.5–1.0, cells were pelleted (6000 × g 

for 7 minutes in a fixed angle rotor or 3000–4000 × g for 10 minutes in a variable angle 

rotor) and resuspended in minimal medium lacking Met and allowed to grow at 37 °C for 

ten minutes. Cells were again pelleted and resuspended in minimal medium lacking Met 

and supplemented with Met or ncAAs as suitable for the given experiments. These cells 

were induced with 1 mM IPTG and allowed to grow at 25 °C for six hours. At the end of 

this time period, cells were pelleted and prepared for flow cytometry according to 

procedures described below. 

 

Flow cytometry, Lib1_1a. A single colony bearing plasmids 

pQE-80L-antidig-HisGS-Base (Base) and pREP4 was used to inoculate an overnight 

culture of minimal medium (2 mL) containing the twenty canonical amino acids, 

kanamycin, ampicillin, and glucose (M9 KA Glucose 20AA) and then grown at 37 °C. This 

culture was then diluted 1:100 into fresh M9 KA Glucose 20AA (~10 mL) the next 

morning. In the initial round of screening, equal volumes of transformations 1 and 1a were 

mixed, diluted 1:30 into 60 mL M9 KA Glucose 20AA, and grown at 37 °C. After reaching 

suitable OD600s (0.7–0.8) cells were shifted into new medium as described above. Cells 

bearing the plasmid coding for Base were aliquoted (3–4 mL/aliquot) and induced with 

1 mM IPTG in M9 KA Glucose containing 20 amino acids or 19 amino acids (−Met) 

supplemented with 2.5 mM Hpg. Cells bearing Lib1_1a were aliquoted into several small 

samples and induced in medium containing twenty canonical amino acids or 19 amino 
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acids (−Met) with 2.5 mM Hpg supplemented with 0, 10, 20, or 30 µM Met. Upon 

completion of the expression (6 hours), all cells were pelleted, washed once in phosphate-

buffered saline (PBS, pH 7.4: 8.00 g/L NaCl, 0.20 g/L KCl, 1.15 g/L Na2HPO4H2O, 

0.20 g/L KH2PO4), and resuspended in PBS to an OD600 of 1.0. Cells were then treated 

with 200 nM 5 in 0.25–1.0 mL aliquots for at least 45 minutes with gentle agitation at room 

temperature, diluted 1:20 into PBS, and filtered using 25 mm filters containing 5 µm 

Acrodisc Supor membranes (Pall Life Sciences, Ann Arbor, Michigan). 

 A MoFlo flow cytometer (Beckman Coulter, Miami, FL) was used for all scanning 

and library sorting. Control experiments confirmed that expression of Base in Met resulted 

cells exhibiting high fluorescence after exposure to 5, while cells expressed in 2.5 mM Hpg 

exhibited low fluorescence levels after exposure to 5, confirming that the medium shift was 

successful. Lib1_1a expressed in 2.5 mM Hpg and 20 µM Met was judged to have a 

sufficient number of positive events to make it suitable for sorting. A gate was set to collect 

the brightest ~0.1 % of the events, and sorting was allowed to proceed for a total of 

35 million events in the sort mode Single 1. Approximately 36,000 events satisfied the 

gating criteria and were deposited directly into a tube of SOC medium on ice. Upon 

completion of the sort, cells were rescued for 1 h at 37 °C in 2.5 mL SOC, diluted with 

10.5 mL 2×YT medium containing ampicillin and kanamycin, and allowed to grow 

overnight at 37 °C. The next day, aliquots of the sorted population were mixed 1:1 with cell 

stock buffer and frozen at −80 °C. The remainder of the rescued cells was miniprepped in 

order to isolate the plasmid DNA from the sort. Subsequent rounds of expression, scanning, 

and Lib1_1a sorting were performed as described above, with a frozen aliquot from the 

previous round of sorting used as the input for the next round of expression and cell 
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sorting. In rounds 2 and 3, the population to be sorted was expressed in M9 KA Glucose 

containing nineteen amino acids plus 2.5 mM Hpg (no Met). Sorting was performed with 

comparable stringencies and event totals as in round 1. 

 Miniprepped DNA from the third round of sorting was used to transform 

electrocompetent TYJV2 cells containing pREP4. Cells were rescued for one hour with 

SOC and plated on agar containing ampicillin and kanamycin. Ten colonies were chosen 

randomly for sequencing and characterization. Following inoculation into overnight 

cultures of M9 KA Glucose 20AA grown at 37 °C, cells were diluted 1:100 into fresh M9 

KA Glucose 20AA and 1:200 into fresh 2×YT supplemented with kanamycin and 

ampicillin (2×YT KA). Cells in minimal media were then subjected to medium shifts, 

induced with 1 mM IPTG in 2.5 mM Hpg for six hours, and harvested. Cells were treated 

with 200 nM 5 and subjected to flow cytometry to assess binding in the Hpg amino acid 

context. Cells grown in 2×YT KA were miniprepped for plasmid DNA and submitted for 

sequencing with the primers 80LLibFwd and 80LLibRev. 

 

Flow cytometry, Lib2. Rounds one and two of Lib2 sorting in various amino acid contexts 

were performed essentially as described for sorting Lib1_1a. Aliquots of the library were 

thawed and diluted 1:30 into fresh M9 KA Glucose 20AA, grown, shifted into fresh 

medium, and subjected to six-hour induction of protein expression in medium containing 

either 0.27 mM Met, 2.5 mM Hpg, 0.28 mM Aha, or 0.30 mM Nrl. In round 1, cells were 

sorted in Purify 1 mode after treatment with 200 nM 5, dilution, and filtering. A total set of 

events greater than ten times the library size was screened in each amino acid context, with 

0.2%–0.5% of the most fluorescent events retained and rescued as described above. In 
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round 2, the populations were treated with 100 nM 5 prior to screening, and 0.1%–0.2% of 

the most fluorescent events were retained and rescued. 

 Beginning with the third round of sorting, significant changes were made to the 

expression and sorting protocol. Frozen aliquots of library fractions were thawed and 

diluted 1:100 into fresh M9 KA Glucose 20AA and allowed to grow to saturation overnight 

at 37 °C, then diluted 1:50 the next morning into fresh M9 KA Glucose 20AA and grown, 

medium shifted, and induced as before. After completion of the induction period, cells 

were washed once in PBS, and library fractions of cells induced in the presence of ncAAs 

were resuspended at an OD600 of 0.2. The library fraction Hpg2x expressed in Hpg was 

sorted on the same day it was expressed. The library fraction was treated with 100 nM 5, 

with control samples (i.e., library fractions expressed in Met and Base in Met and Hpg) 

resuspended and treated with 100 nM 5 at an OD600 of 1.0. All other populations to be 

sorted (i.e., Aha2x, Aha3x, Hpg3x, Nrl2x, and Nrl3x) were incubated with gentle agitation 

overnight at 4 °C in PBS along with control samples (at the OD600s listed above). 

 Washing, viability staining, and kinetic competitions were used with all samples to 

be sorted in rounds three and four of sorting in an attempt to enrich sorted populations for 

clones with improved kinetic properties and exclude dead cells from isolation. Samples to 

be sorted were treated with 100 nM 5 for at least 45 minutes before being washed twice in 

PBS, diluted, filtered, and scanned. Cells were also treated with 5 µM propidium iodide 

(PI) at least five minutes before being scanned on the flow cytometer. Prior to sorting 

library fractions, the kinetic competition method of Daugherty et al. was employed (29). 

Two kinetic competitions were run in parallel: cells to be monitored as a function of time 

were washed twice after treatment with 5, diluted to an OD600 of 0.05, filtered, and exposed 
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to PI prior to competition. The population to be sorted was washed twice after treatment 

with 5 and diluted to an OD600 of 0.5 without exposure to PI prior to competition. The cells 

diluted to OD600 = 0.05 were scanned on the flow cytometer, and then competition was 

initiated in both samples by adding unlabeled digoxin to a final concentration of 2 µM. 

Total competition duration was determined empirically by monitoring the competition 

progress with scans of the more dilute cells every five minutes. When the mean 

fluorescence of the scanned population had been reduced by roughly 40%–60%, the 

competition of the cells at OD600 = 0.5 was stopped by washing the cells twice in ice-cold 

PBS. Cells were then diluted to an OD600 of 0.05, filtered, treated with PI, and sorted on the 

MoFlo using sort mode Single 1. Approximately 0.1%–1% of events were retained in each 

sort, which was gated to isolate cells exhibiting high levels of fluorescence after kinetic 

competition while excluding dead cells, doublets, and other aberrant events. Again, events 

totaling at least ten times the size of the sorted population (≤ 30,000 distinct clones, based 

on the number of events retained in previous sorts) were scanned in the course of a sort. 

Cells were retained and rescued as above. 

 

On-cell estimates of dissociation constants. Individual clones from sorted library 

populations were obtained by transforming electrocompetent TYJV2 cells containing 

pREP4 with plasmid DNA samples from sorted populations Hpg3x, Aha3x, Hpg4x, 

Aha4x, and Nrl4x. These transformed cells were then allowed to grow on agar plates 

supplemented with ampicillin and kanamycin. Individual colonies were picked and used to 

inoculate overnight liquid cultures in M9 KA Glucose 20AA and grown at 37 °C. The next 

morning, samples were diluted 1:50 into fresh M9 KA Glucose 20AA and grown at 37 °C 



 227 
in preparation for medium shifts. During the medium shifts performed on cells bearing 

individual mutants, a portion of each culture was diluted into fresh 2×YT KA and allowed 

to grow to saturation. Plasmid DNA from the 2×YT cultures was extracted and 

subsequently sequenced to determine the mutations present in each clone. Another portion 

of cells was shifted into fresh medium, and protein expression was induced in the ncAA 

context in which the clones were isolated. After expression, all cells were washed once and 

resuspended in PBS at an OD600 of 1.0 and kept at 4 °C overnight with gentle agitation. The 

next day, samples were treated with 100 nM 5 for at least 45 min at an OD600 of 0.2 and 

stored on ice. While on ice, all samples to be used in kinetic dissociation experiments (30) 

were treated with PI. Prior to scanning, samples that had been induced in the presence of 

Met, Hpg, or Aha were washed twice and then resuspended in PBS, again containing PI. 

For samples induced in the presence of Nrl, cells were pelleted, but not washed, prior to 

resuspension in PBS containing PI due to rapid loss of fluorescence in these samples. An 

initial scan of each clonal population was obtained prior to initiation of competition. 

Samples were then treated with 1 µM unlabeled digoxin competitor, mixed, and scanned 

every 60 seconds over a period of ten minutes. 

 Data from timed scans was analyzed using FlowJo (Tree Star, Ashland, OR) and 

Excel (Microsoft, Redmond, WA) using a previously described approach (30). All sample 

scans were gated to exclude PI-positive cells from the analysis. The mean fluorescence of 

all PI-negative cells was then calculated. To eliminate background fluorescence from all 

samples, the mean fluorescence of a sample of Base induced in the presence of Hpg 

(obtained on the same day as all data for kinetic dissociation experiments and gated to 

eliminate PI-positive cells) was subtracted from the fluorescence of all other samples. The 
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background-corrected data for an entire competition were then normalized based on the 

brightness of the sample of cells involved in the competition at t = 0 min. The resulting 

background-corrected, normalized data were fit to a first-order exponential equation of the 

form 

€ 

F = e−koff t ,  (4.1) 

where F is the relative fluorescence of the sample compared to the sample at time t = 0 min 

and koff is the dissociation rate of the antibody fragment. Results reported for all clones 

discussed here were performed once and served as a means for identifying individual 

clones to study in more detail. On each day these experiments were performed, the rate 

constant of either Base induced in Met or the protein product of pQE-80L-Antidig-HisGS 

containing Met was estimated as a control for day-to-day consistency of technique. Data 

are reported in groups of samples that were all assayed at the same time. All data was 

analyzed using the program Igor (Wavemetrics, Lake Oswego, OR), and the errors reported 

are the 95% confidence intervals of the fits to equation (4.1). 

 

Flow cytometry, simultaneous investigation of binding and chemical modification. 

TYJV2 cells containing a plasmid encoding cell surface-displayed Aha4x5 and the plasmid 

pREP4 and TYJV2 cells lacking plasmids were grown in M9 KA Glucose 20AA as 

described above and induced with 1 mM IPTG after using the standard cell surface display 

medium shift procedure, with induction performed in medium containing either 0.27 mM 

Met or 1 mM Aha. Samples left uninduced (TYJV2 cells with or without plasmids) were 

also subjected to medium shifts and expression conditions, without the addition of IPTG. 

After the six-hour expressions, cells were washed twice in ice-cold PBS and resuspended to 
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an OD600 of 1.0. Samples of cells were treated with 100 µM biotin cyclooctyne 7 and 

incubated at 37 °C for 16 hours (60). Additional portions of cultures were also incubated 

for 16 hours at 37 °C without exposure to 7. All samples were pelleted and resuspended, 

with cells treated with 7 washed twice in PBS prior to resuspension. Fluorescent probes 

were then added to probe the binding and modification states of cellular populations. All 

samples were treated with 100 nM 5, a 1:100 dilution of 0.2 mg/mL streptavidin-

phycoerythrin (SA-PE), or both dyes simultaneously for a period of 45 minutes or longer. 

Cells displaying the Aha form of Aha4x5 were also treated with 10 µM digoxin prior to 

exposure to 5 and SA-PE. After dye exposure, all samples were washed twice in PBS, 

diluted by at least tenfold, and filtered. 

 Samples were scanned using a MoFlo XDP flow cytometer (Beckman Coulter) 

upgraded from MoFlo to MoFlo XDP status by Propel Labs (Fort Collins, CO). Manual 

compensation was performed to enable simultaneous detection of BODIPY and 

phycoerythrin fluorescence without cross talk between fluorescence channels. Antigen 

binding and chemical modification were examined with scans of many different samples 

(see Figure 4.13). Once the ability to simultaneously monitor antigen binding and chemical 

modification was established, a model sort was set up by combining four populations of 

cells bearing the plasmid coding for Aha4x5 that were all reacted with 7 and exposed to 5 

and SA-PE: uninduced cells grown in Aha, induced cells expressed in Met, induced cells 

expressed in Aha blocked with unlabeled digoxin, and induced cells expressed in Aha. 

Elliptical regions were established in the two-dimensional dot plot of BODIPY versus 

phycoerythrin fluorescence intending to capture populations of cells with interesting 

combinations of fluorescence properties. A four-way sort performed in Purify mode 
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enabled isolation of cells with all possible combinations of high and low BODIPY and 

phycoerythrin fluorescence. The fluorescence properties of the isolated populations were 

examined by running each population on the flow cytometer immediately after completion 

of the sort. 

 

Expression and purification of soluble scFvs. TYJV2 cells bearing individual scFv 

sequence variants in the pAK400 backbone were inoculated into 2 mL M9 minimal 

medium containing twenty amino acids and 0.4% glucose supplemented with 

chloramphenicol (M9 Chlor Glucose 20AA). Cells were allowed to grow at 30 °C for four 

or more hours, followed by 1:20 dilution into 20–40 mL fresh M9 Chlor Glucose 20AA 

and growth at 30 °C overnight. Saturated cultures were then diluted 1:20 into 0.25–1.0 L 

M9 Chlor Glucose 20AA and grown at 30 °C until reaching an OD600 of approximately       

0.9–1.0. At this time, the cells were pelleted (15 min at 5000 × g, 4 °C), washed three times 

in ice-cold 0.9% NaCl, and resuspended in fresh M9 medium containing 19 amino acids 

(minus Met), 0.4% glycerol, and chloramphenicol (M9 Chlor Glycerol 19AA). Aliquots 

were supplemented with Met (0.27 mM), Hpg (1 mM), Aha (1 mM), or Nrl (2.3 mM) and 

grown at 25 °C for thirty minutes. Cultures were then induced with 1 mM IPTG and 

allowed to grow for four hours at 25 °C. 

 At completion of expression, cells were pelleted (15 min at 5000 × g, 4 °C) and 

resuspended vigorously in 32 mL per liter culture volume of ice-cold 0.75 M sucrose, 

0.1 M Tris, pH 8.0 (Tris/sucrose buffer). All subsequent scFv purification steps were 

performed at 4 °C or on ice unless otherwise noted. An adaptation of a previously 

described osmotic shock procedure (61) was used to isolate the periplasmic fractions of 
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cells, which contain the expressed scFvs. After resuspension, the Tris/sucrose buffer 

containing cells was supplemented with 3.2 mL per liter culture volume 10 mg/mL ice-cold 

lysozyme in Tris/sucrose buffer. Pellets were rotated at 140 RPM on ice during dropwise 

addition of 64 mL per liter culture volume of 1 mM ethylenediaminetetraacetic acid 

(EDTA). After a ten-minute incubation (still with rotation), 3 mL per liter culture volume 

0.5 M magnesium chloride was added dropwise to the cell suspension. After another ten-

minute incubation period, the samples were pelleted (10,000 × g, 20 minutes, 4 °C). The 

supernatants were dialyzed overnight against a solution of Ni-NTA start buffer (0.3 M 

NaCl, 0.05 M NaH2PO4, 0.01 M imidazole, pH 8.0) at 4 °C using 12–14 kilodalton 

molecular weight cutoff (MWCO) dialysis tubing. Dialyzed samples were filtered using 

25 mm Acrodisc Supor filters with 5 µm pores and incubated for multiple hours with Ni-

NTA agarose prewashed with Ni-NTA start buffer (4.0 mL per liter culture volume 

resuspended slurry) at 4 °C. The Ni-NTA slurries were added to columns and the 

flowthrough was collected. After two washes using 20 mL per liter culture volume Ni-NTA 

wash buffer (0.3 M NaCl, 0.05 M NaH2PO4, 0.02 M imidazole, pH 8.0), samples were 

eluted using 4 × 4.0 mL per liter culture volume Ni-NTA elution buffer (0.3 M NaCl, 0.05 

M NaH2PO4, 0.25 M imidazole, pH 8.0). The presence of protein in the eluent was 

confirmed by spotting small portions of each elution fraction onto filter paper, staining the 

paper with coomassie blue stain (2.5 g/L coomassie blue and 2.5 g/L cupric sulfate in a 

solution of 5:4:1 water:ethanol:acetic acid) and destaining using 5:4:1 water:ethanol:acetic 

acid. Fractions found to contain large amounts of protein were pooled and dialyzed against 

ion exchange start buffer (125 mM NaCl, 20 mM Tris, pH 8.0), saving aside small amounts 
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of eluent for sodium docedecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis. 

 Ion exchange and size exclusion chromatography were performed on dialyzed 

eluents from Ni-NTA purification using an AktaPrime Plus fast performance liquid 

chromatography (FPLC, GE Healthcare) system refrigerated at 4 °C. A 1.0 mL HiTrapQ 

XL ion exchange column was used according to the manufacturer’s instructions with ion 

exchange start buffer and ion exchange high salt buffer (1 M NaCl, 20 mM Tris pH 8.0). 

The majority of scFv protein samples eluted during initial injection onto the column, while 

impurities tended to bind to the column until the salt concentration on the column was 

increased. The column flow-through containing scFv was collected, pooled, and 

concentrated to approximately 1.0–1.5 mL using Amicon Ultra-15 10 kilodalton MWCO 

concentration devices primed with HBS +EDTA (150 mM NaCl, 10 mM HEPES, 3 mM 

EDTA, pH 7.4). Size exclusion chromatography was performed using a HiPrep 16/60 

Sephacryl S-100 HR using HBS +EDTA at a flow rate of 1 mL/min. This column allowed 

resolution of dimer and monomer scFv peaks. Fractions of monomeric protein were 

collected, pooled, and concentrated using Amicon Ultra-15 concentrators. 

 

Protein characterization. All purification processes were assessed by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. After Ni-NTA, ion 

exchange, and size exclusion chromatography, all samples were found to be greater than 

ninety percent pure as judged by quantification of band intensities after colloidal blue 

staining (Invitrogen). Gels were imaged on a Typhoon Trio (GE Healthcare, Piscataway, 

NJ) imager, and the resulting images were processed using ImageQuant software (GE 
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Healthcare). Concentrations of protein samples were determined using bicinchoninic acid 

(BCA) assay kits from Pierce. Proteins were stored in HBS +EDTA buffer at 4 °C long 

term. Size exclusion chromatography on monomeric fractions of select proteins after 

storage for multiple months revealed no evidence of dimerization or aggregation. 

 Matrix-assisted laser desorption ionization (MALDI) mass spectrometry was 

performed on trypsinized samples in order to assess amino acid replacement levels. All 

samples to be examined were buffer exchanged into denaturing buffer (8 M urea, 0.1 M 

Tris, pH 8.0) using Amicon Ultra-0.5 mL concentration devices. 20–40 µL of sample was 

reduced by adding tris(2-carboxyethyl)phosphine (TCEP) to a final concentration of 

3.75 mM and incubating the sample at room temperature for 15 minutes. In the case of 

azide-containing samples, dithiothreitol (DTT) was used to reduce some samples by adding 

the reducing agent to a final concentration of 2.5 mM and incubating samples at 55−60 °C 

for 15 minutes. All reduced samples were then alkylated by adding iodoacetamide to a final 

concentration of 12.5 mM and incubation at room temperature in the dark for 15 minutes. 

Following alkylation, 10 volumes of 50 mM ammonium bicarbonate, pH 7.8, were added 

to each solution along with 2.5–5 µL of trypsin (Promega, 0.1 µg/µL), and cleavage was 

allowed to proceed overnight at 37 °C. Trifluoroacetic acid (TFA) was added to a final 

concentration of 0.1% to each cleaved sample, and C18 Zip Tips (Millipore) were used to 

desalt peptide samples according to the manufacturer’s protocol with one slight 

modification. In between wetting and equilibrating the columns, a 50/50 acetonitrile/0.1% 

TFA solution was used to wash the columns. All samples were then complexed with 

α-cyano-4-hydroxycinnamic acid, dried on a MALDI target, and assayed using a Voyager 

DE Pro (Applied Biosystems, Carlsbad, CA) at the Caltech Division of Chemistry and 
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Chemical Engineering Mass Spectrometry Facility. All observed peptide masses fell within 

instrument tolerances of mass accuracies. Azide-containing peptides were observed to 

frequently lose dinitrogen and gain two hydrogen atoms during acquisition of MALDI 

mass spectra (62). 

 Incorporation levels of ncAAs were determined using processed MALDI mass 

spectra. All spectra were baselined and deisotoped using Data Explorer software (Applied 

Biosystems). The fraction of peptides bearing the ncAA substitution was calculated based 

on the counts of peaks corresponding to substituted and unsubstituted peptides. In most 

cases, the deisotoping procedure resulted in the presence of single peaks at the substituted 

and unsubstituted mass positions. In cases where the deisotoping still resulted in multiple 

peaks, the counts of all peaks corresponding to unsubstituted and substituted peptides were 

summed prior to calculating the fraction of substituted peaks. 

 MALDI mass spectrometry was also used on trypsinized and whole-protein 

samples in order to determine modification sites after click chemistry (see below). 

Trypsinized samples of modified proteins were prepared as described above. Whole-

protein samples were also buffer exchanged into a solution of 8 M Urea, 0.1 M Tris, 

pH 8.0. To each solution was added ten volumes of 50 mM ammonium bicarbonate, 

pH 7.8, followed by adjustment of the sample to 0.1% TFA. Protein samples were then 

desalted using C4 Zip Tips and further prepared for MALDI as described above. 

 

Protein modification. All strain-promoted click chemistry on soluble scFvs was 

performed using Alexa Fluor 488 dibenzocyclooctyne (DIBO) (6, Invitrogen). Compound 

6 was added to a final concentration of 10 µM to 1.75 µM solutions of Aha- or Met-
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containing scFvs in HBS +EDTA buffer. Solutions were vortexed briefly, and reaction was 

allowed to proceed for one hour at room temperature. Reactions were quenched by adding 

3-azidopropanol to a final concentration of 10–20 mM and vortexing. Copper-catalyzed 

azide-alkyne cycloadditions (CuAAC) were performed with reference to the conditions 

outlined by Hong et al. (58). All reactions were performed on protein solutions in PBS, pH 

7.4, having concentrations of roughly 1.0 to 1.75 µM protein. scFv protein samples were 

buffer exchanged into PBS prior to reaction using one or two Zeba Spin desalting columns 

(7000 Dalton MWCO) from Pierce. Modification of alkyne-containing proteins was 

performed using a lissamine rhodamine azide dye described previously (57), and 

modification of azide-containing proteins was performed with TAMRA-alkyne 

(Invitrogen). Final reaction mixtures contained 100 µM cupric sulfate, 500 µM THPTA, 

5 mM aminoguanidine, and 5 mM sodium ascorbate (added last). Fluorescent dyes were 

preincubated with cupric sulfate and THPTA and added to the reactions at final 

concentrations of 20–200 µM (azide-containing proteins) or 20 µM (alkyne-containing 

proteins). Reaction mixtures were capped, vortexed briefly, and incubated for one hour at 

room temperature. All reactions were quenched with 10 mM 3-azidopropanol. GFPrm_AM 

(55) in azide and alkyne forms was used as a positive control. 

 All dye-labeled proteins were run on denaturing SDS-PAGE gels in order to assess 

dye labeling. After electrophoretic separation, gels were destained in a solution of 50% 

methanol, 40% water, and 10% acetic acidic and rinsed in water. The Typhoon Trio was 

used to detect the presence of fluorescent bands on the gels. Gels were then stained 

overnight in colloidal blue staining solution, washed with water, and imaged again on the 

Typhoon Trio. Gels images were processed using ImageQuant software to assess the 
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relative amounts of fluorescent dyes attached to protein samples of various types. 

Quantification of the extent of reaction between azide-containing proteins and compound 6 

was performed by using Alexa Fluor 488-labeled streptavidin as an in-gel fluorescence 

standard. Absorbance measurements on a Cary 50 ultraviolet-visible spectrophotometer 

(Agilent) were used to obtain protein concentrations and the extent of labeling of the 

concentrated fluorescent streptavidin standard. Known concentrations of standard and 

known protein quantities of labeled samples were run on SDS-PAGE gels and imaged as 

above. Establishment of a standard curve enabled estimation of the quantity of fluorescent 

dye present in the bands of each experimental sample, and knowledge of the protein 

concentration enabled the number of dye molecules per protein to be calculated. Results 

reported here are the averages of three triplicate experiments. In the case of the Aha form 

of Aha4x5, protein expressed and purified in two separate batches was used to estimate the 

extent of dye labeling. All other proteins assessed for extent of modification were from a 

single batch of purified proteins. 

 

Western blotting. Digoxigenin-labeled bovine serum albumin (BSA) was prepared by 

conjugating amine-reactive 3-amino-3-deoxydigoxigenin hemisuccinamide, succinimidyl 

ester (Invitrogen) to BSA using reaction conditions described by the manufacturer. Briefly, 

approximately 10.2 mg of BSA was dissolved in 1 mL 0.1 M NaH2CO3, pH 9.0 and stirred 

in a scintillation vial. A small amount (≤ 1 mg) of 3-amino-3-deoxydigoxigenin 

hemisuccinamide, succinimidyl ester dissolved in 150 µL N,N-dimethylformamide was 

added dropwise to the BSA solution. The mixture was stirred at room temperature for five 

minutes, diluted to 2.5 mL using PBS, pH 7.4, and run on a preequilibrated PD-10 
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desalting column in order to isolate the BSA from the unreacted labeling agent and to 

perform a buffer exchange into PBS, pH 7.4. 

 Detection of the presence of digoxigenin-labeled BSA (BSA-Dig) in protein 

samples was achieved using standard Western blotting procedures. Samples of BSA and 

BSA-Dig mixed with E. coli lysates (~5.5 µg/lane) were run on SDS-PAGE gels and 

transferred onto nitrocellulose membranes. Membranes were blocked for at least one hour 

in PBS, pH 7.4, containing 0.1% TWEEN-20 and either 3% (w/v) BSA or 5% (w/v) 

powdered milk solution (Nestle, Glendale, CA). Membranes were washed in PBS, pH 7.4 

containing 0.1% TWEEN-20 (PBS-TWEEN) before exposure to labeled scFvs. 100–

250 µL of 1.75 µM antibody fragment samples reacted with compound 6 as described 

above were diluted into approximately 10 mL of PBS-TWEEN containing either 3% BSA 

or 5% powdered milk and exposed to membranes for approximately 1 hour. Membranes 

were washed with multiple changes of PBS-TWEEN and imaged using the Typhoon Trio. 

In some cases, membranes were placed back into PBS-TWEEN containing 5% milk and 

exposed to Alexa Fluor 647-labeled anti-penta-his antibodies added to solution at a 

1:10,000 dilution for one hour, washed, and imaged. These experiments enabled secondary 

detection of digoxigenin using the histidine tag of the scFvs and served to probe the 

binding function of scFvs regardless of whether the antibody fragments in question 

appeared to be labeled with fluorescent dye. 

 

Kinetic characterizations of soluble scFvs. A Biacore T100 instrument was used to 

determine the binding kinetics of scFvs using surface plasmon resonance. All assays were 

performed on CM5 chips to which BSA and BSA-Dig were immobilized using standard 
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amine coupling procedures for the T100 processing unit. Flow cells to which BSA was 

immobilized served as a means to double reference all data obtained on flow cells 

containing immobilized BSA-Dig. Two separate CM5 chips containing immobilized BSA 

and BSA-Dig were prepared and used to assay the binding kinetics of scFvs. One chip 

contained 92.9 response units of BSA immobilized to one flow cell and 12.7 response units 

of BSA-Dig immobilized to a second flow cell. The other chip used to assay kinetics 

contained one flow to which 39.7 response units of BSA was bound and three flow cells to 

which BSA-Dig was bound at response unit levels of 10.6, 5.4, and 45.9. Standard 

multicycle kinetics assays were performed at 25 °C on all scFvs of interest, including dye-

labeled samples, using HBS EP+ (HBS +EDTA with 0.005 % surfactant P20) as a running 

buffer at a 90 µL/min flow rate. Surface regeneration was achieved by exposing the chip to 

10 mM glycine-HCl, pH 2.0, for 60 seconds (90 µL/min flow rate). scFv samples were 

injected onto the chip in concentrations ranging from 0.3125 to 40 nM in twofold 

increments (i.e., 0.3125, 0.625, 1.25, 2.5, 5, 10, 20, and 40 nM concentrations). Blank 

samples (no scFv) were also run, and each sample/blank was run twice during the course of 

an assay. Injection and dissociation times depended on the amino acids present in the scFv 

sample in question. scFvs containing Hpg were injected for a period of 180 seconds, while 

scFvs containing all other amino acids were injected for 120 seconds. The dissociation of 

scFvs containing Aha from the chip surface was monitored for 650 seconds, while all other 

scFv dissociations were monitored for 450 seconds. All scFv samples (including those 

samples reacted with 6) were diluted to the final concentrations need for kinetic assays 

using HBS EP+, without dialysis or other buffer exchange into the Biacore running buffer. 
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Before assaying experimental samples, and in between different scFv samples, the chip 

used in assays was reconditioned using at least five startup cycles. 

 Kinetic constants for all scFvs were determined using Biacore T100 Evaluation 

software. All binding curves were subjected to software-provided double referencing 

procedures before performing data fits using the standard 1:1 binding kinetic transport 

model provided with the software (63). Data fits usually included all data up to and 

including 20 nM injections, excluding samples in which air bubbles or other deviations 

marred the sensorgrams. Most fitting could be performed without invoking significant mass 

transport limitations (mass transport constant kt ≥ 1010). However, all data taken on Hpg-

containing fragments showed evidence of substantial mass transport limitation (kt ~106–

108), meaning that the values for kon and koff reported here for these scFvs may be slightly 

different from values determined in the absence of significant mass transport limitations 

(64). All data reported here are the averages of independent experiments performed on the 

two chips prepared as described above, with a total of four determinations of kinetic 

parameters through data fitting on each chip surface containing immobilized BSA-Dig. 

 

High-throughput sequencing. Frozen aliquots of Lib1_1a Hpg3x, Lib2 Hpg4x, Lib2 

Aha4x, and Lib2 Nrl4x were thawed, diluted 1:200 into 200 mL 2×YT KA, and grown at 

37 °C until the OD600s of each culture exceeded 1.0. The cultures were pelleted (5000 × g, 

15 min, 4 °C), decanted, and frozen at −20 °C for at least 12 hours. Plasmid DNA from 

each sorted population was then isolated using a Maxiprep kit. All DNA was digested 

using restriction enzymes BglII and PstI, and fragments containing the Lpp-OmpA-scFv 

fusion gene (excluding Lpp and His tag portions of the gene) were separated from other 
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DNA fragments via gel electrophoresis. Approximately 1–3 µg DNA of each library 

population was submitted to the Millard and Muriel Jacobs Genetics and Genomics 

Laboratory at the California Institute of Technology for fragmentation and high-throughput 

sequencing using the Illumina Genome Analyzer IIx platform (Illumina, San Diego, CA). 

DNA samples were subjected to fragmentation and cluster generation according to the 

manufacturer’s recommendations, and 38-base sequencing runs were performed on each 

sample (one lane/sample). Each run yielded over 30 million sequencing reads on an 

estimated 3.5–4.2 × 105 clusters. All data was aligned to the DNA sequence of Base, and 

the total number of calls of A, C, G, T, and N, at every position of each population were 

tallied using a script developed at the genomics laboratory. Every position within the 

construct was read at least 8,500 times in all populations. Substantial variations in the total 

numbers of reads at each position were observed (ranging from approximately 8,500 to 

greater than 1 million), most likely due to nonuniform fragmentation of the restriction 

fragment. However, even the minimum coverage of 8500 yields good sampling of the 

populations to be characterized, which are the result of repeated isolations of no more than 

20,000–30,000 sequence variants via flow cytometry. All sequencing data was searched for 

positions at which 5% or more of the total reads indicated mutations from the nucleotide 

present in the base construct in a given population using scripts developed in Matlab (only 

single nucleotide mutations were considered in this analysis). Data are presented here on all 

positions at which at least one population displayed 5% deviation from Base with the 

additional criteria that the base call quality (Q, as defined by the Illumina analysis software) 

of at least one nucleotide (A, C, G, or T) at the position of interest exceeded 30. 
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Scheme 4.1. Compounds used in study. 1, methionine (Met). 2, homopropargylglycine 

(Hpg). 3, azidohomoalanine (Aha). 4, norleucine (Nrl). 5, BODIPY FL Digoxigenin. 6, 

Alexa Fluor 488 dibenzocyclooctyne (DIBO 488). The structure of the linker has not been 

disclosed by Invitrogen. 7, biotin cyclooctyne. 
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Scheme 4.2. Chemistries used in modifying azide- and alkyne-containing ncAAs. Copper-

catalyzed azide-alkyne cycloaddition reaction (CuAAC, top) and strain-promoted 

cycloaddition reaction (bottom). 
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Figure 4.1. Flow cytometry studies of the binding properties of cell surface displayed 

scFvs. (A–D) Base construct expression in Met (A), Hpg (B), Aha (C), and Nrl (D) 

contexts, followed by exposure of cells to fluorescently labeled antigen 5. (E–H) Mut2 

construct expression in Met (E), Hpg (F), Aha (G), and Nrl (H) contexts, followed by 

exposure of cells to fluorescently labeled antigen 5. (I) Schematic representation of cells 

displaying scFvs containing Met or ncAA analogs of Met and binding to labeled antigen. µ, 

mean fluorescence. 
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Figure 4.2. Fluorescence activated cell sorting of Lib1_1a for clones that function when 

Met is replaced by Hpg. Expression of cells harboring the naïve library and sorted 

populations was performed in minimal media containing concentrations of Met and Hpg as 

indicated. After treatment of induced cells with 5, the fluorescence of each sample was 

measured on the flow cytometer. Boxed populations were sorted, and events falling into the 

top ~0.1% of fluorescence measurements in the BODIPY channel were retained for the 

next round of sorting. Note that the naïve library was sorted after induction of expression in 

medium containing a small amount of Met in addition to Hpg (16). AA, amino acid. µ, 

Mean fluorescence. 



 253 

 

Figure 4.3. Fluorescence activated cell sorting of Lib2 for clones that function when Met is 

replaced by ncAAs. Expression of the naïve library and sorted populations was performed 

in minimal media containing concentrations of ncAAs as indicated. The fluorescence of 

each population was measured on the flow cytometer. Starting with “Sort 2” in each amino 

acid context, cells were washed twice prior to flow cytometry. Each sample was subjected 

to labeling and kinetic competitions as outlined in table 4.3; the top ~0.1%–1.0% of 

fluorescent events were retained. AA, amino acid. µ, mean fluorescence. 
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Figure 4.4. Population-level sequence characterization of scFv mutants using high-

throughput sequencing. (A) Frequently mutated amino acids in sorted scFv populations 

(Kabat numbering). (B) Structural positions of mutations to scFv in crystal structure of 26-

10 Fab-digoxin complex solved by Jeffrey et al. (32). The backbone of the Fv portion of 
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the Fab is outlined with a ribbon diagram (gray), with amino acids of interest shown as 

space filling and the antigen shown as sticks in white. Unless otherwise noted, labeled 

residues are frequently mutated. H, heavy chain. L, light chain. Space filling colored by 

elements: carbon, gray; oxygen, red; nitrogen, blue; sulfur, yellow. Structure produced 

from the “A” and “B” chains of PDB structure 1IGJ with MacPyMOL. 
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Figure 4.5. Summary of directed evolution of cell surface-displayed scFvs. Error-prone 

PCR using the DNA of Base (both display anchor and scFv) enabled construction and 

expression of Lib1_1a on the surface of E. coli cells. The library was screened for clones 

retaining binding function after the replacement of Met with Hpg. After three rounds of cell 

sorting, Lib1_1a Hpg3x contained a large fraction of Hpg-tolerant clones. This population 

was used as the basis for the construction of Lib2. Lib2 was screened for functional scFvs 

after the replacement of Met with Hpg, Aha, and Nrl in separate screens. Individual clones 

characterized in this work are noted below the populations from which they were isolated. 
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Figure 4.6. Examples of data used in estimating ncAA incorporation levels in scFvs with 

matrix-assisted laser desorption ionization (MALDI) mass spectrometry. (A, B) Portion of 

MALDI spectrum of trypsinized Hpg4x3 containing Hpg before (A) and after (B) 

processing that includes the peptide FSGNIFTDFYMNWVR. Replacement of Met by Hpg 

causes a peptide mass shift of approximately 22 Da. [M+H]+’s in unprocessed spectrum: 

Met form, 1896.87 Da calculated, 1897.17 Da observed. Hpg form, 1874.88 Da calculated, 
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1875.18 Da observed. (C, D) Portion of MALDI spectrum of trypsinized Aha3x2 

containing Aha before (C) and after (D) processing that includes the peptide 

SSGYISTDFYMNWVR. Replacement of Met by Aha results in a peptide mass shift of 

approximately 5 Da. The peak with a mass 26 Da lower than the substituted peak is 

characteristic of azide-containing peptides in MALDI and corresponds to the Aha-

containing peptide after loss of dinitrogen and gain of two hydrogen atoms (62). [M+H]+’s 

in unprocessed spectrum: Met form, 1825.82 Da calculated, 1825.77 Da observed. Aha 

form, 1820.82 and 1794.84 Da (loss of dinitrogen and gain of two hydrogen atoms) 

calculated, 1820.77 and 1794.82 Da observed, respectively. (E, F) Portion of MALDI 

spectrum of trypsinized Mut2 containing Nrl before (E) and after (F) processing containing 

the peptide SSGYIFTDFYMNWVR. Replacement of Met by Nrl results in a peptide mass 

shift of approximately 18 Da. [M+H]+’s in unprocessed spectrum: Met form, 1885.86 Da 

calculated, 1885.98 Da observed. Nrl form, 1867.90 Da calculated, 1868.04 Da observed. 

Prior to estimating incorporation levels, all spectra were baseline corrected and deisotoped, 

with results shown as in (B), (D), and (F). The fraction of peptides bearing the ncAA 

substitution was calculated and used as a means of estimating amino acid replacement 

levels. In most cases, the deisotoping procedure resulted in the presence of single peaks at 

the substituted and unsubstituted positions. In cases where the deisotoping still resulted in 

multiple peaks (Aha-containing peptides or imperfect deisotoping), the counts of all peaks 

corresponding to unsubstituted and substituted peptides were summed prior to calculating 

the fraction of substituted peaks. (G) Portion of MALDI spectrum of trypsinized Aha4x4 

containing Aha that includes the peptide 

WAMDYWGHGASVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLAVSLGQR. The 
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only peptide containing Met (Aha) within the range of the higher-resolution acquisition 

used to estimate ncAA incorporation levels of all other proteins did not appear at high 

enough intensities to allow for quantification of substitution with Aha4x4 containing Aha. 

However, the pattern of substituted peak intensities observed in the unprocessed spectrum 

shown in (G) is similar to the pattern observed in other Aha-substituted peaks (C), 

suggesting a high level of substitution. The deisotoping algorithm could not resolve the 

unsubstituted and substituted peaks at observed m/z values of 4534.58 and 4529.66 Da, 

respectively, making quantification of substitution levels unfeasible. [M+H]+’s: Met form, 

4535.23 Da calculated, 4534.58 Da observed. Aha form, 4530.14 and 4504.14 Da (loss of 

dinitrogen and gain of two hydrogen atoms) calculated, 4529.66 and 4503.57 Da observed. 
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Figure 4.7. Positions of Met residues and residues mutated to Met in scFv. Each residue in 

the protein that exists as Met in at least one solubly produced variant is shown in space 

filling, with calculated surface accessibilities from GetArea (40) listed beneath the residue 

of interest. The accessibility numbers reported here are the average of three calculations 

performed using PDB files 1IGI (1 Fab molecule/unit cell) and 1IGJ (2 Fab molecules/unit 

cell, complexed to ligand) (32). The backbone of the Fv portion of the Fab is outlined with 

a ribbon diagram (gray), with amino acids of interest shown as space filling and the antigen 

is shown as sticks in white. Unless otherwise noted, labeled residues are frequently 
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mutated. H, heavy chain. L, light chain. Space filling colored by elements: carbon, gray; 

oxygen, red; nitrogen, blue; sulfur, yellow. 
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Figure 4.8. Copper-catalyzed azide-alkyne cycloadditions (CuAAC). All reactions were 

performed with solutions of 1.0–1.75 µM protein using reaction conditions as 

recommended by Hong et al. (58). After one hour, room temperature reactions, all reactions 

were quenched using 10 mM 3-azidopropanol. Reacted samples were run on SDS-PAGE 

gels and imaged for fluorescence. The quantity of fluorescence and protein in each lane 

was quantified using ImageQuant software (table 4.10) (A) Reactions of azide-containing 

proteins with a fluorescent TAMRA-alkyne dye (Invitrogen). EDTA removal from scFv 

solutions was performed using a single desalting column (Zeba desalting column, Thermo 

Fisher). The dye was added to the reaction mixtures at a final concentration of 200 µM. 

Lanes: 1, Aha form of GFPrm_AM (positive control), a variant of green fluorescent protein 

coding for seven Met (Aha) residues (55). 2, blank. 3, Met form of Mut2. 4, Aha form of 

Mut2. 5, blank. 6, Met form of Aha3x2. 7, Aha form of Aha3x2. 8, blank. 9, Met form of 

Aha4x4. 10, Aha form of Aha4x4. 11, blank. 12, Met form of Aha4x5. 13, Aha form of 

Aha4x5. (B) Dye labeling of Aha-containing scFvs was not substantially improved with 

multiple buffer exchanges. scFvs were exchanged once or twice as noted and reacted with 
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TAMRA-alkyne added to a final concentration of 20 µM. Lanes: 1, Aha form of 

GFPrm_AM (positive control). 2, blank. 3, Aha form of Aha4x5, EDTA removal with one 

desalting column. 4, blank. 5, Met form of Aha4x5, EDTA removal with two desalting 

columns. 6, Aha form of Aha4x5, EDTA removal with two desalting columns. (C, D) 

Reactions of alkyne-containing proteins with a fluorescent lissamine-rhodamine dye (57). 

EDTA removal from scFv solutions was performed using two desalting columns, and the 

dye was added to the reaction mixture at a final concentration of 20 µM. Lanes in (C): 1, 

Hpg form of GFPrm_AM (positive control) (55). 2, blank. 3, Met form of Mut2. 4, Hpg 

form of Mut2. 5, blank. 6, Met form of Hpg3x1. 7, Hpg form of Hpg3x1. 8, blank. 9, Met 

form of Hpg3x3. 10, Hpg form of Hpg3x3. Lanes in (D): 1, Hpg form of GFPrm_AM 

(positive control). 2, blank. 3, Met form of Hpg4x3. 4, Hpg form of Hpg4x3. 5, blank. 6, 

Met form of Hpg4x8. 7, Hpg form of Hpg4x8. 
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Figure 4.9. Strain-promoted click chemistry on scFvs using fluorescently labeled 

compound 6. (A) SDS-PAGE on Met and Aha forms of scFv variants after reactions with 6. 

(B) MALDI mass spectrometry on the Aha form of intact Aha4x5 before and after reaction 

with 6. The ladders of signals detected are spaced apart by approximately 834 Da, 

corresponding to the molecular weight of 6 (the baseline and counts of the unmodified 

spectrum have been adjusted so that the two unmodified peaks overlay; no changes were 

made to m/z). [M+H]+’s: unmodified: 29202 Da calculated, ~29130–29210 Da observed. 

Singly modified: ~30036 Da calculated, ~29981–30057 Da observed. Doubly modified: 

~30870 Da calculated, ~30813–30888 Da observed. (C) MALDI mass spectrometry on 

trypsinized samples of the Aha form of Aha4x5 before and after reaction with 6. The peak 
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identified as “Unmodified” includes the Aha residue located at position H34 and has 

sequence SSGYISTDFYAhaNWVR ([M+H]+ calculated: 1820.83 Da, [M+H]+ observed 

(unclicked): 1820.65 Da). The peak labeled “Modified” is the same peptide after reaction 

with 6 ([M+H]+ calculated: ~2654.96 Da, [M+H]+ observed (clicked): 2656.22 Da), and is 

only present in the mass spectrum after performing click chemistry (“click” spectrum offset 

by 10 Da and 1000 counts for clarity). 
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Figure 4.10. MALDI mass spectrometry on scFvs before and after strain-promoted click 

chemistry. (A) MALDI mass spectrometry on the Aha form of intact Aha3x2 before and 

after reaction with 6. The ladders of signals detected are spaced apart by approximately 834 

Da, corresponding to the molecular weight of 6 (the unmodified sample spectrum has been 

adjusted in intensity and position so that the two unmodified peaks overlay; no changes 

were made to m/z). [M+H]+’s: unmodified: 29207 Da calculated, ~29127–29188 Da 

observed. Singly modified: ~30041 Da calculated, ~29986–30048 Da observed. Doubly 

modified: ~30860 Da calculated, ~30862–30897 Da observed. Triply modified: ~31694 Da 

calculated, 31694–31760 Da observed. (B) MALDI mass spectrometry on trypsinized 

samples of the Aha form of Aha3x2 before and after reaction with 6. The peak identified as 

“Unmodified” includes the Aha residue located at position H34 and has sequence 

SSGYISTDFYAhaNWVR ([M+H]+ calculated: 1820.83 Da, [M+H]+ observed 

(unclicked): 1820.26 Da). The peak labeled “Modified” is the same peptide after reaction 



 267 
with 6 ([M+H]+ calculated: ~2654.96 Da, [M+H]+ observed (clicked): 2656.43 Da), and is 

only present in the mass spectrum after performing click chemistry (“click” spectrum offset 

by 10 Da and 1000 counts for clarity). (C) MALDI mass spectrometry on the Aha form of 

intact Aha4x4 before and after reaction with 6 (the unmodified spectrum has been adjusted 

in intensity and position so that the two unmodified peaks overlay; no changes were made 

to m/z). Consistent with the lower extents of modification observed via SDS-PAGE, 

modifications to the Aha form of Aha4x4 are not evident in mass spectrometry samples. 

[M+H]+’s: unmodified: 29359 Da calculated, ~29290–29366 Da observed. Singly 

modified: ~30193 Da calculated, none observed. Doubly modified: ~31027 Da calculated, 

none observed. (D) MALDI mass spectrometry on trypsinized samples of the Aha form of 

Aha4x4 before and after reaction with 6. The peak identified as “Unmodified” includes 

position H34 (Met (Aha) mutated to Ile) and has sequence YSGYIFTDFYINWVR 

([M+H]+ calculated: 1943.94 Da, [M+H]+ observed: 1943.86 Da).  No new peaks are 

visible in the mass spectrum of the “clicked” sample. 
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Figure 4.11. Western blotting using fluorescently labeled scFvs. (A) Probing nitrocellulose 

membranes for digoxigenin-labed BSA (BSA-Dig) using Aha and Met forms of Aha4x5 

subjected to reaction with 6 and detection of Alexa-Fluor 488 fluorescence. Each lane of 

the SDS-PAGE gel transferred onto the blot was loaded with ~5 µg E. coli lysate and the 

following protein samples: Lane 1, 1000 ng BSA (unlabeled). Lanes 2–8: 1000, 500, 100, 

50, 10, 5, and 1 ng BSA-Dig, respectively. (B) Probing for BSA-Dig using labeled scFvs 

subjected to reaction with 6 and secondary detection of scFvs using Alexa Fluor 647-

labeled anti-Penta-His antibodies. These controls confirm that scFvs do not appear to lose 

their binding function after reaction with 6. Lanes same as in (A). 
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Figure 4.12. Western blotting using fluorescently labeled scFvs, part 2. 1000 ng of BSA or 

digoxigenin-labeled BSA (BSA-Dig) were run on SDS-PAGE gels, with 5.5 µg E. coli 

lysates added to protein samples as specified. Gels were transferred to nitrocellulose 

membranes, blocked, and probed for the presence of digoxigenin using scFvs labeled with 

6. Lanes in all panels: 1, protein standard. 2, BSA. 3, BSA-Dig. 4, BSA plus lysate. 5, 

BSA-Dig plus lysate. Blots were probed with (A) Aha form of Aha3x2, (B) Met form of 

Aha3x2, (C) Aha form of Aha4x4, (D), Met form of Aha4x4, (E) Aha form of Aha4x5, 

(F), Met form of Aha4x5 after quenching dye labeling reactions, but without separating 

unreacted 6 from protein samples. Molecular weights of marker proteins are given in 

kilodaltons. 
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Figure 4.13. Flow cytometry of cell surface-displayed Aha4x5 to probe binding function 

and chemical modification with strained alkynes. The two-dimensional dot plots show the 

simultaneous measurements of the amount of 5 bound to cells (a measurement of binding 

function) and streptavidin-phycoerythrin (SA-PE) bound, an indirect estimation of the 

amount of 7 that has been chemically attached to cells. (A) Cells displaying the Met form of 

Aha4x5 without any dyes. (B) Probes of binding function of cells using 5, with amino acid 

context and exposure to 7 (i.e., strain-promoted click chemistry) as noted in panels. (C) 

Probes of extent of modification of cells using SA-PE, with amino acid context and 

exposure to 7 as noted in panels. (D) Use of 5 and SA-PE to probe binding and function 
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simultaneously, with amino acid context and exposure to 7 as noted in panels. 

Simultaneous examination of these two properties on cell surfaces gives the same results as 

when these properties are assessed separately. (E) Adding unlabeled digoxin to the Aha 

form of cells expressing Aha4x5 clicked with 7 prior to exposure to 5 and SA-PE results in 

cells unable to bind to fluorescent antigen while retaining their modification. (F) Use of 5 

and SA-PE to probe the function and modification of uninduced cells harboring plasmids 

bearing the Aha4x5 cell surface display construct. Amino acid context and exposure to 7 as 

noted in panels. Cells grown in Aha and reacted with 7 bind to a moderate amount of SA-

PE, although far less than when the scFv construct is expressed. (G) Use of 5 and SA-PE to 

probe for the binding and modification of cells lacking the plasmid for the cell surface-

displayed Aha4x5 construct. Amino acid context and exposure to 7 as noted in panels. 

Uninduced cells and cells lacking copies of the cell surface display vector behave 

identically, suggesting that labeling of cells incubated with Aha with 7 is the result of 

incorporation of Aha into other cellular membrane proteins, albeit at a level far lower than 

when scFv constructs are present on the cell surface. 
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Figure 4.14. Fluorescence activated cell sorting for isolation of functional, modified 

proteins. (A) Two-dimensional dot plot of a mixture of four populations of cells. Each 

cellular population was reacted with 7 and exposed to streptavidin-phycoerythrin (SA-PE) 

and 5 for detection of chemical modification and binding, respectively, prior to flow 

cytometry. The four cell populations in the mixture are Aha4x5 expressed in Met (binding 

but no chemical modification), Aha4x5 expressed in Aha (binding and modification), 

Aha4x5 expressed in Aha blocked with nonfluorescent digoxin (chemical modification but 

no binding), and Aha4x5 grown in Aha without induction (no chemical modification or 

binding). (B–E) Sorted populations of cells. Stringent sorting using elliptical regions R2–

R5 led to the isolation of populations of cells having distinct fluorescence characteristics 
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based on their functional and chemical modification characteristics. The quadrant defining 

regions R6–R9 was set based on the fluorescence properties of cells sorted from R5. In all 

panels, the reported percentages correspond to the fraction of cells appearing within regions 

R6–R9. 
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Table 4.1. Amino acid mutations in clones isolated from Lib1_1a Hpg3x 

 Clone M(H20) S(H24) M(H80) L(H82C) I(L2) A(L12) 
1 - P L - V - 
3 - - L - - - 
6 I - L - - T 
7 - - L - - - 
10 - - L - - - 
2 I - L M - - 
4 I - L M - - 
5 I - L M - - 
8 I - L M - - 
9 I - L M - - 
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Table 4.2. Amino acid mutations in cell surface-displayed scFvs isolated from Lib1_1a 
including mutations in display anchor* 

Clone E54 V63 F109 T118 W129 M(H20) S(H20) M(H80) L(H82C) I(L2) A(L12) 
1 - A - - - - P L - V - 

3 - - - - - - - L - - - 

6 D - L I - I - L - - T 

7 - - - - - - - L - - - 

10 - - - - R - - L - - - 

2 - - Y - - I - L M - - 

4 - - Y - - I - L M - - 

5 - - Y - - I - L M - - 

8 - - Y - - I - L M - - 

9 - - Y - - I - L M - - 
*Numbering scheme: numbers in parentheses are located within the scFv and are 
numbered according to the Kabat numbering scheme (H, heavy chain. L, light chain). 
All other mutations are numbered according to their position in the cell surface display 
construct with position 1 signifying the initiator Met in the signal sequence. 
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Table 4.3. Summary of conditions used in flow cytometry sorting of Lib2 
  Expression in Medium Containing 

Population Hpg (2.5 mM) Aha (0.28 mM) Nrl (0.30 mM) 
High Fluorescence High Fluorescence High Fluorescence 

Naïve Lib2 
      

High Fluorescence High Fluorescence High Fluorescence 
1x sort 

Lower Antigen Conc. Lower Antigen Conc. Lower Antigen Conc. 
Fluorescence, Viability Fluorescence, Viability Fluorescence, Viability 

2x sort 
15 min. competition 40 min. competition 8 min. competition 

Fluorescence, Viability Fluorescence, Viability Fluorescence, Viability 
3x sort 

40 min. competition 100 min. competition 15 min. competition 
   4x sort 
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Table 4.4. ScFv off rate estimates performed using cell 
surface-displayed scFvs * 

Hpg4x Clones 
Sample AA Context koff (10-3 s−1) Remarks 

Mut2 Hpg 1.097 ± 0.081 † 
Base Met 0.672 ± 0.047  
Mut2 Met 0.528 ± 0.029  

Hpg4x1 Hpg 0.795 ± 0.059  
Hpg4x2 Hpg 1.153 ± 0.175 † 
Hpg4x3 Hpg 0.695 ± 0.021  
Hpg4x4 Hpg 0.912 ± 0.030  
Hpg4x5 Hpg 0.626 ± 0.016 ‡ 
Hpg4x6 Hpg 0.966 ± 0.070  
Hpg4x7 Hpg 1.368 ± 0.059  
Hpg4x8 Hpg 0.883 ± 0.040  
Hpg4x9 Hpg 0.914 ± 0.051  
Hpg4x10 Hpg 1.274 ± 0.090  
Hpg4x11 Hpg 0.871 ± 0.039  
Hpg4x12 Hpg 1.241 ± 0.087   

Hpg3x Clones 
Sample AA Context koff (10-3 s–1) Remarks 

80L HisGS Met 0.490 ± 0.046  
Hpg3x1 Hpg 0.563 ± 0.012  
Hpg3x2 Hpg 1.372 ± 0.061  
Hpg3x3 Hpg 0.668 ± 0.033  
Hpg3x4 Hpg 0.906 ± 0.055  
Hpg3x5 Hpg 0.912 ± 0.026 † 
Hpg3x6 Hpg 1.021 ± 0.030  

Aha3x and Aha4x Clones 
Sample AA Context koff (10–3 s–1) Remarks 
Base Met 0.661 ± 0.071  
Mut2 Met 0.506 ± 0.026  
Mut2 Aha 0.200 ± 0.007  

Aha3x1 Aha 0.054 ± 0.017  
Aha3x2 Aha 0.092 ± 0.019  
Aha3x3 Aha 0.161 ± 0.089  
Aha3x4 Aha 0.131 ± 0.016  
Aha3x5 Aha 0.193 ± 0.024  
Aha3x6 Aha 0.143 ± 0.013  
Aha4x1 Aha 0.061 ± 0.008  
Aha4x2 Aha 0.086 ± 0.014 ‡ 
Aha4x4 Aha 0.122 ± 0.021  
Aha4x5 Aha 0.076 ± 0.018  
Aha4x6 Aha 0.154 ± 0.024  

Nrl4x Clones 
Sample AA Context koff (10–3 s–1) Remarks 
Base Met 0.736 ± 0.061  
Mut2 Met 0.533 ± 0.030  
Base Nrl 1.364 ± 0.047  
Mut2 Nrl 1.224 ± 0.023  

Nrl4x1 Nrl 0.509 ± 0.019  
Nrl4x2 Nrl 0.518 ± 0.026  
Nrl4x3 Nrl 0.366 ± 0.056  
Nrl4x4 Nrl 0.745 ± 0.025  
Nrl4x5 Nrl 0.787 ± 0.045  
Nrl4x6 Nrl 1.025 ± 0.243  
Nrl4x7 Nrl 0.435 ± 0.030  
Nrl4x8 Nrl 0.514 ± 0.024  
Nrl4x9 Nrl 0.494 ± 0.047  
Nrl4x10 Nrl 0.548 ± 0.022  
Nrl4x11 Nrl 0.262 ± 0.020  

*Cells displaying scFvs were subjected to off rate 
characterizations using an adaptation of the method of 
Daugherty et al. (30) (see materials and methods). 
Cells displaying the Nrl forms of scFvs were subjected 
to a less stringent wash procedure prior to estimating 
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off rates. Errors reported are the 95% confidence 
intervals in the fits as determined by the program Igor 
(Wavemetrics, Lake Oswego, OR). 
†A large portion of 5 appeared to have dissociated 
from cells prior to kinetic competition. 
‡Truncated antibody fragment. 
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Table 4.5. Amino acid mutations in clones isolated from Lib2* 

Colony Notes V35 M39 Y41 D42 P48 E54 N55 G56 K59 Q61 V63 L65 T66 

Hpg4x1  - - - - - - - - - - - - - 

Hpg4x3  - - - - - - - - - - - - S 

Hpg4x4  - - - - - - - - - - - - - 

Hpg4x5 † - - - - - - - - - - - - - 

Hpg4x6  - - - - - - - - - - - - - 

Hpg4x7  - - - - - - - - - - - - - 

Hpg4x8  - - - - - - - - - - - - - 

Hpg4x9  - - - - - - - - - - - - - 

Hpg4x10  - - - - L - - - - R - - - 

Hpg4x11  - - - - - - - - - - - - S 

Hpg4x12 ‡ - - - - - D - - - - - - - 

Hpg3x1  - - - - - - - - - - - - - 

Hpg3x2  - - N - - - - - - - - - - 

Hpg3x3  - - - - - - - - - - I - - 

Hpg3x4  - - - - - - - - - - - - - 

Hpg3x5  - - - - - - - - - - - - - 

Hpg3x6  - - - - - - - - - - - - - 

Aha3x1  - - - Y - - - - - - - - - 

Aha3x2  - - - - - - - - - - - - - 

Aha3x3  - - - - - - - - - - - - - 

Aha3x4  - - - - - - - - - - - - - 

Aha3x5  - - - - - - - - - - - - - 

Aha3x6  - - - - - - - - - - - - - 

Aha4x1  - - - - - - - - - - - - - 

Aha4x2 † - - - - - - - - - R - - - 

Aha4x4  - - - - - - - - - - - - - 

Aha4x5  - - - - - - - - - - - - - 

Aha4x6  - - - - - - - - - - - - - 

Nrl4x1  - - - - - - - - - - - - S 

Nrl4x2  D V - - - - - - - - - - - 

Nrl4x3  - - - - - - - - - - - P - 

Nrl4x4  - - - - - D S N Q - - - - 

Nrl4x5  - - - - - - - - - - - - - 

Nrl4x6  - - - - - - - - - - - - - 

Nrl4x7  - - - - - - - - - - A - - 

Nrl4x8  - - - - - - - - - - - - S 

Nrl4x9  - - - - - - - - - - - - - 

Nrl4x10  - - - - - - - - - - - - S 

Nrl4x11  - - - - - - - - - - A - - 
*Numbering scheme: numbers in parentheses are located within the scFv and are numbered 
according to the Kabat numbering scheme (H, heavy chain. L, light chain). Positions in 
between the heavy and light chains are in the linker region and are numbered accordingly. 
All other mutations are numbered according to their position in the cell surface display 
construct (position 1: initiator Met in the signal sequence). 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes A67 P72 D76 D78 Y80 T81 G84 G85 D91 N95 K99 

Hpg4x1  - - - - - A - - - - - 

Hpg4x3  - - - - - - - - - - - 

Hpg4x4  - - - - - - - - - - - 

Hpg4x5 † - - - - - - - - - - - 

Hpg4x6  - - N - - - - - - - - 

Hpg4x7  - - - - - - - - - - - 

Hpg4x8  - - - - - - S - - - - 

Hpg4x9  - - - - - - - - - - - 

Hpg4x10  - - - - - - - - - - - 

Hpg4x11  - - - - - - - - - - - 

Hpg4x12 ‡ - - - - - - - - - - - 

Hpg3x1  - - - - - - - - - - - 

Hpg3x2  - - - - - - - - - - - 

Hpg3x3  - - - - - - - - - - - 

Hpg3x4  - S - - - - - - - - - 

Hpg3x5  - - - - H - - - - - - 

Hpg3x6  - - - - - - - - - - - 

Aha3x1  - - - - - - - - - - - 

Aha3x2  - - - - - - - - - - - 

Aha3x3  - - - - - - - - - - - 

Aha3x4  - - - - - - - - - - - 

Aha3x5  - - - - - - - - - Y - 

Aha3x6  - - - - - - - - - - - 

Aha4x1  - - - - - - - - - - - 

Aha4x2 † - - - - - - - - - - - 

Aha4x4  - - - - - - - - - - - 

Aha4x5  - - - - - - - - - - - 

Aha4x6  - - - - - - - - - - - 

Nrl4x1  - - - - - - - - - - - 

Nrl4x2  - - - - - - - - - - - 

Nrl4x3  - - - - - - - - - - - 

Nrl4x4  - - - - - - - - - - - 

Nrl4x5  - - - - - - - D - - - 

Nrl4x6  T - - A - - - - - - - 

Nrl4x7  - - - - - - - - - - - 

Nrl4x8  - - - - - - - - - - - 

Nrl4x9  - - - - - A - - - - - 

Nrl4x10  - - - - - - - - - - - 

Nrl4x11  - - - - - - - - Y - N 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes N100 F109 E114 I117 T118 E120 A122 Q128 

Hpg4x1  - - - - - - - - 

Hpg4x3  - - G - - - - - 

Hpg4x4  - - - - - - - - 

Hpg4x5 † - Y - - - - - - 

Hpg4x6  - - - - - - - - 

Hpg4x7  - - - - - - - - 

Hpg4x8  - - - - - - - - 

Hpg4x9  Y - - - - - - - 

Hpg4x10  - - - T - - - - 

Hpg4x11  - - G - - - - - 

Hpg4x12 ‡ K Y - - - - - - 

Hpg3x1  - Y - - - - - - 

Hpg3x2  - - - - - - - - 

Hpg3x3  - - - - - - - - 

Hpg3x4  - - - - - - - - 

Hpg3x5  - Y - - - F - - 

Hpg3x6  - - - - - - - - 

Aha3x1  - - - - - - - - 

Aha3x2  - Y - - - - - - 

Aha3x3  - Y - - - - - - 

Aha3x4  - L - - - - - K 

Aha3x5  - - - - - - - - 

Aha3x6  - - - - - - - - 

Aha4x1  - Y - - - - - - 

Aha4x2 † - - - - - - - - 

Aha4x4  - - - - - - - - 

Aha4x5  - - - - - - - - 

Aha4x6  - - - - P - - - 

Nrl4x1  - - G - - - - - 

Nrl4x2  - - - - - D - - 

Nrl4x3  - - - - - - G - 

Nrl4x4  - - - - - - - - 

Nrl4x5  - Y - - - - - H 

Nrl4x6  - Y - - - - - - 

Nrl4x7  - - - - - - - - 

Nrl4x8  - - G - - - - - 

Nrl4x9  - Y - - - - - - 

Nrl4x10  - - G - - - - - 

Nrl4x11  - Y - - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes W129 N131 A136 G140 T141 E149 

Hpg4x1  - - - - - - 

Hpg4x3  - - - - - - 

Hpg4x4  - - - - - - 

Hpg4x5 † - - - S - - 

Hpg4x6  R - V - - - 

Hpg4x7  R - - - - - 

Hpg4x8  R - - - - - 

Hpg4x9  - - - - - - 

Hpg4x10  R K - - - - 

Hpg4x11  - - - - - - 

Hpg4x12 ‡ - - - - - - 

Hpg3x1  - - - - - - 

Hpg3x2  R - - - - - 

Hpg3x3  - - - - - - 

Hpg3x4  - - - - - - 

Hpg3x5  - - - - - - 

Hpg3x6  R - - - - - 

Aha3x1  R - - - - - 

Aha3x2  - - - - - - 

Aha3x3  R - - - - - 

Aha3x4  - - - - - - 

Aha3x5  R - - D - - 

Aha3x6  - - - - - - 

Aha4x1  R - - - P - 

Aha4x2 † R - - - - - 

Aha4x4  R - - - - - 

Aha4x5  R - - - - - 

Aha4x6  R - - - - - 

Nrl4x1  - - - - - - 

Nrl4x2  - - - - - - 

Nrl4x3  - - - - - G 

Nrl4x4  - - - - - - 

Nrl4x5  - - - - - - 

Nrl4x6  - - - - - - 

Nrl4x7  - - - - - - 

Nrl4x8  - - - - - - 

Nrl4x9  - - - - - - 

Nrl4x10  - - - - - - 

Nrl4x11  - - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes E(H10) L(H11) M(H20) S(H24) Y(H27) F(H29) M(H34) H(H41) D(H46) Y(H53) Q(H61) 

Hpg4x1  - - I Y - - - - - - - 

Hpg4x3  - - I F N - - - - - - 

Hpg4x4  - - I - N S - - - - - 

Hpg4x5 † - - I - - S - - - - - 

Hpg4x6  - - I - - - - - - - - 

Hpg4x7  - - I - - - - - - - - 

Hpg4x8  - - I Y - S - - - - - 

Hpg4x9  D - I - - - - - - - - 

Hpg4x10  - - L - - - - - - - - 

Hpg4x11  - - I F N - - - - - - 

Hpg4x12 ‡ - - I - - - - - - - R 

Hpg3x1  - M I Y - - - N - - - 

Hpg3x2  - - I - - - - - E - - 

Hpg3x3  - S I - - - - - - - - 

Hpg3x4  - - I - - S - - - - - 

Hpg3x5  - - I - - - - - - - - 

Hpg3x6  - - I F - - - - - - - 

Aha3x1  - - I - - - - - - - - 

Aha3x2  - - I - - S - - - - - 

Aha3x3  - - I - - - - - - - - 

Aha3x4  - - I - - S - - - - - 

Aha3x5  - - L - - S - - - - - 

Aha3x6  - - I - - - - - - - - 

Aha4x1  - - I Y - - - - - - - 

Aha4x2 † - - I Y - - - - - - - 

Aha4x4  - - I Y - - I - - - - 

Aha4x5  A - I - - S - - - - - 

Aha4x6  - - I - - - - - - - - 

Nrl4x1  - - I F N - - - - - - 

Nrl4x2  - - - Y - - - - - - - 

Nrl4x3  - - I F - S - - - N - 

Nrl4x4  - - I - - S - - E - - 

Nrl4x5  - - - - - S - - - - - 

Nrl4x6  - - - Y - S - - - - - 

Nrl4x7  - - I Y - - - - - - - 

Nrl4x8  - - I F N - - - - - - 

Nrl4x9  - - I - - S V - - - - 

Nrl4x10  - - I F N - - - - - - 

Nrl4x11  - - L Y - S - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes M(H80) L(H82C) Y(H102) A(H107) S(H113) G(Linker1) G(Linker7) G(Linker9) I(L2) A(L12) S(L22) 

Hpg4x1  L M - - - - - - - - - 

Hpg4x3  L M - - - - - - - - - 

Hpg4x4  L M - - - - - - - - - 

Hpg4x5 † L M - - - S - - - - - 

Hpg4x6  L M - - - - - - - - - 

Hpg4x7  L M - - - - - - - - F 

Hpg4x8  L M N - - - - - - - - 

Hpg4x9  L M - - - - - - - - - 

Hpg4x10  L M - T - - - - - - - 

Hpg4x11  L M - - - - - - - - - 

Hpg4x12 ‡ L M - - - - - - - - - 

Hpg3x1  L M - - - - - R - - - 

Hpg3x2  L M - - - - - - - - - 

Hpg3x3  L M - - - - - - - - - 

Hpg3x4  L M - - - - - - - - - 

Hpg3x5  L M - - - - - - - - - 

Hpg3x6  L M - - - - - - - - - 

Aha3x1  L M - - - - - - - - - 

Aha3x2  L M - - - - - - - - - 

Aha3x3  L M - - - - - - - - - 

Aha3x4  L M - - - - - - - - - 

Aha3x5  L - - - - - - - - T - 

Aha3x6  L M - - - - - - - - - 

Aha4x1  L M - - - - - - - - - 

Aha4x2 † L M - - - - - - - T - 

Aha4x4  L M - - - - - - - - - 

Aha4x5  L - - - - - - V - - - 

Aha4x6  L M - - - - - - - - - 

Nrl4x1  L M - - - - - - - - - 

Nrl4x2  L - - - - - - - - - - 

Nrl4x3  L M - - - - - - - - - 

Nrl4x4  L M - - - - - - - - - 

Nrl4x5  L - - - - - - - V - - 

Nrl4x6  L - - - - - - - - - - 

Nrl4x7  L - - - - - - - V - - 

Nrl4x8  L M - - - - - - - - - 

Nrl4x9  L M - - - - R - - - - 

Nrl4x10  L M - - - - - - - - - 

Nrl4x11  L - - - F - - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes S(L25) Q(L27) P(L40) N(L53) S(L64) E(L68) F(L71) T(L74) 

Hpg4x1  - - - - - - - - 

Hpg4x3  - - - - - - - - 

Hpg4x4  - - - - - - - - 

Hpg4x5 † - - - - - - - - 

Hpg4x6  - - - - - - - - 

Hpg4x7  - - - - - - - - 

Hpg4x8  - - - - - - - - 

Hpg4x9  - - - - - - - - 

Hpg4x10  - - - Y - - - - 

Hpg4x11  - - - - - - - - 

Hpg4x12* ‡ - - - - - - - - 

Hpg3x1  - - - - - - - S 

Hpg3x2  - - - - - - - - 

Hpg3x3  - - - - - - - - 

Hpg3x4  - - - - - - - - 

Hpg3x5  - - - - - - - - 

Hpg3x6  - - - - - - - - 

Aha3x1  - - - - - - - - 

Aha3x2  - - - - - D - - 

Aha3x3  - - - - - - - - 

Aha3x4  - - - - - - - - 

Aha3x5  - - - - - - - - 

Aha3x6  - - - - - - Y - 

Aha4x1  - - - - - - - - 

Aha4x2 † - K - - - - - - 

Aha4x4  T - - - - - - - 

Aha4x5  - - - - - - - - 

Aha4x6  - - - - - - - - 

Nrl4x1  - - - - - - - - 

Nrl4x2  - - S - - - - - 

Nrl4x3  - - - - - - - - 

Nrl4x4  - - - - - - - - 

Nrl4x5  - - - - T - - - 

Nrl4x6  - - - - - - - - 

Nrl4x7  - - - - - - - - 

Nrl4x8  - - - - - - - - 

Nrl4x9  - - - - - - - - 

Nrl4x10  - - - - - - - - 

Nrl4x11  - - - - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Colony Notes D(L76) V(L78) I(L85) 394 R395 404 

Hpg4x1  - - - - - - 

Hpg4x3  - M - - - - 

Hpg4x4  - - - - - - 

Hpg4x5 † - - - Stop - - 

Hpg4x6  - - - - - - 

Hpg4x7  - - - - - - 

Hpg4x8  - - - - - - 

Hpg4x9  - - - - - - 

Hpg4x10  - - - - - - 

Hpg4x11  - M - - - - 

Hpg4x12* ‡ N - - - H - 

Hpg3x1  N - - - - - 

Hpg3x2  - - - - - - 

Hpg3x3  - - - - - - 

Hpg3x4  - - - - - - 

Hpg3x5  - - - - - - 

Hpg3x6  - - - - - - 

Aha3x1  - - - - - - 

Aha3x2  - - - - - - 

Aha3x3  - - - - - - 

Aha3x4  - - - - - - 

Aha3x5  - - - - - - 

Aha3x6  - - - - - - 

Aha4x1  - - - - - - 

Aha4x2 † - - - - - Stop 

Aha4x4  - - - - - - 

Aha4x5  - - - - - - 

Aha4x6  - - - - - - 

Nrl4x1  - M - - - - 

Nrl4x2  - - K - - - 

Nrl4x3  - - - - - - 

Nrl4x4  - - - - - - 

Nrl4x5  - - - - - - 

Nrl4x6  - - - - - - 

Nrl4x7  - - - - - - 

Nrl4x8  - M - - - - 

Nrl4x9  - - - - - - 

Nrl4x10  - M - - - - 

Nrl4x11  - - - - - - 
†Truncated fragment. 
‡Missing amino acids 400−404. 
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Table 4.6. Frequently mutated positions (>5%) of scFvs identified in 
high-throughput sequencing of sorted populations 

Mutational Frequency 
Position Base* Frequent 

Mutation 
Amino Acid 
Mutation† Lib1_1a Hpg 

Sort 3 
Lib2 

Hpg4x 
Lib2 

Aha4x 
Lib2 
Nrl4x 

342 c t  0.01 0.06 0.01 0.02 
351 a c E54R 0.10 0.11 0.03 0.06 
357 t a  0.01 0.04 0.00 0.16 
371 a g Q61R 0.00 0.03 0.13 0.00 

  t Q61L 0.00 0.00 0.09 0.00 
377 t c V63A 0.06 0.02 0.01 0.16 
385 a t T66S 0.00 0.03 0.00 0.16 
390 t a  0.00 0.03 0.14 0.00 
414 c t  0.63 0.47 0.59 0.36 
439 g a G84S 0.01 0.06 0.00 0.02 
443 g a G85D 0.02 0.02 0.01 0.10 
446 t c M86T 0.00 0.02 0.00 0.06 
460 g t D91Y 0.00 0.02 0.00 0.05 
514 t c F109L 0.09 0.05 0.02 0.02 
515 t a F109Y 0.64 0.29 0.30 0.37 
530 a g E114G 0.00 0.04 0.01 0.16 
542 c t T118I 0.09 0.03 0.05 0.01 
543 t c  0.04 0.32 0.38 0.08 
555 t c  0.04 0.33 0.39 0.09 
574 t a,c W129R 0.05 0.38 0.52 0.11 
601 a g T138A 0.01 0.01 0.10 0.03 
624 c t  0.09 0.05 0.02 0.02 
678 c t  0.00 0.04 0.13 0.00 
693 g a,c M(H20)I 0.73 0.86 0.94 0.57 
703 t c S(H24)P 0.06 0.03 0.01 0.02 
704 c a S(H24)Y 0.03 0.18 0.32 0.34 

  t S(H24)F 0.01 0.11 0.24 0.21 
712 t a S(H27)N 0.00 0.03 0.01 0.12 

  c S(H27)H 0.00 0.01 0.00 0.01 
719 t c F(H29)S 0.02 0.32 0.29 0.56 
721 a c T(H30)P 0.01 0.05 0.07 0.02 
733 a g M(H34)V 0.00 0.02 0.01 0.18 
735 g a M(H34)I 0.00 0.02 0.05 0.04 
771 c a D(H46)E 0.01 0.13 0.03 0.05 
803 t c V(H56)A 0.00 0.01 0.00 0.06 
847 g t V(H71)F 0.00 0.01 0.01 0.03 

  a V(H71)I 0.00 0.00 0.00 0.02 
861 c a,t,g  0.00 0.05 0.00 0.05 
874 a t,c M(H80)L 0.90 0.99 0.99 0.86 
889 t a L(H82C)M 0.62 0.71 0.78 0.50 
955 t c Y(H102)H 0.00 0.00 0.00 0.03 

  a Y(H102)N 0.00 0.05 0.01 0.03 
970 g a A(H107)T 0.01 0.08 0.11 0.00 
1002 c t  0.00 0.01 0.08 0.00 
1018 t g S(Linker10)A 0.01 0.00 0.01 0.01 

  c S(Linker10)P 0.00 0.00 0.08 0.00 
1039 a g I(L2)V 0.06 0.09 0.05 0.13 
1069 g a A(L12)T 0.08 0.05 0.07 0.09 
1078 c a L(L15)I 0.01 0.05 0.15 0.00 
1086 a g  0.00 0.00 0.05 0.01 
1095 g a  0.01 0.00 0.06 0.06 
1099 t c S(L22)P 0.03 0.00 0.24 0.24 
1108 t a S(L25)T 0.00 0.01 0.06 0.00 
1110 c a  0.00 0.01 0.00 0.07 
1114 c a Q(L27)K 0.00 0.04 0.15 0.00 
1209 c t  0.06 0.07 0.04 0.02 
1236 c t  0.00 0.03 0.00 0.14 
1257 a g,t  0.00 0.02 0.13 0.00 
1282 g a V(L78)M 0.00 0.03 0.00 0.16 
1296 t c  0.00 0.00 0.08 0.00 
1350 g t  0.00 0.00 0.06 0.01 
1399 g t E404Stop 0.00 0.05 0.17 0.00 

  a E404K 0.00 0.01 0.00 0.00 
*Nucleotide identity in DNA sequence of Base at specified position in plasmid. 
†Numbering scheme same as in table 4.2. 
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Table 4.7. Amino acid mutations in scFvs studied in soluble form (Kabat numbering) 

 E(H1) E(H10) L(H11) M(H20) S(H24) Y(H27) F(H29) T(H30) M(H34) H(H41) D(H46) Y(H53) 
Base - - - - - - - - - - - - 
Mut2 - - - I - - - - - - - - 

Nrl4x3 G - - I F - S - - - - N 
Nrl4x4 - - - I - - S - - - E - 
Nrl4x11 - - - L Y - S - - - - - 
Hpg3x1 - - M I I - - - - N E - 
Hpg3x3 - - S I F - - S - - - - 
Hpg4x3 - - - I F N - - - - - - 
Hpg4x8 - - - I - - S - - - - - 
Aha3x2 - - - I - - S - - - - - 
Aha4x4 - - - I Y - - - I - - - 
Aha4x5 - A - I - - S - - - - - 

 
 M(H80) L(H82C) Y(H102) S(H113) G(Linker9) S(L25) E(L68) T(L74) D(L76) V(L78) 

Base - - - - - - - - - - 
Mut2 L M - - - - - - - - 

Nrl4x3 L M - - - - - - - - 
Nrl4x4 L M - - - - - - - - 
Nrl4x11 L - - F - - - - - - 
Hpg3x1 L M - - R - - S N - 
Hpg3x3 L M - - - - - - - - 
Hpg4x3 L M - - - - - - - M 
Hpg4x8 L M N - - - - - - - 
Aha3x2 L M - - - - D - - - 
Aha4x4 L M - - - T - - - - 
Aha4x5 L - - - V - - - - - 
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Table 4.8. Characterization of soluble scFvs: expression yields, binding kinetics, and amino acid replacement 
estimates 

AA Context Met Hpg 

Clone Exp. Yield (mg/L)* kon (106 M–1s–1)† koff (10–3 s–1) Exp. Yield (mg L–1) % Met replacement‡ kon (106 M–1s–1) koff (10–3 s–1) 

Base 0.63 1.35 ± 0.08 1.85 ± 0.15     

Mut2 1.43 1.50 ± 0.16 1.72 ± 0.17 0.73 86 ± 4 2.23 ± 0.44 8.09 ± 0.53 

Hpg3x1 1.17 1.29 ± 0.40 1.92 ± 0.29 1.47 90 ± 2 2.31 ± 0.34 6.54 ± 1.41 

Hpg3x3 0.77 1.42 ± 0.12 0.93 ± 0.07 0.62 89 ± 0.4 1.80 ± 0.21 4.63 ± 0.34 

Hpg4x3 2.44 1.45 ± 0.10 1.08 ± 0.09 0.26 87 ± 3 1.37 ± 0.12 6.61 ± 0.73 

Hpg4x8 1.61 1.59 ± 0.05 1.03 ± 0.09 0.47 89 ± 4 1.31 ± 0.08 5.59 ± 1.42 

        

AA Context Met Aha 

Clone Exp. Yield (mg/L) kon (106 M–1s–1) koff (10–3 s–1) Exp. Yield (mg L–1) % Met replacement kon (106 M–1s–1) koff (10–3 s–1) 

Base 0.63 1.35 ± 0.08 1.85 ± 0.15     

Mut2 1.43 1.50 ± 0.16 1.72 ± 0.17 0.98 84 ± 1 1.20 ± 0.11 0.96 ± 0.16 

Aha3x2 1.59 1.72 ± 0.08 1.50 ± 0.14 1.34 80 ± 4 1.58 ± 0.18 0.81 ± 0.12 

Aha4x4 2.31 1.41 ± 0.09 1.00 ± 0.19 1.21 Not determined 1.44 ± 0.28 0.70 ± 0.15 

Aha4x5 1.44 1.55 ± 0.15 1.31 ± 0.29 0.86 83 ± 4 1.93 ± 0.47 0.68 ± 0.11 

        

AA Context Met Nrl 

Clone Exp. Yield (mg/L) kon (106 M–1s–1) koff (10–3 s–1) Exp. Yield (mg L–1) % Met replacement kon (106 M–1s–1) koff (10–3 s–1) 

Base 0.63 1.35 ± 0.08 1.85 ± 0.15 Not determined 86 0.54 ± 0.36 2.31 ± 0.39 

Mut2 1.43 1.50 ± 0.16 1.72 ± 0.17 1.12 88 ± 5 1.34 ± 0.07 2.07 ± 0.20 

Nrl4x3 4.98 1.73 ± 0.06 1.08 ± 0.04 2.22 87 ± 5 1.90 ± 0.14 1.16 ± 0.10 

Nrl4x4 4.07 1.39 ± 0.03 2.23 ± 0.19 1.53 93 ± 2 1.58 ± 0.16 2.51 ± 0.07 

Nrl4x11 0.91 1.26 ± 0.12 0.93 ± 0.09 0.64 89 ± 3 1.19 ± 0.02 1.08 ± 0.07 
*Expression yields were calculated based on bicinchoninic acid (BCA) assays of concentrated protein samples 
after size exclusion chromatography. 
†Binding kinetics were determined using a Biacore T100 instrument. Digoxigenin (antigen) was immobilized 
on the surface of CM5 chips using a two-step immobilization process. First, antigen was conjugated to bovine 
serum albumin (BSA) in order to form BSA-Dig. This conjugate was then attached to the chip using standard 
amine coupling procedures. Multicycle kinetic assays using a range of scFv concentrations from 0.3125 to 20 
nM were used to obtain kinetic parameters. The parameters reported here are the result of two independent 
assays performed on four chip surfaces having a range of ligand densities, displayed as averages plus or minus 
standard deviations. Kinetics were well-described by a standard 1:1 binding transport model. In the case of 
Hpg-containing fragments, a significant mass transport constant was invoked in the best fits of the data. All 
other data was found to be free of substantial mass transport limitations. 
‡Amino acid replacement levels were estimated based on matrix-assisted laser desorption ionization (MALDI) 
mass spectrometry of trypsinized scFv samples as described in figure 4.6 and materials and methods. Data is 
reported as the mean plus or minus the standard deviation of two or more independent trypsinizations and 
MALDI mass spectrum acquisitions. 
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Table 4.9. Dissociation kinetic rate constants of selected scFvs in Met and ncAA forms 

Clone koff (10–3 s–1) 
AA Context Met Hpg Aha Nrl 

Base 1.85 ± 0.15   2.31 ± 0.39 
Mut2 1.72 ± 0.17 8.09 ± 0.53 0.96 ± 0.16 2.07 ± 0.20 

Hpg3x3 0.93 ± 0.07 4.63 ± 0.34   
Aha4x4 1.00 ± 0.19  0.70 ± 0.15  
Nrl4x11 0.93 ± 0.09   1.08 ± 0.07 
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Table 4.10. Copper-catalyzed click chemistry (CuAAC) on Aha- and Hpg-containing proteins with 
TAMRA-alkyne and lissamine-rhodamine azide dyes, respectively* 

TAMRA-Alkyne Functionalization 

Experiment 1** 

Protein GFPrm_AM Mut2 Aha3x2 Aha4x4 Aha4x5 

AA context Aha Met Aha Met Aha Met Aha Met Aha 
Normalized 

Fluorescence† 15.05 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.29 

Experiment 2‡       

Protein GFPrm_AM Aha4x5       

AA context Aha 
Aha, 
1 ex. 

Met, 
2 ex. 

Aha, 
2 ex.       

Normalized Fluorescence 1.88 0.02 0.07 0.19           

Lissamine-Rhodamine Azide Functionalization§   

Protein GFPrm_AM Mut2 Hpg3x1 Hpg3x3   

AA context Hpg Met Hpg Met Hpg Met Hpg   

Normalized Fluorescence 3.18 0.00 0.48 0.00 0.51 0.00 0.16   

Protein GFPrm_AM Hpg4x3 Hpg4x8      

AA context Hpg Met Hpg Met Hpg      

Normalized Fluorescence 3.33 0.05 0.24 0.04 0.05       
*All reactions were performed at room temperature for one hour following CuAAC conditions outlined 
by Hong et al. (58) (see figure 4.8 caption and materials and methods for details). GFPrm_AM was 
obtained in phosphate-buffered saline. ScFvs were purified in HEPES-buffered saline containing 3 mM 
EDTA and were buffer exchanged into phosphate-buffered saline prior to chemical reactions as noted. 
†Samples were run on SDS-PAGE gels and imaged using a Typhoon Trio imaging system to assess 
functionalization. First, fluorescence detection of dyes was used to interrogate the efficiency of 
reaction. Second, all gels were stained in colloidal blue and imaged to assess protein quantities. The 
normalized data reported here is the intensity of the fluorescence of a sample divided by the intensity of 
colloidal blue staining in the same sample. 
**Single buffer exchange to remove EDTA prior to reaction, 200 µM dye used during reaction. 
‡One or two buffer exchanges to remove EDTA prior to reaction as noted (1 ex. or 2 ex.), 20 µM dye 
used during reaction. 
§Two buffer exchanges to remove EDTA prior to reaction, 20 µM dye used during reaction. 
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Table 4.11. Dye labeling of Met- and Aha-containing proteins with 6 

Protein Aha3x2 Aha4x4 Aha4x5 

AA Context Met Aha Met Aha Met Aha 

Dyes/Protein 0.00 ± 0.00 0.43 ± 0.15 0.00 ± 0.00 0.04 ± 0.05 0.00 ± 0.00 0.38 ± 0.20 
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Table 4.12. Kinetic characterization of scFvs before and after reaction with 6 
(strain-promoted click chemistry)* 

AA Context Met 

 No Click Chemistry Click Chemistry 

Clone kon (106 M–1s–1) koff (10–3 s–1) kon (106 M–1s–1) koff (10–3 s–1) 

Aha3x2 1.72 ± 0.08 1.50 ± 0.14 1.03 ± 0.03 1.38 ± 0.14 

Aha4x4 1.41 ± 0.09 1.00 ± 0.19 0.75 ± 0.15 0.92 ± 0.25 

Aha4x5 1.55 ± 0.15 1.31 ± 0.29 1.16 ± 0.16 1.29 ± 0.23 

AA Context Aha 

 No Click Chemistry Click Chemistry 

Clone kon (106 M–1s–1) koff (10–3 s–1) kon (106 M–1s–1) koff (10–3 s–1) 

Aha3x2 1.58 ± 0.18 0.81 ± 0.12 0.79 ± 0.07 0.70 ± 0.10 

Aha4x4 1.44 ± 0.28 0.70 ± 0.15 0.93 ± 0.15 0.63 ± 0.17 

Aha4x5 1.93 ± 0.47 0.68 ± 0.11 1.09 ± 0.08 0.71 ± 0.14 
*Kinetic characterizations were performed as described in table 4.8 and 
materials and methods. Clicked scFv samples were prepared for Biacore assays 
without separating unreacted dyes or quenching reagents from solution. 
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Table 4.13. Oligonucleotides used in study 

Name Sequence 

EcoRiElimFwd 5’-GTTTTTTTGGGCTAGCGTTTTCGAGCTCGGTACC-3’ 

EcoRIElimRev 5'-GGTACCGAGCTCGAAAACGCTAGCCCAAAAAAAC-3' 

Lpp-OmpA-antidigFwd 5’-GAATTCGAGCTCGGTACCCGGGCTAGAG-3’ 

Lpp-OmpA-antidigRev1 5’-GTGATGAGAACCACGGTCCTCGGGGTCTTCCGGG-3’ 

Lpp-OmpA-antidigRev1 5’-TGCTCTAAGCTTACTAGTGATGGTGATGGTGATGAGAACCACGGTCCTC-3’ 

HindIIIElimFwd 5’-GAAACCAGGACAGCCACCCAAACTACTCATCTATAAGGTATCC-3’ 

HindIIIElimRev 5’-GGATACCTTATAGATGAGTAGTTTGGGTG GCTGTCCTGGTTTC-3’ 

LppHisRescue 5’- CGTGGTTCTCATCACCATCACCATCACGGCTCGTAGTAAGCTTAGAGCA-3’ 

80LLibFwd 5’-CAATTGTGAGCGGATAACAATTTCAC-3’ 

80LLibRev 5’-GCTCCTGAAAATCTCGCCAAGCTAGC-3’ 

PstIAddFwd 5’-CTAAAATCGATCAGGGAATTAACCTGCAGGTTGGCTTTGAAATGGGTTAC-3’ 

PstIAddRev 5’-GTAACCCATTTCAAAGCCAACCTGCAGGTTAATTCCCTGATCGATTTTAG-3’ 

PstIElimFwd 5’-GATGATGCTGCAATATATTATTGTAGCCAAACTACGCATGTTCC-3’ 

PstIElimRev 5’-GGAACATGCGTAGTTTGGCTACAATAATATATTGCAGCATCATC-3’ 

BglIIAddFwd 5’-GCCAGCCAGAACTCGCCCCGGAAGATCTCGAGGACCGTGGTTCTCATC-3’ 

BglIIAddRev 5’-GATGAGAACCACGGTCCTCGAGATCTTCCGGGGCGAGTTCTGGCTGGC-3’ 

AntidigpAK400Fwd 5'-ATATAAGGCCCAGCCGGCCATGGCGGGAATTCGTGAAGTTCAACTGCAAC-3' 

AntidigpAK400Rev 5'-CTCGCCCCGGAAGATCTCGAGGACGCGGCCTCGGGGGCCAATATA-3' 

AntidigpAK400FwdNrl4x3 5'-ATATAAGGCCCAGCCGGCCATGGCGGGAATTCGAGGAGTTCAACTGCAAC-3' 
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