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Abstract

Controlling the spatial modes of a laser cavity is fundamental for improving

the beam quality of a laser and achieving highly efficient coupling of power

into an optical system. High-power applications are particularly challenging

due to the conflicting requirements for large modal volume, to prevent facet

damage by reducing energy density, and narrow width, for single-mode oper-

ation of an index-guided waveguide. By replacing traditional index confine-

ment with Bragg reflection in the transverse direction, single-mode operation

can be achieved even for large modal volumes. These grating confined struc-

tures, transverse Bragg resonance (TBR) waveguides, have the unique ability

to support localized modes above the light line. Such modes normally couple

to radiation modes of the cladding when the confinement mechanism is total-

internal-reflection and are too lossy to be considered guided modes. However,

for Bragg resonance confined modes, the modal loss can be designed by care-

ful optical mode engineering to introduce a large loss discrimination that

can favor a single spatial, low-loss mode. Semiconductor TBR lasers in an

InP/InGaAsP/InGaAs material system were designed, fabricated, and char-

acterized to investigate this property. Two regions of operation are identified

for TBR waveguides, and, while transverse mode selection is provided by a

grating, longitudinal mode control is found to be also necessary to restrict

operation to the region that supports modes above the light line.
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Chapter 1

Introduction

The control and design of optical cavity modes has been a fundamental el-

ement of designing lasers. The field of semiconductor lasers has advanced

from the use of buried heterostructure devices for transverse confinement[28]

to the latest in mode control, the photonic bandgap, defect mode laser[21].

This latter example is an illustration of the importance of periodic structures

in controlling the optical modes of a laser. While the use of periodic struc-

tures has become in vogue due to the field of multi-dimensional photonic

crystals, of which the defect laser is an example, the fundamental concept

of using periodicity to control the guided modes of light is a well-known

idea[37]. One of the earliest practical implementations that is still of great

significance today is the semiconductor distributed-feedback (DFB) laser[19],

in which the periodic corrugation provides longitudinal feedback resulting in

frequency selection.

The transverse Bragg resonance (TBR) laser[34] also includes a periodic

corrugation, but in the transverse direction. This Bragg grating provides

transverse confinement only for modes that have transverse wave vectors

that satisfy the Bragg condition. Thus, in the same way that the grating in

a DFB fixes the longitudinal wave vector, in a TBR the transverse component

is fixed. This limitation of the transverse wave vector should allow the TBR
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laser to lase in a single transverse mode regardless of the lateral size of the

device, in contrast to traditional ridge waveguide lasers[15]. The resulting

single transverse mode can be very large, spread out over the entire width

of the device. This is an important feature for high-power laser applications

where high-power densities can cause catastrophic optical damage (COD) at

the end facets[26]. Thus, the TBR laser has 2 attractive features for high-

power applications: good beam quality, as defined by a single lateral mode,

and a large aperture for high-power extraction while reducing the power

density.

While there have been many proposed methods for controlling the spatial

modes of a high-power, large modal volume laser, such as phased arrays[4],

Bragg reflection[9, 22], and mode filtering[29], the standard workhorse for

high-power lasers is still the single stripe, broad area laser, packaged as a

single emitter or as a multiple emitter stacked bar. It is hoped that the

analysis of the TBR laser in the following chapters will provide insight into

the control of modes using a transverse Bragg grating and bring us closer to

the reality of a useful, single-mode, high-power laser.
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Chapter 2

Numerical Analysis Techniques

2.1 Scalar Approach

2.1.1 Approximating Maxwell’s Equations

We start with the standard approach to solving the scalar wave equation in

two dimensional systems[17]. Maxwell’s equations simplified within a dielec-

tric medium (no charge) are

∇× E = −∂t(μH) ∇× H = ∂t(εE) (2.1)

∇ · E = 0 ∇ ·H = 0 . (2.2)

(This assumes that ∇ · ε ∼ 0.) Using the vector identity ∇× ∇A = ∇(∇ ·
A) − ∇2A, we can get ∇2E − n2/c2∂tE = 0. Assuming travelling, time

harmonic solutions,

E(x, z, t) = E(x) exp(iωt − iβz) (2.3)

gives the form (∂2
x + ∂2

y)E = (β2 − n2k2
0)E which reduces to

∂2
xE = (β2 − n2k2

0)E (2.4)
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Figure 2.1: Slab waveguide solutions

for the 1-dimensional scalar case (∂yE = 0), where k0 ≡ ω/c. Both of the

scalar methods start by assuming Eq. 2.4 is valid.

2.1.2 Finite Difference Eigenvalue Problem

To solve Eq. 2.4, we can rewrite it in matrix form by discretizing along some

finite grid such that xi = (i − 1)Δ, for i = 1 · · ·N , and Ei = E(xi). We

discretize the ∂2
x operator into the N × N matrix

∂2
x ≡ 1

Δ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 1 −2 1

0 . . . 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)
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because we note that

∂2
xE(x) ≈ Ei+1 − 2Ei + Ei−1

Δ2
(2.6)

if Δ/λ � 1. Here we have chosen the simple boundary condition that E−1 =

EN+1 = 0, since we are only looking for confined solutions that should decay

exponentially in the cladding. Similarly,

n(x)2k2 ≡ k2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . . . .

0 . . . 1 0

0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1

n2

. . .

nN−1

nN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.7)

Thus we have transformed Eq. 2.4 into an eigenvalue problem

M̂E = λE (2.8)

where M̂ = ∂2
x + n(x)2k2 as defined by Eqs. 2.5 and 2.7, λ = β2, and E is a

column vector of all Ei. We can then use any standard eigenvalue solver to

find the modes of the waveguide defined by ni.

2.1.3 Matrix Method

Here we modify the standard matrix method[36] by explicitly including an

imaginary part to the propagation constant to allow for the possibility of

lossy modes. Starting from Eq. 2.4, we substitute the following definitions

β = βr + iβi (2.9)

ε = εr + iεi (2.10)
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to obtain

∂2
xE(x) =

[
(β2

r + i2βrβi) − (εr + iεi)
ω2

c2

]
E(x) (2.11)

where we have assumed that βi � βr since we are looking for localized,

but possibly lossy modes. The imaginary term, βi, describes the modal

propagation loss while εi describes any material loss or gain. We use an

ansatz of the form,

E(x) = Aeikx + Be−ikx (2.12)

where again, we let

k = kr + iki (2.13)

(ki � kr) to obtain

k2
r = εr

ω2

c2
− β2

r (2.14)

ki =
1

2kr

(
εi

ω2

c2
− 2βrβi

)
. (2.15)

Eq. 2.12 holds true in each layer n. Thus, for a given homogeneous, isotropic

material layer n, we have in matrix form

∣∣∣∣∣∣
An(xn)

Bn(xn)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
exp(−iknxn) 0

0 exp(iknxn)

∣∣∣∣∣∣
∣∣∣∣∣∣
An(0)

Bn(0)

∣∣∣∣∣∣ , (2.16)

where �[kn] is given by Eq. 2.14 and 	[kn] is given by Eq. 2.15. Only ε has

dependence on the layer, and β, ω are the same for all layers. (β is parallel

to the interface, and thus continuous. ω is clearly the same.) xn = x−x0[n].
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At the interface, we let the field and its derivative be continuous.

An+1(0) + Bn+1(0) =An(Ln)e−iknLn

+ Bn(Ln)eiknLn

(2.17)

−ikn+1An+1(0) + ikn+1Bn+1(0) = − iknAn(Ln)e−iknLn

+ iknBn(Ln)eiknLn

(2.18)

From this, we can immediately write the matrix form

∣∣∣∣∣∣
1 1

−ikn+1 ikn+1

∣∣∣∣∣∣
∣∣∣∣∣∣
An+1(0)

Bn+1(0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 1

−ikn ikn

∣∣∣∣∣∣
∣∣∣∣∣∣
exp(−iknLn) 0

0 exp(iknLn)

∣∣∣∣∣∣
∣∣∣∣∣∣
An(Ln)

Bn(Ln)

∣∣∣∣∣∣ .

(2.19)

If we define the following matrices:

Φ̂n ≡
∣∣∣∣∣∣
exp(−iknLn) 0

0 exp(iknLn)

∣∣∣∣∣∣ (2.20)

K̂n ≡
∣∣∣∣∣∣

1 1

−ikn ikn

∣∣∣∣∣∣ (2.21)

vn(xn) ≡
∣∣∣∣∣∣
An(xn)

Bn(xn)

∣∣∣∣∣∣ (2.22)

vN(0) = K̂−1
N

(
N−1∏
m=1

K̂mΦ̂mK̂−1
m

)
K̂0Φ̂0v0 , (2.23)

we can define

M̂ =

∣∣∣∣∣∣
m1 m2

m3 m4

∣∣∣∣∣∣ ≡ K̂−1
N

(
N−1∏
m=1

K̂mΦ̂mK̂−1
m

)
K̂0Φ̂0 . (2.24)
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Figure 2.2: Schematic of layered media showing forward and backward trav-

elling wave amplitudes

If we define an interface matrix

K̂−1
n+1K̂n =

1

i2kn+1

∣∣∣∣∣∣
ikn+1 −1

ikn+1 1

∣∣∣∣∣∣
∣∣∣∣∣∣

1 1

−ikn ikn

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
1 + kn

kn+1
1 − kn

kn+1

1 − kn

kn+1
1 + kn

kn+1

∣∣∣∣∣∣ ,

(2.25)

at each interface we have

∣∣∣∣∣∣
An+1(0)

Bn+1(0)

∣∣∣∣∣∣ = K̂−1
n+1K̂n

∣∣∣∣∣∣
An(Ln)

Bn(Ln)

∣∣∣∣∣∣ . (2.26)



9

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nωΛ/πc

|E
/E

0|2

 

 

|r|2 |t|2

Figure 2.3: Reflection and transmission spectrum of a Bragg stack

Using Eq. 2.24, the boundary condition for a localized mode is

∣∣∣∣∣∣
An(Ln)

0

∣∣∣∣∣∣ = M̂

∣∣∣∣∣∣
0

B0(0)

∣∣∣∣∣∣ , (2.27)

since we expect outgoing waves from the structure, but nothing coming into

the structure from outside the waveguide. Thus, a mode exists if it satisfies

the condition

m4 = 0 . (2.28)

If we let the position x0 be the center of a symmetric structure, we can expect
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travelling in Bragg stack of Fig. 2.3

the solutions to have even or odd symmetry about that point. This can be

written as ∣∣∣∣∣∣
An(Ln)

0

∣∣∣∣∣∣ = M̂

∣∣∣∣∣∣
1

1

∣∣∣∣∣∣ (2.29)

for even modes and ∣∣∣∣∣∣
An(Ln)

0

∣∣∣∣∣∣ = M̂

∣∣∣∣∣∣
1

−1

∣∣∣∣∣∣ (2.30)

for odd modes. Thus the condition for existence of an even mode is

m3 + m4 = 0 (2.31)
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Figure 2.5: Reflection and transmission spectrum of the Bragg stack in Fig.

2.3 with gain

and

m3 − m4 = 0 (2.32)

for odd modes. The algorithm for finding modes then becomes solving the

mode equation for a given frequency, ω, to find the propagation constant(s)

(the dispersion relation). For each of the modes, we can then use Eqs. 2.12

and 2.16 to calculate the field in each layer, and apply Eq. 3.54 across each

boundary.

Following the convention shown in Fig. 2.2, for an incoming wave at
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x = 0 ∣∣∣∣∣∣
AN

0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m1 m2

m3 m4

∣∣∣∣∣∣
∣∣∣∣∣∣
A0

B0

∣∣∣∣∣∣ , (2.33)

since we should not have an incoming wave at the other boundary. In this

case, the reflection is given by

r = −m3

m4

=
B0

A0

(2.34)

and the transmission is given by

t = m1 − m2m3

m4

=
AN

A0

. (2.35)



13

To calculate the reflection or transmission of power, we use the time averaged

Poynting vector, S = E × H, for plane waves. For a plane wave incident

normally on the y-z plane, in keeping with our convention,

S =
1

2
Re[E× H∗] =

1

2
Re[EyH

∗
z ] =

εω

k

1

2
|E|2 =

1

2η
|E|2 (2.36)

where we have made use of the fact that k = nω/c for a normally incident

plane wave, and E ≡ Ey, H ≡ Hz for the TE-mode, and ∂xHz = ε∂tEy.

η ≡ √
μ/ε. For a plane wave that is not normally incident, we want

S · x̂ = |S||x̂| cos θ =
1

2η
|E|2 ckx

nω
=

kx

2μω
|E|2 , (2.37)

since c/n = 1/
√

με. Thus, we have

R =

∣∣∣∣S′
0 · x̂

S0 · x̂
∣∣∣∣ =

|B0|2
|A0|2 = |r|2 (2.38)

T =

∣∣∣∣SN · x̂
S0 · x̂

∣∣∣∣ =
kN |AN |2
k0|A0|2 =

kN

k0
|t|2 (2.39)

Fig. 2.3 and 2.4 show the reflection and transmission spectrum for a Bragg

stack and the intensity distribution while Fig. 2.5 and 2.6 show the same

quantities for a Bragg stack with material gain.

2.2 Vector Approach

2.2.1 Discretizing Maxwell’s Equations

To solve for the full vectorial solution of Maxwell’s equations of a three

dimensional system we employ the finite-difference time-domain (FDTD)

method[35]. Writing out each field component of Maxwell’s equations re-
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sults in the following:

∂tHx = −1

μ
(∂yEz − ∂zEy) ∂tEx = 1

ε
(∂yHz − ∂zHy) (2.40)

∂tHy = −1

μ
(∂zEx − ∂xEz) ∂tEy = 1

ε
(∂zHx − ∂xHz) (2.41)

∂tHz = −1

μ
(∂xEy − ∂yEx) ∂tEz = 1

ε
(∂xHy − ∂yHx) . (2.42)

For each field value, the discretized value at time step n and grid location

(i, j, k) is related to the continuous value by the following relation:

fn(i, j, k) = f(iΔ, jΔ, kΔ, nδt) . (2.43)

Using Fig. 2.7, we can now explicitly write out the discretized algorithm for

two components:

Hn+1
x (i, j, k) =Hn

x (i, j, k)

− δt

[(
En+.5

z (i, j + 1, k) − En+.5
z (i, j, k)

Δ

)

−
(

En+.5
y (i, j, k + 1) − En+.5

y (i, j, k)

Δ

)] (2.44)

Em+1
x (i, j, k) =Em

x (i, j, k)

+
1

ε
δt

[(
Hm+.5

z (i, j, k) − Hm+.5
z (i, j − 1, k)

Δ

)

−
(

Hm+.5
y (i, j, k) − Hm+.5

y (i, j, k − 1)

Δ

)]
.

(2.45)

The other field components are discretized in a similar manner.
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Figure 2.7: A cell of the FDTD grid

2.2.2 Boundary Conditions

Absorbing

The perfectly matched layer[3] (PML) is an absorbing boundary condition

(ABC) that has high attenuation and, ideally, no reflection at the interface of

the PML and non-PML layer. The specific implementation[11] used creates
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an absorbing medium by introducing the vector quantity

[ε̄] = [μ̄] =

⎡
⎢⎢⎢⎣

sysz

sx
0 0

0 sxsz

sy
0

0 0 sxsy

sz

⎤
⎥⎥⎥⎦ (2.46)

sx = 1 +
σx

jωε0

(2.47)

sy = 1 +
σy

jωε0
(2.48)

sz = 1 +
σz

jωε0
, (2.49)

into Maxwell’s equations such that, in the frequency domain with normalized

units (ε0 = μ0 = 1), we have

∇× H = jωεr[ε̄]E (2.50)

∇×E = −jω[μ̄]H . (2.51)

Thus, for each field component we may write

(∇×H)i = jω
sjsk

si
εrEi (2.52)

(∇×E)i = −jω
sjsk

si
Hi . (2.53)

where the subscripts i, j, and k denote the field components x, y, or z. We

now introduce the flux density defined as

Di =
sj

si

εrEi (2.54)

Bi =
sj

si
Hi (2.55)
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and substituting these into Eqs. 2.52 and 2.53 and taking the inverse Fourier

transform (jω → ∂t), we obtain

(∇×H)i = ∂tDi + σkDi (2.56)

(∇×E)i = −∂tBi + σkBi (2.57)

∂tDi + σiDi = εr∂tEi + σjεrEi (2.58)

∂tBi + σiBi = ∂tHi + σjHi . (2.59)

Eqs. 2.56, 2.57, 2.58, and 2.59 can then be discretized in the same manner

as Eqs. 2.44 and 2.45.

Bloch

The Bloch theorem[27] states that for a periodic potential, the solution should

have the form

E(r + R) = E(r)eikR (2.60)

where R is along the direction of periodicity and k is the lattice vector. In

the notation of Eq. 2.43, we thus have

En(i = N, j, k) = En(i = 1, j, k)eik(N−1) (2.61)

and

En(i = 0, j, k) = En(i = N − 1, j, k)e−ik(N−1) (2.62)

at the boundaries.

2.2.3 Time Domain Filtering

To find the eigenfrequencies of a particular structure, we use a time domain

filter[8]. Let E(r, t) be the electric field. Then Ẽ(r, jω) is the Fourier trans-
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form, denoted Ẽ(jω) = F [E(t)]. We define the Fourier transform as

X̃(jω) =

∫ +∞

−∞
x(t)e−jωtdt , (2.63)

and the inverse transform as

x(t) =
1

2π

∫ +∞

−∞
X̃(jω)ejωtdω . (2.64)

Another definition, for convolution:

y(t) =

∫ +∞

−∞
h(τ)x(t − τ)dτ = h(t) ⊗ x(t) . (2.65)

The following are some properties of the Fourier transform that will be used:

ejω0tx(t)
F−→ X̃(j(ω − ω0)) (2.66)

Γ(t) =

⎧⎨
⎩ 1, |t| < T

0, |t| > T

F−→ 2T
sin(ωT )

ωT
= 2T sinc(ωT ) (2.67)

x(t) ⊗ f(t)
F−→ X̃(jω)F̃ (jω) (2.68)

√
2ae−at2 F−→ e−

ω2

4a . (2.69)

Now, let us filter the frequency spectrum of our field, Ẽ(jω), at some fre-

quency ω0 with a sinc function, sinc(ω − ω0). Then in time, the equivalent

filter operation would be:

Ê(t) = E(t) ⊗ F−1[sinc((ω − ω0)T )] = E(t) ⊗ 1

2T
Γ(t)ejω0t . (2.70)

Writing this out, we get:

Ê(t) =

∫ +∞

−∞
E(τ)

1

2T
Γ(t − τ)ejω0(t−τ)dτ (2.71)
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Figure 2.8: Filter function, sinc(ω)

Ê(t) = ejω0t 1

2T

∫ +∞

−∞
E(τ)Γ(t − τ)e−jω0τdτ . (2.72)

Now let’s look closer at Γ(t − τ).

Γ(t − τ) =

⎧⎨
⎩ 1, |t − τ | < T

0, |t − τ | > T
(2.73)

|t − τ | < T =

⎧⎨
⎩ t − τ < T = τ > t − T

−(t − τ) < T = τ < t + T
(2.74)
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Thus, we get

Γ(t − τ) =

⎧⎨
⎩ 1, t − T < τ < t + T

0, otherwise
. (2.75)

Using Eq. 2.75, we get:

Ê(t) = ejω0t 1

2T

∫ t+T

t−T

E(τ)e−jω0τdτ . (2.76)

Now we make some substitutions. First, since t is arbitrary, let t → T ,

Ê(T ) = ejω0T 1

2T

∫ 2T

0

E(τ)e−jω0τdτ . (2.77)

Then, since τ is a dummy variable, let τ → t,

Ê(T ) = ejω0T 1

2T

∫ 2T

0

E(t)e−jω0tdt . (2.78)

and we get an expression for the filtered field. The width of the central lobe

of the sinc function is 2π
T

, so as T increases, Δω → 2π
T

and the sidelobes will

decrease like 1
T
. The discretized version of Eq. 2.78 becomes

Ê(i, j, k) =
ejω0T

2T

N∑
n=0

[
P∑

p=0

En(i, j, k)e−jω0Δt(p+1)

]
Δt (2.79)

N =
2Tω0Δt

2π
(2.80)

P =
2π

ω0Δt
− 1 . (2.81)

To implement Eq. 2.79, we need to allocate enough memory for twice the

size of the total field, one for the time evolution, and one for the running

sum which is the integration, or the filtered field result.
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Now let us consider a Gaussian filter with the form

Ê(t) = E(t) ⊗F−1[ej(ω−ω0)t0e−
(ω−ω0)2

4a ] = E(t) ⊗
√

2ae−a(t−t0)2ejω0(t−t0) .

(2.82)

Writing this out, we get:

Ê(t) =

∫ +∞

−∞
E(τ)

√
2ae−a(t−t0−τ)2ejω0(t−t0−τ)dτ (2.83)

Ê(t) = ejω0(t−t0)
√

2a

∫ +∞

−∞
E(τ)e−a(t−t0−τ)2e−jω0τdτ . (2.84)

Now, a Gaussian envelope is a peaked function, so when |t|  T , it becomes

negligible. Hence, for a Gaussian with a central peak at t = t0,

Ê(t) = ejω0(t−t0)
√

2a

∫ t−t0+T

t−t0−T

E(τ)e−a(t−t0−τ)2e−jω0τdτ . (2.85)

Our signal E(t) is calculated from t = 0 to t = 2T , so let us choose t0 = T ,

and t = 2T .

Ê(2T ) = ejω0T
√

2a

∫ 2T

0

E(τ)e−a(τ−T )2e−jω0τdτ (2.86)

Thus, Eq. 2.86 is our filtered signal.

Energy Dissipation

The energy is assumed to have an exponential decay of the form

E(t) = E0e
−ωt/Q , (2.87)
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where the ω is necessary since Q is supposedly defined to be a unitless num-

ber. Taking the integral,

∫ T

0

E(t)dt = E0
Q

ω
(1 − e−ωT/Q) , (2.88)

hence, we can say that

ω
∫ T

0
E(t)dt

E(0) − E(T )
= Q . (2.89)

Discretizing means the integral is replaced by a discrete sum. So the discrete

form becomes

Q =
ω
∑T

0 E(t)Δt

E(0) − E(T )
. (2.90)

For an electromagnetic field, the energy is

E(t) =
1

2

∫
V

ε|E(t)|2 + |H(t)|2 dV , (2.91)

or in discrete form,

E(t = nΔt) =
1

2
ΔV

∑
i,j,k

ε|En(i, j, k)|2 + |Hn(i, j, k)|2 . (2.92)

So the final form for the Q is,

Q =

ωΔt
∑T

n=0

∑
i,j,k ε|En(i, j, k)|2 + |Hn(i, j, k)|2∑

i,j,k(ε|E0(i, j, k)|2 + |H0(i, j, k)|2) − (ε|ET (i, j, k)|2 + |HT (i, j, k)|2)
.

(2.93)

If we assume time harmonic solutions with an imaginary component to the

frequency, we can relate the Q to this damping factor. In this case, the time
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dependence of the electromagnetic fields can be written as

E(r, t) = E(r)e−Ωt+iωt (2.94)

H(r, t) = H(r)e−Ωt+iωt . (2.95)

Using Eqs. 2.94 and 2.95 in 2.91 and 2.87,

E(t) =
1

2

∫
V

ε|E(r, t)|2 + |H(r, t)|2 dV (2.96)

=

[
1

2

∫
V

ε|E(r)|2| + |H(r)|2| dV

]
e−2Ωt (2.97)

= E0e
−ωt/Q . (2.98)

In other words, this means that

Ω =
ω

2Q
. (2.99)

2.2.4 Parallel Implementation

To take advantage of the low cost of modern computers, we can write a par-

allel implementation of FDTD[13]. Parallel computing can be divided into

two categories, if we consider how memory is divided among each processor

(CPU). In a shared memory model, shown in Fig. 2.9(a), every processor

has access to the same memory pool. Although the hardware implementa-

tion of this can be quite complex, from the programmer’s perspective this

means there is a single address space to consider, and changes in any memory

location can be seen by all other processors without any additional consider-

ations. Another common model, Fig. 2.9(b), is a distributed memory model,

where each processor is assigned a portion of memory to which it has direct

access. Any information stored in another portion of memory must be ac-

cessed by sending requests through some sort of network. The method of
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Figure 2.9: Two common memory models for parallel computing
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network communication must be predefined-defined in some manner. In our

case, we will be using the Message-Passing Interface (MPI), which is a stan-

dard programming library[25]. This distributed memory, message-passing

model is particularly well suited to the cluster-of-workstations model which

has become very common due to its low cost and accessibility.

The FDTD algorithm can be considered as a specialized case of the Pois-

son problem, ∇2u = f(x, y), with boundary condition u(x, y) = g(x, y)[12].

Each point requires knowledge of each of the four nearest neighbors, as in

Eq. 2.44 and 2.45. A simple way to address this is to allocate extra memory

space to re-copy the boundaries as ghost points. Each node computes the

values of its assigned domain by copying the values from each neighboring

node.
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Figure 2.10: Split domain of a two dimensional topology. Ghost cells are

shown shaded in gray.
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Chapter 3

Waveguide Models

3.1 Index Guided Waveguides

3.1.1 Slab Waveguide Solutions

The standard method of confining light is the dielectric waveguide. This

method relies on total internal reflection at an interface of two indices of

refraction. Let us consider a slab waveguide as shown in Fig. 3.1. We can

solve for the modes by using the 1-dimensional scalar wave equation for the

electric field (TE mode) derived from Maxwell’s equations by letting ∂yE = 0

and by assuming travelling, time harmonic solutions, E = E(x)exp(iωt −
iβz).

We assume solutions of the form

aeiλx + be−iλx (3.1)

ceγx + de−γx (3.2)
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Figure 3.1: A slab waveguide

and by using symmetry we can simplify to even

a(eiλx + e−iλx) , |x| ≤ w (3.3)

ce−γ|x| , |x| ≥ w (3.4)

and odd

a(eiλx − e−iλx) , |x| ≤ w (3.5)

x

|x|ce
−γ|x| , |x| ≥ w . (3.6)
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These solutions yield

λ2w2 = n2
2k

2w2 − β2w2 (3.7)

γ2w2 = β2w2 − n2
1k

2w2 . (3.8)

By enforcing the field and its derivative to be equal at the boundary x = w,

we obtain the even solution

λa sin(λw) = γce−γw (3.9)

a cos(λw) = ce−γw (3.10)

(3.11)

and the odd solution

−λa cos(λw) = γce−γw (3.12)

a sin(λw) = ce−γw . (3.13)

Combining Eqs. 3.9 and 3.10 we obtain

λw tan(λw) = γw (3.14)

and combining Eqs. 3.12 and 3.13 we obtain

−λw cot(λw) = γw (3.15)

yielding solutions in the same form as in reference [32]. Combining Eqs. 3.7,

3.8, 3.14 and 3.15, the solutions are solved graphically in Fig. 3.2.
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Figure 3.2: Graphical solution to the slab waveguide

3.1.2 Single Mode

Following the convention of reference [32], let

x = λw (3.16)

y = γw (3.17)

r = kw
√

n2
2 − n2

1 . (3.18)
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Thus, the condition for single-mode waveguiding becomes

{x, y, r} < π/2 , (3.19)

and we have an upper bound for the waveguide core width, W = 2w, of

Wmax =
λ

2
√

n2
2 − n2

1

. (3.20)

Since λ, γ are positive, real numbers, we also get the condition

n1 < β/k < n2 . (3.21)

When W = Wmax, there are exactly 2 modes, the first even, and the first

odd. The first odd mode satisfies the condition x = π/2 yielding the following

relation:

βodd = n1k . (3.22)

From Eqs. 3.20, 3.21, and 3.22, it is clear that larger core widths can be

achieved by smaller index contrast, Δn = n2 − n1, but this also means that

the even and odd modes have very similar propagation constants. This can

be written explicitly in terms of the waveguide width if we define the effective

index as neff ≡ β/k, and in the limit of small index contrast, n ∼ {n2, n1},

0 < Δneff <
1

2n

(
λ

2W

)2

, (3.23)

as shown in Fig. 3.3.
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Figure 3.3: Effective index difference between the two lowest order (largest

effective index) modes of a slab waveguide

3.2 Transverse Bragg Reflection

Optical waveguiding by Bragg reflection[5, 37, 38] has garnered much interest

due to recent work in planar photonic crystal waveguides[7, 16, 20]. As

a generalization of these photonic crystal waveguides, the transverse Bragg

resonance (TBR) waveguide was recently proposed and analyzed[33]. Instead

of relying on time-consuming numerical solutions to Maxwell’s equations[10,

23], a coupled mode formalism was applied to calculate the dispersion and

loss of a TBR waveguide composed of a GaAs substrate with air holes[6].

The results of the coupled mode analysis predict discrete, quantized values

for the width of the guiding channel for achieving low loss (TBR) waveguides.

Comparisons to two dimensional finite-difference time-domain (2D FDTD)

simulations indicate that the coupled mode theory can provide a valid model
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of the waveguiding in a TBR waveguide even with a large index contrast

and, using an empirical coupling constant, can quantitatively describe the

propagation of the guided modes.

3.2.1 Coupled Mode Analysis of Bragg Layers

A  (x)1 B  (x)1

A  (x)0 0B  (x)

B  2A  = 02
x

x = −W/2

x = W/2+L

x = W/2

x = 0
z

b

a r = 0.15a

Figure 3.4: The TBR waveguide geometry consisting of a GaAs substrate

and air holes. x and z are the transverse and longitudinal dimensions, re-

spectively. The core width is W . The hole radius is r = 0.15a. A0 and

A1 represent the inward propagating plane-wave components in the core and

cladding respectively. A2 represents the incoming field outside the cladding.

B0, B1, and B2 represent similar quantities for the outward propagating

components.

The waveguide geometry is shown in Fig. 3.4. Assuming a small in-
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dex perturbation, the propagating field can be described by the Helmholtz

equation:

∇2E + με(r)ω2E = 0 , (3.24)

describing the E field out of the plane, corresponding to a TM-like mode in a

photonic crystal. Although the dielectric constant, ε(r), can be complex[34],

we will only consider the passive case where ε(r) is purely real. We assume

a solution of the form

E(r, t) = E(x)E(z, t) =
(
A(x)eikbx + B(x)e−ikbx

)
eiωt−iβz , (3.25)

where the propagation constant is a complex quantity, β = βR + iβI , allowing

the imaginary part of β to account for the propagation loss due to leakage

through a finite cladding. Although this has the same form as Eq. 2.12,

since we are analyzing Bragg layers, we note that kb �= k⊥, but rather should

satisfy the Bragg condition, as we shall see later. We have also allowed the

coefficients A and B to be functions of x. We start with Eq. 2.11 and

substitute our guess for E(x) from Eq. 3.25. We obtain:

[
∂2

x + 2ikb∂x − k2
b

]
A(x)eikbx +

[
∂2

x − 2ikb∂x − k2
b

]
B(x)e−ikbx

=

(
β2 − ε(r)

ω2

c2

)(
A(x)eikbx + B(x)e−ikbx

)
.

(3.26)

This assumes that although the real part of the dielectric constant (index

of refraction) may depend on position, the imaginary part corresponding to

material gain or loss is either constant, or small compared to the changes in

the index. Assuming that |βI | � |βR| (low loss) and |∂2/∂x2| � |2k∂/∂x|
(the slowly varying approximation) and using our previous definitions Eqs.
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2.9 and 2.10, we obtain

[
ε(r)

ω2

c2
− β2

r − k2
b + i

(
2kb∂x + εi

ω2

c2
− 2βrβi

)]
A(x)eikbx

+

[
ε(r)

ω2

c2
− β2

r − k2
b + i

(
−2kb∂x + εi

ω2

c2
− 2βrβi

)]
B(x)e−ikbx = 0

.

(3.27)

Now, we multiply by the rapidly varying term, exp(−ikbx), and integrate

over a unit cell to get

[
εr

ω2

c2
− β2

r − k2
b + i

(
2kb∂x + εi

ω2

c2
− 2βrβi

)]
A(x)

= −A(x)
ω2

c2

1

a

∫
a

Δε(r)da − B(x)
ω2

c2

1

a

∫
a

Δε(r)e−i2kbxda

, (3.28)

where we have defined ε(r) = εr+Δε(r), and assumed that | ∫
L

exp(−i2kbx)dx| �
L. We now note that ∫

a

Δε(r)da = δε̄ , (3.29)

which is the dc term in a Fourier expansion. Thus,

ε̄r ≡ εr + δε̄ (3.30)

is a measure of the spatially averaged dielectric constant, and for the Bragg

layers we define

k2
r ≡ ε̄r

ω2

c2
− β2

r (3.31)

in contrast to Eq. 2.14.

∂xA(x) =

[
i
k2

r − k2
b

2kb
− 1

2kb

(
εi

ω2

c2
− 2βrβi

)]
A(x)

+ iB(x)
k2

0

2kb

1

a

∫
a

Δε(r)e−i2kbxda

(3.32)
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To simplify, we now make some definitions. The loss term

γ =
1

2kb

(
εi

ω2

c2
− 2βrβi

)
, (3.33)

the detuning from resonance

Δk = kr − kb , (3.34)

and the coupling constant

κ =
k2

0

2kb

1

a

∫
a

Δε(r)e−i2kbxdxdz . (3.35)

We also note that kr−kb ≤ κ and κ/kb � 1, since κ/kb ∼ (nΔω/c)/(nω/c) =

Δω/ω � 1 within the bandgap. From this, we get

k2
r − k2

b

2kb
= (kr − kb)

kr + kb

2kb
≈ kr − kb . (3.36)

Using Eqs. 3.33, 3.34, 3.35, 3.36 in Eq. 3.32, we finally get:

∂xA(x) = −(γ − iΔk)A(x) + iκB(x) . (3.37)

If we multiply Eq. 3.27 by exp(ikbx) and integrate, we obtain a similar

equation for ∂xB(x).

∂xB(x) = (γ − iΔk)B(x) − iκA(x) . (3.38)

We have thus obtained the coupled mode equations, here presented in matrix

form:

∂

∂x

∣∣∣∣∣∣
A(x)

B(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−(γ − iΔk) iκ

−iκ (γ − iΔk)

∣∣∣∣∣∣
∣∣∣∣∣∣
A(x)

B(x)

∣∣∣∣∣∣ . (3.39)
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We now need to solve this equation to find the form of A(x) and B(x).

We assume solutions of the form c+v+ exp(sx) + c−v− exp(−sx). Thus,

we look for

det

∣∣∣∣∣∣
−(γ − iΔk) − s iκ

−iκ (γ − iΔk) − s

∣∣∣∣∣∣ = 0 (3.40)

and we obtain

s =
√

|κ|2 + (γ − iΔk)2 (3.41)

and

v± =

∣∣∣∣∣∣
(γ − iΔk) ∓ s

iκ

∣∣∣∣∣∣ . (3.42)

We define the matrix:

V̂ =

∣∣∣∣∣∣
(γ − iΔk) − s (γ − iΔk) + s

iκ iκ

∣∣∣∣∣∣ . (3.43)

The constants c± are dependent on the initial conditions A(0), B(0), so we

finally get ∣∣∣∣∣∣
A(x)

B(x)

∣∣∣∣∣∣ = V̂

∣∣∣∣∣∣
esx 0

0 e−sx

∣∣∣∣∣∣ V̂ −1

∣∣∣∣∣∣
A(0)

B(0)

∣∣∣∣∣∣ . (3.44)

If we simplify the above equation, we obtain

∣∣∣∣∣∣
A(x)

B(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
− (γ−iΔk)

s
sinh(sx) + cosh(sx) iκ

s
sinh(sx)

− iκ
s

sinh(sx) (γ−iΔk)
s

sinh(sx) + cosh(sx)

∣∣∣∣∣∣ ·∣∣∣∣∣∣
A(0)

B(0)

∣∣∣∣∣∣ ,

(3.45)

in comparison to Eq. 2.16.
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Let us look at the example of a one-dimensional grating. If we center the

origin such that

Δε(x) =

⎧⎪⎨
⎪⎩

0 Λ/4 < |x| ≤ Λ/2,

Δε 0 ≤ |x| ≤ Λ/4.

, (3.46)

in this case, Eq. 3.35 reduces to:

κ =
k2

0

2kb

Δε

Λ

∫ Λ/4

−Λ/4

e−i2kbxdx =
k2

0

2k2
b

Δε

Λ
sin(kbΛ/2) =

k2
0Δε

2k2
bΛ

. (3.47)

For the simple case of plane waves, we know that at the Bragg resonance

kb = π/Λ and kb/k0 = n cos θ, so we can then get

κ ≈ Δε

2n2Λ cos2 θ
=

(n2 − n1)(n2 + n1)

2n2Λ cos2 θ
≈ Δn

nΛ cos2 θ
=

ω0

cπ

Δn

cos θ
, (3.48)

where ω0 is at the center of the bandgap. Eq. 3.48 is useful for insight

into the relation between the bandgap, the index contrast, and the angle of

incidence. The bandwidth of the gap can be obtained from Eq. 3.41 since

our mode is defined only when 	[s] = 0. This condition means that the

value under the square root must be greater than zero. Thus, we can find

the bandwidth by solving

Δk2 + i2γΔk − γ2 − |κ|2 = 0 (3.49)

and using nΔω = cΔk. Solving this quadratic in Δk, we get

|Δk| = ±
√

|κ|2 + γ2 . (3.50)
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For the case of no loss or gain, γ = 0, we get

Δkgap = 2Δk =
2ω0

cπ cos θ
Δn (3.51)

Δωgap =
c

n
2Δk =

2c|κ|
n

=
2ω0

π cos θ

Δn

n
. (3.52)

3.2.2 Transverse Bragg Resonance Waveguides

We can now use the above results along with the results from Chapter 2

to analyze a TBR waveguide. Let us define a TBR waveguide as being

composed of a waveguide core of some width, W , and a cladding on either side

composed of Bragg layers. We then proceed to solve the Helmholtz equation

separately in the uniform core and the periodic cladding. We assume plane

wave solutions, E(x) = A exp(ikx)+B exp(−ikx), but require that the wave

vector satisfy

k =

⎧⎪⎨
⎪⎩

kb = 2π
b

cladding

kW = [ε̄ω2

c2
− β2

R]1/2 core

. (3.53)

Eq. (3.39) is solved separately in the core (κ = 0, Δk = 0), and cladding

and the field and its derivative are required to be continuous at the interface

to obtain a piecewise continuous solution.

The mirror symmetry with respect to the center of the core (x = 0)

allows the modes to be classified by their parity: even, A0(0) = B0(0), and

odd, A0(0) = −B0(0). At the outer edge of the cladding, we observe that

A2(W/2 + L) = 0, and B2(W/2 + L) should be minimized.

In the core κ = 0 and Δk = 0. At the interface between the core and
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cladding, requiring continuity of the field and its derivative leads to

∣∣∣∣∣∣
A1(W/2)

B1(W/2)

∣∣∣∣∣∣ =

1

2

∣∣∣∣∣∣
(
1 + kW

kb

)
eikW W/2

(
1 − kW

kb

)
e−ikW W/2(

1 − kW

kb

)
eikW W/2

(
1 + kW

kb

)
e−ikW W/2

∣∣∣∣∣∣
∣∣∣∣∣∣
A0(W/2)

B0(W/2)

∣∣∣∣∣∣ ,

(3.54)

where A1, B1, and A0, B0 are defined by Fig. 3.4. Using Eq. (3.39)-(3.54) we

can now solve for an analytic expression for the transverse field of a guided

mode, and consider how the waveguide design affects the loss due to leakage

through the cladding layer.

Solving Eq. (3.39) in the cladding when x > 0 yields a solution[33] of the

form

∣∣∣∣∣∣
A(x + x0)

B(x + x0)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
− (γ−iΔk)

S
sinh(SL) + cosh(SL) κ

S
sinh(SL)

κ∗
S

sinh(SL) (γ−iΔk)
S

sinh(SL) + cosh(SL)

∣∣∣∣∣∣ ·∣∣∣∣∣∣
A(x0)

B(x0)

∣∣∣∣∣∣

(3.55)

where S = (|κ|2 + (γ − iΔk)2)1/2. For the cladding region when x > 0,

x0 = W/2. Applying the boundary conditions at the center of the core

(A0(0), B0(0)), and the outer edge of the cladding (A2(W/2 + L), B2(W/2 +

L)), and requiring continuity at the core-cladding interface, Eq. 3.54, we

solve numerically for the modal solutions. For the greatest confinement, and

consequently the least loss, the transverse wave vector, k, should be near the

center of the Bragg resonance, so kW ∼ kb or Δk ∼ 0. Also, as L increases,

the leakage field B2(L + W/2) becomes smaller, thus reducing the loss.
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Using Eq. 2.34 and Eq. 3.45, we get the reflection coefficient as

r =
iκ

(γ − iΔk) + s coth(sL)
. (3.56)

Since the field must be continuous, we can equate the outgoing field in the

core to the outgoing field in the cladding, and do likewise for the incoming

field at the core-cladding boundary. At the boundary, the field at the cladding

is given by

E(x = W/2) = A0e
−ikW/2 + B0e

ikW/2 , (3.57)

where A0, B0 are the initial outgoing and incoming field amplitudes at the

core center and in the cladding,

E(x = W/2) = A1e
−ikb·0 + rA1e

ikb·0 . (3.58)

From this, we get

r =
B0

A0
eikW . (3.59)

We can then use symmetry to classify the modes as even, B0/A0 = 1, or odd,

B0/A0 = −1. This expression will give us insight into the core width. We

must take a closer look at the phase of Eq. 3.56. First, we recast it into the

form

r =
−κΔk + iκ(γ + s coth(sL))

(γ + s coth(sx))2 + Δk2
= |r|eiφr (3.60)

and then the phase can be easily seen to be

φr = tan−1

(
−γ + s coth(sL)

Δk

)
. (3.61)

Since any guided mode of the TBR waveguide should be within the bandgap,

we know that Δk < |κ| (Eq. 3.50), and in the limit of a very long cladding

(κL  1) and low loss (γ � 1) the numerator goes to κ. Thus, we can Taylor
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expand about the point Δk = 0. (We acknowledge that s is a function of Δk,

but if Δk < κ, then Δk2 � κ2.) Making use of the fact that d/du tan−1 u =

du/(1 + u2)[30]

φr ≈ π

2
+

Δk

γ + s coth(sL)
(3.62)

to first order. The phase relation is then

kW − φr = mπ , (3.63)

with m = 0, 2, 4, . . . for even modes and m = 1, 3, 5, . . . for odd modes. We

now recognize that k ≈ π/Λ near Bragg resonance so that

W = Λ

(
m +

1

2
+

Δk/π

γ + s coth(sL)

)
. (3.64)

At the Bragg resonance, Δk = 0, and we get W = Λ/2 for the lowest order

even mode, corresponding to the familiar λ/4 phase slip in a DFB grating,

and W = 3Λ/2 for the lowest order odd mode.

Let us restrict ourselves to the lowest order even mode. In the limit of

κL  1 (many Bragg layers) and γ � κ (low loss), we get

W = Λ

(
1

2
+

Δk

π|κ|
)

, (3.65)

which indicates that the greater the grating strength (κ), the less sensitive

the core width is to detuning from Bragg resonance. (limx→∞ coth(x) = 1)

This shows that the phase matching condition within the waveguide core

restricts the width to discrete values. In the next section, we examine how

deviation from the phase matched condition affects the propagation loss using

a FDTD numerical simulation.
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3.2.3 Simulation Results

Since a single transverse even mode is desirable for telecom applications, we

study a case with a core width of W = b/4. For our 2D FDTD simulations,

the domain is composed of an even mirror boundary condition at x = 0,

Bloch boundary conditions at z = 0 and z = a, i.e. E(z = a) = E(z =

0) exp(iβa), and an absorbing perfectly matched layer [11] at the outer edge

of the simulation domain as shown in Fig. 3.5.

The cladding structure simulated was composed of approximately ten unit

cell layers. The hole radius was r = 0.15a, which is smaller than photonic

bandgap crystals (r ≈ 0.3a− 0.4a)[31]. When the core width, W , is b/4, the

field envelope decays as E(x) ∼ exp(−|κ|x)E0. Fig. 3.6 shows the transverse

field profile decay calculated using the 2D FDTD simulation along with the

exponentially decaying envelope predicted by Coupled Mode theory with κ

calculated from Eq. (3.35). Also shown is the theoretical curve with a κ

chosen to fit the FDTD results. The theoretical κ calculated from Eq. (3.35)

is κ = −i0.1475/a while the empirical κ found from the fit shown in Fig.

3.6 was κ = −i0.1100/a. As we shall see, this single empirical constant, and

no other free parameters, will allow us to obtain nearly perfect quantitative

agreement between the theory and simulations. Fig. 3.7 shows the dispersion

calculated by the coupled mode theory using the empirical κ and the FDTD

simulations for varying widths. Although there is very good agreement, we

note that the dispersion calculated by the coupled mode theory is not very

sensitive to small changes in κ. However, the propagation loss is exponentially

dependent on κ and is a good measure of how well the coupled mode theory

agrees with the FDTD simulations.

In order to compare the propagation loss, we start with a Q calculated
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x

z

W

L

x = 0

z = az = 0

Figure 3.5: The 2D FDTD simulation domain showing a sample field calcu-

lation

by the FDTD simulation defined as

Q ≡ ω
E0

−ΔP
, (3.66)
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Figure 3.6: Normalized transverse field decay calculated by the 2D FDTD

simulation for a structure with approximately 10 layers of Bragg periods

where E0 represents the stored energy and ΔP = ΔE/Δt is the power

dissipation. If we assume low loss and intensity decay to have the form

|E(z)|2 ∼ exp(−αz)|E(0)|2,

α = −2βI =
−ΔE
E0

1

L
=

ω

Q

Δt

L
=

ω

Qvg
, (3.67)

where we choose L/Δt ≡ vg = (dβ/dω)−1. From Fig. 3.7, we see that the

dispersion curves are qualitatively the same, meaning that the slope of the

curve does not change appreciably as the width of the core varies. Thus, we

estimate the group velocity for all waveguides using an analytic expression
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Figure 3.7: Dispersion curves for varying widths of the core

for the dispersion when the core width is b/4[33],

vg ≈
(

d

dω

√
n̄2ω2 − k2

b

)−1

=
β

ε̄ω
=

β

n̄
(β2 + k2

b )
−1/2 (3.68)

In Fig. 3.8, we plot the normalized loss constant, αa, from the 2D FDTD

simulations using Eq. (3.67) for varying core widths with the normalized

propagation constant, βRa, as a parameter. As predicted[33], the case W =

b/4 has the least propagation loss for the lowest order even guided mode

studied, and we see that the reduction in loss compared to a larger width

can be more than an order of magnitude. In Fig. 3.9, the comparison of

the FDTD simulations to the coupled mode theory shows that the single
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Figure 3.8: Plot of normalized loss constant, αa, from 2D FDTD simulations

for varying core widths with the propagation constant, βR, as a parameter

empirical constant chosen from Fig. 3.6 is capable of fitting the data for all

width parameters when βRa/π < 0.6. The large deviation from the theory

near the points when 5/8 ≤ βRa/π ≤ 6/8 is a result of the one-dimensional

nature of the coupled mode analysis. By constructing the reciprocal lattice[2]

for the two dimensional triangular lattice used for the cladding, as shown in

Fig. 3.10, we see that there is a point when the forward propagating mode, k1,

can be coupled to the backward propagating mode, k3, by the lattice vector

a2 in addition to the transverse reflection, k2, via a1. This point results when

βRa/π = 2/3 which corresponds to the points that show deviation from the

loss expected. Since the coupled mode treatment was 1-dimensional in nature
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Figure 3.9: Plot of normalized loss constant from 2D FDTD simulations as

well as coupled mode (CM) theory for selected core width values

and we only consider the lowest order Bragg reflection, it is not surprising that

a k-vector smaller than k1 shown in Fig. 3.10 is required in order to neglect

the 2-dimensional periodicity of the triangular lattice cladding and obtain

agreement between the analytical coupled mode theory and the numerical

FDTD simulations.
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Chapter 4

Device Design, Fabrication, and

Measurement

4.1 Design

4.1.1 Grating Pitch

The main design consideration for the device design is the grating pitch.

Since the longitudinal feedback is provided by the facet reflection, there are

many resonant Fabry-Perot modes allowed within the gain spectrum for any

grating choice. In the plane-wave perspective, the TBR modes are propagat-

ing at much more glancing angles of incidence upon the facets. Thus, it is a

reasonable criteria to consider the output of the refracted light.

The Bragg condition occurs when the transverse wavevector, k, equals the

lattice wavevector, K, where k = k0 sin θ, k0 = 2πn/λ, K = π/Λ, Λ is the

grating pitch, λ is the wavelength of light, n is the index of the material (or

more generally the effective index of a mode), and θ is the angle of incidence

shown in Fig. 4.1. This leads to the familiar equation for Bragg resonance,

Λ =
λ

2n sin θ
. (4.1)
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n = 1Output Facet

Defect Core

θ

θ

Λ

Figure 4.1: Schematic showing equivalent ray optics path within TBR waveg-

uide

Since the angle of incidence can be far from normal, θ = 0, the TBR grating

can be designed with a pitch that is much larger than a typical DFB grating,

resulting in much easier fabrication requirements. Although the transverse

confinement is provided by Bragg reflection from the grating, the longitudinal

feedback is still provided by the facet reflections, and in order to obtain

output, the angle of incidence must not exceed the critical angle, θ < θcr,

given by sin θcr = 1/n. Combining this with Eq. 4.1, the design rule we get

is

Λ >
λ

2
, (4.2)

which is independent of the material or effective index. In our design, we

choose Λ ≈ λ, 1.5 μm, which includes a factor of 2 margin. This assures

that all the wavelengths within the gain spectrum of the quantum well lumi-

nescence have the potential to produce laser output.

We may also state Eq. 4.2 in terms of β. For a simple plane-wave ap-
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proximation, the dispersion is given by

n2 ω2

c2
= k2

x + β2 . (4.3)

At the facet interface, the boundary conditions imposed require the trans-

verse wavevectors to be continuous. Therefore, at the critical angle when

total internal reflection occurs, kx = ω/c, and if the Bragg condition is sat-

isfied, we also know

kx =
π

Λ
. (4.4)

Thus,

βcr =
√

n2 − 1
ω

c
=

√
n2 − 1

π

Λ
(4.5)

at the critical angle. Also, from Eq. 4.3, it is clear β ≤ nω/c, so

√
n2 − 1

ω

c
≤ β ≤ n

ω

c
. (4.6)

From Eq. 4.1, we can rewrite Eq. 4.6 in terms of the grating pitch as

(√
n2 − 1

) π

Λ
≤ β ≤

(
1

sin θ

)
π

Λ
. (4.7)

This expression is useful when solving numerically for the modes of a struc-

ture.

4.1.2 Wafer Epitaxy/Surface Grating

Using the knowledge gained from these analytical and numerical models, an

epitaxial wafer structure was designed. The main design considerations were

electrically pumped lasing and surface grating interaction with the TBR con-

fined optical mode. The surface grating approach was chosen to avoid the

regrowth process, resulting in a simpler, and hence less costly, design. This
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Layer Description Material PL (nm) Thickness (Å) Index Doping

0 Substrate InP 900 3.1720 n

1 Buffer InP 900 10000 3.1720 n+ 1E18

2 Waveguide InGaAsP 1100 700 3.2911 n 1E17

3 Waveguide InGaAsP 1100 300 3.3203 undoped

4 Waveguide InGaAsP 1250 500 3.3755 undoped

5 QW InGaAsP 1600 85 3.5300 undoped

6 Barrier InGaAsP 1250 100 3.3755 undoped

7 QW InGaAsP 1600 85 3.5300 undoped

8 Barrier InGaAsP 1250 100 3.3755 undoped

9 QW InGaAsP 1600 85 3.5300 undoped

10 Barrier InGaAsP 1250 100 3.3755 undoped

11 QW InGaAsP 1600 85 3.5300 undoped

12 Waveguide InGaAsP 1250 500 3.3755 undoped

13 Waveguide InGaAsP 1200 400 3.3484 undoped

14 Etch Stop InGaAsP 1200 1300 3.3484 p 1E17

15 Cladding InP 900 4000 3.1720 p 1E17 to 2E18

16 Etch Mask InGaAs 1650 50 3.5500 p+ 1E19

Table 4.1: Epitaxial wafer structure

criteria for electrical pumping and surface grating interaction with the mode

led to some challenges compared to conventional laser structures. The in-

teraction between the surface TBR grating and the optical mode required

the top, p-type contacts to be much closer than in most semiconductor laser

designs. However, due to the metal contacts, this can result in higher loss,

preventing lasing at practical pumping currents. With these competing con-

siderations in mind, the wafer was designed as shown in Table 4.1[1, 18]. A
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Figure 4.2: Photoluminescence of unprocessed wafer of Table 4.1 excited by

a Ti:sapphire pulsed source

sample photoluminescence spectrum of the unprocessed wafer is shown in

Fig. 4.2.

To design the surface grating, we need to estimate the coupling constant,

κ, for a given etch depth. First, let’s calculate the Fourier components of a

square grating.

ε(x) =
+∞∑

n=−∞
εnein2kx , (4.8)
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where k = π/Λ, the fundamental lattice vector, and the factor of 2 is due to

the round-trip phase condition, and

εn =
1

Λ

∫ Λ/2

−Λ/2

ε(x)e−in2kxdx =
Δε

Λ

∫ Λ/4

−Λ/4

e−in2kxdx =
Δε

nπ
(−1)

1
2
(n−1) , (4.9)

where n = 1, 3, 5 . . . is odd.

κ ≈ k2
0

2kb

∫ +∞
−∞

∫ +Λ/2

−Λ/2
Δε(x, y)|E(y)|2dxdy∫ +∞

−∞ |E(y)|2dy
≈ k2

0

2kbπ

∫ +∞
−∞ Δε(y)|E(y)|2dy∫ +∞

−∞ |E(y)|2dy
,

(4.10)

where we have approximated E(y) as the eigenmode of a structure with the

average index, ε̄(x, y) and Δε(x, y) = n2
hi − n2

lo in the etched region and zero

elsewhere. Using this method, κ ≈ 0.0612/period.

4.2 Fabrication

After procuring the commercially grown InP/InGaAsP/InGaAs multiple quan-

tum well wafer material described in the previous section, the fabrication can

be roughly divided into lithography, etching, metallization, and packaging.

For a Bragg grating, we must define a set of periodic lines with a pitch as

guided by Eq. 4.2. By choosing a period of 1.5μm, and a first order grating,

our lithography must be capable of defining lines that are half the period,

750nm. Lithography was provided by an electron beam system due to its

flexibility for design changes and higher resolution capability under 1μm, as

compared to conventional contact, UV photolithography[24]. Lithography

and etching were done at the Stanford Nanofabrication Facility (SNF). The

resist used was 2% 495K MW PMMA (polymethyl methacrylate) in anisole,

spun on a Headway manual coater at 2000 RPM for 45s resulting in an ap-

proximately 300nm film. After this, the sample was baked on a hot plate at
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(a) Under-exposed. (b) Optimally exposed.

(c) Over-exposed.

Figure 4.3: Electron microscope images of developed PMMA that is (a)

underexposed, (b) optimally exposed, and (c) overexposed

200◦C for 2 minutes. The system used was a Hitachi HL-700F direct write

patterning tool, with a 30keV beam, 4nA current, and a 40μm minor field

size for deflection based stitching, and a 2mm major field size for mechanical

stitching. The correct dosage was found to be around 275μC/cm2. This

dosage was found by writing the same pattern multiple times at different

dosages and examination under a scanning electron microscope after devel-

opment. Fig. 4.3 shows some sample patterns that are under-exposed (Fig.

4.3(a)), optimally exposed (Fig. 4.3(b)), and over-exposed (Fig. 4.3(c)). Fig.
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Step Description

1 Cleave wafer into pieces.

2 Ultrasonic clean in acetone 3 minutes.

3 Ultrasonic clean in propanol 3 minutes.

4 Ultrasonic clean in methanol 3 minutes.

5 Bake on hotplate 200◦C 5 minutes.

6 Spin 2% 495K MW PMMA in anisole 2000 RPM 45 seconds.

7 Bake on hotplate 200◦C 2 minutes.

Table 4.2: Electron beam resist coat procedures

Figure 4.4: 500nm squares etched into InP using a HBr:HNO3 mixture
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InGaAsInGaAsPInP

photoresist

Figure 4.5: Electron microscope image of etched profile using a HBr:HNO3

mixture showing the etch rates for different InGaAsP alloys

Step Solution (Volume Ratios) Time Description

1 MIBK:IPA (1:3) 60 seconds PMMA Develop

2 IPA 30 seconds Rinse

Table 4.3: PMMA develop procedure

4.3(a) shows incomplete development and residual resist inside the patterned

areas. Fig. 4.3(c) shows a bowing of the edges compared to Fig. 4.3(b), re-

sulting in a wider exposed area near the top of the image as compared to the

edges of the area at the bottom of the image. (This is due to the proximity ef-

fect.) After exposure, the samples were developed in a mixture of MIBK:IPA

(methyl isobutyl ketone:isopropanol) 1:3 for 60 seconds followed by a rinse in
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Figure 4.6: Surface gratings after HCl:H2O etch into InP mixture

IPA for 30 seconds. Following the lithography and development (Fig. 4.7(a)-

Step Etch Solution (Volume Ratios) Time Description

1 HBr:HNO3:H2O (1:1:30) 5 seconds InGaAs Etch

2 H2O 15 seconds Rinse

3 H2O 15 seconds Rinse

4 HCl:H2O (4:1) 30 seconds InP Etch

5 H2O 15 seconds Rinse

6 H2O 15 seconds Rinse

Table 4.4: Etch procedure

4.7(c), the PMMA mask was used to directly transfer the grating pattern into
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(a) Material

growth

(b) E-beam

resist

(c) E-beam

lithography

(d) InGaAs

cap etch

(e) InP ridge

etch

(f) Resist strip (g) Pla-

narization

(h) Etch back

(i) Photore-

sist

(j) Pho-

tolithography

(k) P-type

metal

(l) Lift-off

(m) Lapping (n) N-type metal

Figure 4.7: Process flow
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the semiconductor. The technique used involves a two-step wet etch and an

epitaxial mask [14]. In the first step (Fig. 4.7(d)), a 50nm InGaAs epitaxial

mask layer was etched with a 1 HBr:1 HNO3:30 H2O mixture. (Actual per-

centage: Hydrobromic Acid 1.5%:Nitric Acid 2.2%:Water 96.3%) This etch

is capable of transferring very high resolution features (for a wet etch), and

features as small as 500nm have been successfully etched at SNF (Fig. 4.4).

Although it etches both InP and InGaAs(P), the etch rate of InP is much

slower, as can be seen in Fig. 4.5. The grating was then transferred into

the InP device using a chemically selective etch of 4 HCl:1 H2O (Fig. 4.7(e))

and the PMMA mask was then stripped (Fig. 4.7(f)) by soaking in acetone.

The etch procedures used are shown in Table 4.4. A planarization layer of

Step Description

1 Clean pieces in solvents.

2 Bake on hotplate 180◦C 5 minutes.

3 Spin AP3000 adhesion promoter 5000 RPM 45 seconds.

4 Spin BCB3022-63:T1100 2:1 5000 RPM 45 seconds.

5 Bake on hotplate 80◦C 90 seconds.

6 Place in oven with nitrogen atmosphere.

7 Ramp up to 25◦C (15 minutes).

8 Ramp up to 150◦C (30 minutes) and hold for 15 minutes.

9 Ramp up to 250◦C (15 minutes) and hold for 1 hour.

10 Ramp down to 25◦C (1 hour) and cool.

Table 4.5: BCB planarization coat procedure

BCB (cyclotene-3022-63:t1100 benzocyclobutene:trimethylbenzene 2:1) was

then spun on at 6000 RPM and baked at 250◦C for 2 hours (Fig. 4.7(g)).

This resulted in an approximately 2.2μm thick film. This layer was then
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Step Description

1 Clean pieces in solvents.

2 Bake on hotplate 195◦C 5 minutes.

3 Spin LOR10B 5000 RPM 45 seconds. (1μm film)

4 Bake on hotplate 195◦C 6 minutes.

5 Spin SPR-3612 5000 RPM 45 seconds. (1.6μm film)

6 Bake on hotplate 90◦C 90 seconds.

7 Expose on Karl Suss MA-6 2.5 seconds. (365nm, 15mW/cm2)

8 Develop in LDD-26W 60 seconds.

9 Rinse in H2O 15 seconds.

Table 4.6: Photolithography procedure

etched back in an O2:CF4 plasma (Fig. 4.7(h)). The etcher was a Plasma

Quest electron-cyclotron resonance (ECR) plasma etcher. The chamber was

first cleaned with an O2 plasma at 5mT pressures, 100sccm flow, 700W mi-

crowave power, and 100W RF power for 10 minutes. After a 2 minute argon

purge, the chamber was pre-conditioned using the actual etch recipe for 15

minutes. The samples were then mounted on the center of a 4-inch silicon

carrier wafer with double-sided copper tape (3M 1182), such that no tape was

exposed, and loaded into the chamber. The etch conditions were 80sccm O2,

20sccm CF4, 400W microwave power, 20W RF power (typical bias 40V) at a

chamber pressure of 10mT. The sample chuck was set to 20◦C and the carrier

wafer was cooled with a helium backflow pressure of 10T. The resulting etch

rate was approximately 200Å/min.

After planarization, photolithography (Fig. 4.7(i), 4.7(j)) was used to

isolate neighboring devices, and p-side metal contacts were deposited with

an electron-beam evaporator, Ti:Pt:Au 20nm:50nm:500nm (Fig. 4.7(k)).



63

A final lift-off completed the p-side processing (Fig. 4.7(l)). Finished

devices are shown in Fig. 4.11. These devices were then lapped to 100μm

thin (Fig. 4.7(m)), and the n-side contact metallization was deposited with a

thermal evaporator, Cr:AuGe:Au 5nm:25nm:100nm (Fig. 4.7(n)). No anneal

step was performed. The devices were then cleaved into individual die and

bonded to gold-plated copper c-mounts using a eutectic PbSn (37/63 183◦C)

solder paste (90.25% metal) (Indium Corporation SMQ92J). The samples

were then wirebonded with 6-8 0.001” inch diameter 1% silicon/aluminum

wire leads.
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(a) Under-planarized.

(b) Optimally planarized.

Figure 4.8: Electron microscope images of surface after etching of planariza-

tion polymer showing (a)incomplete planarization and (b) complete pla-

narization
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Photoresist

Gold

LOR3A

(a) Photolithography

Gold

950K PMMA

495K PMMA

(b) Electron beam lithography

Figure 4.9: Scanning electron microscope images of lift-off resist profiles for

(a) photolithography and (b) electron beam lithography
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LOR10B

Photoresist

Figure 4.10: Scanning electron microscope image of developed LOR10B and

photoresist showing undercut profile
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(a) Under-planarized.

(b) Optimally planarized.

Figure 4.11: Scanning electron microscope images of TBR lasers showing the

defect region. (a) A high index defect composed of semiconductor and (b) a

low index defect composed of polymer
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Figure 4.12: A fully fabricated device die-bonded onto a c-mount heatsink

and wirebonded
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4.3 Measurement

4.3.1 Experimental Setup

To Optical

Spectrum Analyzer
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Figure 4.13: Experimental setup used for measurement of devices

The experimental setup used for measuring fabricated devices is shown

in Fig. 4.13. The laser was placed in a cryostat (MMR Technologies Micro

Miniature Refrigerator, Optical Transmission/Fused Silica Window, K-77

Controller) mounted to linear and rotation motion stages and connected to

a constant current source (ILX Lightwave LDC-3742B). For measuring the
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optical spectrum of the emission, Objective Lens 0 (Mitutoyo M Plan Apo

NIR 50X) and Objective Lens 1 (20X 0.4 NA) were used to focus the light

into a multimode optical fiber that was connected to an optical spectrum

analyzer (HP 70950A). The path was folded by Flip Mirror 0. For nearfield

imaging of the intensity as well as the facet, Flip Mirror 0 was removed from

the path by folding down, resulting in an unobstructed path to the InGaAs

area camera (Sensors Unlimited SU640SDV). The White Light and Pellicle

were used for imaging the facet for alignment purposes. By replacing all

elements demarcated as Module 0 with the Integrating Sphere Detector (ILX

Lightwave OMM-6810B with OMH-6727B) designated as Module 1, the total

integrated power was measured for a light vs. current density (L-I) curve.

By removing all elements between the device under test and the camera,

farfield data was taken by rotating the laser on the rotation stage (Newport

URS150CC). The camera pixels were used in place of a slit, to effectively

create a variable aperture in increments of the pixel spacing, 25μm.

4.3.2 Pulsed and Continuous Lasing

The packaged samples were then tested under pulsed and continuous opera-

tion at cooled and cryogenic temperatures as shown in Fig. 4.14.

By cleaving individual lasers separately and bonding them to heat sinks

(industry standard c-mounts), the thermal effects were mitigated. Previous

results required 0.125% duty cycle to prevent heat induced failure (50ns pulse

width, 40μs periods, HP 8114A Pulse Generator). However, using active

cooling techniques (thermoelectric cooling) at a temperature of 10◦C, lasing

was observed at 1.5μs pulse widths (Fig. 4.15). This was an improvement of

more than 100 times. As seen in Fig. 4.15, thermal roll-off occurred above a

duty cycle of 15%, and continuous lasing could not be achieved.

For continuous wave operation, cryogenic temperatures were required.
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As the setpoint temperature of the cryostat was lowered, the optical gain

increased due to the reduced rate of non-radiative, thermal transitions, as

well as a blue-shift of the emission peak as shown in Fig. 4.16. Fig. 4.17

shows the L-I and I-V curves of continuous wave operation of lasers at a

cryostat temperature of 82K and Fig. 4.18 shows the optical spectrum of the

same devices. From the I-V curves of Fig. 4.17(b), it is clear that the TBR

lasers have a higher turn-on voltage, on the order of twice, indicating larger

contact resistance. This is also apparent from the spectral red-shift shown

in Fig. 4.18(a), experienced by both TBR lasers while the broad-area laser

shows negligible shift. This may be due to the surface of the TBR laser being

half the area due to the 50% duty-cycle grating, increasing the resistance by

a corresponding factor of 2.

4.3.3 Nearfield

Figs. 4.19-4.21 show the nearfield intensity distribution of the measured

devices below threshold (Fig. 4.19), near threshold (Fig. 4.20), and above

threshold (Fig. 4.21) at the values shown in Fig. 4.18(a).

4.3.4 Farfield

Fig. 4.22 shows the farfield pattern for the lasers at a pump current of 90mA

for each device. The aperture used was equivalent to a slit size of 8.9mm

X 0.5mm which corresponds to an integration over approximately 0.6◦ for

each data point. Data was measured at 1◦ intervals. Comparing the farfield

patterns of the TBR lasers to the broad area laser, the TBR lasers seem to

have a full width at half maximum (FWHM) almost twice as wide.
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(a) Thermoelectric cooling

(b) Cryogenic cooling

Figure 4.14: Schematic diagram of apparatus for (a) thermoelectric cooling

and (b) cyrogenic cooling
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Figure 4.15: Average optical power vs. peak voltage of a TBR laser as a

function of duty cycle for a 10μs period. Data is shown for 100ns to 2μs

pulse widths at a heat sink temperature of 10◦C.
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Figure 4.16: Lasing spectrum shift as a function of cryostat temperature
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(a) L-I plot

(b) I-V plot

Figure 4.17: (a) Continuous wave light vs. current density curves at cryostat

temperature of 82K. (b) Current vs. voltage curves of corresponding lasers
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(a) Laser spectra

(b) TBR hi defect spectra

Figure 4.18: (a) Lasing spectra of a broad-area laser, a low index defect TBR,

and a high index defect TBR. The dashed curves show the lasing spectra at

threshold. (b) Lasing threshold of the high index defect TBR laser at various

operating points
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(a) Broad-area

(b) TBR high index defect

(c) TBR low index defect

Figure 4.19: Nearfield image below threshold for (a) broad-area, (b) high

index defect TBR, and (c) low index defect TBR
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(a) Broad-area

(b) TBR high index defect

(c) TBR low index defect

Figure 4.20: Nearfield image at threshold for (a) broad-area, (b) high index

defect TBR, and (c) low index defect TBR
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(a) Broad-area

(b) TBR high index defect

(c) TBR low index defect

Figure 4.21: Nearfield image above threshold for (a) broad-area, (b) high

index defect TBR, and (c) low index defect TBR
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(a) Broad-area

(b) TBR high index defect

(c) TBR low index defect

Figure 4.22: Farfield image above threshold for (a) broad-area, (b) high index

defect TBR, and (c) low index defect TBR
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Chapter 5

Analysis of Results

5.1 Coupled Waveguides

The experimental results of the previous chapter clearly show behavior that

deviates from the expected behavior of a TBR waveguide mode. To under-

stand the modal structure of the device, we start with the basic model of a

single slab waveguide, and consider the effect of additional identical waveg-

uides brought into close proximity. From this pedagogical method, we will

attempt to gain some insight into the more complex behavior of the actual

device.

To analyze this system, we use a perturbation method adapted from ref-

erence [32]. The wave equation is:

∇2E(r, t) − μ∂2
t [ε0E(r, t) + Punpert(r, t)] = μ∂2

t Ppert(r, t) . (5.1)

Here, E is the electric field, and P is the polarization as defined by the

constitutive relation

D = ε0E + P = ε0n
2E (5.2)

where n is the index of refraction. For each individual, isolated (unperturbed)
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waveguide labeled by the subscript m, let the mode be described by the

unperturbed wave equation

∇2Em − με0n
2
m(x)∂2

t Em = 0 (5.3)

where Eq. 5.2 was used to introduce nm(x), the index profile for the individ-

ual waveguide m apart from other waveguides. Em = Em(x) exp(iωt− iβmz)

(∂yE = 0) We will now assume that the solutions can be closely described

by a superposition of the individual waveguide modes

E(r, t) =
∑
m

AmEm(r, t) (5.4)

where Am = Am(z) exp(−iΔβmz), where Δβm accounts for a correction to

the propagation constant due to the other waveguides. We now substitute

Eq. 5.4 into the left hand side of Eq. 5.1.

∑
m

Am(∇2 − με0n
2
m(x)∂2

t )Em + ∂2
zAm − i2βmEm∂zAm = μ∂2

t Ppert . (5.5)

Now by making use of Eq. 5.3 and by making the slowly varying approxima-

tion, ∣∣∂2
zAm

∣∣� βm |∂zAm| , (5.6)

Eq. 5.7 becomes ∑
m

−i2βmEm∂zAm = μ∂2
t Ppert . (5.7)

Next, we multiply by E∗
n and integrate over x to obtain

eiωt−iβmz∂zAm =
i

4ω

∫
E∗

n∂
2
t Ppertdx . (5.8)
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To find the perturbative polarization, we use

Ppert =
∑
m

P− Pm =
∑
m

ε0(n
2(x) − n2

m(x))AmEm (5.9)

where P is the actual polarization and Pm are the unperturbed polarizations

for each waveguide m and n(x) is the actual, perturbed index profile. We

must also use the normalization condition for planewave-like eigenmodes:

∇× E = −μ∂tH → ∂kEi = −iωμHj → Hy =
β

ωμ
Ex (5.10)

for a planewave propagating in the z-direction with transverse field compo-

nents Ex and Hy. Thus, if the harmonic modes are power normalized, we

can write
1

2

∫
E × H∗dx =

β

2μω

∫
|E|2dx = 1 . (5.11)

Substituting Eq. 5.9 into Eq. 5.8 we obtain

∂zAm = −i
ωε0

4

∑
r

Are
−i(βr−βm)z

∫
(n2(x) − n2

r(x))E∗
mErdx . (5.12)

Noting that

∂zAm = e−iΔβmz∂zAm − iΔβmAme−iΔβmz , (5.13)

if

Δβm =
ωε0

4

∫
(n2(x) − n2

m(x))|Em|2dx (5.14)

and

κmn = i
ωε0

4

∫
(n2(x) − n2

m(x))EmE∗
ndx (5.15)

then

∂zAm =
∑
n �=m

−κnmAne−i(βn−βm+Δβn−Δβm)z . (5.16)
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Now let Bm = Am exp(−iβ ′
mz). This means we are now going to describe the

modes using just the coefficients, and assume they are propagating. We can

then write

∂zBm = e−iβ′
mz∂zAm − iβ ′

me−iβ′
mzAm (5.17)

and by substituting Eq. 5.16 into 5.17,

∂zBm = −iβ ′
mBm +

∑
n �=m

−κnmBn (5.18)

if we let β ′
m ≡ βm + Δβm. If we assume that only nearest neighbor coupling

is significant, then Eq. 5.18 becomes

∂zBm = −iβ ′
mBm − κm+1,mBm+1 − κm−1,mBm−1 (5.19)

or in matrix notation,

∂zB = ĈB (5.20)

Ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iβ ′
1 −κ2,1 0 0 . . . 0 0

−κ1,2 −iβ ′
2 −κ3,2 0 . . . 0 0

0 −κ2,3 −iβ ′
3 −κ4,3 . . . 0 0

...
...

...
... . . .

...
...

0 0 0 0 . . . −κN−1,N −iβ ′
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.21)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1

B2

...

BN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.22)

Here, B describes the z-dependence of a mode of the entire waveguide array
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system. We can now assume propagating solutions of the form

B(z) = B(0)e−iλz (5.23)

meaning Eq. 5.20 becomes

−iλB = ĈB (5.24)

and solve the related eigenvalue problem which means we are looking for

values of λ such that

det(Ĉ + iλÎ) = 0 (5.25)

where Î is the identity matrix. Since Ĉ is an N × N square matrix, in

general, there are N eigenvalues, λ, that satisfy Eq. 5.25. Thus, for a coupled

waveguide array with N identical waveguides, there will be approximately

N modes for each original confined mode of the original waveguide. Thus, if

the isolated waveguide has M modes, then the coupled system will have on

the order of M × N modes.

Fig. 5.1 shows the dispersion for several coupled waveguide systems com-

puted numerically using the matrix method of Chapter 2. For each solid line

representing the modes of the original slab waveguide predicted by the ana-

lytic theory, we find discrete modes in the coupled system equal in number

to the number of waveguides coupled.

The simplest nontrivial example is the coupling of two identical slab

waveguides. In this case, Eq. 5.25 reduces to

det

⎡
⎣−iβ ′

1 + iλ −κ

κ∗ −iβ ′
2 + iλ

⎤
⎦ = 0 (5.26)
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Figure 5.1: Dispersion curves calculated for various coupled waveguide sys-

tems composed of 2, 3, and 10 identical waveguides. The light lines for the

high index and low index materials as well as the analytic slab waveguide

theory are shown.

since from Eq. 5.15, κ2,1 = −κ∗
1,2. Finally, we have

λ =
1

2
(β ′

1 + β ′
2) ±

1

2

√
(β ′

1 − β ′
2)

2 + 4|κ|2 . (5.27)
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Figure 5.2: Two coupled waveguides and the mode solutions, showing the

even and odd mode splitting. The separation between the two waveguides is

given by d.

When the two waveguides are identical and single-mode, β ′
1 = β ′

2, so

λ± = β ′ ± |κ| . (5.28)

This result shows that the splitting of each mode, Δλ, due to the coupling is

proportional to the coupling strength, κ. While the exact result may not hold

for all systems, the general principle still holds. From Eq. 5.15, it is clear that

the larger separation decreases the overlap of the each mode field profile with
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Figure 5.3: The propagation constant difference between the odd/even mode

splitting as a function of the separation distance, d in Fig. 5.2. As d increases,

κ decreases, reducing the separation as described by Eq. 5.28.

the index perturbation, resulting in smaller coupling. This trend is shown

in Fig. 5.3 which shows the difference in the propagation constants for a

two waveguide system as the distance between the waveguides is increased.

Substituting Eq. 5.28 into Eq. 5.24, the eigenmodes are found to be

B± =

∣∣∣∣∣∣
∓i κ

|κ|

1

∣∣∣∣∣∣ e−i(β′±|κ|)z . (5.29)
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Figure 5.4: Ten coupled waveguides and the first 3 mode solutions

From Eq. 5.15, κ is a purely imaginary, positive number, so in this case, we

get

Beven =

∣∣∣∣∣∣
1

1

∣∣∣∣∣∣ e−i(β′+|κ|)z (5.30)

Bodd =

∣∣∣∣∣∣
−1

1

∣∣∣∣∣∣ e−i(β′−|κ|)z . (5.31)

Fig. 5.2 shows such a two waveguide coupled array along with the even and

odd modes. Fig. 5.4 shows the first three modes of a 10 waveguide coupled

array system.
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Figure 5.5: A coupled array waveguide consisting of 5 periods of Bragg re-

flectors that will be one half of a TBR waveguide. The lowest order mode

electric field profile is shown.

5.2 Transverse Bragg Resonance Waveguides,

Revisited

Using the results of the previous section, let us now reconsider the TBR

waveguide structure by starting with the periodic Bragg layers of one side,

as shown in Fig. 5.5. This structure can be viewed as a 5 element coupled

array waveguide, or as a 5 period Bragg reflector. In Fig. 5.5, the lowest order
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Figure 5.6: A coupled array waveguide composed of the two waveguides

shown in Fig. 5.5. The even/odd splitting of the lowest order mode is shown

as well as a slab mode confined to the central high index (defect) region.

mode electric field profile is also shown. Beginning with this perspective, a

TBR waveguide structure is then simply two of these arrayed waveguides

coupled together by some distance that happens to contain a high index

region, as shown in Fig. 5.6.

If the array waveguide of Fig. 5.5 is considered as a single waveguide

supporting eigenmodes (also referred to as “supermodes”), then the structure

shown in Fig. 5.6 is just an arrayed waveguide created by the coupling of
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two such waveguides. As we saw in the analysis of the previous section, and

shown in Fig. 5.2, an array of two waveguides splits the original mode into an

even and odd mode. By calculating the modes of the coupled array system of

Fig. 5.6 using the matrix method of Chapter 2, we see that there are indeed

two modes corresponding to the same mode splitting seen in the simple two

waveguide, coupled system. These mode profiles are shown by the dashed

lines in Fig. 5.6. In addition, due to the high index region in the central

region (the TBR defect), there is also a mode that corresponds to a simple

slab waveguide mode due to the effective index confinement.

The alternate viewpoint of a TBR waveguide and coupled mode analysis

yields the Bragg confined modes shown in Fig. 5.7. As expected, there

is a mode that is confined by Bragg reflection that lies within the Bragg

reflection bandwidth, a defect in the so-called band gap. The field profiles

of the modes on either side of the band gap are also shown. They are the

equivalent radiation modes of slab waveguides. These modes are normally

ignored because they are the propagating eigenmodes of the periodic Bragg

material and are not confined, but rather freely radiate at the boundaries.

However, as we will see later, in the presence of gain neglecting these modes

is not a valid assumption.

In the coupled mode treatment of Chapter 3, the lowest order mode was

found to be even. However, this is a result of assuming that the index vari-

ation was a small perturbation over an average, background index. For the

devices analyzed in this chapter, and fabricated as shown in the previous

chapter, the defect region is equal to the maximum or minimum index varia-

tion rather than the average index. While this has little effect on the physical

properties, it can modify the symmetry of the mode due to a phase reversal

at the defect boundary as shown in Fig. 5.8.

Fig. 5.9 shows the dispersion of the TBR defect mode as calculated by
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Figure 5.7: The Bragg confined defect mode as well as the two band edge

modes of a TBR waveguide

the matrix method. The light lines, ω = (c/n)β, corresponding to the high

index and low index materials are also shown. Since the array modes are

guided by total internal reflection, they are restricted to the region bounded

by the light lines. From the figure, we see that the defect mode dispersion

eventually crosses into the region demarcating index-guided modes. From

the coupled mode theory, the dispersion can be described as

ω =
c

n̄

√
β2 +

(π

Λ

)2

(5.32)
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(a) High index defect region
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Figure 5.8: Mode profile of the lowest order mode for a (a) high index defect

region, and a (b) low index defect region
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Figure 5.9: Dispersion of the TBR defect mode for the model shown in Fig.

5.7. The crossover points show that for small propagation constants, β, the

modes are above the light line, and for very large propagation constants, the

modes sink below the light line.

where n̄ = (nhi + nlo)/2 is the average index and Λ is the period. From this

equation we see that the dispersion asymptotically approaches the light line

for the average index,

lim
β→∞

ω =
c

n̄
β . (5.33)

This indicates that the crossover will always occur when the propagation

constant is large enough. To find this crossover point, β = βx, we can use



96

Eq. 5.32 and the light line for the low index material,

βx =
π

Λ

(
n̄2

n2
lo

− 1

)−1/2

. (5.34)

From Fig. 5.9, we see that there is some offset between the predicted crossover

point, (βx = 3.228, ωx = 0.504), and the actual point, (βx = 2.834, ωx =

0.443), approximately 14% error. However, qualitatively, it is clear that

the TBR modes can be separated into two regions of interest. For small

propagation constants, β � βx, the TBR modes are above the light line

while for large propagation constants, β  βx, the TBR modes are below

the light line.

This separation of the modes above and below the light line can be seen

in Fig. 5.10. Within the region bounded by the light lines, the modes are

confined by total internal reflection. The guided modes of the isolated slab

waveguides corresponding to the high index Bragg layers (W ≈ Λ/2) and

the high index defect (W ≈ Λ) are also shown. From the calculated modes

of the structure, we see that the majority of modes are centered along the

mode for the isolated waveguide due to the mode splitting seen in coupled

array waveguides. However, as the number of Bragg layers increases (> 30

in the fabricated devices), these modes can be thought to compose a quasi-

continuous band centered around the original slab mode. In addition, there

is a mode that can be related to the slab mode of an isolated waveguide with

a width equal to the defect width. Above the light line, we find the defect

mode and the modes corresponding to the band edges.

In Fig. 5.11, the modal loss of the modes calculated in Fig. 5.10,

ωΛ/2πc = 0.385, are shown. The modal loss is calculated from the imaginary

component of the propagation constant,

α = −2Im[β] , (5.35)
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Figure 5.10: The modes of the TBR structure shown for a single frequency.

The theoretical curves for TIR and TBR modes are also shown.

when the intensity is assumed to propagate with the form |E(z)|2 ≈ |E(0)|2 exp(−αz).

The large relative propagation loss of the TBR modes relative to the total-

internal-reflection (TIR) modes can thus be understood by the position on

the dispersion curve relative to the light line. Since the TBR modes are

above the light line, they couple to the slab radiation modes and are in-

herently lossy compared to the TIR modes, which are inherently lossless.

Although the TBR modes are much lossier, we see that the density of modes

is much lower than the TIR modes. Since the number of TIR modes due to
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Figure 5.11: Modal loss of the modes shown in Fig. 5.10, ωΛ/2πc = 0.385.

The TBR defect mode is circled.

the coupled waveguide array scales with the number of waveguides, a TBR

waveguide with many Bragg layers will have at least as many modes as the

number of Bragg layers. Thus, to design a single mode waveguide, the TBR’s

lower mode density is advantageous.

Fig. 5.12 shows the loss computed at ωΛ/2πc = 0.598, past the crossover

point when the TBR modes are under the light line. As expected, the mode

that corresponds to the TBR defect mode has low loss that is similar to the

TIR modes. However, The propagation constant is no longer very different
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Figure 5.12: Modal loss at ωΛ/2πc = 0.598. The TBR defect mode is circled.

than these TIR modes. Consequently, it is more difficult to separate the

modes to achieve single-mode operation of the waveguide.

The results of Figs. 5.11 and 5.12 leads to the conclusion that the ad-

vantages of a TBR mode’s single-mode operation can only be achieved by

operating above the light line, when the waveguide is designed to operate

with a propagation constant less than the crossover point defined in Eq.

5.34. Thus, the coupling to the radiation modes is the fundamental physi-

cal property of the TBR modes that results in the large loss discrimination

of the TBR modes and is utilized to achieve single-mode operation. While
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Eq. 5.34 gives the largest allowed propagation constant to isolate a TBR

mode, it must be combined with Eq. 4.7 which gives the smallest allowed

propapagation constant for coupling light out at a facet oriented normal to

the grating momenutum vector (k = π/Λ). Another consequence is that the

index guided modes below the light line will always have low loss compared

to the TBR modes due to the very property that creates the advantage of loss

dependence. This means that these index guided modes must be suppressed

through control of the longitudinal propagation constant, necessitating the

use of longitudinal mode control in addition to the transverse mode control

provided by the Bragg cladding.

If longitudinal mode control can be used to isolate the TBR modes from

the TIR modes, we can then concern ourselves with the TBR waveguide

modes. In addition to the desired defect mode, there exist band edge modes

that are composed of the propagating eigenmodes of the periodic Bragg

medium. Fig. 5.13 shows the modal loss (exp(αΛ) < 1) and gain (exp(αΛ) >

1) of the defect mode and the two nearest neighbor band edge modes. They

have been labeled by the effective index of each mode, neffective/c ≡ Re[β]/ω.

As the material gain is increased, all the modes experience a proportionate

increase in their modal gains. This means that with enough pump power, the

band edge modes are equally valid lasing modes. If the modal loss separa-

tion is large enough, by increasing the band gap size, the threshold difference

may be sufficient to guarantee single-mode operation at the desired operating

point. However, in order to expand the defect modal volume for high power

operation, the index contrast is reduced. This, in turn, reduces the band

gap size, reducing the modal gain discrimination. Ideally, we would like a

method for independently increasing the modal loss of the band edge modes.

Fig. 5.14 shows the mode profiles of the defect mode and a band edge

mode. Outside the grating region, the radiation loss into the substrate ma-
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Figure 5.13: The modal loss/gain of the defect mode, effective index 2.39,

and the 2 nearest band edge modes on either side as the material gain of the

laser is increased

terial is clearly observed. However, it appears that the band edge mode has

a much larger radiation pattern in the substrate than the defect mode. This

observation suggests that the band edge mode has a greater dependence on

the material outside the grating than the defect mode.

Fig. 5.15 shows the modal loss dependence of the defect mode and the

two neighboring band edge modes with the largest effective index for the the

structure shown in Fig. 5.14 as the material loss in the region outside the
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Figure 5.14: Mode profiles of the defect mode and a band edge mode showing

the radiation into the substrate outside the grating region for a passive,

lossless waveguide structure

grating is increased while the grating region remains lossless. As suspected,

the defect mode is affected very little. However, the band edge modes experi-

ence a significantly larger loss as the material loss outside the grating region

is increased. This result suggests that increasing the loss outside the grating

region can increase the modal loss difference between the defect mode and

the band edge modes. Fig. 5.16 shows the same structure and modes of Fig.

5.14 when the material loss outside the grating region is increased.
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Figure 5.15: Modal loss dependence of the defect mode and two neighboring

band edge modes of the structure shown in Fig. 5.14 as the material loss

outside the grating region is increased

The final piece to the TBR waveguide is to check the mode profile in the

presence of gain. Fig. 5.17 shows the mode profile of the defect mode and

band edge mode for a lossless grating region. This structure has twice as

many Bragg layers as in the structure for Fig. 5.15, showing the reduced

radiation loss of the defect mode, while not affecting the band edge mode

radiation loss. Fig. 5.18 shows the same structure, and the same modes

in the presence of material gain within the grating region. The qualitative
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Figure 5.16: Mode profiles of the defect mode and a band edge mode showing

the absorption of the substrate radiation leakage shown in Fig. 5.14 when

the material loss outside the grating region is increased sufficiently

behavior, or the mode shape, is the same in both cases. However, in Fig.

5.18, the amplitude of the radiation leakage is reduced in relation to the field

within the grating region. This reduced ratio is most apparent for the band

edge mode. While the gain in the grating region amplifies the field within

the grating section, there is no corresponding gain in the substrate, and the

field appears to decay.
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Figure 5.17: Mode profile of the defect mode and band edge mode for a

lossless grating region. Note that there are twice as many Bragg layers as in

the structure for Fig. 5.15, reducing the radiation loss of the defect mode.

The radiation of the band edge mode is not effected.

5.3 Device Simulations

To analyze the actual TBR laser structure fabricated, the 3-dimensional vec-

tor FDTD method was used. Although this method is capable of simulat-

ing the entire laser structure, the computational requirements are extremely

steep. However, as we have seen previously, the large modal loss discrimina-

tion of the TBR modes means that we can limit our attention to the defect



106

−8 −6 −4 −2 0 2 4 6 8

0

E
(x

)

ωx/2πc

 

 

3.2

3.5

In
de

x 
of

 r
ef

ra
ct

io
n

Defect
Band edge
Index of refraction

Figure 5.18: Mode profile of the defect mode and band edge mode shown in

Fig. 5.17 in the presence of material gain in the grating region displaying the

same qualitative behavior

and two nearest band edge modes. Further, we know that the defect mode

must lie within the band gap. Therefore, if the band gap is sufficiently narrow

compared to the other spectral features, knowing the band edges can fully de-

scribe our TBR waveguide modal structure. The band edges are particularly

cost effective to compute because they are the modes of the periodic Bragg

structure. This means that periodic boundary conditions can be employed

to limit the computational domain to a single unit cell rather than the full
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Figure 5.19: (a)The surface grating semiconductor structures. The box shows

the unit cell used for calculating the band structure. (b) The index contours

of the actual simulation domain

device, which can contain nearly 100 unit cells.

Fig. 5.19(a) shows an example of the periodic Bragg structure fabricated

by a surface grating in semiconductor. The box outline shows the unit cell

that is simulated with periodic boundary conditions. Fig. 5.19(b) shows the

index contours of the actual simulation domain. By setting the propagation

constant in the z direction to zero (no propagation in the z direction) and

scanning the wave vector in the x direction, we obtain the band diagram

in Fig. 5.20. When kxΛ = π, at the Brillouin zone edge, we reach the

transverse phase condition for Bragg reflection. The inset shows in detail the

TE and TM polarization band gaps at the zone edge. Fig. 5.21 shows the

field intensity distributions for the four modes at the zone edge, the upper

and lower band edges for each polarization.

Fig. 5.22 shows the dispersion of the propagating band edge modes for the
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Figure 5.20: Band diagram of the surface grating structure. The inset shows

the Brillouin zone edge.

actual fabricated device. The light lines for InP (n = 3.17) and InGaAs (n =

3.55) are shown as the approximate, relevant substrate and core indices. The

crossover point appears to be approximately βxΛ ≈ 3.2π, ωΛ/2πc ≈ 0.48.

The lasing wavelength measured for the devices was approximately 1.455μm.

This means that for the fabricated structure with a grating period of 1.5μm,

the normalized frequency, ωΛ/2πc, is approximately 1.03. This puts the

operating point well past the crossover point, and any TBR mode would
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most likely be below the light line making it difficult to distinguish any TBR

mode from nearby TIR modes similar to the example in Fig. 5.12. It is

concluded that this is the reason a clear defect mode was not observed.



110

(a) TE lower band edge (b) TE upper band edge

(c) TM lower band edge (d) TM upper band edge

Figure 5.21: Intensity distribution of fields at the Brillouin zone edge
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Chapter 6

Conclusion

Controlling the electromagnetic modes in a laser cavity is the key to design-

ing high power lasers. Rather than just the total output power from the

facet, the more important metric is the total useful power coupled into an

optical system. While a large modal volume is necessary for reducing the

energy density at the facet, this is contrary to the requirement for single

spatial mode operation in a waveguide utilizing total-internal-reflection for

confinement. We have seen that grating confinement via Brag reflection al-

lows for modes above the light line, and if these lossy modes can be isolated,

the inherent loss mechanism by radiation into the substrate creates a large

modal loss discrimination that can favor the defect mode for single spatial

mode operation.

While the transverse grating is necessary to restrict the transverse wavevec-

tor and support Bragg confined modes above the light line, the longitudinal

wavevector must also be controlled to disallow the modes below the light line.

If the waveguide is designed to allow only propagation constants less than

the crossover propagation constant, βx, the modal separation can be large

enough to isolate the TBR defect mode. Thus, periodicity in a single direc-

tion is insufficient to prevent multimoded waveguiding in a transverse grating

waveguide. By including a second periodicity in the longitudinal direction,
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the longitudinal mode can also be controlled to achieve a truly single-mode,

large modal volume, high power laser.

Due to the lack of longitudinal mode control, as well as an operating

point beyond the crossover point, β > βx, the fabricated devices did not

demonstrate single-mode behavior of the TBR defect mode. However, the

advantages of designing a waveguide that operates above the light line have

been demonstrated theoretically, and is a method of modal control that has

much potential to be exploited. By removing the traditional restriction of

guiding below the light line by total internal reflection a new degree of free-

dom is made possible and the spatial modes of a large modal volume laser

may finally be tamed.
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