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Abstract

As the tissue that contains the largest representation of the human proteome, blood is the
most important fluid for clinical diagnostics. However, although changes of plasma protein
profiles reflect physiological or pathological conditions associated with many human diseases,
only a handful of plasma proteins are routinely used in clinical tests. Reasons for this include the
intrinsic complexity of the plasma proteome, the heterogeneity of human diseases and the rapid
degradation of proteins in sampled blood. The first part of this thesis reports an integrated
microfluidic system, the integrated blood barcode chip (IBBC) that can sensitively sample a
large panel of protein biomarkers over broad concentration ranges and within 10 minutes of
sample collection. It enables on-chip blood separation and rapid measurement of a panel of
plasma proteins from quantities of whole blood as small as those obtained by a finger prick. The
device holds potential for inexpensive, noninvasive and informative clinical diagnoses,
particularly in point-of-care settings.

Proteomic approaches, on which the IBBC platform is based, have shown great promise
in recent years for correctly classifying and diagnosing cancer patients. However, no large
antibody-based microarray studies have vet been conducted to evaluate and validate plasma
molecular signatures for detection of glioblastoma and monitoring of its response to therapy. In
the second part of this thesis, plasma samples from 46 glioblastoma patients (72 total samples)
are compared with those of 47 healthy controls with respect to the plasma levels of 35 different
proteins known to be generally associated with tumor growth, survival, invasion, migration, and
immune regulation. Average-linkage hierarchical clustering of the patient data stratified the two

groups effectively, permitting accurate assignment of test samples into either GBM or healthy
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control groups with a sensitivity and specificity as high as 90% and 94%, respectively (when test
samples within unbiased clusters were removed). The accuracy of these assignments improved
(sensitivity and specificity as high as 94% and 96%, respectively) when the cluster analysis was
repeated on increasingly trimmed sets of proteins that exhibited the most statistically significant
(p < 0.05) differential expression. The diagnostic accuracy was also higher for test samples that
fell into more homogeneous clusters. Intriguingly, test samples that fell within perfectly
homogeneous clusters (all members belonging to the same group) could be diagnosed with 100%
accuracy. Using the same 35-protein panel, we then analyzed plasma samples from GBM
patients who were treated with the chemotherapeutic drug Avastin (Bevacizumab) in an effort to
stratify patients based on treatment-responsiveness. Specifically, we compared 52 samples from
(25) patients who exhibited tumor recurrence with 51 samples from (21) patients who did not
exhibit recurrence. Again, several proteins were highly differentially expressed and cluster
analysis provided effective stratification of patients between these two groups (sensitivity and

specificity of 90% and 96%, respectively).
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1 Introduction

1.1 Blood: The Most Information-Rich Biological Fluid

In addition to its essential role in transporting oxygen to the various organs of the body,
blood is an extremely accessible and incredibly informative diagnostic fluid. Because all tissues
and organs are vascularized, blood 1s infused with biomolecular clues that can potentially report
on the physiological or pathological state of cells throughout the body. However, because blood
is a complex fluid consisting of a large and varied cellular component and immense biochemical
diversity, it presents key analytical challenges that must be met in order to successfully obtain
pertinent mformation. As summarized in Figure 1, cells, including erythroeytes (red blood cells),
leukoeytes (white blood cells), and thrombocytes (platelets), constitute approximately 45% of the
total blood volume, and the liquid component, or plasma, constitutes the remainder. Most
diagnostic analyses on blood are typically carried out on the cell-free plasma component because
the cells would otherwise introduce sample instability and matrix effects that would interfere
with accurate analyte quantitation. Plasma 1s i itself an extraordinarily diverse medium that
contains well over 100,000 different proteins spanning 12 orders of magnitude in concentration
(10'-10° pg/mL)." As a result, for some analytical methods, high abundance plasma proteins,
such as albumin and immunoglobuling, must be removed in order to detect low abundance
proteins such as cytokines. In addition to these commonly discussed components, additional

diagnostic indicators in blood include circulating tumor cells (CTCs),>” DNA and even RNA,



which was long thought to be too unstable, especially in the ribonuclease-rich environment of the

blood, to have any real diagnostic value.

T,

cells plasma

Remove
clotting factors

serum
RBCs WBCs Platelets CTCs
~5x10°  ~5x10 ~dx10° ~5-1300 l

DNA Proteins RNA

~10 pg ‘IOO{OOO+, mRNA &
1-10' pg per miRNA

protein species

Figure 1 Composition of 1 milliliter of whole blood. (RBC=Red Blood Cell; WBC=White
Blood Cell; CTC=Circulating Tumor Cell).

1.2 Proteomic Technologies

Because the plasma proteome is incredibly rich in organ- and disease-specific
biomolecular detail, there has been a tremendous effort over the last decade to characterize
multi-protein signatures for disease diagnosis rather than relying on single biomarkers.’ Many
studies have shown that multi-protein signatures can diagnose cancer and other diseases with

greater specificity and sensitivity than single biomarkers." However, these efforts have also



revealed a number of inadequacies in current proteomics technologies that have hindered their
routine use for clinical diagnostic purposes. For example, 2-D poly(acrylamide) gel
electrophoresis is a valuable research tool that was among the first technologies used for
separation and detection of plasma proteins. However, the approach is too sample-intensive, low
throughput, insensitive, and laborious for proteomic characterization of sample-limited clinical
assays.’

Several versions of mass spectrometry have demonstrated the utility of multiplexed
analyses, though they have not vyet achieved broad clinical application. Surface-Enhanced Laser
Desorption/Ionization Time of Flight Mass Spectrometry, SELDI-TOF/MS (substrates are
commercially marketed by Bio-Rad under the name ProteinChip), are chromatographic surfaces
that can be treated to have diverse affinitics’ to capture a subset of proteins based on their
hydrophobicity or charge, amongst other chemical/physical properties.® Retained proteins are
then identified by mass spectrometric analysis. Increased specificity can be realized by coating
the SELDI surfaces with antibodies to proteins of interest.” Several reports in the literature have
validated SELDI-TOF mass-spectrometric signatures for the plasma detection of prostate® and

9,10
breast”™

cancer. Furthermore, the technique has shown promise for evaluating therapeutic
responsiveness 1o cht—:motherapies.11 The advantages of SELDI are its small sample volume
requirements (~20 pL),'* high sensitivity,”* and speed. In addition, because patient classification
is based on a differential spectral signature, it is not essential to be able to identify the actual
proteins that are differentially expressed. However, the technology is limited in clinical utility by
a lack of reproducibility,'* sample processing time, and instrument expense.

A plasma proteomic technique that has shown great promise in recent years from the

perspectives of multiplexing capability, throughput, and sensitivity is the protein 1rnicr0ar1ray.15



Potentially, thousands of antibodies and/or proteins can be arrayed on a single protein microarray
slide. In addition, the technology can be coupled with existing amplification techniques, such as
gold or silver amplification or with rolling circle amplification (RCA), to greatly enhance
sensitivity. Protein and antibody-based microarrays have been utilized to identify biomarkers for
early diagnosis of epithelial ovarian cancers,'™ as well as for classification of patients with
autoimmune disease and cancers of the prostate, bladder, pancreas, and stomach. In the vast
majority of cases, a panel of differentially expressed plasma markers demonstrated significantly
improved diagnostic accuracy as compared to each component protein. This technology is
expected to continue to grow as the antibody repertoire becomes more comprehensive and as
antibodies to different isoforms and post-translational modifications of proteins become

available.

1.3 On-Chip Plasma Separation and Detection

The goals of separating plasma from whole blood on-chip are to be able to scale down
sample volumes, increase sample processing speed, decrease the time from sample collection to
detection, and avoid the variability associated with typical sample handling procedures. A
number of strategies for separating plasma from whole blood on-chip have been reported in the
last decade, including filtration, on-chip centrifugation, lattice sorting, and plasma skimming.

For direct filtration, size-exclusion barriers are lithographed within microfluidic channels
such that cells, which are larger than openings in the barrier, are blocked from entering, while
plasma passes through freely. The major disadvantage of direct filtration methods is clogging of

the on-chip filter within a relatively short period of time.'® By comparison, cross-flow filtration,



in which the fluid is filtered transverse to its direction of flow, is more resistant to clogging and
can extend device longevity. 1o

Using the principle of deterministic lateral displacement, Davis ef al. created an array of
posts with specifically defined post-to-post and row-to-row distances, in order to “bump” cells
that are above a critical hydrodynamic diameter along the angle of the array, while particles
below this critical diameter flowed straight through the device without being displaced
laterally.?? In this manner, cells of different sizes could be separated from each other, and cell-
free plasma could be obtained with almost no dilution of plasma and at a volume flow rate of
lpL/minute. In the lab-on-a-disk method for plasma separation, metering chambers, siphon-
based hydrophilic extraction channels, plasma collection and detection chambers were positioned
at different radial distances on a CD-sized disk and fluid flow between the chambers could be
controlled by adjusting the spin speed. ***

An alternative method for plasma separation mvolves plasma skimming, wherein
differential flow rates at the bifurcation of a channel are utilized to preferentially guide cells into
one daughter channel while cell-free plasma enters the other. Cells travel preferentially into the
higher flow-rate channel due to the pressure gradient and shear forces created by the flow-rate
differential. Yang and co-workers have described several devices that are able to obtain plasma

purities approaching 100%.2*%

1.4 Thesis Overview

All of the techniques described to this point are accompanied by the limitations stemming
from the inherent nstability of proteins. Any degree of sample manipulation or purification

therefore introduces error into the analysis.® Direct methods of analysis, while difficult to



implement, have distinet advantages. One such direct analvytical platform, the Integrated Blood
Barcode Chip (IBBC) described in Chapter 2, integrates plasma separation and target detection
analysis onto a single chip for rapid and unadulterated plasma proteomic analysis. *’ Plasma
skimming is utilized to achieve on-chip plasma purification, while multiplexed protein analysis
is achieved via the DNA-Encoded Antibody Library (DEAL) technolog_f,y.28 Eight different
biomarkers, corresponding to liver, prostate, and immune function, can be assayed in each lane
within only ten minutes, using as little as a fingerprick of blood. In a separate experiment on pre-
centrifuged plasma from breast- and prostate-cancer patients, patterns of biomarker up- and
down-regulation could be discerned that distinguished the two cancers as well as subgroups of
patients having the same cancer.

In Chapter 3, the assay panel is expanded to 35 oncologically-relevant proteins in order
to define a plasma biomolecular signature that can distinguish patients with glioblastoma
multiforme, the most aggressively malignant of brain tumors, from healthy controls. The panel is
also used to identify a signature that can stratify GBM patients based on their responsiveness to
chemotherapy (i.¢. the anti-VEGF monoclonal antibody, Avastin). In both cases, the differential
expression of a number of proteins yielded excellent clustering of patients into separate
experimental and control groups, allowing for highly accurate classification and diagnosis of test
samples. Although these studies were conducted within ELISA-like wells rather than on-chip,
detection of the validated biomarker set could easily be accomplished within an IBBC. The
ability to quickly run this many protein assays in parallel from a single drop of blood would be
expected to significantly reduce assay costs by minimizing reagent requirements and labor. In the
future, it could also facilitate dynamic biomarker monitoring by allowing assays to be performed

on a minute-by-minute or hourly basis, with minimal blood loss or discomfort to the patient.



In Chapter 4, the computational and analytical tools that were developed in-house to

quickly process and analyze large data sets are introduced and described in detail. The software

takes as its input the intensity values acquired from the fluorescent scans of the assayed slides.

The output files consist of statistical analyses and graphs of the entire data set, as well as files

that interface in automated fashion with Excel statistics software, Cluster 3.0, and Java Treel/iew

in order to create cluster maps for patient classification and diagnostic testing. The software also

affords relatively quick and straightforward analysis of differential protein expression between

experimental and control groups, thereby facilitating data-mining for disease biomarkers.
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2 Integrated Barcode Chips for Rapid,
Multiplexed Analysis of Proteins in
Microliter Quantities of Blood

2.1 Introduction

Microfluidics has permitted the miniaturization of conventional techniques to enable
high-throughput and low-cost measurements in basic research and clinical applications.1’2
Systems for biomolecular assays™ and bio-separations,™ including the separation of circulating
tumor cells or plasma from whole blood,™ have been reported. We developed the integrated
blood barcode chip (IBBC) to address the need for microchips that integrate on-chip plasma
separations from microliter quantities of whole blood with rapid in situ measurements of
multiple plasma proteins. The immunoassay region of the chip is a microscopic barcode,
integrated into a microfluidics channel and customized for the detection of many proteins and/or
for the quantification of a single or few proteins over a broad concentration range. We
demonstrate versatility of this barcode immunoassay by detecting human chorionic gonadotropin
(hCG) from human serum over a 10° concentration range and by stratifying 22 cancer patients
via multiple measurements of a dozen blood protein biomarkers for each patient. We also use the
IBBC to assay a blood protein biomarker panel from whole human blood, performing all key
steps in the immunoassay within 10 minutes of blood collection by finger prick.

We first present an overview of the IBBC and then discuss control of assay sensitivity,

extension of a single protein assay to an assay for a large panel of biomarkers and, finally,
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Figure 2.1 Design of an integrated blood barcode chip (IBBC). (a) Scheme depicting
plasma separation from a finger prick of blood by harnessing the Zweifach-Fung effect.

Multiple DNA-encoded antibody barcode arrays are patterned within the plasma-
skimming channels for in situ protein measurements. (b) DEAL barcode arrays pattered
in plasma channels for in situ protein measurement. A, B, C indicate different DNA codes.
(1)-(5) denote DNA-antibody conjugate, plasma protein, biotin labeled detection
antibody, streptavidin-Cyb fluorescence probe and complementary DNA-Cy3 reference
probe, respectively. The inset represents a barcode of protein biomarkers, which is read
out using fluorescence detection. The green bar represents an alignment marker.

integration of plasma separation from whole blood, followed by the rapid measurement of a
panel of protein biomarkers. Figure 2.1 shows the design of an IBBC for blood separation and in
situ protein measurement. We designed a polydimethylsiloxane (PDMS)-on-glass chip to
perform 8-12 separate multiprotein assays sequentially or in parallel, starting from whole blood.
The Zweifach-Fung effect describes highly polarized blood cell flow at branch points of
small blood vessels.” "' A component of the IBBC, redesigned from a previous report,” exploits
this hydrodynamic effect by flowing blood through a low-flow-resistance primary channel with
high-resistance, centimeter-long channels that branch off it at right angles (Figure 2.1a). As the
resistance ratio 1s increased between the branches and the primary channel, a critical streamline

moves closer to the primary channel wall adjoining the branch channels. Blood cells with a
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radius larger than the distance between this critical streamline and the primary channel wall are
directed away from the high-resistance channels, and ~15% of the plasma i1s skimmed into the
high-resistance channels. The remaining whole blood is directed toward a waste outlet. The glass
base of the plasma skimming channels is patterned with a dense barcode-like array of single-
stranded DNA (ssDNA) oligomers before assembly of the microfluidics chip. A full barcode is
repeated multiple times within a single plasma-skimming channel, and each barcode sequence

constitutes a complete assay.

2.2 Experimental Methods

2.2.1 Micropatterning of Barcode Array

A PDMS mold containing 13-20 parallel microfluidic channels, with each channel
conveying a different DNA oligomer as DEAL code, was fabricated by soft lithography. The
PDMS meold was bonded to a polylysine-coated glass slide via thermal treatment at 80°C for 2 h.
The polyamine surfaces permit significantly higher DNA loading than do more traditional
aminated surfaces. DNA ‘bars’ of 2 um in width have been successfully patterned using this
technique. In the present study, a 20-um channel width was chosen because the fluorescence
microarray scanner we used has a resolution of 5 um. Nevertheless, the current design already
resulted in a DNA barcode array an order of magnitude denser than conventional microarrays
fabricated by pin-spotting. The coding DN A solutions (A-M for the cancer serum test and AA-
HH for the finger-prick blood test) prepared in 1X PBS were flowed into individual channels, and
then allowed to evaporate completely. Finally, the PDMS was peeled off and the substrate with

DNA barcode arrays was baked at 80°C for 2-4 h. The DNA solution concentration was ~100
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uM in all experiments except in the hCG test, leading to a high loading of ~6 x 10"

molecules/cm’ (assuming 50% was collected onto substrate).

2.2.2 Fabrication of IBBCs

The fabrication of PDMS devices for the IBBCs was accomplished through a two-layer
soft lithography approach. The control layer was molded from a SU8 2010 negative photoresist
(~20 um in thickness) silicon master using a mixture of GE RTV 615 PDMS prepolymer part A
and part B (5:1). The flow layer was fabricated by spin-casting the pre-polymer of GE RTV 615
PDMS part A and part B (20:1) onto a SPR 220 positive photoresist master at ~2,000 r.p.m. for 1
minute. The SPR 220 mold was ~17 um in height after rounding by thermal treatment. The
control layer PDMS chip was then carefully aligned and placed onto the flow layer, which was
still situated on its silicon master, and an additional 60 minutes thermal treatment at 80°C was
performed to enable bonding. Afterward, this two-layer PDMS chip was cut off the flow layer
master and access holes were drilled. Finally, the two-layer PDMS chip was thermally bonded
onto the barcode-patterned glass slide, yielding a completed integrated blood barcode chip
(IBBC). In this chip, the DEAL barcode stripes are oriented perpendicular to the microfluidic
assay channels. Typically, 8-12 identical units were integrated in a single chip with the

dimensions of 2.5 cm * 7 cm.

2.2.3 Clinical Specimens of Cancer Patient Sera

The stored serum samples from 11 breast cancer patients (all female) and 11 prostate

cancer patients (all male) were acquired from Asterand. Nineteen out of 22 patients were
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European- American and the remaining three were Asian, Hispanic and African-American. The

medical history is summarized in Table 2.3.

2.2.4 Collecting a Finger Prick of Blood

The human whole blood was collected according to the protocol approved by the
institutional review board of the California Institute of Technology. Finger pricks were
performed using BD microtainer contact-activated lancets. Blood was collected with SAFE-T-
FILL capillary blood collection tubes (RAM Scientific), which we prefilled with 80 uL of 25
mM EDTA solution. A 10 pl. volume of fresh human blood from a healthy volunteer was
collected in an EDTA-coated capillary, dispensed into the tube, and rapidly mixed by inverting a
few times. The spiked blood sample was prepared in a similar way except that 40 uL. of 25 mM
EDTA solution and 40 pl. of recombinant solution were mixed and pre-added in the collection

tube. Then 2 pl. of 0.5 M EDTA was added to bring the total EDTA concentration up to 25 mM.

2.2.5 Execution of Blood Separation and Plasma Protein Measurement using IBBCs

The IBBCs were first blocked with the buffer solution for 30-60 minutes. The buffer
solution prepared was 1% wt/vol bovine serum albumin fraction V (Sigma) in 150 mM 1X PBS
without calcium/magnesium salts (Irvine Scientific). The fluid loading was conducted using a
Tygon plastic tubing that is nterfaced to the IBBC mlet with a 23 gauge metal pin. The Fluidigm
solenoid umit was exploited to control the pressure (on/off) for both control valves and flow
channels. A pressure of 8-10 p.s.i. was applied to actuate the valves, whereas the loading of fluid

into assay channels was carried out with a lower pressure (0.5-3 p.s.i.) depending on the channel
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flow resistance and the desired flow rate. Then DNA-antibody conjugates (~50-100 nM) were
flowed through the plasma assay channels for ~30-45 minutes. This step transformed the DNA
arrays into capture-antibody arrays. Unbound conjugates were washed off by flowing buffer
solution through the channels. At this step, the IBBC was ready for the blood test. Two blood
samples prepared as mentioned above were flowed into the IBBCs within 1 minute of collection.
The IBBC quickly separated plasma from whole blood, and the plasma proteins of interest were
captured in the assay zone where DEAL barcode arrays were located. This whole process from
finger-prick to plasma protein capture took <10 minutes. In the cancer-patient serum experiment,
the as-received serum samples were flowed into IBBCs without any pre-treatment (that is, no
purification or dilution). Afterwards, a mixture of biotin-labeled detection antibodies (~50-100
nM) for the entire protein panel and the fluorescence Cy3-streptavidin conjugates (~100 nM)
were flowed sequentially into IBBCs to complete the DEAL immunoassay. The unbound
fluorescence probes were rinsed off by flowing the buffer solution for 10 minutes. At last, the
PDMS chip was removed from the glass slide. The slide was immediately rinsed mn *2X PBS
solution and deionized water and then dried with a nitrogen gun. Finally, the DEAL barcode

slide was scanned by a microarray scanner.

2.2.6 Quantitation and Statistics

All the barcode array slides used in quantification were scanned using an Axon GenePix
4000B two-color laser microarray scanner at the same instrument settings. For 635 nm and 532
nm excitation lasers, respectively, the following settings were used: Laser Power - 100% and
33%; Optical Gain - 800 and 700; Brightness/Contrast - 87 and 88. The output JPEG images

were carefully skewed and resized to fit the standard barcode array mask design. Then, an image
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processing software, NIH [mage/, was used to produce intensity line profiles of barcodes in all
assay channels. Finally, all the line profile data files were loaded into a home-developed program
embedded as an Excel macro to generate a spreadsheet that lists the average intensities of all 13
bars in each of 20 barcodes. The means and standard deviations were computed using Microcal
Origin. Non-supervised clustering of patients was performed using literature methods and
algorithms." To assess the significance of two patient (sub)groups, Student’s t analysis was
performed on selected proteins and all p-values were calculated at a significance level of 0.05, if

not otherwise specified.

2.3 Results and Discussion

We used the DNA-encoded antibody library (DEAL) technique'® (Figure 2.5) to detect
proteins within the plasma-skimming channels. DEAL technology involves using DNA-directed
immobilization of antibodies to convert a pre-patterned ssDNA barcode microarray into an
antibody microarray, thereby providing a powerful means for spatial encoding.'*" The
sequences of all ssDNA oligomer pairs used (labeled A/A’-M/M”), and their corresponding
antibodies, are listed in Tables 2.1 and 2.2. To minimize cross-reactivity, these ssDNA
molecules were designed in silico and then validated through a full orthogonality test (Figure
2.6). In that experiment, each of the complementary DNA molecules with Cy3 fluorescent label
was added to a microwell containing a full primary ssDNA barcode array. The results showed
only negligible cross-hybridization signals. In the DEAL assay, each capture antibody 1s tagged
with approximately three copies of an ssDNA oligomer that is complementary to ssDNA
oligomers that have been surface-patterned into a microscopic barcode within the immunoassay

region of the chip. Flow-through of the DNA-antibody conjugates transforms the DNA
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microarray into an antibody microarray for the subsequent surface-bound immunoassay. Because
DNA patterns are robust to dehydration and can survive elevated temperatures (80-100°C), the
DEAL approach circumvents the denaturation of antibodies often associated with typical
microfluidics fabrication.

As only a few microliters of blood is normally sampled from a finger prick, on-chip
plasma separation yields only a few hundred nanoliters of plasma. The ssDNA barcodes were
patterned at a high density using microchannel-guided flow patterning (Figure 2.7) to measure a
large panel of protein biomarkers from this small volume. We used a PDMS mold that was
thermally bonded onto a polyamine-coated glass slide to pattern the entire ssDNA barcode.
Polyaminated surfaces permit substantially higher DNA loading than do more traditional
aminated surfaces'® and provide for an accompanying increase in assay sensitivity (Figures 2.8
and 2.9). Different solutions, each containing a specific ssDNA oligomer, were flowed through
different channels and evaporated through the gas-permeable PDMS stamp, resulting in
individual stripes of DNA molecules. One complete set of stripes represents one barcode. All
measurements used 20-um-wide bars spaced at a 40-um pitch. This array density represents an
approximately tenfold increase over a standard spotted array (typical dimensions are 150-um
diameter spots at a 400-um pitch), thus expanding the numbers of proteins that can be measured
within a small volume. No alighment between the barcode array and the plasma channels (IBBC
chip design presented in Figure 2.11) was required. All protein assays used one color
fluorophore and were spatially identified using a reference marker that fluoresced at a different
color.

We first illustrate aspects of the barcode assays via the measurement of a single

biomarker, human chorionic gonadotropin (hCG), in undiluted human serum over a broad



17

concentration range. HCG is widely used for pregnancy testing and is a biomarker for gestational
trophoblastic tumors and germ cell cancers of the ovaries and testes. For this assay, the barcode
was customized by varying the DNA loading during the flow patterning step. The DNA barcode
contained 13 regions (Figure 2.2a). There were two bars of oligomer B designed to detect the
protein, tumor necrosis factor-alpha (TNF-a), as a negative control, one reference bar (oligomer
M), one blank, and nine bars of oligomer A (designed for hCG detection and flow patterned at
ssDNA concentrations that were varied from 200 uM to 2 uM). To perform the assay, we flowed
a mixture of A’-anti-hCG and B’-anti-TNF-« through assay channels. Next, a series of standard
hCG serum samples and two hCG samples of unknown concentration were flowed through

separate assay channels. Biotinylated detection antibodies for hCG and TNF-a were then applied
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Figure 2.2 Measurement of human chorionic gonadotropin (hCG) in sera.

(a) Fluorescence images of DEAL barcodes showing the measurement of a series of standard
serum samples spiked with hCG. The bars used to measure hCG were patterned with DNA
strand A at different concentrations. TNF-a encoded by strand B was employed as a hegative
control. The green bars (strand M) serve as references. (b) Quantification of the full barcodes
for three selected samples. (¢) Mean values of fluorescence sighals corresponding to three sets
of bars with different DNA loadings. Broken lines indicate the typical physiological levels of hCG
in sera after 1 or 10 weeks of pregnancy. Error bars, 1 s.d.
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followed by a final developing step using fluorescent Cy5-labeled streptavidin (red) for all
protein channels and Cy3-labeled M’ oligomer (green) for the reference channels (Figure 2.2a).
Quantifying the fluorescence intensity (Figure 2.2b,c) revealed a sensitivity (~1 mIU/ml)
comparable to the enzyme-linked immunosorbent assay (ELISA) and a broad detected
concentration range (~105). Using the microfluidics-entrained DEAL barcode in a blind test, we
measured the hCG levels m the two unknown serum samples. Our measured levels, estimated at
6 and 400 mIU/ml for unknowns 1 and 2, are in good agreement with the values of 12 and 357
mlU/ml, respectively, obtained from an independent lab test (Figure 2.12). Even without
quantification, the analyte concentrations can be estimated by eye through pattern recognition of
the full barcode. The bar with the highest DN A-loading rendered the highest sensitivity, whereas
the bar with the lowest DNA-loading was used to discriminate samples with high analyte
concentrations. For example, the 25,000 mIU/ml and 250 mIU/ml hCG samples can be visually
distinguished using stripes patterned with lower DNA concentrations, whereas the stripes loaded
from 200 uM DNA solutions do not readily distinguish these samples. For circumstances in
which accurate photon counting is not available, visual barcode inspection permits a rough
estimation of the target quantity—a potential point-of-care application. When levels of hCG are
tracked during pregnancy, concentrations in the blood increase from ~5 mIU/ml in the first week
of pregnancy to ~2 x 10° mIU/ml 10 weeks after conception. The IBBC can cover such a broad
physiological hCG range with reasonable accuracy.

To evaluate multiplexed measurements of a panel of 12 protein markers using the
microfluidic DEAL barcode regions of the IBBCs, we quantified the cross-reactivity between the
stripes within the DNA-encoded immunoassays. This test involved twelve human serum

proteins, including: ten cytokines - interferon (IFN)-y, TNF-a, interleukin (IL)-2, I1-1a, IL-1p,
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transforming growth factor (TGF)-p1, IL-6, IL-10, I.-12, granulocyte-macrophage colony-
stimulating factor (GM-CSF); a chemokine - macrophage chemoattractant protein (MCP)-1; and
the cancer biomarker, prostate-specific antigen (PSA). The results showed negligible cross-talk,
with typical photon counts <2% compared to the correctly paired antigen-antibody complexes
(Figure 2.13). We also assayed serial dilutions (from 5 nM to 1 pM) for these proteins on the
DEAL barcode chip to establish a set of calibration curves for future estimates of protein
concentration 1n sera (Figure 2.14). We fixed all the parameters associated with laser scanning
and fluorescence quantification (e.g., power, gain, brightness and contrast) and performed
quantitative analysis. Depending on the antibodies used, the estimated sensitivity varied from <1
pM for IL-1B and IL-12 to ~30 pM for TGF-P, and was comparable to the detection limits of
ELISA based on the same antibody pairs. For example, according to the specifications of
commercial kits (eBioscience), the detection limit for cytokines like TNF-o and IL-1p is ~8
pg/ml (~0.5 pM), which compares favorably with our observations. However, the statistical
variation of the measured signals is relatively large compared to a commercial ELISA assay—a
variation that 1s likely due to the fact that our chips are manufactured manually.

We assessed the utility of the DEAL barcodes for clinical blood samples by measuring
the same 12 proteins from small amounts of stored serum collected from 22 cancer patients.
These serum samples were thawed, and then assayed using two chips, each containing 12
separate assay units operated in parallel. In every unit, 20 full DEAL barcodes in each assay
channel were used for statistical sampling. The proteins in this panel (Figure 2.3a) - the prostate
cancer marker, PSA, and eleven proteins secreted by white blood cells - have been associated
with tumor microenvironment formation, tumor progression, and tumor metastasis. 1719 Thus, this

panel provides information relevant to multiple aspects of cancer.
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Figure 2.3b shows fluorescence images, each depicting four sets of randomly picked
barcodes obtained from the 22 patient samples. The medical records for all patients are
summarized in Table 2.3. BO1-B11 denote 11 samples from breast cancer patients, whereas
PO1-P11 are from prostate cancer patients. Many proteins were successfully detected with high
signal-to-noise ratios, and the barcode signatures are distinctive from patient to patient, excepting
the assays on P03, P04, P10 and B10. These assays are from individuals who are heavy smokers
(~11-20 cigarettes daily). Only one serum sample (P06) from a heavy smoker did not exhibit a
high background. This high background may result from elevated blood content of the
fluorescent protein carboxyhemoglobin, which has been shown to be relevant to the pathogenesis
of lung diseases of smokers.*® Although we have also measured high background in a number of
stored serum samples, we have never measured a high background in assays from freshly
collected blood, as described below. The results imply that, at least for stored samples, some pre-
purification of the plasma or serum will be required to assay serum protein levels.

Barcode intensities were then quantified and the statistic mean value for each protein was
computed (Figures 2.15, 2.16, and 2.17). The cancer marker PSA clearly distinguished between
the breast cancer and the prostate cancer patients. The only exception was a false-positive result
from B10 that had high nonspecific background. We independently validated our PSA
measurements for all patient sera using standard ELISA. For eight of the prostate cancer patients,
we compared our results with clinical ELISA measurements provided by the serum supplier. The
results (Figure 2.3c) validated the applicability of the DEAL barcodes for assaying complex
clinical samples. However, the statistical accuracy of the PSA barcode assay was not high,
revealing only a modest linear correlation between ELISA and DEAL (Figure 2.18). Again, this

is likely due to our manual chip manufacturing process. We are currently automating our barcode
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fabrication, assay execution, and image quantification in an effort to bring statistical

uncertainties to within 10-20%, close to the state of the art.
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Figure 2.3 Multiplexed protein measurements of clinical patient sera. (a) Layout of the
barcode array used in this study. Green denctes the reference (strand M). (b) Representative
fluorescence images of barcodes used to measure the cancer marker PSA and 11 cytokines
from 22 cancer patient serum samples. BO1-B11, samples from breast cancer patients; P01-
P11, samples from prostate cancer patients. The left and right columns represent
measurements on different chips. {c) Validation of PSA DEAL barcode measurement using
ELISA. x denotes PSA measurements were not provided by the serum supplier. Error bars, 1
s.d. {d) Distribution of estimated concentrations of PSA, TNF-a, and IL-1B in all serum samples.
The horizontal bars mark the mean values. (&) Complete non-supervised clustering of breast
and prostate cancer patients on the basis of protein patterns.
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The cancer patient barcode data could be analyzed for absolute protein levels by
comparing those data against the barcode quantification plots (Figure 2.14). Results for PSA,
TNF-a and I1.-1P are shown in Figure 2.3d. PSA concentrations range from 22 pM to 1 nM (or
0.7 to 33 ng/ml) with a log-scale mean of 117 pM (3.8 ng/ml) for prostate cancer patients. The
estimated PSA concentrations for breast cancer patient sera have a mean of 9.1 pM. PSA readily
differentiates between these two patient groups with good statistical accuracy (P = 0.0007).
Nevertheless, the absolute PSA levels measured by either the standard ELISA or by the barcode
assay are below those determined by the clinical ELISA—a likely result of sample degradation
during storage (Figure 2.3¢). As would be expected, neither TNF-a nor IL-1p allows prostate
and breast cancer patients to be distinguished (P = 0.4 and 0.5, respectively, at a significance
level of 0.2). Our estimates of absolute protein levels indicate that the protein concentration
ranges assessed by the DEAL barcode assay are clinically relevant for patient diagnostics. For
example, the serum level of cytokines such as interleuking and tumor necrosis factors can reach
~10-100 pg/ml in cancer patients,”’ ~500 pg/ml in rheumatoid arthritis patients, and 41 ng/m1*
in septic shock.™ These levels can all be captured using the barcode assay format.

We performed a complete non-supervised clustering (that 1s, using only the levels of
assayed proteins without assigning any weight factors) of patients and generated a heat map
(Figure 2.3e) to assess the potential of this technology for patient stratification. This analysis is
only presented as a proof of principle. Nevertheless, the results are encouraging. For example,
the measured profiles of breast cancer patients can be classified into three subsets—non-
inflammatory, IL- 1P positive and TNF-o/GMCSF positive (Prapy = 0.005, Pamess = 0.04 for the

latter two subsets). The prostate cancer patient data were classified into two major subsets based

upon the inflimmatory protein levels (Pmvpe = 0.016, Papese = 0.012). The multiplexed



23

2526
“* Our results

measurement of cytokines™ is relevant to cancer diagnostics and prognostics.
demonstrate that IBBCs can be applied to the multi-parameter analysis of human health-relevant
proteins in serum.

The ultimate goal behind developing the IBBC was to measure the levels of a large
number of proteins in human blood within a few minutes of sampling that blood, to avoid the
protein degradation that can occur when plasma is stored. In a typical 96-well plate
immunoassay, the biological sample of interest is added, and the protein diffuses to the surface-
bound antibody. Under adequate flow conditions, diffusion is no longer important, and the only
parameter that limits the speed of the assay is the protein/antibody binding kinetics (the
Langmuir isotherm),”’ thus allowing the immunoassay to be completed in just a few minutes.”
Flow through our plasma skimming channels proceeds at velocities >~0.1 mm sec” and can
operate continuously and with near 100% efficiency unless the blood flow is clogged.

For whole blood analysis, the microfluidic channels of IBBCs were precoated with
bovine serum albumin blocking buffer. The DNA barcodes were transformed into antibody
barcodes as described above, and blood samples were flowed into the device within 1 minute of
fingerprick collection. The time from that finger prick to completion of blood flow through the
device was ~9 minutes. We sampled both as-collected whole blood and protein-spiked blood
from healthy volunteers. Figure 2.4a shows the effective separation of plasma in an IBBC. The
few red blood cells that did enter the plasma channels (Figure 2.4a, right panel) did not affect
the subsequent protein assay.

The plasma proteins detected in this whole-blood analysis experiment included a cancer

marker (PSA), four cytokines, and three other functional proteins - complement C3, C-reactive

protein (CRP), and plasminogen - involved in the complement system, inflammatory response,
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fibrin degradation and liver toxicity (Tables 2.1 and 2.2). After exposure of the barcode assay
region to the separated, flowing plasma for 8 minutes, the detection antibody solution and the
fluorescence probes were added to complete the assay. All proteins in the spiked blood were
detected (Figure 2.4b,c). Cytokines gave the strongest fluorescence signals due to the higher
affinities of their cognate antibodies. The measurement of the unspiked fresh blood established a
baseline for a healthy volunteer, in which IL-6, I1L-10, C3, and plasminogen were detected.
Using IBBCs for the separation and analysis of freshly collected blood consistently resulted in
very clean DEAL barcodes, with little or no evidence of biofouling. We are planning a study to
assess the importance of rapid measurements for obtaining accurate protein levels.

Our IBBC enables the rapid measurement of a panel of plasma proteins from a finger
prick of whole blood. Integration of microfluidics and DNA-encoded antibody arrays enables
reliable processing of blood and in situ measurement of plasma proteins within a time scale that
is short enough to avoid most protein degradation processes that can oceur in sampled blood. Use
of the IBBC represents a minimally invasive, low-cost, and robust procedure, and potentially

represents a realistic clinical diagnostic platform.
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Figure 2.4 IBBC for the rapid measurement of a panel of serum biomarkers from a finger
prick of whole blood. (a) Optical micrographs showing the effective separation of plasma from
fresh whole blood. A few red blood cells occasionally seen downstream of the plasma channels
did not affect the protein assay. (b) Fluorescence image of blood barcodes in two adjacent
microchannels of an IBBC, on which both the unspiked and spiked fresh whole blood collected
from a healthy volunteer were separately assayed. Eight plasma proteins are indicated. All bars,
20 um wide. (c) Fluorescence line profiles of the barcodes for both unspiked and spiked whole
blood samples. The distance corresponds to the full length shown in b.
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2.5 Appendix A: Supplementary Methods

2.5.1 DNA-Encoded Antibody Libraries (DEAL) Technique

The critical technique upon which this study is based is the DNA-encoded antibody
library (DEAL) method.! When DEAL is utilized to measure proteins, it is used as follows
(Figure 2.5). Capture antibodies (CAs) against the protein of interest are chemically labeled with
single-stranded DNA (ssDNA) oligomers, vielding ssDNA-CA conjugates. The coupling
reaction 1s accomplished using succinimidyl 4-formylbenzoate (SFB, Solulink) and succinimidyl
4-hydrazinonicotinate acetone hydrazone in N N-dimethylformamide (DMF) (SANH, Solulink)
as conjugation agents to link amine termini on DNA oligomers to the amine side-groups of
proteins.’ A size-exclusion column is used to purify the product by removing excess unreacted
DNA molecules. Separately, the complementary ssDNA oligomers are deposited in a barcode
pattern on a poly-L-lysine coated glass slide using microchannel-guided patterning (details
described in Figure 2.7). At the beginning of a DEAL protein assay, incubation of ssDNA-CA
conjugates with the complementary spatially-patterned ssDNA array assembles the CAs onto
those specific sites through DNA hybridization. This step transforms the DNA microarray into
an antibody microarray that is ready for a protein sandwich assay. Biological samples (i.e.
plasma isolated from human whole blood) can be applied onto the CA microarray and antigens
can be captured. Finally, detection antibodies and/or fluorescent read-out probes are introduced
sequentially to complete the immuno-sandwich assay. DNA oligomer sequences are chosen with
appropriate melting temperatures to optimize room-temperature hybridization to complementary

strands while minimizing cross-hybridization (<5% in fluorescence signal).
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Figure 2.5 Schematic depiction of multi-parameter detection of proteins in integrated
microfluidics using the DNA-Encoded Antibody Library (DEAL) technique.

2.5.2 Serum Protein Biomarker Panels and Oligonucleotide Labels

The protein panels used in the cancer-patient serum experiment (panel 1) and finger-prick
blood test (panel 2), the corresponding DNA codes, and their sequences are summarized in
Tables 2.1 and 2.2. Thesec DNA oligomers were synthesized by Integrated DNA Technologics
(IDT), and purificd by high pressure liquid chromatography (HPLC). The quality was confirmed

by mass spectrometry.
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Table 2.1 List of Proteins and Corresponding DNA Codes
DNA-code Human Plasma Protein Abbreviation
Panel (1)
AN Interferon-gamma IFN-y
BB Tumor necrosis factor-alpha TNF-a
cic Interleukin-2 IL-2
DD Interleukin-1 alpha IL-1a
E/E Interleukin-1 beta IL-16
F/F Transforming growth factor beta TGF-B
GG Prostate specific antigen (total) PSA
H/H' Interleukin-6 IL-6
I Interleukin-10 IL-10
Ji Interleukin-12 IL-12
KK Granulocyte-macrophage colony stimulating factor GM-CSF
L Monocyte chemoattractant protein -1 MCP-1
M/M’ Blank control/reference
Panel (2
AAJAA Interleukin-1 beta IL-1B
BB/BB’ Interleukin-6 IL-6
cc/ice Interleukin-10 IL-10
DD/DD’ Tumor necrosis factor-alpha TNF-a
EE/EE Complement Component 3 C3
FF/FF C-reactive protein CRP
GG/GG' Plasminogen Plasminogen
HH/HH' Prostate specific antigen (total) PSA




Table 2.2

List of DNA Sequences used for Spatial Encoding of Antibodies

Sequence T.°C

Name Sequence (50mM NaCl)
A 5-AAAAAAAAAAAAAATCCTGGAGCTAAGTCCGTA-3 57.9
A 5 NH3-AAAAAAAAAAT ACGGACTTAGCTCCAGGAT-3 57.2
B 5-AAAAAAAAAAAAAGCCTCATTGAATCATGCCTA -3 57.4
B 5 NH3-AAAAAAAAAAT AGGCATGATTCAATGAGGC -3 55.9
C 5- AAAAAAAAAAAAAGCACTCGTCTACTATCGCTA -3 57.6
o 5 NH3-AAAAAAAAAAT AGCGATAGTAGACGAGTGC -3 56.2
D 5-AAAAAAAAAAAAAATGGTCGAGATGTCAGAGTA -3 56.5
B 5 NH3-AAAAAAAAAATACTCTGACATCTCGACCAT-3 55.7
E 5-AAAAAAAAAAAAAATGTGAAGTGGCAGTATCTA -3 55.7
E 5 NH3-AAAAAAAAAATAGATACTGCCACTTCACAT -3 547
F 5-AAAAAAAAAAAAAATCAGGTAAGGTTCACGGTA -3 56.9
F 5 NH3-AAAAAAAAAATACCGT GAACCTTACCTGAT-3' 56.1
G 5-AAAAAAAAAAGAGTAGCCTTCCCGAGCATT-3' 593
G 5 NH3-AAAAAAAAAAAATGCTCGGGAAGGCTACTC-3 58.6
H 5-AAAAAAAAAAATTGACCAAACTGCGGTGCG-3 59.9
H' 5 NH3-AAAAAAAAAACGCACCGCAGTTTGGTCAAT-3 60.8
I 5-AAAAAAAAAATGCCCTATTGTTGCGTCGGA-S! 60.1
I 5 NH3-AAAAAAAAAATCCGACGCAACAATAGGGCA-3 60.1
J 5-AAAAAAAAAATCTTCTAGTTGTCGAGCAGG-3 56.5
J 5 NH3-AAAAAAAAAACCTGCTCGACAACTAGAAGA-S 575
K 5-AAAAAAAAAATAATCTAATTCTGGTCGCGG-3 55.4
K 5 NH3-AAAAAAAAAACCGCGACCAGAATTAGATTA-S 56.3
L 5-AAAAAAAAAAGTGATTAAGTCTGCTTCGGC-3 57.2
L 5 NH3-AAAAAAAAAAGCCGAAGCAGACTTAATCAC-S 57.2
M 5-AAAAAAAAAAGTCGAGGATTCTGAACCTGT-3' 576
M 5 NH3-AAAAAAAAAAACAGGTTCAGAATCCTCGAC-3' 56.9
AN 5 NH3-AAAAAAAAAAGTCACAGACTAGCCACGAAG-3 58
BB 5-AAAAAAAAAAGCGTGTGTGGACTCTCTCTA-3 587
BB 5 NH3-AAAAAAAAAATAGAGAGAGT CCACACACGC-3' 579
cC 5-AAAAAAAAAATCTTCTAGTTGTCGAGCAGG-3 56.5
ccC' 5 NH3-AAAAAAAAAACCTGCTCGACAACTAGAAGA-S 575
DD 5-AAAAAAAAAAGATCGTATGGTCCGCTCTCAS! 58.8
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DD 5" NH3-AAAAAAAAAATGAGAGCGGACCATACGATC-3' 58

EE 5'-AAAAAAAAAAGCACTAACTGGTCTGGGTCA-3 59.2
EE' 5" NH3-AAAAAAAAAATGACCCAGACCAGTTAGTGC-3 58.4
FF S'-AAAAAAAAAATGCCCTATTGTTGCGTCGGA-3 60.1
FF' 5" NH3-AAAAAAAAAATCCGACGCAACAATAGGGCA-3 60.1
GG 5'-AAAAAAAAAACTCTGTGAACTGTCATCGGT-3 57.8
GG 9" NH3-AAAAAAAAAAACCGATGACAGTTCACAGAG-3 57

HH 5-AAAAAAAAAAGAGTAGCCTTCCCGAGCATT-3' 59.3
HH' 5" NH3-AAAAAAAAAAAATGCTCGGGAAGGCTACTC-3' 58.6

* All amine-terminated strands were linked to antibodies to form DNA-antibody conjugates using
SFB/SANH coupling chemistry described by R. Bailey et af.' Codes AA-HH were used in the experiment
examining fresh whole blood from a healthy volunteer. Codes A-M were used for the molecular analyses
of cancer patient serum samples.

All matched antibody pairs and standard proteins (recombinants) were received from
eBioscience except those described below. The antibody pairs for human C3 and CRP were
received from Abcam. Their recombinants were from Sigma. The antibody pair and recombinant
protein for human plasminogen were received from Molecular Innovations. The antibody pair for
PSA was received from Biodesign. The PSA recombinant was from R&D Systems. The capture
and detection antibodies for human hCG were received from Abcam and Chromoprobe,
respectively. The antibody pair and the recombinant for human GM-CSF were both received

from BD biosciences. All oligonucleotides were synthesized by Integrated DNA Technologies.

2.5.3 Cross-Reactivities of Oligonucleotide Labels

A full orthogonality analysis was performed to quantitate the cross-hybridization between
the stripes within the DEAL barcode arrays. A 13-well PDMS slab was placed onto a barcode
array chip consisting of thirteen distinct strands of coding ssDNA (A-M). In each well, a solution

containing only one kind of complementary ssDNA from A’-M’ (labeled with Cy3) was added,
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and successful hybridization was visualized by fluorescence using a 532 nm lager excitation. The

result (Figure 2.6) indicates negligible cross-hybridization across the entire panel of DNA codes

used in our DEAL barcode assay.

A I .
4 ! |

Figure 2,6 Cross-hybridization assay for all 13 DNA oligomer pairs that were used for
encoding the registry of antibody barcode arrays.

2.5.4 Patterning of Barcode Arrays

Using the microchammel-gnided flow-patterning approach (Figure 2.7), we fabricated
DEAL barcode amrays that were ~10-fold denser than conventional microarrays. Microcontact

printing can generate high density arrays of biomolecules with spot sizes of a few micrometers
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(ums),” but extending stamping to large numbers of biomolecules is awkward because of the
difficulty in aligning multiple stamps to produce a single microarray. Direct microfluidics-based
pattering of proteins has been reported, but DNA flow-patterning with sufficient loading remains
less successful compared to conventional spotting methods.™* In the flow patterning process, a
polydimethylsiloxane (PDMS) mold containing 13-20 parallel microfluidic channels, with each
channel conveying a different biomolecule capture agent, was used. The number of channels
could readily be expanded to include 100 or more different capture agents. Poly-amine coated
glass surfaces permitted significantly higher DNA loading than do more traditional aminated
surfaces, with a corresponding increase in assay sensitivity (Figure 2.8). DNA “bars™ of 2
micrometers in width could be successfully patterned. In the present study, a 20-micrometer
(um) channel width was chosen because the fluorescence microarray scanner utilized has a
resolution of 5 um. The fabrication details are as follows:

Mold fabrication. The microfluidic-patterning chips were made by molding a PDMS
elastomer from a master template, which was prepared using photolithography to create a
photoresist pattern on a Si wafer. An altermative was to make a silicon “hard” master by
transferring the photolithographically-defined pattern into the underlving silicon wafer using a
deep reactive ion etching (DRIE) process.6 The first method offers rapid prototyping, while the

second method yields a robust and reusable mold, permitting higher throughput chip fabrication.
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Figure 27 Microchannel-guided flow patterning of DEAL barcode arrays. (a) Depiction
of the procedure. Each DNA bar is 20um wide and spans the dimensions of the glass
substrate. (b) Integration of a DEAL barcode-pattemed glass slide with microfluidics for
multiplexed protein assays. (c¢) Mask desigh of a 13-channel barcode. A-M denotes the flow
channels for the different DNA molecules. (d) Validation of successful patterning of DNA
molecules by specific hybridization of oligomer A to its fluorescent complementary strand A’.
The primary strands B and C were pre-tagged with red and green dyes as references.
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Figure 2.8 Effects of polylysine coating on DEAL assay. (a) Schematic illustration of
polylysine coating for increased loading of DNA oligomer codes. (b) Fluorescence images
showing a comparative study of the measurement of three human cytokines (IFN-y, TNF-g,
and IL-2) using substrates coated with amino-silane and polylysine, respectively.

PDMS patterning-chip fabrication. A polydimethylsiloxane (PDMS) elastomer slab was
fabricated by casting the Sylgard® 184 wet PDMS (prepolymer;curing agent = 10:1 {w/w)) onto
the molds described above followed by a curing step at 80°C for 50 minutes. This slab was
peeled from the mold and was bonded onto a glass surface, which provided the base walls for the
flow channels. Prior to bonding, the glass surface was pre-coated with the polyamine polymer,
poly-L-lysine (Sigma-Aldrich), to increase DNA loading. The coating process is described
elsewhere.'® The mumber of microfluidic channels determines the size of the barcode array. In
the present work, the PDMS chip, as shown in Figure 2.7c, contained 13 to 20 parallel
microchannels designed to cover a large area (3em x 2¢m) of the glass slide with the DNA

barcode microarray.
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DEAL barcode patterning. Solutions, each containing a different primary DNA oligomer
prepared in 1X PBS buffer, were flowed mnto each of the microfluidic channels. Then, the
solution-filled chip was placed in a desiccator for several hours (or overnight) to allow solvent
(water) to evaporate completely through the gas-permeable PDMS, leaving the DNA molecules
behind. Last, the PDMS elastomer was removed from the glass slide, and the barcode-patterned
DNA was fixed to the glass surface by thermal treatment at 80°C for 4 hours, or by UV cross-
linking. Potassium phosphate crystals precipitate during solution evaporation, but are readily
removed by rapidly dipping the slide in deionized water. The barcode-patterned DNA arrays
demonstrated a marked improvement in sensitivity as compared to conventional pin-spotted
microarrays (Figure 2.9). A side-by-side comparison study was performed by running DEAL
assays on three cytokines under identical conditions. Using the microchannel-guided flow
patterning method, a glass slide was patterned with DNA oligomers A, B, C, and a blank control
O (20 pm-wide bars; 50-100 uM DNA solutions). The pin-spotted array, with a typical spot size
of 150-200 um, was printed at the Institute for Systems Biology using 100 uM oligomer
concentrations. Six sets of spots were printed, corresponding to oligomers A, B, C, D, E, and F.
Poly-L-lysine coated slides were used for both types of arrays.

Before the DEAL assay, the capture antibodies were conjugated to DNA oligomer codes
as follows: A’ to IFN-v, B’ to TNF-q, and C” to IL-2. Protein standards were diluted in 1%
BSA/PBS solution at concentrations ranging from 1fM to InM. The incubation time for each
step (blocking, conjugate hybridization, sample binding, detection-antibody binding, and

fluorescent-molecule binding) was 30 minutes. The results (Figure 2.8b) reveal that the DEAL
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Figure 2.9 Increased sensitivity observed in immunoassays run on DEAL barcode
arrays. (a) Concentration-dependent fluorescence signal for the detection of three human
cytokines (A: IFN-y, B: TNF-a, C: IL-2, O: negative control) using a DEAL barcode array. The
bar width is 20 um. (b) Quantitation of fluorescence intensity vs. TNF-o concentration. (c)
Measurements of individual proteins, IFN-y and IL-2, reveal no distinguishable cross-
reactivity. (d) Comparison of the microfluidics flow-patterned DEAL microarrays with DEAL
microarrays patterned using a conventional DNA pin-spotting method. The spot size is ~150-
200 pm. {e) Fluorescence line profiles for the DEAL barcode array in a and the pin-spotted
array in d at different protein concentrations. The curves were amplified in the y-coordinates
for better visualization.
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barcode array sensitivity is similar to the projected sensitivity limit of the commercial ELISA
assay (~10 pg/mL, or 0.8 pM; eBioscience). Taking the example of the TNF-u assay, the
detection sensitivity of the DEAL barcode array (better than 1 pM) is substantially improved
over the 10-100 pM limit found for the mieroarrays spotted using conventional methods (Figure
2.9d). Therefore, the DEAL barcode array combines ELISA-like sensitivity with a high degree
of multiplexing for protein measurements.

The diftference in sensitivity between the barcode array and pin-spotted array platforms is
likely attributable to the difference in feature size. The barcode array has a line-width of 20 pum,
whereas the spot diameter in conventional arrays is more than 150 pum. These results are
consistent with a recent report which demonstrated that DNA microarrays with smaller spot sizes
could detect DNA with increased sensitivity.7

The ELISA-like sensitivity of the DEAL barcode assays is key for realizing the
multiplexed measurement of human plasma proteins in blood. The human plasma proteome is
comprised of three major classes of proteins — classical plasma proteins, tissue leakage proteins,
and cell-cell signaling molecules (cytokines and chemokines). Cell-cell signaling molecules are
biologically informative in a variety of physiological and pathological processes, i.e. tumor host
immunity and inflammation. The concentration range of plasma proteins within the human
plasma proteome spans 12 orders of magnitude, and the lowest end is approximately at the
detection limit of mass spectrometry — a high-throughput protein profiling technique. The state-
of-the art for clinical protein measurements is still the typically low-throughput ELISA assay.
The high performance of the DEAL barcode chip, including its increased sensitivity, is a key to
realizing highly multiplexed measurements of a panel of proteins from small quantities of

clinical blood samples.



Highly multiplexed measurement of low-
abundance plasma proteins from a small

I " II I I I I I I I I I I I " quantity of blood remains a challenge.
I

1012 |

1070
108 -

106 - assay sensitivity for
cytokines

I I I I DEAL bar-code
] :
[
104 - I I I

{ Mass spectrometry sensitivity | / ______
2 -
1% 1 _ELisA sensitivity [

Normal range plasma protein
Concentration (pg/mL)

Ll L

Classical Plasma Proteins Tissue Leakage Cytokines and
Proteins Chemokines

Figure 2.10 Schematic of human plasma proteome (referto N.L. Anderson and N.G.
Anderson, Molectilar & Cellular Proteomics 11, 845, 2001). Our work demonstrates that the
DEAL barcode assay has a markedly increased sensitivity, comparable to ELISA, leading to
the feasibility of multiplexed detection of plasma proteins, including low-abundance cell-cell
signaling molecules, e.g. cytokines and chemokines, from a small quantity of sample.
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Figure 2.11 AutoCAD design of an IBBC. Underneath the PDMS microfluidic chip is a large-
scale DNA barcode array. Flow layer in red; control layer in green.
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2.5.5 Fabrication of IBBCs

The fabrication of the IBBCs was accomplished through a two-layer soft lithography
approach.®” A representative chip design is shown in Figure 2.11. The silicon master for the
control layer (red) was fabricated by exposing a spin-coated SU8 2010 negative photoresist film
(~20-um thickness). Prior to molding, the master was silanized in a trimethylchlorosilane
(TMCS) vapor box for 20 minutes. A mixture of GE RTV 615 PDMS prepolymer part A and
part B (5:1) was prepared, homogenized, and then applied onto the control layer master. After
degassing for 15 minutes, the PDMS was cured at 80°C for 50 minutes. The solidified PDMS
chips were then cut and peeled off the master, and access holes were drilled with a 23-gauge
stainless-steel hole punch.

The flow-layer master (blue) was fabricated using SPR 220 positive photoresist. After
exposure and development, the photoresist pattern was baked at 120°C in a convection oven to
round the flow channels. The resultant flow layer was typically 15-20 um in thickness.
Silanization using TMCS was performed right before applying the fluid PDMS prepolymer.
Next, a mixture of GE RTV 615 PDMS part A and part B (20:1) was prepared, homogenized,
degassed, and then spun onto the flow layer master at 2000-3000 rpm for 1 minute. It was cured
at 80°C for 30 minutes, at which point the PDMS control layer was carefully aligned and placed
onto the flow layer. Finally, an additional 60-minute thermal treatment at 80°C was performed to
bond the two PDMS layers together. The bilayer chip was then peeled off of the flow-layer
master and access holes were drilled.

The last assembly step was to bond the PDMS chip to the DEAL barcode slide via
thermal treatment at 80°C for 4 hours, yielding a completed integrated blood barcode chip

(IBBC). In this chip, the DEAL barcode stripes are orientated perpendicular to the microfluidic
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assay channels. The IBBC features a microfluidic biological fluid-handling module, specifically
a whole blood separation unit, and a DEAL barcode array for highly multiplexed protein
measurements. In a typical design, 8-12 identical blood separation and detection units were

integrated within a single 2.5 cm x 7 em chip.

2.5.6 Execution of Blood Separation and Multi-Parameter Protein Assay using IBBCs

The compatibility of the DEAL technique with integrated microfluidics yielded rapid
blood separations and reliable measurements of a panel of proteins. The experimental procedure

i detailed below.

a. Blocking: Prior to use of the IBBC, all microfluidic channels were blocked with the assay
buffer solution (1% w/v BSA/PBS solution prepared by adding 98% pure Bovine Serum
Albumin, Fraction V (Sigma) to 150 mM 1X PBS without calcium/magnesium salts
(Irvine Scientific) for 30-60 minutes.

b. DEAL formation (introducing conjugates): A solution containing all the DNA-antibody
conjugates was flowed through the assay channels of the IBBCs for ~30-45 minutes, thus
transforming the DNA barcode microarray into an antibody microarray, enabling the
subsequent surface-bound immunoassay. The unbound conjugates were removed by
flowing the assay buffer solution for 10 minutes. The DEAL-conjugate solution was
prepared by mixing all synthesized conjugates in 1% BSA/PBS with a final concentration
of 5 ug/mL. The DNA coding oligomers were pre-tested for orthogonality to ensure that
cross-hybridization between non-complementary oligomer strands yielded a fluorescence

intensity that did not exceed 5% of the complementary pair signal intensity.
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Collecting a finger-prick of blood: Finger pricks were carried out using BD Microtainer

Contact-Activated Lancets (purple lancet — for low volume, single blood drop). Blood

was collected with SAFE-T-FILL capillary blood collection tubes (RAM Scientific),

which were prefilled with a 25 mM EDTA solution as discussed below. Two samples

were prepared from the drop of whole blood:

1.

1.

Unspiked Blood Samples: The blood collection tube was pre-filled with 80 L. of
25 mM EDTA solution, and then 10 ul of fresh human blood was collected in the
EDTA-coated capillary, dispensed into the tube and rapidly mixed by inverting a
few times.

Spiked Blood Samples: The blood collection tube was pre-filled with 40 pL of 25
mM EDTA solution. Forty microliters of recombinant protein solution, containing
all the protein standards, was added. Then, 2 pL of 0.5 M EDTA was added to
bring the total EDTA concentration up to 25 mM. Finally, 10 pL of fresh human
blood was collected in an EDTA-coated capillary, added to the tube and quickly
mixed by inverting a few times. The final concentrations for all protein standards
were ~10 nM. However, the quality of these “standards” and the affinity of
capture antibodies vary substantially. The purpose of spiking in protein standards
was to contrast the signal at high protein concentrations with that of as-collected

fresh whole blood.

d. Blood sample assay: These two blood samples were flowed into the IBBCs within 1

minute of collection. The plasma was quickly separated from blood cells within the chip,

and the proteins of interest were captured in the downstream assay zone containing the

DEAL barcode arrays. The entire process from finger prick to the completion of plasma
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protein capture was very rapid (<10 minutes). Owing to the reduced diffusion barrier in a
flowing microfluidic environment, the sample assay was executed within fen minutes.
With regards to the cancer patient serum tests, the as-received serum samples (Asterand)
were flowed into IBBCs without further treatment.

Applying detection antibodies: A mixture of biotin-labeled detection antibodies was
flowed into the microfluidic devices for ~30 minutes to complete the DEAL assay. The
detection-antibody solution contained biotinylated detection antibodies at ~5 pM
prepared in 1% BSA/PBS. Afterwards, unbound detection antibodies in the IBBCs were
removed by flowing the assay buffer for 10 minutes.

Fluorescence probes: For the cancer serum experiments, Cy5 fluorescent dye-labeled
streptavidin and the reference, Cy3-labeled complementary ssDNA (DNA code M/M),
were mixed together and were then flowed into the IBBCs for 30 minutes. Finally, the

assay buffer was flowed for 10 minutes to remove unbound Steptavidin-CyS3.

g. Rinse: The PDMS blood chip device was removed from the DNA-patterned glass slide.

The slide was immediately dipped 6 times each in the following solutions in order: 1%
BSA/PBS solution, 1X PBS solution, %X PBS solution, deiomized Millipore H,O. The
slide was rinsed for a few seconds under a Millipore H,O stream, and then dried with a
nitrogen gun.

Optical readout: The slide was scanned by an Axon Instruments GenePix Scanner. The
finest resolution (5 um) was selected. Two color channels (the green Cy3 channel and the

red Cy5 channel) were turned on to collect fluorescence signals.
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2.5.7 Consideration of Microfluidic Environment for Rapid Immunoassay

In a microfluidic environment, at sufficiently high flow rates, diffusion is not limiting,

and the rate at which a biological assay can be completed is determined by the Kinetic parameters

that describe the capture of the biomolecule by the surface-bound capture agent.'’ Under

chemical equilibrium, the relative amount of biomolecule that is complexed to the surface-bound

capture agent is given by:

Keq = [biomolecule-CA complex] / [biomolecule in solution][Surface Bound CA]

where Keq is the equilibrium constant. For a given concentration of biomolecule, the surface-

bound assay sensitivity depends upon several factors, including;

The equilibrium constant, Keg: a large Keq corresponds to a large amount of the
biomolecule-CA complex.

The concentration of surface-bound CA: we find that the sensitivity limits of the assay
directly correlate with the concentration of surface-bound CAl During microchannel-
guided flow-patterning of the DEAL barcode arrays, the glass surface was modified by
treatment with poly-L-lysine (a poly-amine), vielding a three-dimensional matrix for
DNA adsorption and markedly increasing the amount of DNA loading. Our DNA-loading
density is estimated to be 6 x 10" molecules/cm’®, an order of magnitude higher than
typical loading densities on amino-silane coated glass slides."" As a result, the protein
detection sensitivity was improved by an order of magnitude, and the dynamic range was
increased to 4 orders of magnitude, as compared with 2-3 orders of magnitude for the
small-molecule amine (i.e. amino-propyl-triethoxyl silane, APTES) functionalized glass

surface. The comparative study is shown in Figure 2.8.
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¢ Teature size: smaller feature sizes can lead to increased sensitivities.” The feature sizes
(20 um-wide stripes) of DEAL barcode chips are substantially smaller than are generated

using more traditional spotting methods (150-pum diameter spots).
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2.6 Appendix B: Supplementary Data

2.6.1 Blind Test of Serum Samples Containing Unknown hCG Concentrations

Two serum samples containing unknown concentrations of hCG were measured in a
blind test using a DEAL barcode assay. These two samples were introduced alongside eight
standards of hCG-spiked serum on the same DEAL barcode chip. Fluorescent images were
acquired at the same laser settings and quantified from 20 sets of barcodes. Using the resulting
standard curve (at 200-pb DNA loading), we estimated the hCG concentration. The results are
shown in Figure 2,12 (inset table), and compared to the test results from an outside independent
laboratory (Labcorp; the test was requested by the Nanotechnology Characterization Laboratory

at the National Cancer Institute). The DEAL barcode assay result is in reasonable agreement

with the Labeorp results.
hCG (millUsmL) Unknown 1 Unknown 2
200 + DEAL (9/12/07) 6 400
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Figure 2.12 Blind test of hCG-containing “unknown” samples. The black squares
correspond to the 200 Uk DMA loading shown in Figure 2.2, and the red squares show the
statistical means of two unknowns. The insets show representative images of barcode assay
results for tiwo unknowns, plus atable showing the estimated concentrations measured using
the DEAL barcode assay and by an independent |aboratory {Labcorp).
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2.6.2 Protein Cross-Reactivities

We assessed the level of cross-reactivity of each antigen with DEAL stripes that are not
specific to that antigen. DNA-encoded capture antibodies and biotinylated detection antibodies
for all 12 antigens were used as usual, but a distinet antigen (10 nM) was added to each assay
lane. Cy3-Streptavidin (red-fluorescence tag) was added to visualize the extent of analyte
capture. The reference marks (DNA strand M) were visualized in all lanes with fluorescent green
Cy3-M’ DNA molecules. The 12 proteins showed a negligible extent of cross-reactivity (Figure
2.13), with typical photon counts under 2% compared to the correctly paired antigen-antibody
complexes. Even at this low level, most of these cross-talk signals were found to be due to
degraded recombinants (protein standards) and did not appear reproducibly once a new
recombinant was used. This minimal cross-talk was also validated in pin-spotted microarrays
using the same set of primary DNA codes. The negligible cross-talk in our DEAL assays is
largely attributable to our significant efforts to screen for orthogonal DNA pairs (Tables 2.1 and
2.2). A non-fully orthogonal DNA pair leads to cross-hybridization, and resultant cross-reactivity

in the DEAL protein assay.’

2.6.3 Dilution Curves for all Proteins used in the DEAL Barcode Assay

We performed assays on serial dilutions of all 12 proteins on the DEAL barcode chip.
Because each device allows a maximum of 12 parallel assays to be executed, we chose 6 lanes
for cross-talk validation, leaving 6 lanes for dynamic range studies. As a result, we combined 2
proteins in each assay lane (Figure 2.14). On the same chip, we assayed all proteins over the
concentration range of 1 nM — 1 pM (except PSA and TGF-B: 5 nM to 5 pM), and quantified the

fluorescence signal vs. concentration for all 12 antigens (Figure 2.14b). All assay lanes were
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Figure 2.13 A cross-reactivity assay for the entire biomarker panel of 12 proteins. Both
barcode (left panel) and pin-spotted (right panel) microarray formats are shown. The green bars
represent the reference stripe/spot — M. Each protein can be readily identified by its distance
from the reference. The designation of proteins in the barcode is the same as in Figures 2.3
and 2.4.
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Figure 2.14 Dilution curves for the 12 proteins measured using DEAL-based barcodes
entrained within microfluidic channels. (a) Barcode images from one device showing minimal
crosstalk, and a series of standard antigens ranging from 1 nM to 1 pM for all 12 proteins (* the
concentrations of PSA and TGF-5 are 5x higher). (b) Quantitation of flucrescence intensity vs.
concentration for all 12 proteins. Error bars: 1 s.d.
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imaged using the GenePix scanner (with the same scanning parameters as described in the
Experimental Methods section). Apparently, the estimated sensitivity varies substantially
depending upon the antibodies being used, from ~0.3 pM (e.g. IL-1f and 11.-12) to 30 pM (TGF-
B). The TGF-P antibody pair has a relatively lower binding affinity and a poorer detection limit
in ELISA (~70 pg/mL, compared to 5-10 pg/mL for most other cytokines, according to the
specifications sheet). Predictably, this gave rise to a poorer performance in the DEAL assay.
Although these curves reflect the ability of the microfluidics-patterned DEAL assays to assess
specific antigens over broad concentration ranges, the statistical variation is relatively large

compared to a commercial ELISA assay.

2.6.4 Standardized Quantification of the Patient Serum DEAL Barcode Data

Barcode signal quantitation was performed through a standardized process designed to
minimize arbitrary bias in the image analysis. First, the fluorescence from the barcodes was
visualized under fixed conditions, using the Axon GenePix 4000B two-color laser microarray
scanner with identical instrument settings. For 635 nm and 3532 nm excitation lasers,
respectively, the following settings were used: Laser Power - 100% and 33%; Optical Gain - 800
and 700; Brightness/Contrast - 87 and 88. Next, the resulting JPEG image was exported from
GenePix 6.0 and was resized to match the standard barcode-array mask-design image. NIH

ImageJ was employed to generate an intensity line profile of each assay channel and subchannel.
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Figure 2,15 Comparison of fluorescence intensities quantitated using the GehePix 6.0
and NIH ImageJ programs. The graph shows good linear correlation up to 85 a.u. (per pixel),

where the /mage. quantitation begins to saturate.

Each data point in the line profile was averaged from 40 pixels (200 um) along the
vertical direction. Fourth, all the line profile data files were loaded into a custom-written Excel
macro that generated a spreadsheet tabulating the average intensities of all 13 bars (1 bar= 3 x
40 pixels, or 25 x 200 um area) in each of 20 barcodes. The statistical analysis generated mean
values and standard deviations (in Microcal Origin).

To demonstrate the feasibility of using the NIH [mage/ program, we performed a
calibration by comparing the photocounts from the GenePix scan and the brightness wvalues
quantitated from /mage/ (Figure 2.15). A linear correlation (p<0.0001) exists if the intensity
from fimage is no higher than 90. The scale of brigchtness in red-green-blue (RGB) mode is 0-

255, so each color has a brightness maximum at 85. Since a common baseline (~10) 13
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superimposed onto the red fluorescence signal, the actual maximum is at ~90-100. The
calibration data validates the use of Image/ for quantitating the DEAL barcode data. We are
currently pursuing a fully automated process for feature recognition, signal quantitation, and
concentration extraction.

The mean values of measured protein levels for every patient were exported into a matrix
for non-supervised clustering of patients. This was performed using the software, Cluster 3.0,
and the heat map was generated using the software, Java Treeview. To assess the statistical
significance between two patient (sub)groups, the Student’s t analysis was performed on selected
proteins and all p-values were calculated at a significance level of 0.05 if not otherwise specified.
This standardized quantitation process diminished any possible biases in the manual quantitation
process, but was unable to identify and exclude interfering speckles and noises in the images. A
dust particle atop a barcode can give rise to an extremely bright scattering signal, thus causing
large errors in quantitating such a barcode. In addition, several samples such as P04, P03, P10,
and B10 exhibited significant bio-fouling and introduced a large non-specific background into
quantitation. These issues remain to be resolved in further development of the DEAL barcode
assay.

Quantitation and statistics of the barcodes for all patient sera are shown in Figures 2.16
and 2.17. The data for all proteins in these plots were shown in the same order as indicated in

Figure 2.3a.
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Figure 2.168 Quantitation of the fluorescence intensities from measurements of 11
breast cancer patients (B01-B11). The proteins are shown in the same order as described
in Figure 2.3a.
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Figure 2.17 Quantitation of the fluorescence intensities from measurements of 11
prostate cancer patients (P01-P11). The proteins are shown in the same order as described
in Figure 2.3a.
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2.6.5 ELISA Validation of DEAL Barcode Assay

Given our limited serum sample quantities, and the amount of material required for
carrying out standard protein measurements, we could only perform strategic cross-validations of
the DEAL barcode measurements. PSA was the single protein that readily discriminated between
breast and prostate cancer patients, and, in addition, clinical measurements of PSA levels for
most of the prostate cancer patients were available through the serum vendor (Asterand). Thus,
for all 22 patient serum samples, we performed enzyme-linked immunosorbant sandwich assays
(ELISAs) to independently assess the PSA levels.

A comparative study of PSA levels measured by ELISA and by the DEAL barcode
assays i1s shown in Figure 2.3c. One set of ELISA data was collected in our lab using the
standard 96-well plate format. A second set of ELISA data, for 8 of the prostate cancer patient
serum samples, was measured in commercial (clinical) labs. The DEAL barcode data is taken
from Figure 2.3b. For our own ELISA measurements (Figure 2.18a), the first row of wells was
loaded with PSA standards at serial dilutions. In all, 22 serum samples and a negative control
(buffer) were measured. All three data sets are presented in Figure 2.3c, and are in good
agreement with one another. The DEAL barcode assay detects the presence of PSA with 100%
accuracy, but 1s less accurate relative to the ELISA tests in terms of quantitating small changes in
concentration. This may be due, in part, to slight variations both in our manual chip assembly
procedures and in our manual assaying procedures. It may also be that the higher sensitivity and
concentration range of the DEAL assays is accompanied by a reduction in accuracy. We are in

the process of fully automating both our microfluidics barcode patterning method and our assay
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procedure. Those advances will allow us to more fully assess the trade-offs between the

sensitivity and accuracy of the DEAL barcode arrays versus traditional ELISA formats.
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Figure 2.18 Validation of PSA detection using ELISA. (a) ELISA assays performed on PSA
standards and 23 as-received serum samples. (b) Correlation between our ELISA and DEAL
barcode assays. All DEAL tests were done in multiplex. Levels for most of the prostate cancer
patients were available through the serum vendor (Asterand). Thus, for all 22 patient serum
samples, we performed enzyme-linked immunosorbent sandwich assays (ELISA) to
independently assess the PSA levels.
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In comparison with the clinical ELISA results measured on fresh sera, our own ELISA
measurements are generally lower in intensity. This likely reflects the influence of long-duration
storage (>1year) and freeze/thaw cycles (>1 cycle). The correlation between the ELISA and
DEAL barcode assays is analyzed using literature methods.'* The R-value is comparable to
literature measurements that compare multiplexed assays against ELISA standards.” The good
agreement between standard ELISA and the DEAL barcode method with respect to PSA

measurements provides validation of the IBBC for measuring proteins from human sera.

2.6.6 Cancer Patients: Medically-Relevant Information

Full medical records were provided for all serum samples acquired from Asterand.

Selected information is listed in Table 2.3. Sample IDs were excluded for privacy protection.

Table 23 Cancer Patients: Selected Information

PATIENT CANCER GENDER/AGE | RACE UICC STAGE glégggcm OTHERS

BO1 Breast Female/62 |Caucasian T2NOMO wine 200mL/day

B02 Breast Female/79 |Caucasian T4N2MO

B03 Breast Female/71 Caucasian T1cNXMO 1-2 drinks/day

BO4 Breast Female/72 |Caucasian T2NXMO hypertension

BO5 Breast Female/89 |Caucasian TINOMX arthritis

B06 Breast Female/56 | Asian TINXMO

BO7 Breast Female/54 Caucasian T2N2MO hypertension, obesity

Bo8 Breast Female/55 | Caucasian T2NXMO 1-5 cigs/day, wine 200mL/day
BO9 Breast Female/83 Caucasian T4NOMO coronary artery disease, cerebral atherosclerosis
B10 Breast Female/63 Hispanic T3N2MX 6-10cigs/day, hyperthyroid, hypertension, osteoarthritis
B11 Breast Female/63 Caucasian TINXMO arterial hypertension

P01 Prostate Male / 51 Caucasian T2cNXMO 4+3=7

P02 Prostate Male / 64 Caucasian T3bNOMX 3+4=7

P03 Prostate Male / 47 Caucasian T2cNOMO 3+3=6 hypertension

P04 Prostate Male / 55 Caucasian T2bNOMO 3+3=6 11-20 cigs/day

P05 Prostate Male /73 Caucasian T3aNXMX 4+4=8 hypertension,11-20 cigs/day

P06 Prostate Male/64 Caucasian T3NOMO chronic bronchitis, 11-20cigs/day
P07 Prostate Male/60 Caucasian T3aNOMO 3+4=7 gastroesophageal reflux

P08 Prostate Male/72 African Am. T2aNXMX 3+3=6 1-5cigs/day

P09 Prostate Male/78 Caucasian T3aN1MX 4+3=7 hypertension, atrial fibrillation
P10 Prostate Male/66 Caucasian T2aNOMX 3+3=6 hypertension, 11-20 cigs/day

P11 Prostate Male / 47 Caucasian T2cNOMO 3+3=6 hypertension

S01 Unknown

502 Unknown
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3 Plasma Proteome Profiling of Glioblastoma
Multiforme: Characterizing Biomarker
Signatures of Disease and Treatment
Response

3.1 Introduction

Glioblastoma multiforme (GBM) [WHO grade IV astrocytoma] is the most common
primary brain tumor in adults and the most aggressive form of glioma.1 Due to its highly
proliferative and infiltrative nature, GBM carries the poorest prognosis of any cancer, with a
median patient survival of ~12 months, despite major advances in chemotherapy, radiation
therapy, and surgery over the last few decades.? Although glioblastoma patients share many
disease features in common, the fact that patients can differ tremendously in their response to
therapy suggests that the cancer 1s molecularly heterogencous. Indeed, it is known that
genetically, there are two routes of glioblastoma development. Primary or de novo GBM, which
is typically characterized by sudden onset of high grade malignancy and an older age of onset,
involves EGFR amplification and inactivation of the PTEN gene due to loss of heterogeneity at
chromosome 10.*' Secondary GBM, which is defined by progression from a lower-grade
astrocytoma, and often presents at a younger age, initially involves chromosome 17 deletions and
inactivation of the p33 gene, followed by a series of other mutations as the tumor undergoes

malignant transformation.”™ However, even within these two broad categories, patients differ in
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the types of subsequent chromosomal alterations and mutations their tumors exhibit, as well as in
rates of tumor growth and progression, overall survival, and types of treatments to which they
respond.

Gene expression profiling has been instrumental in further elucidating key molecular
players involved in GBM growth and progression, as well as the supporting cast of molecules
that exhibit less pronounced changes,™® greatly facilitating the search for candidate GBM
biomarkers. However, gene expression profiling provides a window only to RNA expression
levels, whereas much of the nformation processing within the cell occurs at the level of protein
network interactions. Often the relationship between RNA and protein expression level is
nonlinear’ due to additional post-transcriptional controls.*® Therefore, key drug targets could be

differentially expressed at the protein level but not the RNA level.!

In addition, post-
translational processing and modifications can alter the activities of proteins and their locations
within the cell.® This information cannot be obtained solely by profiling gene expression.
Proteomic approaches pick up where genomic approaches leave off by allowing one to
survey disease-related changes in global protein expression, find correlations between proteins
that are similarly differentially expressed, and analyze those changes in the context of known or
prospective protein signaling pathways and networks. In particular, antibody-based microarray
technology has facilitated the simultaneous high-affinity profiling of numerous proteins from
relatively small samples of cell and tissue lysates, culture media,” and bodily fluids, such as
blood,11 urine,12 saliva, tea,rs,lz"14 and cerebrospinal fluid."” The advantages of this form of
multiplexed protein detection over other approaches, such as 2D-PAGE and mass spectrometry,

are its higher throughput and sensitivity, scalability, ease of use, cost-effectiveness, smaller

sample requirements (< 50 pl.), straightforward protein quantitation, and its ability to detect low
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abundance plasma proteins without the need for tedious protein fractionation steps.”'"'® As such,
this technology represents a promising platform for novel disease-biomarker discovery. In
addition, because small quantities of sample are sufficient to obtain enormous amounts of
information, new opportunities are afforded for minimally-invasive diagnosis, stratification, and
monitoring of cancer patients.16

Blood is an ideal fluid for minimally-invasive detection of cancer-associated markers."”
Cancer cells, like any other cell, secrete proteins into the bloodstream that can provide important
information about their physiological and pathological state.” As well, intracellular proteins and
cell-surface receptors are released into the circulation when cancer cells die. Antibody-based
microarrays can permit the simultaneous, sensitive detection of many of these circulating factors
from very small sample volumes - as little as a fingerprick’s volume worth of blood (10-50
uL).! It might nevertheless be expected that plasma detection of brain tumor markers would be
challenging because the blood-brain barrier (BBB) greatly limits the free passage of proteins and
other molecules between the two compartmen‘[s.18 However, the integrity of this barrier becomes

2022 which both typically

greatly compromised at sites of inflammation’” or neovascularization,
accompany glioblastoma tumors. In addition, glioblastoma tumors secrete soluble factors that
disrupt the blood-brain barrier.”

Unfortunately, for the vast majority of cancers and other diseases, no biomarkers have
thus far been discovered with adequate specificity and sensitivity for whole-population screening
or disease monitoring. Relatively few serum biomarkers have been FDA-approved for cancer
monitoring, and just one — prostate specific antigen (PSA) — is approved for disease screening. ™

Likewise for glioblastoma, although gene expression profiling has allowed for the discovery of

numerous protein biomarker candidates, none of these proteins on its own has achieved broad
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application for routine clinical diagnosis, prognosis, or monitoring of GBM, or for evaluating or
predicting therapeutic response.25

However, it has become increasingly recognized that large panels of proteins, in which
each component protein has relatively poor disease specificity on its own, can, as a group,
provide a highly sensitive and specific molecular signature of disease.”” A number of studies
have demonstrated the ability of antibody-based microarrays to identify protein expression
patterns that can discriminate between patients with cancer (of the bladder,”™ pancreas,”
pros‘m‘[e,30 or stomach“) and normal controls. In theory, a sufficiently informative protein
biomarker panel could stratify a given disease into subgroups based on unique molecular
phenotypes, much as has been shown in gene expression profile studies.”'® Treatments could
then be customized to the tumor’s specific set of molecular alterations. This would greatly
contrast with the current expensive and time-consuming trial-and-error, watch-and-wait approach
of administering a chemotherapeutic, awaiting a response, and then changing the medication if
no response i1s achieved. All the while, the patient’s tumor continues to advance in grade and
stage.

The routine use of antibody-based microarrays for multiplexed, high-throughput plasma
biomarker detection and patient classification requires that these platforms be created using
standardized methods that optimize sensitivity, reproducibility, cost, and compatibility with
microfluidic chip-based environments. While many approaches for arraying antibodies on slide
surfaces have been investigated, DNA-directed antibody immobilization provides a number of
unique advantages in this regard. For one thing, as compared to directly spotted antibodies,

DNA-tethered antibodies exhibit less denaturation and possess greater orientational freedom,

allowing a larger proportion of antibodies to be oriented such that their binding sites are
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- - 32,33
accessible to cognate antigens.””

Studies have also shown that this approach offers improved
spot homogeneity and reproducibility, and far more economical use of antibody materials.”
Importantly for multiplexed point-of-care diagnostics, DNA-directed immobilization is amenable
to microfluidic chip assembly because the antibodies can be arrayed subsequent to bonding of
the PDMS stamp with the DNA-spotted slide - a thermal process that would otherwise destroy
the antibodies.'***

The goal of the present study was to determine whether a plasma protein signature could
be elucidated that would be able to differentiate patients with glioblastoma (n=46) from healthy
controls (n=47) via a simple blood test that uses fingerprick volumes (<50 pL) of blood (Patient
Characteristics shown in Table 3.1). We also sought to elucidate a plasma biomarker signature
indicative of tumor growth - and, conversely, treatment response - in Avastin-treated GBM
patients (Patient Characteristics shown in Table 3.2). Our platform consisted of capture-antibody
arrays created by DNA-directed assembly within ELISA-like wells. These antibodies were
targeted agaimnst 35 distinet proteins known to be generally associated with tumor growth,
survival, migration, invasion, angiogenesis, and immune-regulation. The platform allowed us to
profile even low-abundance analytes (such as cytokines and growth factors) in plasma using
microliter-scale sample volumes. We detected a number of proteins that were differentially
expressed with high statistical significance (p < 0.05), allowing us to use these plasma biomarker

signatures to classify patients into the aforementioned experimental and control groups with high

sensitivity and specificity.



Table 3.1

GBM Patients vs. Healthy Control Population Characteristics
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Table 3.2

Avastin-Treated GBM Patients: Characteristics of Patient Population with
and without Tumor Recurrence
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3.2 Experimental Methods

3.2.1 DNA-Encoded Antibody Libraries (DEAL) Technique

The antibody assembly platform used here is based on the DNA-encoded antibody library
(DEAL) method.! The DEAL assays were performed as previously described (Section 2.5.1)
except that instead of using microchannel-guided flow patterning, ssDNA oligomers
complementary to the ssDNA-CA comugates (100 uM in a 50% DMSO/water mixture) were
spotted onto a poly-L-lysine coated glass slide (150 um spots spaced 300 um center-to-center)
using an array spotter (VersArray Chip Writer Pro, BioRad). Each spot also contained 10 uM of
oligo M as a spot loading control. DNA oligomer sequences were again chosen with appropriate
melting temperatures to optimize 37°C hybridization to complementary strands while minimizing

cross-hybridization (<5% in fluorescence signal).

3.2.2 Antibody Array Platform

Our platform consists of ELISA-like wells assembled by bonding a PDMS slab with pre-
cut square holes to a poly-lysine-coated glass substrate onto which 6x6 oligonucleotide arrays
have been pre-spotted. Thirty-five distinct DNA-addressed antibodies are directed to their
complementary spots during the assay. The assay wells accommodate up to 200 pl. of sample,
but in fact, only about 20-50 uL are needed to obtain a reasonable signal-to-noise. We used 50

uL of plasma for all of our assays.
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3.2.3 Multiplexed Assays on Patient Plasma

Fach microarray well (12 wells/slide) was first blocked with 200 ulL of blocking buffer -
3% wt/vol bovine serum albumin fraction V (Sigma) m 150 mM 1X PBS without
calcium/magnesium salts (Irvine Scientific) — for 1 hour in a 37°C incubator. The wells were
then aspirated, and 50 pL of a cocktail containing 35 different DN A-antibody conjugates (50 nM
each) in blocking buffer were pipetted into the wells to transform the DNA arrays into capture-
antibody arrays (Figure 3.1). After incubation at 37°C for 1 hour, the wells were aspirated, and
then rinsed with blocking buffer 4-5 times to remove excess unbound conjugate. At this step, the
wells were ready for the blood test. Fifty-microliter undiluted plasma samples were added to
each well and allowed to incubate for 1 hour at 37°C. The samples were then aspirated and each
well was again rinsed 4-3 times with blocking buffer. Next, a cocktail containing the 335
biotinylated detection antibodies (50 nM each) in blocking buffer was added to each well (50 ul.)
and was allowed to incubate for 1 hour at 37°C. The wells were aspirated and rinsed 4-5 times
with blocking buffer, followed by incubation of a solution containing 50 nM Streptavidin-Cy3
(eBioscience) and 50 nM M’-Cy3 for 1 hour at 37°C. The wells were aspirated, and rinsed 4-3
times with blocking buffer. The PDMS well template was then peeled off the slide within a
blocking buffer bath, and the slide was allowed to incubate in the bath for 1 minute at room
temperature. The slide was then immersed in 150 mM 1X PBS, %2X PBS, and twice in deionized
water in separate 50-mL falcon tubes for 1 minute, 10 seconds, and 2 seconds, respectively. The

slide was then spun dry and scanned by a fluorescence microarray scanner.
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3.2.4 Plasma Collection and Processing

Blood samples were collected by standard phlebotomy techniques in 10-ml. blood
collection tubes containing ACD-A anticoagulant (BD Vacutainer yellow-top glass tubes). The
samples were centrifuged at /500 x g for 15 minutes, and the plasma was collected and
subdivided into 200 uL aliquots. Plasma samples were frozen at -80°C within 2 hours of
collection to minimize degradation of plasma proteins by proteases. Each aliquot was thawed just

once as needed.

3.2.5 Data Processing and Statistics

Post-assay, all array slides were scanned using a two-color laser fluorescence microarray
scanner (GenePix 4200A Professional, Axon Instruments) at the same instrument settings. For
the 635 nm and 532 nm excitation wavelengths, the laser powers were 70% and 350%,
respectively, and the optical gains were 550 and 3500, respectively. Spot intensities were
quantified with the software program GenePix Pro 6.0 using the fixed circle method. For each
sample, the local background was subtracted from each spot, and the average and standard
deviation were taken for each of the 35 sets of six repeated spots. A semi-global normalization
method was used for chip-to-chip normalization. Briefly, the coefficient of variation (CV) was
calculated for each analyte over all samples and ranked. The 15% of analytes (5 analytes) with
the lowest CV-values were used to calculate the normalization factor N; = S/, where §; is the
sum of the signal intensities of the 5 analytes for each sample, and 4 is the average of S; from all
samples. The dataset generated from each sample was then divided by the normalization factor
N;. Universally, all datasets contained at least 4 analytes that had comparable intensities to

negative controls run in separate experiments. Therefore, the net intra-assay intensities were
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calculated by subtracting each background-corrected analyte intensity by the mean intensity of
the 4 lowest-intensity analytes. Unsupervised two-way average linkage hierarchical clustering
(Cluster 3.0) was then performed on an entire patient cohort data set, and the resulting heat map
and dendrogram were viewed using Java TreelView. The statistical significance (both Mann-
Whitney and t-test p-values) of differential protein expression between experimental and control
groups was analyzed using the Analyselt add-in for Microsoft Excel. This add-in was also used

to generate box plots for each measured analyte across each study group.

3.2.6 Classification of Patients

Two-by-two contingency tables and diagnostic parameters - sensitivity, specificity,
negative predictive value (NPV), and positive predictive value (PPV) - were calculated by
repeated random sub-sampling cross-validation. An Excel macro developed in-house was used to
randomly assign 10 patients to a test set, leaving the remainder of patients as the training set.
Unsupervised two-way average linkage hierarchical clustering (Cluster 3.0) was then performed
on the entire patient cohort dataset (now containing 10 unknowns) and the resulting heat map
and dendrogram were viewed using Java Treeview. The ten unknown patients were then
manually classified as belonging to the experimental (Group A) or control group (Group B)
based on the following decision rules (x = the fraction of members within the unknown’s cluster

that belong to the same group):

1. The minimum number of clusters incorporating the unknown and at least 5 other
members 1s analyzed. If all members of this cluster fall into the same group (x = 1), the

unknown 1s classified as a member of that group with high confidence (this is considered
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a homogeneous zone). If x > 0.75, the unknown is still considered to be part of the
majority group (with average confidence) but the cluster 1s no longer considered a
homogeneous zone. If x < (.75, then. ..

2. The minimum number of clusters incorporating the unknown and at least 8 other
members is analyzed. If now x > (.75, the unknown is considered to be part of the
majority group. If 0.5 < x < (.75, the unknown 1s still considered to be part of the
majority group, but with low confidence. In this case. ..

3. The minimum number of clusters incorporating the unknown and at least 14 other
members 18 analyzed using the same decision rules as in 2.

4. If x ~ 0.5 after step 3, then the unknown remains unclassified and is removed from the
analysis. Alternatively, an x ~ 0.5 1s sufficient to remove the unknown sample from the
analysis even if the unknown 1s grouped within a smaller cluster if the members of that
cluster are closely correlated, yet far less correlated with the nearest neighboring cluster.

5. If in step 1, the unknown is part of a cluster containing 4 or fewer members that are all
highly correlated with each other relative to the nearest neighboring cluster, the unknown
is assigned to the majority group with low confidence if 0.5 < x < .66, average
confidence if 0.66 <x < 0.75 and high confidence if x = 1.

6. 1f two or more unknowns are nearest neighbors, these unknowns remain unclassified and

are removed from the analysis.

This random sub-sampling was then repeated 10 times with replacement (100 unknown
events), such that some patients may have been randomly assigned to a test sample more than

once, while others not at all. An Excel macro developed in-house then compared the predicted
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and actual classifications, and output the total number of true-postives, false-positives, true-
negatives, and false-negatives in a 2x2 contingency table, as well as the sensitivity, specificity,
NPV, and PPV of the diagnostic evaluation. This constituted the full diagnostic evaluation for a
dataset. For the two patient cohorts examined in this study, diagnostic evaluation was also
performed on trimmed datasets consisting of subsets of » proteins (from the initial 35-protein
panel) that exhibited the most statistically significant differential expression between
experimental and control groups (where n =3, 6,9, 12, 16, 20, 25). For each dataset, points were

plotted in ROC space (sensitivity vs. 1-specificity) to assess the predictive power of the test.
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3.3 Results

3.3.1 Evaluation of DNA-Directed Antibody Microarrays

Preliminary experiments were run in advance to validate a set of 35 orthogonal oligos
that exhibited minimal cross-hybridization (<5%). In addition, the full panel of DNA-conjugated
antibodies was validated with a set of cognate recombinants to ensure that there was minimal
cross-talk between each recombinant and non-cognate spots. Each DN A spot was co-loaded with
reference DNA (at 10% of the spot’s total DNA loading), which, once hybridized with a dye-
conjugated complement, served as a DNA-loading control. For each oligo, the spot loading was
highly consistent both across an entire slide as well as between slides.

The fluorescent readouts from all plasma samples assayed on the 35-plex antibody array
platform were analyzed for spot homogeneity, reproducibility, and signal-to-noise. A
representative image of the fluorescent readout from a single assay well is shown in Figure 3.1.
Each well contained a total of six repeats of 6x6 spot arrays (35 antibodies + 1 green Cy3-
conjugated reference oligonucleotide). The spots were circular, well-defined, and radially
homogeneous. There was very little intra-assay variation in the intensities of each set of repeats.
In addition, spot intensities tended to be highly consistent even between duplicate assays run on

separate slides.
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Figure 3.1 Assay platform and methodology. Polylysine-coated slides were spotted with 36
distinct oligos in 6x6 array repeats. A PDMS slab containing square holes was set on top of the
spotted substrates, forming ELISA-like assay wells. Assays were performed by: i. blocking the
wells with BSA, ii. incubating with conjugates to fransform the DNA microarray into an antibody
microarray, iii. adding a different patient plasma sample to each well, iv. incubating with
biotinylated detection antibodies, and v. adding Streptavidin-Cy5 (Red Spots) and M'-Cy3
(Green Reference Spots). Thorough rinses were performed between each of these steps. Each
well contained six full repeats of the 6x6 antibody arrays. The platform was used to detect 35
distinct proteins from 40-50 |L of plasma. Readout was performed with a fluorescence scanner.
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3.3.2 C(lassification of GBM Patients versus Healthy Controls

We compared plasma samples from 46 GBM patients (72 samples total - for some
patients, plasma samples from multiple collection dates were available) with those of 47 healthy
controls with respect to the plasma levels of 35 different proteins known to be generally
associated with tumor growth, survival, invasion, migration, and immuno-regulation. Two-way
average-linkage hierarchical clustering allowed these two groups to be discriminated with a
sensitivity and specificity of 84 £13% and 89 = 31%, respectively (Figure 3.2a). The heat map is
divided into numerous islands of GBM patient, healthy control, and mixed population clusters
without a clean separation between the two groups. We then sought to determine whether the
diagnostic accuracy could be improved by removing those test samples from diagnostic
evaluation that did not fall into highly biased clusters (i.e. > 70% of the cluster members belong
to the same group). Within the subpopulation of test samples that fell into highly discriminatory
clusters, the sensitivity and specificity improved to 90+14% and 94+8%, respectively, albeit with
a diagnosable population size that was 70% of the original. Among test samples that clustered
entirely with members of a single group (“homogeneous zones™), the sensitivity and specificity
both approached 100%. Thirty percent of samples fell into one of these homogeneous zones,
allowing that subpopulation to be diagnosed with near-perfect accuracy. (For a more detailed
discussion of hierarchical clustering and examples of highly biased clusters and homogeneous
zones, see Sections 4.2 and 4.3.)

We then repeated the cluster analysis with a trimmed panel that included only the nine
proteins with the most statistically significant (Mann-Whitney and t-test p-values <0.03)
differential expression (Figure 3.2b). These included: MMP3, PDGF, IP10, IGFBP2, VEGF,

I1.13, GM-CSF, MMP9, and CRP. The resultant heat map shows far improved classification of
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Figure 3.2a
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Sensitivity = 8415%
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n=84

ii) Test Applied Only to Unknowns
in Unambiguous Clusters™

Sensitivity = 90£14%
Specificity = 9418%
PPV =97+8%

NPV = 81£19%

n=59

|||] Test Applied Only to Unknowns
in Perfectly Homogeneous Tones'*

Sensitivity = 100£0%
Specificity = 100£0%
PPV = 100+0%
NPV = 100£0%

n=21

*These 84 (unknown) events constituted 84 (of 93) distinct patients and 72 (of 119) independent samples.

tThese 59 (unknown) events constituted 45 {(of 93) distinct patients and 50 {of 119} independent samples.

IThese 27 (unknown) events constituted 20 (of 93) distinct patients and 22 (of 119) independent samples.

Note: The number of events in each square of a 2x2 contingency table represents the sum of outcomes of

10 tests, with each test consisting of 10 blindly and randomly generated unknowns from the list of 119
independent samples. No sample is assigned to be an unknown more than once per test. However, the
number of events exceeds the number of independent samples because over the course of 10 tests, some
samples may be randomly assigned as unknowns multiple times.
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Figure 3.2b
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*These 95 (unknown) events constituted 58 (of 93) distinct patients and 71 (of 119) independent samples.
tThese 75 (unknown) events constituted 46 {of 83} distinct patients and 54 {of 119) independent samples.
fThese 26 {unknown) events constituted 20 (of 93) distinct patients and 22 {of 119) independent samples.
Note: The number of events in each square of a 2x2 contingency table represents the sum of outcomes of
10 tests, with each test consisting of 10 blindly and randomly generated unknowns from the list of 119
independent samples. No sample is assigned to be an unknown more than once per test. However, the

number of events exceeds the number of independent samples because over the course of 10 tests, some

samples may be randomly assigned as unknowns multiple times.
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Figure 3.2 Classification of GBM patients and healthy controls. (a) Average linkage
hierarchical clustering (unsupervised) was performed on 35-protein datasets from each of 72
GBM patient plasma samples and 47 healthy control samples. A computer program was used to
randomly assign patients to trial and test sets (multiple times), and the disease status (GBM vs.
healthy) of each test set member (unknown) was predicted based on the status of nearest
neighbors in its cluster. 2x2 contingency tables were generated and relevant statistical
parameters were calculated for diagnostic tests that evaluated: i) all unknowns in the heat map;
ii) only unknowns in clusters where a sizeable majority of members - including the nearest
neighbor - shared the same status; iii) only unknowns in completely homogeneous clusters
where all members shared the same status - so-called homogeneous “zones”. (b) The heat map
in a was “trimmed” by performing average-linkage hierarchical clustering (supervised) on the
nine proteins that exhibited the most significant differences (lowest p-values) between GBM
patients and healthy controls. Note the significant improvement in stratification of patients into
just two main relatively homogenous groups — a “GBM Patient” cluster and a “Healthy Control”
cluster. Compare with the more numerous small clusters and “mixed” groups in a. TP = True
Positive, TN = True Negative, FP = False Positive, FN = False Negative, PPV = Positive
Predictive Value, NPV = Negative Predictive Value. Label Colors: magenta = growth; green =
no growth; blue = growth possible or slow.

GBM patients and healthy controls into two separate clusters, with few misclassifications in each
cluster. By using this trimmed protein panel, the sensitivity and specificity achieved were
88+£13% and 97+8%, respectively. As before, those samples (20% of the sample population) that
did not decisively cluster with a particular group were removed from diagnostic evaluation, and
the sensitivity and specificity among the resulting diagnosable population improved to 94+10%
and 96+8%, respectively. Again, both sensitivity and specificity approached 100% among test

samples that clustered within perfectly homogeneous zones.

3.3.3 Diagnostic Strength as a Function of Protein Panel Size

The cluster analysis was repeated for n-protein subsets of the original 35 protein panel,
where n =3, 6, 9, 12, 16, 20, 25, and 35 of the most statistically significant discriminators of
GBM and health status. Diagnostic test sensitivity, specificity, and positive and negative
predictive values were calculated for each of these subsets. Those test samples that did not

decisively cluster with a particular group were removed from the evaluation. As can be seen in
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Figure 3.3a - Column 1, the sensitivity and specificity remain about level as one trims the panel
from 35 to 20 proteins. Both parameters increase as the panel is trimmed from 16 proteins
onwards, with a peak at 6 proteins, followed by a sharp drop as the panel size is reduced further.
On the other hand, the percentage of samples evaluable increases steadily as one trims the panel
from 35 proteins down to 9 proteins and then tapers off. Since the strength of a diagnostic test
lies not only in its diagnostic accuracy but also in the percentage of the population it can
evaluate, we designated an artificial parameter S to represent the product of a diagnostic value
and the percentage of patients diagnosable for each n-protein subset. As can be seen in Figure
3.3 — Column 2, this parameter increases steadily as the protein panel size is reduced, peaking at
9 proteins and then falling off sharply. Therefore, the 9-protein subset appears to optimize test
performance by achieving a high diagnostic accuracy while still maintaining the ability to

diagnose a large fraction of the sample population.

Figure 3.3 Diagnostic strength vs. protein number for “GBM vs. Healthy Control” cohort.
(a) Diagnostic Parameters (sensitivity, specificity, NPV, PPV) were plotted for varying subsets of
n proteins that exhibited the most significant plasma concentration differences (lowest p-values)
between GBM patients and healthy controls, where n=3, 6, 9, 12, 16, 20, 25, 35. A diagnostic
test was conducted and a 2x2 contingency table was formulated for each n-set. Column 1)
Diagnostic parameters and percentage of events diaghosable are plotted against n. Column 2)
The product of each diagnostic parameter and the percentage of events diagnosable is plotted
against n. Diagnostic tests evaluated: Row i) all unknowns in the hierarchical clusterings; Row
i) unknowns in clusters where a sizeable majority of members - including the nearest neighbor -
shared the same status; Row iiiy unknowns in completely homogeneous clusters where aff
members shared the same status - so-called “zones”. Most measures of diagnostic strength
tended to peak at around the 9-protein set. (b) Relevant diagnostic parameters for each n-set
were plotted in ROC space. Cases i, ii, and iii are the same as before. Note the improvement in
predictive power (distance of points from 45° line) from case i = ii = iii. Also note the high
predictive power of the 9-set in i. and of both the 6- and 9-sets in ii. and iii. The coordinate
(0,100) represents perfect classification.
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The predictive power of each n-protein subset for classitying GBM patients and healthy
controls can also be evaluated by plotting the true positive rate (sensitivity) vs. the false positive
rate (1-specificity) for each subset. As observed in Figure 3.3b, the 6- and 9-protein subsets
yield points in ROC (Receiver-Operating Characteristic) space that are furthest in perpendicular
distance from the 45° line, suggesting that this number of differentially expressed proteins
maximizes the predictive power. Points for all protein-panel subsets move further from the
diagonal line as the sample population is trimmed to include: only those samples in clusters that
are highly biased — 1.e. the great majority (>70%) of members belong to either the GBM patient
or healthy control groups (Figure 3.3b, Row ii); or, only those samples in clusters that are
completely biased - all members belong to one of the two groups (Figure 3.3b, Row iii). Perfect
classification was achievable in both 6- and 9-protein subsets when analyzing only the subset of
test samples that were located within perfectly homogeneous clusters. As a whole, the data in
Figure 3 shows that by performing cluster analysis on patient plasma samples assayed for the 6
or 9 proteins most significantly differentially expressed, a very high degree of predictive power
can be achieved among samples in highly biased clusters. In addition, the 9-protein set optimized
the predictive power and the number of patients diagnosable. Furthermore, a subgroup of these

patients who fell into perfectly homogeneous clusters could be diagnosed with near certainty.

3.3.4 GBM Patients on Avastin - Classification of Tumor Growth vs. No Growth

We then assayed plasma samples from GBM patients treated with the chemotherapeutic
drug Avastin (Bevacizumab) with respect to the same 35-protein panel as before. Specifically,
we compared 52 samples from (23) patients who exhibited tumor growth (according to MRI

imaging) with 51 samples from (21) patients who exhibited no tumor growth since their last
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evaluation. Two-way average-linkage hierarchical clustering allowed these two groups to be
discriminated with a sensitivity and specificity of 74 £10% and 78 + 19%, respectively (Figure
3.4a). When only patient samples within highly biased clusters were analyzed (45% of the total
sample population), the sensitivity and specificity improved to 90+11% and 96+8%,
respectively. The sensitivity remained the same but the specificity increased to 100% when test
samples only in perfectly homogeneous clusters were analyzed (20% of sample population).

The heat map 1s divided into 3 main sections consisting of samples from: 1. patients
whose tumors have grown since their last evaluation (recurrence); 2. patients whose tumors have
remained stable since their last evaluation (no recurrence); and 3. a mixed population of patients
exhibiting either possible growth, slow growth, or no growth. The patient samples were then
clustered with respect to the 4 proteins that were differentially expressed with the highest
statistical significance (i.e. both Mann-Whitney and Student’s t-test p < 0.05). Figure 3.4b
shows clustering of patient samples into 3 main groups: 1. tumor growth; 2. no tumor growth;
and 3. mixed population: consisting of both patients with and without tumor growth. Particularly
notable is that serum levels of HGF and TGFB1 appear to be highly upregulated in the tumor
growth group as compared with the no growth group. The cytokines MIP1a and IL12 (not shown
in the heat map) are also highly upregulated in the growth group. In addition, VEGFR2 appears
to be highly down-regulated, while IL.2 is only somewhat downregulated, in the growth group
compared with the no growth group. The alterations in cytokine levels observed in the plasma of
patients with growing tumors with respect to non-growing tumors may not necessarily be
attributable to changes in tumor production and secretion of these cytokines. Rather, they may
actually reflect changes in systemic responses to the growing tumor, such as inflammatory-

associated or other immune-mediated responses.



81

Figure 3.4a
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*These 96 {unknown) events constituted 36 (of 46) distinct patients and 75 (of 103) independent samples.
$These 43 (unknown) events constituted 21 {of 46) distinct patients and 34 (of 103) independent samples.
FThese 17 (unknown) events constituted 12 {of 46) distinct patients and 16 (of 103) independent samples.

Note: The number of events in each square of a 2x2 contingency table represents the sum of outcomes of

10 tests, with each test consisting of 10 blindly and randomly generated unknowns from the list of 103

independent samples. No sample is assigned to be an unknown more than once per test. However, the
number of events exceeds the number of independent samples because over the course of 10 tests, some
samples may be randomly assigned as unknowns multiple times.
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Figure 3.4 Classification of GBM patients on Avastin — tumor growth vs. no growth.

(a) Average linkage hierarchical clustering (unsupervised) was performed on 35-protein
datasets from each of 122 plasma samples derived from GBM patients treated with Avastin. A
computer program was used to randomly assign patients to trial and test sets (multiple times),
and the tumor growth status of each test set member (unknown) was predicted based on the
status of nearest neighbors in its cluster. 2x2 contingency tables were generated and relevant
statistical parameters were calculated for diagnostic tests that evaluated: i) all unknowns in the
heat map; ii) only unknowns in clusters where a sizeable majority of members - including the
nearest neighbor - shared the same status; iii) only unknowns in completely homogeneous
clusters where all members shared the same status - so-called “zones”. TP = True Positive, TN
= True Negative, FP = False Positive, FN = False Negative, PPV = Positive Predictive Value,
NPV = Negative Predictive Value. (b) The heat map
in a was “trimmed” by performing average-linkage hierarchical clustering (supervised) on the
four proteins that exhibited the most significant differences (lowest p-values) when compatring
patients with tumor growth to those with no growth. Patients with high HGF and/or high TGF31
levels tended to exhibit tumor growth, while patients with high VEGFR2 levels andfor low TGFB1
tended to exhibit no tumor growth. Label Colors: magenta = growth; green = no growth; blue =
growth possible or slow.

Closer examination of TGFB1 and HGF revealed that both were differentially regulated
with high statistical significance (p=0.0078 and p=0.0055, respectively) when comparing
Avastin-treated GBM patients exhibiting tumor growth with those exhibiting no growth.
Therefore, we decided to assess the classification accuracy of each of these markers on its own
as well as both together. Intrigmingly, plasma TGFB1 was highly upregulated in the context of
tumor growth (2 orders-of-magnitude fold-change in fluorescent intensity), with very little
plasma expression in the absence of growth (as shown in Figure 3.5). As a result, TGFB1 alone
proved to be a highly sensitive biomarker, correctly classifying 86% of patients who were known
to have growing tumors (sensitivity = 86%). However, it was not specific in that it did not
accurately classify patients known to have stable tumors (specificity = 53%). In addition, the
positive and negative predictive values for TGFB1 were modest at 70% and 75%, respectively.
Although the statistical significance of HGF differential expression was slightly better than that
of TGFp1, its accuracy as a biomarker was offset by the fact that its fold-change between the two

groups was not nearly as high. Its specificity (65%) was higher than that of TGFB1, but its
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sensitivity was lower (73%). The positive and negative predictive values for HGF were 73% and
65%, respectively. Encouragingly, when both biomarkers were used together, the resulting
diagnostic test exhibited the best predictive accuracies of the two tests, attaiming the higher
sensitivity level of TGFP1 (86%) and the higher specificity of HGF (65%). In addition, the PPV
and NPV for the diagnostic pair (76% and 79%, respectively) were higher than those of either

biomarker alone (Figure 3.5).

TGFB1: p=0.0078 HGF: p=0.0055
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Figure 3.5 Diagnostic Accuracy of the Candidate Biomarkers, TGFB1 and HGF, separately
and together. Note that, as a biomarker pair, the best of the two individual markers’ sensitivities
and specificities are matched, and the PPV and NPV also improve.
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3.4 Discussion

While antibody microarrays have been used in the past to profile cancers of the lung,
liver, ovary, prostate, pancreas, colon, and bladder, this is the first study demonstrating their use
for plasma profiling of glioblastoma. In this study, we have shown that by interrogating a
relatively large panel of 35 plasma proteins, biomarker signatures could be straightforwardly
elucidated that could differentiate GBM patients from healthy controls, and that could classify
GBM patients treated with Avastin based on whether they were responsive to therapy.
Furthermore, none of these proteins on its own has been shown to be an effective biomarker for
cancer diagnosis or for treatment response. Therefore, this study also reaffirmed past
observations that large panels of proteins can serve as highly sensitive and specific biomarker
signatures of disease, even when each component protein is a poor disease-marker on its own.

The study also showed that the predictive power of patient classification by hierarchical
clustering depended on the number of differentially expressed proteins analyzed. Tests that
included those proteins that were statistically significantly differentially expressed (p < 0.05) had
greater predictive power compared with tests that additionally contained large numbers of non-
discriminatory proteins or compared with tests that contained too few discriminatory proteins.
The implication for future biomarker signature discovery from large numbers of protems is that
variously sized subsets of differentially expressed proteins should be evaluated to find the
optimally-sized set for maximal predictive power.

In this study, the accuracy of test sample classification was also dependent on the fraction
of members within the test sample’s cluster that belonged to the same group (experimental vs.
control). Therefore, prediction accuracy improved when evaluating only those test samples in

highly biased clusters, and approached 100% within completely homogeneous clusters. Of
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course, the fraction of diagnosable patients decreased as the tolerance for cluster heterogeneity
was reduced. In light of this, an optimal tolerance was chosen that maximized diagnostic
accuracy while minimizing the fraction of patients left out of the diagnostic evaluation. In this
study, we evaluated only three tolerance settings, corresponding to exclusion of test samples in
clusters that were: 1. perfectly heterogeneous, ii. <70% homogeneous, and 1ii. <100%
homogeneous. However, the study could potentially be reanalyzed with a larger set of tolerances
to find an even better optimum. Alternatively, all patients could have been included i the
diagnostic evaluation, but with the appreciation that the diagnosis of patients in certain clusters
would be more accurate than in others. In theory, an accuracy score or confidence level could be
calculated for grouping within any cluster. Subsequently, only those patients whose diagnoses
have a predicted accuracy greater than, say, 90% would be triaged for therapy, whereas all others
would have to undergo further tests to ascertain their diagnosis. Based on our results, the
diagnostic accuracy would be expected to increase with the homogeneity of a test sample’s
cluster, with even higher accuracies likely attainable in homogeneous clusters of larger size.
Though it might have been anticipated that plasma protein detection of brain tumors
would be difficult due to the blood-brain barrier, in fact, we were able to detect differential
expression of a number of factors. Many of these have been associated with systemic cancers or
have been previously shown to be differentially expressed in culture media from GBM cell lines
and primary cells, in the CSF fluid of GBM patients, or even in patient sera. For example,
VEGE, a powerful mediator of endothelial cell proliferation and angiogenesis generally, which
was found to be upregulated in GBM patients in this study, has also been shown previously to be
highly secreted from GBM cell lines and primary tumors, and to be expressed in the CSF fluid of

glioblastoma patients.35 VEGF is typically associated with advanced tumor stage and poor
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prognosis in a variety of cancers.” While no difference in serum expression of VEGF in the
context of GBM was found by some,” our results corroborate reports that have shown
upregulated serum expression of VEGF.”” VEGF is known to promote microvascular
permeability,”” which likely plays a role in the enhanced BBB leakiness at sites of
characteristically highly neovascularized GBM tumors, thereby permitting its detection (as well
as detection of a whole host of other tumor-associated proteins) in the plasma.

PDGF, which also has an important role in glioblastoma angiogenesis — particularly, in
peri-endothelial cell recruitment™ - was found to be upregulated in Avastin-treated GBM
patients with growing tumors in this study. This finding is supported by past studies that have
demonstrated that PDGF and its receptor are co-overexpressed in glioblastoma-derived cell lines
as well as in primary GBM tumors, promoting neovascularization and tumor progression by an
autocrine mechanism.”***

The fact that HGF levels were highly overexpressed in the plasma of Avastin-treated
GBM patients exhibiting tumor growth as compared to those with stable tumors (p=0.0033)
confirms previous reports demonstrating that higher tumor HGF content and higher CSF levels
of HGF are correlated with increased tumor malignancy and poorer prognosis.” HGF has been
implicated in synergizing with VEGF to promote glioma angiogenesis and increased microvessel
density, particularly by inducing endothelial cell proliferation.'** It is also known that c-Met
receptor activation by HGF enhances several oncogenic mechanisms, including cell cycle
progression, proliferation, survival, migration, and invasion, and that GBM progression can be
mediated by an HGF/c-Met autocrine loop.*” Since tumors require extensive neovacularization

for sustained growth, and considering the instrumental role HGF plays in GBM progression, its

heightened presence in the plasma of patients with tumor growth seems sensible.
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Serum IGFBP2, a binding protein that regulates the bioavailability and bioactivity of
IGFs, was also found to be upregulated in this study, corroborating past reports of elevated
serum and CSF levels of IGFBP2 in patients with GBM and higher grade gliomas generally.*"*
IGFBP2 has previously been shown to be involved in tumor growth regulation both in vitro and
in vivo, and to promote glioma cell migration and invasion.*™" Its increased expression has
therefore also been associated with increased glioma malignancy and poorer patient prognosis.*

The ability to detect these proteins i the blood 1s perhaps less surprising when
considering the leaky nature of newly-forming blood vessels in and around a glioblastoma

2 as well as the inflammation-associated increase in BBB permeability in the tumor’s

tumor,
vicinity.** Furthermore, not all the differentially expressed proteins detected are products of
tumor cells. Many of these proteins, and particularly the cytokines, are likely secreted from
inflammatory and immune cells located either in proximity to the tumor or much farther away,
representing a systemic immune or inflammatory anti-tumor response. For example, GM-CSF,
[P-10/CXCL-10, and IL13 were all found to be highly expressed in GBM patient plasma as
compared to healthy controls. In addition, IL12, MIP1a, and TGFB1 were all found to be highly
differentially expressed in Avastin-treated GBM patients with growing tumors as compared to
those with stable tumors.

Serum GM-CSF expression has previously been shown to be increased in GBM
patients.”” This is not surprising considering its important, yet conflicting, roles in promoting
tumor proliferation, migration, and angiogenesis on the one hand,”™" while on the other hand
stimulating myeloproliferation in order to mount an immune/inflammatory attack against

49,50

growing tumors. " Likewise, MIP1a and its receptors have been shown to be overexpressed in

GBM cells in vitro, and likely serve to attract appropriate subsets of inflammatory and immune
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effector cells - including lymphocytes and macrophages - to the sites of tissue damage for
repa,ir.51 However, this antitumor activity may be outweighed by an autocrine loop that promotes
proliferation of the tumor cells.”!

High differential upregulation of TGFB1 in patients with growing tumors is consistent
with studies showing that tumors, such as glioblastoma, can lose their cytostatic responsiveness
to this cytokine, and can mstead respond to it by producing PDGF, the tumor growth promoter
mentioned previously. Alternatively, tumors can overproduce and utilize TGFB1 to suppress an
antitumor host immune response and evade immune surveillance.™ Intriguingly, in this study,
patients with growing tumors expressed plasma TGFP1 at fluorescent intensities approximately 2
orders of magnitude greater than in patients with non-growing tumors (p=0.0078). As a result,
TGFB1 on its own was shown to be a sensitive candidate biomarker (sensitivity = 86%) for
tumor growth in Avastin-treated GBM patients. By using TGFf1 in conjunction with HGF, the
sensitivity remained the same, while the specificity improved to match that of HGF (65%). Both
the PPV and the NPV also improved (to 76% and 79%, respectively).

The high expression of IP-10/CXCL-10 seen in GBM patients in this study could also
reflect the immune system’s attempt to inhibit further tumor growth. This cytokine is secreted by
monocytes, endothelial cells, and fibroblasts as a chemoattractant for recruitment of monocyte-
lineage cells, T cells, and NK cells that can participate in an anti-tumor response.” In addition, it
has previously been implicated in inhibition of angiogenesis,”> which is vital for tumor growth.
Because its upregulation is induced by IFNv, it is believed to contribute to the IFNy-dependent
anti-tumor effects of IL12.>* This is also consistent with the upregulation of IL12 observed in
this study in Avastin-treated GBM patients with tumor growth as compared to those with stable

tumors. Interestingly, it also has conflicting tumor-promoting and proliferative effects on non-
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transformed astrocytes and cultured glioma cells, and its presence has been correlated with
increased malignancy grade.55 However, its role as a discriminatory marker in this study may be
confounded by the fact that our experimental population was older than the control population,
and IP-10 levels naturally increase with age, doubling between ages 40 and 70-80.°° Of all the
analytes studied, I1.13, a cytokine known to have both pro- and anti-tumor effects, showed the
highest GBM patient plasma overexpression. This may be attributable to 1113 insenstivity in
GBM patients as a result of GBM tumor overexpression of the “decoy” inhibitory receptor
IL13R 2.”" which may be leading to a compensatory increase in IL13 production.

Surprisingly, the levels of both CRP and MMP9 were actually decreased in GBM patient
plasma as compared with healthy controls, and VEGFR2 levels were downregulated in Avastin-
treated GBM patients with growing tumors as compared to those with stable tumors. Because of
MMP9’s documented involvement in promoting tumor invasion, as well as its anti-apoptotic and

83 its decreased plasma level in GBM patients in this study was

pro-angiogenic effects,
unanticipated. The decrease in VEGFR2, a VEGF receptor, is also unexpected since one-third of
primary glioblastomas harbor amplifications in 3 receptor tyrosine kinase genes that are
juxtaposed on chromosome 4: KIT, PDGFRA, and VEGFR2.® Furthermore, past studies have
shown that VEGFR2 (and VEGFR1) is highly expressed in primary GBM tumors.®’ However,
VEGFR2 downregulation could be explained by the fact that these receptors are internalized by
the cell when bound by ligand. Since VEGF levels are high, a significant amount of receptor
internalization could be taking place.

The fact that the plasma samples used in this study could be interrogated by multiplexed

antibody arrays within ELISA-like wells allowed relatively small sample volumes (<50 uL) to be

used. This suggests that these assays can in the future be performed using blood from a
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fingerprick rather than the much larger quantities (milliliters) typically harvested by phlebotomy.
In addition, the DNA-directed assembly of antibodies makes this platform amenable for use
within microfluidics platforms, since DNA arrays can withstand the bonding temperatures
required for platform assembly whereas directly-spotted antibody arrays cannot.'®** Therefore, a
promising next step would be to integrate these arrays and antibody panels within a
microfluidics-based blood separation diagnostic device much like the Integrated Blood Barcode
Chip (IBBC) we previously described.'® Because on-chip blood separation obviates the need for
centrifugation and other blood processing steps, and due to the faster kinetics of ligand capture
under conditions of fluid flow, all the assay steps within the microfluidic environment can be
performed in under an hour. Consequently, a point-of-care diagnostic chip that probes for the
most highly discriminatory proteins described herein for classifying patients into GBM or
healthy subgroups (or for gauging treatment response) would allow patients to be diagnosed or
monitored using a simple fingerprick blood test within a short time after walking into a doctor’s
office.

Future studies could also enlarge the microarray panel to hundreds of plasma proteins and
evaluate even larger patient populations with varying grades of glioma. This could allow for
higher resolution stratification of patients into diagnostic and treatment groups based on their
molecular phenotypes, which could be more informative than histological grading alone.
Additional studies could also assess the ability of these types of assays to classify patients as
responders or non-responders shortly after initiation of treatment. Currently, using contrast-
enhanced MRI imaging, it can take at least a week or more to discern whether a tumor 1s still
growing or stable. However, it is likely that molecular changes within the tumor are occurring

long before these changes manifest as visible tumor growth and progression. Therefore, a blood
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test that could evaluate treatment response within hours of administration of a chemotherapeutic
would allow doctors to arrive at the most effective treatment in the shortest possible time. The

resulting benefits to the patient’s health as well as the cost-savings could be significant.

3.5 Appendix: Supplementary Information

3.5.1 DNA-Encoded Antibody Libraries (DEAL) Technique

The advantages of DEAL are multifold. First, the fact that DNA hybridization is utilized
as an assembly strategy allows for multiple proteins to be detected within the same
microenvironment, since the primary antibodies for the various proteins to be detected can each
be labeled with a different ssDNA oligomer. Second, antibodies are not particularly stable, and
as a result, surfaces onto which antibodies are attached are unstable towards drying, heating, etc.
This means that antibodies must be attached to the surface immediately prior to use. Using DNA
hybridization as an assembly strategy means that the surface can be prepared ahead of time, dried
out, heated, shipped around, etc. The instability of antibodies also makes protein assays difficult
to execute within microfluidics environments, since the antibodies cannot survive the

microfluidics fabrication process. This is, again, circumvented with the DEAL approach.

3.5.2 Serum Protein Biomarker Panels and Oligonucleotide Labels

The protein panels used in the cancer-patient serum experiment (panel 1) and finger-prick
blood test (panel 2), the corresponding DNA codes, and their sequences are summarized in
Tables 3.3 and 3.4. These DNA oligomers were synthesized by Integrated DNA Technologies
(IDT), and purified by high pressure liquid chromatography (HPLC). The quality was confirmed

by mass spectrometry.
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Table 3.3 List of Proteins and Corresponding DNA Codes
DNA-code Human Plasma Protein Abbreviation
AN Interleukin-2 IL-2
BB Monocyte Chemotactic Protein 1 MCP1
/(0 Interleukin-6 IL-6
DD Granulocyte-Colony Stimulating Factor G-C8F
E/E Macrophage Migration Inhibitory Factor MIF
FIF Epidermal Growth Factor EGF
GG Vascular Endothelial Growth Factor VEGF
H/H' Platelet Derived Growth Factar PDGF
1 Transcription Growth Factor alpha TGFa
JI Interleukin-8 IL-8
KK’ Matrix Metalloproteinase 3 MMP3
L Hepatocyte Growth Factor HGF
M/M’ Reference (Cy3) M-Cy3
N/N' Interferon-Inducible Protein 10 IP10/CXCL10
oo Stromal Cell-Derived Factor 1 SDF1
PP Insulin-like Growth Facter Binding Protein 2 IGFBP2
S/ Insulin-like Growth Factor Binding Protein 5 IGFBP5
un Macrophage Inflammatory Protein 1 alpha MIP1a
ZiZ Transcription Growth Factor Beta 1 TGFB1
AAAN Chitinase 3-like 1 Ch3L1
BE/BB Vascular Endothelial Growth Factor Receptor 3 VEGFR3
CCICC Tumor Necrosis Factor alpha TNFa
HH/HH' Granulocyte-macrophage colony stimulating factor C3
[Ar Matrix Metalloproteinase 2 MMP2
NATAN) Interleukin-10 IL-10
KK/KK' Interleukin-1 beta IL-18
MM/MM? Interleukin-12 IL-12
NN/NN' Matrix Metalloproteinase @ MMPS9
PP/PP’ Transforming Growth Factor Beta 2 TGFBR2
QQQQ Granulocyte Macrophage Colony-Stimulating Factor GM-CS8F
RR/RR’ C-Reactive Protein CRP
8&/88 Vascular Endothelial Growth Factor Receptor 2 VEGFR2
T Interleukin-13 IL-13
Juy Interleukin-23 IL-23
VWIVV' Serpin E1 Serpin E1
WWAMMWY Fibrinogen Fibrinogen
Table 3.4 List of DNA Sequences used for Spatial Encoding of Antibodies
Sequence T.°C
Name Sequence) (O0mMNaCl)

A S-AAAAAAAAAAAAAATCCTGGAGCTAAGTCCGTA-3 57.9

A 5" NH3-AAAAAAAAAATACGGACTTAGCTCCAGGAT-3 57.2

B S-AAAAAAAAAAAAAGCCTCATTGAATCATGCCTA-3 57.4

B 9" NH3-AAAAAAAAAAT AGGCATGATTCAATGAGGC-3 22.9

C I-AAAAAAAAAAAAAGCACTCGTCTACTATCGCTA-3' 7.8

c 9" NH3-AAAAAAAAAATAGCGATAGTAGACGAGTGC-3 26.2

D S-AAAAAAAAAAAAAATGGTCGAGATGTCAGAGTA-3 56.5

D 5" NH3-AAAAAAAAAATACTCTGACATCTCGACCAT-3' 55.7
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K
"
L

X
M
"
AA
AN
BB
BB
cc
cc
HH
HH
I

I
JJ
JJ
KK
KK'
MM
MM
NN
NN
PP
PP
QQ
o
RR
RR'
S
ss
T
T
uu
]
W
W

5-AAAAAAAAAAAAAATGTGAAGTGGCAGTATCTA-3
5" NH3-AAAAAAAAAATAGATACTGCCACTTCACAT-3'
O'-AAAAAAAAAAAAAATCAGGTAAGGTTCACGGTA-3
9" NH3-AAAAAAAAAATACCGTGAACCTTACCTGAT-3
5'-AAAAAAAAAAGAGTAGCCTTCCCGAGCATT-3'

5" NH3-AAAAAAAAAAAATGCTCGGGAAGGCTACTC-3'
5-AAAAAAAAAAATTGACCAAACTGCGGTGCG-3'

5" NH3-AAAAAAAAAACGCACCGCAGTTTGGTCAAT-3'
O'-AAAAAAAAAATGCCCTATTGTTGCGTCGGA-3'

9" NH3-AAAAAAAAAATCCGACGCAACAATAGGGCA-3
S'-AAAAAAAAAATCTTCTAGTTGTCGAGCAGG-3'

5" NH3-AAAAAAAAAACCTGCTCGACAACTAGAAGA-3'
5-AAAAAAAAAATAATCTAATTCTGGTCGCGG-3

5" NH3-AAAAAAAAAACCGCGACCAGAATTAGATTA-3'
S'-AAAAAAAAAAGTGATTAAGTCTGCTTCGGC-3'

5" NH3-AAAAAAAAAAGCCGAAGCAGACTTAATCAC-3'
5-AAAAAAAAAAGTCGAGGATTCTGAACCTGT-3

5" NH3-AAAAAAAAAAACAGGTTCAGAATCCTCGAC-3
S-AAAAAAAAAATAAGCCAGTGTGTCGTGTCT-3'

9" NH3-AAAAAAAAAAAGACACGACACACTGGCTTA-
S-AAAAAAAAAAAGTCTGATCCCATCGCGTAT-3

5 NH3-AAAAAAAAAAATACGCGATGGGATCAGACT-3'
5-AAAAAAAAAAGAGGTCAGTTCACGAAGCTC-3

5 NH3-AAAAAAAAAAGAGCTTCGTGAACTGACCTC-3
S-AAAAAAAAAAGCACTAACTGGTCTGGGTCA-3'

9" NH3-AAAAAAAAAATGACCCAGACCAGTTAGTGC-3'
S'-AAAAAAAAAAGTCAGGTGTTCGCGCTCATT-3

5" NH3-AAAAAAAAAAAATGAGCGCGAACACCTGAC-3
S'-AAAAAAAAAAGATCGTATGGTCCGCTCTCA-3

5 NH3-AAAAAAAAAATGAGAGCGGACCATACGATC-3'
5'-AAAAAAAAAAACAGGTCATCGAACTCTCAG-3

5" NH3-AAAAAAAAAACTGAGAGTTCGATGACCTGT-3
5-AAAAAAAAAAGGCGGCTATTGACGAACTCT-3

5" NH3-AAAAAAAAAAAGAGTTCGTCAATAGCCGCC-3
5-AAAAAAAAAAGCAGGGAATTGCCGACCATA-3

5" NH3-AAAAAAAAAATATGGTCGGCAATTCCCTGC-3
9'-AAAAAAAAAACGCGGCGTGTCTCAGAATAT-3

9" NH3-AAAAAAAAAAATATTCTGAGACACGCCGCG-3
S'-AAAAAAAAAAATCCGGTCTCATCGCTGAAT-3

5" NH3-AAAAAAAAAAATTCAGCGATGAGACCGGAT-3
5-AAAAAAAAAAAATGCTCACATCGCAGGTAC-3

5" NH3-AAAAAAAAAAGTACCTGCGATGTGAGCATT-3'
9'-AAAAAAAAAAACGCT AATGACGGCAGTGCA-3

9" NH3-AAAAAAAAAATGCACTGCCGTCATTAGCGT-3'
S'-AAAAAAAAAAATGTGTCCGAACGTCGAGCT-3'

5" NH3-AAAAAAAAAAAGCTCGACGTTCGGACACAT-3
5'-AAAAAAAAAAGCCGTCGGTTCAGGTCATAT-3'

5" NH3-AAAAAAAAAAATATGACCTGAACCGACGGC-3'
S'-AAAAAAAAAAGTCGCGGGTTCTGCACATAT-3'

5" NH3-AAAAAAAAAAATATGTGCAGAACCCGCGAC-3

857
547
96.9
96.1
593
58.6
59.9
60.8
60.1
60.1
96.5
972
55.4
56.3
57.2
572
57.6
56.9
58

98.1
o7.8
597.8
58.2
58.2
59.2
28.4
60.1
59.4
58.8
58

56.7
57.5
59.5
58.8
59.9
59.1
99.8
98.9
98.2
98.2
57.6
58.3
60.4
60.3
590.8
50.8
59.4
58.7
a9.9
99.2

04

* All amine-terminated strands were linked to antibodies to form DNA-antibody conjugates using
SFB/SANH coupling chemistry described by R. Bailey et al. > Codes AA-HH were used in the experiment
examining fresh whole blood from a healthy volunteer. Codes A-M were used for the molecular analyses
of cancer patient serum samples.
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Table 3.5 Antibody Vendors and Catalogue Numbers
Company Capture Antibody Detection Antibody

Name (Catalogue #) (Catalogue #)
L2 BD 555051 555040
MCP1 eBioscience 16-7099-85 13-7096-85
IL6 eBioscience 16-7069-85 13-7068-85
G-CSF R&D systems Mab214 BAF214
MIF R&D systems mab289 baf289
EGF R&D systems MAB636 BAF236
VEGF R&D systems mab293 baf293
PDGF R&D systems MAB1739 BAF221
TGFa R&D systems AF-239-NA BAF239
IL8 BD 554718 554716
MMP3 R&D systems AF513 BAF513
HGF R&D systems MAB694 BAF294
IP10 R&D systems MAB266 BAF266
SDF1 R&D systems MAB350 BAF310
IGFBP2 R&D systems MABG6741 BAF674
IGFBP5 R&D systems MAB8751 BAF875
MIP1la R&D systems AF-270-NA BAF270
TGFb1 BD 559119 559119
Ch3L1 R&D systems DY2599 DY2599
VEGFR3 R&D systems MAB349 BAM3492
TNFa eBioscience 16-7348-85 13-7349-85
c3 Abcam ab17455-100 ab14232-50
MMP2 R&D systems DY1496 DY1496
IL10 eBioscience 16-7108-85 13-7109-85
IL1B eBioscience 16-7018-85 13-7016-85
IL12 eBioscience 14-7128-82 13-7129-85
MMP9 R&D systems MAB9092 BAM909
TGFb2 R&D systems DY302 DY302
GM-CSF BD 554502 554505
CRP R&D systems MAB17071 BAM17072
VEGF R2 R&D systems MAB3573 BAF357
IL13 eBioscience 16-7139-81 13-7138-81
IL23 eBioscience 14-7238-85 13-7129-85
Serpin E1 R&D systems MAB1786 BAF1786
Fibrinogen Abcam ab10066-250 ab14790-200
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A B C D E F G H I J K L MNO P S U
Z AA BB CC HH Il JJ KK MM NN PP QQ RR SS TT UU VW WW

Figure 3.6 Test for DNA cross-hybridization. 36 ssDNA oligonucleotides (dye conjugates)
were each tested separately for orthogonality against the full set of 36 surface-bound
complementary strands. Red = M'-Cy5 Reference; Green = Cy3-conjugated oligonucleotide.
However, for PP, QQ, UU, and VV: Green = M’-Cy3 Reference; Red = Cy5-conjugated
oligonucleotide. Cross-hybridization was far less than the 5% cut-off for all oligonucleotides
except for "I”, where the cross-hybridization level with “F” was 8% (and can be distinctly seen in
the image).
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4 Computational and Analytical Tools for
Diagnostic Measurements

4.1 Automation of Data Processing and Analysis

Analyzing highly-multiplexed protein assays from large numbers of patients requires an
efficient means of processing large datasets. Automating the computational steps from data
acquisition to statistical analysis can save a considerable amount of time and effort. In fact,
without automation, scaling clinical trials to assays of hundreds or thousands of proteins and
patient samples would render analyses of the resulting datasets intractable. A straightforward
approach for creating algorithms to manipulate data in Microsoft Excel is to write macro
procedures in Visual Basic for Applications (VBA).

In our clinical trial examining patients with glioblastoma, plasma samples were assayed
for 35 proteins (and a spiked reference oligo) within ELISA-like wells (12 per slide), each
containing six repeating 6x6 spot arrays. These wells were fashioned by bonding a PDMS slab
with 12 square holes to a DNA-spotted, polylysine-coated glass substrate. The output file from
the GenePix scanner software gives the row, column, and block (or well) number of each spot
based on its location in a graphical spot array template whose parameters (number of blocks,
rows, and columns, as well as spot sizes and spacings) are defined by the user. Had all 12 square
holes in the PDMS slab been cut with uniform dimensions and spacings, and had the PDMS slab
been precisely aligned with respect to the spots on the slide, the registry of oligo spots in all

wells and among all slides would be identical. In other words, the identity of a spot located
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within a particular row and column of a well would be the same for all wells. A list in which the
row and column positions of each spot within a well (block) are matched with their
corresponding identifiers could then be input into the GenePix analysis software, allowing for
instant spot assignment.

However, in our study, the square holes in the PDMS slab were cut by hand, resulting in
slight variability in the well dimensions and spacings. Furthermore, we did not attempt to align
the PDMS slab with the spotted arrays in any way, as this would have greatly extended
fabrication time and effort. As a result, the registry of spots could vary considerably across wells
on the same slide and between different slides. Consequently, some means of accurately
assigning an identifier to all assay spots i a well was needed. To accomplish this, we designated
one of the oligos (oligo M) as a reference. To distinguish this spot from all other spots, we
incubated all wells (in the final assay step) with a Cy3 (green) dye-conjugated oligo having
sequence complementarity with oligo M. By contrast, all remaining assay spots fluoresced red
due to development of the protein assays with Stretavidin-Cy3. Since the oligos were spotted in
the same order within all arrays of the slide, the oligo identity (and its associated antibody) for
any given spot could be determined by counting its row and column distance from the green
reference oligo. Alternatively, an Excel macro (or VBA subroutine) could be written, as was
done here, that accomplishes the spot assignment task in exactly the same way, but far more
quickly.

Macros were also written to perform all subsequent data handling steps (see Appendix,
Section 4.4). For example, once the spot positions within a well and their fluorescent intensity
values were assigned to a specific oligo/antibody, the average intensity and standard deviation of

all repeats were calculated for each protein. Experiments showed that at least 4 proteins in each
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sample assay exhibited intensities close to those in negative controls (which were performed by
substituting 3% BSA/PBS for plasma samples). Therefore, a baseline intensity (intensity of a
spot in the absence of cognate protein) for each patient sample could be approximated by
averaging the intensities of the 4 lowest-intensity proteins within each assay. The (mean)
intensities for all proteins and the baseline protein intensity level were then displayed graphically
for all patients and transferred to Powerpoint automatically. Finally, the mean protein intensity
values for each of the 12 patients on a slide were collated (into 12 rows) onto a single Excel
worksheet for subsequent processing. This procedure was repeated in automated fashion for all
patient samples on all slides. Datasets containing the baseline-subtracted intensity values and
standard deviations (for all patients) were created in a similar fashion. A subroutine was written
that could transfer the collated data from all open Excel workbooks (each containing its analysis
of a different 12-patient slide) to a new Excel file, such that the data for all patients could be
found in a single Excel worksheet. Patient ID numbers and clinical information were then
manually transferred and aligned with their corresponding row of data. The final result was a
master dataset in which each row — corresponding to a distinct patient sample - contained the
patient characteristics and clinical information, mean protein intensities, baseline-subtracted
mean protein intensities, and standard deviations. More specifically, the format of the master
worksheet was as follows: Column A — Tumor Growth Status (Growth vs. No Growth); Column
B - Blood Collection Date; Columns C and D — Patient Last Name and First Name, respectively;
Column E — IOIS Number; Column F — Patient ID Number; Column G — Date of Birth; Column
H — Current Age; Column [ — Alive or Deceased; Column J — Overall Survival; Column K -
Initial Pathology; Column I. — Current Pathology; Column M — Gender; Column N -

Chemotherapy Drug (i.e. Avastin vs. No Avastin); Column O — “Was patient on Avastin at the
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time of the blood collection date in Column B?”; Column P — Tumor Recurrence Number;
Column Q - Chemotherapy Start Date; Column R — Chemotherapy End Date; Columns U
through BD — Mean Fluorescent Intensities (Baseline Subtracted) for Proteins 1 through 35 (plus
M’-Cy3 reference). Columns BF through CO — Standard Deviations for Proteins 1 through 35
(plus M’-Cy3 reference);, Column CQ — Time of Blood Sample Collection; Column CR — Time
at which Plasma Sample was Frozen, Column CS — Total Processing Time; Columns CU
through ED — Proteins 1 through 35 (plus M’-Cy3 reference) Mean Fluorescent Intensities (Non-
Baseline Subtracted). In summary, all the data and relevant clinical information for every single
patient in the study was included in the master worksheet (See Figure 4.1 below).
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Figure 4.1 Master patient dataset: organization of clinical information. Only a portion of
the full dataset is shown. (Patient identifiers have been removed).

Macros were also written to automate graphing of the patient data within the master
worksheet. One of these macros graphs the protein data in each row (corresponding to a unique

patient sample) in a separate graph, all of which can then be automatically transferred to a
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Powerpoint file. Other macros can display the protein data from all of a patient’s blood
collections in a single graph (once the file has been sorted first by patient name and then by
collection date), such that changes in protein levels within the patient’s plasma can be traced
over time. These macros then repeat the process for all patients in the worksheet.

From the master worksheet, patient cohorts can straightforwardly be created by
reorganizing, sorting, and trimming the data with regard to any one of the parameters in the
clinical information columns. For example, one could sort the dataset based on current clinical
pathology (Column L) to extract a cohort of GBM patients vs. healthy controls. To create a
cohort in which tumor growth status is compared among Avastin-treated GBM patients, the
dataset 1s sorted first by Column L (GBM vs. No GBM), then by Column N (Avastin vs. No
Avastin), and finally by Column A (Tumor Growth vs. No Growth). Patients who do not have
GBM and are not on Avastin are subsequently removed from the set.

Once these cohorts are created, a series of subroutines are required to facilitate statistical
and graphical analysis, hierarchical clustering of the data, and the utilization of these hierarchical
clusters for patient classification. The “RunClusterPrep” macro accomplishes these tasks as
follows. First, the patient data worksheet 1s reorganized and formatted appropriately for
compatibility with the clustering software, Cluster 3.0. Second, experimental and control group
mean and median fluorescent intensities are calculated for each protein assayed (as well as the
differences and root-mean-square distances between experimental and control group means and
medians). These values are then displayed graphically. Next, an additional file is created in
which the experimental and control data (for each protein) are formatted for facile transfer to and
analysis by “Analyselt”, a statistical software add-in for Excel (For details and additional related

macros, see Section 4.4.5). The user can then run a number of different statistical tests on the
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transferred data (now residing in tabulated form within an Analyselt template file). In our
clinical trial, we most commonly utilized the Student’s t-test (sensitive to differences in
population means) and Mann Whitney test (sensitive to differences in population medians) to
assess the statistical significance (p-value) of differential protein expression between
experimental and control groups. We also utilized Analyselt’s box plot function to be able to
visually compare (for each protein) the experimental and control population means, standard
deviations, and 95% confidence intervals, as well as medians, quartiles, outliers, and general
spread of the data.

In addition, the “RunClusterPrep” subroutine facilitates diagnostic testing in the
following way. The subroutine randomly assigns a certain number of patients (number specified
by the user) within a cohort dataset as "unknown" test samples. The resulting test file, containing
both “known” and “unknown” patient samples, is converted to text format, such that it can then
be clustered (by Average-Linkage Hierarchical Clustering) using Cluster 3.0. The cluster map
(or heat map) can subsequently be viewed using Java TreelView. In a classification scheme that
can most appropriately be described as “guilt-by-association”, the unknown patients are
classified by the tester as belonging to the experimental or control group based on the majority
diagnosis of neighbors within their cluster. The macro “CalculateStatistics” (Section 4.4.4) then
compares the predicted and actual diagnoses, determines the true positives/negatives and false
positives/negatives, and creates a 2x2 contingency table for these values. Measures of diagnostic
accuracy, such as the sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV), are then calculated by the macro. The RunClusterPrep subroutine creates
multiple test files (number specified by the user), each with its own set of randomly assigned

unknown samples. Thus, the “guilt-by-association™ classification procedure can be repeated
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multiple times, allowing the diagnostic accuracy of the procedure to be assessed with greater
statistical power.

As mentioned before, the number of test files to be created and the number of unknowns
to be assigned within each test file are specified by the user. In addition, the user must specify
the number of proteins being examined. To facilitate entry of these parameters by the user, a
customized user interface has been created. This interface also allows the user to specify the
directory into which the new folder, “NewTrialFolder” — containing the files to be created by the
“RunClusterPrep” macro - should be saved. The combination of the “RunClusterPrep” macro
(with its associated subroutines) and the user interface form a software package we call
“ClusterPrep”. To mitiate or “open” the program, we have created a command button for the

Excel Add-Ins Toolbar labeled “RunAnalysis” (see below).
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Figure 4.2 The “Run Analysis” command button in the Excel add-ins toolbar.
When this command button is clicked, the “ClusterPrep” software program is initiated.

When this button is clicked, the user interface 1s first displayed (Figure 4.3). Once the user
inputs the required parameters and clicks “Okay”, the “RunClusterPrep” macro and its associated

subroutines are executed. The output files and folders are typically created within about a
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ClusterPrep Software

ClusterPrep Parameters

How many Proteins?
How many Unknown Cases?

How many Tests do you want to run?

Choose A Directory | \

Okay ‘ Close

Figure 4.3 The “ClusterPrep” user interface. The user inputs the number of proteins being
analyzed, the number of samples to randomly set aside as test samples, and the number of
tests to run. The user also designates the directory into which the output files will be saved.

minute; however, much longer times are needed if the number of test files and unknowns
specified by the user is great. For our data analysis, we typically chose to have “ClusterPrep”
create 10 test files with 10 unknowns in each file.

While the “ClusterPrep Software™ package greatly increases the efficiency of statistical
analysis and of creating files for cluster analysis, transferring these files into Cluster 3.0
manually is still a time-consuming task. Therefore, we have created a batch file that executes the
cluster analysis on each test file in the “NewTrialFolder” directory directly from the command
line. The batch file can be edited to produce multiple Cluster output files (.cdt) for each test file,
each with a different distance/similarity measure, normalization, and clustering method. For this

clinical trial, we used the Average-Linkage Hierarchical Clustering method with the Pearson
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correlation as the distance measure. The parameters that were adjusted included indicating
whether normalization would be performed on the proteins only, samples only, or both, and
whether the Pearson Correlation would be centered or uncentered (See Cluster 3.0 Manual for
more information). A different .cdt file could be created for each of these permutations.
Typically, we chose to normalize across both proteins and samples. This means that for both
variables, all values in each row (or column) are multiplied by a scalar such that the sum of the
squares of the values in each row (or column) is 1 (a separate scalar is computed for each row).
The batch file had to be placed in the folder containing the test files (saved as text) created by the
“ClusterPrep Software”, where it could be executed by double-clicking on its icon. An additional
batch file was created that could then open each .cdt file in Java Treeliew, adjust the contrast of
the heat map, and save the heat map as a .png file within the same directory. Finally, a macro
was created for Microsoft Powerpoint that would transfer and center each .png file in the given

directory onto a separate slide in a Powerpoint Presentation.
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4.2 Average-Linkage Hierarchical Clustering

The master dataset contains all protein intensities for all patient samples. The clustering
algorithm groups the samples based on the similarities between their component protein
intensities. To illustrate how this is done, let’s say we were studying the plasma levels of 5
different proteins in 6 different patients, and we obtained the following intensity scores (where -2

1s the lowest intensity and +2 is the highest):
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Patient 1 +2 | +1 | 42| +1| 1

Patient 2 2 -1 -2 +1) +1

Patient 3 +2 |42 | +1 | +1 | -2

Patient 4 -1 (-2 | -2 | 41| 42

Patient 5 +2 | +1 | +2| +1| O

Patient 6 +2 |42 | +1| O | -2
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To better visualize this table of values, we can convert these intensity scores to colors. For
example, higher intensity scores can be assigned as brighter red, lower intensity scores as

brighter green, and middle intensities as black. This would lead to the following heat map:

Patient1
Patient 2
Patient 3 +2
Patient4 +1
0
Patient5
-1
Patient6 -2

By casually glancing at the color-coded rows, one can begin to group these patients according to
similarities between their protein profiles. For example, Patient 1°s protein profile looks most
similar to that of Patient 5 (alternating bright and dark red for Proteins 1-4 followed by a lower
intensity in Protein 5). Therefore, these two patients can be grouped together by branches

intersecting at a node (Figure 4.4). Similarly, Patient 3’s profile is almost identical to Patient 6’s
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profile (excepl [or Protein 4), so these two patlients can be coupled. Likewise, Patients 2 and 4

can be grouped together. Among these 3 pairs of patients, the first and sccond pairs most closely

resemble each other in that they generally exhibit higher intensities for Proteins 1-4, and lower

intensities for Protein 5. Therelore, these two pairs can be linked nto a single cluster. Finally,

this cluster is linked with the third pair, which is more distantly related as it has low intensitics

for Proteins 1-3 followed by higher intensities for Proteins 4 and 5. It is noteworthy that the

lengths of the branches are set to the distance between the joined items. Therefore, more highly

correlated patient samples are joined by shorter branches, whereas more distantly related patient

samples are joined by longer branches (see Figure 4.4 below).
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Figure 4.4 lllustration of clustering by visually grouping patient samples based on
protein profile similarities.
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While clustering of patient samples might be accomplished wsvally for small sample
sizes and few assayed proteins, much larger datasets — like our 120 samples x 35 protein set -
requires the clustering analysis to be done computationally. As such, the correlation between
patients’ protein profiles must be determined mathematically. This1s most commonly done using
the Pearson correlation between the proten profiles, though other distance measures (Euclidean,
city-block, and norrparametric measures) can also be used The Pearson correlaion ry, between

the proteinprofil es of twro patient samples (X and ¥) 15 gven by

3 (@ =) (5~ 9)

(n — 1)s,s,

Fay =

where x; and v are the fluorescent intensities of the ith protein, x and y are the mean protein
intenisities, and g and 5 are the corresponding standard deviations, of samples X and ¥,
respectvely. These correlation coeffiments are calculated and the remidting clustering of the data
15 accomplished vsing Cluster 3.0, In addition, for thus study, the clustering &l gorithm was set to
*&verage-Linkage Clustering”, 10 wihich the distance between the two patiert samples, ¥ and ¥,

15 the mean of al patrwise distances bebwr een their com ponent proteinintensities.

4.3 Test Sample Classification: “Guilt by Association”

Asmentioned previously, test samples were classified based on the majority diagnosis of
their niearest netghbors To 1llustrate howe this *gailt-by-association™ techrd que works, 1et’s look
at a few examples of test samples (“unknowns”) within clusters contating varang ratos of
experimental (magenta) and control group (greer) samples. In Figure 4.5a, we have a cluster

contaming o unknowns, tro GBM patierts, and two healthy controls. Since this cluster i3
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evenly split between experimental and control samples, no determination can be made about the
classification of the two unknowns. As can be seen, in unbiased clusters such as these, the test
sample classification is indeterminate. In this study, test samples with indeterminate
classifications were excluded from further analysis. In Figure 4.5b, the unknown resides within
a cluster in which there are 2 samples from patients with tumor growth and 3 samples from
patients with no tumor growth (since their last MRI scan). Because this cluster has a slight “No
Growth™ bias, the unknown 1s classified as having no tumor growth (control group). However,
the confidence level in this assignment is not very high since the number of “No Growth”
samples barely exceeds the number of “Growth” samples. In Figure 4.5¢, the unknown is
situated within a cluster in which there are 4 “No Tumor Growth” samples and only one “Tumor
Growth” sample. This 1s an example of a highly biased cluster, in which the unknown can be
unambiguously assigned to the “No Tumor Growth™ group with a relatively high level of
confidence. Finally, in Figure 4.5d, the unknown is located within a homogeneous cluster (or
“zone™) in which all members belong to the “Tumor Growth™ group. Therefore, the test sample
can be assigned to the “Tumor Growth” group with a very high level of confidence. In this study,
the diagnostic accuracy of the “guilt-by-association” classification technique was assessed: 1. for
all unknowns (excluding indeterminates); 11. for the set of unknowns within highly biased and
homogeneous clusters; and iii. for unknowns within homogeneous clusters only. The diagnostic
accuracy of classifying test samples using “guilt-by-association” within each of these groups is

discussed in Sections 3.3 and 3.4.
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Figure 4.5 Classifying test samples via “Guilt by Association”: illustrative examples. In
(a), the cluster is unbiased so the classification of the test samples (“unknowns™) is not possible.
In (b), the cluster is biased, but only slightly, so the test sample is assigned with low confidence
to the control group based on the majority diagnosis. In (¢), the cluster is highly biased, so the
test sample can be assigned unambiguously to the control group. In (d), the cluster is
homogeneously comprised of patients from the experimental group, so the test sample is
assigned to this group with very high confidence.
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4.4 Appendix: Excel Macros for Data Analysis

4.4.1 Processing GenePix-Scanned Array Data to Create a Master Dataset

'"The following subroutine (“RunProgramForéxéArrays”) takes GenePix data
'(text format) that has been transferred to an excel file and formats it
'"for statistical and graphical analysis. In particular, for each of the 12
'hlocks (patient wells) in each file (slide), a new sheet is created. The
'oligo names are then tabulated on sach sheet in exactly the order in
'which they appear on the slide. The spots with the highest intensity in
'the green channel (Cy3) are then assigned as oligo M (reference oligo),
'and the tabulated oligo order is then used to assign z1l other spots. The
'gix repeals of each oligo/antibody spot (red channel - Cyb) are then
'organized into a 1ist beneath each oligo name, and these columns are then
'sorted in alphabetical order by o0ligo name. The mean and standard
tdeviation of s=ix repeats are calculated for each oligo/antibedy. Outliers
tare removed and the mean and standard deviation are then re-calculated.
"The mean values are Lhen graphed (for each sheet), with error bars
'‘corresponding to the standard deviations. The mean intensity values for
'all proteins for each of the 12 sheets are then collated into one
'"ladditiconal) sheet. Furthermore, a baseline (or background) intensity is
'calculated for each graph (patient well) based on the average intensity
'of the 4 proteins with the lowest intensities. This baseline 1s added to
'each patient graph, and the baseline-subtracted protein intensity values
'are calculated. Each of the 12 patient graphs i1s then transferred to a
'separate slide within a Powerpoint file.

Sub RunProgramForéx6Arrays|()
FormatSheetForéxohArrays

'"Formats the GenePix data in excel such that only the "Block™, "Row",
'""Column™, "Cyb Mean","Cybh SD","Cy3 Mean"™, and "Cy3 5D" Columns are
'shown (minus the headings) .Due to variation in the GenePix output
'file, this step must sometimes be performed manually.

NewSheetForkEachBlock

'Creates a new sheet for each block/well of patient data (for a total of
'12 sheets)

WritesOligoOrderOnSheetForex6Array

'"Tabulates Che order of Lhe oligos exacltly as they appear on Lhe slide
'"The following macros are run on all 12
'sheetsipatient samples) in the excel file.

PlaceDligoOrderOnFachSheet
'Coples this table to all sheets of the excel file

PlaceMOnEachSheetFor6oxbArrays

'Finds the highest intensity green (Cyv3) spots and assigns them
'as oligo M



116

OligoIDForéx6ArrayForEachShest
'"Fills in the oligo ID for each spot using M as a reference and the
tabulated oligo order.

OligoAndIntensityOnlyForkachSheet
'"Fesult displays only the oligo ID and asscoclated mean Cy> (protein)
intensity

CollatesIntensityValuesd4FachOligod4EachSheet
'"Displays intensity values of all 6 spot repeats under each oligo ID.

AlphabeticalOrderForEachSheet
'Lists the columns in alphabetical order by oligo ID: i.e.
"A,B,C... 0, AR, BE,CC. ..

MeanAndStandardDeviationForEachSheet
'Displays the mean intensity and standard deviation for the 6 spot
repeats of each oligo/protein

EliminatesLowValueskorEachSheet
'Eliminates intensity values less than a set threshold, typically ~100
for background.

FindsConsistencyAndThrowsOutSingleOutlierForEachSheet

'"Throws out 3 of the 6 repeats for a given oligo/protein if the spots in
the first round of array spotting are significantly brighter than those
in the second round.

'"Otherwise, throws out a single outlier (LChat minimizes the SD of ths
remaining repeats).

InsertGraphforkachSheet
'Inserts graph of the mean intensity values of each oligo/protein
for each patient sample {sheet).

FormatChartForkEachSheet
'"Formats each graph Lo a set max x- and y-scale (typlcally 27 and
15000)

ErrorBarsForEachSheet
"Inserts up and down error bars with magnitude egual to the standard
deviation.

CollateData
'"Collates the mean intensities of proteins from all 12 patient samples
onto a single sheet.

Baseline

'Uses average of 4 lowesh protein intensity values as baseline, Lhen
subtracts all values by the baseline value.

'Tt then collates the background-subtracted data from all sheets on a
single sheet.

TransferAllGraphsOnSheetsToPowerpoint
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"Creates a new Powerpolnt file and transfers all graphs on sach sheet
to a separate slide

End Sub

Procedures Called by the “RunProgramFor6x6Arrays” Macro

Sub FormatSheetFor6x6Arrays()

'This subroutine trims the GenePix data file in excel so that it
'contains only the "Block™, "Row", "Column","Cy5 (635 nm wavelengtLh)
'"Mean", "Cy5s SD","Cy3 (594 nm wavelength) Mean", and "Cy3 SD" Columns
'are shown. These row containing the headings is subsequently deleted.
'This subroutine runs properly if the "Block" heading appears in the
'first column when the file i1s transferred from GenePix to Excel.
'"Otherwise, the file should he formatted manually.

Rows ("1:32™) .5elect
Selection.Delete Shift:=x1Up
Colunmns ("D:I").Select
Selection.Delete Shift:=xlToLeft
Columns ("F:M") .Select
Selection.Delete Shift:=x1ToLeft
Columns ("H:H") .Select
Columns ("F:F") .ColumnWidth = B8.89
Columns ("H:AQ") .Select
Selection.Delete Shift:=x1ToLeft
Range ("J4") .Select

Columns ("D:D"™).ColumnWidth = 9,33
Rows ("1:1") .Select
Selection.Delete Shift:=x1Up

End Sub

Sub NewSheetForEachBlock()
'"This program creates % additional worksheets and fills each
'of the resulting 12 worksheets with data from one of the 12
'wells (corresponding to blocks on "Sheetl™) on the slide
"The data must reside on "Sheell™ and the Workbook
'must start out with exactly 3 worksheets for this
'program to work properly
ActiveWorkbook.Worksheets ("Sheetl™) .Range ("A1").Select
For i =1 To 9
Sheets.Add After:=Sheets(Sheets.Count)

Next i
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For i = 1 To 11

RctiveWorkbook.Worksheets ("Sheetl™) .Select

Range (Range ("A1") .Offset ((217 * 1) - 1, 0), _
Range ("AL") .Offget (i + (215 * (i + 1)), 6})).Select
Selection.Cut

ActiveWorkbook.Worksheets (i + 1).Select

Range ("A1") .Select

ActiveSheet.Paste

Next i

End Sub

Sub WritesOligoOrderOnSheetFor6x6Array()
'This program creates a 6x6 table of the 36 cligo names
'(at 'Sheetl, L7') in the row/column order in which they

Yappear on the slide.

ActiveWorkbook.Worksheets(1l).Select

Range ("L7") = "u©
Range ("L8") = "IL"
Range ("L9") = "QO"
Range ("L10™) = "WW"
Range("L11") = "p"
Range ("L12") = "L"
Range ("M7") = "g"
Range ("M8") = "HH"
Range ("M9") = "Pp"
Range ("M10"™) = "yy"
Range("M11"™) = "g"
Range("M12"™) = "K"
Range ("N/") = "P"
Range ("NB™) = "CC"
Range ("NS") = "NN"
Range ("N10"™) = "uu"
Range("N11"™) = "D"
Range("N12") = "J"
Range(llo7ll) = IIO"
Range("08™) = "BE"
Range("09") = "MM"
Range("0O1l0"™) = "TT"
Range("O11™) = "C"
Range("™0lz"™) = "I"
Range("P7") = "N"
Range ("PB™) = "AA"
Range("PS9™) = "KK"
Range("P10"™) = "35"
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Range ("F11") = "B"
Range ("P12") = "H"
Range("Q7 ") — IIM"
Range("QBH) — IIZ"
Range("Q9") = IIJJ"
Range ("Ql10"™) = "RR"
Range("Qllll) = "A"
Range("lell) — "G"
End Sub

Sub PlaceOligoCrderOnkachSheet ()

'This subroutine copies the table of ordered oligo names (created in
""WritesOligoOrderOnSheetborox6Array™) and pastes it atC "L7"
'on each of the 12 sheets

For 1 = 1 To 11

ActiveWorkbook.Worksheets ("Sheetl™) .Select
Range ("K7:V12") .Select

Selection.Copy

ActiveWorkbook.Worksheets (i + 1).Select
Range ("K7") .Select

RctiveSheet . Paste

Next i

End Sub

Sub PlaceMOnEachSheetForoxGArrays()

'"This subroutine finds the reference oligos M in all 12 sheets
"hy running "FindMForéxéhrrays"™ in each sheet)

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
FindMForéx6hArrays

Next 1

End Sub

Sub OligoIDForéx6ArrayForEachSheet ()

'This subroutine runs the "OligelIDForéxoArray"™ program on each sheet/
"[hlock) to fill in the oligo name assignments for all spots in
"all blocks/sheets

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select



CligoIDFor6xbArray
Next 1

End Sub
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Sub OligolAndIntensityOnlyForEachSheet ()

'"This subroutine trims the data set to just the column of oligo names

tand their associated red-channel (Cy5) mean intensities for all
'12 sheets (blocks)

For 1 = 1 To 12
RctiveWorkbook.Worksheets (1) .Select
Range ("A2™) .Select
OligoAndIntensityOnly

Next 1

End Sub

Sub CollatesIntensityValuesdEachOligod4FachSheet ()

'"This subroutine lists the intensity values for the six spot repeats
'of each oligo/antibody under the name of that oligo (for all 36
'oligos), and repeats this for all 12 sheets/blocks.

Dim 1 As Integer

For i = 1 To 12

RctiveWorkbook.Worksheets (i) .Select
CollatesIntensityvalues4EachOligo

Next 1

End Sub

Sub AlphabeticalQOrderForEachSheet ()

'"This subroutine places the columns of oligo intensity values in
'alphabetical order according to thelr oligo names:

"Tmportantly, it ensures that ordering is from A->7, followed

'hy BA->WW, as oppossed to AR coming directly after A, and so forth.

"It does this by adding an extra worksheet, placing double-letter oligo
'names in that sheet, alphabetically ordering them, and then appending

"them with the ordered single-letter names in the previous

'sheet. The extra sheet is then deleted. This is repeated for all
'12 worksheets. A command prompt asks the user whether they want to
'delete the extra sheet (12 fimes). Click "Okay"™ all 12 times.

Dim i, J, StringLength As Integer
Dim myString As String
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Dim ws As Worksheet

For J = 1 To ActiveWorkbook.Sheets.Count

i=0
ActiveWorkbook.Worksheets(j).Select
Sheets.Add After:=RActiveSheet
ActiveSheet .Name = "TwolLetterOligos™
ActiveWorkbook.Worksheets(j).Select
Range ("C1") .Select

Do
myString = Range("C1l™).0ffset (0, 1i).Text
StringlLength = Len(myString)

If StringLength > 1 Then

BctiveCell.EntireColumn.Select

Selection.Cut

ActiveWorkbook.Worksheets ("TwoLetterGligos™) .Select
Range ("C1™).0ffset (0, 1).Select

ActiveSheet.FPaste

End I

ActiveWorkbook.Worksheets(]).Select
i=1+1
Range ("C1"™) .0ffset (0, 1i).Select

Loop Until 1 = 36

ActiveWorkbook.Worksheets(j).Select
DeleteFmptyColumns

AlphabeticalOrder

ActiveWorkbook.Worksheets ("TwoLetterOligos™) .Select
DeleteEmptyColumns

AlphabeticalOrder

Range ("Al:Z27") .,Select

Selection.Cut
ActiveWorkbook.Worksheets(j).Select
Range ("A1") .Select

Do
Range ("A1") .Offset (0, k).Select
k=k+1

Loop Until IsEmptvy(ActiveCell)

ActiveSheet.Paste
ActiveWorkbook.Worksheets ("TwoLetterOligos™) .Delete
k=10
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Next J

End Sub

Sub MeanAndStandardDeviationForEachSheet ()

'"Thig subroutine cutputs the mean and standard deviation of the intensity
'values for the six spot repeats for each cligo/antibody (beneath
'each list of intensity values). This is repeated for all 12 sheets.

Dim 1 As Integer
For 1 = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
MeanhAndStandardDeviation

Next 1

End Sub

Sub EliminatesLowValuesForEachSheet ()

"This subroutine deletes all data values on a sheet that are less than
'100 Intenisty Units. Typically, such low intensity values correspond
"to background, and suggest a defect in Lhe spol loading or assay

'in that region. However, it could also suggest that the area was
'‘covered by PDMS and therefore unavailzble for the assay.

For i = 1 To 12

RctiveWorkbook.Worksheets (i) .Select
EliminatesLowValues

Next 1

End Sub

Sub FindsConsistencyAndThrowsOutSingleOutlierForEachSheet ()

'"This subroutine carries out the two-mode cutlier elimination of

'the "FindsConsistencyOrThrowsOutASingleOutlier™ code, and repeats it
"for all 12 sheets/blocks

Dim ws As Worksheet

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
FindsConsistencyOrThrowsOutAsSingleOQutlier

Next i



123

End Sub

Sub InsertGraphForEachSheet ()

'"This subroutine graphs the mean intensity values for each column of
'oligo/protein intensitises {on the same graph). As a result, the
'mean intensities for all proteins in a patient sample can quickly
'he evaluated visually. This is repeated for all 12 patient samples
' (worksheets) assayed on the slide.

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
InsertGraph

Next 1

End Sub

Sub FormatChartForEachSheet ()

'"This subroutine formats each chart to maximum scales on the x-
tand v- axes of 37 and 15000, respectively. Of course thess
'values can be re-set to values of one's choosing. This is
'repeated for all 12 sheets/blocks.

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
FormatChart

Next

End Sub

Sub ErrorBarsForEachSheet ()

'"This subroutine adds two-sided error bars (up- and down- magnitudes
'corresponding to standard deviations) to the graph of mean

'"orotein intensity values. This is repeated for all 12 sheets
'"{all 12 patient graphs).

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select
krrorBars
Next

End Sub

Sub InsertBaselineForEachSheet()



'"This subroutine sorts the mean protein intensities from smallest Lo

'largest and places them in row 17. It then takes the average of
'the first 4 and 9 smallest values and places them in rows 18
'19, respectively, as well as adding them as baselines to the
'patient graph. This is based on the observation that the 4
"lowest values in a patient graph typiczally exhibit intensities
'egquivalent to a negative control (non-specific IgG). This is
'repeated for all 12 sheests.

For 1 = 1 To 12
RctiveWorkbook.Worksheets (i) .Select
InsertBaseline

Next

End Sub
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Sub SubtractBaselineForEachSheet()

'"This subroutine subtracts the baseline value from each of the 353
'mean protein intensities to yield a baseline-subtracted

'net mean protein intensity. It places these values in Row 24.
'"This 1s repeated for all 12 sheets.

For 1 =1 To 12
ActiveWorkbook.Worksheets (i) .Select
SubtractBaseline

Next

End Sub

Sub CeollateBackgroundSubtractedData ()

'"This subroutine collates all background subtracted mean protein
Yintensity values from all 12 worksheets onto a single
'worksheet.

Sheets.Add After:=Sheets(Sheets.Count)
Range ("A1l") = "Collated Background Subtracted Data"

For i = 1 To 12

RctiveWorkbook.Worksheets (i) .Select

Range ("24:24™) . Select

Selection.Copy

ActiveWorkbook.Worksheets (Sheets.Count) .Select
Range ("A2™) .Offset (i, 0).Select
ActiveSheet.Paste

Next 1

End Sub

Sub Baseline()

"This subroutine runs the "InsertBaselineForEachSheet™,
"MSubtractBaselineForEachSheet", and
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""CollateBackgroundsubtractedData™ subroutines
InsertBaselineForFachsheet
SubtractBaselineForkachSheet
CollateBackgroundSubtractedData

End Sub

Sub CollateDatal()

'"This subroutine collates the mean protein intensity values for all
12 patients on a single sheet.

Sheets,Add After:=Sheets(Sheets.Count)

Fange ("A1") = "Collated Data"

For 1 = 1 To 12
ActiveWorkbook.Worksheets (i) .Select
Range("11:11").Select
Selection.Copy
ActiveWorkbook . Worksheets (Sheets. Count) . Select
Range ("A2") .Offset (i, 0).Select
ActiveSheet.Paste

Next i

End Sub

Sub CollateStandardDeviations()

'This subroutine collates the standard deviations for all 26
'proteins from all 12 worksheets (into a table of values)
'onto a single sheet. Each patient's values are listed in

'a separate row.

Sheets.Add After:=Sheets(Sheets.Count)
Range ("A1") = "Collated Standard Deviations"

For i = 1 To 12

ActiveWorkbook.Worksheets (i) .Select

Range ("12:12").Select

Selection.Copy

ActiveWorkbook.Worksheets (Sheets.Count) .Select
Range ("A2") .Offset (i, 0).Select
ActiveSheet.Paste

Next i

End Sub

""TransferBllGraphsOnSheetsToPowerpoint” FProcedure - See Appendiz 4.8



126

Subroutines Called by the Above Procedures

Sub FindMForoxoArrays ()

'This subroutine searches for intensity values in the green (Cvy3) channel
'that exceed 20000 AU, and labels them as the reference oligo M

Range ("F1") .Select

Lo
If ActiveCell.Value > 20000 Then

BctiveCell.Offset (0, 2).Value = "M"
End It

ActiveCell.Offset (1, 0).Select
Loop Until ActiveCell.Cffset(-1, 2).Value = "M"
If ActiveCell.Offset (5, 0).Value » 20000 Then
BctiveCell.Offset (5, 2).Value = "M"

End If

End Sub

Sub OligoIDFor6x6Array()

'"Thig subroutine searches for the three sets of oligo M pairs in a
'worksheet, placed hy the "FindMFor6x6Arrays"™ or the
""PlaceMOnEachSheetFortx6Arrays"™ programs, and uses TChem as a reference Lo
'quide the correct assignment of oligo names (using the table of ordered
'oligo names created in "WritesOligoOrderOnSheetForéxelhrray™ and/or
'"PlaceCligoOrderOnkEachSheet™ to all other spots listed (by rows and
"columns) in the block (on the sheet)

i, 3, k, m =10
Fange ("H1") .Select

Lo
If ActiveCell.Value = "M"™ Then

'"Once this condition is satisfied, the index 1 gets the value of the
column previous to M; this is useful because that's how many cells
we need to count back to get to and select the first column within
the row in which M resides; the index 1's value does not change
from this point until the the entire bhlock is seguenced

m = ActiveCell.OQffset (0, -5).Value
'the index M gets the row number at which oligo M resides

For 3 =0 To 5
'The index J allows us to select sach cell in M's row, starting 1
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'cells above (or 1 cells to the left of M in the array seguence)
If Not IsEmpty(Range("Q7").0ffset (0, -1 + J).Cells) Then

ActiveCell.Offget (-1 + J, 0).Value =
Range ("Q7") .Offset (0, -1 + 7).Value

For k = 0 To 17

ActiveCell.Offset((-1 + J) - 12 * (m - 1) + € *(2%k), _
0) = Range("Q7").Offset((6 - (m - k - 1)) Mod 6,
-1+ 3).value
ActiveCell.Offsget{(-1 + 3) - 12 *# (m - 1) +
o * ((2* k) + 1), 0)
Range ("Q7T") .Offset ({6 - (m - k - 1)) Mod 6, -i+73).Value

Next k

'Since the olige M resides in the mth row of the block (say 4th
'‘row), we need to offset by 3 rows to get us to the first row of
'the block. To get Lo the first row, we therefore need to
"multiply 3 (in this example) by the number of columns (12) in
'the array seguence (3x12=36). In other words, if we subtract 36
"from the i+] offset{from M's location in the oligo assignment
'eolumn), we will hit the oligo in the array seguence at the same
'column offset position but in the first row of the block. The
'oligo at the same positicon in the next row down 1s assigned to
'the cell 12 cells helow in the oligo assignment column and so
'Torth (in multiples of 12) until that oligo position in all 18
'rows are accounted for. Notice that if oligo M is in the 4th row
'of of the block, the value of the oligo in the first row of the
"hlock (3 rows up)is the same as 1f vou go (€-3) rows down in Lhe
tarray sequence table, hence the 6-(M-1). By taking the Mod & of
'this value, we ensure that we always stay within the confines of
'the 6-row array sequence table, The index k then allows us to
'scan through values in each row at the same column offset
'vosition.

Else

ActiveCell.Offset(-i+], 0).Value = Range("Q7").0ffsetL (0,
-1+ 3 - 6).Value

For k = 0 To 17

ActiveCell.Offset((-1 + §) - 12 * (m - 1) + 6 * (2%k),
0) = Range("Q7").0ffset((c - (m - k - 1)) Mod &, _
-i+ 3 -6).Value
ActiveCell.Offset ((-1 + J) - 12 * (m - 1) + 6 * ((2*k)
+ 1), 0) = Range("Q7").0ffset((c - (m - kK - 1)) Mod 6, _
-i+ 3 - 6).Value

Next k
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End If

Next ]
End It
ActiveCell.0Offset (1, 0).Select
'"This will continue to offset the selscted cell until a cell
"containing M is reached
i= {1+ 1) Mod &
'"The index 1 i1s the same as the block column value of the previous
'cell in the oligo assignment column

Loop Until ActiveCell.COffset(-1, 0).Value = "M"

End Sub

Sub OligolAndIntensityOnly()

'This subroutine trims the data set to just the column of oligo names
'tand thelir associated red-channel (Cvy5) mean intensities. The names
tare moved from column "H" to column "A"™. The intensities are

'moved from column "D" to column "B". All other data is deleted.

Columns ("H:H") .Select
Selection.Cut

Columns ("A:A"™) .Select
ActiveSheet.Paste

Columns ("D:D") .Select
Selection.Cut

Columns ("B:B") .Select
ActiveSheet.Paste

Columns ("C:Z"™) .Select
Selection.Delete

Rows ("1:1").S5elect
Selection.Ingert Shift:=x1Down, CopyOrigin:=xlFormatFromLeftOrihove

End Sub

Sub CollatesIntensityvValuesdEachOligo ()
"This subroutine lists the intensity values for the six spob repeats
'of each oligo/antibody under the name of that oligo (for all 36

'oligos).

Dim i, 3, k As Integer
Dim myRange As Object

ActiveWorkbook.ActiveShest. Select



Range ("A2") .Select
i, k=1
7 =0

Lo

CurrentCell = ActiveCell.Value

Range ("AZ") .Select
Range ("AZ2") .Offset (-1,

Set myRange = Range ("C1")
RctiveCell.Value = CurrentCell

Range ("AZ") .Select

Do
If ActiveCell.Value

myRange.0Offset(k, J).Value

k=k+1

Range (ActiveCell, ActiveCell.Offset (0,
RBctiveCell.Offset (-1,

End If

BctiveCell.Offset (1,

Loop Until IsEmpty(ActiveCell)

Range ("RAZ2") .Select

i=1+1
ISR
k=1

Loop Until TsEmpty(ActiveCell)

End Sub

i 4+ 1).Select

CurrentCell Then

0).8elect

0).5elect
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DotiveCell .Offset (0, 1)

1)) .Delete Shift:=x1Up

Sub AlphabeticalOrder ()

'"This subroutine sorts a 1list or table in alphabetical order by

'headings in the first row.

Range ("A1:AZ10").Select

ActiveSheet.Sort.SortFields.Clear

ActiveSheet.Sort.SortFlelds.Add Key:=Range("Al:AZ1"),
SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xzlSortNormal

With ActiveSheet.Sort

.8etRange Range ("Al:AZ10")

.Header = x1Guess
.MatchCase = False

.Orientation = xlLeftToRight

.SortMethod = x1PinY¥in
LRpply



End With

End Sub
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Sub DeleteEmptyColumns ()

'"Thig subroutine deletes any empty columns from a worksheet
'containing the 1list of protein intensities arranged in
talphahetical order by heading (protein name).

Dim i, ] As Integer

Range ("AR1") .Select

Do

If Not IsEmpty(ARctiveCell) Thsn
Range ("A1"™) .0ffget (0, 1).Select
i=1i+1

Else
BctiveCell.EntireColumn.Delete
j=3+1

End If

Loop Until 1 + 7 = 50

End Sub

Sub MeanAndStandardDeviation()

'This subroutine ocutputs the mean and standard deviation of the intensity

'values for the six spot repeats for each cligo/antibody (beneath

'each list of intensity values).

Range ("AS") .Select

ActiveCell.FormulaR1C1l = "=AVERAGE(R[-7]C:R[-2]C)™"
Range ("R9") .Select

Selection.Copy

Fange ("A9:AJ9") .Select

ActiveSheet.Paste

Range ("AR10O") .Select

Application.CutCopyMode = False
RActiveCell.FormulaR1Cl = "=STDEV(R[-8]C:R[-3]C)"
Range ("R10") .Select

Selection.Copy

Fange ("A10:AJ10™) .Select

ActiveSheet.Paste

End Sub
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Sub EliminatesLowValues ()

'This subroutine deletes all data values on a sheet that are less than
'100 Intenisty Units. Typically, such low intensity values correspond
'to bhackground, and suggest a defect in the spot loading or assay

'in that region. Howsver, it could also suggest that the area was
'covered by PDMS and therefore unavailable for the assay.

Dim i, J As Integer

Fange ("R2") .Select
For 7 = 0 To 35
Range ("A2") .Offset (0, J).Select
For 1 = 0 To 5
IT ActiveCell.Value < 100 Then
ActiveCell.ClearContents
End Tf
ActiveCell.Offset(l, 0).Select
Next 1
Next 3

End Sub

Sub FindsConsistencyOrThrowsOutASingleQutlier()

'"This subroutine eliminates outliers (from the list of intensity values
'aof the six repeats for ezch oligo/column) from calculations of mean and
'standard deviation by one of two modes: 1) eliminating 2 outliers

'if the difference hetween intensity values in odd and even numbered
'‘rows 1s greater than 25%, or 2) if this is not the case, throwing

'out a single value that minimizes the standard deviation of the
'remaining values. The purpose of 1) is to circumvent an issue

'arising from array-spotfing oligos in Cwo separate runs: with half
'the repeats of each oligo spotted in the first run, and the other
'half spotted in the second run. By the time the second hzalf are
'spotted, the humidity has caused the slides to become too resistant
'to oligo binding. As a result, the first set of (3) repeats yields
'significantly greater intensity values compared with the second set.
'In those cases, the second set of (3) repeats are eliminated from
'calculations of mean and standard deviation (and only the first set
'of (3) repeats is counted.
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Dim i, J, k, %, v, z As Integer
i, 1, &k 2% v, 2 =0

Fange ("R2") .Select

For J = 0 To 35

Range ("A2™) .Offset (0, j).Select
z =0

For 1 =0 Tec 5
If Not IsEmpty(ActiveCell) Then
z =z +1

End If

RctiveCell.Offset (1, 0).Select

Next 1
If z » 3 Then

Range ("A2"™) .0ffset (0, j).S5elect
i, ¥, v =20

Do While Not IsEmpty{ActiveCell)

If {(ActiveCell.Value - ActiveCell.Offset(l,
0).Value) /RctiveCell . Value > 0.25 Then
X =x+1
End I

y=vy+t1
ActiveCell.Offset (2, 0).Select

Loop
If IskEmpty(ActiveCell) And v < 3 Then
x =0

y:
Range ("A2"™) .Offset (1, J).Select

La]

For v = 0 To 2
If Not IsEmpty(ActiveCell) Then

If (ActiveCell.Value - ActiveCell.Offset(-1,
0y .Value) / ActiveCell.Value » 0.25 Then
Xx =x +1

End If
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End I

RBctiveCell.Cffset (2, 0).Select

Next y

End If

If x <> 3 Then

=0
vy =0
Range ("A2"™) .0ffget (0, J).Select
Do While Not IskEmpty{ActiveCell)

If (ActiveCell.Value - ActiveCell.Offset(l, _
0) .Value) / ActiveCell.Value < -0.25 Then

X =x+1
End If

y=y+t1
DotiveCell.Offset (2, 0).Select

Loop

If IskEmpty({ActiveCell) And v < 3 Then

®x =0
v =0

Range ("A2"™) .Offset (1, J).Select
For vy = 0 To 2
If Not IsEmpty({ActiveCell) Then

If (ActiveCell.Value - ActiwveCell.Offset(-1,
0) .value) / RActiveCell.Value < -0.25 Then
X =x + 1
End If
End If
ActiveCell.Offset (2, 0).Select
Next y

Fnd If

End If
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Range ("A2"™) .0ffset (6, j).S5elect
If x = 2 Then

ActiveCell.Offset (10, 0).FormulaR1Cl = "=Average(R[-16]C, _
R[-14]1C,R[-12]C)"

ActiveCell.Offset (10, 0).Select

Selection.Caopy

Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks:=False, Transpose:=False

RBctiveCell.Offset (1, 0).Select

ActiveCell.FormulaRlCl = "=Average(R[-16]C,R[-14]C,R[-12]C}"

ActiveCell. Select

Selection.Caopy

Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=x1None, SkipBlanks:=False, Transpose:=False

RetiveCell.Offset (-8, 0).FormulaR1C1 = "=Max (R[7]C, R[B]C)"

RBctiveCell.Offset (-8, 0).Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks:=False, Transpose:=False

With ActiveCell.Font
.Color = -167765%61
.TintAndShade = O

End With

If ActiveCell.Value = ActiveCell.Offset (8, 0).Value Then
ActiveCell.COffset (1, 0).FormulaRICl = "=stdev(R[-9]C,
R[-7T]C,R[-5]C)"
BctiveCell.Offset (1, 0).Select
Selection.Copy
Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks:=False, Transpose:=False

With ActiveCell.Font
.Color = -16776861
.TintAndShade = 0

End With

With Range ("AZ2,A4,A6™) . Offset(l, J).Font
.Color = =-16776%61
.TintAndShade = 0

End With

End I

If ActiveCell.Value = ActiveCell.Offset (7, 0).Value Then
ActiveCell.Offset (1, 0).FormulaRI1Cl =
"=stdev(R[10]C,R[-8]C,R[-6]C) ™

ActiveCell.Offset (1, 0).Select
Selection.Copy
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Selection.PasteSpecial Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks:=False,Transpose:=False

With ActiveCell.Font
.Color = -16776961
.TintAndShade = 0

End With

With Range("R2,A4,A0"™).0ffset (0, 7J).Font
.Color = -16776961
.TintAndShade = 0O

End With

End If
Else

Range ("a2"™) .Offset (i, J).Select
i=20

For 1 = 0 To 5

Range ("B2") .Offset (i, J).Select

Selection.Cut

Range ("A2"™) .Offget (30, 1) .Select

ActiveSheet.Paste

Range ("A2"™) .Offset (i1, J).Select

BctiveCell.Offset (12, 0).FormulaR1Cl = "=stdev(R" &
2 & "C:R"™ & 7T & "C)" B

ActiveCell.Offset (12, 0).Select

Selection.Copy

Selection.PasteSpecial Paste:=xzlPasteValues,
Operation:=xlNone, SkipBlanks:=False,Transpose:=Falss

ActiveCell.Offset (10, 0).FormulaR1Cl = "=average(R"&
2 & "C:R" & 7 & "C)"

BctiveCell.Offset (10, 0).Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues,

Operation:=xlNone, SkipBlanks:=False,Transpose:=False

Range ("A2") .Offset (30, 1) .Select

Selection.Cut

Range ("A2") .Offset (i, J).Select

ActiveSheet.Paste

Next i

Range ("A2") .Offset (19, J).FormulaR1Cl = "=min{(R" & _
14 & "C:R" & 19 & "C)"

Range ("A2™) .Offset (19, 7).Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues,

Operation:=xlNone, SkipBlanks:=lalse, Transpose:=Lalse

Range ("Al4™) . Offset (0, J).Select
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Do While ActiveCell.Value <> Range("R21™).0ffset (0, 7).Value
ActiveCell.Offset (1, 0).Select
Loop

Range ("Al2™).0ffset (0, J).Value = ActivelCell.Value

With Range("Al2").0ffset (0, j).Font
.Color = =-16776%61
.TintAndShade = 0

End With

Range ("All").0Lfset (0, J).Value = ActiveCell.Offset (10, _
0) .Value

With Range("Al11l"™).0ffset ({0, J).Font
.Color = -167765%61
.TintAndShade = O
End With
RBctiveCell.Offset (=12, 0).Select
With Selection. Font
.Color = -16776961
.TintAndShade = 0
End With
Range ("Al4:A30™) . 0ffset (0, Jj).Delete
End If

Range ("Al13:A20") .0ffset (0, J).Select
Selection.ClearContents

Else
Range ("A2") .Offset (9, J).FormulaR1Cl = "=average(R" &

2 & "C:R" & 7 & "C)"

If z > 1 Then

Range ("A2") .0ffset (10, J).FormulaRlCl = "=stdev(R" & 2
& "ChR™ & T os ")
End If

Range ("11:12").Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPastevValues, _
Operation:=xlNone, SkipBlanks:=False, Transpose:=False

With Selection.Font
.Color = -16776%c61
.TintAndShade = 0

End With
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End If
Next 3

End Sub

Sub InsertGraph()

'"This subroutine graphs the mean intensity values for sach colunn of
'oligo/protein intensities {(on the same graph). As a result, the
'mean intensities for all proteins in a patient sample can quickly
'he evaluated visually.

Rows("11:11™) .Select

ActiveSheet.Shapes.AddChart.Select

ActiveChart.SetSourceData Source:=ActiveSheel.Range("s11:511")
ActiveChart.ChartType = xl1XYScatter
BctiveChart.Rxes(x1lValue) .Select
ActiveChart.Axes (x1Value) .MaximumScale = 0000

End Sub

Sub FormatChart()

'"This subroutine formats each chart to maximum scales on the x-
tand v- axes of 37 and 15000, respectively. Of course these
'values can be re-set Lo values of one's choosing.

ActiveSheet.ChartObijects (1) .Activate

If ActiveChart.HasLegend = True Then
ActiveChart.Legend. Select
Selection.Delete

End Tt

ActiveSheet.ChartObjects (1) .Activate
ActiveChart.Axes(x1Category).Select
ActiveChart.Axes(xlCategory) . .MinorUnit = 1
ActiveChart.hAxes (x1Category) .MajorUnit = 37
Selection.MinorTickMark = x1Inside
ActiveChart.Axes (x1lCategory) .MaximumScale = 37
ActiveChart.RAxes (x1Value) .Select
ActiveChart.Axes (x1Value) .MaximumScale = 15000

End Sub

Sub ErrorBars()
'"This subroutine adds two-sided error bars (up- and down- magnitudes
'‘corresponding to standard deviations) to the graph of mean

'protein intensity values.

ActiveWorkbook.ActiveSheet. Select
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ActiveSheet.ChartObjects (1) .Activate

With RActiveChart.SeriesCollection(l)
.ErrorBar Direction:=z1Y, Include:=xlBoth,
Type:=x1Custon, Amount:=ActiveSheet.Range("12:12"),
Minusvalues:=ActiveSheet.Range(™12:12")

End With

End Sub

Sub InsertBaseline()

'This subroutine sorts the mean protein intensities from smallest to
'largest and places them in row 17. It then takes the average of
'the first 4 and 9 smallest values and places them in rows 18

'19, respectively, as well as adding them as baselines to Lhe
'patient graph. This is based on the observation that the 4

'lowest values in a patient graph typically exhbiti intensities
'equivalent to a negative control (non-specific IgG).

Range ("Al1:;AJ11™) .Select

Selection.Copy

Range ("R1T:AJ17") .Select

ActiveSheet.Paste

Application.CutCopyMode = False

ActiveSheet.Sort.SortFields.Clear

ActiveSheet.Sort.SortFields.Add Key:=Range("A17:AJ17"),
SortOn:=xlSortCnValues, Order:=xlAscending, DataOption:=xlSortNormal

With ActiveShest.Sort
.SetRange Range ("R17:AJ1T"™)
.Header = x1Guess
.MatchCase = False
.Orientation = x1LeftToRight
.SortMethod = x1Pin¥in
CApply

End With

Range ("R1E8") .Select
ActiveCell.FormulaRI1C1
Range ("A19") .Select
ActiveCell.FormulaR1C1
Range ("R18:A19") .Select
Selection.Copy
Fange ("A18:AJ189"™).5elect
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xzlNone,
SkipBlanks:=False, Transpose:=False
ActiveSheet.ChartChjects (1) .5elect
ActiveChart.SeriesCollection.NewSeries
ActiveChart.SeriesCollection(2) .Name = "=""Serieg2"""
ActiveChart.SeriesCollection(2).XValues = Range ("SAS1:5AJ31™)
ActiveChart.SeriesCollection(2).Values = Range("S$AS18:8AJ518")
ActiveChart.SeriesCollection.NewSeries

"=AVERAGE (R[-1]C,R[-1]C[4])"

"=RVERAGE (R[-Z2]C,R[-2]C[5])"



3) .Name = "=""Serieg3i"m""

3) .XValues = Range ("SASI1:SAJS1™)
3).Values = Range("SAS19:5AJ519"™)
3) .8elect

ActiveChart.SeriesCollection
ActiveChart.SeriesCollection
ActiveChart.SeriesCollection
ActiveChart.SeriesCollection

With Selection
.MarkerStyle = 3
.MarkerSize = 2

End With

BctiveChart.SeriesCollection(2) .5elect
With Selection

.MarkerStyle = 1

.MarkerSize = 2

End With

End Sub
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Sub SubtractBaseline()

"This subroutine subtracts the baseline value from esach of the 35
'mean protein intensities to yield a baseline-subtracted
'net mean proteln intensity. IL places these values in Row 24.

Range ("R24") .Select

ActiveCell.FormulaR1Cl = "=R[-13]C-R[-6]C"
Fange ("RZ24") .Select

Selection.Copy

Range ("AZ4:;AJ24™) .Select

ActiveSheet.Paste

Range ("R24:AJ24") .Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone,

SkipBlanks:=Fzlse, Transpose:=False

End Sub

Collating Patient Data from all Patient Files

Sub CollateRllCollatedsStandardDeviations()

'This subroutine collates the tables of standard deviations
'from each open workbook into a single sheet within a

'new workbook. For this code to run properly, the tables
'of standard deviations must be located on the last
'worksheet of all workbooks (typically "SheetZo™),

Dim i As Integer
Dim NewWorkbook As Excel.Workhook

Set NewWorkbook = Application.Workbooks.Add



140

For i = 1 To Workbooks.Count

Workbooks (1) .Activate
RetiveWorkbook . Worksheets (Sheets.Count) . Activate
ActiveSheet .Range ("A3:AJ14") .Select

Selection.Copy

NewWorkbook.Worksheets (1) .Activate
ActiveSheet .Range ("A2") .Offset (13 * (1 - 1), 0).Select
ActiveSheet.Paste

Next 1

End Sub

Sub CollateRllCollatedNonBaselineSubkbMeans()

'This subroutine collates the tables of non-baseline subtracted mean
'protein intensities from each open workbook into a single sheet
'within a new workbook. For this code to run properly, the

'‘tables of mean valuss must be located on "Shest25H"™ within

'each workbock.

Dim 1 As Integer
Dim NewWorkbook As Excel.Workhook

Set NewWorkbook = Application.Workbooks.Add
For 1 = 1 To Workbooks.Count

Workbooks (1) .Rctivate
ActiveWorkbook.Worksheets ("Sheet25™) ,Activate
ActiveSheet .Range ("A3:AJ14") . Select

Selection.Copy

NewWorkbook.Worksheets (1) .Activate
ActiveSheet .Range ("A2") .Offset (13 * (1 - 1), 0).Select
ActiveSheet.Paste

Next 1

End Sub

4.4.2 Graphing Patient Data from the Master Dataset

'"The following macro sorts the master dataset by patient name followed by
'hlood collection date (such that all samples corresponding to eachpatient
tare listed in chronological order by collection date). Depending on which
"procedure 1s then used (see below for options), a variety of different
'graphical analyses are esnabled. For example, if one chooses the
"“GraphEachSelection” procedure, the protein data for each row/sample will
'be graphed separately (Fluorescent Intensity vs. Protein Identity).
'Blternatively, if one chooses “GraphTimeCourseData3”, each patient’s time
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'course data (Protein Intensity vs. Blood Collection Date) for eachprotein
'will bhe displayed on a single chart. (See helow for description of other
talternatives).

Sub RunGraphAllSelections ()

ScrthyDateForEachName
GraphFachSelection
"Note: This line can he interchanged with GraphTimsCourseData,
'GraphTimeCourseDataZ, or GraphTimeCourseData
FormatAllChartsOnSheet
TransferAllGraphsOnSheetsToPowsrpoint

End Sub

Sub ScrtbyDateForEachName ()

"This subroutine uses as input an excel file in which the patient
'last names have heen sorted alphabetically in Column C (with
'first names in column D)and in which the blood collection

'dates are listed in column B. It then sorts the data set

by date for each last name.

Dim i, J, k As Integer
Dim str As String

ExtractFirstWord
ActiveSheet.Cells (2, 3).Select

Do While Not IsEmpty(ActiveCell)
i=20
Do While InStr(l, Trim{ActiveSheet.Cells(2 + 1 + 3, 3).Value),
Trim({ActiveShest.Cells(Z + J + (i + 1}, 3).vValue), vbTextCompare) <>

0 And InStr(l, Trim(ActiveSheet.Cells(2 + 1 + j, 57).Value),
Trim{ActiveShest.Cells(2 + j + (i + 1), 57).Value), vbhTextCompare) <>

0
1=1+1
Loop
i=1+1

ActiveWorkbook.ActiveSheet.Sort.SortFields.Clear
ActiveWorkbook.ActiveSheet. Sort.Sortlields.Add Key:=Range("B:B"),
SortOn:=x1SortOnValues, Order:=xlAscending, DataCption:=xlSortNormal

With ActiveWorkbook.RhctiveSheet.Sort
.SetRange Range (Cells((2 + 3), 3), Cells((i + 7 + 1),
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3)) .EntireRow
.Header = xlGuess
.MatchCase = False
.Orientation = xlTopToBotton
.SortMethod = x1Pin¥in
cApply
End With

j= g
ActiveSheet.Cells (2, 3).0ffset(], 0).Select

Loop

End Sub

Sub GraphkachSelection()

'This subroutine creates a graph of the mean intensities for z211 36
'proteins in each row of patient data (each row of data corresponds
'to a different patient sample). For this code to run properly, the
'36 proteins must be located in columns U:BD. The graphs are labeled
'with the patient name, diagnosis, growth status, chemotherapy drug,
tand blood collection date. Unlike earlier versicn of this code, in
'this version, the range of cells Lo be graphed is selected hefore the
'chart is created, which speeds up the computing time considerably. In
taddition, the marker size is more compact, and the chart title zcquires
'the same color as the excel row from which it's derived. As in past
'vergions, the chart background color alternates from blue to

'‘gray bhetween different patients.

Dim i, J, k, m As Integer

i, 3=20
k, m=1

ActiveSheet.Cells (2, 3).Select
Do While Not IsEmpty(Activelell)
i=0
Do

Unlon(Range (Cells(l, 21), Cells(l, 56)}, Range(Cells(i + ] + 2,
21), Cells(i + 3 + 2, 56))).Select
ActiveSheet.Shapes.AddChart.Select

'Baseline-Subtracted Data

ActiveChart.SetSourcelbata Source:=Unicn(Range(Cells(l, 21),
Cells(1,56)), Range(Cells(i + 7 + 2, 21}, Cells(i + 3 + 2, 56))},
PlotBy:=x1Rows

"Non-Baseline-Subtracted Data (Cption)..



'"ActiveChart.SetSourceData Source:=Union (Range(Cells(l, 99
Cells(l, 134)), Range(Cells(i + 3 + 2, 99y, Cells{(i + 7] +

134))), PlotBy:=xlRows

)y
2y
With RActiveChart

ChartType = xlXYScatter
SetFlement (msoElementChartTitleRboveChart)

With .ChartTitle

.Text = StringConcat (" ", ActiveSheet.Cells(2 + 1 + 1,
4).Value, ActiveSheet.Cells(2 + 1 + J, 3).vValue, "-",
ActiveSheet.Cells(2 + 1 + J, 12).Value, "-",

hctiveSheet.Cells (2 + 1 + j, 1).Value, Chr{l0), _
"Avastin", ActiveSheet.Cellsi2 + 1 + J, 14).Value,
Chr{l10), CStr (ActiveSheet.Cells(2 + 1 + J, 2).Vvalue))
.Font.8ize = 10
.Font.Name = "Calibri (Body)"
.Font.Color = ActiveSheet.Cells(2 + 1 + 3, _
3).Font.Color

End With

With .Axes(xlCategory)
MinorUnit = 1
.MajorUnit = 37
MaximumScale = 37
MinorTickMark = xlTickMarklInside
.TickLabels.Delete
End With

With .Axes(xlValue)
MinorUnit = 1000
.MajorUnit = 5000

MinimumScale = -5000
MaximumScale = 30000
End With

.HasLegend = False

.SeriesCollection(l) .ErrorBar Directlen:=x1Y,
Include:=x1Both, Type:=xlCustom,
Amount:=ActiveSheet .Range(Cells(l + j + 2, 58),
Cells(i + 3 + 2, 93)), _
MinusValues:=ActiveSheet.Range (Cells(i + 1 + 2, 58),
Cells(i + 3 + 2, 93))

.SeriesCollection(l) .ErrorBars.Border.ColorIndex = 5

End With

If k > 0 Then
With ActiveChart.ChartArea.Fill
.Visible = True
.ForeColor.SchemeColor = 15
.BackColor.SchemeColor = 17
.TwoColorGradient msoGradientHorizontal, 1
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End With
End If

If k < 0 Then
With ActiveChart.ChartArea.Fill
.Visihle = True
.ForeColor. SchemeColor = 41
.BackColor. SchemeColor = 17
.TwoColorGradient msoGradientHorizontal, 1
End With
End If

For m = 1 To ActiveChart.SeriesCollection.Count
BctiveChart.SeriesCollection(m) .MarkerSize = 4

Next m

i=1+1
ActiveSheet.ChartObjects(i + J).Visibkle = False

Loop Until InStr(l, ActiveSheet.Cells(l + 1 + 7, 3).Value,

ActiveSheet.Cells(l + 7 + (1 + 1}, 3).Value, VbTextCompafé) =0
And InStr (1, ActiveSheet.Cells{l + 1 + J, 52).Value,
BctiveSheet.Cells(l + § + (1 + 1), 52).Value, vbTextCompare) = 0
k=-1%*k
j- 9+

ActiveSheet . Cells (2, 3).0ffset(], 0).Select
Loop
For 1 = 1 To ActiveSheet.ChartObjects.Count
ActiveSheet.ChartObjects(i).Vigible = True

Next i

End Sub

Sub GraphTimeCourseData ()

'This subroutine graphs all 36 proteins/spot mean intensity values
tat every collection time points for each patient. The chart
'title consist of the patient number and diagnosis. Each

'patient graph plots intensity as a function of protein ID.

"The color-coding for the Lime points is given in the legend.

Dim i, 3, k As Integesr

Dim str As String
Dim x As Object

Application.ScreenUpdating = False
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ExtractFirstWord
ActiveSheet.Cells (2, 3).Select

Do While Not IskEmpty(ActiveCell)
i=0

Do While InStr(l, ActiveSheet.Cells(2 + 1 + 3, 3).Value,
ActiveSheet.Cells(2 + 7 + (1 + 1), 3).vValue, vbTextCompare) <> 0 And
InStr{l, ActiveSheet.Cells(2 + 1 + 3, 57).Value, ActiveSheet.Cells(2
+ 3+ (1 + 1), 57).Value, vhTextCompare) <> 0

Loop

i=1+1

Union(Range (Cells(1l, 21}, Cells(l, 56}), Range(Cells(j + 2, 21},
Cells(] + (1 + 1), 58))).Select
BctiveSheet.Shapes.AddChart.Select

ActiveChart.SetSourceData Source:=Union{(Range(Cells{l, 21),
Cells({l, 56)), Range(Cells(j + 2, 21), Cells(j + (i + 1), 56))),
PlotBy:=xlRows 'PlotBy:=x1Columns

ActiveChart.ChartType = xlXY¥Scatter

RctiveChart.SetElement (msoElementChartTitlelboveChart)

ActiveChart.ChartTitle.Text = StringConcat(™ ", "Patient#",
ActiveSheet.Cells(2 + J, 3).Value, "-", ActiveSheet.Cells(Z + 3, _
12) .Value)

ActiveChart.ChartTitle.Font.Size
RctiveChart.ChartTitle.Font.Name =

10
"Calibri (Body)"

With ActiveChart.Plotlrea

.Width = 300
.Height = 175
End With

With ActiveChart.Legend

Left = 300
.Width 50
.Height = 300
.Top = 35
.Font.Size = 6
End With
k 1

For Each x In ActiveChart.SeriesCollecticn
ActiveChart.SeriesCollection(k).Name = StringConcat(" - ",
CStr (ActiveSheet.Cells(l + k + ], 2).Value),
ActiveSheet.Cells(l + k + 3, 14).Value,

ActiveSheet.Cells{l + k + 3, 1))
®x.MarkerSize = 4

With ActiveChart.SeriesCollection(k)



.MarkerForegroundColorIndex
.MarkerBackgroundColorIndex
.ErrorBar Direction:=x1%Y,

2+ k
2+ k
Include:=x1Both,
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Type:=xlCustom, Amount:=ActiveSheet.Range(Cells(l + k + j, _

58), Cells (1 +

MinusValues:=ActiveSheet.Ran§e(Cells(1 + k + i, 58),
Cells({l + k + 7,

kot 3, 93)),

93))

.ErrorBars.Border.ColorIndex = 2 +

End With

Next x

With ActiveChart

With .Axes(xlCategory)

JMinorUnit =1
MajorUnit = 37
MaximumScale =

37

MinorTickMark = x1TickMarkInside

End With

With .Axes(xlvValue)

MinorUnit = 100
MajorUnit = 1000

MininmumScale =
MaximumScale
End With

End With

]

ActiveSheet .Cells (2,

Loo

B

i+ i

3) . 0ffset (7,

-1000
10000

Application.ScreenUpdating = True

End Sub

k

0).Select

Sub GraphTimeCourseDataZ ()

'"This subroutine creates ¢ graphs showing mean protein intensity vs.
'collection date for esach set of 6
'‘proteins/spots for each patient. The chart title consist of

(out of the 36)

distinct

'the patient number and diagnosis. The color-coding for the
'proteins is given in the legend.

Dim 1,

iy

k, ProteinGroup,

Dim vntLabels As Variant
Dim str As String

intIndex As Integer
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Dim x As Object
i, 3 =20
k=1

Application.ScreenUpdating = False

ExtractFirstWord
ActiveSheet.Cells (2, 3).Select

Do While Not IsEmpty(ActiveCell)
i =0

Do While InStr(l, ActiveSheet.Cells(2 + 1 + 3, 3).Value,
ActiveSheet.Cells(2 + J + (i + 1), 3).vValue, vbTextCompare) <> 0
And InStr(l, ActiveSheet.Cells{2 + i + 3, 57).Value,
ActiveSheet.Cells(Z + 7 + (i + 1), 57).Value, vbTextCompare) <> 0

For ProteinGroup = 0 To 5

Union{Range(Cells (1, 21 + (6 * ProteinGroup)), Cells(l,
26 + (6 * ProteinGroup))), Range("B1l"™), Range(Cells(] + 2, 2},
Cells({j + (1 + 1), 2)), Range(Cells(] + 2, _
21 + (6 * ProteinGroup)), Cells(] + (i + 1)},
26 + (6 * ProteinGroup)))).Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Union(Range(Cells(l,
21 + (6 * ProtelinGroup}), Cells(l, 26 + (6 * ProteinGreoup))), _
Range ("B1"), Range(Cells(j + 2, 2), Cellst(y + (1 + 1), 2)), _
Range(Cells(] + 2, 21 + (6 * ProteinGroup)),
Cells(3 + (1 + 1), 26 + (6 * ProteinGroup)))), PlotBy:=x1Coclumns
ActiveChart.ChartType = xlLineMarkers
RetiveChart.SetFlement (msoElementChartTitlelboveChart)
ActiveChart.ChartTitle.Text = StringConcat(™ ", "Patient#",
ActiveSheet.Cells(2 + j, 5).Value, "-",
ActiveSheet.Cells(2 + 1, 12).Value)

RetiveChart.ChartTitle.Font.Size = 10
ActiveChart.ChartTitle.Font.Name = "Calibri (Body)"

With RActiveChart.Plothrea

.Width = 300
LHeight = 175
.Top = 20

End With

With ActiveChart.Legend
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Left = 320

.Width 50

.Height = 70

.Top = 50

.Font.Size = 6
End With

For Each ®x In ActiveChart.SeriesCollection

®x.MarkerSize 4

With ActiveChart.SeriesCollection (k)
.MarkerForegroundColorIndex = 2 + k
.MarkerBackgroundColorIndex = 2 + k
.ErrorBar Direction:=xl1Y, Include:=xlBoth,
Type:=x1Custom, Amount:=ActiveSheet.Range(Cells({j + 2,

58 + (6 * ProteinGroup) + k - 1), Cells{i + 1 + 1,

58 + (6 * ProteinGroup) + k - 1)),

MinusValues:=ActiveSheet.Range(Cells(] + 2,

58 + (6 * ProteinGroup) + k - 1), Cells(j + 1 + 1,

58 + (6 * ProteinGroup) + k - 1))
.ErrorBars.Border.ColorIndex = 2 + k

With .Border
.ColorIndex = 2 + k
Weight = 2.5
.LineStyle = xlContinuous
End With

End With
k=%k+1

Next x

With ActiveChart

With .Axes(xlCategory)

With .TickLabels
JAlignment = xlCenter
.Offset = 100
.Orientation = -40

End With

End With

With .Axes (xlValue)

MinimumScale = -1000
MaximumScale = 5000
End With

With .Parent
Left = 100



.Width = 500
.Top = 75
.Height = 440
End With
End With

Next ProteinGroup

3= 9+ 4

ActiveSheet . Cells (2, 3).0ffset (],

Loop

Application.ScreenUpdating = Trus

End Sub

0).5elect
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Sub GraphTimeCourseData3 ()

'"This subroutine creates graphs showing mean protein intensity vs.

'tcollection date for the full set of 36 distinct proteins/
'spols for each patient. The chart Citle consist of Lhe
'patient number and diagnosis. The color-coding for all

'proteins is given in the legend.

Dim i, 3, k, ProteinGroup, intIndex As Integer

Dim vntLabels As Variant
Dim str As String
Dim x As Object

Application.ScreenUpdating = False

ExtractFirstWord
ActiveSheet.Cells (2, 3).Select

Do While Not IsEmpty(ActiveCell)

1 =0

Do While InStr(l, ActiveSheet.Cells(2 + i + J, 3).Value,

ActiveSheet.Cells(2 + J + (1 + 1),

3) .Value, vbTextCompare)

And InStr{l, ActiveSheet.Cells(2 + 1 + 7, 57).Value,

ActiveSheet .Cells(2 + 7 + (1 + 1), 57).Value, vbTextCSmpare) <> 0

Loop

<x 0
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Union(Range(Cells (1, 21), Cells(l, 56)), Range("B1"},

Range (Cells(] + 2, 2), Cells(] + (1 + 1), 2)), _

Range (Cells (] + 2, 21), Cells(j + (i + 1), 5H6})).Select
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourceData Source:=Union(Range(Cells(l, 21),
Cells (1, 56)), Range["B1"), Range(Cells (] + 2, 2),
Cells(j + (1 + 1), 2}},

Range (Cells (] + 2, 21), Cells(] + (i + 1), 56}))), PlotBy:=xlColumns
'PlotBy:=x1Rows

ActiveChart.ChartType = xlLineMarkers
RctiveChart.SetElement (msoElementChartTitlelboveChart)

ActiveChart.ChartTitle.Text = StringConcat{" ", "Patient#", _
ActiveSheet.Cells (2 + j, 5).Value, "-", ActiveSheet.Cells(2 + J,
12) .Value)

RctiveChart.ChartTitle.Font.Size = 10
ActiveChart.ChartTitle.Font.Name = "Calibri (Body)"

With ActiveChart.PlotAhrea

.Width = 270
.Height = 175
.Top = 20

End With

With ActiveChart.Legend
.Left = 350
.Width = 50
LHeight = 230
.Top = 10
.Font.Size = 5
End With

For FEach x In RActiveChart.SeriesCollection
®.MarkerSize = 4

With RActiveChart.SeriesCollection(k)

MarkerForegroundColorIndex 2+ k
.MarkerBackgroundColorIndex 2+ k
.ErrorBar Direction:=xlY, Include:=x1Both, Type:=xlCustom,
Amount:=ActiveSheet.Range(Cells (] + 2,
58 + (6 * ProteinGroup) + k - 1),
58 + (6 * ProteinGroup) + k - 1)), _
MinusValues:=ActiveSheet.Range(Cells(] + 2,
)
)

Cells(j + i+ 1,

58 + (6 * ProteinGroup) + k - 1 Cells(j + 1 + 1,
58 + (6 * ProteinGroup) + k -1

I
)
.ErrorBars.Border.ColorIndex = 2 + k

With .Border
.ColorIndex = 2 + k
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.Weight = 2.5
.LineStyle = xlContinuous
End With

FEnd With

Next x

With ActiveChart

With .Axes(xlCategory)

With .TickLahels
JAlignment = xlCenter
.Offset = 100
.Orientation = -40

End With

End With

With .RAxes(xlValue)

MinimumsScale = -5000
MaximumScale = 20000
End With

With .Parent

.Left = 100
.Width = 500
.Top = 15
.Height = 440
End With
End With
j=9+1

ActiveSheet.Cells (2, 3).0ffset (], 0).Select

Loop

Application.ScreenUpdating = True

End Sub

Sub FormatAllChartsOnSheet()

'"Thig subroutine formats each chart to maximum scales on the x-
tand v- axes of 37 and 10000, respectively. Of course these
'values can be re-set to values of one's choosing. Tick

'marks are placed on the inside of the x-axis. The legend is
'deleted., This is repeated for all 12 sheets/blocks.

For 1 = 1 To ActiveSheet.ChartObjects.Count
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ActiveSheet.ChartObijects (i) .Activate

If ActiveChart.HasLegend = True Then
ActiveChart.Legend. Select
Selection.Delete

End If

ActiveSheet.ChartObjects (i) .Activate
ActiveChart.Axes({xlCategory).Select
ActiveChart.Axes(xlCategory) .MinorUnit = 1
ActiveChart.Axes(xlCategory).MajorUnit = 37
Selection.MinorTickMark = x1Inside
ActiveChart.Axes(xlCategory) .MaximumScale = 37
EBctiveChart.Axes(x1lValue) .Select
BctiveChart.Axes(xlValue) .MaximumScale = 10000

Next 1

End Sub

4.4.3 File Preparation for Cluster Analysis and Diagnostic Testing

'"This section describes the “RunClusterPrep” macro, which formats and
'Drepares cohort datasets for statistical analysis (by Excel and Analyseltf)
tand for later cluster analysis (by Cluster 3.0). It also creates a
'worksheet for assessing the accuracy of classifving patients within
'hierarchical clusters based on “guilt-by-association”.

'"This macro beging by creating a new directory, "NewTrialFolder", which
'contains a numbher of excel files: "Formatd4Cluster™,"Formatd4hnalyseIt™,
'tand "Diagnostic FPerformance™ as well 25 a number of "Case™ subfolders

tand an "All Text Files™ folder.

'Sheetl of "Formatd4Cluster™ contains all the patient data [(experimental
'and control) in a format that, once saved as a text document, can be used
'hy the software Cluster 3.0. In particular, all the pertinent clinical
"information for each patient sample is listed in the first column. The
'first row contains only headers (i.e. protien names). The intersection
'hetween each row and column contains the intensity value of a2 single
'protein for a2 single patient sample.

'Sheet? of "Formatd4Cluster™ separates the experimental and control
'data and displays the calculated mean and median intensities for each
'orotein in each group (both on the sheet and graphically). It also
'displays the differences (and root-mean-square distances) between
'experimental and control means and medians.

""Format4AnalyseIt™ contains the experimentzl and control group data for
'each protein in a format that can easily be transferred into and analyzed
'hy "Analyselt", a statistical analysis add-in for Excel. Specifically,
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'for each protein, the column of intensity values for experimental (red)
tand control {green) groups are situated adjacent to each other in table
'format. When the command button "Activate Analyselt-Dataset Defined" is
'clicked, an Analyself excel file,"Analyselt-Dataset Defined™ opens up
'into which the table of experimental and control columns for esach protein
'can be transferred, one at a2 time, for a whole host of statistical tests
tavailable in the Analyselt toclbar. The macros “TransferNextZAnalyselIt”
tand “TransferPreviousZAnalyselt” were writften to allow one to toggle to
"the next or previous protein’s dataz within the “FormatdAnalyselt”
'worksheet and instantly transfer that data table to the “Analyselt-
'Dataset Defined" worksheet by clicking on left or right arrows within the
'latter sheet.

'Tn addition, this subroutine facilitates diagnostic testing. It randomly
'assigns a certain number of patients (number specified hy the user) to he
""unknown"™ fest samples. This can be repeated multiple times (i.e.
'multiple cases/tests), as specified by the user. Fach of these case/test
'files (containing both data from known samples and randomly assigned
"unknowns) 1s saved into its own case subfolder within the
""NewTrialFolder"™ directory. The resulting data sets are then saved as
"Lext documents (Lhat are compatible with Cluster 3.0) 1in the "Tex{ Filesg®
'folder within the case subfolder. Separately, all text files from all
'cases/tests are also saved in the "RI1 Text Files" folder within the
""NewTrialFolder™ directory.

'"The "Diagnostic Performance™ file contains the actual diagnoses for all
'randomly assigned unknowns in all tests. However, these are hidden from
'view until the user has entered all their diagnostic predictions in the
""prediction™ column and clicked on the "Diagnostic Performance!™ command
'button. At that point, the predictions are scored and 2x2 contingency
'tables are created containing the numbers of true- and false- positives,
tand true- and false- negatives for each test. In addition, the
'specificity, sensitivity, and positive and negative predictive values 'for
each test are indicated. Most importantly, also created i1is a table 'that
contains the overall values {over all Lests run) for all of these
'‘diagnostic parameters.

Public strNewkolderPathAndiName As String

Public strFolderPathAndName As String

Public NumUnknowns As Integer '"Number of Unknowns for Test Set
Public NumProteins As Integer "Number of Proteins to examine
Public TestNumber As Integer 'Number of Tests to Ferform

Public CurrentTest As Integer

Public Rangeh, RangeB As Range

'"Note: NumUnknowns, NumProteins, and TestMNumber are User-Defined

Sub RunClusterPrepl()
Dim CurrentCasePathName As String

Application.ScreenUpdating = False
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Format4Cluster
CreatelNewDirectoryandSavehAs 'Creates "NewTrizlFolder" and Saves Excel

Files zs "FormatdCluster™ and "Format4Analyself Files”

Workbooks ("Formatd4AnalyseIt™) . Activate

Format4Analyselt 'Formats the excel file for use with the Analyselt
add-in in Excel”

ActivelWlorkbook. Save

ActiveWorkbook.Close

'"Create Case Folders for each File of Unknowns

For CurrentTest = 1 To TestNumber 'Test number is set on the user form

CurrentCasePathName = strNewFolderPathAndName & "Case" &
CurrentTest & "\"

MkDir CurrentCasePathName

Workbooks.Open FileName:=striNewFolderPathAndName &
"Format4Cluster.xlsx"

Workbooks ("Formatd4Cluster™) .Activate
SelectRandomCases (CurrentCasePathName)

'Selects NumUnknowns random cases as unknowns (where NumUnknowns is
'defined by the user), creates new sheet for each unknown with the
"set of knowns, and saves as notepad file in Case\Text Files folder

ActiveWorkbook.SaveAs FileName:=CurrentCasePathName §& "Case" &
CurrentTest & ".xlsx", FileFormat:=xlOpenXMLWorkhbook,

CreateBackup:=False
'Saves Excel File containing 20 unknowns, one in each sheel, 1in the

appropriate Case Folder
BctivelWorkbook.Close

Next CurrentTest

Workbooks.Open FileName:=strNewFolderPathAndName &

"FormatdCluster.xlsx"

ActiveWorkbook.Sheets (1) .Cells.Copy

Sheets(2) .Select

ActiveSheet.Paste

TwoCategoriesGraphMeansMedians?2

"Outputs the mean and median intensity values for each protelin within
experimental and control groups (and graphs them).

ActivelWlorkbook. Save

ActiveWorkbook.Close

PrepareNewSheetForStatistics

'Creates and formats a sheet for diagnostic testing

ActiveWorkbook. Save

ActiveWorkbook.Close

Application.ScreenUpdating = True

End Sub




155

Procedures Called by the “RunClusterPrep” Macro

'"The following subroutines are used directly by the "RunClusterPrep"
"subroutine: Format4Cluster,CreateNewDirectoryAndSavels, FormatdAnalyselt,
'SelectRandomCases, TwoCategoriesGraphMeansMedians?, and
'PrepareNewsSheetlorstatistics.

Sub Format4Cluster ()

'To be compatible with Cluster 3.0, header/label information can be placed
'only in the first row and column, with all remaining rows and columns
'containing the mean fluorescent intensity values for each protein
"{columns) within each patient sample (rows). (See Cluster 2.0 Manual).

'"This subroutine formats z patient data file such that all the relevant
'clinical parameters (namely, tumor growth status, IOIS#, gender, blood
'collection date, current diagnosis, and chemo drug treatment,are
'concatenated in a single cell (in the left-most column). A11 other
'patient information columns except the protein data values are deleted,
'such that the data set begins in the 2nd column of the worksheel. The
'first row of headers (protein/conjugate names) is maintained.

Dim i As Integer
i=20
ActiveWorkbook.ActiveSheet. . Activate

Unicn (Range ("P:T"), Range("F:K"), Range("C:D"), Range("BE:EF™)).Select
Selection.Delete

'"Column A = Growth Status
"Column C = I0OIS

'"Column D = Current Pathology
"Column F = Avastin Status
'Column E = Gender

"Column B = Collection Date

Range("C2").Select

Do While Not IsEmpty(ActiveCell)

Range ("G2") .Offset (i, 0).Value = StringConcat("™ - ",
Range ("A2").0ffset (1, 0).Value, Range("C2").0ffset{i, 0).Value,
Range ("D2").0ffset (1, 0).Value, Range("F2") .0ffset {1, 0).Value,
Range ("E2") .Offset (1, 0).Value,
Range ("B2"™) .Offset (1, 0).Valus)
Range ("C2") .OffsetC (1, 0).Select
i=1+1
Loop

Range ("G2").0ffset (i - 1, 0).ClearContents
Range ("A:F") .Delete
FRange ("A1").ClearContents
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End Sub

Sub CreateNewDirectoryAndSaveds ()

'"This subroutine creates a new directory, "NewTrialFolderl", on the
'Desktop. If z folder named "NewTrialFolderl" zalready exists, the
"name of the new folder will be "NewTrialbFeclder2™ and so forth.

"It then creates a subdirectory within this folder called

"MA1L Text Files"™. Finally, it saves the active excel workbook

tas "Format4Cluster™ and "FormatdAnalyseTIt".

Dim strFolderPath As String
Dim n As Integer

n=1

strFolderPathAndName = "C:\Documents and Settings‘\Heath Group\Desktaop"
ActiveWorkbook. ActiveSheet.Cells.Copy

Workbooks.Add

ActiveSheet.Paste

strNewFolderPathAndName = strFolderPathAndName & "‘\NewTrialFolderi"
strFolderPathAndName = strFolderPathAndName & "\NewTrialFolder"

Do While Dir(strNewFolderPathAndName, vkDirectory) <> "7
strNewFolderPathAndName = strFolderPathAndName & n & "\"
n=n+t1

Loop

MkDir strNewFolderPathAndName

'"This is now the NewTrialFaolderh

MkDir strNewFolderPathAndName & "Al1l Text Files"
'"This Folder Goes into the NewTrialFolder

ActiveWorkbook.Savehs FileName:=strNewFolderPathAndName &
"Format4Cluster.xlsx",
FileFormat:=xlOpenXMLWorkbook, CreateBackup:=False

ActiveWorkbook.Savehs FileName:=strNewFolderPathAndName &
"Format4hAnalyselt.xlsx™,

FileFormat:=xlOpenXMLWorkEook, CreateBackup:=False

End Sub

Sub Formatd4Analyselt()

"This procedure formats Che experimentz]l and control group data within a
cohort dataset so that 1t can easily he transferred into and analyzed
'hy "Anzalyselt", a statistical analysis add-in for Excel. Specifically,
'for each protein, the column of intensity values for experimental (red)
tand control (green) groups are situated adjacent to each other.

InsertColumns
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ExtractFirstWorddAnalyselt
ChangeCellFontColorAndPlaceColumnshAdiacently?
PaintColumnFontBlack

Range ("AZ") .Select

Call GenButtons("Activate Analyselt-Dataset Defined",
"OpenAnalyseItDataSetDefined")

End Sub

Sub SelectRandomCases (ByVal FilePathName As String)

'This subroutine selects a number of cases randomly to serve as
"unknowns 1in a test set., The number of random cases (NumUnknowns)
'is assigned by the user in the user form. After a case is assigned
'as an unknown, it 1s moved Lo the bottom of Lhe patient sample
'1ist. The next unknown 1s randomly assigned from the list of
'‘remaining samples (excluding the previously assigned unknowns).

'"The subroutine then calls two functions: the first creates a
'separate worksheet for the set of patient samples with each
‘unknown, as well as with all the unknowns combined. The second

'function saves each of these as a notepad file.

'"The subroutine receives the file path name as an argument which 1t
'relays to the "SaveToNotepad" function.

Dim RandomIndex, i, m, n, UpperBound As Integer
i=0

ActiveWorkbook.ActlveSheet.Actlivate

Range ("A2") .Offset (i, 0).Select

Do While Not IsEmpty(Activelell)
Range ("A2") .Offset (i, 0).Select

i=1+1
Loop
UpperBound i-2

For m = 1 To NumUnknowns

RandomIndex = Int(({UpperBound - 1 + 1) * Rnd + 1)
Range ("A2") .Offset (RandomIndex, 0).EntireRow.Select
Selection.Copy

Range ("AR2™) .Offset (i, 0).Select

ActiveSheet.Paste

Range ("A2") .Offset (RandomIndex, 0).EntireRow.Select
Selection.Delete

UpperBound = UpperBound - 1

Next m
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Range (Range ("A2") .Offset(i - m + 1, 0), Range("A2").0Offset(i - 1,
NumProteins)).Select

Selection.Font.ColorIndex = 3

Range ("A2™) ,Offset (i - m).EntireRow.Select

Selection.Delete

Range ("B:B").Select
Selection.Insert
Range ("A:A") .Select
Selection.Copy
Range ("B:B") .Select
ActiveSheet.Paste

For n = 0 To NumUnknowns - 1
Range ("B2") .Offset (i - m + n).Value = StringConcat("™ "™, "Unknown",
n+ 1)

MNext n

Call NewSheetForEachUnknown (i, m)
Cz11 SaveToNotepad(i, FilePathName)

End Sub

Sub TwoCategoriesGraphMeansMedians? ()

'This subroutine splits category 1 samples (typically
'experimental) and category 2 samples (Lvypically control)
'hy 8 empty rows. IT then calculates the mean, median

'and standard deviation for all protein intensities in
'each category and lists them in blue under the last row
'of that category. Two graphs are created: one of the

'mean and the other of the median protein intensity values
'for the two categories (category 1 - red; cateogry 2 -
'‘green) . The difference hetween the category means and
'medians are also calculated for each protein. The
'absolute value is taken for each of these, and scrted
'from smallest to largest. In addition the root-mean-square
'is calculated for the set of means and the set of medians.

Dim i, 3, k, m, n Az Integer
Dim strl, str2 As String

BctiveWorkbook.RctiveSheet. Select

'Tnsert Column
ActiveSheet.Range ("B2") .Select
Selection.EntireColumn. Select
Selection.Insert Shift:=x1Right

'Extracts Words Before First Dash in lakel and places 1t in Column B
ExtractFirstWord4hnalyselt



'ExtractWordsBeforeDash

Range ("B2") .Select

Selection.EntireColumn. Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=zlNone,
SkipBlanks:=False, Transpose:=False

Range ("BZ2") .Select

'Find First Row after Category 1 (by counting number of rows - 1 - in

'category 1)

Do While StrComp (ActiveSheet.Range("B2").0ffset (i, 0).Value, _
ActiveSheet.Range ("B2") .Offset (i + 1, 0).Value, vhTextCompare) = 0
i i+ 1

Loop

Range ("B2").0ffget (i + 1, 0).EntireRow.Select

'Place m = 8 emplty rows between Category 1 and Category 2
For m = 1 To §

Selection.Insert Shift:=xlDown
Next m

'Find First Row after Category 2 (by counting number of rows - J - in
'category Z)
Do While StrComp (ActiveSheet.Range("B2").Offset ({1 + 1) + m + J,
0) .value, ActiveSheet.Range("B2").0ffset((i + 1) + m + (3 + 1),
0) .Value, vhTextCompare} = 0
=3+ 1
Loop

ActiveSheet.Range("B2") .Qffset((i + 1) + m + 7, 0).Select

'Get String Values (such as "Growth"™ vs. "No Growth™)
strl = Range("B2").Value
str2 = Range("B2"™).0ffset (i + 1 + m).Value

'Delete Column Containing Extracted First Word
ActiveSheet.Range("B2").Select
Selection.EntireColumn.Select

Selection.Delete

'Average, Median, and Standard Deviation of 211 Values For FEach Prots
'in Category 1
Range ("B2").Offset (i + 1, 0).3elect

ActiveCell.FormulaR1Cl = "=AVERAGE(R[™ & (-1 - 1) & "]C:R[-1]C)"
Range ("AZ").O0ffset (i + 1, 0).Value = StringConcat(" ", strl, _
"- Average")

Range("B2").0ffset (i + 2, 0).Select

BctiveCell.FormulaR1C1 = "=MEDIAN(R[™ & (-1 - 2) & "JC:R[-2]C)"
Range("RA2™).Offset (i + 2, 0).Value = StringConcat(™ ", stril,

"- Median™)
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Range ("B2z™) .Offset (i + 2, 0).Select

ActiveCell.FormulaR1Cl = "=STDEVI(R["™ & (-1 - 3) & "]JC:R[-3]C)"
Range ("R2") .Offset (i + 23, 0}).Value = StringConcat(" ", strl,
"- Standard Deviation™)

Range (Range ("B2") .Offset (i + 1, 0}, Range("B2").Offset (i + 2,
0)) .S8elect

Selection.Copy

Range(Range("B2") .Offset{i + 1, 0}, Range("B2").Offset(i + 2,
35)) .Select

ActiveSheet. Paste

Selection.Font.ColorIndex = 33

'Average, Median, and Standard Deviation of A1l Values For Each Protein
'in Category 2
Range("B2"™).Offset((i + 1) + m + (7 + 1), 0).Select

)
ActiveCell.FormulaR1Cl = "=AVERAGE(R["™ & (-] - 2) & "]JC:R[-1]C)"
Range("A2") . Offset((1 + 1) + m + (3 + 1), 0).Value =
StringConcat (" ",  str2, "- Average")

Range ("B2") . Offsel((i + 1) + m + (] + 2), 0).5elect

{
'

ActiveCell.FormulaR1C1l = "=MEDIAN(R[™ & (-] - 3) & "]JC:R[-2]C)"
Range("A2") . Offset{(i + 1) + m + (3 + 2), 0).Value =
StringConcat ("™ ™, str2, "- Median™)

Range("B2") . Offset((i + 1) + m + (3 + 3), 0).Select

ActiveCell.FormulaR1Cl = "=STDEV(R[" & (-7 - 4) & "]JC:R[-3]C)"
Range("A2").0ffset ({1 + 1} + m + (3 + 3}, 0).Value =
StringConcat ("™ ", str2, "- Standard Deviation™)

Range(Range ("B2").Offset ({1 + 1) + m + (3 + 1), 0O},
Range("Bz™).Offset((i + 1) + m + (J + 3), 0})).Select
Selection.Capy

Range{Range("B2") . Cffset ({1 + 1) + m + {(J + 1), 0),
Range("B2") ., Offset((i + 1) + m + (3 + 3), 35)).Select
ActiveSheet.Paste

Selection.Font.ColorIndex = 33

'Graph Average Protein Values for Both Categories
Union{Range(Cells(l, 1), Cells(l, 37)), Range(Cells(i + 3, 1), _
Cellsi{i + 3, 37)), Range(Cells((i + 1) +m + (J + 3), 1},
Cells{((i + 1) + m + (3 + 3}, 37))).5elect
ActiveSheet.Shapes.AddChart.Select
ActiveChart.SetSourcebData Source:=Union{Range(Cells (1
Cells{l, 37)), Range(Cells(i + 3, 1), Cells(i + 3, 37
Range(Cells((i + 1) + m + (3 + 3), 1), Cells({({i + 1)
37))), PlotBy:=xlRows

1),

)

r
Ve
+mo+ (33,

With ActiveChart
.SeriesCollection(l) .ErrerBar Direction:=xlY, Include:=xlBoth, _
Type:=xlCustom, Amount:=ActiveSheet.Range(Cells{i + 5, 2),
Cellsi{i + 5, 37)), MinusValues:=ActiveSheet.Range(Cells(i + 5, _

2y, Cells(i + 5, 37))
.SeriesCollection(2) .ErrorBar Direction:=xl¥, Include:=xlBoth,
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Type:=xlCustom, Amount:=ActiveSheet.Range(Cells({i + 5) + m +
(3 + 1), 2}, Cells{(i + 5) +m+ {3+ 1), 37)), _
MinusValues:=ActiveSheet.Range(Cells{(1 + 2) +m + (3 + 1), 2),
Cells((i1 +5) +m+ (3 + 1), 37)

End With

FormatActiveChart

ActiveChart.ChartTitle.Text = StringCeoncat ("™ ", Range("21"].Value,
strl, "vs.", strZ2, "- Means")

'Graph Median Protein Values for Both Categories

Unicn(Range(Cells(l, 1), Cells(l, 37)), Range(Cells{i + 4, 1}, _

Cells(i + 4, 37}), Range(Cells((i + 4} + m + (3 + 1), 1), _

Cells{{(i + 4) +m + (3 + 1), 37))).Select

ActiveSheet.Shapes.AddChart.Select

ActiveChart.SetSourceData Source:=Unicn(Range(Cells(l, 1), Cells{l, _
37)), Range(Cells(i + 4, 1}, Cells(i + 4, 37)), _

Range (Cells((i + 4) + m+ {jJ + 1), 1), Cells{(1 + 4) + m + {7 + 1),
37))), PlotBy:=x1Rows

With ActiveChart

.SeriesCollection(l).ErrorBar Direction:=xl1Y, Include:=xlBoth,
Type:=xl1Custom, Amount:=ActiveSheet.Range(Cells{i + 5, 2},
Cells(i + 5, 37)), MinusValues:=RActiveSheet .Range(Cells(i + 5, _
2), Cells(i + 5, 37))

.SeriesCollection(2).ErrorBar Direction:=x1Y, Include:=xlBoth,
Type:=xlCustom, Amount:=ActiveSheet.Range(Cells({i + 5) + m + _
(3 + 1), 2), Cells((i + 5) +m+ (3 +1), 313},
MinusValues:=ActiveSheet.Range(Cells((1 + 35) + m + (j + 1),
2y, Cells((i + 5) +m+ (3 + 1), 37)

End With

FormatActiveChart

ActiveChart.ChartTitle.Text = StringConcat ("™ ", Range("21"].Value,
strl, "vs.", str2, "- Medians™

n=4(i1+1) +m+ {3+ 5) "The A2 Offset index for "Mean Difference"

"Mean Difference

Range ("A2") .Offset(n, 0).Value = "Mean Difference"

Range (Range ("EZ2") .Offset (n, (), Range("B2Z").O0ffset(n, _
35)) .FormulaRlCl = "=SUM(R[" & -5 - J - m & "]C, -R[-4]C)"

Range ("Az2") .Offset(n + 3, 0).Value = "RMS of Means"

Fange ("B2") .Offset(n + 3, 0).FormulaR1Cl =

"=SQRT (SUMSQ(R[-3]C:R[-3]1C[35]) /COUNTA(R[-3]C:R[-3]C[35]))"

'"Median Difference

Range ("A2") .Offset(n + 1, (0).Value = "Median Difference"

Fange (Range ("B2") .Offset(n + 1, 0), Range("BZ2").Offset(n + 1,
35)) .FormulaRlCl = "=SUM(R[" & -5 - J - m & "]C, -R[-4]C)"

Range ("A2") .Offset(n + 4, 0).Value = "RMS of Medians"

0

[

Fange("B2").Offset(n + 4, .FormulaR1Cl =

)
) _
"=SQRT (SUMSQ(R[-3]C:R[-3]C[35]} /COUNTA(R[-3]C:R[-3]C[35]))"

'"Mean Difference Rbsolute Value
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Range ("R2™) .Offset(n + 7, 0).Value = "Abs(Mean Difference)"
Range (Range ("BZ") .Offset(n + 7, 0), Range("BZ").0ffset(n + 7,
35)) .FormulaR1Cl = "=ABS(R[-T7T]C)"

'"Median Difference Bbscolute Value

Range ("A2") .Offset(n + 8, (0).Value = "Abs(Median Difference)"

Range (Range ("BZ") .Offset(n + 8, 0), Range("B2Z").Offset(n + B, _
35)) .FormulaR1Cl = "=ABS(R[-T]C)"

'Sort Mean Difference Rbs

Range(Range ("B2") .Offset(n + 7, 0), Range("B2").Offset(n + 7,
35})) .58elect

Selection.Copy

Range("B2").0ffset{n + 10, 0).Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xzlNone, _
SkipBlanks:=False, Transpose:=False

Range(Range("BZ") .Offset(n + 10, 0), Range("BZ").Offset(n + 10, _
35)) .8elect

ActiveSheet.Sort.SortFields.Clear

ActiveSheet.Sort.SortFields.Add Key:=Range(Range("B2").0ffset(n + 10, _
0), Range("B2") .Offset(n + 10, 35)), SortOn:=xlSortOnValues,
Order:=xlAscending, DataOption:=xlSortNormal

With ActiveShest.Sort
.SetRange Range(Range ("BZ") .0ffset(n + 10, 0), _
Fange ("B2") .Offset(n + 10, 35))
.Header = xlGuess
.MatchCase = Fzlse
.Orientation = x1LeftToRight
.SortMethod = x1Pin¥in
LApply
End With

Range ("A2") .Offset(n + 10, 0).Value = "Sorted-Abs (Mean Difference)"

'Sort Median Difference Abs
Range(Range("BZ") .Offset(n + 8, 0), Range("B2").Offset(n + 8, _
35)).8elect

Selection.Copy

Range ("B2").0ffset{n + 11, 0).Select

Selection.PasteSpecial FPaste:=xlPasteValues, Operation:=xlNone,
SkipBlanks:=False, Transpose:=False

Range(Range ("B2") .Offset (n + 11, 0), Range("B2").Cffset(n + 11,
35)) .5elect

ActiveSheet.Sort.SortFields.Clear

ActiveSheet.Sort.SortFields.Rdd Key:=Range(Range ("B2").Offseti{n + 11,
0), Range("BZ").O0ffset(n + 11, 35)), SortOn:=xlSortOn¥alues, _
Order:=xlAscending, DataCption:=xlSortNormal

With ActiveSheet.Sort
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.SetRange Range (Range ("BZ") .Offset(n + 11, 0),
Range ("B2") . Offset(n + 11, 35))
.Header = xlGuess
.MatchCase = False
.Orientation = x1LeftToRight
.SortMethod = x1Pin¥in
CApply
End With

Range ("A2") .Offset(n + 11, 0).Value = "Sorted-Abs(Median Difference)"

End Sub

Sub PrepareNewSheetForStatisticsl()

'"This subroutine creates a new excel workbook, saves 1t as
'"Diagnostic Performance" and formats it for running diagnostic
'tests. Columns of Actual and Predicted diagnoses are located in
'columns & and C respectively. A heading 1s created for each test
'nurber (the number of tests/runs was specificied earlier by the
'user). For each fest, the excel case file in the corresponding
'cagse folder 1s automatically opened, and the "unknowns™ (patient
'samples randomly assigned to be unknown test samples) are copied
'and pasted beneath the appropriate test heading in the "Diagnostic
'"Performance” file. For each unknown, the first word (corresponding
'to the diagnosis) is extracted and placed in the adjacent cell in
"Column B. These cells are then hidden so that the tester cannot
'reference them (cheat) when assigning predicted diagnoses. A
'command button called "Diagnostic Performance!™ is created,

"which runs the "CalculateStatistics™ subroutine when clicked.

Dim i, m, Test As Integer
Dim Rangeh, RangeB As Range
'RangeR and RangeR are First and Last Cell (respectively) of Each Test

strNewkFolderPathAndName = "C:\Documents and Settings\Heath _
Group\Desktop\"

'AoetiveWorkbook.ActiveSheset  Activate

Workbooks.Add

FileNamed4Paste = strNewFclderPathAndName &

"Diagnostic Performance.xlsx"

ActiveWorkbook.SaveAs FlleName:=FlleNamedPaste,

FileFormat:=x10penXMLWorkbook, CreateBackup:=False

Range ("A1l") .Value = CategcrylName & " vs."
Fange ("A1") .Font.Bold = True

It StrComp(CategoryZ2Name, "no", vbTextCompare) = 0 Then
Range ("B1") .Value = CategoryZzName & " " & CategorylName

Else

Fange ("B1") .Value = CategoryZName

'Should have global variable for Catl Name

End If
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Range ("B1") .Font.Bold = True

Test = 1
Set Rangeh = Range("Al").OfLfset((NumUnknowns + 2) * (Test - 1) + 12, 0)

With RangeA.O0ffset (-3, 0)
.Value = "Actual™
.Font.Bold = True

End With

With RangeA.Qffset (-3, 2)
.Yalue = "Predicted"
.Font.Bold = True

End With

For Test = 1 To TestNumber

Set RangeA = Range("Al").Offset ((NumUnknowns + 2) * (Test - 1) +
12, 0)

Set RangeB = RangeR.Offset( (NumUnknowns - 1), 0)

CurrentCasePathName = strNewFolderPathAndName & "Case" & Test & "\"

FileNamed4Copy = CurrentCasePathName & "Case" § Test § ".xlsx"

Workbooks.Open FileName:=FileNams4Copy

ActiveWorkbook.Sheets (1) .Activate

Range (Range ("AZ") .Offset ( (NumRows - 1} - NumUnknowns, 0),

Range ("A2™) .Offset (NumRows - 2, 0)).Select

Selection.Copy

RctiveWorkbook.Close

Workbooks {"Diagnostic Performance™) . Activate

Rangeh.Offset (-1, 0).Value = "Test" § Test

Rangeld.Offset (-1, 0).Font.Underline = True

Rangeh.Qffset (-1, 2).Value = "Test" & Test

Rangeh.Offset (-1, 2).Font.Underline = True

Rangel.Select

ActiveSheet.Paste

Rangeh.Offset (0, 1).Select

ActiveCell.FormulaR1Cl = "=LEFT(RC[-1],FIND("" - "" RC[-1])-1)"

Selection.Copy

Range (RangeA.0ffset (0, 1), RangeB.0OffsetC (0, 1)).Select

ActiveSheet.Paste

Range (Rangeh, RangeB.0ffseC(0, 1)) .NumberFormat = ";;;"

¥

Next Test

Range ("B:B") .Copy

Range ("B:B").PasteSpecial Paste:=xlPasteValues, Operation:=xlNone,
SkipBlanks:=False, Transpose:=False

Workbooks ("Diagnostic Performance™).Activate

Range ("A3") .Value = TestNumber & " Tests"

Range ("A4") .Value = NumUnknowns & " Unknowns Each"

Call GenButtons("Diagnostic Performance!"™, "CalculateStatistics™)

End Sub
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Subroutines Called by the Above Procedures

'"The following subroutines are used directly by the FormatdiAnalyselt
"subroutine: InsertColumns, ExtractFirstWord4Rnalyselt,
"ChangeCellFontColorAndPlaceColumnshAdijacently?, PaintColumnFontBlack
'GenButtons.

Sub InsertColumns ()

'"This subroutine inserts two blank columns between columns
'of protein intensity values.

ActiveSheel.Range ("B2") .Select

Do While Not IsEmpty(Activelell)
Selection.EntireColumn. Select
Selection.Insert Shift:=x1Right
Selection.Insert Shift:=xlRight
ActiveCell.Offset (0, 3).Select

Loop

ActiveSheet.Range ("C2") .Select

Do While Not IskEmpty(ActiveCell.Offset(0, 1))
Selection.EntireColumn.Select
Selection.Font.ColorIndex = 0
ActiveCell.Offset (0, 3).Select

Loop

End Sub

Sub ExtractFirstWord4Analyselt(

'"This subroutine extracts the first word of each cell
Yin column A and places it in the adjacent cell in
"column B.

NumRows = 1

Range ("RA2") .Select

Do While Not IsEmpty(Activelell)
ActiveCell.Offset (1, 0).Select
NumRows = NumRows + 1

Loop

Range ("B2") .Select

ActiveCell.FormulaR1Cl = "=LEFT (RC[-1],FIND("" "" RC[-1])-1)"
Range ("BZ") .Select

Selection.Copy

Range (Range ("B2"), Range("B2").Offset (NumRows - 2, 0}).Select
ActiveSheet.Paste
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End Sub

Sub ChangeCellFontColorAndPlaceColumnsAdiacently? ()

'"This subroutine color-codes all rows corresponding to one
'‘diagnosis (typically, experimental group) red, and color-codes
'all rows corresponding to the other diagneosis (typlcally,
'control group) green. IT then calls a function that places
'the column of protein values for the control group (green)
tadjacent to the columns of protein values for the
'experimental group (red). This allows the values from both
'groups to be tabulated in the correct format to be copied into
tan Analyselt Add-in file in Excel for statistical analysis.

Dim Catl, Cat?2 Rs Variant
Dim 1, J As Integer

Fange ("B2") .Select

Selection.EntireColumn. Select

Selection.Copy

Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone,
SkipBlanks:=Fzlse, Transpose:=False

Range ("B2") .Select

Do While StrComp (ActiveSheet.Range("B2") .0ffset (i, 0).Value,

ActiveSheet .Range ("B2") .Offset (i + 1, 0).Value, vhTextCompare) = 0
i=1i4+1
Loop

Range (Range ("B2"), Range("B2").Offsel (i, 0)).EntireRow.Select
Selection.Font.ColorIndex = 3

Catl = Split(Range("B2").0ffset (i, 0).Value, "™ M)
CategorylName = Catl (0)

Do While StrComp (ActiveSheet.Range ("B2").Offset(i + 1 + 7, O0).Value,
ActiveSheet.Range ("B2") .Offset ({1 + 1) + (J + 1), 0).Value,

vbhbTextCompare) = 0
j=9+1
Loop

Range(Range("B2™).Offset (i + 1, 0), Range("B2"™).Offset (] + 1 + 1,
0)) .EntireRow.Select

Selection.Font.ColorIndex = 4

Cat?2 = Split(Range("B2").0ffset (] + 1 + 1, 0).Valus, " ")

CategoryZName = Range ("B2").0ffset(j + i, 0).Value

Cz11 PlaceColumnsAdijacently (i, 7)
Range ("D2").Select

End Sub
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Sub PaintColumnFontBlack()

'This subroutine adjusts the color of empty columns
'"(between green and red columns) To black.

ActiveSheet.Range ("C2") .Select

Do While Not IsEmpty(ActiveCell.Offset(0, 1))
Selection.EntireColumn. Select
Selection.Font.ColorIndex = 0
RctiveCell.Offset (0, 3).Select

Loop

End Sub

Sub GenButtons(ByVal strCaption As String, Byval striAction As SLring)

'This function generates a command button by first
'recelving two string arguments. The first 1s the ftext
'that will appear on the command button. The second
'string argument is the subroutine the command button
'will run when clicked. The coordinates on the excel
'worksheet at which the command hutton is to bhe placed
tare also set.

Dim cBtn As Button
Set ¢Btn = ActiveSheet.Buttons.RAdd(0, 0, 175, 25)

cBtn.OnAction = strAction
cBtn.Caption = strCaption

End Sub

Subroutines Called by the Above Subroutines

'"The following subroutine is called by the subroutine
'"ChangeCellFontColorAndPlaceColumnsidiacentlva™.

Sub PlaceColumnsAdjacently(Byval 1 As Integer, ByVal J As Integer)

'This subroutine places the column of protein intensity values for
"the control group (green)adjacent to the columns of protein values
'for the experimental group (red). This allows the values from both
'groups to be tabulated in the correct format to be copied into

tan Analyselt Add-in file in Excel for statistical analysis.

k=0

Range ("D2") .Select



Do While Not IskEmpty(Range("D2").0ffset (0, 3 * k))

Range (Range ("D2") .Offget (i + 1, 3 * k), Range("D2").0ffset(j+i+1,
3 % ky).Select

Selection.Cut
Range ("D2") .Offset (0, 3 * k + 1).S8elect
ActiveSheet.Paste
Range ("D1") .0ffset (0, 3 * k).Select
Selection.Copy
ActiveCell.Offset (0, 1).Select
ActiveSheet.Paste
k=%k+ 1

Loop

End Sub
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"The following functions are used directly by the
""SelectRandomCases™ subroutine: NewSheetForEachUnknown
tand SaveToNotepad.

Sub NewSheetForEachUnknown (ByVal 1 As Integer, ByVal m As Integer)

'"This function creates a separate worksheet containing
'the set of "known' patient samples with each unknown,

'ags well as one with all the unknowns combined {(and labels
'each sheet as such). The arguments 1 and m are integers
'passed by the "SelectRandomCases" function. The integer
"1 refers to the row number of the last patient sample

'on the worksheet. The integer m is a number one unit
'greater than the number of unknowns.

Dim § As Integer

ActiveWorkbook.Worksheets (1) .Select

Range (Range ("B1"), Range("B1").Offset (i - 1, NumProteins)).Select
Selection.Copy

Sheets.Add After:=Sheets(Sheets.Count)

ActiveSheet.Paste

ActiveSheet .Name = "A11Unknowns"

For 7 = 1 To NumUnknowns

ActiveWorkbook.Worksheets(1l).Select

Union(Range (Range("B1"), Range("B1").Offset(i - m, NumProteins)), _

Range(Range ("B1") .Offset (i - m + J, 0},
Range ("B1").Offset (i - m + Jj, NumProteins))).Select

Selection.Copy

Sheets.Add After:=Sheets(Sheets.Count)

ActiveSheet.Paste

ActiveSheet .Name = Range("Al").0ffset(i - m + 1, 0).Value
Next J

Application.Displayhlerts = Falsse
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Sheets ("Sheet2") .Delete
Sheetsz ("Sheet3") .Delete
Application.Displayhlerts = True

End Sub

Sub SaveToNotepad(Byval 1 As Integer, Byval FilePathName As String)

'"This subroutine gets the path and file name of an excel workbook
'in which the first worksheet contains a set of 'known' patient
'samples with the full set of randomly assigned unknowns. Each
'subseguent worksheet contains the set of 'known' patient samples
'with each unknown individually. Each of the worksheets is

'saved as a text file (for use directly with Cluster 3.0) in
'hoth the "All Text Files" subfolder within the "NewTrialFolder"
'directory, and in Che "Text Files"™ folder within a "Case"
'subfolder (alsc in the "NewTrialFolder" directory).

Dim strPath, strrileName, strPathAndFilename As String
Dim n As Integer

"Note: FilePathName = CurrentCasePathName
'CurrentCasePathName = strNewFolderPathAndName & "Case" & Test & "\"

MkDir FilePathName §& "Text Files"
'This folder goes into the Test/Case Folder

AcetiveWorkbook.Worksheets (2).5elect

ActiveWorkbook.SaveAs FileName:=FilePathMName & "Text Files\Test" &
CurrentTest & " AllUnknowns.txt", FlleFormat:=xlText,
CreateBackup:=False

ActiveWorkbook.SavehAs FlleName:=strNewFolderPathAndName &

"A11l Text Files\Test" & CurrentTest & " AllUnknowns.tzt"™,
FileFormat:=x1Text, CreateBackup:=False

For n = 1 To NumUnknowns

RctiveWorkbook . Worksheets(n + 2).5elect

ActiveWorkbook.SaveAs FileName:=FilePathName & "Text Files\Test" &
CurrentTest & " Unknown" & n & ".txzt",

FileFormat:=x1Text, CreateBackup:=False

ActiveWerkbeok.SaveAs FlleName:=strNewlFclderPathAndName &

"All Text Files\Test"™ & CurrentTest & " Unknown" & n & ".txt",

FileFormat:=x1Text, CreateBackup:=False

Next n

End Sub
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4.4.4 Assessing the Diagnostic Performance of “Guilt-by-Association” Classification
of Test Samples within Hierarchical Clusters

Sub CalculateStatistics()

'"This subroutine 1s activated when the "Diagnostic Performance!™
'command button is c¢licked in the "Diagnostic Performance" excel
'file. The subroutine compares the actual diagnoses within each
'test (column B) with the predicted diagnoses entered in by the
'tester (column C). If the predicted diagnosis is correct, a
'check mark is shown in the cell adjacent Lo the prediction
"(column D). Otherwise, 2 red x is shown, and an indication of
"whether the prediction was a false negative (FN) or false
'pogitive (FP) 1s given in column G. The samples within each
'test are numbered in column E.

'Tn addition, 2x2 contingency tables are drawn (with appropriate
'labels) for sach test, indicating the numbers of true positives,
"Lrue negatives, false positives, and false negatives. The sensitivity
tand specificity are given 2 columns to the right of the table,

'and the positive and negative predictive values are given

"two rows beneath the table. A contingency table indicating

'Yoverall values (for all tests combined) 1s shown at the top.

Dim i, m, Test As Integer

Dim TruePositive, TrueNegative, FalsePositive, FalseNegative As Integer

Dim PPV, NPV, Sensitivity, Specificity As Double

Dim OverallTP, OverallTN, OverallFP, OverallFN As Integer

Dim OverallPPV, OverallNPV, OverallSensitivity,
OverallSpecificity Es Double

Dim RangelRConst, RangeTable, OverallTable As Range

Dim strSplitCatl, strSplitCat?, strSplitActual, strSplitPredicted, tNum,
nUnk As Variant

OverallTP , OverallTN, OverallFP, OverallFN = 0
TruePositive , TrueNegative, FalsePositive, FalseNegative = 0
Sensitivity , Specificity, PPV, NPV = 0

ActiveWorkbook.ActiveSheet.Activate

Range ("A:A") .NumberFormat = "General"

Range ("D:D").Font.Name = "Wingdings"
strSplitCatl Split(Range("A1").Value, " ")
strSplitCat? = Split(Range("B1").Value, " ™M)
nUnk = Split(Range("A4™).Value, " ")
NumUnknowns = CInt{nUnk(0))

tNum = Split(Range("A3™), "™ ")

TestNumber = CInt (tNum(0))

Test =1

Set RangeAConst = Range("Al").OIfset({(NumUnknowns + 2) * (TestC - 1)
+ 12, 0)
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For Test = 1 To TestNumber

i=20
TruePosgitive, TrueNegative, FalsePositive, FalseNegative = 0
Sensitivity, Specificity, FPV, NPV = 0

Do
Set RangeA = Range("Al™).Offset ((NumUnknowns + 2] * (Test - 1)
+ 12, 0)
Set RangeB = RangeR.Offset( (NumUnknowns - 1), 0)

Rangeh.Offset (i, 0).Select
strSplitActual = Split(RangeA.Offset(i, 1).Value, "™ ™)
strSplitPredicted = Split(RangeA.Offset (i, 2).Value, " ™)

If RangehA.Offset (i, 1).Value <> "" And RangeA.Offset (i,
2) . Value <> "" Then

If StrCompistrSplitActual (0), strSplitPredicted(0),
vbTextCompare) = 0 Then
RangehA.Offset (i, 3).Value = ™i"

If StrComp(strSplitActual (0), strsSplitCatl(0),
vbhbTextCompare) = (0 Then
'Rangeh.Offset (i, ©).Value = "TP"
TruePogitive = TruePositive + 1
OverallTP = OQverallTP + 1
End I

If StrCompi{strSplitActual (0), strSplitcatz(0),
vbTextCompare) = 0 Then
'Rangeh.Offset (i, 6).Value = "TN"
TrueNegative = TrueNegative + 1
OverallTN = OverallTN + 1
End If

Else
Rangeh.0Offset (i, 3).Value = "4"
Rangeh.Offset (i, 3).Font.ColorIndex = 3

If Strlomp(strSplitActual(0), strSplitCatl(Q),
vbTextCompare) = 0 Then
Rangel.Offset (i, 6).Vvaluge = "EFN"
FalseNegative = FalselNegative + 1
OverallFN = CverallfN + 1

End IL

If StrComp(strSplitActual(0), strsplitcatz(0),
vbTextCompare) = 0 Then
Rangelh.Offset (i, 6).Value = "FP"
FalsePositive = FalsePositive + 1
OveralllFP = QverallFP + 1

End I



End If
End If

Rangeh.Offset (i,
i=1i+1

4) . Value = 1 + 1

Loop Until IsEmpty(ActiveCell.Offset(l, 0))

If TruePositive + FalsePositive <» 0 Then

PPV = Round((TruePositive / (TruePositive + _
FalsePosgsitive)) * 100, 1)
End If

If TrueNegative + FalseNegative <> 0 Then

NPV = Round(({TrueNegative / (TrueNegative +
FalseNegative)) * 100, 1)
End If

If TruePositive + FalseNegative <> 0 Then

Sensitivity = Round{(TruePositive / (TruePositive + _
FalseNegative)) * 100, 1)
End If

If TrueNegative + FalsePositive <> 0 Then

Specificity = Round{(TrueNegative / (TrueNegative + _
FalsePositive)) * 100, 1)
End If

Set RangeTakle = RangeA.0ffset (0, 7)

With RangeTable

LQffset (0, 1) = "Positive"
LOffset (0, 2) = "Negative"
.Offset(l, 0) = Range("Al").Value
.Offset (2, 0) = Range("B1").Value
LOffset(l, 1) = "TP = " & TruePositive
LOffset (2, 2) = "TN = " & TrueNegative
L,Offset(2, 1) = "FP = " § FalsePositive
LOffset(l, 2) = "FEN = " & FalseNegative
.Offset (4, 1) = "PPV = " & PPV & "3"
Offset(d, 2) = "NPVY = " & NEV & "&"
LOffset (1, 4) = "Sensitivity = " & Sengitivity & "&"
LOffset (2, 4) = "Specificity = " & Specificity & "&"
LOffset (0, 7) = Sensitivity
.Offset (0, B8) = Specificity
.Qffset (0, 9) = PPV
LOffset (0, 10) = NPEV
End With

RangeTakle.Offset (1,

1) .BorderAround ColorIndex:=0, Weight

:=x1Thin
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RangeTable.Qffset (1, 2
RangeTable.Offset (2, 1
RangeTable.Offset (2, 2

Next Test

)

).
).

.BorderAround ColorIndex:=0,
BorderAround ColorIndex:=0,
BorderAround ColorIndex:=0,

If OverallTP + OveralllP <> (0 Then

OverallPEV
End I

Round( (OverallTP /

If OverallTN + OverallFN <> 0 Then

OverallNPV
Fnd Tf

Round( (OverallTN /

If OverallTP + OverallFN <> 0 Then

CverallSensitivity =
OverallFN)y) * 100, 1)
End If

Round( (OverallTP /

(OverallTP

If OverallTN + OverallFP <> 0 Then

OverallSpecificity =
OverallFP)) * 100, 1)
End TIf

Set OverallTable =

OverallTakble.Select

With OverallTable

Round( (OverallTN /

RangeAConst.Offset (-

10, 7}

(OverallTP + CQverallFP)) *

(OverallTN + OverallFN)) *
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=x1Thin
=x1Thin
=x1Thin

Weight:
Weight:
Weight:

100,

100,

+_

(OverallTN +

on

Offset (- 1 1) = "Qverall”

Offset (- 2) = "Overall"

.Offset(O, l) = "Positive"

LOffset (0, 2) = "Negative"

LOffset (1, 0) = Range("Al").Value

.Offset (2, 0) = Range("B1").Value

Offset (1, 1) = "TP = " & QverallTP

LOffset (2, 2) = "IN = " & OverallTN

LOffset (2, 1) = "FP = " & QOveralllP

LOffset (1, 2) = "IN = " & OveralliN

.Offset (4, 1) = "PPV = " & QverallPPV & "g"

LOffset (4, 2) = "NPV = " & OverallNPV & "§"

LOffget (1, 4) = "Sensitivity = " & OverallSensitivity & "%

.Offset (2, 4) = "Specificity = " & OverallSpecificity & "s"
End With

Range(OverallTable.Offset (-1,

4)) . Font.ColorIndex = 3
OverallTable.Offset (1, 1
OverallTakble.Offset(
OverallTable.,.Qffset|(

(

)
)
)
OverallTable.Offset )

1
2y
2

r

End Sub

Weight:=x1Thick
Weight:=x1Thick
Weight:=x1Thick

0), OverallTable.Offset (4,
.BorderAround ColorIndex:=3,
.BorderAround ColorIndex:=3,
.BorderArocund ColorIndex:=3,
.BorderAround ColorIndex:=3,

Weight:=x1Thick
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4.4.5 Macros for Working with Analyselt

'"The following set of macros facilitates straightforward transfer of cohort
'data (experimental and control data for each protein) into a pre-defined
'table format within an Analyselt template. They also facilitate the
"Lransfer of Analyself graphs into FPowerpoint.

Public CategorylName, CategoryZName As String

'"These zre provided by the ChangeCellFontColorAndPlaceColumnsAdiacently
subroutine

Public NumRows 2s Integer

Sub OpenBnalyseltDataSetDefined()

'"Thisg subroutine opens an Excel "AnalyseIt"™ workbook

'in which a table has been created containing two
'column headers: category 1 (experimental group) and
'category 2 (control group). The number and types

'of variables (i.e. categorical), and the type of
'dataset (list, one-way, or two-way table) have all been
'‘nre-defined to facilitate ease of use with Bnalyselt.

Dim PathName, FileName, FilePathAndName Rs String
Dim wBook As Workbook

'Set wBook = Workbooks ("Analyselt-DatasetDefinsd")

ActiveWorkbook.ActiveSheet.Activate
PathName = ActiveWorkbook.Path
FileName = ActiveWorkbook.Name
FilePathAndName = PathName & "\" & FileName
'Tf wBook Is Nothing Then
Workbooks.Open FileName:="C:%Documents and Settings\Heath
GrouphDesktop\Analyselt-DatasetDefined.xlsm"
"Fnd If
Workbooks ("Analyselt-DatasetDefined"™) .Sheets("Dataset™) .Activate
Range ("E4") .Value = FilePathAndName

End Sub

Sub TransferNextZAnalyselt|
Dim varFileName RAs Variant
Dim strFileName As String
Dim myString As String

On Error Resume Next

Workbooks ("EBnalyselt-DatasetDefined™) .Activate
varFileName = Split(Range ("E4").Value, "\")
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strFileName = varFileName (UBound{varFileName))
Workbooks (strFileName) .Activate

Do While RetiveCell.Font.ColorIndex <> 3
ActiveCell.Offset (0, 1).Select
Loop

Do While ActiveCell.Font.ColorIndex = 3
Activelell.Offset (-1, 0).Select
Loop

RAotiveCell.Offset (1, 0).Select

ActiveCell.Offset (0, 3).Select
ExtractStringhfterDash (strFileName)

myString = ActiveCell.Offset (-1, 2).Value

Range(ActiveCell, Activelell.Offset (146, 1)).Select
Selection.Copy

Workbooks ("Analyselt-DatasetDefined"™) .Activate

ActiveSheet.Range("B6") .Select

ActiveSheet.Paste

ActiveSheet.Range("B3").Value = StringConcat(" ", myString, "Levels
for", Range ("B5").Value, "vs.", Range("C5").Value)

End Sub

Sub TransferPreviousZ2Analyself(

Dim varFileName As Variant
Dim strFileName As String
Dim myString As String

On Error Resume Next

Workbooks ("Analyselt-DatasetDefined") .Activate
varFileName = Split(Range("E4").Value, "\")
strFileName = varFileName (UBound{varFileName))
Workbooks (strFileName) .Activate

Do While RetiveCell.Font.ColorIndex <> 3
ActiveCell.Offset (0, 1).Select
Loop

Do While ActiveCell.Font.ColorIndex = 3
ActiveCell.Offset (-1, 0).S8elect
Loop

ActiveCell.Offset(l, 0).Select

ActiveCell.Offset (0, -3).Select
ExtractStringhAfterDash (strFileName)

myString = ActiveCell.Offset (-1, 2).Value
Range(ActiveCell, ActiveCell.Offset (146, 1)).Select
Selection.Copy

Workbooks ("Analyselt-DatasetDefined") .Activate
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ActiveSheet .Range ("Ba") .Select

ActiveSheet.Paste

ActiveSheet .Range ("B3") .Value = StringConcat ("™ ", myString, "Levels
for™, Range("B5").Value, "vs.", Range("C5").Value)

End Sub

Sulb TransferAnalyseltGraphsToPowerpoint ()

Dim 1 As Integer

Dim ppt, pres, NewSlide As Object
Dim s As PowerPoint.Slide

Dim shp As PowerPoint.Shape

Dim ws As Worksheet

Sel ppt = CreateObject("powerpoint.application™)
Set pres = ppt.Presentations.Add

1 =1

For kBach ws In ActiveWorkbook.Worksheets
ws.Select
PrintTheScreen
Set NewSlide = pres.Slides.Add(1l, ppLayoutBlank)
NewSlide.Shapes.Paste
i=1+1
Next ws

ppt.Visible = True

End Sub

4.4.6 User Interface Macros

Private Sub OkayButton Click()

'This subroutine allows the user to input values into the
'"ClusterPrep" user form for the number of proteins to he
tanzlyzed, the number of samples to be randomly assigned

tag unknowns (test samples), and the number of runs desired.
'These integer values are then assigned to the global
'variables "NumProteins™, "NumUnknowns, and "TestNumber" for
'ugse in the "RunClusterFrep" subroutine. The user also
'specifies the directory into which the statistical analysis
'files generated will be placed. If any of the fields in the
"user form remain unfilled, a message box prompts the user
'to fill in that field. Upon clicking "Ckay"™, the
""RunClusterPrep™ subroutine gets underway.

Dim iRow As Long
Dim ws As Worksheet
Dim str As String
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If Trim(Me.ProteinTextBox.Value) = "" Then
Me.ProteinTextBox.SetFocus
MsgBox "Enter number of proteins"
Exit Sub

End IL

If Trim(Me.UnknownCasesTextBox.Value) = "" Then
Me.UnknownCasesTextBox. SetFocus
MsgBox "Enter the number of unknowns"
Exit Sub

End If

If Trim(Me.TestsTextBox.Value) = "" Then
Me.TestsTextBox.SetFocus
MsgBox "Enter number of tests"
Exit Sub

End IL

If Trim(Me.DirectoryTextBox.Value) = "" Then
Me.DirectoryTextBox.SetFocus
MsgBox "Please choose a directory”
Exlt Sub

End Tf

'copy the data te the database

NumProteins = Me.ProteinTextBox.Value

NumUnknowns = Me.UnknownCasesTextLBox.Value
TestNumber = Me.TestsTextBox.Value
'strDirectoryPathName = Me.DirectoryTextBox.Value

FunClusterPrep

End Sub

Sub FolderSelection!()

'"This subroutine assigns the folder path and name chosen
'hy the user via the SelectFolder function fo a string.
"It then displays a message box containing that string.
'I1f no folder was chosen, 1t displays the message
""Cancel was pressed".

strFolderPathAndName = SelectFolder ("Select Folder™, "")

If Len(strFolderPathAndName) Then
MsgBox strFolderPathAndName
Else
MsgBox "Cancel was pressed"
End Tt

End Sub
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Function SelectFolder (Optional Title As String, Optlonal TopFolder
As String) As String

'"This function opens up a hierarchical menu of directories

"such that the user can choose a folder (in which to save files,
'for example). The function uses two optional arguments. The first
'1s the dialog caption and the second is 1s to specify the top-most
'visible folder in the hierarchy. The default is "My Computer.”

Dim objShell 2As New Shell3Z.Shell
Dim objFolder As Shell32.Folder

'ITf you use 16384 instead of 1 on the next line,
'files are also displaved

Set objFolder = objShell.BrowseForFolder (0, Title, 1, TopFolder)
If Not ochijFolder Is Nothing Then
Selectlolder = objFolder.Items.Item.Path
End If

End Functicn

Private Sub ChooseDirectory Click(]

"Upon clicking the "Choose Directory™ button on the user
'form, this subroutine runs the FolderSelection subroutine,
'which allows the user to select the directory into which
'their files are fo be saved. A string containing the file
'path and name then fills the directory field in the user
"form.

FolderSelectlon
Me.DirectoryTextBox.Value = strFolderPathAndName

End Sub

Private Sub CloseButton Click()

'"Upon clicking the "Close™ button, this subroutine delstes
'all values from the user form.

Unload Me

End Sub

Private Sub ClusterPrep QueryClose(Cancel As Integer,
CloseMocde As Integer)

If CloseMode = vbFormControlMenu Then
Cancel = True
MsgBox "Please use the button!™
End IL

End Sub
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4.4.7 String Manipulations

Sub ExtractFirstWord()

Fange ("BEZ2") .Select
ActiveCell.FormulaR1Cl =
"=TF(LEN(RC[-48])=0,"""", IF(ISERR (FIND("" "",RC[—53])),RC[53],7
LEFT(RC[-53],FIND("™ "",RC[-53])-1)))"
Fange ("BEZ2") .Select
Selection.Copy
Range ("BEZ:BES00"™) . Select
ActiveSheet.Paste

End Sub

Sub ExtractStringAfterDash(ByVal strAfterDash As String)
Workbooks (strAfterDash) .ActiveSheet.Activate
hetiveCell.Offset (=1, 2).FormulaR1Cl = "=Mid(RC[-2],FIND(""=-"",
RC[-21)+1,z20)"

End Sub

Sub ExtractWordsBeforeDash ()
Dim m As Integer
m=1
Range ("R2") .Select
Do While Not IskEmpty{ActiveCell)

RetiveCell.Offset (1, 0).Select
m=m+1

Loop

Range ("B2") .Select
ActiveCell.FormulaR1Cl = "=LEFT(RC[-1],FIND("" - "", RC[-1])-1)"

'Or Extract Words Before Space
'ActiveCell . FormulaRlCl = "=LEFT(RC[-1],FIND(""™ ™", RC[-17)-1)"
Fange("B2") .Select

Selection.Copy
Range (Range ("B2"), Range("BZ").0ffset(m - 2, 0)).Select
ActiveSheet.Paste

End Sub




Sub ConvertDateToString()
Dim i As Integer

ActiveWorkbook.ActiveSheet. . Activate

Do While Not IskEmpty(ActiveCell)

ActiveCell.Value

ActiveCell.Offset (1, 0).Select

Loop

End Sub

"M og CStr (ActiveCell.vValue)
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Function StringConcat (Sep As String,

TrTrrrrTIYITIYTIPORERYEOYYORPRORREOYRROYRYOPOYORPOREOYYIOYIYEORPRYRPRORYYORFYCOPRORERRYRPEORYROPROYEREOYEYEIOTIYEOREITREIRYEEROEOLOEOY

' StringConcat

' This function concatenates all the elements in the Args array,
' delimited by the Sep character,

' can be used in an array formula.

TrTrrrrTIYITIYTIPORERYEOYYORPRORREOYRROYRYOPOYORPOREOYYIOYIYEORPRYRPRORYYORFYCOPRORERRYRPEORYROPROYEREOYEYEIOTIYEOREITREIRYEEROEOLOEOY

Dim s As String

Dim n,m,NumDims,LB,RN,CN As Long
Dim R As Range

Dim IsArrayAlloc As Boolean

trTrrrTYPREREYYRRRFROYYORPROYRPOYYORRORYORRORROYOYRORRRROYORYROYEYEY

' If no parameters were passed 1ln, return
' vbNullString.

trTrrrTYPREREYYRRRFROYYORPROYRPOYYORRORYORRORROYOYRORRRROYORYROYEYEY

If UBound(Args) - LBound(Args) + 1 = 0 Then
StringConcat = vhNullString
Exit Function

End I

For n
tfTrTrrrrYYIYEEYYYYRPRREYPRPYYYPROYPYROYPROREYPEYPYRYRYRPRRORPRRORYOYPRRYRYRLELYOY

= LBound(Args) To UBound(Args)

' Loop through the Rrgs

LI O S N U R R N N AN N DN U N N N N AN N NN AR AN N N N N U A BN N N N A N AN N AN N A N N N N |

If IsObject(RArgs(n)) = True Then

rrrrrrrrrYYrERYRORPYRROYYOROYORROYOYRORROYROREYRYOREOYYR

' OBJECT

' If we have an object, ensure it
' it 2 Range. The Rangs aobject
''15 the only type of object we'll
' work with. Anvthing else causes
' a $VALUE error.

L O U N I U N R U N A N A U N U N N AN N TN B N N A N AR B B A |

It TypeOf Args(n) Ts Excel.Range Then

TrrrrrIYRErYTIRERPOREREOYYEOYOYOYPYPREREORPREOYRPEORPOYYROREOREEOYRLEOEYOROLOLOY

' If it is a Range, loop through the
' cells and create append the elements

Paramlrray Args()) As String

into a single string. This function
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' to the string S.

TrrrrrIYRErYTIRERPOREREOYYEOYOYOYPYPREREORPREOYRPEORPOYYROREOREEOYRLEOEYOROLOLOY

For Fach R Tn Args(n).Cells
s = 5 & R.Text & Sep
Next R

Else

rrrrrrPrPYrPEYYRERYRERYORRYYORRRPRYORYROYORREOYLY

' Unsupported object Lype. Return
' a #VALUE error.

rrrrrrrYRERYRRORERE YR OROYRORPORRERPYEYREORYOROEOLY

StringConcat = CVErr(xlErrvalue)
Exit Function
End If

Else If IsArray(Args(n)) = True Then

On Error Resume Next
rrrrrrrYTIYPYEYYIYIPPrPYFPIrPYTYIYNOYPIYYYPREYOYTYEYEYERELYLY

' BRRAY
"' If Args(N) 1s an array, ensure it

' is an allocated array.
rrrrrrrrrREYEYRERRPRRRRORRRRORR R RORRRRORROROYEOYOY

IsArrayAlloc = (Mot IsBError(LBound(Args(mn))) And _
(LBound (Args{n) ) <= UBound({Args{(n))))

On Error GoTo 0

If IsArrayRlloc = True Then

rrrrrEPLIYEYYIEREYEYREYEYERERYRRRERPYYORROYOYOREREYROROLOY
' The array is allocated. Determine
' Lhe number of dimensions of Lhe

' array.
rrrrrrrYREREYYFRERYEOYRREYOYORRRERPRRRPRRRRORREOROYOLEY

NumDims = 1
On Error Resume Next

Err.Clear
NumDims = 1

Do Until Err.Number <> 0
LB = LBound(Args(n), NumDims)

If Err.Number = 0 Then
NumDims = NumDims + 1

FElse
NumDims

End IC

NumDims - 1

Loop

TrrrYTrEIYIYIROREREREROYTREOYYEORTREROYRERYIOYEOEOREYEOROEOEOY

' The array must have either
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' one or two dimensions. Greater
' that two caues a #VALUE error.
rrrrYFPEREYREYRER YR RRE PR Y Y RRPRPRYRPRRYEOEOYOY
If NumDims > 2 Then
StringConcat = CVErr(xlErrvalue)
Exit Function
End It

If NumDims = 1 Then

For m = LBound(Args(n)) To UBound{Argsi(n))
If Args(n) (m) <> vbNullString Then
5 = 3 & Argsi(n) (m) & Sep
End I
Next m

Else
For RN = LBound({Args(n), 1) To UBound(Args(n}, 1)

For CN = LBound(Args(n}, 2} To UBound(Argsin}, 2]
s = s & Argsi(n) (RN, CN) & Sep

Next CN
Next RN
End I
Else
s = s & Args(n) & Sep
End If
Else
5 = s & ARrgs(n) & Sep
End If
Next n

trTrrrrrrPYYERYREYRERYORRORYOYOROROROYOROYRYORORORYOROYLOYL

' Remove Lhe Lrailing Sep characlter
trTrrrrrPYYRYEYYRERYRRERYYRRROYRYRYORPORORYORYLOYL

If Len(Sep) >» 0 Then
5 = Left(s, Len(s) - Len{Sep))
End I

StringConcat = s

End Function

4.4.8 Other Useful Macros

Sub AddRuninalysisCommandBarButton ()

'This subroutine adds a button called "Run Analysis"™ to the
'Excel Add-Ins command bar which, when c¢licked, opens the
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'user form and runs the ClusterPrep analysis on the active
'Excel Worksheet.
Dim AddBttn As CommandBarButton
Set AddBttn = CommandBars ("Standard") .Controls.Add
With AddBttn

.Caption = "Run Analysis"

.OnAction = "ClusterPrep.Show"

.Style = mscoButtonCaption

End With

End Sub

Sub TransferAllGraphsOnSheetsToPowerpoint ()

'This subroutine transfers all graphs on a worksheet to a
"powerpoint file. IL repeats this for all sheets in the workbook.

Dim ppt, pres, NewSlide As Object
Dim 1 As Integer

i=1

Set ppt = CreateObject("powerpoint.application™)
ppt.Visible = Trus

Set pres = ppt.Presentations.Add

For Each ws In Worksheets
ws.Activate
For 7 = 1 To ActiveSheet.ChartObjects.Count

ActiveSheet.ChartObjects(]) .Select

ActiveSheel .ChartObjects(]) .Copy

Set NewSlide = pres.Slides.Add({i, ppLavoutBlank)
ActiveChart.CopyPicture Bppearance:=xlScreen, S5Size:=xlScreen,
Format:=x1Picture

NewSlide.Select

NewSlide.Shapes.Paste.Select
ppt.ActiveWindow.Selection.ShapeRange.ScaleWidth 1.1, mscFalse,
msoScaleFromBottomRight
ppt.ActiveWindow. Selection. ShapeRange.ScaleHelight 1.1,
msoFalse, msoScaleFromBottomRight
ppt.ActiveWindow.Selection.ShapeRange.Align msoRlignCenters, True
ppt.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True
ppt.ActiveWindow. Selection.SlideRange.Shapes (1) .Select

i=1+1

Next 7

Next ws



184

End Sub

Sub ImportABunch ()

'"This subroutine copies and pastes each .png file within the
'‘directory specified (in this case, the Desktop) into
'a separate slide in powerpoint.

Dim strTemp, strPath,strFileSpec As String
Dim S1d As Slide

Dim Pic, TextShape As Shape

Dim ShpRange As ShapeRange

' BEdit these to suit:
strPath = "C:\Documents and Settings‘\Heath Group‘Desktop\"
strFileSpec = "*.png"

strTemp = Dir(strPath & strFileSpec)

Do While strTemp <> ""
ActiveWorkbook.ActiveSheet.Activate
'Range ("Al") . Value = strTemp
'Range ("A2") .Value = InStr({l, strTemp, "corr", vhTextCompare)
strTemp = Dir
Loop

End Sub

Sub FormatActiveChart ()

Dim k As Integer
Dim x As Object

With ActiveChart
.ChartType = xlXYScatter
.SetElement (msoElementChartTitlelboveChart)
.PlotArea.Width = 330
.HasLegend = True
.Legend.Position = xllegendPositionTop
.Legend.Left = 80
.Legend.Top = 20

With .ChartTitle

.Font.Size = 10

Font.Name = "Calibri (Body)"
End With

With .Axes(xlCategory)

MinorUnit = 1

MajorUnit = 37

MaximumScale = 37

MinorTickMark = x1TickMarkInside
End With
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With .Axes(xlValue)
.MinorUnit = 100
.MajorUnit = 500

MinimumScale = =500
MaximumScale = 1500
End With
End With

For Each = In ActiveChart.SeriesCollection
x.MarkerSize = 4

With ActiveChart.SeriesCollection(k
.MarkerForegroundColorIndex = 2
.MarkerBackgroundCeoclorIndex = 2
.ErrorBars.Border.ColorIndex = 2 + k

)
+ k
+ k

End wWith
k=%k+1
Next x
End Sub

Sub DeleteAllChartsOnEachSheet ()

'This subroutine deletes 211 charts on all sheets
'of the active workbook

For i = 1 To ActiveWorkbook.Worksheets.Count

ActiveWorkbook.Worksheets (i) .Select
DeleteAllChartsOnSheet

Next

End Sub

Sub DeletelhllChartsOnSheet ()
"This subroutine deletes all charts on the active worksheet
Dim myshape As Shape
For EKach myshape In ActiveSheet.Shapes
myshape.Delete

Next myshape

End Sub
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Sub PrintTheScreen()

Bpplication.SendKeys "(%{1068})"
"Bpplication. SendKeys "{106&81"
DoEvents

End Sub

4.4.9 BatchFiles for Running Cluster 3.0 and Java Treeview

Recall that among the “ClusterPrep” output files are a set of text files (typically 10) that contain
data from all patients in a cohort as well, including a set of randomly assigned test samples.
Manually opening and processing each of these files in Cluster 3.0 can be a very time-consuming
process. Moreover, one may want to create .cdt files (Cluster files) with a number of different
normalization, centering, and clustering permutations. To automate this process, we wrote a
batch file “clusterstuff.bat™ to allow all the text files created by the “ClusterPrep” software to be
automatically processed by Cluster 3.0. This batch file instructs cluster to produce 8 (2 sets of 4)
different .cdt files. The first set utilizes a centered Pearson correlation, whereas the second set
utilizes an uncentered correlation. Within each set, the following normalization methods are
emploved: 1. No normalization, 2. Proteins normalized for each patient sample, 3. Patient
samples normalized for each protein, and 4. Both proteins and patient samples normalized.
Typically, only the .cdt files produced using method 4 were used. Note that Cluster 3.0 gives the
option of normalizing by genes and arrays rather by proteins and patient samples. This is because
the program is typically used for cluster analysis of gene expression microarrays. However, these
designations (i.e. genes vs. proteins) are interchangeable. The batch file, stored in the Cluster 3.0
folder (C:\Program Files\Stanford University\Cluster 3.0), is shown below:

(@echo off
set filename=Y%o1

set namer="%filename:~0.-4%

set namer=%namer% _CorrUncentered.ixt
type %1 > %namer%

cluster -f %onamer%-g1-¢1-ma

del %enamer%

set namer=2%filename:~0.-4%

set namer=%namer% CorrCentered.txt
type %1 > %namer%

cluster -f %onamer% -g2-e 2 -ma

del %namer%

set namer=%filename:~0.-4%
set namer=%namer% NormalizedGenes CorrUncentered.txt
type %1 > %namer%
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cluster -f %namer% -ng-gl-e1-ma
del %onamer%o

set namer=%f{1lename:~0,-4%

set namer=%namer% NormalizedGenes CorrCentered.txt
type %1 > %namer%

cluster -f %namer% -ng-g2-e2-ma

del %onamer%o

set namer=%of1lename:~0.-4%

set namer=%namer% NormalizedArray CorrUncentered.txt
type %1 > %namer%

cluster -f %onamer% -na-gl-e 1 -ma

del %namer%

set namer="%filename:~0.-4%

set namer=%namer% NormalizedArrays CorrCentered.txt
type %1 > %namer%

cluster -f %onamer% -na-g2-¢2-ma

del %namer%

set namer="%filename:~0.-4%

set namer=%namer% NormalizedGeneArrayCorrUncentered.txt
type %1 > %namer%

cluster -f %onamer% -ng-na-gl-el-ma

del %namer%

set namer=%filename:~0.-4%

set namer=%namer% NormalizedGeneArray CorrCentered.txt
type %1 > %namer%

cluster -f %namer% -na -ng-g2 -e2-ma

del %namer%

This batch file is executed when the file “analysis.bat” is clicked. The latter file is placed in the
directory containing the text files that are to be analyzed by Cluster 3.0. The “analysis.bat” file
contains the following set of mstructions:

(@echo off

set path=%path%;C:\Program Files\Stanford University\Cluster 3.0;
for /f %%a in ('dir /b *.1xt") do clusterstuff.bat %%a
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