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Abstract

Which one comes first: segmentation or recognition? We mepounified framework for
carrying out the two simultaneously and without supenvrisidhe framework combines
a flexible probabilistic model for representing the shape appearance of each segment,
with the popular “bag of visual words” model for recognitioif applied to a collection
of images, our framework can simultaneously discover thgremts of each image, and
the correspondence between such segments, without ssipervbuch recurring segments
may be thought of as the “parts” of corresponding objects dpgear multiple times in
the image collection. Thus, the model may be used for legrnew categories, detect-
ing/classifying objects, and segmenting images, with@inhgi expensive human annota-

tion.
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Chapter 1

Introduction

Given an image, like the one presented in Fig. 1.1a, a p@ssdrhputer vision task is to
recognize the content of the image: for example the imagegnI-la contains a cow in
the foreground and grass and sea in the background (bottdrtoprpart, respectively). At

a finer scale we may want to label each pixel in the image wimtime of the object in the
real world that generated the pixel in image. The resultiagippon, shown in Fig. 1.1b,

of the image is called segmentation and the set of pixels thighsame label are called
segments.

Image segmentation and recognition have long been assddiatthe vision litera-
ture. Three views have been entertained on their relatipngh) segmentation is a pre-
processing step for recognition: first you divide up the im@go homogeneous regions,
then recognition proceeds by classifying and combininge¢hegions [Mar82, MBLSO01,
RES'06, CFFO07]; (b) segmentation is a by-product of recognitionce we know that
there is an object in a given position, we may posit the coreptsof the object and this
may help segmentation [LLS04, BUOZ2]; (c) segmentation awbgnition may be per-
formed independently: in particular, recognition doesnegfuire segmentation nor group-

ing [WWPO0O0, VJ04, Low04, FPZ03, FFP0O5]. These views are notually exclusive,



2

(a) (b)

Figure 1.1: Segmentation and recognition task. (a) An impage for a generic Computer
Vision algorithm. (b) The segmented image with differergraents labeled with different
category: cow (orange), grass (green), and sea (light blue)

while segmentation and recognition are not necessary fon ether; both benefit from
each other. It is therefore intuitive that recognition aegraentation might have to be car-
ried out together, rather than in sequence, in order to plitee best results. We explore
here the idea of carrying out category learning for recagniand segmentation jointly —
we propose and study a simple probabilistic model that alawnified view of both tasks.
Our model represents each image as a composition of segmérgge a segment could
correspond to a whole object (e.g., a cow) or to a part of apatl{e.g., a leg), to a patch
of a distinctive texture, or to a “nonsense” homogeneou®re the background. The in-
ference process divides each image into segments, andrdrscgegments that are similar
across multiple images, thus discovering new visual caiego

We build upon recent work on recognition and segmentatiast,kve choose to repre-
sent image segments using simple statistics of “visual #/oad features. Using “bags of
visual words” to characterize the appearance of an imageaetcombines an idea coming

from the literature on texture, where Leung and Malik [LM@tpposed vector-quantizing
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image patches to produce a small dictionary of “textonst, amidea from the literature on
document retrieval, where statistics of words are usedassiy documents [BNJO3]. Early
visual recognition papers using “bags of visual words” ¢desed the image as a single
bag [VNUO3, DS03, FFPO05], while recently we have seen effeither to classify indepen-
dently multiple regions per image, after image segmemd®RES"06, CFF07, RVG07],

or to force nearby visual words to have the same statisticSQW. Recent literature on
image segmentation successfully combines the notionneges are “piecewise smooth”
with the notion that segments shapes are more often tharsimaple”. These insights have
been pursued with parametric probabilistic models [TZOR0@)], with non-parametric de-
terministic models [SMO0O0], and with nonparametric proliabc models [AZMPQ7]. The
latter is a very simple probabilistic formulation which,\as shall see, combines gracefully

with the popular LDA model for visual recognition.

Our work most closely builds upon two papers. Russell eRIES"06] first proposed
to model image segments, rather than the whole image, wal 8 visual words” point
of view to image segments, rather than to the entire imaghgtope of discovering mul-
tiple objects in each image. Our work combines segmentatioircategory model learning
in one step, rather than first carrying out segmentation hed tategorizing the segments.
Furthermore, while Russell et al.'s segmentation is indéeet for each image, in our work
segmentation is carried out simultaneously and each se@ndefinition benefits from re-
lated segments being simultaneously discovered in othagas Conversely, Andreetto et
al. [AZMPO07] segment an entire collection of images simm#iausly, while discovering the

correspondence between homologous segments. Howevéeatinees that pair segments



4

are restricted to size, shape, and average color of the sggrmessociating bags of visual
words to each segment allows us to discover more interestsugl connections between
corresponding segments, and thus discover visual catsgori

We develop the simultaneous segmentation/recognitioarselstep by step. We start
(Chapter 3) by proposing a probabilistic model for segnm&nindividual images. We
then generalize the model so that information is sharedsadroages, and entire image
collections may be segmented simultaneously (Chapter iBalliF we further extend the
model to incorporate a richer set of visual features (ChapteThis provides a model for

automatic inference of categorical segments.



Chapter 2

Previous Work

Image segmentation has long been studied in Computer Vaidra large number of so-
lutions have been proposed. Rather than an extensive rewiewoncentrate on the two
classes of solutions that are most relevant to the problemare@ddressing. For a more
complete review please refer to [AMFM10, UPHO7]. The twossks aréop-down seg-
mentationand thebottom-up segmentatioftn more recent years, many new methods that
try to combine both the top-down and the bottom-up have beepgsed. These joint

segmentation methods are the ones closer to the algorittopsged in this thesis.

2.1 Top-down segmentation

In top-down approaches an object from a specific categorgestified in an image and
the segment containing that object is extracted. An eargnmgte of these approaches is
given by Borestein and Ullman [BUO4]. In this class of algioms the segmentation is a
consequence of the recognition task.

To identify the objects the segmentation algorithm needsdehthat represents the

visual properties of the category we want to recognize. Tiniglel can describe the ap-
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Category
Model

Human annotated
~Training images
Figure 2.1: In top-down segmentation, a model for a paricahtegory, in the example
a cow, is constructed using a human-annotated trainingT$e$. model can represent the
appearance of the elements of the category as well as the shdpe segment. Given a test

image containing an object from the category, the segmentatgorithm uses the model
to identify the object and collect the segment.

pearance of the objects in the category and the shape ofgheesgs as depicted in Fig. 2.1.
In these algorithms, low-level segmentation cues suchxsreeand contours are used to
obtain uniformly labeled regions by means of Markov randogtd8 [VTO07], conditional

random fields [SWRCOQ09], or indirectly by training a classitieat consider the segmenta-
tion cues over a large region of the image [SJCO08]. Alteueditia superpixel representa-
tion of the image can be first obtained, with the superpixkssified using the category

model [FVSO09].

Top-down segmentation algorithms give good segmentati@hracognition results,

but require an elevated level of human annotation which @qgute expensive to obtain
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Figure 2.2: Bottom-up segmentation. Given an input imafferdint local are extracted for
each pixel. These cues are based on properties of the pattdred in each pixel or the
contours between a pair of pixels. Using the cues dissiitylareasures are computed and
used as input of a clustering algorithm that returns the egimentation.

[MFTMO01, WBBP10]. Also, these algorithms can detect onky tibjects specified during
the training phase, when the category models are constiutterefore new objects can’t
be detected if they start appearing in the testing set, dvierie is sufficient evidence to

separate them from the “background clutter”.

2.2 Bottom-up segmentation

Bottom-up segmentation algorithms are agnostic about diméeat of the image. Rather
than segmenting a specific category or a set of categoridgj@tts they try to group pixels
in the image according to the similarity (or the dissimitgyiof the properties of the single

pixels.

Fig. 2.2 shows the conceptual structure of a bottom-up satatien algorithm. Given

an input image, several cues are computed for each pixeleselbues may describe the
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color of the pixel, its texture (as histogram of textons) déime response of a contour op-
erator, such as canny [Can86] or Pb [FMMO03]. Using these tuspossible to compute
the dissimilarity between pairs (or its “inverse” what wdl ¢he affinity). For example,
the dissimilarityD,; between pixelg andj highlighted in Fig. 2.2 should be very small
given the similar color and texture of the patches centeredhose two pixels and the
lack of contours between them. On the other hand, the diksityibetween pixels andk
should be larger because of the contour between the twospaxel the different texture and
color statistics of the two corresponding patches. Givendissimilarity measures, or the
affinities, between all pairs of pixels, the final segmentais obtained using a clustering
algorithm. This clustering algorithm can be a generic omehsas spectral clustering and

Gaussian mixture model, or a specific one like the gPb-ucin-ow

While the bottom-up approach can be used for segmenting anyai imagé, the end
resultis in general different from the desired segmentgti@sented in Fig. 1.1a. This can
be seen considering the segmentation results by four popoteom-up algorithms for the
same input image presented in Fig. 2.3a. We can see thatrégrdond object, the cow,
is divided into three different segments correspondingetpans of the object with differ-
ent colors. Also the background elements, the grass andkthar® also subdivided into
smaller segments, instead of a single segment as desirede Hitifacts are a consequence
of the implicit bias of normalized cut toward equal size segts. Given this segmentation
itis necessary to perform some additional process to megaents from the same object.

Fig. 2.3b shows the segmentation results for another poplgarithm based on graph par-

1other types of images, such as tissue samples from micrgscap require a different set of local cues
and dissimilarity measure, because of their differentaliguoperties.
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() (b)
() (d)

Figure 2.3: Segmentation results from different segmeorialgorithms. (a) Normalized
cut [SMO0OQ]. (b) Felzenszwalb and Huttenlocher segmemtadlgorithm [FHO4]. (c) The
gPb-ucm-owt algorithm [AMFMO09]. (d) Meanshift clusteriaggorithm [CMO02].

tition by Felzenszwalb and Huttenlocher [FHO4]. This altfon is very fast to run, but
also in this case several artifacts are present and an awlditstep is necessary to merge
redundant segments. Fig. 2.3c presents the current stétte aft for bottom-up segmen-
tation methods: the gPb-ucm-owt algorithm [AMFMO09]. Altigh the best-performing
algorithm compared against human annotators, even thisadas not capable alone of
returning the desired segmentation. Finally, Fig. 2.3dnghthe results from the popular
Meanshift clustering algorithm [CMO0Z2]. In this case the geas over segmented in a

large number of regions with the property that pixels in tame segment (superpixel) are
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extremely likely to belong to the same object. The main psepaf this last algorithm is to
provide a more compact representation for an image thanixieélpvel. A following stage
can then group these more descriptive superpixels as penpogFVS09].

The limitation of the bottom-up algorithms are in a way expég since it is unlikely
that perfectly segmented objects can be obtained usinglowhevel information; even
a simple image like the one presented in Fig. 1.1a. For tlaisae some higher notion of
object class should be used possibly without the need afitigiia model with annotated

data.

2.3 Joint segmentation and recognition methods

To overcome the limitations of the bottom-up methods séarthors have explored new
segmentation methods that return multiple segmentatipotineses for a given image. A
subsequent stage can be used to collect the more usefulhegmftor the specific vision
task. Among these methods, the more interesting for thi&waahe one proposed by Rus-
sel et al [RES06] that collect a large set of segmentations for the samgenbg varying
the parameters of the normalized segmentation algorithhe Segments that contain the
objects in the image are then retrieved by means of a togeddprobabilistic model.

A very different approach is the one developed by Todoromit Ahuja [TA06, ATO7],
where a segmentation tree is computed for a given image. tfdesencodes important
properties of containment and sub-parts that can be usedtichrdifferent segments (sub-

trees) across a collection of images, thus identifying sagscontaining the same object.
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Chapter 3

A Probabillistic Model for Single-Image
Segmentation

In order to address the main problem of unsupervised retiognand segmentation in
image collection we introduce in this chapter a simple philisic generative model for
single-image segmentation. Like other probabilistic athpons (such as expectation-maximization
on a mixture of Gaussians) the proposed model is principexjides both hard and prob-
abilistic cluster assignments, as well as the ability tauraly incorporate prior knowl-
edge. While previous probabilistic approaches are resttito parametric models of clus-
ters (e.g., Gaussians) we eliminate this limitation. Thggested approach does not make
heavy assumptions on the shape of the clusters and can thdkelf@mplex structures.
We developed different inference algorithms for this paibstic model based on sam-
pling and variational approximation. We also discuss hag itossible to extend this basic
model to address several complex computer vision problerols as video segmentation
and semi-supervised image segmentation Finally we repperanental results that sug-

gest our approach outperforms previous work on a varietynaige segmentation tasks.
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Figure 3.1: Left: plate diagram [Jor04] of our generatived®lofor image segmentation.
The gray nodex,, represents the observations (pixel features). The rpdepresents the
segment assignment for the observatign The nodé represents the mixing coefficients
for each segment. The two rounded boxesnd f, represent the hyperparameters for
the Dirichlet distributions ovef and the density function for each segmeént Finally

N is the total number of pixels in the image afid is the number of segments in the
image. Right: image formation process as described by thehjral model. An image is
composed of two segments: ground (45% of the image) and €8¢ (& the image). An
observationz,, is obtained by first sampling the assignment variahle Assumingc,, =

1, the corresponding densitfj is used to sample,, as member of the ground segment.
Similarly, a second observation,,, in the sky segment is sampled from the corresponding
density f, whenc,, = 2.

3.1 Basic probabilistic model

Image segmentation techniques may be categorized inte binoad classes. The first class
consists of deterministic heuristic methods, such as kasieaean-shift [CM02], and ag-
glomerative methods [DHS00]. When the heuristic captunesstatistics of the data the
segmentation algoriths perform well. For example, k-mganosides good results when
the data is blob-like and the agglomerative approach sdsocsben clusters are dense and

there is little noise. However, these methods often faihwiore complex data [NJWO01].

The second class consists of probabilistic methods thdicékpestimate parametric

models of the data, such as expectation maximization fanditaussian mixture models
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(GMM) [CBGMO02]. The GMM method is principled and can easiky bised as a building

block of a larger model that addresses a more general taskve¥w, when the data is
arranged in complex and unknown shapes, as is the case fgegni tends to fail, as in

GMM each class is represented by a Gaussian (see Fig. 3.7).

Complex data are handled well by the third class of methoalssisting of the many
variants of spectral factorization [KVV04, NJWO01, SM00,08B5MS00]. These techniques
do not make strong assumptions on the shape of clustershaadjénerally perform well
on images. Unfortunately, spectral factorization lacksabpbilistic interpretation, which
makes its use in more general problems, such as recognittbsegmentation or segmen-

tation with prior knowledge, somewhat convoluted [YSO0#hat impossible.

We propose a generative probabilistic model that can des@egments of complex
shape and appearance and can easily be used as a buildikgfdlce@ more complex
probabilistic model. Unlike previous probabilistic moslelt contains a non-parametric
component allowing complex-shaped groups to be modelddddy. Unlike factorization
methods, it is probabilistic in nature, allowing easy esiens to situations where prior
information is available, and integration into larger pabbistic models that address more

complex problems such as recognition and motion segmentpAZ MPO7].

Let 21, zo,..., 2y be a set of observations R” generated fronk independent pro-
cesse§(C},...,Ck}. Each proces§’; is described by a density functiofy(z). These
density functions are not restricted to any specific paramimily, such as Gaussian den-
sities; we only assume that they are smooth functions (set@8e3.2.1). The observations

x1, %, ...,y are generated as follows (see Fig. 3.1):
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1. Select a set ok mixing coefficientd,, 6., . . ., 0k, drawing them from a probability

distributionp(0) (see Section 2.2). Eac¢h will correspond to a process.

2. Forn equal 1 toN:

3. Select one of th& processes§’;, by sampling the hidden variabig according

to a multinomial distribution with parametefig, 05, . . ., 0.

4. Draw the observatiom, according to the process-specific probability density

function f(x).

Rather than obtaining samples from the model of Fig. 3.1, ieerderested in the inverse
problem: computing the posterior distribution of the hiddariablesc = {c;, o, ...cx }

given the observed variablas= {x1, zs, ...xy }. Using Bayes’ theorem we have:

p(cz) o« p(x|c)p(c) (3.1)

where the mixing coefficientg, have been marginalized out from the joint distribution
p(c, 0) leaving just the prior term(c). If we assume that the; are independent given the

¢;, then the likelihood term is defined as:

N N
p(xle) = [ p(@n, cn) = ] fen (zn)- (3.2)
n=1 n=1

So far we have not made any assumptions on the structure séireents, i.e., offi.(x).
In the following sections we describe how the segments tleagj.(x) and the priop(c)

are modeled.
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3.2 Modeling segment distributions

3.2.1 Non-parametric segment model

If the fi.(x) are Gaussians, then the model is a Gaussian mixture modeM(GW han-
dle segments of complex shapes and irregular appearanisebdst to avoid parametric
representations (which may not fit the shape of the segmadtuae non-parametric ap-

proximation of the densitieg, ().

Given a kernel functior (x;, ;) [Was06] representing the affinity,; between obser-
vationsz; andz; (i.e., how much we believe the two observations originatechfthe same
process when all we know is their coordinatgsand z;), and a set ofV;, observations
drawn from the unknown distributiofi. (=), a non-parametric density estimator fn(z)

is defined as:

N
fr(z) = Nik > K(z,z,). (3.3)

This is equivalent to placing a little probability “bumphée kernelX (z;, z;), around each
observationz,, sampled from the segment densftyand approximating the segment dis-
tribution as the normalized “sum” of all the “bumps”. If theemkity functionfy(x) is
sufficiently smooth, and if a sufficient number of sampigsare availablefk(x) is a good

estimate. A typical choice for the kernel function is the &san:

1

Koy 02) = e e (—%(1’ ) e xj))

wherel; is a local covariance matrix that can be set according td koealysis as suggested
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in [ZMPO05, BRCSO07]. Other kernel functions may be used a$ \@&S05]. For example,

in image segmentation we may wish to set to zero the connigdbietween far away pixels
to enforce a locality of the segmentation or to obtain a sppreblem. The kernel in this

case will be a product of a Gaussian kernel and two “box ksefnel

K(v,25) = Kp(r,7;)KL(s, 55) Ko, (1, 1) (3.4)

wherer;, s; are the image coordinates of tfith pixel andl; is its intensity. The box kernel
is defined asK,(r,r;) = W and/(a) = 1 for |a|] < 1 and0 otherwise.L is the

radius of the box kernel anlil,; is as defined above.

3.2.2 Parametric segment model

When it is known apriori that some segments are distributa@ing to some paramet-
ric form one should incorporate this information. This isdkadone within the proposed
framework by using parametric models for the segment diesgit(x). For example, when

it is believed the data generated by one segment is “lumpwgiay be described by a Gaus-
sian density;fy(z) = G(x; ux, 2x). Uniformly distributed outlier points can be represented
as a segment with uniform density;(z) = #(B) if x € B and0 otherwise, wheres

is the data bounding box. We assume that the densities efeliff segments are indepen-
dent, thus different types of models can be used for eachiengewe can have a mixture
of non-parametric and parametric clusters and a varietyacdmetric models).

Fig. 3.2 presents an example where this becomes useful. athedntains three spiral

clusters and random outlier points. Clearly, fitting a mmetof Gaussians will not work on
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Figure 3.2: Modeling outliers with a uniform distributioggrbage collector cluster). (a)
Input data. (b) Segmentation by spectral clustering usiotysters: the outliers are arbi-
trarily assigned to the 3 clusters. (c) Segmentation bytspledustering into 4 clusters:
even with an additional cluster the outliers are assigneithiéomain clusters and one of
the three clusters is randomly split. (d) Our segmentatigsing a parametric (uniform)
distribution for one cluster results in correctly identifg the three clusters and the outliers
(crosses).

such data. Spectral clustering into three clusters digsae dense spiral clusters but the
outliers are arbitrarily assigned to the closest spiralec®@l factorization into 4 clusters
splits one of the spirals. Applying the suggested probstixliapproach with three non-
parametric clusters and one parametric with a uniform ibistion results in discovering

the three spirals and collecting all the outliers into théarm distribution cluster.

3.2.3 Semi-parametric segment model

While parametric models provide a good representation inyncases, when dealing with
image segments their modeling assumptions on the strustthre data are too often strong.
This explains why spectral clustering (which does not agsany structure) outperforms
the parametric methods in most image segmentation taskseVéws, in many cases assum-
ing a specific parametric model is too restrictive. For exianhe overall distribution of

a segment can be well represented by a Gaussian distribiglapal behavior of the seg-

ment); yet, this description could be too crude and inadeundnen considering the finer

details of the distributionl¢cal behavior of the segment), e.g., if it has a jagged boundary.
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It is interesting to consider a hybrid representation carimg a parametric and a non-
parametric component. Intuitively the parametric compareptures a coarse blob-like
description of the global structure, while the non-paraimn&omponent captures the local

deviation from it. The simplest such representation is averrcombination:

Ny

L Z K(z,x;) + Agi(x) (3.5)

felx) = (1 - )\)ﬁk _

whereg, () is a parametric density, e.g., a Gaussian or a uniform dergid\ € [0, 1]
represents the relative influence between the two termal(rat both terms are normal-
ized and sum to 1). We experimented with this representatidhe segment distribution
and found that it does indeed present numerous advantaglesespect to the simpler
parametric and non-parametric models (see Section 3.5ectb8 5). In all of our exper-
iments we used = 0.1. An interesting question, which we do not address in thiseepap
is whether) could be estimated automatically for each segment. Whema sa&rametric
representation is used fgy in the graphical model of Fig. 3.1 we call the overall model a

semi-parametric mixture model (SPMM).

3.3 Modeling the mixing coefficients

We assume the mixing coefficiertts -, . . ., 6, are distributed as a Dirichlet random vari-
able [BNJO3]:

(917927~~~79k) ~ Dir((ll,ag,...,a[(). (36)
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(a) (b) (©)
Figure 3.3: Effect of Prior. (a) Cluster size probabilitytvDirichlet priora = [100, 100].
(b) Clustering result withik' = 2 and the prior in (a) preferring clusters of equal size. (c)
Cluster size probability with Dirichlet priar = [200, 25]. (d) Clustering result withi' = 2
and the prior in (c) preferring one large cluster and one kohaster.
Under this assumption the ratiq./ ) °, o, represents the a priori knowledge of the mixing
coefficientd,, while ), «; represents the level of confidence in this a priori knowledge
The larger) , oy is, the stronger is the belief in the mixing coefficients amel¢orrespond-
ing segment sizes. Setting al} to the same value suggests that all segments, a priori, have

equal size, while if prior knowledge suggests that some segsrare larger, e.g., following

a power law, this may be incorporated in the model by settipgccordingly.

A simple synthetic example showing the effect of the prigpriesented in Figure 3.3.
By changing the Dirichlet prior parameterwe can “choose” between a segmentation into
two similar size segments and a segmentation into one lasd®@ae small segment. This
can become useful in image segmentation. The highly popwianalized-cut approach
to image segmentation [SM00, NJWO1] implicitly assumestes of equal size. This
frequently results in erroneous segmentations. To exatheorrectness of the equal seg-
ment size assumption we collected statistics of clustessiom the manually segmented
images in the Berkeley Image Segmentation Dataset [MFTMBI. 3.3a) shows that a
typical distribution of image segment sizes is not uniforat kather similar to Zipf’s law

[Zip49]. Fig. 3.3 shows that using a Dirichlet prior withy set according to Zipf's law can
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Figure 3.4: Zipf’s law for relative segment size in image} Tae blue line is Zipf's
law with the powers = 1.2 (in loglog representation). Each of the other curves rep-
resents the segment sizes in a human segmentation of an imége Berkeley dataset
[MFTMO1]. (b) The blue curve represents the constantsised as prior for the segmenta-
tion in Figs. 3.3.c,f. The red curve represents the obtagsgunent sizes.

improve image segmentation results.

The choice of a Dirichlet distribution for the hidden vari@B is a convenient one, since
it allows closed-form derivation of many useful quantitéeging inference. For example,
it is possible to derive the expression for the conditiomamterm (see Appendix 3.4.1):
ple; = kle_;) = #*Z“Z% whereN,, is the size of segmentsexcluding observatior,

N is the total number of observations, and thés are the hyperparameters of the Dirichlet

distribution foré.

Other choices for the distribution of the random variablare possible. Of particu-
lar interest are non-parametric priors such as the DiricRi®cess [TJBB03], in which
the number of segments is automatically discovered durifegence, and priors that cap-
ture the empirical distribution of segments in natural ie&§-MHO1], such as the one in

[SJ08].
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Figure 3.5: Unsupervised image segmentation. Examplédtsesom the two data sets we
experimented on. Columns 2, 4, and 5 show segmentationged tiages (column 1)
using a Gaussian mixture model (GMM), normalized cuts (INaotl our semi-parametric
mixture model (SPMM), respectively. The images shown ingdwand 2 come from a
collection of 16 general pictures; the bottom image wascsetefrom the 100 Egret images
(the same experiment was carried out on all images in botkatmns, see supplemental
material). The number of segments was set to 8 for generaésyand to 4 for the Egrets.
Columns 3 and 6 show assignment probabilities, where thar adla pixel is a convex
combination of the segment markers according to segmeigiresent probabilities.

100 Egret images

S I oo
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16 general images
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Figure 3.6: Human Ratings. Six people rated the unsupehgegmentation results of all
the images in our data sets (Section 3.5) as good, OK, or bla€.pibts show the rating
statistics for each experiment and each method. Each baliisrgo three parts whose
sizes correspond to the fraction of images assigned to thresponding rating. Better
overall performance corresponds to less red and more bluem@thod outperforms other
methods in both experiments.
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3.4 Inference

Since it is not computationally feasible to perform exaétiance for the model of Fig. 3.1,
we have to use approximate inference. In particular, we ldpeel two inference algo-
rithms: one based on a Markov chain Monte Carlo (MCMC) metf©@as99] and one

based variational approximation [Bis06].

3.4.1 MCMC inference algorithm

We first present the inference algorithm for segmenting glsirmage (model in Fig. 3.1).
Letp(c,|c_,, x) be the posterior distribution of the segment laheior then'th pixel given
the segment labels_,, of all the other pixels in the image and all the feature vextoof

all the pixels in the image. Using Bayes’ rule we obtain:
plcn = klc_p, x) o< p(x,|c, =k, X, c_p)p(calc_p). (3.7)

The first term of of Eq. 3.7 is the likelihood of the feature w@cr,, to be in thek-th
segment. The expression for this term depends on the moelétasepresent the segment.

For example using the non-parametric approximation of Ejjw& have:

p(rplen =k, x_p,cp) = fk(xn) = Nik Z K(zp, ;) (3.8)

JESk
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where the kernel valuek (z,,, z;) = A,; represent the affinity between,, andx;*, Sy is
the set of observations in segménexcluding the observation andN,, is the cardinality
of segmentS,. Similarly if we are using the semi-parametric model of 8#t.2.3 the

likelihood terms become:

Ny

1

p(Talen =k, X _p,c,) = (1 — )\)E
j=1

whereGy(z,; 1k, L) IS @ multivariate Gaussian distribution apg and, are the mean
and covariance matrix of segmeént These two quantities could be modeled as additional
random variables with suitable prior distribution, for exale a normal inverse-Wishart
distribution. These random variables could also be sanfpdedtheir posterior distribution
given the observations and the segment labeling However, in our experiments we
treated them as parameters and computed their value asesameph and covariance of
the observations in each segment (which corresponds to amaaxlikelihood estimator
for them). This algorithm can be seen as a version of MontéoCE&vl [WT90] with the
E-step implemented using the a single Gibbs sampling roanthé segment labetsand

the M-step implemented by the maximization of likelihoodtloé observation and labels

over the parameter, andy, of each semi-parametric distribution.

The second term of Eq. 3.7 is the a priori probability for alvaonn to be in segment
k, given the segment labels of all the other observationeSie are assuming a Dirichlet

distribution for the mixing coefficient¢ we can marginalize this hidden random and obtain

1The A,,; are the entries of the affinity matrix used by the normalizetsegmentation algorithm. They
can be precomputed before the inference step.
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the closed form expression:

Ni + ay,
N—-1)+>, a;

plen = ko) = ¢ (3.10)

where N, is the cardinality of segmertt,, anda,, are the hyperparameters of the Dirichlet

distribution ofo.

Using Eq. 3.8, or EqQ. 3.9 for the semi-parametric model, and3E10 we can compute
the posterior distribution in Eq. 3.7. We can therefore ru@ibbs sampling algorithm to
obtain samples af from p(c|x). All the quantities used to compute the posterior can either
be precomputed, like the affinitids (x;, z;) = A;;, or updated efficiently like the counts

Ni.

Given the samples from(c|x) obtained by Gibbs sampling, it is possible to estimate
at each pixel the segment assignment probabilities. Tarobataegmentation of the image

the MAP estimator at each pixel can be used.

3.4.2 Variational inference

In order to formulate the variational inference on the mafdtig. 3.1 we write down the

joint distribution of all the random variables:

p(x, ¢,0) = p(x|c)p(c|0)p(0), (3.11)
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where, given our assumptions on the distributions of theehdke expressions for each of

the three factors are given by:

plzle) = T TIX, f(an )™

p(el) =TI [Ty 0 ®
P (3.12)

p(#) = Cla)[Ti, oY

with C'(«) the normalization constant of a Dirichlet distribution @frpmetery (see [Bis06],

p. 687).

We then consider a variational distributigfc, #) for the hidden variables andé that

factorizes, i.e., assumes independence, as:

a(e,0) = q(c)a(0). (3.13)
Following [Bis06], we derive the update equation §dc¢):

logq*(c) = Eyqpllogp(x,c,0)] + const
= Eypllogp(z|e)] + Eyp)llog p(c|0)] + Eygllog p(0)] + const  (3.14)

= Yl Yk Calk) log (fk(xn) exp(Eqy() [log 9k1)> + const
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with E,[z] the expectation of random varialteinder the probability distributioq(z). In
Eq. 3.14 we have absorbed thg ) [log p(¢)] into the constant since it is independentof

Taking the exponent of both sides of Eq. 3.14 and normalipiogides:

N K
a(e) = [TTTa®. (3.15)
n=1k=1

where we defined the responsibilities:

o fw(wn) exp(By)[log i)
= S o) exp( By 108 00)) (3.16)

Eq. 3.15 shows that the variational density factorizes itmdependent multinomial dis-
tributions, one for each teria,. The parameters of each multinomjét,,) are the respon-

sibilities (7,1, 7n2, - - ., rux) IN EQ. 3.16.

Similarly, for the variational distribution(¢), we have the update equation:

log¢*(0) = Eyellogp(zlc)] + Eyellogp(c|0)] + Eye log p(f)] + const

= N S Eyelea(k)] log by + log p(f) + const (3.17)

- Zsz1 (o + fozl ok — 1) log 0 + const

taking the exponent and normalizing yields:

K
q(0) =C(y) [T o (3.18)

k=1
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which implies thay(0) is a Dirichlet distribution with parameters

Vi :ak+z7’nk = oy, + Ry, (3.19)

where R, represents the total responsibility for cluster

Note that we did not assume any particular functional formyfe) andq(#). Instead,
Eq. 3.15 and Eg. 3.18 follow from the graphical structure theddistributions used in the
model, as well as from the factorized forgid, c) = ¢(0)q(c). Finally, sinceq(0) is a
Dirichlet distribution, we can derive a closed-form saduttifor £, [log p(0x)] = V() —
U(>", V), where¥(a) is the first derivative ofog I'(a) (see [BNJO3] for the details of the

derivation). This expression is then used to compute thsoresbilities in Eq. 3.16.

3.4.3 Kernel density estimation off;,

The above derivation requires knowing the density fundififiz), however this informa-
tion is not actually available when performing clusterikgllowing the previous approach
we can use Kernel Density Estimation (KDE) to obtain an appration fk(x) of each

unknownfy(z) if they are sufficiently smooth [Was06].

Given a kernel functiors,, (x;, x;) which measures the affinity;; between a pair of
points (i.e., how much we believe the two points originatenif the same process when

all we know is their coordinates; andzx;) and a set ofV;, points drawn from the unknown
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distribution fy(x), the kernel density estimator ¢f(x) is defined as:

N 112

R 1 1 1 T2
frlz) = m;m}.(x,xj) - EZW ; (3.20)

[|lz—z

where for the sake of concreteness the kernel funchigns defined here as the exponent

with local scales; set according to analysis of local statistics as suggestgtMPO5].

Since we have the variational distributigtc) = [], ¢(c,), rather than an assignment
c of observations to clusters, we can redefine the kernel geesiimator as the expected

value with respeci(c):

N

N
A 1 1
fe(x) = Ege) Fch K, (x,z,)| = o ZrnkK (x,xy), (3.21)

n=1

where we used the expected value of a multinomial detsjty,)[c,, (k)] = 7.

Alternatively, we can obtain an assignmen.ap by imposinge, (k) = argmaxg(c,),
and compute the usual kernel density estimator of Eq. 3r28ettions 3.4.3.1 and 3.4.3.2
we show how these two different approximations fafx) relate to spectral clustering

[SMO0O0, NJWO01] and kernel k-means [SSM98, DGK04], respetyiv

Using EqQ. 3.21 together with Eqg. 3.15 and Eq. 3.18 we obtaigstem of coupled

equations that can be iteratively solved as described ialgeithm of Fig. 3.4.3.

Note that using a kernel density approximation is not camesdéth the Bayesian frame-
work used in deriving the variational distributionéc) and¢(#). Additionally, while the
updates of Eg. 3.16 and Eq. 3.18 converge due to convexityeofdriational problem (see

[Bis06]), changing the approximated densitj;égﬁx) at each step might result in a non-
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Algorithm
1. Randomly initialize the responsibilities;,
2. Fori=1,...,N:
a. For eachk, computef,, using Eq. 3.21

b. For eachk, computer,, using Eq. 3.16
c. Compute the parametersof Eq. 3.18

3. Repeat Step 2 until convergence or until some stoppitgraihas been reached.

4. For each observation assign the cluster laheising the MAP of;(c).

convex problem. Nevertheless, we observed that this didseemn to affect the results
much, and convergence of the inference algorithm has beegirieally verified. It would
be interesting to study a theoretical analysis of its cogeece, and possibly a Bayesian

derivation of the approximatioﬂ(x).

3.4.3.1 Connection to spectral clustering

Let A be anN x N affinity matrix such thatd;; = K, (z;,z;), andR be aN x K matrix
such that its elements are the responsibilifies = r,,;,. defined in Eq. 3.16. Finally, leB
be a diagonal matrix of dimensids with By, = exp(V(v%))/ >, Rk

Plugging the approximated densitiJég{x) of Eq. 3.21 into Eq. 3.16 provides:

f L en@0n) (5 A Bi) Bu (3.22)

Y fr(n) exp(¥ () d,

whered,, = >, R,. If we imposewy, = 0 Vk, we getBy, = exp(V(>_, Ruk)/ Y, Ruks

which for large values of N is almost ohand can be removed from Eg. 3.22. In this

2This is a good approximation fay > 100.
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case we have that, = Zj A,;, and we can write a recursive matrix equation for the the
responsibilitiesR'™! = D1 AR!, with D a diagonal matrix of dimensioN and diagonal
elementsD,,, = d,,.

This recursive equation is similar to the power method fanpating the eigenvectors
of the matrixA [GL91] with the difference that in the case of the power mettieecolumns
of R are forced to be orthonormal, while in our case we forcedhesof 1 to be normalized

to 1.

3.4.3.2 Connection to kernel k-means

The variational inference method is also similar to kern@h&ans where, instead of the
expected KDE of Eqg. 3.21, we consider the MAP assignragnt » and compute the usual
kernel density estimator. Following [DGKO04], l¢tz) be a function that maps observations
in a feature spac&’, such that inner product it is defined ag(z;)" ¢(z;) = K (z;, ;).

In feature spacé& each iteration of the k-means algorithm consists of twosstep
1 For each poind(z,,) select a new cluster label = argmin, ||¢(z,) — w ||

2 Compute the new cluster cenfef = Nik Y nec, ¢(x,), whereNy, is the number of

points in cluste’.

Substituting the inner product ifi with kernel operations we get:

16(zn) = mel? = San)T (@) = 7 Pec, S@n)Td(Tm) + 57 Xiniec, (@m) d(z1)

= K(zp,z,)— N% mec, K (Tn; Tm) + N%f > macc, K (@, Tm).
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The first termK (z,,, z,,) can be omitted from the computation because it does not depen
on k. The second term equals minus the approximated denﬁtﬁeg), and the third term

is a cluster-specific quantity (independenti)f We have observed experimentally that
this cluster-specific term was irrelevant when computing= argmin,||¢(z,,) — p.||*
Therefore, we can omit it as well. This implies that step 1hef k-means algorithm above

can be written as:

. 1
n = Argmin[9(z,) — ] = argmax - > K(wn, zm) (3.23)

meCl

Whenever the number of observations is roughly the samedh eluster, then the term
Eqo)log p(0k)] = V(vi) — ¥(D_, ) is independent ok and the responsibilities,, in
Eq. 3.16 are just proportional p@(xn). We conclude that selecting the MAP assignment of

q(c), as explained in 3.4.3, is equivalent to computing the fiegh f the kernel k-meapds

3.5 Experiments

Experiments for the image segmentation model of Fig. 3.}ewerformed on two image
datasets. Thefirstis a set of 100 images of Egrets [LSPO5jenddy gray level values and
pixel coordinates were used to compute affinities = K (x;, z;) (see Section 3.2.1). The
second is a set of 16 general color images, where the RGBsvahgkthe pixel coordinates
were used to compute affinities. Fig. 3.5 shows a few reptatiea image segmentation

results. Unless otherwise stated, in all the following ekpents the sampling algorithm

K (xy, z,,) is notimportant

m,licm, 1=k

3The second step of the algorithm is redundant since theﬁgrrﬁ:
k
in deciding the cluster assignment.
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Input GMM SPMM

Figure 3.7: Comparison between the Gaussian mixture ma@®iM) and the semi-
parametric mixture model (SPMM) of Section 3.2.3. The c®lof the sky segment are
not well modeled by a unimodal distribution: the left parsf@more uniform color than
the right part, where some clouds are present. The GMM setie@n (center) splits the
sky into two components, while the semi-parametric segatemt (right) correctly assigns
the sky to a single segment. Fig. 3.8 shows the observatioeadh segment projected on
different coordinate planes of the xy-RGB feature spacee Btttom row shows a sam-
ple image from the estimated segmentations from the GMM mn@aater) and from the
semi-parametric model (right).

has been used to perform inference.

Fig. 3.6 compares the quality of our results with the stdtdie-art on both datasets.
The performance of fitting a Gaussian mixture model (GMM)fithe lowest quality, be-
cause Gaussian “blobs” poorly approximate the image setgmerxy-RGB space. The
results for normalized cut and our semi-parametric mixmel (SPMM) are compara-
ble, with slight preference to our method. The SPMM, as welBE&M, naturally provides
soft assignment of pixels to segments (see Fig. 3.5 columans 8). Such soft assignments
often make more sense, e.g., in ambiguous cases wherenigitia between segments is

gradual. Furthermore, they provide more information thardidecisions do. An attempt at



0.9

0.8

0.7

0.6

0.4

03

0.2

0.1

GMM

Mountains

Foreground
Rocks

Stone:
Arch

01 02 03 04 05 06 07 08 09 1

RED

Mountains

33

SPMM

08 Sky

= Mountains

w

w os -

& Foreground
04 .Rocks
0.3
0.2
01 =l Stone

Arch

0 01 02 03 04 05 06

RED

07 08 09 1

Sky

07 Mountains

Foregound
Rocks

Figure 3.8: Comparison between the different segmentaiioirig. 3.7. Each plot shows
different coordinate planes of the xy-RGB feature spacee [Eft column refers to the
GMM segmentation the right column to the SPMM one. The pooaisespond to the
projections of the image pixels. The ellipses represents&ian distributions (the paramet-
ric term for the SPMM). The colors of points and ellipses espond to the segments in

Fig. 3.7.
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obtaining soft assignments from normalized cuts was pregas[JDKO05]. This approach

however, lacks a complete probabilistic interpretation.

Fig. 3.7 and Fig. 3.8 show an experimental comparison betwhse two probabilistic
models we are considering. To better understand the piep@tftthe semi-parametric mix-
ture model (SPMM) presented in Section 3.2.3, as well asoitsmial advantages over the
Gaussian mixture model (GMM), we analyze a specific examptetail. The image we
chose, on the left of Fig. 3.7, presents a number of chalkefgeany segmentation algo-
rithm: it has an object of complex shape (the stone arch)y @akially covered with clouds
with color changing quickly from deep blue (left part of theage) to veiled whitish blue

(right part of the image), and complex texture regions (tleeimains in the background).

Examining the segmentation results, we see that the GMM h(gdater) failed to
identify the sky as a single segment, but rather dividedtiio parts. The left part without
clouds is assigned to the red segment, while the right padrevislouds are present is
assigned to the blue segment. In the left column of Fig. 3.&avesee the projections on
different coordinate planes of the observations in eachmgeg of the GMM segmentation.
We see that pixels in the red segment (in red) and pixels itlilne segment (in blue) fall
in two different but contiguous elliptic clusters (see RBDUE and X/BLUE projections
on the second and third rows). This is a consequence of thémaalal shape of the
distribution of the sky segment in the xy-RGB space. Finalgce only four segments
are used, the mountains on the background and the stone rargitauped into a single

segment (cyan).

On the other hand, considering the segmentation resulteafémi-parametric mixture
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model (SPMM) (Fig. 3.7 right), we see that it identifies thg skgion as a single segment

(green). This is due to the non-parametric term in Eq. 3.5tviaillows the model to take
advantage of the local proximity of the two modes of the slsgribution (see right column
of Fig. 3.8). Itis also interesting to observe how the paraiméerm captured the global
color of the sky resulting in assigning the sky label (gressd to the portion of sky under
the stone arch. The SPMM method also correctly segmentsrtfeas a single object
(cyan).

Finally, Fig. 3.9 shows a qualitative comparison betweengampling inference al-
gorithms and the variational approximation method on insafgem the bird dataset. We
observe that both algorithms are capable of extracting itidgaithe images, with the vari-

ational approximation faster by a factor 5 than the Gibbsgam

3.6 Partial labeling

While our general framework is unsupervised, some pariarmation on the assignment
of points to clusters is often available. Such informatiam de provided in one of three
forms: partial labeling, “must-link” constraints, and ‘fo@ot-link” constraints. We next

explore all three.

Partial assignment of points to clusters is equivalent torftaobserved the labels of
some of the (usually hidden) random variable®f the model. Such type of constraints
are thus incorporated by fixing the corresponding obserabdlsc; during the inference
process on the model (described in Section 3.4). This lemadsmore stable solution and

faster convergence. Figure 3.10 shows how minimal pasia¢ling can significantly im-



Figure 3.9: Comparison of the Gibbs-sampler and variatiorfarence methods for the
image segmentation problem. The first column shows ther@ignages, the second one
shows the segmentation results of the Gibbs sampler usé@iMPO07], and the third one
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(@ (b) (€) (d)

Figure 3.10: Partial labeling. A typical result of inteysliased image segmentation into 2
clusters (out of 100 images in the Egret set of [LSP05]). (@gi®al image, (b) GMM-EM
clustering, (c) normalized cuts, (d) our result with pdriedeling. Boundary pixels were
constrained to the background cluster.

prove image segmentation results. The segmentationsiebithy our method are of higher
guality than those of GMM-EM (using the same constraint®m@arison to spectral fac-
torization is impossible since labels cannot be fixed. Wa ttampare our results to those
of graph-cuts methods. Graph-cuts [RKB04] are somewhatasim spirit to spectral fac-
torization but require significant user interaction and times generally of less interest to
us. Fig. 3.11 shows our approach provides comparable segulihose of Rother et al.
[RKBO4] when the same amount of user intervention is utilize

Constraints which force points to reside in the same cly&teust-link”) can be incor-
porated by estimating the labels of those points jointlyisTHorresponds to a modification
of the model of Fig. 3.1 where an edge (conditional deperng)de@dded between the con-

strained points. The “cannot-link” constraints can (inahg be incorporated, in a similar
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Figure 3.11: Partial labeling, comparison with GrabCut.ftLéput image. Right: our
segmentation result, obtained by manually labeling path@image as background. Refer
to [RKBO04] for the corresponding GrabCut segmentation.

manner, by estimating the labels for these points jointljewnforcing exclusion. While in
our inference method this is easily achievable if the “cafimi” constraints involve only
pairs of separated points, it is difficult to consider exmusdependencies over a larger
number of points, since the number of possible assignmemttdigrow exponentially.
Incorporating labeling constraints (of any type) is notiad in non-probabilistic meth-
ods such as spectral clustering. Yu and Shi [YS04] showed‘hayst-link” constraints on
pairs of points can be incorporated, albeit with some adidéti computational cost. It has
not been shown how to incorporate “cannot-link” constmimt partial labeling in spectral

clustering.
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Chapter 4

Video Segmentation

4.1 Temporal coherence in videos

In the previous sections we evaluated performance in thapersised and patrtially su-
pervised cases. But other types of prior information areroftvailable. In this section
we examine segmentation of video frames. Adjacent vidandmare known to be highly
correlated regardless of their content. In this section ashow this can be incorporated
into our segmentation framework and improve segmentatiality. A related idea was
proposed by Jojic and Frey [JFO1] who separated video framtedayered sprites. Their
underlying assumption was that all layers are shared antmgdeo frames and each layer
can undergo only limited transformations such as trarmtatind occlusion. This does not
apply to general videos where the camera moves significaresylting in large changes
in background, as well as complex motion of articulated ctsjesuch as human bodies,
which imply large changes in appearance and shape acrass fraimes. We thus propose
an approach that assumes coherence only across conséi@rties and not throughout the
sequence.

Pixel-level segmentation of video sequences is a high-dsm@al problem, since the
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data-set size equals the overall number of pixels. Thezetore has to resort to segmenting
separately small portions of the video. We will assume hieeevideo portions are indi-
vidual frames. This can result in a set of independent setatiens even for consecutive
frames which are highly correlated. To obtain a globallysistent segmentation one needs
to enforce spatiotemporal coherence across frames. Thibeaone by first segmenting
each frame independently and afterwards matching segraerdss frames. Alternatively,
coherence could be enforced directly during the segmemtédisk. The latter is impossible
for methods like spectral clustering, which do not allowdrmorating prior information.

On the contrary, our framework is particularly suitable thbis purpose. We segment
videos frame-by-frame while propagating information frame frame to the next. We
initialize the segmentation of each frame with the segntemtaesult of the previous frame.
Since consecutive frames are highly correlated, this oovits speeds up the computation
(by reducing the number of iterations of the sampler) andnai@s more consistent results.
Furthermore, since our clustering provides cluster assignt probabilities for each pixel,
we detect high confidence pixels and fix their labels for saerations. This constrains the
segmentation of each frame to be highly similar to that opredecessor. We then release
the labels of all pixels and collect samples. This procethgoalizes slowly changing parts
of the video, such as the background, and reduces the cotigmatiacost by speeding up

convergence.

4.2 Video segmentation algorithm

Following is a short summary of the proposed video segmiemtaipproach:
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1. Segment the first frame of the sequence and obtain clustegranent probabilities

for each pixel.

2. For all the remaining frames=2, ..., F":

a. For framef —1, compute the confidende, of segment assignment of tité pixel
as: Rz = (p(ci = kv‘w> _p(ci = kw|m)/p<ci = kv‘w)! Wherep<ci = kv‘w>
andp(¢; = ky|x) are the highest and the second-highest cluster assignment

probabilities for pixel.

O

. Initialize the sampler for fram¢ with cluster assignment and confidence weights

of framef — 1.

c. Run the sampler fofV; iterations while fixing the labels of the high confidence

pixels,R; > 0.9.

d. Run the sampler for furthe¥, iterations with all labels free to change, and collect

samples.

. Set cluster assignment of franfeas MAP estimator and keep cluster assignment

D

probabilities.

Even though this is a very simple way to impose temporal e, the previous
algorithm still shows that higher-level information cagrsificantly improve the quality of
segmentation. Using more complex (possibly probabilistiodels for the motion of the

object in the video is likely to further improve the segmeistaresults.



Figure 4.1: Video sequence segmentation. Left column: Esa218, 280, 282, 284, 286,
and 329 out of a 343-frame-long video. Middle column: noilzeal cut segmentation
results. Right column: SPMM result while enforcing spaiaporal coherence across
frames is significantly better. See Fig. 4.3 for human rabhghe segmentation results.
The complete video as well as results on a different vide@eoeided in the supplemental

material.



Figure 4.2: Another video sequence segmentation. Firstnaol Frames 61, 136, and
154 out of a 193-frame-long video. Second column: GMM segatem results. Third
column: normalized cut segmentation results. Right colug#MM result while enforcing
spatiotemporal coherence across frames is significanttgibdhe complete video as well
as results on a different video are provided in the suppléatematerial.

4.3 Experimental results

Fig. 4.1 and Fig. 4.2 compare the results of the proposedappmwith those of normalized
cuts with post-segmentation segment matching. The segtn@mbbtained by normalized
cuts is inconsistent across frames. Our method signifigantiperforms both normalized

cuts and GMM-EM and returns video segmentations that are both of high guaititl

1The GMM-EM model we use for comparison in our experiment ésely related to the model of Khan
and Shah [KS01], with the main difference that no informatiélocal velocity is used in the clustering. The
segmentation obtained by GMM-EM in our comparisons is siant across frames but is of poor quality
due to the complex shapes of the segments.
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Ballet video sequence

SN 0 0 e LT
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Figure 4.3: Human Ratings. Six people rated the video setatien results of a subset of
all the frames in the “ballet” sequence. As for the resultSattion 3.5) the possible rates
were: good, OK, or bad. The plots show the rating statisticstie SPMM with video
coherence (top bar) and for the normalized cut (bottom bagch bar is split into three
parts whose sizes correspond to the fraction of imagesrassig the corresponding rating.
Better overall performance corresponds to less red and bioee Our method outperforms
clearly outperforms normalized cut.

consistent across frames (i.e. the same object is condystasigned to the same clus-
ter, denoted by same color, throughout the whole video sems). Fig. 4.3 shows the
human ratings for the ballet sequence (see Fig. 4.1). Ferghantitative assessment of
segmentation quality, the SPMM greatly outperform the radimed cut methot

For sanity check, we also compared segmentation resultsrahethod with and with-
out temporal coherence. Using temporal coherence significanproved the segmenta-
tion quality. Please refer to supplemental material of [AZOT] for the complete video

sequence as well as other videos.

2For the video sequence of Fig. 4.1 the GMM-EM method failssioverge. Therefore, no human ratings
is available
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Chapter 5

Segmenting Image Collections

We can extend the probabilistic model of Chapter 3 for theutiameous segmentation of
an image collection. When all the images in the collecticarsiobjects that have similar
characteristics (see Fig. 5.2, top row) we can improve tigenemtation by sharing infor-
mation across images. For example, in Fig. 5.2, since afpitteres show a person’s head
(and shoulders), it is possible to use the consistency gktkéements’ appearance (color,
shape, position) across images to improve segmentatiditygaa well as provide coherent

segment labels across images.

5.1 Semi-parametric LDA model (SP-LDA)

Hence, we propose the new probabilistic model of Fig. 5.lere@k” segments are shared
across a collection af/ images. These shared segments are described by the distru
fz, with k& the segment label and the supersceiphdicating the distribution is “shared”.
We also assume that each image Kaadditional segments that are not shared across the
collection. These image-specific segments are describebebyistributionsf;’;, where

h indicates the segment label in its image ands the image identifier in the collection.
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Figure 5.1: Semi-parametric Latent Dirichlet Allocatiowdel (SP-LDA) for joint segmen-
tation of image collections (see Section 5.1). As in Fig, & gray node:,,,,, represents
the observed quantities (features vectdior imagem in the collection). The node,,,
represents the segment assignment for the observatipn The nodéed,, represents the
mixing coefficients for each segment in image The rounded box: is the hyperparam-
eter of the Dirichlet distribution of,,,. The inner plate represents thg, pixels in image
m, while the outer plate represents all theimages in the collection. Th& distributions
f; model the recurring objects in the collection and are shapedss all the images. The
H distributionsf;'; are local to each image, i.e., independent of the rest ofdheation,
and represent the image-specific segments.

Since these distributions are not shared across images evtheshe superscripts for
them. GivenK andH the total number of segment in each imag&is- H. If we set the
number of shared segmemtsto zero we obtain the single image case, whil€ifs set to

zero then we are enforcing all the segments in an image to &redhn the collection; in

Section 5.2 we will explore the effect of different choices.

We represent both the shared distributigijsand the image-specific ongg;, using
the semi-parametric representation described in Sectidr3.3 We call the probabilistic
model of Fig. 5.1 with the semi-parametric representaiemi-parametric latent Dirich-

let allocation (SP-LDA)For the shared distributiong’, the parametric term captures the



a7

information that is consistent across the image colle¢tiuich as the shape and position
of the recurring object and its color. The non-parametriontef the the distributiong?;

is still image-specific. As discussed in Section 3.2.3 wetbark of the parametric term
as providing a prior or bias toward a particular region of feature space (the position
and color of pixels segments). This bias represents appeaend shape properties of the
common objects in all the images.

To perform inference, we use the sampling method developettié single-image case
(see Section 3.4.1), with the exception that the paramefdle Gaussian terms of shared
segments are computed using observations from all the isndde non-parametric terms
of the shared segments are computed independently for eeajeias for the single-image

algorithm.

5.2 Experiments

To study the performance of the SP-LDA model of Fig. 5.1 wesider a collection of
30 images, all showing the face (and the shoulders) of diftepeople in different indoor
scenes (varying background). To determine which parts efiiage are assigned to a
shared segment and which parts to a not-shared segmentstmifferent values ofiX
(number of shared segments) aidnumber of image-specific segments).

Fig. 5.2 shows six images from the collection (first row),itlggound truth segmen-
tation (second row)of the face (blue segment), and several segmentation sefsultlif-

ferent values off and K. When no information is shared among the images (third and

1The ground truth considers only the face and disregards pis of the person like the neck and the
shoulders.



48

9|6

2) Segmentatiorinput Image

Sharing
0) (K=1, H=
’ : i

0, H=

No Sharing Ground truth

1) (K

Polal
'S DS s

Sharing
=2, H=l

0,H=3) (K

No Sharing

1) (K

Sharing
=2, H=

0) (K

Sharing
(K=3, H=

Figure 5.2: Segmenting an image collection. First row: si@meples out of a collection
of 30 images of faces on different backgrounds. Second rowesponding ground truth
segmentation of the face. Rows three to five: binary segrtientawith different numbers
of shared segments. Rows six to eight: segmentation in tegeents with different
number of shared segmentk. is the number of shared segments dhds the number of
image-specific ones.

sixth rows) the resulting segmentation is not precise ircelg the face. Often it merges
the face with part of the scene background, particularly wbely 2 segments are used
(third row). Moreover, the segment containing the face isaomsistently labeled across
the image (see sixth row). When one or more segments aredsharess the images, they
are assigned to the recurring elements of the collectioa:fahe and the shoulders. This

results in both an improvement in the segmentation of the & a consistent labeling of
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Figure 5.3: Precision/recall for the face collection. Biint markers correspond to the per-
formance of the SP-LDA model (Fig. 5.1) for different segsof the parameter& (num-

ber of shared segments) aitl (number of image-specific segments). The green curves
correspond to precision/recall values with the same hartnoean ¢ measure [Rij79]).

the segment of a recurring object across different imagepatticular, when one segment
is shared and one is image-specific & 1, H = 1) the face and the shoulders are almost
always assigned to the shared segment (yellow), while timairéng part of the scene is
assigned to the image-specific segment (red) as shown irotind frow. When there are
two shared segments and an image-specific éhe=(2, H = 1) the segmentation of the
face improves further. One of the shared segments captueemctes (red) and the other
the shoulders (yellow), which are no longer grouped togethtn the face (seventh row).
Again the rest of the scene is assigned to the image-speegioent (green). Finally, we
observe that forcing all the segments to be shared (fifth ayidlerows) results in worse
segmentation than the case with image-specific segmentsisihost likely a result of the
mismatch between the model, which assumes all segments@rging, and the dataset
which shows faces (a recurring object) on varying backgdsun

The qualitative observations for Fig. 5.2 are confirmed kg pecision/recall results

presented in Fig. 5.3. Without sharing (i.e., settiig= 0) we have the lowest perfor-
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mancé (black and magenta circles). These results are almostaguivo a random guess,
since the face will have random labels across the imageforRemce improves when we
share information for some segments, and one segment iehs@erific. In particular the
K =2, H = 1 case gives the best results (red triangle). Finally, for edfirumber of total
segments, sharing all the segments (green and cyan crossesjettingH = 0, always
results in worse performance than keeping one segment wsemfic, i.e.,H = 1. This
can be seen by comparing the positions of crosses and &mng|

The computational cost of performing inference on the madétig. 5.1 is linear in
the number of images and in the total number of segm&nts H in each image. Using
our C++ implementation of the sampler it takes about 185 gecimage per segment on a
2.50GHz Intel Xeon machine.

The SP-LDA model can to handle images like the ones in Fig.B02 more complex
situations, with many more recurring objects that mightaygpear in all the images of the
collection, the inference algorithm for the SP-LDA failsdonverge. For this more general
problem we present a new model in Section 6, that can handlgbl@ content in images

and is capable of modeling the appearance of more geneegjarés.

2To decide which segment label corresponds to the face sdgmerselect the segment with the largest
overlap with the ground truth. However, when a single segrizeshared we assume that segment to corre-
spond to the face segment.
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Chapter 6

Learning Categorical Segments in Image
Collections

In the SP-LDA model of Section 5 we used mean and covariantieeo$emi-parametric
distributions as shared statistics for the position/RGBi&across images. For the collec-
tion of faces we considered in our experiments this is a goodating choice since the
recurring object (the face) has similar shape and colorlithalimages. However, for re-
curring objects with textured appearance and varying mosdand shape, a more complex

representation is required.

6.1 Modeling recurring segments

Inspired by the “bag-of-words” approach [FFP05, SRE] we extend the model in Fig. 3.1
by adding new observed variables,,, that represent the visual words associated with an
observation. These new discrete random variables are sdrnfmpim K different multino-
mial distributionsp,, (topic distributions) which model the visual words’ stétis for each

of the K segments. Fig. 6.1 shows the graphical representationeoé&xtended model.

The model represents a collection/af images. An image is represented Ny, regularly
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Figure 6.1: The affinity-based LDA model (A-LDA) for learmgjicategorical segments (see
Section 6). The two gray nodes,, andw,,, represent the observed quantities in the
model: the feature vector (position and color) and the \lise@d associated with each
pixel, respectively. The nodes,,, ft.m, ¢x andd,, are hidden quantities that represent
the segment assignment foy,,, andw,,,,, the probability density of the feature vectors
in segment: of image[,,,, the visual words distribution for segmeht and the sizes of
the segments in image, respectively. The two squares with rounded cornersnd e
represent the hyperparameters of the Dirichlet distrdngioverd,, and ¢, respectively.
Finally, K is the number of segment8/,, is the number of pixels in image, and M is
the number of images in the collection.

spaced observations (e.g., one sample per pixel). Auttreobservation of image: we
measure a feature vectey,,,, €.9., the pixel's position and RGB values. We further esttra
a fixed size image patch centered at thth pixel and assign to it a “visual word?,,,,.
In our implementation, the dictionary of visual words is @ibed by vector-quantizing a
subset of all the descriptors of the patches extracted fibtheaimages. Thev,,,, variable
of an observation is the label of the dictionary entry closeshe descriptor associated to

the observation.

Each image is formed bi regions (segments) whose visual words statistics aredhare

across images. Segmentn imagem has a probability distributiorfy, ,,, of feature vector
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valuesz,,,, and a probability distributiow, of the visual wordswv,,,,. Note, that the dis-
tributions f;, ,,, of feature vectors are not shared between images, whileishrébdtions of
visual wordsg,, are shared across images. This is because we assume thppéasaance
of an object, which is captured by theg distributions, is similar in all images. On the
other hand the position of an object in a particular imagelmaassumed independent of
the position in other images. For example, a car can appearious image locations.
However, its overall appearance, as described by the vigaals, is the same in all im-
ages. We model the segment distributigips, using the nonparametric model proposed
in Chapter 3, while for;, we use an LDA model, as proposed in [FFP05] and [SE4].
Thus if we remove the,,,,, node from the graphical model we obtain the LDA model. Re-
moving thew,,,, hode from the model yields a collection 8f independent models, like
the ones described in Chapter 3. We call this new matfality-based latent Dirichlet al-
location (A-LDA)since we are using the affinities between pixels (see Eqi@@@scribe

the segment distributions, ,.,.

In the A-LDA model, visual words are grouped by segmentssEniables learning top-
ics that are related to object parts rather than to wholees;aas is done with the “bag of
words” representation of whole images [FFPO05]. A key aspkitte proposed model is that
the densities;, ,,, allow grouping of all the visual words generated from theresponding
topic distributiong,, into a single image segment. Moreover, it is possible to reefalif-
ferent grouping properties by choosing different formstfue densities;, ,,,. Assuming a
Gaussian distribution over the pixel positions in the imagein Sudderth et al. [STFWO05],

results in a spatially elliptical cluster of visual wordsngeated from the topi¢,. Assum-
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ing a non-parametric distribution (see 3.2.1), resultsimae complex grouping based on

color information as well as position in the image.

An important remark is that the A-LDA model assumes that gmire vectors,,,,
and the visual words,,,,, of a given pixel are independent given the topic assignnmant f
the pixelc,,,. It also assumes that visual words are independent givenhicelen labels.
These two assumptions are theoretically incorrect. Theramdom variables,,,,, andz,,,,,
are correlated, since both depend on the image patch cdrdengixeln. The same is true
for the visual words of close (overlapping) patches. Howgdg@aoring these dependencies
results in a simpler probabilistic model.

The densitieg}, ,, and the distributiong, have complementary roles in the model. The
densityf; ,, models segmeritin a specific imagen, and it forces pixels with high affinity
to be grouped together. The multinomialscouple together segments in different images
of the collection, i.e., they force segments in differenagas to have the same visual
words statistics. All the multinomial coefficients of thg are sampled from the same prior

distribution — a symmetric Dirichlet distribution [BNJOSJith (scalar) parameter.

¢kz ~ Dlr(€)

Wi |Or ~ Multinomial(¢y,). (6.1)

The K topic/segment distributions are not image-specific likedbensitiesf;, ,,,, but rather
are shared within the entire collection. This allows conglsegment appearance statistics
across multiple images based on the distribution of visuaba they contain. However, in

a particular image of a collection there may be objects tbatat appear in other images.
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To model these non-recurring elements, one can extend tidelnod Fig. 6.1 by forcing
some of thep;, to be image specific, like thg, ,,,, rather than common to all the collection.
This extension gives a model similar to the one of Fig. 5.-ounexperiments this extended

model gives similar results to the one of Fig. 6.1.

6.2 Inference algorithms

Exact inference is impossible for the A-LDA model. Therefave developed two types
of algorithms for approximate inference. The first type isdhon MCMC techniques for
sampling from the posterigr(c|x, w). The second type is based on variational approxi-

mation of the intractable posterior.

6.2.1 Sampling-based inference

For the sampling method we propose two different type of @doeces: the first one is a
Gibbs sampler [GG84], while the second one is based on the gemeral Metropolis-
Hasting [MRR53, Has70] method (the Gibbs sampler is a special case ofoplats-

Hasting). We need two different sampling strategies to aw@e the limitation of the

Gibbs sampler.

6.2.1.1 Gibbs sampling

To estimate the posterior distributigric|x, w) we can extend the Gibbs sampling algo-
rithm previously presented. Letc,,,|c_..., X, w) be the posterior distribution of the hid-

den segment label,,,, of then'th pixel in imagem, given the class labels_,,,, of all the
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other pixels in all the other images, all the feature vectqrand all the visual wordsv.

This yields:

p(cmn - k|c—mna X, W) X p(xmna Wirmn|Cmn = k‘, X—mny W_mn, c—mn)p(cmn|c—mn)- (62)

In our model the feature vectatr,,,, and visual wordw,,,,, are assumed to be independent
given the segment label,,. We can, therefore, decompose the likelihood term as the

product:

p(xmna wmn|cmn - ka X_mn; Womn, C—mn) (63)

= p(xmn|cmn = ]{7, X _mn; C—mn)p(wmn|cmn = ]{Z, W_mn, C—mn)-

The first term of Eq. 6.4 is the likelihood of the feature vecatg,, to be in thek-th segment
of imagem. Using the non-parametric approximation of Eq. 3.3, thisitean be expressed

as:

1
B Nkz,m

K (Zpn, Tmj) (6.4)

jesk,m

p(xmn|cmn - k’, X—mn; Cmn) = fk,m(x)

where the kernel valuek (v, v.,;) = Ay represent the affinity between,,,, andz,;,
Sk.m IS the set of feature vectors in segmeérih imagem, excluding the vectot, andNy ,,
is the cardinality of segmeis; ,,,.

The second term of EqQ. 6.4 is the likelihood of the visual waerg, to belong to the topic

distributiong,. Given the conjugate prior over, (see Eq. 6.1) we obtain:

Nwmnvk _'_ €

N +eV '’ (6.5)

p(wmna |Cmn = ]{f, W_mn, c—mn) =
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whereN,,, . r is the number of pixels with visual word,,,,, assigned to segmettin all
the images of the collectio,, is the total number of observations assigned to segient
ande is the hyperparameter of the Dirichlet prior over the togstiibutionse,’s.

As in Chapter 3.4.1, the prior term of Eq. 6.2 can be written as

Nim +

p<cmn = kk—mn) = ( (66)

where Ny, ,,, is the cardinality of segmerfi; in imagem, N,, is the number of pixels in
imagem, anday, are the hyperparameters of the Dirichlet prior oggr

Combining Eq. 6.4, Eq. 6.5, and Eqg. 6.6, we obtain the folhmpexpression for the condi-

tional probabilities used in the Gibbs sampling:

p(cmn = ]C‘X,W, C—mn) X (67)
K mny Lmj — : .
o 2 Koo | (555) (7, )
k,m

All the quantities in Eqg. 6.8 can either be precomputed, tie affinities K (z;, z;) =
A;;, or updated very efficiently. Given the samples frofe|x, w) by Gibbs sampling,
it is possible to assign each pixel to a segment using the Mgtifhator. The segment

distributionsf;, ,, and the topic distributiong, can be estimated given the assignment.

6.2.1.2 Block sampler

The Gibbs sampler is easy to derive and implement. It is cdatjounal efficient to obtain

new samples since by construction the algorithm accepthealsamples it generates (as
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opposed to other Metropolis-Hastings algorithms). Unfoately, the Gibbs sampler can

be trapped in local minima, with the practical effect of notieerging to the desired pos-
terior distribution (convergence is only asymptotic). Tkason why the Gibbs sampler is
trapped in local minima is because the algorithm changesat the state on one random
variable each time a new sample is computed. Thereforellyatable configurations are
never updated (see [BZ05]). A solution for this problem veblg to select a set of pixels
(block) that are likely to be in the same segment and chargjel#tbels in a single step to
a new value. As an illustration we consider the steps presgdntFig. 6.2: the current seg-
mentation (a) has grouped the legs of the cows with the gegggaeant. The block sampler
algorithm should select a set of pixels that are likely to tmuged together, such as the red
region in (b). All the pixels in the red region have very hidghiraty between each other so
their selection is desired. Finally a new label is sampleatithe region updated (c).

To implement the concept of block sampling, we consider tle¢rdpolis-Hasting algo-
rithm [MRR*53, Has70] presented in [BZ05], which is a generalizatiothefwell known
Swendsen-Wang sampling algorithm from statistical ply/$8W87]. Given a proposal
distribution ¢(¢’; ¢) that from the current labeling returns a new labeling’, the new

labeling is kept with probability

o peew) )
@ = min <1’ p(cle, w) g(c c>) | (6.8)

To generate the new configuration we proceed as followsngaweimagen in the collec-

tion create an undirected grapgh= (V, F) such that:

e For each observatian,,,, (pixels in the image) we create a nodec V.
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(©)

Figure 6.2: Block sampler. (a) A starting segmentation Wwtassigns part of one object
(the legs of the cow) to the wrong segment (grass). (b) Thekidampler selects a set of
pixels that are likely to have the same label (red region) T{e sampler reassigns all the
pixels in the proposed region to a new segment (the same e co

e For each pair of vertexes andv; we assign an edge; € £ if A7} > T i.e., the
affinity between the two observations,; andz,,; is sufficiently strong to suggest

they are in the same segment.

e For each edge;; we define an binary random variablg which is set to 1 with

probabilityp;; = f(A7}).

Using the graphz, which is independent on the specific state of segmentatiove can
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obtain a new graply’ = (V, E’) by removing all the edges between vertexes with different
segment labels and by removing an edgewith probability1 — p;;. A block is selected

by choosing at random a connected comportgnof the new graph’. Finally, a new
label is sampled fof; based on the visual words in it. This will give a new segmeoiiat

¢’ that differs frome for the observation iry;,. Samplingc’ from the proposal distribution
q(c; ¢) can be done efficiently, since it requires computing the eoted components of
the a sparse grapfi’ = (V, E’). Directly computing the proposal distributiefic’; ¢) is
infeasible, because it requires summing the probabilitgliahe possible ways of creating
the connected componeff. However, only the ratio between the two proposal distribu-
tionsq(c; ¢’) andq(c’; ¢) is required to run the Metropolis-Hasting algorithm. Thasio
can be computed easily because of cancellation of iderfactbrs, and it involves only
the edges between the vertexesinand the vertexes with the old and new segment label.
See [BZ05] for further details. Using the block sampler amelGibbs sampler we can cre-
ate a sampling procedure alternates between the two, wetltick sampler responsible
for “jumps” between locally optimal segmentation and th&I6s sampler responsible for
the diffusion of labels in “salt and pepper’ segmentaticet tten be created by the block

sampler.
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6.2.2 Variational inference

To formulate the variational inference on the model of Feg@rl we write down the joint

distribution of all the random variables

p(z, w,c,0,3) = p(x|c)p(wlc, B)p(c|d)p(0)p(3), (6.9)

where, given our assumptions on the distributions of theehdhke expressions for each of

the three factors are given by:

p(@le) = Hivmjzl ivzl Hszl [f(@mn)] )
p(wle, §) = Hr]‘r/LI:I 7]:[:1 Hf:ﬂﬁk,wmn]c”m(k)
p(cld) = H%:l 7]:[:1 Hf:1(9gb)cmn(k) 6.10)

p(0) = TIN_, Cla) T, (B ex—D

p(B) = I, Con Il 8"

with C'(«) andC(n) the normalization constant of the two Dirichlet distritmrts of param-

etera andn (see [Bis06], p. 687). We then consider a variational distiong(c, 6, 3) for
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the hidden variableg, 0, and that factorizes, i.e., assumes independence, as:

q(c,0,8) = q(c)q(9, 3).

Following [Bis06], we derive the update equation §dc¢):

logq*(c) = Eyppllogp(x, w,c,0,3)]+ const

(6.11)

= Eyp.p llogp(z|c)] + Eqop llogp(wlc, 3)] + Eqeo,5 logp(c|f)] + const

= Z%:l ijzl ZkK:1 Cmn (k)

(10g Jrem (Tmn) + Eq(3) 108 Brwpn] + Eqio)[log Hk])) + const

(6.12)

with E,,)[z] the expectation of random variabteunder the probability distribution(x).

In Eq 6.12 we have absorbed the terfig s [log p(0)] and £, g [log p(3)] into the con-

stant, since they are independenicofTaking the exponent of both sides of Eq. 6.12 and

normalizing provides:

where we defined the responsibilities:

fm,k(xmn) eXp(EfI(G) [log 9/6] + EQ(ﬁ) [lOg ﬁk,wmn])

Tmn(k) =

Yk fok () exp(Ey) [log 6] + Eys) 108 Brwmn])

(6.13)

(6.14)
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Eq. 6.13 shows that the variational density factorizes itmdependent multinomial dis-
tributions, one for each teri,. The parameters of each multinomjét,,) are the respon-
sibilities (7, (1), 7mn(2), - - ., Tmn (K)) in Eq. 6.14. Similarly, for the variational distribu-

tion ¢(0, 3), we have the update equation:

logq*(0,8) = Eyellogp(e, w,c,b,3)]+ const

= Yo omit Yok Bageylemn (k)] log 6" + log p(6)+ (6.15)
E%:l 25:1 Zf:l Eqye) [Cinn (B)] 108 B 1w + log p(B)

+-const

The first term of Eq. 6.15 is:
M K N

Sy (ozk +3 Pnl(k) - 1) log 6", (6.16)
m=1 k=1 n=1

while the second term of Eq. 3.17 is:

K

v
>0 (77 L 1) 10g B h, (6.17)

k=1 v=1

with ny, ;, the sum of all the responsibilities,,, (k) for which w,,, = h. Taking the expo-

nential of Eq. 3.17 we show that the variational distribntiactorizes as:

q(0,8) = q(0)q(B), (6.18)
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where the first variational distribution has the functiof@m of a product of Dirichlet

distributions:

M K
[T e, (6.19)
m=1 k=1
with parameters:
W=kt > Tmn(k) = ak + Ry, (6.20)

whereR,,; represents the total responsibility for segmeim documentn.

The second factor of the variational distributig®, 5) has the functional form:

K 14
C(¢) [ B4, (6.21)
k=1 h=1
with parameters:
P = 1+ N (6.22)

with n, ;, defined as before.

Note that we did not assume any particular functional formyfe) andq(0, 3). Instead,
Eq. 6.13 and Eq. 6.18 follow from the graphical structure &mal distributions used in
the model, as well as from the factorized fourtd, 5, c) = q(3,0)q(c). Finally, since
q(9) is a Dirichlet distribution, we can derive a closed-formuan for £, [log p(6;,)] =
U(y,) — (>, ), WhereW(a) is the first derivative ofogI'(a) (see [BNJO3] for the
details of the derivation). This expression is then usedotopute the responsibilities in

Eq. 3.16.

Using Eq. 3.21 together with Eq. 3.15 and Eq. 3.18, we obtagséem of coupled
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equations that can be iteratively solved in similar way ascdbed in the algorithm of
Fig. 3.4.3. Also in this case we can use the KDE approximdbaompute the quantities
fr.m(xmn) @s proposed in Chapter 3.

The variational approximation scheme is particularly @li¢ for implementation on
a parallel system. The computation of the responsibilitigs(k) and of the parameters
~™ can be done independently for each imageOnce these quantities are available the
parameterg) can be computed as well by collecting from each image the dutmeore-

sponsabilities for each visual word in the dictionary.
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Chapter 7

Experimental Results

Following Fei-Fei et al. [FFP05] we extract patches by dgnsampling each image with a
grid of 4 pixels. For each patch a local descriptor is comgute experimented with three
possible descriptors: the RGB value of the central pixelhef patch, filter bank outputs
[WCMO5] (see Fig. 7.1), and the well known SIFT descriptan\i04]. The dimensionality
of the descriptor vectors are 3, 17, and 128, respectivalgllithree cases a subset of the
extracted descriptors is used to construct a visual diatipnia K-means clustering (see
Sivic et al. [SRE 05]). We experimented with three different dictionary siz56, 512,
and 1024. Finally, the visual word assigned to the patchaddbel of the most similar
dictionary element. The multinomial distribution of visusords ¢, are shared across
images since they model the appearance of recurring elanretite collection.

In all our experiments the densitig’,,, are non-parametric (see Section 3.2.1) and
are assumed independent between images (see Section 6)séNbeuintervening con-
tour method [CBSO05] to compute the affinities used for the-parametric approximation
of fi.. We also experimented with the semi-parametric model (setidh 3.2.3) which
achieved comparable performance but required more coripuighresources for estimat-

ing the mean and the covariance of the parametric term.
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Filter Bank Kmeans | w,

Figure 7.1: Filter banks visual words. The schema shows hsualwords are computed
using a filter bank. The different color channels in the insagee filtered with different
Gaussian (low-pass filters for capturing color informajiand gradient (high pass filter for
capturing edges and texture information) filters. Afterfihering each pixel is represented
by an 18 dimensional vector. The visual words are obtainedibging kmeans over all the
pixels, and assigning the discrete label of the cluster tichvé pixel is assigned.

The computational cost of the inference algorithm for thedel@f Fig. 6.1 is linear in
the number of images and in the number of topics/segmEntsee Appendix 6.2.1.1 for
the implementation details). The algorithm is implemented++ and it has a running time
of about 20 sec. perimage (witki = 20) on a 2.50GHz Intel Xeon machine. This running
time is much smaller that the one reported in Section 5.2\i@r teasons. First we are
sampling the image on4x 4 regular grid, hence reducing the number of observations in
the collection. Second we are using the non-parametriesgmtation of Section 3.2.1 for

the segment densitigs ,,, rather than the semi-parametric representation used o8t

We tested our system on four databases: the Microsoft Res€&ambridge dataset
version one (MSRCv1) and version 2 (MSRCv2) [Cri04], a stib$¢he LabelMe dataset
[RES'06], and the scene database of Oliva and Torralba [OTO1}e Mait our experiments

are completely unsupervised: we do not use any labelingnmton during inference.
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Figure 7.2: Error measures. For each image used in the empets the ground truth
segmentatioGT') is available (orange region). The result segment for the category
obtained from the A-LDA is displayed in dark green. The istation of the two regions is
the set of correctly identified pixels in the image (magenta)

The “ground truth” segmentation is used only to evaluatestagmentation results. The
results of our unsupervised recognition/segmentatiotesysire illustrated by showing the
segmentation masks and by reporting numerical evaluafitresegmentation accuracy of
the model. Finally, we provide a comparison with three otieéated probabilistic models:
the Gaussian mixture model (GMM), the latent Dirichlet eiton (LDA), and the spatial

latent Dirichlet allocation (S-LDA) [WGO7].

7.1 Evaluation metrics

To obtain a numerical evaluation of the performance of theD¥ model we introduce the
two error measures of precision and recall. Considering Fig, the ground trutld-7" for
the segment containing the cow is represented by the oragge; the segmentation result
for the category cow obtained from the A-LDA is representgdie dark green region, and

the intersection of the two regions is represented by theami@gegion. The precision and
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recall values are then defined as:

|GT N SEG] e |GT N SEG]
|ISEG] |GT]

prec =

(7.1)

Following [EVGWT], we also define the segmentation accuracy for a categoheasum-
ber of correctly labeled pixels in that category, dividedthg number of pixels labeled
in that category in either the ground truth or the segmematésults (intersection/union
metric).

|GT N SEG|

acc = m (72)

This pixel-based measure has several limitation: it do¢sake into account multiple
instances of the same object category in a single image aoe# not consider the quality
of the segment contours. Nonetheless we decided to usedtiisydar definition because
itis a de facto standard for the computer vision communityiahas been used to evaluate

other (supervised) segmentation/recognition system®RAfBWRCO09].

A final caveat for the evaluation of the segmentation pertorae is the labeling of the
topics obtained from the A-LDA model. Since our model is yulinsupervised there is
no possibility of understanding which topic correspondsvtoch category. To be able to
use the precision/recall and the accuracy metrics we neasistuciate topics to categories.
We obtain this association by dividing the dataset into tadgof equal size: a probe set
and a test set. We use the probe set to compute the matchingdrethe topics and the
categories. The precision/recall values and the segmentatcuracy is evaluated on the

test set. It is important to emphasize that the segmentefitre dataset is obtained using
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Figure 7.3: Visual words dictionaries. Left: 256 visual wemwhen the pixel color is used
as descriptor. Right: average of the patches associatesbteigual words when the filter
bank is used as descriptor.

no human labeling. In principle it would be possible to haveiman operator to inspect, at
a single glance, all the segments in the same topic and giggegary label for that topic,

propagating the label to all the pixels in the image coltatti

7.2 Comparing different types of visual words

The first descriptor we tested is the RGB value at the centarpatch. The left panel of
Fig. 7.3 shows the RGB colors associated with the centroith@ictionary words (256
visual words). We used the MSRCv1 dataset to obtain thedeot#s \We observe that a
lot of the visual words in the dictionary correspond to gréexture. This is a consequence
of the large quantity of grass and foliage present in the MSR@set

Fig. 7.4 shows unsupervised segmentation results of deweages of the MSRCv1

dataset. Each categorical segment is marked with the saloeicall the images (arbi-

These two classes account for almost 30% of the pixels inakaset.
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A-LDA Image LDA A-LDA Image LDA A-LDA Image

LDA

Figure 7.4: Unsupervised segmentation and recognitiantees/hen only RGB informa-
tion is used to construct the visual words. Three panels @gepted. In each of the three
panels we present the original image, the segmentatiorg tisenA-LDA model, and the
segmentation using the LDA model. The three panels showiffezaht types of images:
cows, trees, and faces. For a specific model the same coldifénetit images identifies
the same topic segment.
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trarily chosen to highlight individual segments). Noti¢&at corresponding regions tend
to have the same color across all images indicating that tisepervised algorithm has
“discovered” the corresponding categories: e.g., the sigyreent is always assigned to the
green label. To obtain a quantitative evaluation of ouresystve consider the segmenta-
tion error with respect to the ground truth. We consider anubset of the 13 categories
present in the dataset since some categories are very Jarehey occupy less then 1%
of the total number of pixels in the collection. In partiaulae do not consider: sheep
(0.45%), horse (0.18%), and mountains (0.25%). Fig. 7.%5vshbe precision/recall plots
for each category when using a dictionary of 1024 visual wanid 20 segment&( = 20).
We also experimented with other sizes of the dictionary (266 512). The overall per-
formance of the system did not change significantly with tieéi@hary size, with a minor

advantage being gained by using a larger dictionary.

The second descriptor we tested is the output of a filter b®WRNO5] at each pixel
location. Fig. 7.3 shows the means of &l x 11 patches assigned to each dictionary word
when the filter-bank responses are used as basic patchptestriWe observe that with
this descriptor we have two types of visual words: color aiswords and texture visual
words. The first type describes uniform patches based ondblgir, while the second type
characterizes image patches by the specific gradient pdttey describe (a centered dot
or a slanted edge) and usually have a gray color (from avegguatches of different color

but similar gradient pattern).

Fig. 7.6 shows unsupervised segmentation results of deweages of the MSRCv1

dataset. Each categorical segment is marked by the sanreacotss all images. Fig. 7.7
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Figure 7.5: Precision/recall plots for the MSRC datasetiwh&ng visual word based on
RGB color. The dictionary size is of 1024 visual words. Thenfer of topicskK is set to
20. The F-measure isolines are defined as in Fig. 5.3.

shows the precision/recall plots for all the consideredgaties. We can see that our model
performs extremely well on the grass category which is thglsimost popular category
in the dataset (20% of the pixels are labeled grass). Othegores like faces, sky, and
foliage(tree), have medium performance. The most chailtlgngategories are airplanes,
cars, and sea. In particular the airplanes category is dlne&r recovered. The problem
with the airplanes and cars categories is that they have a raidge of appearances and
points of view which makes it difficult for the A-LDA model tgst their recurrence across

images without supervision. The sea category is relatikggly compared to the others, less

than 1% of the dataset.

For each category we compute the segmentation accuracy assune of the system

performance. Fig. 7.8a shows the scatter plot of the acmgdor each category when



Image

A-LDA Image LDA A-LDA Image LDA A-LDA

LDA

Figure 7.6: Unsupervised segmentation and recognitiomviifter responses are used to
construct the visual words. Similarly to Fig. 7.4, we prdgfinee panels.. In each of the
three panels we present the original image, the segmentagiag the A-LDA models and
the segmentation using the LDA model. The three panels sliftevaht types of images:
cows, trees, and faces. For a specific model the same coldifénetit images identifies
the same topic segment.
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Figure 7.7: Precision/recall results for the MSRC datagetmusing visual words based on
filter bank responses (red crosses). The dictionary siz624 Visual words. The number

of topicsK is setto 20. The precision/recall results for the spattaiiaDirichlet allocation
(S-LDA) [WGO07] are also reported (black diamonds).

using color visual words and when using vector-quantizeédrftbank responses. We see
that in general the filter banks perform better, althouglttiiercows and sea categories the
color visual words perform better. We also tested a thircetgp visual words based on
the SIFT descriptor. Since the SIFT descriptor is based enrtensity gradient, it does
not capture color information. In order to also considecatformation, we modified the
model of Fig. 6.1 to have two different visual words per olva@on: one derived from color
(see previous discussion) and one derived from 3IF6r a given segment, visual words

of different types are sampled from two independent muitirad distributionses, (color)
and¢; (SIFT). Fig. 7.8b shows the scatter plot of the accuraciesnmmsing color/SIFT

visual words and when using filter-bank visual words. We olesthat the filter-bank visual

2Using only visual words based on SIFT merges categories sintiilar texture, but different color like
grass and sea.
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Figure 7.8: Comparison of the segmentation accuracy of théA model for different
types of visual words: color (RGB) visual words (horizordals) and the filter bank visual
words (vertical axis).

words and the joint color/SIFT ones have similar accurasylts (close to the diagonal)
with the filter-bank visual words performing better for thet@gories grass, sky, faces, and
foliage, and the color/SIFT visual words giving greaterwecy for building, bikes, and
cows. As previously observed, filter bank visual words cadiligled in two groups: color
and texture. Since color/SIFT visual words also capturedheo patch properties (in a
different way), the similarity of segmentation accuracgas surprising. In all the following
experiments we will always use filter-bank visual words. \W® &xperimented with other
collections of images such as the Boston urban area subkabefMe [RES 06] and the
scene dataset used by Oliva and Torralba [OT01]. Fig. 7.9Fagd7.10 show several

examples of categorical segments learned from these tatase

All the experiments considered so far are completely unsiged, i.e., neither regions
of an image nor whole images have any label. If we allow for rag® amount of super-

vision we can improve the performance over the unsuperwssd. For example, we can



Figure 7.9: Four topics/segments learned from the LabelMalzhse. Each panel contains
8 segments from the same topic. The four topics represemtdifferent elements of a
possible street scene: “tree/foliage”, “buildings”, &t pavement”, and “sky”. These
topic panels show the consistency we obtain across the sradhe collection.

consider the case when we know a priori which objects areeptea each image of the
collection. In this case we share statistics only betweeages that contain the same ob-
ject, as in the experiment of Section 5.2. Fig. 7.14 compidweprecision/recall values for
the unsupervised case (red crosses) and the semi-supkceaise (blue circles). In the first
case all the images in the collection are segmented togatitethe model has to determine
which object is present in each image. In the second caseegraent together only im-
ages that contain objects from the same cateyydoging this limited information we can

achieve much higher precision/recall values on all thegmates we have labeled.

7.3 Comparing different inference algorithms

In Chapter 6, we developed two inference algorithms for tlogleh of Fig. 6.1: one based

on sampling, specifically Gibbs sampling and a variatiorhef$wendsen-Wang sampling

3We only consider one category for each image. For example ifreage has both cows and grass we
only consider cows.



Figure 7.10: Six topics/segments learned from the Scerabdae. Each panel contains 8
segments from the same topic. Our visual words representaicorporates color infor-
mation, therefore skies were assigned to two topics, litet and dark blue.

(block sampler), and one based on variational approximatia this section we review

their performance in term of accuracy and computational. cd#& also discuss other as-

pects such as the suitability for a parallel implementation

The first inference method is based on two sampling algosthtine Gibbs sampling
and the Swendsen. We first compare the advantage of usingalmmttithms in alternate
steps to using only the Gibbs sampler. Fig. 7.15 shows theigwa/recall plot and the
scatter plot for the accuracies of the categories in the M&RIGr the two sampling al-
gorithms. We can see that performance is fairly similarhvaib improvement for the cow

and grass categories. Although the block sampler does rmbie the accuracy perfor-



Figure 7.11: Categorical segments from MSRCv1. The toplmrmvs 12 segments from
the category “cows”. The bottom panel shows 12 segments flacategory “faces”.
These two categories are often confused by the A-LDA modehbse of the color simi-

larity.



Figure 7.12: Categorical segments from MSRCv1. The toplpmevs 12 segments from
the category “tree”. The bottom panel shows 12 segments fh@ncategory “grass”.



Figure 7.13: Categorical segments from MSRCv1. The toplpmevs 12 segments from
the category “bicycles”. The bottom panel shows 12 segnfemtsthe category “sky”.



83

1 I

+ Unsupervised ‘ N\ AN
09 O Weakly supervised \ N
T T T \ \ N \\
Lo \ N\ \ iaoe
08f ‘ \ “ | N\ Ofoliage -,
|| \ . cars Kikes
orl - \é \\Obundlngs -
\‘ '\\ CQWS face\sx - F=0.8
< 0.6 ‘ \‘ \ \ ~
‘B “ \ \ AN L TTR=07
'S 05 ‘ \ \. RN _
a | | N\ S~ T F=06
' | \ +folla%s +faces
‘ \ *cars ~__ airplane
‘ N F=05
0.3 % \\\ 'm""""—r—»,,“,w777
E + buildings +bikes = F=04
02kL | N g T E—
- F=03
\ ———%cows
0.1 NS "———u,,,t a"'pIane - F=0.2
e F=0.1
0 | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 7.14: Precision/recall plots showing the segmentatecognition performance of
the A-LDA on seven categories: airplanes, bikes, buildjiragss, cows, faces, and trees
(foliage). The red crosses refer to the unsupervised caseKRg. 7.7). The blue circles
refer to the weakly-supervised case, where the categogy} tdlihe objects in an image is
known. Even this limited amount of supervision, a singlesldbr the whole image, greatly
improves performance of the segmentation.

mance of the model, it is capable of reducing the computationst of the inference step

by reducing the sampling time from 18.75 seconds per ima@e8® seconds per image.

The second inference algorithm we developed is based oatiaral approximation of
the posterior distributiop(c|x, w) (see Section 6.2.2). Fig. 7.16 shows the precision/recall
plot and the scatter plot comparing the variational infeeeand the Gibbs sampling. We
can see that the variational algorithm is under-perfornfargnost categories, particularly
for those where the Gibbs sampling gives good results. Algholess precise in terms
of segmentation/recognition accuracy the variationabadlgm is one order of magnitude
faster than the Gibbs sampler: 1.35 seconds per image aseppw18.75 seconds per im-

age. The variational algorithm can also easily be parabelias observed in Section 6.2.2.
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Figure 7.15: Comparison of sampling algorithms. (a) Prenisecall results showing the
segmentation/recognition performance of the Gibbs sampfierence algorithm (blue cir-
cle), and the Block sampler together with the Gibbs sampéet ¢rosses). (b) Scatter plot
of the accuracy for the two sampling algorithms.

These two properties make it suitable for large scale proble

7.4 Comparison with other probabilistic models

We compare the A-LDA model with three alternative modelse Tirst model is a simple
Gaussian mixture model (GMM) with the same number of comptsas topics/segments
in the A-LDA model. To obtain the model we collect all the d@stors of all the images
and estimate the model parameters and the observatiomassig using EM. We observe
that when estimating the model we use neither any affinitgrim&tion (segmentation cues)
nor image membership.

Another possible probabilistic model is the LDA model. Assebved in Section 6,
this model can be seen as a simplification of the A-LDA modaellnch thez,,,, variable

is removed. Therefore, the LDA model does not consider theiomship between the
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Figure 7.16: Comparison of sampling and variational alfpons. (a) Precision/recall plots
showing the segmentation/recognition performance of th&sampler inference algo-
rithm (blue circle) and the variational inference (red a®s). (b) Scatter plot of the accu-
racy for the Gibbs sampler and variational approximation.

visual words of an image (affinities information), but doemsider image membership,
i.e., the same visual word may have different meanings ifemiht images. The number
of segments is 20 in all the experiments and a dictionary @4Misual words is used for
both the LDA model and A-LDA model. We use filter bank resp@nas the descriptor
for image patches. Fig. 7.17 shows scatter plots compahn@d\tLDA model with GMM
(left) and LDA (right). We see that the A-LDA outperforms GMbh all the categories
in the dataset. The A-LDA outperforms the LDA in all the caiggs but two: cars and
cows. lItis also interesting to study the results from the L&#wn in Fig. 7.18: we can
see that the LDA model returns whole images without any nmedini segmentation of the
elements in them, i.e., the LDA can characterize an imagedas his content, but it can
not segment it. On the other hand the A-LDA, which uses aifisiinformation, returns

regions that correspond to a single object in the imagesHgp&.11).



86

0.7 T 0.7
06 + grass osf + grass
0.5 05
< + sk < + sk
fa) y a y
T oa T o4
< <
§ + faces é‘ + face
30 + foliage 30 + fofiage
Q Q
< + < +
ikes bikes
02 cars ] o2r % cars
€8 building + buildi
oal + ¢ : ] ol =+ cow
+ dirplane + ajrplane
o ; ; ; ; ; o ; ; ; ; ; ;
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 05 0.6 0.7
Accuracy GMM. Accuracy LDA.

Figure 7.17: Left: scatter plot comparing the A-LDA modetima Gaussian mixture model
(GMM)). We can see that the A-LDA model always outperforms @MM. Right: scatter
plot comparing the A-LDA model with an LDA model. In this case A-LDA model has
better accuracy for almost all categories. All of the thremdeis use 20 segments and are
unsupervised.

We compare our model (A-LDA) with the spatial latent Diriehbllocation (S-LDA)
model proposed by Wang and Grimson [WGO7]. This model ex@émiA by considering
the proximity of visual words in an image, but without usimjarmation based on the
local similarity of the image patches. Table 7.1 reportsdétction/false alarm rates and
the accuracyof the two systems. In three out of the four categories regkirt [WG07] we
obtain higher accuracy and lower false alarm rates. For ategories: bikes and faces, we

also have a higher detection rate. Furthermore, we repsultseon six categories ignored

by [WG07].

Finally, we tested the A-LDA system on the more challenginGRCv2 dataset. This

dataset contains a total of 591 images and 23 catedoriisice this dataset is a super-

4The accuracy values for S-LDA were not reported in [WG07]. &¥imated them from the detection
and false alarm rates reported in [WGO07] and ground truthdgutating for each category the number of
true positive, false positive, false negative, and trueatieg.

STwo categories, horse and mountains. were not considertteiexperiments because of the limited
number of pixels with those labeled.



Figure 7.18: LDA results from MSRCv1. The top panel shows &g@nsents from the
category “faces”. The bottom pannel shows 12 segments frentategory “cow”. See
Fig. 7.11 for the corresponding results from the A-LDA madel
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Class S-LDA (Wang et al.) A-LDA
Detection| False Al.| Accuracy* | Detection| False Al.| Accuracy
COWS 0.5662 0.0334 0.3513 0.3796 | 0.1191 | 0.1193
grass N/A N/A N/A 0.6910 | 0.0434 | 0.5904
cars 0.6838 | 0.2437 0.1381 0.2888 | 0.0331 | 0.1878
sea N/A N/A N/A 0.3735 | 0.0087 | 0.1688
buildings N/A N/A N/A 0.2884 | 0.1004 | 0.1552
foliage N/A N/A N/A 0.5403 | 0.0852 | 0.2892
sky N/A N/A N/A 0.5729 0.0271 0.4524
airplanes| N/A N/A N/A 0.2108 | 0.0539 | 0.0688
bikes 0.5661 0.3714 0.0672 0.6789 0.1072 | 0.2161
faces 0.6973 0.4217 0.0481 0.7038 | 0.0349 | 0.3323

Table 7.1: Comparison of our model (A-LDA) with the probadtic model of Wang and
Grimson (S-LDA) [WGO07].

Model Buil. | Grass| Tree| Cow | Sheep| Sky | Airpl. | Water| Face| Car | Bic.
A-LDA (v1) | 16 60 29 12 X 45 7 17 33 | 19 | 22
A-LDA 11 61 32 10 4 39 3 20 22 6 32
LDA 4 47 8 6 5 22 7 16 24 | 6 0
[VTO7] 52 87 68 | 73 84 | 94 | 88 73 70 | 68 | 74
[SWRC09] | 62 98 86 | 58 50 83 | 60 53 74 | 63 | 75
[SJCO08] 49 88 79 | 97 97 78 | 82 54 87 | 74| 72
Model Flower | Sign| Bird | Book | Chair | Road| Cat| Dog | Body | Boat
A-LDA (v1) X X X X X X X X X X
A-LDA 16 8 1 9 4 16 5 3 3 4
LDA 29 2 0 24 3 14 | 0 1 5 0
[VTO7] 89 33 | 19 78 34 89 | 46| 49 | 54 31
[SWRCO09] 63 35 | 19 92 15 86 | 54| 19 | 62 7
[SJCO08] 74 36 | 24 | 93 51 78 | 75| 35 | 66 18

Table 7.2: Segmentation accuracy (in percent) for the MSR@ataset. The results are
divided in two tables. The first row of each table reports theuaacy for the MSRCv1
dataset, a subset of the MSRCv2 dataset

set of the MSRCv1, we can also observe if and how much the sggten accuracy of

the A-LDA decreases when more categories need to be idehtBiesides the usual com-
parison with the LDA model, we also consider the three suped/segmentation systems
described in [VT07], [SWRCO09], and [SJCO08]; this compamigwovides an upper bound

on the performance of the system. The accuracy results pogtesl in Table 7.2. For both
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the A-LDA model and the basic LDA we use a dictionary of 102¢ual words obtained

from filter-bank descriptors anfl’ = 60 topics in the modél We ran the two inference
algorithms (Gibbs sampling) for approximately the same amof time. We observed that
A-LDA outperformed the standard LDA for most categoriesthithe major exceptions of
the categories flower and book (see second and third row dé€TaB). Both unsupervised
methods had considerable difficulties in recognizing amprenting object categories like
cat, boat and body. These categories have a wide range abiudy and represent only a
small fraction of the pixels in the collection so it is chaligng to spot the statistical regu-
larity of their appearance. The same categories are beitedléd when a certain amount
of supervision is provided, as shown by the bottom three rofvEable 7.2. For all three
methods both the visual words and the category model areibuldiscriminative way. It
is also interesting to compare results for the A-LDA modekwlapplied to the MSRCv1
subset of images. We see that accuracy is lower for the makeadging MSRCv2. This
is a consequence of the larger number of categories thensysteying to identify. For
categories with a large number of observations, like graess, bicycle, sky, and water
the segmentation accuracy is comparable if not larger. kesd categories, the dataset
provides enough evidence for building a good statisticadlehoT his observation is further

analyzed in Section 7.5.

Of course, even for the grass category, (which is the langesbth the MSRCv1 and
MSRCVv2), the performance of the A-LDA is lower than the cepending one for the

supervised methods. These methods use a large amount ofisigpe as seen [SJCO08].

5We used a larger number of topick (= 60) than we did for the MSRCV1K = 20) because of the
larger number of categories in the dataset.
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Those results were obtained using 276 training images wxeél fevel labeling. More
complex datasets like the Pascal VOC were not consideredxjperimental evaluation.
These datasets were designed to be challenging for supdrsystems, and will be almost
impossible for the unsupervised caseEven a relatively “easy” dataset for supervised
recognition, such as the MSRCv2, can be quite challenginth®unsupervised methods

like A-LDA.

7.5 Accuracy vs. category sample size

Since our model (Fig. 6.1) is completely unsupervised, $ttoerely on the co-occurrences
of visual wordsw,,,,, to identify different categories. Therefore, we expect tha larger

the number of pixels in a category, the higher the accuradiyoeifor that category, since
there is more evidence to identify co-occurring visual veirdthat category. To verify this
intuition we consider the MSRC dataset, remove all the imaféaces, and progressively
add new images from the faces category in the Caltech10%efatén each iteration, we

add a new batch of 10 images to the collection, then run oeremice algorithm to obtain
the categorical segments and compute the accuracies fdaths, as well as for all the

other categories in the datasets.

Fig. 7.19 shows the mean accuracies of each category in taseddor different num-

bers of pixels in the faces categdryAs expected, the accuracy for the faces category,

’If the recognition accuracy is very low for all the unsupeed methods tested, it would be difficult to
draw any conclusion.

8The 30 images in the MSRC dataset with face labels are a soltbet faces category of the Caltech101.

SWe repeat this experiment 20 times. Each time we randomécséthe batch of 10 images to add from
the list of unused images.



91

08— ; ; — 7
faces
cow :
0.7 grass ‘ 7
cars

sea

building
foliage
0.5H sl_<y ‘ .
airplane
—— bikes

0.6 [

all accuracies
o
N
T
|

0.3 n

0.1F M

10 10
Number of face pixels

Figure 7.19: Accuracies of different classes as the sizZeafieices category in the collection
increases. The accuracy for the faces category (solid ejdm@gps improving as the size of
this class increases. The accuracies of other categddeegtass, foliage, and buildings are
fairly constant. The accuracy for the cow category decrease¢he number of pixels in the
faces category increases, suggesting that it is more dtffcwaiscriminate between these
two categories given our visual words. We confirmed thisaffy exploring segmentation
results for individual images: the reddish cows are somegiconfused with pink-brown
faces.

depicted with thick solid orange, increases as its sizeeases. In particular, the accuracy
increases faster at the beginning, when the number of pisetdatively small and slows

down when the number of pixels is greater th@d00. The accuracies of the other cate-
gories are fairly stable, with the exception of a few catéggwhich decrease as the face

category becomes large. Among these exceptions the cgtetparh decreases the mostis

cows, with a drop 06.16 in accuracy. This is due to the similarity between the visuaids
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distribution of the faces and cows categories. As the sizbefaces category increases,
the prior probability for a pixel to be a face also increaseading our inference algorithm

to label ambiguous pixels as faces instead of cows.
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Chapter 8

Conclusions

We proposed a probabilistic model for simultaneously seging and recognizing consis-
tent objects or object parts without the use of human supemwi Our system differs from
previous work, which either cascaded or interleaved segatien and recognition instead
of integrating them into a single process. We first introdliaesimple semi-parametric
mixture model (SPMM) that can be used for single-image segatien. With respect to
other probabilistic models, such as GMM, this image-sedatem model has the advan-
tage of allowing a more flexible representation of the segmeomposing an image. Our
experiments on single-image segmentation show that irctmgext our model is superior
to GMM. The same experiments show performance that, in kpe@mental scenarion, is
comparable with normalized cuts. The advantage of our misdel providing a consis-
tent probabilistic framework that can be easily extendedddress more complex vision
problems.

We extended the single-image model to approach the moréenalg problems of
simultaneous segmentation and recognition of an entirgénallection, with limited or
no supervision. We found that sharing information aboutshape and appearance of

a segment across a collection of images of objects belortgirige same category can
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improve performance. To address the more general case eirthdtaneous unsupervised
segmentation and recognition of multiple categories inleecton of images, we further
extended our model by also using visual words to describ@rmieg categorical segments
in different images. The statistics of the visual words icheaegment are shared across
images, helping the segmentation process and automwtitstiovering recurring elements
in the image collection. Our experiments show that our mo&ldlDA model) outperforms
other probabilistic models such as GMM, LDA, and S-LDA. Weaashow how a limited
amount of supervision, namely the label of the object pregean image, can greatly
improve the segmentation results. Finally, we studied ¢tegtion between the performance
and the number of observations in a given category, and ftheitdhe accuracy increases
with the number of observations.

In our experiments we considered observations sampled &oagular grid in the im-
age. An alternative approach that can be pursued is the usapefpixels [RMO03] as
observations. This would result in a reduction of the nundfesbservations and a corre-
sponding speed up of the system. Three types of descripgmeswged in our experiments:
RGB color and filter bank responces, and SIFT [Low04]. Otlgpes based on decision

trees may be used to replace or supplement the ones used here.
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