
Searching Large-Scale Image Collections

Thesis by

Mohamed Alaa El-Dien Mahmoud Hussein Aly

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended May 23, 2011)

ii

© 2011

Mohamed Alaa El-Dien Mahmoud Hussein Aly

All Rights Reserved

iii

To my family: my mother, my father, my wife and kids, and my sister. They have always

helped and supported me.

iv

Acknowledgments

First and foremost, all thanks are due to God, for giving me the strength and persistence to

go through six years of graduate work.

Second, I would like to thank my thesis adviser, Prof. Pietro Perona, for being an ex-

ceptional adviser, both academically and professionally. I learned a lot from his knowledge,

insight, and guidance.

Third, I would like to thank Prof. Yaser Abu-Mostafa. He was my initial co-adviser at

Caltech. He gave me invaluable advice and patiently and graciously helped me refine and

define my thesis topic.

Fourth, I would like to thank Dr. Mario Munich for hosting me for an internship at

Evolution Robotics, and for collaborating with me and providing me with advice during all

my thesis work.

Fifth, I would like to thank Dr. Jean-Yves Bouguet for hosting me for one internship at

Google, and helping me get a second one. I would also like to thank Dr. Drago Anguelov,

Dr. James Philbin, Dr. Hartwig Adam, and Dr. Hartmut Neven for their great help in

the second internship at Google, in which I was able to perform the large-scale distributed

experiments of Chapter 7.

Sixth, I would like to thank my colleagues at Caltech, both inside and outside the Vi-

v

sion Lab, who helped make my time possible. Specifically, I would like to thank Peter

Welinder for helping me collect some of the datasets, and co-authoring a couple of papers.

I would also like to thank Marco Andreetto and Ahmed Elbanna for helpful and insightful

discussions.

Finally, I would like to thank my family. My parents have always supported and pushed

me, starting from elementary school and up to graduate school. My wife and kids also

supported me and have been very patient with me taking time away from them in order to

finish my homeworks, exams, and research work.

vi

Abstract

Searching quickly and accurately in a large collection of images has become an increasingly

important problem. The ultimate goal is to make visual search possible: allow users to

search using images in addition to typing text. The typical approach is to index all the

images of interest (e.g., images of landmarks, books, or DVDs) in a database and let users

question the system with query images. Such a database can reach billions of images, and

this poses challenges in terms of memory and computational requirements and recognition

performance. In this work we provide an in depth study of systems used for searching

large-scale image collections.

Specifically, we provide a thorough comparison of the two leading image search ap-

proaches: Full Representation (FR) vs. Bag of Words (BoW). We derive theoretical es-

timates of how the memory and computational cost scale with the number of images in

the database, and empirically evaluate the performance and run time on four real-world

datasets. Our experiments suggest that FR provides better recognition performance than

BoW, though it requires more memory. Therefore, we address these shortcomings by pre-

senting novel methods that increase the recognition performance of BoW and decrease the

memory requirements of FR. Finally, we present a novel way to parallelize FR on multiple

machines and scale up database sizes to 100 million images with interactive run time.

vii

Contents

Acknowledgments iv

Abstract vi

List of Figures xii

List of Tables xv

List of Algorithms xvi

1 Introduction 1

2 Methods Overview 6

2.1 Introduction . 6

2.2 Image Search Problem . 6

2.3 Image Representation . 9

2.4 Basic Image Search Algorithm . 11

2.5 Full Representation (FR) Image Search 13

2.5.1 Kd-Trees (Kdt) . 14

2.5.2 Locality Sensitive Hashing (LSH) 15

viii

2.5.3 Hierarchical K-Means (HKM) . 18

2.6 Bag of Words (BoW) Image Search . 20

2.6.1 Inverted File (IF) . 21

2.6.2 Min-Hash (MH) . 23

2.7 Summary . 24

3 Theoretical Comparison 26

3.1 Introduction . 26

3.2 Theoretical Estimates . 27

3.3 Theoretical Comparison . 28

3.3.1 Memory and Run Time . 28

3.3.2 Parallelization . 30

3.4 Theoretical Derivations . 34

3.4.1 Exhaustive Search . 34

3.4.2 Kd-Trees . 36

3.4.3 Locality Sensitive Hashing (LSH) 40

3.4.4 Hierarchical K-Means (HKM) . 43

3.4.5 Inverted File (IF) . 45

3.4.6 Min-Hash (MH) . 48

3.5 Summary . 51

4 Experimental Comparison 52

4.1 Introduction . 52

4.2 Datasets . 52

ix

4.2.1 Probe Sets . 54

4.2.2 Distractor Datasets . 55

4.3 Experimental Details . 55

4.3.1 Setup . 55

4.3.2 Parameter Tuning . 58

4.4 Experimental Results and Discussion . 59

4.5 Parameter Tuning Details . 63

4.5.1 Kd-Tree . 66

4.5.2 Locality Sensitive Hashing . 66

4.5.2.1 LSH-L2 . 66

4.5.2.2 LSH Spherical Simplex 68

4.5.2.3 LSH Spherical Orthoplex 68

4.5.3 Hierarchical K-Means . 68

4.5.4 Inverted File . 72

4.5.5 Min-Hash . 74

4.6 Summary . 79

5 Compact Kd-Trees 80

5.1 Introduction . 80

5.2 Compact Binary Signatures . 81

5.3 Compact Kd-Trees (CompactKdt) . 85

5.4 Experimental Results . 87

5.4.1 Setup . 87

x

5.4.2 Binary Signature Comparison . 88

5.4.3 Compact Kd-Tree . 89

5.4.4 Comparison with Bag of Words 91

5.5 Summary . 94

6 Multiple Dictionaries for Bag of Words 95

6.1 Introduction . 95

6.2 Multiple Dictionaries for Bag of Words (MDBoW) 96

6.3 Experimental Details . 99

6.3.1 Setup . 99

6.3.2 Bag of Words Details . 100

6.4 Experimental Results . 101

6.4.1 Multiple Dictionaries for BoW (MDBoW) 101

6.4.2 Model Features . 103

6.4.3 Putting It Together . 105

6.5 Summary . 107

7 Distributed KD-Trees 108

7.1 Introduction . 108

7.2 MapReduce Paradigm . 109

7.3 Distributed Kd-Tree (DKdt) . 110

7.4 Experimental Setup . 114

7.5 Experimental Results . 116

7.5.1 System Parameters Effect . 117

xi

7.5.2 Results and Discussion . 119

7.6 Summary . 123

8 Conclusions 124

Bibliography 127

Index 131

xii

List of Figures

2.1 Basic Image Search Problem . 7

2.2 Object Category Recognition Vs. Specific Object Recognition 8

2.3 Object Recognition Flavors . 9

2.4 Image Representations . 9

2.5 Basic Image Search Algorithm . 12

2.6 Full Representation (FR) Image Search . 13

2.7 Bag of Words (BoW) Image Search . 14

2.8 Kd-Trees (Kdt) . 15

2.9 Locality Sensitive Hashing (LSH) . 18

2.10 Hierarchical K-Means (HKM) . 19

2.11 BoW Inverted File (IF) Search . 21

2.12 BoW Min-Hash (MH) Search . 23

3.1 Theoretical Scaling Properties . 30

3.2 Kd-Tree Parallelizations . 31

3.3 Parallelization Run Time . 31

4.1 Probe and Distractor Sets . 53

4.2 Example Probe Images . 56

xiii

4.3 Example Distractor Images . 56

4.4 Recognition Performance and Time Vs. Dataset Size 60

4.5 Recognition Performance Vs. Time . 61

4.6 Run Time: Theory Vs. Practice . 63

4.7 Recognition Performance and Time Vs. Dataset Size (Full) 64

4.8 Recognition Performance Vs. Time (Full) 65

4.9 Kd-Tree Parameter Tuning . 67

4.10 LSH-L2 Parameter Tuning . 69

4.11 LSH-Sim Parameter Tuning . 70

4.12 LSH-Orth Parameter Tuning . 71

4.13 Hierarchical K-Means Parameter Tuning . 73

4.14 Quick Tuning for Inverted File . 75

4.15 Full Tuning for Inverted File . 76

4.16 Quick Tuning for Min-Hash. 77

4.17 Full Tuning for Min-Hash . 78

5.1 Ordinary Vs. Compact Kd-Tree . 86

5.2 Recognition Performance for Binary Signatures and PCA 88

5.3 Recognition Performance for Compact Kd-Tree 90

5.4 Comparison of CompactKdt with BoW . 93

6.1 Multiple Dictionaries for BoW . 96

6.2 MDBoW Memory and Computational Requirements 99

6.3 Multiple Dictionaries for BoW Results . 101

xiv

6.4 Parallelization of Multiple Dictionaries for BoW 102

6.5 Model Features Results . 104

6.6 Combining Multiple Dictionaries with Model Features 105

6.7 MDBoW Precision@k Results . 106

7.1 Canonical MapReduce Example . 109

7.2 Kd-Tree Parallelizations . 111

7.3 Parallel Kd-Tree MapReduce Schematic . 113

7.4 Effect of Distance Threshold St . 116

7.5 Effect of Backtracking Steps B . 117

7.6 Effect of Number of Machines M . 117

7.7 Effect of the Number of Images . 119

7.8 Precision@1 Vs. Throughput . 119

7.9 Throughput: Theory Vs. Practice . 120

7.10 Throughput Vs. the Number of Root Machines 121

7.11 Precision@k for DKdt . 122

7.12 Compact Distributed Kd-Trees . 123

xv

List of Tables

2.1 Search Methods Abbreviations . 24

3.1 Methods Parameter Definitions and Typical Values 28

3.2 Theoretical Scaling Properties . 29

4.1 Probe Sets . 55

4.2 Evaluation Scenarios . 58

4.3 Experimental Comparison Parameter Settings 59

5.1 Kd-Tree Parameter Definitions . 81

5.2 Storage Savings for Using Binary Signatures with Kd-Trees 84

5.3 BoW Parameter Definitions . 91

5.4 CompactKdt and BoW Storage and Computational Cost Comparison 91

6.1 MDBoW Parameter Definitions and Properties 98

xvi

List of Algorithms

2.1 Basic Image Search Algorithm . 11

2.2 Randomized Kd-Trees Construction . 16

2.3 Randomized Kd-Trees Search . 16

5.1 Compact Kd-Trees (CompactKdt) . 85

6.1 Multiple Dictionaries for Bag of Words (MDBoW) 97

7.1 Parallel Kd-Trees with MapReduce . 115

1

Chapter 1

Introduction

Searching for a specific object in a large-scale collection of images has become an in-

creasingly important problem with numerous applications, especially with the popularity

of smart phones. There are currently several applications that allow users to take a photo

with the smart phone camera and search a database of stored images, e.g., Google Goggles

and Barnes and Noble. The ultimate goal of such applications is to make visual search a

reality. In other words, to allow users to search the Internet using images, as it is possible

now to search the Internet using text.

Typical scenarios for visual search include searching images of book covers, DVD cov-

ers, retail products, and buildings and landmarks. The size of databases involved vary from

hundreds of thousands to potentially millions of images, but they could conceivably reach

billions. After building an index using these images, users query the database with a probe

image containing an object of interest, e.g., an image of a book cover from a certain view-

point and scale. The system should respond with the identity of that book together with

some useful information about it, like links to buy it online. All this process should take

only a few seconds, and should work with high precision.

In this thesis we focus on how to successfully build such a system. Our goal is to have a

2

working image search system that is physically realizable, works with high precision, and

is scalable to hundreds of millions of images, all while working interactively with users.

Obviously building such a system is not an easy task, and poses a lot of challenges, namely

memory requirements, computational cost, and recognition performance. For example, if

we consider 1 billion images, and store on average 100 KB per image, we need to store

100 TB of data just for the feature descriptors, and naively searching for the nearest feature

in a database of 1012 features takes 4 minutes on a supercomputer with 1 TFLOPS. This

is clearly not satisfactory: most applications of interest are interactive and require fast

response time on the order of a few seconds. In turn, this implies the need to store image

descriptors in storage that is very close to the processor, e.g., RAM (with top-of-the-line

machines nowadays having around 50 GB of RAM).

To this end, we start with a comprehensive comparison of the two leading image search

approaches, and study how their properties scale with large number of images both theoret-

ically and experimentally. Both approaches are based on extracting local features from the

images (see Chapter 2 for details), and then indexing these features or some information

extracted therefrom. This information is then used to quickly find the best match of a probe

image in the database images. The first approach, the Full Representation (FR) approach,

stores the features of the database image in exact or compressed form, and efficiently in-

dexes each feature of the probe image into this database. The second approach, the Bag

of Words (BoW), is based on quantizing features into visual words and representing each

image with a histogram of visual words. Our experiments suggest that that FR methods

have better recognition performance with larger memory requirements, while BoW have

3

better memory usage with worse performance (see Chapter 4).

Based on this comparison, we then explore ways to remedy the shortcomings of both

approaches. Specifically, we explore ways to reduce the memory usage of FR methods,

specially with Kd-Trees (Chapter 5). We present Compact Kd-Trees, which are able to

achieve an order of magnitude less memory usage by compressing the local features, while

achieving comparable recognition performance. We also explore ways to boost the recog-

nition performance of BoW methods (Chapter 6). We present Multiple Dictionaries for

BoW, which is able to significantly boost the recognition performance of BoW approach,

albeit with more computational and memory requirements. Finally, we focus on the par-

allelization of FR methods, specially Kd-Trees, so that the system can handle millions of

images (Chapter 7). We present Distributed Kd-Trees, which provide excellent recognition

performance running on a database with 100 million images while processing input images

in a fraction of a second.

This thesis makes a number of contributions:

1. We provide a comprehensive comparison of the two leading image indexing ap-

proaches: Full Representation and Bag of Words. In particular, we provide:

(a) Theoretical estimates of the memory requirements, computational cost, and par-

allelizability of these methods as a function of the number of images.

(b) Experimental evaluation of these different methods on four real world datasets.

We report the recognition performance and run time as the number of images

grows.

2. We challenge the conventional wisdom in image indexing methods. We argue that

4

the FR approach is the way to go, since, although it requires an order of magnitude

more storage, it provides superior recognition performance to BoW, especially with

large datasets.

3. We present novel methods to remedy some of the shortcomings of these two methods:

(a) Compact Kd-Trees that are able to cut the memory usage and run time of FR

methods by an order of magnitude while achieving comparable recognition per-

formance.

(b) Multiple Dictionaries for BoW that are able to significantly boost the recogni-

tion performance of BoW methods to levels comparable to FR methods, at the

expense of increased memory and computational costs.

4. We present a novel way of parallelizing Kd-Trees, Distributed Kd-Trees, and run

experiments on thousands of machines with 100 million images. The system outper-

forms the state-of-the-art in both recognition performance and throughput, and can

process a query image in a fraction of a second.

The thesis is organized as follows: in Chapter 2 we give an overview of the approaches

explored in the rest of the thesis and the basic image search algorithm considered. Chapter

3 details the theoretical estimates of the different properties of these approaches and how

they scale up with billions of images. Chapter 4 presents the experimental evaluation of the

different methods on four datasets. Chapter 5 explains a novel method, Compact Kd-Tree,

to reduce the memory usage of the FR approach with comparable recognition performance.

Chapter 6 presents a novel method, Multiple Dictionaries for BoW, to boost the recogni-

5

tion performance of the BoW approach. Chapter 7 gives the implementation details of

Distributed Kd-Trees, and presents experiments on thousands of machines with millions of

images. Finally, Chapter 8 details the conclusions of this thesis and discusses future work.

6

Chapter 2

Methods Overview

2.1 Introduction

In this chapter we give an overview of the image search problem considered in this the-

sis. We then explain the basic image search algorithm, and its relation to the two leading

approaches: Full Representation and Bag of Words. Finally, we finish by describing the

different variants of these two approaches that we consider later in the comparison. Section

2.2 describes the image search problem we consider in this thesis. Section 2.3 describes the

different image representations. Section 2.4 gives an overview of the basic image search

algorithm. Finally, Section 2.5 describes the Full Representation approach, followed by the

Bag of Words approach in Section 2.6.

2.2 Image Search Problem

The basic problem we consider in this thesis is image search. We have a database that

stores images of objects of interest, for example DVD covers, book covers, and landmarks

(see Figure 2.1). The system allows users to take images of different objects, for example

7

Figure 2.1: Basic Image Search Problem. The system contains a database that indexes

images of objects of interest. Users can query the system using images taken with their cell

phones. The system searches its database and replies with the identity of the query object

together with some useful information.

an image of the pyramids, and to query the database using that query image. The system

then searches its database and responds with the identity of the object depicted in the query

image, presenting its stored canonical image and any additional information about that

object.

The image search can be done in one of two ways: Object Category Recognition or

Specific Object Recognition (see Figure 2.2). In category recognition, the database images

and the query images do not necessarily represent objects of the same identity, but of the

same category. For example, the query images for object category “sedan car”, can rep-

resent a Honda Accord, while there might not be an image of such object in the database.

The goal of such systems is to identify the category of the object, e.g., a car vs. a bird,

rather than identifying the identity of the object. In specific object recognition, on the other

hand, the goal is to retrieve the correct identity of the object, in this case the make and

8

Figure 2.2: Object Category Recognition (left) Vs. Specific Object Recognition (right).

In this thesis, we focus on specific object recognition.

model of the car. In this thesis we focus only on specific object recognition rather than

category recognition. The systems we are interested in should return the identity of the

specific object depicted in the query image.

Specific object recognition can in turn be divided into three cases (see Figure 2.3): (a)

Scene to Object: where the database image depicts a canonical cropped version of the

object (for example Eiffel Tower), while the query image contains the object of interest in

addition to other objects. (b) Object to Scene: the opposite of case (a), where the database

image contains different objects of interest, while the query image contains only one object.

(c) Object to Object: where both the query and database images contain clean cropped

versions of the object of interest. In this thesis, we focus on the third case.

9

Figure 2.3: Object Recognition Flavors. (a) Scene to Object: database image depicts

cropped version of objects while query image contains different objects. (b) Object to

Scene: opposite of (a). (c) Object to Object: both query and database images contain only

one clean cropped version of the object. In this thesis, we focus on (c).

2.3 Image Representation

Figure 2.4: Image Representations. Global features (left) represent an image by one

multi-dimensional feature descriptor, whereas local features (right) represent an image by

a set of features extracted from local regions in the image.

For any image processing operation, we need to represent an image by features extracted

therefrom. The raw image is perfect for the human eye to extract all information from,

however that is not the case with computer algorithms. There are generally two ways to

10

represent images in computer vision (see Figure 2.4):

1. Global features: where the image is represented by one multi-dimensional feature,

describing the information in the image. The information can be color histograms

[18], edge magnitude or orientation histograms [15], or a specific descriptor extracted

from some filters applied to the image, such as GIST features [28]. The advantages

of global features are that they are fast and easy to compute and generally require

small amounts of memory. However, they have been shown to perform worse than

the other type, local features [17].

2. Local features: where the image is represented by a set of local feature descriptors

extracted from a set of regions around the image. There are generally two compo-

nents for local features: a feature detector and a feature descriptor [18, 25]. A feature

detector detects interesting locations in the image, for example corners and edges.

A feature descriptor describes the image patch around that interest point, usually by

histograms of gradients or orientation. There are different kinds of feature detectors,

but among the most common ones are Difference of Gaussians (DoG) [24], Hessian-

Affine, and Harris Affine [25]. Similarly there are various feature descriptors, but

by far SIFT [24] and HOG [15] are the most widely used. The main advantage of

local features is their superior performance, however they usually have much larger

memory usage, as a typical image can have hundreds of local features [17].

In this thesis we focus on using local features for large-scale image search, since they have

much higher performance than global features provide.

11

Algorithm 2.1 Basic Image Search Algorithm

Image Index Construction

1. Extract local features {fi j} j from every database image i.

2. Store some function of these features g(fi j) and build data structure d(g) based on

g(). In the data structure each feature g(fi j) is associated to one (or more) database

images that contain that feature.

Image Index Search

1. Given the probe image, extract its local features fq j and compute g(fq j).

2. Search through the data structure d(g) for “nearest neighbors”.

3. Every nearest neighbor votes for one (or more) database image(s) i that it is associ-

ated to.

4. Sort the database images based on their score si.

5. Post-process the sorted list of images to enforce some geometric consistency and

obtain a final list of sorted images s′i. The geometric consistency check is done using

a RANSAC algorithm to fit an affine transformation between the positions of the

matched features in the query image q and the database image i.

2.4 Basic Image Search Algorithm

The basic local features image search algorithm is depicted in Figure 2.5 and detailed in

Algorithm 2.1. The two main steps are:

1. Training phase: where the image index is constructed. Local features are extracted

from the input images, and are inserted (optionally after some post-processing) into a

data structure that allows for fast approximate nearest-neighbor search. Several types

of these data structures, or indices, will be discussed in Sections 2.5 and 2.6.

2. Query phase: where the image index is searched for a query image. Every local fea-

ture in the query image is used to search the database features for nearest neighbors.

The score of every database image that has such nearest neighbors is increased. The

12

Figure 2.5: Basic Image Search Algorithm. In the training phase, local features are

extracted from the database images, optionally processed, and then inserted into a fast

search data structure. At query time, local features are extracted from the query image, and

for each such feature the index is searched for nearest neighbors. Scores are accumulated

for each database image, and a final ranked list of result images is presented to the user.

See Algorithm 2.1.

system can then perform post-processing to verify the geometric consistency of the

feature locations in the image. The final result is a ranked list of database images,

with high ranked images being more likely to correspond to the query image.

There are two leading approaches for building such large-scale image indexing systems:

1. Full Representation (FR): where the feature space is searched directly for nearest

neighbors using the full features [24, 4, 3] (see Figure 2.6).

2. Bag of Words (BoW): where some quantization of the feature space is used as a

proxy for searching for approximate nearest neighbors [32, 30, 12, 3] (see Figure

13

Figure 2.6: Full Representation Image Search. The nearest-neighbor search is done

directly in the feature space, as opposed to BoW search which uses quantization in the

feature space (see Figure 2.7).

2.7).

Each of these two approaches have a number of variants that use different techniques to

perform the actual search. These techniques have a lot of parameters that affect their

recognition performance, run time, and memory requirements. In the following we will

briefly describe these techniques and list their parameters, and we will explore their effect

experimentally in Chapter 4.

2.5 Full Representation (FR) Image Search

In FR image search (see Figure 2.6), the feature space is searched directly for nearest neigh-

bors using a variety of specific data structures that provide fast nearest-neighbor search [3].

14

Figure 2.7: Bag of Words Image Search. The nearest-neighbor search is done indirectly

via vector quantization of the feature space, as opposed to directly searching the feature

space as in FR search (see Figure 2.6).

The specifics from Algorithm 2.1 are:

1. The function g(fi j) = fi j is the identity function, i.e., the full features are stored

2. The data structure d({fi j}i j) is designed for efficient nearest neighbor lookup at the

expense of some additional storage.

We consider three general methods for performing nearest neighbor search in the feature

space: Kd-Trees, Locality Sensitive Hashing, and Hierarchical K-Means.

2.5.1 Kd-Trees (Kdt)

One (or more) randomized Kd-trees [6, 24] are built for the database features {fi j}i j to

allow for approximate nearest-neighbor matching in logarithmic time [6] (see Figure 2.8).

15

Figure 2.8: Kd-Trees (Kdt). (Left) A Kd-Tree in two dimensions. (Right) A set of ran-

domized Kd-Trees. See Section 2.5.1.

Algorithm 2.2 explains the Kd-Tree construction procedure, while Algorithm 2.3 details

the search procedure.

Kd-Trees have two parameters that affect their recognition performance, storage, and

run time:

1. T : the number of trees, where having more trees increases accuracy without much

affecting speed, due to the single search queue. However, this increases the storage

required due to the need to store the additional trees.

2. B: the number of backtracking steps, which poses a trade off between accuracy and

speed. Having more steps will give more accuracy but takes more time.

2.5.2 Locality Sensitive Hashing (LSH)

A number of locality sensitive hash functions [5, 23] are extracted from the database fea-

tures {fi j}i j, and are arranged in a set of tables (see Figure 2.9). Each table has a set of

16

Algorithm 2.2 Randomized Kd-Trees Construction

Input: A set of vectors {xi} ∈ R
N

Output: A set of binary Kd-Trees {Tt}. Each internal node has a split (dim,val) pair

where dim is the dimension to split on and val is the threshold such that all points with

xi[dim] ≤ val belong to the left child and the rest belong to the right child. The leaf nodes

have a list of indices to the features that ended up in that node.

Operation: For each tree Tt :

1. Assign all the points {xi} to the root node.

2. For very node in the tree visited in breadth-first order, compute the split as follows:

(a) For each dimension d = 1 . . .N, compute its mean mean(d) and variance var(d)
from the points in that node.

(b) Choose a dimension dr at random from the variances within 80% of the maxi-

mum variance.

(c) Choose the split value as the mean of that dimension mean(dr).

(d) For all points that belong to this node: if x[dr] ≤ mean(dr) assign x to

le f t[node], otherwise assign x to right[node].

Algorithm 2.3 Randomized Kd-Trees Search

Input: A set of Kd-Trees {Tt}, a set of vectors {xi} ∈ R
N used to build the trees, a query

vector q ∈ R
N , maximum number of backtracking steps B

Output: A set of k nearest neighbors {nk} with their distances {dk} to the query vector q.

Operation:

1. Initialize a priority queue Q with the root nodes of the t trees by adding branch =
(t,node,val) with val = 0. The queue is indexed by val[branch], i.e., it returns the

branch with smallest val.

2. count = 0. list = [].

3. While count ≤ B:

(a) Retrieve the top branch from Q.

(b) Descend the tree defined by branch till lea f , adding unexplored branches on

the way to Q.

(c) Add the points in lea f to list.

4. Find the k nearest neighbors to q in list and return the sorted list {nk} and their

distances {dk}.

17

hash functions, which are then concatenated to get the index of the bucket within the table

where the feature should go. All features with the same hash value go to the same bucket.

At query time, the hash value is computed for the query feature. Only features in buckets

with this value need to be further processed for nearest neighbors. Three different hash

functions are considered:

1. L2: this approximates the Euclidean distance [5], where the hash function is h(x) =

⌊

<x,r>+b
w

⌋

where < ., . > is the dot product, r is a random unit vector, b is a random

offset, and w is the bin width. For normalized feature vectors, it basically projects the

feature onto a random direction and then returns the bin number where the projection

lies.

2. Spherical-Simplex: this approximates distances on the hypersphere [33], where the

hash function is h(x) = argmini 〈x,yi〉, where yi are the vertices of a random simplex

inscribed in the unit hypersphere. The hash value is the index of the nearest vertex of

the simplex.

3. Spherical-Orthoplex: this approximates distances on the hypersphere [33], where

the hash function is h(x) = argmini 〈x,yi〉, where yi are the vertices of a random

orthoplex inscribed in the unit hypersphere. The hash value is the index of the nearest

vertex of the orthoplex.

There are generally two parameters for any LSH method:

1. T : the number of tables. Generally, having more tables improves performance but

increases run time as well.

18

2. H: the number of hash functions. Having more functions increases run time, but

makes collisions, and hence bucket size, less.

In addition, L2 LSH includes one more parameter, which is w, the bin size for the projec-

tion.

Figure 2.9: Locality Sensitive Hashing (LSH). (Top) A schematic of LSH search. A set of

hash functions are extracted for each feature, and features with the same hash values go to

the same bucket in each hash table. At query time, only buckets with the same hash value

as the query feature need to be searched. (Bottom) Three different hash functions in two

dimensions: L2, Spherical Simplex, and Spherical Orthoplex. See Section 2.5.2.

2.5.3 Hierarchical K-Means (HKM)

A hierarchical decomposition [27] is built from the database features {fi j}i j. At each level

of the tree, the features that are associated with the current node are clustered using K-

means, and the process is repeated recursively until the maximum depth allowed is reached

19

Figure 2.10: Hierarchical K-Means (HKM). (Left) HKM in two dimensions. (Right) A

schematic of the HKM search tree. See Section 2.5.3.

(see Figure 2.10). At query time, the tree is traversed using the query feature, until it

reaches a leaf, in which case those features in the leaf are processed for the nearest neighbor.

Backtracking can also be performed on the tree [26], but is not considered in this work.

There are two parameters that affect the amount of storage and running time of HKM:

1. D: the maximum depth of the tree. A deeper tree requires more storage, but reduces

the run time (for a fixed number of features), as the number of features in the leaves

will be smaller.

2. k: the branching factor of the tree. A larger k also requires more storage, since we

will need to store more cluster centers in the internal nodes. However, for a fixed

number of features, it reduces the run time since it creates more leaf nodes in the

bottom of the tree.

20

2.6 Bag of Words (BoW) Image Search

In BoW image search (see Figure 2.7), the nearest-neighbor search is done using quan-

tization in the feature space. Two features are considered matched if they belong to the

same cluster, or “visual word”, in the feature space [32, 12, 30, 3]. This is inspired by the

text search literature where documents are represented by the frequency of the words they

contain [36]. The specifics from Algorithm 2.1 are:

1. The function g(fi j) represents a vector quantization of the input features. The “dictio-

nary” used for quantization is built from the database images by clustering features

into representative “visual words”. Then, each image is represented by a histogram

of occurrences of these visual words {hi}i, and the original local feature vectors are

thrown away.

2. The data structure d({fi j}i j) is designed for efficient nearest-neighbor lookup for

histograms of visual words {hi}i.

In the training phase, the image features are “quantized”, i.e., each feature is assigned to the

closed visual word. Then, the images are represented by histograms of these visual words,

which are then stored in a data structure that allows fast histogram search (see Sections

2.6.1 and 2.6.2). At query time, the histogram of the query image is computed, and used

to query the data structure for the image with the closest histogram. We consider two data

structures that try to perform faster search through the database histograms: Inverted File

and Min-Hash.

21

Figure 2.11: BoW Inverted File (IF) Search. The image features are extracted, quantized,

and then converted into histograms of visual words. The histograms are stored in an in-

verted file, which is then searched with the histogram of the query image for the nearest

neighbor. See Section 2.6.1.

2.6.1 Inverted File (IF)

The idea is to store for every visual word the list of images that contain it (see Figure 2.11).

At run time, only images with overlapping words are processed, and this saves a lot of time

and provides exact search results [7, 36].

Inverted files have several parameters that affect performance and storage requirements,

including the number of visual words, histogram weighting, normalizations, dictionary

generation method, and distance functions:

• W: the number of visual words. Typically, this is in the order of hundreds of thou-

sands to a million [30, 20, 2]. Using fewer visual words usually results in worse

performance, while using a much larger number of visual words also hurts perfor-

22

mance, except when done in a special way (see Chapter 6). Also using more visual

words increases the search speed due to the lower probability of overlap between

image histograms.

• Weighting: whether to use the raw histogram, or modify the histogram counts

1. none: use the raw histogram

2. binary: binarize the histogram, i.e., just record whether the image has the visual

word or not

3. tf-idf: weight the counts in such a way to decrease the influence of more com-

mon words and increase the influence of more distinctive words

• Normalizations: how to normalize the histograms

1. l1: normalize so that they sum to one, i.e., ∑i |hi| = 1

2. l2: normalize so they have unit length, i.e., ∑i h2
i = 1

• Distance: what distance function to use between histograms

1. l1: use the sum of absolute differences, i.e., dl1(h,g) = ∑i |hi −gi|

2. l2: use the sum of squared differences, i.e., dl2(h,g) = ∑
i
(hi −gi)

2

3. cos: use the dot product, i.e., dcos(h,g) = 2 − ∑i hi × gi. (Note that for l2-

normalized histograms, this is equivalent to l2 distance since ||h||2 = ||g||2 = 1

and dl2 = ||h−g||22 = ||h||22 + ||g||22 −2∑i higi = 2−2∑i higi, i.e., they give the

same ordering of the histograms).

23

Figure 2.12: BoW Min-Hash (MH) Search. The image features are extracted, quantized,

and then converted into histograms of visual words. The histograms are binarized, and used

to build a set of Min-Hash tables. The histogram of the query image is then used to search

for the nearest neighbor in Min-Hash tables. See Section 2.6.2.

• Dictionary Generation: what method to use for generating the visual words (feature

space quantization)

1. Approximate K-Means (AKM): which approximates the nearest-neighbor search

within K-Means using a set of randomized Kd-Trees [30].

2. Hierarchical K-Means (HKM): which builds a vocabulary tree by applying

K-Means recursively [27] at each node in the tree.

2.6.2 Min-Hash (MH)

A number of locality sensitive hash functions [9, 10, 8, 12] are extracted from the database

histograms {hi}i, and are arranged in a set of tables (see Figure 2.12). The histograms are

24

binarized (counts are ignored), and each image is represented as a “set” of visual words

{bi}i. The hash function is defined as h(b) = minπ(b) where π is a random permutation

of the numbers {1, ...,W}, where W is the number of words in the dictionary.

There are three parameters that affect the performance of MH image search:

1. W : the number of visual words in the dictionary. Generally, the larger the dictionary,

the better the performance and the faster the actual search, because the number of

overlapping images is smaller.

2. T : the number of hash tables.

3. H: the number of hash functions.

2.7 Summary

Full name Abbreviation Section

Full Representation FR 2.5

Exhaustive exhaustive 2.5

Kd-Trees Kdt 2.5.1

Locality Sensitive Hashing LSH 2.5.2

LSH with L2 LSH-L2 2.5.2

Spherical LSH with Simplex LSH-Sim 2.5.2

Spherical LSH with Orthoplex LSH-Orth 2.5.2

Hierarchical K-Means HKM 2.5.3

Bag of Words BoW 2.6

Inverted File invf or IF 2.6.1

Min-Hash minhash or MH 2.6.2

Table 2.1: Search Methods Full Names and Abbreviations.

In this chapter we introduced the basic image search algorithm that is based on lo-

cal features. We introduced the two leading approaches for performing large-scale image

25

search: Full Representation and Bag of Words. We briefly described the different variants

of these two approaches, together with their design parameters. For convenience, Table 2.1

lists all the methods and their abbreviations that are used throughout the thesis. In the next

chapter we will detail the theoretical analysis of the properties of these methods and how

they scale with very large numbers of images.

26

Chapter 3

Theoretical Comparison

3.1 Introduction

Chapter 2 introduced the different methods used to build large-scale image search systems.

These methods have different characteristics, and their properties behave differently when

the size of the database increases. We are specifically interested in three essential proper-

ties, and how they scale up with the number of images:

1. Memory/Storage: How much memory/storage is needed for the method to work

properly?

2. Computational Cost: How much time or how many computational steps does it need

to search for a query image?

3. Recognition Performance: What is the precision of the search results obtained?

In this chapter we provide theoretical estimates of how the storage and computational cost

of these methods scale with the number of images in the database. We need these theoretical

estimates since, we cannot physically run experiments involving billions of images, but we

are still interested in exploring how the methods behave with such large databases. Section

27

3.2 summarizes the theoretical estimates of these properties while Section 3.3 provides the

comparison and discussion of these estimates. Finally, Section 3.4 details the derivations

of these formulas.

3.2 Theoretical Estimates

We estimate formulas for the storage and computational cost as a function of the number

of images. We consider two cases for the computational cost: using a single machine with

infinite memory, and using multiple machines with a set amount of memory. The former

is unrealistic, but gives a sense of how many computations are needed if we had such a

supercomputer. The latter gives a more realistic estimate of the practical situation where

multiple machines are used in parallel.

We present the definitions of the methods parameters in Table 3.1 and summary of the

results in Table 3.2, with details of the derivations in Section 3.4. We note that these cal-

culations are based on minimum theoretical storage and average matching cost scenarios.

We also note that we compute the distance between vectors using the dot product, which is

equivalent to the Euclidean distance, since we assume the feature vectors are normalized.

We do not consider any compression technique that might decrease storage (e.g., run-length

encoding).

28

Parameter Description Typical Value

I no. of images 109

s bytes/feature dim 1

d feature dimension 128

F #features/image 1,000

M # machines varies

C main memory/machine 50GB

Tkdt # kd-trees 4

L length of ranked lists 100

Bkdt # backtracking 250

Tlsh # lsh tables 4

Hl2 # hash fun LSH-L2 50

Blsh # buckets 106

Hsph # funcs for LSH-Spherical 5

D depth of HKM tree 7

k branching factor of HKM 10

W # words for BoW 106

Tmh # tables for Min-Hash 50

Hmh # hash funs for Min-Hash 1

Bmh # buckets in Min-Hash 106

Table 3.1: Methods Parameter Definitions and Typical Values. See Section 3.4 and

Chapter 2 for more details.

3.3 Theoretical Comparison

3.3.1 Memory and Run Time

Figure 3.1 shows how storage requirements and run time scale with the number of images

in the database, assuming they are implemented on one machine with infinite storage and

1 GFLOPS processor. We note the following:

• BoW methods take one order of magnitude less storage than FR methods, due to the

fact that we don’t need to store the feature vectors.

• Run time for Kd-Trees and Min-Hash grows very slowly with the database size.

29

Method Storage Ex.

(bytes) (TB)

Exhaustive (sd +4)IF 132

Kd-Tree IF(sd +4+2Tkdt +Tkdt
log2 IF

8
) 160

LSH-L2 IF(sd +4+Tlsh
log2 IF

8
) 152

LSH-Sim IF(sd +4+Tlsh
log2 IF

8
) 152

LSH-Orth IF(sd +4+Tlsh
log2 IF

8
) 152

HKM IF(sd +4)+ kD−1
k−1

ksd 132

Inverted File Wsd +FI(5+
log2 I

8
) 9

Min-Hash Wsd +FI(4+
log2 W

8
)+Tmh

log2 I

8
7

(a) Theoretical storage requirement (Storage)

Method Comp. Ex.

(FLOP/im) (GFLOP/im)

Exhaustive F2I(2d +1) 256×106

Kd-Tree Bkdt F(2d +1+ log2 FI) 0.074

LSH-L2 FTlsh(Hl2(2d +2)+ FI
Blsh

(2d +1)) 1028

LSH-Sim FTlsh(Hsph(2d2 +3d)+ FI
Blsh

(2d +1)) 1028

LSH-Orth FTlsh(Hsph(2d2 +3d)+ FI
Blsh

(2d +1)) 1028

HKM FD(2d + k)+ F2I
kD × (2d +1)) 25.7

Inverted File FBkdt(2d +1+ log2 W)+F(2+ I) 1

Min-Hash FBkdt(2d +1+ log2 W)+4FTmhHmh + TmhI
MBmh

0.07

(b) Theoretical computational cost on a single machine with infinite

memory (Comp.)

Parallel (FLOP/im) Ex. (GFLOP/im)

Exhaustive F2I
M

(2d +1)+L(M−1) 128×103

Kd-Tree (IKdt) FBkdt(2d +1+ log2
FI
M

)+L(M−1) 0.071

Kd-Tree (DKdt) FB log2
C

4Tkdt
+ FB

M
(2dBkdt +Bkdt)+F log2

4FIT
C

+L(min(FBkdt ,M)−1) 0.012

LSH-L2 FTlsh(Hl2(2d +2)+ FI
MBlsh

(2d +1))+L(M−1) 85

LSH-Sim FTlsh(Hsph(2d2 +3d)+ FI
MBlsh

(2d +1))+L(M−1) 85

LSH-Orth FTlsh(Hsph(2d2 +3d)+ FI
MBlsh

(2d +1))+L(M−1) 85

HKM FD(2d + k)+ F2I
MkD × (2d +1)+L(M−1) 0.021

Inverted File FBkdt(2d +1+ log2 W)+F(2+ IF
MW

) 0.075

Min-Hash FBkdt(2d +1+ log2 W)+4FTmhHmh + TmhI
Bmh

0.07

(c) Theoretical parallel computational cost with minimum required number of machines M (see Figure

3.2).

Table 3.2: Theoretical Scaling Properties. Refer to figure 3.1. Please check Sections 3.2

and Chapter 2.

30

10
4

10
6

10
8

10
−4

10
−2

10
0

10
2

10
4

Total Storage

Number of Images

T
o

ta
l
S

to
ra

g
e

 (
T

B
)

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Running Time

Number of Images

T
im

e
 p

e
r

im
a

g
e

 (
m

s
e

c
)

exhaustive

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf

minhash

Figure 3.1: Theoretical Scaling Properties. Theoretical storage vs. size (left), and run

time vs. size (right), assuming single machine with infinite memory. We note that BoW

methods (star symbols) take an order of magnitude less storage than FR methods. Refer to

Tables 3.1-3.2

• Inverted file and LSH methods have asymptotically similar run time. After staying

almost constant up to ~ 106 images, the theoretical run time increases linearly with

the number of images.

3.3.2 Parallelization

The parallelization considered here is the simplest: for every method, we determine the

minimum number, M, of machines that can fit the storage required in their main memory,

assuming machines with 50 GB of memory. Then we split the images evenly across these

machines and each will take a copy of the probe image and search its own share of images.

Finally, all the machines will communicate their ranked list of images (of length L) and

produce a final list of candidate matches that is further geometrically checked. We call this

simple scheme Independent Kd-Trees (IKdt), since the Kd-Trees on the different machines

are built independently.

31

Figure 3.2: Kd-Tree Parallelizations. (Left) Independent Kd-Trees (IKdt). The images are

divided onto the machines, which build independent Kd-Trees for the images they contain.

At query time, all the machines are searched in parallel. (Right) Distributed Kd-Trees

(DKdt). The root machine stores the top of the tree, while the leaf machines store the

leaves of the tree. At query time, the root machine directs features to a small subset of the

leaf machines, which leads to higher throughput. See Section 3.3.2

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

Number of Machines

T
im

e
 p

e
r

im
a
g
e
 (

m
s
e
c
)

kd−tree (IKdt)

kd−tree (DKdt)

lsh−l2

inv−file

Figure 3.3: Parallelization Run Time. Time per image vs. min. no. of machines required

M for different dataset sizes. Each point represents a dataset size from 106 to 109 images,

going left to right. IKdt is the Independent Kd-Tree, while DKdt is the Distributed Kd-Tree

parallelization. See Section 3.3.2.

32

More sophisticated parallelization techniques are possible, that can take advantage of

the properties of the method at hand. For example, in the case of Kd-trees, one such ad-

vanced approach is to store the top part of the Kd-tree on one machine, and divide the

bottom subtrees across other machines (see Figure 3.2). We call this approach Distributed

Kd-Trees (DKdt), since different parts of the same Kd-Tree are distributed among different

machines. For 1012 features (109 images), we have 40 levels in the Kd-tree, and so we

can store up to 30 levels in one root machine, and split the bottom 10 levels evenly across

the leaf machines (see Section 3.4). Given a probe image, we first query the root machine

and get the list of branches (and hence subtrees) that we need to search with the backtrack-

ing. Then the appropriate leaf machines will process these query features and update their

ranked list of images.

The motivations for this distinction between root and leaf machines are:

• Most of the storage for the tree is in the leaves. Therefore we can store most of the

top of the tree in a single machine, which will then dispatch jobs to the leaf machines.

• The time spent searching the top of the tree is smaller than that spent searching the

lower parts of the tree, so we can gain more speed up by splitting the bottom part of

the tree instead of splitting the whole tree.

• Searching the tree will generally not activate all of the leaf machines, i.e., the list of

explored nodes will not span all the node machines. Therefore, the root machine can

process more features, and the leaf machines can interleave computations of differ-

ent features simultaneously. This offers more speed up over the first parallelization

approach above. So, even though the search time per feature is similar to that in the

33

first case, interleaving computations will make this much smaller.

This approach has the advantage of significant speed up and better utilization of the ma-

chines, since not all the machines will be working on the same query feature at the same

time, rather they will be processing different features from the probe image concurrently

(see figure 3.3). However, a drawback with this approach is the extra storage requirements,

because the lower parts of the trees will generally not store the same features for different

trees, and therefore each machine will have to store the features in the subtrees it is holding,

and as an upper bound the extra storage will be proportional to the number of Kd-Trees,

i.e., we will need to store each feature K times, where K is the number of trees. We provide

more details on the implementations of Independent and Distributed Kd-Trees in Chapter

7.

Figure 3.2 shows a schematic of the Distributed Kd-Trees compared to the Independent

Kd-Trees, while Figure 3.3 shows the time per image vs. the minimum number of machines

M for different dataset sizes from 106 to 109. We note the following:

• Distributed Kd-Trees provide significant speed ups starting at 108 images. It might

seem paradoxical that increasing the dataset size decreases the run time, however

it makes sense when we notice that adding more machines allows us to interleave

processing of more features concurrently, and thus allows faster processing. This

however comes at a cost of more storage used (see Figure 3.3).

• We also note that many of the FR methods have parameters that affect the trade

off between run time and accuracy, e.g., number of hash functions or bin size for

LSH. These parameters have to be tuned for every database size under consideration,

34

and we should not use the same settings when enlarging the database. This poses a

problem for these methods, which have to be re-tuned as the database size changes,

as opposed to Kd-Trees which adapt to the current database size and need very little

tuning.

3.4 Theoretical Derivations

3.4.1 Exhaustive Search

Description

• Here we do the nearest-neighbor search using exhaustive linear search through the

set of database features {{fi j} j}i, i.e., for every feature of the query image fq j, we

find the feature that minimizes the Euclidean distance: nq j = argmini jfi j, where nq j

is the index of the feature and i is the image in the database containing this feature.

• For every database image, we count the number of such nearest neighbors si, and for

all images with a pre-set amount of nearest neighbors (10 in our experiments), we do

the RANSAC affine step to obtain s′i where s′i =# inliers of the affine transformation.

Storage

The storage requirements for this method are just the full feature vectors and feature

information:

• Feature vectors:

S f v = sdIF

35

where s is the number of bytes per feature dimension, d is the dimension of the

feature vector, I is the number of images in the database, and F is the average number

of features per image.

• Feature information:

S f i = 4IF

where for every feature we need to store its location (x and y position in the image)

in addition to its scale and orientation. We assume we can discretize this information

and fit it into 1 byte each.

• Total:

Sexhaustive = (sd +4)IF

Speed

• The main bottleneck is the nearest neighbor search. For every feature, we have to

search through the whole feature database to find the nearest feature:

Tnn,ex = F(2FId +FI) = F2I(2d +1)

where for every query feature we need to perform d multiplications and d additions

per database feature, in addition to finding the minimum value among FI values.

Parallelization

• Divide the data required evenly among M machines. Search the M machines simul-

36

taneously.

• Every machine processes the images it is storing, and produces a final sorted list of

geometrically checked images. This list is then broadcast or sent to a central machine,

which will merge them into one list and returns the result.

• Speed up: Having more machines here corresponds to linear speed up of the search

process (in the number of images). Consider having M machines, then each machine

will perform

T p
nn,ex =

F2I

M
(2d +1)+L(M−1)

where the second term is the time to merge M sorted lists of length L.

3.4.2 Kd-Trees

Storage

• We still need to store all the features and their information:

Sex = (sd +4)IF

• In addition, there is storage for the trees. For a tree with n leaves, there are 2n−1 total

leaves, i.e., n-1 internal nodes and n leaves. Each tree here has IF leaves (features).

37

Storage for each tree is

Str = 2IF + IF
⌈log2 IF⌉

8

Str = IF(2+
⌈log2 IF⌉

8
)

where the first term is for the internal nodes where we need to store the dimension

and the threshold values (assumed to be discretized to single bytes), and the second

term is for the leaves where we need to store the index of the feature it contains

• Total:

Skdt = Sex +T Str

Skdt = IF(sd +4+2T +T
⌈log2 IF⌉

8
)

Computational Cost

• Searching through the Kd-Trees involves comparison operations at each level of the

tree, in addition to exhaustive search with the final list of features, typically ~ 250,

corresponding to the number of backtracking steps:

Tnn,kdt = FB(2d +1+ log2 FI)

where the second term is for finding the minimum among the B distance values, while

the third term is the number of comparisons performed.

38

Parallelization

There are two ways to parallelize Kd-Tree operations. The first is a straightforward

extension of the exhaustive search case:

• Divide the data into M machines. For every query feature, search the machines si-

multaneously.

• Combine the search results as for the exhaustive case, by having a local sorted list

of images, and then broadcast these lists to get a global sorted list, which is then

geometrically verified.

• Speed up: having more machines here corresponds to logarithmic speed up of the

search process. Consider having M machines, then each machine will perform

T
p

nn,kdt = F(2dB+B+B log2

FI

M
)+L(M−1)

where L is the size of the list on each machine, and the second term is the time

required to merge M sorted lists of size L.

The second is:

• Instead of having independent Kd-Trees in each machine, there will be a single (or

multiple) root machine with copies of the top part of the Kd-Trees. For example,

with 50 GB of memory available, we can fit 25 billion internal nodes. Therefore,

for storing 4 trees, we need to store ~ 6 billion nodes per tree (i.e. 3 billion leaves),

which corresponds to storing the top log2 3e9=30 levels for each of the 4 trees.

39

• The rest of the trees are then divided to the rest of the M machines (called leaf ma-

chines) that will also store the feature vectors and information.

• The root machine(s) will get query features and compute an initial list of nodes to

explore based on the top of the tree. Then, it will dispatch that feature to all leaf

machines that have that part of the tree. Once a leaf machine gets a feature, it will

handle backtracking within its own subtree, and updating its ranked list of images.

• Speed up: We have two parts for the running time, one in the root machine and one

in the leaf machines:

T
p

nn,kdt,r = FB log2

C

2×2T

T
p

nn,kdt,l =
FB

M
(2dB+B)+F log2

4FIT

C
+L(min(FB,M)−1)

where C is the memory capacity of each machine, T
p

nn,kdt,r is the time to search the

root machine and T
p

nn,kdt,l is the time for the leaf machines. The first term is the time

taken to search all the F image features concurrently where each feature will be sent

to at most B machines (and so we need FB machines to process them in the worst

case, where each backtracking step goes to a different leaf machine), the second term

is the time to get the minimum, the third term is the time to go down the subtree

excluding the top part in the root machine, and the last term is the time to merge the

min(M,FB) sorted lists (equals the number of machines processing the image).

40

3.4.3 Locality Sensitive Hashing (LSH)

Storage

• We still need to store all the features and their information:

Sex = (sd +4)IF

• In addition, there is storage for the tables. In each table, we need to store the hash

functions, in addition to the indices of all the features available:

Sta = IF
log2 IF

8
+Sh

where Shis the storage for the hash functions, which depends on the specific hash

function used and is negligible compared to the first term.

• Total:

Slsh = Sex +T Sta

Slsh = IF(sd +4+T
⌈log2 IF⌉

8
)

Computational Cost

Searching through the LSH index involves computing the hash function values and then

exhaustively checking the features that share the same hash value. The time can be repre-

41

sented as

Tnn,lsh = F(Th +(2d +1)
FI

B
T)

where the first term is the time to compute the hash functions:

• L2: Th,l2 = T H(2d + 2) where we have H hash functions, and for each we need to

compute dot product (one addition and multiplication per dimension) plus another

addition and division.

• Spherical-Simplex: Th,sim = T H(2d(d +1)+d) = T H(2d2 +3d) where we need to

compute product of a d + 1×d matrix and a vector of d dimensions, and then need

to get the closest vertex.

• Spherical-Orthoplex: Th,orth = T H(2d2 + 2d) = 2T H(d2 + d) where we need to

multiply a d ×d matrix with a d vector, and then choose the nearest vertex from the

2d choices, where we know that one vertex is just the opposite sign of the other.

The second two terms above are the time to compute exhaustive nearest neighbors, and

depends on the size of the LSH bucket, which is not constant, and grows linearly with the

number of total features, in addition to it varying greatly for the same number of features.

We assume we have a preset number of unique bucket values B, and then the average bucket

size would be FI
B

.

Parallelization

There are two ways to parallelize LSH operations. The first is a straightforward extension

of the exhaustive search case:

42

• Divide the data into M machines. For every query feature, search the machines si-

multaneously.

• Combine the search results as for the exhaustive case.

• Speed up: having more machines here corresponds to linear speed up. Consider

having M machines, then each machine will perform

T
p

nn,lsh ≈ F
FI

MB
T (2d +1)+L(M−1)

The second is similar to Kd-Trees:

• Instead of having independent LSH indexes in different machines, there will be a cen-

tral machine that computes all the hash functions, and has a list of which machines

store which buckets.

• The rest of the machines will store features that belong to a subset of buckets.

• The central machine(s) will get query features, compute the hash values (buckets),

and then dispatch that feature to machines containing that bucket.

• Speed up: We have two parts for the running time, one in the central machine and

one in the node machines:

Sm2,c = FTnn,lsh,x

Sm2,n =
F

T
((2d +1)

FI

B

43

where Sm,c is the time to compute the hash values on the central machine, while Sm,n

is the time taken for the node machines to search that bucket. This method will work

if Sm2,c is much smaller compared to Sm2,n. On the other hand, it will be a bottleneck

if the two times are comparable.

3.4.4 Hierarchical K-Means (HKM)

Storage

• We still need to store all the features and their information:

Sex = (sd +4)IF

• In addition, there is storage for the clustering tree. For a tree with depth D and

branching factor k, there are kD leaf nodes, which will store the actual features (in

subsets of k). The number of internal nodes is

n =
D−1

∑
i=0

ki =
kD −1

k−1

and for each internal node we need to store the k cluster centers, therefore the total

storage is

Shkm =
kD −1

k−1
× ksd +(sd +4)IF

Computational Cost

44

• At each level of the clustering tree, we need to find the nearest cluster, in addition to

finding the nearest feature in the leaf node:

Tnn,hkm = F(D× (2d + k)+
FI

kD
× (2d +1))

where the second term comes from searching the features in the leaf node, assuming

each leaf node will have the same share of features.

Parallelization

There are two ways to parallelize HKM operations. The first is a straightforward exten-

sion of the exhaustive search case:

• Divide the data into M machines. For every query feature, search the machines si-

multaneously.

• Combine the search results as for the exhaustive case.

• Speed up: Having more machines here corresponds to less search time. Consider

having M machines, then the each machine will perform

T
p

nn,hkm = FD(2d + k)+
F2I

MkD
× (2d +1)+L(M−1)

The second is similar to Kd-trees:

• Instead of having independent HKM trees in different machines, there will be a cen-

tral machine that stores the upper part of the HKM tree (internal nodes).

45

• The rest of the machines, node machines, will store subsets of the leaf nodes and

their features.

• The central machine(s) will get query features, go through the top of the tree, and

then dispatch features to the appropriate node machines.

• Speed up: We have two parts for the running time, one in the central machine and

one in the node machines:

Sm2,c = D(2d + k)

Sm2,n = 2d ×
FI

kD

where Sm,c is the time to go through the top of the HKM tree on the central machine,

while Sm,n is the time taken for the node machines to search the leaf nodes.

3.4.5 Inverted File (IF)

Storage

• We need to store the feature information (e.g., location) to allow the spatial consis-

tency step afterwards:

S f i = 4FI

• We also need storage for the inverted file:

Si f = Wsd +FI(
log2 I

8
+1)

46

where the first term is the storage for the W words, and the second term is storage for

the lists of images. We have a total of FI features and for each we need to store the

image id and the feature count.

• For large dictionaries of visual words, ~ 1 M visual words, image histograms tend to

be binary (i.e. there is one-to-one mapping between features and visual words) so we

do not need to store counts:

Si f ,bin = Wsd +FI
log2 I

8

• Total:

St = Si f +S f i

= 4FI +Wsd +FI(
log2 I

8
+1)

= Wsd +FI(5+
log2 I

8
)

St,bin = Wsd +FI(4+
log2 I

8
)

Computational Cost

There are two components for the run time

• Time for computing the visual words for every feature, which is usually done with

47

either Kd-Trees or with HKM:

Tvw,kdt = 2dB+B+B log2W = B(2d +1+ log2W)

Tvw,hkm = D(2d + k)

• Time for searching the inverted file, which is hard to estimate precisely because it

depends on the amount of overlap between the query image and the database images.

Assuming image features are distributed evenly among the visual words, each query

feature will encounter roughly IF
W

images per word, and so the time would be

Ti f = 2+min(
IF

W
, I)

where the first term is for the normalization of the histogram, and the second is for

computing the distance function (e.g., L2 distance) between these two values.

• Total:

Tbow,i f ,kdt = F(B(2d +1+ log2W)+2+min(
IF

W
, I))

Tbow,i f ,hkm = F(D(2d + k)+2+min(
IF

W
, I))

Parallelization

Parallelization is straightforward:

• Divide the storage among M machines.

48

• Given a query image, all machines are searched simultaneously to get a ranked list

of images in that machine.

• Broadcast the top image per machine, and each machine will compile a list of 100

images.

• The top 100 images are searched for spatial consistency by the machines that are

storing them, and the results are again broadcast to get a final list of 100 ranked

images

• The results are returned to the user.

• Speed up: The time to search in parallel in the different machines will be smaller,

but not as much as the theoretical number above suggests. This is because these

calculations assume the worst case run time, which is not usually the case:

Tbow,i f ,kdt = F(B(2d +1+ log2W)+2+min(
IF

MW
,

I

M
))

Tbow,i f ,hkm = F(D(2d + k)+2+min(
IF

MW
,

I

M
))

3.4.6 Min-Hash (MH)

Storage

• We need to store the feature information (e.g., location) to allow the spatial consis-

tency step afterwards:

S f i = 4FI

49

• We also need storage for LSH tables:

Slsh,mh = Wsd +FI
log2W

8
+T × (

log2 I

8
+Sh)

where the first term is the storage for the W words and the second is for storing the

sparse histograms. The third term is storage for the T LSH tables, where for each we

need to store indices to the images in the different buckets, plus the negligible Sh to

store the hash functions themselves.

• Total:

St = Slsh,mh +S f i

= Wsd + IF
log2W

8
+T × (

log2 I

8
+Sh)+2FI

= Wsd +FI(4+
log2W

8
)+T

log2 I

8

Computational Cost

There are two components for the run time:

• Time for computing the visual words for every feature, which is usually done with

either Kd-Trees or with HKM:

Tvw,kdt = F(2dB+B+B log2W) = FB(2d +1+ log2W)

Tvw,hkm = FD(2d + k)

50

• Time for computing the hash functions and the exhaustive search for images within

the bucket:

Tmh = FT H × (3+1)+T
I

B

where the first term is for computing the hash function (the permutation is computed

as π(x) = ax + b mod W , and so requires three operations), and the second term is

for computing the distance for images within that bucket, which is assumed evenly

distributed I
B

with B unique buckets.

• Total:

Tbow,mh,kdt = FB(2d +1+ log2W)+4FT H +
T I

B

Tbow,mh,hkm = FD(2d + k)+4FT H +
T I

B

Parallelization

Parallelization is straightforward:

• Divide the storage among M machines.

• Given a query image, all machines are searched simultaneously to get a ranked list

of images in that machine

• Broadcast the top image per machine, and each machine will compile a list of 100

images

• The top 100 images are searched for spatial consistency by the machines that are

storing them, and the results are again broadcast to get a final list of 100 ranked

51

images

• The results are returned to the user

• Speed up: Computations will be faster when using more machines, as the number of

images per bucket will go down

Tmh = T H × (3+1)+T
I

BMF

3.5 Summary

This chapter introduced the theoretical comparison of the different methods described in

Chapter 2. We provided theoretical estimates of the memory requirements and computa-

tional cost of these methods, both on a single machine and on multiple machines. Fur-

thermore, we also described approaches for parallelizing these methods, including a novel

way of parallelizing Kd-Trees, Distributed Kd-Trees, which provides much higher through-

put. The main result of the comparison here is that Kd-Tree has competitive run time with

BoW methods and also has advanced parallelization schemes that provide higher through-

put, while requiring an order of magnitude more storage. In the next chapter, we will

describe the experimental comparison of these methods, where we measure their run time

and recognition performance. Chapter 7 will explore the implementation details for the two

parallelizations of Kd-Trees discussed here.

52

Chapter 4

Experimental Comparison

4.1 Introduction

Chapter 3 detailed the theoretical comparison between the methods introduced in Chapter

2, providing estimates of the storage requirements and the computational cost of these

methods for up to 1 billion images. In this chapter we present the experimental comparison

between these methods on four real-world datasets, for up to 400 thousand images. In

Chapter 7 we run large-scale experiments with Kd-Trees with up to 100 million images.

Section 4.2 describes the datasets used in this thesis. Section 4.3 presents the details

of the experimental setup. Section 4.4 provides details and discussions of the experimental

comparison. Finally, Section 4.5 gives details of the parameter tuning for the different

methods.

4.2 Datasets

We use four different datasets in our experiments, each with different types of statistics.

Each dataset contains two types of images (see Figure 4.1):

53

Figure 4.1: Probe and Distractor Sets. See Figures 4.2–4.3 and Section 4.2.

1. Probe: A set of labeled images used for benchmarking purposes. This has two types

of images per object:

(a) Model Image: represents the ground truth image to be retrieved for that object

(b) Probe Images: used for querying the database, representing the object in the

model image from different view points, lighting conditions, scales, etc.

2. Distractors: A set of images that constitute the bulk of the database to be searched.

They are unrelated to the images used for probing, albeit with similar statistics. It

represents the clutter, or distractor images that the algorithm must go through in

order to find the right image. In the actual setting, this would include all the objects

of interest, e.g., book covers, CD covers, etc.

54

4.2.1 Probe Sets

• P1: CD Covers. A set of 5×97=485 images of CD/DVD covers. The model images

come from freecovers.net while the probe images come from the dataset used in [27].

This was also used in [4].

• P2: Pasadena-Buildings. A set of 6×125=750 images of buildings around Pasadena,

CA from [4]. The images were taken on two different days, at different times, from

different viewpoints. The model image is “image2” (frontal view of the building in

the afternoon).

• P3: ALOI. A set of 9×80=640 3D objects images from the ALOI collection [19]

with different illuminations and view points. We use the first 80 objects, with the

frontal view of each object as the model image, and four orientations and four illu-

minations as the probe images.

• P4: INRIA-Holidays. A set of 957 images, which forms a subset of images from

[20], with groups of at least 3 images. There are 233 model images and 724 probe

images. The first image in each group is the model image, and the rest are the probe

images. We used only this subset so that we have at least two probe images per

object.

Figure 4.2 shows some examples of images from these distractor sets. Table 4.1 summa-

rizes the properties of these probe sets.

http://freecovers.net

55

total #model #probe

P1 485 97 388

P2 750 125 525

P3 720 80 640

P4 957 233 724

Table 4.1: Probe Sets. Each row depicts the number of model images, the number of probe

images, and total number of images. See Section 4.2.

4.2.2 Distractor Datasets

• D1: Caltech-Covers. A set of ~ 100 K images of CD/DVD covers used in [4].

• D2: Flickr-Buildings. A set of ~ 1 M images of buildings collected from www.flickr.com

• D3: Image-net. A set of ~ 400 K images of “objects” collected from www.image-

net.org, specifically images under synsets: instrument, furniture, and tools.

• D4: Flickr-Geo. A set of ~ 1 M geo-tagged images collected from www.flickr.com

Figure 4.3 shows some examples of images from these distractor sets.

4.3 Experimental Details

4.3.1 Setup

We used four different evaluation scenarios, where in each we use a specific distractor/probe

set pair. Table 4.2 displays a list of scenarios used. Evaluation was done by increasing the

size of the dataset from 100 to 1 K, 10 K, 50 K, 100 K, up to 400 K. For each such size,

we include all the model images to the specified number of distractor images e.g. for 1k

http://www.flickr.com
http://www.image-net.org
http://www.image-net.org
http://www.flickr.com

56

Figure 4.2: Example Probe Images. Each row depicts a different set: P1, P2, P3, and P4,

respectively. Each row shows two model images and 2 or 3 of its probe images. Details in

Table 4.1. See Section 4.2 and Figure 4.1.

Figure 4.3: Example Distractor Images. Each row depicts a different set: D1, D2, D3,

and D4, respectively. See Section 4.2 and Figure 4.1.

57

images, we have 1000 images from the distractor set in addition to all images in the probe

set.

Performance is measured as the percentage of probe images correctly matched to their

ground truth model image, i.e., whether the correct model image is the first ranked image

returned (precision @1). In addition, we measure performance before and after the geo-

metric consistency check, which is done using the RANSAC algorithm [18] to fit an affine

transformation between the probe and the model images. Ranking before the geometric

check is based on the number of nearest features in the image, while ranking after is based

on the number of inliers of the affine transform. We only consider the first ranked image

because we want to make sure that the algorithm returns the correct result in the top spot

as often as possible. That is also similar to Google Goggles’ operation, which returns only

one result.

We want to emphasize the difference between the setup used here and the setup used in

other “image retrieval”-like systems [20, 13, 30]. In our setup, we have only ONE correct

ground truth image to be retrieved and several probe images, while in the other setting there

are a number of images that are considered correct retrievals. Our setup is motivated by

the application under consideration, for example indexing in a database of book covers.

This database would have one canonical image for each book, and the goal is to correctly

identify the book in the probe image.

We use SIFT [24] feature descriptors with Hessian affine [25] feature detectors. We

used the binary available from tinyurl.com/vgg123. All experiments were performed on

machines with an Intel dual Quad-Core Xeon E5420 2.5 GHz processor and 32 GB of

http://tinyurl.com/vgg123

58

Scenario Probe Distractor

1 P1 D1

2 P2 D2

3 P3 D3

4 P4 D4

Table 4.2: Evaluation Scenarios. Each evaluation scenario uses one distractor set and one

probe set from the sets defined in Section 4.2.

RAM. We implemented all the algorithms using a mix of Matlab and Mex/C++ scripts. All

the software is publicly available online at http://vision.caltech.edu/malaa/software/.

4.3.2 Parameter Tuning

All of the methods we compare have different parameters that affect their run time, storage,

and recognition performance. We performed parameter tuning in two steps: First, using a

subset of the probe images from Scenario 1, we narrowed down the parameter space into

set of promising parameters; Second, we ran experiments using this set of parameters for

the four scenarios with sizes from 100 up to 10 K images. Based on these results, we chose

the settings that made most sense in terms of their recognition performance, run time, and

the available memory resources. Specifically, for Kd-Tree, we could run experiments on

100 K images using only 1 tree, although using more trees with more backtracking steps

yielded better recognition results (see Figure 4.9 in Section 4.5.1). Please see Section 4.5

for more details. Table 4.3 summarizes the parameters chosen for the full benchmark.

http://vision.caltech.edu/malaa/software/

59

Parameters

Kd-Trees T = 1 tree, B =100 backtracking steps

LSH-L2 T =4 tables, H =25 hash functions, bin size w =0.25

LSH-Sim T =4 tables, H =5 hash functions

LSH-Orth T =4 tables, H =5 hash functions

HKM tree depth D = 5, branching factor k = 10

tf-idf weighting, l2 normalization, cos distance

Inverted File raw histograms, l1normalization, l1 distance

binary histograms, l2 normalization, cos distance

Min-Hash T = 100 tables, H = 1 hash function

Table 4.3: Experimental Comparison Parameter Settings. The chosen methods param-

eters used for the full experiments. See Sections 4.3 and 4.5 for details.

4.4 Experimental Results and Discussion

Figure 4.7 shows the recognition performance for different dataset sizes, before and after

the geometric consistency check. Figure 4.8 shows recognition performance vs. time for

one dataset size (10 K images), before and after geometric checks. We note the following:

• Scenario 2 (Pasadena homes in the probe and Flickr buildings as distractors) is the

most challenging. Other scenarios are easier. Across scenarios we find broadly con-

sistent rankings of the different algorithms. The rankings are easier to see in Scenario

2 and therefore we report results for Scenario 2 in Figures 4.4 and 4.5 for more con-

venient evaluation of the algorithms. Full results are in Figures 4.7 and 4.8.

• Full Representation (FR) methods based on (approximately) matching the local fea-

tures provide superior recognition performance to Bag of Words (BoW) methods.

See Figure 4.4 (left).

• BoW methods provide nearly constant search time compared to linear increase in

case of most FR methods, with the exception of Kd-Trees (before exhausting all

60

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

90

100
Scenario 2

Number of Images

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 2

Number of Images

T
im

e
 (

a
ft

e
r)

 (
s
e

c
 /

 i
m

a
g

e
)

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf−none−l1−l1

invf−tfidf−l2−cos

invf−bin−l2−l2

minhash

Figure 4.4: Recognition Performance and Time Vs. Dataset Size. This figure shows the

recognition performance (after geometric consistency checks) and total run time per image

as a function of the distractor set size. It only shows results for Scenario 2 (see Section 4.2

and Table 4.2). For more detailed results, please check Figure 4.8.

the main memory, see the big jump in Figure 4.7 for 50 K images) which provide

logarithmic increase in search time. See Figure 4.7 (third row).

• FR methods take an order of magnitude more memory than BoW methods, e.g., we

can easily fit up to 400 K images for BoW while for some scenarios we can only fit

up to 50 K images for some FR methods. See Figure 3.1.

• FR methods pose a trade off between recognition rate and search time. In particular,

for Scenarios 2 and 4, we notice that LSH methods are generally better than Kd-Trees

in terms of recognition rate but inferior in terms of search time, which rises sharply

with database size. This suggests that we can trade off extra search time for better

recognition rate. See Figures 4.4 and 4.7.

61

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100
Scenario 2

Time (before) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
b

e
fo

re
)

10
−2

10
−1

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100
Scenario 2

Time (after) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf−none−l1−l1

invf−tfidf−l2−cos

invf−bin−l2−l2

minhash

Figure 4.5: Recognition Performance Vs. Time. Left column shows recognition perfor-

mance vs. total matching time per image before the geometric step, while right column

shows performance vs. time after the geometric step for dataset size of 10 K images. It

only shows results for Scenario 2; see Table 4.2. For more detailed results, please check

Figure 4.8.

• Spherical LSH methods provide comparable recognition rate to LSH-L2 methods,

but they provide better search time. See Figures 4.4 and 4.7.

• If we focus on BoW methods, using the combination of l1 normalization with l1

distance in the inverted file method provides better performance than the standard

way of using tf-idf weighting with l2 normalization and dot product. Using binary

histograms also outperforms the standard tf-idf scheme, as reported in [21]. See

Figure 4.4.

• Kd-Trees provide the best overall trade off between recognition performance and

computational cost. We notice that its run time grows very slowly with the number

62

of images while giving excellent performance. Moreover, with smart and more com-

plicated parallelization schemes, like the one described in Section 3.3.2 and Figure

3.3, we can have significant speed up when running on multiple machines. The only

drawback, which is shared with all FR methods, is the larger storage requirements.

We also note that although the benchmark results were obtained using only 1 tree

with 100 backtracking steps, the results were significantly better than BoW methods.

Using more trees with more backtracking steps can yield even better results at the

expense of more memory and computational costs (see Figure 4.9).

Figure 4.6 shows the theoretical running time (from Figure 3.1) vs. the experimental run-

ning time for Scenario 3 (from Figure 4.7). We note that the experimental results generally

follow the theoretical estimates. The notable exception is that Spherical LSH experimen-

tally has less run time than LSH-L2. The reason for that is the actual distribution of the

features on the LSH buckets. In the theoretical estimates we assumed a uniform distribution

of features over all buckets, which is not the case practically. For example, the Spherical

LSH had a mean bucket size of 20 features with ~ 1 M full buckets, compared to 50 features

per bucket with ~ 500 K full buckets for the LSH-L2. We also note that the experimental

times are about 4–5 times larger than the theoretical estimates. This is expected, as the

estimates do not factor in code inefficiencies in addition to other overhead like function

calls, OS calls, memory allocation, cache effects, etc.

63

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

Theoretical Time

Number of Images

T
im

e
 p

e
r

im
a

g
e

 (
s
e

c
)

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

Experimental Time

Number of Images

T
im

e
 p

e
r

im
a

g
e

 (
s
e

c
)

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf−none−l1−l1

invf−tfidf−l2−cos

invf−bin−l2−l2

minhash

Figure 4.6: Run Time: Theory Vs. Practice. The left plot shows theoretical running time

estimates (see Fig. 3.1) while the right shows experimental running times before geometric

verification step for Scenario 3 (see Figure 4.7).

4.5 Parameter Tuning Details

Some of the algorithms have a large number of parameter combinations that greatly affect

performance in terms of trading off speed and recognition performance. In order to get

a quick feel for which combinations of parameters to try out, we performed some quick

experiments to estimate the performance of various combinations, in terms of speed and

recognition rate. The quick tuning is done with a random subset of 100 probe images (out

of 388 probe images) from Scenario 1. The matching rate is the percentage of nearest

neighbor features that are actually in the ground truth model image. Based on these quick

assessments, we chose certain combinations and performed further experiments on all the

scenarios with all the probe images.

64

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 1

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 1

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 1

Number of Images

T
im

e
 (

b
e
fo

re
)

(s
e
c
 /
 i
m

a
g
e
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 1

Number of Images

T
im

e
 (

a
ft
e
r)

 (
s
e
c
 /
 i
m

a
g
e
)

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf−none−l1−l1

invf−tfidf−l2−cos

invf−bin−l2−l2

minhash

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 2

Number of Images
R

e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 2

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 2

Number of Images

T
im

e
 (

b
e
fo

re
)

(s
e
c
 /
 i
m

a
g
e
)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 2

Number of Images

T
im

e
 (

a
ft
e
r)

 (
s
e
c
 /
 i
m

a
g
e
)

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 3

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 3

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 3

Number of Images

T
im

e
 (

b
e
fo

re
)

(s
e
c
 /
 i
m

a
g
e
)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 3

Number of Images

T
im

e
 (

a
ft
e
r)

 (
s
e
c
 /
 i
m

a
g
e
)

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 4

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
4

10
6

0

20

40

60

80

100
Scenario 4

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 4

Number of Images

T
im

e
 (

b
e
fo

re
)

(s
e
c
 /
 i
m

a
g
e
)

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

Scenario 4

Number of Images

T
im

e
 (

a
ft
e
r)

 (
s
e
c
 /
 i
m

a
g
e
)

Figure 4.7: Recognition Performance and Time Vs. Dataset Size (Full). First two rows

show recognition performance before and after the geometric step. Lower two rows show

total processing time per image before and after the geometric step. Every column repre-

sents a different experimental scenario, see Tables 4.2 and 4.3.

65

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 1

Time (before) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
b

e
fo

re
)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 1

Time (after) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

kdt

lsh−l2

lsh−sim

lsh−orth

hkm

invf−none−l1−l1

invf−tfidf−l2−cos

invf−bin−l2−l2

minhash

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 2

Time (before) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
b

e
fo

re
)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 2

Time (after) sec/image
R

e
c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 3

Time (before) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
b

e
fo

re
)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 3

Time (after) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 4

Time (before) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
b

e
fo

re
)

10
−2

10
0

10
2

0

20

40

60

80

100
Scenario 4

Time (after) sec/image

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

 (
a

ft
e

r)

Figure 4.8: Recognition Performance Vs. Time (Full). Left column shows recognition

performance vs. total matching time per image before the geometric step, while right col-

umn shows performance vs. time after the geometric step for dataset size of 10 K images.

Each row corresponds to a different scenario (see Table 4.2).

66

4.5.1 Kd-Tree

For Kd-Trees we have two parameters: T the number of trees and B the number of back-

tracking steps. Figure 4.9(a) shows results for trying 1, 4, and 8 trees with 50, 100, 250,

and 500 backtracking steps. Using 8 trees takes much more memory with minimal gain

in matching rate, while using 500 backtracking steps takes too much time. Based on the

plot, we decided to go forward with using 1 and 4 trees with 100 and 250 backtracking

steps. Figure 4.9(b) shows results for running these parameters on the four scenarios. We

chose the combination of {T,B} = {1,100} as the representative from this method in later

comparisons. We note that using more trees with more backtracking steps will have bet-

ter recognition performance, at the expense of more memory and computation (see Figure

4.9(b)). This represents a trade off that should be decided based on the memory and com-

putational resources available.

4.5.2 Locality Sensitive Hashing

4.5.2.1 LSH-L2

Here we have three parameters: T the number of tables, H the number of hash functions,

and w the bin size. We tried different combinations of using 1, 4, or 8 tables, 5, 10, 25, or

100 hash functions, and bin size of 0.1, 0.25, 0.5, or 1. Based on results in Figure 4.10(a),

we decided to use (T,H,w) = {4,10,0.1}, {4,25,0.25}, {4,50,0.5}, and {4,100,1} for

the rest of the experiments, which are the points at the knee of the plot, and represent

the most promising combinations. Those results are shown in Figure 4.10(b). We notice

that they provide very similar recognition performance and searching time. We chose the

67

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 100

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

exhaust−l2

kdt−t1−c50

kdt−t1−c100

kdt−t1−c250

kdt−t1−c500

kdt−t4−c50

kdt−t4−c100

kdt−t4−c250

kdt−t4−c500

kdt−t8−c50

kdt−t8−c100

kdt−t8−c250

kdt−t8−c500

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 1k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 10k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

(a) Quick Tuning for Kd-Tree. The plot shows the percentage of correctly matched features as a function of

time for different dataset sizes for different combinations of Kd-Trees. Based on these results, we chose T = 1

and 4 trees with B =100 and 250 backtracking steps. See (b) below.

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

(b) Full Tuning for Kd-Tree. Results for selected Kdt parameters from

(a) above on the 4 scenarios. Based on these results, we chose T = 1

and B = 100.

Figure 4.9: Kdt Parameter Tuning.

68

combination (T,H,w) = {4,25,0.25} as the representative from this method in later com-

parisons.

4.5.2.2 LSH Spherical Simplex

Here we have two parameters: T the number of tables, and H the number of hash functions.

We tried using 1 and 4 tables with 3, 5, or 7 hash functions. Results are in Figure 4.11(a).

We then decided to use 4 tables with 5 and 7 hash functions, whose results are in Figure

4.11(b). We notice that the recognition performance of using 5 functions is consistently

better, while having similar search time. We hence chose the combination {T,H} = {4,5}

as the representative from this method in later comparisons.

4.5.2.3 LSH Spherical Orthoplex

Here we have two parameters: T the number of tables, and H the number of hash func-

tions. We tried using 1 and 4 tables with 3, 5, or 7 hash functions. Results are in Figure

4.12(a). We then decided to use 4 tables with 5 and 7 hash functions, whose results are

in Figure 4.12(b). Again, we notice that the recognition performance of using 5 functions

is consistently better, while having similar search time. We hence chose the combination

{T,H} = {4,5} as the representative from this method in later comparisons.

4.5.3 Hierarchical K-Means

HKM has two parameters: D the depth of the tree and k the branching factor. We tried

depths of 5, 6, and 7 with branching factor of 10. Results for quick tuning are in Figure

4.13(a), and full results are in Figure 4.13(b). From the quick tuning, all the combinations

69

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 100

Time per feature (ms)

P
e

rc
e

n
ta

g
e

 C
o

rr
e

c
t

M
a

tc
h

e
s

exhaust−l2

lsh−l2−t1−f10−w.01

lsh−l2−t1−f25−w.01

lsh−l2−t1−f50−w.01

lsh−l2−t1−f100−w.01

lsh−l2−t1−f10−w.1

lsh−l2−t1−f25−w.1

lsh−l2−t1−f50−w.1

lsh−l2−t1−f100−w.1

lsh−l2−t1−f10−w.25

lsh−l2−t1−f25−w.25

lsh−l2−t1−f50−w.25

lsh−l2−t1−f100−w.25

lsh−l2−t4−f10−w.01

lsh−l2−t4−f25−w.01

lsh−l2−t4−f50−w.01

lsh−l2−t4−f100−w.01

lsh−l2−t4−f10−w.1

lsh−l2−t4−f25−w.1

lsh−l2−t4−f50−w.1

lsh−l2−t4−f100−w.1

lsh−l2−t4−f10−w.25

lsh−l2−t4−f25−w.25

lsh−l2−t4−f50−w.25

lsh−l2−t4−f100−w.25

lsh−l2−t4−f50−w.5

lsh−l2−t4−f100−w1

lsh−l2−t8−f10−w.1

lsh−l2−t8−f25−w.1

lsh−l2−t8−f25−w.25

lsh−l2−t8−f50−w.25

lsh−l2−t8−f50−w.5

lsh−l2−t8−f100−w1

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 1k

Time per feature (ms)

P
e

rc
e

n
ta

g
e

 C
o

rr
e

c
t

M
a

tc
h

e
s

10
−2

10
0

10
2

10
4

10

20

30

40

50
No. of distractors: 10k

Time per feature (ms)

P
e

rc
e

n
ta

g
e

 C
o

rr
e

c
t

M
a

tc
h

e
s

(a) Quick Tuning for LSH-L2. The plot shows the percentage of correctly matched features as a function

of time for different dataset sizes for different combinations of LSH-L2. The parameters are T =1, 4, and 8

tables, H =10, 25, 50, 100 hash functions, and w =0.1, 0.25, 0.5, and 1 bin size. Based on these results, we

used (T,H,w) = {4,10,0.1}, {4,25,0.25}, {4,50,0.5}, and {4,100,1} for the full tuning in (b) below.

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

lsh−l2−t4−f10−w.1

lsh−l2−t4−f25−w.25

lsh−l2−t4−f50−w.5

lsh−l2−t4−f100−w1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

lsh−l2−t4−f10−w.1

lsh−l2−t4−f25−w.25

lsh−l2−t4−f50−w.5

lsh−l2−t4−f100−w1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

lsh−l2−t4−f10−w.1

lsh−l2−t4−f25−w.25

lsh−l2−t4−f50−w.5

lsh−l2−t4−f100−w1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

lsh−l2−t4−f10−w.1

lsh−l2−t4−f25−w.25

lsh−l2−t4−f50−w.5

lsh−l2−t4−f100−w1

(b) Full Tuning for LSH-L2. The plot shows tuning results on the four

scenarios for the parameters chosen from (a) above. Based on these

results, we chose (T,H,w) = {4,25,0.25} as the representative combi-

nation.

Figure 4.10: LSH-L2 Parameter Tuning.

70

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 100

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

exhaust−l2

lsh−sph−sim−t1−f3

lsh−sph−sim−t1−f5

lsh−sph−sim−t1−f7

lsh−sph−sim−t4−f3

lsh−sph−sim−t4−f5

lsh−sph−sim−t4−f7

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 1k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 10k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

(a) Quick Tuning for LSH-Sim. The plot shows the percentage of correctly matched features as a function of

time for different dataset sizes for different combinations of LSH-Sim. The parameters are T =1 and 4 tables,

and H =3, 5, and 7 hash functions. Based on these results, we used (T,H) = {4,5} and {4,7}, for the full

tuning in (b) below.

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

lsh−sph−sim−t4−f5

lsh−sph−sim−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

lsh−sph−sim−t4−f5

lsh−sph−sim−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

lsh−sph−sim−t4−f5

lsh−sph−sim−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

lsh−sph−sim−t4−f5

lsh−sph−sim−t4−f7

(b) Full Tuning for LSH-Sim. The plot shows tuning results on the

four scenarios for the parameters chosen from (a) above. Based on the

results, we chose T = 4 tables and H = 5 hash functions per table.

Figure 4.11: LSH-Sim Parameter Tuning

71

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 100

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

exhaust−l2

lsh−sph−or−t1−f3

lsh−sph−or−t1−f5

lsh−sph−or−t1−f7

lsh−sph−or−t4−f3

lsh−sph−or−t4−f5

lsh−sph−or−t4−f7

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 1k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 10k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

(a) Quick Tuning for LSH-Orth. The plot shows the percentage of correctly matched features as a function

of time for different dataset sizes for different combinations of LSH-Orth. The parameters are T =1 and 4

tables, and H =3, 5, and 7 hash functions. Based on these results, we used (T,H) = {4,5} and {4,7}, for the

full tuning in (b) below.

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

lsh−sph−or−t4−f5

lsh−sph−or−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

lsh−sph−or−t4−f5

lsh−sph−or−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

lsh−sph−or−t4−f5

lsh−sph−or−t4−f7

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

lsh−sph−or−t4−f5

lsh−sph−or−t4−f7

(b) Full Tuning for LSH-Orth. The plot shows tuning results on the

four scenarios for the parameters chosen from (a) above. Based on the

results, we chose T = 4 tables and H = 5 hash functions per table.

Figure 4.12: LSH-Orth Parameter Tuning

72

are quite similar, so we ran those on the four scenarios. We notice that they have similar

performance, with using a depth of 5 yielding slightly better performance. We chose this

combination {D,k} = {5,10} as the representative of the method in later comparisons.

4.5.4 Inverted File

We have several parameters:

• The number of words in the dictionary. We try using 104, 105, and 106 words.

• The method of generating the dictionary, and we compare two popular ways: a vo-

cabulary tree using Hierarchical K-Means procedure (HKM) [27], and a flat dictio-

nary built using Approximate K-Means (AKM) employing a set of random Kd-trees

to perform the nearest-neighbor step [30]. The dictionaries are built using features

from 105 images from each distractor set.

• Weighting the histogram, normalization of the histogram, and distance function. We

used the following combinations: {w,n,d}={none,l1,l1}, {none,l2,l2}, {tf-idf,l2,cos},

{bin,l1,l1}, and {bin,l2,l2}.

Results of tuning are shown in Figure 4.14. From these results, we decided to go ahead with

using three combinations: {tf-idf,l2,cos}, {bin,l2,l2}, and {none,l1,l1}. The first is the

standard way in the literature to use inverted file search. The second has also been shown

to work competitively with larger dictionaries [21], while the third is a novel combination.

We note that increasing the number of words in the dictionary enhances performance, and

that HKM is a bit worse than AKM, so we go ahead and use the AKM dictionary with 1

73

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 100

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

exhaust−l2

hkm−l5−b10

hkm−l6−b10

hkm−l7−b10

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 1k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

10
−2

10
0

10
2

10
4

0.1

1

10

20

30
40
50

No. of distractors: 10k

Time per feature (ms)

P
e
rc

e
n
ta

g
e
 C

o
rr

e
c
t
M

a
tc

h
e
s

(a) Quick Tuning for HKM. The plot shows the percentage of correctly matched features as a function of

time for different dataset sizes for different combinations of HKM. The parameters are D =5, 6, and 7 levels,

and k =10 branches. We used the three settings for the full tuning in (b) below.

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 1

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 1

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 2

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 2

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 3

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 3

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
b

e
fo

re
)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

S
e

a
rc

h
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

10
2

10
3

10
4

30

40

50

60

70

80

90

100

Number of Images

P
e

rf
o

rm
a

n
c
e

 (
a

ft
e

r)

Scenario 4

10
2

10
3

10
4

10
−2

10
0

10
2

Number of Images

G
e

o
m

e
tr

ic
 C

h
e

c
k
 t

im
e

 (
s
e

c
/i
m

a
g

e
)

Scenario 4

kdt−t1−c100

kdt−t1−c250

kdt−t4−c100

kdt−t4−c250

(b) Full Tuning for HKM. The plot shows tuning results on the four

scenarios for the parameters chosen from (a) above. Based on the re-

sults, we chose D = 5 levels and k = 10 branches.

Figure 4.13: Hierarchical K-Means Parameter Tuning

74

M words. Figure 4.15 shows results of these chosen parameters on the four scenarios. We

notice:

• Using the combination {none,l1,l1} is comparable or outperforms the other two com-

binations on most scenarios, especially before the geometric step.

• Using the binary histograms generally outperforms the standard way of tf-idf weight-

ing the histograms.

4.5.5 Min-Hash

Here we have similar parameters pertaining to the dictionary: number of words and how

the dictionary is generated. In addition, we have two more parameters: T the number of

hash tables and H the number of hash functions. We try 1, 5, 25, and 100 tables with 1, 2,

and 3 hash functions. Based on the results in Figure 4.16, which show these combinations

with different dictionary sizes and dictionary generation, we chose to go ahead with AKM

dictionary with 1 M words and using 25 and 100 tables with 1 hash function. Figure

4.17 shows the results of these combinations on the four scenarios, after which we chose

(T,H) = (100,1) for the benchmark. We notice the following:

• Min-Hash performance is generally worse than Inverted File. This is expected, as it

is just an approximation that works best for near identical images, and not for images

with large distortions [12, 13].

• Geometric consistency checks are crucial for Min-Hash, as the first step provides

very poor performance.

75

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−10k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−10k

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−10k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−10k

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

ivf−none−l1−l1

ivf−none−l2−l2

ivf−tfidf−l2−cos

ivf−bin−l1−l1

ivf−bin−l2−l2

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−100k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−100k

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−100k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−100k

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

ivf−none−l1−l1

ivf−none−l2−l2

ivf−tfidf−l2−cos

ivf−bin−l1−l1

ivf−bin−l2−l2

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−1M

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−akmeans−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−akmeans−1M

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

ivf−none−l1−l1

ivf−none−l2−l2

ivf−tfidf−l2−cos

ivf−bin−l1−l1

ivf−bin−l2−l2

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−hkm−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−hkm−1M

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

30

40

50

60

70

80

90

100
bow−hkm−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

bow−hkm−1M

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

ivf−none−l1−l1

ivf−none−l2−l2

ivf−tfidf−l2−cos

ivf−bin−l1−l1

ivf−bin−l2−l2

Figure 4.14: Quick Tuning for Inverted File. Rows correspond to dictionaries: akm-

10K, akm-100K, 1km-1M, and hkm-1M, where the number corresponds to the number of

words. First column depicts the recognition performance before geometric checks, second

column shows the search time through the inverted file, third column shows the recognition

performance after geometric step, while the fourth column shows the geometric check time.

Based on the results, we chose AKM dictionaries with 1 M visual words and the three

combinations {tf-idf,l2,cos}, {bin,l2,l2}, and {none,l1,l1} for the full tuning in Figure

4.15.

76

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 1

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 1

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 1

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 1

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

ivf−none−l1−l1

ivf−tfidf−l2−cos

ivf−bin−l2−l2

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 2

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 2

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 2

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 2

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 3

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 3

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 3

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 3

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 4

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 4

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

20

40

60

80

100
Scenario 4

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 4

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

Figure 4.15: Full Tuning for Inverted File. Plots the results for the parameters chosen

based on Figure 4.14.

77

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−10k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−10k

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−10k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−10k

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)minhash−t1−f1

minhash−t1−f2

minhash−t1−f3

minhash−t5−f1

minhash−t5−f2

minhash−t5−f3

minhash−t25−f1

minhash−t25−f2

minhash−t25−f3

minhash−t100−f1

minhash−t100−f2

minhash−t100−f3

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−100k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−100k

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−100k

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−100k

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−1M

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−akmeans−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−akmeans−1M

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−hkm−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−hkm−1M

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
bow−hkm−1M

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

bow−hkm−1M

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

Figure 4.16: Quick Tuning for Min-Hash. Rows correspond to dictionaries: akm-10K,

akm-100K, akm-1M, and hkm-1M, where the number corresponds to the number of words.

First column depicts the recognition performance before geometric checks, second column

shows the search time through the inverted file, third column shows the recognition per-

formance after geometric step, while the fourth column shows the geometric check time.

We tried T =1, 5, 25, and 100 tables with H =1, 2, and 3 hash functions. Based on these

results, we chose AKM dictionaries with 1 M visual words, T = 25 and 100 tables with

H = 1 for full tuning in Figure 4.17.

78

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 1

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 1

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 1

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 1

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

minhash−t25−f1

minhash−t100−f1

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 2

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 2

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 2

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 2

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 3

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 3

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 3

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 3

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 4

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

b
e
fo

re
)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 4

Number of Images

S
e
a
rc

h
 t
im

e
 (

s
e
c
/i
m

a
g
e
)

10
2

10
3

10
4

10
5

0

20

40

60

80

100
Scenario 4

Number of Images

P
e
rf

o
rm

a
n
c
e
 (

a
ft
e
r)

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

Scenario 4

Number of Images

G
e
o
m

e
tr

ic
 C

h
e
c
k
 T

im
e
 (

s
e
c
/i
m

a
g
e
)

Figure 4.17: Full Tuning for Min-Hash. Plots results for the four scenarios for the param-

eters chosen in Figure 4.16. Based on these results, we chose T = 100 tables with H = 1

hash function.

79

4.6 Summary

This chapter provided thorough experimental comparison between Full Representation and

Bag of Words methods. From the experiments, we found that FR with Kd-Trees provides

better recognition performance than Inverted File BoW with competitive run time, however

it requires an order of magnitude more storage (see Chapter 3). We also found that to

be able to scale up the image search system to handle millions of images, we need to

parallelize the database over hundreds or thousands of machines. Chapter 3 provided two

ways to parallelize Kd-Trees. Therefore, in the next chapters we address these challenges:

1. Devising ways to reduce run time and storage requirements for FR methods. This

includes developing better features that take less storage, finding ways to store fewer

features in the database, and compressing information of features using projection

methods (e.g., PCA, Random Projection, etc.). We explore this in Chapter 5 when

we introduce Compact Kd-Trees.

2. Devising ways to improve the recognition performance of BoW methods. This in-

cludes finding better ways to generate the visual word dictionaries and encoding ge-

ometric information in the BoW representation. We explore this in Chapter 6 when

we present Multiple Dictionaries for Bag of Words.

3. Devising ways to efficiently parallelize Kd-Trees over multiple machines. We ex-

plore this in Chapter 7 when we present implementations for Distributed Kd-Trees.

80

Chapter 5

Compact Kd-Trees

5.1 Introduction

As concluded from Chapters 3–4, Kd-Trees provide the best trade off between run time

and recognition performance. The only drawback, which is shared with all the methods

of Full Representation, is the much higher memory requirement. Most of the storage re-

quired by the FR approach is for storing the individual features. Therefore, reducing the

storage required by the feature descriptors is highly desirable. This can be done in at least

two ways: (a) reducing the number of features to be stored by discarding unstable useless

features [34], and (b) reducing the memory footprint of the individual feature descriptors.

In this chapter, we focus on representing the features in as few bits as possible while

still retaining good performance. In particular, we focus on using compact binary signatures

[11, 35, 31] to compress local SIFT features [25, 24] while using Kd-Trees for fast nearest-

neighbor search. We compare standard PCA dimensionality reduction to three methods for

obtaining compact binary signatures from vectors: Spectral Hashing (SH) [35], Locality

Sensitive Hashing (LSH) [11, 5], and Locality Sensitive Binary Codes (LSBC) [31]. Fur-

thermore, we present a novel method, Compact Kd-Trees, that uses an order of magnitude

81

Parameter Description Typical Value

I # images 100K

b # bytes/feature dim 1

d feature dimension 128

F # features/image 1,000

T # kd-trees 1

t # backtracking steps 150

L depth of the tree 24

B # bits / signature 64

Table 5.1: Kd-Tree Parameter Definitions. See Section 5.2.

less storage by making use of both the full features and the binary codes while retaining

comparable performance. Finally, we compare our method to the state-of-the-art Ham-

ming Embedding BoW method [20] and report better performance with equivalent or less

storage.

Section 5.2 presents the different methods of generating binary signatures for SIFT

features and reviews the Kd-Tree algorithm. Section 5.3 describes the novel algorithm

Compact Kd-Tree. Section 5.4 details the experimental results comparing the different

binary signature generation methods, CompactKdt, and BoW methods.

5.2 Compact Binary Signatures

In this chapter, we focus on using randomized Kd-Trees, which have been shown to provide

excellent recognition performance and run time [4, 26]. We use the Best-Bin-First variant

of Kd-Trees [6, 24] which utilizes a priority queue [14] to search through all the trees

simultaneously. Algorithm 2.2 outlines the process of constructing a set of randomized

Kd-Trees and Algorithm 2.3 outlines the search process.

82

We can express the storage required for Kd-Tree algorithm as:

SKdt ≈ IF(bd +T

⌈

log2 IF

8

⌉

)+2L+1T

where the parameters are defined in Table 5.1. This formula is a bit different from that in

Table 3.2 since here we consider only one Kd-Tree, and hence we can reduce the storage

even further. The first term is for storing the feature descriptors. A Kd-Tree with L levels

has 2L − 1 internal nodes. For every internal node per tree, we need to store 2 bytes, the

dimension to split on and split value (last term). For every leaf, we need to store the indices

of the features that belong to that leaf (second term), the total of which is IF . The tree can

be stored in memory as an array, and so we do not need any pointers [14]. Given the typical

values in Table 5.1, the storage would take SKdt ≈ 13.2 GB, out of which it takes 12.8 GB

just to store the feature descriptors (i.e., ~96% of the total storage is taken by the features!).

The number of operations per image can be expressed as

TKdt ≈ FLt +Ft
FI

2L
× (2d +1)

where t is the number of backtracking steps. The first term is for traversing the tree to the

leaves, the second is for computing the distance to the candidate nearest neighbors, and the

third is for finding the minimum among the candidates. For the typical values in Table 5.1,

it takes TKdt ≈ 232 MFLOP (FLoating Point Operation) per image.

We focus on methods for producing compact binary signatures for the features. These

methods take in N-dimensional vectors x ∈ R
N and produce B-dimensional binary signa-

83

tures bx ∈ {0,1}B. The basic requirement is such that the hamming distance dH(bx,by) =

∑i{bx
i 6= b

y
i } between the binary signatures bx and by of two features x and y provides a

good approximation to the Euclidean distance dE(x,y) = ||x− y||2.

Using binary signatures has two advantages:

1. Storage reduction: By using, for example, 64-bit signatures instead of 128-bytes

features, we can reduce the storage for Kd-Trees to 1.2 GB instead of 13.2 GB, an

order of magnitude less (see Table 5.2).

2. Run time Speed up: In the search phase of the Kd-Tree (Algorithm 2.3), we need

to search the list of candidate nearest neighbors to get the k closest ones. Instead of

computing the Euclidean distance on 128 dimensions (which includes 128 additions

+ 128 multiplications), for 64-bit signatures we do an XOR and bit count (one XOR

+ 8 table lookups and additions), almost an order of magnitude fewer operations.

In addition, we need to compute the binary signatures themselves for every query

feature. The search time is modified as follows:

TKdt−Bin ≈ FtL+Ft
FI

2L
(2

⌈

B

8

⌉

+1)+FB× (2d +1)

where the middle term is for computing the hamming distance of two B-bit vec-

tors with lookup tables for every byte, and the last term is for computing the binary

signature, assuming it is computed by projecting the d−dimensional feature over B

vectors. For 64-bit signatures, this reduces the operations required from 232 MFLOP

down to ~ 35 MFLOP per image.

84

bits / feature Total Features Total

Storage (GB) Compression Compression

1024 (Full) 13.2 1 1

512 6.8 2 1.9

256 3.6 4 3.6

128 2 8 6.5

64 1.2 16 10.7

32 0.8 32 15.8

Table 5.2: Storage Savings for Using Binary Signatures with Kd-Trees. The second

column depicts the storage used when compressing the SIFT features with binary signatures

of different lengths, using FM Kd-Trees with typical parameter values in Table 5.1. The

third column shows the compression factor for storing the features relative to the first row

(full features), while the fourth column shows the total compression factor (features + Kd-

Tree) achieved. See Section 5.2.

We consider three state-of-the-art methods:

• Spectral Hashing (SH) aims at producing balanced binary codes that minimize the

mean hamming distance between similar codes [35]. This is shown to be equiva-

lent to a graph partitioning problem which is NP-hard. However, by relaxing the

constraints it can be solved efficiently by finding the principal components of a train-

ing set, and approximating and thresholding the eigenvectors of the graph Laplacian

along the principal components [35].

• Locality Sensitive Hashing (LSH) uses projections on random hyperplanes such that

the output binary signature approximates the dot product [11]. Specifically, the ith

bit is defined as: bi = sign
〈

x,ai
〉

where ai ∈ R
N is a random unit vector ai ∼ N(0, I).

Unlike SH, LSH is data independent and does not require any training.

• Locality Sensitive Binary Codes (LSBC) was derived as a data-independent vari-

ant of SH while having strong theoretical guarantees [31]. It generates binary codes

85

Algorithm 5.1 Compact Kd-Trees (CompactKdt)

1. For every feature in the training set { fi j} ∈ R
N , compute its binary signature {bi j} ∈

{0,1}B.

2. Build the set of Kd-Trees {Tt(fi j)} using the full feature set { fi j}, then only store the

set of binary signatures {bi j}

3. For every query feature fq j compute its binary signature bq j.

4. Use the full query feature fq j to retrieve a short list of candidate nearest neighbor

features {nl
q j}.

5. Search the short list {nl
q j} of features using their binary signatures to get the closest

feature nq j.

6. Accumulate the scores for the image that contains nq j, as in Algorithm 2.1.

using random projections such that the expected hamming between the signatures

equals the value of a shift-invariant kernel between the two features. For exponential

kernels K(x,y)= exp(||x−y||²/γ), the ı́th bit is defined as bi = 0.5[1+Qt (cos(〈ω,x〉+b))]

where t ∼Uni f [−1,1], Qt(u) = sign(u+t), ω ∼N(0,γI)∈R
N , and b∼Uni f [0,2π].

By reducing the dimensions of the input features, we can significantly reduce the amount

of storage required. Instead of using the full SIFT features, we can instead compute binary

signatures or PCA and use that instead. The binary signatures are then used to build the

Kd-Trees, and to compute the K-nearest neighbors (see Algorithms 2.2–2.3 and Figure

5.1). Comparison results are detailed in Section 5.4.2.

5.3 Compact Kd-Trees (CompactKdt)

Using the binary signatures to build and search the Kd-Tree provides an order of magnitude

saving in storage over using the full features, but it still incurs a loss anywhere between 2%

86

Figure 5.1: Ordinary Vs. Compact Kd-Tree. Blue arrows refer to the construction phase,

while green arrows refer to the search phase. (a) In ordinary Kd-Trees, the training features

(left) are used to construct the tree, see Algorithm 2.2. Given a query feature (right), the tree

is traversed for candidate nearest neighbors, which are then filtered by computing distances

using the training features to obtain the k-nearest neighbors (bottom); see Section 2.3. (b)

In Compact Kd-Trees, the full training features are used to construct the tree as usual,

and can be discarded after that. Given a query feature, the tree is traversed for candidate

nearest neighbors using the full query feature descriptor. However, distances are computed

using the query binary signature and the training binary signatures to obtain the k-nearest

neighbors; see Algorithm 5.1. See Section 5.3.

87

and 36% in precision (see Section 5.4.2). We can get the best of both worlds by using all

the information available, i.e., use the full features to get a good list of candidate nearest

neighbor features, and then using the binary signatures to select the actual nearest features.

This idea is easily applicable to Kd-Trees. We build the Kd-Trees using the full training

features, then these features can be discarded and we only store their binary signatures. At

query time, we traverse the Kd-Trees using the full query features to get the list of candidate

close features, but only verify the correct nearest neighbor using the binary signatures (see

Algorithm 5.1 and Figure 5.1). This significantly improves the performance while using

the exact same storage and computational cost as using binary signatures with ordinary

Kd-Trees (see Table 5.2 and Section 5.2). Experimental results for Compact Kd-Trees are

detailed in Section 5.4.3.

5.4 Experimental Results

5.4.1 Setup

In this chapter, we only use Scenarios 1, 2, and 4 from Table 4.2 in Chapter 4. Evaluation

was done by choosing 100 K images from the distractor set in addition to all the model

images from the probe set. We also use the same performance metric (i.e., precision@1,

see Section 4.3).

We use SIFT [24] feature descriptors (128 dimensions) with hessian affine [25] feature

detectors. We used the binary available from http://tinyurl.com/vgg123. All experiments

were performed on machines with Intel dual Quad-Core Xeon E5420 2.5 GHz processor

http://tinyurl.com/vgg123

88

32 64 128 256 512 1024
0

20

40

60

80

100

Number of bits / feature

P
re

c
is

io
n

 @
1

 (
%

)

Scenario 1

SH

LSH

LSBC

PCA

Full

32 64 128 256 512 1024
0

20

40

60

80

100

Number of bits / feature

P
re

c
is

io
n

 @
1

 (
%

)

Scenario 2

32 64 128 256 512 1024
0

20

40

60

80

100

Number of bits / feature

P
re

c
is

io
n

 @
1

 (
%

)

Scenario 4

Figure 5.2: Recognition Performance for Binary Signatures and PCA. The X-axis

shows the number of bits / feature, while the Y-axis shows the Precision@1. The black

circles show the performance using the full features (128 bytes). PCA outperforms the bi-

nary signatures beyond 128 bits, while the binary signatures (especially SH) perform very

well for 32 and 64 bits. See Sections 5.2 and 5.4.2. PCA achieves performance within 90%

of using the full features with ~ 3.6 compression factor. To achieve even higher savings,

see Figure 5.3.

and 32 GB of RAM. For SH, we used the code available from the authors of [35]. We

implemented the rest of the algorithms using Matlab and Mex/C++ scripts. For SH, we

used a random set of 2.5 M for training. For BoW, the dictionary is built from a random set

of 10 M features.

5.4.2 Binary Signature Comparison

Figure 5.2 shows the results of using the binary signatures compared to using Principal

Component Analysis (PCA) and to using the full features with Kd-Trees. For PCA, all the

dimensions were quantized to 8-bits (e.g., with 128 bits we only kept the top 16 dimen-

sions). We note the following:

• The scenarios have different difficulty, with Scenario 1 the easiest (full feature preci-

sion of about 99%), Scenario 2 harder (~ 79% precision), and Scenario 4 the hardest

89

(~ 66% precision).

• PCA is quite competitive with the binary signatures for sizes starting at 128 bits per

feature (16 PCA dimensions). By using 256 bits (32 PCA dimensions), we can reach

performance within 90% of the full features while achieving ~3.6 compression i.e.

using almost one fourth of the storage.

• Below 128 bits, the binary signatures are significantly better than PCA. SH provides

the best performance, followed by LSBC, then LSH. However, beyond 128 bits, the

performances of SH and LSBC deteriorate, while that of LSH becomes better.

• At 128 bits (~ 6-fold savings in total storage) we lose ~ 2% of the precision using

full features for Scenario 1, ~ 28% for Scenario 2, and ~ 21% for Scenario 4.

• At 64 bits (~ 10-fold savings in total storage) we lose ~ 4% of the precision using

full features for Scenario 1, ~ 36% for Scenario 2, and ~ 31% for Scenario 4.

Though we can achieve a ~ 3.6 compression factor with only minimal loss to the perfor-

mance, which is promising, we are seeking even higher compression rates with similar

performance. We will show next how to achieve this.

5.4.3 Compact Kd-Tree

Figure 5.3 shows the results of running CompactKdt using the binary signatures and PCA

from Section 5.2 compared to using SH with ordinary Kd-Trees (which provides the best

performance from Figure 5.2), all using 1 Kd-Tree. We note the following:

90

32 64 96 128
50

60

70

80

90

100

Number of bits / feature

P
re

c
is

io
n
 @

1
 (

%
)

Scenario 1

SH

SH−CompactKdt

LSH−CompactKdt

LSBC−CompactKdt

PCA−CompactKdt

Full

32 64 96 128
10

20

30

40

50

60

70

80

Number of bits / feature

P
re

c
is

io
n
 @

1
 (

%
)

Scenario 2

32 64 96 128
20

30

40

50

60

70

Number of bits / feature

P
re

c
is

io
n
 @

1
 (

%
)

Scenario 4

Figure 5.3: Recognition Performance for Compact Kd-Trees (CompactKdt). The X-

axis shows the number of bits / feature, while the Y-axis shows the Precision@1. The black

circles show the performance using the full features (128 bytes), while the blue stars show

the SH with ordinary Kd-Trees which provided the best performance from Figure 5.2. We

note that CompactKdt provides significant performance gains while using the same storage

as using ordinary Kd-Trees with binary signatures. CompactKdt with SH gives the best

performance, followed by LSBC, LSH, and PCA. See Section 5.3.

• CompactKdt with SH gives the best results, while using LSH, LSBC, and PCA are

worse.

• CompactKdt achieves significant performance improvements over using the binary

signatures with ordinary Kd-Trees, while using the same storage. For example, using

32-bits, we achieve 35–200% improvements.

• For Scenario 1, we reach within ~ 5% of the full feature precision using only 32 bits

with SH-CompactKdt compared to SH alone, a 14-fold saving in storage.

• For Scenarios 2 and 4, we reach within ~ 10% (16%) of the full precision using only

96 bits (64 bits) for ~ 8-fold (10-fold, respectively) of savings in storage. There-

fore, if the application is willing to lose 10–16% of the precision, we can achieve a

compression factor of 8–10 times.

91

Parameter Description Typical Value

I # images 100K

F # features/image 1,000

b # bytes/feature dim 1

d feature dimension 128

W # visual words 106

B # bits / signature 64

Table 5.3: BoW Parameter Definitions. See Section 5.4.4.

Algorithm Storage Comp. Query Time

(GB) (MFLOP/im) (msec/im)

Kd-Tree 13.2 232 232

CompactKdt-64 1.23 35 35

CompactKdt-48 1.03 27 27

BoW-HE 1.1 51 51

Table 5.4: CompactKdt and BoW Storage and Computational Cost Comparison using

the values in Tables 5.1 and 5.3. See Sections 5.2, 5.3, and 5.4.4 and Figure 5.4. Storage

is in GB, computations are in MFLOP/image, and query time is in msec/image (using a 1

GFLOPS processor).

• Overall, we can save anywhere between 8–14 times in the total storage and stay

within 5–16% of the best performance. This is a significant storage saving, since

we can store an order of magnitude more images on the same machine while losing

minimal performance.

5.4.4 Comparison with Bag of Words

Bag of Words (BoW) techniques have been shown to take an order of magnitude less stor-

age than FR methods, however, they suffer from poor performance (see Figure 5.4 and

92

Chapters 3 and 4). The storage taken by BoW methods can be expressed as (see Table 3.2):

SBoW = Wbd + IF

⌈

log2I

8

⌉

where the parameters are defined in Table 5.3. The first term is for storing the visual words,

and is negligible. The second term is for storing the inverted file [36]. We do not need to

store word counts for large dictionaries as the histogram usually becomes sparse and binary

[20]. For Hamming Embedding (HE) [20], the storage needed is as follows:

SHE = Wbd + IF

(⌈

log2I

8

⌉

+
B

8

)

where we need additional storage for the binary signatures of the features. For the typical

values in Table 5.3, SBoW = 0.3 GB and SHE = 1.1 GB, compared to SKdt = 13.2 GB,

which is an order of magnitude more. Using CompactKdt, however, the storage shrinks

to SCompactKdt−64 = 1.23 GB with 64-bit signatures and to SCompactKdt−48 = 1.03 GB with

48-bit signatures (see Section 5.3 and Tables 5.2 and 5.4) which is equivalent to or less than

the storage taken by HE.

The number of operations per image for HE is as follows:

THE ≈ Ft(log2W +2d +1)+2F
FI

W

B

8
+FB× (2d +1)

where the first term is for computing the visual words for the image features using a Kd-

Tree with W leaves and log2W levels, the second term is for computing the Hamming

93

30

40

50

60

70

80

90

79

65

59

46

54

Scenario 2

P
re

c
is

io
n
@

1
 (

%
)

Full

SH−CompactKdt−64

SH−CompactKdt−48

BoW−Baseline

BoW−HE

30

40

50

60

70

80

90

66

56
54

38

46

Scenario 4

P
re

c
is

io
n
@

1
 (

%
)

Figure 5.4: Comparison of CompactKdt with BoW. The X-axis shows different algo-

rithms, while the Y-axis shows their Precision@1. The full features with 1Kd-Tree is in

black. Two bars for CompactKdt with 1 tree using 64-bit signatures (green) and 48-bits

(red). Baseline Bag of Words with 1 M visual words is in cyan, while Hamming Embed-

ding BoW with 100 K visual words is in magenta. See Section 5.4.4.

distance between the binary signatures (assuming the features are evenly distributed among

the visual words, such that each of the W visual words has FI
W

features given FI total

features), and the third term is for computing the signatures themselves. With typical values

in Table 5.3, this gives THE ≈ 51 MFLOP compared to TCompactKdt−64 ≈ 35 MFLOP (see

Table 5.4).

Figure 5.4 shows results for: (a) Baseline BoW: the standard BoW method with l1

histogram normalization and l1 distance using 1 M visual words (cyan); (b) HE BoW: with

tf-idf weighting, l2 normalization, l2 distance, and hamming distance threshold of 25 using

100 K visual words (magenta); (c) Full SIFT features without compression using 1 Kd-Tree

(black); and (d) CompactKdt with SH 64-bit (green) and 48-bit (blue) signatures using 1

Kd-Tree. We note the following:

94

• Kd-Trees with full features (black) are significantly superior to both Baseline (cyan)

and HE BoW (magenta) methods, at the cost of using an order of magnitude more

storage.

• CompactKdt, with either 48 or 64 bits (green & blue), is clearly superior to both

Baseline BoW and HE BoW. It provides significantly superior recognition perfor-

mance with equivalent or less storage and computational cost.

5.5 Summary

We presented a novel algorithm, Compact Kd-Tree, for reducing the storage of SIFT fea-

tures using compact binary signatures together with Kd-Tree constructed with the full fea-

tures. We find that CompactKdt can reduce the computational cost and the storage by an

order of magnitude, down to levels comparable to BoW methods, while retaining the su-

perior performance of FR methods. Specifically, we showed an order of magnitude less

storage (~ 8-fold saving) with performance within 10% of the performance using the full

features using 12 bytes per feature. In addition, CompactKdt achieves significantly better

performance than the state-of-the-art Hamming Embedding method with equivalent or less

storage and computational cost.

95

Chapter 6

Multiple Dictionaries for Bag of Words

6.1 Introduction

As concluded from Chapters 3–4, the Bag of Words approach requires significantly less

storage than the Full Representation approach, but suffers from worse performance. In this

chapter, we explore ways to boost its performance. Specifically, we focus our attention on

the most important component of the BoW algorithm: the dictionary of visual words (see

Section 2.6). We present a novel method, Multiple Dictionaries for BoW (MDBoW), that

uses more visual words (~ 5 M) while significantly increasing the performance. Unlike

previous approaches, we use more words from different independent dictionaries instead

of adding more words to the same dictionary. The caveat is that the storage grows linearly

with the number of dictionaries used, however, with recent techniques for compact BoW

[21, 22, 29], we can get improved performance using comparable storage. We also show

significant performance gains by building the dictionary using all available features (i.e.,

using features from all images indexed in the database). We argue that this poses no risk of

overfitting or bias, since this is exactly the approach taken by other image search methods

that rely on matching individual features using, e.g., Kd-Trees [24, 4]. Finally, we report

96

Figure 6.1: Multiple Dictionaries for BoW. (a) Single Dictionary: a single dictionary of

visual words is generated from the pool of features, which is used to generate the histogram

for the image. (b) Every dictionary Dn is generated with a different subset of the image fea-

tures. (c) Separate Dictionaries (SDs): the image gets a histogram hn from every dictionary

Dn which are concatenated to form a single histogram h. Notice that every feature gets N

entries in the histogram h, one from every dictionary. (d) Unified Dictionaries (UDs): a

single unified dictionary is built from the concatenation of visual words from the dictionar-

ies 1 . . .N, and the image gets a single histogram h. Note that every feature gets only one

entry in the histogram h.

results significantly better than the state-of-the-art Hamming Embedding [20] method.

Section 6.2 describes the idea behind MDBoW. Section 6.3 presents the experimental

details. Finally, Section 6.4 presents the experimental results.

6.2 Multiple Dictionaries for Bag of Words (MDBoW)

We propose a novel way to increase the recognition performance of BoW: Multiple Dictio-

naries for Bag of Words (MDBoW). Our motivation is the view of BoW as an approxima-

tion to matching individual features [20] and the idea of Randomized Kd-Trees [6, 24, 26].

In this view, we are matching individual features using visual words as a proxy, i.e., features

that have the same visual word are considered matched. However, since we are dealing with

97

Algorithm 6.1 Multiple Dictionaries for Bag of Words (MDBoW)

1. Generate N random (possibly overlapping) subsets of the image features {Sn}
N
1 .

2. Compute a dictionary Dn independently for each subset Sn. Each dictionary Dn has

a set of Kn visual words (cluster centers) {W n
k }

Kn

k=1.

3. Compute the histogram h for any image using the combination of the N dictionaries

in one of two ways:

(a) Separate Dictionaries (SDs): For every image feature f j, get its visual word

wn
j from every dictionary Dn. Accumulate these visual words into individual

histograms hn for each dictionary. The final histogram h = [hT
1 . . .hT

N]T is the

concatenation of the individual histograms.

(b) Unified Dictionaries (UDs): Combine the visual words {W n
k } from all the dic-

tionaries into a unified set of words W . For every image feature f j, get its visual

word w j from the unified set of words. Accumulate the visual words into the

final histogram h.

very large dimensions, this approximation depends greatly on the random partitioning of

the space offered by AKM. We can solve this problem by having multiple independent dic-

tionaries that give complementary partitions of the feature space, in the spirit of Random-

ized Kd-Trees. Algorithm 6.1 outlines the idea, please consult Figure 6.1 for illustrations.

The advantage of the SDs method is that it is flexible and can be used with any kind

of dictionary. There is no restriction on the way the dictionaries are generated e.g. we

can combine AKM and Hierarchical K-Means (HKM) dictionaries [27] with varying sizes.

In fact, we show results on SDs with HE in Section 6.4.3. The drawback is that we are

increasing the storage requirements in the inverted file, since each feature in the image has

N entries in the final histogram, as well as the time to generate the visual words (see Table

6.1). On the other hand, UDs have the advantage of requiring less memory than SDs, since

each feature has only one entry in the final histogram. However, these dictionaries must be

of a type where it is easy to combine visual words from different dictionaries, which is not

98

Parameter Description Typical Value

I no. of images 106

s bytes/feature dim 1

d feature dimension 128

N # dictionaries varies

F #features/image 1,000

T # kd-trees 8

B # backtracking 100

W # words varies

Storage (B) Computation (FLOP/f)

Single Dictionary Wsd +FI(
log2 I

8
+1) B(2d +1+ log2W)

Separate Dictionaries Wsd +NFI(
log2 I

8
+1) NB(2d +1+ log2

W
N

)

Unified Dictionaries Wsd +FI(
log2 I

8
+1) B(2d +1+ log2W)

Table 6.1: MDBoW Parameter Definitions and Properties. (Top) Definitions of param-

eters affecting the computational and memory requirements (bottom) of MDBoW. Storage

is in bytes and computation is in FLOP/feature. See Section 6.2 and Figure 6.2.

the case with HKM dictionaries, for instance [27]. Table 6.1 and Figure 6.2 summarize this

comparison for dictionaries of 100 K and 1 M words each. We note the following:

• The storage requirements of BoW is dominated by the inverted file structure (second

term in the formula in the second column in Table 6.1), while storing the words

themselves is negligible. The second term grows linearly with the number of entries

in the inverted file, which is controlled by the number of images I and the number of

separate dictionaries N.

• The computational cost to generate visual words for the features is almost indepen-

dent of the number of words. This is because the dominant factor is the backtracking

in the set of Kd-Trees (the first two terms in the formula in the third column in Table

6.1), while traversing the depth of the tree (last term) grows only logarithmically with

the number of words.

99

10
0

10
1

10
0

10
1

10
2

(a)

Number of Dictionaries

T
o
ta

l
S

to
ra

g
e
 (

G
B

)

10
0

10
1

10
1

10
2

10
3

(b)

Number of Dictionaries

K
F

L
O

P
 p

e
r

fe
a
tu

re

Separate Dictionaries − 100K words

Separate Dictionaries − 1M words

Unified Dictionaries − 100K words

Unified Dictionaries − 1M words

Figure 6.2: MDBoW Memory and Computational Requirements. The X-axis shows

the number of dictionaries, while the Y-axis plots (a) storage requirements for 1 M images

and (b) computational cost per feature in KFLOP. Individual dictionaries have either 100 K

words (triangles) or 1M words (circles). We notice that the cost (in memory and computa-

tion) of SDs increases linearly with the number of dictionaries, independent of the number

of words. Parallelizing these dictionaries on a set of machines would exhibit run time com-

parable to a single dictionary albeit with much higher recognition performance. Also the

cost of UDs is almost independent of the number of words, similar to a single dictionary.

See Section 6.2, Table 6.1, and Figure 6.4.

• SDs storage increases linearly with the number of dictionaries, as the entries in the

inverted file multiply.

• SDs run time also grows linearly with the number of dictionaries. This is because

we have separate Kd-Trees for every dictionary, whereas the UDs have just one set

of Kd-Trees for the unified set of words.

6.3 Experimental Details

6.3.1 Setup

In this chapter, we only use Scenarios 2 and 4 from Table 4.2 in Chapter 4. Evaluation was

done by choosing 100 K images from the distractor set in addition to all the model images

100

from the probe set. We also use the same performance metric i.e. precision@1, see Section

4.3.

We use SIFT [24] feature descriptors (128 dimensions) with Hessian affine [25] feature

detectors. We used the publicly available binary available from http://tinyurl.com/vgg123.

All experiments were performed on machines with an Intel dual Quad-Core Xeon E5420

2.5 GHz processor and 32 GB of RAM. We implemented all the algorithms using Matlab

and Mex/C++ scripts. The dictionaries were generated with random subsets of features of

size 10 M, out of ~ 150 M features in the distractor set.

6.3.2 Bag of Words Details

In this chapter we focus on two variants of BoW Inverted File search (see Chapter 2):

1. Baseline IF: This is the standard way of using IF with BoW (see Section 2.6.1 for

details). The dictionaries are built using Approximate K-Means (AKM) [30], which

uses a set of randomized Kd-Trees inside K-Means to get the nearest cluster centers.

Histograms are normalized to have unit l1 norm, then the l1 distance is used to mea-

sure similarity between histograms. This combination has been shown to outperform

using the l2 norm and the cos distance [27, 1].

2. Hamming Embedding IF (HE): This is the method introduced by Jégou et al. [20].

The idea is to be more discriminative when computing distances between histograms.

Instead of matching any two features that belong to the same visual word, each fea-

ture has an N−bit binary signature b ∈ {0,1}N , such that two features fi and f j that

belong to the same word will match only if the hamming distance dH(bi,b j) ≤ T

http://tinyurl.com/vgg123

101

1 2 3 4 5
30

35

40

45

50

55

60
Scenario 2

Number of Visual Words (in millions)

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

Single Dict (baseline)

Separate Dicts (SDs)

Unified Dicts (UDs)

1 2 3 4 5
30

35

40

45

50

55

60
Scenario 4

Number of Visual Words (in millions)

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

Figure 6.3: Multiple Dictionaries for BoW Results. The X-axis shows the total number

of visual words, while the Y-axis plots the recognition performance for 100K images using

Baseline IF. For UDs and SDs, individual component dictionaries have 1 M words each

e.g. SDs with 2 M visual words have 2 dictionaries. We notice a performance increase of

about 25% using SDs with 5M words over the baseline of using 1 M words. We also note

that SDs have far superior performance than UDs. Note that simply increasing the number

of words in a single dictionary (blue) is still worse than both SDs and UDs. See Section

6.2 and 6.4.1.

where T is some threshold. We use the settings from [20]: N = 64 bits, T =25, Tf-Idf

histogram weighting, l2 normalization, and the cos distance.

6.4 Experimental Results

6.4.1 Multiple Dictionaries for BoW (MDBoW)

Figure 6.3 shows results of using multiple dictionaries compared to using a single dictio-

nary. All the dictionaries are generated with a random subset of 10 million features and use

the baseline IF (see Sec. 6.3.2). We note the following:

• Using UDs (red) improves the performance slightly by about 3% over the baseline

102

100K 1M 2M 5M
40

42

44

46

48

50

52

54

56

58

60
Scenario 2

Number of words per dictionary

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

1 dictionary

2 dictionaries

3 dictionaries

4 dictionaries

5 dictionaries

100K 1M 2M 5M
30

32

34

36

38

40

42

44

46

48

50
Scenario 4

Number of words per dictionary

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

Figure 6.4: Parallelization of Multiple Dictionaries for BoW. The X-axis shows the

number of visual words per dictionary, while the Y-axis plots the recognition performance

for 100 K images. Each point depicts the performance (on the Y-axis) of using a certain

number of dictionaries (from 1 up to 5 dictionaries), one on each machine, each having

the same number of words (on the X-axis). The best performance is achieved using 5

dictionaries (magenta curve) with 1 M words each. Note that increasing the number of

words in a single dictionary (blue curve) does not help beyond 1 M or 2 M words. See

Sections 6.2 and 6.4.1.

(blue).

• Using SDs (green) significantly improves the performance by about 20–25% over the

baseline with 1 dictionary (blue). This can be explained by the fact that SDs use more

information than UDs. In particular, every image feature in SDs gives information

in each of the individual histograms, while in UDs that is not the case. This helps

increase the performance, as we get multiple independent partitions of the feature

space.

• Simply increasing the number of visual words in a single dictionary (blue) does not

help, and in fact decreases the performance, as reported in [30].

103

We can view SDs as a trade-off between storage and computation required and recog-

nition performance. Using more independent dictionaries enhances performance, but in-

creases storage and computation (see Figure 6.2). One way to solve this problem is to

deploy each dictionary on a separate machine and then combine the results, see Figure 6.4.

The running time of the whole system would be the same as using one dictionary on a

single machine, since they are running in parallel and we will have a significant increase

in performance. We note that we can get the best performance when using 5 dictionar-

ies/machines with 1 M words each. Another way to solve the problem of increased storage

is to apply SDs to one of the recent compact BoW methods [21, 22, 29], which have been

shown to give comparable performance to the baseline IF with 1 dictionary while requiring

a fraction of the storage (e.g., 16-32 bytes per image).

6.4.2 Model Features

The standard approach for building the dictionary of visual words has been to either use

a set of unrelated images [30, 20] or to exclude the model images (see Section 4.2) from

this process [4, 1]. The motivation for this distinction is to obtain some kind of a universal

dictionary, that is unrelated to the set of images to be searched. We argue the opposite, that

this is not necessary and is in fact harmful, for the following reasons:

1. In the actual setting, say, for example, the Barnes and Noble application, we have a

set of images of book covers that we want to index. It would not make sense to build

the dictionary on a separate set of unrelated images. We should be able to optimize

the system for the database at hand, and use these images to generate the dictionary.

104

10
3

10
4

10
5

40

45

50

55

60

65

70

75

80
Scenario 2

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e

0% Model Feats

50% Model Feats

100% Model Feats

10
3

10
4

10
5

30

35

40

45

50

55

60

65

70
Scenario 4

Number of Images

R
e
c
o
g
n
it
io

n
 P

e
rf

o
rm

a
n
c
e

Figure 6.5: Model Features Results. The X-axis shows the number distractor images in

the database, while the Y-axis plots the recognition performance using Baseline IF. We

notice a significant performance increase by including features of the model images in the

dictionary generation. See Section 6.4.2.

This does not pose any danger of overfitting, because we are not using the probe

(query or test) images, we are rather using the training images in the optimal way.

2. Other image search approaches that are based on feature matching (e.g., Kd-Trees)

do not have this distinction. They use all features available when matching the fea-

tures of the probe image. That might be one reason why they have been reported to

outperform BoW methods in this application [4].

Figure 6.5 shows the results of including the model features in the dictionary generation

process. Dictionaries are generated with a random subset of 10 M features with Baseline IF

and 1 M words (see Section 6.3.2). Probe images have on average 1 K features each (i.e.,

they constitute ~ 1% of the number of features used to build the dictionaries). Different

percentages of model features were included in the random 10M features: 0% (no model

features), 50%, and 100% (all the model features). We notice the following:

105

1 2 3 4 5
40

45

50

55

60

65

70

75

80
Scenario 2

Number of Dictionaries

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

SDs 0% Model Feats (Baseline IF)

SDs 100% Model Feats (Baseline IF)

SDs 0% Model Feats (HE IF)

SDs 100% Model Feats (HE IF)

1 2 3 4 5
30

35

40

45

50

55

60

65

70
Scenario 4

Number of Dictionaries

R
e

c
o

g
n

it
io

n
 P

e
rf

o
rm

a
n

c
e

Figure 6.6: Combining Multiple Dictionaries (MDBoW) with Model Features. The X-

axis shows the number of dictionaries, while the Y-axis plots the recognition performance.

We plot the baseline IF with/without model features and HE IF with/without model fea-

tures. We notice about 40–45% increase in recognition performance over the baseline (1

dictionary) by combining model features and SDs (green) and about 20% increase over

SDs alone (blue). We also notice that applying MDBoW to HE achieves 65–75% over the

baseline and 25–38% over the state-of-the-art HE with 1 dictionary. See Figure 6.3–6.5

and Sections 6.2 and 6.4.2.

• Adding all model features improves performance by up to 25% of the baseline.

• In the actual setting, where we use a subset of all the features we have, the perfor-

mance increase will be lower. However, it will still be much better than using an

unrelated set of features for building the dictionary.

• This modification does not alter the computation nor the storage requirements and

can be easily applied to MDBoW approach (see Figure 6.6).

6.4.3 Putting It Together

Figure 6.6 shows the results of combining the two ideas: using separate multiple dictionar-

ies (SD MDBoW) (from Section 6.2) and including model features in dictionary generation

106

1 10 100
30

40

50

60

70

80

90

Scenario 2

Number of retrieved images k

P
re

c
is

io
n

 @
k
 (

%
)

1 Dict 0% Model Feats (Baseline IF)

5 SDs 0% Model Feats (Baseline IF)

5 SDs 100% Model Feats (Baseline IF)

1 Dict 0% Model Feats (HE IF)

5 SDs 0% Model Feats (HE IF)

5 SDs 100% Model Feats (HE IF)

1 10 100
30

40

50

60

70

80

90
Scenario 4

Number of retrieved images k

P
re

c
is

io
n

 @
k
 (

%
)

Figure 6.7: Precision@k. The X-axis shows the number of retrieved images k, while the

Y-axis shows the precision@k, i.e., the recognition rate when the ground truth image is

among the top k images. We note significant improvement for SDs (green & magenta) over

the baseline IF (blue) and state-of-the-art HE IF (cyan) with only 1 dictionary. We also

note significant improvements by including the model features (red & black). See Section

6.4.3 and Figure 6.6.

(from Section 6.4.2). It compares both Baseline IF and Hamming Embedding (HE) IF [20]

(see Section 6.3.2). We notice that combining model features with MDBoW using either

Baseline IF (green) or HE IF (cyan) significantly improves the performance over not using

them (blue and red).

Figure 6.7 shows the precision@k for Baseline and HE IF with 1 dictionary and 5 SD

MDBoW with/without model features. We note the following:

• For Baseline IF, using the model features with SD MDBoW (red) provides 18–25%

performance increase over not using them (green). It also gives a performance in-

crease of about 40–45% over using 1 dictionary with Baseline IF (blue).

• MDBoW with baseline IF (green) significantly outperforms the state-of-the-art HE

IF with 1 dictionary (cyan) by ~ 15%.

107

• For Hamming Embedding IF, using MDBoW with HE without the model features

(magenta) gives a performance increase of ~ 32% over the state-of-the-art HE with 1

dictionary (cyan). Moreover, combining the model features with MDBoW using HE

(black) gives a performance increase of about 65–75% over the Baseline IF with 1

dictionary (blue) and about 25–38% performance increase over HE with 1 dictionary

(cyan).

6.5 Summary

We explored ways to boost the performance of BoW image search methods by using more

visual words. We presented a novel algorithm, MDBoW, and showed that using multiple

independent dictionaries built from different subsets of the features increases significantly

the recognition performance of BoW systems. We analyzed its cost and provided a simple

way to parallelize N dictionaries over N machines and retain the run time of the baseline

method. We showed performance improvements by 20–32% over the baseline and ~ 15%

over the state-of-the-art. We argued that including features from indexed images when

building the dictionaries is the right thing to do, and showed that it provides 25% improve-

ment. We finally showed that combining these two ideas can yield 40–45% improvement

in recognition performance over the baseline IF and 25–38% improvement over the state-

of-the-art Hamming Embedding method.

108

Chapter 7

Distributed KD-Trees

7.1 Introduction

Chapter 3 discussed different ways to parallelize Kd-Trees to go beyond one machine and

to be able to scale up the recognition system to millions of images. It discussed Indepen-

dent Kd-Trees (IKdt), where the images are divided equally among different machines,

each building its own Kd-Tree from its chunk of images. It also introduced the novel idea

of Distributed Kd-Trees (DKdt), where a Kd-Tree is divided into a “root subtree” that re-

sides on a root machine, and several “leaf subtrees”, each residing on a leaf machine (see

Section 3.3.2). In this chapter we explore this idea further, and provide practical implemen-

tations for both IKdt and DKdt using the MapReduce paradigm [16]. We compare the two

methods, discuss the effect of the different parameters on the performance, and run experi-

ments on up to 100 images on over 2000 machines. Our experiments show the superiority

of DKdt over IKdt in terms of recognition performance and run time. Specifically, DKdt

provides 30% better recognition performance than IKdt with 100 times more throughput,

processing a query image in a fraction of a second.

Section 7.2 gives a brief description of the MapReduce paradigm, followed by descrip-

109

Map(String key, String value):

for each word w in value:

EmitIntermediate(w, “1”);

Reduce(String key, Iterator values):

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

Figure 7.1: Canonical MapReduce Example. The Map function outputs a value of “1”

for every input word. The Reduce function sums up these values, and outputs for every

word the number of times it appeared in the input document. See Section 7.2.

tion of the implementation of IKdt and DKdt using MapReduce in Section 7.3. Section 7.4

details the experimental setup, and Section 7.5 discusses the experimental results.

7.2 MapReduce Paradigm

MapReduce [16] is a software framework introduced by Google to support distributed

processing of large data sets on large clusters of computers. The software model takes in

a set of input key/value pairs and produces a set of output key/value pairs. The user needs

to supply two functions: (1) Map: takes an input pair and produces a set of intermediate

key/value pairs. The library collects together all intermediate pairs with the same key I

and feeds these to the reduce function. (2) Reduce: takes an intermediate key I and a set

of values associated with it and “merges” these values together and outputs zero or more

output pairs.

In addition, the user supplies the specifications for the MapReduce job to be run, for

example specifying the required memory, disk, the number of machines, etc. The canonical

example for MapReduce is counting how many times each word appears in a document (see

Figure 7.1). The Map function is called for every line of the input document, where the key

110

might be the line number and the value is a string containing that line of text. For every

word in the line, it emits an intermediate pair, with the word as the key and a value of “1”.

MapReduce takes care of grouping all intermediate pairs with the same key (word), and

presents them to the Reduce function, which just sums up the values for every key (word)

and outputs a pair with the word as the key and number of times that word appeared as the

value.

We use MapReduce because it has been proven successful and used in a lot of com-

panies, most notably Google, Yahoo!, and Facebook. It is simple, reliable, and scalable

[16]. The user provides two functions, and the infrastructure takes care of all intermediate

processing, key sorting, inter-machine communications, machine failures, job restarts, etc.

It can easily scale up to tens of thousands of machines. Furthermore, there is already a

strong open source implementation, called Hadoop, that is widely used.

7.3 Distributed Kd-Tree (DKdt)

The basic Full Representation image search approach and the Kd-Trees method have been

discussed in Chapter 2 (see Section 2.5 and Algorithms 2.1, 2.2, and 2.3). In this chapter,

we are interested in parallelizing Kd-Tree over a number of machines, because the number

of images exceeds the memory capacity of one machine. We explore two ways to par-

allelize Kd-Trees (see Figure 3.2 in Section 3.3.2, which is reproduced in Figure 7.2 for

convenience):

1. Independent Kd-Trees (IKdt): The simplest way of parallelization is to divide the

images into independent chunks, where each chunk can fit in the memory of one

http://www.google.com
http://www.yahoo.com
http://www.facebook.com
http://hadoop.apache.org

111

Figure 7.2: Kd-Tree Parallelizations. (Left) Independent Kd-Tree (IKdt). The database

images are divided evenly into M machines, each building its own independent Kd-Tree.

At query time, a root machine accepts the query image, and directs the features into all

the machines. It then accepts the query results and combines them into the final matches.

(Right) Distributed Kd-Tree (DKdt). The root machine stores the top of the tree, while the

leaf machines store the bottom subtrees of the tree, including the leaves. At query time,

the root machine directs features to a subset of the leaf machines, which leads to higher

throughput. See Section 7.3.

machine. Then each machine builds an independent Kdt for its chunk of images.

A single root machine accepts the query image, and passes the query features to all

the machines, which then query their own Kdt. The root machine then collects the

results, performs the counting, and outputs the final sorted list of images.

2. Distributed Kd-Trees (DKdt): Build just one Kdt, where the top of the tree resides

on a single machine, the root machine. The bottom part of the tree is divided among

a number of leaf machines, which also store the features that end up in leaves in

these parts. At query time, the root machine directs the features into the appropriate

leaf machines depending on where they exit the tree on the root machine. The leaf

machines compute the nearest neighbors within their subtree and send them back to

the root machine, which performs the counting and outputs the final sorted list of

images.

112

The most obvious advantage of DKdt is that a single feature will only go to a small subset

of the leaf machines, and thus the leaf machines will be processing multiple features at

the same time. This is justified by the fact that most of the computations are performed in

the leaf machines [3]. The root machine might become a bottleneck when the number of

leaf machines increases, and this can be resolved by having multiple copies of the root (see

Section 7.5 and Figure 7.8). The two main challenges with DKdt are: (a) how to build a

Kd-Tree that contains billions of features since it does not fit on one machine, and (b) how

to perform backtracking in this distributed Kdt.

We solve these two problems by noticing the properties of Kd-Trees: (a) We do not

build the Kdt on one machine, we rather build a feature “distributor”, that represents the

top part of the tree, on the root machine. Since we can not fit all the features in the database

in one machine, we simply subsample the features and use as many as the memory of

one machine can take. This does not affect the performance of the resulting Kdt since

computing the means in the Kdt construction algorithm subsamples the points anyway. (b)

We only perform backtracking in the leaf machines, and not in the root. To decide which

leaf machines to go to, we test the distance to the split value, and if it is below some

threshold St , we include the corresponding leaf machine in the process.

The MapReduce architecture for implementing both IKdt and DKdt is shown in Figure

7.3. It proceeds in two phases:

1. Training Phase: The Feature MapReduce directs the training features into the dif-

ferent machines, which then build the Kdts with the features assigned to it during the

113

Figure 7.3: Parallel Kd-Tree MapReduce Schematic. In the training phase, the Feature

MapReduce distributes the features among the different machines, which then build the

different Kdts during the Index MapReduce. In the query phase, the query image is first

routed through the Distribution MapReduce, which routes the query features into the ap-

propriate machines, whose results are then picked up by the Matching MapReduce, that

queries the respective Kdts and outputs the results. See Section 7.3.

Index MapReduce.

2. Query Phase: The Distribution MapReduce directs the query features into the ap-

propriate machines, which perform the Matching MapReduce.

The implementation of IKdt with MapReduce is straightforward (see Algorithm 7.1(left)).

At training time, the Feature MapReduce is empty, while the Index MapReduce builds the

independent Kd-Trees from groups of images, where the Map distributes features accord-

ing to the image id, and the Reduce builds the Kdt with the features assigned to every

machine. At query time, the Distribution MapReduce dispatches the features to all the M

Kdts (machines). The Matching MapReduce searches the Kdts on each machine in the Map

114

and performs the counting and sorting in the Reduce.

The implementation of DKdt is outlined in Algorithm 7.1(right). The notable difference

from IKdt is the Feature MapReduce, which builds the top of the Kd-Tree. Given M ma-

chines, the top part of the Kdt should have ⌈log2 M⌉ levels, so that it has at least M leaves.

The Feature Map subsamples the input features by emitting one out of every input skip

features, and the Feature Reduce builds the Kdt with those features. The Index MapReduce

builds the M bottom parts of the tree, where the Index Map directs the database features to

the Kdt that will own it, which is the first leaf of the top part that the feature reaches with

depth first search. The Index Reduce then builds the respective leaf Kdts with the features

it owns. At query time, the Distribution MapReduce dispatches the query features to zero

or more leaf machines, depending on whether the distance to the split value is below the

threshold St . The Matching MapReduce then performs the search in the leaf Kdts and the

counting and sorting of images, as in IKdt.

7.4 Experimental Setup

We use Scenario 2 from Chapter 4 (see Table 4.2). Specifically,we use the Pasadena Build-

ings dataset, and for the distractor set we use Flickr Buildings. However, since that distrac-

tor set goes only up to 1 M images, we downloaded from the Internet a set of ~ 100 million

images searching for landmarks. So in total we have over 100 M images in the database,

with 625 query images. The first 1 M images have on average 1800 features each, while

the rest of the 100 M images have 500 features on average. The total number of features

for all the images is ~ 46 billion features. We report the performance as precision@k, i.e.,

115

Algorithm 7.1 Parallel Kd-Trees with MapReduce

Independent Kd-Tree (IKdt)

Feature Map(key, val)

// nothing

Feature Reduce(key, vals)

// nothing

Index Map(key, val)

Emit(val.imageid mod M, val.feat);

Index Reduce(key, vals)

index = BuildIndex(vals);

Emit(key, index);

Distribution Map(key, val)

for (i = 0; i < M; ++i)

Emit(i, val);

Distribution Reduce(key, vals)

// nothing

Matching Map(key, val)

nn = SearchNN(val.feat);

Emit(val.imageid, nn);

Matching Reduce(key, vals)

matches = Match(vals);

Emit(key, matches);

Distributed Kd-Tree (DKdt)

Feature Map(key, val)

Emit(val.id mod skip, val.feat);

Feature Reduce(key, vals)

top = BuildTree(vals);

Emit(key, top);

Index Map(key, val)

indexId = SearchTop(val.feat);

Emit(indexId, val.feat);

Index Reduce(key, vals)

index = BuildIndex(vals);

Emit(key, index);

Distribution Map(key, val)

indexIds = SearchTop(val.feat, St);

for id in indexIds:

Emit(id, val.feat);

Distribution Reduce(key, vals)

// nothing

Matching Map(key, val)

nn = SearchNN(val.feat);

Emit(val.image id, N);

Matching Reduce(key, vals)

matches = Match(vals);

Emit(key, matches);

the percentage of the queries that had the ground truth matching image in the top k returned

images. Specifically, precision@k =
∑q{rq≤k}

#queries
where rq is the resulting rank of the ground

truth image for query image q and {x}= 1 if {x} is true. We wish to emphasize at this point

that the Pasadena Buildings dataset is very challenging and that no method scores even near

100% correct on this dataset even when tested within a small database of 103−104 images

(see Section 4.4).

For both IKdt and DKdt, we fix the budget for doing backtracking for every feature, and

this is shared among all the Kd-Trees searched for that feature. So for example, in the case

of DKdt with a budget of 30 K backtracking steps, if a feature goes to two leaf machines,

each will use B =15 K, while if ten machines are accessed each will use B =3 K. For IKdt

with M machines, each machine will get B/M backtracking steps. This decision was made

116

to have a fair comparison between IKdt and DKdt in the sense of fixing the CPU cycles

used in searching the Kd-Trees in both of them. The CPU time measurements in Section

7.5 count the matching time excluding the time for feature generation for the query images.

We use SIFT [24] feature descriptors (128 dimensions) with hessian affine [25] feature

detectors. We used the binary available from http://tinyurl.com/vgg123. We implemented

IKdt and DKdt using the proprietary MapReduce infrastructure at Google. The number of

machines ranged from 8 (for 100 K images) up to 2048 (for 100 M images). The memory

per machine was limited to 8 GB.

7.5 Experimental Results

0.01 0.025 0.05 0.1 0.2
Distance Threshold

60

62

64

66

68

70

P
re

ci
si

o
n
@

1

0.01 0.025 0.05 0.1 0.2
Distance Threshold

1

2

3

4

5

6

7

8

9

10

C
P
U

 T
im

e
 (

se
c

/
im

a
g
e
)

0.01 0.025 0.05 0.1 0.2
Distance Threshold

5

10

15

20

25

30

M
e
a
n
 n

u
m

b
e
r

o
f

Le
a
f

M
a
ch

in
e
s

/
fe

a
tu

re

Figure 7.4: Effect of Distance Threshold St . The X-axis depicts the distance threshold

St which controls how many leaf machines are queried in DKdt (see Section 7.3). The

Y-axis depicts precision@1 (left), CPU time (center), and mean number of leaf machines

accessed per feature (right), using 1 M images. We note that using a bigger threshold leads

to accessing more leaf machines, and since B is fixed, the leaf machines are not explored

enough which results in worse performance. See Section 7.5.

http://tinyurl.com/vgg123

117

512 1k 2k 5k 10k 18k 30k
Number of Backtracking Steps

40

45

50

55

60

65

70

P
re

ci
si

o
n
@

1

IKdt
DKdt

512 1k 2k 5k 10k 18k 30k
Number of Backtracking Steps

0

2

4

6

8

10

C
P
U

 T
im

e
 (

se
c

/
im

a
g
e
)

Figure 7.5: Effect of Backtracking Steps B. The X-axis depicts the number of backtrack-

ing steps B which controls how deep the Kd-Trees are searched, and consequently the CPU

time it takes (see Section 7.3). The Y-axis depicts precision@1 (left), and total CPU time

(right), using 1 M images. St was set to 0.025 for DKdt. We note that, for the same value

of B, DKdt is better than IKdt in terms of both recognition performance and CPU time. See

Section 7.5.

32 64 128
Number of Machines

65

66

67

68

69

70

71

72

P
re

ci
si

o
n
@

1

IKdt
DKdt

32 64 128
Number of Machines

5

6

7

8

9

10

11

12

C
P
U

 T
im

e
 (

se
c

/
im

a
g
e
)

32 64 128
Number of Machines

100

101

102

103

T
h
ro

u
g
h
p
u
t

(i
m

a
g
e
s

/
se

c)

Figure 7.6: Effect of Number of Machines M. The X-axis depicts the number of machines

used to build the system M. The Y-axis depicts precision@1 (left), CPU time (center),

and Throughput (right), using 1 M images. We note the the recognition performance of

DKdt remains almost constant with different number of machines, while the throughput

increases. That is not the case for IKdt, whose performance decreases when using more

machines, since B is fixed. See Section 7.5.

7.5.1 System Parameters Effect

We first explore, using 1 M distractor images from Flick Buildings, the different parameters

that affect the performance of the distributed Kd-Trees: distance threshold St , the number of

backtracking steps B, and the number of machines M. Figure 7.4 shows the effect of using

118

different values for the distance threshold St , which affects how many leaf machines are

searched at query time when using DKdt (see Section 7.3). The CPU time counts the sum

of the computational cost on all the machines, and stays almost constant with increasing

number of machines since we have a fixed budget for backtracking steps B (see Section

7.4). The best tradeoff is with St = 0.025, which gives ~ 3 leaf machines per feature, while

using a bigger St means more leaf machines are queried and each will not be explored deep

enough.

Figure 7.5 shows the effect of the number of the total backtracking steps B. DKdt is

clearly better than IKdt for the same B, since it explores less Kdts but goes deeper into

them, unlike IKdt which explores all Kdts but with lower B. Figure 7.6 shows the effect of

the number of machines M used to build the system. For DKdt, this defines the number of

levels in the top of the tree, which is trained in the Feature MapReduce, Section 7.3. For

IKdt, this defines the number of groups the images are divided into. For the same number

of machines, DKdt is clearly superior in terms of precision, CPU time, and throughput. In

particular, with increasing the number of machines, the CPU time of DKdt stays almost

constant while that of IKdt grows, because despite B being distributed over the all the

machines, the features still need to be copied and sent to all the machines, and this memory

copy consumes a lot of CPU cycles (see Figure 7.7). We also note that the throughput

increases with the number of machines, and that DKdt has almost 100 times that of IKdt.

119

7.5.2 Results and Discussion

100K 1M 10M 100M
Number of Images

30

40

50

60

70

80
P
re

ci
si

o
n
@

1

IKdt
DKdt

100K 1M 10M 100M
Number of Images

5

10

15

20

25

30

35

C
P
U

 T
im

e
 (

se
c

/
im

a
g
e
)

100K 1M 10M 100M
Number of Images

10-1

100

101

102

T
h
ro

u
g
h
p
u
t

(i
m

a
g
e
s

/
se

c)

Figure 7.7: Effect of the Number of Images. The X-axis depicts the number of images

in the database. The Y-axis depicts precision@1 (left), CPU time (center), and Throughput

(right). We note the superiority of DKdt over IKdt in terms of both recognition performance

and throughput. For 100 M images, DKdt has 30% more precision@1 than IKdt, with 100

times more throughput. See Section 7.5.

100 101 102

Throughput (images / sec)

30

40

50

60

70

80

P
re

ci
si

o
n
@

1

IKdt
DKdt

Figure 7.8: Precision@1 Vs. Throughput. Every point represents one database size, from

100 K up to 100 M, going from the top left to the bottom right. DKdt is clearly much better

than IKdt. See Section 7.5.

Figure 7.7 shows the effect of the number of images indexed in the database. We used

120

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

Number of Images

T
h

ro
u

g
h

p
u

t
(i
m

a
g

e
s
 /

 s
e

c
)

IKdt

DKdt

105 106 107 108

Number of Images

10-1

100

101

102

T
h
ro

u
g
h
p
u
t

(i
m

a
g
e
s

/
se

c)

IKdt
DKdt

Figure 7.9: Throughput: Theory Vs. Practice. The X-axis depicts the number of images

in the database, while the Y-axis depicts the theoretical estimate of the throughput (left)

and the experimental throughput (right). We notice general agreement of the theoretical

estimates with the experimental measurements. See Section 7.5.

8 machines for 100 K images, 32 for 1 M images, 256 for 10 M images, and 2048 for

100 M images. DKdt clearly provides superior precision to IKdt, with lower CPU cost and

much higher throughput. For 100M images, DKdt has precision about 32% higher than

IKdt (53% vs. 40%), with throughput that’s about 30 times that of IKdt (~ 12 images/sec

vs. ~ 0.4), i.e., processes images in a fraction of a second. Figure 7.8 shows another view

of the precision vs. the throughput. It is clear that by increasing the number of images, the

precision goes down. Paradoxically, the throughput goes up with larger databases, and this

is because we use more machines, and in the case of DKdt, this allows more interleaving of

computation among the leaf machines and thus more images processed per second. Figure

7.9 shows a comparison of the theoretical estimate of the throughput of the distributed

system vs. the experimental measurements. We notice a general agreement between the

estimates and the measurements, except for the experimental measurements being more

than an order of magnitude lower, which we attribute to other practical considerations, e.g.,

121

1 2 4 8 16 32
Number of Root Machines

10-1

100

101

102

103

T
h
ro

u
g
h
p
u
t

(i
m

a
g
e
s

/
se

c)

IKdt
DKdt

Figure 7.10: Throughput Vs. the Number of Root Machines. The X-axis shows the

number of root machines used, while the Y-axis shows the throughput for a database of

100 M images. We note that the throughput multiplies by increasing the number of root

machines, which provide multiple entry points to the recognition system. See Section 7.5.

cache effects, memory copying, operating system overhead, etc.

We note a drop in the throughput after some point with adding more machines, this is

because the computations cannot all be parallelized. The root machine accepts the query

image, computes the features, and dispatches them to the leaf machines that hold the Kd-

Trees. It then gets back the results and performs the final scoring. While the Kdt search

is parallelized, the other computations are not, and by adding more leaf machines, the

bottleneck of the root machines starts decreasing the throughput. Figure 7.10 shows how

the throughput increases when adding replicas of the root machine (using 100 M images),

which provide multiple entry points for the system and allow more images to be processed

at the same time. The throughput grows with the number of root machines added, for

example growing to ~ 200 images/sec for DKdt with 32 machines vs. ~ 10 images/sec with

1 root machine.

The precision@1 for 100M images for DKdt might seem disappointing, standing at

about 53%. However, users usually do not just look at the top image, they might also

122

1 10 25 50 100
Number of Retrieved Images k

50

55

60

65

70

75

80

85

90

P
re

ci
si

o
n
@

k

100K
1M
10M
100M

Figure 7.11: Precision@k. The X-axis shows the number of retrieved images k, while the

Y-axis shows the precision at that value of k, for DKdt. We note that for 100 M images, the

precision goes from 53% @1 to 63% @25 and up to 67% @100. See Section 7.5.

examine the top 25 results, which might constitute the first page of image results. Figure

7.11 shows the precision@k for different values of k, ranging from 1 to 100. For 100M

images, the precision jumps from 53% @1 to 63% @25 and up to 67% @100 retrieved

images. This is remarkable, considering we are looking for 1 image out of 100M images,

i.e., probability of hitting the correct image by chance is 10−8. One more thing to note is

that all the experiments were run with one Kd-Tree, and we anticipate that using more trees

will give higher precision values at the expense of more storage per tree, see [26, 3].

Finally, Figure 7.12 shows results for combining the Distributed Kd-Trees of this chap-

ter with the Compact Kd-Trees of Chapter 5. It shows different compression values, namely

10-fold compression using 64 bits per feature, 8-fold compression using 96 bits, and 6-fold

compression using 128 bits (see Table 5.2). With 96 bits, we can get within 22% of the

recognition performance of using the full features with only one eighth of the storage, i.e.,

we can use one eighth of the number of machines. With 128 bits, we get within %13 of the

recognition performance of using the full features with only one sixth of the storage. This

123

100K 1M 10M 100M
Number of Images

30

40

50

60

70

80

P
re

ci
si

o
n
@

1

64-bits
96-bits
128-bits
Full

Figure 7.12: Compact Distributed Kd-Trees. The X-axis shows the number of images in

the database, while the Y-axis shows the precision@1. The different curves show different

compression values for Compact Distributed Kd-Trees: using 64 bits, 96 bits, and 128 bits

per feature. See Section 7.5.

demonstrates the power of CompactKdt, where, with a fraction of the storage, we can lose

only a fraction of the performance.

7.6 Summary

In this chapter, we explored parallel Kd-Trees for scaling up the image search problem

to millions of images. We presented implementations of two ways, Independent Kd-Tree

and Distributed Kd-Tree, to parallelize Kd-Trees using the MapReduce architecture. We

compared the two methods and ran experiments on databases with up to 100 M images. We

showed the superiority of DKdt which, for 100 M images, has over 30% more precision

than IKdt and at the same time over 30 times more throughput, and processes a query image

in a fraction of a second.

124

Chapter 8

Conclusions

In this thesis we explored the problem of image search in large-scale image collections.

We focused on the specific instance of searching collections of DVD covers and building

images (Chapter 2). We started with a thorough benchmark of the two leading approaches,

both theoretically estimating the computational and memory requirements (Chapter 3) and

experimentally comparing their recognition performance and run time (Chapter 4). We

then looked at the shortcomings of these methods, and worked on reducing the memory

requirements of Kd-Trees (Chapter 5) and boosting the recognition performance of Bag

of Words (Chapter 6). We finished with large-scale experiments, building a distributed

recognition system with 100 million images using over two thousand machines (Chapter

7).

In this thesis we challenged the mainstream in large-scale object recognition that favors

working on Bag of Words since it requires less storage. We showed that Full Representa-

tion provides much better performance, even with comparable memory requirements. FR

allows us to build recognition systems that scale to hundreds of millions of images and

return the result in a fraction of a second.

We believe there is room for improvement in reducing the memory requirements and

125

run time, and increasing the precision of such large-scale systems. For example:

• Identify the important local features in the image and getting rid of useless features

that do not contribute to the search process, which can save both memory and run

time.

• Improve local feature representation, both in terms of extraction speed and speci-

ficity.

• Devise better compression techniques for features to reduce storage.

• Come up with better shape descriptors to generalize to texture-less objects, e.g.,

spoons, smooth spheres, etc.

• Use more than one Kd-Tree in the Distributed Kd-Trees system, which could boost

the precision at the expense of using more memory.

We retierate the contributions of the thesis:

1. We provide a comprehensive comparison of the two leading image indexing ap-

proaches: Full Representation and Bag of Words. In particular, we provide:

(a) Theoretical estimates of the memory requirements, computational cost, and par-

allelizability of these methods as a function of the number of images.

(b) Experimental evaluation of these different methods on four real world datasets.

We report the recognition performance and run time as the number of images

grows.

126

2. We challenge the conventional wisdom in image indexing methods. We argue that

FR approach is the way to go, since although it requires an order of magnitude more

storage, it provides superior recognition performance to BoW, especially with large

datasets.

3. We present novel methods to remedy some of the shortcomings of these two methods:

(a) Compact Kd-Trees that are able to cut the memory usage and run time of FR

methods by an order of magnitude while achieving comparable recognition per-

formance.

(b) Multiple Dictionaries for BoW that are able to significantly boost the recogni-

tion performance of BoW methods to levels comparable to FR methods, at the

expense of increased memory and computational costs.

4. We present a novel way of parallelizing Kd-Trees, Distributed Kd-Trees, and run

experiments on thousands of machines with 100 million images. The system outper-

forms the state-of-the-art in both recognition performance and throughput, and can

process a query image in a fraction of a second.

127

Bibliography

[1] Mohamed Aly. Online Learning for Parameter Selection in Large Scale Image Search.

In CVPR Workshop OLCV, June 2010.

[2] Mohamed Aly, Mario Munich, and Pietro Perona. Bag of words for large scale object

recognition: Properties and benchmark. In International Conference on Computer

Vision Theory and Applications (VISAPP), March 2011.

[3] Mohamed Aly, Mario Munich, and Pietro Perona. Indexing in large scale image

collections: Scaling properties and benchmark. In WACV, 2011.

[4] Mohamed Aly, Peter Welinder, Mario Munich, and Pietro Perona. Scaling object

recognition: Benchmark of current state of the art techniques. In ICCV Workshop

WS-LAVD, 2009.

[5] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[6] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal

algorithm for approximate nearest neighbor searching. Journal of the ACM, 45:891–

923, 1998.

128

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,

1999.

[8] Andrei Broder, Moses Charikar, and Michael Mizenmacher. Min-wise independent

permutations. Journal of Computer and System Sciences, 60:630–659, 2000.

[9] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syn-

tactic clustering of the web. Computer Networks and ISDN Systems, 29:8–13, 1997.

[10] A.Z. Broder. On the resemblance and containment of documents. In Proc. Compres-

sion and Complexity of Sequences 1997, pages 21–29, 1997.

[11] Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proc.

of 34th STOC. ACM, 2002.

[12] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near identical image and

shot detection. In CIVR, pages 549–556, 2007.

[13] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash

and tf-idf weighting. In British Machine Vision Conference, 2008.

[14] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

McGraw-Hill, 2001.

[15] N. Dalai and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, volume 1, pages 886–893vol.1, 20-25 June 2005.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. In OSDI, 2004.

129

[17] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and

Cordelia Schmid. Evaluation of gist descriptors for web-scale image search. In Inter-

national Conference on Image and Video Retrieval. ACM, july 2009.

[18] D. Forsyth and J. Ponce. Computer Vision: A modern approach. Prentice Hall, 2002.

[19] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders. The amsterdam library

of object images. IJCV, 61:103–112, 2005.

[20] H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric

consistency for large scale image search. In ECCV, 2008.

[21] H. Jégou, M. Douze, and C. Schmid. Packing bag-of-features. In ICCV, sep 2009.

[22] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a

compact image representation. In CVPR, 2010.

[23] Y. Ke, R. Sukthankar, and L. Huston. An efficient parts-based near-duplicate and

sub-image retrieval system. In MULTIMEDIA, pages 869–876, 2004.

[24] David Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[25] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.

IJCV, 2004.

[26] M. Muja and D. Lowe. Fast approximate nearest neighbors with automatic algorithm

configuration. In VISAPP, 2009.

[27] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. CVPR,

2006.

130

[28] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation

of the spatial envelope. IJCV, 42:145–175, 2001.

[29] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with

compressed fisher vectors. In CVPR, 2010.

[30] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large

vocabularies and fast spatial matching. CVPR, 2007.

[31] M. Raginsky and S. Lazebnik. Locality sensitive binary codes from shift-invariant

kernels. In NIPS, 2009.

[32] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching

in videos. In ICCV, 2003.

[33] T. Terasawa and Y Tanaka. Spherical lsh for approximate nearest neighbor search on

unit hypersphere. Proceedings of the Workshop on Algorithms and Data Structures,

2007.

[34] P. Turcot and D. Lowe. Better matching with fewer features: The selection of useful

features in large database recognition problems. In ICCV Workshop WS-LAVD, 2009.

[35] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.

[36] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput. Surv.,

2006.

131

Index

AKM, see Approximate K-Means

Approximate K-Means, 23

Bag of Words, 19

Inverted File, 20

Min-Hash, 23

Multiple Dictionaries, 95

Binary Signature

Locality Sensitive Hashing, 84

Binary Signatures, 81, 88

Locality Sensitive Binary Codes, 84

Spectral Hashing, 84

BoW, see Bag of Words

Compact Kd-Trees, 80, 85, 89

CompactKdt, see Compact Kd-Trees

Datasets, 52

Distractor Set, 53

Probe Set, 53

Model Image, 53

Probe Image, 53

Dictionary Generation

Approximate K-Means, 23

Hierarchical K-Means, 23

Distractor Set, 55

Distributed Kd-Trees, 32, 112

DKdt, see Distributed Kd-Trees

Exhaustive Search, 34

FR, see Full Representation

Full Representation, 13

Hierarchical K-Means, 18

Kd-Tree, 14

Locality Sensitive Hashing, 15

Hamming Embedding, 92, 101, 106

HE, see Hamming Embeddeding

Hierarchical K-Means, 18, 23, 43, 68

HKM, see Hierarchical K-Means

IF, see Inverted File

132

IKdt, see Independent Kd-Trees

Image Representation, 9

Global Features, 10

Local Features, 10

Image Search, 6

Bag of Words, 19

Full Representation, 13

Independent Kd-Trees, 30, 111

Inverted File, 20, 45, 72, 100

Kd-Trees, 14, 36, 66

Kdt, see Kd-Trees

Locality Sensitive Binary Codes, 84

Locality Sensitive Hashing, 15, 40, 66, 84

LSBC, see Locality Sensitive Binary Codes

LSH, see Locality Sensitive Hashing

LSH Spherical

Orthoplex, 17

Simplex, 17

LSH-L2, 17

Map, see MapReduce

MapReduce, 110, 113

MDBoW, see Multiple Dictionaries

MH, see Min-Hash

Min-Hash, 23, 48, 74

Model Features, 104

Multiple Dictionaries, 95, 96, 101

Parallelization, 30

Parameter Tuning, 63

Hierarchical K-Means, 68

Inverted File, 72

Kd-Trees, 66

Locality Sensitive Hashing, 66

Min-Hash, 74

Probe Set, 54

Reduce, see MapReduce

SH, see Spectral Hashing

Spectral Hashing, 84

Theoretical Comparison, 28

Theoretical Derivations, 34

Exhaustive Search, 34

Hierarchical K-Means, 43

Inverted File, 45

Kd-Trees, 36

133

Locality Sensitive Hashing, 40

Min-Hash, 48

Theoretical Estimates, 27

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Methods Overview
	Introduction
	Image Search Problem
	Image Representation
	Basic Image Search Algorithm
	Full Representation (FR) Image Search
	Kd-Trees (Kdt)
	Locality Sensitive Hashing (LSH)
	Hierarchical K-Means (HKM)

	Bag of Words (BoW) Image Search
	Inverted File (IF)
	Min-Hash (MH)

	Summary

	Theoretical Comparison
	Introduction
	Theoretical Estimates
	Theoretical Comparison
	Memory and Run Time
	Parallelization

	Theoretical Derivations
	Exhaustive Search
	Kd-Trees
	Locality Sensitive Hashing (LSH)
	Hierarchical K-Means (HKM)
	Inverted File (IF)
	Min-Hash (MH)

	Summary

	Experimental Comparison
	Introduction
	Datasets
	Probe Sets
	Distractor Datasets

	Experimental Details
	Setup
	Parameter Tuning

	Experimental Results and Discussion
	Parameter Tuning Details
	Kd-Tree
	Locality Sensitive Hashing
	LSH-L2
	LSH Spherical Simplex
	LSH Spherical Orthoplex

	Hierarchical K-Means
	Inverted File
	Min-Hash

	Summary

	Compact Kd-Trees
	Introduction
	Compact Binary Signatures
	Compact Kd-Trees (CompactKdt)
	Experimental Results
	Setup
	Binary Signature Comparison
	Compact Kd-Tree
	Comparison with Bag of Words

	Summary

	Multiple Dictionaries for Bag of Words
	Introduction
	Multiple Dictionaries for Bag of Words (MDBoW)
	Experimental Details
	Setup
	Bag of Words Details

	Experimental Results
	Multiple Dictionaries for BoW (MDBoW)
	Model Features
	Putting It Together

	Summary

	Distributed KD-Trees
	Introduction
	MapReduce Paradigm
	Distributed Kd-Tree (DKdt)
	Experimental Setup
	Experimental Results
	System Parameters Effect
	Results and Discussion

	Summary

	Conclusions
	Bibliography
	Index

