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Abstract

The laminar-turbulent transition in a flat plate boundary layer was stud-
ied experimentally using a spanwise array of computer-controlled surface
heating elements. The elements were used to introduce disturbances at a
point just downstream of the critical Reynolds number. When sinusoidal
heating at an unstable frequency is carried out, instability waves develop
and grow as they travel downstream. Measurements were made using flush-
mounted hot-film wall shear sensors, and the later stages of transition were
visualized using dye injection. Oblique Tollmien-Schlichting waves were suc-
cessfully introduced, and their downstream development into the turbulent
regime was studied. Exploratory studies of other types of 3D forcing are also
reported.

Measurements of oblique waves in the linear region yielded phase speeds
and wave angles that were consistent with the linear theory. Subharmonics of
the oblique-wave wall shear were seen downstream, in the nonlinear region.
Surprisingly, the amplitude of these subharmonic waves decreased abruptly
with increasing oblique-wave angle, so that an oblique wave of about 10
degrees had a subharmonic amplitude which was an order of magnitude below
that for a 2D wave. Waves of larger oblique angles did not produce detectable
subharmonics. A simple explanation of this behavior is given, in terms of
the wave-interaction theory.

The intermittency, defined as the fraction of time in which the wall shear
is turbulent, was measured to determine the relative location of transition.
These measurements, carried out further downstream, show that the in-

troduction of a 2D wave is most effective in moving the transition point



upstream, for a given power input. This upstream movement of transition
slowly decreases as the oblique wave angle is increased. The fact that there is
no abrupt movement of transition corresponding to the abrupt disappearance
of the subharmonic nonlinear breakdown mechanism suggests there should

be a simpler explanation for the nonlinear breakdown.
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Chapter 1

Introduction

1.1 The Laminar-Turbulent Transition in Boundary
Layers

The laminar-turbulent transition in boundary layers is a topic of great prac-
tical importance, due to the very different properties of the two boundary
layer types. In a turbulent boundary layer, there is much more mixing be-
tween the fluid near the wall and the freestream fluid. This mixing makes for
higher skin friction drag and higher heat transfer. It also makes the turbu-
lent boundary layer much less likely to separate from the wall in an adverse
pressure gradient. The ability to control these properties, through control of
the position of the transition between the two types of flow, can be crucial
to the design of everything from aircraft to lasers.

Better methods for controlling transition depend on improvements in
our fundamental understanding of the transition process. Unfortunately,
this understanding is still poor, despite the significant progress made by the
many workers in this field; this can be seen from the fact that there is still
no well-grounded method for predicting transition point location, even for a
two-dimensional airfoil. Recent reviews of the extensive literature concerning
wall-bounded shear flow transition can be found in Bayly and Orszag [1],
Herbert [12], Kozlov and Levchenko [23], Narasimha [31], and Stuart [42].

Only a brief summary of the closely relevant elements of the literature will



be attempted here.

The first fundamental theory of boundary layer transition, developed by
Prandtl’s school in Germany, described the process in terms of the instability
of small fluctuations in an idealized boundary layer, with disturbances of the
form

i=R (a»(y)ei(azwz—wt)) .

A linearized eigenvalue equation for the stability of these waves, the cele-
brated Orr-Sommerfeld equation, was derived and solved. This work was
done during the first third of the 20th century. The small fluctuations con-
sist of simple linearized small-amplitude waves, with straight constant phase
lines in the plan view, both two-dimensional and oblique. After Squire [41]
showed that the two-dimensional waves become unstable at a lower Reynolds
number than any oblique wave, work concentrated on the two-dimensional
waves.

The instability theory was poorly accepted until the landmark experi-
ments of Schubauer and Skramstad [38], who for the first time had available
a wind tunnel with the small freestream noise level required to observe the
linear growth of small boundary layer disturbances. By introducing con-
trolled two-dimensional perturbations with a vibrating ribbon, they were able
to corroborate the predicted growth rates bf the nominally two-dimensional
waves. Most experimental work thereafter followed this tradition of studying
the convenient and well-defined waves which could be introduced using the
vibrating ribbon technique.

A major improvement to the ribbon technique for generating controlled
disturbances was introduced by Liepmann et al. [26], who used a flush-
mounted surface heating strip to generate perturbations in water. As dis-

cussed in that paper, this technique provides greatly improved possibilities
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for modulation of the perturbation in both time and space. For example, the
heating can be made uniform in the spanwise direction within a few percent
(see Appendix A.2.6), whereas the vibrating ribbon technique commonly re-
sults in a spanwise amplitude modulation of as much as 20% over a spanwise
width of a few wavelengths [23, Figure 10]. Furthermore, the heaters present
no disturbance to the flow when the current is turned off. This capability
for creation of controlled three-dimensional disturbances was used by Robey
[36] to study the development of single oblique waves in a boundary layer.
The work reported here also uses this capability to study oblique waves, as
well as some more complex patterns. This work with oblique waves and
controlled three-dimensional forcing will be further discussed in Section 1.3.
First, however, an overall sketch of the boundary layer transition process will

be presented.

1.2 An Overall Sketch of the Boundary Layer Transi-
tion Process

The transition process in the boundary layer occurs over an extended stream-
wise distance, which can be divided into linear, nonlinear, and intermittent
regions (see Figure 1.1). The small fluctuations considered by the linear
instability theory enter the boundary layer from the freestream or from vibra-
tions or imperfections of the plate, in a poorly understood process studied
as ‘the receptivity problem’. If the disturbances enter primarily near the
leading edge and are small, their growth as they travel down the plate will
at first follow the linear disturbance theory, to good approximation.

The waves which develop from natural disturbances will in general have
some finite coherence length, as indicated in Figure 1.1. The figure shows

fuzzy dotted regions between the individual wave packets, for one would not
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Figure 1.1: Cartoon of Boundary Layer Transition



expect the packets to have clearly defined boundaries. The coherence length
of these packets might be expected to grow as the packets travel downstream,
since they are passing through the narrow-band amplifier of the linearly
unstable region. These spatial coherence issues are not yet well-understood.
Of course, if waves are introduced by a two-dimensional wavemaker such as
a vibrating ribbon, the spatial coherence length may be so large that spatial
incoherency can be neglected.

The measurements of small amplitude instability waves reported here will
be compared to the well-established linearized theory. The computation of
results from the linear rheory is not an easy process, and no complete com-
pendium of results has yet been published. Fortunately, Dr. L.M. Mack of
the Jet Propulsion Laboratory near Caltech was gracious enough to provide
the results he had on hand [29], in machine readable format. It should be
noted that two forms of the linear theory exist: the temporal case, where the
waves are assumed harmonic in space, growing in time, and the spatial case,
where the waves are assumed harmonic in time, growing in space. Since the
frequency of waves in the spatial case remains constant as the waves grow
downstream, and since this is also true in experiments, the spatial case was
selected for comparisons. Mack’s computer program is described in [28].

As the waves grow larger, the effect on the waves of changes in the mean
flow field caused by the waves themselves can no longer be neglected, and the
linear theory begins to fail. The now nonlinear waves begin to interact with
themselves. The interaction of a single wave with itself causes distortion,
while the interactions among single waves can cause wave resonance. As
the waves become more strongly nonlinear, the wave patterns become more
distorted, and strong spatial modulations of the once-straight waves develop.

These usually look like the Greek letter A and are thus known as lambda
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vortices. These lambda vortices can occur in a staggered hexagonal array,
resulting in the presence of a subharmonic component in signals measured by
a fixed sensor. The lambda vortices can also occur in a streamwise aligned
array, which does not result in a subharmonic component. The circumstances
that select a staggered or aligned pattern are currently a popular topic of
research.

The strongly nonlinear lambda vortices break down into rapidly organized
local turbulent fluctuations known as turbulent spots. The spots grow as
they travel down the plate. The region in which these spots still cover only
part of the flow, so that part is laminar and part turbulent, is called the
intermittent region. After the spots have merged together, a fully turbulent

boundary layer is formed, and the transition process is complete.

1.3 Three-Dimensional Effects in Boundary Layer Tran-
sition

Although the development of three-dimensionality is an essential element
in the transition of boundary layers to turbulence, powerful experimental
methods for studying the effects of controlled three-dimensionality have only
recently been developed, following the introduction of the heated surface
element technique. The development of three-dimensionality in the transition
process has been a subject of much recent theoretical and numerical work,
and one experimental approach has been to test these theories via suitably
controlled experiments (see Corke [5]). Another approach, the one followed
here at GALCIT?, has been to study the experimental development of simple
three-dimensional wave forms.

The only major study of such simple three-dimensional forms which has

lGraduate Aeronautical Laboratories. California Institute of Technology
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so far been carried out was done by Gaster ([42, Section 3.3] and [8]), who
studied the development. of spatially localized small disturbances in an un-
stable laminar layer. He carried out experiments describing the growth of
such disturbances, and compared the measurements to the results of the
linear instability theory. Since the disturbances can be described in terms
of packets of instability waves using Fourier decomposition techniques, de-
scriptions of their growth can be synthesized using linear combinations of
the simple oblique and 2D waves of the standard linear theory. His results
showed that linear superposition did hold while the disturbances were small,
bu’ “ailed when the disturbances became larger, and presumably nonlinear.
Since the spatially localized linear wave packet must be described in terms
of oblique waves, perhaps these oblique waves are an even more fundamental
three-dimensional form.

Oblique waves are solutions of the linearized disturbance equations with
straight but oblique constant-phase lines (see Figure 1.2). They were dis-
cussed very early by Squire [41], who derived a transformation which showed
that the eigenvalues of an oblique wave were equal to the eigenvalues for an
equivalent 2D wave at a lower Reynolds number, /a,nd thus that the mode
which would be unstable at the lowest Reynolds number would be a 2D
mode. However, oblique waves had never been a focus of experimental study
prior to the work of Robey [34]. They are a major focus of the current work.

Oblique waves are not as trivial as is often thought. These waves contain
all three components of both velocity and vorticity, as discussed for example
by Craik [6]. The vortex lines for the oblique waves are distorted helices,
with the helical axes parallel to the constant phase lines and the pitch of the
helix windings decreasing from infinity as the oblique wave angle is increased

from zero (see Robey [36, Figure 5]). Since the waves contain vortex lines
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that are not all in the same direction, the vorticity now becomes directly
subject to induced stretching and tilting. These nonlinear effects, which are
not present in degenerate flows which have purely two-dimensional vorticity,
can be extremely important. Moreover, the maximum of the vorticity moves
away from the wall as the oblique wave angle is increased (see the detailed
theoretical results of Hama [10] and the experimental results of Kachanov
[16, Figure 5]). Furthermore, Gaster’s studies of the development of wave
packets involved an unexpectedly rapid growth of oblique waves: “.. the
rapid development of oblique waves in the experimental results is not repro-
duced by the [linear] model.” [8, p. 280]. There are thus good reasons for
supposing that these oblique waves might become subject to strong nonlin-
ear effects at much lower amplitudes than 2D waves; in other words, for
supposing that these waves might behave much differently from the simple
2D waves.

Oblique waves are, however, difficult to generate experimentally. Some
experiments have been done in which these waves were introduced via a
vibrating ribbon which is positioned at an oblique slant to the freestream
velocity (see Kachanov [16]). Similar experiments were done much earlier
in a compressible boundary layer by Kendall [20]. This method has two
drawbacks: first, the wave is introduced at a streamwise position which varies
with spanwise position, so that the Reynolds number amplification history
of the wave will vary across the span; and second, the oblique angle can be
varied only with difficulty. Explicit computations of the linear instability
of finite length waves of this sort, introduced by an oblique line source,
have been done by Mack [28, Figure 6]. These computations show a severe
distortion of the wave fronts at all spanwise locations except for a small region

immediately downstream of the center of the wavemaker. This suggests that
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the spanwise differences in Reynolds number history encountered by such
a wave might be important. A method of generating the oblique waves
entirely at one streamwise position would be desirable. Such a method will
be presented in the next section.

The localized disturbances studied by Gaster and the oblique waves men-
tioned above would seem to be the two most fundamental instability wave
patterns that might be studied. However, other wave patterns might also
be of interest. For example, controlled spanwise modulations to the primar-
ily two-dimensional waves produced by a vibrating ribbon were introduced
by Klebanoff et al. [21] using cellophane strips, in their classic paper on
the development of three-dimensionality in boundary layer transition. These
modulations were introduced in order to fix the spanwise location of the de-
velopment of three-dimensionality in growing 2D instability waves, in order
to better study the onset of such three-dimensionality. Many other such
patterns of 3D defects in primarily 2D waves might also be of interest. The
author’s apparatus, presented in the next section, was also capable of cre-
ating a variety of these more complex perturbation patterns, some of which
were selected for a brief introductory study that will be presented in Section
3.4.

Since experiments are necessarily carried out in facilities with finite widths,
it seems desirable to discuss the end effects which are encountered. The ef-
fects of the sidewalls on the development of transition in the boundary layer
was first studied by Charters [3], who showed that a wedge shaped turbu-
lent region with an included angle of about 11 degrees developed near such
side walls. This edge contamination region was observed in the experiments
reported here and may be seen in the photograph of the transition zone in

Figure 3.37. This 11 degree angle is drawn on the plate layout sketches (Fig-
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ures 2.2 and 2.4) for reference. A second edge effect is discussed by Mack
(28, p. 130], who shows that the influence of the tips of a finite length source
of instability waves is felt inside a wedge of half-angle 16 degrees, centered
parallel to the flow direction. This 16 degree angle could also be drawn into
Figures 2.2 and 2.4, where it would show that edge effects outside this angle

will not affect even the farthest downstream sensor.

1.4 Apparatus for Introducing Controlled
Three-Dimensional Perturbations

The essential element of the work described here is a new apparatus for
introducing controlled three-dimensional disturbances into a laminar bound-
ary layer. The apparatus used was developed from that of Robey [34], which
in turn was inspired by the very different but related work of Trebitz [45].
Corke [5] has developed a somewhat similar apparatus, as has Meier et al.
[30].

A flat plate model mounted in a water tunnel is used to form the boundary
layer used as a basis for study. Heating is used as the method of introduc-
ing perturbations into the boundary layer. Instead of using a single two-
dimensional strip spanning the boundary layer to introduce two-dimensional
waves, however, an array of 32 small individual heating elements spanning
the width of the boundary layer is used, to allow the introduction of three-
dimensional perturbation patterns (see Figure 2.2). If sine waves of uni-
form frequency, amplitude, and phase are introduced into the 32 heaters, the
heaters will all act in unison to produce a two-dimensional instability wave.
However, if a uniform phase lag is introduced in the signals between adja-
cent heaters, the instability wave pattern produced will have constant phase

lines which are delayed between one side of the plate and the other; i.e.,
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the pattern will be an oblique wave (see Figure 1.2). Clearly, depending on
the electronics used to drive the heating elements, a vast number of possible
controlled three-dimensional perturbation patterns can be introduced. The
growth of such three-dimensional patterns in the unstable boundary layer
can be studied, and the effect on transition examined.

The present work extends the work of Robey [34], who completed qual-
itative studies of oblique and two-dimensional instability waves, covering
the linear and nonlinear laminar regions of wave growth. The present work
uses much improved forcing electronics to study quantitatively the devel-
opment of two-dimensional and oblique instability waves through the linear
and nonlinear regions and into the intermittent region. The development of
the instability was studied using wall shear sensors, as in Robey, but more
extensively, and using dye flow visualization of the intermittent region. In
addition, studies of various other three-dimensional perturbation patterns

were made.
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Chapter 2

Experimental Apparatus

2.1 Water Tunnel

All the experiments were done in the Free Surface Water Tunnel of the
Hydrodynamics Laboratory at GALCIT (see Figure 2.1 and the report of
Ward [46]). The tunnel is operated as an open channel flow for these
experiments. It has a 20 inch wide test section about 8 feet long, with
plexiglas walls on three sides. Water exits from a 5:1 contraction directly
into the test section!. The water entering the test section was 21 inches in
height as it left the contraction, and expanded into a greater height in the test
section, creating some surface waves. A honeycomb of 4 inches depth with
cells about -1% inches wide is located just upstream of the contraction. For
these low-speed tests a 20 mesh screen with blockage ratio 0.5 was attached
to the honeycomb on the upstream side, to further smooth out the flow.

As mentioned, the tunnel is operated with the test section water level
slightly above that in the contraction section?®. This overfilling was required
in order to eliminate problems with high turbulence level which apparently
were contributed to by air pockets on the top of the tunnel contraction
section, or by a waterfall effect in the top of the honeycomb. The tunnel is

equipped with a filter pump to clean the water, but this system was bypassed

!The tunnel has a skimming system capable of removing the top wall boundary layer
but this could not be used in the low speed experiments reported here
%test section running height 2.0 feet
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during the actual experiments in order to eliminate a source of disturbances
in the flow just upstream of the last corner. Air bubbles were a continuing
problem with the tunnel. When air was carefully drained out of all possible
locations and the tunnel was run for a sufficient time to allow most of the
air to leave, the air bubble content was acceptable. It was most important
to keep the screen on the upstream side of the honeycomb clear of bits of
grease and so on, which could greatly worsen the flow quality. When all these
precautions were taken, the turbulence level in the test section was measured

to be 0.15% (see Appendix B.1).

2.2 Flat Plate Model

A modular flat plate model was fabricated for the experiments (see Figure
2.2, and Appendix A.1.1). The plate was one inch thick and 49 inches long
and spanned the widch of the test section. The plate was always located
horizontally in the same position in the center of the test section. All elec-
tronic leads were brought out through the free surface above the plate. The
bottom surface of the plate was the working surface whose boundary layer

was studied.

2.3 Forcing Apparatus

The forcing apparatus used an array of 32 heating elements which was fas-
tened to the working surface of the plate near the leading edge, as described
in detail in Appendix A.2.5. The electronics used to drive the heaters is
pictured along with the sensing electronics in Figure 2.3. A frequency

generator® supplied a sine wave signal to a computer controlled heater signal

3Hewlett Packard Model 3312A, or Exact Electronics Model 605
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controller*, which generated 32 individual sine waves for the voltage on the
32 heaters. The amplitude of the sine wave on each heater could be selected
from a set of 16 values, and the phase lag of the signal between one heater
and the next could also be selected from a set of 16 phase lags. This con-
troller was wired to a 32 channel power amplifier® which supplied power gain
to the signals from the controller and drove the heater array. Power for the
32 channel power amplifier was supplied by a pair of high-current DC power
supplies (see Appendix A.2.4).

The perturbation-introducing system used was almost entirely new, hav-
ing been almost completely rebuilt from the one inherited from Robey [34].
The system performance was improved by nearly an order of magnitude.
The new system, whose performance is detailed in Appendix A.2.6, had an
accuracy of the order of 1%; i.e., the uniformity among the heaters of both
the power output and the signal phase lags is roughly 1%.

Since the signal placed on the heaters is a sine wave in voltage, and the
heating power is proportional to the square of the voltage, the heating fluctu-
ations occur at twice the frequency of the voltage fluctuations. Frequencies
mentioned in the text as forcing frequencies are the frequencies of the heating

power.

2.4 Sensing Apparatus

A Zenith Z-200 computer® was used for control of the forcing apparatus and
for data acquisition. The computer was equipped with a RC Electronics

Computerscope 16 channel data acquisition system. An interface board’

4Appendix A.2.2
5Appendix A.2.3
8An IBM AT clone
7Appendix A.2.1
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enabled the amplitudes and phase lags for each of the 32 individual heaters to
be set automatically by computer. The performance of the heater electronics
was monitored by the data acquisition system using an isolation amplifier® to
keep the small sensor signals from being corrupted by the high power heating
electronics.

The tunnel flow velocity was first measured with a pitot-static tube and
manometer, as detailed in Appendix B.1. For some later experiments a
pressure transducer was used instead of the manometer; its behavior is de-
scribed in Appendix A.3.4. The temperature of the tunnel water was at first
measured only intermittently, since the tunnel resides in an air-conditioned
basement room, and the water temperature varies only in the range of 22°C
to 25°C. This variation interferes with precise measurements, and for later
work the tunnel water temperature was measured using both a precision
mercury thermometer® and a precision resistance-temperature transduceri®.

Flush mounted hot film anemometry was used for sensing the flow over
the plate. The sensors measure surface shear, with excellent frequency re-
sponse. They were calibrated as detailed in Appendix B.2, and were centered
in the insert blocks, whose locations are sketched in Figures 2.2 and 2.4.

A twin sensor mounting was also fabricated, which held two sensors
spaced 0.200 inches apart, the pair centered on the mounting insert. The
sensors could be arranged to be in front (F) and to the rear (R) of the insert
center. They could also be spaced apart spanwise from the insert center, in
which case one was to the north (N), or heater #1 end of the plate, and the
other was to the south (S) end of the plate. The sensor locations marked

with an asterisk in Figure 2.2 sometimes contained these twin sensor inserts.

8Appendix A.3.2
Fisher Scientific ST6208, -1 to 51°C
%Doric 610A, and later a Beckman substitute
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When measurements made using the twin sensor pair are referred to in the
text, the locations will be referred to as, for example, ‘S1S’. This symbol
denotes the south end sensor in a twin pair at location S1.

The anemometers used in the constant-temperature arrangement were
built at GALCIT as described in Appendix A.3.1. Since the signals from
such an anemometer are of generally low amplitude, with a large offset,
signal conditioning equipment!! was used to provide a signal suitable for
digitization by the computer. This equipment also low-pass filtered the data

in order to avoid aliasing in the computation of power spectra.

2.5 Flow Visualization

Flow visualization of the boundary layer was accomplished using dye bled
in from the surface. This method clearly showed the regions of laminar and
turbulent flow in the boundary layer, with the accompanying intermittent
region filled with spots. It was not able to show the instability waves. Two
methods of introducing the dye!? were used. The first method used a plate
section which had a manifold with 34 holes, each of 0.0135 inch diameter,
to bleed dye into the boundary layer. A later design used a slot through
which to bleed dye into the boundary layer, in an unsuccessful attempt to
visualize the instability waves. The slot was 0.005 inches in width. A large
mirror underneath the tunnel test section allowed photography of the working
surface of the plate, which was accomplished on 35mm black and white film
or with a video camera, using 500 watt studio fill lights. The upper side of the
clear plexiglas plate was covered with white plastic film for the photography,
so that the dark dye would be clearly visible against the white background.

11 Appendix A.3.3
12red or blue food coloring
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The joints between the plate sections could not be easily so covered, and
thus show up as dark strips in the photographs. The flow visualization was
mostly used as a means of monitoring flow quality. It was also used for rough
examinations of the effect of forcing on the movement of transition. Typical

photographs are included as Figure 3.37.

2.6 Experimental Procedure

All of the results presented here were obtained using a data acquisition and
control program!® which controlled the entire experiment. The program
turned on the forcing, acquired data, turned off the forcing, computed inter-
mediate results and summaries, fed back information to the operator, saved
data to disk, and then continued to the next case. Using this automatic con-
trol, eight seconds of data for one forcing case could be acquired, examined,
summarized, and saved to disk, in about 1% minutes, including the time re-
quired for equilibration between forcing cases. The data presented in this
thesis represent roughly 1500 individual forcing cases produced over seven
separate days of experiments.

The hot-film sensors were calibrated before and after each set of experi-
ments, and estimates of the errors were made using the differences between
the two calibration curves'*. The heating and sensing electronics were also
checked before and after each set of experiments, as was the pressure trans-
ducer or manometer. Several records of wall shear data without forcing were
recorded during each set of experiments, and photographs or videotapes of
the dye flow visualization were obtained for most experiments. Further de-

tails of the apparatus and its performance may be found in the appendices.

13described in detail in Appendix A.1.2
14 Appendix B.2
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The experiments reported here can be divided into two groups. The
first group was conducted with the plate configured as shown in Figure 2.2.
The sensors used in these experiments are labeled in the figure, and the
experimental results will be referred to these sensor locations. This group
used dye flow visualization, with the dye emitted as shown in the figure.
Freestream velocities of U, = 3.50 £ 0.02 and U, = 3.68 £ 0.02 ft/sec were
used. Approximately 1000 individual forcing conditions were examined in the
course of the five separate days of experimentation included in this group.

The second group of experiments incorporated improvements made fol-
lowing the analysis of the first group. These improvements are described in
this chapter and in the appendices. This second group of experiments was
conducted with the modular plate configured as shown in Figure 2.4. The
experimental data obtained using this configuration will be referred to sensor
locations shown on the figure. The dye flow visualization used in this group
came from the dye slot shown in the figure. Most of the data was taken
at freestream velocities of 3.69, 3.6, and 3.1 ft/sec. Perhaps 500 individual
forcing conditions were examined using this improved apparatus, principally

over the course of 3 days of major experimentation.

2.7 Discussion of Experimental Errors

Errors in the experimental equipment have been discussed in this chapter,
and in the appendices, and have been estimated using the ideas of Kline [22].

Several special error sources are discussed in various sections. The effects
of the free surface waves in the test section above the plate were examined
in some experiments detailed in Section 3.2.1. The effects of the discrete
geometry of the wave generator were examined in some experiments reported

in Section 3.4.1.1.
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In addition, an examination of the effects of the flush-mounted hot film
sensors on the downstream flow was conducted. Two sensors 0.200 inches
apart were used, with both natural instability waves and forced instability
waves. In both cases, the signal from the downstream sensor did not change
noticeably when the upstream sensor was turned on and off. This shows that

heating of the flow due to the sensors has negligible effect on the flow.



Chapter 3

Experimental Results and Discussion

3.1 Introduction

The apparatus was primarily used to generate oblique instability waves,
which were studied in the linear, nonlinear, and intermittent regions of the
plate (see Figure 1.1). The apparatus was also used to examine the effects
of various other three-dimensional perturbation patterns. The results pre-
sented in the following sections are divided by the general type of forcing
used, and then subdivided by the region of the plate where the behavior
was studied. The results for the natural, unfbrced, transition process will be

discussed first.

3.2 ‘Natural’ Transition

The term ‘natural’ transition is used for the transition observed on the plate
without the introduction of special disturbances. Of course, the transition
is then caused by the natural disturbances in this specific tunnel with this
specific model. Although this limits the usefulness of the study of natural
transition, it still seems useful to have some understanding of the transition
process in a flow subject only to broadband incoherent disturbances, if only
because the flow in applications is generally subject to such disturbances.
The study of the natural transition should also shed some light on the back-

ground disturbance level in the facility, which is important for the forced



transition work.

Laminar flow was maintained in the center of the plate to above Re, ~
1.4 x 10°, as could be seen in the dye flow visualizations (Figure 3.37, upper
photo). This value seems to be larger than that observed in the related
experiments of Robey [34] and Nosenchuck [32, p. 35], who observed laminar
flow up to about Re, ~ 1 x 10°.

For comparison, a plot of the amplification rates given by linear instability
theory for various frequencies and Reynolds numbers is given as Figure 3.1.
The operating region for the work reported here is sketched on the figure.
It is estimated from the highest and lowest forcing frequencies commonly
used. The beginning of the operating region is chosen to be the heater array

location; the freestream velocity used for normalization is the most common

one, U, = 3.68 fps.

3.2.1 Development of Natural Waves with Downstream
Distance

A typical plot of the fluctuating shear for natural waves is shown in Figure
3.2!. It should be noted that the large low-frequency component would
not be seen in the usual AC-coupled oscilloscope traces. The other plotted
trace, which shows the signal digitally filtered between 3Hz and 100Hz, is
more akin to the usual oscilloscope traces shown. All the instability waves
seen on the plate had this low-frequency component. It was first thought
that these might be caused by the surface waves found on the free surface
above the plate; however, experiments in which these waves were damped

yielded natural instability wave spectra with no apparent differences. The

1The code ‘5-5r06’ found in the figure caption is a date code for the particular experiment
in which that data was taken. Similar codes appear in all of the data plots. In this case, it
refers to the sixth unforced run made during 5-5-88.
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cause of this low frequency noise is unknown; it may be due to the large low
frequency noise present in the facility, which can be seen in the freestream
turbulence spectrum (Figure B.1). However, it is clear that the waves are not
as clean as, for example, the ones observed by Liepmann et al. [26, Figure
3], who used a different facility of exceptional flow quality?.

The unsteady nature of the waves is evident from the figure. An au-
tocorrelation of the same data (Figure 3.3) clearly shows the rapid decay
of coherence in the waves. After two cycles the periodic component of the
correlation has become small. The waves seem to be composed of short co-
herent packets, a few cycles in length. These packets are not always of the
same frequency, as one might expect from the fairly broadband nature of the
instability, because the correlation function does not have a pure sine wave
carrier. Thus either the packets are of different frequencies, or even individ-
ual packets do not have a single frequency. This unsteady poorly correlated
nature is reflected in the broadband nature of the spectra presented below.

Spectra® of the unforced disturbances computed from data taken at sev-
eral positions down the plate during the same run are shown in Figure 3.4.
The logarithm of the power in the shear fluctuations is plotted against the
frequency. The large amount of power at low frequency was discussed above,
and varies for the four spectra at very low frequencies due to differences in
the high pass filters used. The peaks at 60Hz are due to line noise and may
be safely ignored. These line noise peaks are two orders of magnitude in
power, or one order of magnitude in amplitude, below the natural distur-
bances that account for the bumps in the spectra around 20Hz. It can be

seen that these bumps peak at about 107° in power, or 0.1% in amplitude

2See also Appendix C.1
3For method of computation see Appendix C.3
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(r!.,/T = 0.1%). The bumps are about an order of magnitude in amplitude
above the background noise in nearby spectral ranges.

A decrease in wave frequency with downstream distance is evident, and
would be expected from the linear theory. One attempt to collapse this
shift is shown in Figure 3.5, which shows the spectra p' ‘ted with frequency
reduced by the local parameters é*and U,. The three downstream spec-
tra collapse well, but the upstream data do not. If the spectra are instead
collapsed with the distance from the leading edge, the farthest downstream
sensor does not collapse well, while the three upstream sensors do. The
linear theory predicts a transfer function that could be used to predict the
downstream spectra given the upstream spectra, and assuming that all the
disturbances enter near the leading edge. However, this prediction is a com-
plex process, involving the eigenvalues of the Orr-Sommerfeld equation for a
variety of frequencies and Reynolds numbers, and has not yet been carried

out.

3.2.2 Two-Dimensionality of Natural Waves

A typical plot of the fluctuating shear measured at two spanwise locations
for natural waves is included as Figure 3.6. The irregularity of the waves
is evident, as is the lack of spanwise uniformity. The cross-correlations plot-
ted in Figure 3.7 show quantitatively the amount of spanwise correlation.
It can be seen that the correlation is always less than about 0.2, even for
nearby sensors which are 2.375 inches or about 3 wavelengths apart. This
result can be contrasted to the result of Nosenchuck [32, p. 97], in which
the cross-correlation has a maximum of about 0.8 and decreases very slowly
with time. The two-dimensionality of that flow can also be seen in Liep-

mann et al. [26, Figure 3], where excellent similarity of the wall shear time
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traces is demonstrated at two spanwise positions. However, it can also be
seen in the Liepmann time trace data that there is a phase shift between
the two spanwise positions, showing that even in that flow the waves are not
always perfectly 2D but can have some oblique angle. The difference might
be due to the blunter leading edge used in that work, which gives rise to a
2D region of highly unstable flow just behind the shoulder and thus perhaps
more 2D waves®. The difference might also be due to the better flow quality
in the facility® used in the Liepmann et al. experiments; if the disturbance
spectrum consists mainly of low-frequency disturbances that are highly cor-
related across the span of the leading edge of the plate, one would expect
highly two-dimensional disturbances to be created near the plate leading
edge, leading to highly two-dimensional waves downstream. Robey [34] does
not give a cross-correlation, so that it is difficult to compare his sample time
traces. That his results seem similar to Nosenchuck’s is not surprising, since

their work was carried out in the same facility.

3.3 Transition Caused by Oblique Wave Forcing

Most of the experiments studied the behavior of straight waves, both 2D
and oblique. For these wave patterns all 32 heaters in the heater array
were forced with sine waves of the same amplitude. A constant phase shift
between the heaters was imposed, in order to make waves of different angles,
ranging from 2D to about 32 degrees (see Figure 1.2). Oblique waves were
chosen for most of the studies for three reasons. First, they are solutions of
the linear theory, so that they can be easily compared to it. Second, they

are simple forms, and for this work it seemed best to start with the simplest

4see Appendix C.1
SGALCIT High Speed Water Tunnel
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three-dimensional forms possible. Third, even these simple forms are here a
focus of quantitative experimental study for the first time, the only previous
experimental work having been rather qualitative.

The first intensive experimental study of these waves was carried out
by Robey [34]. The current work differs in that the waves are created more
precisely, and their behavior is more carefully characterized. Also, the growth
of the waves is studied here all the way into the intermittent region of the
plate. However, the current apparatus is not capable of creating waves quite
as large as those made by Robey (see Appendix C.1).

The waves were studied as they developed downstream, using various
combinasions of the wall shear sensors discussed above. They evolve through

linear, nonlinear, and intermittent regions, which will be discussed in turn.

3.3.1 Linear Oblique Waves

The operational definition of the linear region is that the spectra contain
spikes only at the primary forcing frequency. Typical spectra can be seen in
Figure 3.8. This plot shows five spectra for waves forced at five different
frequencies. The response to the forcing shows up as sharp spikes, whose
amplitude varies according to the frequency of forcing. The rest of the spectra
are similar to the unforced spectra discussed previously. The results for the
linear region fall into three main groups: results for the amplitudes of the
waves, results for the angles of the waves, and results for the phase speeds

of the waves.

3.3.1.1 Wave Amplitudes

At all measurement locations, the oblique wave amplitudes were slightly less

than the 2D wave amplitudes. It was not possible to compute accurate
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growth rates for the waves due to the lack of precision in the wall shear
measurements. The growth of the oblique waves can be measured relative
to the growth of 2D waves, but such a measurement is difficult to compare
to the linear theory without extensive linear theory results and accurate
measurements of the local boundary layer thickness. No such comparisons
were therefore attempted.

Figure 3.9 shows the amplitude® of the wave response at the same down-
stream location using the same heating on different days (this allows the
reader to estimate the scatter in the data). These data show that although
there is significant scatter in the apparatus, the amplitude of response de-
creases with increasing angle, consistently for different days, and the amount
of change is very consistent. This trend is the same one reported by Kachanov
[16] in his vibrating ribbon experiments. This decrease in response ampli-
tude with increasing oblique wave angle may be caused by a decrease in
growth rates; but it may also be caused by a decrease in the receptivity to
the heating. There is no reason to expect that a given heater power input will
produce the same amplitude instability waves independent of the obliqueness
of the waves.

Figure 3.10 shows the amplitude of the waves on sensors at various lo-
cations downstream for different angles of forcing. These data show that
the larger-angle oblique waves remain smaller as they travel down the plate.
Figure 3.11, which shows the amplitude of the waves on one sensor for dif-
ferent forcing amplitudes, appears similar to Figure 3.10. This result shows
that the larger angle oblique waves remain smaller than the 2D waves as the
wave amplitude is increased, at least up to wave amplitudes of a few percent.

All the data show that the higher angle waves have lower amplitude, as one

SFor method of computation see Appendix " 3
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Sensor Frequency(Hz) and Power(x10°)
# Data (U, = 3.68fps) Maxima

S1|803 0.65]10.00 1.50|10.98 1.82111.99 1.78 | 22.75 1.80
S2F | 8.03 1.21 | 10.00 3.1810.98 3.83|11.99 3.20 | 22.01 3.81
S5 | 803 858|10.00 15.1]1098 10.4|11.99 279 | 19.23 13.83

Table 3.1: Maxima vs. Frequency at Three Streamwise Locations

might expect from the linear theory. The 2D waves are slightly smaller than
the smallest angle oblique waves, presumably because the power in the per-
turbation producing the waves is slightly less for 2D forcing than for oblique
forcing (Appendix A.2.6).

The wave frequencies which are most amplified between the heater and
sensor depend on the streamwise positions of the two. This result is evident
from Figures 3.12 and 3.13, which show spectra from the same experiments
as Figure 3.8, but computed from data taken on sensors farther downstream.

It is evident, particularly from Figure 3.13, which is significantly farther
downstream than the others, that the most amplified wave has shifted to
lower frequency. These data are summarized in Table 3.1, which shows the
frequency and power of the forced waves on three streamwise sensors, as well
as the frequency and power of the most amplified wave, estimated by interpo-
lating the maximum value’. When the frequency of forcing was increased or
decreased from the most amplified frequency, the wave amplitude decreased
smoothly. This was true for all the data taken on all sensors for a variety of
frequencies, although no detailed study of the frequency dependence of the
amplification was made.

This reduction in most amplified frequency with downstream location can

be very striking when the most amplified waves at very distant streamwise

see Hildebrand [15, p. 75]



. ~-5.0
e
~
;.
c -6.0
c
[+3]
S -7.0
(=]
e
S -8.0
—
-89.0
-10.0
Figure 3.12:

S 44 -

L 1

0 10 20 30 40 50 60

frequency, Hz

Wall Shear Spectra at Res~ = 1150
for five different heating frequencies
2D forcing, 83 watts, S2F, 4-22, U, = 3.68 fps

70



- 45 -

-3.0 , : - : , r
16Hz
““““ Sors
S T - Y T A LIS LU LU AL LI Z
4.0¢ e 24Hz
”:;: ......... EBHZ
i
it
> L |
—~ "5.0% i .
= ; Pl
~ RIT
. | Y
= j 8 Py
c —5.0 » l._-'r :!I -
- H il
S b
5 fyadiey
x  _ E YV
Col 7.0k "- \I\‘l}‘ i
— 'n- “"':l
2 W 4 TV
o -8.0L ,\\? I . ~
— AT e A, :
[t ‘/3‘0 “ A
WY Ty ; ' '
-9.0¢L 1 * \7"4
Y 7 UL
o TR
—10.0 1 1 | ! 1
0 10 20 30 40 50 60 70
frequency, Hz

Figure 3.13: Wall Shear Spectra at Resx = 1350
for five different heating frequencies
2D forcing, 83 watts, S5, 4-22, U,, = 3.68 fps



- 46 -

locations are compared. It often happens that waves that are large at the
early sensors have grown irregular and caused transition by S8, whereas lower
frequency waves that grow slowly upstream give rise to very large amplitude
waves on S8. These are, however, still clean instability waves without much
broad-band turbulence.

The amplitude of response by one sensor to different amplitudes of forc-
ing is shown in Figure 3.14. The figure shows that the response downstream
increases less than linearly with the power input to the heaters. This behav-
ior is the same as that observed by Robey [34, Figure 3.4], who suggested
that the decreased sensitivity of the flow to increasing power was caused
by the smaller temperature dependence of the viscosity of water at higher
temperatures. The growth of the waves between two streamwise sensors as
a function of the amplitude at the first sensor is shown in Figure 3.15. In
this figure an amplitude is changed by changing the forcing level. The figure
shows that the growth rate is constant for different wave amplitudes. Thus
in this sense the waves are still linear, even to rms wall shear amplitudes of

about 2%. According to the results of Robey [34, p. 12],
! = 5 ’
T /T ~ §(umaz/U°°)’

so the corresponding maximum velocity amplitude is about 0.8%.

The data for wave amplitudes could also be used to compute growth rates
of the waves. However, this can only be done to a limited extent due to er-
rors in the data. Since no sensors capable of being traversed along the plate
surface were built, the growth rates must be estimated from the amplitudes
found on separate sensors which have separate calibrations. Unfortunately,
the sensor accuracy was not what might be hoped for (see Appendix B.2).

Results for the growth rates of waves made under the same conditions on
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different days can be plotted to estimate the errors. The data scatter not
only because of errors in the sensor calibrations, but also because of errors
caused by small changes in the power output by the heaters, small differences
in the tunnel water temperature which can cause large integrated changes
in Reynolds number and growth rate, and small changes in tunnel velocity
or freestream noise. For estimation of absolute growth rates, as opposed to
relative growth rates, all these errors must be small. A plot of the shear re-
sponse to a given forcing type using data taken on several different days from
several sensors is shown in Figure 3.16. The data clearly shows the large
growth of the instability waves down the plate, but has too little accuracy

to give absolute local growth rates.

3.3.1.2 Phase Speeds

Phase speeds for oblique waves can be defined using the relation

— w -
Cphase = m—i K,

where & is the wave vector for the wave (see Whitham [48, p. 365]). But for

spatially growing oblique waves with
i=R (ﬁ(y)ei(az+ﬁé+wt)) :
where # and w are real, we have that
R = o, i+ Bk,

since

u=R (ﬁ(y)ei(z'fJ”“’t)e"o“) )

Thus
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The phase speed is therefore

. wa, T+ wpf k
Cphase =— ___—af T 52
However, the phase speed of the waves along the x direction is not Cypese - 7.
This formula, which gives the component of the phase speed vector along
the x-direction, does not give the speed of the constant phase lines along
the x-direction. This formula instead gives a value which decreases relative
to Cphase as the wave angle is increased, whereas the correct formula gives
a value which increases relative to Cprqse as the wave angle increases. The
correct formula for the speed of constant wave phase lines in the x-direction

(which is here called the ‘phase speed in the x-direction’, or ¢ pesez), can be

easily derived from first principles, and is

w
Cphase,r — = =
P s g1
or
w
Cphase,r = ~——

r

This phase speed in the x-direction is what was measured in the experiments
reported here.

This phase speed in the x-direction was obtained using time-of-flight mea-
surements of the wave travel between streamwise sensors. Eight second data
records were digitized at 1000Hz on several sensors for a set of forcing con-
ditions. Cross-correlations of these records were computed, and the time-of-
flight taken from the average shift of the position of the first few peaks in the
correlations away from the positions which would occur for an autocorrela-
tion of these periodic signals. The exact time of the peaks was interpolated

from the cross-correlation data.® The rms variation (among the correlation

3see Hildebrand [15, p. 75]
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maxima) of the shift was generally less than a few percent. Since the dis-
tance between the sensors is known very accurately, and the timing can be
measured precisely, the phase speed results should be precise.

For one set of measurements, three sensors, S1F, S1R, and 52 were used.
The first pair were located 0.200 inches apart, which is considerably less
than one streamwise wavelength of the waves. The results from these nearby
sensors were not very accurate, but served to give an estimate of the phase
speed within about 10%.

The second pair of sensors, which are slightly more than one wavelength
apart, were used to give a more exact value, the time corresponding to one
wave period being added into the time-of-flight to give the total phase shift
between the two sensors. Two typical cross-correlations for the data from
these sensors are given in Figure 3.17.  The cross-correlation for the 2D
wave shows the large fluctuations which would be expected for a highly
coherent wave. The correlation for the 32 degree wave, however, shows much
smaller fluctuations, indicating that these large angle waves remain much
less coherent as they travel downstream across the two sensors. From this
and from similar data for the scatter in the time-shifts among the individual
peaks, one expects the phase speed data for the higher angle waves to have
more scatter. That this is true also, but to a lesser extent, for the extreme
high and low frequency wave data, can be seen from Figure 3.18 which shows
cross-correlations for the extreme frequency waves forced with 2D phase.
Figure 3.19 shows the phase speed results for these sensors for the highest
amplitude forcing used. An increase of phase speed with frequency is
evident, as is a fair amount of scatter. The values cluster around 0.4, a value
can be compared to the linear theory (see Figure 3.20). The experimental

values are a little higher than the linear theory, but the agreement is good,
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considering that the linear theory has not been corrected for the leading
edge pressure gradient, and does not contain non-parallel flow corrections.
Neither is the experimental Reynolds number a precise quantity, since no
direct measurements of the boundary layer thickness were made. The data
for the lower forcing amplitudes are similar, except they generally have more
scatter due to the less coherent waves generated.

Measurements were also made using data from sensors S5 and S7, some-
what further downstream. The cross-correlation between these sensors is
stronger, as may be seen from Figure 3.21. The cross-correlation carrier
wave amplitude for the 2D wave is almost double that which was observed
for the upstream data and remains fairly large for the largest angle oblique
wave forced. The phase speed results are given in Figure 3.22. The val-
ues are noticeably smaller than for the lower Reynolds number data plotted
above, and the scatter is less. The decrease in scatter is presumably due
to the increased coherency of the waves. The decrease in phase speed with
increasing Reynolds number agrees with linear theory, as does the increase
in phase speed with frequency.

The increase in phase speed with wave angle which is evident in the
figure can be expected from Squire’s theorem (for the temporal case) [41,
Equation 25]. This theorem states that the relation F(«a, R,c) which gives
the eigenvalue ¢, and thus the phase speed, can also be used for oblique waves
of spanwise wavenumber £, if one uses the transformation @ = /a? + 52 and
Ra@ = Ro. It is important to note that in both cases ¢ = w/a, so that in both
cases c is actually the streamwise phase speed. Thus the phase speed of a
given oblique wave is the same as the phase speed of a 2D wave with a higher
streamwise wavenumber and a lower Reynolds number. Since the theoretical

phase speeds for the temporal case increase with decreasing Reynolds number
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and increasing streamwise wave number (see e.g. Wazzan et al. [47]), the
theory agrees with the experimental result that the streamwise phase speed
increases with angle. Computations for the spatial case linear theory supplied
by Mack [29] also show an increase of the streamwise phase speed, which for
oblique waves of angle 30 degrees is about 5% above the 2D value®. The
magnitude of this increase agrees well with the experimental data which
shows an increase of about 0.02 in a value of about 0.38. The data for the
lower amplitude forcing cases are again similar.

This change of phase speed with angle for oblique waves was previously
measured by Kachanov [16, Figures 4,5] using a vibrating ribbon generator
at two oblique angles, and also using an undefined spectral decomposition of
wave packets. His results show a decrease in phase speed with increasing wave
angle, the opposite trend to that reported here, although his measurements
may refer to the phase speed perpendicular to the wave fronts. He reports
an increase of phase speed with frequency; the same trend reported here. It
is unclear whether his results for the phase speed, taken from the spectral
decomposition, were corroborated by the single oblique wave data.

The phase speed results reported here are the first to cover a range of
oblique angles. They agree well with the linear theory, and thus give a strong
indication that the apparatus is really making the oblique waves about which
we have extensive knowledge from study of the linear theory. The results also
indicate that it is possible to make such linear oblique waves in a real flow.

This is the first time that this has been shown to be possible.

%available computations, for F = 6.0 x 10~5 and Res+ = 1380. Experiment is at F =
9.2 x 1075 and Res+ = 1400, which is not quite the same. However, the trend with oblique
angle should be quite similar.
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3.3.1.3 Measured Axngles

The angles of the oblique waves were measured using data from sensors
spaced apart spanwise at the same streamwise location. The phase lag of
wave arrival at the different spanwise locations provides the angle. Cross-
correlations were used to obtain the mean phase lag between the sensors.
These give the average phase lag over the eight seconds of data acquired
(roughly 150 cycles). The method of computing the phase lag is the same as
that used for the phase speed analysis above.

The first experiment used sensors SIN and S1S, which were spaced 0.200
inches apart. These sensors are fairly far upstream, where the waves are not
yet well-developed, as can be seen from the typical cross-correlations plotted
in Figure 3.23.  The results for the phase lags between the sensors are
presented in Figure 3.24. The phase lag increases with the increase in the
heater phase lags, as expected, but then drifts away from the expected curve.
This is presumably due to the effects of irregularities in the wave fronts (see
Figure 1.2). This unexpected behavior may also be at least partially due to
the weakly formed nature of the waves at the far upstream station where
these data were taken. Many of the stray points in these plots can be traced
to the weak cross-correlations which exist for weakly amplified waves.

The experiment was then repeated using sensors S4, S5, and S6, which
are spaced 2.375 inches apart farther downstream. The cross-correlations for
these data (see Figure 3.25) are much stronger, in spite of the fact that the
sensors are ten times as far apart as the ones used above. This increased
spatial coherency is presumably due to the longer fetch the waves travel
through before they reach the measuring station. The importance of this

effect of fetch should be emphasized, since it is an effect rarely discussed in
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the literature. The results for the phase shift are given in Figure 3.26. The
results for the other phase shift combinations possible with the three sensor
records are very similar and show that the wave angles measured downstream
match those that the apparatus was expected to generate!®. Thus, the ap-
paratus is really making oblique waves at the angle expected. This, again,
is the first measurement of this kind and shows both that the apparatus
is capable of making oblique wave fronts, and that they can develop in a
reasonably stable fashion in the boundary layer.

The angles used in the experiment are controlled by the phase lag in-
struction issued by the computer. In order to determine the actual angles, a
table of the oblique wave angles that correspond to a given phase lag instruc-
tion was computed. For this purpose, the angles can be computed from the
theory, which as shown above closely fits the data. The theory is based on
the phase lag created by the controller circuitry!!, and on the phase speed
of the instability waves, which is taken to be 0.38U,, a good approximation

to the measured phase speed data. The theory uses the equation

)\streamwise
tanf = -_,
/\span.wise
where
A -U Cphase 1
streamwise — Yoo 3
Usw 2f,
and

2mwh

/\s anwise — .
7 32(24,)
Here b is the spanwise distance between the end heaters of the 32 heater array,

and ¢, is the phase shift in the voltage signals between adjacent heaters; that

10Although it is the spanwise wavenumber 3, and not the wave angle §, which should
really be constant as the waves travel downstreamn - see Mack [27, Sec. 2.6.1]
l1see Appendix A.2.2
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Figure 3.26:

Average Phase Shifts vs. Angle for Oblique Waves
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1s

¢, = 2arctan(27 f,nRC), (3.1)
where f, is the voltage forcing frequency in Hz, R and C are resistor and
capacitor values installed in the controller, and n is the instruction for the
phase lag. When the proper values are substituted, the following equation

for the angles results:

_ Uso(Cphase/Us ) arctan(0.00628n £, )
tand = 183857, . (3.2)

Equation 3.2 is used to compute the values used in this thesis. For small
nfy, it is evident that the angle 6 is independent of the forcing frequency,
an observation that simplifies the data analysis considerably. For the largest
angles used in this thesis, the angles differ for the different frequencies only
by about 5%, which does not seem material. Angles quoted in the thesis
will be given for waves with f, = 10Hz. The wave angle results for the two

freestream velocities most commonly used are in Table 3.2.

3.3.2 Nonlinear Oblique Waves

The instability waves grow along the plate until they become nonlinear.
This can be seen from plots of their spectra, made from data taken from
sensors placed farther downstream. Figure 3.27 shows the spectrum of a set
of particularly nonlinear waves. The plot shows spectra of 2D waves for
three different forcing frequencies. One can clearly see the subharmonics and

12 as well as 2 harmonics.

second and third harmonics
Robey [34, Figure 5.10] observed a general filling in of the subharmonic

region of the spectra for large oblique waves, with the amount of this low-

121f the primary frequency is f, the second harmonic is defined to be 2f, the third 3f,
and so on. See Webster’s New International unabridged dictionary, second edition, under
‘harmonic’. Subharmonics are here usually f/2.
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f, = 10Hz f. = 8Hz

Usw = 3.69ft /sec | U = 3.50 | Uy, = 3.69

n g 0 6

0 0 degrees | 0 degrees | 0O degrees

1 3.3 3.1 3.3

2 6.6 6.2 6.6

3 9.7 9.2 9.8

4 12.8 12.1 12.9

) 15.6 14.9 15.8

6 18.3 17.5 18.6

7 20.9 19.9 21.3

8 23.2 22.1 23.7

9 25.3 24.2 26.0

10 27.3 26.1 28.2
11 29.1 27.8 30.1
12 30.7 29.4 32.0
13 32.2 30.9 33.6

Table 3.2: Wave Angles vs. Phase Lag Instruction for Oblique Waves

frequency content increasing dramatically as the oblique wave angle was
increased. This behavior was supposed to result from the increased non-
linearity of the oblique waves. Although for some large waves this spectral
filling in was also observed in the current work, there was no evidence to
support the trend with oblique angle reported by Robey. Robey [35] later
suggested that this might be due to the larger waves he could create. Detailed
comparisons are impossible because of the lack of quantitative information

in Robey’s reports.

3.3.2.1 Higher Harmonics

Second harmonics are always seen on all sensors located in the nonlinear
region and are in fact the clearest sign that the waves have entered the non-

linear region. A typical set of spectra showing second harmonics only is
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attached as Figure 3.28. The figure shows spectra for five forcing frequen-
cies of 13 degree oblique waves. Second harmonics are visible for all five
frequencies.

At smaller amplitudes of the primary wave, the harmonics are smaller.
Figure 3.29 shows the amplitude of the second harmonic vs. the square of
the amplitude of the primary wave for 20Hz waves of various oblique angles,
created using differing initial perturbation amplitudes. It can be seen that
the second harmonic increases quadratically with the primary response, as
might be expected if it is caused by a simple nonlinear interaction (see e.g.

Robey [34, Figure 3.8]). If the shear consists of a single harmonic,
T = esinwt,

then a quadratic nonlinearity which goes like cy72 will produce a signal

. co€?
T = esinwt + —5—(1 — cos 2wt).

Plotting the square of the amplitude of the fundamental against the ampli-
tude of the second harmonic should then give a linear curve that increases
with the fundamental, as is seen in the figure. It is also evident from the
figure that there is no marked change in the coefficient ¢q for oblique waves,
at least for small angles.

The amplitudes of the primary and the second harmonic decrease slowly
with increasing oblique angle, as shown in Figure 3.30. It can be seen that
the harmonic persists with increasing angle, remaining at a nearly constant
ratio to the primary even for angles larger than those plotted in Figure 3.29.

It was hoped that this kind of study of the second harmonic would pro-
vide a clear indication of the primary amplitude at which the wave becomes
nonlinear (through some sudden change in the behavior of the second har-

monic at a threshold value of the primary). However, the evidence is that
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the amplitude of the second harmonic increases slowly with the amplitude
of the primary, the amplitude at which it first becomes visible being depen-
dent only on the noise level in the spectra. Thus, there does not seem to
be any threshold at which the second harmonic suddenly appears; rather,
the development of nonlinearity is a continuous process, at least in so far as
the second harmonic is concerned. This smooth development of the second
harmonic can also be seen in the experimental results of Kachanov et al. [17,
Figure 4d].

A typical time trace showing the signal for a weakly nonlinear wave is
shown as Figure 3.31. The signal digitally filtered around the second har-
monic is also plotted to bring out phase relation of the two signals. It can be
seen from the phase of the second harmonic that the nonlinearity generally
seems to act to increase the shear in the trailing edge (later time) face of
the waves, above the value for sinusoidal waves (see especially the central
portion of the figure, away from the edge effects of the filter). A similar
effect can be seen in the streamline computations for large amplitude 2D
instability waves by Lessen [25, Figure 4], which show a stretching out of the
streamlines behind the maximum of the wave.

If one looks again at Figures 3.27 and 3.28 (and at Figures 3.41 and
3.44), it can be seen that the individual peaks for the fundamental and higher
harmonics tend to slope down more gradually on the low frequency side than
on the high frequency side, at least for frequencies somewhat away from the

central maxima. No explanation of this behavior has yet been found.
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3.3.2.2 Subharmonics

Subharmonics are often seen on the sensors in the nonlinear regime!?, starting
downstream of the region where the second harmonic is first seen. Subhar-
monics are not seen at all spanwise locations, but seem to vary in amplitude
across the span in a random fashion, the location where they are seen de-
pending on the day, but remaining uniform in the course of a day. This
behavior is not surprising for an effect which can be expected to depend on
the details of three-dimensional irregularities in the freestream flow. These
irregularities depend strongly on the amount of contaminants blocking the
turbulence damping screen upstream of the honeycomb, and so the pattern
of irregularities can be expected to depend on the particular contaminant
pattern existing on a particular day. If the surface waves above the plate
affect the irregularities, they will change depending on the leads to the back
side of the plate that are used on a particular day. Finally, the uniformity
of the heater power output, while good, is not perfect, and the irregularities
change slowly with time as heaters corrode or as the electronic circuits drift.

One would expect the appearance of the subharmonics to vary across the
span, since they are a three-dimensional effect of late transition. One might
expect the position to vary with time; however, if the spanwise location of
the subharmonic is phase-locked to three-dimensional nonuniformities in the
freestream flow or in the heaters, it might well be located in a fixed span-
wise position. A flow with a perfectly uniform staggered pattern of lambda
vortices might be expected to show subharmonics everywhere. However, one
of the standard references for subharmonic transition in a boundary layer

reports a variation of subharmonic amplitude with spanwise position large

130n roughly one-third of the sensors in this loosely defined region
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enough that the subharmonic vanishes at the spanwise node (see Kachanov
[19, Figure 14b]). Moreover, flows with subharmonic components often show
a mixed transition pattern where some of the lambda vortices are in-line and
some are staggered, with the pattern varying across the span (see Spalart et
al. [40, Figure 2h]).

The subharmonic results given here were very carefully checked to make
sure they were not an artifact. This check is important because the fre-
quency of the forcing voltage is half the heating frequency and is the same
frequency as the response subharmonic. Weak electronic pickup from the
heating electronics can thus easily masquerade as a flow subharmonic. The
following checks were carried out, among others: First, the forcing electron-
ics were carefully isolated from the sensing electronics, as described in the
Appendices. Second, the pair forcing results of section 3.4.1.2 show that the
amplitude of the subharmonic varies in a reasonable fashion as the location
of the forced pair of heaters is varied across the span. Third, the subhar-
monic results presented were seen on all the sensors, at different times, and
using many different combinations of signal conditioning elements. Fourth,
2 harmonics can be seen in Figure 3.27, which must occur through interac-
tion of the primary and subharmonic frequencies. These frequencies would
not interact if the subharmonic was caused by electrical pickup, and thus
independent of the flow.

Finally, the most cogent check on possible electrical coupling was made
in connection with the surface wave damping experiments also mentioned in
section 3.2.1. Oblique waves were forced both with and without styrofoam
blocks placed on the free surface at the entrance to the test section to damp
out the surface waves that formed most strongly there. No other changes

were made. A plot of the primary and subharmonic amplitudes computed
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from the resulting spectra for a sensor which had subharmonics is plotted as
Figure 3.32. It can be seen that although the primary amplitude changes
little with the addition of the surface wave damping, the subharmonic am-
plitude is consistently smaller for the smaller surface wave case, but has
the same trend with angle. This change with surface waves is presumably
caused by the small three-dimensional perturbations introduced by surface
waves, acting through changes in the delicately triggered three-dimensional
breakdown process. However, the important feature here is that the subhar-
monic changes very significantly (about 50% in amplitude) when a purely
fluid mechanical change is made. This finding seems clear evidence that the
subharmonic is not some obscure form of electronic pickup from the heating
apparatus, for one would expect such pickup to be independent of the surface
wave amplitude or the presence of styrofoam on the surface.

The amplitude of primary and subharmonic is plotted for several values of
the output power in Figure 3.33, to show that the subharmonic is present at
all forcing levels, instead of appearing only at higher forcing levels. It is also
evident that the subharmonic increases much less rapidly with forcing than
does the primary amplitude. These results do not show a sudden growth of
the subharmonic after the primary reaches some critical amplitude, as seen
in classic subharmonic studies [13, Figure 3]. However, that work studies
the growth of the subharmonic with streamwise distance rather than with
input amplitude, as in the present work. It should be noted that the DC
offset error in the sinusoidal heater voltage signals provides a subharmonic
perturbation of about 1% of the primary perturbation (see Appendix A.2.6).
This subharmonic seeding may or may not be significant to the subharmonics
observed downstream in the nonlinear region.

The most interesting observation is that when subharmonics are seen,
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they are strongest for 2D forcing, and decrease rapidly in amplitude for
oblique forcing of increasing oblique angle, so that for an oblique wave of
perhaps 5 degrees the subharmonic amplitude has decreased by an order of
magnitude from the 2D value (Figure 3.34). Never are the subharmonics
seen to increase with angle, and therefore it seems highly unlikely that the
location is simply moving spanwise. This behavior is very striking, and so
an explanation was sought in terms of the theories for nonlinear instability
wave breakdown.

Subharmonics are a feature of several analyses of the secondary instability
of Tollmien-Schlichting waves and are also the subject of several experiments
(see for example Herbert [12] and Corke [5]). In all these cases, the instability
of a strong two-dimensional primary wave is studied. Figure 3.35 (adapted
from Hama et al. [10, Figure 33]) shows the triad resonance explanation
of the appearance of subharmonics. A pair of oblique waves of equal and
opposite angles can be traveling with the same phase speed as a primary 2D
wave, if the oblique angle is correct. This triad of waves can then resonate
nonlinearly, causing an increase in mutual growth rate. The figure shows how
such a triad can exist with a simple phase-locked arrangement of the waves.
The triad-resonance theory is based on an analysis of the weakly nonlinear
instability of this arrangement. The regions marked A and B have opposite
phases, so that the nonlinear interaction is capable of amplifying these regions
differently, causing the appearance of a subharmonic component. However,
the drawing shows how even a small angle oblique wave can no longer have
a phase locked relationship to such a pair of oblique waves, so that this triad
interaction can no longer exist. One could conceive of a triad interaction
of two oblique waves of slightly different wave angles with a slightly oblique

primary wave, but the two waves of slightly different angles would not have
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the same phase speeds, and so could not long exist in a resonant phase locked
condition.

Thus it can be seen that a strong single frequency fundamental wave
of even slightly oblique angle (13 degrees) which is nearly as large in am-
plitude as the similar 2D wave (because it has nearly the same integrated
growth rate) has a very different secondary instability. This secondary in-
stability does not show subharmonics in the nonlinear region and cannot be
expiained by the wave triad resonance concept. The wave breakdown may
instead be explained by the different properties which are evident even for
small angle oblique waves, such as their fully three-dimensional vorticity and
the movement of the vorticity maximum away from the wall (see the linear
eigenfunctions of Hama et al [10, Figure 2]). However, this change in the ob-
served secondary instability of these waves does not cause a dramatic change
in their overall transition to turbulence, since there is no sudden movement
of the boundary layer transition point corresponding to this sudden change
in secondary instability (see Figure 3.38). This result suggests that there is
a more fundamental explanation for the nonlinear breakdown of instability
waves that does not rely on a mechanism applicable only to 2D waves.

The subharmonic amplitude changes in an unpredictable fashion with
frequency. The changes may be associated with spanwise movement of the
subharmonic maxima. This spanwise motion could not be studied with ex-
isting instrumentation.

It is very difficult to study the spanwise structure of these waves through
point measurements alone, without flow visualization photos. However, the
difficulty of visualizing small amplitude instability waves is well known, and
the usual techniques are not easily used in our facility as configured. As

will be discussed in the summary, further work should focus on developing
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such a flow visualization apparatus to operate concurrently with the three-

dimensional perturbation apparatus.

3.3.3 Late Nonlinear Region

Eventually the waves break down into local large fluctuations. These are non-
linear, fully three-dimensional, and apparently random. Thus, at the least, a
two-dimensional photograph or sensor array is needed to study them; how-
ever, several things can be noted here. A typical trace of such a late nonlinear
signal is shown in Figure 3.36, which shows the large unsteady fluctuations
typical of this region. Also, dye streak flow visualization showed spanwise
fluctuations in the streamwise dye streaks just before they were lifted off
the plate by turbulence, in a manner similar to the behavior described by
Liepmann et al. [26, Figure 7]. Neither of these behaviors were studied in
detail.

It should also be noted that one would not expect to see the ‘spikes’
first studied by Klebanoff et al. [21] in the flow near the wall, as shown
in their Figure 26. Finally, turbulent spots appear in videotape records of
the transition!* both for forcing patterns that have subharmonics and for
forcing patterns that do not. Moreover, the surface shear downstream is in
all cases intermittent, as will be discussed in the following section. These
observations do not agree with those of Kachanov [18, p. 45], who states
that the subharmonic transition is fundamentally different and occurs by a
smooth increase of fluctuations instead of through the formation of turbulent

spots.

Mphotographing the dye sheet emitted by the dye slot
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3.3.4 Intermittent Region

Eventually the waves break down into turbulent spots in an intermittent
fashion that seems to be of the classically intermittent kind (see, for exam-
ple, Narasimha [31]). Dye flow visualization of this region shows a transition
between laminar flow regions marked by dye from upstream and turbulent
flow regions where the dye is being or has been washed away. This inter-
face is ragged and unsteady. The interface moves upstream markedly when
significant forcing is turned on, corresponding to an upstream movement of
the transition point. Two photos of the intermittent region are attached in
Figure 3.37, which shows the dye for forced and unforced waves. The arrow
shape of the dye in the unforced case is caused by the edge contamination in
the tunnel, which creates wedge-shaped turbulent regions near both walls of
the tunnel. The raggedness of both dye fronts is evident, as is the upstream
movement of transition in the forced case. However, it is difficult to see
any clear effect of small changes in forcing with this technique, because the
transition marked by the dye fluctuates so much.

If a sensor is placed in this fluctuating region, the fraction of time when
the flow is turbulent can be computed. The result is known as the intermittency!®.
If the wall shear is measured over a sufficiently long periocd of time, the fluc-
tuations in the intermittency computed for shorter times will average out,
causing the intermittency to converge to a long-time average value, close to
the value that would be found using infinite averaging. The length of time
required for good convergence does not seem to have been discussed in the
literature.

The intermittency is known to increase with downstream distance until

15for method of computation, see Appendix C.2



Figure 3.37: Photographs of Transition With and Without Forcing
Upper Photo: unforced
Lower Photo: Forced 192 watts 16Hz 12 degree oblique wave
Both Photos: U, = 3.50 fps, 4-13m, flow is from left to right
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the flow is fully turbulent. Here, the intermittency is measured at two fixed
sensors, and the change in intermittency with forcing is used to quantify
the movement of transition caused by the forcing. Extensive experiments
were done with oblique wave forcing in order to get a sufficient record to
get good statistics. In the present experiment, it turned out that 5 records
of about 300 instability wave cycles each were required in order to get the
intermittency to converge, so that the rms variation among the records is
about 0.1. Figure 3.38 shows that, as the angle of oblique wave forcing is
increased, the transition point moves upstream less and less. Thus two-
dimensional forcing has the largest effect on the movement of the transition
point. It is important to remember that this forcing is located at a fixed
streamwise location, near the critical Reynolds number.

This result is not surprising, in view of the generally smaller oblique wave
amplitudes measured at the end of the linear region. The nonlinear effects
that favor the growth of oblique waves, as discussed in the introduction,
are evidently not sufficient to overcome their smaller linear growth rates
and possibly weaker receptivity to the heating. This experiment is the first
time the development of such waves has been observed all the way into the

intermittent region.

3.4 Transition Caused by Forcing of Other Wave Pat-
terns

Work was concentrated on the study of the oblique waves because of their
theoretical simplicity. However, some experiments were done using various
other perturbation patterns in an exploration of possible effects. A major
difficulty lies in choosing among the vast variety of patterns that can be

studied, even using the present rather limited signal generation apparatus.
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A second difficulty lies in choosing a region in which to study the instability
wave growth, given a particular wave pattern.

Most of the non-oblique wave pattern data was acquired in the course
of one long experiment which was part of the first experimental set. Five
fundamental wave patterns were studied, each only briefly. Four sensors were
operating for these studies, so that some record of the pattern development
was recorded in the linear, nonlinear, and intermittent regions. One sensor
was located off the centerline, to give some record of the spanwise variation
in the flows generated. These experiments were carried out at the same
freestream velocity as most of the rest of set I, 3.69 £ 0.02 ft/sec. Some
further experiments using one of the forcing patterns were carried out during
the second set of experiments using the second plate configuration.

The farthest downstream sensor, S8, was intermittent for some of these
runs, and an attempt was made to look at the movement of transition caused
by the various forcing patterns through measurements of the intermittency
on this sensor. Unfortunately, the length of the records acquired, 8 seconds
or about 160 instability wave cycles, was insufficient to obtain an accurate
value for the intermittency. The scatter among intermittencies computed for
the repeated records taken during the set of runs discussed in this section
was large, of the order of the intermittencies measured. The intermittencies
measured for oblique waves, discussed in section 3.3.4, required ten times this
amount of data to reach good statistical convergence. Thus, no intermittency
plots have been included in this section. However, the data are of some value
for indicating gross trends, and such trends will be discussed.

The wave patterns used are divided into two groups for this discussion
(see Figure 3.39 for sketches of the patterns). The first group consists of

wave patterns in which the spatial variation is all at short wavelengths. An
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example from this group is a pattern in which alternate heaters are offset in
amplitude. The second group consists of wave patterns in which the spatial
variation contains long spatial wavelengths as well as short ones. An example
from this group is a pattern in which the amplitude jumps from one value to
another at mid-span. The distinction is somewhat arbitrary, but it is the only
one that seems of obvious significance. As far as the author is aware, this is
the first time that the development of any such controlled three-dimensional

patterns has been studied at all.

3.4.1 Short Spatial Wavelength Patterns

Two of the wave patterns generated come under this classification. The first
of these is a pattern in which straight waves are generated, very much like the
oblique waves used in the main text, except that every other heater is offset
in amplitude from its neighbors. That is, all the even numbered heaters are
at one amplitude, and all the odd numbered heaters are at another. The
phase shift between the channels could have various values, but is uniform
among the heaters. This pattern has been called even/odd forcing, for lack of
a better term. The second pattern is one in which all the heaters are forced
in phase, as if to make a 2D instability wave, except that a neighboring pair
of heaters is offset in amplitude from the rest. The location of this offset
pair was varied across the span. This pattern has been called pair forcing,

for obvious reasons. Even/odd forcing will be discussed first.

3.4.1.1 Even/0dd Forcing

Even/odd forcing was studied for one base amplitude of the odd numbered
heaters, two angles of obliqueness. and four values of the offset of the even

numbered heaters, for three frequencies. Subharmonics were observed at
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sensor S6, located in the nonlinear regime. A plot of the amplitudes of the
primary and subharmonic responses to the forcing for this sensor is attached
as Figure 3.40. The figure plots the power in the spectral peaks against the
amplitude offset of the even-numbered heaters, for two angles of obliqueness,
and for one typical frequency. Also plotted are some reference data for the
response at this sensor to standard straight oblique wave forcing, measured
on the same day. Looking first at the primary response, it is evident for all
angles that the response increases with the offset of the even heaters. This
is to be expected, since the total power entering the flow is increasing. The
increase with power is smooth and not dramatic, and the change in response
with increasing power is very similar to that for standard oblique waves.
Looking next at the subharmonic response, one sees that they also increase
with power input, as might be expected, but not dramatically. Clearly the
oblique wave forcing results in much lower amplitude subharmonics that in
the 2D phase case. This is the same behavior as for uniformm amplitude
oblique wave forcing, showing that the nonuniformity in spanwise heating
does not change this effect. The other sensors in the linear and nonlinear
regime show similar behavior, but without the subharmonics.

For this pattern, the furthest downstream sensor showed intermittency,
although as mentioned above, sufficiently long records to achieve good statis-
tics were not taken. However, the data do show that the the intermittency
increases with forcing power, and also that the even/odd forcing pattern did
not have a dramatic effect on the forward movement of transition.

The results seem to show that there is no major effect of this short wave-
length spanwise amplitude modulation on the flow development. This finding
was at first a surprise. It seems that since the short wavelength modulation is

created in the early linear amplification region, the wave must travel through
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a long linear amplification region before any nonlinear effects can come into
play. In this linear amplification region, the large angle oblique waves into
which the modulation can be decomposed do not grow much, if at all. Thus
the wave modulation tends to smooth out, with the wave pattern approaching
that of the elementary, growing, straight wave shape. This means that when
the wave reaches the nonlinear and intermittent regions, it is very much the
same wave as that created by a simple straight wave forcing and so behaves
similarly. Additional implications of this observation will be discussed later.
It should be mentioned that there are reassﬁring implications for the wave
creation technique, inasmuch as small differences between the wave pattern
generated by the 32-element array and a perfect oblique wave pattern should

smooth out in a similar fashion.

3.4.1.2 Pair Forcing

A considerable amount of pair forcing data was acquired, using both the first
and second plate configurations. The pair forcing was investigated for two
purposes. The first was to see if a local perturbation, or a local perturbation
to a strong straight wave, has a large effect. The second was to look at the
subharmonics generated by the perturbation and to see if they varied in a
reasonable way as the perturbation location was varied across the span, in
order to check that the subharmonics generated were not caused by electrical
pickup from the heater electronics.

The first results to be presented are for large amplitude 2D forcing per-
turbed by a small offset, either positive or negative, in the amplitude of the
centerline pair. It was thought that this pattern would provide a localized
defect for growth of secondary disturbances in the 2D wave. Spectra for

the sensor located in the nonlinear region on the centerline downstream are
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shown in Figure 3.41. It is readily seen that there is very little difference
between the spectra for the three cases, with no change for a positive or
negative defect in the forcing, even at this location directly downstream of
the defect. Evidently this forcing pattern behaves the same as the even/odd
forcing; the small disturbance is created in the early linear region so that by
the time the wave has grown through the linear region the disturbance has
been smoothed out. Figure 3.42 shows the amplitudes of the primary and
subharmonic responses on the off-centerline sensor. It is evident that the
primary signal on this off-centerline sensor increases only very slowly with
the amplitude of forcing on the centerline, while the subharmonic increases
slightly more rapidly. The anomalously low primary response to the positive
offset 12Hz wave does not have an obvious explanation. The subharmonics
are strong here, as they usually are for forcing with 2D phase on sensors
where subharmonics are seen, but there is again no dramatic change with
the introduction of the defect.

The second set of data to be presented is for a very low amplitude 2D wave
perturbed by a large offset in amplitude for the centerline pair of heaters.
This forcing pattern is almost the same as if only the centerline pair of heaters
was forced. Figure 3.43 shows the primary and subharmonic amplitudes
measured from data taken from the off-centerline sensor in the nonlinear
region. It is evident that large subharmonics are present for this 2D phase
forcing, and that the amplitude of the subharmonics again increases with
frequency. The amplitude of subharmonic response increases smoothly and
slowly with increasing offset amplitude of the centerline pair being forced,
while the primary amplitude scatters anomalously. It is notable that the
subharmonic increases to a point where it has a higher amplitude than the

primary response. The reason for this is not clear.
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The last type of forcing to be discussed in this section is that of a pair
strongly offset from a negligibly small 2D wave. The amplitude and frequency
of the pair heating is kept constant, and the location of the pair is varied
across the span. Data are acquired on a fixed sensor, as always, here located
on the plate centerline. Figure 3.44 shows spectra at the sensor for four
locations of the pair forcing. It can be seen that the amplitude of the
primary response changes greatly with the spanwise pusition of the forcing,
as might be expected, since the disturbances convect downstream. When
the forcing is carried out directly upstream of the sensor, the disturbance is
large enough to show a strong second harmonic. Subharmonics can be seen
in all the spectra, and they decrease only slowly as the location of forcing is
moved away from the centerline. This behavior can be seen more clearly in
Figure 3.45, which shows the variation in amplitude of both the primary and
subharmonic response with the location of the forced pair. The primary
response varies rapidly with the movement of the forced pair away from the
centerline. The amplitude of the primary response is lost in the natural wave
noise for distances greater than about 2 inches. However, the subharmonic
varies only a factor of about 3 in power as the location of the excited pair is
moved all the way from the centerline to the edge of the tunnel. This large
subharmonic is rather surprising. No explanation for this rather strange
behavior has yet been found.

It seems that short spatial wavelength patterns introduced at the heater
upstream of the linear region smooth out before the variations have a chance
to be important in the nonlinear region. These variations may be sufficient
to trigger a spatial localization of the beginning of three-dimensionality, as in
Klebanoff et al. [21], but they are not sufficient to change the overall transi-

tion process. This conclusion has implications for boundary layer receptivity
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to disturbances, because it suggests that 3D disturbances that enter through
the outer layer in the nonlinear region might be more important for trigger-
ing 3D effects than disturbances that enter near the leading edge and are

thus heavily damped before they become relevant.

3.4.2 Long Spatial Wavelength Patterns

Three of the non-oblique wave patterns that were generated can be classified
under this heading. The first was an attempt to mimic the output of a
vibrating ribbon. In this sine wave in amplitude pattern, the heaters are all
forced in phase to make a 2D wave. However, the amplitude of forcing is
varied across the span so that the power output on the heaters varies like a
half-period sine wave across the span. This forcing can only be done to a
rough approximation because of the limited range of discrete forcing levels
available. The second pattern has a uniform amplitude across the span, with
uniform phase shifts on either side of the plate centerline, interrupted by a
jump in the phase shift at the centerline. This bent wave forcing thus consists
of two straight line segments of oblique forcing interrupted by a kink in angle
at the centerline. The third pattern is similar to the second but has a jump
in amplitude at the centerline, with uniform phase lag across the entire span.
This is called amplitude jump forcing. These last two types were suggested
by Professor A. Leonard.

3.4.2.1 Half-Sine Distributed Amplitude Forcing

The half-sine forcing was carried out for three frequencies and for two types.
In the first, a large base 2D wave was forced, with a small amplitude half-sine
distribution added to it. This was to be a model of a vibrating ribbon with

the fixed ends located outside the tunnel, so that the amplitude does not
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decrease to zero at the edge of the tunnel. No unusual effects were observed
for this case. The second case used a very low base amplitude, to which was
added a large amplitude sine wave offset. Results for the off-centerline sensor
S6, which showed subharmonics, are plotted in Figure 3.46. Evidently the
primary response increases with the peak offset of the sine wave, which is
expected since the total heat does also. Results for standard oblique waves
are also plotted on the figure, for comparison. It can be seen that the increase
in response with heating power is very similar for the two forcing patterns.
The subharmonic is large, as we can expect for this 2D phase case, and
increases in amplitude with heater power in a manner very similar to that
seen for oblique waves. This forcing type did not cause any intermittency
on the downstream sensor. Thus, on the whole, no surprising results were

found for this forcing pattern.

3.4.2.2 Bent Wave Forcing

Bent wave forcing was carried out for one amplitude, three frequencies, and
the nine combinations of angles possible using three different angles on each
side of the plate. Figure 3.47 shows the results for the primary response
on the centerline sensor S7, in the nonlinear region. The horizontal axis
gives the wave angle generated on the north side of the plate, and primary
response amplitudes are plotted for several settings of the wave angle on
the south side of the plate. It can be seen that the amplitude for the three
straight wave combinations falls off with increasing angle, just as was found
in the oblique wave forcing work. The other results are somewhat confusing.
It appears that the amplitude generally increases with the oblique angles of
the r2gments, but that the larger oblique angles tend to reduce the amplitude

if they cause too much of a kink on the centerline. It is obviously impossible
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to understand this flow without having a much better idea of its three—
dimensional structure. It should be remembered that reversing the angles
between the north and south sides does not produce the same wave, since
one is convex downstream and the other convex upstream (see Figure 3.39).

This forcing caused the flow on the downstream sensor S8 to be intermit-
tent. The intermittency varied with the forcing in a manner very similar to
the variation of wave amplitude plotted above, not a surprising result since
the data are from records on two sensors for the same experiment. Evidently
the primary response on the centerline upstream is a good diagnostic for the

eventual transition position downstream.

3.4.2.3 Amplitude Jump Forcing

Amplitude jump forcing was carried out for three frequencies, two wave
angles, one amplitude of forcing on the north side of the plate, and four
amplitudes of forcing on the south side. The results for the primary and
subharmonic amplitudes on S6, the off-centerline sensor that often showed
subharmonics on this day, are shown in Figure 3.48. Evidently, all ampli-
tudes increase with the level of forcing, an increase which is to be expected
since more power is being put into the flow. The increase in response with
heater power is again very similar to that observed for standard oblique
waves. Again, it is evident that the subharmonic amplitude is much larger .
for the 2D-phase waves than for the oblique waves. No striking differences
from the oblique wave results can be seen.

The flow on the downstream sensor became intermittent for this forcing,
for the most amplified frequency. The level of intermittency again varies
with the forcing in a manner very similar to the variation of wave amplitude

upstream. No dramatically large intermittencies were observed.
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Chapter 4
Summary of Results

Experiments exploring some effects of well-controlled three-dimensional forc-
ing on boundary layer transition are reported. A new apparatus was devel-
oped, and the accuracy of the perturbation introduced has been improved
by an order of magnitude both in phase and in amplitude.

The apparatus was first used to generate oblique instability waves, both
as a study in themselves and as a test of the apparatus. The wall shear
fluctuations on a fixed sensor in the linear region downstream decreased
with increasing oblique angle, as might be expected from Squire’s transform.
Results for the streamwise phase speeds of these waves agree with the linear
theory, showing an increase with both frequency and oblique wave angle.
Measurements of the angles of the waves show that the average angle agrees
well with the expected value. Thus, single oblique waves can be successfully
generated and do agree with the linear theory, at least in overall properties.

The development of the oblique waves was observed through the nonlin-
ear region. Second harmonics in the wall shear response were observed to
scale as the quadratic of the primary amplitude. Subharmonics were also
observed at some spanwise locations. When subharmonics were observed,
their amplitude was largest for 2D forcing and decreased rapidly with in-
creasing oblique angle, decreasing by an order of magnitude as the oblique

angle was increased from 0 to 13 degrees. This result suggests that the
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nonlinear secondary instability of even small angle oblique waves is very dif-
ferent from that of 2D waves. A simple explanation of this effect in terms of
the triad wave interaction theory has been proposed. Since the small angle
oblique waves are almost as probable in a real flow with some natural three-
dimensionality, because of their very similar growth rate, the mechanism of
their breakdown should be almost as important as that for large 2D waves
and deserves further study.

One might expect oblique waves to become nonlinearly unstable at lower
amplitudes than 2D waves, because they contain all three components of
vorticity and are thus subject to vortex stretching effects, and because the
maximum of vorticity moves away from the wall for these waves. However,
measurements of intermittency at a fixed downstream location show that
2D forcing, carried out near the beginning of linear instability, causes the
largest upstream movement of the transition point; this upstream movement
decreases with increasing oblique angle. Thus any such nonlinear effects are
not sufficient to overcome the somewhat larger amplitudes which the 2D
waves had at the end of the linear region.

What seems the most important conclusion arises from consideration of
both of the above results. As the oblique wave angle is increased, there is an
abrupt change in nonlinear breakdown mechanism, but no correspondingly
abrupt change in the movement of the transition point. Thus, there must be a
more fundamental explanation for the 3D nonlinear breakdown of instability
waves that does not rely on a mechanism applicable only to 2D waves, and
in which the presence or absence of the subharmonic or staggered pattern is
not a crucial factor.

Studies of more complex wave patterns were also made. These do not

show any behavior dramatically different from that of the 2D and oblique
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waves. The early linear region of wave growth in the boundary layer ap-
parently acts as a narrow band filter in both time and space, damping those
disturbances with temporal or spatial wavenumbers that are not in the linear
amplification region. This property is evident also in the oblique wave results,
which show the waves becoming more coherent as they travel through the
linear region. Only in the late nonlinear region do the waves again become
more incoherent as they begin to break down into spots.

Further work should incorporate apparatus capable of visualizing the
small amplitude instability waves themselves, so that the three-dimensional
effects in these waves can be seen directly. This is essential for study of
the three-dimensional nonlinear region, where the distortions in the wave
patterns are complex and very difficult to infer from measurements at a few
points. A detailed Appendix is attached that describes the three-dimensional
forcing apparatus, to facilitate further work. Some useful improvements to

the forcing apparatus are also suggested in the Appendix.
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