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Abstract 

Four aspects of low-energy electron diffraction (LEED) have been investigated: 

interpretation of spot patterns to determine the surface unit cell and possible 

ambiguities, development of a photographic method for measuring angles of incidence 

and determining alignment of the LEED instrument, study of reliability factors used for 

intenSity analysis, and justification for equivalent beam averaging. 

The interpretation of LEED spot patterns to determine the geometry of the surface unit 

cell can be involved when there are several symmetrically equivalent structural domains 

contributing to the pattern. Complex patterns can be deciphered by the algorithm 

described in Chapter II. The algorithm determines a surface unit cell that is often unique 

but not always, as where a p(2 x 2) pattern from a fcc(111) surface can be produced by 

a true (2 x 2) overlayer or by three domains of a (2 x 1) structure. This ambiguity arises 

on surfaces with 6m symmetry, such as fcc(111) and hcp(OOOl), for spot patterns with 

threefold rotational symmetry. 

In Chapter III, a broadly applicable photographic method for measuring angles of 

incidence and determining the alignment of the LEED instruments is described. Two 

published methods for determining the angle of incidence are special cases of this 

general procedure. The procedure extends the photographic methods and facilitates the 

verification of the alignment of the components of the LEED instrument. 

Reliability factors are used to evaluate correspondence between computed and observed 

LEED intenSity spectra. Zanazzi and Jona, Pendry, and Sobrero and Weinberg have 

proposed reliability factors that are examined in Chapter IV. Chapter V provides a 
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theoretical analysis and shows that averaging over momentum space gives the best 

resolution of the surface structure while energy averaging smears out information in the 

intensity spectra. 

Chapter VI provides a theoretical basis for the procedure of equivalent beam averaging, 

which provides a first-order correction to LEED intensities for systematic error due to 

angular misalignment of the incident beam and corrects for misorientation (where the 

actual surface plane is at a slight angle to the desired crystal plane). The potential of 

higher-order corrections is discussed. 
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Chapter I 

Introduction: Determination of Surface Structure by LEED 
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Introduction: Detennination of Surface Structure by LEED 

The determination of surface structure by LEED requires that experimental data be 

compared with computed intensity spectra. The reliability factor, or R-factor, is a 

quantitative measure of the level of agreement between the experiment and the 

computation. As the parameters in the theory are varied, the quality of the fit changes 

continuously. The underlying assumption is that the parameter values that optimize the 

fit are the closest to the true, physical parameters. This requires that the model 

employed in the fitting procedure be an accurate approximation of the true scattering 

process. The dynamical theory of LEED has been quite successful in this regard. 

The dynamical theory has been used to study free electron metal surfaces, such as that 

of aluminum, as well as the more complex transition metals and semiconductors. A 

variety of molecular overlayers have also been studied. One thrust of research in LEED 

theory is in exploring new approximations to reduce the expense of the computations 

when large unit cells are involved (1-2), or when high energies are used (3). Despite the 

successes of LEED, there are systematic discrepancies between measured and calculated 

intensities even for simple surfaces. 

The lack of perfect agreement is due to problems in the experiments and in the theory. 

For some surfaces, there are great difficulties in obtaining reproducible experimental 

data. The W(OOl)-(l x 1) high temperature phase is a case in point. In a comparison of 

experimental data from six research groups (4-9), Stevens and Russell found large 

discrepancies. One cannot demand of the theory that it fit such data very closely, and 

even if good agreement could be obtained in all cases, the results would not be 

meaningful. Data can be fitted only to within the experimental uncertainty. Fine-tuning 
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beyond that is "fitting the noise" and devoid of significance. 

Other experimental considerations are the irreproducibility of data for beams at glancing 

angles to the surface or of the absolute intensities in overlayer systems. Both of these 

effects are due to lateral disorder on the surface. Glancing beams have a large 

instrumental transfer width (10), which makes them sensitive to fine details of the lateral 

structure of the surface, including steps and other defects (11). The disposition of these 

defects depends on uncontrollable factors affected by the preparation of the sample. A 

sample aligned to within ±lho of a nominal low Miller index surface will have on average 

one step every 70 lattice spacings along the azimuthal direction of the misalignment. The 

polishing procedure adds a random component of steps, and cleaning by ion 

bombardment adds point defects. In addition, there are surface manifestations of defects 

already present in the bulk such as dislocations. For angles of incidence and emergence 

near the surface normal, these defects redistribute elastic intensity only within the 

Brillouin zone, but at glancing angles the geometric view factor becomes important and 

even the integrated beam intensities are irreproducible. 

Adsorbed over/ayers present experimental difficulties because they cannot always be 

regenerated with a constant degree of order. For the Ru(001) (v3 x v3)R300 -CO system, 

both the exposure of the clean surface to the gas and the subsequent anneal have to be 

controlled rigorously in order to obtain reproducible intensities (12). The total electron 

dose (13) and the rate of dosing (beam current) (14) also affect the observed intensities. 

These factors make the comparison of absolute intensities subject to large experimental 

uncertainties. 

Fortunately, the absolute intensities are not needed for structure determination; it is 

sufficient to compare the relative intensities. There is a problem, though, in that there is 
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no consensus regarding how to normalize the intensity spectra or how to gauge the level 

of agreement among the normalized curves. The lack of consensus is manifested in the 

use of various R-factors by various research groups. Since different R-factors give 

different surface structures as the optimum, the lack of consensus has real 

con seq uences. 
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Chapter II 

Interpretation of LEED Spot Patterns and Possible Ambiguities 
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Abstract 

The matrix notation for describing the structure of an overlayer in terms of the substrate 

unit vectors does not give a unique matrix for the structure. We discuss the equivalence 

class of matrices that all specify the same structure and demonstrate how to determine if 

two matrices are equivalent. This provides a convenient method for determining the 

point group symmetry of a structure from its matrix. The matrix theory is used to 

develop an algorithm for unscrambling the LEED pattern resulting from a superposition of 

patterns from symmetrically equivalent antiphase domains for simply related overlayers. 

Due to the existence of symmetrically equivalent domains, certain surface nets cannot be 

deduced unambiguously from their LEED patterns. A well-known example occurs for a 

p(2 x 2) overlayer on a fcc(l11) or hcp(OOOl) substrate, the diffraction pattern of which 

can be interpreted as due either to a true (2 x 2) unit cell or to three domains of a 

(2 x 1) structure. It is demonstrated that this is the only type of ambiguity that can arise 

where the pattern resulting from a superposition of several Bravais lattices appears as a 

single Bravais lattice. 



8. 

1. Introduction 

When examining a new surface structure with low-energy electron diffraction (LEED), the 

first task is to determine the size and shape of the unit cell. This information is needed to 

complete the characterization of the structure. For an adsorbed overlayer, the shape of 

the surface unit cell can suggest the absolute coverage at saturation and occasionally 

even the adsorption site. If more than one structural phase occurs, either as a function 

of coverage or of temperature, the surface unit cells playa fundamental role in the 

understanding of the interatomic forces which lead to the phase transition. 

For complex LEED patterns, the process of determining the true surface net has been 

described as a "nontrivial task requiring a certain amount of imagination" (1). In the 

absence of domains, the pattern on a LEED screen is a representation of the reciprocal 

lattice of the surface. The two-dimensional unit cell is determined easily from such a 

pattern. Complications arise, however, when there are several domains of an adsorbed 

ordered overlayer on a high-symmetry substrate. This complicating factor has two 

unfortunate consequences concerning the interpretation of LEED patterns. The obvious 

effect is that the pattern is difficult to interpret because the reciprocal lattices for each of 

the domains are all superimposed. A more subtle consequence is that it is not always 

possible to specify a unique surface net corresponding to the observed pattern. Such an 

ambiguity occurs on the Ir(111)-(2 x 2)-0 surface, where either a single domain of a 

bona fide (2 x 2) overlayer or three rotationally symmetric domains of a (2 x 1) structure 

would both give the observed (2 x 2) pattern (2). 

It is important to know which patterns can be interpreted in more than one way and to 

generate all possible interpretations. Without some underlying theory, it would be 

difficult to say whether all the possible surface nets corresponding to an observed 
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pattern had been exhibited or if a more complete search would yield new interpretations. 

Fortunately, it can be proven that there is only one type of ambiguity where the 

superposition or several Bravais lattices is ambiguous with the pattern produced by one 

or two overlayer domains. This occurs on a substrate with a hexagonal Bravais lattice 

where an overlayer which produces a p(S x S)Rq>° pattern may have either a (S x S) unit 

cell or three mutually rotated domains of a (S/2 x S) structure. Examples of this type of 

ambiguity abound, including Ir(111)-(2 x 2)-0 (2), Rh(Ul)-(2 x 2)-0 (3), pt(ll1)-

(6 x 6)-naphthalene (4) and U02(111) (2v'3 x v'3)R30° (5). Other structures such as the 

Ru(OOOl)-(v'3 x v'3)R30°-CO (6) would give rise to ambiguity if the adsorbate were 

bonded to a bridge site of the substrate rather than in an on-top site. 

It is well known that the space group of the surface structure can seldom be determined 

completely from the diffraction pattern alone. Even the occurrence of a glide plane in one 

domain can be obscured by the presence of a rotated domain, as has been observed on 

the reconstructed W(lOO)(v'2 x v'2)R45° surface (7, 8). Hence, the determination of 

space groups remains a difficult task. On the other hand, the analysis of the LEED 

pattern to deduce the surface unit cell can be reduced to a straightforward procedure if 

the overlayer is known to be related simply to the substrate. We exclude rationally 

related coincidence lattices and incommensurate overlayers from this discussion. Multiple 

scattering between a coincidence lattice and the substrate leads to ambiguity and other 

complications of interpretation for virtually any system. 

In Section 2, the theory of Bravais lattices and structure matrices is presented. The 

matrix notation introduced by Park and Madden (9) is used to specify the lateral 

structure of an overlayer. Section 3 contains an algorithm for simply related surface 

structures to unscramble a complex LEED spot pattern into its component domains. It is 

assumed that the true LEED pattern is well resolved and completely known. This seldom 
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presents a limitation in practice since the missing spots in an incomplete pattern can be 

identified and filled in. We illustrate this procedure as well as the power of the algorithm 

for unscrambling complex structures with a number of examples. In Section 4 we discuss 

ambiguity and demonstrate that only the hexagonal overlayer on a hexagonal lattice 

presents any difficulties. 

2. Bravais Lattices and Structure Matrices 

The matrix notation used to specify the lateral structure of the overlayer in terms of the 

substrate unit vectors provides a convenient and powerful formalism for the analysis of 

LEED patterns (9). The 2 x 2 matrix for a superlattice represents the structure in terms of 

the substrate lattice unit vectors. The rows of these covariant structure matrices are the 

vectors specifying the Bravais lattice. The corresponding matrices in reciprocal space are 

contravariant with the columns giving the reciprocal unit vectors. The advantage of the 

matrix formalism is that much of linear algebra can be applied. For example, if 5 is a 

structure matrix, the reciprocal matrix is simply the inverse 5-1. A disadvantage is that the 

structure matrix for a Bravais lattice is not unique, as can be seen in Figure 1. We will 

define the equivalence class of 5 to consist of all the matrices that produce the same 

lattice. We say that 51 is equivalent to 52 when for any 1 x 2 integer vector m there 

exists an integer vector n with m51 = n52 and, conversely, for all integer vectors n there 

exists a corresponding m. 

The absolute value of the determinant of 5 is the area of the two-dimensional unit cell. 

Hence, for two matrices 51 and 52 to be in an equivalence class it is necessary but not 

sufficient that 

Idet 511 = Idet 521. (1) 
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Equivalence is completely established by the following: 

Theorem: The structure matrices 51 and 52 are equivalent if and only if there exists an 

~ matrix U of determinant ±1 with 

(2) 

Proof: We note that V = U-1 is also an integer matrix of determinant ±1, so that we have 

the symmetric condition 

(3) 

The first part of the theorem is therefore trivial: if there is a U satisfying Equation (2), 

then for any integer vector m the integer vector given by n = mU satisfies m51 = n52. 

Conversely, for any n, m = nV is the required integer vector. To prove the only ifpart of 

the theorem we need to show that if 51 and 52 are equivalent then an integer matrix U 

with Idet UI = 1 exists. 

For the unit vectors m1 = (1 0) and m2 = (0 1) there are integer vectors n1 and n2 given 

~~ ~~ 
Define U = L n2J and note that the identity matrix I is equal to L m2J. Hence 

(4) 

5ince Idet 511 = Idet 521 '* 0, we must have det U = ±1, thus completing the proof. A 

corollary is that reciprocal matrices are equivalent if there exists an integer matrix U of 

determinant ±1 with 51 = 52U. 

This theorem provides a convenient test for the equivalence of two matrices. If U = 

5152-
1 is an integer matrix of determinant ±1, then the structures are equivalent. The 

theorem gives a quick way to test if a structure has a particular point group symmetry. 
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Let R be a rotation matrix with det R = 1, and let M denote a mirror reflection so det M = 

-1. (Below we will show how to generate these matrices for nonorthogonal coordinate 

systems.) The matrices p = SRS·1 and 11 = SMS-1 have determinants of +1 and -1, 

respectively. If P is an integer matrix, then the structure S is equivalent to the structure 

SR. In other words S has the rotation specified by R as a symmetry element. Similarly, if 

11 is an integer matrix, then S has mirror symmetry. These symmetries are illustrated in 

Figure 2. 

In order to specify the matrices Rand M, we need to know the matrix representing the 

substrate Bravais lattice in terms of the natural Cartesian coordinate system of R'. The 

matrix T gives the change of basis from the substrate lattice to R'. Table 1 lists T 

matrices for the five types of Bravais lattiCes. If r is the rotation matrix in Cartesian 

coordinates, 

[ 
C?S<jl Sin<jl] 

r = -Sln<jl COS<j) , 

then the rotation in terms of the substrate lattice is (10) 

Similarly, reflection in the x-axis is given by 

so a general reflection about an oblique axis is 

On a hexagonal lattice, for example 

(5) 

(6) 

(7) 

(8) 

(9) 

for a rotation by <jl = rr/3. The six mirror planes are obtained by rotating m through <jl = 

rr/6. 
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Algebraically, the set of matrices we have been considering has a rich structure. The set 

of structure matriCes, reciprocal matrices and their products constitute the multiplicative 

group of nonsingular matrices with rational entries, S. In n dimensions the nonsingular 

n x n rational matrices form a group. To show this, we need to establish that there is an 

identity element I with 15 = 51, that the set is closed under multiplication, and that for 

any element 5, its inverse is also in the set. The first two requirements are trivially 

verified, while for the third we rely on 5-1 = Cadj 5)/det 5, where the adjoint is formed by 

replacing each element in 5 by its cofactor and transposing the resulting matrix (11). 

Hence, if 5 is a rational matrix, so is adj 5; and for nonsingular 5, det 5 will be a nonzero 

rational number, and 5-1 is seen to be a nonsingular rational matrix. 

The set of integer matrices with determinants of ±1, U, form a subgroup of S. The 

importance of these observations is that we can now make use of the algebraic concept 

of coset. The left coset of U by 5 is the set SU = {5U IU e lJ}, and we see that our 

definition of equivalence amounts to saying that that structure matrices are equivalent if 

they are members of the same left coset. The set of all left cosets of U is written as Sf U 

(read "Smod U'). We can make use of the theorem that Sf Uis a partition of 5 and that 

two elements 51 and 52 of Sare equivalent if and only if 51-
152 e U(12). This is exactly 

the content of our theorem. Finally, note that a method for constructing all integer 

matrices U with integer inverses has been proposed by Hanson (13). 

3. Unscrambling LEED Patterns 

If we apply the symmetry operations of the substrate to the surface lattice, we will 

generate the lattices for all the equivalent domains. Only operations that are not 

symmetries of the surface produce new lattices. When the domains are much larger than 

the coherence area of the instrument, the LEED pattern for a simply related overlayer 

consists of the superposition of the reCiprocal lattices of the domains. We would like to 
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decompose such a pattern into its component Bravais lattices and, if the pattern is not 

completely known, supply the missing spots as part of the analysis. The algorithm 

described here will generate an interpretation for the pattern, but, as is discussed in the 

next section, this may not be the only one possible. 

Since the symmetry of the substrate is known, we need only find one of the surface 

reciprocal Bravais lattices in order to generate all of them. This means that we must find 

the two unit vectors for one of these lattiCes. A simple unit vector is defined to be any 

vector from an integral order spot to another spot on the pattern that does not pass 

through a third spot, as in Figure 3. A vector constructed according to this definition is a 

unit vector for the surface reciprocal lattice since any line between two spots in a single 

Bravais lattice, which does not pass through a third spot in the lattice, can be chosen as 

a unit vector. Hence, there are two difficulties when drawing vectors on a LEED pattern. 

The first is that we might connect spots from different domains. This is avoided by 

choosing an integral order beam as one of the spots because these beams belong to all 

the (simply related) domains. The vector between an integral order beam and any other 

spot must belong to a common surface Bravais lattice. The second difficulty is that the 

vector might intersect a third spot in the lattice. Since a simple unit vector does not pass 

through any other spots, this problem is avoided completely. As a practical matter, if all 

the spots in the LEED pattern are not known, a vector that appears to be a simple unit 

vector actually intersect an invisible spot in its lattice, as illustrated in Figure 4. To 

minimize this possibility the shortest vector from an integral order beam should be 

chosen as a trial unit vector. 

We still need to find the second unit vector. This is easiest to do by identifying all the 

points in the LEED pattern that must belong to a single Bravais lattice. We define a 

lattice line {vn} to be the set of points generated by the vector u applied to the origin uo, 

vn = Uo + nu for all n € Z. (10) 
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Again, since the substrate beams belong to all domains, for a given unit vector u there 

will be lattice lines in the pattern through all of these beams and all of these lines belong 

to a single domain. In addition to these lattice lines, there may be others that pass only 

through overlayer spots. These lines can be found by systematically testing each of the 

fractional order beams within a substrate reciprocal unit cell to see if it can be construed 

as the origin for a lattice line. There are a finite number of such beams so there is little 

difficulty in executing procedure. These fractional order lattice lines, however, may 

belong to two different domains, as shown in Figure S. In cases where this occurs, the 

integral order lattice lines belong to both domains. Since the density of points in a lattice 

line depends on the length of the unit vector used in generating it, another advantage to 

choosing the shortest available unit vector is that this accounts for the greatest number 

of spots in the pattern. 

In patterns that appear to have many spots missing, the integral order lattice lines 

should always be filled in since all the points on these lines must be present in the true 

pattern. Many of the missing elements can be supplied by taking each of the vectors 

between any of the substrate beams and any other spot as a trial vector (even if it is not 

a simple unit vector) and constructing all of the integral order lattice lines. Applying the 

point group symmetry operations of the substrate will generate the lattice lines for other 

domains and may fill in more of the pattern. Also, the use of translational symmetry 

should not be overlooked; the same pattern should be made by the fractional order 

beams within each of the substrate reciprocal unit cells. 

The filling in of fractional order lattice lines calls for some judgment since what appears 

to be a line with many beams missing may actually be the coincidental alignment of 

spots due to different domains. It is best to err on the side of too few fractional order 

lines since omissions will become obvious as the unscrambling of the pattern proceeds. 

Again, the use of symmetry can be helpful. Eventually, all the spots must belong to the 
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sets of lattice lines produced at this stage, so this is a useful guide for deciding if an 

apparent fractional order lattice line is really in the pattern. 

A second unit vector can be found now by connecting any point on an integral order 

lattice line with a point on an adjacent lattice line. If the surface domains do not have 

mirror symmetry, there may be two essentially different ways of doing this, leading to 

Bravais lattices that are mirror images of each other (e.g ., Figure 5). The symmetry 

operations of the substrate generate the Bravais lattices for all the domains. Together, 

these must account for all the spots observed in the pattern, thus providing a check on 

the method. 

If some spots remain unaccounted for, then the vectors we have chosen must be integer 

multiples of the true unit vectors, a situation which can arise if there are many missing 

spots. The correct unit vectors will often be evident, but at worst we will need only to 

test a few fractions of our chosen vectors. This is another reason for choosing the 

shortest vectors possible. If the test vectors become unreasonably short, the possibilities 

that there are incommensurate overlayers or two structural phases should be considered. 

It remains to be shown that the algorithm cannot fail to unscramble a LEED pattern for a 

simply related surface. Let S be the contravariant reciprocal matrix the columns of which 

specify the unit vectors of a Bravais lattice. The entire lattice itself is generated by 

v = Sh for all h E Z2. (11) 

Hence if V1 and V2 are points in the lattice, so are the integer linear combinations 

n1V1 + n2V2 = S(n1h1 + n2h2) for all n1, n2 E Z. (12) 

Since the substrate beams belong to all domains, all the integral order lattice lines for a 

single generating vector belong to the same Bravais lattice, and any spots missing from 

such a line must be part of the true pattern. Hence, the procedure for filling in the 
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pattern is justified. This also shows that the only uncertainty in picking a trial unit vector 

is that the one chosen might be a multiple of a true unit vector. When specifying the 

second unit vector, we need to guarantee that it belongs to the same domain as the first, 

an objective which is achieved by choosing a trial unit vector connecting lattice lines 

which are known to be in a single domain. 

In summary, a practical algorithm for the unscrambling of LEED patterns is 

1. Fill in the missing spots supplied by all the integral order lattice lines that can be 

constructed. 

2. Use the symmetry operations of the substrate to fill in additional lattice lines. 

3. Complete the fractional order lattice lines that are clearly in the pattern. 

4. Choose the shortest vector from a substrate spot to any other as a trial unit vector 

and mark the integral order lattice lines accounted for by this vector as belonging to 

one domain. 

5. Indicate that the rotationally equivalent lines belong to other domains. 

6. Use the shortest vector between an integral order lattice and an adjacent line for the 

same domain as a second unit vector. 

7. Mark the Bravais lattice generated by the two vectors. Generate the lattices for the 

other domains. 

If any spots remain unaccounted for, one or both of the vectors chosen in steps 4 and 6 

will have to be shortened by lin, where n is an integer. These steps are illustrated in 

Figure 6, where a pattern with many missing spots is analyzed. 

The algorithm relies heavily on the exact spacing between points in the pattern so the 

LEED instrument must be aligned carefully to insure that straight lines in reciprocal space 

do not appear curved on the fluorescent screen. A photographic technique for 
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establishing the alignment and for verifying the absence of distortions due to residual 

magnetic fields has been presented previously (14). For complicated surfaces it is useful 

to use low energies in order to resolve the pattern. It is not necessary to display one 

entire substrate Brillouin zone since varying the angle of incidence will display different 

parts of the pattern on the screen. Photographs can be overlapped to piece together the 

entire pattern. In some cases, it may be advantageous to obtain the pattern at several 

energies in order to obtain as many spots as possible. 

4. Ambiguity in LEED Patterns 

Once the LEED pattern has been analyzed into its component domains, we would like to 

know if the proposed decomposition is unique. We have already seen that a hexagonal 

(S x S)Rq>° pattern from a hexagonal substrate can always be interpreted in two ways. 

We will show that this is the only ambiguity where a superposition of several Bravais 

lattiCes appears as a single Bravais lattice. 

It is instructive to examine how ambiguity arises in the hexagonal case. Throughout this 

section we will use contravariant matrices. In reciprocal space, rotation through an angle 

of n/3 is given by 

(13) 

A reciprocal lattice with a sixfold rotation axis can therefore be represented by a matrix 

of the form 

fa 1 
S = [I: R] lbJ 

= [~ b~a] fora, b E Z. (14) 

We will show that the superposition of the LEED patterns from the three rotational 

domains of 
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T = [I: 2R] lbJ 

[
a 2b] 

= b 2(b-a) for a, b E Z, 

19. 

(15) 

gives the same spot pattern as S. So, for any 2 x 1 integer vector h there exists an 

integer vector k with 

r Tk, 
Sh = j RTk, or 

lR1"k, (16) 

and conversely. It is convenient to rearrange the components of the matrix equations 

into the following: 

and 

(a 1 
RTk = [-2k2I +(kl+2k2)R] lbJ, 

(17) 

(18) 

(19) 

(20) 

So for any k in either Equations (18), (19), or (20), there exists a corresponding h. For 

example, in Equation (19), hI = -2k2 and h2 = kl + 2k2. To demonstrate the converse, 

we consider the components of h modulo 2. If hI is odd and h2 is even, then we use 

Equation (18) with kl = hI and k2 = hJ2. The four possible cases are listed in Table 2. 

Hence, the domains of T give exactly the same pattern as S. 

Having shown that lack of uniqueness is posSible, we can now ask if other types of 

ambiguity can be found. The vectors 

hI = [~L h2= [~L h3= [~L h4= [-~ L (21) 
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playa special role. As shown in Equation (12), if two vectors are in the Bravais lattice for 

5, then so are all the integer linear combinations. 5uppose that the pattern resulting from 

the superposition of the lattices for the domains represented by T is the same as the 

pattern produced by 5. We will show that the vectors 5hi , 5h2 and 5h:) must belong to 

different domains ofT if 5 and T are not equivalent. Assume to the contrary that 

(22) 

Then 

(23) 

where K = [ki k2] and Idet KI 2: 1. Any point in the Bravais lattice ofT corresponds to 

some point in the lattice of 5, so Idet TI 2: Idet 51. Equation (23) implies that Idet KI = 1 

and Idet TI = Idet 51, so that 5 and T are equivalent, which contradicts our assumption. 

5ince we can construct anyone of hi, h2 or h3 as an integer linear combination of the 

other two, each of these three vectors must map to a different domain of T. Hence, T 

must have at least three inequivalent domains. As can be seen from Table 1, the only 

substrates with sufficient symmetry are the square and hexagonal lattices. 

On a square lattice, the point group symmetry operations are rotation by rr/2 and 

reflection, with 

R = [-~ 6] and M = [0
1 -~l 

and there can be four domains given by T, RT, MT and MRT. 

(24) 

5uppose a surface structure has 4m symmetry. The matrix 5 can be written in one of the 

following forms: 

5 = [~ ~] or 5 = [: -:J. (25) 
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Consider the first form. Suppose there is an oblique reciprocal lattice represented by the 

matrix T such that the superposition of the patterns for the four domains of T is the 

same as the pattern from S. Without loss of generality, assume 

Sh1 = Tkl = [~l. Now, Sh2 = [~] = -RSh1 = -RTkl so h2 belongs to the domain RT, and 

we must have Sh3 = MTk3 or Sh3 = RMTk3. Assume the first case. Solving for Tk3, 

TK = [~ -~l (26) 

where K = [k1 k3]' 5ince Idet KI 2: 1, we have Idet TI ,.; a2, but Idet 51 = a2. Now, there 

exist vectors 11 and h with Thl = 511 and Th2 = 512, so 

T = 5L, (27) 

where L = [11 12]' By assumption,S and T are not equivalent, so Idet LI > 1, and by 

implication, Idet TI 2: 2 Idet 51. This contradicts the constraint on det T. The argument 

generalizes to the other cases, thereby proving that there is no possibility for ambiguity 

with a 4m overlayer Bravais lattice. 

If a lattice has a fourfold rotation axis, it can be represented by a matrix of the form 

5 = [I: R] [~l 

for a, b e Z. (28) 

The vectors hi, h2 and h3 must be assigned to different domains. Assume without loss of 

generality that there is a kl with Sh1 = Tk1. Now, 

(29) 

so h2 belongs to RT, and h3 maps to one of the reflected domains. Assuming Sh3 = MTk3, 

we obtain 
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[
a a+b] 

TK= b a-b , (30) 

and hence Idet TI :S la2 - 2ab - b21. Here, 5 does not have mirror symmetry so for any 

vector h; there are two possibilities, either Th; = 51; or Th; = M51;. Hence, at least two of 

the vectors hi, h2 and h3 (and therefore all three) belong to one domain of 5. As before, 

this implies that Idet TI ~ 21det 51 = 2(a2 + b2) ~ O. There are two possibilities, 

depending on the sign of det T: 

and 

(31) 

from which we deduce that 

o ~ (a + W + 2b2 

or 

(32) 

respectively. These inequalities only allow for the trivial solution a=b=O, demonstrating 

that no ambiguity is possible when interpreting the pattern of an overlayer Bravais lattice 

with a C4 rotation axis. 

For a structure with mirror symmetry, we use 

5 = [I:M] [~l, (33) 

and carry over the previous arguments with slight modifications. The domains are 5 and 

RS, so again Idet TI ~ 2 Idet 51 and we can derive a contradiction. 

The only remaining case for a substrate with a square Bravais lattice is for a structure 5 

with no symmetry. We would like to know if there can be a matrix T where the 

superposition of the patterns for four domains of T is the same as for the four domains 
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of S. It appears that apart from the trivial case where T is equivalent to one of the 

domains of 5 this ambiguity cannot occur, but no proof has been constructed. 

On a substrate with 6m symmetry, there are seven cases to be considered. The overlayer 

can have any of the symmetries 6m, 6, 2m or 2. It can be shown that the only 

ambiguities where the superposition of several Bravais lattices is equivalent to one lattice 

or to the sum of a lattice and its mirror reflection occurs for the previously cited case of 

overlayers with 6m or 6 symmetries. This leaves three cases involving low symmetry 

overlayers that cannot be handled by our methods. 

For a surface structure with a sixfold rotation axis, the matrix 5 is given by Equation (14). 

Again, taking Sh1 = Tkl gives Sh2 = -RTk1 and Sh3 = -R~l' This is the hexagonal 

ambiguity discussed at the beginning of this section. If 5 has mirror symmetry, then the 

superposition of patterns from three domains ofT will be equivalent to the pattern from 

S. When the structure does not have mirror symmetry,S has two domains. Here, three 

rotational domains ofT give the same pattern as one of the domains of 5, while the 

reflected domains ofT cover the other domain of S. Now, six different domains of a 

structure T cannot give the pattern of a 6m structure 5 since this would require that two 

domains of T' be equivalent to one domain of T. 

Finally, the only remaining case that can be treated here is where the superposition of 

the patterns from three domains of a 2m structure contains the same spots as the two 

patterns from a structure with symmetry 6. Again, take Sh1 = Tkv which implies that Sh2 

= -RTkl' Sh3 = -R~kl and, since T has mirror symmetry, MSh1 = Tk2, whence 

TK = [I:M]Sh1 

(34) 
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where K = [k1 k2]' This implies Idet TI :S 12abl, while we also have Idet TI 2: 2 Idet SI = 

2 lab _a2 _b21. The two possible signs of the product ab give ±ab 2: a2 + b2 - ab 2: 0, with 

the implications that 02: a2 + b2 or 02: (a - b)2. The only nontrivial solution, a=b, 

f-l 0] 
is not acceptable since it gives S mirror symmetry and S-lMS = L 2 1 . 

We have shown that ambiguity, where the superposition of the patterns from several 

domains of one overlayer gives the same pattern as a single domain of a different 

structure, occurs only on a hexagonal substrate (where the LEED pattern due to an 

overlayer with 6m symmetry can be interpreted in terms of three independent domains 

rotated rr/3 with a 2m structure). The superposition of this ambiguity and its mirror 

reflection (for a structure with symmetry 6 and rotational domains of symmetry 2) 

constitute the only ambiguity where the LEED pattern of several domains of one 

structure is the same as that due to two domains of a different overlayer. We have also 

shown that the only further possibilities which need to be considered are where three or 

more domains of a low symmetry overlayer produce LEED patterns equivalent to that of 

three or more domains of another low symmetry structure. No such ambiguities, 

however, are known. 
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Table captions 

Table 1: The symmetries and structure matrices for the Bravais lattices. 

Table 2: Example of ambiguity on a hexagonal substrate. For any integer vector h there 

is a corresponding integer vector k that satisfies one of Equations (18), (19), or 

(20), as indicated. If both components of h are even, the spot in the LEED 

pattern belongs to all three rotational domains of T and each of the k can be 

used in its corresponding equation. 

Table 3: The notation i=j indicates that i domains of 5 must give the same LEED pattern 

as the j domains of T for the pattern to be ambiguous. As discussed in the text, 

the cases with i and j <3 are eliminated. On a 4m substrate, this leaves four 

cases to be considered, while for a 6m substrate there are seven. cases where 

one of i or j is <3 are treated individually. 
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Table 1. The Five Bravais Lattices 

Lattice Type Symmetry 

Hexagonal 6m 

Square 4m 

Rectangular 2mm 

Centered Rectangular 2mm 

Oblique 2 

Structure Matrix T 

[-1~2 .j3J2] 

11 ol 
L 0 lJ 

r 1 ol 
L 0 aJ 

I 1 0 l 
L acosq> asi nq> J 

Conditions on a and q> make the lattice types mutually exclusive. 

Conditions 

a > 1 

a>1,a .. .j3 

a= 1: q> .. rr/2,rr/3,2rr/3 
a> 1: q> .. rr/2, 

q> .. tan-1[( 4a2_1)l/2] 
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Table 2. Ambiguity on a Hexagonal Substrate 

hi mod 2 Equations 

1 1 20 

o 1 19 -hJ2 

1 o 18 hJ2 

o o 18,19,20 
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Table 3. 

4m Substrate. 

S T 

4m 4 2m 2 

4m 1=1 1=2 1=2 1=4 

4 2=2 2=2 2=4 

2m 2=2 2=4 

2 4=4 

6m Substrate. 

S T 

6m 6 2m 2 

6m 1=1 1=2 1=3 1=6 

6 2=2 2=3 2=6 

2m 3=3 3=6 

2 6=6 
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Figure Captions 

Figure 1: Three different unit cells for a (1 x 1) structure. 

Figure 2: (a) An overlayer with p2mm symmetry. (b) Overlayer with p6 symmetry. 

Figure 3: Solid line: one of six equivalent simple unit vectors connecting an integral order 

spot with a fractional order beam. Dotted line: apparent simple unit vector 

connecting two integral order beams. 

Figure 4: Missing spot (0) falls on long vector. 

Figure 5: Complex LEED pattern resulting from the superposition of diffraction from four 

domains. Note that spurious fractional order lattice lines (with many missing 

beams) result if overlayer beams from different domains are connected. 

Figure 6: Analysis of an incomplete pattern following the algorithm described in the text. 

(a) Shortest simple unit vector. (b) Integral order lattice line. (c) Integral order 

lattice lines through all substrate spots. (d) Superposition of lattice lines from 

three rotational domains. (e) Complete specification of unit vectors for one 

domain. 
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CHAPTER III 

Unified Approach to Photographic MethOds for Obtaining 

the Angles of Inddence in Low-Energy Electron Diffraction 

Reprinted with permission from A.C. Sobrero and W.H. Weinberger, Rev. Sci. Instrum. 53, 1566 (1982). 
Copyright 1982, American Institute of Physics. 
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Unified approach to photographic methods for 
obtaining the angles of Incidence In low-energy 
electron diffraction 

A. Charles Sobrero and W. Henry Weinberg 

Diwwn qfChrmlnry and Chttmfad EngiJr«rlng. Callfom/D butilrl" o/TdlWloD. PandeM. (411/01711(191125 

(Received I Occober 1981; accepted for publiwion 14lune 1982) 

An equation is developed to describe the geometrical relationships between the electron gun. the 
crys~l surface, and the phosphorescent display screen in back-reflection, post-acceleration LEBO 
expenments. l'h:0tographic methods for detennining the polar and azimuthal angles of incidence 
In LEED expenmcnts can be derived starting from this equation. In particular, two published 
procedures appear here as •. peciaJ cases. New methods are described for cases where the existing 
~hOlques do not apply. It ,". shown that tbe alignment of the electron gun and the positioning of 
the crystal can be checked usIDg a pbotographic technique. An example illustrates that tbe angles 
of lDCldenoc can be measured with precisions of '" 0.2" by recording data on several photographs 
taken over a wide range in electron energy. 

PACS numbers: 61.l4.Fe 

INTRODUCTION 

Accurate measurements of the polar and azimuthal angles 
of incidence are essential for the acquisition and analysis 
of low-energy electron diffraction (LEED) intensity data.' 
Both the study of surface resonances' and the detenni­
nation of surface structure' require the angles of incidence 
as inputs for the computation of intensity spectra, while 
the acquisition of experimental data in the fonn of r0-

tation diagrams4 and constant momentum tnmsfcr av­
erages' also depends fundamentally on knowledge of these 
angles. Since the LEED intensity can be sen.;tive to vari­
ations as small as 0 .10, the measurement of the angles 
must be quite accurate. 

The photograpbic methods for obtaining the angles of 
incidence are easy to use and can achieve precisions of 
better than ±C.2°; this compares favorably with the me­
chanical techniques. 6 Under appropriate conditions, tbe 
position of only one spot on a pbotograph of the diffrac­
tion pattern can determine the angles, and it is easy to 
increase the precision of the measurement by recording 
more spots, perhaps using several photograpbs taken at 
different electron energies. Additionally, when the angles 
are overdetennined, statistical analysis can provide esti­
mates of the precision and some indication of the accu­
racy of the measurements. In contrast, witb tbe mechan­
ical methods, a single datum determines the angles and 
the accuracy of the measurement relies on the alignment 
between electrical and mechanical components of the 
LEED apparatus. 

The photograpbie techniques have sevem! further ad­
vantages. These methods can be applied whenever a phos­
phorescent screen is used to display the diffraction pat­
tern, and no special equipment other than a camera is 
needed.' The photographic procedures are simple to au­
tomate, thus facilitating the acquisition of rotation dia­
grams and constant momentum transfer data.' FInally, 

photographic methods can also be used to check items 
such as the position of the crystal relative to the LEEO 
screen, the alignment of the electron gun, or the work 
function compensation applied to the electron gun voltage.' 

Currently, there are two techniques for obtaining the 
angles of incidence from the information available on a 
photograph of th~ LEEO pattern.7.' These methods ap­
pear to be qUIte dIfferent, and indeed they were intended 
to complement each other. One procedure, due to Cun­
ningham and Weinberg, 7 can be applied only when the 
electron gun is coUinear with the "';s of the camera. The 
equation which determines the angles of incidence from 
the data is nonlinear and requires an iterative solution. 
On tbe other hand, the method of Price' can be used 
when the electron gun does not point at the camera, but 
the crystal must be positioned precisely at the center of 
cu':'""ture of the LEED screen. For this case, the equation 
IS linear and only a (3 X 3) matrix inversion is needed. 
Both methods require that the incident electron beam be 
aligned with the center of curvature of the LEEO screen. 
Unfortunately, there are instances when neither tech­
nique is appropriate, e.g., iflarge angles of incidence must 
be used while the crystal may be off-centcr, or in any 
Sltuallon where the electron gun may be misaligned. 

The approach adopted in this work unifies and extends 
the existing photographic methods. Section I presents an 
equation which relates the data on a pbotograph to the 
angles of incidence. In Sec. II, we show that the two pub­
lished techniques can be derived from this equation, and 
we desCI;be how new procedures may be formulated . Sco­
tion III contains examples demonstrating the use of two 
photograpbie techniques. 

I. TliEORY 

The basis for the photographic methods is that the dif­
fraction pattern on the display screen is a simple trans-
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FIG. 1. Schematic of a LEEO appQtatus sho .... ing the reference frames 
a.~iated with the important components of the equipment. The sub­
scriptS C, g, and I denote the crystal. electron gun. and laboratory co-. 
ordinate systems., respectively. 

formation of the two-dimensional rcciprocallattice of the 
surface. 10 When the point of incidence on the crystal and 
the center of curvature of the screen coincide, the trans­
formation is an affine mapping. Improper positioning of 
the crystal or misalignment of the gnn introduces a non­
linear magnification factor which distorts the affine re­
lationship and produces a curved-image of the reciprocal 
lattice on the screen. 

The 8I'Ometrical description of dilftaction 11 provides 
the connection between the image on the screen, which 
represents reciprocal space, and the real space lattice. In 
reciprocal space, an electron beam is regarded as an in­
finitely wide, monoenergetic plane wave characterized by 
the wave vector k. Scattering from a perfect, infinite snr­
face adds reciprocal lattice vectors to the wave vector for 
the incident beam. On the otber band, when viewed on 
tbe screen, an electron beam (idealized as having zero 
width) i. represented by the real vector r. Tbe crystal 
surface is a plane of point scatterers arranged in a two­
dimensional real lattice. 

Since tbe real and reciprocal spaces arc dual to each 
other,I2 the geometrical description .consists of superin:; 
posing these two structures on a smgle vector space. 
Then, the vectors k and r describing an electron beam are 
related by a scale fuctor F with units of area, i.e., r = F k. 
This procedure is possible because on a nticroscopic scale 
the transfer width of the instrument is wide (- I Q4 wave­
lengths).14.ls while on a macroscopic scale the clectr~n 
beams are narrow (-I mm in diameter). In practice, lQ­

strum ental broadening due to the width of the beams in 
real space, as well as the angular and energy spread of the 
wave vectors k, limit the precision of the angle measure­
ment.' 

To specify the components of 10 and r, it is necessary 
to impose a coordinate system on the vector space. As 
depicted in Fig. I, for reciprocal space vectors, the geo­
metrical description ofLEED gives rise to individual ref­
erence frames associated witb the electron gnn, the crystal 
surface, and the film. It is convenient to use right-banded 

1587 Rev. SCI. 1InsIru'n .• VoL 53, No. 10, ~r 1182 

orthonormal bases, placing the origins of the three co­
ordinate systems at the point of incidence on the crystal 
surface. The laboratory coordinate system has the Z, axis 
perpendicular to the film plane pointing away from the 
screen with the X, and Yi directions chosen to form an 
orthogonal coordinate system. The crystal frame has tbe 
Z, axis nonnal to the surface pointing into the bulk of 
the-crystal, while the X, axis lies parallel to one of the 
unit vectors of the snrface reciprocal lattice. In the gun 
coordinate system, the Z". axis points along the incident 
beam, with X. chosen so that the specular beam lies in 
the second or third quadrant of the X 7. plane. It is not 
necessary that the (00) spot appear on the screen. At nor­
mal incidence the angle 'i' is defined to be zero and X. 
can be any direction perpendicular to Z .. 

Ideally, the point of incidence coincides with the screen 
center, but it is difficult to achieve exact alignment. For 
a misaligned instrument, we place the origin of real space 
at tbe center of curvature. There are two reasons for this 
choice. With the origin at the screen center, the vectors 
representing the dilfraction spots, r(hk), all have the same 
length; in fact. Irl = p, where p is Ibe mdius of curvature. 
Funhermore, the image of this origin is simple to locate 
on a photograph: Fig. 2 shows the plane containing the 
point of incidence A, the center of curvature B. and the 
(hk) diffraction spoL The points Po and P, on the film are 
projections along the Z, direction ofB and A. respectively. 
In order to use the point of incidence as the origin lor 
real space, we would need to establish the location of P,. 
On systems employing transparent LEED screens,'" this 
may be feasible, but in general only Po can be located 
directly. This is because the edge of the screen is a circle 
defined by the intersection of the spherical surface of the 
screen witb a plane. The projected image of this circle is 
an ellipse, and the intersection of the major and minor 
axes of tbe ellipse is the point Po- All real space vectors 
will be specified in tbe I' frame, which is a translation of 
the laboratory coordinate system from A to B. 

The vector from the point of incidence to the (hk) spot 
on the display is the real space equivalent of the scattered 
wave vector kl, 

r = Fk/+ e, (I) 

i , 
1 

rum 

FIG. 2. Cross section in the X,ZJ plane of the LEED apparatus. lbe 
diagram depicts a situation where the point of incidence A., center ur 
CUJ"VIlture or the screen B. and the (bk) spot on the screen all lie in the 
XjZ, plane. The notation is described in the text. 
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where the vector e, extending from B to A, measures the 
alignment error in the instrument. (For simplicity, in Fig. 
2 there is no error in the Y, direction and the optical 
magnification of the camera, M, is unity.) When e is 
zero, the scale factor is a constant, F = "/k, where 
k = (2mElh2)'/2 is the magnitude of the wave vectors, E 
is the electron energy relative to vacuum zero, m is the 
electron rest mass, and h is Planck's constant divided by 
2".. In general, however, 

F= Ir-el 
k 

(2) 

so for e + 0, the factor F depends nonlinearly on r, and 
the dnality of the real and reciprocal spaces is lifted. This 
means that the scale factor may differ even between dif­
fraction spots on a single photograph. In fact, if the error 
in positioning is sufficiently great, the dependence of F 
on r leads to a discernible distortion of the LEED pattern. 

Define the components in I' of the magnified vector 
.Mr to be ~, ~, and \. The only quantities whieh can be 
obtained from a pbotograph of the LEED pattern are € 
and '1, so the angle determination problem becomes a 
question of extracting e and <P from these measurements. 
By construction, the length of Mr is equal to pM, hence, 

i" = _[(pM)2 - e - ~2]'/2. . (3) 

If either the radius or the magnification cannot be ascer­
tained, the l" component may be left as an unknown to 
be determined by the analysis. 

The angles of incidence are defined between the crystal 
and gun reference frames, as shown in Fig. 3. Specifically, 
the polar angle e is the angle from the Z, direction to Z, 
(measured in the X.Z, plane), while the azimuth <P is the 
angle between X, and the projection of X. along Z, onto 
the surface plane. 1O The domains are restricted to 
o '" e '" r/2 and -rill < <P '" "III for a Bravais lattice 
with II-fold rotational symmetry. The orthogonal matrices 
S and T transform the coordinates of a wave vector from 
the crystal reference frame to those of the gnn frame ac­
cording to 

where 

and 

(
cose 

S(9) = 0 
\sin9 

/ cos <P 
T(<P) = ( sin <P 

\ 0 

o -sin 9 \) 
I 0 , 
o cos9/ 

-sin <P 0) 
cos<P 0 . 

o I 

(4) 

(5) 

(6) 

Similarly, the angles 9, and <P, which relate the gun and 
laboratory reference frames determine the matrix R, with 

(7) 

Using the rotation matrices, the incident wave vector 
measured in the gnn coordinate system can .be related to 
the scattered wave in the laboratory frame. If ko' is the 
incident wave vector in the crystal frame~ then the scat-
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FIG. 3. Detail of the crystal reference frame. The relationship between 
the gun and crystal referetioe frames detennines the angles of incidence 
9 and 'P. 

tered wave vector for the (hk) diffiaetion beam is given 
by 

k/(hk) = ko' + g.{hk), (8) 

where the Kalchk) andg".(hk) components ofthe redprocal 
lattice vector are obtained from 

(h\ 
lk = vi k ). 

\g"j 
(9) 

Here V is the matrix containing the two-dimensional re­
ciprocaI lattice unit vectors and gale hk) is determined by 
the condition for elastic diffraction, 

0= (2k,' + g,Ylk. (10) 

In the gun coordinate· system, the incident wave vector 
is kg; = (0 0 k)T, so Eq. (8) is transformed to laboratory 
coordinates as 

k/ = Rk .. / + RST~ . 

Combining these results, Eq. (I) becomes 

( ~\ 
~ ) - Mr = MF(E; hie) 

\l"/ 

(11 ) 

x Rlkg;(E) + S(9)T(<P)g.{E; hie)] + Me, (12) 

where some functional dependences have been indicated 
explicitly. This notation obscures the fact that only the 
z components k,/ and ga of the vectors kg; and g., depend 
on E. Eqnation (12) is the desired relationship between 
the angles of incidence and the information available 
from a photograph, «E; hk) and n(E; hie). For each spot, 
Eq. (12) represents three equations in 14 independent 
variables: the components of the reciprocallatticc vector, 
&ox and lk"; the components ~ and '1 of the spot vector; 
the angles of incidence 9 and <P; the angles 9, and <P,; the 
componenLIIOi e;o eJ17 and e., of the error vector; the energy 
E; the optical magnification M; and the radius of cur­
vature p . The usual situation is that ~ and '1 are measnred 
from a photograph recorded at a known E, while ga, go/' 
M, and p are known a priori. This leaves three indepen­
dent equations in seven unknowIl~ so a genercil method 
for determining the angles of incidence requires data from 
a minimum of three spots. Moreover, for the common 

Angietl of incid.nce in LEED 1568 



45. 

case where the electron gun position cannot be changed, 
the angles 9 , and <P, are fixed and nnly five unknowns 
remain. 

II. ANGLE DETERMINATION 

In order to simplify the analysis, the published-angle 
detennination methods7,9 assume that some or all of the 
components of the error vector c are zero. This assump­
tion may be justified if the LEED instrument is aligned 
carefully since the elimination of unnecessary paramete1'5 
decreases the uncertainty in fitting the unknowns. On the 
other hand, detennining e directly from Eq. (12) can be 
useful when checking the alignment of the apparatus. J1 

The X. and Y, components of e (in the gun frame) give 
the error in the gun position, while the Z, component 
gives the amount by which the crystal is incorrectly po­
sitioned. 

Section II A presents a linear technique for determining 
the angles of incidence, while a modified ve1'5ion of the 
method of Price' is derived in Sec. II B. In Sec. 11 C, 
Gauss-Newton optimization is used to fit the parameters 
in the equation used by Cunningham and Weinberg.' 

A. A simple linear method 

A straightforward procedure for obtaining the angles of 
incidence can be developed if the vector Me and the ma­
trix R are known. A common case is when the film plane 
is perpendicular to the primary electron beam so that R 
can be taken as the identity matrix. Transposing S in Eq. 
(12) yields 

TIk - lip = S'iI, = STRTg" (13) 

where the components of 8/ = (ki - k/) are 

~ - Me, _ ~ - Mey 
g,,=~, g,y- MF 

i-Me, 
g" = ----;,;[F - k. (14) 

For R known, take I!o = R T 8/. The x and y components 
of Eq. (13) give 

g"" - g" cos <P - g", sin "" = g" cos 9 + g" sin 9, (15) 

gPr = g" sin"" + gey cos <P = elY' (16) 

Equation (16) can be solved for the azimuthal angle, 

_ . _J~-Med ) _ _ ,(~) 
<P - sm W«Fg,,), + (Fg",)')I/' tan (F&x) , 

(17) 

where the brackets ( ) denote the averaged quantities 
when data from several spots are used. Once f{J is k.nown~ 
the polar angle is obtained from Eq. (15), 

9 = sin-'((g.j!i .. )')'12) - tan-'(~!:n· (\8) 

Alternatively, Eqs. (17) and (18) can be solved for each 
spot individually, and thc values averaged to give ("') and 
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(9). The tonner procedure is preferabJc since the mean 
of the measurement errors in g,. is apt to be zero. 

B. The method of Price" 

The technique due to Price is also a linear procedure 
which requires that the error vector be known, but it can 
be used even when the matrix R is unknown. The matrix 
product RST is generated in the COU1'5C of computing the 
angles 9 and IP. The original method assumes that the 
radius p and the factor M are Icnown, while E is deter­
mined empirically. To simplify the discussion, however, 
we wiD assume that the precise energies (relative to vac· 
uum zero) at which the photographs were taken are 
known. 

First, suppose that the LEED apparatus is aligned per­
fectly ande = O. Assume that n + 1 spots, not aU collinear, 
arc availahle(n '" 3), and let Mr, for i = 0, \, ... , n be 
the measured spot vecto1'5, with the i components com­
puted from Eq. (3). To eliminate the k.' tenn in Eq. (12), 
take the n differences 

rj - r; - (r> = RSTri for i = 1,2, . _ . ,n, (19) 

where 

r7 - (F,lkl - (FIk» and (r) is the average of the ris. 

When photographs are recorded at various energies, 
we introduce the dimensionless variables x = g",/k, 
y = go/K, and z = g«/k. Let A,; = x; - (x). A" = y; 
- (y), and 1'1 = Z, - (z), so that 

( Au \ 

r7 = p\ >;:.)' for i = 1,2, . __ , n; (20) 

here the Xj/s are knowns, while the ~;'s are unknowns. 
Construct the partitioned (3 X n) matrices" 

(21) 

(22) 

and nole that they are relatcd by S· = (RST) TS'. The top 
two rows of the matrix R - (RSIY are given by the linear 
regression l9 

(23) 

To find the angles of incidence, computc the vector 

(x*) \ 1 
(k.)~ . 1 (y·» =-R(r) (24) 

\ (z·) p 

so that 

and 
<P = -t _,(~yo - Yi») 

an (x. - x;) . (26) 

As before, Eqs. (24--26) can be solved for each spot, and 
the individual values averaged to obtain (9) and (<P), but 
the procedure shown here is preferred. Thc matrix R is 
R'TT(<p)ST(9). 
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If e is not zcro, the definitions of the matrices S ' and 
S', as well as the vector (k·), must be modified. The 
entries in the matrices are given by 

r;=r;-el _ (_lr-el) for i=1,2, ... ,n (27) 
Iri-c r-e 

(28) 

and Eq. (24) becomes 

(kO) = R(I:; = :1) . (29) 

Finally, if only three spot. are available (n = 2), the angles 
of incidence can be determined by taking r'l and ri as 
defined in Eq. (19) and using r, = r', X r~.· 

C. The method of Cunningham and Weinberg7 

The method of Cunningham and Weinberg assumes 
that the electron gun is positioned so that the incident 
beam poinls through the screeu center of curvature and 
is normal to the film plane. Here, the matrix R reduces 
to the identity matrix, while ex and ey are zero. The 
method also assumes that E is given, but e, is left as an 
unknown. As with the previous techniques, trivial mod­
ifications are needed to handle the cases where ex and e, 
are known (+0) and where R is known (+1). 

For e, + 0, the problem of nonlinear scaling can be 
circumvented by taking the ratio of the x and y com­
ponenls of Eq. (! 2). 

-q(hk) = x_sin 'P + Y cos 'P 
~(hk) cos e(x cos 'P - y sin 'P) - z sin e ' (30) 

where Eq. (10) gives 

z = -cos e - [cos> e - 2 sin e 
X (x cos 'P - ysin 'P) - (x 2 + y2)]'/2. (31) 

This result is essentially the same as Eq. (6) of Cun­
ningham and Weinberg, and the angles of incidence may 
be found using a nonlinear least squares procedure. 

Suppose that n spots have been photographed, with n 
;;,. 2, and define the n-dimensional column vector 

/ fo<e,'P») 

( 

1>(9, 'P) 

f{9, 'P) = : ' 

\. f,,(9, 'P) 

(32) 

where the components are 

J;(e, 'P) = f, 
Xi sin f{J + Yt cos cP 

-"'-':::'-'-'---=-::--:--::­
cos 6(Xi cos 'P - Yi sin 'P) - z;(9, 'P) sin e ' 

i = 1,2, ... ) n. (33) 
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The least squares estimates of the angles of incidence are 
thc values of e and 'P, which minimize the length of the 
vector ((e, 'P), with the ideal case being f = O. These 
optimal values, denoted e* and 'P*, can be found using 
a Gauss-Newton procedure"" where f(e, 'P) is expanded 
in a Taylor series about some initial values, say eo and 
'Po. Solving a set of linear equations leads to an improved 
estimatc for the angles, 6, and 'P" and the process is 
iterated until it converges to e'" and fP*.18 

Define the vector 0 = (~) . The Taylor series for f 

gives 

f(O*) = ((OJ) + Jj(!l* - OJ) + (higher order terms), (34) 

where the Jacobian matrix is 

(35) 

Ignoring the higher order terms and setting f(OO) = 0, the 
best estimate for 0· is 0· "" 0 + A, where the correction 
vector is 

(36) 

If the initial value Do is sufficiently close to 0*, then the 
iteration OJ,, = OJ + Aj converges to 0°. IS Good starting 
values can be obtained by setting e = 0 and nsing a linear 
method, such as the one detailed in Sec. I1A, to find the 
angles 90 and 'Po. For each spot, the least square value for 
the scale factor is 

_ ~klx' + ~k,! 
MF - (k

b
/)' + (k,/f ' (37) 

where k/ is given by Eq. (Il). 
The numerical procedure used here is fast; (JTJ)-' is 

a symmetric (2 X 2) matrix which can be computed from 
J in approximately 3n operations, while J itself is an 
analytic function of e and 'P, 

.i1f. - ..sL (k ' -'k'· e) cJ9 - (klx''i' I, + '" Ix sm (38) 

and 
af kx (k'f . .- - , + ~ (sm'e",-' - cos 9) (39) 
iYP klx' (klx "l . 

Here, 
xp = xcos'P - ysin 'P (40) 

and 
a = [cos' e - 2xp sin e - (x' + y2)]I/' . (41) 

Furthermore, the Jacobian need not be updated at each 
iteration. With reasonable starting values for the angles, 
it is sufficient to usc Jo throughout the computation. The 
correct final Jacobian, however, should be used when es­
timating the error bounds. 

III. NUMERICAL EXAMPLES 

To demonstrate the types of results which the photo­
graphic methods can achieve, the techniques presented 
in Sees. II A and II C will be applied to two sets of data. 
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Ir(III) 
E · 245eV 

Flo. 4. Drawing of the LEED pattern obtained from Ir(IlI). after 
Ref. (7). 

The first set consist. of a single photograph of the pattern 
from an 1r(111) surface, while the other set contains five 
photographs obtained from a Rh( 111) surface. A detailed 
comparison of the two cases indicates that to attain pre­
cise results for the angles of incidence, data should be 
recorded over a wide energy range. 

The spot positions in an arbitrary reference frame, ~ .. b 

and ~ .... can be measured with a digitizing tablet or by 
laying a sheet of graph paper over the photograph and 
marking the spot centers. These data are presented in 
Tables II and III (Po is the center of the image of the 
screen). To W1C the photographic methods, measurements 
in the arbitrary coordinate system must be translated and 
rotated to the l' frame. 

(~) _ ( eo:' of sin of)(~'"' - ~'" \ . 
~ - sm of cos of ~'"' - ~,.J 

(42) 

The rotation angle is of = tan-J[(~oo - ~".)/(~oo - ~",)). 
[When the specular spot is not on tbe screen, botb the 
(hk) labeling of the beams and the determination of of 
become difficult.) 

Figure 4 is a schematic drawing of the LEED pattern 
from an Ir(III) surface at H = 245 eV. Ths is the same 
photogrdph which was analyzed in Ref. (7). It is evident 

TABLE I. Input paramc..1c..TS ror the method ·of Sec. II C: Ir( 111). 

Parameter Symbol Value 

FJcctmn energy E 245 eV 
Screen radius of curvature 6.35 em 
Length orrccipn:x:al unit vecton c 2.67 A-I 

u r 5in 300 In Shear matrix _cos 300 

Initi al estimntes ... 13.60 

'Po 0.3" 
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TABLE II. Measmtd and predicted positions of the spots shown in 
FIg. 4. 

p....ucted 

hk g".(A~ ') gey (A" 'I) 
Measured Values 9 = 13.1 0

• f/' - 0.20" 
(em) • (em) < (em) " (em) 

00 0.00 0.00 2.3 0.0 2.30 0.00 
01 - 2.67 0.00 0.8 0.0 0.80 0.01 
oi 2.67 0.00 3.8 0. 1 3.80 om 
10 1.34 2.31 3. 1 1.4 3.05 1.51 
io - 1.34 -2.31 1.4 -1.5 1.42 - 1.48 
II -1.34 2.31 1.4 1.4 1.37 1.43 
Ii 1.34 -2.31 3.1 -1.5 3.08 - 1.53 
21 0.00 4.62 2.0 2.9 2.01 2.89 
fi 0.00 -4.62 2.1 -3.1 2.13 · ~3.08 

12 -4.01 2.31 -0.2 1.4 -0.26 1.39 
22 -2.67 4.62 0.3 2.8 0.40 2.79 
13 -6.68 2.31 -2.2 1.5 -2.19 1.52 
23 -5.34 4.62 -1.3 2.8 - ':30 2.80 
21 -5.34 -4.62 -1.3 -2.7 " 1.28 - 2.71 
P<> 0.0 0.0 

from the large distortion in the pattern that the crystal 
was not located at the center of curvature of the screen. 
Table [ shows tbe parameters needed for the nonlinear 
procedure of Sec. II C, while the data measured from the 
photograph are in Table II. The simple linear method 
provides the initial estimates for lhe angles: e ~ 13.6° 
and rp = 0.3°. Using the iteration of Eq. (41), the fully 
converged values are e = 13.1 ± 0.1 ° and <P = 0.2 ± 0.5°. 
The uncertainty intervals represent individual 95% con­
fidence regions for the linearized equation. " These angles 
are consistent with the results reported previously.? but 
OUT confidence limit for tp is significantly wider. 

The true magnitude of the uncertainty in e and 'P can 
be determined by examining the fit between predicted 
and observed spot positions. The predicted positions are 
computed from Eq. (12), assuming ex and ey are zero. 
Table n indicates that the fit is excellent, so the wide 
confidence intervals cannot be narrowed by slight im-

TABU:: lU. Measured spot positions from Rh( I J I) (arbitrary laboratory 
coordinate system). 

209 eV 20geV 270eV 378 cV 37ft eV 
---

hk " 
43 HI 106 41 53 
33 '2 '9 
23 39 73 3' 62 
13 22 72 20 62 32 100 

J2 66 59 57 50 58 50 94 80 35 41 
i2 7 48 
31 66 39 
11 38 39 
i 1 4 40 35 15 35 57 

20 67 28 58 25 60 26 96 38 36 23 
10 47 2' 42 22 46 25 70 34 26 22 
00 30 24 27 22 34 24 45 34 15 22 
io 13 25 13 22 21 24 21 35 4 21 

Ii 54 15 85 ' 6 32 14 
0; 40 10 36 10 41 J3 59 15 21 13 
TI 23 10 21 10 28 13 33 14 10 J3 
P<> 35 43 30 36 36 39 51 7. 17 37 
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provemcnts in the precision of the spot position mea­
surements. This point is also illustrated by considering 
the error sum of squares 

SSQ = L (~m' .. - ~ ..... )2 + (~~ - n"...,)2 (43) ,hk, 
as a func1ion of A and <P. The contours are very shallow, 
indicating thaI the predicted positions are insensitive to 
variations of ±O.5". Now, SSQ = 0.05 corresponds to an 
average error of 0.02 em in the position of the center of 
each sPOt. while the spots themselves are 0.2 em or wider 
in diameter. Hence, it is not feasible to reduce the un­
certainty in the angles by improving the SSQ. 

Part of the reason for the insensitivity of the SSQ to 
variations in e and'" is that Eq. (37) adjusts the factor 
F to accommodate some of the lack of fit in lhe spot 
positions. This factor and the vector component e, are 
related by 

ex = [(MFW - (e + n')J'i2 

- [(PM)' - (e + n2)]'i2. (44) 

For a single spot. the positioning error e, appears essen­
tially as an energy error in the z component of the incident 
wavevcx;tor k,,'. Since the scattered component kJ/ varies 
by less than 20% across the photograph, the value of ex 
cannot be determined very precisely by using position 
data recorded at one energy. In fact. for a set of (e, <P) 
points within the SSQ = 0.05 contour, the value ex 
= -1.5 ± 0.3 em was obtained. These considerations in­
dicate that precise mea.."iurements require data from sev­
eral photographs taken over a range of energies (where 
kJ/ varies by a factor of two or three). 

The second data set consists of five photographs taken 
at E = 209, 270, and 378 eY. As in the previous example, 
the initial estimates (8 = 12.2°, <P = 79S) are obtained 
from the method of Se<:. "A. After itemting Eq. (41) 
seven times, the converged values for the angles are 8 
= 11.1 ± 0.1° and <P = 79.5 ± 0.2°, where again, the 
precision is estimated from the linearized equations. 

In conclusion, it is clear that pbotographic techniques 
can provide precise measurements of the angles of inci­
dence. Possible sources of systematic error include resid­
ual magnetic fields, optical distortion introduced by the 
camera, and nonsphericity or warping of tbe screen. 
When a large number of spots are recorded over a range 
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of eneIgies, it becomes possible to test for these effects. 
For this reason it may be useful to form adsorbate 
overlayers with unit cells larger than the (I X I) substrate 
unit cell and to USC high electron energies, thus increasing 
the amount of data available per pbotograpb. Finally, it 
should be noted that no angle determination method 
based on geometrical ideas can account for the refraction 
which occurs as the ele<:trons drop from the vacuum p0-

tential to the inner potential of the solid. Hence, at low 
energies or high angles of incidence, it may be necessary 
to correct the geometric angles fOT this electronic effect.21 
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Abstract 

As a means of quantifying the agreement between different sets of intensity spectra, the 

Zanazzi-Jona R-factor, RZJ, has served the LEED community well. The single beam R­

factor was constructed explicitly to be sensitive to certain features in the intenSity spectra 

while ignoring insignificant differences. Unfortunately, RZJ is not a metric over the space 

of intenSity spectra and this leads to a number of undesirable properties. The most 

severe of these are that RZJ does not satisfy the triangle inequality and that it can be very 

small or even zero (indicating perfect agreement) for intenSity spectra which are 

significantly different. Reliability factors presented by Pendry, Adams et aI., Van Hove et 

aI., and Sobrero and Weinberg as well as the X-ray R-factor are also analyzed. 
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1. Introduction 

In the determination of surface structure by Low-Energy Electron Diffraction (LEED), it is 

necessary to compare computed intensity spectra for various structural models and pick 

the set that best agrees with the experimental data. The question naturally arises as to 

what criteria are to be used in effecting this comparison. Often, as is the case when 

multilayer relaxations are being studied (1-5), the differences one is trying to measure 

are rather subtle. One way to examine large amounts of data in a reproducible and 

quantitative manner is to use a computed reliability factor (or R-factor). 

In their seminal paper concerning R-factors (6), Zanazzi and Jona discussed a number of 

desiderata that such a function should fulfill. They critiqued several possible R-factors for 

LEED intensity curves, and finally they proposed the widely used Zanazzi-Jona R-factor. 

The important properties this function possesses are that it is sensitive to: (1) the 

general shapes of the curves while disregarding the absolute values of the intensities of 

the two curves being compared and the amount of background; (2) the relative 

intensities between different sections of the intensity curves; (3) the relative pOSitions of 

maxima, minima and shoulders; and (4) the presence of peculiarities, such as narrow 

peaks (6). Other workers have introduced R-factors designed to meet somewhat 

different criteria (7-13). 

Unfortunately, the Zanazzi-Jona R-factor does not satisfy properties (3) or (4) and, 

unless the background is a piecewise linear function of energy (which it is not), it also 

fails to have property (1). The violation of property (3) makes the Zanazzi-Jona R-factor 

in its original form problematic for comparing intensity spectra . In section 2 we analyze 

the properties of the single beam Zanazzi-Jona R-factor and of various modifications. We 

show that the null space of RZJ consists of piecewise linear functions, so curves differing 
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only by a piecewise linear function will have a single-beam R-factor of zero, indicating 

perfect agreement between the spectra. This is undesirable since spectra with piecewise 

linear differences can have peaks shifted by several eV or even different numbers of 

peaks. Section 3 contains analyses of R-factors due to Pendry (8), Van Hove et al. (7), 

Adams et al. (5,11,12), Sobrero and Weinberg (13) and the X-ray R-factor (9,16). The 

five functions introduced in Ref. (7) are not statistically independent so one can expect to 

find correlations among them. This weakens the argument that only near the true 

surface structure will the functions have minima simultaneously. Finally, we discuss the 

issues of variance, sensitivity and information content of intensity spectra and show that 

R-factors should be averaged in momentum space rather than over the energy variable 

as is the current universal practice. 

2. Analysis of the Zanazzi-lona R-factor 

In this section we review the definition of the Zanazzi-Jona R-factor and show that it has 

units of eV2
• A dimensionless form of the R-factor is introduced together with a simple 

function that bounds RZJ. These functions are modified to make them symmetric with 

respect to the exchange of their arguments and to attempt to make them satisfy the 

triangle inequality. In this manner, we show that no function of the form of RZJ can be a 

metric for intensity curves or their derived functions. 

The definition of the single beam Zanazzi-Jona R-factor is (6) 

with 

RZJ = [E!~I EJ fw(E) Icleale' - lobs'l dE, 

flobs dE 

c = f lealc dE 

Icleale" - lobs" I 
weE) = I lobs' I + I lobs' Imax 

(1) 

(2) 

(3) 



and 

---..Ef -~ 
A = flobs dE. 
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(4) 

Here, E, and Et are, respectively, the start and finish (lowest and highest) energies at 

which data are available, lobs and lealc are the observed and calculated intenSities, and the 

prime denotes differentiation with respect to the energy, E. This expression can be 

simplified by introducing the dimensionless variables 

and 

lobs(E) 
io(E) = <lobs> 

leale(E) 
ieeE) = <Iealc> 

In Equations (5) and (6) the averages are 

flobs dE fleale dE 
<lobs> = Et - Es ; <Ieale> = Et - Es . 

With these definitions, Equation (1) becomes 

r_1_f 
RZJ = lEt - Es J 

1 

f ll~a:...wc'...=...io' I dE 
a lio'l + lio'imax , 

(5) 

(6) 

(7) 

(8) 

where now the prime denotes differentiation by the dimensionless energy, E. This form 

shows that the R-factor is not dimensionless and that there is a strong dependence on 

the length of the energy interval. To eliminate this dependence, define the dimensionless 

function 

(9) 
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The numerator in the integrand of Equation (8) can be written as l[(io' - ic'fTI/2, and we 

have finally 

1 

_1_ ( llli!Q - dJ2~ 
r = 2 ~ Idol + Idol max , (10) 

where dn = in' for n = 0, c. This function is essentially the same as the Zanazzi-Jona R-

factor, the only modification being the conversion to dimensionless form introduced by 

Equation (9). 

For the purpose of analysis, Equation (10) is somewhat unwieldy. Fortunately, the 

function r can be bounded by a simpler expression. Since 0 os Idol os Idol max the mean 

value theorem gives the bounds 

(-.J2/2)p os r os -.J2p (11) 

for 

(12) 

Equation (11) is entirely symmetrical since 

(-.J2/2) r os p os -.J2 r. (13) 

Thus, the R-factors rand p are equivalent to within a factor of two. The function pis 

computationally simpler than r since the integral can be evaluated analytically. This 

function also eliminates the need for the values of the second derivatives, a welcome 

benefit in view of the numerical instability of differentiation. To evaluate the integral in 

Equation (12), define the function 

(14) 
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and the set of closed intervals 

>2_ = {E: o'(E) :s O} 

and 

>2+ = {E: o'(E) " O}. (15) 

The zeroes where 0' changes sign are labeled E1, E2,"" En and belong to both sets. 

Without loss of generality, assume that the interval [0, E1] e >2+ and that [En, 1] e >2+. The 

other cases can be treated with small modifications. The integral now becomes 

1 

112 J 10'1 dE = 112 [J 0' dE - Jo' dE] 
0+-

(16) 

a sum involving only the first derivatives of the intensity spectra. The second derivatives 

still need to be computed to determine the zeros Ej but, because the pOints where 0' = 0 

are the stationary points of 0, the zeros need not be located with great accuracy. 

A minor difficulty with Equations (10) and (12) is that these functions are not symmetriC 

with respect to the exchange or the curves labeled c and o. If one is comparing two sets 

of experimental data with equal variances (or two sets of computed curves), there is no 

reason to favor one set over the other. When independent data sets have unequal 

variances, they should be weighed by the inverse of their respective standard deviations, 

and thereafter the weighed data sets should be treated equally (14). The functions rand 

pcan be made symmetriC by replacing the denominator in the integrands of Equations 

(10) and (12) with 

(17) 

and 

(lio' I max + lie' I max)/2 (18) 
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respectively. The symbols rs and A will denote these symmetric versions. 

A more substantial difficulty with p and r is that even for very similar curves it is possible 

to violate the triangle inequality. That is, for three curves i1. iz and i3 it is possible to 

have a small R-factor between curves i1 and h or between i1 and b, while the R-factor 

between curves iz and i3 is nevertheless large, which is undesirable. Say curves i1 and iz 

are from two experiments, while i3 is the best-fit computed curve for experiment 1. Since 

i1 and iz match closely (R-factor small), it stands to reason that the computed curve 

which fit i1 well should also fit the data from experiment 2 reasonably well. So, for an R-

factor function to be useful, it needs to satisfy the triangle inequality. That this is not so 

for the functions r or p indicates a weakness in their definitions and in RZJ • 

To examine this issue in greater detail, we can construct an example for A where the 

triangle inequality is violated. Suppose there are three curves with 

Iil'lmax = liz'lmax = Ih'lmax = .J2/2 (19) 

a value chosen so that the constant in Equation (12) drops out. Define the differences 

y = i1' - h' = ex + f3 (20) 

and suppose that ex and f3 have the same sign over most or the energy range, and 

similarly for ex' and f3'. Qualitatively, this means that the differences between the intensity 

curves behave the same way. We now have 

1 

A (il' h) = J lex+f3llex'+f3'1 dE o 
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1 

= l' laa'i + 11313'1 + la,l3' + ,I3a'l dE 
o 

1 

~ l' laa'i + 11313'1 dE 
o 

(21) 

where the second step follows from the way the signs have been chosen. Hence, for 

these three curves, close agreement as measured by Ps between il and i2, as well as 

between band i3 nevertheless gives the result that curves il and i3 are not close to each 

other. This counterintuitive result shows that Ps is not a good measure of the agreement 

between intensity spectra. 

One factor of Equation (10) preventing r from satisfying the triangle inequality is the 

denominator. The original purpose for the denominator was to emphasize the extrema in 

the intensity spectra (6). The function p, however, which does not treat the extrema in 

any special way, conveys almost the same information as r because the denominator is a 

very mild weighing function varying at most by a factor of two and on average by much 

less than that. Had the weighing function been chosen to be proportional to, say, 

(22) 

then a function like pwould be much less successful at bounding r. As it is, let us 

eliminate the denominator in order to attempt to, restore the triangle inequality. Taking 

the square root of the resulting function, we arrive at the modified R-factor 

(23) 

In terms of the intensity spectra, r m is 

1 

(' ') [1' I" " II'" ' ''ld]1I2 r m Iv 12 = 11 - 12 11 - 12 E . 
o 

(24) 
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If both dimensionless spectra are multiplied by a positive constant, this R-factor is 

multiplied by the same constant, so rm is a symmetric, positive definite homogeneous 

function of order 1. The function r m is related closely to the Euclidean norms for the first 

and seCond derivatives given by 

(25) 

and 

(26) 

Despite the similarity of form, however, r m itself is not a norm and still does not satisfy 

the triangle inequality, as is demonstrated in the Appendix. 

There are many ways of proceeding at this point. Up to now all the modifications have 

retained the essential character of the original definition; even the function r m bounds RZJ 

within a factor of two. It appears that no function that retains the essence of RZJ can be 

a metric. Although a reasonable R-factor need not be a metric in the strict mathematical 

sense, for similar curves it is essential that the triangle inequality hold. 

Before leaving RZJ completely, let us examine another aspect of this function. The R-

factor may be viewed as an operator on f = i1 - i2, where f is piecewise C2
• From the 

definition of RZJ we see that its null space consists of continuous, piecewise linear 

functions. This is not a suitable null space for a LEED R-factor since intensity spectra that 

have peaks in very different positions, and even different numbers of peaks, can 

nevertheless have an R-factor of zero. 

3. Analysis of Other Reliability Factors 

We now look at R-factors due to Pendry (8), Van Hove et al. (7), Adams et al. (5,11,12), 

Sobrero and Weinberg (13) and the X-ray R-factor (9,16). These R-factors are metric 



60. 

functions or, with minor modifications, can be converted into metrics. The numerical R-

factor of Sobrero and Weinberg reflects the distance between the physical surface 

structure and the parameterized model structure for the dynamical scattering of LEED. 

For kinematic scattering, as in X-ray diffraction, the distance between structures can be 

measured by an analytic function. 

The technique of analyzing an R-factor by examining its null space can be applied to the 

function proposed by Pendry (8). This R-factor is defined as 

«(Y~ - Yzf» 
RpE = «Y1 > + <YZ

2», (27) 

where the double angle brackets denote the average over all beams and all energies and 

(28) 

In Equation (28), L is the logarithmic derivative L = I'll, V is the imaginary part of the 

inner potential, and the prime denotes differentiation with respect to energy. This R-

factor can be written more symmetrically in terms of the dimensionless variables 

e = EN 

i( e) = I(E)I <I(E» 

1= i'li 

and 

where the intensity average is only over energy and the prime denotes d/de. The formula 

for RpE is given by Equation (27) with Yi in place of YI. 

To find the null space of ~, assume the denominator is not zero. Then RpE = 0 if and 

only if Y1 = Yz for all beams at all energies. This gives a quadratic equation for 11 in terms 

of Iz with the two solutions 

and 
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(30) 

which are ordinary differential equations for the intensities. Solving these equations 

shows that RopE = 0 only if 

i1 = ciz 

or 

i1 = c exp[J(d In iz/der1de] . (31) 

The first solution is the intended null space of ~ but the second solution could be 

problematic. Fortunately, we are interested only in using RopE to compare intenSity spectra 

that are similar in shape, i.e., 11 similar to Iz and very different from IZ-
1

• Hence the 

second solution should not arise in practice. 

For curves that are very similar, the reliability factor RopE is almost a norm for the 

functions Yi. If we define the normalized y's by 

then 

(32) 

(33) 

is the Euclidean norm for the difference 1'/1 - 1'/Z. The functions rPE and RopE will have the 

same value if <Y1Z> = <y/> for all beams. 

Van Hove, Tong and Elconin (7) used five R-factors to compare intensity spectra: 

R1 = Jill - chi dE / Jll11 dE 

Rz = J(11 - ch) z dE / J(ld dE 

R3 = fraction of energy range where curves have slopes of different 

signs 

~ = Jill' - ch'l dE / Jll1'1 dE 

Rs = J(11' - cld dE / J(11')z dE 

with the scaling factor 
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(34) 

The normalizations lead to difficulties since only R3 is a metric; it is the energy average of 

the discrete metric (13) applied to the function sign(l') and can be written as 

R3 = 112 < Isign(ID - sign(ID I > . (35) 

With slight changes in the scaling factors and normalizations, the other four R-factors can 

be converted into norms. The normalization should not depend solely on one of the 

curves since either spectrum is only an approximation to the unknown true curve. The 

need for normalization can be eliminated by using the dimensionless variables £ and i 

introduced in Equations (5-6) and by defining the dimensionless spectrum 

j = ilil i II, (36) 

where 

(37) 

Replacing the scaling factors in the definitions of R2 and Rs with 

C2 = II i1 II /11 iz II (38) 

and taking their square roots gives 

r3 = 1h<lsign(il') - sign(i2') I> 

r4 = <I h' - i2'1> 

and 

(39) 

where rl and r2 are norms for the difference between spectra, r4 and rs are norms for the 

first derivatives, and r3 is a metric for i'. The /p norms are defined by 

/p(x) = <lxIP>1/P for p 2: 1 (40) 
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so rl and r4 are A norms, while r2 and rs are h. (or Euclidean) norms. The sum rl + r4 is 

the Sobolev norm for differentiable functions. With a slightly different normalization, the 

five R-factors can be expressed in terms of the spectra i by using 

r2' = lli l - i211 

and 

(41) 

With five metric functions in hand, it is useful to see how much information is conveyed 

by each one. Eventually, the R-factor must determine which set of parameter values is 

the best and what other values are so close that the difference is not Significant. Hence, 

the objective of the LEED structure analysis is to decide if one set of five R-values is 

better than another set. The five R-factors will, other than in exceptional cases, give 

different optima for the parameters, they do not all convey the same amount of useful 

information, and they are not statistically independent. 

The discrete metric r3 does not convey much information useful for LEED intensity 

analysis. It was originally stated (7) that for parameter values near the true surface 

structure all five R-factors should have local minima. Suppose r4 and rs are small (so the 

derivatives match fairly closely), while r3 is large. That r3 is not also small indicates that 

there are ranges where il ' and i2' are both near zero, but they happen to have opposite 

signs. It is not desirable to assign large R-values to small differences in slopes, so r3 

confuses the evaluation of the level of agreement between curves. Also, we would not 

assign any significance to the finding that r3 was small, while the other R-factors were 

not. If two sets of parameters give the same small values for rl, r2, r4 and rs but gave 

very different values for r3, we would not feel confident in declaring one set of 

parameters better than the other. Thus, r3 is not very useful in finding the best 

parameter values. 
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Of the other four R-factors, rl and r2 are statistically correlated, as are r4 and rs. This can 

be demonstrated using r2' and rs,. The R-factor rl measures the first moment of the curve 

11 = i1 - i2 while r2' measures the second moment. The quantity 

(42) 

is a measure of the variance of 11. Hence, r2' and a2 are two independent measures of the 

agreement between curves. If two sets of parameters give similar values for r2', then the 

set with the smaller a2 provides a better fit to the data. Similarly, we can construct 

( 2 2)V, as = rs' - r4 . (43) 

If the variance between curves remains approximately constant for different parameter 

values (e.g., if the variance is dominated by experimental uncertainties), then rl and r2' 

will be highly correlated, and likewise for r4 and rs,. 

Sobrero and Weinberg (13) presented a numerical reliability factor that reflects the level 

of agreement between a structural model and the true surface structure. In LEED, the 

dynamical theory is sufficiently complicated that no closed-form, analytical function with 

this property is known. For X-ray diffraction, however, the theory is simple and an R-

factor to measure the agreement between structures can be derived. This derivation is 

based on Parseval's theorem (15). 

In the kinematic theory of X-ray diffraction (16), the electron density in a crystal, AX), 

can be expressed in a Fourier series as 

(44) 

where V is the volume of the unit cell, Fh is a structure factor, and h is a reciprocal lattice 

vector. The Euclidean norm of p is 

(45) 

For two different structures, e.g., the true structure and an approximate model, we have 
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and 

The structure factors are complex numbers, 

F = IFI ei<> 

(46) 

(47) 

(48) 

but experimentally, only the modulus IFI can be measured; the phases are reconstructed 

from the moduli. This procedure gives Fl and F2 the same phase for each h, so 

Fl - F2 = (IFll - IF21) ei~ (49) 

and 

This expression provides an un-normalized R-factor for X-ray diffraction. 

The usual normalization is to divide by the sum of the observed moduli, ~IFtVV. 

Adopting this procedure, one obtains 

RXRD = (~IIFll - IF2112)'''/~IF11, 

which can be compared with the usual X-ray R-factor (17), 

RXRD' = ~IIFll - IF211)/~IFll. 

(50) 

(51) 

(52) 

As noted above, there are problems with normalization based on only one of the two 

data sets. These issues can be avoided by introducing the dimensionless 

fh = FhlIIFII, 

where the norm is 

IIFII2 = ~IFhI2. 

(53) 

(54) 
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This gives, finally, 

rXRD = (~lIflhl - Ifzhllz)v, (55) 

as a normalized R-factor for structure determination by X-ray diffraction; rXRD is related 

closely to the function minimized in the least-squares refinement of structures (17). If 

the kinematic model is correct, rXRD directly measures the Euclidean norm of the 

difference between two structures. 

It is unfortunate that we cannot derive a closed-form R-factor for LEED in a similar 

manner. If we assume, however, that the dynamical theory provides an adequate model 

for LEED intensities, then we can formulate a numerical R-factor to measure the distance 

between two structures. In the X-ray case, a Fourier transformation provided the 

connection between the structural model and the diffracted amplitudes, from which the 

intensities are then obtained. For LEED, the connection is a complex dynamical scattering 

model expressed as 

q = I(p), (56) 

where q are the intensities and p are the parameters. As with rXRD, it is necessary to 

assume that the recorded intensities q* lie in Q, the range of I. If we also assume that 

near the optimum p* the function I(p) is continuous and bijective, then a continuous rl 

exists and can be estimated numerically. This leads to the definition 

rsw = d[r1(q*), p], 

where d is a metric in the parameter space. The main difficulty with applying this 

function is that it is necessary to project the measured intensities onto Q. 

(57) 

Finally, we turn to the method used by Adams et al. (5,11,12) to obtain uncertainty 

intervals for the optimum parameter values. The R-factor Rz defined in Equation (34) is 

used to measure the error between intensity spectra. The standard deviations of the 

parameters are computed from the curvature matrix at the optimum parameter values, 
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p*. There is a difficulty with this choice since it fails to take into account uncertainties in 

the data and so the method of Ref. (12) can make the computed uncertainties appear 

arbitrarily small, a spurious result. 

Couching the analysis in terms of the norm r2 and its square r/, a Taylor series 

expansion around a point in parameter space, Po, gives 

r(p) = ro + goTo + lhoTGoo + 0(110113
), (58) 

where 0 = p - Po, g is the gradient vector, G is the Hessian matrix, and we have 

dropped the subscript on r2. At a strong local minimum in r the gradient is zero and for a 

scalar parameter we have 

r(p) = ro + 1/2 Ga0 2 + 1/6 Yo03 + 0(04
), (59) 

which gives 

(60) 

where Yo is the third order coefficient. The ratio of the second to the third term is the 

same for both expansions, so the ranges over which rand r can be approximated by 

quadratics are identical if the next term to enter the expansions is the cubic term. Both r 

and r2 have strong minima at Po, but the curvatures differ. The function r is more 

sharply curved and therefore appears to define the optimum Po more precisely than r, 

but the gain is illUSOry. Following Ref. (12), we would estimate the uncertainties as 

01
2 = Go'lra/(N - v) 

and 

(61) 

for rand r, respectively. Here, N is the number of degrees of freedom and v is the 

number of fitted parameters. It appears that by squaring the R-factor we have gained a 

factor of 2 in improved precision. Of course, the argument employed in going from 

Equation (59) to Equation (60) can be repeated to produce the functions r4
, rB,,,. , 

gaining an apparent reduction of 2 in the uncertainties with each step. 
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Since there is no change in the information content, the improved precision is illusory 

and the estimates in Equation (61) are erroneous. The correct result is provided by the 

observation that if 

Iro- rll :5 £ 

for a parameter Pi, then 

Iro2- r121 = Iro- riliro + rll 

:5 2ro£ 

(62) 

(63) 

to order £2. If £ is an estimate for the magnitude of the errors in the experimental and 

calculated intensities when r is used as the R-factor, then 2ro£ measures the variance in 

the intensities when r2 is used. Since ro and rl are equal within the uncertainties in the 

data analysis, we include all the values Pi that satisfy Equation (62) in the interval of 

acceptable parameters (18). This leads to 

IIpl- Poll2 = 2£ /eTGoe(N - v), (64) 

where the error vector e = (Pi - PO)/ lIpl - poll. If Go is ill-conditioned, then the 

uncertainty in the parameters depends on the direction of e. The largest uncertainty 

occurs in the direction of the eigenvector corresponding to the eigenvalue of G with the 

smallest magnitude (18). So the difficulty with the uncertainty estimates of Adams et al. 

is with the use of ro as a measure of the variance in the data. 

We have demonstrated that several of the R-factors proposed for LEED can be modified 

to make them metric functions. With the present limited understanding of the statistical 

distribution of errors in LEED it is not possible to determine which is the best R-factor. 

This leads to the situation where some R-factors, such as rpE, are formulated with the 

intent that they will account for some of the known deficiencies in LEED theory, e.g., the 

large discrepancies in absolute intensities. As both the theory and the experiment 

improve, the need for the R-factor to play this role should diminish. 
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We have emphasized the interpretation of the R-factor as a metric over an appropriate 

space. For example, rPE is a metric for the functions y(e) defined in Equation (29) while r4 

is a metric for the first derivatives i'. Since both the experimentally observed data and the 

computed intensity spectra contain errors, they can be considered estimates for the true 

intensities. It is essential, therefore, that the R-factor satisfy the triangle inequality when 

Similar spectra are compared. This guarantees that the unknown distance between the 

true intensity and the computed solution is bounded by the measured distance between 

the observed and the fitted curves plus the estimated variance of the data. 

A question remains as to the proper averaging of the R-factor. The common practice in 

LEED is to average point values as a function of the energy variable to obtain single 

beam R-factors. (~ is a slight exception; a small modification in the definition [e.g. the 

function rPE given by Equation (33)] puts it into this form.) Uniform energy averaging, 

however, reduces the sensitivity of LEED structure determination and increases the 

variance of the parameters. The structural information contained in an intensity spectrum 

is distributed approximately uniformly in momentum space (k-space). One manifestation 

of this is that features such as peaks in the spectra broaden with increasing energy. 

Energy averaging, therefore, amounts to a weighted average in k-space where the high 

momentum transfer information is emphasized at the expense of the low k transfer data. 

Since the high energy electrons are penetrating more deeply into the sample, surface 

sensitivity is reduced. (In X-ray crystallography, the R-factor is an average in k-space.) 

Strictly speaking, the conversion to a momentum scale requires that the inner potential, 

Vo, be known. But, only an approximate estimate is needed to produce a practical scale. 

Sensitivity can be increased and the variance reduced by employing a statistically 

weighted average in k-space. 

In conclusion, we have discussed a number of reliability factors for LEED from a unified 

point of view and shown that the Zanazzi-Jona R-factor is not a suitable measure of the 
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level of agreement between intensity spectra. Without a firm theoretical foundation, any 

of a number of metric functions can be used as a reliability factor, but as both the 

experiment and the theory improve, the need for the R-factor to be insensitive to certain 

types of discrepancies should decrease. Finally, we have shown that no matter which 

metric is used as an R-factor, Equation (64) should be used to obtain an estimate of the 

variance in the parameters and that the average is best computed over momentum 

space. 
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APPENDIX 

It remains to be shown that the function r m defined in Equation (23) does not satisfy the 

triangle inequality. Let rjk = r m(ij,ik) and recall that 

1 

r122 = J laa'i d£ 
o 

(Ai) 

and similarly for r23 and r13 using f3 and y [defined in Equation (20)]. We will construct a 

counterexample to the triangle inequality. Suppose that 

Then, in terms of a and {3, 

1 

J la+f3lla'+f3'I-laa'I-If3f3'1 d£ > 2r12r23. 
o 

(A2) 

(A3) 

As before, we will choose a and f3 to have the same sign, and also a' and f3' so that the 

integrand simplifies. We obtain 

1 1 1 

(J laf3'+f3a'l d£)2 > 4 J laa'i d£ J 1f3f3'1 d£ 
o 0 0 

(A4) 

as a sufficient condition on a and f3, subject to the sign restriction. A particularly simple 

example is to take three curves with 

a2:0 

and 

f3 = a + C, c>O, (AS) 

where c is a constant. We will establish that Equation (A4) holds. 
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and 

1 

a = J la'i dE 
o 

1 

A = J laa'i dE. 
o 

74. 

Assuming a' is not zero everywhere, we have 

(2A + ca)2 > 4A(A + ca) 

111 

[J 1(2a + C)a'i dE)f > 4 J laa'i dE [J I(a + C)a'i dE)] 
000 

1 1 1 

U laf3'+f3a'l dE)2 > 4 J laa'i dE J 11313'1 dE, o 0 0 

(A6) 

(A7) 

which establishes Equation (A4), and hence demonstrates that the triangle inequality is 

violated for this choice of curves. 
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Chapter V 

A Mathematical Foundation for Ad Hoc Reliability Factors in LEED 

Reprinted with permission from A. C. Sobrero and W. H. Weinberg, "A Mathematical 
Foundation for Ad Hoc Reliability Factors in LEED," in P. M. Marcus and F. Jona, eds., 
Determination of Surface Structure by LEED, Plenum, New York (1985). Copyright 1985, 
Plenum Press. 
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From: DETERMINA nON OF SURFACE STRUCTURE BY LEEO 
EdIted by P.M. Marcus and F. Jona 
(Plenum Publishing Corporation, 1986) 

A MA'IrlrMATICAL FOUNDATION FOR AD HOC RELIABILI1Y FACTORS IN LEED* 

A. C. Sobrero and W. H. Weinberlf 

Division of Chemistry and Chemical Engineering 
California Institute of Technology 
Pasadena.CA 91125 

1. INTRODUCTJON 

In surface crystallography by low-energy electron diffraction (LEED). 
the reliability factor provides a measure of the agreement between the 
experimental data and the calculated intensity spectra. Ideally. statistical 
considerations completely determine the reliability factor (r-ractor). For 
LEED however. lhe r-factor will remain somewhal arbitrary unlil discrepan­
cies belween lheory and experiment. such as lhe differences in absolule 
intensities. are betler understood. Neverlheless. slatistics and functional 
analysis can guide the formulation of r-faclors to maximize the amount of 
information obtained from the data. 

Clearly. lhe use of arbitrary reliabilily faclors can add to the inaccu­
racy and unc~rlainty of the slructural delermination. Zanazzi and Jona' 
illuslrale this point in their review of reliabilily criteria. Van Hove et al. 2 

demonslrate that only when the correspondence belween computed and 
observed values is excellent will different r-faclors yield similar estimates 
for the parameters. This further indicates that inappropriate r-factors can 
degrade LEED results. Despite these caveals. employing a reliability factor 
will almost always be superior to simple visual evaluation.' 

As a quantitative technique for surface crystallograpby. LEED must pro­
vide statistically meaningful confidence limits on the structural paramelers. 
This is discussed in section 3 . The use of the r-factor in a gradient. search 
ior the correcl structure is presented in the section on metrics. 

* Su;>porled by the Army Research Office under grant No. DAAG29-79--C-OI32. 

l Camille and Henry Dreyfus Foundation Teacher-Scholar. 
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2. TRADITIONAL i..EED INTENSITY ANALYSIS . • . 

The usual method fo~ an,a).ysing.muIUple-scatteri:ng LEED datil ill a 
trial-and-error procedure.' This review of the method serves to introduce 
the definitions of the parameter manifold P. the intensity space Q. and the 
intensity operator I. The reconstructed Ir(110)-(lx2) surfaces is discussed 
to illustrate the notation. 

The first step in the data analysis is to postulate a family of models. 
M(P). for the structure. Here the point is is a member of the parameter 
space P which characterizes the family. In this way. each point in P 
represents a model of the surface according to the mapping 

iT. =M(p). (l) 

The models ih include the atomic positions. phase shifts. inner potentials. 
and other factors which govern low-energy electron scatter. 

Often. several different families Mi are proposed. each with its own 
parameter space Pi' Consider the two models for Ir(llO) illustrated in Fig­
ure 1. The paired rows model M I has a three dimensional parameter space 
Ph where CT. 151 • and Eo can vary (see the caption to Figure 1 for definitions). 
The components of a point in the space PI are: p = (CT. 15 1, Eo). Similarly. 
the parameter space for the missing row model M 2 is four diInensional. with 
p = (15 1• 152• p. Eo) when p E P 2 • 

Clearly. not all the points in a parameter space Pi are acceptable. 
There are two restrictions: the p must map to physically realizable struc­
tures. and each structure should correspond to a unique point. The second 
condition insures that the mapping Mi is one-to-one. thus avoiding ambigui­
ties in the parameterization of the crystal surface. For example. the spac­
ing CT must always be less than or equal to a. 

These constraints limit the choice of parameter values to a manifold 
Pi \: Pi. The bounds actually used with the paired rows model M I were: 
CT E: [2.95 K. 3.55 K). 151 E [1.211t 1.81 K]. and Eo E [-10 eV. -20 eV). This 
manifold lies well within the above constraints. 

The next step in the procedure is to calCUlate the intensity spectrum q 
for each model: 

" 9 =I(Af\(P». (2) 

The operator 1 denotes the compulational method used to obtain the spec­
trum. This nonlinear operator constitutes a mathematical model for elec­
tron diffraction.' The spectrum q is a point in the high-dimensional intensity 
space Q, "'iLh each component qj representing the intensity of one beam at a 
particular electron energy and angle of incidence. Thus. all the datu from a 
LEED experimenL defines one point. q., in Q. 

In the case of Ir(110). because I-V curves were computed for 18 beams 
at 2 eV intervals over an average range of 100 eV and for one angle of 
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incidence. the intensity space Q is 90D-dimensionaL Here. for example. the 
first 50 dimensions might repr\tsent the intensity of the (OI) beam at 30 eV. 
32 eV ....• 128 eV.* The operator I consisted of the Reverse Scattering Pertur­
bation with Layer Doubling.s 

PAIRED Row MODEL 

MISSING Row MODEL 

a 

/3 
20-/3 

1st layer 
2nd layer 

1st layer 
2nd layer 
3rd layer 

Figure 1. Two models for the reconstructed Ir(llO}-( 1x2} structure. Here. 
a == 3.58 .a is the bulk spacing between rows of atoms in the (OOl) direction. 
while 61 is the distance from the first to the second layers of atoms. Tbe 
real part of tbe inner potential. Eo. is a non-structural parameter in the 
models. 01 her geometrical paramelers: for the paired rows model. cr is the 
spacing belween lhe adjacent close-packed top rows of atoms wtJich have 
moved toward e'lCh otber; in the missing row model. 02 is the distance from 

t: Sinl!e the experimental intensities were not recorded at exaclJy these values of the energy, 
it ?ras necessary lo interpolate the dala. This projection is a rnapping from the data space 
toQ. 
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the second to the third layer, whUe fJ is the spacing between the adjacent 
rows of atoms in. the second layer. 

Henceforth, to simplify the notation, consider only on1' family of models 
M. and define the intensity operator J as the composition ToM. The operator 
J now provides a direct connection between the parameter manifold P and 
the intensity space Q: 

9i = J(p,) for jJ( € P. (3) 

Since J describes a physical process. assume that this operator is a continu­
ously differentiable function of jJ. Figure 2 illustrates the relationship 
between the various mappings. 

The final stage in the structural analysis is to minimize the reliability 
factor. 

Parameter 
Manifolds 

Model 
Space 

I 

Intensity 
Space 

Q 

(4) 

Figure 2. Schematic indicating the range and domain spaces for the opera­
lors introduced in the text. 
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over the set f4ct of computed points and thus obtain the calculated spec­
trum which best matches the observed one. The function D (iJ I, lJe) meas­
ures a distance. in some sense. between members of the space Q. For con­
venience. denote the best fitting spectrum by iJ· and the corresponding sur­
face structure by fJ·, so that iJ· = I(fJ+). Also. define the vector of residuals 
as 

(5) 

This vector contains the variation in the data which is not explained by the 
mathematical model I(fJ). 

3. STATISTICS 

Due to random errors in the experiment. the deterministic model I (fJ) 
cannot fit the observed data perfectly. It is important. therefore. to meas­
ure how well the model accounts for the observations by checking the resi­
duals Ei. Unfortunately. the standard techniques are not appropriate for 
LEED. 

The ususal approach in statistics is to assume a stochastic model for 
the. residuals and then derive the reliability factor by maximizing the likeli­
hood function. 6 A widely used model. which leads to the method of weighted 
least squares. is that the Ei are Gaussian. Specifically. the assumption is 
that the residuals are normally and independently distributed random vari­
ables with variances Si2 and zero mean [abbreviated NID(O. Sl)].7 The r­
factor derived from this stochastic model is the weighted Euclidean or L2 
norm B 

D(iJt, iJ2) "" [~ [(qlj - g2j)/SjJ2 r/2 = [~ (f:j/Sj)2 r/2. 
j j (6) 

Here giJ is the jth component of iJi' (The function R2 proposed by Adams2 

for I-V curves is related to the square of Le.) After this r-factor is minimized. 
the Snedecor F or. Student t. distribution provides confidence limits for the 
parameter values.9 Clearly. changing the assumed values for the variances 
Si2 will afJecl the parameter estimales. The data. however. will support only 
a small range of st When the residuals do not substantiate the assumed 
stochastic model. the F slatistic indicates that the parameter values are 
meaningless. Thus. the filting procedure can be tested for self consistency. 
and there is a stalistical basis for establishing confidence limils. 

For LEED. the positions of peaks in lhe computed I-V curves are less 
sensitive lhan the peak amplitudes lo deficiencies of the model J (P). This 
implies that the residuals are nol NID (0. sl) so that lhe slandard slatistics 
are inapplicable. Al presenl. there is no successful model for the Ei in LEED. 

This i,,; lhe crux of lhe problem of fin ding the best reliabilily factor. 
Without a model for the errors. there is no test for internal consislency. In 
efJect. this greatly increases the uncertainty of the parameter estimates. 
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4. THE RElJABIlJTY FACTOR AS A METRIC 

Although statistical considerations will. not determine the reliability 
factor for LEED. other requirements can limit the choice of functional form. 
For example, the r-factor must be a metric function. To understand this, 
consider the definition of a metric presented in the appendix. Suppose ill is 
a computed spectrum and il2 the corresponding experimental one. The 
information contained in these two spectra is unchanged if it is discovered 
that they have been mislabelled and that iJ I is really the experimental data. 
Since altering the labels does not modify the level of agreement between the 
spectra. the r-factor must be symmetric, with D(iJl. iJ2) =D(il2- iJl)' Having 
D (iJ 10 iJ2) = 0 if and only if iJ I = il2 corresponds to the notion that the r­
factor measures the discrepancy bet.ween spectra and that a zero value sig­
nals perfect agreement. 

The triangle inequality says that if two spectra agree well with a third, 
then they also agree with each other. Consider the implications of violating 
this axiom. Suppose someone measures iJ~ and computes iJ t, obtaining a 
small r-factor D(iJ;. ili>. Another worker independently measures iJ~ for 
the same crystal surface and verifies that D (iJ~. il~) is small. Then. it would 
be ridiculous to find that D{iJt, iJ;) was large. Hence. a function which does 
not satisfy the triangle inequality cannot be a very useful reliability factor. 

Of course, many metric functions. such as D I in the appendix. are not 
suitable reliability factors. To be a good r-factor. the function D must be 
continuously differentiable so that minor variations in the spectra produce 
only small changes in the value of D. Also, since some of the components of 
p are more important than others. the sensitivity of the r-factor to the 
parameters should be variable. Finally, the expense of an exhaustive 
enumeration search through the manifold P dictates that gradient. or 
steepest descent. techniques be used where feasible. 'O For this reason, the 
negative of the gradient of D (I (P). il·) with respect to p should point toward 
p+ over a large region in parameter space. It will be shown. by construction 
for a special case. that functions which have these properties do exist. 

In order to simplify the discussion. define the functions I-I and D· as 
follows. The inverse of I is any operator I-I with I(J-I(iJ» = iJ in some open 
set of intensity space. Because I is a very nonlinear function, it.s inverse 
does not necessarily exist over all of Q. Nevertheless. I (P) is one-to-one at 
p+. Otberwise tbere is a degeneracy wbere many different surface struc­
lures produce tbe same intensity spectrum. iJ+, and the structural analysis 
by LEED would not be possible. This guarantees the existence of I-I for a 
region Z in the space Q near iJ+. The range of I-I is the region z near p+ 
where I is invertible. If necessary, the inverse mapping can be approximated 
using slandard numerical melhods. 

The function D· is a convenient shorthand. 

D·(p) = D (I (P). iJ .). (7) 

wher" lhe gradi"nt of n° with respect to p is simply V D·. Thus. the ideal 
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reliability factor has -V D·{fl) point.ing t.oward 1'+, with t.he magnitude of 
D 0Ci') indicating the distance to the optimal parameters. 

In general. since D"(P"') is not zero. no reliability factor can measure 
exactly the distance from fJ to fJ .... With "artificial data," however, such a 
measure is possible. In this case, there is a set of parameters fJ" with 
11"=I(p°) so that the invElrse ]-1 exists at 11". Then, the formulation of a 
function which possesses the desiderata mentioned above proceeds in two 
stages. r-rrst one constructs a norm d(Pl. Pe) over the space P. This func­
tion then defines the reliability factor D (11 I. q2) over Q. The inverse of the 
intensity operator I provides a connection between P and Q. 

The desired sensitivities to the parameters are easily attained. The sug­
gested procedure is to define separate norms for appropriate groups of 
parameters. Then. d is a linear combination of these metrics. with the 
weight coefficients determining the relative sensitivities. There is consider­
able flexibility in the choice of d. as long as the resulting function is a norm. 

To illustrate the process, recall the paired rows model. where 
P =(a, 0 •. Eo). It is clear from Figure 2 that in terms of atomic positions. 
an error in a of 0 .2 If. is equivalent to a 0.11f. error in 01' Thus. it is con­
venient to combine these two parameters in one norm. The function 

dl(a, a"; 01. 0;) = 2...[ (a-a" y + (61-0;)2 f.Al 
00 2 (6) 

provides a good measure of the total positional error. The normalization 
factor r50 makes the metric dimensionless. If 60 is the bulk interlayer spac­
ing of 1.361t then the function d l expresses the total error as a ·fraction of 
the bulk spacing. For the real part of the inner potential. Eo. the error can 
be described by 

(9) 

Here, E I might be -15 eV, the initial value of Eo used in the multiple scatter­
ing calculation. Combining these functions. 

d(jl. p') = ald l + a2d2 (10) 

with. say. al = 0.9 and a2 = 0.1 to reflect the relative importance of the 
structural parameters. Of course. other choices for these coefficients are 
possible. It may be advantageous. for example. to scale d to measure posi­
lional error directly in ,t Picking al = 61 x 1 Jt-I means that d = 0.1 
corr ""s<,on ds to an uncertainty of ± 0.1 11. in 01 or in a /2. The function d 
cletermines what information is obtained from the experiment. 

Using the inverse operator I-I and the carefully construcled function d. 
a eornplete definition of the reliability factor is 
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for Ill, l1e E: Z. (11) 

Clearly, the function D (i} I' i} 2) is a metric for the space Q. Furthermore, 
the negative of the gradient with respect to fJ of D( 1<1'), 111 points toward 
fJ 0, with the magnitude of D indicating the distance to the optimal 
parameters. 

The requirement that the spectra lie in the region Z is not a restriction 
particular to this method. Outside this region there is no one-to-one 
correspondence between parameter values p and intensity spectra iJ. Hence, 
only within Z can any reliability factor be a measure of the error in the 
parameters. 

5. CONCLUSION 

The expense of obtaining a good approximation for I-I and the unreal­
istic assumption about the existence of po make it unlikely that the function 
D defined in Equation (ll) will be a practical reliability factor. Yet, the pro­
cedure presented above can be reversed to provide a means of evaluating ad 
hoc r-factors. For example, any proposed reliability factor can be tried on 
synthetic data to test whether lines of constant d map to contours of D. If 
these contours differ greatly, especially near iJo, then the r-factor is distort­
ing the information in the spectra. Of course, all reliability factors should 
ultimately be judged on the basis of the self consistency criterion discussed 
in section 3. 

It has been shown that the reliability factor presents a two-fold chal­
lenge. A statistical basis needs to be developed so that the true precision of 
the pC'rameters can be gauged. Pending this, the reliability factors which 
are utilized should adhere to the criteria formulated in the last section. 
Otherwise, some of the information painstakingly gathered by the experi­
mentalists may be destroyed in the analysis. 

APPENDIX 

A function D which maps two elements from a space Q to a real number, 
D: QxQ ... R, is a metric or distance function if it satisfies the following four 
axioms:" 

L D (,11. <.Ie) = D (iJe, q I) for alll .... <.Ie E Q. 
2. D (<It, ,h) = 0 if and only if q 1 = i12. 
3. D(i1!. <h» 0 ifandonlyifql" q2' 
4. D(ql. q2) =D{ql' i}s} +D(qz, iJa)· 

The first condition says that the distance from iJ I to q2 is the same as from 
il2 to ill, The next two axioms say that D is positive definite. while the last 
condition is the triangle inequality. 

A fundion is a norm if. in addition to being a metric, it is also linear: 

5. D(agl' a'.!2) = aD (iJ I, q2) fora ER. (12) 



AD-HOC RELIABILITY FACTORS IN LEED 

Some simple metrics are: 

DI(ils. ill}:::: 0 for alllJl E: Q. 

D 1{i1t, ci2)=lforql"1J2' 
This is th e discrete metric on Q. 

84. 

D 2{il I, q2} = [ 2: 'gIl - g2/,,,]1A> for p -= 1. 
I 

This is the Lp metric. which for p :::: 2 is the Euclidean norm. 

Ds{iJ I' iJ 2} = f; Iillm ) - iJ Jm) , 
m=O 

Ds is the Soholev norm for functions which are m limes differentiable. 
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Abstract 

The equivalent beam averaging procedure corrects LEED intensities to first order for 

systematic error due to angular misalignment of the incident beam. The method also 

corrects for misorientation of the surface plane or for large-scale variations in surface 

topography. High-order corrections for these errors can be obtained in the special case 

where equivalent beams are averaged coherently. 
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1. Introduction 

Systematic errors are the bane of the experimentalist; unlike random errors, statistical 

averaging does not reduce their effect on the data and there is no simple prescription for 

eliminating them. Small errors persist despite great care in the preparation of the 

sample, the calibration of the instrument and the execution of the measurements. In 

low-energy electron diffraction (LEED) experiments, crystals are oriented typically only to 

within ± 112° of the desired surface when they are cut, angles of incidence are not 

controlled to better than ±1/20, residual magnetic fields distort the beam paths, the point 

of incidence may be misaligned by a few millimeters, and so on. All of these errors 

noticeably degrade data from a high-resolution instrument (1) and to quantitatively 

assess the influence of such errors the complete experiment has to be replicated 

independently (2). A simple technique that can improve the quality of the data is 

welcomed. 

A useful procedure for reducing the effects of angular misorientations has been 

presented by Davis and Noonan (3). The technique, known as equivalent beam 

averaging (EBA), relies on the averaging of beams that are equivalent under the point 

symmetry group of the ideal wavefield. The method has been justified on the empirical 

grounds that it improved the quality of the fit between computed and experimental 

intensity profiles in studies of the Cu(100) and Ag(llO) surfaces (4). Numerical 

calculations have shown that EBA can mitigate against the effects of slight errors in the 

incidence angle and it has been suggested that EBA can reduce the errors due to beam 

divergence and variations in surface topography (3). Here we give a theoretical 

derivation of the technique demonstrating that this is in fact the case. 

In Section 2 we show that when the only symmetry element is a mirror plane, the EBA 

technique corrects for alignment error perpendicular to the mirror plane to first order. For 
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surfaces with more than one mirror plane, or for any rotation axis including C2, EBA 

corrects to first order for alignment error in both the polar and azimuthal directions. 

High-order correction is available when the beams can be averaged coherently. 

2. Theory 

The equivalent beam averaging technique relies on the fact that for any diffraction beam 

other than the specular reflection, the complex amplitude as a function of the incidence 

angle has the point group symmetry of the surface (5,6). The (00) beam is special since 

the reciprocity theorem (time reversal symmetry) requires that this beam have a twofold 

rotation axis normal to the surface, even if the surface itself has no such symmetry 

element (7,8). At normal incidence, the wavefield will have the complete point group 

symmetry of the surface, so this is where EBA is most useful. 

Over most of the energy range of a LEED intensity-voltage spectrum, the scattered 

amplitude is an analytic function of the incidence angles. The exceptions occur near the 

grazing emergence conditions for new beams where there may be slope discontinuities in 

the intensity (9). Instrumental broadening will smooth out even this mild Singularity, so 

we will proceed initially by assuming that the wavefield can be expanded in a Taylor 

series, checking a posteriori to see if the intensity is varying too rapidly as a function of 

incidence angle for this procedure to be justified. 

Consider first the case of a perfectly oriented surface with a mirror plane and suppose 

that the incident beam lies in this plane. For any beam (hoko) in the mirror plane, there is 

a symmetrically equivalent beam (h1k1). Denote the amplitudes of two equivalent beams 

by t/Jo and t/Jl. If there is a slight misalignment, the incident beam will be tilted by an 

angle l; with respect to the mirror plane. In the intervals where the wavefield is analytic, 

the amplitudes can be expressed in Taylor series with a positive radius of convergence 



I c;1 < C;o as 

1./Io( C;) = 1./1 + C;1./I~ + lhC;21./1~~ + O( C;3) 

1./Il( C;) = 1./1- C;1./I~ + lhC;21./1~~ + O( C;3), 

90. 

(1) 

where an unimportant phase shift has been ignored. The corresponding beam intensities 

are 

* * * 2* I * 3 Io(C;) = 1./10 1./10 = 1./11./1 + 2Re(c;1./I1./I~) + Re(c; 1./11./I~~ + C; C;1./I~ I/i~) + O(C; ) 

I1(C;) = 1./11*1./11 = 1./1*1./1- 2Re(c;1./I*1./I ~) + Re(C;21./1'1./I~~ + C;'C;1./I~*1./I~) + 0(C;3) (2) 

Thus, the average intensity is 

(3) 

Averaging has corrected the intensities to first order for error in the azimuthal angle. 

The analysis can be carried a step further by noting that the linear combination 

(4) 

gives an estimate for the sensitivity of the data due to variations in the incidence angle. 

If the angle C; is measured accurately, e.g., using a photographic technique (10), the 

derivative I~ is approximated by 6/C;. The estimate of the variance 

£ = [(10 - <1»2 + (11 - <I> )2]V' = .)2 6 (5) 

can be used to weight the comparison between measured and computed intensities. 

When the observed variance is large, the energy is likely to be near a singularity in the 

intensity, and beam averaging is not justified. Hence, for both statistical and theoretical 

conSiderations, £·1 should be used to weigh the comparison between measured and 

computed intensities. 

Consider now a perfect surface with an n-fold rotation axis. At normal incidence, any 

beam (h;k;) other than the specular will have n beams in its equivalence class. Denote the 

amplitude of the n equivalent beams by 1./10, 1./11,"" 1./In+ Suppose now that the incident 

beam is slightly misaligned, making an angle of Q = (8, q» with respect to the surface 

normal. Converting to complex notation, let 
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(6) 

so that rotation by 2rr/n is represented by s = e2ni
/". In regions where l/1(z) is free of 

singularities for Izl < l(j, defining the vectors 

1/10 1 
1/11 I 

~2 I 

I/1~J 
gives the Taylor series expansion 

~ = s~ + D(z") for Izl < l(j, 

~= 

z:C1
) 1 

Z~:2)/2 I 

lZ"-ll"-~)/(n-1)! J 

where the unitary matrix 5 is given by Sjk = (.Jnrlsjk. The average intensity is 

<I> = ~.~ = ~.~ + D(z") = I + D(Z2) 

(7) 

(8) 

(9) 

and again the first-order term has been eliminated. The sensitivity of the data can be 

estimated by 

<5 = n-1
1 ~ sj Ij I = IzIzl + D(zm), (lD) 

where m = 2 for n odd, and m = 3 for n even. The higher derivatives of 1 cannot be 

estimated this way since they are confounded either with <I> or <5. 

An interesting outcome from the analysis is that contrary to the accepted view that four 

equivalent beams are needed to correct for error in both the polar and azimuthal angles 

(3), any n-fold rotation, in particular C2 and C3, will achieve a first-order correction. Four 

spots are needed, however, when the only symmetry elements present are mirror planes. 

In Equation (8), n terms were carried and the result of the averaging in Equation (9) was 

a first-order correction to the beam intensity. The second-order error term in <I> arises 

from the incoherent averaging of the n equivalent beams. If the wavefunctions could be 

summed coherently, the average intensity would be 
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= I + O(z"), (11) 

where 1 is a nx1 vector of ones: 1 = (111) T. Hence, coherent averaging corrects the 

intensity to order n. 

Experimentally, an approximation to coherent averaging is obtained when there are 

many symmetrically equivalent domains within the coherence area of the instrument. As 

is shown in Fig. 1, only the overlayer beams are averaged. The averaging will not be 

perfect since the areas covered by domains of each type will not be exactly equal. If Pi is 

the relative proportion of domain i per unit area, the amplitude of the wavefunction is 

! Pl1/l1 = 1/1 + Z1/l(lJor. PiSi + z2/2! 1/1(2)! p;S2i + .. . + z"·1/(n-1)! 1/I(".1)! p;S".i+ O(z") (12) 

If there is a large number of coherence areas within the beam, the expected value for 

the intensity is 

<I> = n('l'*p)(pT'l') 

= I + olzllz + O( crz2) + O(z"), 

where the variance in the domain coverage is 

0= [(n_1)/<N>n2]1/2 

and <N> is the average number of domains within a coherence area. 

(13) 

(14) 

Finally, suppose that the incident beam is aligned perfectly normal to a high-symmetry 

plane of the crystal, but that the sample was misaligned slightly when it was prepared so 

that the actual surface is not exactly parallel to the high-symmetry plane. This situation is 

the dual of the previous cases. The systematic error discussed above concerned the 

misalignment of the wavevector or the incident beam, that is, an error in reciprocal 

space, while here there is a misalignment in real space. The previously developed 

equations can be carried over to the dual case by reinterpreting the variables l; and z. 

Now, l; is the azimuthal angle between the surface normal and a mirror plane or the 
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substrate, while z is given by Equation (6) with 8 and <p being the angles between the 

surface normal and an n-fold rotation axis of the substrate. Hence, EBA intensities are 

correct to first order for a misorientation of the surface plane. 

The case where both types of errors occur does not introduce anything new. Letting z 

and z+ measure the errors in real and reciprocal space ( or l; and l;+, respectively, for cry 

symmetry), the Taylor series develops as 

(15) 

where 

fl!I!. ~ 
J = az and G = az2 (16) 

for IIZII < Zoo Now, beam averaging gives first-order correction for both z and z+. 
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Figure caption 

Figure 1: An asymmetric adsorbate on a ~ site can produce four rotationally equivalent 

domains, leading to coherent averaging for the overlayer beams. 
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CO on Ru (001): Island Size and Disordering 

Reprinted with permission from E. D. Williams, W. H. Weinberg and A. C. Sobrero, J. Chem. Phys. 
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low-energy electron diffraction (LEED) has been u~ to study the influence of SlepIJ and of temperature 
variation on the fonnation of ordcn:.d j911lnds nrco on the (001) surface ofrutbenium. The clean ~rface was 
found to have steps two atcrrm (one hcp unit cell) high separated by terraces with an averase width between 
13S and 270 .1\. WidthA of the ~m profLIes for the CO overlayer were mcaaurcd as a function of coverage at 
100 and 310 K. The coverage dependence requires that then: be increa.lling numbers o( islands per terrace a1 
decreasing coverages. The tempcriliurc dependence of tile overlayer wa.,<; measured alw. The frequency of the 
frustrated tnms1ational molion of the CO admoleculcs parallel to the surface it estimated to he 45 em - I. At 
fractional (Jj coverages up to 1/6, the ordered islands of CO disorder sUMtanliBlly below the dtsorption 
temperalure. At {J = 1/3. disordering is much less marked. The disordering beha ... ior depends strongly on the 
diSlributinn of sittS of Wands in the overlayer. The com:ct tl~triburi<ln "'as ddermined and used to caiculltote 
the isbind $ize:$ as a function of coverage. The mean number of CO molec:ul« pet wland is 1000 at "z 116, 500 al" = 0.1-4, Imd 300at.Q ... 0.12. 

I. INTRODUCTION 

The interactlons among chemically adsorbed molecules 
are o! both practical and theoretical interest. In practi­
cal terms, lateral interactions clearly affect the d1f­
fusion and reaction of chemically adsorbed molecules. 1 

The theoretical interest in lateral interactions arises be­
cause they represent a type of molecular interaction not 
observed in homogeneous systems. Interactions among 
chemically adsorbod molecules can arise as a result of 
a perturbation ofihe electrons of the metal Dear the sur­
face or an elastic distortion of the surface by tho ad­
sorbed species.:t~ The effects of lateral interactions 
are manifest in vibrational spectra of chemisorbed 
ovorlayers,lo.n in thermal desorption mass spectrome­
try, lI.U and, most strikingly, in low-energy electron 
diffraction (LEED). 14, Each of these measurements of­
fers a dtfferent potential· for the determination of lateral 
interaction energies. Only qualitative information is 
available via vibrational spectroscopies. proper analy­
sis of thermal c1esorptton mass spectra allows the esti­
mation of net attractive and repulsive interaction ener­
gies in overlayers. LEED, however, offers the pos­
sibility of determining both the size and directional de­
pendence of the microscopic lateral interactions between 
chemisorbed species. 

When molecules adsorb onto the regular array of bind­
ing sites of a stngle crystal surface, they often form 
ordered overlayors, observable by LEED, which have 
a periodicity greater than that o! tbe substrate. This is 
a direct consequence of lateral interactions. The ge­
ometry of the overlayer provides immediate qualitative 
information concerning the interactions. Short-range 
repulsive interactiollB. tend to cause vacancies in sites 
adjacent to an occupied site, thus increasing the periodi­
city of the overlayer. Attractive interactions allow the 
molecules to cluster into islands of ordered structure 
oven at very low surface coverages if the temperature 
is sufficiently low. Increasing the temperature causes 

dpresent add~88: Department of .Pbysics and Astronomy. 
Unive!"slty of Maryland. College Park. Maryland 20742. 

the ordered superstMlcturo to disorder, resulting in a 
disappearance of the LEED pattern. This is a physical 
realization of the two-dimensional order-disorder 
transition that has been employed widely in theoretical 
studles of phase transitions. IS The techniques and re­
sults of these studies therefore are directly applicable 
to an analysis of the ordered overlayers that form as a 
result of lateral interactions at surfaces. n •n LEED 
studtes of order-disorder phenomena in overlayers have 
been carried out for a limited number of chemisorbed 
systems. Among the most thoroughly studied systems 
have been oxygen adatorns on W(llO), 16-16 hydrogen 
adatoms on Ni(l11), 217-30 and oxygen adatoms on 
Ni(lllL SI-Soi 

An additional effect of lateral lnteractions, island for­
matioo, is accessible to study by LEED. Results from 
the adsorption of oxygen on W(llOya"·15.SS have shown that 
the oxygen adatoms clullter into many small islands, 
rather than forming one large island as would be ex­
pected from energetic conSiderations alone. It is 
reasonable to assume that the formation of small is­
lands arises as tho result of limitations on the .dlffusion 
of atoms or molecules across the surface. For the case 
of oxygen atoms on W(llO), it appears lhat steps on the 
surface may aet as barriers to diUusioo, isolating the 
adatorns on distinct terraces. In other systems, it is 
possible that islands form as a result d a Limited mo­
bHtty of the adspecies even on a perfect surface. In 
oither case, tho mechanism o:f island formation will de­
termine the distribution of sizes of islands at any given 
coverage. Thereforo~ quantitative studies of the size of 
ordered islands can provide inIormation on the limita­
tions of diffusion of molecules acrOBS the surface. Fur­
thermore, it is well knownS6-46 that finite size effects 
can influence strongly the nature of phase transitions. 
Detailed information concerning the dimensions of or­
dered structures on the surfaces, thus, may be CMlcial 
to a thorough understanding 01 order-disorder phenom­
ena in chemisorbod overlayers. 

In the following, we will discuss the results of a LEED 
investigation of the island formatioD and ardor-disorder 
behavior of CO on Ru(OOl). It is known that CO adsorbs 

1150 J. Chern. Phys. 76(2), 15 Jan. 1982 0021-9606/82/021160·12$02.10 01982 America.n Institute of Physics 
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FlG. 1. The (l3x.f!)R 30" structure of CO on Ru(OOll. Ar­
rows indioate the repulsive first neighbor interaction J, and the 
IIttractive second neighbor lntcractlon Jz. 

molecularly in the on-top site on Ru(OOl),lO.:sg Atfrac­
tional eoverages up to 8 =t (oDe CO per three surface Ru 
atoms, or 5. 26x leI" CO/cm2

), the adsorbed molecules 
order into a (.f3x ..,13) R 300 superstructure (hereafter 
referred to as the .f3 structure). 40-4 The formation of 
the ..f3 structure, in which nearest neighbor sites are un­
occupied, indicates a repulsive first neIghbor interac­
tion. Results of thermal dssorptlonO and infrared 
spectroscoplc10 measurements on this system indicate 
that there Is an aUracti ve sscond neighbor interaction 
between CO molecules which gives risc to island forma­
tion at low temperatures. The.fS structure with first 
and second neighbor interactions J l and J2 is shown in 
Fig. 1. The experimental techniques used to study this 
system are described in the follOWing sectton. In Sec. 
In, we present experimental data concerning island 
size, and change in .island size with temperature. A 
detailed analysis at the data and the corresponding 
discussion are presented in Sec. IV. Section V contains 
a summary of our major conclusions. 

II. EXPERIMENTAL METHODS 

The experiments were carried out in an ion-pumped 
stainless steel ultrahigh vacuum system equipped also 
with liquid nitrogen cooled titanium 9ublimation pumping. 
The base pressure, following bakeout, was below 1 
x 10-10 Torr. The system contains a quadrupole mass 
spectrometer and a single pass cylindrical mirror Auger 
electron spectrometer as well as four grid LEEO optics 
and a movable Faraday cup for beam intenstty measure­
ments. The Faraday cup contains an einzel lens which is 
negatively biased to accept only those electrons of energy 
within approximately 0.5 eV of the energy of tho incident 
beam. It also has been modified by replacement of the 
original collector cup by a channel electron multiplter."'·45 
A 0.13 mm diameter aperture on the Faraday cup was 
used in these experiments. 

The [ttl surface was oriented, cut, and polished to with­
in 1 0 of the (001) plane using standard methods. The 

polished crystal was spotwclded to twoparallcl 0.025 cm 
diameter Ta heating wires which ~ere clamped in a 
Cu bolder which was part o! a rotary manipulator as­
sembly. Thermocouple leads of 5% Ro/95% Wand 26% 
Re/74% W were spotweLded together and then spotwelded 
to a small piece of Ta foil (approximately 1 mm! sur­
face area) on the back of the crystal to make the junc­
tion. The crystal could be cooled to 100 K using liquid 
nitrogen refrigeration, and it could be heated resistive­
ly to above 1600 K. The thermocouple calibration o[ 
Sandstrom and WilhrowM was used below 273 K. Clean­
tng procedures established previouslyU were used. to 
keep the surface free ol contaminants. 

LEEO beam profiles were measured by positioning 
the Faraday cup on the center of the profile and varying: 
the energy of the electron beam to sweep the profile 
across the cup aperture. 41 Profiles measured in this 
way were corrected for the intensity variation of the 
beam with energy by division by the I-V curve. It was 
assumed in making this correction that there was no 
variation tn beam width over the energy range of the 
beam profile. The energy width (FWHM) of the sub­
strate beams ranged from approximately 1. 5 eV at 
37 cV to 3.4 eV at 95 eV. The FWHM of the (v'3xv'3) 
R 30° overlayer beams ranged from 1.5 eV [or the nar­
rowest beam measured to 2.7 eV [or the widest. Trans­
formation o[ the beam profiles as functioos o[ energy to 
functions of wave vector was done using 

.!!'./ _ sine -1/1 
i'JE 8 - 2 .. ./150.4 E , (1) 

""here e ts the angle o[ the diffracted beam with respect 
to the surface normal, E is the electron energy in eV, 
and k is the parallel component oI the wave vector in 
A-1

." The bulk value of 2.7058 A 46 was used for the 
nearest neighbor Ru-Ru dtstance on the unreconstructed 
(1 x 1) surface in calculating the values of k at the cen­
tor of the diffracted beam profiles. 

The over layers of CO were prepared usually by ad­
sorption at 350 K followed by cooling to either 100 or 310 
K. This procedure was followed stnce it has been shown 
that direct adsorption at low temperature leads to a 
large density of defects (domain boundaries) tn the 
overlay-er at iJ =- t. "1i To calibrate the coverage, the 
LEED intensity due to the -/3 structure was measured 
as a function of exposure to CO at 330 K. The exposure 
at which a maximum in intensity occurs represents 
optimum ordering of the ..f3 structure and thus a cover­
age 01 .a::::: i. The known constancy of the probability of 
adsorption of CO at room temperature up to 3 = i 41.50.51 
was then used to relate lower coverages to exposure. 

Measurem.ents of the firat order ..f3beam profiles wore 
carried out at an incident energy of 28 eV. One set 01 
measurements was duplicated at an energy of 49 eV to 
confirm that multiple scattering effects did not change 
the measured width. 51 Incident beam fluxes of 1-10 
nA/mm' were used to minimize electron stimulated 
desorption or dissociation of the CO. 5 ' Vartatton of 
intensity of the v'3beam with temperature was measured 
by monitoring the intensity of the beam whUe cooling 
from 400 K (desorptton o[ CO begins above 400 K). Or-
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deriDg and disordering of tho overlaycr with tempera­
ture was compLetely reversible: the inteosity and width 
of the beam profile at 100 K remained unchanged fol­
lowing multipLe heating and cooling cycles. The widths 
of the beam profiles are quite sonsltive to the presence 
of oxygen on the Burface. Even small amounts of oxygen 
contaminant cause substantial beam broadening. Care 
therefore was takOD to keep the surface rigorously free 
of oxygen by techniques established previously. a 

III. EXPERIMENTAL RESULTS 

Three distinct sets of experiments were performed in 
tbis study of the adsorption of CO on Ru(OOl). First, 
prolUe~ or the first-order LEED beams of the Ru(OOl) 
surface were measured as a function of electron energy 
to determine the instrument response function and the 
step density of the surface. Then, beam proftLes lor 
the ..f3 structure of the CO overlayer w~re roeasuredfor 
a variety of coverages· at 100 and 310 K. Finally, the 
disordering of the f3 structure at temperatures up to 
400 K was studied at three coverages by monitoring the 
LEED intensity as a function of temperature. Each of 
these sets of experiments is described below. 

A. Instrument response and step density 

The parameters determining the instrument response 
fWlctton arc the energy spread. or the incident electron 
beam AE, the dlameter of the Faraday cup aperture d, 
the eilective width of the incident electron beam D, 
and the angular spread (source extension) of the incident 
beam y • • 7.5f For thts instrument, ~E was determined to 
be 1.2 eV, using the elnzellens in the Faraday cup as a 
retarding field energy analyzer. The cup aperiure is 
0.13 mm, and the. true beam width is approximately 1 
mm, as estimated by moving the crystal across the 
bellm. However, this width may be modified to a di1-
ferent effective width by a focusing action of the einzel 
lens. The source extension was not determined indepen­
dently. but values of approximately O. 01 rad have been 
found {or other similar instruments. "",5"1 

To determine the values of D and y and to mea6ure 
the step density, the width of the firsl-order substrate 
beams was measured at energies between 35 and 90 eV. 
For a surface with a distribution of terraces of different 
sizes separated by steps, the beam profiles will be­
come broader and narrower with changiog energy. "-67 
The smallest measured width corresponds to the instru­
mental width. 54 Hen.zle~$ has derived a relationship 
for. the energies at which broadening and narrowing 
should be observed for the (001) surface of an hcp lattice 
with steps of hetght equal to the lattice constant along 
the hexagonal axis (4.28 A for Ru). These· energies are 
indicated. by arrows in Fig. 2 along witb the expert­
mentally determined values of the beam width. It is 
clear that the measured values are consistent with a 
model of the surface containing a distribution of steps 
of height 4.28 A. 

The degree of broadening of the beam profile is deter­
mined by the average distance between steps. The rela­
tive reduced width [the deconvoluted FWHM divided by 
the value of k for the beamS"} of the broadened beams 
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fiG. 2. F\VHM of the fust-order diffraction beRmS of the 
cleaa Ru(OO]) aa R function of energy. Error bars rcprestmL 
the standard deviation determined from repeated measuro­
ments. Only ODe m.easurement was made of the point v,1tboul 
an error bar. Arrows represent the energies at which ma::d­
ma (down arrow8~ and minima (up arrows) are expe(JWU in the 
width [Uer. (55) J. Tbe solid curve is the instrumental \\1dth. 
The dashed curvc 1s drawn empirically as .II. guide to the eye. 

shown in Fig. 2 is 1. 0:: O. 3%. Dependi.ng on the model 
used for the dist.ribution of terrace sizes, this indicates 
either terraces of width 100 lattice spacings (270.A)''r 
or of width 50 lattice spacings (135 A).58 These two 
estimates have been used as upper and lower limits on 
the step density. As discussed in Sec. IV A, on the basiS 
of the island size determination, the upper limit seems 
to represent the surface more adequlltely. 

The minima in the measured widths in Fig. 2 repre­
sent the width of the instrument response function.. 
Using the predetermined values of AE and d, these mini­
ma were used to determine the values of D and y from 
the knO'iVn relationships between the parameters AE, d, 
D, and y and the instrumental width ·as a function of 
energy and angle. 4'1,5i The values for these parameters 
were found to be D=O. 05 mm and y=O. 006 rad. The 
small value of the eUectlve width indicates that the einzel 
lens in the Faraday cup acts to discriminate against 
electrons not moving orthogonally to the detector. A 
collecting lens used by Park and co-workersn also 
reduced the effective beam diameter by essentially in­
creasing the dlatance between the sample and the col­
lector. For this instrument, the instrumental resolu­
tion is limited by the energy spread L1E at low electron 
energies and by the source extension yat higher en­
ergies. 

Because the ..J3beam occurs at a smaller angle with 
respect to the incident beam than does the substrate 
beam for the same electron energy, the width of the in­
strument response is narrower for the .f3 beam. Using 
the experimentally determined values for dE, d, D, and 
Y, the width of the iJlBlrwnent response for the ..f3bcam 
is 0.0060 A:l at 28 eV and 0.0057 A.·1 at 49 eV. An un­
certatnty of ±O. 0006 A-I is assigned to tbese values by 
comparison with the uncertainttes in the widths 0.( the 
substrate beam profiles. 
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6. Beam profiles of the CO overlay ... 

Deam profiles of the .f3 structure formed by CO were 
measured at 100 and 310 K for a range of coverages as 
described in Sec. II. Profiles measured at 100 K for 
coverages of -3=f and {}=O.10 are shown in Fig. 3. At 
.~ '" t, the FWHM of the beam. profile ts O. 0064 A-l • only 
slightly broader than the instrument response funetion. 
At 3=0.10, the FWHM is 0.0132 A-l. This increased 
width indicates that the CO molecules are present in or­
dered islands of limited size. 

The measured profiles were correcledfor the broadening 
due to the instrument response by a Fourier transform 
deconvolution. Since the measured proCHe I",{k) is the 
convolution product of the instrument response func-
tion T(k) and the true beam profile It(k}, 41 the true pro­
file can be recovered from the measurod profile ustng 
the expression 

(2) 

where F and F-1 are the lorward and reverse Fourier 
transforms~ respectively. The average of two.f3 
beam profiles that had the same FWHM as the instru­
ment response (0. 006 A~l) was used for the instrument 
response function T(k). The measured beam profiles 
were symmetrized by averaging about their center prior 
to deconvolution. The application of Eq. (2) was quite 
sensitive to truncation of the profiles and to noise. 
Therefore, profiles were smoothed and their wings ex-

FIG. 3. Averaged OOlUO profiles for the "-3 structure at ab­
solute coverages 3-".tand 3-=0.10 measured at 100 K. The pro­
me [or J=t is the average or nine measured profUes. tho.t at 
",,""0.10 is Lht! average of five. Measurements 'Wore made y,rith 
nn iucident electron energy u[ 28 eV. Il.k '" 0 is the center of tbe 
.f3 bcam profile. at k = O. 2464 A-I. 
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FIG. 4. FWHM of the.f3 beam profile as a [unction o( c()ve('­
age at 100 K • . Circles 0 measured widths at incident electron 
energy of 28 eV. Trlangles a widths corrected for instrumcnt 
respunse by deconvolution. .t.;rror bars on FWHM are the . 
atnndtl.l·d deviatiun determined from repeated mCBsurcmcnt-l5. 
Error bars on the coverage are estimated from the known re­
produclbtlity of exposure. 

tended prior to taking the Fourier transforms. 

The widths of profiles measured at 100 K for cover­
ages from -3 = ~ are shown in Fig. 4 before and after 
deconvolution. The width increases steadily as the 
coverage decreases. This shows that, as might be ex­
pected, smaller islands form at lower coverages. 
Values of the widths shown in Fig. 4 as well as widths 
measured at 310 K are listed in Table I. The standard 
de\''iation tn the widths of the deconvoluted profiles was 
calculated using the error propagation equation ap­
propriate for the deconvolution of two Gaussian func- . 
tions. 

TABLE I. Wtdtbs of beam profiles tn kl for,f3 structure at 
di.fferent coverages and temperatures. FWIiJ,l", and O''!I arc 
the measured width and standard'deviatlon. FWHM, and Ut 

are the width and standard deviation following deconvolution to 
correct for the instrument response. Values for J==!at 100 
and 310 K are combined as they are identical. 

T J FWHM. am FWHM t a, 

100 K It 0.0064 0.0006 0.0028 O. 0021 

1 0.0079 0.0002 0.OM1 0.0008 ... 
0.14 O.00B8 0.0008 0.0046 0.0012 

O. ]42. 0.0090 0.0002 0.0049 0.0007 

0.12 0.01<13 0.0007 0.0063 0.0010 

0.10 0.0132 0.0007 0.0090 0.0009 

310 K 0.20 0.0068 0.0006 0.0030 0.0017 

1 0.0089 0.0005 0.0058 0.0009 .. 
0.14 0.0)55 0.0015 0.0]15 0.0016 

"Valuo mco.surcd at 49 eV indd~nt energy. All other values 
measured at 28 cV Incident energy. 
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F'IG. 5, T"e variaLion with ;.emper-ature DC the intensity llt the 
ecnLe!" of the 13 lJeam profile for" =!. t. ond 0.14. The varia­
tion of the background intensity at.J = t. x's and at "=0.14. 
is alllO sbown. Arrow6 lJldlea.tc the temperatures at whtch tho 
beams begin to broaden. The .smooth curve is tbe calculated 
decrease In intensity due to frustrated transl3.t1onal moUon of 
the CO parllllel to the surfaco ,.,1th a frequoncy of 45 em-t

, 

At n =1, the optimum coverage for the,f3 structure, 
there Is no difference between the FWHM at 100 and that 
at 310 K. For lower coverages, ,'h:"t-and -8==0.14, the 
FWHM increases with the temperature. This indicates 
a decrease in island size which must be due to 106s of 
CO molecules from the islands. For .9 = 0.12, the beam 
profile is so weak and broad at 310 K as to be unmeasur­
able. At lower coverages still, no intensity due to the 
/3 structure can be seen at all at 310 K. The good 
agreement between the dcconvoluted widths of tho pro­
fUes measured at 28 and 49 eV indicates that the use of 
the kinematic (single scattering) approximation is ade­
quate for the present analysis. 

C. Temperature dependence of the CO overlayer 

Changes in the CO overlayer witb temperature werc 
first monttored by measuring the temperature dependence 
of the intensity of tho beam prof tic at its conter. The 
results for three different coverages are shown in Fig. 
5. At .9 "" t~ there is only about a 20% decrease in in­
tensity between 100 and 400 K. At .~""k- and ,9~O.14, 
however, there is a dramatic decrease in intensity 
with increasing temperature. 

Some decrease in intenstty with temperature ts cx-

pected due to the displacement of the CO molecules from 
their optimum positions on lhe surface as a result of 
vibrational motion . . The expected intensity variation i s 5\1 

(3) 

where 

2W=(2nI'L 1"'5- ",, 1' , (4' . 
As is the change in the electron beam wave vector ~ and 
u4 is the displacement in the q direction. The vibra­
tional frequencies of CO are 2021 cm-1 for the carbon­
oxygen stretch. 10 445 cm~l for the metal-carbon 
stretch, !III In tbe range of 400 to 600 cm-1 for the 
frustrated rotational motion, &0--(;1 and between 34 and 126 
em-1 for the frustrated translational motion parallel to 
the surface. ao-az Of Lhese, only the frustrated transla­
tional modes are sufficiently low in frequency to cause 
a measUJ::able change in the mean displacement of CO 
between 100 and 400 K. Hosemann and Dagchili9 have 
derived the mean square displacement with tempera­
ture of a lhree-dimensional harmonic oscillator. A 
similar derivation for a two-dimensional harmonic 
oscillator gives 

1 .. , 1 !~81i':," {~"CXP(hv!~.T)-l} , 

where u u is the displacement parallel to the surface, 

(5) 

v is the vibrational frequency, and m is the mass of the 
CO molecule, which has been treated as a single par­
ticle. Equations (4) and (5) were used to calculate the 

intensity variation with temperature for a range of 
values of v. The most satisfactory fit to the experimen­
tal data was obtained for v=45 cm~l. The calculated 
intensity variation is shown by the solid curve in Fig. 5. 
Up to approximately 220 K7 the observed decrease in 
intensity at .9=t can be attributed to vibrational motion. 
Above that temperature, an additional type of disorder 
must occur. Site disorder, in which CO molecules 
occupy "tncorrect" sites in the lattice with respect to the 
.fS structure, is the Ob\1.0UB example. It seems likely 
that site disorder at .9 =t will begin at domain boundaries, 
only becoming prevalent throughout the overlayer at 
high temperature. 

From measurements at 310 K, it is known that the 
beam profiles at .9=1- and 3=0.14 broaden with increas­
ing temperature. To monitor this change in shape, the 
intensities at dlflerentpoints on the pronle were measured 
as a fWlction of temperature. As a profile broadens, 
the intensity in the wings of the profile will decrease 
les8 rapidly than the intensity at the center. This be­
havior is illustrated for ,q =0.14 "in Fig. 6. Three in­
tensity-temperature curves are plotted together: one 
was measured at the center of the protile, and the other 
two at quarter-maximum intenSity. Each curve was 
normalized independently. The slower decrease in in­
tensity at the quarter-maximum points, which indicates 
broadoni.ng, 1s apparont. Tho rati.o of the intenSity at 
quarter-maximum to that at the center, hereafter re­
ferred to as the width ratIo, shows the broadening with 
temperature even more clearly. The onset ol an 
increase in the width ratto is abrupt, occurring at a 
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100 

FIG. G. 1'he variation with temperature of the lntensity at 
tbree dlffet'ent plemons on tbe beam profile. Circles mea-
6Urcd at the maximum of tho beam profil~. triangles, andx's 
measured at onc-fourth maximum as Ulustrated sehemattcally 
in the lnsct. Each curve has been normalized lndepcndcntly to 
unity at 100 K. The raUo of the curves measured in the wlngs 
of tbe prome to the curve measured at the center Is alBo shown 
for the sane polnts . 

temperature of 195± 5 K. The same type of behavior is 
observed at "=r, with the onset of broadening at 240 
± 10 K. The temperatures at which the width ratio be­
gins to cbange are indicated. with arrows in F ig. 5. At 
-8 =1-, the width ratio is ~onstant up to 400 K. This con­
firms the p~evious observation that the FWHM of the 
beam at ,'3 "'1 is the same at 100 and 310 K. 

The abrupt ooset of beam broadening, which occurs 
after the intensity has decreased by approximately 2(Y!, 
is somewhat surprising. [ntuitively, one would expect 
the profile to begin to broaden gradually as the intensity 
decreases, as has been observed for oxygen adatoms 
on W(110). 2. An explanation of this behavior is presented 
in Sec. !VB. 

IV. ANALYSIS AND DISCUSSION 

An analysts of the results presented tn the preceding 
section ts divided tnto two categorios that initialiy ap­
pear t9 be distinct-. The first category is the analysis 
of the Widths of the beam profiles to determine the 
Size, and possibly the mechanism of formatioD of the 
islands. The second category is the analysis of the or­
dering and disordering of the islands with temperature 
to determine the CO-CO lateral interaction energies 
and to compare with theoretical phase diagrams. now-

ever, during the analYSiS, it will become apparent that 
the island. size distribution and the order-disorder be­
havior are strongly related. In the following subsec­
tion, we shall describe first the analysis of the lsland 
size distributiOllB.insafar as it can be carried out without 
reference to the order-disorder behavior. In the second 
Bubsection, the Order-disorder behaVior and its rela­
tionship to the island size distribution are discussed. 
Finally, the results are compared with theoretical 
phase diagrams for the .f3 structure in the third sub­
sectlon. 

A. 1,I..,d sizes 

In principle, the mechanism of formation of the is­
lands determines the distribution of island sizes. U 

There arc two posstble reasons for the formation of 
small islands. The first is step-limitation of adatom 
diffusion.:l5 If steps act as barrlers to diffusion, then 
adatoms will be trapped on the terrace on which they 
initially are adsorbed. The size distribution of the 
islands. thus, will be determined by the size distribu­
tion of the terraces. Except at extremely low cover­
ages, this model requires that there be a constant num­
ber of islands which vary in size directly with cover­
age. In the following discussion, the phase "strict 
step-limited model" will refer to the case where there 
is little or no diffusion across step edges and only one 
island on a terrace. A second possible reason for the 
formation of small islands is a limited adatom diffusion 
distance . In this model, adatoms, which initially are 
adsorbed. near onc another, merge to form small is­
lands. Once formed, the configuration with many 
small islands may represent a local minimum in the 
(ree energy, wtth an activation barrier to the forma­
tion of a single large island. 

In practice, only for the slep-limited model of island 
formation have size distributions been predicted_ 31.57 

Tbe experimental beam widths were analyzed using 
these distributions as well as three scmiompirical size 
distributions. The relation" 

l(k) =N E P(M)I.(kl, (6) 
• 

where N is the number of islands, P(M) is the probability 
of occurrence ·of an island containing M molecules, and 
I,,(k) is the beam profile due to a single island with kf 
molecules, was used to calculate beam profiles for 
comparison with experiment given a distribution of sizes 
P(M). A sct of 34 I.1I{k) was calculated [or values of M 
ranging from 59 to 4955, with the molecules arranged 
in round islands. The 34 island sizes were chosen to 
represent constant increments in the value of the diame­
ter of the islands. Thus, the incrementa in M are 
smaller at smaller values of M where the width of the 
beam profile varies more rapidly with island size. 
The summation in Eq. (6) was carried out over this set 
of .values of .M~ with P{M) replaced by P(M}~\1. The 
results of the analysis for each of the five size distri­
butions is described below. 

,_ Geometrical distribution 

Lu and co-workers:lM ' have developed a geometrical 
distribution for terrace widths I': 
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M 

FIG. 7. ProlWlility of observing on islond C!Ontnining M molo­
cul~8 liS a (uncliun of M for (Il) geomctricnl distribution. (bl 
Henzler's dllStrlbutlon, (c) empirical distribution (describad in 
Sec. !VB). (d) boll-to-urn distribution, (e) distance distribu­
tion, and (0 delta functi.on distribution. Each dletribuUon gives 
rise to a beam profile of v.idth D.0041 A-I as observed ror J= t 
at 100 K. 

(7) 

where fj is the probabiUty of encountering a step between 
two surface atoms in a given direction, and r is the 
width of the terrace in the number of surfaee atoms. 
An analysis of the step distrlbutIon for the surface 
used in tMs study based on Eq. (7) indicate. that the 
mean terrace width is approximately 50 Ru atoms (Sec. 
II A). This corresponds to a value of f3 == 0.02. If the 
islands are step-limited, the size of an island will be 
determined by the overall coverage and the size of the 
terrace on which it resides by 

{8} 

where M is the number of molecules in the island, and 
where it has been assumed that on the average, terraces 
will have uniform widths in two dimensions. Using 
this model, the calculated FWHM of the beam profile 
varies only slightly (from 0.0040 to 0.0042 k') be­
tween fJ=tand 1~=O.10. It is apparent that using a con­
stant avorage terrace Width, this model cannot predict 
the rapid change in FWHM with coverage at intermediate 
coverages that is observed experimentally. Only tr the 
value of ~ is allowed to vary substantially with coverage, 
whtch corresponds to allowIng more tban one Island per 
terrace at low coverages, can the experimental values 
be reproduced. Curve (a) in Fig. 7 shows the island 
size distribution (with f3 =0. 022) tbat gives the correct 
FWHM for ~~r at 100 K. 

2. Henzler's distribution 

, Henzlers7 has proposed a distribution for the terrace 
width distribution given by 

(a) 

where E~ O. 8 and w is an adjustable parameter deter­
mining the mean terrace width. Based on tbis distribu-

tion., the mean terrace width on the Ru surface was found 
to be approximately 100 Ru atoms, as discussed in Sec. 
rnA. A value of w=40 in Eq. (9) gives this mean ter­
race width. Equation (8) again was used to relate M to 
r, so'that Eq. (9) could be used to predict island size 
distributions. As with the geometrical distribution, the 
requirement of islands limited by terrace size results in 
a very slow variation of FWHM with coverage between ..s 
~t and 8~ 0.10. (The range at Ibe value at the FWHMwas 
0.0036 k' at ~~rto 0.0037 k' at ~_0.10.) A fit to 
the experimental data requires a dillerent value of w, 
or a varying number of islands per terrace at each 
coverage. The distribution that corresponds to the 
correct beam profile width at 1~ =i- (UJ = 17 and mean 
terrace width =41 Ru atoms) is shown by curve (b) tn 
Fig. 7. 

3. 8alU~um distribution 

If there is a fixed number of nucleation sites N for 
islands, then an Island size distribution can be deter­
mined from the number of ways of distributing n adsor­
bates among those sites. The result tP 

P(M)oc O'(N, II, .11) 
Nn(N, n) , 

where 

and 

(l(N ) _ (N-I+nH 
,n (N-I}lnl 

, _ (N-2+n-M) I 
o {N, n, M)-N (N-2)I{n-M}I' 

(10) 

A different number of nucleation sites had to be used for 
each coverage to fit the experimental data with this dis­
tribution. This is consistent with the results of the 
prior two analyses that the eXperimental values are in­
compatible with a model that requires a fixed number 
of islands at all coverages. CurvQ (d) in Fig. 7 shows 
the ball-in-urn di"trlbntion (N=2100 aDd n~2666667 
for a 4000x4000 Ru atom surface) which gives the value 
of theFWHM measured for ~~t at 100 K. 

4. Distance distn'bution 

A computer Simulation based on a very simple model 
of diffUSion-limited island nucleation was used to gener~ 
ate probability distributions for the nearest-neighbor 
distance between island centers 7' that are Gaussian in 
'T. M The width of the dlstrlbutions increases ;tpprc..xl­
mately linearly with the mean distance To' Assuming 
that the number of molecules in an island is related to 
the distance to its nearest neighbor by M. = -8"", distrtbu­
tions of island sizes wer~ generatod using this model. 
A decreasing value of r 0 with decreasing coverage was 
required to fit the measured values 01 the 'FWHM. 
This suggests, as do the prior results, that there are 
more but smaller islands present at lower co\·erages. 
The failure of this model to fit the experimental data 
with a eonstant value of To indicatos that the model used 
to generate this distribution is too simple to describe 
the overlayer correctly. Curve (e) in Fig. 7 represonts 
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the distance distribution (To = 106 Ru atoms) for ..9=t at 
100 K. 

5. Delt8 function distribution 

For comparison with the other distributions, a dis­
tribution in which there is only one island size was also 
considered. The delta function distribution (or -3=~ is 
shown by curve (I) of Fig. 7. 

Figure 7 amply demonstrates that knowLedge of the 
width only of a beam prciUe is insufficient to determine 
the island sizes. In addition, use of the delta function 
distribution to analyze the size docs not give the mean 
size in any sense, but at best an upper limit to the mean 
size. 64 Knowledge of the co,ierage dependence of the 
beam width can be used to test specific models for the 
size distribution. In this case, models that require a 
fixed number of islands fail to fit the experimental data 
because they cannot generate the rapid change in full 
width with coverage thru: [a observed. This indicates 
that neither a strict step-limited model nor a defect­
nucleation model are correct for this system. The 
distance-distribution also seems to be incorrect, 
since a varying value of 717 with coverage is necessary to 
fit the experimental data. This indicates that the as­
sumptions used in deriving this distribution&t. do not de­
scribe adequately the diffusion of CO on the Ru(OOl) 
surface. 

B. Disordering and island size 

As shown in Figs. 5 and 6, no change in the width of 

the low-coverage beam profiles with increasing tempera­
ture is observed until the Intensity has dec reased by ap­
proximately 20%. This seems a somewhat Burprising 
result. The I-T behavior at -8 =t indicates that there is 
no sile disorder within the f3 structure below approxi­
mately 220 K. Thus the decrease in intensity must be 
due to loss of CO molecules from the islands. But as 
CO molecules leave the islands, the islands become 
smaller and the FWlJ],llarger. ThcrcIore, it might be 
expected that changes in intensity and FWHM would oc­
cur simultaneously. This has in fact been observed for 
oxygen adatoms on W(llO).2. However, It is possible 
tbat the size distribution of the islands could modify this 
simple prediction. Since the height of a beam profile 
for a single island l .. (k) 1s proportional to the square of 
the number of molecules in the island, large islands 
overwhelmingly dominate in determining the overall pro­
file [EQ. (6)], On the other hand, the FWHM of the pro­
file for a single island is inversely proportional to the 
diameter 01 the island, so that the FWHM changes very 
rapIdly with size for small islands and mere slowly for 
large islands. Using these considerations, it can be 
seen that if small islands totally dissolve, it will tend 
to decrease the FWHM. If, at the same time, large is­
lands lose some fraction of their molecules, the intensity 
will decrease, and the FWHM will increase slightly. 
For the correct distribution of island sizes, it is pos­
sible that the two influences on the FWHM wi.ll cancel 
until the int.cnslty has dropped appreciably. To test this 
hypothesis, a simple model of the disordering process 
was consIdered for step-limited and nonstep-limited 
models or island formatton. 

The disordered phase of CO was tested as a two­
dimensional ideal gas, and the v'3 st.ructure as a 2D 
solid. The chemical potentials of the two phases were 
calculated and equated to determine the number den­
sity of disordered CO molecules as a function of tem­
perature. The partition fWlcUon for the 2D gas is 

1 (2'1r11lk T )NI N, 
Q,= N,l ~ A, qlnt, (11) 

where N, is the number of 2D gas molecules, m is the 
mass, A,. is the surface area available to the molecules 
(total area minus the arca covered by islands). and 
qLat is the internal partition function of a Single mole­
cule. In the 2D solid, it is assumed that all the mole­
cules are ordered in t.'e v'3 structure, i. e., there is no 
occupancy of nearest neighbor sites. If the vibrational 
modes of the co remain independent in the 2D solid 
(the CO-CO distance is 4.7 A), the partition fuuctioD 
for an island for which the edge molecules are a negli­
gible fraction of the total is 

_ ,vo (-6NoJ,) 
Q, -qht exp 2kD T ' (12) 

where N, is the number of molecules in the 2D solid and 
J3 1s the interaction energy for CO molecules tn sec­
ond Dearest neighbor sites. In both Eqs. (11) and (12), 
the zero of energy has been taken as the minimum of 
the potential energy well for binding of a CO molecule to 
the surface. Equating the chemical potential for the 
solid and gas gives 

~,o!:!..o (2.m:DT)(fu!.L)exp(E....) . (13) 
A.. h qtn.t" 2kB T 

T~e internal partition functions for molecules in the gas 
and solid w~re taken to be the same, except for a minor 
difference due to the different carbon-oxygen stretching 
frequencies. 10 

For a finite size island, the enerb"Y will be less than 
6JzN, /2 since the molecules at the edge of the island 
have a coordination smaller than six. The number of 
molecules at the edge of the island will be proportional 
to the square root of the number in the island, so that 
the total energy is 

(14) 

where c is a constant taking into account the coordina­
tion of the edge molecules and the proportionality of 
.fN; to the number at the edge. Using this value of E 
in the partition function for the SOlid, the new value 
for the 2D gas phase density is 

(15) 

In a step-limited model of island formation, each island 
is located on a terrace, isolated from all otber islands. 
Thus, Eq. (15) can be used directly to calculate the 2 D 
gas-phase density on each terrace as a function of tem­
perature. Once 3; is known, the change in size of th.e 
island follows immediately, and the beam profile can 
thus be calculated as a function of temperature. For 
comparison with experiment, the calculated profi les 

J. Chtim. Phvs .• Vol. 76, No.2, 15 January 1982 



106. 

1158 Williams. Weinberg. and Sobrero: CO on Ru(OOI J 

u 
" ~ 
o 
E 

" c 
~ 0,7 
in 
c 
2 
E 0.6 

r..S f---"""""" 
100 

T, K 

8~ ./6 

o 
o 
o 

o 
o 

cP 

1.4 
u 

.~ 
1.3 ~ 

(; 
c 

o -= o 
n: 

FIG. 8. Comparison DC calculated (soUd curves) and experi­
mental (circles) intensity and width ratio as functions of tcm­
{X!rature. An arbitrary size distribuUon (see text) and a value 
oC J 2 2_ 1. 28 kcal/mol were usod tn the co.lcula1lon. The cal­
culated [ntenslty has been multiplied by cXjJ(-2W) [HOO Eq. (4)1. 

were numerically convoluted with a Gaussian "instru­
ment response function" of width 0.006 :A-I. This cal­
culation was carried out for distributions (a), (e), (d), 
(e), and (f) in Fig. 7. The calculation was quite 
successful in duplicating the Budden ooset of change in 
the width ratio. However, for none o! the size distri­
butions did the incensity drop by more than 10% before 
the width ratio began to change. In addition, only a 10 K 
difference between the intensity curves at -3 =a- and . .9 
=0.14 was calculated, in contrast to the observed dif­
ference of 30 K or more (Fig. 5). 

II the islands are not step-limited, then all the is­
lands in the overlayer should be considered in cal­
culating the partition function for the 2D solid. A direct 

. approach to this problem was not attempted. Instead, 
an apprOXimate method wa.s used. The overall 2D gas 
density was calculated using Eq. (13). It was then as­
sumed that all islands lose CO molecules from their 
edges at the same rate, with a correction term for 
the higher energy of smaller islands a,.q in Eq. (15), un­
til the correct overall 2D gas density was reached. In­
clusion ai the energy correction term causes small is­
lands to lose molecules from their edges at a greater 
rate than large islands. Omission of this term causes 
a distribution to act like a distribution with a sUghtly 
larger mean island size. Beam profiles were cal­
culated as for the step-limited model. It was found 
that for different distributions of island sizes, the onset 
of change of t.he width ratio was shtftad to higher tem­
peratures as the mean island size became smatler. This 
is in agreement with our quaUtath·e argument concern­
ing the relative effects of a loss of CO molecules from 
small and large islands in the FWHM. For the ball-in­
urn distribution, the intensity decreased b}' 10% before 
beam broadening was observed. For the geometrical 
dlBtribution~ the profile actually became narrower with 
increasing temperature as the large number of small 

islands in that distribution preferentially disordered. 
Therefore, a distribution intermediate in shape be­
tween these two was sought. An empirical distribution 
of the form 

P(M)oo (1 _brio, (16) 

where b is an arbitrary constant. was found to give the 
correct relative behavior of intensity and width with tem­
perature. The distribution used at ..9:r is shown in 
curve (c) of Fig. 7. The calculated intensity and width 
ratio for J%: -1. 28 kcal/rnol is compared with the ex­
perimental data in Fig. 8. The calculation reproduces 
the delayed onset or broadening quite Buccessfully, al­
though the shape of the calculated intensity curve i.8 not 
correct. Also, the more rapid increase in width with 
temperature at ~=O.14 than at 8=!- is predicted by the 
calculation. However, as for the step-limited model, 
the observed difference in temperature between the two 
intensity curves is not reproduced. The best fit to both 
sets of data U*=!- and ,1) ::= 0.14) therefore occurs wlth 
Jt = -1. 20 kcal/mol which places the calculated curves 
for" =i-- approximately 10 K too law and those for 
-3 =0.14 approximately 10 K too high in temperature. 

Three major approximations were made in deriVing 
the partition functions for the 2D gas and 2D solid [Eqs. 
(11) and (12)J. The first two were: (1) treating the dis­
ordered phase as an ideal gas and (2) equating the in­
ternal partition functions or molecules in the two phases. 
Modification of these two approximations causes the cal­
culated intensity and width ratio curves to change mainly 
by a shift along the temperature axis. Thus, these two 
approximations affect the estimate of Jz. most strongly. 
The third apprOximation, that site-disorder does not 
occur within the lslands, is best at low temperature. In­
spection of the intenSity-temperature curve at 8=t 
(Fig. 6) ShOws that this is a rather reasonable approxi­
mation over the temperature range for which the cal­
culations were pBrformed~ The relative behavior of the 
intensity and the width ratiO are .not influenced greatly 
by these approximatlons. Therefore, conclusions based 
on calculations of these two quantities can be given a 
rather high degree of credence. 

It was not possible to fit the experimental intensity and 
width ratio curves if it is assumed that CO molecules 
cannot cross steps and that, thus, the density of the dis­
ordered phase about an island is due to loss of CO mole­
cules from that island alone. If the number of CO mole­
cules lost from each island is proportional to the number 
of molecules at tho edge of the island (and this is a very 
reaaonable approximation), it is possible to fit the ex­
perimental curves only with one model for the island size 
distribution. It 1s th,?J:'cfore cODcludod that curve (c) of 
Fig. 7 represents the physical distribution of.lsland sizes, 
although Eq. (16), used to describe it, is only an empiri­
cal equatIon. Therefore, the mean island sizes have 
been determined by varying the parameter b in Eq. (16) 
to produce profiles of the widths measured at 100 K. 
The results arc compared with the values calculated 
using the delta function distribution in Table n. In mak­
ing these ealculations, it has been assumed that the 
width measured at 100 K is the narrowest width that will 
occur at each coverage. This has been shown to be 
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TABLE II. Mean i81and lI!I i :r;e and diameter for the correct dis­
tribution described in Sec. IV B. aDd. t.bc delta function dis­
tribution. b is the value or the pat"amete r used in Eq. (16), 

Correct distribul:ioD Delta fum.:1.ion distdbution 

• M ii, J.. M d, J.. 
t 0,008 1000 140 2700 255 .. 
0.14 0.014 500 95 1700 215 

0, 12 O. (lI9 300 75 1100 165 

0.10 0.032 160 B5 500 115 

correct experimentally for 8=1- and -3=0.14. Extrapolat­
ing the behavior at 8~k- and 8~O.14, it appear. that the 
onset of broadening at 8 = O. 12 Is near 100 K, and at ~ 
=0.10, it is probably below 100 K. Therefore, the cal­
culated island sizes are correct for 8=t-, 0.14, and 
0.12. and probably somewhat small for ..9=0.10. As 
shown in Table II, regardless of the distribution ui3ed 
to calculate the mean island size, the mean size de­
creases with coverage far more rapidly than linearly. 
This demonstrates that there are increasing numbers 
of islands with decreasing coverage. 

Both the coverage dependence of the beam widths and 
the behavior of intensity and width with temperature shOY.' 
that a strict step-limited model for island growth is Dot 
correct for CO on Ru(OOl). While the maximum size an 
island can attain is obviously limited by the size of the 
terrace on which it is located, at low coverages there is 
some limit to the mobility of the CO molecules which 
causes more than one island to form on a single smooth 
terrace. In addition, analysis of the disordering be­
havior of tha islands has shown that the size dlstributio~ 
must be of the shape of curve (c) in Fig:. 7, which can 
be described by Eq. (16). The shape of this curve 
places a lower limit on the size distribution of terraces, 
since the terraces must be large enough'to accommo­
date the islands . The geometrical distribution35

•
5 a with 

a step density of 2% (Sec. In A) has a very small pro­
portion of large terraces and would not allow the forma­
tion of the island size distribution of Fig. 7(c). Henzler's 
distrlbution5'J with a step density of one percent (Section 
rnA) has a very slow decay with increasing terrace 
width, and could easily accommodate the proposed is­
land sizes. 1t apgears, t3erefore, that the broader dis­
tribution describes the step density on this surface more 
accurately. 

C. Comparison with pi" ... , diagrams 

Tile dissolution of ordered islands into a disordered 
phase is a first-order transition. In tl?-esc experiments, 
the disordering was monitored under conditions of con­
stant 2D density (coverage). For these conditions, the 
disordering will take place over a range of tempera­
ture, and the transition temperature will be that at which 
the ordered phase disappears con:pletely. This point is 
observable by LEED as the temperature at which the in­
tegrated intensity in the overlayer beam profile effective­
ly goes to zero. aa Quantitative measurements of these 
temperatures werc not made in this study. However, 

from the experiments that were performed, a clear 
trend in the dependence of the transition temperature 
on coverage appears. Extrapolation of. the intensity ver­
sus temperature curves at a =-;- and .s = 0. 14 shows that 
the transition temperatures are well above 400 K for 
these two coverages. At -3 = O. 12, there is only a weak 
profile observable at 310 K, indicating a transition 
temperature between 310 and 400 K. No profile is ob­
servable at -3=0.1.0 at 310 K, whlch shows that the transi­
tion temperature is .$310 K. The results indicate that the 
transition temperature decreases very rapidly with 
coverage. 

Phase diagrams have been caLcuLated (or overlayers on 
a triangular substrate such as Ru(OOl), with attractive 
socond and repulsive first nearest-neighbor interactions 
in the ratios J2/Jt =-155 andJ,jJ1 =O. 81-U In the case 
where the second neIghbor interaction 1s zero, no or­
dered structure forms at any temperature below a 
coverage of approximately 0.28-. OlI.S? Above that cover­
age, an ordered structure does form and disorders with 
increasing temperature via a second-order phase transi­
tion. The maximum transition temperature occurs 
at -3=t and bas a value of kDT/Jl~O.35.tltI.e~ When the 
attractive second neighbor interaction is added, the 
transition temperature at 3",y is increased to a value 
of k8 T/ J1 ~ 1. 4. tl5 In addition, a coexistence region in 
which the ordered and disordered phases are in equi­
Ubrium is added to the phase diagram. The coverage 
range over which island formation has been observed for 
CO on Ru(OOl} falls within the theoretically predicted 
coexistence region. 

For CO on Ru(OOl), the magnitude of the second neigh­
bor interaction should be considerably smaller than that 
of the first. From thermal desorption measurements, 
a value of Ja / J1 =' - t has been estimated. n Therefore, 
a direct comparison of the experimental transition temM 
peratures with the calculated values is not feasible . 
However, a qualitatlve comparison reveals an interesting 
disparity between ,the theory and experiment. The ex­
porimental values of the tranSition temperature, although 
determined only approximately, show a clear trend of 
rapidly decreasing transition temperature wlth coverage. 
The experimental transition temperature drops by at 
least one-third between .a =l- and .9 =0.10. In contrast, 
the theoretical transition temperature drops by only 
10% between the two cover~es. &5 This is similar to the 
difference beh\-een the calculated coverage dependence 
of the [ntensity-temperature curves of Section IV B and 
the larger experimental dependence. 

This discrepancy may bo the result or the small is­
land sizes of the CO overlayer (sce Table U). Re­
normalization group calculations have shown that finite 
size effects can transform a flat phase boundary to one 
tn which the transition temperature increases with 
coverage. 5. While the boundary conditions used in the 
calculation aro almost certainly not the same as those 
which determine island size in too experimentaL sys­
tem, the results indicate that finite size effects have 
the potential to perturb the phase diagram as observed 

, experimentally. 
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V. CONCLUSIONS 

The major conclusions of this work; are summarized 
below: 

(1) The Ru(OOl) surface contains steps that are onehcp 
WIlt cell (two Ru atoms) in height. Dased on the broaden­
tng of the substrate beam profiles, the mean terrace 
width is between 50 and 100 Ru atoms. Measurements 
of overlayer island sizes indicate that the true terrace 
size distribution is closer to the larger limit for this 
surface. 

(2) The temperature dependence of the fuUy ordered 
(-13 x.J3) R 300 CO overlayer indicates that the frequency 
of the frustrated translational motion of CO parallel to 
the surface is approximately 45 em-i. 

(3) The coverage dependence 01 the widths of the fi 
beam profiles is inconsistent with a stnct step-limited 
model of island formation for CO on Ru(OOl). There 
appear to be increasing numbers of smaller islands with 
decreasing coverage. 

(4) The distribution of island slzes can have a pro­
nounced effect on the change in tbe beam wldth during is­
land dissolution. Using this erfect, it was possible to 
determine the island size distribution for CO on Ru(OOl) 
and, thus, the mean island size as a function of cover­
age [see Eq. (16) and Table nJ. 
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Appendix 2 

Least Squares 



111. 

1. Least Squares with Error in All Variables 

The usual equations in regression analysis assume that the independent variables can be 

measured exactly while assigning all the uncertainty to the dependent variables. In many 

cases this separation of variables into two classes is quite arbitrary since all the data 

contain errors. Different choices for the independent variables will give different values 

for the parameters, and it is not always clear which are the best values. 

Consider as an example two variables x and y with a linear relationship between them. 

This is usually expressed as 

y=mx+b (1) 

with the two parameters m and b to be fitted by least squares. Another straight line is 

x=I.JY+13 (2) 

When there are measurement errors in both x and y, these equations do not give 

the same line (except by coincidence). Treating the two variables symmetrically, as in 

1 = mx + ny, 

which gives the normal equations 

[Lxll fLx? Lyjl(ll [ml 
[LY;! = L LxiYi LYi2 J [ n J 

(3) 

(4) 

(If the constant term b is close to zero, then the symmetriC form in Equation (3) cannot 

be used.) This treatment assumes that the variables have been scaled so that the 

variances ax and ay are equal. For unequal variances, Equation (3) becomes 

1 = m(x/ax) + n(y/ay) (3.1) 

The general case of linear least squares is handled similarly. The usual equation is 

y = xb + lbo, (5) 

where y is the vector of dependent variables, x is the data matrix, b is the 
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parameter vector to be determined, .l is the vector of l's and bo is the constant term. 

The symmetric form is obtained by the rearrangement 

[b/bo 1 
1 = [xIY] l/bo (6) 

• I 

using an augmented data matrix and parameter vector, from which the normal equations 

follow. As before, Ibol cannot be too small when this form is used. 

When the number of parameters to be fitted is ,,3, there are biased estimates for b with 

smaller variance than the Gauss-Markov estimate. A general technique for obtaining 

reduced variance estimates is ridge regression (1, 2) with b given by 

(7) 

where X is the augmented data matrix and k is the ridge parameter. A good value for 

this parameter is the generalized cross-validation estimate (3) found by minimizing the 

function 

V(k) = III - A(k)1112/[Trace(1 - A(k»f, (8) 

where 

(9) 

and the Euclidean norm is used. 

2. Least Squares for Conic Sections 

When applying the photographic method for determining angles of incidence (4), it is 

necessary to find the center and radius of the image of the LEED screen on the 

photograph. Geometrically, any three points on the circumference are sufficient to 

determine the circle, but errors in measuring the coordinates of the points lead to errors 

in determining the unknown parameters. To obtain the high preciSion in the parameters 

needed for the angle determination technique, many data points must be measured and 

used in a least-squares procedure to fit a circle. 
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The equation for a circle, as it is usually written, is nonlinear in the desired parameters, 

r = (x - x,,)2 + (y - Yof (1) 

A rearrangement gives the linear form 

(2) 

where 

(3) 

and the parameters K\ x"R-1 and YoKl can be found by linear least squares. The 

conditioning of the normal equations can be improved by subtract off the mean values of 

x and y, viz., <x> and <Y>, and rescaling the variables by dividing by the standard 

deviations Ox and Oy to make them dimensionless 

C;i = (XI - <x> )/ox 

1)1 = (YI - <Y> )/Oy 

and 

(4) 

This gives 

raj 
1 = [C;1)C;] l~ , (5) 

where 

a = -20JR 

f3 = -20y/R 

y = (0/ + o/)/R 

and 

R = ~ - [(x" - <x> )2 + (Yo _ <y> )'] (6) 

The solution to Equation (5) is given via the normal equations as 

(7) 

where the data matrix is x = [C;1)C;] and the parameter vector is b = (af3y)T. The same 

fitting procedure can be used for the general conic section 
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1 = axZ + f3~ + yyZ + ox + Ey, 

which becomes 

a 

f3 
1 = [x? XiYi Y? Xi Vi] y = xb 

.5 

E 

(8) 

(9) 

The data values XI and Yi can be normalized as before and ridge regression can again be 

used to reduce the variance in b. 
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