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Abstract

Four aspects of low-energy electron diffraction (LEED) have been investigated:
interpretation of spot patterns to determine the surface unit cell and possible
ambiguities, development of a photographic method for measuring angles of incidence
and determining alignment of the LEED instrument, study of reliability factors used for

intensity analysis, and justification for equivalent beam averaging.

The interpretation of LEED spot patterns to determine the geometry of the surface unit
cell can be involved when there are several symmetrically equivalent structural domains
contributing to the pattern. Complex patterns can be deciphered by the algorithm
described in Chapter II. The algorithm determines a surface unit cell that is often unique
but not always, as where a p(2 x 2) pattern from a fcc(111) surface can be produced by
a true (2 x 2) overlayer or by three domains of a (2 x 1) structure. This ambiguity arises
on surfaces with 6m symmetry, such as fcc(111) and hcp(0001), for spot patterns with

threefold rotational symmetry.

In Chapter I1I, a broadly applicable photographic method for measuring angles of
incidence and determining the alignment of the LEED instruments is described. Two
published methods for determining the angle of incidence are special cases of this
general procedure. The procedure extends the photographic methods and facilitates the

verification of the alignment of the components of the LEED instrument.

Reliability factors are used to evaluate correspondence between computed and observed
LEED intensity spectra. Zanazzi and Jona, Pendry, and Sobrero and Weinberg have

proposed reliability factors that are examined in Chapter IV. Chapter V provides a



theoretical analysis and shows that averaging over momentum space gives the best
resolution of the surface structure while energy averaging smears out information in the

intensity spectra.

Chapter VI provides a theoretical basis for the procedure of equivalent beam averaging,
which provides a first-order correction to LEED intensities for systematic error due to
angular misalignment of the incident beam and corrects for misorientation (where the
actual surface plane is at a slight angle to the desired crystal plane). The potential of

higher-order corrections is discussed.
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Chapter 1

Introduction: Determination of Surface Structure by LEED



Introduction: Determination of Surface Structure by LEED

The determination of surface structure by LEED requires that experimental data be
compared with computed intensity spectra. The reliability factor, or R-factor, is a
quantitative measure of the level of agreement between the experiment and the
computation. As the parameters in the theory are varied, the quality of the fit changes
continuously. The underlying assumption is that the parameter values that optimize the
fit are the closest to the true, physical parameters. This requires that the model
employed in the fitting procedure be an accurate approximation of the true scattering

process. The dynamical theory of LEED has been quite successful in this regard.

The dynamical theory has been used to study free electron metal surfaces, such as that
of aluminum, as well as the more complex transition metals and semiconductors. A
variety of molecular overlayers have also been studied. One thrust of research in LEED
theory is in exploring new approximations to reduce the expense of the computations
when large unit cells are involved (1-2), or when high energies are used (3). Despite the
successes of LEED, there are systematic discrepancies between measured and calculated

intensities even for simple surfaces.

The lack of perfect agreement is due to problems in the experiments and in the theory.
For some surfaces, there are great difficulties in obtaining reproducible experimental
data. The W(001)-(1 x 1) high temperature phase is a case in point. In a comparison of
experimental data from six research groups (4-9), Stevens and Russell found large
discrepancies. One cannot demand of the theory that it fit such data very closely, and
even if good agreement could be obtained in all cases, the results would not be

meaningful. Data can be fitted only to within the experimental uncertainty. Fine-tuning



beyond that is "fitting the noise" and devoid of significance.

Other experimental considerations are the irreproducibility of data for beams at glancing
angles to the surface or of the absolute intensities in overlayer systems. Both of these
effects are due to lateral disorder on the surface. Glancing beams have a large
instrumental transfer width (10), which makes them sensitive to fine details of the lateral
structure of the surface, including steps and other defects (11). The disposition of these
defects depends on uncontrollable factors affected by the preparation of the sample. A
sample aligned to within £2° of a nominal low Miller index surface will have on average
one step every 70 lattice spacings along the azimuthal direction of the misalignment. The
polishing procedure adds a random component of steps, and cleaning by ion
bombardment adds point defects. In addition, there are surface manifestations of defects
already present in the bulk such as dislocations. For angles of incidence and emergence
near the surface normal, these defects redistribute elastic intensity only within the
Brillouin zone, but at glancing angles the geometric view factor becomes important and

even the integrated beam intensities are irreproducible.

Adsorbed overlayers present experimental difficulties because they cannot always be
regenerated with a constant degree of order. For the Ru(001) (v3 x V3)R30°-CO system,
both the exposure of the clean surface to the gas and the subsequent anneal have to be
controlled rigorously in order to obtain reproducible intensities (12). The total electron
dose (13) and the rate of dosing (beam current) (14) also affect the observed intensities.
These factors make the comparison of absolute intensities subject to large experimental

uncertainties.

Fortunately, the absolute intensities are not needed for structure determination; it is

sufficient to compare the relative intensities. There is a problem, though, in that there is



no consensus regarding how to normalize the intensity spectra or how to gauge the level
of agreement among the normalized curves. The lack of consensus is manifested in the
use of various R-factors by various research groups. Since different R-factors give
different surface structures as the optimum, the lack of consensus has real

conseqguences.
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Chapter II

Interpretation of LEED Spot Patterns and Possible Ambiguities



Abstract

The matrix notation for describing the structure of an overlayer in terms of the substrate
unit vectors does not give a unique matrix for the structure. We discuss the equivalence
class of matrices that all specify the same structure and demonstrate how to determine if
two matrices are equivalent. This provides a convenient method for determining the
point group symmetry of a structure from its matrix. The matrix theory is used to
develop an algorithm for unscrambling the LEED pattern resulting from a superposition of
patterns from symmetrically equivalent antiphase domains for simply related overlayers.
Due to the existence of symmetrically equivalent domains, certain surface nets cannot be
deduced unambiguously from their LEED patterns. A well-known example occurs for a
p(2 x 2) overlayer on a fcc(111) or hep{0001) substrate, the diffraction pattern of which
can be interpreted as due either to a true (2 x 2) unit cell or to three domains of a

(2 x 1) structure. It is demonstrated that this is the only type of ambiguity that can arise
where the pattern resulting from a superposition of several Bravais lattices appears as a

single Bravais lattice.



1. Introduction

When examining a new surface structure with low-energy electron diffraction (LEED), the
first task is to determine the size and shape of the unit cell. This information is needed to
complete the characterization of the structure. For an adsorbed overlayer, the shape of
the surface unit cell can suggest the absolute coverage at saturation and occasionally
even the adsorption site. If more than one structural phase occurs, either as a function
of coverage or of temperature, the surface unit cells play a fundamental role in the

understanding of the interatomic forces which lead to the phase transition.

For complex LEED patterns, the process of determining the true surface net has been
described as a "nontrivial task requiring a certain amount of imagination" (1). In the
absence of domains, the pattern on a LEED screen is a representation of the reciprocal
lattice of the surface. The two-dimensional unit cell is determined easily from such a
pattern. Complications arise, however, when there are several domains of an adsorbed
ordered overlayer on a high-symmetry substrate. This complicating factor has two
unfortunate consequences concerning the interpretation of LEED patterns. The obvious
effect is that the pattern is difficult to interpret because the reciprocal lattices for each of
the domains are all superimposed. A more subtle consequence is that it is not always
possible to specify a unique surface net corresponding to the observed pattern. Such an
ambiguity occurs on the Ir(111)-(2 x 2)-O surface, where either a single domain of a
bona fide (2 x 2) overlayer or three rotationally symmetric domains of a (2 x 1) structure

would both give the observed (2 x 2) pattern (2).

It is important to know which patterns can be interpreted in more than one way and to
generate all possible interpretations. Without some underlying theory, it would be

difficuit to say whether all the possible surface nets corresponding to an observed



pattern had been exhibited or if a more complete search would yield new interpretations.
Fortunately, it can be proven that there is only one type of ambiguity where the
superposition or several Bravais lattices is ambiguous with the pattern produced by one
or two overlayer domains. This occurs on a substrate with a hexagonal Bravais lattice
where an overlayer which produces a p(S x S)R@° pattern may have either a (S x S) unit
cell or three mutually rotated domains of a (5/2 x S) structure. Examples of this type of
ambiguity abound, including Ir(111)-(2 x 2)-O (2), Rh(111)-(2 x 2)-0 (3), Pt(111)-

(6 x 6)-naphthalene (4) and UO2(111) (2v3 x v3)R30° (5). Other structures such as the
Ru(0001)-(v'3 x V3)R30°-CO (6) would give rise to ambiguity if the adsorbate were

bonded to a bridge site of the substrate rather than in an on-top site.

It is well known that the space group of the surface structure can seldom be determined
completely from the diffraction pattern alone. Even the occurrence of a glide plane in one
domain can be obscured by the presence of a rotated domain, as has been observed on
the reconstructed W(100)(v2 x V2)R45° surface (7, 8). Hence, the determination of
space groups remains a difficult task. On the other hand, the analysis of the LEED
pattern to deduce the surface unit cell can be reduced to a straightforward procedure if
the overlayer is known to be related simply to the substrate. We exclude rationally
related coincidence lattices and incommensurate overlayers from this discussion. Multiple
scattering between a coincidence lattice and the substrate leads to ambiguity and other

complications of interpretation for virtually any system.

In Section 2, the theory of Bravais lattices and structure matrices is presented. The
matrix notation introduced by Park and Madden (9) is used to specify the lateral
structure of an overlayer. Section 3 contains an algorithm for simply related surface
structures to unscramble a complex LEED spot pattern into its component domains. It is

assumed that the true LEED pattern is well resolved and completely known. This seldom
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presents a limitation in practice since the missing spots in an incomplete pattern can be
identified and filled in. We illustrate this procedure as well as the power of the algorithm
for unscrambling complex structures with a number of examples. In Section 4 we discuss
ambiguity and demonstrate that only the hexagonal overlayer on a hexagonal lattice

presents any difficulties.

2. Bravais Lattices and Structure Matrices

The matrix notation used to specify the lateral structure of the overlayer in terms of the
substrate unit vectors provides a convenient and powerful formalism for the analysis of
LEED patterns (9). The 2 x 2 matrix for a superlattice represents the structure in terms of
the substrate lattice unit vectors. The rows of these covariant structure matrices are the
vectors specifying the Bravais lattice. The corresponding matrices in reciprocal space are
contravariant with the columns giving the reciprocal unit vectors. The advantage of the
matrix formalism is that much of linear algebra can be applied. For example, if S is a
structure matrix, the reciprocal matrix is simply the inverse S™. A disadvantage is that the
structure matrix for a Bravais lattice is not unique, as can be seen in Figure 1. We will
define the equivalence class of S to consist of all the matrices that produce the same
lattice. We say that S, is equivalent to S; when for any 1 x 2 integer vector m there

exists an integer vector n with mS; = nS; and, conversely, for all integer vectors n there

exists a corresponding m.

The absolute value of the determinant of S is the area of the two-dimensional unit cell.
Hence, for two matrices S; and S, to be in an equivalence class it is necessary but not

sufficient that

|det S;| = |det Syf. (1)



11.

Equivalence is completely established by the following:
Theorem: The structure matrices S; and S; are equivalent if and only if there exists an

integer matrix U of determinant £1 with
S: = US,. (2)

Proof: We note that V = U™ is also an integer matrix of determinant £1, so that we have

the symmetric condition
S, = VS.. (3

The first part of the theorem is therefore trivial: if there is a U satisfying Equation (2),
then for any integer vector m the integer vector given by n = mU satisfies mS; = nS,.
Conversely, for any n, m = nV is the required integer vector. To prove the only if part of
the theorem we need to show that if S; and S; are equivalent then an integer matrix U

with [det U] = 1 exists.

For the unit vectors m; = (1 0) and m; = (0 1) there are integer vectors n; and n, given
by the equivalence mS; = nS; fori =1, 2.

[ny] [my]

Define U = |n,| and note that the identity matrix I is equal to |m,|. Hence

IS; = US,. (3]
Since |det S4| = |det S;| # 0, we must have det U = %1, thus completing the proof. A
corollary is that reciprocal matrices are equivalent if there exists an integer matrix U of

determinant £1 with S; = S;U.

This theorem provides a convenient test for the equivalence of two matrices. If U =
5.5, is an integer matrix of determinant +1, then the structures are equivalent. The

theorem gives a quick way to test if a structure has a particular point group symmetry.
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Let R be a rotation matrix with det R = 1, and let M denote a mirror reflection so det M =
-1. (Below we will show how to generate these matrices for nonorthogonal coordinate
systems.) The matrices p = SRS and = SMS™ have determinants of +1 and -1,
respectively. If pis an integer matrix, then the structure S is equivalent to the structure
SR. In other words S has the rotation specified by R as a symmetry element. Similarly, if
[/is an integer matrix, then S has mirror symmetry. These symmetries are illustrated in

Figure 2.

In order to specify the matrices R and M, we need to know the matrix representing the
substrate Bravais lattice in terms of the natural Cartesian coordinate system of R2. The
matrix T gives the change of basis from the substrate lattice to R Table 1 lists T
matrices for the five types of Bravais lattices. If r is the rotation matrix in Cartesian

coordinates,

[coscp sing |
r= |-sinp coso |, (5)

then the rotation in terms of the substrate lattice is (10)

R=TT" (6)

Similarly, reflection in the x-axis is given by

m= [(1) 2] (7)

so a general reflection about an oblique axis is
M = RmR™%, (8)

On a hexagonal lattice, for example

R= “ ﬂf 9

for a rotation by ¢ = n/3. The six mirror planes are obtained by rotating m through ¢ =

/6.
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Algebraically, the set of matrices we have been considering has a rich structure. The set
of structure matrices, reciprocal matrices and their products constitute the multiplicative
group of nonsingular matrices with rational entries, S. In n dimensions the nonsingular

n x n rational matrices form a group. To show this, we need to establish that there is an
identity element I with IS = SI, that the set is closed under multiplication, and that for
any element S, its inverse is also in the set. The first two requirements are trivially
verified, while for the third we rely on S = (adj S)/det S, where the adjoint is formed by
replacing each element in S by its cofactor and transposing the resulting matrix (11).
Hence, if S is a rational matrix, so is adj S; and for nonsingular S, det S will be a nonzero

rational number, and S is seen to be a nonsingular rational matrix.

The set of integer matrices with determinants of +1, ¢/, form a subgroup of S. The
importance of these observations is that we can now make use of the algebraic concept
of coset. The left coset of U/ by S is the set SU = {SU|U e U}, and we see that our
definition of equivalence amounts to saying that that structure matrices are equivalent if
they are members of the same left coset. The set of all left cosets of U/is written as §/ U
(read "Smod U'). We can make use of the theorem that 5/ Uis a partition of S and that
two elements S; and S, of Sare equivalent if and only if S;'S, e ¢/ (12). This is exactly
the content of our theorem. Finally, note that a method for constructing all integer

matrices U with integer inverses has been proposed by Hanson (13).
3. Unscrambling LEED Patterns

If we apply the symmetry operations of the substrate to the surface lattice, we will
generate the lattices for all the equivalent domains. Only operations that are not
symmetries of the surface produce new lattices. When the domains are much larger than
the coherence area of the instrument, the LEED pattern for a simply related overlayer

consists of the superposition of the reciprocal lattices of the domains. We would like to
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decompose such a pattern into its component Bravais lattices and, if the pattern is not
completely known, supply the missing spots as part of the analysis. The algorithm
described here will generate an interpretation for the pattern, but, as is discussed in the

next section, this may not be the only one possible.

Since the symmetry of the substrate is known, we need only find one of the surface
reciprocal Bravais lattices in order to generate all of them. This means that we must find
the two unit vectors for one of these lattices. A simple unit vector is defined to be any
vector from an integral order spot to another spot on the pattern that does not pass
through a third spot, as in Figure 3. A vector constructed according to this definition is a
unit vector for the surface reciprocal lattice since any line between two spots in a single
Bravais lattice, which does not pass through a third spot in the lattice, can be chosen as
a unit vector. Hence, there are two difficulties when drawing vectors on a LEED pattern.
The first is that we might connect spots from different domains. This is avoided by
choosing an integral order beam as one of the spots because these beams belong to all
the (simply related) domains. The vector between an integral order beam and any other
spot must belong to a common surface Bravais lattice. The second difficulty is that the
vector might intersect a third spot in the lattice. Since a simple unit vector does not pass
through any other spots, this problem is avoided completely. As a practical matter, if all
the spots in the LEED pattern are not known, a vector that appears to be a simple unit
vector actually intersect an invisible spot in its lattice, as illustrated in Figure 4. To
minimize this possibility the shortest vector from an integral order beam should be

chosen as a trial unit vector.

We still need to find the second unit vector. This is easiest to do by identifying all the
points in the LEED pattern that must belong to a single Bravais lattice. We define a

lattice line {v,} to be the set of points generated by the vector u applied to the origin u,,

Va=Ug+n,forallnelZ (10)
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Again, since the substrate beams belong to all domains, for a given unit vector u there
will be lattice lines in the pattern through all of these beams and all of these lines belong
to a single domain. In addition to these lattice lines, there may be others that pass only
through overlayer spots. These lines can be found by systematically testing each of the
fractional order beams within a substrate reciprocal unit cell to see if it can be construed
as the origin for a lattice line. There are a finite number of such beams so there is little
difficulty in executing procedure. These fractional order lattice lines, however, may
belong to two different domains, as shown in Figure 5. In cases where this occurs, the
integral order lattice lines belong to both domains. Since the density of points in a lattice
line depends on the length of the unit vector used in generating it, another advantage to
choosing the shortest available unit vector is that this accounts for the greatest number

of spots in the pattern.

In patterns that appear to have many spots missing, the integral order lattice lines
should always be filled in since all the points on these lines must be present in the true
pattern. Many of the missing elements can be supplied by taking each of the vectors
between any of the substrate beams and any other spot as a trial vector (even if it is not
a simple unit vector) and constructing all of the integral order lattice lines. Applying the
point group symmetry operations of the substrate will generate the lattice lines for other
domains and may fill in more of the pattern. Also, the use of translational symmetry
should not be overlooked; the same pattern should be made by the fractional order

beams within each of the substrate reciprocal unit cells.

The filling in of fractional order lattice lines calls for some judgment since what appears
to be a line with many beams missing may actually be the coincidental alignment of
spots due to different domains. It is best to err on the side of too few fractional order
lines since omissions will become obvious as the unscrambling of the pattern proceeds.

Again, the use of symmetry can be helpful. Eventually, all the spots must belong to the
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sets of lattice lines produced at this stage, so this is a useful guide for deciding if an

apparent fractional order lattice line is really in the pattern.

A second unit vector can be found now by connecting any point on an integral order
lattice line with a point on an adjacent lattice line. If the surface domains do not have
mirror symmetry, there may be two essentially different ways of doing this, leading to
Bravais lattices that are mirror images of each other (e.q., Figure 5). The symmetry
operations of the substrate generate the Bravais lattices for all the domains. Together,
these must account for all the spots observed in the pattern, thus providing a check on

the method.

If some spots remain unaccounted for, then the vectors we have chosen must be integer
multiples of the true unit vectors, a situation which can arise if there are many missing
spots. The correct unit vectors will often be evident, but at worst we will need only to
test a few fractions of our chosen vectors. This is another reason for choosing the
shortest vectors possible. If the test vectors become unreasonably short, the possibilities

that there are incommensurate overlayers or two structural phases should be considered.

It remains to be shown that the algorithm cannot fail to unscramble a LEED pattern for a
simply related surface. Let S be the contravariant reciprocal matrix the columns of which

specify the unit vectors of a Bravais lattice. The entire lattice itself is generated by

v=Shforallh e Z% (11)

Hence if v; and v, are points in the lattice, so are the integer linear combinations

nyv; + Npvy = S(nihy + nyhy) for all ny, n; € Z. (12)
Since the substrate beams belong to all domains, all the integral order lattice lines for a
single generating vector belong to the same Bravais lattice, and any spots missing from

such a line must be part of the true pattern. Hence, the procedure for filling in the
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pattern is justified. This also shows that the only uncertainty in picking a trial unit vector
is that the one chosen might be a multiple of a true unit vector. When specifying the
second unit vector, we need to guarantee that it belongs to the same domain as the first,
an objective which is achieved by choosing a trial unit vector connecting lattice lines

which are known to be in a single domain.

In summary, a practical algorithm for the unscrambling of LEED patterns is

1. Fill in the missing spots supplied by all the integral order lattice lines that can be

constructed.
2. Use the symmetry operations of the substrate to fill in additional lattice lines.
3. Complete the fractional order lattice lines that are clearly in the pattern.

4. Choose the shortest vector from a substrate spot to any other as a trial unit vector
and mark the integral order lattice lines accounted for by this vector as belonging to

one domain.
5. Indicate that the rotationally equivalent lines belong to other domains.

6. Use the shortest vector between an integral order lattice and an adjacent line for the

same domain as a second unit vector.

7. Mark the Bravais lattice generated by the two vectors. Generate the lattices for the
other domains.

If any spots remain unaccounted for, one or both of the vectors chosen in steps 4 and 6

will have to be shortened by 1/n, where n is an integer. These steps are illustrated in

Figure 6, where a pattern with many missing spots is analyzed.

The algorithm relies heavily on the exact spacing between points in the pattern so the
LEED instrument must be aligned carefully to insure that straight lines in reciprocal space

do not appear curved on the fluorescent screen. A photographic technique for



18.

establishing the alignment and for verifying the absence of distortions due to residual
magnetic fields has been presented previously (14). For complicated surfaces it is useful
to use low energies in order to resolve the pattern. It is not necessary to display one
entire substrate Brillouin zone since varying the angle of incidence will display different
parts of the pattern on the screen. Photographs can be overlapped to piece together the
entire pattern. In some cases, it may be advantageous to obtain the pattern at several

energies in order to obtain as many spots as possible.

4. Ambiguity in LEED Patterns

Once the LEED pattern has been analyzed into its component domains, we would like to
know if the proposed decomposition is unique. We have already seen that a hexagonal
(S x S)R@® pattern from a hexagonal substrate can always be interpreted in two ways.
We will show that this is the only ambiguity where a superposition of several Bravais
lattices appears as a single Bravais lattice.

It is instructive to examine how ambiguity arises in the hexagonal case. Throughout this
section we will use contravariant matrices. In reciprocal space, rotation through an angle

of /3 is given by

R= [(‘.1) ﬂ (13)

A reciprocal lattice with a sixfold rotation axis can therefore be represented by a matrix
of the form
(a]
S = [I: R] lb)
a b }
= |b b-a| fora, bel (14)
We will show that the superposition of the LEED patterns from the three rotational

domains of
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(a]
T =[I: 2R] lbJ

[a 2b ]
b 2(b-a)| fora,beZ, (15)

gives the same spot pattern as S. So, for any 2 x 1 integer vector h there exists an
integer vector k with
Tk,
Sh =1 RTk, or
(R%Tk, (16)
and conversely. It is convenient to rearrange the components of the matrix equations

into the following:

H
Sh = [hy + hR] LbJ, (17)
5)
Tk = [ki +2kR] (bJ, (18)
(a]
RTk = [-2kal +(ks+2k)R] b, (19)
and
5)
R*Tk = [-(k;+2ko)I + kR] (bJ. (20)

So for any k in either Equations (18), (19), or (20), there exists a corresponding h. For
example, in Equation (19), h; = -2k; and h; = k; + 2k;. To demonstrate the converse,
we consider the components of h modulo 2. If hy is odd and h; is even, then we use

Equation (18) with k; = hy and k; = h,/2. The four possible cases are listed in Table 2.

Hence, the domains of T give exactly the same pattern as S.

Having shown that lack of uniqueness is possible, we can now ask if other types of

ambiguity can be found. The vectors

N I H I Y @
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play a special role. As shown in Equation (12), if two vectors are in the Bravais lattice for
S, then so are all the integer linear combinations. Suppose that the pattern resulting from
the superposition of the lattices for the domains represented by T is the same as the
pattern produced by S. We will show that the vectors Sh;, Sh, and Sh; must belong to

different domains of T if S and T are not equivalent. Assume to the contrary that
S[hy hy] = Tlks k). (22)

Then

I=5"TK, (23)
where K = [k; k] and |det K| = 1. Any point in the Bravais lattice of T corresponds to
some point in the lattice of S, so [det T| = |det S|. Equation (23) implies that |det K| = 1
and |det T| = |det S|, so that S and T are equivalent, which contradicts our assumption.
Since we can construct anyone of hy, h, or hs as an integer linear combination of the
other two, each of these three vectors must map to a different domain of T. Hence, T
must have at least three inequivalent domains. As can be seen from Table 1, the only

substrates with sufficient symmetry are the square and hexagonal lattices.

On a square lattice, the point group symmetry operations are rotation by n/2 and

reflection, with

01 [ 1 0]
R= |-1 0/andM= (0 -1], (24)
and there can be four domains given by T, RT, MT and MRT.

Suppose a surface structure has 4m symmetry. The matrix S can be written in one of the

following forms:

S = [?) g} or S= [: -ﬂ. (25)
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Consider the first form. Suppose there is an oblique reciprocal lattice represented by the
matrix T such that the superposition of the patterns for the four domains of T is the

same as the pattern from S. Without loss of generality, assume

a OJ
Shy =Tk = {0] Now, Sh; = [a = -RSh; = -RTk; so h; belongs to the domain RT, and

we must have Sh; = MTk; or Sh; = RMTk;. Assume the first case. Solving for Tks,

53
TK =10 -aj, (26)
where K = [k; ks]. Since |det K| = 1, we have |det T| = a?, but |det S| = a. Now, there
exist vectors |; and I, with Thy = Sl; and Th, = S, so

T=5L (27)
where L = [I; ;]. By assumption, S and T are not equivalent, so |det L| > 1, and by
implication, |det T| = 2 |det S|. This contradicts the constraint on det T. The argument
generalizes to the other cases, thereby proving that there is no possibility for ambiguity

with a 4m overlayer Bravais lattice.

If a lattice has a fourfold rotation axis, it can be represented by a matrix of the form
5)
S=[I:R]lb

;2]
= |b -a| fora,belZ (28)
The vectors hs, h, and h; must be assigned to different domains. Assume without loss of
generality that there is a k; with Shy; = Tk;. Now,
Sh, = RShy
= RTky, (29)
so h, belongs to RT, and h; maps to one of the reflected domains. Assuming Sh; = MTks,

we obtain
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a atb
TK= |b a-b |,

(30)
and hence |det T| = |a® — 2ab — b?|. Here, S does not have mirror symmetry so for any
vector h; there are two possibilities, either Th; = Sl; or Th; = MSI;.. Hence, at least two of
the vectors hy, h; and h; (and therefore all three) belong to one domain of S. As before,
this implies that |det T| = 2Idet S| = 2(a® + b?) = 0. There are two possibilities,
depending on the sign of det T:

a?—-2ab-b?=2a%+2b*=0
and

b? + 2ab—a’ = 2a’ + 2b* = 0, (31)
from which we deduce that

0= (a + b)* + 2b?
or

0=2a’+ (a-b), (32)
respectively. These inequalities only allow for the trivial solution a=b=0, demonstrating

that no ambiguity is possible when interpreting the pattern of an overlayer Bravais lattice

with a C4 rotation axis.
For a structure with mirror symmetry, we use

a
S = [I:M] [b} (33)
and carry over the previous arguments with slight modifications. The domains are S and

RS, so again |det T| = 2 |det S| and we can derive a contradiction.

The only remaining case for a substrate with a square Bravais lattice is for a structure S
with no symmetry. We would like to know if there can be a matrix T where the

superposition of the patterns for four domains of T is the same as for the four domains
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of S. It appears that apart from the trivial case where T is equivalent to one of the

domains of S this ambiguity cannot occur, but no proof has been constructed.

On a substrate with 6m symmetry, there are seven cases to be considered. The overlayer
can have any of the symmetries 6m, 6, 2m or 2. It can be shown that the only
ambiguities where the superposition of several Bravais lattices is equivalent to one lattice
or to the sum of a lattice and its mirror reflection occurs for the previously cited case of
overlayers with 6m or 6 symmetries. This leaves three cases involving low symmetry

overlayers that cannot be handled by our methods.

For a surface structure with a sixfold rotation axis, the matrix S is given by Equation (14).
Again, taking Sh; = Tk, gives Sh, = -RTk; and Shs = -R*Tk;. This is the hexagonal
ambiguity discussed at the beginning of this section. If S has mirror symmetry, then the
superposition of patterns from three domains of T will be equivalent to the pattern from
S. When the structure does not have mirror symmetry, S has two domains. Here, three
rotational domains of T give the same pattern as one of the domains of S, while the
reflected domains of T cover the other domain of S. Now, six different domains of a
structure T' cannot give the pattern of a 6m structure S since this would require that two

domains of T" be equivalent to one domain of T.

Finally, the only remaining case that can be treated here is where the superposition of
the patterns from three domains of a 2m structure contains the same spots as the two
patterns from a structure with symmetry 6. Again, take Shy; = Tk;, which implies that Sh,

= -RTk,, Sh; = -R*Tk; and, since T has mirror symmetry, MSh; = Tk,, whence

TK = [1:M]Sh;

-3 -
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where K = [k; k;]. This implies |det T| = |2ab]|, while we also have |det T| = 2 |det S| =
2 |ab -a® -b?|. The two possible signs of the product ab give +ab = a* + b?> — ab = 0, with
the implications that 0 = a? + b” or 0 = (a — b)’. The only nontrivial solution, a=b,

is not acceptable since it gives S mirror symmetry and S'MS = B ﬂ :

We have shown that ambiguity, where the superposition of the patterns from several
domains of one overlayer gives the same pattern as a single domain of a different
structure, occurs only on a hexagonal substrate (where the LEED pattern due to an
overlayer with 6m symmetry can be interpreted in terms of three independent domains
rotated m/3 with a 2m structure). The superposition of this ambiguity and its mirror
reflection (for a structure with symmetry 6 and rotational domains of symmetry 2)
constitute the only ambiguity where the LEED pattern of several domains of one
structure is the same as that due to two domains of a different overlayer. We have also
shown that the only further possibilities which need to be considered are where three or
more domains of a low symmetry overlayer produce LEED patterns equivalent to that of
three or more domains of another low symmetry structure. No such ambiguities,

however, are known.
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Table Captions

Table 1: The symmetries and structure matrices for the Bravais lattices.

Table 2: Example of ambiguity on a hexagonal substrate. For any integer vector h there
is a corresponding integer vector k that satisfies one of Equations (18), (19), or
(20), as indicated. If both components of h are even, the spot in the LEED
pattern belongs to all three rotational domains of T and each of the k can be

used in its corresponding equation.

Table 3: The notation i=j indicates that i domains of S must give the same LEED pattern
as the j domains of T for the pattern to be ambiguous. As discussed in the text,
the cases with i and j <3 are eliminated. On a 4m substrate, this leaves four
cases to be considered, while for a 6m substrate there are seven. Cases where

one of i or j is <3 are treated individually.
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Table 1. The Five Bravais Lattices

Lattice Type Symmetry Structure Matrix T Conditions
1 0
Hexagonal 6m -1/2 J3/2
e
Square 4m 10 1]
4 6]
Rectangular 2mm | 0 a] a>1
1 0
Centered Rectangular Zmm 1/2 a/2 a>1, a=/3
[ 1 0 | a=1: @=n/2,7/3,2n/3
Oblique 2 | acosp asing | a>1: o=n/2,

@=tan™[(4a>-1)"*]

Conditions on a and ¢ make the lattice types mutually exclusive.
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Table 2. Ambiguity on a Hexagonal Substrate

h, mod 2 Equations ky ky
1 20 h, ~(h1+h2)/2
1 19 hy+h; -h,/2
0 18 hy ho/2

0 18,19,20



4m Substrate.
S T

4m 4
4m 1=1 1=2
4 2=2
2m
2
6m Substrate.
S T

6m 6
6m 1=1 1=2
6 2=2
2m

29,

Table 3.

2m

1

Il
N

2=2

2=2

2m

1=3

2=3

1

Il
BN

2=4

4=4

1=6

2=6
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Figure Captions

Figure 1: Three different unit cells for a (1 x 1) structure.

Figure 2: (a) An overlayer with p2mm symmetry. (b) Overlayer with p6 symmetry.

Figure 3: Solid line: one of six equivalent simple unit vectors connecting an integral order
spot with a fractional order beam. Dotted /ine: apparent simple unit vector

connecting two integral order beams.

Figure 4: Missing spot (O) falls on long vector.

Figure 5: Complex LEED pattern resulting from the superposition of diffraction from four
domains. Note that spurious fractional order lattice lines (with many missing

beams) result if overlayer beams from different domains are connected.

Figure 6: Analysis of an incomplete pattern following the algorithm described in the text.
(a) Shortest simple unit vector. (b) Integral order lattice line. (c) Integral order
lattice lines through all substrate spots. (d) Superposition of lattice lines from
three rotational domains. (e) Complete specification of unit vectors for one

domain.



31.




32.

Figure 2
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Figure 3
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Figure 5



36.

Figure 6a
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Figure 6b
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CHAPTER III

Unified Approach to Photographic Methods for Obtaining

the Angles of Incidence in Low-Energy Electron Diffraction

Reprinted with permission from A.C. Sobrero and W.H. Weinberger, Rev. Sci. Instrum. 53, 1566 (1982).
Copyright 1982, American Institute of Physics.
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Unified approach to photographic methods for
obtaining the angles of incidence in low-energy

electron diffraction
A. Charles Sobrero and W. Henry Weinberg

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

(Received 1 October 1981; accepted for publication 14 June 1982)

An equation is developed to describe the geometrical relationships between the electron gun, the
crystal surface, and the phosphorescent display screen in back-reflection, post-acceleration LEED
experiments. Photographic methods for determining the polar and azimuthal angles of incidence
in LEED experiments can be derived starting from this equation. In particular, two published
procedures appear here as special cases. New methods are described for cases where the existing
technigues do not apply. It is shown that the alignment of the electron gun and the positioning of
the crystal can be checked using a photographic technique. An example illustrates that the angles
of incidence can be measured with precisions of =+0.2° by recording data on several photographs

taken over a wide range in electron energy.

PACS numbers: 6§1.14.Fe

INTRODUCTION

Accurate measurements of the polar and azimuthal angles
of incidence are essential for the acquisition and analysis
of low-energy electron diffraction (LEED) intensity data.'
Both the study of surface resonances® and the determi-
nation of surface structure’ require the angles of incidence
as inputs for the computation of intensity spectra, while
the acquisition of experimental data in the form of ro-
tation diagrams® and constant momentum transfer av-
erages® also depends fundamentally on knowledge of these
angles. Since the LEED intensity can be sensitive to vari-
ations as small as 0.1°, the measurement of the angles
must be quite accurate.

The photographic mcthods for obtaining the angles of
incidence are easy to usc and can achieve precisions of
better than +0.2°; this compares favorably with the me-
chanical techniques.® Under appropriate conditions, the
position of only one spot on a photograph of the diffrac-
tion pattern can determine the angles, and it is easy to
increase the precision of the measurement by recording
more spots, perhaps using several photographs taken at
different electron energics. Additionally, when the angles
are overdetermined, statistical analysis can provide esti-
mates of the precision and some indication of the accu-
racy of the measurements. In contrast, with the mechan-
ical methods, a singlc datum determines the angles and
the accuracy of the measurement relies on the alignment
between elecirical and mechanical components of the
LEED apparatus.

The photographic techniques have several further ad-
vantages. These methods can be applied whenever a phos-
phorescent screen is used to display the diffraction pat-
tern, and no special equipment other than a camera is
needed.” The photographic procedures are simple to au-
tomate, thus facilitating the acquisition of rotation dia-
grams and constant momentum transfer data.® Finally,
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photographic methods can also be used to check items
such as the position of the crystal relative to the LEED
screen, the alignment of the electron gun, or the work
function compensation applied to the electron gun voltage.’

Currently, there are two techniques for obtaining the
angles of incidence from the information available on a
photograph of the LEED pattern.”® These methods ap-
pear to be quite different, and indeed they were intended
to complement each other. One procedure, due to Cun-
ningham and Weinberg,’ can be applied only when the
electron gun is collinear with the axis of the camera. The
equation which determines the angles of incidence from
the data is nonlinear and requires an iterative solution.
On the other hand, the method of Price® can be used
when the electron gun does not point at the camera, but
the crystal must be positioned precisely at the center of
curvature of the LEED screen. For this case, the equation
is linear and only a (3 X 3) matrix inversion is needed.
Both methods require that the incident electron beam be
aligned with the center of curvature of the LEED screen.
Unfortunately, there are instances when neither tech-
nique is appropriate, .., if large angles of incidence must
be uscd while the crystal may be off-center, or in any
situation where the clectron gun may be misaligned.

The approach adopted in this work unifies and extends
the existing photographic methods. Section I presents an
equation which rclates the data on a photograph to the
angles of incidence. In Sec. II, we show that the two pub-
lished techniques can be derived from this equation, and
we describe how new procedures may be formulated. Sec-
tion III contains examples demonstrating the use of two
photographic techniques.

I. THEORY

The basis for the photographic methods is that the dif-
fraction pattern on the display screen is a simple trans-

1566
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display
screen

crystal z
c

Xo

Zg
elactron

gun

FiG. 1. Schematic of a LEED apparatus showing the refercnce frames
associated with the important comp of the ip The sub-
scripts ¢, g, and / denote the crystal, electron gun, and laboratory co-
ordinate systems, respectively.

formation of the two-dimensional reciprocal lattice of the
surface.’® When the point of incidence on the crystal and
the center of curvature of the screen coincide, the trans-
formation is an affine mapping. Improper positioning of
the crystal or misalignment of the gun introduces a non-
lincar magnification factor which distorts the affine re-
lationship and produces a curved image of the reciprocal
lattice on the screen.

The geometrical description of diffraction!! provides
the connection between the image on the screen, which
represcnts reciprocal space, and the real space lattice. In
reciprocal space, an electron beam is regarded as an in-
finitely wide, monoenergetic plane wave characterized by
the wave vector k. Scattering from a perfect, infinite sur-
face adds reciprocal lattice vectors to the wave vector for
the incident beam. On the other hand, when viewed on
the screen, an electron beam (idcalized as having zero
width) is represented by the real vector r. The crystal
surface is a plane of point scatterers arranged in a two-
dimensional real lattice.

Since the real and reciprocal spaces arc dual to each
other,"? the geometrical description consists of superim-
posing these two structures on a single vector space.'?
Then, the vectors k and r describing an electron beam are
related by a scale factor F with units of area, i.c., r = Fk.
This procedure is possible because on a microscopic scale
the transfer width of the instrument is wide (~ 10* wave-
lengths),'*!S while on a macroscopic scale the clectron
beams are narrow (~1 mm in diameter). In practice, in-
strumental broadening due to the width of the beams in
real space, as well as the angular and energy spread of the
wave vectors k, limit the precision of the angle measure-
ment.”

To specify the components of k and r, it is necessary
to impose a coordinate system on the vector space. As
depicted in Fig. 1, for reciprocal space vectors, the geo-
metrical description of LEED gives rise to individual ref-
erence frames associated with the clectron gun, the crystal
surface, and the film. It is convenient to use right-handed
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orthonormal bases, placing the origins of the three co-
ordinate systems at the point of incidence on the crystal
surface. The laboratory coordinate system has the Z; axis
perpendicular to the film plane pointing away from the
screen with the X; and Y, directions chosen to form an
orthogonal coordinate system. The crystal frame has the
Z, axis normal to the surfacc pointing into the bulk of
the crystal, while the X, axis Lies parallel to one of the
unit vectors of the surface reciprocal lattice. In the gun
coordinate systcm, the Z, axis points along the incident
beam, with X, chosen so that the specular beam lics in
the second or third quadrant of the X,Z_ plane. It is not
nccessary that the (00) spot appear on the screen. At nor-
mal incidence the angle ¥ is defincd to be zero and X,
can be any direction perpendicular to Z.

Ideally, the point of incidence coincides with the screen
center, but it is difficult to achieve exact alignment. For
a misaligned instrument, we place the origin of real space
at the center of curvature. There are two reasons for this
choice. With the origin at the screen center, the vectors
representing the diffraction spots, r(/k), all have the same
length; in fact, [r] = p, where p is the radius of curvature.
Furthermore, the image of this origin is simple to locate
on a photograph: Fig. 2 shows the plane containing the
point of incidence A, the center of curvature B, and the
(hk) diffraction spot. The points pg and p, on the film are
projections along the Z, direction of B and A, respectively.
In order to use the point of incidence as the origin for
real space, we would need to establish the location of p;.
On systems employing transparcnt LEED screens, € this
may be feasible, but in general only p, can be located
directly. This is because the edge of the screen is a circle
defined by the intersection of the spherical surface of the
screen with a plane. The projected image of this circle is
an ellipse, and the intersection of the major and minor
axes of the ellipse is the point p,. All real space vectors
will be specified in the {’ frame, which is a translation of
the laboratory coordinate system from A to B.

The vector from the point of incidence to the (/k) spot
on the display is the real space equivalent of the scattered
wave vector k7,

r=Fki+e, (0

——————————————————————————————— tn)

—m—n

|
|
|
|
|
|
|
|
I
]
I
]
I
1
]
1
I
|
|
I
|
1
|
1
=0

screen

tiim

FiG. 2. Cross scction in the X;Z, plane of the LEED apparatus. The
diagram depicts a situation where the point of incidence A, center of
curvature of the screen B, and the (%k) spot on the screen all lie in the
X,7; planc. The notation is described in the text.
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where the vector ¢, extending from B to A, measures the
alignment error in the instrument. (For simplicity, in Fig.
2 there is no error in the Y; direction and the optical
magnification of the camera, M, is unity.) When e is
zero, the scale factor is a constant, F = p/k, where
k = (2mE/h*)'? is the magnitude of the wave vectors, E
is the electron energy relative to vacuum zero, m is the
electron rest mass, and k is Planck’s constant divided by
27. In general, however,

Ir— el
k

so for e # 0, the factor ¥ depends nonlinearly on r, and
the duality of the real and reciprocal spaces is lifted. This
means that the scale factor may differ even between dif-
fraction spots on a single photograph. In fact, if the error
in positioning is sufficiently great, the dependence of F
on r leads to a discernible distortion of the LEED pattern.

Define the components in {’ of the magnified vector
Mr to be £, 5, and {. The only quantities which can be
obtained from a photograph of the LEED pattern are £
and 7, so the angle determination problem becomes a
question of extracting @ and ¥ from these measurements.
By construction, the length of Mr is equal to pM, hence,

§=~[(eMy — & — 717 (3)
If either the radius or the magnification cannot be ascer-
tained, the { component may be left as an unknown to
be determined by the analysis.

The angles of incidence are defined between the crystal
and gun reference frames, as shown in Fig. 3. Specifically,
the polar angle @ is the angle from the Z_ direction to Z,
(measured in the X, Z, plane), while the azimuth ¥ is the
angle between X, and the projection of X, along Z. onto
the surface plane.' The domains are restricted to
0 <0 =< x/2 and —=n/n < ¥ < x/n for a Bravais lattice
with n-fold rotational symmetry. The orthogonal matrices
S and T transform the coordinates of a wave vector from
the crystal reference frame to those of the gun frame ac-
cording o

F= (2)

k, = STk, @
where
0 —sin® 3

cos 0
s@={ 0 1 0 ,
\sin® 0 cos® /

—sin¥® 0
T(¢’)=(sin¢ cos¥ O |.
v 0 0 Ly

Similarly, the angles 8; and #; which relate the gun and
laboratory reference frames determine the matrix R, with

k = Rk, . @)

Using the rotation matrices, the incident wave vector
measured in the gun coordinate system can be related to
the scattered wave in the laboratory frame. If k. is the
incident wave vector in the crystal frame, then the scat-

®

and

4 cos ¢
©)
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incident
electron
beam

FiG. 3. Detail of the crystal reference frame. The relationship between
gle g(xlm and crystal reference frames determines the angles of incidence
and ¥.

tered wave vector for the (k&) diffraction beam is given
by

ki(hk) = k. + g{hk), (8)
where the g.(#k) and g, (hk) components of the reciprocal
lattice vector are obtained from

A
2 = U‘\ k ] y
\ L/
Here U is the matrix containing the two-dimensional re-

ciprocal lattice unit vectors and g.(hk) is determined by
the condition for elastic diffraction,

0=0Cki+g)g.

®)

(10)

in the gun coordinate system, the incident wave vector
is k;/ = (00 k)7, so Eq. (8) is transformed to laboratory
coordinates as

N

E\
(n )=Mr=MF(E; k)
\§/

k/ = Rk, + RSTg. .
Combining these results, Eqg. (1) becomes

(11)

X Rk AE) + SE@)T(@)eLE: b)) + Me, (12)

where some functional dependences have been indicated
explicitly. This notation obscures the fact that only the
z components k' and g, of the vectors k.’ and g, depend
on E. Equation (12) is the desired relationship between
the angles of incidence and the information available
from a photograph, £(E; Ak) and n(E; hk). For each spot,
Eq. (12) represents three equations in 14 independent
variables: the components of the reciprocal lattice vector,
8. and g.,; the components £ and » of the spot vector;
the angles of incidence 8 and ¥; the angles 8, and ¥;; the
components &,, ,, and ¢, of the error vector; the energy
E; the optical magnification M; and the radius of cur-
vature p. The usual situation is that £ and » are measured
from a photograph recorded at a known E, while g, g.,.
M, and p are known a priori. This leaves three indepen-
dent equations in seven unknowns, so a general method
for determining the angles of incidence requires data from
a minimum of three spots. Moreover, for the common

Angles of incidence in LEED 1588
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case where the electron gun position cannot be changed,
the angles 8; and ¥; are fixed and only five unknowns
remain.

. ANGLE DETERMINATION

In order to simplify the analysis, thc published angle
determination methods”® assume that some or all of the
components of the error vector ¢ are zero. This assump-
tion may be justified if the LEED instrument is aligned
carefully since the elimination of unnecessary parameters
decreases the uncertainty in fitting the unknowns. On the
other hand, determining e directly from Eq. (12) can be
useful when checking the alignment of the apparatus.'”
The X, and Y, components of e (in the gun frame) give
the error in the gun position, while the Z. componcnt
gives the amount by which the crystal is incorrecily po-
sitioned.

Section II A prescnts a lincar technique for determining
the angles of incidence, while a modified version of the
method of Price’ is derived in Sec. I B. In Sec. 11 C,
Gauss-Newton optimization is used to fit the parameters
in the equation used by Cunningham and Weinberg.”

A. A simple linear method

A straightforward procedure for obtaining the angles of
incidence can be developed if the vector Me and the ma-
trix R are known. A common case is when the film plane
is perpendicular to the primary electron beam so that R
can be taken as the identity matrix. Transposing S in Eq.
(12) yields

Tg. = g, = S'g, = STR'g (13)
where the components of g; = (kf — k/) are
_§—Me, _n—Me
Eix = ME H Iy MF >
) g._ Mez _
8= "r k. 14)

For R known, take g, = R”g;. The x and y components
of Eq. (13) give

Bpx = £ COSP — g, S5In ¥ = g,, c0s O + g, sin B, (15)

Bpy = BxSINP + g, 008F = g, . (16)

Equation (16) can be solved for the azimuthal angle,
-1 (n— Me,) ) m-l(gF_g‘l’Z) ,
((Fgex)* + (Fep)'”? (Fgex)
an
where the brackets ( ) denote the averaged quantities

when data from several spots are used. Once ¥ is known,
the polar angle is obtained from Eq. (15),

s L(«gay f"?gﬂiﬁ) B “’“(%f%) s B

Alternatively, Egs. (17) and (18) can be sclved for each
spot individually, and the values averaged to give {¥) and

¥ = sin
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{8). The former procedure is preferablc since the mean
of the measurement errors in g, is apt to be zero.

B. The method of Price®

The technique due to Price is also a linear procedure
which requires that the error vector be known, but it can
be used even when the matrix R is unknown. The matrix
product RST is generated in the course of computing the
angles ® and ¥. The original method assumcs that the
radius g and the factor M are known, while E is deter-
mined empirically. To simplify the discussion, however,
we will assume that the precise energies (relative to vac-
uum zero) at which the photographs were taken are
known.

First, suppose that the LEED apparatusis aligned per-
fectly and e = 0. Assume that n + 1 spots, not all collinear,
are available(n = 3), andlet Mr; for i = 0,1, ..., n be
the measured spot vectors, with the { components com-
puted from Eq. (3). To eliminate the k, term in Eq. (12),
take the z differences

ri=r,—-{)=RSTr] for i=12,...,n (19
where
rY= (Fg,; — (Fg.)) and {r) is the average of the r/’s.

When photographs are recorded at various energies,
we introduce the dimensionless vamables x = g../k,
Y = gofk, and z = g.fk. Let A; = x; — {X), Aas = %

M i e, e i,
/)\u'\
r?:pkxzij’ for izl,Z,...,n; (20)
B/

here the \,;’s are knowns, while the p;/s are unknowns.
Construct the partitioned (3 X n) matrices'?

S =(rjrh- - rh); @21
S"=(iri---rp, (22)

and note that they are related by $“ = (RST)"S". The top
two rows of the matrix R = (RST)” are given by the lincar
regression'?

R = S"(SYIS(S)T
To find the angles of incidence, computc the vector

/x*

(23)

k*} ' 0{*)) = -—R{r) (24) \
so that
0 =sinT'[((x* - x>+ *— )P (29
and ( >
e RO
= —tan ( o - Ii)) . (26)

As before, Eqs. (24—26) can be solved for each spot, and
the individual values averaged to obtain (©) and (¥), but
the procedure shown here is prefcrred. The matrix R is
RTTT(¥)ST(0).

Angles of incidence in LEED 1569
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If e is not zcro, the definitions of the matrices S’ and
5%, as well as the vector {(k*), must be modified. The
entries in the matrices are given by

r;-:T:—:—:l— (I{::I> for i=d 8., n (29
'(/ A”\“ (28)
ri=| Ay
\‘\ B /
and Eq. (24) becomes
Gy = R(”l:f = :|> " (29)

Finally, if only three spots are available (n = 2), Ithe angles
of incidence can be determined by taking r} and r) as
defined in Eq. (19) and using r§ = r{ X r5.?

C. The method of Cunningham and Weinberg’

The method of Cunningham and Weinberg assumes
that the electron gun is positioned so that the incident
beam points through the screen center of curvature and
is normal 1o the film plane. Here, the matrix R reduces
to the identity matrix, while &, and e, are zero. The
method also assumes that E is given, but e; is left as an
unknown. As with the previous techniques, trivial mod-
ifications are needed to handle the cases where e, and e,
are known (#0) and where R is known (#I).

For e. # 0, the problem of nonlinear scaling can be
circumvented by taking the ratio of the x and y com-
ponents of Eq. (12).

@= xsinv’+y.cos¢' . @0
(hk) cosO(xcos¥ — ysin®)— zsin 8
where Eq. (10) gives
z=—00s® — [cos’® — 2sin @
X (xcos® — ysin®) — (x2 + pHI'2  (31)

This result is essentially the same as Eg. (6) of Cun-

ningham and Weinberg, and the angles of incidence may

be found using a nonlinear least squares procedure.
Suppose that » spots have been photographed, with n

= 2, and define the rn-dimensional column vector
/ £18,9)
128, ¥)
(8, ¥) = : s (32)
\ f0, 9)

where the components are

_m
@9 =1

I
x;sin @ + y;cos P
cos B{(x; cos ¥ — y,; sin ¥) — z,(®, P) sin O’

(33)

f= 12, .005m
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The least squares estimates of the angles of incidence are
the values of © and ¢, which minimize the length of the
vector {0, ¥), with the ideal case being f = 0. These
optimal valucs, denoted €* and ¥*, can be found using
a Gauss-Newton procedure?® where (0, ¥) is expanded
in a Taylor series about some initial values, say 6 and
?,. Solving a set of linear equations leads to an improved
estimate for the angles, €, and ¥,, and the process is
iterated until it converges to 8* and ¥¢*.'*

Define the vector @ = (g) . The Taylor series for
gives
f(2*) = (@) + J(@* — @) + (higher order terms), (34)
where the Jacobian matrix is
(3 2
Ignoring the higher order terms and setting f(Q*) = 0, the

best estimate for @* is Q* ~ @ + A, where the correction
vector is

" (35

(=723

A = —[FIIRQ). (36)

If the initial value @, is sufficiently close to Q*, then the
iteration f;,, = Q; + A; converges to @*.'® Good starting
values can be obtained by setting e = 0 and using a linear
method, such as the one detailed in Sec. ITA, to find the
angles @y and ¥. For each spot. the least square value for
the scale factor is

gk + nky’
MF=-= 2
(k'Y + ()

where k7 is given by Eq. (11).

The numerical procedure used here is fast; (J7J)! is
a symmetric (2 X 2) matrix which can be computed from
J in approximately 3n operations, while J itself is an
analytic function of @ and ¢,

(37

g —_ _kL (klzl + a—lkk.v Si!l 0)

and
of _ kx, UV . a0 i
20 i’ + o (sin“Ba cos 9). (39)
Here,
X, =Xxcos¥ — ysin® (40)
and

a=[cos’ @ — 2x,sin ® ~ (x?+ ¥ (41)

Furthermore, the Jacobian need not be updated at each
iteration. With reasonable starting values for the angles,
it is sufficient to usc Jy throughout the computation. The
correct final Jacobian, however, should be used when es-
timating the error bounds.

. NUMERICAL EXAMPLES

To demonstrate the types of results which the photo-
graphic methods can achieve, the techniques presented
in Secs. IT A and II C will be applied to two sets of data.

Angles ot incidence in LEED 1570
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FiG.4. Drawing of the LEED pattern obtained from Ir(111), after
Ref. (7).

The first set consists of a single photograph of the pattern
from an Ir{111) surface, while the other set contains five
photographs obtained from a Rh(111) surface. A detailed
comparison of the two cases indicates that to attain pre-
cise results for the angles of incidence, data should be
recorded over a wide energy range.

The spot positions in an arbitrary reference frame, £u
and 7.4, can be measured with a digitizing tablet or by
laying a sheet of graph paper over the photograph and
marking the spot centers. These data are prescnted in
Tables II and I1I ( p, is the center of the image of the
screen). To use the photographic methods, measurements
in the arbitrary coordinate system must be translated and
rotated to the [’ frame.

£) _(cosy sin ¢) e
(11) (—sin ¥ cosy, (m,b o= "po) ’
The rotation angle is ¥ = tan™"'[(mo — 1)/ (Eoo — Ex)]-

[When the specular spot is not on the screen, both the
(hk) labeling of the beams and the determination of ¢

(42)
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and p d pc of the spots shown in
Fig. 4.
Predicted

Measured Values © = 13.1°, ¢ = 0.20°
Bk gx(A) gy (A" f(em) n(em) £(cm)  g(cm)
00 0.00 0.00 23 0.0 2.30 0.00
01 -2.67 0.00 0.8 0.0 0.80 0.01
01 2.67 0.00 3.8 0.1 3.80 0.0t
10 1.34 2.31 3.1 1.4 3.05 1.51
10 —-1.34 —-2.31 14 —-1.5 1.42 —1.48
u -1.34 2.31 14 1.4 1.37 1.43
1 1.34 —-2.31 3.1 -1.5 3.08 —1.53
21 0.00 4.62 2.0 29 2.01 2.89
21 0.00 —4.62 21 =11 213 ~-3.08
12 —4.01 2.31 -0.2 14 -0.26 1.39
22 -2.67 4,62 0.3 2.8 0.40 2.79
13 ~6.68 2.31 -22 15 -2,19 1.52
23 -5.34 4.62 =1.3 2.8 —1.30 2.80
21 -5.34 —4.62 -1.3 —2.7 -1.28 =271

2o — e 0.0 0.0 —_ —_

from the large distortion in the pattern that the crystal
was not located at the center of curvature of the screen.
Table I shows the parameters needed for the nonlinear
procedure of Sec. 11 C, while the data measured from the
photograph are in Table II. The simple linear method
provides the initial estimates for the angles: ® = 13.6°
and ¥ = (.3°. Using the iteration of Eq. (41), the fully
converged valuesare ® = 13.1 £ 0.1° and ¢ = 0.2 £ 0.5°.
The uncertainty intervals represcnt individual 95% con-
fidence regions for the linearized equation.'® These angles
are consistent with the results reported previously,” but
our confidence limit for ¥ is significantly wider.

The true magnitude of the uncertainty in © and ¥ can
be determined by examining the fit between predicted
and observed spot positions. The predicted positions are
computed from Eq. (12), assuming e, and e, are zcro.
Table 1T indicates that the fit is exccllent, so the wide
confidence intervals cannot be narrowed by slight im-

TasLEIU. Measured spot positions from Rh(111) (arbitrary laboratory
coordinate system).

209 eV 209 eV 270 eV 378 cV 378 eV

LI E n £ n

become difficuit.] 43 i 106 41 53
Figure 4 is a schematic drawing of the LEED pattern gg 9 13 35 6 2 39
from an Ir{111) surface at £ = 245 eV. This is the same 13 22 72 2 62 32 100
photograph which was analyzed in Ref. (7). Tt is evident 32 6 9 5T S0 58 S0 94 80 35 4
12 7 48
. 31 66 39
TABLE L. Input paramcters for the method of Sec. ITC: In(111). 1 3B 39
11 4 40 5 35 15 35 7 57
Parameter Symbol Value 20 67 28 58 25 60 26 96 38 36 23
10 47 25 42 22 46 25 70 34 26 22
Flectran energy £ 245 eV 00 30 24 27 22 34 24 45 34 15 22
Screen radius of curvature p 6.35 em 10 13 25 13 22 21 24 21 35 4 21
Length of reciprocal unit vectors ¢ 267 A7 -
Sh . v |’sin 30° -1 11 Sa 15 85 6 32 4
AT Aty lcos30° 0 0l 40 W0 36 10 4 13 59 15 21 I3
Initial estimates % 13.6° 1 23 10 21 10 28 13 33 14 10 13
9o 0.3° pe 35 43 30 36 36 39 S1 74 17 37
1571 Rev. Sci. Instrum., Vol. 53, No. 10, October 1982 Angles of incidence in LEED 1571
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provements in the precision of the spot position mea-
surements. This point is also illustrated by considcring
the error sum of squares

SSQ 7= z meas — (43)
(hky

Eored)” + (Mineas — Tiprea)®

as a function of @ and ¥. The contours are very shallow,
indicating that the predicted positions are insensitive to
variations of £0.5°. Now, SSQ = 0.05 corresponds to an
average error of 0.02 cm in the position of the center of
each spot, while the spots themsclves are 0.2 cm or wider
in diamcter. Hence, it is not feasible to reduce the un-
certainty in the angles by improving the SSQ.

Part of the reason for the insensitivity of the SSQ to
variations in © and ¢ is that Eq. (37) adjusts the factor
F to accommodate some of the lack of fit in the spot
positions. This factor and the vector component e. are
related by

e = [(MFKY ~ (& + )]

— oMy — (& + "2 (44)

For a single spot, the positioning error e, appears essen-
tially as an energy error in the z component of the incident
wavevector k... Since the scattercd component k;,* varies
by less than 20% across the photograph, the value of e,
cannot be determined very precisely by using position
data recorded at one energy. In fact, for a set of (8, ¥)
points within the SSQ = 0.05 contour, the value e,
= —1.5 + 0.3 cm was cbtained. These considerations in-
dicate that precise measurements require data from sev-
eral photographs taken over a range of energies (where
k;.* varies by a factor of two or three).

The second data set consists of five photographs taken
at £ = 209, 270, and 378 eV. As in the previous example,
the initial estimates (8 = 12.2°, ¢ = 79.5°) are obtained
from the method of Sec. II A. After iterating Eq. (41)
seven times, the converged values for the angles arc ©
= 11.1 £ 0.1° and ¢ = 79.5 + 0.2°, where again, the
precision is estimated from the linearized equations.

In conclusion, it is clear that photographic techniques
can provide precise measurcments of the angles of inci-
dence. Possible sources of systematic error include resid-
ual magnetic fields, optical distortion introduced by the
camera, and nonsphericity or warping of the screen.
When a large number of spots are recorded over a range

1572 Rev. Scl. instrum., Vol. 53, No. 10, October 1982

of energies, it becomes possible to test for these effects.
For this reason it may be useful to form adsorbate
overlayers with unit cells larger than the (1 X 1) substrate
unit cell and to use high electron energies, thus increasing
the amount of data available per photograph. Finally, it
should be noted that no angle determination method
based on geometrical ideas can account for the refraction
which occurs as the electrons drop from the vacuum po-
tential to the inner potential of the solid. Hence, at low
energies or high angles of incidence, it may be necessary
to correct the geometric angles for this electronic effect.?!

ACKNOWLEDGMENT

The support of the Army Research Office under grant
No. DAAG?29-79-C-0132 is gratefully acknowledged.

!'W. Berndt, Rev. Sci. Instrum. 53, 221 (1982).

IR. E. Dietz, E. G. McRae, and R. L. Campbell, Phys. Rev. Lett. 45,
1280 (1980); G. L. Price, P. J. Jennings, P. E. Best, and
J. C. L. Cornish, Surf. Sci. 89, 151 (1979); J. Rundgren and G.
Malmstrom, Phys. Rev. Lett. 38, 836 (1977).

3M. A. Van Hove and S. Y. Tong, Surface Crystallography by
LEED (Springer, New York, 1979Y).

4 R. Feder, Phys. Status Solidi B, 58, K137 (1973); G. E. Laramore,
Phys. Rev. B 6, 2950 (1972); Groupe d’Etude des Surfaces, Surf.
Sci. 48, 497 (1975).

M. G. Lagally, T. C. Ngoc, and M. B. Webb, Phys. Rev. Lett. 26,
1557 (1971).
¢ J. Larscheid and J. Kirschner, Rev. Sci. Instrum. 49, 1486 (1978);
J. M. Burkstrand, Rev. Sci. Instrum. 44, 774 (1973 )

7 ?i ;s(iunningham and W. H. Wcinberg, Rev. Sci. Instrum. 49, 752

*J. H. Onuferko and D. P. Woodruff, Surf. Sci. 91, 400 (1980).

? G. L. Price, Rev. Sci. Instrum. 51, 605 (1980).

12 J. B. Pendry, Low-Energy Electron Diffraction (Academic, New
York, 1974).

LG, Ertl and J. Ktippers, Low Energy Electrons and Surface
Chemistry (Verlag Chemic, Weinheim, 1974).

? R. D, Milae, Applied Functional Analysis (Pitman, Boston, 1979).

3E. D. Nering, Linear Algebra and Matrix Theory (Wilcy, New
York, 1970).

" R. L. Park, J. E. Houston, and D. G. Schreiner, Rev. Sci. Instrum.
42, 60 (1971).

3 G, Comsa, Surf. Sci. 81, 57 (1979).

'8 J. F. Wendelken, S. P. Withrow, and P. S. Herrell, Rev. Sci.
Iostrum. 51, 255 (1980).

17 A, C. Sobrero and W. H. Weinberg (in preparation).

'* G. Dahlquist and A. Bjdrck, Numerical Methods (Prentice-Hall,
Englewood Cliffs, Ncw Jersey, 1974).

* N. R. Draper and H. Smith, Applied Regression Analysis (Wiley,
New York, 1966).

Y. Bard, Nonlinear Parameier Estimation (Academic, New York,
1974); P. E. Gill, W. Murray, and M. H. Wright, Practical
()pﬂmxzat!an (Academic, New York, 1981).

:’91;4 )Marcus, F. Jona, S. Finch, and H. Bay, Surf. Sci. 103, 141
1981

Angles of incidencs In LEED 1572



49.

Chapter IV

Analysis of the Zanazzi-Jona and Other Reliability Factors for LEED



50.

Analysis of the Zanazzi-Jona and Other Reliability Factors for LEED
A. C. Sobrero” and W. H. Weinberg
Division of Chemistry and Chemical Engineering
California Institute of Technology

Pasadena, California 91125

* Current address: E.I. du Pont de Nemours and Co., Inc.; Wilmington, Delaware 19898;
USA.



51

Abstract

As a means of quantifying the agreement between different sets of intensity spectra, the
Zanazzi-Jona R-factor, Rz, has served the LEED community well. The single beam R-
factor was constructed explicitly to be sensitive to certain features in the intensity spectra
while ignoring insignificant differences. Unfortunately, Rz is not a metric over the space
of intensity spectra and this leads to a number of undesirable properties. The most
severe of these are that Rz does not satisfy the triangle inequality and that it can be very
small or even zero (indicating perfect agreement) for intensity spectra which are
significantly different. Reliability factors presented by Pendry, Adams et al., Van Hove et

al., and Scbrero and Weinberg as well as the X-ray R-factor are also analyzed.
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1. Introduction

In the determination of surface structure by Low-Energy Electron Diffraction (LEED), it is
necessary to compare computed intensity spectra for various structural models and pick
the set that best agrees with the experimental data. The question naturally arises as to
what criteria are to be used in effecting this comparison. Often, as is the case when
multilayer relaxations are being studied (1-5), the differences one is trying to measure
are rather subtle. One way to examine large amounts of data in a reproducible and

quantitative manner is to use a computed reliability factor (or R-factor).

In their seminal paper concerning R-factors (6), Zanazzi and Jona discussed a number of
desiderata that such a function should fulfill. They critiqued several possible R-factors for
LEED intensity curves, and finally they proposed the widely used Zanazzi-Jona R-factor.
The important properties this function possesses are that it is sensitive to: (1) the
general shapes of the curves while disregarding the absolute values of the intensities of
the two curves being compared and the amount of background; (2) the relative
intensities between different sections of the intensity curves; (3) the relative positions of
maxima, minima and shoulders; and (4) the presence of peculiarities, such as narrow
peaks (6). Other workers have introduced R-factors designed to meet somewhat

different criteria (7-13).

Unfortunately, the Zanazzi-Jona R-factor does not satisfy properties (3) or (4) and,
unless the background is a piecewise linear function of energy (which it is not), it also
fails to have property (1). The violation of property (3) makes the Zanazzi-Jona R-factor
in its original form problematic for comparing intensity spectra. In section 2 we analyze
the properties of the single beam Zanazzi-Jona R-factor and of various modifications. We

show that the null space of Ry consists of piecewise linear functions, so curves differing
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only by a piecewise linear function will have a single-beam R-factor of zero, indicating
perfect agreement between the spectra. This is undesirable since spectra with piecewise
linear differences can have peaks shifted by several eV or even different numbers of
peaks. Section 3 contains analyses of R-factors due to Pendry (8), Van Hove et al. (7),
Adams et al. (5,11,12), Sobrero and Weinberg (13) and the X-ray R-factor (9,16). The
five functions introduced in Ref. (7) are not statistically independent so one can expect to
find correlations among them. This weakens the argument that only near the true
surface structure will the functions have minima simultaneously. Finally, we discuss the
issues of variance, sensitivity and information content of intensity spectra and show that
R-factors should be averaged in momentum space rather than over the energy variable

as is the current universal practice.
2. Analysis of the Zanazzi-Jona R-factor

In this section we review the definition of the Zanazzi-Jona R-factor and show that it has
units of eV A dimensionless form of the R-factor is introduced together with a simple
function that bounds Rz. These functions are modified to make them symmetric with
respect to the exchange of their arguments and to attempt to make them satisfy the
triangle inequality. In this manner, we show that no function of the form of Rz; can be a

metric for intensity curves or their derived functions.

The definition of the single beam Zanazzi-Jona R-factor is (6)

el
Ra = Es—EsJ /W(E) Iclearc' — Lobs'| dE, (1)
with
.robs dE
€= JIudE (2)
ICIcaIc" B Iohsul

W(E) = [Iobs'| +Iobs' Imax 3)
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and
_E—E
A= [l dE. 4
Here, E; and E; are, respectively, the start and finish (lowest and highest) energies at
which data are available, L and I are the observed and calculated intensities, and the
prime denotes differentiation with respect to the energy, E. This expression can be

simplified by introducing the dimensionless variables

E-E,
£e= E-E (5)
and
Iobs(E) Icalc(E)
io(E) = <Igps> ' ic(s) = <lak> . (6)

In Equations (5) and (6) the averages are

robs dE fIcaIc dE
<Ios> = E—E r <Ieae> = Ef—Es . (7)

With these definitions, Equation (1) becomes

1
1 72 lic" = " [ic' = io'] de
RZJ= LEf_EsJ [ Iio'l i Iio'lmax I} (8)

where now the prime denotes differentiation by the dimensionless energy, €. This form
shows that the R-factor is not dimensionless and that there is a strong dependence on
the length of the energy interval. To eliminate this dependence, define the dimensioniess

function

r(io, ic) = (Er — E5)* Ray. 9



55.

The numerator in the integrand of Equation (8) can be written as |[(i,' — i)*T'1/2, and we

have finally

1
1/ I[(de=d)*]l' de
r= 2 /0 |d01 T Idolmax r (10)
where d, = i, for n = o, ¢. This function is essentially the same as the Zanazzi-Jona R-

factor, the only modification being the conversion to dimensionless form introduced by

Equation (9).

For the purpose of analysis, Equation (10) is somewhat unwieldy. Fortunately, the
function r can be bounded by a simpler expression. Since 0 = |do| = |do|max the mean

value theorem gives the bounds

(J2/2)p=r=y2p (11)
for
]
P= 4|do|max F I[(do = dc)z]I' de. (12)

Equation (11) is entirely symmetrical since

W2/ Dr=p=2r. (13)

Thus, the R-factors r and p are equivalent to within a factor of two. The function pis
computationally simpler than r since the integral can be evaluated analytically. This
function aiso eliminates the need for the values of the second derivatives, a welcome
benefit in view of the numerical instability of differentiation. To evaluate the integral in

Equation (12), define the function

5(€) = (do — dc)? (14)
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and the set of closed intervals

Q_={e: &'(e) =0}
and

Q. = {&: 8'(g) = 0}. (15)

The zeroes where &' changes sign are labeled g, €,,..., €, and belong to both sets.
Without loss of generality, assume that the interval [0, €;] € Q. and that [g,, 1] € Q.. The

other cases can be treated with small modifications. The integral now becomes

s {1 |6l de = V2 [/ &' de - /&' de]
= [6(1) — 86(0)])/2 + 25(€x-1) — 6(€x) (16)

a sum involving only the first derivatives of the intensity spectra. The second derivatives
still need to be computed to determine the zeros g; but, because the points where &' = 0

are the stationary points of &, the zeros need not be located with great accuracy.

A minor difficulty with Equations (10) and (12) is that these functions are not symmetric
with respect to the exchange or the curves labeled ¢ and o. If one is comparing two sets
of experimental data with equal variances (or two sets of computed curves), there is no
reason to favor one set over the other. When independent data sets have unequal
variances, they should be weighed by the inverse of their respective standard deviations,
and thereafter the weighed data sets should be treated equally (14). The functions r and
p can be made symmetric by replacing the denominator in the integrands of Equations
(10) and (12) with

(lio'] + o' [max + [ic'l + lic'Imax)/2 (17)
and

(lio'Imax + lic'Imax)/2 (18)
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respectively. The symbols r and g will denote these symmetric versions.

A more substantial difficulty with p and r is that even for very similar curves it is possible
to violate the triangle inequality. That is, for three curves iy, i and is it is possible to
have a small R-factor between curves i; and i, or between i; and i;, while the R-factor
between curves i, and i; is nevertheless large, which is undesirable. Say curves i; and i,
are from two experiments, while i; is the best-fit computed curve for experiment 1. Since
i; and i> match closely (R-factor small), it stands to reason that the computed curve
which fit i; well should also fit the data from experiment 2 reasonably well. So, for an R-
factor function to be useful, it needs to satisfy the triangle inequality. That this is not so

for the functions r or pindicates a weakness in their definitions and in Rz.

To examine this issue in greater detail, we can construct an example for 4 where the

triangle inequality is violated. Suppose there are three curves with

Iil'lmax = Iiz'lmax = |i3'|max = \/2/2 (19)

a value chosen so that the constant in Equation (12) drops out. Define the differences

a=i1'—i2'
B =i -3
Y=i1'—i3'=°‘+f3 (20)

and suppose that « and g have the same sign over most or the energy range, and
similarly for «' and g'. Qualitatively, this means that the differences between the intensity

curves behave the same way. We now have

1
(i, i5) =/ |a+plla'+p'| de



1
= loo'| + BB + |ap' + po’| de

1
=/ loo'| + |66l de

z p (iy, i) + o (iz, I3), (21)

where the second step follows from the way the signs have been chosen. Hence, for
these three curves, close agreement as measured by Psbetween i; and i,, as well as
between i, and iz nevertheless gives the result that curves i; and i; are not close to each
other. This counterintuitive result shows that Psis not a good measure of the agreement

between intensity spectra.

One factor of Equation (10) preventing r from satisfying the triangle inequality is the
denominator. The original purpose for the denominator was to emphasize the extrema in
the intensity spectra (6). The function p, however, which does not treat the extrema in
any special way, conveys almost the same information as r because the denominator is a
very mild weighing function varying at most by a factor of two and on average by much
less than that. Had the weighing function been chosen to be proportional to, say,

(10 Ido] + [dolmax)™ (22)
then a function like p would be much less successful at bounding r. As it is, let us
eliminate the denominator in order to attempt to restore the triangle inequality. Taking

the square root of the resulting function, we arrive at the modified R-factor
1
2= /0‘ |8'] de. (23)
In terms of the intensity spectra, ry, is

1
iy, i2) = [/ iy’ = iz'[liy" —i"| de]*™™, (24)
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If both dimensionless spectra are multiplied by a positive constant, this R-factor is
multiplied by the same constant, so ry, is a symmetric, positive definite homogeneous
function of order 1. The function r,, is related closely to the Euclidean norms for the first

and second derivatives given by
1
n=[/ lif -i|" de]” (25)
and

=L L~ del (26)

Despite the similarity of form, however, r, itself is not a norm and still does not satisfy

the triangle inequality, as is demonstrated in the Appendix.

There are many ways of proceeding at this point. Up to now all the modifications have
retained the essential character of the original definition; even the function r,, bounds Ry
within a factor of two. It appears that no function that retains the essence of Rz can be
a metric. Although a reasonable R-factor need not be a metric in the strict mathematical

sense, for similar curves it is essential that the triangle inequality hold.

Before leaving Rz completely, let us examine another aspect of this function. The R-
factor may be viewed as an operator on f = i; — i, where f is piecewise C%. From the
definition of Rz; we see that its null space consists of continuous, piecewise linear
functions. This is not a suitable null space for a LEED R-factor since intensity spectra that
have peaks in very different positions, and even different numbers of peaks, can

nevertheless have an R-factor of zero.
3. Analysis of Other Reliability Factors

We now look at R-factors due to Pendry (8), Van Hove et al. (7), Adams et al. (5,11,12),

Sobrero and Weinberg (13) and the X-ray R-factor (9,16). These R-factors are metric
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functions or, with minor modifications, can be converted into metrics. The numerical R-
factor of Sobrero and Weinberg reflects the distance between the physical surface
structure and the parameterized model structure for the dynamical scattering of LEED.
For kinematic scattering, as in X-ray diffraction, the distance between structures can be

measured by an analytic function.

The technique of analyzing an R-factor by examining its null space can be applied to the
function proposed by Pendry (8). This R-factor is defined as

<<(Yy = Yy)">>
Rpe = <<Yi?> + <Y;5>>, (27)

where the double angle brackets denote the average over all beams and all energies and
Y =(Lt+ VAT (28)

In Equation (28), L is the logarithmic derivative L = I'/I, V is the imaginary part of the

inner potential, and the prime denotes differentiation with respect to energy. This R-

factor can be written more symmetrically in terms of the dimensionless variables

e=EN
i(e) = I(E)/<I(E)>
I =i
and
y=@"+Nn7,

where the intensity average is only over energy and the prime denotes d/de. The formula
for Ree is given by Equation (27) with y; in place of Y.

To find the null space of Rpe, assume the denominator is not zero. Then Rpe = 0 if and
only if y; = y, for all beams at all energies. This gives a quadratic equation for I, in terms

of |, with the two solutions

and
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li=1" (30)
which are ordinary differential equations for the intensities. Solving these equations
shows that Ree = 0 only if

i1= Ciy
or

iy = ¢ exp[./'(d In ir/de)'de] . (31)

The first solution is the intended null space of Ree but the second solution could be
problematic. Fortunately, we are interested only in using Rpe to compare intensity spectra
that are similar in shape, i.e., I, similar to |, and very different from I, . Hence the

second solution should not arise in practice.

For curves that are very similar, the reliability factor Rpe is almost a norm for the
functions y;. If we define the normalized y's by

n = y/<y’>'? (32)
then

ree = <<(n1 — m2)*>>"? (33)
is the Euclidean norm for the difference n1 — n,. The functions rpe and Rpe will have the
same value if <y;*> = <y,?> for all beams.
Van Hove, Tong and Elconin (7) used five R-factors to compare intensity spectra:

Ri = /|li—cly| dE //'|I1] dE

Ry = /(Iy - cI;)2dE / ./ (1,)* dE

Rs; = fraction of energy range where curves have slopes of different

signs
Rs = /|1t — cL)’| dE //|Iy'| AE
Rs = /(I — cIy')* dE //(11')* dE

with the scaling factor
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¢ = /STLdE //TdE. (34)
The normalizations lead to difficulties since only Rs is a metric; it is the energy average of
the discrete metric (13) applied to the function sign(I') and can be written as

Rz = V2 <|sign(Iy') — sign(1,)|> . (35)
With slight changes in the scaling factors and normalizations, the other four R-factors can
be converted into norms. The normalization should not depend solely on one of the
curves since either spectrum is only an approximation to the unknown true curve. The
need for normalization can be eliminated by using the dimensionless variables € and i
introduced in Equations (5-6) and by defining the dimensionless spectrum

j=i/llil, (36)

where
1
hill = [{ i de]V2. (37)

Replacing the scaling factors in the definitions of R, and Rs with
G=ligll /lliz N (38)
and taking their square roots gives

= <liy—il>

2 ”]1 == _]2"

Ya<lIsign(i;") — sign(iy') 1>

r3

rs = <liy = iyl>
and

rs = lljis' = j2'll, (39)
where r; and r, are norms for the difference between spectra, r4 and rs are norms for the
first derivatives, and r; is a metric for i'. The /, norms are defined by

hx) = <IxP> for p = 1 (40)
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so ry and r, are 4 norms, while r, and rs are 4 (or Euclidean) norms. The sum ry + r4 is
the Sobolev norm for differentiable functions. With a slightly different normalization, the
five R-factors can be expressed in terms of the spectra i by using

ry = llig— i)l
and

re = lliy' — iy'll. (41)

With five metric functions in hand, it is useful to see how much information is conveyed
by each one. Eventually, the R-factor must determine which set of parameter values is
the best and what other values are so close that the difference is not significant. Hence,
the objective of the LEED structure analysis is to decide if one set of five R-values is
better than another set. The five R-factors will, other than in exceptional cases, give
different optima for the parameters, they do not all convey the same amount of useful

information, and they are not statistically independent.

The discrete metric r; does not convey much information useful for LEED intensity
analysis. It was originally stated (7) that for parameter values near the true surface
structure all five R-factors should have local minima. Suppose r4 and rs are small (so the
derivatives match fairly closely), while r5 is large. That r3 is not also small indicates that
there are ranges where i;' and i;' are both near zero, but they happen to have opposite
signs. It is not desirable to assign large R-values to small differences in slopes, so r3
confuses the evaluation of the level of agreement between curves. Also, we would not
assign any significance to the finding that r; was small, while the other R-factors were
not. If two sets of parameters give the same small values for ry, r3, ry and rs but gave
very different values for r;, we would not feel confident in declaring one set of
parameters better than the other. Thus, r; is not very useful in finding the best

parameter values.
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Of the other four R-factors, r; and r, are statistically correlated, as are r4 and rs. This can
be demonstrated using r» and rs. The R-factor r; measures the first moment of the curve
A = i;— i, while ry measures the second moment. The quantity

o = (?—r?)” (42)
is a measure of the variance of A. Hence, r» and o, are two independent measures of the
agreement between curves. If two sets of parameters give similar values for ry, then the
set with the smaller o, provides a better fit to the data. Similarly, we can construct

os = (rs*— r)". (43)
If the variance between curves remains approximately constant for different parameter
values (e.g., if the variance is dominated by experimental uncertainties), then r; and r»

will be highly correlated, and likewise for r4 and rs.

Sobrero and Weinberg (13) presented a numerical reliability factor that reflects the level
of agreement between a structural model and the true surface structure. In LEED, the
dynamical theory is sufficiently complicated that no closed-form, analytical function with
this property is known. For X-ray diffraction, however, the theory is simple and an R-

factor to measure the agreement between structures can be derived. This derivation is

based on Parseval's theorem (15).

In the kinematic theory of X-ray diffraction (16), the electron density in a crystal, p(x),

can be expressed in a Fourier series as
Ax) = ZFye™ /v, (44)

where V is the volume of the unit cell, Fy is a structure factor, and h is a reciprocal lattice

vector. The Euclidean norm of pis

Il pI2 = JIFL? / VA (45)

For two different structures, e.g., the true structure and an approximate model, we have
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p— b= L(F —F)e™ /v, (46)

and

llp, — pol? = ZIF, — FoR / VA (47)
The structure factors are complex numbers,

F =IFl e (48)
but experimentally, only the modulus IFI can be measured; the phases are reconstructed
from the moduli. This procedure gives F; and F, the same phase for each h, so

F1 - Fz = (":1' e |F2|) ei"‘ (49)

and

gy — gl = ZIFyl = IFI? / V2, (50)

This expression provides an un-normalized R-factor for X-ray diffraction.

The usual normalization is to divide by the sum of the observed moduli, 2IF/V.

Adopting this procedure, one obtains

Rxro = (ZIF4l — IF,I1%)"2/ 2Ry, (51)

which can be compared with the usual X-ray R-factor (17),

Ry = DIFsl = IFoll)/ ZIF4l. (52)

As noted above, there are problems with normalization based on only one of the two
data sets. These issues can be avoided by introducing the dimensionless
fa = Fu/lIFII, (53)

where the norm is

lIFIZ = ZIFyl2. (54)
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This gives, finally,
'xrp = (lefu.l = Ile.llz)"’ (55)

as a normalized R-factor for structure determination by X-ray diffraction; rxgp is related
closely to the function minimized in the least-squares refinement of structures (17). If
the kinematic model is correct, rp directly measures the Euclidean norm of the

difference between two structures.

It is unfortunate that we cannot derive a closed-form R-factor for LEED in a similar
manner. If we assume, however, that the dynamical theory provides an adequate model
for LEED intensities, then we can formulate a numerical R-factor to measure the distance
between two structures. In the X-ray case, a Fourier transformation provided the
connection between the structural model and the diffracted amplitudes, from which the
intensities are then obtained. For LEED, the connection is a complex dynamical scattering
model expressed as

q =I(p), (56)
where g are the intensities and p are the parameters. As with rxgp, it is necessary to
assume that the recorded intensities g* lie in Q, the range of I. If we also assume that
near the optimum p* the function I(p) is continuous and bijective, then a continuous I
exists and can be estimated numerically. This leads to the definition

rew = d[I"(q™), p], (57)
where d is a metric in the parameter space. The main difficulty with applying this

function is that it is necessary to project the measured intensities onto Q.

Finally, we turn to the method used by Adams et al. (5,11,12) to obtain uncertainty
intervals for the optimum parameter values. The R-factor R, defined in Equation (34) is
used to measure the error between intensity spectra. The standard deviations of the

parameters are computed from the curvature matrix at the optimum parameter values,
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p*. There is a difficulty with this choice since it fails to take into account uncertainties in
the data and so the method of Ref. (12) can make the computed uncertainties appear

arbitrarily small, a spurious result.

Couching the analysis in terms of the norm r, and its square r,?, a Taylor series
expansion around a point in parameter space, py, gives

i(p) = ro + Go'6 + ¥26'Gos + O(lISIP), (58)
where § = p — po, @ is the gradient vector, G is the Hessian matrix, and we have
dropped the subscript on r,. At a strong local minimum in r the gradient is zero and for a
scalar parameter we have

r(p) = fo + 1/2 Go&” + 1/6 yo5° + 0(&%), (59)
which gives

ri(p) = ro® + rGos® + 1/3 1 + 0(8Y), (60)
where y,is the third order coefficient. The ratio of the second to the third term is the
same for both expansions, so the ranges over which r and r* can be approximated by
quadratics are identical if the next term to enter the expansions is the cubic term. Both r
and r? have strong minima at p,, but the curvatures differ. The function r? is more
sharply curved and therefore appears to define the optimum p, more precisely than r,
but the gain is illusory. Following Ref. (12), we would estimate the uncertainties as

o1’ = Go'ro/(N - v)
and

02> = Gg're/2(N — v) (61)
for r and r?, respectively. Here, N is the number of degrees of freedom and v is the
number of fitted parameters. It appears that by squaring the R-factor we have gained a
factor of 2 in improved precision. Of course, the argument employed in going from
Equation (59) to Equation (60) can be repeated to produce the functions r*, r%,... ,

gaining an apparent reduction of 2 in the uncertainties with each step.
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Since there is no change in the information content, the improved precision is illusory
and the estimates in Equation (61) are erroneous. The correct result is provided by the
observation that if

Iro—ryd <€ (62)
for a parameter py, then

Ire® =2l = Iro— rllrg + 4l

= 2ro€ (63)

to order €2. If € is an estimate for the magnitude of the errors in the experimental and
calculated intensities when r is used as the R-factor, then 2r,€ measures the variance in
the intensities when r? is used. Since rp and r, are equal within the uncertainties in the
data analysis, we include all the values p; that satisfy Equation (62) in the interval of
acceptable parameters (18). This leads to

llp1— poll> = 2e /e"Gee(N — v), (64)
where the error vector e = (p;— po)/ lIp1— poll. If Gg is ill-conditioned, then the
uncertainty in the parameters depends on the direction of e. The largest uncertainty
occurs in the direction of the eigenvector corresponding to the eigenvalue of G with the
smallest magnitude (18). So the difficulty with the uncertainty estimates of Adams et al.

is with the use of ry as a measure of the variance in the data.

We have demonstrated that several of the R-factors proposed for LEED can be modified
to make them metric functions. With the present limited understanding of the statistical
distribution of errors in LEED it is not possible to determine which is the best R-factor.
This leads to the situation where some R-factors, such as rpg, are formulated with the
intent that they will account for some of the known deficiencies in LEED theory, e.g., the
large discrepancies in absolute intensities. As both the theory and the experiment

improve, the need for the R-factor to play this role should diminish.
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We have emphasized the interpretation of the R-factor as a metric over an appropriate
space. For example, ree is @ metric for the functions y(e) defined in Equation (29) while r4
is @ metric for the first derivatives i'. Since both the experimentally observed data and the
computed intensity spectra contain errors, they can be considered estimates for the true
intensities. It is essential, therefore, that the R-factor satisfy the triangle inequality when
similar spectra are compared. This guarantees that the unknown distance between the
true intensity and the computed solution is bounded by the measured distance between
the observed and the fitted curves plus the estimated variance of the data.

A question remains as to the proper averaging of the R-factor. The common practice in
LEED is to average point values as a function of the energy variable to obtain single
beam R-factors. (Rpe is a slight exception; a small modification in the definition [e.g. the
function ree given by Equation (33)] puts it into this form.) Uniform energy averaging,
however, reduces the sensitivity of LEED structure determination and increases the
variance of the parameters. The structural information contained in an intensity spectrum
is distributed approximately uniformly in momentum space (k-space). One manifestation
of this is that features such as peaks in the spectra broaden with increasing energy.
Energy averaging, therefore, amounts to a weighted average in k-space where the high
momentum transfer information is emphasized at the expense of the low k transfer data.
Since the high energy electrons are penetrating more deeply into the sample, surface
sensitivity is reduced. (In X-ray crystallography, the R-factor is an average in k-space.)
Strictly speaking, the conversion to a momentum scale requires that the inner potential,
Vo, be known. But, only an approximate estimate is needed to produce a practical scale.
Sensitivity can be increased and the variance reduced by employing a statistically

weighted average in k-space.

In conclusion, we have discussed a number of reliability factors for LEED from a unified

point of view and shown that the Zanazzi-Jona R-factor is not a suitable measure of the
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level of agreement between intensity spectra. Without a firm theoretical foundation, any
of a number of metric functions can be used as a reliability factor, but as both the
experiment and the theory improve, the need for the R-factor to be insensitive to certain
types of discrepancies should decrease. Finally, we have shown that no matter which
metric is used as an R-factor, Equation (64) should be used to obtain an estimate of the
variance in the parameters and that the average is best computed over momentum

space.
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APPENDIX

It remains to be shown that the function ry, defined in Equation (23) does not satisfy the

triangle inequality. Let ry = ry(ij,ix) and recall that
1
e’ = ./ |ao| de (A1)

and similarly for r; and ry5 using g and y [defined in Equation (20)]. We will construct a

counterexample to the triangle inequality. Suppose that
F3 > 2 + 3 2 0. (A2)

Then, in terms of « and B,

1
{ |at+B||a'+8'| — |laa'| — |BB'| de > 2ryars. (A3)

As before, we will choose o and g to have the same sign, and also o' and g' so that the

integrand simplifies. We obtain
1 1 1
({ |ag'+8a'| de)* > 4 { |aa'| de { |8B'| de (A4)

as a sufficient condition on a and g, subject to the sign restriction. A particularly simple

example is to take three curves with
az0
and
B=a+c, c>0, (A5)

where c is a constant. We will establish that Equation (A4) holds.
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Let
1
a= { |a'| de (A6)
and
1
A= { |aa'| de. (A7)

Assuming o' is not zero everywhere, we have
ca’>0

(2A + ca)’* > 4A(A + ca)
1 1 1
[{ [(2 + €)a'| dE)]* > 4 { |aa'| de [{ |(a + c)a'| dg)]

1 1 i
(/' lap+pal de)*> 4 [ lao'| de /" |66 d,

which establishes Equation (A4), and hence demonstrates that the triangle inequality is

violated for this choice of curves.
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Chapter V

A Mathematical Foundation for Ad Hoc Reliability Factors in LEED

Reprinted with permission from A. C. Sobreroc and W. H. Weinberg, "A Mathematical
Foundation for Ad Hoc Reliability Factors in LEED," in P. M. Marcus and F. Jona, eds.,
Determination of Surface Structure by LEED, Plenum, New York (1985). Copyright 1985,
Plenum Press.
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From: DETERMINATION OF SURFACE STRUCT URE BY LEED
Edited by P.M. Marcus and F. Jona
{Plenum Publishing Corporation, 19886)

A MATHEMATICAL FOUNDATION FOR AD HOC RELIABILITY FACTORS IN LEED*

A. C. Sobrero and W. H. Weinberg?

Division of Chemistry and Chernical Engineering
California Institute of Technology
Pasadena, CA 91125

1. INTRODUCTION

In surface crystallography by low-energy electron diffraction (LEED),
the reliability factor provides a measure of the agreement between the
experimental data and the calculated intensity specira. ldeally, statistical
considerations completely determine the reliability factor (r-factor). For
LEED however, the r-factor will remain somewhat arbitrary until discrepan-
cies between theory and experiment, such as the differences in absolute
intensities, are better understood. Nevertheless, statistics and functional
analysis can guide the formulation of r-factors to maximize the amount of
information obtained from the data.

Clearly, the use of arbitrary reliability factors can add to the inaccu-
racy and uncertainty of the structural determination. Zanazzi and Jona’
illustrate this point in their review of reliability criteria. Van Hove et al.?
demonstrate that only when the correspondence between computed and
observed values is excellent will different r-factors yield similar estimates
for the parameters. This further indicates that inappropriate r-factors can
degrade LEED results. Despite these caveats, employing a reliability factor
will almost always be superior to simple visual evaluation.’

As a quantitative technigue for surface crystallography, LEED must pro-
vide statistically ineaningful confidence limits on the structural parameters.
This is discussed in section 3. The use of the r-factor in a gradient search
ior the correct structure is presented in the section on metries.

% Supporled by the Army Research Office under grant No. DAAG29-79-C-0132.

t Camille and Henry Dreyfus Foundation Teacher—Scholar.
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2. TRADITIONAL LEED INTENSITY ANALYSIS

The usual method for analysmg mulhpl&scattering LEED deta is a
trial-and-error procedure, This review of the method serves to introduce
the definitions of the parameter manifold P, the intensity space @, and the
intensity operator I. The reconstructed Ir{110)-(1x2) surface® is discussed
to illustrate the notation.

The first step in the data analysis is to postulate a family of modelis,
M(8), for the structure. Here the point P is a member of the parameter
space P which characterizes the family. In this way, each point in P
represents a model of the surface according to the mapping

=M(B). (1)

The models 7@ include the atomic peositions, phase shifts, inner potentials,
and other factors which govern low-energy electron scatter.

Often, several different families M; are proposed, each with its own
parameter space P;. Consider the two models for Ir(110) illustrated in Fig-
ure 1. The paired rows mode! M; has a three dimensional parameter space
P,. where o, &, and Eg can vary (see the caption to Figure 1 for definitions).
The components of a point in the space P, are: # = (o, 6;, £y). Similarly,
the parameter space for the missing row model M; is four dimensional, with

ﬁ = (61- 62- ﬁ. EQ) whenﬁ (= Pa.

Clearly, not all the points in a parameter space P; are acceptable.
There are two restrictions: the 3 must map to physically realizable struc-
tures, and each structure should correspond to a unique pecint. The second
condilion insures that the mapping M; is one-to-one, thus avoiding ambigui-
ties in the pararneterization of the crystal surface. For example, the spac-
ing o must always be less than or equal to a.

These constraints limit the choice of pararneter values to a manifold
P; € P;. The bounds actually used with the paired rows model M, were:
cc[295% 3552Z%], 6, €[1.21 K 181R), and E, € [-10eV, -20 eV]. This
manifeld lies well within the above constraints.

The next step in the procedure is to calculate the intensity spectrum g
for each model:

g = 1((3)). (2)

The operator? denotes the compulational method used to obtain the spec-
trum. This nonlinear operator constitutes a mathernatical model for elec-
tron diffiraction.? The spectrum § is a point in the high-dimensional intensity
space Q, with each component g; representing the intensity cf one beam at a
particular electron energy and angle of incidence. Thus, all the data from a
LEED experimenl defines one point, 3" in Q.

In the case of Ir(110), because I-V curves were computled for 18 beams
at 2 eV inltervals over an average range of 100 eV and for one angle of
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incidence, the intensity space Q is 900-dimensional. Here, for example, the
first 50 dimensions might represent the intensity of the {01) beam at 30 eV,
32 eV.,..., 128 eV.} The operator 1 consisted of the Reverse Scattering Pertur-
bation with Layer Doubling.’

PAIRED Row MODEL

e
RSy e

MISSING ROwW MODEL

\ I i
1 ! 1
0 e Vo Rt

s, U AR AU A ) - 2nd layer
R = @, @- —-~-- 3rd layer
!
|
|
1

a

===

-——————
————— ==

B

2a-3

Figure 1. Two models for the reconstructed Ir{110)-(1x2) structure. Here,
a = 3.5B 8 is the bulk spacing belween rows of atoms in the (001) direction,
while &, is the distance from the first to the second layers of atoms. The
real part of the inner potential, £3, is a non-structural parameter in the
models. Olher geometrical parametlers: for the paired rows model, ¢ is the
spacing between Lhe adjacent close-packed top rows of atoms which have
moved toward each other; in the missing row model, 6; is the distance from

t Since the experimental intensities were not recorded at exactly these values of the energy,
it was necessary to interpolate the data. This projection is a mapping from the data space

IQQ.
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the second to the third layer, while 8 is the spacing between the adjacent
rows of atoms in.the second layer.

Henceforth, to simplify the notation, consider only ong family of models
M, and define the intensity operator I as the composition IeM. The operator
I now provides a direct connection between the parameter manifold P and

the intensity space Q:

g: = 1(B:) for Py € . (3)

Since [ describes a physical process, assume that this operator is a continu-
ously differentiable function of B. Figure2 illustrates the relationship

between the various mappings.

The final stage in the structural analysis is to minimize the reliability
factor,

. =D(3" ¢:). (4)

"7

oA ) ©
Parameter Model Intensity
Manifolds Space Space

Figure 2. Schematic indicating the range and domain spaces for the opera-
tors introduced in the text.
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over the set {d} of computed points and thus obtain the calculated spec-
trum which best matches the observed one. The function D(if,, &) meas-
ures a distance, in some sense, between members of the space Q. For con-
venience, denote the best fitting spectrum by §* and the corresponding sur-
face structure by 3%, so that §* =7(3*). Also, define the vector of residuals
as

t=g"-g¢" (5)

This vector contains the variation in the data which is not explained by the
mathematical model /(7).

3. STATISTICS

Due to random errors in the experiment, the deterministic model J(3)
cannot fit the observed data perfectly. It is important, therefore, to meas-
ure how well the model accounts for the observations by checking the resi-
duals &. Unfortunately, the standard technigues are not appropriate for
LEED.

The ususal approach in statistics is to assume a stochastic model for
the residuals and then derive the reliability factor by maximizing the likeli-
hood function.® A widely used model, which leads to the method of weighted
least squares, is that the z; are Gaussian. Specifically, the assumption is
that the residuals are normally and independently distributed random vari-
ables with variances sf and zero mean [abbreviated NID(0, s2)].” The r-
factoraderived from this stochastic model is the weighted Euclidean or L
norm

D(3y 32)= [ Zj) [(g1s — 929)/5;F° ]1/2 =f Zj: (e5/5;)° ]lﬁ. -

Here gy is the j™ component of g;. (The function R2 proposed by Adams?®
for I-V curves is related to the square of [5.) After this r-factor is minimized,
the Snedecor F or, Student {, distribution provides confidence limits for the
parameter values.? Clearly, changing the assumed values for the variances
s¢ will affect the parameter estimates. The data, however, will support only
a small range of s2. When the residuals do not substantiate the assumed
stochastic model, the F' statistic indicates that the parameter values are
meaningless. Thus, the fitting procedure can be tested for self consistency,
and there is a statistical basis for establishing confidence limits.

For LEED, the positions of peaks in the computed I-V curves are less
sensitive than the peak amplitudes to deficiencies of the model /(#). This
implies thal the residuals are not N/D(0, s;?) so that the slandard slatistics
are inapplicable. At present, there is no successful model for the g; in LEED.

This is the crux of the problem of finding the best reliability [actor.
Without a model for the errors, there is no test for internal consistency. In
effect, this greatly increases the uncertainty of the parameter estimates.
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4. THE RELIABILITY FACTOR AS A METRIC

Although statistical considerations will not determine the reliability
factor for LEED, other requirements can limit the choice of functional form.
For example, the r-factor must be a metric function. To understand this,
consider the definition of a metric presented in the appendix. Suppose g, is
a computed spectrum and @, the corresponding experimental one. The
information contained in these two spectra is unchanged if it is discovered
that they have been mislabelled and that g, is really the experimental data.
Since altering the labels does not modify the level of agreement between the
spectra, the r-factor must be symmetric, with D(g,, d2) = D(ds d,). Having
D(dy ¢d2) =0 if and only if ¢§; = gz corresponds to the notion that the r-
factor measures the discrepancy between spectra and that a zero value sig-
nals perfect agreement.

The triangle inequality says that if two spectra agree well with a third,
then they alsc agree with each other. CDnSldBI‘ the zmphcatlons of violating
this axiom. Suppose SOMeone measures dl and computes ¢y, obtalmng a
small r-factor D(gd; §i). Another worker independently measures gz for
the same crystal surface and verifies that D (g3 @3) is small. Then, it would
be ridiculous to find that D(g;, §2) was large. Hence, a function which does
not satisfy the triangle inequality cannot be a very useful reliability factor.

Of course, many metric functions, such as D in the appendix, are not
suitable reliability factors. To be a good r-factor, the function J must be
continuously differentiable so that minor variations in the specira produce
only small changes in the value of D. Also, since some of the components of
$ are more important than others, the sensitivity of the r-factor to the
parameters should be variable. Finally, the expense of an exhaustive
enumeration s=arch through the manifold P dictates that gradient. or
steepest descent, techniques be used where feasible.’”? For this reason, the
negatue of the gradient of D(/ (B). ¢ ) with respect to § should poinl toward
B* over a large region in parameter space. It will be shown, by construction
for a special case, thatl functions which have these properties do exist.

In order to simplify the discussion, define the functions 7™ and D° as
follows. The inverse of I is any operator /™! with /{(/~)(g@)) = § in some open
set of intensity space. Because [ is a very nonlinear function, its inverse
does not necessarily exist over all of Q. Nevertheless, 7{8) is one-to-one at
B*. Otherwise there is a degeneracy where many different surface strue-
Lures produce the same intensity spectrum, §*, and the structural analysis
by LEED would not be possible. This guarantees the existence of /™! for a
region Z in the space Q near g*. The range of I7! is the region z near g%
where [ is invertible. If necessary, the inverse mapping can be approximated
using standard numerical melhods.

The function D°is a convenient shorthand,

D@)=DU(®) ") (7)

where the gradient of D* with respect to B is simply ¥ D°. Thus, the ideal
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reliability factor has —V D*($) pointing toward #*, with the magnitude of
D*() indicating the distance to the optimal parameters.

In general, since D*(3*) is not zero, no reliability factor can measure
exactly the distance from $ to $*. With "artificial data,” however, such a
measure is possible. In this case, there is a set of parameters p° with
" =I(3") so that the inverse I~! exists at §°. Then, the formulation of a
function which possesses the desiderata mentioned above proceeds in two
stages. First one constructs a norm d (84, Pz) over the space P. This func-
tion then defines the reliability factor D{(gd,, &#2) vver Q. The inverse of the
intensity operator I provides a connection between P and Q.

The desired sensitivities to the parameters are easily attained. The sug-
gested procedure is to define separate norms for appropriate groups of
parameters. Then, d is a linear combination of these metrics, with the
weight coefficients determining the relative sensitivities. There is consider-
able flexibility in the choice of d, as long as the resulting function is a norm.

To illustrate the process, recall the paired rows model, where
p=(o, 6;, Eg). It is clear from Figure 2 that in terms of atomic positions,
an error in o of 0.2 & is equivalent to a 0.1 R error in 6,. Thus, it is con-
venient to combine these two parameters in one norm. The function

tr(o, o 8 6) = o ((Z57)" + @resip ] o

provides a good measure of the total positional error. The normalization
factor 8 makes the metric dimensionless. If dp is the bulk interlayer spac-
ing of 1.36 &, then the function dy expresses the total error as a fraction of
the bulk spacing. For the real part of the inner potential, £, the error can
be described by

L] [EB — E[‘) i
do(Ep, Ep)=——5—F— -
2( o] O) I E! I (9)
Here, £ might be -15 eV, the initial value of £ used in the multiple scatter-
ing calculation. Combining these functions,

d(@, p°) = a,d; +azde (10)

with, say, a3 = 0.9 and az =0.1 to reflect the relative importance of the
structural parameters. Of course, other choices for these coefficients are
possible. It may be advantageous, for example, to scale d to measure posi-
tional error directly in R. Picking a; =& X 1 8! means that d =0.1
corresponds to an uncertainty of +0.1 & in 6, or in /2. The function d
deterinines what information is obtained from the experiment.

Using the inverse operator /™! and the carefully constructed function d,
a complete definition of the reliability factor is
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Dy, de) =d(I"Y(d4), I"*(%e)) fordy Be€Z. (11)

Clearly, the function D(g, @3) is a metric for the space Q. Furthermore,
the negative of the gradient with respect to 3 of D(I(8), §°) points toward
$°, with the magnitude of D indicating the distance to the optimal
parameters.

The requirement that the spectra lie in the region Z is not a restriction
particular to this method. Outside this region there is no one-to-one
correspondence between parameter values 3 and intensity spectra §. Hence,
only within Z can any reliability factor be a measure of the error in the
parameters.

5. CONCLUSION

The expense of obtaining a good approximation for /! and the unreal-
istic assumption about the existence of 3° make it unlikely that the function
D defined in Equation (11) will be a practical reliability factor. Yet, the pro-
cedure presented above can be reversed to provide a means of evaluating ad
hoc r-factors. For example, any proposed reliability factor can be tried on
synthetic data to test whether lines of constant d map to contours of D. If
these contours differ greatly, especially near §°, then the r-factor is distort-
ing the information in the spectra. Of course, all reliability factors should
ultimately be judged on the basis of the self consistency criterion discussed
in section 3.

It has been shown that the reliability factor presents a two-fold chal-
lenge. A statistical basis needs to be developed so that the true precision of
the perameters can be gauged. Pending this, the reliability factors which
are utilized should adhere to the criteria formulated in the last section.
Otherwise, some of the information painstakingly gathered by the experi-
mentalists may be destroyed in the analysis.

APPENDIX

A function D which maps two elements from a space Q to a real number,
D: QxQ- R, is a metric or distance function if it satisfies the following four
axioms:

1. D(gy d2) =D(ge d4) foralldy 32 €Q.
2. D(@y g2)=0 if and only if ¢ = @ 2.
3. D(@y g2)> 0 if and only if g, » 5.
4, D(¢y d2) =D(g1. da) + D(d2 da)

The first condition says that the distance from §, to g3 is the same as from
gd2 to ¢,- The next two axioms say that D is positive definite, while the last

condition is the triangle inequality.

A function is a norm if, in addition to being a metric, it is also linear:

5. D{ad; adz)=aD(d, d2) fora €R. (12)
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Some simple metrics are:
Dy(gs. 91)=0forallgd; €qQ.
Dy(g1, §2) =1for gy = o

This is the discrete metric on Q.

Do(d1, q2) = [ ? |fh: —‘Izjl’

This is the L, metric, which for p = 2 is the Fuclidean norm,

Dy 92) = 2n|af“’ L iad

Dg is the Sobolev norm for functions which are m times differentiable.

]!A» forp 2 1.
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Theoretical Justification of Equivalent Beam Averaging for LEED
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Abstract

The equivalent beam averaging procedure corrects LEED intensities to first order for
systematic error due to angular misalignment of the incident beam. The method also
corrects for misorientation of the surface plane or for large-scale variations in surface
topography. High-order corrections for these errors can be obtained in the special case

where equivalent beams are averaged coherently.
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1. Introduction

Systematic errors are the bane of the experimentalist; unlike random errors, statistical
averaging does not reduce their effect on the data and there is no simple prescription for
eliminating them. Small errors persist despite great care in the preparation of the
sample, the calibration of the instrument and the execution of the measurements. In
low-energy electron diffraction (LEED) experiments, crystals are oriented typically only to
within +14° of the desired surface when they are cut, angles of incidence are not
controlled to better than +~°, residual magnetic fields distort the beam paths, the point
of incidence may be misaligned by a few millimeters, and so on. All of these errors
noticeably degrade data from a high-resolution instrument (1) and to quantitatively
assess the influence of such errors the complete experiment has to be replicated
independently (2). A simple technique that can improve the quality of the data is

welcomed.

A useful procedure for reducing the effects of angular misorientations has been
presented by Davis and Noonan (3). The technique, known as equivalent beam
averaging (EBA), relies on the averaging of beams that are equivalent under the point
symmetry group of the ideal wavefield. The method has been justified on the empirical
grounds that it improved the quality of the fit between computed and experimental
intensity profiles in studies of the Cu(100) and Ag(110) surfaces (4). Numerical
calculations have shown that EBA can mitigate against the effects of slight errors in the
incidence angle and it has been suggested that EBA can reduce the errors due to beam
divergence and variations in surface topography (3). Here we give a theoretical

derivation of the technique demonstrating that this is in fact the case.

In Section 2 we show that when the only symmetry element is a mirror plane, the EBA

technique corrects for alignment error perpendicular to the mirror plane to first order. For



89.

surfaces with more than one mirror plane, or for any rotation axis including C,, EBA
corrects to first order for alignment error in both the polar and azimuthal directions.

High-order correction is available when the beams can be averaged coherently.

2. Theory

The equivalent beam averaging technique relies on the fact that for any diffraction beam
other than the specular reflection, the complex amplitude as a function of the incidence
angle has the point group symmetry of the surface (5,6). The (00) beam is special since
the reciprocity theorem (time reversal symmetry) requires that this beam have a twofold
rotation axis normal to the surface, even if the surface itself has no such symmetry
element (7,8). At normal incidence, the wavefield will have the complete point group

symmetry of the surface, so this is where EBA is most useful.

Over most of the energy range of a LEED intensity-voltage spectrum, the scattered
amplitude is an analytic function of the incidence angles. The exceptions occur near the
grazing emergence conditions for new beams where there may be slope discontinuities in
the intensity (9). Instrumental broadening will smooth out even this mild singularity, so
we will proceed initially by assuming that the wavefield can be expanded in a Taylor
series, checking a posteriori to see if the intensity is varying too rapidly as a function of

incidence angle for this procedure to be justified.

Consider first the case of a perfectly oriented surface with a mirror plane and suppose
that the incident beam lies in this plane. For any beam (hoko) in the mirror plane, there is
a symmetrically equivalent beam (h;k;). Denote the amplitudes of two equivalent beams
by yo and 4. If there is a slight misalignment, the incident beam will be tilted by an
angle ¢ with respect to the mirror plane. In the intervals where the wavefield is analytic,

the amplitudes can be expressed in Taylor series with a positive radius of convergence
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1Z] < goas

Yo(2) = Y+ Gy, + V2L + 0(Z7)

¥i(2) = Y= Qg + 28y + 0(3)), 1)
where an unimportant phase shift has been ignored. The corresponding beam intensities
are

1o(2) = wo Yo = ¥'¢ + 2Re(ZY'Y) + RE(ZW yp + TT0, W) + 0(Z)

1i(2) = Y= ¢'¥ — 2Re(ZYy,) + Re(GW Y + Z0Y w) + 0(8°)  (2)
Thus, the average intensity is

<I> = Yol + 1) = I + 0(Z2). (3)
Averaging has corrected the intensities to first order for error in the azimuthal angle.
The analysis can be carried a step further by noting that the linear combination

& = Yo(Io — Ih) = 2Re(Zy w )+ 0(Z°) = Zl, (4)
gives an estimate for the sensitivity of the data due to variations in the incidence angle.
If the angle Z is measured accurately, e.g., using a photographic technique (10), the
derivative I, is approximated by &/Z. The estimate of the variance

£=[(Io—<I>) + (L —<I>)]" =26 (5)
can be used to weight the comparison between measured and computed intensities.
When the observed variance is large, the energy is likely to be near a singularity in the
intensity, and beam averaging is not justified. Hence, for both statistical and theoretical
considerations, € should be used to weigh the comparison between measured and

computed intensities.

Consider now a perfect surface with an n-fold rotation axis. At normal incidence, any
beam (hk;) other than the specular will have n beams in its equivalence class. Denote the
amplitude of the n equivalent beams by g, ¥1,..., ¥n-1. SUppose now that the incident
beam is slightly misaligned, making an angle of Q = (6, @) with respect to the surface

normal. Converting to complex notation, let
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z = Pe® (6)
so that rotation by 2r/n is represented by s = /", In regions where y(z) is free of

singularities for |z| < z,, defining the vectors

Yo | ( /7 ]
¥1 zyY
2 = (yn)?| u, o= 92 7)
kzp;.l J \z"'lz,b("‘{)/(n-l)i J

gives the Taylor series expansion

¥ =S¢ + 0(z") for |z| < zy, (8)
where the unitary matrix S is given by Sy = (/n)’s*. The average intensity is

<I>=v¢'gv= &' +0(") =1+ 0 9
and again the first-order term has been eliminated. The sensitivity of the data can be
estimated by

s =nt|Zd | = |, + 0E™), (10)
where m = 2 for n odd, and m = 3 for n even. The higher derivatives of I cannot be

estimated this way since they are confounded either with <I> or s.

An interesting outcome from the analysis is that contrary to the accepted view that four
equivalent beams are needed to correct for error in both the polar and azimuthal angles
(3), any n-fold rotation, in particular C; and Cs, will achieve a first-order correction. Four

spots are needed, however, when the only symmetry elements present are mirror planes.

In Equation (8), n terms were carried and the result of the averaging in Equation (9) was
a first-order correction to the beam intensity. The second-order error term in <I> arises
from the incoherent averaging of the n equivalent beams. If the wavefunctions could be

summed coherently, the average intensity would be

<I> =n?[ZylTZ vl
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=nt(e"1)(1"e) + 0(z")

=1 +0(z"), (11)
where 1 is a nx1 vector of ones: 1 = (1 1 1) ". Hence, coherent averaging corrects the

intensity to order n.

Experimentally, an approximation to coherent averaging is obtained when there are
many symmetrically equivalent domains within the coherence area of the instrument. As
is shown in Fig. 1, only the overlayer beams are averaged. The averaging will not be
perfect since the areas covered by domains of each type will not be exactly equal. If p; is
the relative proportion of domain i per unit area, the amplitude of the wavefunction is
Tpi=y + 29T ps'+ 2221 yP T ps? + ... + 2"Y(n-1) "V I ps™+ 0(2") (12)
If there is a large number of coherence areas within the beam, the expected value for
the intensity is

<I> =n(z'p)(p"?)

= I + alzll, + 0(az’) + 0(z"), (13)

where the variance in the domain coverage is

o = [(n-1)/<N>n?]"? (14)

and <N> is the average number of domains within a coherence area.

Finally, suppose that the incident beam is aligned perfectly normal to a high-symmetry
plane of the crystal, but that the sample was misaligned slightly when it was prepared so
that the actual surface is not exactly parallel to the high-symmetry plane. This situation is
the dual of the previous cases. The systematic error discussed above concerned the
misalignment of the wavevector or the incident beam, that is, an error in reciprocal
space, while here there is a misalignment in real space. The previously developed
equations can be carried over to the dual case by reinterpreting the variables ¢ and z.

Now, Z is the azimuthal angle between the surface normal and a mirror plane or the
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substrate, while z is given by Equation (6) with 8 and @ being the angles between the
surface normal and an n-fold rotation axis of the substrate. Hence, EBA intensities are

correct to first order for a misorientation of the surface plane.

The case where both types of errors occur does not introduce anything new. Letting z
and z* measure the errors in real and reciprocal space ( or Z and Z*, respectively, for o,

symmetry), the Taylor series develops as

Yo =y + JZ + Z'GZ + O(lIZIP), (15)
where
[z ] v ok
Z= |zF J=8Z and G=82° (16)

for liZIl < Z,. Now, beam averaging gives first-order correction for both z and z+.
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Figure Caption

Figure 1: An asymmetric adsorbate on a C, site can produce four rotationally equivalent

domains, leading to coherent averaging for the overlayer beams.
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Appendix 1

CO on Ru (001): Island Size and Disordering

Reprinted with permission from E. D. Williams, W. H. Weinberg and A. C. Sobrerc, J. Chem. Phys.
76, 1150 (1982). Copyright 1982, American Institute of Physics.
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CO on Ru(001): Island size and disordering

Ellen D. Williams,* W. H. Weinberg, and A. C. Sobrero

Division of Ch
California 91125
{Received 22 September 1981; accepted 8 October 1981)

istry and Chi ! Engi

ing. California Institute of Technology, Pasadena,

Low-energy electron diffraction (LEED) has been used to study the influence of steps and of temperature
variation on the formation of ordered islands of CO on the (001) surface of ruthenium. The clean surface was
found to have steps two atoms {one hep unit cell) high separated by terraces with an average width between
135 and 270 A. Widths of the beam profiles for the CO overlayer were measured as a function of coverage at
100 and 310 K. The coverage dependence requires that there be increasing numbers of islands per terrace at
decreasing coverages. The temperature dependence of the overlayer was measured also. The {requency of the
frustrated translational motion of thc CO admolecules parallel to the surface is estimated to be 45 em™', At
fractional (] coverages up to 1/6, the ordered islands of CO disorder substantially below the desorption
temperature. At ¢ = 1/3, disordering is much less marked. The disordering behavior depends stroagly on the
distribution of sizes of islands in the overlayer. The correct distribution was detarmined and used to calculate
the island sizes as a function of coverage. The mean number of CO molecules per island is 1000 at

J=1/6, 500 at# =0.14, and 300at ¢ =0.12.

. INTRODUCTION

The interactions among chemically adsorbed molecules
are of both practical and theorctieal interest. In practi-
cal terms, lateral interactions clearly affect the dif-
fusion and reaction of chemically adsorbed molecules, !
The theoretical interest in lateral interactions arises be-
cauge they represent a type of molecular interaction not
observed in homogeneous systems. Interactions among
chemically adsorbed molecules can arise as a result of
a perturbation of Lhe electrons of the metal near the sur-
face or an elastic distortion of the surface by the ad-
sorbed species.?™® The effects of lateral interactions
are manifest in vibrational spectra of chemisorbed
overlayers, ' # in thermal desorption mass spectrome-
try, 1 and, most strikingly, in low-energy eleetron
diffraction (LEED).* Each of these measurements of-
fers a different potential for the determination of lateral
interaction energies. Only qualitative information is
available via vibrational spectroscopies. Proper analy-
sis of thermal desorption mass spectra allows the esti-
mation of net attractive and repulsive interaction ener-
gies in overlayers. LEED, however, offcrs the pos-
sibility of determining both the size and directicnal de-
pendence of the microscopic lateral interactions between
chemisorbed species.

When molecules adsorb onto the regular array of bind-
ing sites of a single crystal surface, they often form
ordered overlayers, observable by LEED, whiech have
a periodicity greater than that of the substrate. This is
a direct consequence of lateral interactions. The ge-
ometry of the overlayer provides immediate qualitative
information concerning the interactions. Short-range
repulsive interactions tend to cauge vacancies in sites
adjacent to an occupied site, thus inecreasing the periodi-
city of the overlayer. Attractive interactions allow the
molecules to cluster into islands of ordered structure
even at very low surface coverages if the temperaturc
is sufficiently low. Increasing the temperature causes

Ypresent address: Department of Physics and Astronomy,
University of Maryland, College Park, Maryland 20742,

1180 J. Chem. Phys, 76(2), 15 Jan. 1882

0021-9606/82/021160-12802.,10

the ordered superstructure to disorder, resulting in a
disappearance of the LEED pattern. This is a physical
realization of the two-dimensional order—disorder
transition that has been employed widely in theoretical
studies of phase transitions. 15 The techniques and re-
sults of these studies therefore are directly applicable
to an analysis of the ordered overlayers that form as a
result of lateral interactions at surfaces.®" LEED
studies of order—disorder phenomena in overlayers have
been carried out for a limited number of chemisorbed
systems. Among the most thoroughly studied systems
have been oxygen adatoms on W{110), *~*# hydrogen
adatoms on Ni(111), % and oxygen adatoms on
Ni(111), -3¢

An additional effect of lateral interactions, island for-
mation, ig accesgible to study by LEED. Results from
the adsorption of oxygen on W(110¥*2535 have shown that
the oxygen adatoms clugter into many small islands,
rather than forming one large island as would be ex-
pected from energetic considerations alone, It is
reasonable to assume that the formation of small is-
lands arises as the result of limitations on the diffusion
of atoms or molecules across the surface. For the case
of oxygen atoms on W(110), it appears that steps on the
surface may act as barriers to diffusion, isolating the
adatoms on distinct terraces. In other systems, it is
possible that islands form as a result of a limited mo-
bility of the adgpecies even on a perfect surface. In
either case, the mechanism of island formation will de-
termine the distribution of sizes of islands at any given
coverage, Therefore, quantitative studies of the size of
ordered islands can provide information on the limita-
tions of diffusion of molecules across the surface, Fur-
thermore, it is well known*~% that finite size effects
can influence strongly the nature of phase transitions.
Detailed information concerning the dimensions of or-
dered structures on the surfaces, thus, may be crucial
to a thorough understanding of order—disorder phenom-
ena in chemisorbed overlayers,

In the following, we will discuss the results of a LEED
investigation of the island formation and order-disorder
behavior of CO on Ru(001). It is known that CO adsorbs

© 1882 American Institute of Physics



99.

Williams, Weinberg, and Sobrera: CO on Ru(001)

The (/3X+V3)R 3¢ structure of CO on Ruf001). Ar-

FiG. 1.
rows indicate the repulsive firat neighbor interaction J, and the
attractive second neighbor interaction J,.

molecularly in the on-top site on Ru(001),'>* At frac-
tional coverages up to 9 =% (one CO per three surface Ru
atoms, or 5.28x10" CO/cm?), the adsorbed molecules
order into a (V3% v3) R 30° superstructure (hereafter
referred to as the ¥3 structure).**™*® The formation of
the v3 structure, in which nearest neighbor sites are un-
occupied, indicates a repulsive first neighbor interac-
tion. Results of thermal desorption®® and infrared
spectroscopic’’ measurements on this system indicate
that there is an altractive second neighbor interaction
between CO molecules which gives rise to island forma-
tion at low temperatures, The V8 structure with first
and second neighbor interactions J; and J; is shown in
Fig, 1. The experimental technigues used to study this
system are described in the following section. In Sec.
111, we present experimental data concerning island
size, and change in island size with temperature. A
detailed analysis of the data and the corresponding
discussion are presented in Sec. IV. Section V contains
a summary of our major conclusions.

Il. EXPERIMENTAL METHODS

The experiments were carried out in an ion-pumped
stainless steel nltrahigh vacuum system equipped also
with liquid nitrogen cooled titanium sublimation pumping.
The base pressure, following bakeout, was below 1
% 10" Torr. The system contains a quadrupole mass
spectrometer and a single pass cylindrical mirror Auger
electron spectrometer as well as four grid LEED optics
and a movable Faraday cup for beam intensity measure-
ments. The Faraday cup contains an einzel lens which is
negatively biased to accept only those electrons of energy
within approximately 0.5 eV of the energy of the incident
beam. It also has been modified by replacement of the
original collector cup by a channel electron multiplier 45
A 0,13 mm diameter aperture on the Faraday cup was
used in these experiments.

The Ru surface was oriented, cut, and polished towith-
in 1° of the (001) plane using standard methods. The
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polished crystal was spotwelded to twoparallel 0,025 cm
diameter Ta heating wires which were clamped in a

Cu bolder which was part of a rotary manipulator as-
sembly. Thermocouple leads of 5% Re/95% W and 26%
Re/74% W were spotwelded together and then spotwelded
to a small piece of Ta foil (approximately 1 mm® sur-
face area) on the back of the crystal to make the junc-
tion. The crystal could be cooled to 100 K using liguid
nitrogen refrigeration, and it could be heated resistive-
ly o above 1600 K. The thermocouple calibration of
Sandstrom and Withrow®® was used below 273 K. Clean-
ing procedures established previously” were used to
keep the surface free of contaminants.

LEED beam profiles were measured by positioning
the Faraday cup on the center of the profile and varying
the energy of the eleciron beam to sweep the profile
across the cup aperture.*’ Profiles measured in this
way were corracted for the intensity variation of the
beam with energy by division by the I-V curve. It was
assumed in making this eorrection that there was no
variation in beam width over the energy range of the
beam profile. The energy width (FWHM) of the sub-
strate beams ranged from approximately 1. 5 eV at
37¢cVto3.4 eV at 95eV. The FWHM of the (v3x+3)

R 30° overlayer beams ranged from 1.5 eV for the nar-
rowest beam measured to 2. 7 eV for the widest. Trans-
formation of the beam profiles as functions of energy to

functions of wave vector was done using

ok sin©

O B
oE |, 2vis0.4 & -

(1)
where © is the angle of the diffracted beam with respeet
to the surface normal, E is the electron energy in eV,
and k is the parallel component of the wave vector in
ALY The bulk value of 2.7058 A*® was used for the
nearest neighbor Ru—Ru distance on the unreconstructed
(1x1) surface in calculating the values of % at the cen-
ter of the diffracted beam profiles,

The overlayers of CO were prepared usually by ad-
sorption at 350 K followed by coocling to either 100 or 310
K. This procedure was followed singe it has been shown
that direct adsorption at low temperature leads to a
large dengity of defects (domain boundaries) in the
overlayer at 9=%.*" To calibrate the coverage, the
LEED intensity due to the V3 structure was measurcd
as a function of exposure to CO at 330 K. The exposure
at which a maximum in intensily occurs represents
optimum ordering of the ¥3 structure and thus a cover-
age of 9=%, The known constancy of the probability of
adsorption of CO at room temperature up to 9=3 *41-50.51
was then used to relate lower coverages to exposure.

Mecasurements of the first order v3 beam prafiles wore
carried out at an incident energy of 28 eV, One set of
measurements was duplicated at an energy of 49 eV to
confirm that multiple scattering effects did not change
the measured width,® Incident beam fluxes of 1-10
nA/mm? were used to minimize electron stimulated
desorption or dissociation of the CO.* Variation of
intensity of the v3 beam with temperature was measured
by monitoring the intensity of the beam while cooling
from 400 K (desorption of CO begins above 400 K). Or-
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dering and disordering of the overlayer with tempera-
ture was completely reversible: the intensity and width
of the beam profile at 100 K remained unchanged fol-
lowing multiple heating and cooling cycles. The widths
of the beam profiles are quite sensitive to the prescence
of oxygen on the surface. Even small amounts of oxygen
contaminant cause substantial beam broadening. Care
therefore was taken to keep the surface rigorously free
of oxygen by techniques established previously.*

1Il. EXPERIMENTAL RESULTS

Three distinct sets of experiments were performed in
this study of the adsorption of CO on Ru(001). First,
profiles of the first-order LEED beams of the Ru(001)
surface were measured as a function of electron energy
to determine the instrument response function and the
step density of the surface, Then, beam profiles for
the v3 structure of the CO overlayer were measured for
a variety of coverages at 100 and 310 K. Finally, the
disordering of the v3 structure at temperatures up to
400 K was studied at three coverages by monitoring the
LEED intensity as a function of temperature. Each of
these sets of experiments is deseribed below.

A. Instrument response and step density

The parameters determining the instrument response
function arc the energy spread of the incident electron
beam AE, the diameter of the Faraday cup aperture 4,
the effective width of the incident electron beam D,
and the angular spread (source extension) of the incident
beam y.*"™ For this instrument, AE was determined to
be 1, 2 eV, using the einzel lens in the Faraday cup as a
retarding field energy analyzer. The cup aperture is
0.13 mm, and the true beam width is approximately 1
mm, as estimated by moving the erystal across the
beam. However, this width may be modified to a dif~
ferenl effective width by a focusing action of the einzel
lens. The source extension was not determined indepen-
dently, but values of approximately 0.0l rad have been
found for other similar instruments, ¥

To determine the values of D and ¥ and to measure
the step density, the width of the firsl-order substrate
beams was measured at energies between 35 and 90 eV.
For a surface with a distribution of terraces of different
sizes separated by steps, the beam profiles will be-
come broader and narrower with changing energy. %7
The smallest measured width corresponds to the instru-
mental width.®* Henzler® has derived a relationship
for the energies at which broadening and narrowing
should be observed for the (001) surface of an hep lattice
with steps of height equal to the lattice constant along
the hexagonal axis (4. 28 A for Ru). These energies are
indicated by arrows in Fig. 2 along with the experi-
mentally determined values of the beam width. It is
clear that the measured values are consistent with a
model of the surface containing a distribution of steps
of height 4. 28 A.

The degree of broadening of the beam profile is deter-
mined by the average distance between steps. The rela-
tive reduced width [the deconvoluted FWHM divided by
the value of % for the beam®"] of the broadened beams
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FIG. 2. FWHM of the first-order diffraclion beams of the
clean Ru(001) as a function of energy. Error bars represent
the standard deviation determined from rcpeated measure-
ments. Only one measurement was made of the point without
an error bar. Arrows represent the energies at which maxi-
ma (down arrows) and minima {up arrows) are expected in the
width [Ref. {55)]. The solid curve is the instrumental width.
The dashed curvc is drawn empirically as a guoide to the eye.

shown in Fig. 2 is 1.0x0.3%. Depending on the model
used for the disiribution of terrace sizes, this indicates
either terraces of width 100 lattice spacings (270 i)s"

or of width 50 lattice spacings (135 A).*® These two
estimates have been used as upper and lower limits on
the step density. As discussed in Sec. IV A, on the basis
of the igland size determination, the upper limit seems
to represent the surface more adeqguantely.

The minima in the measured widths in Fig. 2 repre-
sent the width of the instrument response function.
Using the predetermincd values of AF and 4, these mini-
ma were used to determine the values of D and y from
the known relationships between the parameters AE, 4,
D, and ¥ and the instrumental width as a funetion of
energy and angle.*"% The values for these parameters
were found to be D=0.05 mm and ¥=0,006 rad. The
small value of the effective width indicates that the einzel
lens in the Faraday cup acis to discriminate against
electrons not moving orthogonally to the detector. A
collecting lens used by Park and co-workers*? also
reduced the effective beam diameter by essentially in-
creasing the distance between the sample and the col-
lector, ¥or this instrument, the instrumental resolu-
tion is limited by the energy spread AE at low electron
energies and by the source extension y at higher en-
ergies.

Because the v¥3 beam occurs at 2 smaller angle with
respect to the incident beam than does the substrate
beam for the same electron energy, the width of the in-
strument response is narrower for the v3 beam. Using
the experimentally determined values for AE, d, D, and
¥, the width of the inslrument response for the V3 beam
is 0.0060 A™! at 28 eV and 0.0057 A™ at 49 eV. Ao un-
certainty of +0.0006 At is assigned to thege values by
comparison with the uncertainties in the widths of the
substrate beam profiles.
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B. Beam profiles of the CO overlayer

Beam profiles of the V3 structure formed by CO were
measured at 100 and 310 X for a range of coverages as
described in Sec. II. Profiles measured at 100 K for
coverages of 9=4 and 9=0. 10 are shown in Fig. 3. At
95=4%, the FWHM of the beam profile is 0.0064 A%, only
slightly broader thah the instrument response function,
At 8=0.10, the FWHM is 0.0132 A"!, This increased
width indicates that the CO molecules are present in or-
dered islands of limited size.

The measured profiles were correcled for the broadening
due to the instrument response by a Fourier transform
deconvolution. Since the measured profile L{%) is the
convolution product of the instrument response func-
tion 7({k) and the true beam profile I,(k}, *" the true pro-
file can be recovered from the measured profile using
the expression

ntR) = F { A } , @

where F and F*! are the forward and reverse Fourier
transforms, respectively. The average of two V3
beam profiles that had the same FWHM as the instru-
ment response (0. 006 A™) was used for the instrument
response function 7(%). The measured beam profiles '
were symmetrized by averaging about their center prior
to deconvolution. The application of Eq. (2) was quite
sensitive to truncation of the profiles and to noise.
Therefore, profiles were smoothed and their wings ex-
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FIG. 3. Averaged beam profiles for the V3 structure at ab-
solute coverages $=% and $=0.10 measurcd at 100 K. The pro-
file for $=4% is the average of nine measured profiles, that at
#=0, 10 is lhe average of five. Measurements were made with
an incident electron energy of 28 eV. AZ=0 is the center of the:
v3 beam profile, at k=0.2464 A1,
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FIG. 4. FWHM of the v3 beam profile as a [unction ol cover-
age at 100 ¥, .Circles o measured widths at incident clectron
energy of 28 eV, Triangles & widths corrected for instrumcnt
response by deconvolution, Error bars on FWIIM are the -
standard deviation determined from repeated measurcments.
Error bars on the coverage are estimated from the known re-
producibility of exposure,

tended prior to taking the Fourier transforms.

The widths of profiles measured at 100 K for cover-
ages from 3 =3 are shown in Fig. 4 before and after
deconvolution. The width increases steadily as the
coverage decreases. This shows that, as might be ex-
pected, smaller islands form at lower coverages.
Values of the widths shown in Fig. 4 as well as widths
measured at 310 K are listed in Table I, The standard
deviation in the widths of the deconvoluted profiles was
ealculated using the error propagation equation ap-
propriate for the deconvolulion of two Gaussian func-
tions.

TABLE I, Widths of beam profiles in A™! for ¥3 structure at
different coverages and temperatures. FWHM,, and o, are
the measured width and standard deviation, FWHM, and o,
are the width and standard deviation following deeconvolutfon to
correct for the instrument response. Values for 4=3%at 100
and 310 K are combined ase they are identical.

T ¢ FWHM,, O FWIHM, /]

WK & 0.0064  0.0005  0.0028  0.0021
$ 0.0079 0, 0002 0. 0041 0. 0008
0,14 0, 0088 0.0008 0, 0046 0.0012
0. 14* 0.00%0 0. 0002 0.0049 0.0007
0.12 0.0103 0.0007 0, 0063 0, 0010
0.10 0.0132 0.0007 0.0090 0.0009

310K  0.20 0,0068 0. 0006 0. 0030 0. 0017
% 0. 0089 0. 0005 0. 0058 0. D008
0,14 0.0155 0, 0015 0, 0113 0.0016

*Value measured at 49 eV incident energy.

All other values
measured at 28 cV incident energy.
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FIG. 5. The variation with iemperature of the intensity at the
genter of the v3 beam profile for $=4§, 'l, and 0.14. The varia- .
tion of the background intensity at = :—. x'g and at $=0,14,

is also shown. Arrows indicatc the temperatures at which the
heams begin to broaden. The smooth curve is the calculated
deercase in intensity due to frustrated translational motion of
the CO parallel to the surface with a frequency of 45 em™.

At 5=}, the optimum coverage for the v3 structure,
there ias no difference between the FWHM at 100 and that
at 310 K. Forlowercoverages, 9=}and 9=0, 14, the
FWHM increases with the lemperature. This indicates
a decrease in island size which must be due to loss of
CO molecules from the islands. For 8=0.12, the beam
profile is 30 weak and broad at 310 X as to be unmeasur-
able, At lower coverages still, no intensity due to the
V3 structure can be seen at all at 310 K. The good
agreement between the dcconvoluted widths of the pro-
files measured at 28 and 49 eV indicates that the use of
the kinematic (single scattering) approximation is ade-
quate for the present analysis.

C. Temperature dependence of the CO overlayer

Changes in the CO overlayer with temperature were
first monitored by measuring the temperature dependence
of the intensity of the beam preofile at its center. The
results for three different coverages are shown in Fig,

5. At 9=%, there is only about a 20% decrease in in-
tensity between 100 and 400 K. At 9=} and 9-0.14,
however, there is a dramatic decrease in intensity
with increasing temperature.

Some decrease in intensity with temperature is ex-
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pected due to the displacement of the CO molecules from
their optimum positions on the surface as a result of
vibrational motion, . The expected intensity variation is®™®

I=hexp(-2W), (3)

where
2W=(21F Y |as-w|?, (@
q

As ig the change in the electron beam wave vector, and
u, is the displacement in the g direction, The vibra-
tional frequencies of CO are 2021 cm™ for the carbon-
oxygen streteh, !® 445 em™ for the metal—carbon
stretch,® {n the range of 400 to 600 cm™ for the
frustrated rotational motion,* ™! and between 34 and 126
em™ for the frustrated translational motion parallel to
the surface.® % Of Lhese, only the {rustrated transia-
tional modes are sufficiently low in frequency to cause
a measurable change in the mean displacement of CO
between 100 and 400 K. Hosemann and Bagchi®® have
derived the mean square displacement with tempera-
ture of a three-dimensional harmonic oscillator. A
similar derivation for a two-dimensional harmonic
ogcillator gives

[N T
Ul = gum |2 T explwepTI —1( ?

where u, is the displacement parallel to the surface,

v is the vibrational frequency, and = is the mass of the
CO molecule, which has been treated as a single par-
ticle. Equations (4) and (5) were used to calculate the
intensity variation with temperature for a range of
values of v. The most satisfactory fit to the experimen-
tal data was obtained for v=45 ecm™, The calculated
intensity variation is shown by the solid curve in Fig. 5.
Up to approximately 220 K, the observed decrease in
intensity at 9=% can be attributed to vibrational motion.
Above that temperature, an additional type of disorder
must occur, Site disorder, in which CO molecules
occupy “incorrect” sites in the lattice with respect to the
V3 structure, is the obvious example. It seems likely
that site disorder at 9=7 will begin at domainboundaries,
only becoming prevalent throughout the overlayer at
high temperature.

(5)

From measurements at 310 K, it is known that the
beam profiles at 9=} and 9=0. 14 broaden with increas-
ing temperature. To monitor this change in shape, the
intensities at different points on the profile were measured
as a function of temperature, As a profile broadens,
the intensity in the wings of the profile will decrease
less rapidly than the intensity at the center, This be-
havior is illustrated for =0, 14 in Fig, 6. Three in-
tensity—temperature curves are plotted together: one
was measured at the center of the profile, and the other
two at quarter-maximum intensity. Each curve was
normalized independently. The slower decrease in in-
tensity at the quarter-maximum points, which indicates
broadening, is apparont. The ratio of the intensity at
quarter-maximum to that at the center, hereafter re-
ferred to as the width ratio, shows the broadening with
temperature even more clearly. The onsect of an
inereasc in the width ratio is abrupt, occurring at a
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FIG. 6. The variation with temperature of the intensity at
three different positions on the beam profile, Circles mea-
sured at the maximum of the beam profile, triangles, andx’s
measurcd at one-fourth maximum as illustrated schematically
in the inset. Each curve has been normalized independently to
unity at 100 K. The ratio of the curves measured in the wings
of the profile to the curve measured at the center is also shown
for the same points.

temperature of 195+ 5 K. The same type of behavior is
observed at 9=}, with the onset of broadening at 240
+10 K. The temperatures at which the width ratio be-
gins to change are indicated with arrows in Fig. 5. At
9=%, the width ratio is constant up to 400 K. This con-
firms the previous observation that the FWHM of the
beam at 9=4% is the same at 100 and 310 K.

The abrupt onset of beam broadening, which occurs
after the intensity has decreased by approximately 20%,
is somewhat surprising. Intuitively, one would expect
the profile to begin to broaden gradually as the intensity
decreases, as has been obgerved for oxygen adatoms
on W(110).** An explanation of this behavior ig presented
in Seec. IVB.

IV. ANALYSIS AND DISCUSSION

An analysis of the results presented in the preceding
gection is divided into two categorios that initially ap-
pear to be distinct. The first category is the analysis
of the widths of the beam profiles to determine the
size, and possibly the mechanism of formation of the
islands. The second category is the analysis of the or-
dering and disordering of the islands with temperature
to determine the CO-CO lateral interaction energies
and to compare with theoretical phase diagrams. Ilow-
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ever, during the apalysis, it will become apparent that
the island size distribution and the order—gdisorder be-
havior are strongly related. In the following subsec-
tion, we shall describe firat the analysis of the island
size distributions insofar as it can be carried out without
reference to the order—disorder behavior. In the second
subsection, the order—disorder behavior and its rela-
tionship to the island size distribution are discussed.
Finally, the results are compared with theoretical

phase diagrams for the ¥3 structure in the third sub-
section,

A. Island sizes

In principle, the mechanism of formation of the is-
lands determines the distribution of island sizes.®
There are two possible reasons for the formation of
small islands. The first is step-limitation of adatom
diffusion.® If steps act as barriers to diffusion, then
adatoms will be trapped on the terrace on which they
initially are adsorbed. The size distribution of the
iglands, thus, will be determined by the size distribu-
tion of the terraces. Except at extremely low cover-
ages, this model requires that there be a constant num-
ber of islands which vary in size directly with cover-
dge. In the following discussion, the phase “strict
step-limited model” will refer to the case where there
is little or no diffusion across step edges and only one
igland on a terrace. A second possible reason for the
formation of small iglands is a limited adatom diffusion
distance. In this model, adatoms, which initially are
adsorbed near one another, merge to form small is-
lands, Once formed, the configuration with many
small islands may represent a local minimum in the
free energy, with an activation barrier to the forma-
tion of a single large island.

In practice, only for the slep-limited model of island
formation have size distributions been predicted. 5+57
The experimental beam widths were analyzed using
these distributions as well as three semiempirical size
distributions. The relation®*

HE)=N 'Z (M) Ly(R) , (6

where N is the number of islands, P(M) is the probability
of occurrence of an island containing M molecules, and
I (%) is the beam profile due to a single island with M
molecules, was used to calculate beam profiles for
comparison with experiment given a distribution of sizes
P(M). A set of 34 I,(k) was calculated for values of M .
ranging from 59 to 4955, with the molecules arranged

in round islands. The 34 island sizes were chosen to
represent constant increments in the value of the diame-
ter of the islands. Thus, the increments in M are
smaller at smaller values of M where the width of the
beam profile varies more rapidly with island size.

The summation in Eq. (6) was carried out over this set
of values of M, with P(M) replaced by P(M)AM. The
results of the analysis for each of the five size distri-
butions is described below.

1. Geometrical distribution

Lu and co-workers®®® have developed a geometrical
distribution for terrace widths I':
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FIG. 7. Probability of observing an island containing M mole-
cules as a function of M for (a) geometrical distribution. (b}
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tion, and (f) delta function distribution. Each distribution gives
rige to a beam profile of width 0, 0041 A™ as observed for &=
at 100 K,

PO)~(1-8F1 8, %)

where B is the probability of encountering a step between
two surface atoms in a given direction, and T is the
width of the terrace in the number of surface atoms.

An analysis of the step distribution for the surface

used in this study based on Eq. (7) indicates that the
mean terrace width is approximately 50 Ru atoms (Sec.
I1A). This corresponds to a value of 8=0.02, If the
islands are step-limited, the size of an island will be
determined by the overall coverage and the size of the
terrace on which it resides by

M=9T2, (8)

where M ig the number of molecules in the island, and
where it has been assumed that on the average, terraces
will have uniform widths in two dimensions. Using

this model, the calculated FWHM of the beam profile
varies only slightly (from 0. 0040 to 0.0042 A™) be-
tween 9=}and 9=0,10, It is apparent that using a con-
stant average terrace width, this model cannot prediet
the rapid change in FWHM with coverage at intermediate
coverages that is observed experimentally. Only if the
value of B is allowed to vary substantially with coverage,
which corresponds to allowing more than one island per
terrace at low coverages, can the experimental values
be reproduced. Curve (a) in Fig. 7 shows the island
size distribution (with g =0. 022) that gives the correct
FWHM for 9=} at 100 K.

2. Henzler’s distribution

' Henzler®” has proposed a distribution for the terrace
width distribution given by

T\ fw "}
rem=res-(5) -(£) ] . (®)
where E~0.8 and w is an adjustable parameter deter-
mining the mean terrace width. Based on this distribu-
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tion, the mean terrace width on the Ru surface was found
to be approximately 100 Ru atoms, as discussed in Sec.
IIA. A value of w=40 in Eq. (9) gives this mean ter-
race width. Equation (8) again was used to relate M to
T, so'that Eq. (8) could be used to predict island size
distributions. As with the geometrical distribution, the
requirement of islands limited by terrace size results in
a very slow variation of FWHM with coverage between 9
=#and 9= 0,10. (The range of the value of the FWHM was
0.0036 A at 9= to 00037 A at 9=0.10.) Afit to

the experimental data requires a different value of w,

or a varying number of islands per terrace at each
coverage. The distribution that corresponds to the
correct beam profile width at =} (2¢=17 and mean
terrace width =41 Ru atoma) is shown by curve (b) in
Fig. 7.

3. Ball-in-urn distribution

If there is a fixed number of nucleation sites N for
islands, then an island size distribution can be deter-
mined from the number of ways of distributing # adsor-
bates among those sites, The result ig®

L R, M)
P(a) NN, ) 10)
where
o (N=len)l
AN, ) = T
and
(N=24n-M)!

Q/(N, n, M)=N =21t
A different number of nucleation sites had to be used for
each coverage to fit the experimental data with this dis-
tribution. This is consistent with the results of the
prior two analyses that the experimental values are in-
compatible with a model that requires a fixed number

of islands at all coverages, Curve (d) in Fig. 7 shows
the ball-in-urn distribution (¥=2100 and n=2666667
for a 4000x4000 Ru atom surface) which gives the value
of the FWHM measured for 9=} at 100 K.

4. Distance distribution

A computer simulation based on a very simple model
of diffusion-limited island nucleation was used to gener-
ate probability distributions for the nearest-neighbor
distance between island centers 7 that are Gaussian in
7.% The width of the distributions increases apprexi-
mately linearly with the mean distance 7,. Assuming
that the number of molecules in an island is related to
the distance to its nearest neighbor by M =97, distribu-
tions of island sizes were generated using this model.

A decreasing value of 7, with decreasing coverage was
required to fit the measured values of the FWHM.

This suggests, as do the prior results, that there are
more but smaller islands present at lower coverages.
The failure of this model to fit the experimental data
with a constant value of 7, indicates that the model used
to generate this distribution is too simple to describe
the overlayer correctly. Curve (e) in Fig. 7 represents
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the distance distribution (7,=106 Ru atoms) for 9=} at
100 K.

5. Delta function distribution

For comparison with the other distributions, a dis-
tribution in which there is only onc island size was also
considered. The delta function distribution for 9=} is
shown by curve (f) of Fig. 7.

Figure 7 amply demonsirates that knowledge of the
width only of 2 becam profile is insufficient to determine
the island sizes. In addition, use of the delia function
distribution to analyze the size does not give the mean
size in any sense, but at best an upper limit to the mean
size.® Knowledge of the coverage dependence of the
beam width can be used to test specific models for the
size digtribution. In this case, models that require a
fixed number of islands fail to fit the experimental data
because they cannot generate the rapid change in full
width with coverage that is observed, This indicates
that neither a strict step-limited model nor a defect-
nucleation model are correct for this system. The
distance—distribution also seems to be incorreet,
since a varying value of 7, with coverage is necessary to
fit the experimental data. This indicates that the as-
sumptions used in deriving this distribution® do not de-
scribe adequately the diffusion of CO on the Ru(001)
surface,

B. Disordering and island size

As shown in Figs. 5 and 6, no change in the width of
the low-coverage beam profiles with increasing tempera-
ture is obscrved until the intensity has decreased by ap-
proximately 20%. This seems a somewhat surprising
result, The I-T behavior at 9= indicates that there is
no gite disorder within the v3 structure below approxi-
mately 220 K. Thus the decrease in intensity must be
due to loss of CO molecules from the islands. But as
CO molecules leave the islands, the islands become
smaller and the FWHM larger. Therefore, it might be
expected that changes in intensity and FWHM would oc-
cur simultaneously. This has in fact been observed for
oxygen adatoms on W(110).%* However, it is possible
that the size distribution of the islands could modify this
simple prediction. Since the height of a beam profile
for a single island I,(#) is proportional to the square of
the number of molecules in the island, large islands
overwhelmingly dominate in determining the overall pro-
file [Eq. (6)]. On the other hand, the FWHM of the pro-
file for a single island is inversely proportional to the
diameter of the island, so that the FWHM changes very
rapidly with size for small islands and mcre slowly for
large islands. Using these considerations, it can be
seen that if small islands totally dissolve, it will tend
to decrease the FWHM. H, at the same time, large is-
lands lose some fraction of their molecules, the intensity
will decrease, and the FWHM will increase slightly.
For the correct distribution of island sizes, it is pos-
sible that the two influences on the FWHM will cancel
until the intensity has dropped appreciably., To test this
hypothesis, a simple model of the disordering process
was considered for step-limited and nonstep-limited
models of island formation.
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The disordered phase of CO was tested as a two-
dimensional ideal gas, and the V3 siructure as a 2
solid. The chemical potentials of the two phases were
calculated and equated to defermine the number den-
sity of disordered CO molecules as a function of tem-
perature. The partition function for the 2D gas is

1 2nmk, T Ne n
Qi"m (_?_L Ar) QIn‘l )

where N, is the number of 2D gas molecules, 7 is the
mass, A, is the surface area available to the molecules
(total area minus the area covered by islands). and
it 18 the internal partition function of a single mole-
cule. In the 2D solid, it is assumed that all the mole-
cules are ordered in tae V3 structure, i.e., there is no
occupancy of nearest neighbor gites, If the vibrational
modes of the CO remain independent in the 2D solid
{the CO-CO distance is 4.7 A), the partition function
for an island for which the edge molecules are a negli-
gible fraction of the total is

(11)

B (12)

Qu=dis exp (;G—h‘i) ’
where N; is the number of molecules in the 2D solid and
J; is the interaction energy for CO molecules in sec-
ond nearest neighbor sites. In both Eqg. (11) and (12),
the zero of energy has been taken as the minimum of
the potential energy well for binding of a CO molecule to
the surface. Equating the chemical potential for the
solid and gas gives

N, 2rmk,T \ [ 4 B4,
==K Hipt g Sl
%=, ( a )( )exP(ZkBT)'

qinl,a

(13)

The internal partition functions for molecules in the gas
and solid were taken to be the same, excepl for a minor
difference due to the different carbon—oxygen stretching
frequencies. 1°

For a finite size island, the energy will be less than
6N, /2 since the molecules at the edge of the island
have a coordination smaller than six. The number of
molecules at the edge of the island will be proportional
to the square root of the number in the island, so that
the total energy is

E- %ﬂ —ch, V¥, (14)
where ¢ is a constant taking into account the coordina-
tion of the edge molecules and the proportionality of
VN, to the number at the edge. Using this value of E
in the partition function for the solid, the new value
for the 2D gas phase dengity is

- Col,

9 =9, exp(z;}'——ﬁ') : (15)
In a step-limited model of island formation, each island
is located on a terrace, isolated from all other islands.
Thus, Eq. (15) can be used directly to calculate the 2D
gas-phase density on each terrace as a function of tem-
perature. Once 3} is known, the change in size of the
island follows immediately, and the beam profile can
thus be calculaled as a function of temperaturc. For
comparison with experiment, the calculated profiles
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FIG. 8. Compurison of calculated (solid curves) and experi-
mental (circles) intensity and width ratio as functions of tem-
perature. An arbitrary size distribution (see text) and a value
of J, =—1. 28 keal/mol werae used in the ealculation, The cal-
culated intensity has been multiplied Ly exp(—2W) [see Fg. (4)].

were numerically convoluted with a Gaussian “instru-
ment response function” of width 0.006 A, This cal-
culation was carried out for distributions (a), (c), (d),
(e), and (f) in Fig. 7. The calculation was quite
successful in duplicating the sudden onset of change in
the width ratio. However, for none of the size distri-
butions did the intensity drop by more than 10% before
the width ratio began to change. In addition, only a 10 K
difference between the intensity curves at 9=§ and 9
=0. 14 was calculated, in contrast to the observed dif-
fercnce of 30 K or more (Fig. 5).

If the islands are not step-limited, then all the is-
lands in the overlayer should be considered in cal-
culating the partition function for the 2D solid. A direct
'appros.ch to this problem was not attcmpted. Instead,
an approximate method was used. The overall 2D gas
density was calculated using Eq. (13). It was then as-
sumed that all islands lose CO molecules from their
edges at the same rate, with a correction term for
the higher energy of smaller islands as in Eq. (15), un-
til the correct overall 2D gas density was reached. In-
clusion of the energy correction term causes small is-
lands to lose molecules fromtheir edges at a greater
rate than large islands. Omission of this term causes
a distribution to act like a distribution with a slightly
larger mean island size. Beam profiles were cal-
culated as for the step-limited model. It was found
that for different distributions of island sizes, the onset
of change of ithe width ratio was ghifted to higher tem-
peratures as the mean island gize became smaller. This
is in agreement with our qualitative argument concern-
ing the relative effecls of a loss of CO molecules from
small and large islands in the FWHM, For the ball-in-
urn distribution, the intensity decreased by 10% before
beam broadening was observed. For the geometrical
distribution, the profile actually became narrower with
ine¢reasing temperature as the large number of small

Williams, Weinberg, and Sobrero: CO on Ru{001)

islands in that distribution preferentially disordered.
Therefore, a distribution intermediate in shape be-
tween these two was sought. An empirical distribution
of the form

PO (1 -0t (16)

where b is an arbitrary constant, was found to give the
correct relative behavior of intengity and width with tem-
perature. The distribution used at 9=} is shown in
curve (c) of Fig. 7. The calculated intensity and width
ratio for J; =—1. 28 kcal/mol is compared with the ex-
perimental data in Fig. 8. The calculation reproduces
the delayed onset of broadening quite successfully, al-
though the shape of the calculated intensity curve is not
correct. Also, the more rapid increase in width with
temperature at 9=0.14 than at 9=} is predicted by the
caleulation, However, as for the step-limited model,
the observed difference in temperature between the two
intensity curves is not reproduced. The best fit to both
sets of data (9=} and 9=0.14) Lherefore occurs with

J» =—1.20 keal/mol which places the caleulated curves
for 9=} approximately 10 K too low and those for

9 =0, 14 approximately 10 K too high in temperature.

Three major approximations were made in deriving
the partition functions for the 2D gas and 2D solid [Eqgs.
(11) and (12)]. The first two were: (1) treating the dis-
ordered phase as an ideal gas and (2) equating the in-
ternal partition functions of molecules in the two phases.
Modification of these two approximations causes the cal-
culated intensity and width ratio curves to change mainly
by a shift along the temperature axis. Thus, these two
approximations affect the estimate of J, mosl strongly.
The third approximaticn, that site-disorder does not
occur within the islands, is best at low temperature. In-
spection of the intensity—-temperature curve at 9=%

(Fig. 6) shows that this is a rather rcasonable approxi-
mation over the temperature range for which the cal-
culations were performed. The relative behavior of the
intensity and the width ratio are not influenced greatly
by these approximations. Therefore, conclusions based
on calculations of these two quantities can be given a
rather high degree of credence.

It was not possible to fit the experimental intensity and
width ratio curves if it is assumed that CO molecules
cannot ¢ross steps and that, thus, the density of the dis-
ordered phase about an island is due to loss of CO mole-
cules from thatisland alone. If the number of CO mole-
cules lost from each island is proportional to the number
of molecules at the edge of the island (and this is a very
reasonable approximation), it is possible to fit the ex-
perimental curves only with one model for the island size
distribution. It ig thercfore concluded that curve (c) of
Fig. 7 represents the physical distribution of island sizes,
although Eq. (16), used to describe it, is only an empiri-
cal equation. Therefore, the mean island sizes have
been determined by varying the parameter b in Eq. (16)
to produce profiles of the widths measured at 100 K.

The results arc compared with the values calculated
using the delta function distribution in Table II. In mak-
ing these calculations, it has been assumed that the
width measured at 100 K is the narrowest width that will
occur at each coverage. This has been shown to be
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TABLE II. Mean island size and diameter for the correct dis-
tribution deseribed Inh Sec, IV B, and the delta function dis-
tribution. b is the value of the parameter used in Eq. (16).

Correct distribution Delta function distribution

& b M d, & M d, A
+ 0.008 1000 140 2700 255
0.14  0.014 500 95 1700 215
0,12 0,019 300 75 1100 165
0.10  0.032 160 85 360 115

correct experimentally for 9=} and 9=0,14. Extrapolat-
ing the behavior at =} and 9=0.14, it appears that the
onset of broadening at 9=0, 12 is near 100 K, and at 9
=0.10, it is probably below 100 K. Therefore, the cal-
culated island sizes are correct for 8=}, 0.14, and
0.12, and probably somewhat small for 9=0.10. As
shown in Table II, regardless of the distribution used
to calculate the mean island size, the mean size de-
creases with coverage far more rapidly than linearly.
This demonstrates that there are increasing numbers

of islands with decreasing coverage.

Both the coverage dependence of the beam widths and
the behavior of intensity and width with temperature show
that a strict step-limited model for island growth is not
correct for CO on Ru(001). While the maximum size an
island can attain is obviously limited by the size of the
terrace on which it is located, at low coverages there is
some limit to the mobility of the CO molecules which
causes more than one island t o form on a single smooth
terrace. In addition, analysis of the disordering be-
havior of the islands has shown that the size distribution
must be of the shape of curve (¢) in Fig, 7, which can
be described by Eq. (16). The shape of this curve
places a lower limit on the size distribution of terraces,
since the terraces must be large anough' to accommo-
date the islands. The geometrical distribution®5® with
 step density of 2% (See, IIIA) has a very small pro-
portion of large terraces and would not allow the forma-
tion of the island size distribution of Fig. 7(c). Henzler’s
distribution® with a step density of one percent (Section
IIA) has a very slow decay with increasing terrace
width, and could easily accommodate the proposed is-
land sizes. It apoears, therefore, that the broader dis-
tribution describes the atep density on this surface more
accurately.

C. Oomfnrison with phase diagrams

The dissolution of ordered islands into a disordered
phase is a first-order transition. In these experiments,
" the disordering was monitored under conditions of con-
stant 2D density (coverage). For these conditions, the
disordering will take place over a range of tempera-
ture, and the transition temperature will be that at which
the ordered phase disappears completely. This point is
observable by LEED as the temperature at which the in-
tegrated intensity in the overlayer beam profile effective-
1y goes to zero.?® Quantitative measurements of these
temperatures were not made in this study. However,
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from the experiments that were performed, a clear
trend in the dependence of the transition temperature

on coverage appears. Extrapolation of the intensity ver-
sus temperature curves at 9=} and 9=0, 14 shows that
the transition temperatures are well above 400 K for
these two coverages, At 9=0,12, there is only a weak
profile observable at 310 K, indicating a transition
temperature between 310 and 400 K. No profile is ob-
servable at 9=0.10 at 310 K, whieh shows that the transi-
tion temperature igs S310 K, The results indicate that the
transition temperature decreascs very rapidly with
coverage,

Phase diagrams have been calculated for overlayers on
a triangular substrate such as Ru(001), with attractive
second and repulsive first nearest-neighbor interactions
in the ratios J; /J; ==1% and J,/J; =0.%%° In the case
where the second neighbor interaction is zero, no or-
dered structure forms at any temperature below a
coverage of approximately 0. 28.%+%? Above that cover-
age, an ordered structure does form and disorders witi
inereasing temperature via a second-order phase transi-
tion. The maximum transition temperature occurs
at 9=% and has a value of %, T/J;~0,35,%% Wwhen the
attractive second neighbor interaction is added, the
transition temperature at 9=+ is increased to a value
of ky T/J;=1.4.% In addition, a coexistence region in
which the ordered and disordered phases are in equi-
librium is added to the phase diagram. The coverage
range over which island formation has been observed for
CO on Ru(001) falls within the theoretically predicted
coexistence region. -

For CO on Ru(001), the magnitude of the second neigh-
bor interaction should be congiderably smaller than that
of the first. From thermal desorption measurements,

a value of J, /J; =~ has been estimated.* Therefore,

a direct comparison of the experimental transition tem-
peratures with the calenlated values is not feagible,
However, a qualitative comparison reveals an interesting
disparity between the theory and experiment. The ex-
porimental values of the transition temperature, although
determined only approximately, show a clear trend of
rapidly decreasing transition temperature with coverage.
The experimental transition temperature drops by at
least one-third between 9=} and 9=0.10. In contrast,
the theoretical transition temperature drops by only

10% between the two coverages.®® This is similar to the
difference between the ealculated coverage dependence

of the intengity—temperature curves of S8ection IV B and
the larger experimental dependence.

This discrepancy may be the resull of the small is-
land sizes of the CO overlayer (see Table II). Re-
normalization group calculations have shown that finite
size effects can transform a flat phase boundary to one
in which the transition temperature increases with
coverage,*® While the boundary conditions used in the
calculation are almost certainly not the same as those
which determine island size in the experimental sys-
tem, the results indicate that finite size effecta have
the potential to perturb the phase diagram as observed

. experimentally.
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V. CONCLUSIONS

The major conclusions of this work are summarized
below:

(1) The Ru(001) surface contains steps thatare onehep
unit cell (twoe Ru atoms) in height. Based on the broaden-
ing of the substrate beam profiles, the mean terrace
width is between 50 and 100 Ru atoms. Measuremenis
of overlayer igland sizes indicate that the true terrace
size distribution is closer to the larger limit for this
surface.

(2) The temperature dependence of the fully ordered
(¥3xV3) R 30° CO overlayer indicates that the frequency
of the frustrated translational motion of CO parallel to
the surface is approximately 45 em™,

(3) The coverage dependence of the widths of the v3
beam profiles is inconsistent with a strict step-limited
model of island formation for CO on Ru(001), There
appear to be increasing numbers of smaller islands with
decreasing coverage.

(4) The distribution of island sizes can have a pro-
nounced effect on the change in the beam width during is-
land dissolution. Using this effect, it was possible to
determine the island size distribution for CO on Ru(001)
and, thus, the mean island size as a function of cover-
age [see Eq. (16) and Table I].
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1. Least Squares with Error in All Variables

The usual equations in regression analysis assume that the independent variables can be
measured exactly while assigning all the uncertainty to the dependent variables. In many
cases this separation of variables into two classes is quite arbitrary since all the data
contain errors. Different choices for the independent variables will give different values
for the parameters, and it is not always clear which are the best values.
Consider as an example two variables x and y with a linear relationship between them.
This is usually expressed as

y=mx+b (1)
with the two parameters m and b to be fitted by least squares. Another straight line is

X=py+B (2)
When there are measurement errors in both x and y, these equations do not give
the same line (except by coincidence). Treating the two variables symmetrically, as in

1 =mx + ny, (3)
which gives the normal equations

(Bx) [2x*  Zyx| [m)
=y = [y Zy? | Un) (4)

(If the constant term b is close to zero, then the symmetric form in Equation (3) cannot
be used.) This treatment assumes that the variables have been scaled so that the

variances oy and o, are equal. For unequal variances, Equation (3) becomes

1 = m(x/oy) + n(y/oy) (3.1)
The general case of linear least squares is handled similarly. The usual equation is
y = xb + 1b,, (5

where y is the vector of dependent variables, x is the data matrix, b is the
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parameter vector to be determined, .1 is the vector of 1's and b, is the constant term.

The symmetric form is obtained by the rearrangement

b/ bo]

1= [xly] [llbo (6)

using an augmented data matrix and parameter vector, from which the normal equations

follow. As before, Ib,| cannot be too small when this form is used.

When the number of parameters to be fitted is =3, there are biased estimates for b with
smaller variance than the Gauss-Markov estimate. A general technique for obtaining
reduced variance estimates is ridge regression (1, 2) with b given by

b(k) = (X'X + kI)'X"1, )
where X is the augmented data matrix and k is the ridge parameter. A good value for
this parameter is the generalized cross-validation estimate (3) found by minimizing the
function

V(k) = IIT — A(k)1II*/[Trace(I — A(k))]?, (8)
where

A(k) = X(X™X + kI)X" (9)

and the Euclidean norm is used.
2. Least Squares for Conic Sections

When applying the photographic method for determining angles of incidence (4), it is
necessary to find the center and radius of the image of the LEED screen on the
photograph. Geometrically, any three points on the circumference are sufficient to
determine the circle, but errors in measuring the coordinates of the points lead to errors
in determining the unknown parameters. To obtain the high precision in the parameters
needed for the angle determination technique, many data points must be measured and

used in a least-squares procedure to fit a circle.
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The equation for a circle, as it is usually written, is nonlinear in the desired parameters,

r=(x=%) + (y - o)’ (1)
A rearrangement gives the linear form

1 =R+ y?) — 2xx — 2y0y], (2)
where

R=r"~(X"+Yo) 3
and the parameters R, x,R* and y,R™ can be found by linear least squares. The
conditioning of the normal equations can be improved by subtract off the mean values of
x and y, viz., <x> and <y>, and rescaling the variables by dividing by the standard
deviations oy and gy to make them dimensionless

& = (X — <x>)/0x

mi = (Yi— <y>)/oy

and
Zi = [06— <x>) + (yi— <y>)l/(0,2 + 6,%) 4
This gives
[e
1 = [&nZ] {ﬁ (5)
\or
where
a = —204/R
B = —20,/R
y = (@2 + 62)/R
and

R=r"=[(%—<x>)"+ (Yo— <y>)] (6)
The solution to Equation (5) is given via the normal equations as

[x'x]'x"1 = b, (7)
where the data matrix is x = [EnZ] and the parameter vector is b = (oc;sy)T. The same

fitting procedure can be used for the general conic section
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1= + BXy + vy’ + 6X + ey, (8)

which becomes

1= [Xi2 XiYi YIZ X vil xb (9)

n oo WA
Il

The data values x; and y; can be normalized as before and ridge regression can again be

used to reduce the variance in b.
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