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ABSTRACT 

The electrode current-voltage characteristics and the limiting 

cathode current density for thermionically emitting electrodes in con­

tact with high-pressure, seeded, non-equilibrium MHD plasmas were 

determined analytically and experimentally. The theoretical model 

was based on the coupling of the adsorption phenomena of alkali metal 

seed particles onto electrode surfaces with that behavior due to the 

plasma in the electric boundary layer adjacent to the electrode surface. 

The desorption rates of electrons and seed atoms and ions (which were 

given by quoted functions of the surface tempera~re, the surface de­

gree of coverage, and the electric field at the surface) were related to 

the appropriate boundary conditions for the governing continuum-type 

plasma equations in the electric boundary layer. 

An algorithm was given for the simultaneous solutions of both 

the surface state and the electric boundary layer. Machine computed 

results were presented for a potas sium- seeded argon plasma (at 

2000
0

K and one atmosphere pressure) in axially-symmetric stagnation 

flow over a tungsten electrode and displayed the effects of varying the 

parameters: surface temperature and seed fraction. These results 

indicated an order of magnitude increase in the thermionic limiting 

current density due to coupling effects. 

Experimentally, the electrode phenomena were studied in a non­

equilibrium discharge produced in the same plasma-electrode system 
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as used for the machine computations. The electrode behavior was 

determined from voltage probes, photomultiplier measurements, and 

photographs. As the thermionic limit was approached, a transition to 

an arc mode of cathode operation occurred at some breakdown voltage 

drop. The experimental current-voltage characteristics for the cath­

ode agreed with the machine results, and the predicted enhancement of 

the thermionic limiting current density was observed experimentally. 
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1. INTRODUC TION 

High pressure (atmospheric), alkali metal-seeded plasmas 

are of considerable engineering importance, since the low ionization 

potential of the alkali seed enables areas onably high electrical con-

ductivity to be attained at modest gas temperatures. These modest 

gas temperatures allow the containment of the plasma in a device 

that is either cooled externally or constructed from refractory ma-

terials. Possible practical applications of this type of plasma in-

elude the direct conversion of heat into electrical energy by a mag-

netohydrodynamic (MHD) generator and the MHD accelerator which 

transforms electrical energy into kinetic energy., 

Since direct current MHD devices are connected to external 

circuits which conduct electricity by an electron current, one elec-

trode (the cathode) must liberate this electron current while the 

other (the anode) collects it in order to complete the circuit through 

the plasma. Usually, the electron current liberated at the cathode is 

limited, and when this limit is attained, a voltage increase across 

the device cannot increase the current through the system: the extra 

voltage appears as a voltage drop in a region adjacent to the cathode. 

The electrons are liberated at the cathode by l) emission by 

some process (thermionic, field, photoelectric, etc.) as a free 

electron, and 2) by recombination with an ion at the cathode surface. 

As the mobility of electrons is far greater than that of the ions in the 

bulk plasma (on the order of ../m.lm ), the emission mechanism 
1 e 

dominates the recombination mechanism unless there is substantial 
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ionization adjacent to the cathode. It is well known (6) that the alkali 

metal seed material reacts chemically with the cathode surface to 

form an adsorbed layer. This layer reduces the effective work func­

tion of the surface, which allows electrons to escape through the sur­

face barrier by thermionic emission at a greatly enhanced rate. This 

effect allows the possibility of operating MHD electrodes in a thermi­

onic mode as opposed to some arc type of mode. The thermionic 

mode of operation allows lower cathode voltage drops than the arc 

mode does because the extra energy for the increased ionization and 

the greater local heating required to maintain an arcspot is not neces-

sary for the thermionic mode. The low electrode drops are important 

to many MHD devices,for this increases the electrical efficiency, re­

duces the heat loss to the walls, and slows down the erosion of the 

walls of such devices. 

The purpose of this investigation is to study the thermionic 

mode of electrode operation to determine what electrode voltage drops 

occur and the limiting electrode current densities that take place in 

the thermionic mode. The first part of this work is analytical and 

provides a theoretical model with no adjustable parameters that 

describes the thenuionic mode. This model treats the ionized gas as 

a continuum, due to its high pressure. One of the major accomplish­

ments of the present model is the integration of the adsorption phe­

nomena with the plasma. This integration is executed by acc ounting 

for the fluxes of seed atoms and ions and by relating these fluxes to 

the state of the electrode surface. The integr~ted theory relies on 

the eariier work of Levine and Gyftopoulos(7-10) on the adsorption 
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process to connect the state of the electrode surface to the emitted 

fluxes of electrons, ions, and atoms. These emitted fluxes are re-

lated to the number densities of the various species at the surface 

so that the appropriate continuum boundary conditions for the plasma 

problem are specified. 

The plasma problem is solved by asymptotic techniques de-

. (18) (19) 
veloped for contInuum probe theory by Cohen ,Lam ,Bien-

.(12 ) 
kowskl ,and others. This technique is extended in the 

present work to include the effects of production, large rates of sur-

face emission, and variable transport coefficients. An iterative 

method is developed for solving the coupled surface - plasma problem. 

The important regions of the problem are sketched in Figure 1. 

Between the flowing bulk plasma and the electrode surface is an 

electric boundary layer across which the electrode voltage drop oc-

curs. The thickness of this region depends on the scaling parameter, 

0, defined in Section 2. 5. Immediately adjacent to the electrode 

surface is a thin Knudsen layer on the order of a mean free path in 

thickness. The non-continuum effects which occur across this layer 

relax the two-sided nature of the distribution function of the emitted 

particles to a near-equilibrium type in the continuum region. At the 

electrode edge of the continuum region lies an electrostatic sheath of 

thickness related to the Debye length. 

The large electric fields, that build up in the sheath re gion, 

due to charge separation, affect the emission of charged particles 

from the surface. This electric field influence is accounted for by the 

Schottky correction term to the work function of the surface. 
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The present model includes non-equilibrium effects by treat-

ing the bulk plasma region by the two-temperature model studied by 

K~rrebrock(2) and Cool (1 >. Suggestions for important future exten­

sions of the present theory include the effect of magnetic field, the 

variation of electron temperature in the electric boundary layer, and 

non-continuum sheath effects. 

The second part of this work is experimental, and verifies the 

predictions of the model that surprisingly large thermionic currents 

are possible under certain conditions on electrode surface tempera­

ture and seed fraction. 
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II. THEORY OF ELECTRODE - SEEDED PLASMA INTERACTION 

In this part of the thesis, the theory of the electrode - seeded 

plasma interaction will be developed. First, the basic assumptions 

will be listed and the basic equations that describe the plasma in con-

tinuum terms will be presented, along with the kinetic theory expres-

sion for the transport coefficients. Next, the basic surface physics 

of a refractory metal electrode covered by monatomic metallic parti-

cles will be discussed. Then, the surface conditions will be related 

to the number densities of various particles at the electrode and the 

state of the surface will be connected to the plasma problem. 

The asymptotic method of solving the plasma equations will be 

presented. Finally, the theory will be applied to an electrode in stag-

nation flow, and computer solutions for a potassium-seeded argon 

plasma with a tungsten electrode will be discussed. 

2. 1 Basic Assumptions 

The present theory is formulated under the following assump-

tions: 

1) The charged-neutral mean free paths are as surned small 

compared to the characteristic electrode dimension (L), and also 

small compared to the thickness of the sheath adjacent to the electrode. 

The Debye length is small compared to L. This is the continuum 

assumption, which restricts any non-continuum effects to a thin 

Knudsen-like layer immediately next to the electrode surface. 

2) The ions and neutrals are assumed to be in translational 

equilibrium at the neutral temperature, T , and the electrons and 
n 
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excited states are in thermal equilibrium at a different temperature, 

the electron temperature, T • 
e 

This two-temperature model has been 

found(l, 2) to adequately describe the type of plasma considered here. 

The energy equation is only used in the bulk plasma, and the resulting 

electron temperature is assumed constant throughout the bulk plasma 

and the electric boundary layer; this assumption is justified in Ap-

pendix A. 

3) The degree of ionization is small, so that electrohydrody-

namic interactions are neglected. This assumption allows us to as-

sume that the neutral velocity field is known. The Mach number of 

the flow is small, so that the flow can be assumed incompressible. 

4) The electric fields are assumed moderate, so that ion and 

electron particle fluxes can be described in terms of field-independent 

transp ort coefficients and the c orre sp onding gradients. 

5) The plasma is in steady state. There is no applied mag-

netic field, and induced magnetic fields are neglected. 

6) Three-body recombination is assumed to be the dominant 

recombination mechanism. Only thermal ionization is included, 

and ionization due to electrons accelerated by the high voltage sheath 

is not considered. 

7) The presence of an inert carrier gas is assumed not to af-

fect the surface physics of the alkali seed - electrode interaction. 

The surface diffusion flux of adsorbed particles is negligible com-

pared to their evaporation rate. 

2. 2 Basic Plasma Equations 

The equations that govern the ionized gas phase throughout the 
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bulk plasma and the electric boundary layer are the following (ex-

pressed in the charge-rationalized MKS system of units): 

Poisson's Equation 

E: VZ.I. = - e(n. - n ) o ~ 1 e 

where we consider the positive ions to be singly ionized. 

Conservation of Species 

..... ..... 
u· Vn + V· r s s 

.... 

. = n s 
s = i, e, a 

(I) 

(Z) 

where u is the known viscous, incompressible, neutral flow field, 
... 
r . is the flux of the s species, and ri is the net production rate. 

s s 

Particle Flux Equation. Conservation of momentum is ac-

counted for by the particle flux equation: 

..... 
(3) r 

s 

where q. = e, q = -e, and q = o. The mobilities have been related lea 

to the diffusion coefficients by Einstein's relation. 

Electron Energy Equation. The energy balance equation for 

electrons is (Z): 

. . 
-0 - R (4) 

where 0 is the rate of elastic energy loss per unit volume from free . 
electrons, R is the radiation loss per unit volume duej:o inelastic 

•• ..... '"1 .......... je [5 ] 
electronic colllslons; E = -Vcj>. J = -er • q = -AVT - - -Z kT + V. • e e e ee e 1 

and the convention of measuring the energy of the free electrons rela-

tive to the ground electronic state of the seed atom is used. 

The number density of electrons is related to the electron 

temperature by the Saha equation, in the regions where the assump-

tion of local thermodynamic equilibrium holds. 



-8-

Saha Equation 
3 

Z 
(

g g. )(zrrm. kT )2 v. = e1 e e (1) ne -g-- h Z na exp - kT 
a e 

(5 ) 

where n is the num.ber density of seed atoms. This approximate 
a 

form of the Saha equation holds for kT <. 4 ev. 
e 

The net volumetric production term for ions, n. , 
1 

1S equal to 

n since for singly ionized ions, the electrons and ions are produced 
e 

or destroyed in pairs. Also, Ii is equal to -n . 
a e 

For three-body 

recombination and electron ionization, the production term takes the 

form: 

n = e 
Z 

{3n - 'In n. eel 
(6 ) 

The rec ombination coefficient, 'I, 1S a function of the electron tem­

perature and is evaluated the oretically by Curry (3); Cool (1) gives ex-

perimental values of 'I for a potassium-seeded plasma. For thermal 

ionization, the ionization coefficient {3 is found by applying the condi-

tion of detailed balancing to equation (6), namely, setting ri 
e 

equal to zero, and relating the number densities to the electron tem-

perature by the Saha equation. This enables the elimination of {3 from 

equation (6 ),and the production term bec omes: 

n = 'I ( T }n [nS2 h (T ) - n n. ] e e e aa e e1 

The transport coefficients are calculated as follows: 

kT 
D = s 

s 

m L1.\) . 
s S-rJ SJ 

The collision frequency for momentum transfer is evaluated for 

charged-neutral collis ions as follows: 

(7 ) 

(8 ) 
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\J sn = 

- s 3'1t'C I: n Q 
s n n n 

(9) 
8 [1 + (J'l - 1)6 . ] 

S1 

where 6 .. = I, 6 . = 0 accounts for the heavy particle persistence 
11 e1 

effect as in Cobine (4). C = 2/J'; J (2kT )fm is the mean molecu-
s s s 

lar speed, and 

I 

I: n Q s 
n n n 

= 
en 

J 
o 

S exp( -s )dS 
l: n Q s (S) 

n n n 

where S = i (m c
2

)/kT . This is the same averaging method for the s s 

collision cross section as used by Cool(l). 

The Spitzer collision frequencies for momentum transfer in 

Coulomb interactions are given below, using 

/\ = 

= 

= 

JrC e 

e 4n . tn /\ 
1 

• 582 x 64 x..;'ZTr E: i. JrrC (kT )3 7 2 
o e e 

e 
4 

n tn /\ e 

25. 8J'; e: 2Jrrc(kT )372 
o e e 

1 

ne (meTi)"Z: 
\J. = \J 1e n. m. T ei 

1 1 e 

(10) 

(11 ) 

(12) 

Since m 1m. « I, \J. is not considered in the calculation of D .• e 1 1e 1 

However, \J . becomes important at the larger electron temperatures 
e1 

considered and is incorporated in the calculation of D by the follow­
e 

ing widely used(l, 2) approximate method: 

~. \Jej = \Jen + \Jei • 
e1"J 

(13 ) 
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This gives values for D within 20 per cent of more elaborate tech­
e 

niques which are based on cross-section data which have uncertainties 

greater than 20 per cent. 

The electronic thermal conductivity is given as in Kerre­

brock(2) by: 

2. 3 Basic Surface Physics 

(14) 

The alkali seed particles interact strongly with the electrode 

because of the large affinity between the alkali metal and the elec-

trode surface. The adsorbed alkali particles are held to the surface 

by partially covalent and partially ionic bonds; they can be emitted 

(desorbed) as ions or atoms. It is known(5) that nearly all incident 

seed particles are adsorbed to the surface. The adsorption of seed 

particles results in partial or complete coverage of the surface, even 

if the partial pressure of the seed is below the saturation pressure. 

Since the alkali adatoms have a low electronegativity, they be-

come positively charged with respect to the substrate (electrode) 

surface. This dipole field makes it easier for electrons to escape 

from the surface. Als 0, at greate r than monolayer coverage, the 

electron emission rate becomes equal to the value for pure seed ma-

terial. These two effects make the rate of electron emission strongly 

dependent on the degree of coverage (9). 

The above effects have been studied extensively since the pio­

neering work of Langmuir(6). Most of the experimental work has been 
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done with cesium. However, a theoretical correlation by Levine and 

Gyftopoulos (7 -10) predicts the behavior of any refractory metal par-

tially covered by monatomic metallic particles. This theory is not 

derived from basic quantum mechanics principles; it is a collection of 

analogies with molecular physics and various models arranged to fit 

limiting cases of the adsorption problem. However, their theory is 

practical in the sense that it contains no adjustable parameters and it 

t 
correlates electron emission S-curve data for cesium within a factor 

of five over fifteen orders of magnitude of electron current density. 

The necessary algebraic expressions to predict the desorption 

rates are quoted from the Levine and Gyftopoulos papers with the 

original notation usually retained. The following expressions are for 

a homogeneous composite surface and predict the overall effective 

behavior of the surface. 

* The effective thermionic work function (<I> ) depends on e and 
e 

the substrate-adsorbate combination. As e varies from zero (bare 

* substrate) to one (monolayer coverage), <I> changes from <I> (sub-
e m 

strate work function) to <l>f (work function for pure adsorbate 

* The expression for <I> is (in c. g. s. units): e 

[ 

-14 ] ):< • 765 X IOcr fa c os (3 
<l>e (9) = <l>f + (<I>m -<I>f)G(e) 1 - 3 3/2 3/2 

(1 + a./R )(1 + 9a.cr f 9 ) 

metal). 

(15 ) 

where subscript m refers to the substrate (electrode) metal and sub­

script f refers to the ads orbate (seed) material; G(e) = 1 - 39 2 + 29 3 

t Electron emission S-curves are plots of saturated, field free elec­
tron emission versus IOOO/T with the atom evaporation rate as a 
running parameter. 
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1 

is a shape factor; cos (3 = (I - 1/(ZcrmRZ»)"i; R = rm + r f is the sum 

of the covalent radii; a. is the electronic polarizability of the ad-

sorbate-substrate molecules; a
f 

is the number of sites available for 

adsorbed particle occupancy per unit substrate area and is related to 

th~ surface density am by a constant ratio for each adsorbate­

substrate combination. (J varies among samples of the same sub­
m 

strate metal depending on the surface preparation. 

The rate of electron emission from the surface is given by the 

well-known Richardson-Dushman equation: 

Z 
Ztr m (kT ) 

e w 

where ge is the electron degeneracy (= Z). 

(16) 

* The desorption energy of an atom (cp ) or an ion (cp. ) is de-a 1 

fined as the potential energy difference required to remove an ad-

sorbed particle from the surface in the form of a free atom or free 

ion, respectively. 
)): .! 

'" = '" F(l+o) + ("" "" )~ S Q 't'a 't'e 't'f't'm fm fm (17) 

where the charge function 

• 4ZZ(cpm -CPf)G(9) 

R(l + a./R3 ) 
F = 

with (cp -CPf) in eV, R in angstroms, and a. in cubic angstroms; 
m Z 

o = ~ (4tre
e 

R - Vf ) with the adsorbate ionization potential (Vf ) 

e Z 0 * 
and (e 14tre R) in the same unit of energy as cP ; the heats of sub-

o e 

* limation (CPf' cp:n> have the same unit of energy as CPe and CPa; 

Sfm = Z/(S/Sm + Sm/Sf) where Sf and Sm are orbital strengths; 
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the charge efficiency Q = (1 - F2/v
2 )1 where v is the number of 

fm 

valence electrons in a free adsorbate particle. 

The ion desorption energy is found by the relation: 
,.,. ,.,. 

<1>. = <I> + V f - <I> • 
1 a e (18) 

,.,. 
Typical values for <I> and <1>. are of the order of two e V,. so that the a 1 

inert carrier gas with a thermal energy of the order of two-tenths 

e V should not affect the adsorption process of the alkali seed. 

The rate at which the atom or ion specie desorbs (evaporates) 

from the surface is given in Arrhenius form by (c. g. s. units): 

( 19) 

where g is the statistical weight of the ground electronic state; • is s 

related to the configuration entropy difference and is estimated as: 

'" - 1 (1 [Je + e J) - ...;r:e (1 - ,re) exp "2 1 _ Je 1-e 

This is not valid as e .... 1 because the build-up of the second layer is 

not accounted for. \) is the characteristic frequency of vibration of 

the adsorbed particles, and is approximately: 

Table 1 is a list of physical constants needed to apply the 

above expressions for an alkali metal adsorbed on a molybdenum, 

tantalum, or tungsten surface. A list for additional metals may be 

found in refe rence 8. 

Calculated desorption rate isotherms for the potassium-

tungsten system are displayed in Figure 2 for atoms, ions, and 
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* TABLE la. Physical Constants of Some Refractory Metals 

Metal Mo Ta W 

<p' heat of sublimation 6.84 8. 11 8.68 
m 

(eV) 

<Pm electron work function 4.38 4. 19 4.62. 

(eV) 

r covalent radius 1. 2.9 1. 34 1. 30 
m • (A) 

S orbital strength 2.. 31 2.. 62. 2..62. 
m 

TABLE lb. Physical Constants * of Alkali Metal Adsorbates 

Film Cs Rb K Na Li 

<p' (eV) heat of sublimation 0.80 0.84 0.92. I. 12. I. 66 f 
2..2.2.t <Pf 

(eV) electron work func- I. 81 2.. 09 2.. 2.8 2..49 
tion 

• 
r f 

(A) covalent radius 2. 35 2.. 16 2.. 02. I. 57 I. 2. 2. 

Sf orbital strength I. 00 I. 00 1. 00 I. 00 1. 00 

a (A3 ) polarizability 13.0 10. 1 8. 2 3. 9 1.8 

V tt (eV) 
f 

ionization potential 3.89 4. 18 4.34 5. 14 5.39 

v valence I I I I I 

ga atomic statistical 2 2. 2. 2. 2. 
weight 

g. ion statistical I I 1 I I 
1 

weight 

For alkali metal ads orbates on Mo, Ta, or W substrates: 

Of/Om = 1/4 . 

*Except where noted, data are taken from Levine and Gyftopoulos(8). 

t Taken from Samsonov(2.9). 

tt 
Taken from reference 30. 
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electrons and for three surface temperatures. A comparison of elec-

tron emission S-curves computed from these results with ·experiments 

is made later in Part IV. Note the strong dependence of the desorption 

rates of all species on T and e. The electron emission rate reaches 
w 

a maximum at e ~ .65 and then decreases to the value for pure potas-

sium at a monolayer coverage. Since second layer effects are not ac-

counted for, the atom and ion desorption rates diverge near 9 = 1. 

If large electric fields exist near the electrode surface, the 

emission rates of ions and electrons will be affected. For moderately 

large electric fields « 10 5 volts/cm), the Schottky effect accounts for 

this. The Schottky effect is the effective reduction of the thermionic 

work function by the field's modification of the mirror-image force on 

a charged particle leaving a conducting surface. Since this reduction 

occurs within a distance of about 10-6 cm from the surface{ll) 

(smaller than any characteristic plasma length considered here), the 

Schottky effect is evaluated by the electric field at the surface (E ). 
w 

The Schottky reduction is: 

(
e I Ewl)i . 
41ft: o 

(20) 

If the electric field retards the type of charged particles leaving the 

surface, the Schottky correction is zero for that type, since in a 

monotonically changing potential from solid into plasma there is no 

barrier whose magnitude would control the emitted flux. 

Defining E positive if directed away from the surface, the 
w 

corrected work functions are: 
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* - ~cf> E < 0 

{ cf>e w 
cf>e = >}: 

cf>e E ~ 0 
w 

* 
(2 I) 

{ cf>. E s: 0 
1 W 

cpo = 
cf>.* 1 

- ~cf> E > 0 
1 W 

Substituting CPe into equation (16) and cf>i into equation (19) gives the 

corrected emission rates. 

2. 4 Flas rna - Surface Coupling 

The basic differential equations which govern the plasma be-

havior are continuum relations which require continuum boundary 

conditions. These boundary conditions are the limits of the number 

densities within the continuum formalism as the surface is approached. 

The plasma solution depends on the surface conditions via the boundary 

conditions, while the solution for the surface coverage (9) and the 

emission rates depend on the plasma problem. Thus. the plasma 

problem and the surface problem must be solved simultaneously. 

This section presents a method for coupling the plasma to the surface. 

Since the surface temperature (T ) is arbitrarily specifiable, 
w 

the surface conditions depend on 9 and Ew. First, the connection 

of boundary conditions to 9 and E will be established. Immediately 
w 

adjacent to the electrode surface, there must be a thin molecular 

layer of thickness on the order of a mean free path (Knudsen layer). 

At the outer edge of this layer, continuum relations hold with fluxes 

given by equation (3), while at the surface the distribution function 

must change to a strongly non-continuum type. Since only the number 

densities at the edge of the Knudsen layer are required, the approxi-
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mate method of Bienkowski (12) is used to find them. This method as-

sumes that the distribution function of the particles arriving at ~he 

surface is a displaced Maxwellian. Since the Knudsen layer is thin 

compared to the curvature of the electrode surface, and neglecting 

any chemical reactions in the layer, the continuity equation requires 

that the flux be constant across this layer. Thus, the continuum ex-

pression for r can be equated to the balance of fluxes at the surface. 
s 

.... 
Consider a Maxwellian distribution function, f(v), displaced by 

the drift velocity, v d • Near the electrode surface, the flux of parti­

cles hitting the control surface on the negative sicJe is: 

o 00 00 

~s = J J J v If(V!)dv 

-00-00-00 

where the integration gives: 

IJs 
vd vd (vd 2 C 

= -n - + n - erf - -) + n --.! 
sw 2 sw 2 c,.fi sw 4 

s 

Since r == n vd and the continuity relation is IT"' = 'J -II) we s sw ,.L sw S"'5' 

have: 

r ( sw 2 \) = -2- 1 + erf{ -
s Ji 

exp [_ ! (n r .~ )2 ] . 
sw s 

Dividing the above equation by n C and defining fE (n C; )/v sw s sw s s 

~ = (2r ) I (,.fi n C), and P !! r I\), we have sw sw s s sw s 

I ,.fi 1 Z T = 4"' ~[I + erf(~)] + 4 exp(-~ ), 

P 
s 

.fi = Z ~f(~) • 

From the expressions, we can find numerically a function f(P ) 
5 



-18-

(displayed in Figure 3). The boundary conditions are easily computed 

from this function by 

n = 'V s f(r sw) 
sw C 'V s 

s = i, e, a (22) 

s 

For P «0, a convenient asymptotic form for computation 
s 

is: 

f 
-2P 

s (23) 

accurate to 4 percent for P s < -1000. For IPs I « 1, an approxi­

mate form is 

n 
sw 

2 

C 
(2'V - r ). s sw (24) 

s 

Hence, we have relationships of the form: n = fn ['V (9, E ), r J, 
sw s w sw 

which are used late r. 

An additional condition is obtained, following Sajben (13), by 

considering the conservation of heavy seed particles at the wall. For 

a surface - plasma system in steady state, there is no net accumula-

tion of seed particles at the wall. Neglecting any surface diffusion 

fluxes of adatoms compared to their desorption rate ('V +'V.), the net 
a 1 

flux of heavy particles to the wall is equal to the net flux of heavies 

away from it: 

'V + \). = 1..1 + 1..1. a 1 a 1 

or 

which gives: 
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r = -r. aw lW 
(25 ) 

This means that there is, in general, a neutral seed atOITl density gra-' 

dient near the wall, and the atOITl diffusion equation ITlust be solved, si-

ITlultaneously with the plasITla and the surface probleITl, subject to the 

boundary conditions at infinity and the conditions at the surface given 

by equations (22) and (25). 

2. 5 Solution Method 

It is quite difficult to solve (even numerically) the continuum 

equations of section 2. 2 as they presently stand. However, for the 

plasma conditions of interest here, it will be shown that the effects of 

number density gradients and charge separation are restricted to an 

electric boundary layer that is thin compared to the characteristic 

length of the plasma. Outside this electric boundary layer is a large 

outer region called the bulk plasma, where the current density is the 

governing parameter. 

The bulk plasma region has been studied extensively to eluci­

date the physical processes occurring(l, 2), and to predict current 

distributions due to complicated geometries(14, IS). Since the main 

purpose here is to study the interaction of electrodes with the plasma, 

only simple outer solutions (constant electron tempe rature) are con-

sidered here. For this case, the electron number density is uniform 

in the bulk plasma, since it is evaluated by Saha's equation. The 

technique of solving the bulk plasma problem is to assume a value for 

2 . 
T and use equation (4) in the form + J 10 (T ) = H1+tt to find J 

e eoo e e eoo 

Since J. « J ,J is usually taken equal to J
t 

(the total current 
100 e 00 e 00 
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density). The details of evaluating n and it can be found in references 

I, 2, and 16. This provides for eac'h J t the proper values of T , n t 
e aoo 

ne 00' and E 00 with which to match the electric boundary 1aye r s olu-

tion. 

In recent years, the technique of asymptotic analysis has been 

U2 17-20) . 
used by several authors' to develop a contlnuum probe theory. 

The method developed by LanP 9) for a slightly ionized gas flowing 

around a solid body with perfectly absorbing surfaces is extended here 

to include production, variable transport coefficients, and large rates 

of surface emission. 

We non-dimensionalize the variables: 

.... V -eq, . eL2 . u = u IV - kT N = n 
00 D. n e 10 eoo 

n. n n 
N. 1 N e N a = = = 1 n e n a n eoo eoo aoo 

D. n D n D n 
r. .... 10 eoo r .... eo eoo .... .... ao aoo = y. ::: Ye r ::: Ya 1 1 eL e L a eL 

D 
'" 

T. 
f5 s 1 = rr- T. = r.- (26) s 1 so 10 

where u is a characteristic free-stream velocity. L is a charac-
00 

teristic electrode length with respect to which all spatial variables 

are non-dirnensionalized, and the subscripts 0 and 0) refer to values 

in the sheath and the bulk plasma, respectively. 

The following parameters arise naturally after the above non-

dimensionalization: 
h eoo 

Il = -r 
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where h = [(e kT )/(e
2

n )Ji is the bulk plasma Debye length, eoo 0 e eoo 

T. 
10 

e = ~ 

w = 

e 
2 2 

eL n 'Y eoo 
D. 

10 

D. 
10 

/3 = en-
eo 

T = 
D. 

10 
1) 

ao 

R 

(] 

The governing plasma equations now become: 

..... 

Ct2V2~ = N. - N 
1 e 

R V. VN. + V. y. = N 
1 1 

..... ..... 
/3R V. VN + V· 'Y = /3N e e 

..... ..... . 
TRV· VN + V. 'Y = -TaN a a 

N = wN (N - N N.) e a e 1 

"y. = i\[- £VNi + :i V, ] 
1 T. 

..... 
1 

= D [-VN - N VtJ e e e 

'" = - D e VN a a 

'" 

eu 
00 

L 
= D. 

10 (27) 
n 

eoo = n 
aoo 

(28) 

(29 ) 

(30) 

(31 ) 

(32) 

(33 ) 

(34) 

(35) 

where V, D., 
1 

5, 
e 

and D are known functions of the spatial vari­a 
..... 

abIes r and of the dependent variables N. and N • 
1 e 

The boundary conditions are: 

N . = N. = N ... I 
e 1 a 

..... 
and ~. V~ ..... (eL/kT )E , e 00 

at infinity,where n is the unit outward normal to the electrode surface, 

while on the surface, 

, = t ' N = N (9, E ), N. = N. (9, E ), -n. VN I = £!. 'Y. , w e ew w 1 1W W a w . e 1 w 

N = N (9) a aw 
(36) 
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where E .==;;. il and y. ==~. Y.I . The extra boundary condition 
w w 1W 1 W 

is needed to solve for e, which determines the state of the surface. 

By suitably combining equations (Z8) - (35) and neglecting terms 

of 0(0. 4), we arrive at the following three coupled, non-linear differ-

ential equations for N., N , and w: 
1 a 

V. [(0 +£0. )VN.+(O - D./T. )N.VtJ-(l+~)RV. VN.+(l+Mw(N.N -N~) = 
e 11 e 111 1 1a 1 

= a.Z['\I. (D ('\I [V'Zw J+'\IIjr'\lZIjr)} - ~R v. '\I ('\I Z""]+a.
z ( l+Mw[N VZIjr - ZN~VZ1V J e a 1 

(37) 

'\I. [(f) +~f)./T.)N.V'Ijr+(D -~eD.)'\IN.J 
e 111 e 11 

= a.Z[ '\I. (De ('\I[V'Z",]+'\IZ",'\IZ",)) -~RV. '\I('\IZ"')] (38) 

'\I. (eD '\IN )-TRV. '\IN -Taw(N.N -N:) = a,ZTaw[N V'Ztf-ZN~'\IZ"'J 
a a a 1 a 1. a 1 

(39) 

To study the electric boundary layer, let y be a boundary lay-

er coordinate normal to the electrode surface and denote the tangen-
1 

tial boundary layer coordinates by a subscript t. Define 6:: l/(R+w>"Z-

and consider the case for 6« l. We introduce a scaled normal co-

ordinate 'Tl by 

'Tl = y/6 • (40) 

The continuity equation of neutral gas flow implies V
t 

= 0(1) 

and V (normal velocity component) = 0(6). Considering that the con-

vection and the production term may be of equal importance,(R:::::: w) 

implie s that R = O( 6 - Z) and w = O( 6 - Z} • 

In terms of boundary layer coordinates and neglecting terms of 

0(6) and higher, the above three governing equations and equation (Z8) 

give the following system of equations for N., N , N , and ,: 
1 e a 
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+ (l+MoZW(N.N _N.3 ) 
1 a 1 

Z Z Z 

= ?- [Q + (1+f3)6
Z
w (Na :11l- ZNi

Z :11~) ] (41 ) 

.,!- [(0 + f3 ffi )N. at + (D -f3eD.) ~ ] = 011 e of. 1 an e 1 011 (4l) 

1 

N 
e (43) 

(44) 

where 

Ambipolar Diffusion. When (alo)l « 1, equation (43) implies 

N. R:1 N £: N. 
1 e 

This region, where charge separation is negligible, is 

called the ambipolar diffusion region. Neglecting terms of O(allo l ) 

in equation (4l), we can integrate once to give 

C - (D - f3e:D.)~ * = 00 e 1 n 
(ffe + f3 DJTi)N 

(46) 

where C :: (fi' + f3 1). IT. ) 0 (eL/kT)E is found by fitting the 
00 eoo 100 100 e 00 

boundary condition given by equation (36) at n = 00 • 

Neglecting the right hand side of equation (41) and substituting 

equation (46) into the left hand side, we obtain: 
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(47) 

Equation (47) with boundary conditions for N determines N 

for the ambipolar diffusion region. The outer boundary condition is: 

N = 1 as '11 -+ co. Since equation (47) is parabolic. an appropriate 

upstream condition is also required. The inner bqundary condition 

is found by matching to the inner solution. For an electrode. two 

matching possibilities exist: 

-+ 
N = No (rt ) > 0 at '11 = 0 case (a) 

(48) 
case (b) N=O 

where No or 'tIo is determined by the inner solution. 

The ambipolar diffusion problem is governed by the solution 

for N. since the electric field terms can be eliminated (due to quasi-

neutrality) to give a differential equation for N. The solution for N. 

however. is coupled to the atom diffusion problem by the production 

term (containing N ) in equation (47) and is coupled to the sheath 
a 

problem by the inner boundary conditions. 

The variation in potential through the ambipolar region can be 

found (after N is solved for) by integrating equation (46). The first 

term in equation (46) depends on the total current density in the 

ambipolar region.and the potential change due to this term is just 

the change in mobility caused by N. 

The extra term in equation (46) is explained as follows: since 
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electrons diffuse faster than the massive ions, electric fields must ex-

ist to retard the electron motion and to speed up the ion transport in 

order to maintain quasi-neutrality. This electrostatic field causes 

the additional potential change in the ambipolar region and is accounted 

for by the second term in equation (47). The electrostatic field affects 

the electrons much more than it does the ions, which limits the diffu­

sion rate of electrons to that of the ions. Since f3 is typically 0(10-3 ), 

the coefficient of the bracketed terms of equation (47) is nearly 

T./[ 0.(1+£1f".)J , which demonstrates the insensitivity of ambipolar 
1 1 1 

diffusion to the electron diffusion coefficient, D • 
e 

The normalized transport coefficients, o and D. , depend on e 1 

T., N., and N • If the number densities are small, they have neg-
1 1 e 

ligible effect on the transport coefficients. If the inner (sheath) re-

gion is much thinner than the thermal boundary layer, T. change s by 
1 

a small amount. If the number densities in the sheath are large, it 

will be noticed that their variation through the sheath is small. 

The refore, we make the following approximation: the transport coef-

ficients in the sheath are constant and evaluated at the surface tem-

pe rature and by N = N if case (a), or N = 0 if case (b). Since we 
o 

normalized by these values, 0 , D., and If". are equal to unity in the 
ell 

she ath re gion. 

For matching purposes, the ambipolar diffusion solution is 

represented near the surface by: 

case (a) N "-J N + r" - 0 

c - (l-f3e)I 
00 

( 1+ f3 )(N + r,,) o 

(49) 
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where I - 8N/a"I,,=0: this possibility was not considered by Lam(l9). 

case (b) N ~ 1(" - "0) 

Coo - (1- ~E: )1 
(50) 

(1+ MI(,,-,.,o) 

where 1== aN/a,.lI • 
"'="0 

In case (b), as ." -+" , 8W / a" tends to infinity. This requires o 

a thin sheath region (diffusion sheath) to exist adjacent to the surface. 

No such singularity occurs for case (a), but in general N f. N. • ew lW 

A thin sheath (relaxation sheath) must then exist to relax Nand N. 
e 1 

to a common value (see Figure 4). 

For I > 0, the sheath may be studied in the same way for both 

cases by the following artifice: by defining an effective,., - -N /1, 
0eff 0 

the case (a) representation takes on the same form as case (b). 

Sheath Equations. To study the sheath, we must rescale the 

variables as follows: 

2 1/3 

" = "0 + (:2
1

) t , 

2/3 
N. = (¥) K(t), 

1 

a.I 2/3 
N :: (6) G(t). e 

We then transform equations (41) - (43) and set D = D. = T. = 1. 
ell 

(51) 

Provided that I, "0' and '\1t terms are 0(1), and neglecting terms 

of order (0.2/621)1/3 and higher, we find a set of differential equations 

identical (save for one constant) to those of Lam's(19) continuum 

probe sheath. These sheath equations are one-dimensional (in t), 
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and independent of production and convection terms. By manipulating 

these equations as in reference 19, the sheath problem is reduced to 

the solution of this differential equation: 

dW W 2 
= (e-l)W dt + T[W +2(1+£)t] - (1+£)X (52) 

where W = - d1jt /dt is the normalized field, and for our case X = 
[(l-j3e)I-C J/1(1+j3) • 

00 

The number densities K(t) and G(t) can be found from W by 

the following relations: 

1 (W2 dW) 
K = t + 1+£ ---z - dt (53 ) 

G = K + dW 
dt 

(54) 

The outer boundary condition for equation (52), provided by 

matching to the inner behavior of the ambipolar solution is: 

W = X/t as t -. 00 • (55 ) 

The boundary conditions at the surface (denoted by t ) are 
w 

specified in a manner similar to Bienkowski(12), where now the sur-

face conditions are functions of e and W 
w 

A-G +f:K w w 

B - G K w w 

where 

and 
-2/3 

K = (0;) N. (e, W ) • 
w u lW W 

Define 

(56) 

Substitution of equations (53) - (54) into equations (56) specifies that 

the solution curve for W intersect a parabola 
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W 2 = -2( l+e)t + 2A w w 
(57 ) 

with the s lope 

dW/dtlt=t = B • (58) 
w 

The mathematical problem now is to find the proper value of 

t that enables the solution of the sheath equation (52) to satisfy the 
w 

boundary conditions given by equations (58) and (55). 

The fluxes are constant throughout the sheath and are related 

to X by: 

I 
l'i = "5 [-X-e] 

I 
l'e = "6 [X-IJ 

(59) 

This allows us to relate the surface condition on atom diffusion to the 

ambipolar diffusion problem: 

aN I a crT """'Br1 = e(1+f3} [Ceo - (l+e)1J • 
w 

(60) 

Unless tw« -1, T)sh = OGa.2
/ 62I)1/3) (reference 19), and 

this thinness of the sheath simplifies equation (44) to: 

(61 ) 

For case (b), " =" h' SO" can be set equal to zero in the o s 0 

solution of the ambipolar diffusion equation (47); this simplifies mat-

ters,for I does not depend on the sheath solution. For case (a), how-

ever, I depends on the sheath solution through N = (a.I/6)2/3 t • 
o w 

Potential Drops. The potential drop through the electric 

boundary layer is found by integrating the composite electric field 80-

I uti on. The potential drop across the electric boundary layer, 



-29-

F bot = F sh + F am' is the drop computed by taking the potential at the 

outer edge of the electric boundary layer and extrapolating to the sur-

face by the electric field in the bulk plasma, i. e. , 

eL 
-F bot = \f(6bt ) - Eoo kT libt • 

e 

For case (b), the sheath region becomes spatially distinct from the 

ambipoiar region, and it is useful to ass ociate this potential drop 

with the sheath. We follow Lam's(l9) convention of taking t = 1 as a 

dividing point between sheath and ambipolar regions for the purpose 

of defining potential drops. For case (a), the shea.th solution com-

pletely overlaps the ambipolar solution; we can define a sheath poten­

tial drop that matches with Lam's(l9) definition by using his definition 

for t s; l. For t > l, we associate the sheath drop with the poten-w w 

tial drop required to relax N. and N to a common value in the 
lW ew 

ambipolar region. 

The sheath potential drop is then defined as: 

G 00 

F sh = f Wdt + J(W - ~ )dt - Xotn G 

for t s; 1 , 
w 

Fsh 

for t > 1, w 

= 

t C 
w 

G 00 

f Wdt + f(W 
t C w 

X G - -)dt Xtn-t t w 

(62) 

where C is chosen for convenience. The ambipolar drop must then 

be: 



F 
am = 

C 
am 

J ~-
a" 

0.2 )1/3 

(021 

00 

J 
c 

am 
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( ~ _ oe L E )d + oe LEe a" kT 00" kT 00 am e e 

for t ~ 1 
w 

2 2 1/3 
where terms of order (a. 10 I) are neglected; 

F 
am = 

C am 00 

f aW d + oe LEe - S 8T1" kT 00 am o e C 
am 

where C is chosen for convenience. 
am 

(~ _ oeL E )d a" kT 00" e 

for t > 1 w 

(63 ) 

Bienkowski(12) proves that the sheath solution cannot saturate 

(I F sh l ..... (0) for any finite A and positive X if B > O. However, one 

can see from his proof that if B < 0, the sheath solution can saturate 

for positive X, even if A is finite. Thus, a necessary condition for 

cathode saturation is: 

N. > N 
lW ew 

For 0« 1, it is consistent to take the current flow inside 

the electric boundary layer as essentially normal to the electrode 

surface(19). Coo is then related to J
t 

by: 

C 
00 

= 
LoJt 

D n e 
eo eoo 

Solution Algorithm. The surface - plasma problem can now 

be solved by the following procedure. For a given electrode-plasma 

system, we may independently choose Tw and J t • First, specify J
t 

and solve the bulk plasma problem, which yields T , n ,n ,and 
e eoo aoo 

E For case (a), we must find the value of N which matches the 
00 0 

surface to the plasma. One method is to assume a value for Nand 
o 
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proceed by an iteration process. Next, solve the ambipolar diffusion 

equation (47) and the atom diffusion equation (61) with the boundary 

conditions given by equations (48), (60), N ~ 1 at infinity, and appro­a 

priate upstream conditions. This solution will give values for I and 

N Solve the transcendental relation: 
aw 

"a<e) - r. 
= n C f( \lJl}) N aw 

aoo a 

for the degree of coverage (9). With 9 known, the surface conditions 

A and B depend on W . The sheath equation (52) is solved to satisfy 
w 

the conditions given by equations (55), (57), and (58), which results 

in a value for W w 
From the sheath solution, a new value for N is 

o 

calculated and the procedure is iterated until the two values for N 
o 

are equal. For case (b), N = 0 , and the sheath problem has to be o 

calculated only once. 

In the general case, J t , T w ' I, No' e, Ww ' and Fb-t, are 

... 
functions of the transverse boundary layer coordinates. Jt(r

t
) is 

then specified and the above procedure carried out point by point. 

The potential in the bulk plasma is then solved subject to the condition: 

... LJt 
n· V11j.r = 

D n e(D +13 D. I If. ) 
eo eoo eoo 100 100 

on the surface. This solution gives the potential distribution at the 

edge of the bulk plasma about the electrode surface; subtracting W
b

.(, 

from this gives the electrode potential distribution. 
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2.6 Stagnation Flow Solution 

In this section, we carry out the program of section 2. 5 for the 

axisymmetric system shown in Figure 5. Here, a seeded plasma 

flows down an non-conducting tube, of radius L, and impinges on a 

flat plate positioned perpendicular to the flow at a distance H from 

the tube. At the center of the flat plate is an electrode, of radius L, 

surrounded by an insulator. 

We take the flow field inside the tube as uniform; the viscous 

boundary layer on the tube wall is thin in situations where 1) a settling 

chamber is placed upstream of a short tube, 2) the pipe flow is turbu­

""' 3 lent. The pipe flow becomes turbulent at Re
L 

= 10 , whereas the flow 

over the electrode remains laminar up to Re
L 

';' 105. (24) 

The flow field of an axisymmetric jet impinging on a perpen-

dicular flat plate has been studied by potential flow methods by refer-

ences 21 - 23. Their results indicate that near the plate (y < • 1 H/L), 

the velocity field is approximated by stagnation flow with an error of 

less than 14 per cent for the region within the radius of the jet. The 

appropriate value for the stagnation flow constant (a) is: a = O. 4 for 

H/L = 2.8. The effect of viscosity is accounted for by using the lami­

nar boundary layer solution for stagnation flow given by Froessling(24). 

By neglecting field fringing at the electrode edge, the boundary 

conditions at infinity are uniform; for T uniform, the boundary con­
w 

ditions at the wall are uniform if the solution is independent of r. 

This is indeed the case, for V depends only on y, and by symmetry 

aN far I 0 = 0 enables a one-dimensional (in y) solution to satisfy 
s r= 
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the differential equations and the boundary conditions of section 2. 5. 

This geometry is then very useful both from the simplification in 

computation and for the comparison of the theory with experiment. 

An analytical expression for V(y) is found by fitting a function 

to the stagnation boundary layer solution. which results in: 

I au L.! au L.! ] 
+.569 exp \- ( V

CO )'1. y{ 1. 757 + .41 ( ''\Jco )2. y}) (64) 

Since T is in general different from T ,there will also be 
w noo 

a thermal boundary layer in front of the electrode. The velocity ex-

pression is approximately corrected for this by evaluating the vis-

c osity at the mean film temperature, i(T +T ). To the same 
w noo 

degree of approximation, the thermal boundary layer is similar to 

the viscous boundary layer. being stretched by Pr- 1 / 3 • (25) The 

neutral temperature profile is expressed by: 
1 1 1 1 

Tn(y) = Tnoo+(Tw -Tnoo)exp[ -( a:coL)2. ypr3~. 757 + .41 (au:L )YPr
3
)] 

(65 ) 

The number density variation of the carrier gas, n • is ac­
c 

counted for by using the above expression for T with the perfect gas 
n 

equation, p = n kT • p is taken as p t (the static pressure out-
c c n c am 

side the jet boundary); this is a good approximation when im n u 2 « 
c c 00 

P and n «n . 
atm a c 

We now have expressions for the position-dependent coefficients 

in the differential equations required to solve the stagnation flow prob-

lem. In general, these must be handled numerically. However. in 
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certain limiting cases, it is easy to find closed form analytical solu-

tions to the atom diffusion equations and the ambipolar diffusion 

equations when the transport coefficients are constant. Since these 

solutions are useful in establishing trends, checking nume rical work, 

and as approximations, we study them here. 

Frozen Case. For R» W, the convection term dominates 

the production term. In this limiting case, W --+ 0, and reactions 

cease. This results in the decoupling of the atom diffusion differential 

equation from the ambipolar diffusion equation, while the boundary 

conditions remain coupled. The simplified equations are: 

1+13 RoV dN 
1+e d" 

dN 
1. RoY ~ 
e d" 

and have the same form. The velocity field, V, has two limiting 

forms, inviscid and very viscous. 

(66 ) 

Frozen Inviscid. For this case, V(,,) = -lao", and the prob-

lem reduces to solving 

dlN 

d,,2 
= 

dN 
-k ,,-

s d" 
subject to N = N at" = 0, N --+ I at (X) where k is a constant. 

o s 

The easily found solution is: 

N = N + {l-N )e rf «(k / l)i ,," o 0 s II 

- = (l-N )(2k /Tf)2. dN I 1.. 

d" ,,=0 0 s 

(67 ) 

(68 ) 

Applied to the ambipolar diffusion problem, the solution gives: 
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(69) 

(70 ) 

The ambipolar potential drop, F , requires a numerical integration 
am 

of a function of the Error Function. 

The solution applied to the atom diffusion problem gives an 

expression for N 
aw 

1 
2: aD. 

N - 1 ( 'If ) 10 [ 
aw - - D au L 2e(1+j3) 

a 00 

where I is determined from an ambipolar diffusion solution. 

(71 ) 

Frozen Viscous. Whe~ the atom or ambipolar diffusion takes 

place inside the viscous boundary layer, the flow field is approxi-

mated by taking the first term of an expansion of equation (64), which 

leads to: 
1 

[ 
2 au L{J 2 

V ( Tl ) = - 2 • 643 0 a ( \)00 I Tl ' 

and a differential equation of the form: 

k 2 dN 
- sTl dTl 

which has the solution: 

N = 
1/3 k 

N + dNI (2..) r( 4)p (.!. ~ 3) 
o dTl 0 ks 3 3' 3 11 

(72) 

where P is an Incomplete Gamma Function (displayed in Figure 6), 

and r(4/3) ~ . 893. 
k 1/3 

dN\ ( s) 1 
dTl Tl=O = (I-No) 3" r(4/3) (73 ) 
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The solution for I in the ambipolar diffusion problem is: 

1. 1/3 
(auooL)~ [ (1+I3}e ] 

I = o(l-No ) t(4/3) .428 (1+e}D. (v}i-
10 

(74) 

The expression for N from the atom diffusion problem is: 
aw 

N aw 

Stagnant Case. For crw» R, the production te rms dominate, 

and the atom diffusion equation is strongly coupled to the ambipolar 

diffusion. The equations for V -t 0 simplify to: 

(76 ) 

which become, on rearrangement, 

1+ d 2N _ (_e ) crT 
1+13 e dT'l2' 

(77) 

Integrating twice gives: 

N C C = _ ( 1+e ) crT N 
a + (T'l + 2 1+13 e (78 ) 

Applying the condition given by equation (60) requires that C 1 is not 

equal to zero, so the conditions at infinity cannot be met. This means 

that both electrodes must be considered in the stagnant case. In the 

frozen case, the characteristic length entered via the flow field. For 

the stagnant case, there is no characteristic length unless the other 

electrode is included so that the electrode separation determines the 

length scale. 
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Hybrid Case. For R» O'W, but w» R, the atom diffusion 

equation is convection dominated, while the ambipolar equation is 
1 

production dominated. For (w/,.R)~ « 1, the atom diffusion layer is 

small compared to the ambipolar diffusion region. N is then equal a 

to one throughout most of the ambipolar region. The simplified prob-

lem for ambipolar diffusion is: 

where boundary conditions are 

N = N o 

N = I 

(79) 

at T] = 0 , 

at 00 

This non-linear differential equation is easily solved by interchanging 

the roles of the dependent and independent variables. This transfor-

mation gives: 

-2 
.!. ~ (~ ) = _ ( ~ ) 02 N (1-N 2 ) . 2 dN dN 1+e w , (80) 

integrating once and using the condition dN/dT] .... 0 as N .... 1 gives an 

expression for I = dN /dT] 10 : 
1 

I = 0 ( 2 t : te ) w J ( 1-N 0
2

) ; 

integrating twice and inve rting the T](N) solution results in; 

= (l+Nol/(I-Nol - exp(- CZ(t!flW)i 116) N -I- 1 

N (11 ) ( 1+ N ) / ( 1 _ N ) + ( 2 ( 1 + (3)W)-1- 0) 0 
o 0 exp - 1+& 11 

For the special case N = 1, N(l1) == 1. o 

(81 ) 

(82) 

The ambipolar potential drop is found by using equation (63) 

for F and integrating the expression for dt /dT]: 
am 
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this results in: 
I 2 2 

F = _ Coo ( 2(1+£ »)2 tn (.!. (~)3)+ 1-f3£ tn ((~)3) if t s: I 
am ~ w( 1+f3)3 2 ex.! 1+7f a,I W 

I 

to o( (;:}-) (83 ) 

F ift >1. am W 

Surface Solution. For r «v, the relationship between 
aw a 

the surface state and the ambipolar and atom diffusion is: 

n eN 
aoo a aw 

4 

r. 
lW 

--2- (84) 

Using the frozen viscous case atom solution for N given by equa-
aw 

tion (75) and relating C to r. ,the atom desorption rate is: 
00 lW I I 

n C C r.:-3. 2" ] 
Va· (e) = aoo a -r. [~r(4)(2.335'£L) (~) +.!.. (85) 

4 lW 4 3 D 2 auoo 2 
a 

In general, r. is given by: 
lW 

r. 
lW 

(1+e)D. n 1 
10 eoo 

(1+Me:L "6 (86 ) 

the first term is the ion flux in the bulk plasma and the second term is 

the change in ion flux due to the source terms (convection and pro-

duction) in the ambipolar diffusion equation. If the electric boundary 

layer is thin (6/1 « I), the ion flux to the surface can be much greater 

than that in the bulk plasma; this large ion flux at the surface causes a 
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substantial increase in the degree of coverage (9). 

The surface state of a cathode (J
t 

< 0) operating near satura­

tion is studied by applying the special case solutions for 110 with 

N = o. Neglecting the bulk plasma ion flux in equation (86), since 
o 

13 = 0(10- 3 ) and substituting into equation (85) gives: 

1) for the frozen inviscid case ambipolar solution, 
1 

n C 
aoo a + 

4 

1 - - 1 

(1+ dD. )"i [ C 4 ( JV )3 au "i J 
n eoo ('lfE:(1+;r t r ("3) 2.335

D
\)2 +( L

OO
) 

. a (87) 

the increase in ion flux due to a velocity rise is partially cancelled by 

the decrease in N (for convection acts as a sink term for atoms) 
aw 

so that \J is not strongly dependent on u or L here. a 00 

2) for the hybrid case ambipolar solution, 

1 1 
n C 

aoo a 
4 

- - - 1 

2 (1+E:)
D

iO'V )a[ Ca 4 ( JV )3( L"i IJ 
+ neoo 2e:(l+f3} 4 rCJ) 2.335 D 2 aU

oo
l +2 • 

a 
(88) 

The dependence of \J on u and L is now reversed from that of a 00 

equation (87). \J is now strongly increased by a rise in electron 
a 

temperature via n
2 ..Fi, whereas in equation (87) T only entered 
eoo e 

through n • Since \J is a monotonically increasing function of a, 
eoo a 

9 will have the same trends as \J • Since \J behaves similarly to a e 

\J for 9 < .6, the electron emission will also have similar trends. 
a· 

2. 7 Computation Scheme 

A computation scheme for numerically solving the stagnation 

flow system is discussed here. The scheme is valid for R» aw; 

for this condition, the production term in equation (61) is negligible, 
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so that the atom diffusion differential equation is decoupled from the 

ambipolar diffusion solution. The surface, sheath, and atom diffusion 

solutions are then coupled to the ambipolar solution only through I, 

while the solution for I depends on N . o 

The iteration process is speeded up by the following device: 

approximately relate I to N by the quadratic I = I -(I +Kl)N +KlN 2. 
o 0 0 0 0' 

find I by solving the atom and the ambipolar diffusion problems for I 
o 

at N = 0 ; find Kl by solving for I at another value of N , say. 4. o 0 

The numerical procedure of solution is outlined here in flow 

chart form, Figure 7, while a complete listing of the Fortran program 

is contained in Appendix C. The flow chart indicates the order in 

which segments are executed. Each segment (denoted by a letter) is 

described in the following table: 

A. Define the transport coefficients as functions of T and N; 
n 

define the velocity and tempe rature fields as functions of y. 

B. Set N = O. o 

C. Read T , T , J
t

• w e 

D. Compute the plasma properties. Assume a starting value for I. 

E. Find N (,.,) by integrating the atom diffusion equation: 
a 

d
2

N a = dNa ('I'ROV _ e dDa) 
d 2 d,., D d,., ,., e a 

subject to the boundary conditions 

dN I a 0''1' [C - (1+e)IJ 
d,., ,.,=0 = e(1+f3) 00 

and Na ... 1 at ,., = 00. 
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Integrate the ambipolar diffusion equation: 

= fi'eT'i+ f3Di [dN(ROV+~{ DeDi(1+eT)})_W0 2(NN _N3 ) 
D D.{l+eT'.) dT) dT) D T'.+f3D. a 
'ell ell 

C d { D T.-D. }] + 00 ell 
(1+(3) dT) D 'T.+f3fl ' 

ell 

with the initial conditions N = No and dN/dTf = I at T) = O. 

Check convergence of N - 1 while integrating towards in-

finity. 

G. Compute the iterated value for 1. 

H. Set I = I and N =. 4. 
o 0 

1. Compute K l . 

J. Assume starting values for Nand E 
o w 

K. Compute I from the quadratic 

I = I + KIN - (I + Kl)N 2 • o 0 0 0 

L. Solve the atom diffusion problem as in segment (E) to find 

M. 

N. 

o. 

P. 

Q. 

N Assume a starting value for e. aw 

Compute 

Compute 

"a<e). 
N from the relation 

aw 

N = aw 
"a 

n c 
aoo a 

and compare with the value determined in segment (L). 

Calculate the iterated value for e. 
Compute N. ,N • 

lW ew 

Integrate the sheath equation (52) from the starting point, t , 
w 

calculated by equation (57), with the starting slope given by 
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equation (58). Check convergence to the outer boundary condi-

tion given by equation (55) while integrating towards infinity. 

R. Compute the iterated value for E and the corresponding new 
w 

value for N • 
o 

S. Calculate the sheath drop, F sh • 

T. Write the results of the final iteration: e, F h' E , N , I, 
s w 0 

N ,N. • N ,\). \) .• \) • 
ew lW aw e 1 a 

U. Integrate equation (46) to find the ambipolar potential. 

v. Compute the ambipolar drop, F 
am 

W. Write 'F ,I. 
am 

The values of I from segments (T) and (W) can be. compared 

to check on the quadratic expression for I. If the values are too far 

off, Kl can be updated and the program rerun. 

For W large, the integration instability in segment (Q) be­
w 

comes so severe that the sheath equation (52) cannot be integrated to 

the ambipolar solution. An approximate solution (described in Ap-

pendix B) for the sheath potential drop is used in this event. 

2. 8 Potassium-Argon-Tungsten System 

The problem is now specialized to a potassium-seeded argon 

plasma with a tungsten electrode and solved numerically. The prob-

lem is studied as a function of current density where the Inain paratne-

te rs are electrode teInperature (T ), and 
w 

o Constant parameters are T = 2000 K, 
nco 

• 58 cm., p = 1 atm. The electrode temperature is varied from 

12000 K to 2000 0 K, while the seed fraction is varied from. 002 to .004. 

Langmuir ' s(6) measured value for the surface density of a 
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014 I 2)" d Th " "rough" tungsten surface (O'm =19.2Xl atoms/cm. 1S use. e V1S-

cosity of argon, taken from Bird(26) and fitted to a power function, is: 

\J = 3.46 (T /2000)1.72 
n 

2 
cm. / sec. 

No data could be found for the mutual diffusion coefficient of potassium 

in argon. D AK can be estimated by the methods of Bird(26) in ,terms 

" K 
of the collision cross section QA' The result is: 

DAK = ~ (T /2000)1. 65 
Qn.. n 

A 

2 
cm. / sec. 

where Q~ is in squared angstroms. 

Cool (1) found that the mean cross -sectional values e of Q -A-
02 

O. 7 A for argon and Q~ = 400 A 2 
for potassium give good agreement 

with the rigorous averaging method for computing the electronic trans-

K K+ K+ 
port coefficients. The values for QA' QA ' QK are not as well 

known. Using the 
. 2 

~ (JQB + JQC ) , 

empirical combination formula (26): Q~ = 

the boiling point formula (26) for Q
B 

and high 

(27) K+ 
energy data (> 1 eV) from Brown for Q

A 
' the cross section 

K 02 K+ 
estimates are: for QA' from 12.4 to 56.8 A ; for QA ' from 11.3 

02 K+ 02 
to 48. 1 A ; and for Q

K 
• from 16. 2 to 133 A. In view of this un-

certainty in cross section values, numerical calculations are carried 

out for the following combinations of values: 

mixed combination: 
K -2 QK+ = .. 2 QK+ "2 QA = 56.8 A • 11. 3 A , 

K ' 16. 2 A • A 

K ~2 
QK+ = 48. 1 A 2, QK+ _ 133 A 2. large combination: QA = 56.8 A , A K -

b"" QK 3 6 A" 2 QAK + = 29. 7 A" 2. QK+ 74 2 A
O 

2 average com 1natlon: A = 4., . K =. • 

The outer solution has been computed by Cool(l} for a tube 

with a radius of • 58 cm. The corresponding values of I J t I and Te 
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are given in Table 2. 

With T known, the bulk plasma properties, n ,E ,J. , 
e eoo 00 100 

and n are easily computed and are shown in Figure 8 as functions 
am 

of J for a seed fraction of • 004. 
t 

E:K = .004 

T 
e 

TABLE 2. 

Potassium - Argon 

p = 1 atm. 

I Jtl 
2 

(amps/cm ) (oK) 2 (amps/cm ) 

.42 2200 • 5 

1.0 2400 1.0 

2. 3 2600 2. 0 

4.9 2800 4.0 

9.74 3000 10. 0 

18.4 3200 20. 0 

40. 5 3500 40.0 

70.0 3835 70.0 

L = • 58 cm. 

T 
e 

(oK) 

2280 

2470 

2655 

2850 

3140 

3403 

3720 

4030 

The three-body recombination coefficient, y, for potassium 

is taken from Curry (3) and curve-fitted to give: 

y(T ) = .Z519X 10- Z0 exp(-Z.98X 1O-3 T ) + 1.Z56x 10- 25 cm.6 /sec. , 
e e 

valid for 1000 < T < 3500o K. This expression is compatible with 
e 

the recombination experiments of Cool(l). 

The coefficients in the differential equations are now computed 

so that the dominant term can be identified. For I J t I < 20 amps I crn.
2

, 

R > O'w, so the atom diffusion equation (61) is convection dominated 
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for these current densitie s. 
2 

For I Jtl < 2 amps/cm. , R> w, so the 

ambipolar diffusion equation (47) is convection dominated only below 

2 
2 amps/cm .• 

Since the 0 - 20 amps / cm.
2 

current density range is of the most 

interest he re, the R> aw restriction on the computation scheme is not 

severe. r «\), so the simple form of the surface relationship aw a 

given by equation (84) is used. Since D AK/\) < I, the frozen viscous 

case atom diffusion solution for N (from Section 2.6) is incorporated a 

into the numerical scheme by applying it at the wall temperature with 

the transport coefficients evaluated at a mean neutral temperature. 

Als 0, terms involving derivatives of transport coefficients are O( I /T) 

compared to source terms of O( I), so these are neglected. 

2. 9 Numerical Results and Discussion 

Numerical solutions for a potassium-seeded argon plasma with 

a tungsten electrode in the stagnation flow geometry (Figure 5) are 

displayed in Figures 9 - 26. The more interesting case of the elec-

trode operating as a cathode (J
t 

< 0 by the sign convention here) is 

presented first for several variations of the parameters: Tw' E:
K

, 

and cross section values. 

Cathode Operation. First, the solution for T ::: 15000 K and 
w 

e: =.004 computed with the mixed combination of cross section values 
K 

(see Section 2.8) is studied in detail. Then the dependence of the so-

lution on cathode surface tempe rature is presented and the implica-

tions of the solutions for cathode operation are summarized by thermi-

onic regime graphs (plots of the thermionic limiting current density 

versus the cathode surface temperature). The modification of the 
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thermionic regime by using other cross section values is shown. 

Finally, the dependence of the thermionic regime on seed fraction is 

displayed. 

Mixed Cross Sections. Figure 9 shows the current-voltage 

characteristic in the form of the sheath and the ambipolar voltage 

drop as a function of the total current density, (- J
t
). The sum of the 

voltage drops (V h + V ) is called the total electrode voltage drop, 
s am 

Vt • Note that for low current densities, V sh is small, 0(. 1 v), and 

that at higher current densities, V sh increases sharply to high volt­

ages (> 10 v). The sheath voltages become high when the electron 

current fraction (P = r /'1) approaches a value of unity (see Fig-
e ew e 

ure 9). At P = I, all the emitted electrons are used to maintain e 

the electron current at the cathode (r = 'V ); since r cannot ex-
ew e ew 

ceed 'V , P = 1, is a necessary condition for cathode saturation. e e 

The current-voltage characteristic he re cannot saturate in the strict 

sense of V sh .... 00 at some limiting current density. Saturation is 

delayed because the Shottky effect on electron emission is included 

and as V sh becomes large, the electric field at the cathode surface 

shows a corresponding increase in magnitude, see Figure 9; this 

extra emission increases the limiting current density and destroys 

true saturation. However, the limiting current density is only a 

weak function of E , so that V h increases very rapidly on the steep 
w s 

part of the characteristic,and for practical purposes, we define a 

limiting current density, J L' as the value of current density (-J
t

) at 

which V sh = 10 v. We shall call J L the thermionic limit for the 

cathode. 
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The ambipolar voltage drop slowly inc reases with current den-

sity until the knee of the V sh versus J
t 

curve is reached, then slowly 

decreases. At low current densities, V dominates the electrode 
am 

voltage drop, while near J L' the sheath drop dominates. 

Figure 10 displays the composite solutions for the electric 

field and the number densities (normalized by their values in the 

bulk plasma) of the charged species as a function of distance from the 

2 
cathode (Yp) on a log-log plot at (-J

t
) = 8.4 amps/cm. , a value on the 

knee of the V sh versus J
t 

characteristic. The values at 10- 5 cm are 

less than 6 per cent different from the values at the wall, so the 

sheath behavior is practically all shown. Note the great increase in 

electric field strength in going from the bulk plasma toward the 

cathode. 

For reference, the value of the Debye length, h , is shown 
eoo 

on Figure 10. Note that it is almost two orders of magnitude smaller 

than the sheath region. This does not violate the use of Debye length 

as the characteristic length scale for charge separation because the 

number densities in the sheath are orders of magnitude smaller than 

in the bulk plasma,and a "local" Debye length based on some average 

value of number density in the sheath gives the correct order of mag-

nitude for sheath thickness. However, several authors in the litera-

ture have justified the use of "free-fall" sheath models because h 
eoo 

is much less than a mean free path, A. For the type of plasma 

studied here, heoo is less than A == 10-
4 

cm (for ions), but the sheath 

thickness is 0(10-
3 cm} so that the sheath here is closer to the colli-
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sion dominated limit than it is to the collisionless limit. 

Figure 11 presents the atom and ambipolar diffusion solutions 

for Na and N as a function of yp with (-J
t

) as a running parameter. 

Note that as (-Jt ) rises, the ambipolar diffusion region becomes thin­

ner. This occurs because the electron temperature rises with (-J
t

) 

an:d this change causes an increase in the magnitude of the production 

term in the ambipolar diffusion equation. This increase in production 

expands the region in which the number densities of charged particles 

are near their values in the bulk plasma. Thus, the region in which 

N < 1 shrinks. 

The region of atom diffusion stays at about a constant thick-

ness as (-Jt ) is varied. This lack of change occurs because the atom 

diffusion problem is convection dominated. However, the magnitude 

of Na within the region rises rapidly with an increase in (-J
t
). This 

change occurs because the ion flux to the wall increases markedly 

due to the increase of ionization in the ambipolar diffusion region; 

the slope of N at the wall must become steeper due to its depend­
a 

ence on r. and this requires N to inc rease. 
lW aw 

Sheath Structure. Figures l2a - l2e display the structure of 

the sheath (N., N , and E as a function of y ) for values of the pa-
l e p 

rameter (-Jt ) extending from 1 to 11 amps/cm.
2

• At low current 

densities, the electric field changes direction at some distance from 

the wall (see Figure l2a), while at higher (-J
t

) the electric field be­

comes large and negative throughout the sheath. In Figures I2a - l2c, 

(-E) exhibits a maximum in the cente r of the sheath; this is due to 

the double-sheath nature with excess electrons near the cathode, 



-49-

while ions are in excess near the ambipolar limit. Poisson's equa-

tion requires that the maximum in (-E) occurs at the crossover point 

in the double sheath where N = N .• e 1 

The sheaths in Figures 12a - 12c are relaxation-type sheaths, 

while the sheaths in Figures 12d and 12e are of the diffusion type and 

would occur even if N. = N (sheath types are discussed in Sec-
lW ew 

tion 2. 5). 

If (-J
t

) is equal to or greater than the value at the knee of the 

V sh versus J
t 

curve, the electrons are transported away from the 

cathode almost as fast as they are emitted from the cathode (P ..... I); e-

here, ions are in excess throughout the sheath (see Figures 12d and 

12e). As the the rmionic limit is approached, the cathode voltage 

drop increases, and this excess voltage results in a thickening of the 

sheath region and a rapid inc rease in (-E ), see Figure 12e. 
w 

The boundary conditions on number densities for the sheath, 

the ambipolar, and the atom diffusion problems are presented in Fig-

ure 13 as a function of (-J
t
). For low values of (-J

t
), No (the inner 

boundary condition for the ambipolar problem) has a value about half-

way between the values of Nand N. 
ew lW 

As (-J
t

) becomes larger, 

Nand N decrease fairly quickly. As the thermionic limit is ap-o ew 

proached, N goes to zero followed by N for the same reason 
o ew 

given above that the sheath becomes of the ion type. As N goes to 
o 

zero, the electric field in the ambipolar region becomes greater and 

hence V increases. However, after N has reached zero, the 
am 0 

ambipolar electric field rises slower and the shrinkage of the ambi-

polar region (see Figure 11) dominates, so that V slowly de-
am 
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creases as the thermionic limit is attained. N increases rapidly 
aw 

with (-J
t

) as expected from the discussion on the atom diffusion solu-

tions. 

To elucidate the effect of the surface-plasma interaction on 

the thermionic limit, we define a cathode augmentation ratio, At == 

\J /\J Z' where \J Z is taken as the electron emis sion rate for zero e e e 

electric field at the surface and zero ion flux to the cathode. Two ef-

fects operate to increase At: l) the Schottky effect, which is due to 

large electric fields in the sheath; and 2) the increase in coverage due 

to the ion flux, which is controlled by the ambipo1ar region. 

To separate these effects, a Schottky augmentation ratio, A
E

, 

is defined as the increase in electron emission just due to the electric 

field effect, namely, AE = exp (~~<j> ), where ~<j> is the Schottky 
w 

correction given by equation (20). 

These augmentation ratios are shown in Figure 14 as a function 

2 
Note that at the thermionic limit, J

L 
= 14 amps/cm. for 

this case, At has grown to a value of 3. 2. The Schottky effect only 

accounts for about 30 per cent of this 320 per cent increase, so the 

dominant effect here is the rise in coverage due to r. . The ion cur­
lW 

rent density to the cathode, (-J. ), and the degree of coverage, e, 
lW 

are also displayed in Figure 14. Although (-J. ) is small compared 
lW 

to (-J
t
), it is an order of magnitude greater than the ion current in 

the bulk plasma. This is due to convection and ionization effects in 

the ambipolar diffusion region. This increase in (-J. ) causes the 
lW 

rise in e which explains the large value for the cathode augmentation 

ratio. 



-51-

The effect of cathode surface temperature on the thermionic 

limit is shown by displaying the augmentation ratios and the voltage 

drops 

1400, 

as a function of (-J
t

) in Figures 15, 16, 17, and 18 for T 
w = 

o 
1600, 1800, and 2000 K. Note that for T = 1400 and 2000

0
K, 

w 

the behavior is similar to that of the T = 1500
0

K case discussed 
w 

above, i. e., a the rmionic limit is reached where the Schottky aug-

mentation is about 30 per cent. 

o 
However, for Tw = 1600 and 1800 K, V sh increases, but in-

stead of showing saturation behavior, V sh then decreases at higher 

values of (- Jt ). At the top of the V sh "hump," At rises so fast with 

(-J
t

) that the saturation behavior is destroyed. The electron current 

fraction, P , is also shown in Figure 16, and as expected does not 
e 

come too close to the critical value of unity. 

Thermionic Regime. A more lucid picture of the effect of 

T on the thermionic limit is given by Figure 19, where T is plot-
w w 

ted as the independent variable. The reference electron current 

density, JeZ = e v eZ ' lies toward the bottom of the graph. As T 
w 

increases, J
eZ 

reaches a local maximum and then decreases be­

cause the rise in atom evaporation from the surface reduces e, 
even though T is increased. 

w 
At large values which decreases J e Z 

of T (> 2200 0 K), 
w 

9 is almost zero and J Z advances with T in 
e w 

the normal exponential manner characterized by the work function of 

pure tungsten. The J Z versus T curve is analogous to the elec-
e w 

tron emission S-curve (see Section 2.3), except that the seed fraction 

is the constant parameter on Figure 19 instead of the atom evapora-

tion rate, since V (9) = E:kn (T )C (T )/4 is the condition that spe-
a c w' a w 
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cifies J z(T ). The maximum possible thermionic electron current 
e w 

density (cathode about 65 per cent covered with seed) is also shown 

(as "K limit") on Figure 19. 

Points for J
L 

(the thermionic limit) taken from current­

voltage characteristics are shown on Figure 19 as triangles. These 

points account for both the sheath and the ambipolar effects in the 

proper manner. The exact points for J
L 

are compared in Figure 19 

'!c 
with curve s for J L (the thermionic limit without the Schottky effect) 

and for J~O% (the thermionic limit obtained by setting AE == O. ~ ). 

As expected from the above discussion on Schottky augmentation, the 

exact points for J L fall very nearly on the J~O% curve. 

Since the ion flux through the sheath region is constant (see 

Section 2.5), the coverage of the electrode is independent of the sheath 

solution (unless the sheath is very thick). * 30% Hence, J Land J Lean 

be found, without the rather lengthy (and expensive) sheath calcula-

tions, by the following procedure. We set N = 0, since we are 
o 

looking for saturation solutions (see Figure l3), and solve the ambi-

polar, atom, and surface problems. For each value of (-J
t

), we 

>!c 
can compute a value for P (the electron current fraction without 

e 
::< 

the Schottky effect). A value for J L is found when the saturation 

criterion, P: = I, is satisfied, while the proper criterion for J~O% 
* * is P e = 1. 3. A typical example of a P ~ versus (-Jt ) plot with Tw 

as a running parameter is shown in Figure 21. Note that for certain 

values of T (such as 1900
o

K) the saturation criteria are satisfied 
w 

by more than one value of (-J
t
). For these temperatures, the 

thermionic regime is divided into a high current density and a low 
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current density region. Figure 21 indicates that the greater the dif-

':C 
ference in the critical current densities, the larger P becomes, and 

e 

hence the greater the sheath drop must become to surmount this bar-

rier. 

The thermionic regime is delineated (economically) by solving 

J L exactly at a few values of Tw from which a mean value of the 

Schottky effect is found (30% in this example). The approximate 

thermionic limit (J~O% here) is then found at a large number of values 

for T 
w 

This procedure is insensitive to the deviations from the 

mean Schottky effect if (-J
t

) > 1 amp/cm.
2

,for the c overage effect 

then dominate s the Schottky effect. 

The significance of the thermionic regime graph, Figure 19, 

for cathode operation is the following: a cathode can be operated with 

a sheath voltage drop on the order of one tenth of a volt if its surface 

temperature and current density define a point between the J~ versus 

Tw curves of Figure 19; if the (J, Tw) point lies between the J~ 
30% 

versus Tw curve and the neighboring J L versus Tw curve, V sh is 

0(1 volt); if the (J, Tw) operating point is on the outside of the J~O% 
versus T curves (designated by cross-hatching), V h is around 10 w s 

30% 
volts (since the J L points are close to the J L versus Tw curves). 

The current-voltage characteristics show that for a J versus "T 
w 

curve extending into cros s -hatched regions, V sh rapidly increases 

to hundreds of volts. The se large voltage drops might not actually 

occur in an experiment,for physical processes such as large elec-

tron heating and non-thermal ionization become important at high 

voltages. 
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Cross Section Dependence. The modification of the thermi­

onic limit (which is approximately given by J~O% versus T w curves) 

is indicated in Figure 20 by comparing the J~O% versus T w curves 

calculated for the different combinations of cross section values 

specified in Section 2. 8. The greatest change occurs around J = 

2 30% 
9 amps /cm. , where the J L versus Tw curves "neck together. " 

For the average combination, the J~O% versus Tw curves coalesce 

to split the thermionic regime into a high current density and a low 

current density region at all values for surface temperature. 

D. for the large combination is about one fourth of the value 
1 

for the mixed combination, while D remains the same; since D. 
a 1 

controls ambipolar diffusion, the decrease in D. reduces the ion flux 
1 

to the cathode, which results in a smaller electron emission rate. 

This lowered emission explains the extra necking in of the large com-

bination thermionic limit curves. D. for the average combination is 
1 

only decreased to 0.4 of the value for the mixed combination, but D 
a 

is increased by 60 per cent, and since the atoms can diffuse away 

from the surface faster with a higher 

comes smaller; this reduction causes 

curves for the average combination. 

D , the coverage effect be­a 

the me r ging of the J~O% - T w 

From the discussion in Section 

2.6 and equation (88), the electron emission rate is roughly propor­

tional to J'f); /D2 / 3 • 
1 a 

Seed Fraction Effect. A thermionic regime graph calculated 

under the same conditions as the one in Figure 19 except that e
k 

= 

.002 is displayed in Figure 22. The JeZ versus Tw curve for 
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€k = . 002 is lTIore than halved, around its hUlTIp, frolTI the €k = • 004 

case. The lower boundaries of the J~O~ versus Tw curves are de­

creased by about the salTIe alTIount as the reference current density 

curve is, while the upper boundaries are just slightly altered frolTI 

the E:k = . 004 case. The channel region where the therlTIionic lilTIit 

curves "neck together" is considerably decreased in width frolTI the 

higher seed fraction case. 

The current-voltage characteristic for T = l600 0 K and 
w 

€k = . 002 is shown in Figure 23. This case corresponds to a Tw 

just within the narrow channel of the therlTIionic regilTIe graph of Fig-

ure 22. The alTIbipolar voltage drop has about the salTIe value and be-

havior as the cases presented above. As for E:k = • 004, the sheath 

drop is slTIall when the current density is not close to a saturating 

value. For values of current density in the channel region of Figure 

22, saturation is approached as V sh increases to a lTIaxilTIulTI of about 

20 volts and the Schottky effect to 26 per cent. V sh then decreases to 

a low value as the high current density therlTIionic region is entered. 

The calculation of J~O~ with €k = .002 and large cross sec­

tion values is cOlTIpared with the lTIixed cOlTIbination in Figure 24. 

The large cOlTIbination closes the channel dividing the therlTIionic re-

gilTIe into high and low current density regions. The boundaries away 

frolTI the channel region are silTIilar for the two cases. 

AlTIbipolar LilTIiting Solutions. The alTIbipolar diffusion solu-

tion is characterized by I/6 ,and the alTIbipolar region is coupled to 

the sheath and the surface problelTIs through I. The closed forlTI ex-

pres sions of Section 2.6 for 116 are compared with machine computed 
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results in Figure 25. The comparison is made by using the value of No 

found by the sheath matching and by evaluating the closed form s olu-

tions at the mean film tempe rature. As expected from the discussion 

in Section 2.6 on dominant terms, the hybrid case solution has the 

same trend as the machine solution (for Na == 1 ) at high values of (-J
t

) 

while the frozen inviscid case solution has the correct trend at low 

values of (- J
t
). The agreement of the hybrid case solution with the 

(Na == 1 ) machine solution is within 3 per cent, w~ich shows that the 

variation in transport coefficients through the ambipolar region has a 

small effect on I/o. The agreement of the frozen inviscid case s 0-

lution at small (-Jt ) is only within 20 per cent because the velocity 

profile is approximated here as well as the transport coefficients. 

The viscous velocity profile does not improve the agreement at small 

(-Jt),for the ambipolar region is thicker than the viscous boundary 

layer at low current densities. The extra ionization due to the addi-

tional atoms near the cathode causes I/o to increase, a fact accounted 

for by the exact machine solution. Figure 25 indicates that the N 
a 

term becomes important 2 
for (- J t ) > 6 amps / cm.. Below this value, 

the ambipolar diffusion region is much thicker than the atom diffusion 

region (see Figure 11), so that N ~ 1 throughout most of the ambi­a 

polar region. For the other cross section combinations (large and 

average), D and D. are nearly equal, which implies that the ambi-a 1 

polar region is of the same thickness or thinner than the atom diffu-

sion region, so that the N term is more important for these cases a 

than for the mixed combination. 

2 
When R = w, then (-J

t
) = 2 amps/cm. and the frozen case 
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underestilTIates I/o by about 40 per cent. A silTIilar error occurs in 

the frozen atOlTI diffusion solution for N when R = ow, which oc-
aw 

2 
curs at (-J

t
) = 20 alTIps /ClTI.. The effect of the production terlTI on 

atOlTI diffusion is as a sink for atolTIs,and the nUlTIber density of atOlTIS 

near the wall will decrease. Hence, the solution for I/o will not in­

inc rease as rapidly above (- J
t

) = 20 alTIps /ClTI.
2 

as the exact lTIachine 

2 
solution of Figure 25 suggests. For (-Jt »> 20 alTIps/clTI. , the be-

havior approaches that of the stagnant case discussed in Section 2.6, 

in which the finiteness of the cathode-anode spacing distance becolTIes 

ilTIportant. 

~:< 

The curves for P in Figure 21 do not account for the produc­
e 

tion terlTI on atOlTI diffusion and show no trend toward saturating at 

highe r current densities for surface telTIpe ratures greater than 1500 0 K. 

The ionization at the larger values of (-J
t

) becolTIes so great that the 

ion flux to the cathode accounts for a substantial portion of the total 

current density. This effect is only lilTIited by cOlTIplete ionization of 

the seed (which does not occur until (-J
t

) > 100 alTIps /ClTI.2 ). 

Whether the high current density region of the therlTIionic re-

gilTIe is lilTIited by cOlTIplete seed ionization or nearly cOlTIplete cover-

age of the cathode with seed will have to be deterlTIined by including 

the production terlTI for atOlTI diffusion. 

Anode-Cathode Characteristic. A current-voltage character-

o 
is tic for Tw = 1500 K and E!k = .004, cOlTIputed with the large COlTI-

bination of cross section values for both positive and negative values 

of J
t

, is shown in Figure 26. The alTIbipolar voltage drop, V , 
alTI 



dips to a low value near J
t 

= O. 
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This dip occurs because N rises o 

sharply near J = 0, decreasing the electric fields in the ambipo1ar 
t 

region, and hence V is reduc ed. The sheath voltage drop on the 
am 

anode side of the current-voltage characteristic does not show satura-

tion behavior to large negative voltages; the anode voltage drop be-

comes positive and remains nearly constant for large values of J t . 

This anomalous behavior occurs because of the rise in ionization as 

! J
t 
I increases. The extra ionization augments the ion flux near the 

anode so that saturation for this electrode does not occur over the 

current density range considered here. Since the ion emission rate 

has about the same or 1ar ger values at surface temperatures other 

o 
than the one used for this calculation (T = 1500 K), the anode behav­

w 

ior is of secondary interest here. 

The cathode part of the current-voltage characteristic exhibits 

peculiar behavior, as this value of T is near the channel re gion of 
w 

the thermionic regime (see Figure 20). The Schottky effect is 34 per 

cent at a sheath voltage drop of 10 volts, and this justifies the use of 

30~ 
the J

L 
-Tw curves to approximate the thermionic limit for the large 

combination of cross section values. As J
t 

becomes more negative, 

the sheath voltage drop rises to about 21 volts, then decreases and 

levels out to a value around 10 volts. This behavior is required to 

::~ 

produce the Schottky effect implied by the P curve for T = 15000 K 
e w 

in Figure 21. 

The ambipolar voltage drop behaves similarly with the above 

cases for the mixed combination of cross section values, but at val-

ues about 30 per cent smaller. This -reduction in V is due to the 
am 
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"shrinkage" effect discus sed earlier in this section. Since the ambi-
1 

polar region scales as (D.-Z) and D. is now one fourth of the mixed 
1 1 

combination value, the ambipolar region extends only about 50 per 

cent of the value for the mixed combination. V is not dec reased 
am 

the full 50 pe r cent because of the slow rise of the electric fields in a 

thinner ambipolar region. 

Conclusions. The interaction of a seeded plasma with a cathode 

can augment by an order of magnitude the thermionic limit computed 

from the high density S-curves (J Z - T curves). Cathodes can be 
e w 

operated in the thermionic mode in a low current density region of the 

thermionic regime which is sensitive to the J Z-T curve, or a high 
e w 

current density region which starts at around Tw = 1500
0

K and (-J
t

) = 
2 

10 amps /cm.. Depending on the parameters, a channel for the rmionic 

operation connecting the high and low current density regions may ex­

ist at around T = 1600
o

K; the existence and width of the channel are w 

sensitive to the seed fraction and the diffusion coefficients for ions 

and atoms. 

2 
For (-J

t
) < 1 amps /cm. , the Schottky effect (due to large 

sheath electric fields) is the dominant cause of augmentation and in-

creases the electron emission from the cathode by about 30 per cent. 

Above (-J
t

) = I amps /cm.
2

, the dominant effect is the rise in coverage 

of the cathode with seed particles. The coverage effect can augment 

the cathode electron emis s ion by ove r a factor of ten. The cove rage 

effect becomes important at large current densities here because 

in this type of non-equilibrium plasma, the electron temperature 

rises significantly with an increase in current density: this increased 
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electron tempe rature speeds up the rate of ionization of seed particles 

which produces an enlarged ion flux to the cathode, thus coating it 

with seed particles. 

For the same reas ons, a large ion flux is produced at the 

anode which delays any saturation effect for this electrode in the cur­

rent density range considered here. 

The trends of the solutions found here imply that the high cur­

rent density region is only limited by nearly complete coverage of 

the cathode or by total seed ionization. 
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III. EXPERIMENTAL APPARATUS AND TECHNIQUES 

The basic apparatus used to supply a seeded plasma of uniform 

properties to a test section is illustrated schematically in Figures 27 

and 28. This apparatus was described in detail in reference 28, and 

only the essential features and modifications will be discussed here. 

The primary flow of argon, 2.0 gm/sec, was heated by a 10 kilowatt 

arc-jet heater which could be adjusted to give gas temperatures at 

the test section from 1250 to 2250
o

K. The arc-jet heater was water­

cooled and made of copper, except for a tungsten insert which acted 

as the cathode. No sputtering of either material was observed. 

A smaller «.15 gm/sec) secondary flow of argon was satu­

rated with potassium vapor by bubbling it through a potassium bath 

regulated at a temperature of 810oK; this flow was injected into the 

main flow just after the arc jet. By adjusting the secondary gas flow 

rate, the fraction of potassium atoms to the number of argon atoms, 

nK/nA , in the combined flow was varied from. 0005 to . 006. 

The two streams were allowed to come to equilibrium in a 

mixing chamber which consisted of a 2. 2-cm I. D. by 20-cm long 

alumina tube encased in a stainless steel jacket and surrounded by a 

radiation shield. The uniform seeded plasma was then passed through 

the test section and exhausted at one atmosphere into an exhaust duct 

system. 

The two types of test section used are shown in Figures 29 

and 30. The test sections were fabricated from boron nitride pieces 

held together by pins and close fits. The working section was 1. 16 cm 

in diameter by about 9. 5 cm in length in both types. Voltage probes 
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were made from tungsten rod .0635 cm in diameter and connected ex-

ternally through thin copper strips silver-soldered to the tungsten. In 

each type of test section, the voltage probes were separated by 1. 9 cm 

and usually positioned 1. 9 cm from the cathode. An annular stainless 

steel anode was placed upstream in both types. The spiral cathodes 

in Figure 29 were made from rodsofdiarneterfrorn .051 to. 152 cm 

and spot-welded to a bracket. The spiral cathode surface was viewed 

through the exhaust. 

The stagnation flow plate cathode of Figure 30 was fabricated 

by a spark cutter and the surface was finished with a surface grinder 

and by mechanical polishing. It had the same diameter as the working 

section, 1. 16 cm. This cathode surface was viewed through quartz 

windows set in cells made of alumina tubes which were purged with a 

small flow of argon. The disc cathode (als 0 shown in Figure 30) was 

spot-welded together. 

Total pressure surveys were made across a test section diam-

eter with a micro-manometer and indicated a flat profile over about 

80 per cent of the diameter. At a measured gas temperature of 

2000
o

K, the velocity at the flat part (reduced from the total pressure) 

4 
was about equal to 10 cm/sec. The flat profile was due to the con-

ve rging section just upstream of the test section. 

The discharge circuit (shown in Figure 31) cons isted of a 4.6 

kilowatt constant current generator connected in series with a small 

(.022 ohm) resistor and the test section electrodes. For currents 

above 40 amperes, capacitors were discharged for several milli­

seconds, as by Cool(28). 



-63-

3. 1 Measurement Techniques 

The gas temperature was measured by correcting the output 

of a small (.0635 cm bead diameter) tungsten-tungsten rhenium 

thermocouple for heat transfer. The gas temperature obtained by this 

method agreed to within 5 per cent of the value obtained by the thin 

wire technique of Cool (28). 

The potassium seeding system was calibrated by passing the 

secondary flow through a condensation tube and weighing the condensed 

potassium at set time intervals. The average weight of the conden-

sate was about 10 per cent higher than the value predicted by equilib-

rium with the potassium vapor pressure at the potassium bath tem-

perature. The condensate weight varied from the average weight by 

± 15 per cent due to the high sensitivity of. potassium vapor pressure 

to bath temperature. The sporadic appearance of a black contaminate 

in the potassium system was eliminated by a procedure discussed in 

Appendix D. 

Voltage Probes. The mean electric field was obtained by 

measuring voltage differences between floating voltage probes. This 

method will give the correct electric field if the probes are operated 

in the same environment so that the probe voltage drops are equal. 

Cool (12) established that the electric field along the duct was constant 

by using six voltage probes. The uniformity of the electric field was 

monitored here by using three probes. Since the ele.::-..:ric field in the 

plasma column was uniform, the cathode voltage drop was found by 

measuring the voltage at a probe and extrapolating by the electric 

field to the cathode surface. The simple analog computer circuit, 
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shown in Figure 31, allowed the direct recording of the cathode volt-

age drop. The recorded cathode drop did not account for field fring-

ing or the floating probe voltage drop. The measured cathode drop 

was corrected for the probe drop by the following approximate analy-

sis. 

The rigorous solution of a cylindrical probe (by the techniques 

of Part II) for the floating potential involves a cOITlplicated current 

density pattern as current may flow through the probe even though it 

is floating. If the sheath voltage at some point on the probe surface 

tends to rise, the current flow will readjust to decrease the current 

flowing at that point so that the probe surface will remain an equipo-

tential surface. The probe voltage drop associated with the current 

density pattern in the outer solution is on the order of ED, where 
co p 

D is the probe diameter. The ambipolar voltage drop contains a 
p 

term that does not depend on the current density; this is the second 

term in equat'ion (46) and can be integrated directly, to O(IO-3}, to 

give for the current density independent component of the ambipolar 
n 

eco 
drop: V Z = kT .f..n -- Within an error on the order of ED, 

am e no co p 

the probe voltage drop is given by the zero current density ambipolar 

drop, since the current density pattern can readjust in order to main-

tain the current density dependent component of the probe drop below 

ED. Rigorously, n is found by matching to the sheath solution, 
co p 0 

but the numerical results in Section 2. 9 indicated that n :::::; i(n +n. ) 
o ew lW 

I 

for low current densities; the error in the coefficient, i, for the n 
o 

calculation is not important, as V Z only depends on it logarithmi-
am 

cally. The increase in coverage due to ion flux to the surface is only 
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one tenth as important for the probe as it is for the cathode because 

of the smallness of the probes considered here (see equation (88». 

Thus, it is consistent to evaluate nand n. by the approximation ew lW 

that the fluxes to the surface are zero. The probe correction voltage, 

V
amZ

' calculated by the above method, is presented in Figure 31 as 

a function of I J
t 
I for various values of the parameters €k and Tp' 

The measure, ED, of the error in the voltage correction is also 
00 p 

shown in Figure 32. The voltage correction increases with I Jtl be-

cause n rises rapidly with current density. V for T = 
eoo amZ p 

2000 0 K is well below the values for lower probe temperatures because 

the probe surface is only slightly covered with seed and acts as a 

strong surface ionizer of seed particles. This ionization increases 

n. considerably, which causes the reduction in V Z. For 
lW am 

V Z > 0, the probe is at a lower potential than the adjacent plasma 
am 

so that the corrected cathode drop is found by adding V Z to the 
am 

measured cathode drop. 

Surface Temperature. The surface temperature of the cathode 

was measured by the optical system illustrated in Figure 33. Radia-

tion emitted from a portion of the cathode surface was selected by a 

collimating tube and conducted through a light pipe made of plastic 

optical fibers to a photomultiplier tube. The plasma radiation was 

eliminated by a Kodak Wratten 87 C filter which transmitted only the 

infrared radiation from the cathode. The photomultiplier tube was 

cooled to dry-ice temperatures to remove thermal noise from tbe 

tube output, and condensation in the optical system was prevented by 

purging with dry, high-purity nitrogen. The optical system was cali-
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brated by measuring the brightness temperature (at 6500 A) of a 

tungsten surface with a conventional optical pyrometer (calibrated 

against a NBS standard lamp). The true temperature was found from 

the brightness temperature by using the emissivity values for tungsten. 

The change in emis sivity due to a partial coverage of the tungsten 

surface with potassium was neglected, 'as this correction would alter 

the true temperature by less than 5 per cent. 

Photography. Close -up photographs of the cathode surface 

were taken with a Graphic View camera at a shutter speed of 1/400 

second. 

Surface Preparation. The cathode surface was cleaned by 

washing it in a hot potassium hydroxide solution followed by a methanol 

rinse. The arc-jet system was run for thirty minutes before data were 

taken, so that surface layers of impurities were removed by the hot 

argon environment surrounding the cathode surface. 
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IV. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY 

In this part of the thesis, the experimental results are pre-

sented and then compared with the above theory. First, the general 

characteristics of the observed electrode phenomena will be presented. 

Next, experimental data for the limiting cathode voltage drop and 

cathode current density at which the thermionic mode of cathode oper-

ations is no longer possible will be displayed. Finally, the experi-

mental data will be compared with the theory developed in Part II and 

the validity of the Levine and Gyftopoulos surface adsorption and emis-

sion correlation will be discussed. 

4. 1 Typical Characteristics of the Electrode Phenomena 

The experiments were performed by setting the seed fraction 

(e:
K

) and the gas temperature (T ), which determined the velocity 
noo 

(u ), since the mas s flow rate was held constant; the current through 
00 

the discharge was adjusted by the constant current generator,and the 

cathode voltage drop (V ), the cathode surface temperature (T ), the c w 

average electric field (E ), and the current were recorded on strip 
00 

chart recorders as functions of time. The current was varied slower 

than 10 amperes per second, which allowed all processes to reach 

quasi-equilibrium except for heat transfe r. In practice, the cathode 

surface temperature was controlled by the current sweeping time, 

the dimensions of the cathode support rod, and the gas temperature. 

Typical strip chart data are displayed in Figures 34a and 34b. 

In Figure 34a, the cathode surface temperature rises as the current 

increases in time, while the measured cathode voltage drop slowly 
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advances to about six volts, then falls off at the higher currents. The 

fluctuations in the data are small throughout the current sweep. 

From the strip chart data, the average values of temperature and 

voltage were reduced (V cath was corrected for probe error, but not 

field fringing) and plotted versus the cathode current density (J
cath

)' 

which is defined as the current divided by the total wetted surface 

area of the cathode; this type of plot for the data in Figure 34a is 

shown in Figure 35a. 

A visual observation of the cathode during the experiment 

shown in Figure 34a revealed a uniform radiation patte rn at the sur­

face and the surface appeared fuzzy. 

The behavior exhibited by the recordings shown in Figure 34b 

is quite different. As the current increases, the voltage drop con­

tinues to increase until a critical value is reached at which it jumps 

to a lower value. The fluctuations in voltage drop become large, and 

there are corresponding fluctuations in the current and temperature 

recordings. At higher currents, the fluctuations suddenly cease and 

the voltage drop decreases, as in Figure 34a. The current-voltage 

characte ristic with the surface temperature als 0 for this experiment 

is shown in Figure 35b. 

A visual observation of the cathode during the experiment 

shown in Figure 34b disclosed the presence of a small arc (arclet) 

during the highly fluctuating portion of the recordings in Figure 34b. 

The arclet extended for about O. 04 centimeters from a small spot on 

the cathode surface into the bulk plasma. The rest of the cathode 

surface appeared in great detail, as if it had been lit up by a flash-
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bulb. When the arclet first formed, the cathode voltage drop showed 

a sudden dip, and a loud popping noise was heard. 

At the beginning of an experiment with a new cathode, an arc-

let would form at random positions on the cathode, exist on the order of 

a second, die out, and reappear at a new position. The appearance of 

the arclet was accompanied by the popping noise and large recorder 

fluctuations. As the experiment progressed, the arclet or arclets 

would remain at preferred locations (usually a sharp edge or some 

imperfection such as a crack) for an indefinite period of time. An 

examination of the cathode after the experiment disclosed that the 

preferred location for the arclet had a very shiny, silvery appearance, 

while the remainder of the cathode surface was discolored to a dull 

light grey. This indicates that the arc spot has a temperature of at 

least 2400 oK, for it is well known that a tungsten surface "flows" 

above this tempe rature to produce a shiny surface (31 >. 

Arclet Photographs. The close-up photographs of the 0.152 

centimeter spiral cathode displayed in Figure 36 were taken during the 

arclet mode of operation. The relationship of the photographs to the 

current-voltage characteristic is indicated on Figure 37. The arclets 

are clearly visible on the photographs as bright regions adjacent to 

the cathode surface. As the current through the cathode was increased, 

the photographs show that the arclets enlarged in surface area, but 

not in distance from the surface. 

The experiments on the O. 076 centimeter spiral cathode re­

vealed that the arclets were smaller and more numerous than for the 

above case. A typical voltage-current characteristic for this cathode 
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1S shown in Figure 38. 

Arclet Effect on Bulk Plasma. By changing the surface tem-

perature and the area ratio of the cathode to the duct cross-sectional 

area, the arclet ITlode occurred at a wide range of values of bulk 

plasma current density. The bulk plasITla electric field was inde-

pendent of the cathode type or mode of operation. 

In general, the arclet mode (when steady) is characterized by 

a dec reasing voltage drop (but always highe r than 4 volts) with in-

creasing current and by ITluch larger heat transfer rates,as indicated 

by the large temperature rises in the arclet mode. This change in 

heat transfer rate produces a hysteresis effect when current is de-

creased froITl a value in the arclet mode. 

A typical hysteresis loop is shown in Figure 39 for a disk 

cathode. The hysteresis in teITlperature caused the cathode to operate 

in the arclet ITlode (as the current was reduced) to a SITlaller value of 

J cath than the value at which the arclet ITlode started for increasing 

current. This mode change delay causes a corresponding hysteresis 

loop for the voltage drop. 

The experiITlental curves shown in Figure 40 were constructed 

by applying a step function in voltage (froITl zero) point by point for a 

0.051 centimeter spiral cathode~ The scatter bars (shown on Figure 

40) indicate the increase in scatter near the transition point. Also 

shown on Figure 40 is the voltage drop at the cylindrical anode. Note 

that the scatte r in the V d data was constant and sITlall for all val-
ano e 

ues of current, and that V d behaved regularly even while the ano e 

cathode was ITlaking the transition from the thermionic mode to the 
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arc let mode. 

4.2 Experimental Transition Data 

The experimental data for transition between the thermionic 

and the arclet modes of cathode operation are presented in Figures 41 

to 45. A legend for the symbols used on these figures is given by 

Table 3 in front of Figure 4l. 

The values for the cathode voltage drop at which the the rmionic 

mode changes to the arclet mode, called the breakdown voltage (V bk)' 

are given in Figure 41 for various seed fractions and cathode types as 

a function of the cathode current density at breakdown, J
bk

. Also 

shown on Figure 41 is a straight line fitted using all the data. Note 

that as J cath increases, the breakdown voltage is reduced, but that 

V
bk 

was always greater than the ionization potential for potassium 

(4. 3 volts). 

The values of the cathode current density at breakdown (J
bk

) 

are plotted in Figure 42 versus the corresponding cathode surface 

temperature at breakdown for the seed fraction of • 001 and for other 

seed fractions and cathode geometries except for the stagnation plate 

cathode. For reference, the "K limit" current density curve and the 

reference thermionic electron current density (JeZ ) for various val­

ues of seed fraction are shown on Figure 42. The values of J bk at 

which the arclet mode reverts to the thermionic mode, both for 

current increasing and decreasing. are shown on Figure 42, and the 

point at which each case originally changed from the thermionic mode 

to the arclet mode is indicated by a connecting straight line. 
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a All the low temperature « 1400 K) data for J
bk 

are displayed 

in Figure 43 as a function of Tw' For comparison, JeZ is shown 

for e
K 

=.001, .002, and. 004. Note that all the data (regardless of 

the seed fraction value) fall very nearly on the same curve (indicated 

on Figure 43). The J
eZ 

curves for all values of seed fraction also 

merge at low temperatures, and the data curve has very nearly the 

same slope as the merged JeZ curve although the two curves are 

separated by about 100 Kelvin degrees. This comparison will be 

discussed in Section 4. 3. 

The stagnation plate data for J
bk 

at a seed fraction of . 002 are 

displayed in Figure 44. For the current sweeps that did not result in 

a transition out of the thermionic mode, the value of J
cath 

at which 

V cath attained its maximum value is shown on Figure 44 with the 

maximum V cath value written out next to this type of data point. The 

data points are superimposed on Figure 24, the theoretical curves for 

the thermionic limit at €K = .002. The data points for transition 

from the arclet mode back to the thermionic mode for increasing 

current are als a shown on Figure 44 and connected to the first transi-

tion point by a straight line. 

The stagnation plate data for J
bk 

at E:K = . 004 are displayed in 

Figure 45 in a manner similar to the above data presentation for €K = 

.002. For comparison, the data are combined with Figure 20, the 

theoretical curves for the thermionic limit at €K = . 004. Also shown 

on Figure 45 are the temperature histories of two current sweeps 

with the voltage levels written out along the J th - T curves. ca w 

Note that for the lower temperature current sweep the cathode voltage 
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drop was low at first, rose to a maximum of 5. 2 volts, then decreased 

as the current was inc reased, staying in the thermionic mode up to 

2 
J
cath 

= 30 amps/cm . The higher temperature current sweep, how-

ever, resulted in high cathode drops and a corresponding transition to 

the arclet mode, then a transition back to the thermionic mode as the 

current was advanced. 

4.3 Comparison of Experiment with Theory 

Although the theoretical model of Part II predicts large cathode 

voltage drops, 0 (1000 volts), as the thermionic limit is approached, 

the experiments reveal the formation of arclets at a voltage drop on 

the order of 10 volts (see Figure 41). The analytical solutions of 

Part II are only possible solutions, not necessarily stable ones, and 

three-dimensional solutions with a non-uniform surface temperature 

distribution might exist. Also, non-thermal ionization due to the 

large sheath drops are not accounted for in the present model. Re-

cently, models using a heat transfer balance at the arc spot on the 

(32) . (33) 
cathode surface have been proposed by Adams and by Nichols . 

While the results of references 32 and 33 cannot be compared with the 

arclet data here, they do predict a decreasing cathode drop for in-

creased current, which was observed in the arclet mode. 

The model of Part II is compared with experiment by checking 

the predicted thermionic limit with the experimental arclet break-

down values (see Figures 44 and 45). Note that the thermionic mode 

was observed in both the low current density region and the high cur-

rent density region, as predicted. The channel region for thermionic 
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operation around Tw = 1600
0

K is clearly defined for the €K = • 004 

case {Figure 45}. The data in the channel re gion for the e K = • 002 

case {Figure 44} are more scattered. This scatter is not surprising 

in view of the sensitivity of a narrow channel region to a fluctuation 

in seed concentration and the ± 15 per cent variation in the seed Con-

centration for the experimental arrangement used here. However, all 

the channel data in Figure 44 indicate high voltage drops in the region 

predicted. The calculations based on the large combination of c ros s 

section values agree best with the e
K 

= • 002 and. 004 data. While the 

e:
K 

= • 001 case was not computed, the stagnation plate data for e
K 

= 

. 001 in Figure 42 agree with the trends for the computed cases j there 

was no channel region observed as all current sweeps resulted in an 

arclet formation, and the high current density thermionic region was 

/
20 

observed to start at about 10 amps cm and 1500 K. 

A typical experimental voltage-current characteristic is com-

pared with theory in Figure 46 for e
K 

= . 002. The experimental 

cathode voltage drop has the same behavior as predicted for low cur-

rent densities with a value about 40 pe r cent higher than predicted. 

Part of this error is probably due to the crude approximation for the 

voltage probe correction factor, which is about 50 per cent here. 

Note that the experimental curve starts to saturate earlier than the 

theoretical one and that the exp'erimental curve saturates consider-

ably slower than predicted. These two effects tend to counterbalance 

so that the agreement of the breakdown data with the computed therm-

ionic limit is better than should be expected. On reason for the re-

duced saturation rate is electron heating due to the sheath voltage 
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drop. At low values of the sheath voltage drop, the electronic ther-

mal conductivity maintains a nearly uniform electron temperature. 

At high sheath drops {> 2 volts}, the electrons heat up and this re-

sults in a greater surface emission due to the extra ionization effect 

on surface coverage discussed in Section 2. 9. 

The experimental data verify that the primary mechanisms for 

the electrode - seeded plasma interaction are accounted for by the 

model described in Part II. The experimental results indicate that 

an important secondary effect {probably electron heating} should be 

included in a refined theory. The present model predicts the thermi-

onic limit within a factor of two. The above theoretical and experi-

mental results are used in the following to check the validity of the 

surface model of Levine and Gyftopoulos. 

The low temperature « l400
0

K) data in Figure 43 fall on the 

same curve independent of the seed concentration, because the cover-

age at low temperature approaches a monolayer so that the thermionic 

emission is independent of the seed concentration. The temperature 

shift of the experimental curve from the theoretical curve is dis-

cussed later in this section. 

The high temperature (> l600 oK) data points in Figure 42 are 

not for the stagnation plate cathode, but a crude, simple relation be-

tween the thermionic limits for different types of cathode is found 

from equation (88) for the hybrid case (see Section 2.6). The rela-

tion for the thermionic limits is: 

2 

J J + (JI -J ) neoo j L'/.a/ 
L ~ eZ L eZ 12 L -y a 

n 
(89) 

eoo 
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The spiral cathode data are greater than the stagnation plate results 

because although L' « L, the ratio of Acath/ A duct is greater than 

one, which implies a higher electron temperature for the spiral cath­

ode data and the increase in n,2 JY swamps the length effect in equa-
eoo 

tion (89). 

The thermionic limit data for e
K 

= . 002 have been reduced by 

the correction equation (89) and by the theory of Part II to give J
eZ 

as a function of T 
w The resulting reduced experimental curve for 

J
eZ 

is compared in Figure 47 with the Levine and Gyftopoulos model 

computed from various values of the surfaceworkfunction and the seed 

surface density. The uncertainty in the data and the reduction tech-

nique is indicated by the error bars in Figure 47. The best overall 

fit to the surface model is for <Pf = 2.22 eV and a
f 

= 4.8 X 10 14 

2 
atoms / cm • The electron emis sion S-curves are computed with the 

preceding values for a wide range of temperatures and atom desorp-

tion rates and displayed in Figure 48. The only other experimental 

emission data for a potas sium-tungsten system are those of Killian (34) 

which are in the microamps Icm
2 

range. The present data and Kil-

lian's data are compared with the Levine and Gyftopoulos model in 

Figure 48 and provide a check on the model over eight orders of mag-

nitude of current density. The agreement of both sets of data with 

the model is good on the negative slope portion of the J versus T 
e w 

curves. However, both sets of data are shifted over by about 100 

Kelvin degrees on the low temperature side of the S-curves. This 

temperature shift rises slightly with an increase in temperature. 
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A possible explanation for this temperature shift is that second layer 

effects, which are not accounted for by the model, become important 

as monolayer coverage is approached (indicated by the low tempera-

ture envelope for the S-curves). 

It is concluded that the Levine and Gyftopoulos surface corre-

lation compares favorably with potassium on tungsten experiments 

over a current density range from 0.2 microamps/cm
2 

to 5 amps/ 

2 
cm . Due to the simplicity of the expressions (quoted in Section 

2.3) and the large number of adsorbate - substrate combinations that 

can be computed, this correlation is of great utility for electrode 

studies in seeded plasmas. 
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v. SUMMARY 

A theoretical model has been developed which predicts the 

behavior of thermionically emitting electrodes in contact with a high 

pressure, non-equilibrium, seeded plasma. The model accounts for 

the coupling of the adsorption phenomena of alkali metal se'ed particles 

onto electrode surfaces with that behavior due to the plasma in the 

electric boundary layer. 

The electrode - seeded plasma interaction is studied by a con­

tinuum model of the plasma which includes the fluxes of the seed 

atoms and ions. Expressions are quoted for the desorption rates of 

heavy seed particles and for the emission of electrons from the elec­

trode surface. The effect of large electric fields at the surface, due 

to an electrostatic sheath, on the surface emis sion is accounted for 

by the Schottky correction term. The surface emission rates are re­

lated to number densities at the surface, so that the plasma problem 

is well-posed. An iterative scheme is developed for the solution of 

the electric boundary layer and the state of the electrode surface. 

A detailed study of the stagnation electrode is presented, and 

extensive computer calculations for the argon-potas sium-tungsten 

system are given. 

The major result of this investigation is that the ion flux to 

the cathode surface can greatly enhance the thermionic limiting cur­

rent density. This enhancement is due to the buildup of seed particles 

on the cathode surface, since the incoming ion flux must be counter­

balanced by the slow outward diffusion of seed atoms. The adsorbed 

layer of seed particles lowers the effective work function of the elec-
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trode surface, which allows the large thermionic emission. 

For the non-equilibrium type of plasma studied he re, the 

ionization in the ambipolar diffusion region is important, and this 

ionization enlarges the ion flux to the cathode, which amplifies the 

thermionic emission even further. 

The Schottky effect increases the thermionic emission by 

about 30 per cent for the range of parameters studied here. Above 

about 1 amps f cm 2, the ion flux effect dominates; and for cathode 

temperatures above l500
0

K and current densities greater than 10 

ampsfcm
2

, the thermionic limit is only bounded by nearly complete 

coverage of the cathode or by total seed ionization. 

Below about 10 amps fcm 2 
, the thermionic mode is restricted 

to a low current density region which is ve ry sensitive to seed frac-

tion and surface temperature. For certain values of seed fraction 

a channel may exist, at around a surface temperature of l600
o

K, 

which connects the low current density and the high current density 

(> 10 amps I cm
2 

) regions. 

Calculations for the anode revealed that the anode voltage 

drops are small, and no limiting phenomena such as occurs at the 

cathode is indicated. 

Experiments were performed for the stagnation electrode and 

for spiral electrodes. The experiments revealed that as the the rmi­

onic limit was approached, a transition to an arclet mode of cathode 

operation would occur at some critical breakdown voltage drop. 

This breakdown voltage was typically 10 volts and increased for lower 

values of the transition current density. The cathode voltage drops 
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in the arclet mode were higher (> 4 volts) than the voltage drops 

(typically 2 volts) which occurred in the thermionic mode and the 

transition from the arclet mode to the thermionic mode was observed. 

The experiments on the stagnation cathode agreed with the 

theoretical predictions and the low current density, the high current 

density, and the channel regions were observed. The agreement 

with the computed thermionic limit was within a factor of two, and 

some important secondary effect (probably electron heating) is indi­

cated. 

The surface correlation of Levine and Gyftopoulos (7-10) was 

checked by computing the S-curves for electron emission by their 

model and reducing the above experiments by means of the electrode -

plasma theory developed here and comparing. The only other known 

emission experiments on a potassium-tungsten system by Killian(34) 

were also used. This comparison indicates favorable agreement 

over 8 orders of magnitude of current density, although there is a 

1000K shift fro~ the low temperature envelope of S-curves. This 

shift could be due to second layer effects. 
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TABLE 3 

Code for Data Symbols Used for 

Figures 41 through 45 

Symbol Seed Fraction 

D. 

0 

" 
0 

~ 

Arclet Formation Code for 

Typical Basic Symbol 

.0005 

.001 

.002 

.004 

. 006 

Meaning 

arclet breakdown with current increasing 

arclet stopped with current increasing 

arclet stopped with current decreasing 

maximum voltage drop of 5 volts for current 
sweep that did not result in an arclet break­
down 

arclet occurred between these two points for 
one current sweep 

Cathode Type Code for Typical Basic Symbol 

Symbol Cathode Type A fA 
cath duct 

· 051 em spiral 2. 6 

-0 · 076 cm spiral 2.6 

..D · 152 cm spiral 2.4 
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TABLE 3 (continued) 

Symbol Cathode Type 
A fA 

cath duct 

disk 3. 3 

o stagnation plate 1 

All data were taken by the continuous current sweep technique, 

with the exception of the. 051 cm spiral data which were taken by 

the step function voltage method. 
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NOMENCLATURE 

stagnation flow constant 

= G + €K w w 

= V /V Z ' cathode augmentation ratio 
e e 

Schottky augmentation ratio 

= G - K w w 

matching constant 

average thermal speed of s species 

diameter of voltage probe 

mutual diffusion coefficient of, s species 

abs olute val ue of electron charge 

electric field 

velocity distribution function 

scaled potential drop 

statistical weight of ground state of s species 

scaled electron number density 

Planck's constant 

Debye length in bulk plasma 

stagnation jet height 

== oN / 0,,1 
"='Ilo 

electronic current density 

transition current density 

cathode current 

== e \J eZ 

electron current density 
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ion current density 

thermionic limiting current density 

current density at which AE = O. 3 

total current density 

Boltzmann's constant 

scaled ion number density 

characteristic length 

particle mas s of s species 

particle numbe r density of s species 

net production rate of s species per unit volume 

equilibrium electron number density 

unit vector normal to electrode surface 

ambipolar matching number density 

= n In s ern 

= e: L 
2

/ (D. n ) n 
10 ern 

static pressure 

= r I'J , species current fraction 
sw s 

Prandtl number 

particle charge of s species 

electronic heat flux 

momentum transfer cross section for elastic collisions of s 
species with neutral species n 

radial coordinate from stagnation electrode cente r 

position vector 

electric Reynolds number or sum of covalent radii 

Reynolds number based on L 
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R radiative energy loss per unit volume 

S orbital strength 

t scaled sheath coordinate 

T absolute temperature 

u characteristic velocity 
ro 

u velocity field 

v d drift velocity 

-+ 
v 

v 

V. 
1 

-+ 

V 

V 
am 

V
sh 

V
t 

V
BK 

V
cath 

V 
anode 

x 

y 

yP 

particle velocity 

velocity normal to stagnation electrode 

ionization potential of seed atom 

= ~/u 
ro 

ambipolar voltage drop 

sheath voltage drop 

= V + V 
sh am 

cathode voltage drop at transition 

cathode voltage drop 

anode voltage drop 

electric field signal 

current signal 

cathode drop signal 

scaled sheath electric field 

sheath constant 

vertical coordinate from stagnation electrode 

= yL 

= h /L ero 
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= D. I(€D ) or ionization coefficient 
10 eo 

rec ombination coefficient 

non-dimensional particle flux of s 

particle flux of s species 

Schottky correction 

== 1 I ,jR+lI.J 

electric boundary layer thickness 

atom diffusion boundary layer thickness 

viscous boundary layer thickness 

thermal boundary layer thickness 

= T. IT, tempe rature ratio 
10 e 

permittivity of free space 

= nK/nA' seed fraction 

electric boundary layer coordinate 

ambipolar matching position 

== -N II, effective ambipolar matching position 
o 

degree of coverage 

charged-neutral mean free path or electronic thermal 
conductivity 

flux of particles of s species moving towards surface 

kinematic viscosity or vibration frequency 

particle flux of s species emitted from surface 

collision frequency for momentum transfer 

= n In . seed degree of ionization 
eoo aoo 

electrical conductivity 

number of adsorption sites per unit area 
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am 
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substrate surface density 

= D. ID 
10 ao 

electrical potential 

surface work function 

atom desorption energy 

ion desorption energy 

ads orbate work function 

substrate work function 

heat of sublimation 

= - e4>/kT e 

= (eL
2

n
2 

,,)/D. 
e (X) 10 

volumetric ene rgy los s rate from free electrons due to 
elastic collisions 

seed atom 

ambipolar 

argon 

electric boundary layer 

carrie r gas 

electron 

adsorbate 

ion 

potassium 

substrate 

neutrals 

implies value in sheath 
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s species identification 

sh sheath 

t implies electrode surface tangential component 

W at electrode surface 

z implie s E = 0 and r. = 0 
W lW 

co implies value in bulk plasma 

Superscripts 

( ) ,;< 
implies E 

W 
= 0 

ave rage quantity 

vector quantity 

implies te rm non-dimensionalized by its value in the sheath 

Miscellaneous 

Erf 

Exp 

p 

o 

error function 

exponential function 

incomplete gamma function 

on the order of 

differential vector operator 

implies summation operation 
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APPENDIX A 

Electron Temperature Assumption 

The purpose of this appendix is to indicate the conditions under 

which the electron temperature is approximately constant throughout 

the bulk plasma and the electric boundary layer regions. The dis-

cussion here is limited to the one-dimensional case. 

First, the appropriate boundary condition at the su rface for 

the electron energy equation (4) must be specified. The surface con-

dition is found by the same method as used in Section 2. 4 to specify 

the surface numbe r densities; that is, a control volume for a Knudsen 

layer is used for a conservation of energy balance where the energy 

fluxes are found by averaging "im ~.;; over the assumed velocity dis­
e 

tribution function. The energy flux from the electrons emitted from 

the electrode surface is computed by assuming a half-Maxwellian dis-

tribution function at the surface temperature. The integrations are 

straightforward and the resulting macroscopic energy flux at the sur-

face is: 

q = \I (2kT -2kT O)+r v. +r 4
9 

kT 0 • ew ewe ew 1 ew e 
(A. 1) 

Relating equation (A. 1) to the energy flux in terms of macroscopic gra-

dients gives an expression for dT /dy at the surface: 
e 

(A. 2) 

By transforming the energy equation (4) to the sheath coordi-

nates given in Section 2. 5, the temperature profile in the sheath is 

found to be linear to 0((0.2 /(/1)1/3) and hence the temperature change 
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through the sheath region is on the order of dT Idyl (a.
2

[)II}1/3 L . 
e w 

Unless the electronic thermal conductivity is very small, the sheath 

temperature change is negligibly small. The transport of energy 

away from the sheath vicinity is studied by transforming the ene rgy 

equation (4) to electric boundary layer coordinates and by finding an 

energy boundary condition for the plasma side of the sheath region by 

considering an energy balance for a control volume about the sheath 

region. 

The volumetric energy production terms in the sheath control 

volume are negligible (due to the sheath thinness) with the exception 

of the Joule heating term (Ej ) j since the fluxes are constant through 
e 

the sheath (see Section 2. 5) this volumetric term is transformed to a 

surface term (by a form of the divergence theorem) and the result of 

the energy balance is: 

With the aid of the following non-dimensional variables: 

r = 
kD On e em 

~ 

v. 
1 

n = n 
kT OD On e e em 

v. 
1 = 

kTeO 

R = R 

T e 

T 
e 

= 
TeO 

kT OD On e e eoo 

(A. 3) 

(A.4) 

the electron energy equation (4), in terms of the boundary layer co-

ordinate ('11), becomes: 
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2 
n ( stha 

n 
em 

(A. 5) 

where dT /dy has been eliminated by the substitution of equation (2). 
e 

Since wand Rare 0(0-
2

) and '( is O(o-l), the majority of the terms 
e 

in equation (A. 5) are of the same order, so that the electron tempera-

ture will vary over a region on the order of oL in thicknes s. 

The energy added to the electrons in the sheath region is then 

conducted away from the sheath region to the ambipolar diffusion re-

gion, where it is removed by the processes of convection, radiation, 

elastic collisions with the heavies, and by ionization. The tempera-

ture increase in the sheath region depends on how fast the energy in 

this region is conducted away. Considering the case of a cathode 

nearing saturation so that V h> kT 0 or kT ,equation (A. 3) be­sew 

comes: 

d Tel ~ _.!= (r e V h) 
dy sh fI. ew s 

and dT /dyl h 1S roughly - (~T }/o so that the temperature increase 
e s e 

in the sheath is 

~T 
e 

oL 
~"","\r eV

h
• 

f\. ew s 
(A.6) 

The sheath voltage drop which causes a 10 percent increase 

in the sheath electron tempe rature is displayed as a function of cur-

rent density in Figure A. 1. Note that for V sh less than about 2 volts, 

the constant electron temperature assumption is justified here. How-

ever, for high sheath drops, the rise in electron temperature has an 
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important effect on the the rmionic limiting current for the case w > R; 

the production limited case is sensitive to electron temperature, so 

that a rise in T increases the ionization, which, as shown in Section 
e 

2. 9, considerably augments the thermionic limit. 
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APPENDIX B 

Approximate Sheath Drop Calculation 

For sheath voltage drops greater than about O. 5 volts, the 

computer integration of the sheath equation (52) would not converge to 

the ambipolar limit (W = X/t) even though the initial value for W 
w 

had been found by iteration to eight digits. For large sheath drops, 

the non-dimensionalized electric field at the wall (W ) is correspond­
w 

ingly large, and since the solution curve for W must start from the 

boundary parabola given by equation (57), t is negative for the values 
w 

of the surface parameter A, see equation (56), encountered here. 

The lack of convergence is due to the severe integration instability of 

equation (52) which prevents a numerical integration from the negative 

value of t to the ambipolar limit in the positive t half-plane. 
w 

Even though the solution curve for W does not converge, W 
w 

is known to our desired degree of accuracy, and all the unknowns of 

the problem except the sheath drop can be found. The sheath drop is 

estimated by the following intuitive de rivation, which is justified by 

comparison with known solutions. 

On the W -t plane in Figure B. 1, the ambipolar limit (W = X!t), 

the boundary parabola (W
2 = -2( He} t +2A}, the exact computer so-
w w 

lution, and the approximate solution discussed here are presented for 

conditions that correspond to a point near the saturation region on 

the current-voltage characteristic. In addition, a curve defined by 

the algebraic terms of equation (52) 
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W
2 

X R 
W

R 
- 2(1+e:) (B.. 1) 

is shown. For dW /dt on the order of dW /dt I t=t = B , equation 

2 2 3 w 
(52) requires that for W » W R' d W /dt '" W /2e: , which prevents 

the convergence of the W(t) solution curve to the ambipolar limit. 
3 

For W « W R' d
2

W /dt
2 

'" -I ~€: I and convergence is impossible. 

Therefore, we expect the exact solution curve to lie near the W R(t
R

) 

curve, and from Figure B. 1 this proximity is justified. Since 

d2WR/dt~ '" (l+e)2/W3, the second derivative is small over much of 

the solution curve for saturation cases. The approximate solution for 

W is found by setting d
2

W /dt
2 

= 0 and estimating dW /dt by dW R/dtR' 

which gives 

t ap 

W
2 

= X ap 
W- - 2(l+€:) -

ap 

2 (l-e: )W 
ap 

W 3 +X(l+€:) 
ap 

(B. 2) 

The app roxima te method of solution is to nume ricall y inte grate the full 

sheath equation (52) from the boundary parabola to the approximate 

solution curve given by equation (B. 2). The sheath voltage drop cor-

responding to t (W ) is easily found by using equation (62) and 
ap ap 

equation (B. 2), which results in: 

Fsh ~ 
3 3 

X-tW+Xtn W _ W _ (l-e: )tnlW +X(l+e:)1 
X 6(1+e) 3 W;+X(l+e:) 

t < 0 

where 

Note the good agreement of the approximate solution with the 

exact solution in Figure B. 1. The difference in F sh calculated by the 
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two methods is less than 6 per cent. 
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APPENDIX C 

Listing of Computer Program 

This appendix contains a listing of the two main computer pro­

grams (written in Fortran IV language) used for the numerical work of 

Section 2.9. The computation scheme (see Figure 7) was broken into 

two parts, indicated by the ve rtical dashed line on Figure 7. The first 

program listed (named AMBI) computed the left hand side of Figure 7, 

while the second program listed (called SHTH) calculated the right 

hand side. The flow chart channels crossing the dashed line on Fig­

ure 7 were carried out manually by using data cards. The double 

program method was just for economical reasons. 

The subroutine called DEQ, which appears in both programs, 

is a standard integration subroutine which solves a system of ordinary 

diffe rential equations (in the case here, for three dependent variables) 

by integrating from a given point starting with two initial values for 

each dependent variable. 

The programs were run on the California Institute of Technolo­

gy's IBM 75/50. 

A translation list of the computer names of physical variables 

and paramete rs is given in Table C. 1 . 



TABLE C. 1 

Translation of Computer Names 

I Computer Symbol Units I Computer Symbol Units 
Name Name 

A A EPHY E v/cm w 

AK k eV/oK EPY E v/cm 

ALFA a. F F 

B B FIA <Pa eV 

.:' BD ~ FIE <Pe eV 

CE C em/sec FIL <Pf 
eV 

~ 

U1 e U1 
I 

CHAR e coulombs FIW <Pe eV 

CK C em/sec FIWI <p. eV 
a 1 

DA D 
a 

2 
cm /sec FLXE f e 

2 
#/cm -sec 

2 DBYLE h cm FLXI f. # /cm -sec em 1 

2 
DE D cm /sec FM a e 

DEL 0 G G 

2 
DEO D cm /sec GB G eo w 

DIO DiO 
2 

cm /sec HB K w 

EP amps/em 
2 

€ JEW J ew 



TABLE C. I (continued) 

Computer Symbol Units Computer Symbol Units 
Name Name 

JT J t amps /em 
2 

RCMB 6 
'{ cm /sec 

LTH L cm SAUG AE 

MET <Pm eV SEED €K 

NAW N SIT 0'£ I014/cm2 
aw 

NAX N a SHOT 6.<p eV 

NENF #/cm 
3 

SLPI I I n 
eoo -IJ1 

NEW N SLPZ I 
0' 
I ew ° 

NIW N. T t 
lW 

NK #/cm 
3 

TB t n a W 

NUA 2 oK \l a #/cm -sec TE T e 

NUE 2 oK \Ie #/cm -sec TGAS T noo 
2 oK NUL \I. #/cm -sec TIX T 

1 n 

OMEG W TSUR T OK 
W 

QNC KI U u cn1/sec 
00 

2 
R R VIS \I cm /sec 



TABLE C. 1 (continued) 

Computer Symbol Units Computer Symbol Units 
Name Name 

VOLT V
sh 

volts X '11 

VOLTA V volts X X 
am 

W(l) W Y(l) N 

W(2) dW/dt Y(2) dN/d'l1 

W(3) -tjr Y(3 ) tjr 

WB W YP yL cm I w .... 
\}1 

z e -.J 
I 



IIAMBI JOB (21210,JQK,JPC),KOESTER,MSGlEVEL=1 
IIAMaI EXEC FORTGClG,TIME.FORT=(,5),TIME.LKED=(,3), 
II REGION.GO=100K,TIME.GO=2 
IIFORT.SYSIN DO * 
C AMBIPOlAR DIFFUSION REGIUN 

DIMENSION Y(3), YDOT(3) 
REAL LTH,NKO,NK,NENF,NL,Kl,JEW,JT,JET,NUA,NUX,NUE,MET,NAW,NAX,KERF 

C FUNCTIONS DEFINED 
KERF(X) = 1. - EXP(-1.1198*X - .9*X**2) 
CK(X) = 2.3265E3*SQRT(X) 
DI(X)= (3.4808*X**2)/(CK(X)*(48.1 + 133. *SEED*(1. - NENF/NKO») 
TI(X) = TGAS + (TSUR - TGAS)*EXP(-AUL*X*(1.536 + .358*AUL*X» 
VEL(X) = -2.*AVL*(AUl*X - .569 + .5h9*EXP(-AUl*X*(1.536 + .358*AUL 
lOX»~) 

SPZ(X) = 1.239E4*TE**1.5/SQRT(X) 
DES(X) = 8.24l7E10*TE**2.5/(AlOG(SPZ(X) lOX) 
DEC(X) = 1.755E5*TE*X/(CE*(.7 + 400.*SEED*(1. - NENF/NKO») 
DEM(X,Y) = DES(Y)*DEC(X)/(DES(Y) + DEC(X» 

30 READ(5, 200) TSUR, TE,JT ,Nl 
31 TGAS = 2000. 

U = 1.E4 
FM = .4 
LTH = .58 
SEED = .004 

C COMPUTE PLASMA PROPERTIES 
CHAR = 1.6021E-19 
EP = TSUR/TE 
NKO = (7.3404E21*SEED)/TGAS 

B = 2.4147E15*(TE**1.5)*EXP(-5.0357E4/TE) 
NENF = .5*(SQRT(B**2 + 4.*B*NKO) - B) 
AK = 8.6164E-5 
DBYLF = 6.9009*SCRT(TE/NENF) 
ALFA = OBYlE/ LTH 
CE = 6.2124E5*SQRT(TE) 
NK = NKO - NENF 
VIS = 3.46*«TGAS + TSUR)/4000.)**1.6495 

-\J1 
<XI 
I 



DID = 01 (lSUR) 
AUL = SQR T (FM*U*L TH/V IS') 
AVL = SORT(FM*VIS/(U*LTH» 
RCMB = 1.256E-25 + .25I9E-20*EXP(-2.98E-3*TE) 
R = EP*U*LTH/DID 
DMEG = EP*LTH**2*NENF**2*RCMB/DIO 
DEL = I./SQRT(R + OMEG) 
IF(NL*NENF .IT. I.E10) DED = DEC(TSUR) 
IF(NL*NENF .GE. l.E10) OED = DEM(TSUR,Nl*NENF) 
BD = DIO/(EP*DEO)' 
DA = .629*«TGAS+ TSUR)/4000.)**1.72 
WRITE(6,305)TSlJR,TE,NENF,AlFA,DID,DEO,OMEG,R,DEL 
WRITE(6,309) 
CONV = .005 
ERROR = I.E-5 
CB = .5 
MAX = 40 
UP = 1. 
N = 1 
ITER = 0 
SLPI = 1~ 
SLPIL = o. 

C START ITERATION FOR I SLOPE 
105 IF(ITER .GT. MAX) GO TO 30 

C INITIAL CONDITIONS 
X = O. 
Y ( 1) = NL 
Y(2) = SLP( 
ITER = ITER + 1 
Q = (1.- EP*BD -DEL*JT*LTH/(SLPI*DEO*NENF*CHAR»/(l. +RO) 
FLXI = -DIO*NENF*SLPI*(Q + EP)/(EP*LTH*O~l) 
SCL = DEL*SQRT(FM*U*LTH)*(.4287/(O~*SORT(VIS) »**(1./3.) 
NAW = 1. - .89298*DEl*LTH*FLXI/(OA*SCL*NKO) 

CT = .02 
109 CALL DEQ(K.2.X.Y,YDOT.CT.ERROR) 

.... 
U'1 
~ 
I 



110 GO TO (112,120,120,l50),K 
112 TIX = TI(X*DEL) 

NAX = NAW + (1.- NAW)*KERF(SCL*X) 
IF(Y(l)*NENF .IT. l.ElO) DE = DEC(TIX) 
IF(Y(l)*NENF .GE. l.ElO) DE = DEM(TIX,Y(l)*NENF) 
YDOT ( 1) = Y (2 ) 
YDOT(2) = «DE*OIO*TIX+BO*OEO*TSUR*OI(TlX»!(DE*OI(TIX)*(TSlJR+EP*T 

lIX»)*(R*OEL*VEL(X*OEL)*Y(2)-DEL**2*OMEG*(Y(1)*NAX -Y(1)**3» 
CALL OEQ2(&110, &127) 

120 IF(X .GT. 15.) GO TO 150 
122 IF(Y(l) .GT. 1.) GO TO 170 

IF(Y(2) .LT. 0.) GO TO 180 
121 IF(ABS(Y(l)-i.) .LT. CONY .AND. ABS(Y(2» .LT. CONY) GO TO 190 
125 CALL OEQ1 (&1101 
127 GO TO 121 
170 N= 2 

WRITE(6,310) ITER,SLPI,X,Y(1),Y(2) 
SLPIH = SLPI 
SLPI = .5*(SlPIH-SLPIL) + SLPIL 
GO TO 105 

180 SLPIL = SLPI 
WRITE(6,310) ITER,SLPI,X,Y(1),Y(2) 
GO·TO (181, 183), N 

181 SLPI = SLPIL + CH*UP 
UP = 2.*UP 
GO TO 105 

183 SLPI = .5*(SLPIH-SLPIL) + SLPIL 
GO TO 105 

150 WRITE(6, 320) ITER,SlPI,X,y,YDOT 
GO TO 30 

190 WRITE(6, 330) ITER,Nl,SlPI,X,Y(l),Y(2) ,NAW 
WRITE(6,339) 
RAI = (ALFA*S~PI!DEL)**(2.!3.) 
CAC = X 
XAl = (ALFA**2!(SLPI*OEL**2»**(l.!3.) 
KL = NL!RAI 

~ 
o 
I 



JEW = -CJT-+ DIO*NENF*CHAR*II.+EP)*SLPI/CLTH*DEL*EP»/ll.+BD) 
C INITIAL CONDITIONS 

X = O. 
Y ( 1) = NL 
Y(2) = SLPI 
Y(3) = O. 
o = (1.- EP*BD -DEl*JT*LTH/(SLPI*DEO*NENF*CHAR»/CI. +BD) 
FlXI = -DIO*NENF*SLPI*(Q + EP)/(EP*lTH*DEL) 
SCL = DEl*SQRT(FM*U*LTH)*1.4287/IDA*SQRTCVIS) »**(1./3.) 
NAW = 1. - .89298*DEl*LTH*FLXI/(DA*SCL*NKO) 

409 CALL DEQIK,3,X,Y,YDOT,CT,ERROR) 
410 GO TO (412,420,420,150),K 
412 TIX = TI(X>:'DEL) 

NAX = NAW + 11.- NAW)*KERF(SCl*X) 

IFCYll)*NENF .IT. I.EIO) DE = DECITIX) 
IFCYCl)*NENF .GE. I.EI0) DE = DEMITIX,Y(I)*NENF) 
YDOTCl) = Y(2) 
YDOT(2) = «DE*DIO*TIX+BD*DEO~TSUR*D(ITIX»/(DE*DI(TIX)*(TSUR+EP*T 

lIX»)*(R*DEL*VEl(X*DEL)*Y(2)-DEL**2*OMEG*(Y(I)*NAX -Y(I)**3» 
IF(NL .LE. RAI .AND. X .LT.XAZ) YDOT(3) = O. 
IF(NL .GT. RAI .OR. X .GE. XAZ) YDOT(3) = (DEL*LTH*JT/(CHAR*NENF) 

1- (DE-DI(TIX»*Y(2»/(Y(l)*(DE + DIITIX)*TE/TIX» 
CALL DEQ21&410, &427) 

420 YP = X*DEL*LTH 
VA = -Y(3)*AK*TE 
EPY = AK*TE*YDOT(3)/IOEL*LTH) 
WRITE(6,340) X,Y(I),YI2),Y(3),YP,VA, EPY, DE,NAX 

422 IFIX .GE. CAC) GO TO 430 
425 CALL DEQI 1[,410) 
427 GO TO 422 
430 VOLTA = -(AK*TE)*(Y(3)-DEL*CAC*JT*LTH/(~IENF*CHAR*(DEMITGAS,NENF) + 

lDI I TGAS) *TE/TGAS) » 
WRITE(6,350) KL,XAZ,JEW,JT,VOLTA 
GO TO 30 

200 FORMAT(4FIO.0) 

-cr--I 



-
305 FORMAT(48HOPROPERTIES TSUR TE NENF ALFA DID OED OMEG R DELIIIX,lP9 

lE13.5/11) 
309 FORMAT(38HOITERATION TRIALS ITER SLPI Y N NPRIMEIII) 
310 FORMAT(lX,I4,IP4E14.6/) 
320 FORMAT(IIH0150 RETURNIIIX, 14, IP6EI4.6) 
330 FORMAT(47HOSOLUTION CONVERGES ITER NL SLPI Y N NPRIME NAWIIIX,I4,1 

IP6E15.71111) 
339 FORMAT(47HOSOLIJTION CURVES Y N NPRIME PSI YP VA EPY DE NAill) 
340 FORMAT(IX,IP9E13.5/) 
350 FORMAT(56HOAMBIPOLAR DIFFUSION CHARACTERISTICS KL XAZ JEW JT VOLTA 

111IX,IP5EI4.61111) 
END 

IISHTH JOB (21210,JQK,JPC),KOESTER,MSGLEVEL=1 
IISHTH EXEC FORTGCLG,TIME.FOR~=( ,9),TIME.LKEO=( ,5), 
II REGION.GO=100K,TIME.GO=2 
IIFORT.SYSIN DO * 
C SURFACE-SHEATH INTERACTION FOR TUNGSTEN IN K-SEEDED PLASMA 

REAL LTH,NKO,NK,NENF,NlJA,NlJX,NUI,NLJE,NIW,NEW,JT, NL,NLP,MET 
DIMENSION W(3), WDOT(3), FBC(130), XTV(130) 

C FUNCTIONS DEFINEO 
FNC(X) = 1.1284*(-X)/SQRT(ALOG(-XI7.089R) -1.5*(1.- 293./X)*ALOG(A 

Il0G(-XI7.0R9R») 

-0' 
N 
I 



SPZ(X) = 1.239E4*TE**1.5/SQRT(X) 
DES(X) = 8.2417E10*TE**2~5/(ALOG(SPZ(X»*X) 
DEC(X) = 1.755E5*Tt*X/(CE*(.7 + 400.*SEEO*(1. - NENF/NKO») 
DEM(X,Y) = OES(Y)*OEC(X)/(OES(Y) + OEC(X» 
DATA FBC I 0.0,.3761,.3891,.403,.4179,.434,.4513,.4701,.4906,.5129 

1,.5372,.5641,.5936,.6264,.663,.70397,.7501,.8024,.8619,.9302,1.009 
2,1.121,1.142,1.163,1.185,1.208,1.232,1.256,1.281,1.307,1.334,1.362 
3,1.391,1.421,1.452,1.485,1.518,1.553,1.588,1.626,1.664,1.704,1.746 
4,1.789,1.834,1.881,1.93,1.98,2.033,2.088,2.145,2.204,2.266,2.331.2 
5.398,2.469,2.542,2.618,2.698,2.782,2.87,2.96,3.056,3.155,3.26,3.36 
69,3.484,3.604,3.73,3.862,4.0,4.145,4.298,4.458,4.626,4.803,4.99,5. 
7185,5.392,5.609,5.837,6.078,6.332,6.601,6.883,7.182,7.498,7.831,8. 
8184,8.556,8.951,9.369,9.811,10.28,10.777,11.304,11.864,12.458,13.0 
989,13.759,14.472,15.231,16.038,16.898,17.814,18.791,19.832,20.944, 
122.13,23.398,24.752,26.2,27.75,29.409,31.186,33.09,35.131,37.32,39 
2.67,42.195,44.907,61.888,86.635,123.22,178.12,261.71,390.98,593.99 
3,917.88 f 

DATA XTV I 1.0~.9999995,.999~98~,.9999978~.99~9~59~.9999923,.99998 
157,.9999739,.9999533,.9999176,.999857,.9997557,.9995886,.9993175, 
2.9988838,.9981995,.9971339,.9954953,.9930052,.9892629,.9836951,.97 
354887,.9734368,.9712237,.9688375,.9662653,.9634935,.9605073,.95729 
412,.9538282,.9501005,.9460886,.941772,.937129,.932135,.926766,.920 
5993,.914789,.908122,.900958,.89326,.8845,.87612,.8666,.85636,.8453 
67,.83358,.82093,.80735,.79278,.77714,.76036,.74237,.72306,.70235,. 
768013,.6563,.63074,.60331,.5739,.54235,.50851,.47221,.43327,.39149 
8,.34667,.29859,.24699,.19163,.13221,.068444,0.0,-.073473,-.15235, 
9-.23705,-.32801,-.42569,-.53063,-.64337,-.7645,-.8947,-1.0346,-1.1 
1851,-1.3469,-1.5209,-1.7081,-1.9095,-2.1263,-2.3596,-2.6109,-2.881 
25,-3.173,-3.4871,-3.8257,-4.1907,-4.5843,-5.009,-5.4672,-5.9618, 
3-6.4957,-7.0724,-7.6955,-8.3688,-9.0968,-9.884,-10.735,-11.657,-12 
4.655,-13.735,-14.906,-16.174,-17.549,-19.04,-20.658,-22.414,-2 4 .32 
51,-26.392,-28.643,-31.09,-33.751,-36.646,-39.797,-60.331,-92.134,-
6141.96,-220.99,-347.91,-554.39,-894.9,-1464.2 I 

TGAS = 2000. 
U = 1.E4 

-C1' 
Vol 

• 



LTH = .58 
SEED = .004 
FM = .4 
Z = .25 
GO TO 30 

28 WRITE(6,370) FLXI 
29 WRITE(6,360) ARG 
30 REAO(5,200) TSUR,TE,JT,SLPZ,QNC 

WB = 5. 
C COMPUTE PLASMA PROPERTIES 

CHAR = 1.6021E-19 
AK = 8.6164E-5 
EP = TSUR/TE 
CK = 2.3265E3*SQRT(TSURl 
CE = 6.2124E5*SORT(TE) 
NKO = (7.3404E21*SEEO)/TGAS 

C = 2.4147E15*(TE**1.5l*EXP(-5.0357E4/TE) 
NENF = .5*(SQRT(C**2 + 4.*C*NKO) - C) 
010= (3.4808*TSUR**2)/(CK*(48.1 ~13~~ *$EEO*(l.~NENF/NKOl) 
OBYLE = 6.9009*SORT(TE/NENF) 
ALFA = OBYLEI LTH 
NK = (NKO - NENFl*TGAS/TSUR 
RCMB = 1.256E-25 + .2519E-20*EXP(-2.98E-3*TE) 
R = EP*U*LTH/OIO 
OMEG = EP*LTH**2*NENF**2*RCMB/OIO 
DEL = 1./SQRT(R + OMEGl 
OA = .629*«TGAS+ TSUR)/4000.)**1.72 
OED = OEC(TSURl 
VIS = 3.46*«TGAS + TSUR)/4000.)**1.6495 
WRITE(6,300) TE,TSUR,NENF,OIO,OEO,ALFA,OEL,EP 
SLPI = SLPZ 
NL = .1 
A = O. 
CONY = .005 
ERROR = 1.E-5 
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-- CB = .5 
MAX = 40 
Ll = 1 
UP = 1. 
OWN = 1. 
M = 1 
N = 1 
NZ = 1 
ITER -= 0 

105 NLP = NL 
TB = (Z.*A-WB**Z)!(2.*(I.+EP» 
IF( TB .LE. 0.) NL = o. 
IF(TB .GT. 0.) NL = TB*(ALFA*SLPI!DEL)**(2.!3.) 
IF(NLP .EO. 0.) GO TO 100 
IF(NL .GE. 1.) GO TO 406 
IF(NL*NENF .LT. I.EI0) DEO = OEC(TSUR) 
IF(NL*NENF .GE. I.E10) OEO = OEMCTSUR,NL*NENF) 
BO = OIO!(EP*OEO) 
SLPI = SLPZ - CSLPZ+ ONC)*NL + QNC*NL**2 
RA I = CAL FA * S L P I / DEL) ** C 2./3 • ) __ • 
X = Cl.- EP*BO -OEL*JT*LTH!(SLPI*OEO*NENF*CHAR»!(I. +8D) 
NTIME = 0 
FLXI = -OIO*NENF*SLPI*CX + EP)iCEP*LTH*DEL) 
FLXE = OEO*NENF*SLPI*CX - 1.)!(LTH*OEL) 
NUX = .25*NK*CK - FLXI*(.5+.296*CK*VIS**CI.!6.)*SQRT(LTH!CFM*U»! 

lOA**C2.!3.» , 
IF( NUX .LT. 0.) GO TO 30 
MZ = 1 
NZ = 1 

35 NTIME = NTIME + 1 
IF( NTIME .GT. 40) GO TO 60 
IFC Z .LT. 0.) Z = o. 

C COMPUTE SURFACE PROPERTIES 
MET = 4.62 
FIL = 2.22 
SIT = 4.8 
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G = (f: + 2.*Z)*«1. - Z)**2) 
FIE = FIL + (MET- FIL)*G*(l. - .625*SORT(1.- 1.1341/SIT)*SIT*Z/(1. 

1 + .0738*SIT*Z*SORT(SIT*Z») 
CC = .10384*(MET - FIL)*G 
FIA = CC*(FIE + .003934*CC) + 1.8829~SORT(1. - CC**2) 
H = (Z/(SQRT(l. - Z)*(l. - SORT(Z»»*EXP(.5*(SORT(Z)/(1. - SORT(Z 

1) + Z/(l. - Z») 
NUA = .2185E27*SIT*EXP(-1.1606E4*FIA/TSLJR)*H*(SORT(FIA»/SORT(l.-

11.1341/S11) 
IF (ABS (1. - NLJA/NLJX) .L T. .00(5) - -GO TO 60 
IF( NUA .LT. NUX) GO TO 40 
IF( NUA .GT. NUX) GO TO 50 

40 NZ = 2 
Zl = Z 
GO TO (41, 43), MZ 

41' Z = Z -+- .05 -
GO TO 35 

43 Z = ZL + .5*CZH - ZL) 
GO TO 35 

50 MZ = 2 
ZH = Z 
GO TO (51, 53~,-NZ 

51 Z ='Z - .05 
GO TO 35 

53 Z = ZL + .5*(ZH - ZL) 
GO TO 35 

60 WRITE(6, 385) NTIME, X, Z, NUA, t-JUX 
WRITE(6, 320) 

C START ITERATION OF E-FIELD AT WALL 
C COMPUTE SCHOTTKY EFFECT 

100 EPHY = -(AK*TE*WB/LTH)*(SLPI/(DEL*ALFA**2»**(1./3.) 
SHOT = O. 
IF( WB .LT. 0.) SHOT = 3.7972E-4*SQRT(ABS(EPHY» 
FIWI = FIE - SHOT 
SHOT = O. 
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IF( WB .GT. 0.) SHOT = 3.7972E-4*SQRT(AHS(EPHY» 
FIW = FIE - SHOT 

C COMPUTE SURFACE EMISSION 

C 

NUl = .S*NUA*EXP«FIWI- 4.339)/(AK*TSUR» 
NUE = 7.500SE20*TSUR**2*EXP(-FIW/(AK*TSUR» 

COMPUTE BOlJNDARY CONDITIONS 
ARG = FLXI/NUI 

80 IF(ARG .GT. 1.) GO TO 28 
1=1 

82 IF( ARG .LE. XTV( I) .AND. ARG .GT. XTV( I +1) GO TO 84 
I = 1+1 -
IF (I .GT. 130) GO TO 86 
GO TO 82 

86 VAL = FNCIARG) 
GO TO 88 

84 VAL = FBCII) + IARG- XTVII»*IFBC(I +1)- FBC(I)/(XTV(I +1)- XTV(I 
1» 

88 NIW = NUI*VAL/ICK*NENF) 
ARG = FLXE/NUE 

90 IF (ARG • G T. 1.) AR G = 1. 
1=1 

92 IFI ARG .LE. XTV(I) .AND. ARG .GT. XTV( I +1» GO TO 94 
- I =. I + -1 _. 

IF (I .GT. 130) GO TO 96 
GO TO 92 

96 VAL = FNC(ARG) 
GO TO 98 

94 VAL = FBCII) + (ARG- XTV(I»*(FBC(I +1)- FRCII»/(XTV(I +1)- XTV(I 
1) 

98 NEW = NUE*VAL/(CE*NENF) 
- HB = NIW/RAI 

GB = NEW/RAI 

A = GB + EP*HB 
B = GB - HB 
Gq TO (108,107), N2 
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107 WRITEI6,305) ITER, WB, TB, A, B, T, Wll), WIZ), W(3) 
IF(WB .EQ. WBO) Ll = Z 

108 NZ = 2 
WBO = WB 
ITER = ITER + 1 
I F( ITER .GT. MAX) GO TO 30 
TB = (Z.*A-WB**Z)/(Z.*(l.+EP» 

C INITIAL CONDITIONS 
T = TB 
W(i) = WB 
W(Z) = B 
W(3) = O. 
TC = TB + .1 
CT = .005 

109 CALL OEOIK,3,T,W,WOOT,CT,ERROR) 
110 GO TO (112,120,lZO,150),K 
112 WOOT(l) = W(Z) 

WDOT(ZI = (EP-1.I*W(1)*W(Z)/EP+(.5*W(1)**3)/EP+(1.+EP)*W(1)*T/EP-( 
-1 f. + E P ) * X / E P --- --

WOOT I 3 I = W ( 1 ) 
CALL OE02(&110, &127) 

120 IF( T .IT. TC) GO TO 119 
IF ( T .GT. TB+10.) GO TO 150 
CT = .05 - -
IFILl .EO. 2) CT = .005 
TC = TC + 10. 
GO TO 109 

119 GO TO (121, 123), L1 
121 IF(W(2) .GT. ABS(B) + 5.) GO TO 170 

IF( W(2) .IT. ~ABS(B) - 5.) GO TO 180 
122 IF IT .LE. 0.) GO TO 123 

IF(ABS(Wl1)-X/T) .LT. CONV .AND. ABS(W(Z)+X/T**2) .LT. CONV) 
1GO TO 190 

123 GO TO I1Z5, 124), L1 
124 TR = X/W(1)-W(1)**2/12.*(1.+EP»-(1.-EP)*W(1)**2/(W(1)**3+X*(l.+EP 

1) 
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IF(ABS(T-TR) .LE •• 05 
1 ABS(B) ) GO TO 195 

125 CALL DEQI (&110) 
127 GO TO 119 
170 N= 2 

WBH = WB 
GO TO (171,173), M 

171 WB = WBH-CB*OWN 
OWN = 2.*OWN 
GO TO 105 

173 WB = .5*(WBH-WBl) + WBL 
GO TO 105 

180 M= 2 
WBL = WB 
GO TO <181, 183), N 

181 WB = WBL + CS*UP 
UP = 2.*UP 
GO TO 105 

.OR. W(2)*B .LE. O •• OR. ABS(W(2» .GT. 

183 WB = .5*(WBH - WBl) + WBL 
GO TO 105 

150 WRITE(6, 307) ITER, W~, TB, A, B, T, W, WOOT 
GO TO 30 

190 IF( TB .LE. 1. ) F = W(3) -X*ALOG(T) 
IF (TB .GT. 1.) F = W(3) -X*AL(]G(T/TR) 
W R J T E ( 6, 3 1 0 ) ITER, W B, T B , A, B, T, W ( 1), W ( 2), W( 3 ) , . F 
GO TO 199 

195 IF(TB .GT. 1.) GO TO 194 
IF(T) 197,196,196 

194 F = W(3) - T*W(1) + X*T - W(1)**3/(6.*(I.+ EP»+ X*ALOG(ABS(W(I)*T 
IB/X» 

GO TO 198 
196 F = W(3) - T*W(l)+X -W(I)**3/(6.*(I.+EP»+ X*ALOG(ABS(W(I)/X» 

GO TO 19H 
197 WO = (2.*(1.+EP)*X)*;Ql./3.) 

wz = WO*(I. - 2.*(I.-EP)/(9.*X» 

-0' 

'" • 



F = W(3) - T*WIl)+X -WIl)**3/16.*ll.+EP))+ X*ALOG(ABS(W(l)/X)) -
Iffl. -EP)/3.)*ALOG(ARSffW(11**3+X*ll.+EP)I/(Wl**3+X*(1.+EP))1) 

198 WRITEI6, 315) ITER, WB, TB, A, B, T, WIl), W(2), W(3), TR, F 
199 VOLT = AK*TE*F . 

SAUG = 1. 
IF! WB .GT. 0.) SAUG = EXPISHOT/(AK*TSUR) 
WRITE(6, 390) HB, GB, FIE,FIA,NUI,NUE,NIW,NEW,EPHY,l,JT,VOLT,SAUG 

1,NL, SlPI,FLXI 
GO TO 30 

400 WRITE(6,3501 NL 
GO TO 30 

200 FORMATI5FIO.0) 
300 FORMATI15HIGAS PROPERTIESlillX,32HTE TSUR NENF 010 DEO ALFA DEL EP 

1111X,lP8E13.5111) 
385 FORMATI14HONUA CONVERGES/9HONTIME =,I4,2X, 

1= , F14.6, 2X, 6HNUA = , IPE16.6,2X,6HNUX = 
320 FORMATI126HOITER WB TB 

1 TW 
2RAL II I) 

305 FORMATIIX, 14, 1P8E15.7/) 

4HX=" , F14.6,2X, 
, IPE16.6111/) 

4HZ 

A 
W-PRIME 

B 
W-INTEG 

307 FORMATIllH0150 RETURNIIIX, 14, IP8E15.7/1X-;(P3E·18~7 ) 
310 FORMAT(19HOSOLUTION CONVERGESIIIX, 13, IPE16.7, IP7E15.7/5HOF = , 

llPE16.71111) 
315 FORMAT(23HOAPPROXIMATE F SOLUTIONIIIX, 13, IPE16.7, IP7E15.7/6HOTR 

1 = , IPE15.7,5X, 4HF = , IPE16.71111) 
390 FOR MAT( 24 H 0 SHE A T H - S UR F ACE SOL lJ T ION I 11 X, 5 H H B ='. 1 PEl 5 • 7, 2 X, 5 H G B 

1 = , IPE15.7, 2X, 6HFIE = , OPF8.4, 2X, 6HFIA = , F8.4, 2X, 6HNUI 
2= , IPE14.6,2X, 6HNUE = , IPE14.6/11HONI-WALL = , IPE14.6, 2X, 10H 
3NE-WALL = , 1PE14.6, 2X, 7HEPHY = , IPE14.6/12HOCOVERAGE = , OPF14 
4.6,2X, 5HJT = , IPE14.6,2X, 7HVOLT = , IPE14.6,2X, 8HS-AUG = , IPE 
514.6/6HONL = ,lPE14.6,2X, 10HSLOPE-I = , IPE14.6,2X,7HFLXI = ,1PEl 
64.611111) 

350 FORMAT(6HONL = ,lPE13.5111) 
360 FORMAT(7HOARG = ,lPE13.511) 
370 FORMAT(8HOFLXI = ,lPE13.5111 

END 
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APPENDIX D 

Potassium Boiler Procedures 

Early in the experimental testing program, a black contami­

nate sporadically appeared on the cathode surfaces and inside and 

about the potassium boiler outlet tube which stopped the seed flow at 

times. The contaminate looked like black tar, but was a very hard 

substance like bakelite. The contaminate rapidly changed to a brown 

liquid with the addition of water. A contaminate with the above prop­

erties was reproduced by the following experiment on a piece of pure 

potassium metal. 

A small lump (i inch diameter) of potassium was placed on a 

metal plate which was heated from below. At first, the potassium 

melted and formed a smooth ball (like a piece of mercury) with a 

whitish, discolored surface. Upon further heating, a critical temper­

ature was reached at which the potassium ball underwent a sudden 

transition; the surface of the potassium ball became very shiny (like 

a mirror), then the ball spread to all edges of the plate to form a 

thin layer. Even with no further heating, a reddish glow appeared at 

the center portion of the layer and spread to the edges. A black, 

sooty smoke left the region that was glowing. At the end of the trans­

formation, the black contaminate covered the plate. The transition 

tempe rature was approximately determined (by a thermocouple) as 

660 oK. The above phenomena were independent of the plate material 

(brass, steel, or copper) or whether the potassium lump was initially 

rinsed in mineral oil or petroleum ether. 

The revised potassium boiler procedure was to initially heat 
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up the boiler to a temperature below the transition temperature of 

660
o

K. Then the boile r was purged for one hour with the secondary 

flow of argon. Finally, the boiler was heated up to the normal oper­

ating temperature just prior to the experimental run. This procedure 

eliminated the formation of the black contaminate. 


