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Abstract 

Plane Poiseuille flow is known to be linearly unstable at a Reynolds number of 

5772.22 (Drazin and Reid, 1981). In experiments, however, transition to turbulent 

flow is seen to occur at a Reynolds number of 1000 (Nishioka and Asai, 1985). In an 

attempt at resolving this conflict, we search for 2D and 3D nonlinear bifurcations 

at low Reynolds number. 

Because we wish to study secondary bifurcations, we compute the 2D waves 

which bifurcate from plane Poiseuille flow. These waves were first computed by 

Zahn, et al., (1975), and the critical Reynolds number, based on constant pressure, 

was found to be approximately 2900. To find 2D bifurcations, we study the 2D 

superharmonic stability of the 2D waves. The stability picture is found to change 

when switching from a constant flux to constant average pressure gradient boundary 

condition. For both boundary conditions, we find several Hopf bifurcations on the 

upper branch of the 2D waves. 

We calculate the periodic orbits which emanate from these bifurcations and 

find that no branch extends below the critical 2D wave Reynolds number. We also 

confirm the results of Jimenez (1988) who detected one of the branches we calculate 

with a time dependent formulation. 

To find 3D bifurcations, we study the 3D stability of the 2D waves. Several 

branches of 3D waves are calculated. In particular, we study 3D bifurcations at a 

spanwise wave number of 2. No bifurcations are found to branches which extend to 

low Reynolds numbers. This result conflicts with those found by Rozhdestvensky 
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and Simakin (1984) with a time dependent formulation. 

In addition, we study 3D oblique waves and 3D standing-travelling waves 

(standing in the streamwise direction) which bifurcate from plane Poiseuille fl.ow. In 

particular, we study the bifurcation at spanwise wave numbers greater than .365. 

Contrary to Bridges' (1988) hypothesis, we find that no branches extend to low 

Reynolds numbers. 
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CHAPTER 1 

INTRODUCTION 

The work presented in this thesis was motivated by the wish to understand the 

transition of laminar fl.ow to turbulent fl.ow. In particular, we studied the transition 

in plane Poiseuille fl.ow. Plane Poiseuille fl.ow is the viscous incompressible fl.ow 

between two parallel surfaces driven by a streamwise pressure gradient The basic 

laminar solution for the velocity field is the parabolic profile: 

(1.1) 

A linear stability analysis is the natural first step in studying stability of the 

basic fl.ow. The governing equation for disturbances of the form 

u' = u(y)eia(x-ct)' (1.2) 

where a is the wave number, and c is the complex phase speed is the Orr-Sommerfeld 

equation. Only one eigenfunction of the Orr-Sommerfeld equation is known to have 

an eigenvalue whose imaginary part, ci( a, Re), becomes greater than zero in a 

region of the a-Re plane. The curve of marginal stability, Ci = 0, is known as the 

Orr-Sommerfeld curve, and the critical Reynolds number of this curve is 5772.22. 

Unlike other hydrodynamic stability problems, however, the critical Reynolds 

number from linear theory does not coincide with the experimentally observed crit

ical Reynolds number. The experiments of Carlson, Widnall and Peeters (1982), 

Nishioka and Asai (1985) and Alavyoon, Henningson and Alfresson (1986) all found 

that transition occurred at a Reynolds number of>=:::: 1000. This result suggests that 
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finite amplitude disturbances initiate transition. This conclusion is also supported 

by the observations from plane Couette fl.ow. Plane Couette fl.ow is the viscous 

incompressible fl.ow between two parallel surfaces driven by the upper surface. The 

basic laminar solution for the velocity field is 

(1.3) 

Plane Couette fl.ow is believed to be linearly stable for all Reynolds number (Drazin 

and Reid, 1981 ). The experiments by Reichardt (1956), however, suggest that 

transition to turbulence is very much like in plane Poisueille fl.ow and occurs at 

a Reynolds number of ~ 750. Clearly, finite amplitude disturbances need to be 

investigated to understand transition. 

Two approaches have been used to study finite amplitude disturbances. One 

approach utilizes a time dependent simulation of the disturbance. This approach 

has been used by Orszag and Kells (1980), Orszag and Patera (1980, 1981, 1983) 

Kleiser (1982), Kim (1983), Zang (1987) and many other authors. The advantages 

to this approach include the feasibility of high resolution numerics, and the ability 

to simulate experimentally observed flows. The disadvantages to such an approach 

include the inability to calculate unstable solutions, the lack of control over the 

solution form, and the difficulty in implementing a parameter search of steady 

solutions. 

An alternative approach, which we use in this thesis, is to search for specific 

types of steady equilibrium solutions. This approach is capable of computing un-

stable solutions. Also, the solution form can be specified, and a parameter search 

can be undertaken in solution space. A major disadvantage to this approach is that 

high resolution numerics are not feasible. As will be shown in Chapter 2, however, 

with spectral methods a few modes is often sufficient to give good qualitative and 
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sometimes quantitative results. Also, as will be discussed in the conclusion, a new 

approach by Tuckerman (1988) may allow increased resolution. 

Our approach to finding the finite amplitude disturbances is based on Saffman's 

(1983) hypothesis that the transition from the laminar state to the turbulent state 

is dependent on the existence of intermediate vortical states and that turbulence is 

the 3D instability of these states and their complex interactions. Typical examples 

of vortical states are states that are periodic in space or time. The exact nature 

of the vortical state remains to be determined. Among the many possibilities are 

2D travelling waves, quasi-periodic solutions, and 3D waves. Although the form 

of the vertical solution is not specified, the solution should exist at lov1 P..,eynolds 

number and the instabilities of the solution should grow on the convective time 

scale observed in experiment. 

1.2 2D Waves 

Perhaps the simplest example of a vortical state are 2D travelling waves. Chen 

and Joseph (1973) have proved the existence of 2D travelling waves which bifurcate 

from plane Poiseuille flow. The first attempt to compute these waves was undertaken 

by Noether (1921). Noether studied equilibrium wave disturbances by truncating 

his equations at N = 1 modes. This approximation is called the "mean-field" 

approximation and only takes into account the correction to the mean fl.ow and the 

first harmonic. No higher harmonics are studied. Using asymptotic expansions, 

Meksyn and Stuart (1951) obtained an approximate solution for these equations. 

They found that the critical Reynolds number decreases with increasing disturbance 

amplitude. The critical Reynolds number eventually passes through a minimum 

and increases. The minimum critical Reynolds number was found to be at a wave 

number larger than the the maximum wave number on the Orr-Sommerfeld curve. 

These results have been confirmed by more accurate numerical computations. Zahn 
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et al. (1974) numerically computed these solutions with N = 2 modes and found a 

nonlinear neutral surface. Herbert (1977) used a spectral collocation technique and 

found the minimum critical Reynolds number of the neutral surface at Re = 2935 

and a = 1.323 for N = 4 modes. These calculations show that the critical Reynolds 

number is reduced by a factor of 2 from linear theory. However, there is still a large 

discrepancy from the experimentally observed critical Reynolds number of ~ 1000. 

In addition, the results show that even for a low mode calculation, N = 1 modes, 

the results are qualitatively correct. This is surprising because the first nonlinear 

interaction involves the second harmonic. 

In Chapter 2, we repeat these calculations because we wish to study 2D and 3D 

secondary bifurcations. Because we use a more accurate procedure to determine the 

minimum critical Reynolds number, there are slight discrepancies between Herbert's 

results and our own. In addition, we outline the numerical scheme which will be 

implemented throughout this thesis. 

The discussion so far has been restricted to steady 2D waves. Orszag and 

Patera (1983) found quasi-steady 2D waves well below Re = 2900. These states 

eventually decay, but the decay rate is so slow that Orszag and Patera consider 

these states effectively steady. A 3D stability analysis is then implemented under 

the assumption that the variation of the 2D states on the slow time scale can be 

neglected. As an initial condition for this stability analysis, they give a 2D state 

which is steady. The 3D perturbations are found to grow explosively if the amplitude 

of the 2D state is sufficiently large and the decay rate of the 2D state is sufficiently 

small. Below a Reynolds number of ~ 1000, they find that the 2D decay rate is 

too large for 3D disturbances to grow. Based on these results, Orszag and Patera 

propose that transition is the 3D instability of 2D quasi-steady flows. 

There are, however, two criticisms which can be made of their hypothesis. 
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pothesis. First, no 2D quasi-steady states have been found in circular Poiseuille 

fl.ow. Therefore, in circular Poiseuille fl.ow multiple time scaling arguments can not 

be applied. Secondly, no detailed multiple time scaling analysis has been under

taken to support the hypothesis in plane Poiseuille fl.ow. With these reservations 

in mind and with the motivation of Saffman's hypothesis, we searched for steady 

solutions at low Reynolds number. 

1.3 2D Stability of 2D Waves 

In Chapter 3, we study the 2D super harmonic stability of 2D waves. Previously, 

stability studies have focused on the 3D stability of 2D waves. This is due to 

the observation that 3D instabilities grovl on a convective time scale wh.ile 2D 

disturbances grow on a viscous time scale. As transition occurs explosively, it is 

believed that 3D instabilities initiate transition. Our efforts, however, are aimed 

at finding bifurcations to 2D states which exist at low Reynolds number. The 3D 

instabilities of these states would then lead to transition. 

In Chapter 3, we show that the 2D stability of 2D waves is a function of how 

the 2D wave Reynolds number is defined. The Reynolds number can be defined by 

fixing the spatially averaged pressure gradient to be constant, or by fixing the flux 

to be constant. For constant flux disturbances, we find that the lower branch of 

the 2D waves is unstable and a stability transition occurs at the limit point. The 

upper branch, however, does not remain stable. Two different pairs of complex 

conjugate eigenvalues cross the imaginary axis transversely. These crossings are 

Hopf bifurcations. 

For constant pressure disturbances, we find that the lower branch is unstable 

but a stability transition does not occur at the nose. Instead, another eigenvalue 

becomes unstable at the nose. The two unstable eigenvalues merge on the upper 

branch and subsequently stabilize. The point of stabilization is a Hopf bifurcation. 
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This Hopf bifurcation is not present in the case of constant flux disturbances. In 

addition, we find two more Hopf bifurcations on the upper branch. These Hopf 

bifurcations correspond to the Hopf bifurcations found in constant flux disturbances. 

These Hopf bifurcations imply the existence of periodic solutions or, in a fixed frame 

of reference, quasi-periodic solutions. 

1.4 Qausi-Periodic Solutions 

In Chapter 4, we compute the branches of periodic orbits which emanate from 

the Hopf bifurcations found in Chapter 3. Previously, Jimenez (1988) found one of 

the branches that we detected with a time dependent code. The Hopf bifurcation 

for this branch occurs on the upper branch of the 2D waves at a Reynolds number 

of ~ 5000 and a = 1.0. Jimenez found that the Reynolds number of this branch 

increases with increasing amplitude. We confirm these results with our calculation. 

In addition, we calculate several branches which Jimenez did not detect. Because 

Jimenez used a time dependent code, he could not detect Hopf bifurcations once the 

upper branch destabilizes. Also, Jimenez used a Reynolds number based on con

stant flux. A new Hopf bifurcation appears when the Reynolds number is based on 

constant pressure. For the Hopf bifurcation which only appears in the case of con

stant pressure disturbances, we find that the Reynolds number initially decreases. 

A limit point, however, is reached before the Reynolds number extends below the 

critical 2D wave Reynolds number. For the other branches of periodic orbits, the 

Reynolds number increases with increasing amplitude and does not turn back. 

1.5 3D Waves 

In Chapter 5, we study 3D steady waves. The existence of 3D steady waves be

low the critical 2D wave Reynolds number is still an open question. Goldshtik and 

Shtern (1983) found steady subharmonic 3D waves (subharmonic in the stream

wise direction) down to a Reynolds number of 1000. Pugh (1988) repeated this 
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calculation and found the same low Reynolds number solutions when using similar 

resolution. Upon increasing resolution, however, the result disappeared. Pugh's 

results are also questionable since he ignored the effect of the superharmonic com

ponents in the 3D waves. 

Orszag and Kells (1981) found that no stable steady superharmonic 3D solu

tions exist below the critical Reynolds number of the 2D waves. Rozhdesventsky 

and Simakin (1984), however, implemented the same numerical scheme and found 

stable 3D states down to a Reynolds number of 1313 (based on constant flux) at 

a spanwise wave number of 2 and a streamwise wave number of 1.25. Pugh (1988) 

investigated 3D waves which bifurcate from the 2D wave for spanwise wave numbers 

less than .5. No 3D waves were found below the critical 2D wave Reynolds number. 

In an attempt to confirm Rozhdesventsky and Simakin's results, we investigated 

the 3D waves which bifurcate from 2D waves at high spanwise wave numbers (/3 = 

2). We found that no 3D waves extended below the critical 2D wave Reynolds 

number. 

Bridges (1988) has proved the existence of oblique 3D waves and 3D waves 

which are travelling in the streamwise direction and standing in the spanwise direc

tion ( we will refer to these as standing travelling waves, STW) which bifurcate from 

plane Poiseuille fl.ow. Bridges observed that for spanwise wave numbers greater than 

.365, it appeared possible that the STW would extend to low Reynolds number. In 

Chapter 5, we calculate the branches of oblique waves and STW which bifurcate 

from plane Poiseuille fl.ow. We show that no 3D oblique or 3D STW extend below 

the critical Reynolds number of the 2D waves. 
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CHAPTER 2 

STEADY TWO DIMENSIONAL WAVES 

2.1 Introduction 

In this chapter, we study the 2D waves found in plane Poiseuille flow. Chen and 

Joseph (1973) proved the existence of 2D travelling wave solutions which bifurcate 

from plane Poiseuille flow. In addition, several authors have conducted numerical 

studies of these waves (for example, Zahn et al., 1974, Herbert 1976, Milinazzo 

and Saffman , 1985). We repeat these caiculations to study 2D and 3D secondary 

bifurcations. 

We show that our calculations yield results which are in good agreement with 

the previous efforts, and we discuss some important features of these flows. 

2.2 Calculation of Bifurcation Points 

Consider the 2D N avier-Stokes equations for incompressible flow in the primi-

tive variable formulation: 

p(~~ +(ii. V)u) = -Vp + µV 2 u (2.1) 

V·u = o, (2.2) 

where ii= (u,v). One can introduce a streamfunction 'lj;(x,y,t) by letting 

81/J 
u=-

8y 
81/J 

(2.3) 

v = - ax. 
vVith the streamfunction as defined by (2.3), one can transform (2.1 )-(2.2) to the 

equivalent streamfunction formulation: 

(2.4) 
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y:h 

u:U0 (1-(y/h) 2 
) 

Y=-h 

Figure 2.1. Geometiy of plane Poiseuille flow. 
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Figure 2.2. Orr-Sommerfeld cmve. 



-10 -

where the subscripts denote differentiation. For flow down a channel, see Figure 
3 

2.1, an exact solution to (2.4) is '1i = U0 (y - f-p ). This solution satisfies the no slip 

boundary conditions, 
ow 

u = - = 0 y = ±h oy 
ow 

v = -- = 0 y = ±h, ox 
(2.5) 

and has a parabolic velocity profile. We call this the basic solution and let wb = 
3 

U0 (y - ffi'J ). To find bifurcations to 2D travelling waves, we study the stability of 

wb to infinitesimal disturbances. Thus let 

(2.6) 

where a is the wave number and c = Cr+ ici is the complex phase speed of the 

disturbance. Substituting (2.6) into (2.4)-(2.5) and nondimensionalizing by the 

channel half width hand the characteristic velocity Uo, (2.4)-(2.5) become 

-. -
1
-(D2 

- a 2 )2</J = (U - c)(D2 
- a 2 )</J - U" <P = 0 

zaRe 

a</J = D<P = 0 y = ±1, 

(2. 7) 

(2.8) 

where Re= UZh is the Reynolds number, D = fy and U = l-y2 is the dimensionless 

basic velocity. Equation (2. 7) is known as the Orr-Sommerfeld equation. For a 

given wave number and Reynolds number, equations (2. 7) and (2.8) constitute an 

eigenvalue problem for the eigenvalue c and the eigenfunction ef>(y) . 

Only one eigenfunction of (2. 7) is known to have an eigenvalue c( a, Re) whose 

imaginary part becomes greater than zero in a region of the a-Re plane (Drazin 

and Reid, 1981). The curve of marginal stability for this eigenvalue, Ci = 0, is 

shown in Figure 2.2. If one holds the wave number fixed and increases the Reynolds 

number in order to pass through the marginal stability curve, the eigenvalue and 
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its complex conjugate cross the imaginary axis transversely. Therefore, the curve 

of marginal stability also represents a curve of Hopf bifurcation points. 

2.3 Numerical Method for Detection of Bifurcation Points 

To solve this problem numerically, we impose two additional equations to spec

ify the phase and amplitude of the disturbance. One convenient way is to set 

where cl and c2 are constants. 

!R(¢/'(y = -1)) =cl 

c;}(¢/'(y = -1)) = c2, (2.9) 

We applied the software package AUTO developed by Doedel and Kernevez 

(1985) to solve (2.7)-(2.9). This software considers first order systems of the form 

u'(y) = J(u(y), .A), y E [O, 1], u(·), J(-, ·) E Rn, .A E Rn\ (2.10) 

subject to the general boundary conditions 

bi(u(O), u(l), .A)= 0, i = 1,2,· ··nb, (2.11) 

and general integral constraints 

11 

qi( u(y ), .A )dy = 0, i=l,2,···,nq. (2.12) 

In order for the problem to be well posed, we require that n>.. = nb + nq - n + 1. This 

implies that there will be one free parameter and we can usually calculate solution 

curves to (2.10). The software approximates the differential equation, boundary 

conditions and integral constraints by the method of collocation at m Gauss points 

with piecewise Lagrange polynomials that belong to the class C[O, 1]. Specifically, 

we define a mesh 

{y =Yo <YI < · · · < YN = 1 }, ~Yj = Y1+1 - YJ, (0 '.S j '.SN - 1), 
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and for each j, we introduce the Lagrange basis polynomials 

{wj,i(y)}, j=0,1,···,N-1, i = 0, 1, · · ·, m, 

defined by 

m 

Wj,i(Y) = II y ~ Yj+-fn 

k -o k..J.. Yj+...!.. - Yj+..!i.. - , ..,-1 m m 

z 
Y1+...i.. = Yj + -6.Yj· 

m m 

Note that we transform the geometry of our problem so that y E [O, 1]. The collo-

cation method now consists of finding 

m 

Pj(Y) = LWj,i(y)uj+,;,, 
i=O 

such that 

i = 1,···,m j = 0,1,···,N - 1, (2.13) 

where in each subinterval [Yj-l, Yj] the points { Zj,i}~ 1 are the zeroes of the mth 

degree Legendre polynomial relative to that subinterval. With the above choice of 

basis, Uj and ui+;k are to approximate the continuous problem at Yi and Yi+;k 

respectively. 

In a similar manner, AUTO discretizes the integral conditions by a quadrature 

formula over each subinterval: 

N-1 m 

L Lwi,iqk(ui+,;, ,,\) = 0, k = 1,···,nq. (2.14) 
j=O i=O 

The discrete boundary conditions are 

(2.15) 

To compute solution branches, AUTO uses pseudo-arclength continuation and 

adjoins the equation 

11 

(u(y) - uo(y))*uo(t)dt + (,\ - Ao)*~ - !ls= 0, 
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where ( u 0 , Ao) is the previously computed point on the solution branch and ( ito, Ao) 

is the normalized tangent vector at that point. The discretized version of this 

equation is 

N-1 m 

LL Wj,i(uj+fn - (uo)j+fn)*(ito)1+~ +(A - A0 )* ,\ - ~s = 0. (2.16) 
j=O i=O 

Equations (2.13)-(2.16) form a system of mnN +nb+nq+l nonlinear equations. 

Newton iteration is used to solve this system along the solution branch. 

We used four collocation points and up to 50 mesh points to accurately resolve 

the boundary layers formed at high Reynolds numbers. In addition, we adjusted 

the mesh after every step. AUTO uses an adaptive mesh scheme which minimizes 

the local discretization error. 

To continue along the solution branch, we made use of AUTO's adaptive step-

size capabilities. If the Newton iteration converges rapidly then the stepsize is 

increased. If the Newton iterations converges slowly or fails to converge, then the 

stepsize is halved. If a preselected maximum stepsize is reached, then the stepsize 

will not exceed that value. If a preselected minimum stepsize is reached, then the 

program will signal nonconvergence. 

We defined convergence to have occurred if the Newton increments satisfied 

l~AI < 10-6' 
1 + IAI 

ll~ulloo < 10-6. 

1 + llulloo 

To compute the marginal curve, an initial guess must be provided for the eigen

function, eigenvalue, and the other parameters. The eigenvalue spectrum for (2.4) 

has been derived for Re << 1 (Drazin and Reid, 1981). Using this spectrum as 

an initial guess, we continue the solution to the curve where Ci = 0. The curve is 

shown in Figure 2.2 and we found the minimum Reynolds number to be 5772.22. 
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This value compares well with the value computed by Orszag (1971) and Davey 

(1974). 

In summary, we have calculated the curve of marginal stability which also 

represents a curve of Hopf bifurcations to 2D travelling waves. 

2.4 Calculation of Two Dimensional Steady Waves 

We look for steady 2D travelling waves in the streamwise direction with phase 

speed c. Letting 'll(x, y, t) ='lib +1,b(x, y) where x = x-ct and nondimensionalizing 

by the channel half width hand the centerline velocity U0 , (2.1) becomes 

(2.17) 

where we write x for x. 

Using a spectral decomposition, we let 

00 

1,b(x,y)= L ~n(y)eicmx (2.18) 
n=-oo 

yielding the modal equations, 

(2.19) 

where Sxf n = ianfn and f * g = L.:::=-oo f n-m9m is the convolution of the two 

Fourier series. The reality of 1,b(x, y) requires 

~-n(Y) = ~~(y) 

implying that only modes n 2:: 0 need to be determined. 

The modal no slip boundary conditions are 

d~n 
-=0 
dy 

y = ±1 
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io:n'lj;n = 0 y= ±1 n > 0. (2.20) 

For n = 0, the zero mode of vis identically zero and we must specify two additional 

boundary conditions. As 'lj; is arbitrary to within a constant, we let 

7fo(-1) = 0. (2.21) 

One boundary condition is still undetermined. This indeterminacy results from 

an arbitrariness in choosing the nondimensionalizing velocity U0 . One possible 

choice is to define U0 such that there is no perturbation to the average flux. The 

average flux Q is 
2: +h 

a r r 

Q = 27r j j u dy dx, (2.22) 

0 -h 

where we are using the dimensional form for these variables. Letting u = ~~ and 

'11 = 'llb + 'lj;(x,y), we obtain 

(2.23) 

where the streamfunction is in dimensional form. To permit no perturbation to the 

average flux, we set 

(2.24) 

Equations (2.15) and (2.12) yield the additional boundary condition 

7fo(h) = 0 (2.25a) 

or in dimensionless form 

7fo(l) = 0. (2.25b) 

Alternatively, one can define U0 such that there is no perturbation to the 

average pressure gradient. The average pressure gradient P is 

(2.26) 
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where the above is in dimensional form. To allow no perturbation to the average 

pressure gradient, we set the additional boundary condition 

(2.27a) 

or in dimensionless from 

(2.27b) 

Equations (2.25) and (2.27) represent the two limits of zero average flux per-

turbation and zero average pressure gradient perturbation. In general, it is possible 

to take a linear combination of these flows and thus there is a continuous range of 

boundary conditions. 

Corresponding to (2.25) and (2.27) are two different Reynolds number ReQ 

and Rep. Equation (2.24) implies 

and thus 

Q = 4UQh 
3 

ReQ = hU Q = 3Q. 
v 4v 

Alternatively, equation (2.27) implies 

and thus 

p = _ 2vUp 
h2 

hUp h3 P 
Rep = -- = ---. 

v 2v2 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

It is important to note that these Reynolds numbers represent different scalings of 

the problem and not different physics. In fact, using (2.29) and (2.31) one can show 

that 

(2.32) 
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where 7/JoQ,yy denotes that the second derivative was calculated with the constant 

flux boundary condition. For planar Poiseuille fl.ow these two Reynolds numbers are 

equivalent. In general Rep = f(Req, a) and for 2D waves Rep > Req(Saffman, 

1983). 

An additional equation is required to eliminate the arbitrary phase shift in the 

x direction. If -ifan is a solution for a given c, -ifanein6ot is also a solution where 8 is 

arbitrary. To eliminate this indeterminacy, we set 

~(1/;~'(y = -1)) ___;____;;;. ___ ---'-=constant. 
?R(1f;~'(y = -1)) 

(2.33) 

To continue the solution branch of the travelling wave solutions of (2.17) into 

the nonlinear regime, it is convenient to define a nonlinear amplitude. One possible 

choice is related to the disturbance energy: 

N +I 
2 15 ~ 'f 2 2 AE = l6 ~ lun(Y)I + lvn(Y)I dy, 

n=-N _ 1 

(2.34) 

where the prime indicates that the n = 0 mode is not included, and the i~ factor 

is chosen so that the energy of the basic fl.ow is normalized to one. 

2.5 Numerical Method for 2D Waves 

Truncating (2.19) at some number of modes, we are left to solve a finite system 

of nonlinear ODE's. We implement the discretization method described in section 

(2.1) and compute solution branches to the resulting nonlinear algebraic system by 

pseudo-arclength continuation. An initial guess is provided by the eigenfunction 

calculation described in section 2.3. 

2.6 Results 

Several authors have calculated the 2D waves discussed in this chapter. We have 

repeated the calculation to enable the study of 2D and 3D secondary bifurcations 
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to be discussed in the later chapters. As a check on our calculations, we show that 

our results are in good agreement with the earlier calculations. 

In Figure 2.3, we plot amplitude versus Reynolds number for a = 1.02. The zero 

amplitude point corresponds to the critical Reynolds number on the Orr-Sommerfeld 

curve. For each point on the Orr-Sommerfeld curve, there is a bifurcating nonlinear 

solution branch. These solution branches form a nonlinear neutral surface. In 

addition, solution branches exist for wave numbers larger than the maximum wave 

number on the Orr-Sommerfeld curve. 

In Table 2.1, we compare our values for the critical Reynolds number of the 

nonlinear neutral surface , based on constant pressure, to Herbert's (1976) results 

for N = 1, N = 2 and N = 3 modes. As shown in the table, there are slight 

quantitative discrepancies between Herbert's (1976) results and our own. These 

discrepancies can be attributed to the more accurate procedure which was used in 

our calculation. 

Herbert (1976) found the critical Reynolds number by determining the limit 

point in Reynolds number for each wave number. This is a very tedious procedure 

which can lead to errors since the critical wave number can be missed. We used a two 

parameter continuation of the limit point to determine the critical Reynolds number. 

Two parameter continuation of limit points is described in Keller (1988) and is 

implemented in AUTO. To check our results, we computed the critical Reynolds 

number at the critical wave number given by Herbert (1976) and confirmed his 

results. 

In summary, we have calculated the marginal stability curve for plane Poiseuille 

flow. The points on this curve are bifurcation points to 2D travelling waves. We 

calculated the nonlinear neutral surface which is formed from the solution branches 

of these waves. The critical Reynolds number of this surf ace was found to be 
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approximately 2900 based on constant pressure gradient and 2600 based on constant 

flux. Although this reduces the critical Reynolds number from linear theory by a 

factor of 2 there is still a large discrepancy from the Reynolds number of ~ 1000 

found in experiment. 

In the next chapter, we will study the 2D stability of the 2D waves. We will 

search for bifurcations to other 2D states which exist below the critical 2D wave 

Reynolds number. 
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Figure 2.3. Cross-section of nonlinear neutral surface for a = 1.02. 

Table 2.1. Comparison of2D wavesresults with Herbert (1976). 

Herbert ( 1976) Present 

Parameters N=l N=2 N=3 N=l N=2 N=3 

1.2220 1.3130 1.3201 1.2222 1.3129 1.3179 

2825.56 2701.74 2911.6 2825.56 2701.72 291 1.36 

c .3458 .3663 .3643 .3458 .3663 .3640 
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CHAPTER 3 

2D STABILITY OF 2D WAVES 

3.1 Introduction 

In this chapter, we examine the 2D stability of the 2D waves found in plane 

Poiseuille fl.ow. In particular, we are interested in the stability of these flows to 

perturbations of the same wavelength as the 2D wave. 

In chapter one, we studied the 2D waves which bifurcate from plane Poiseuille 

fl.ow. No 2D waves were found below a Reynolds number of 2600 (based on flux). 

This suggests that some other 2D or 3D steady state will be needed to explain the 

experimentally observed transition Reynolds number of approximately 1000. The 

search for such flows motivates the work in this chapter. We study the 2D stability 

of 2D waves in search of bifurcations to other 2D states which may exist below a 

Reynolds number of 2600. 

An earlier 2D stability analysis by Pugh (1988) pointed out some interesting 

features. A typical cross-section of the 2D wave surface is shown in Figure 2.3. 

Orszag and Patera (1981) predicted that the lower branch of this surface is unsta

ble to 2D disturbances with a stability transition occurring at the turning point. 

However, as Pugh showed numerically, in general this prediction is incorrect. In 

fact, although neutrally stable eigenmodes are present at the turning point, un

stable eigenmodes may also be present. In addition, Pugh found bifurcations to 

quasi-periodic solutions on the upper branch. At these bifurcations, there is a 

change of stability. 
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Figure 3.1. Typical cross-section of nonlinear netural surface. 

We have improved on Pugh's results by a performing a more extensive numer-

ical study. Several new bifurcations have been found, and some errors in Pugh's 

work are pointed out. 

3.2 Problem Formulation 

We wish to perturb the steady 2D flows discussed in the previous chapter. Thus, 

consider the dimensionless form of the streamfunction formulation in a moving frame 

of reference 

(3.1) 

where c 1s the phase speed. We use Floquet theory to study the stability of the 

2D waves. In a steady frame of reference the 2D states can be described by a 
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streamfunction 

(3.2) 

where a is the wave number of the 2D wave. 

Then linear perturbations exist of the form 

+oo 

-W(x, y, t) = '112n(x, y) + Eei(px+ut) L (n(y)eianx (3.3) 
-oo 

where O' and (n are the eigenvalue and eigenfunction respectively and p specifies the 

wavelength of the the disturbance. We let p = 0, which corresponds to superhar-

manic disturbances, and 

(3.4), 

where \lib is the streamfunction of the basic flow and 'lj;(x, y) represents a 2D sec-

ondary flow. Substituting (3.4) into (3.3) , equation (3.1) becomes 

1 4A 2A A 2 A A //A 
- Re (Sx(n + 2Sx(n,yy + (n,yyyy) + Sx((U - c)(Sx(n + (n,yy) - U (n) 

+ -J;Y * (Sx(s;( + (yy)) + (y * (Sx(s;-J; + -J;yy)) (3.5) 

- (Sx-0) * (S;(y + (yyy) - (Sx() * (s;-J;Y + -J;yyy) = o-(S;(n + Cn,yy) 

where U is the dimensionless basic velocity and we have used the spectral represen-

tation for 'lj;(x, y). Applying the no slip boundary conditions at the walls we have 

in modal form 
n :f 0 

n=O 

(~(±1) = 0 

(n(±l)=O 

(~(±1)=0 

(un(±l) = 0) 

(vn(±l) = 0) 

(uo(±l) = 0). (3.6) 

For n = 0, v0 = 0 is identically satisfied and two additional boundary conditions 

must be given. As the streamfunction is arbitrary to within a constant, we let 

(o(-1) = 0. (3. 7). 
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The final boundary condition is determined by fixing the parametrization of 

the problem. Two possible choices are 

(o( +1) - (o(-1) = 0 constant flux (3.8) 

or 

A A 1 A A 

a-((o( +1) - (o(-1)) =Re ((o,yy( +1) - (o,yy(-1)) constant pressure. (3.9) 

Note that we will denote the constant average flux and constant average pressure 

gradient disturbances by constant flux and constant pressure respectively. 

To derive (3.9), consider the dimensionless momentum equation in the x direc-

ti on: 

au au au ap 1 2 
- +u-+v- = -- +-'Vu at ax ay ax Re 

. Using integration by parts and the continuity equation, the convective terms 

disappear upon averaging in the x direction and integrating over the channel width. 

The momentum equation, therefore, becomes 

where we have used the streamfunction, P is the average pressure gradient, and 

only the zero mode is present for the streamfunction since we are averaging over 

x. Substituting (3.3) for the streamfunction and specfiying no perturbation to the 

basic pressure gradient, we derive (3.9) and (2.27). 

By failing to consider the time derivative in the N avier-Stokes equation, Pugh 

incorrectly stated the constant pressure boundary condition as 

(o,yy( +1) - (o,yy(-1) = 0 (3.10). 

As can be seen from (3.9), this omission should introduce errors for large Reynolds 

number, and in fact this will be shown numerically. 
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3.3 Numerical Method 

We implemented the method of spectral collocation (Orszag and Gottlieb, 1983) 

to solve the system of ODE's and boundary conditions described by (3.5)-(3.9). We 

let 
N 

(n(Y) = L ankrh(y) (3.11) 
k=O 

where Tk(Y) is a modified Chebyshev polynomial. Chebyshev polynomials were used 

to accurately resolve the boundary layers. The polynomials are modified to satisfy 

the boundary conditions (3.6)-(3.8) identically. For constant average flux we set 

and for constant average pressure gradient 

y 

Tk(Y)= j(l-x2 )Tk(x)dx (3.13) 

-1 

where Tk(Y) =cos k( cos-1 y). Derivatives of (n(Y) are computed by differentiating 

the Chebyshev modes. 

Substituting (3.11) into (3.5) it remains to solve a system of algebraic equations 

for ank ( n = 0, ... , N, k = 0, ... , K). With the modifications described by (3.12) 

and (3.13), the boundary conditions (3.6)-(3.8) are identically satisfied, and only 

(3.9) must be imposed on the system of equations. Orszag and Gottlieb have shown 

that the maximum error can be minimized by evaluating at the maxima of the Kth 

Chebyshev polynomial. Evaluating at these maxima ( fJ j = j 7r / K, y j = cos fJ j, j = 

0, ... , K) and truncating (3.5) at a finite number of modes, we only need to solve a 

discrete generalized eigenvalue problem of the form 

Ga= aBa (3.14) 
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for the complex eigenvalue <J and complex eigenvector a. 

Because large errors were incurred when using standard generalized eigenvalue 

solvers, we inverted the matrix B and solved the regular eigenvalue problem 

Ca= <Ja where C = B-1 G. (3.15) 

The matrix C is complex if one uses the exponential form of the Fourier series shown 

in (3.3). Because the secondary flow is real, a real formulation for the matrix C can 

be derived by writing the Fourier series in trigonometric form. The real formulation 

effectively reduces the memory requirements of the computation by a factor of 4. 

Even for a low Fourier mode calculation, the real formulation reduces the mem-

ory requirements drastically. We should also note that the necessity for inverting 

the matrix B in (3.14) motivated the modification of the Chebyshev polynomials 

described by (3.12)-(3.13). The enforcement of the time independent boundary 

conditions (3.6)-(3.7) on (3.14) would introduce rows of zeroes in the matrix Band 

prevent its inversion. 

3.4 Numerical Results 

Calculations were performed for both constant flux and constant pressure dis

turbances. All of the calculations to be discussed were for a = 1.1. Let us first 

consider constant flux disturbances. In Figure 3.2, we plot the maximum growth 

rate as a function of Reynolds number for N = 1 Fourier mode and I< = 70 Cheby

shev modes. The most unstable eigenvalue is always real in the range of Reynolds 

number shown. The lower branch is unstable with a stability transition occurring 

at the nose. 

At the nose, there are two neutrally stable eigenvalues. As Pugh has shown, 

one eigenvalue is always zero on the 2D wave branch. This eigenvalue corresponds 

to the trivial phase shift solution of our system. In addition, there is a 
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ble eigenvalue at the nose with geometric multiplicity one and algebraic multiplicity 

two. Although a stability transition occurs at the nose, the upper branch does not 

remain stable. As shown in Figure 3.3, a complex eigenvalue goes unstable at a 

Reynolds number of 6300. As the eigenvalue and its complex conjugate cross the 

imaginary axis transversely, the point of stability transition represents a secondary 

Hopf bifurcation. The periodic flows emanating from this bifurcation together with 

the underlying steady waves lead to quasi-periodic solutions. Jimenez (1988) de

tected this bifurcation and followed the quasi-periodic flows with a time dependent 

code. In the next chapter, we will compute these flows with a steady code. 

In Figure (3.4) V·re plot the maximum growth rate as a function of Reynolds 

number for N = 2 Fourier modes and K = 70 Chebyshev modes. As in the one 

Fourier mode calculation, the lower branch is unstable with a stability transition 

occurring at the nose. However, as shown in Figures 3.5-3.6, we now find two Hopf 

bifurcations occurring on the upper branch. The first Hopf bifurcation occurs at a 

Reynolds number of 5600 with period 20.6. The second Hopf bifurcation occurs at a 

Reynolds number of 6125 and with period 18.6. It is interesting to note that because 

Jimenez used a time dependent code he did not detect that two Hopf bifurcations 

are present. As the upper branch is unstable after the first Hopf bifurcation, a time 

dependent code could not detect the second Hopf bifurcation. In Figures 3.7-3.9, 

we plot the appropriate graphs for the N =3 Fourier modes and K=70 Chebyshev 

modes calculation. Only a quantitative difference can be seen from the N = 2 

calculation. We repeated these calculations for N = 4 Fourier modes and again no 

qualitative difference was seen. 
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In Tables 3.1-3.2, we show the period and Reynolds number of the two Hopf 

bifurcations for N = 1 to N = 4 modes. As can be seen from the Tables, we do 

not have quantitative convergence. Jimenez (1988) observed that the location of 

the first Hopf bifurcation did not settle down until N = 7. Although this resolution 

is not possible with our formulation, we do obtain qualitative convergence, i.e., the 

Hopf bifurcation does not disappear and the Reynolds number of the bifurcation 

lies between 5600 and 6300. We also obtain some of the quantitative features 

that Jimenez observed. In particular, the period of the first Hopf bifurcation is 

decreasing. Jimenez found that the period of the bifurcation decreased from~ 19.3 

to ~ 14.3 when increasine: the resolution from N = 1 to N = 7 modes. For the 
<....> 

second Hopf bifurcation, which Jimenez could not detect, there is less variation 

with increased resolution. In Chapter 4, we show that one can obtain qualitatively 

correct results, with low resolution, for the periodic orbits which emanate from 

these bifurcations. Specifically, we show that we obtain the correct behavior for the 

Reynolds number and period with increasing amplitude. 

One sees a different stability picture for constant pressure disturbances. In 

Figure 3.10, we plot the maximum growth rate as a function of Reynolds number 

for N = 1 Fourier modes and K = 70 Chebyshev modes. As in the case of constant 

flux disturbances, the lower branch is unstable. A stability transition, however, 

does not occur at the nose. As shown in Figure 3.11, a different eigenvalue be

comes neutrally stable at the nose and goes unstable on the upper branch. The 

two unstable eigenvalues merge on the upper branch and cross the imaginary axis 

transversely. Thus, we have detected a Hopf bifurcation not present for constant 

flux disturbances. In contrast to Pugh's results, we find that the upper branch does 

not remain stable. In Figure 3.12, we show that on the upper branch a complex 

eigenvalue goes unstable at a Reynolds number of 13500 with period 36. The point 



- 37 -

of stability transition is a Hopf bifurcation and corresponds to the Hopf bifurcation 

detected in the N =1 calculation for constant flux disturbances. Pugh did not detect 

this bifurcation because he used the incorrect boundary condition (3.10) for con

stant pressure disturbances. As can be seen from (3.8) and (3.9), for large Reynolds 

number the constant flux and constant pressure boundary conditions are equivalent. 

In fact, at the Hopf bifurcation the constant pressure and constant flux Reynolds 

number are related by the scaling described in equation (2.32). The incorrect use 

of (3.10) also explains the quantitative difference between Pugh's results and our 

own. Pugh detected the first Hopf bifurcation, shown in Figure 3.11, at a Reynolds 

number of 3500 as compared to our value of 3136. 

In Figures 3.13-3.15, we plot the results for the N = 2 Fourier modes and 

K = 70 Chebyshev modes calculation. The results are qualitatively similar to 

the N = 1 calculation except that we now detect three Hopf bifurcations on the 

upper branch. The first Hopf bifurcation corresponds to the stabilization of the 

unstable eigenvalues. The second Hopf bifurcation occurs at a Reynolds number of 

9400 with period 35.5 and corresponds to the Hopf bifurcation detected in the N=l 

calculation. The upper branch is unstable after this Hopf bifurcation. The third 

Hopf bifurcation is new and occurs at a Reynolds number of 13000 with period 

34. This Hopf bifurcation represents another pair of eigenvalues destabilizing on 

the upper branch. The appearance of a new Hopf bifurcation with N = 2 Fourier 

modes corresponds to the results obtained for constant flux disturbances. This is 

to be expected as the constant flux and constant pressure boundary conditions are 

equivalent for large Reynolds number. 

In Figure 3.16 we plot the maximum growth rate for the N = 3 Fourier modes 

and K = 70 Chebyshev modes calculation. Only a quantitative change is seen from 

the N = 2 calculation, and the three Hopf bifurcations persist. The calculations 
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were repeated for N = 4 Fourier modes and again only a quantitative change was 

seen. 

In Tables 3.3-3.5, we show the period and Reynolds number for the three Hopf 

bifurcations on the upper branch. As in the case of constant flux disturbances, we 

do not obtain quantitative convergence for the second Hopf bifurcation. Jimenez did 

not do any calculations for constant pressure disturbances. The results, however, 

do correspond to the results observed for constant flux disturbances. 
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Table 3.1. Reynolds number and period of first Hopf bifurcation for constant flux disturbances. 

Parameter 

Re 

T 

N=l 

6300 

17.5 

N=2 

5600 

20.6 

N=3 

6250 

12.5 

5875 

13.4 

Table 3.2. Reynolds number and period of second Hopf bifurcation for constant flux disturbances. 

Parameter N=l 

Re 

T 

N=2 

6125 

18.6 

N=3 

7750 

20.73 

7500 

19.75 
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Figure 3.12. Second Hopf bifurcation for P disturbances, N=l. 
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Table 3.3. Reynolds number and period of first Hopf bifurcation for constant P disturbances. 

Parameter N=l N=2 N=3 

Re 3136 3630 3800 3775 

T 4833.22 4742.32 4935.43 4875.63 

Table 3.4. Reynolds number and period of second Hopf bifurcation for constant P disturbances. 

Parameter 

Re 

T 

N=l 

13500 

36 

N=2 

9400 

35.5 

N=3 

9675 

17.65 

9592 

16.54 

Table 3.5. Reynolds number and period of third Hopf bifurcation for constant P disturbances. 

Parameter N=l 

Re 

T 

N=2 

13000 

34.0 

N=3 

12775 

33.76 

12960 

33.85 



- 48-

3.5 Summary 

In summary, we have calculated the 2D superharmonic stability of 2D waves for 

constant flux and constant pressure disturbances. For constant flux disturbances, 

the lower branch is unstable with a stability transition occurring at the turning 

point. In addition, there are two Hopf bifurcations occurring on the upper branch. 

These Hopf bifurcations correspond to two different pairs of eigenvalues destabi

lizing on the upper branch. For constant pressure disturbances the lower branch 

is unstable but a stability transition does not occur at the nose. Instead, another 

eigenvalue becomes neutrally stable at the nose and goes unstable on the upper 

branch. The two unstable eigenvalues merge and stabilize. The point of stabiliza

tion is a Hopf bifurcation. In addition there are two other Hopf bifurcations on 

the upper branch. As in the constant flux disturbances, these Hopf bifurcations 

correspond to two different pairs of eigenvalues destabilizing on the upper branch. 

These results suggest that the 2D stability of 2D waves may depend on how 

the experiment is conducted. It is possible to build apparatuses that satisfy the 

constant pressure or constant flux requirement. In addition, we have found several 

bifurcations to quasi-periodic flows. In the next chapter, we calculate these flows 

and determine if they exist below a Reynolds number of 2600. 
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CHAPTER4 

QUASI-PERIODIC SOLUTIONS 

4.1 Introduction 

In this chapter, we study several branches of quasi-periodic solutions which 

bifurcate from the 2D travelling waves. Jimenez (1987) used a time dependent code 

to follow one of the branches that we will discuss. Our approach will be to look for 

quasi-periodic solutions by solving boundary value problems via continuation and 

Newton's method. This approach allows us to calculate both stable and unstable 

solution branches. Because we are studying the transition regime both stable and 

unstable solutions are of interest. 

4.1 Problem Formulation 

Consider the dimensionless form of the 2D Na vier-Stokes equation in a moving 

frame of reference with speed c: 

( 4.1) 

We look for solutions of the form 

00 00 

1/;(x, y, t) = 1/Jb + L L eimwteinax;j;mn(Y), ( 4.2) 
n=-oo m=-oo 

where w is the frequency introduced by the quasi-periodic flow and 1/Jb is the stream

function of the basic flow. 
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Substituting ( 4.2) into ( 4.1 ), we derive a modal equation for each 'l/;mn: 

1 4 2d2 d4 A 2 d2 A II A 

- Re (Sx + 2Sx dy2 + dy4 )1/;mn + (U - c)(Sx + dy 2 )Sx'l/;mn - U Sx'l/;mn 

A 2 d 2 
A A 2 d

2 d,(/J • d
2 

2 A 

+1/;y*(Sx+ dy 2 )Sx'l/;-(Sx'l/;)*(Sx+ dy2 )dy +zmw(dy2 +Sx)'lj;mn=O, (4.3) 

where Sxfn = ianf n and f * g = L::j:_00 L::;::_ 00 f m-j,n-kgjk is the convolution 

of the two Fourier series. Because 'l/;( x, y, t) is real, we require 

,(/Jm-n = ,(/J:_mn· ( 4.4) 

This implies we only need to solve for the modes m 2: 0 (for all n ). The modal no 

slip boundary conditions are 

d,(/Jmn = 0 at 
dy 

y = ±1, 

icm,(/Jmn = 0 at y = ±1, 

m 2: 0 Vn 

m;:::: 0 Vn =f 0. ( 4.5) 

For n = 0, Vo = ( ~~ )n=O = 0 is identically satisfied, and we must specify 2( M + 1) 

additional boundary conditions. As the streamfunction is arbitrary up to a function 

of time, we set 

'l/;(-1)=0. (4.6) 

Applying ( 4.6) at every instant of time, we derive the (M + 1) boundary conditions 

¢mo(-1) = 0 m 2: 0. (4.7) 

The final ( M + 1) boundary conditions are determined by fixing the parametrization 

of the problem. One possible parametrization is to disallow any perturbation to the 

spatially averaged flux. The spatially averaged flux (in dimensional variables) is 

2: +h 

Q = 
2
: j ju dy dx. (4.8) 

0 -h 
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Letting u = ~'! and '11 = 'lib + 7/;( x, y, t) we obtain 

00 

Q = ['lib+ L ¢moeimwt]~~' ( 4.9) 
m=-oo 

where the streamfunction is in dimensional form. To disallow perturbations to Q , 

we set 
00 

"'"""' .7. eimwtl+h - 0 L..t 'f'mO -h - · 

m=-oo 

( 4.10) 

Applying ( 4.10) , together with ( 4.7), at every instant of time, we derive the ( M + 1) 

additional boundary conditions 

¢mo(h) = 0 ( 4.lla) 

or in dimensionless form 

¢mo(l) = 0 m 2: 0. (4.llb) 

Alternatively, one can disallow any perturbations to the spatially averaged pres-

sure gradient. The spatially averaged pressure gradient (in dimensional variables) 

IS 

00 00 
v 

P = 2h [wb,yy + .7. eimwt]+h _ [ 
'f'mO,yy -h 

m=-oo m=-oo 

To disallow perturbations to P, we set 

00 

"'"""' imwt[ V .7. · ./. J+h _ 0 L..t e 2h 'f'mO,yy - imw'f'mO -h - . 

m=-oo 

(4.12) 

(4.13) 

Applying ( 4.13) at every instant of time, we derive the ( M + 1) additional boundary 

conditions 

( 4.14a) 

or in dimensionless form 

(4.14b) 
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As in the case of 2D waves, a continuous range of boundary conditions can be 

obtained by taking linear combinations of ( 4.11) and ( 4.14). Also, the two boundary 

conditions define two different Reynolds numbers Rep and ReQ. These Reynolds 

numbers are defined by equations (2.20) and (2.22). 

4.3 Numerical Method 

To solve the system described by ( 4.3)-( 4. 7) with the additional boundary con

dition ( 4.11) or ( 4.14), we must impose two additional equations to eliminate the 

arbitrary phase shifts present in the problem. As in the case of 2D waves, we must 

eliminate the phase shift in x of the underlying secondary fl.ow. In addition, the 

quasi-periodic fl.ow introduces a phase shift int. Specifically, if ,(/Jmn is a solution so 

is -(/;mneimow ein/frx. To eliminate these phase shifts, we set 

and 

where cl and c2 are constants. 

?R( ~b'1 ( -1)) = cl 

S'( itib'1 ( -1)) 

(4.15) 

We also introduce an amplitude to continue into the nonlinear regime. We 

chose 
CXl CXl 

'"" '"" A 2 1 A= ( ~ ~ (1/Jmn) )2 . (4.16) 
m=-= n=-= 

Truncating ( 4.3) at a finite number of modes, it remains to solve a nonlinear 

system of OD E's with the additional equations ( 4.15)-( 4.16) and the appropri-

ate boundary conditions. We implemented the discretization method described in 

Chapter 2 to solve this system and used arclength continuation to compute the so-

lution branches. An initial guess for these branches is provided by the eigenvectors 

found in the stability analysis described in Chapter 3. 
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4.4 Numerical Results 

vVe first consider the Hopf bifurcations found in constant pressure disturbances. 

In Chapter three, we showed that a Hopf bifurcation occurs on the upper branch 

when a pair of complex conjugate eigenvalues stabilize (see Figure 3.11). In Fig

ures (4.1)-(4.3) we plot amplitude versus Reynolds number for the quasi-periodic 

solutions which bifurcate from that Hopf bifurcation. The calculations shown were 

for N = 1 modes in x, M = 1 to M = 3 modes in time and a = 1.1. As shown 

in Figure 4.1, for the M = 1 mode calculation the Reynolds number increases until 

reaching a limit point at 7400. The Reynolds number then decreases and the branch 

of quasi-periodic solutions terminates on the 2D wave branch at a Reynoids number 

of 3100. However, as can be seen from Figures 4.2 and 4.3, M = 1 modes yields 

ill resolved results. In Figure 4.2, we plot amplitude versus Reynolds number for 

N = 1 and M = 2 modes. For this calculation, the Reynolds number decreases and 

reaches a limit point at a Reynolds number of 3100. The same qualitative picture 

is seen in Figure 4.3 where we plot the results for M = 3 modes. We repeated these 

calculations for N = 2 and M = 4 modes and again no qualitative change was seen. 

In Figure 4.4, we show how c and w vary on the branch. In Figures 4.5-4.8 we plot 

the appropriate graphs for a = 1.15 and a= 1.21. 

In Figures 4.9(a) and 4.9(b) we plot constant vorticity lines for a Reynolds 

number of 3056 and a = 1.1. The constant vorticity lines are for y E [-1, .78], 

x E [O, 2
;], and t E [O, T] where T = 2

;. As can be seen from the plots, the effect 

of the modulation in time is to shift the high vorticity regions from left to right in 

x. The basic form of the flow appears unaffected. Because transition occurs on a 

convective time scale, it is highly unlikely that the modulation of the above flows 

would be observed in experiments. The period of the state shown in Figure 4.9 is 

4932. 
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As the Reynolds number initially decreases with increasing amplitude, the pe

riodic orbits emanating from the Hopf bifurcation are stable (Marsden and Mc

Cracken, 1976). One of the eigenvalues, however, will go through zero at the limit 

point of the periodic orbits. In addition, the branch may become unstable before 

the limit point. Because of the large memory requirements, we did not implement 

a Floquet analysis to determine when the branch becomes unstable. 

Recently, Barkley (1988) has argued that the branch of quasi-periodic orbits 

could extend below the critical 2D wave Reynolds number only if certain events 

occured. For example, a secondary bifurcation would have to occur before the limit 

point of the 2D waves. Of course we know what occurs, the branch of quasi-periodic 

orbits reaches a limit point above the limit point of the 2D waves. This scenario 

has been shown by Barkley to be an acceptable picture in phase space. 

It was hoped that this branch of quasi-periodic solutions would have flows 

existing below a Reynolds number of 2600 (based on constant flux). For all the 

wave numbers studied, however, no branches were found below a Reynolds number 

of 2600. The critical Reynolds number of the 2D waves is the envelope for the 

quasi-periodic solutions. As pointed out above, we did not implement a Floquet 

analysis of these orbits. The existence of a second Hopf bifurcation or a period 

doubling bifurcation can not be ruled out. Even if such bifurcations were found, 

however, the large amount of computer memory needed to calculate the solution 

branches makes such calculations impractical. 

We now discuss the other Hopf bifurcations found in 2D waves. For both 

constant flux and constant pressure disturbances, two Hopf bifurcations were found 

on the upper branch (see Figures (3.5)-(3.6), and (3.14)-(3.15)). Our calculations 

showed that all the quasi-periodic solution branches which bifurcate from these 

Hopf bifurcations are qualitatively similar. Therefore we present a typical solution 
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branch which is representative of these results. 

In Figure 4.10, we plot amplitude versus Reynolds number for the branch of 

quasi-periodic solutions which bifurcates from the Hopf bifurcation shown in Fig

ure 3.5. The calculation shown was for N = 2 modes in x and M = 2 modes in 

time. This resolution was found to be adequate for these calculations. As shown 

in Figure 4.10, the Reynolds number increases with increasing amplitude. As the 

steady waves are stable before the Hopf bifurcation and unstable after, the branch of 

quasi-periodic solutions are locally stable to 2D disturbances. These results confirm 

the calculations by Jimenez (1987). Jimenez calculated the quasi-periodic solutions 

which bifurcate from the Hopf bifurcation shown in Figure 3.5. with a time de-

pendent formulation. With our steady formulation, we obtain the same qualitative 

results which Jimenez found, i.e., the Reynolds number increases with increasing 

amplitude and the period of the orbits decreases with increasing amplitude. A 

quantitative comparison can not be made since Jimenez used many more modes. 

As in the case of 2D waves, however, we find that only a few modes are needed to 

give qualitative agreement. 

We also calculated the branch of quasi-periodic solutions which bifurcate from 

the second Hopf bifurcation which occurs on the upper branch. In addition, we cal

culated the branch of quasi-periodic orbits which bifurcate from these two Hopf 

bifurcations for constant pressure disturbances. As discussed above, all of the 

branches are qualitatively similar, i.e. the Reynolds number increases with in

creasing amplitude. 

In Figures 4.12(a) and 4.12(b), we plot constant vorticity lines for a Reynolds 

number of 5940 and a = 1.1. The constant vorticity lines are for y E [-1, .78],t E 

[O, T], and x E [O, 2;]. As can be seen from the Figures, the effect of the modulation 

in time is to oscillate vertically the regions of high vorticity. Jimenez (1987) used 
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a time-dependent code to calculate these flows and found similar results. He also 

noted that the vertical oscillation of vorticity is reminiscent of the "bursting" of 

vorticity seen in boundary layers. In addition, the time scale of these solutions 

and of the bursting is of the same order of the 3D fl.ow. Thus, it is possible that 

these flows could coexist with the 3D flows and be a competing mechanism for the 

bursting of vorticity. 

In summary, we have calculated the branches of quasi-periodic orbits which 

bifurcate from the 2D waves. For both constant pressure and constant flux dis

turbances, there are two branches of quasi-periodic solutions which bifurcate from 

the upper branch of the 2D waves. For these branches, we found that the Reynolds 

number increases with increasing amplitude. Thus the quasi-periodic orbits are sta

ble to 2D disturbances. In addition, the time scale of these orbits are of the same 

order as 3D flows, and they exhibit phenomena which are reminiscent of "bursting". 

We also calculated the branch of quasi-periodic orbits which only exists for 

constant pressure disturbances. For this branch, we found that the Reynolds number 

first decreases with increasing amplitude. A limit point, however, is reached above 

the critical Reynolds number of the 2D waves. 
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Figure 4.1. Amplitude as a function of Reynolds number for quasi-periodic solutions. 

N=l,M=l and wavenumber is 1.1. 
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Figure 4.2. Amplitude as a function of Reynolds number for quasi-periodic solutions. 

N=l, M=2, and wave number is 1.1. 
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Figure 4.3. Amplitude as a function of Reynolds number for quasi-periodic solutions. 

N=l,M=3 and wavenumber is 1.1. 
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N=l ,M=2 and wavenumber is 1.15 
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Figure 4.7. Amplitude versus Reynolds number for quasi-pertodic solutions. 
N=l,M=2, and wave number is 1.21. 
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Figure 4.9a. Constant vorticity lines. y E [-1,.78), t = O,iT,~T from top to 

bottom. XE [O, 2
;), Reynolds number is 3056, and a= 1.1 
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Figure 4.9b. Constant vorticity lines. y E [-1,.78], t = ~,~T,~T from top to 

bottom. XE [O, 2
;], Reynolds number is 3056, and a= 1.1 
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Figure 4.10. Amplitude versus Reynolds number for quasi-periodic solutions. 

N=2,M=2 and wavenumber is 1.1 
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Figure 4.11. Amplitude versus c and co for quasi-periodic solutions. 
N=2, M=2, and wavemunber is 1.1. 
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Figure 4.12a. Constant vorticitylines.y E [-1, .78], t = 0, iT, ~T from top to bot

tom. X E [O, 2
;], Reynolds number is 5940, and a = 1.1 
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~··~ ------

Figure 4.12b. Constant vorticity lines. y E [-1,.78], t = ~,~T,~T from top to 

bottom. X E [O, 2
;], Reynolds number is 5940, and a= 1.1 
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CHAPTER 5 

STEADY THREE DIMENSIONAL WAVES 

5.1 Introduction 

In this chapter we study 3D steady waves. In particular we look at 3D waves 

which bifurcate from plane Poiseuille flow and from finite amplitude 2D waves. 

Bridges (1988) has shown that both 3D oblique waves and waves which are travelling 

in the streamwise direction and standing in the spanwise direction (STW) bifurcate 

from plane Poiseuille flow. Vve will study both STVv and oblique waves. In addition, 

we study STW which bifurcate from finite amplitude 2D waves. 

As in the previous chapters, we are looking for flows which exist at low Reynolds 

number. Rozhdestvensky and Simakin (1984) claimed to have found steady stable 

3D flows at low Reynolds numbers for high spanwise wave numbers. In addition, 

Bridges (1988) observed from his local results that for high spanwise wave numbers it 

appeared possible that 3D flows would exist at low Reynolds numbers. We therefore 

concentrate our efforts by searching for bifurcations at high spanwise wave numbers. 

5.2 Calculation of Bifurcation Points 

We first consider bifurcations from plane Poiseuille flow to 3D waves. To cal-

culate the bifurcation points to 3D waves, we study the 3D linear stability of plane 

Poiseuille flow (see Figure 5.1 which illustrates the configuration). Implementing_a 
/ 

normal mode analysis, we perturb the basic flow with perturbations of the form: 

[u, v, w,p]T = [u(y), v(y), w(y),p(y)]T exp(iax + i(3z - iwt), (5.1) 

where a is the streamwise wave number, /3 is the spanwise wave number and w is the 

frequency. Substituting ( 5.1) into the 3D N avier-Stokes equations and linearizing, 
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Figure 5.1. Flow Configuration. 
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Figure 5.2. Marginal stability curves for different values of /3. f3 = 0, .15., .45, .7 from left to right. 
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[D 2 
- (a2 + (3 2

) - iaRe(U - c)]u = ReDUv + iaRep 

[D2 
- (a2 + (3 2

) - iaRe(U - c)]v = ReDp 

[D2 
- (a2 + (32

) - iaRe(U - c)]w = i(3Rep 

i(au + (3w) + Dv = 0, 

(5.2) 

where D = ly, c - ~ and we have dropped the hats. The no slip boundary 

conditions are 
u(±l) = 0 

v(±l)=O 

w(±l) = 0. 

(5.3) 

By using Squire's transformation, the above problem can be reduced to an 

equivalent 2D problem (Drazin and Reid, 1981). Squire's transformation defines an 

equivalent 2D Reynolds number and wave number by 

&.Re= aRe. (5.4) 

From (5.4), we see that Re < Re and therefore we need only to consider 2D distur

bances to determine the critical Reynolds number. The above result is known as 

Squire's theorem. 

In chapter 2, we solved the 2D stability problem and calculated the marginal 

stability curve. For each (3, there is an equivalent marginal stability curve which 

can be determined by Squire's transformation. Several of these curves are shown in 

Figure 5.2. We also showed in chapter 2 that the points on the 2D marginal curve 

are bifurcation points to 2D travelling waves. For the 3D stability problem, the 

marginal stability curve is a curve of bifurcation points to 3D oblique waves and 

3D STW (Bridges, 1988). As we have a marginal stability curve for each (3, there 

is a surface of bifurcation points for 3D disturbances. Note that equation 5.1 is 
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the linear form for both oblique and STW. To determine the eigenvectors at these 

bifurcation points, we must solve the system of ODE's and boundary conditions 

described by (5.2)-(5.3). 

We first apply the following transformation introduced by Rama (1987): 

iiu =cm+ f3w, iiw =aw - f3u, 

iiU = aU, iiW = -/3U, (5.5) 

iix =ax+ /3z, iii= az - f3x, 

where ii = ( a 2 + {32 ) ! . This is basically a transformation to a coordinate system in 

which the x direction is the direction of the wave vector and the z direction is the 

direction parallel to the wave front. With this transformation, (5.2) becomes 

i(iiU -w)u + DUv = -iiip + ~e [D2 
- ii2 ]u 

i(iiU-w)v = -Dp+ _!._[D2 -ii2]v 
Re 

- - - 1 2 2 
i(iiU -w)W + DWv = Re [D - ii ]w 

iiiu + Dv = o. 

( 5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

Note that we are now using w instead of c. Equations (5.6a), and (5.6b) together 

with (5.6d) are equivalent to the 2D stability problem solved in chapter 2. Specifi

cally, the 2D stability equations are 

i(aU -w)u + DUv = -iap + ~e [D2 
- a2 ]u 

i(aU-w)v = -Dp+ _!._[D 2 
- a2 ]v 

Re 

iiiu + Dv = o. 

Therefore, u, and v are the same as those for the 2D problem with the transformed 

wave number ii. Note that this transformation does not change Re and w. To solve 

the 3D stability problem, therefore, we use the vertical velocity computed from the 
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2D stability problem for the transformed wave number, and need only to solve for 

the spanwise velocity component. The streamwise velocity component can then be 

computed from the continuity equation. 

In chapter 2, we described the discretization scheme used to solve the system 

given by (5.6a), and (5.6b) together with (5.6d). Given the vertical velocity com-

ponent, v, we implement the same discretization scheme to solve for the spanwise 

velocity component, w. We show these velocity components for a typical a and (3 

in Figure 5.3. 

In summary, we have calculated 3D marginal stability curves via Squire's trans-

formation. In addition, we have calculated the eigenvectors along these curves. 

These curves represent bifurcation points to both 3D oblique and STW, and the 

eigenvectors at these points provide the starting directions at these bifurcations. 

We now consider bifurcations from finite amplitude 2D waves to 3D waves. To 

calculate the bifurcation points from finite amplitude 2D waves, we study the 3D 

linear stability of 2D waves. Thus, we consider perturbations of the form 

u(x,y,z,t) = (Uppp - c)i + U2v + €eutu3v(x,y,z), (5.7) 

where we are in a frame of reference moving with speed c, Upp F = 1 - y 2 , and U2v 

is the velocity field of the 2D secondary flow. To study 3D disturbances, we use the 

vorticity formulation of the 3D N avier-Stokes equations: 

a- 1 
;: + (u. V)w - (w. V)u - Re \72w = o, (5.8) 

where w = ei + ryj + (k = \7 x u. 
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Figure 5.3. Vertical and spanw1se velocity components from linear theory. f3 
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Substituting ( 5. 7) into ( 5.8) and linearizing, we obtain 

a 
+ax ((uUy)x + Uuxy + Vuyy + Uyvy + vUyy) 

a 2 + az (Uywx + Uwxy + Vywy + Vwyy) = a\l v, (5.9) 

(5.10) 

Ux + Vy + Wz = 0, (5.11) 

where the x and z vorticity equations have been combined into (5.9), (5.10) is the 

equation for the y vorticity component, U = U2v + (U PPF - c), Vis the vertical 

velocity of the 2D secondary fl.ow, and the Reynolds number is defined by the 2D 

secondary fl.ow. The no slip boundary conditions are 

u(±l) = v(±l) = w(±l) = 0. (5.12) 

We reduce the system of PDE's to ODE's by implementing the following spectral 

representation for the velocity components: 

00 

[u v w] = eif3z ~ [u v w Jeicmx , , L...J n, n, n · (5.13) 
n=-oo 
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Substituting (5.13) into (5.9)-(5.11), we obtain the modal stability equations 

+Sx((u * Uy)x + U * Uxy + V * Uyy +Uy* Vy+ V * Uyy) 

2 2 d2 
+Sz(Uy * Wx + u * Wxy +Vy* Wy + v * Wyy) = a(Sx + sz + dy2 )vn, (5.14) 

1 2 2 d2 
Re (Sx + sz + dy2 )(SzUn - Sxwn) + Sx(U * Wx + v * wy) 

(5.15) 

(5.16) 

where the hats have been dropped, Sx = icm, Sz = i/3, and f * g is the convolution 

of the two Fourier series. Note that we are using the spectral representation for the 

velocity field of the 2D secondary flow. The modal boundary conditions are 

Un(±l) = Vn(±l) = Wn(±l) = 0. (5.17) 

By use of the continuity equation, Wn can be eliminated from equations (5.14)

(5.15) and it only remains to solve a fourth-order equation for Vn and second-order 

equation for Un. 

We solve the system of ODE's and boundary conditions by the method of 

spectral collocation. We set 

K 

Un(Y) = L ank'h(y) (5.18a) 
k=O 

and 
K 

Vn(Y) = L ankIHy) (5.18b) 
k=O 
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where Tk(Y) and Tk(Y) are modified Chebyshev polynomial. The polynomials are 

modified to satisfy the boundary conditions identically. For Vn, 

(5.19) 

and for Un 

(5.20) 

where Tk(Y) is the kth Chebyshev polynomial. We evaluate the resulting equations 

at the maxima of the Kth Chebyshev polynomial and are left to solve a generalized 

eigenvalue problem of the form 

Ga= aBa (5.21) 

for the complex eigenvector a and the complex eigenvector a. If one uses the 

exponential form of the Fourier series, equation (5.13), then the matrices G and 

B are in general complex. Because the 2D fl.ow is real, a real formulation can be 

derived by using the triginometric form of the Fourier series. The real formulation 

reduces the memory requirements of the computation drastically. Because the use 

of standard generalized eigenvalue solvers led to numerical errors, we inverted the 

matrix B and solved the regular eigenvalue problem 

Cx =ax where C = B-1 A. (5.22). 

The need for inverting the matrix B motivated the modification of the Chebyshev 

polynomials described by (5.19)-(5.20). The enforcement of the time independent 

boundary conditions (5.17) on the system would introduce rows of zeros in B and 

prevent its inversion. 

As a check on our formulation, in Table 5.1 we compare our values to those of 

Herbert and Pugh at a Reynolds number of 5000, a= 1.12, and f3 = 2. As can be 

seen from the Table our results are in good agreement with those of Herbert and 

Pugh. 
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Table 5.1. Comparison of stability results to Herbert and Pugh. 

Eigenvalue Herbert Pugh Present 

.0487 .0489 .0489 

.0462 .0462 .0462 

The notation of as and a a represent symmetric and antisymmetric eigenfunc

tions. By symmetric and antisymmetric, we mean 

un(-y) = (-ltun(Y) (symmetric) 

un(-y) = (-1t+ 1un(Y) (antisymmetric). 

The 3D stability of 2D waves has been studied extensively by Herbert and Pugh. We 

limited our calculations to find a very specific result. Rozhdestventsky and Simakin, 

in a time dependent calculation, found stable steady states by perturbing 2D waves 

with a small 3D perturbation. In particular, they perturbed the velocity field given 

by the 2D secondary flow at a Rep of 5000 and a = 1.25. The 3D perturbation had 

a spanwise wave number, /3, of 2. With these initial conditions, they found that the 

flow reached a steady state. The constant flux Reynolds number for the 3D state 

corresponding to this point is Req = 2100. By perturbing the 3D steady states, 

they were able to find other steady states down to a constant flux Reynolds number 

of 1313. In hope of confirming their results, we searched for bifurcations from the 
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2D states at a = 1.25 and (3 = 2. We found such a bifurcation on the upper branch 

at Rep = 6000. In section 5.5, we will show that the nonlinear 3D solution branch 

which emanates from that bifurcation does not extend below the critical 2D wave 

Reynolds number. 

In summary, we have calculated the bifurcation points from 3D Orr-Sommerfeld 

curves to both oblique and STW 3D waves. In addition, we have found a bifurcation 

corresponding to the data given by Rozhdestvensky and Simakin. In the next 

section, we formulate the method used to calculate the solution branches which 

emanate from these bifurcations. 

5.3 Problem Formulation for 3D Oblique and STW 

Consider the vorticity formulation for the 3D incompressible N avier-Stokes 

equations: 

~~+(ii. \i')w = (w. \i')u + v\i'2w (5.23) 

Y'. u = 0, (5.24) 

where w = Y' x u = ei + 17j + (k. Looking for steady travelling waves, we set 

u(x, y, z, t) = u(x - ct, y, z). Letting x = x - ct and nondimensionalizing by the 

centerline velocity U0 and the channel half width h, (5.23)-(5.24) become 

OW ( _ 0 ) _ ( _ 0 ) _ 1 n2 -
-cox + u · v w = w · v u + Re v w. (5.25) 

If we let ii(x, y, z) = U + iian(x, y, z), equation (5.25) becomes 

-((w · Y') + n !)((U - c)i + u) = 0, (5.26) 
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where the 3D subscript has been dropped and n = - ~~ is the z vorticity component 

of the plane Poiseuille flow. Expanding ( 5.26) and subtracting the x derivative of 

the z vorticity equation from the z derivative of the x equation gives 

1 4 0 2 an ov 
-'\7 v - (U - c)-'\7 v - -
Re ox dy ox 

+~((u · V)e-(w · V)u)- ~((u. '\7)(-(w · V)w) = o 
oz ox 

__ l '\7 2 ry + (U - c) ory - n ov + (u · '\7)ry - (w · '\7)v = 0 
Re ox ox 

'\7. u = 0. 

To search for waves which are periodic in an oblique direction, we let 

00 

u( x, y, z) = L Un(y)ein(ax+f3z). 
n=-oo 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Substituting (5.30) into (5.27)-(5.29), we derive the following modal equations for 

each n: 

~e {(ian) 2 + (i(3n) 2 + 2((ian)2 + (i(3n) 2
) d~2 + d~4 }vn 

-(U - c)ian((ian)2 + (i(3n) 2 + ::2 )vn - ~~ (ian)vn 

. ae du 
+z(3n{(u *ex+ V * -d + W * ez) - (e * Ux + 'f/ * - + ( * Uz)} 

y dy 

. d( dw 
-zan{(u * (x + v * -d + w * (z) - (e * Wx + ry * - + ( * Wz)} = 0 

y dy 

- ~e ((ian) 2 + (i(3n) 2 + dd:2 )ryn + (U - c)ianryn - fl(i(3n)vn 

dry dv 
+(u * 'f/x + v * - + w * 'f/z) - (e * Vx + ry * - + ( * vz) = 0 dy dy 

. dvn '(3 
zanun + dy + z nwn = 0, 

(5.31) 

(5.32) 

(5.33) 
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where we have dropped the hats and f * g is the convolution of the two Fourier 

series. 

Applying the no slip boundary conditions at the walls, we have 

Un(±l) = 0 

Vn(±l) = 0 

Wn(±l) = 0. 

In addition, the following reality condition can be imposed: 

This relation implies that we need only solve for the modes n ~ 0. 

(5.34) 

(5.35) 

For n = 0, (5.33) implies that ~ is identically zero. As v0 is zero at y = ±1, 

v0 is identically zero. In addition, (5.31) and (5.32) are trivially true, and we must 

return to the z and x vorticity equations. The n = 0 component of the x and z 

vorticity equations are 

The corresponding boundary conditions are 

uo(±l) = 0 

wo(±l) = 0. 

(5.36) 

(5.37) 

(5.38) 

Two additional boundary conditions must be provided for (5.36)-(5.37). As in 

the case of 2D waves, the missing boundary conditions can be obtained by fixing 

the parametrization of the problem. One possible parametrization is to define the 
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centerline velocity U0 such that the average flux in the oblique direction is constant. 

To take the average flux in the oblique direction, we use the transformation (5.5) 

introduced earlier. Then the average flux Q (in dimensional variables) in the oblique 

direction is 

- ~ +h 

2
a {"' 1 (U + iio)dydx. 
?T Jo -h 

We exclude perturbations to the flux by requiring 

j
+h 

iio dy = 0. 
-h 

(5.39) 

(5.40) 

Nondimensionalizing (5.40) and converting to regular coordinates, we arrive at 

1+1 1+1 
a uo dy = /3 wo dy. 

-1 -1 
(5.41) 

Equation (5.41) gives the two missing boundary conditions for (5.36) and (5.37). 

Alternatively, as in the case of 2D waves, one could define U0 by specifying 

that the average pressure gradient in the oblique direction is constant. As discussed 

in the previous chapters, the two different parametrizations define two different 

Reynolds numbers. 

To search for waves which are travelling in the streamwise direction and stand-

ing in the spanwise direction we let 

+oo +oo 

u(x,y,z) = L L Umneicxnxeif3mz. (5.42) 
m=-oo n=-oo 
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Substituting (5.42) into (5.27)-(5.29), we derive the following modal equations 

for each mn: 

~e {(ian)
2 + (if3m)2 + 2((ian)2 + (if3m)

2
) ::2 + dd:4 }vmn 

-(U - c )ian( ( ian )2 + ( i(3m )2 + : 2 )vmn - ~~ ( ian )vmn 

de du 
+if3m{(u *ex+ V * dy + W * ez) - (e * Ux + 1] * dy + ( * Uz)} 

d( dw 
-ian{(u*(x+v* dy +w*(z)-(e*wx+17* dy +(*wz)}=O (5.43) 

1 ((. \2 ' ("(3 )2 d2) ' (u )" n1·13 ) -- uxn) -r 1._i rn + d 2 1]mn -r \ - c ian17n - H\Z m Vmn 
Re y 

d17 dv 
+(u*11x+v* dy +w*1Jz)-(e*vx+17* dy +(*vz)=O (5.44) 

. dvmn . 
ianumn + -a;;- + i(3mwmn = 0, (5.45) 

where we have dropped the hats and f * g is the convolution of the two Fourier 

series. Applying the no slip boundary conditions at the walls, we have 

Umn(±l) = 0 

Vmn(±l) = 0 

Wmn(±l) = 0. 

In addition, the following reality condition can be imposed: 

This relation implies that we need only solve for the modes m ~ 0 for all n. 

(5.46) 

(5.47) 

In addition, we restrict our study to solutions with the reflectional symmetry 

(u(-z), v(-z), w(-z)) = (u(z), v(z), -w(z)) 
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which corresponds to the modal relations 

(5.48) 

_;_'his reflectional symmetry is consistent with the experimental observations by Nish-

ioka (1978) of counter rotating longitudinal vortices. 

The reality condition together with (5.48) imply that we need only solve for 

the modes m :2'.: O,n :2'.: 0. 

Form= 0, n :2'.: 0, (5.48) implies that Won is identically zero. Therefore we need 

only solve for Von and use the continuity equation to compute uon· If m = n = 0, 

the continuity equation implies that v00 is identically zero. In addition, equations 

(5.43)-(5.44) are identically zero and we must solve the z vorticity equation. The 

z vorticity equation in modal form is 

with boundary conditions 

uoo(±l) = 0. (5.50) 

One additional boundary condition must be given. Once again, the additional 

boundary condition is needed to fix the parametrization of the Reynolds number. 

We chose to define the Reynolds number so that the average flux is constant. This 

boundary condition is 

5.4 Numerical Method 

1
+1 

uoo dy = 0. 
-1 

(5.51) 

To solve the system of ODE's and boundary conditions for the oblique waves 

and the STW, we first introduce the following additional equations. 

As in the case of the 2D waves, there is an arbitrary phase shift m the x 

direction for the STW. In general, there would also be an arbitrary phase shift 
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in the z direction. However, we have ruled out this phase shift by imposing the 

reflectional symmetry described by (5.48). To eliminate the phase shift in the x 

direction, we set 

8'(u11(-l)) 
R( un ( _ 1)) = constant. (5.52) 

For the oblique waves, there is an arbitrary phase shift in the oblique direction. 

We eliminated this phase shift by setting 

~(u1(-l)) ---- = constant. 
R(u1(-l)) 

(5.53) 

To continue into the nonlinear regime, it is convenient to define a nonlinear 

amplitude. We chose to define an amplitude based on the disturbance energy. For 

oblique waves, we set 

I 

l5n=+N 1+1 
A~= 16 L lun(Y)l

2 + lvn(Y)l 2 + lwn(Y)l 2 
dy, 

n=-N -l 

(5.54) 

where the prime denotes that the zero mode is not included and the ~~ is chosen 

so that the energy of the basic fl.ow is normalized to one. For STW, we set 

I 

15 m=+M n=+N 

1
+1 

A~= 16 L L lumn(Y)l 2 + lvmn(Y)l 2 + lwmn(Y)l 2 
dy. 

m=-M n=-N -l 

(5.55) 

To solve the system of ODE's with appropriate boundary conditions and auxil-

~try equations, we implement the same discretization method that was used for the 

2D waves and quasi-periodic solutions. This discretization results in a nonlinear 

algebraic system which was solved locally by Newton's method and continued by 

pseudo-arclength continuation. 

5.5 Results 

We first consider bifurcations from plane Poiseuille flow. In Figures 5.4-5.7, we 

plot amplitude versus Reynolds number for STW. The curves plotted correspond to 
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a = 1.02 and a = 1.09 on the Orr-Sommerfeld curve for different values of /3. The 

calculations shown were computed with N = 1 modes in x and M = 2 modes in z. 

This resolution was found to be sufficient for qualitatively correct results. All the 

branches shown were computed with a Reynolds number based on constant flux. 

For small amplitudes, we compared our results to Bridges (1988) to ensure cor

rect criticality of the bifurcation. We determined that one mode in z is insufficient 

to obtain correct results. This is to be expected since the first nonlinear interaction 

involves a correction to the mean fl.ow and the generation of a second harmonic. 

However, this is in contrast to 2D waves where one mode in x gives qualitatively 

correct results. 

As can be seen from the Figures, we found that no branch extended below the 

critical Reynolds number of the 2D waves. In particular, we examined the branches 

that Bridges suggests may extend to low Reynolds number, /3 > .365. As shown in 

Figures 5.6 and 5.7, for f3 > .365 the Reynolds number reaches a limit point above 

the 2D wave critical Reynolds number of 2600. 

For each value of (3 we found a neutral surf ace that is qualitatively similar to the 

2D wave neutral surface. As in the case of the 2D waves, solution branches exist 

at higher streamwise wave numbers than on the marginal stability curve. There 

are also marginal stability surf aces at higher spanwise wave numbers than can be 

obtained from Squire's transformation. However, the major result is valid for all 

these marginal stability surfaces, i.e., the critical Reynolds number does not extend 

below the critical Reynolds number of the 2D waves. 

In Figures 5.8-5.11, we present typical branches of oblique waves at the pa

rameter values mentioned above. In contrast to the STW, one mode is sufficient 

to obtain qualitatively correct results. The Figures shown were for N = 2 modes. 

As in the STW, no low Reynolds number solutions were found. In contrast, the 
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influence of the spanwise wave number is to stabilize the flow. Bridges conjectured, 

based on local results, that the solution branches of STW for /3 > .365 extend to 

lower Reynolds number than the oblique waves. However, as can be seen from Fig

ures 5.6 and 5.10, we found the opposite to be true. The nonlinear neutral surfaces 

are qualitatively similar to the surfaces found in the STW. 

Our next calculations were implemented in an attempt to confirm the results 

found by Rozhdestvensky and Simakin. In Figure 5.12, we show the nonlinear 

branches which bifurcate from 2D waves for /3 = 2.0 and a = 1.25, 1.26 and a = 1.28. 

For these branches, as shown in the Figures, the Reynolds number first decreases, 

passes through a limit point, and then increases. -vi.le searched by continuation at 

various values of spanwise and streamwise wave numbers and found no low Reynolds 

number solutions. 

Although we can not rule out the existence of isolated branches, we can state 

that there are no 3D branches which bifurcate from 2D waves and extend to low 

Reynolds number at the wave numbers examined. 
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Figure 5.5. Bifurcation diagrams for STW. /3 = .05,a = 1.01(top),a=1.08 (bottom). 
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Figure 5.6. Bifurcation diagrams for STW. f3 = .4,a = .938 (top), a= 1.014 (bottom). 
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Figure 5.8. Bifurcation diagrams for oblique waves. /3 = .01, a= 1.02 (top), a= 1.09 (bottom). 
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CHAPTER 6 

CONCLUSIONS 

In summary, we have computed branches of 3D STW and oblique waves which 

bifurcate from plane Poiseuille fl.ow. In addition, we have calculated branches of 

STW which bifurcate from 2D waves. These calculations were motivated by the 

results of Bridges (1988) and Rozdhestvensky and Simakin (1984). Our main result 

is that these solution branches do not exist at low Reynolds number, i.e., Re < 2600. 

In Chapter 4, we computed several branches of quasi-periodic solutions which 

bifurcate from 2D waves. Again, these branches do not extend to low Reynolds 

number. 

It is disappointing that we have been unable to verify Saffman's hypothesis 

(1983) that vortical solutions should exist at low Reynolds number. However we 

can not rule out that other solution forms will confirm this hypothesis. 

To this effect, Landman (1986) has found several different solutions to the 

Ginzburg-Landau equation. 

The Ginzburg-Landau equation is an amplitude equation which describes the 

weakly nonlinear evolution of disturbances in plane Poiseuille fl.ow. Landman ana

lyzed quasi-steady solutions to this equation. Among the many solutions he found 

are solitary waves and other transition type solutions. The existence of these so

lutions for the Ginzburg-Landau equations suggests that they may exist for the 

N avier-Stokes equations. 

Another hopeful direction is based on the work of Jimenez (1988) who has found 

period-quadrupling bifurcations with his time dependent formulation. In addition, 
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there is evidence that solitons (Fokas, 1988) may exist for the 3D Ginzburg-Landau 

equation. 

Because we are interested in unstable solutions, we would hope to apply the 

methods outlined in this thesis to calculate the solutions described above. The 

resolution required, however, to model solutions such as the period-quadrupling bi

furcation detected by Jimenez would appear to rule out such an approach. A recent 

method developed by Tuckerman (1988) may be useful to this end. Tuckerman 

has showed that a time-dependent code can be easily modified to compute unsta

ble and stable steady states. One nice feature of this formulation is the savings in 

memory and thus the possbility of increasing resolution and the modelling of more 

complicated solutions. 

We hope in future investigations to implement the approach outlined by Tuck

erman and study the solutions found by Landman and the other authors. 
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