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ABSTRACT 

A gas-chromatograph network capable of the analysis of possible 

products in the gas - phase pyrolysis, oxidative pyrolysis, and partial 

oxidation of n-butane was developed . Low-mo1ecu1ar-weight paraffins, 

olefins, alcohols, esters, aldehydes, ketones, organic acids, carbon 

oxides, fixed gases, and water could be identified and measured in the 

parts-per-mi1lion range of product mixtures. 

The pyrolysis of n-butane was examined in tubular-flow, gold micro­

reactors having lengths of twelve inches and an i nside diameter of 

0.0625 inch. Partial pressures of butane were varied from 0.5 to 12 

psia, with the total pressure being maintained at fifteen psia by use 

of an argon diluent. Conversions of butane were less than 2.5 per cen t . 

The overall rate of reaction of the butane was accurately described by 

ki netics of three-halves order. An average activation energy of 65 

kca1 mo1e- l was observed. Approximately equal molar quantities of 

methane and propylene were observed in the products. Forma t ion of 

ethane, ethylene, and hydrogen var ied with temperature and concentrat ion 

of butane. The pyrolys is var ied only s l ightly i n un t reated and i n 

acid-treated reactors . 

The influence of t race quantities of oxygen on moderate-temperatu re 

(500 to 600°C) pyrolysis of butane was investi gated using gold micro­

reactors having l engths of twelve inches and inside diameters of 0.0625 

and 0. 125 inch. Partial pressures of butane from one to twelve psia 

were used, with the total pressure bei ng maintained at fifteen psia. 
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Oxygen, present from 7 to BOO parts-per-million in the reactants, 

inhibited the overall pyrolysis rate and increased the olefin content 

of the product mixture which was predominantly paraffins and olefins. 

The investigation of the oxidative dehydrogenation of n-butane 

was also examined from 460 to 595°C. Concentration of oxygen in the 

reactants was varied from 0.04 to 1.0 per cent by volume. At the lower 

temperatures, isomers of butene, 1,3-butadiene, water, and carbon 

dioxide comprised over 97 per cent of the products. At higher tempera­

tures, formation of the cracked products of the pyrolysis increased. 

The overall rate of the disappearance of n-butane was correlated on the 

basis of a power-law expression of three-halves order with respect to 

the butane and one-half order with respect to oxygen. The Arrhenius 

activation energy of the overall dehydrogenation of n-butane was 23.1 

kcal mole- l compared to a value of 65 kcal mole- l for the pyrolysis. 

The partial oxidation of n-butane to oxygenated-organic products 

was totally suppressed at temperatures of 400 and 440°C for contact 

times of 20 seconds and less. 
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INTRODUCTION 

The pyrolysis and partial oxidation of paraffin hydrocarbons 

frequently present economical means of upgrading petroleum fractions. 

Trends in the petroleum industry indicate an annual growth rate in the 

supply of n-butane of about 4 per cent per year over the next five 

years. Coupled with the present excess supply, this will add to the 

pressure to find new outlets for n-butane. 

Currently over 80 per cent of the consumption of n-butane is in 

gasoline as a blend-stock for volatility. Increasing use of butane 

is expected in the production of olefins by means of thermal cracking. 

Propylene, methane, ethylene and ethane are the primary products of 

the pyrolysis of n-butane. Commercial units for thermal cracking of 

butane are operated at temperatures from 800 to 900°C. 

The partial oxidation of n-butane may be divided into three ranges 

according to temperature: (1) a high-temperature region, (2) a region 

of negative temperature coefficient, characterized by an increase in 

overall reaction rate with a decrease in tempe rature, and (3) a low­

temperature region. The preci se l i mits of each region are dependent 

upon the pressure and composition of the reactants and surface effects 

of the reactor; however, near atmospheric pressure the upper l imit 

of the second region is approximately 440 to 480°C whi le the lower 

boundary is generally 370 to 400°C. 

In the upper range in partial oxidation, the primary products of 

the reaction are olefins and water. Commercial advantage may be taken 
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of this fact by introducing oxygen into conventional pyrolysis units. 

A result is the absence .of soot and carbon deposits on the reactor 

surface. 

In the low-temperature range, oxygenated hydrocarbons such as 

aldehydes, ketones, acids, oxides and alcohols are the major products. 

Industrially, the partial oxidation of n-butane and other paraffins 

in this region represents an economical route to the production of 

these compounds. Celanese Corporation operates a full-scale process, 

in which n-butane and propane are used as feedstocks, for the produc­

tion of methanol, formaldehyde, acetaldehyde and acetone. The diver­

sification of products and thus increased outlay for often complicated 

separation processes is a disadvantage; however, the outlay is fre­

quently offset by the relatively low cost of paraf fin feedstocks. 

Ample commercial impetus, therefore, exists for a detailed study of 

the pyrolysis and the partial oxidation of n-butane. 

There are also academic incen t ives for a thorough examination of 

the reactions as many fundamental questions remain unsatisfactorily 

answered and open to debate. Aspec ts of the pyrolysis in which addi­

tional work would be des irable include the influence of trace amounts 

of oxygen on the overall rate of pyrolYSis, the nature and extent of 

surface effects, and the inhibition of the reaction by the products. 

The partial oxidation of n-butane has been studied less than the 

pyrolysis. Variation of the product distribution with temperature, 

pressure , and concentration of reactants, the effect of additives on 
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the reaction, the role of surfaces, order of the reliction, and the 

mechanism by which the oxidation takes place are but II few of the 

controve rs i a 1 areas. 

The basic aim of the present work was to study the thermal cracking 

of n-butane and the reaction between oxygen and butane in a gold micro ­

reactor at atmospheric pressure and at temperatures from 460 to 630°C. 

Objectives of the study were the characterization of the initial stages 

of the reactions in terms of the reaction rate and the distribution 

of products as functions of temperature, concentrations of reactants, 

and extent of the reactions. Correlation of the experimental results 

with plausible mechanisms is of primary interest. 
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LITERATURE SURVEY 

Many investigators have studied the pyrolysis and vapor-phase 

oxidation of hydrocarbons . Attention has been focused on the pyrol­

ysis of methane. ethane and. to a lesser extent. propane and n-butane. 

Primarily. the oxidation work has been directed towards ethane and 

propane. Little research has been devoted to the pyrolys1s of any 

hydrocarbon in the presence of trace amounts of oxygen. 

In the following section. a rev1ew 1s given of the literature 

related to the pyrolysis and gas-phase oxidat1on of n-butane. Work 

dealing with other paraffins is presented in areas where studies 

involving butane are incomplete. 

The pyrolysis of n-butane 

The thermal decomposition of n-butane was examined using a 

gold tubular reactor by Barker and Corcoran (1). Data were taken 

under the following cond1tions: temperatures from 530 to 595°C. 

pressures from 5 to 20 psia. contact times from 0.55 to 4.0 sec and 

convers ions of butane less than 2 per cent . Cont1nual mon1toring 

of the reactants insured less than 2 ppm oxygen. Products were 

analyzed by gas chromatography. 

Generally. the kinetics of the pyrolysis could be accurately 

described by the following expression: 
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where k = 2.27 X 107 exp (-66,OOO/RT) ccl / 2 mole-1/ 2 sec-1. With an 

excess of diluent in the system (mOle fraction of butane less than 

0.3) the rate of disappearance of butane became substantially greater 

than that predicted by the above expression. Although several hypoth­

eses were developed. the exact cause of this phenomena was not 

determined. 

Surface-to-volume ratio (hereafter referred to S/V) was varied 

from 64 in- l to 165 io-1 by patking the reactor with lengths of gold 

wire. Although the rate data were approximately 11 per cent lower 

in the packed reactor, the reaction otherwise possessed the same char­

acteristics as ift the unpacked reactor. Comparison of this work with 

other investigations ( 2, 3 ) conducted in pyrex or quartz supported 

the homogeneity of the pyrolysis. This is not to imply that the 

surface could not be made to significantly effect the pyrolysis. On 

the contrary, after exposure of the surface to oxYgen at temperatures 

above 400°C. the rate of pyrolysis was sharply depressed. This was 

explained by the presence of oxidizable impurities such as copper or 

silver in the gold. After removing such impurities by nitric-acid 

etching, the reaction rate returned to its original level. 

The product distribution was unaffected by changes in contact 

time and was affected only slightly by temperature and pressure in 

the ranges studied. Methane and propylene yields were essential ly 

identical, each representing about 33 per cent of the product mixture. 

Ethylene, 18 per cent, and ethane, 12 per cent, and hydrogen, 3 per 

cent, were the other major products. Isomers of butene composed the 
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remaining 1 per cent of the product mixture. A free-radical mechanism. 

simllar to that originally proposed by Rice (4). satisfactorily ac­

counted for the distribution of products. 

The present work is considered a complement to the work of Barker 

and Corcoran. The reader is referred to the original thesis for an 

extensive review of the available literature on hydrocarbon pyrolyses. 

For convenience a brief review of other work is given herein. 

Early investigations into the pyrolysis of butane were conducted 

by Pease and Durgen ( 5 ). S teaci e and Puddi ngton ( 6 ). Crawford and 

Steacie ( 7), Hepp and Frey ( 8 ), and Nehaus and Marek (9). In these 

and other early studies, the products were seldom measured at con­

versions of butane below 10 per cent. As secondary reactions involving 

propylene undoubtedly occur at high conversions of butane (la, 11), the 

kinetic correlation of the reaction was complex. Thus some authors 

described the decomposition on the basis of a first-order dependence 

on butane concentration while others chose to use a second-order model. 

The major products of methane, propylene, ethylene,and ethane were 

i denti fi ed. 

Us i ng a batch reactor Purnell and Quinn ( 2, 12, 13, 14) exten­

sively studied the thermal decomposition of butane over the temperature 

range 420 to 530°C, at init1al pressures between 10 and 150 mm Hg, and 

convers10ns of butane from 4 to 11 per cent. The products contained 

methane and propylene in equal molar amounts, ethylene, ethane,and hy­

drogen. Mfnoramounts of butenes, butadiene,and l-pentene were observed 



-7-

at butane conversions above 10 per cent. The production of hydrogen 

was found to equal one half the difference in yields of the ethylene 

and ethane. The rate of decomposition of butane was approximately pro­

portional to the three-halves power of the butane concentration. The 

rate of formation of each product was also described by a power law 

expression of the butane concentration. Exponents from 1.25 for hydro­

gen to 1.60 for ethane were calculated. A free-radical mechanism in­

corporating the pressure dependence of the ethyl radical accounted for 

the experimental data. 

The effects of changing the S/V ratio of the pyrex reactor from 

3.0 to 11.0 in- l were noted. In the case of clean, KC1-coated and acid­

etched vessels, identical and reproducible rates were obtained for all 

values of SlY. A magnesium-perchlorate coating led to a large initial 

acceleration of the rate. Conditioning of the vessel surface with 

carbon cons1derably reduced the reaction rate. It was concluded that 

the reaction was homogeneous in the clean, KC1-coated and acid-etched 

reactors but that in the magnesium perchlorate or carbon-coated vessels 

heterogeneous termination processes may be important. 

Sagert and Laidler ( 3) investigated the pyrolysis of n-butane at 

temperatures from 520 to 590°C and at pressures from 30 to 600 mm Hg. 

Experiments were conducted in batch reactors of quartz. The rate of 

reaction was followed manometrically and by gas ch romatography. The 

reaction was accurately predicted by three-halves order kineticsi the 

actha ti on energy was found to be 59.9 kca 1 mol e- l , and the frequency 

factor 3.24 X 1015 ccl/2 mole-1/2 sec- l • Packing the vessel with quartz 
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tubing increased the activation energy to 62.3 kcal mole- l • The surface 

effect was attributed to a certain amount of initiation and termination 

of chains involving surface reactions. It was concluded that the sur­

face reactions represented only a small portion of the total reaction 

and that the reaction was thus largely homogeneous. Products reported 

included methane, propylene, ethylene, ethane, and butenes. No analysis 

was made for hydrogen. The product distribution was predicted from a 

free-radical mechanism. 

Wang and Corcoran (15. 16) employed a ceramic reactor in the study 

of the pyrolysis of butane. The reactor possessed a SIV ratio of 4.0 

in-l and was operated at atmospheric pressure over the temperature range 

460 to 560·C. Energy, mass and momentum transport were considered in 

the treatment of the rate data. Velocity and temperature distributions 

within the one-inch-diameter reactor were measured. Although the data 

could be correlated equally well with a first or second-order rate ex­

pression, the product distribution was in agreement with other work 

(2.3). 

~ pyrolysis .!!!. the presence of traces £f. oxygen 

Essentially no literature exists for the influence of oxygen in 

concentrations of less than 100 ppm on the pyrolysis of n-butane. 

Appleby (17), working with concentrations of oxygen greater than 0.5 

per cent. suggested that oxygen concentrations as low as 1 ppm could 

significantly affect pyrolysis rates. Concentrations of 0.5 per cent 

oxygen had increased the rate of pyrolysis of n-butane a hundred-fold. 
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Yoevods~ (18) observed that with propane the effect of oxygen was to 

accelerate the pyrolysis up to a limiting value. 

Niclause,et al (19,20,21,22) reported the effects of small 

quantities of oxygen on the pyrolysis of propane. isopentane and iso­

butane. Oxygen concentrations from 0.001 to 1.0 per cent were involved 

in the experiments. The data. largely qualitative in nature. revealed 

several surprising features. Depending upon the SlY ratio and nature 

of the reactor surface. oxygen exhibited either an accelerating or in­

h1biting effect on the pyrolysis of the hydrocarbon. For propane. oxy­

gen concentrations of 0.5 per cent increased the rate of pyrolysis in a 

pyrex reactor w1th SlY • 1.8 in-l while decreasing the rate in a pyrex 

reactor with SlY • 23.8 in-l. The treatment of the rea,tor surface with 

PbO or KCl also accented the inhibitory effect. 

A detailed analysis of the product mixture was not given; however. 

a general mechanism was presented to explain the dual role--1nhib1t1on 

or accelerat10n-- of oxygen in the pyrolys1s. No attempt was made to 

kinetically describe the reaction or to estimate the temperature 

dependence of the pyrolysis in the presence of oxygen. 

The oxidative dehydrogenation of n-butane 

The reaction of butane and oxygen was studied in the temperature 

range 486 to 526°C by Appleby et al (17). The SlY ratios of the pyrex 

and KC1-coated reactors were 6.8 in-l. The products of the reaction 

were analyzed by a method of multi-isothermal distillation. Oxygen con­

centrations from 0 to 35 per cent by volume were employed in the reactor 
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feed. At oxygen concentrations below about 8 per cent, the reaction 

products consisted of OAly water and hydrocarbons, primarily butenes; 

however, the sensitivity of the analysis was limited. Even at concen­

trations of oxygen up to 35 per cent, no carbon dioxide or hydrogen 

peroxide were detected in the products. In runs with high oxygen con­

centrations and conversions of butane above 30 per cent, appreciable 

~unts of carbon monoxide, in addition to water and hydrocarbons, were 

detected in the products. 

The rate of reaction was found to be approximately proportional to 

the square root of the oxygen concentration and to the three-halves 

power of the butane concentration. The temperature dependence of the 

rate was found to be slight, an activation energy of 21 kcal mole-l 

being obtained. 

Several significant observations were also made in the study. When 

compared to the thermal decomposition of butane, oxygen had a pronounced 

accelerating effect on the decomposition. Generally, nearly all the 

oxygen was consumed in about 5 seconds. Below 10 per cent by volume of 

oxygen, the number of ~les of butane which reacted per mole of oxygen 

consumed decreased from a value of fifteen in mixtures containing 0.5 

per cent oxygen to a value of 2 in mixtures containing 10 per cent 

oxygen. Water, a major product, had no noticeable inhibiting effect on 

the reaction ; however, the addition of l-butene sharply reduced the rate 

of conversion of butane. 

Surface effects were noted as influencing the rate of the reaction 



-11-

although the surface of the reactor was not stud1ed in deta11. Attempts 

at study1ng the reaction below butane convers10ns of 1 per cent met w1th 

little success as the data were 1nconclus1ve. 

Barker and Corcoran ( 1). in a pre11m1na~ study of the oxidat1ve 

dehydrogenation of n-butane. exam1ned the react10n 1n a gold tubular 

reactor (S/V • 64 1n-1) at temperatures of the order of 500·C. Butane 

part1al pressures from 2.5 to 8.0 psi and oxygen concentrat10ns of 4 

per cent by volume were primarily employed in the tests. However. 

because of the unexpected appearance of large amounts of carbon diox1de 

in the products. a complete analysis of the products was not made. 

Faint but pos1tive tests were obta1ned for the presence of aldehydes in 

the products. 

Butene 1somers were among the initial products at high levels of 

oxygen but were rapidly attacked further by oxygen. Water was not 

detected chromatographically, but its presence was noted by condensate 

1n the effluent lines. 

Several runs w1th trace levels (30 ppm) of oxygen 1n the reactants 

were made. In general the production of cracked products was sharply 

depressed wh1le the format10n of butenes was s11ghtly enhanced. All of 

the oxygen was consumed in the f1rst few m11 l 1-seconds of the react10n. 

No attempt was made of a correlat10n between the overall rate and tae 

reac tant concentrat1ons because of lim1ted data. 

Kalv1 nskas and Corcoran (23) stud1ed the partial oxidation of n­

butane in a l-inch-d1ameter. porcela1n. flow reactor whose length could 
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be varied from 0 to 30 inches. The range of experimental conditions 

covered were one atmosphere pressure, 360 to 760°C, and inlet oxygen 

concentrations of 0 to 25 per cent. Conversions of n-butane were from 

5 to 45 per cent based on inlet conditions. Reaction rate data were 

correlated on the basis of the following equation which was also pro­

posed by Appleby (17), 

A minimum reaction rate was observed at 425°C. The products were ana­

lyzed for carbon oxides. olefins. paraffins. hydrogen, and water. Carbon 

dioxide and carbon monoxide were produced in roughly the same amounts. 

Carbon was found in significant quantities at the higher conversions of 

butane. 

Baldwin and Walker (24) gained insight into the reaction of H. and 

·OH radicals with n-butane in a study of the inhibition of hydrocarbons 

on the hydrogen-oxygen reaction. The study was conducted in pyrex re­

actors. SlY ratios from 2.0 to 4.2 in- l • over the temperature range 480 

to 520°C. The consumption of butane was most easily explained by re­

action with the hydroxyl radical. -OH. to form water and an alkyl radi­

cal. The alkyl radical then reacts predominantly with oxygen to form 

an olefin and the hydroperoxide radical. H02 •• which is destroyed with­

out continuing the chain. The folloWing rate constaAts at 520°C were 

obtained from th1s work: 



°H + RH-H2 + R' 

'OH + RH- H20 + R' 
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k • 5.1 X 108 1 mole- l sec-l 

k • 5.8 X 1010 1 mole-l sec-l 

The ox1dative dehydrogenation of other alkanes 

In a comparison of the high-temperature oxidation of butane with 

other paraff1ns. common conclusions can often be reached as all alkane 

oxidations are known to be of a free-radical nature. 

Jones. Daubert,and Fenske (25) have investigated the vapor phase 

oxidation and oxidative dehYdrogenat10n of ethane and propane 1n the 

presence of a countercurrent -ra1n- of noncatalytic,dispersed,part1c­

ulate solids. As convers10ns of butane ranged from 5 to 50 per cent. 

the -rain- of solids prov1ded a means of rap1d energy transport neces­

sary for the maintenance of nearly isothermal cond1tions. Product dis­

tr1but10ns were determined as a function of temperature (310 to 560·C). 

oxygen-hydrocarbon molar rat10s (0.05 to 0.6). pressure (0 to 150 ps1g). 

so11ds flow rate,and contact time (1 to 28 sec). 

No attempt was made to treat the data kinet1cally or to postulate 

def1nitive reaction mechan1sms. However. similar1ties and differences 

in the behav10r of ethane and propane upon oxidat10n were noted. The 

anal ogous 01ef1n appeared as the major product in both instances. At 

temperatures of 500 to 560·C and atmospheric pressure. virtually no 

carbon monoxide was fonned in the oxidation of ethane while carbon 

dioxide appeared as a major product. The COZ/CO ratio for propane under 

similar conditions was about 10 : 1. Increasing the flow rate of par­

ticulate solids and hence the total surface area further depressed the 
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formation of carbon monoxide and the overall rate of butane comsumption 

and increased the selectivity of carbon dioxide. 

The effect of increasing the pressure was to decrease the C02/CO 

ratio, decrease the production of olefins and increase the formation of 

paraffins. In all the work at temperatures above 500°C. formaldehyde 

and other oxygenated hydrocarbons were not observed in the products. 

Neither was hydrogen peroxide detected. 

The use of air or oxygen as the oxidant had little effect on the 

overall reaction for oxygen-hydrocarbon molar ratios of less than 0.3. 

As the contact time was increased, the primary result was an increase 

in the formation of carbon oxides and a decrease in the formation of 

olefins. 

Sampson (26) using a fused silica reactor (S/Y • 5.0 in-l) studied 

the reaction between ethane and oxygen at 600 to 630°C. Ethane-oxygen 

ratios between 2.5 and 10 were used and conversion of ethane was kept 

below 3 per cent. Primarily ethylene and water (no measurement of the 

water concentration was attempted) were found in the products although 

significant amounts of hydrogen, hydrogen peroxide, formaldehyde, carbon 

monoxide. and other oxygenated hydrocarbons were detected. No carbon 

dioxide was reported in the product .ixture. 

A mechanism. depicted below, was proposed in which a pr1mar,y fea­

ture was the formation and decomposition of hydrogen peroxide. Although 

the amounts of hydrogen peroxide isolated were invariably less than 

might be expected with such a mechanism, the small yields were attributed 
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to decomposition of hydrogen peroxide on the walls rather than to its 

nonformation. 

202 
Ciis' - H02' 

+2C2H4 

2C2H6 

'OH • C~s' 

+2H~ 

The low-temperature partial oxidation.n-butane 

Over the temperature range 300 to 460°C and with significant 

oxygen-butane molar ratios. the reaction results 1n the formation of 

formaldehyde. methanol. acetadehyde. hydrogen peroxide,and other organic 

oxygenated compounds. As 11ttle of the present work was involved in 

th1s region. only a brief rev1ew of the pert1nent l1terature is pre­

sented. General knowledge of this area of oxidation is important for 

a complete understanding of the oxidative dehydrogenation at higher 

temperatures. 

Comprehensive studies of the effects of temperature. residence time. 

initial oxygen concentrations, and reactor surface on the part1al oxida-

tion of n-butane have been published by Steitz (27) of Pan American 

Petroleum Corporation, Lemon (28) of Union Carbide, and Harris (29) of 

DuPont. These data have. 1n general. been 1ndustrially oriented toward 

h1gh butane convers1on and operat1ng condit10ns for maximum proQuct 

y1elds and. as such. have contributed only a small part to a better 

understand1ng of the bas1c reaction sequence. 
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Skrivan and Hoelscher (30). using a stainless-steel flow reactor. 

made a kinetic study of the partial oxidation of n-butane at atmospheric 

pressure. 257 to 3S0·C. and initial oxygen concentrations of 20 per cent 

and 40 per cent. from 6 to 30 per cent conversion of the n-butane was 

effected. An interesting observation was the presence of periodic cool 

flames at the higher oxygen level. Carbon monoxide. carbon diOKide, 

low-moelcular-weight olefins and paraffins. hydrogen. water. formal­

dehyde. acetaldehyde. methanol, and acetone were measured in the products. 

Employing a batch reactor. Norikov and Blyumberg (31) investigated 

the oxidation of n-butane at 250°C and 550 mm Hg. The reaction vessel 

waS constructed of quartz. Acetaldehyde, formaldehyde, acetone, methanol 

ethanol. acetic acid. formic acid. carbon monoxide,and carbon dioxide 

were reported as the major products. Addition of acetaldehyde to a re­

actant mixture increased the rate of n-butane decomposition. Quartz 

and stainless-steel reactor vessels were studied with the result that 

the oxidation of butane took place much more rapidly in the quartz 

vessel (32). In the stainless-steel vessels. the reaction took place 

more slowly in a new reactor than in one which had been in operation 

for a few days. 

Slavinskaya (33). using a quartz reactor. examined the effect on 

n-butane oxidation of small amounts of ozone in the low temperature 

region (190 to 303°C. 300 mm Hg). The ozone increased the production 

of aldehydes. Another interesting observation was the production of 

C02 at higher temperatures. Nieman (34). using radioactive tracer 
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molecules. concluded that at a temperature of 400·C formation of CO2 
from oxidation of CO was negligible. This is in agreement with Barker 

( 1) whose work around 500·C showed no CO but significant amounts of 

C02. 

The low-temperature oxidation of other ~drocarbons 

Working with ethane and propane. Jones.et al (25) observed the 

effects of contact time (1 to 28 sec). pressure (0 to 150 psig). oxygen­

hydrocarbon molar ratios (0.05 to 0.6). and temperature (300 to 420·C) 

on the product composition. This study. in conjunction with work on 

the high-temperature dehydrogenation noted ear-lier. was conducted in a 

steel, tubular reactor in the presence of a countercurrent "rain" of 

dispersed solids. Formaldehyde. acetaldehyde. and methanol were the 

primary oxygenated products and together with the oleffns ·composed the 

major products. In addftion smaller amounts of ethanol. acetals. epox­

ides. etc. were detected. The sum of these compounds were referred to 

as organic oxys. The production of organic oxys increased with in­

creasing pressure. decreasing temperature and decreasing oxygen-hydro­

carbon molar ratios. 

A striking observation was the complete suppression of the reaction 

leading to organic oxys when a packed bed was utilized as the reactor. 

This was probably a result of surface destruction of the oxygenated 

chain carriers. 

Propane was partially oxidized with oxygen in both flow and batch 

glass reactors by Albright and Winter (35). The flow reactor possessed 
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a SlY ratio of 2.1 in-1 while that of the batch system was about 1.5 

in-l. Most tests were performed at 335·C and pressures from 3 to 15 

psia. Water. methanol. formaldehyde. methylal. carbon monoxide. carbon 

dioxide. propylene,and etny1ene constituted the bulk of the products. 

Analysis was accomplished using gas chromatograp~. The flow experi­

ments produQed more water. carbon monoxide and propylene than did the 

batch runs for similar conditions. Of Significance was the formation 

of cool flames and a hysterisis loop in this region using the flow ap­

paratus. The activity of the reactor surfaces was observed to change 

with aging of the vessel. 

Satterfield and Reid (36) emphasized the importance of surfaces 

on product distributions fonned in the oxidation of propane. Temper~ 

tures of 375 to 475·C were employed as were flow reactors of various 

materials. Inlet propane-oxygen molar ratios varied from 5.5 to 6.5 

and the total pressure was near atmospheric. Propylene. ethylene. carbon 

monoxide. carbon dioxide. formaldehyde. acetaldehyde. methanol. hydrogen 

peroxide,and water were measured in the product .ixture. Borosilicate 

glass reactors with various surface treatments yielded a slight variation 

in product composition. however. the striking difference was found 

between the glass and stainless-steel reactors. In the stainless-steel 

reactor. more carbon dioxide was formed than carbon monoxide. Hydrogen 

peroxide was not detected in the product mixture and formaldehyde. ace­

taldehyde and methanol were present only in minute amounts. 

In a summary of the oxidation of hydrocarbons in the temperature 
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range 300 to 400°C. Knox (37) stressed the importance of a sequence in­

volving the conversion of H02. to ·OH radicals. Competitive oxidations 

of ethane and propane were exami ned by Knox (38). The experilllenta 1 

radical selectivities were in close agreement with those of an ·OH or ·0 

radical obtained in independent experiments by Baldwin (39). Similarly 

the selectivities differed from those expected of an H02• radical. This 

led Knox to believe that the H02· could not be the abstracting radical 

in alkane oxidations. 

It was also concluded that any discussion of the oxidation of a 

paraffin must involve the co-oxidation of the conjugate olefin. the pri­

mary oxidation product of most alkanes. In support of this view were 

studies conducted by Knox (40, 41. 42) on ethane. propane and isobutane 

in which about 80 per cent of the initial oxidation product was the ole­

fin. Zeelenberg (43) also obtained similar results on isobutane. The 

following sequence was then suggested as a plausible mechanism for hydro­

carbon oxidations in the temperature range from 300 to 400°C. 

alkane -olefin - carbonyls-lower - lower --- fonnal - --- carbon 
~ ~ olefi~ carbonyls dehyde oxides 

minor epoxides lower 
products epoxides 

The Knox scheme accounts for aspects of alkane oxidations such as 
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the initial high yield of olefins. the decrease in radical selectivity 

as the reaction proceeds. the importance of surface reactions. the 

strong promoting effects of 0·11f1n5 and the negative temperature coef­

ficient. 

Yet several points may be made which question the Knox mechanism. 

Albright (44). acknowledging that olefins are intermediates for a por­

tion of the oxygenated compounds. suggests that undue importance is 

placed on the role of olefins. As a basis. he cites the work of Sat­

terfield and Reid (45). Working with the partial oxidation of propane­

propylene mixtures, they found that although the SIJIIe products were 

formed upon oxidation regardless of the inlet hydrocarbon composition. 

the proportion of each component in the product mixture depended upon 

the init1al propane-propylene composition. Albright concluded that 

isomerization and fragmentation of peroxy and hydroperoxy radicals 

might be an alternate route for the formation of the major products. 

Semenov (46) has also made calculations which show that the Knox 

scheme predicts excessively long reactions times and that the acceler­

ation from low to high rates of reactions, characteristic of hydro­

carbon oxidations, is not properly predicted. 
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APPARATUS 

The focal point of any system designed to obtain fundamental infor­

mation on the nature of chemical reactions is the experimental reactor. 

It is not necessary that the experimental reactor be of the same type as 

industrial reactors. More important is that one of the model types of 

reactors is approached and that it is operated isothermally. 

Previous investigators of paraffin pyrolyses and oxidations have 

generally chosen batch reactors. Several reasons for these selections 

are obvious. Large variations in the surface to volume ratio may be 

obtained. The reaction may easily be examined at high conversions of 

the reactants. In the case of low-temperature oxidations where a sig­

nificant inhibition period often exists. sufficient time may be allowed 

for the reaction to measurably occur. But perhaps most important. 

direct measurement of the conversion rate may be made using a static 

reactor. 

With a tubular flow reactor the conversion rate is not measured in 

a straightforward manner but an average rate over the length of the 

reactor is obtained, i.e. an integral reactor. This difficulty may 

often be avoided with the use of a microreactor. so characterized by its 

small size and often accompanying low conversions of the reactants. 

With low conversions and near constant conditions throughout the re­

actor. i.e. a differential reactor. Simplification of the data analyses 

result. A tubular flow reactor is well-suited to the study of gas­

phase reactions and to relatively fast reactions. 



-22-

Since a basic objective of this research was the investigation of 

the initial rates of reaction, tubular-flow microreactors were selected. 

Gold tubing, 99.99 per cent, was used in construction of the reactors. 

The flow of n-butane, oxygen, and an inert diluent were adjusted to 

yield the reactor feed. The effluent of the reactor was quenched and 

analyzed for possible products. Figure 1 is a schematic of the experi­

mental system. 

Reactants 

Research grade n-butane, 99.90 to 99.97 mole per cent minimum 

purity, was obtained from the Phillips Petroleum Company. Instrument 

grade n-butane, 99.5 mole per cent minimum purity, was purchased from 

the Matheson Company. Continuous operation of the reactor was econo­

mically possible by alternate use of research grade and instrument 

grade reactants for tests and interim use, respectively. Impurities 

detected in the research grade butane, in decreasing order of impor­

tance, were isobutane, l-butene, c-2-butene, t-2-butene, and propylene. 

In addition, the instrument grade material contained varying amounts 

of 1,3-butadiene and 2,2-dimethyl propane. Representative analyses 

of the research grade butane are listed in Table 1. 

Research grade c-2-butene, 99.94 mole pre cent minimum purity, was 

obtained from the Ph i llips Petroleum Company and used in preliminary 

checks on the rate of isomerization of butene. Impurities included t-

2-butene, l-butene, n-butane, and 1,3-butadiene. Argon, used as an inert 

diluent, and oxygen were obtained from Linde in cylinders of 99.99 mole 

per cent minimum purity. Water, oxygen (in gases other than oxygen), and 
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nitrogen were present in trace amounts in __ ch of the gases. 

Effective removal of water. a product in the partial o.tdation 

studfes. from the argon and oxygen lines was accomplished using traps 

containing indicating sflica-gel. Drierite (anhydrous calcium sulphate) 

was used in the butane stream because of irregular adsorption of the 

butane on the silica-gel. 

Oxygen was removed from the argon and butane lines by means of 

traps of manganous oxide. The removal of oxygen was necessary because 

of its marked influence on the pyrolysis. 

Flow control 

Matheson (model 8) and Victor (model VTS 400 D) two-stage cylinder 

regulators were used to deliver oxygen and argon at near-constant pres­

sure. Further reduction and control of the pressure was accomplished 

using Kendall (model 30) pressure regulators. A Matheson (model 40) 

single-stage line regulator was used for the butane. 

Small-bore needle valves (Nupro. type 1 SA) were used to adjust 

flows of the gas streams. With pressure drops from 2 to 4 psi across a 

valve. the flow rate of gas could be adjusted from 0.5 ! 0.025 to 10.0 

± 0.1 ml/min. 

Flow rates were indirectly measured by observing manometrically the 

pressure drops through columns filled with glass beads (Minnesota Mining 

and Manufacturing Company. type 100-5005). The columns were made from 

10 to 15-inch lengths of 1/8 inch or 1/4 inch tubing. The I8nometers 

were calibrated and checked periodically using a soap-film flowmeter. 
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Correction was made for the presence of water vapor. The volumetric 

flow rate was approximately line.r with pressure drop and was independant 

of the absolute pressure. 15 to 20 psia. 

Silicone oil (Dow-Corning. type 200-500) was selected as the mano­

meter fluid because of its density. flow character1stics and low vapor 

pressure. The silicone oil was degassed under vacuum before being placed 

in the manometers as selective absorpt10n and desorption of gases could 

cause appreciable error in the flow rate. Reservoirs were installed in 

the manometer lines to avoid contaminat10n of gas lines with silicone 

011 in the event of sudden surges of gas flow throughout the system. 

Auxilliary equ1pment 

A vacuum of less than 10 m1crons could be exerted on the reactor 

by connecting the reactor outlet directly to a vacuum pump (Welch Scien­

tif1c Company. Duo-Seal). leak-t1ght bellows valves (Nupro. type 5548G) 

and a Televac vacuum gauge were installed in the inlet lines of the 

reactor for this prupose. 

liberal use was made of screen f1lters (Nupro. 7 m10r.0n elements) 

to protect critical valves and to exclude fine particles or metal f i lings 

from the reactor. 

For a measure of the reactor pressure. a calibrated Bourdon-tube 

pressure gauge (Wallace and Tiernan. type FA-145) was inserted in the 

butane and argon lines pr10r to the traps. In th1s aanner 1Mpur1t1es. 

entering the reactant lines through the gauge and 1ts connections. would 

be removed. 
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A cartesian manostat (Manos tat Corporation. model 6A) was used for 

precise control of the system pressure. The menostet fluid wes mercury. 

Near atmospheric pressure end at low flow rates. thfs device was capable 

of controlling the pressure to withfn 0.05 psia of its set point. A 

problem was encountered when using the manostat wfth gas streams that 

were supersaturated with water vapor. Water would condense inside the 

manostat. collect on top of the mercury pool and interfere with the nor­

mal operation of the diver. A trap containing Drierite was inserted in 

the line prior to the manostat for removal of the water. Effluent from 

the manostat could be connected to a vacuum pump for control of pres­

sures below atmospheric. 

Reactor 

Microreactors, having inside diameters of 0.0625 inch and lengths 

of 12 inches. were constructed from 99.99 per cent pure gold obtained 

locally from the Wilkinson Company. Gold was chosen primarily for two 

reasons. First, the pyrolysis and oxidation of n-butane had not been 

studied previously in gold vessels. For complete discussions on the 

I homogeneity or heterogeneity of the reactions. the nature and type of 
; 

reactor surface must be varied as well as the surface-to-volume ratio 

of the reactor. In this manner. the present work will supplement pre­

vious work as reactors of pyrex, quartz and stainless steel have been 

used. Secondly, gold does not form a stable oxide and weakly adsorbs 

oxygen at the high temperatures of interest. The inertness of gold to 

oxygen facilitates the controlled introduction of trace quantities of 
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oxygen into the reactor. 

Design of the microreactors was based on the following consider­

ations: 

1. The reactor length should be sharply defined. 

2. Configuration of the reactor should be such that isothermal 

operation is facilitated. 

3. Hot butane or oxygen should contact only gold surfaces. 

4. Thorough mixing of the reactants should be accomplished. 

5. The reactor should be kept simple in design for ease of con­

struction and absolute leak tightness. 

In Figure 2 is a schematic of the reactor. A twelve-inch length 

of 3/16 inch 0.0. (0.125 inch 1.0.) or 1/8 inch 0.0. (0.0625 inch 1.0.) 

gold tubing bent into a U formed the reactor. In the inlet of the re­

actor, provision was made for mixing a preheated argon or argon-oxygen 

stream with the butane to effect a rapid approach to the reaction temper­

ature. Similarly in order to freeze the reaction at the reactor exit, 

provision was made for mixing the product mixture with an argon quench 

stream. Figure 3 gives a detailed drawing of the inlet and exit heads 

for the 3/16 inch 0.0. reactor. The 1/8 inch 0.0. reactor heads are 

similar except for reduced dimensions. As gold is a good conductor of 

heat, the mass of material in t he inlet and exit heads was kept to a 

minimum. 

To i nsure that hot butane or oxygen contac ted only gold surfaces, 

twelve-inch lengths of gold tubing were placed in lines adjacent to the 
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reactor. Gold joints were heli-arced to provide leak tightness. As 

the assembled reactor was extremely prone to damage owing to the soft­

ness of gold, extreme care had to be exercised in the insertion and 

removal of the reactor from the thermostat. Pin-hole leaks, resulting 

from fatigue of the gold, could be closed with silver solder if the hole 

was not directly in the thermostated section of the reactor. Since the 

thermostated section attained temperatures of 65DoC (near the soften i ng 

point of the silver solder), holes in this section had to be heli-arced . 

Successfully heli-arcing the pin holes without further damage to the 

reactor was difficult. 

Because of the softness of gold, a problem was encountered in 

trying to connect the gold tubing to other parts of the system. Since 

these connections had to be leak-tight and easily disconnected for re­

actor removal, 1/8 inch stainless-steel tubing was silver soldered to 

the gold tubing. Leak-tight connections using Swagelock fittings and 

teflon ferrules could then be made from the stainless-steel tubing. 

Thermostat 

The microreactor was encased in a recirculating-air thermostat, a 

schematic of which is given in Figure 4. Two concentric cylinders of 

stainless steel formed the chamber which housed the reactor. The inner 

cylinder, 1.5 inches in diameter, was suspended inside the outer cylin ­

der, 3.5 inches in diameter. The ends of the housing were cons t ructed 

of D.5-inch thich transite to minimize heat losses . The upper transite 

end contained a heater, rated 135 watts at 38 volts , and the reactor 

inlet and exits. 
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Air was forced up the annulus and down th~ c~nter cylinder by a 

centrifugal impeller. To direct the air close to the transite end and 

toward the center of the thermostat where the reactor was situated, a 

cone of stainless steel was placed on top of the inner cylinder. The 

space be~~een the cone and the transite was about 0.25 inch . 

A control heater, rated 125 watts at 35 volts, was wrapped around 

the inner cylinder. Using a thyratron temperature controller (Chem. 

Eng. #26533), control of the thermostat temperature could be achieved 

within ±O.08°C. The main heater, rated SOO watts at 155 volts, was 

wound around the outer cylinder. All heaters were of Nichrome V resis­

tance wire and insulated with ball and socket ceramic beads (Cole­

Parmer). Maximum temperature for continuous operation of the heaters 

was 1093°C. Power for the heaters was drawn from a 115-volt regulated 

supply and adjusted with the use of Variacs. 

The impeller was located below the inner cylinder with a clearance 

of about 0.125 inch. Previous attempts in this lab to operate a 

recirculating-air system at 500 to 650°C for prolonged periods of time 

had been unsuccessful. Using self-lubricating bearings (Bemal Company, 

type FSR-4 ball bearings with a Feuralon retainer) and an improved de­

sign of the impeller assembly, a system was developed that has operated 

trouble-free since its inception. The design of the assembly is pic ­

tured in Figure 5. 

Use was made of transite, a poor conduct or of heat. to remove the 

air-cooled bearing assembly from the actual thermostat. The Bemol 

bearings were net recommended for continous use in air above 40~C. A 
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lower set of stainless-steel ball bearings (New Departure. No. SS/R4A) 

were incorporated to assist in support of the impell er assembly. 

The impeller base had ten vertical blades and was machined from 

a single bloCK of stainless steel. The base was press fitted to t he 

shaft and held rigidly in place by a set screw. Through a finger cou­

pling. the lower end of the impeller shaft was connected directly to a 

shunt-wound motor (Bodine No. NSH-l2) equipped with I full-wlve-variabl e­

speed motor control (Minarik Electrical Company. No. Sl-l 4). The impel ­

ler could be operated from 0 to 3600 rpm. 

Asbestos fiber and quartz fiber insulation was placed around the 

reactor housing which was mounted in a stainless-steel box. This box. 

resting on transite blocks within an aluminum box. was surrounded by 

glass fiber and quartz fiber insulation. A total of about 4.5 inches 

of insulation surrounded the reactor housing. The entire assembly was 

mounted in a Unistrut steel frame for ease of maintenance. 

Temperature of the t hermostat was measured verti cally along the 

centerline of the inner cylinder with a chromelalumel thermocouple 

(Ceramo. D.125-inch diameter, sheathed) . The emf was measured within 

to.OOl by using a potentiometer (leeds and Northrup Company. type K- 3). 

The thermocouple. employing a ice-point reference junction. was cali­

brated at the tin, lead and zinc melting points using A. C.S. grade 

chemicals. 

Temperature profi les of the thermostat were recorded at various 

impeller speeds. The results are protrayed in Figure 6. An impeller 
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speed of 1800 rpm was selected for all experimental kinetic tests and 

the temperature measured at a distance of two inches from the lower 

side of the transite end was taken as the reactor temperature. The 

temperature profile in the gold reactor tube should be more uniform as 

the thermal conductivity of gold is three orders of magnitude greater 

than that of air. 

Analysis of product mixture 

The reactor effluent was analyzed using gas-liquid and gas-solid 

chromatography in conjunction with a galvanic analyzer for oxygen. 

Design of the chromatographic network was based on consideration of pos­

sible products of the oxidation and pyrolysis of n-butane. Products in 

the high-temperature oxidation of n-butane include low-molecular-weight 

paraffins and olefins as well as carbon monoxide, carbon dioxide, hy­

drogen, and water. In the lower-temperature partial oxidations of n­

butane, oxygenated compounds such as formaldehyde, acetaldehyde, meth­

anol, and acetone are also probable products. As the temperature 

regions of the two processes are not precisely defined, a system capable 

of the analysis of all such products was desired. 

Analysis of all possible products allows not only a quantitative 

determination of compounds found in the product mixture but also a 

qualitative check of compounds excluded from the products. The latter 

in butane-oxygen reactions may be of considerable significance in a 

mechanistic sense. 

A schematic of the analytical network is given in Figure 7. Three 

chromatograph units listed below were employed in the analytical system. 
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1. Loenco Model 70 Hi-Flex Gas Chromatograph. conta1n1ng a singl e 

flame ion1zation detector and a thermal conductivity cel l . used 1n con­

junction with a Cary Model 31 vibrating-reed electrometer from the 

Applied Physics Corporation. 

2. Consolidated Electrodynam1 cs Corporation Mode l No. 26-014 

Chromatograph housing a thermal conduct1v1ty detector and used 1n con­

junction with a Harr ison Labs Model 865 C power supply. 

3. F & M Scientific Model 5750 Research Chromatograph contain1ng 

a dual flame ion1zation detect1on. each channel of which could be oper­

ated independently. 

Accessory chromatograph equipment included the following: 

1. Carle. gas sampling val ves. model 2014. 

2. Loenco. gas sampling val ves. model 

3. Beckman potentiometri c recorder. model 1005. equipped wi t h 

Disc i ntegrator. 

4. Two Honeywell potentiometr ic recorders . model Y 143X(58). each 

equ1pped with a Disc 1ntegrator. 

Six chromatograph1c determ1nations were requ1red for a complete 

analys1s of the react1ng m1xt ure. Chromatograms of prepared sampl es are 

reproduced in Figures 8-1 3. The condi t 1ons under which t he chroma to­

grams were taken are noted on each f1gure. As may be seen peaks such 

as methane and et hylene appear on several of the t races and thus serve 

as a basis for determ1ni ng the relative composition of the entire product 

mixture. 
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Legend for Figures 8-13. 

Component I dent ificat i on 

methane 1 
ethane 2 
ethylene 3 
propane 4 
isobutane 5 

propylene 6 
n-butane 7 
l-butene 8 
t-2-butene 9 
c-2-butene 10 

l-pentene 11 
l,3-butadiene 12 
hydrogen 13 
oxygen 14 
nitrogen 15 

carbon monoxide 16 
carbon dioxide 17 
water 18 
fo nna 1 dehyde 19 
methanol 20 

acetaldehyde 21 
fonnic acid 22 
ethanol 23 
propionaldehyde 24 
acetone 25 

2-propanol 26 
methyl acetate 27 
acetic acid 28 
l - propanol 29 
methyl ethyl ketone 30 

ethyl acet ate 31 
2-butanol 32 
crotona 1 dehyde 33 
l-butanol 34 
diethyl ketone 35 
argon 36 
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Length 12 f~ Cell Current 90 rna 

X. D. O,Ol13 in 

I I! 
Temporature 65 °c 

: i I Psckint 30f60 mesh 
. i I I ' I Molecu sr Seve 5A. , , conaItlonea at least i! Ii S nours at ~50 o~ 
, , , 
I , I 11 I , 

I I , 
I , I 

, 

C.rrler Gss Argon 

Rate 10.6 m1/mln 

Sample Size 0.5 ml I 

j 'l 
Chart Speed 0.5 in/min l'r'1 

, I 
Date 9/12/68 i : 

! . 

iii 
, , 

i I 
! I 

I : 
. . 

I , 

I I ' 
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Fi gure 8. Fixed gases. 
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In Table 2 are 11sted the m1n1mum measurable quant1t1es (MHQ) of 

ind1vidual components. The MMQ is def1ned as that volume fract10n of a 

part1cular compound wh1ch produces a peak he1ght s1gnal 5x the n01se 

level under average operat1ng conditions. A factor of 2x the noise 

level 1s taken to be the m1n1mum detect10n lim1t (MOL). Thus if in 

Table 2 the MHO of methanol 1s 0.52 ppm. the smallest detectable con­

centration under average operating cond1t10ns would be 0.21 ppm. It 

should be noted that the sensitivity to a part1cular component depends 

on its elution time. relative response. carrier flow rate. column tem­

perature and detector type. Thus while under equivalent operating con­

dttions a flame detector is two to three orders of magnitude more sen­

sitive than a thermal conductivity detector. the MHO of a compound may 

be less using a flame detector if the parameters ment10ned are varied. 

In Append1x B is presented a deta11ed summary of the chromatograph 

columns. detectors and ca11brat10n procedures. 

In order to measure accurately small concentrat10ns of oxygen in 

the reactant and product mixtures. a galvan1c anaylzer. first proposed 

by Hersch (47). was des1gned and built. The cell. consisting of a lead 

anode and silver cathode separated by a su1table electrolyte such as 

potassium hydroxide. could be used either for continuous monitoring of 

a gas stream or as a chromatograph detector. In either case the cur­

rent generated by the cell was i ndicative of the amount of oxygen 

passing through the cell. 

The cell is highly specific to oxygen and theoretically the lower 
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Table 2. Estimated Minimum Measurable Quantities (MMQ) 
for Chromatograph Network. 

Component MMQ. ppm 

methane 0.45 
ethane 0. 53 
ethylene 0.47 
propane 0.43 
isobutane 0.40 

propylene 0.50 
1-butene 0.70 
t-2-butene 0.72 
c-2-butene 0.92 
hydrogen 10 

oxygen 50 
nitrogen 100 
carbon monoxi de 200 
carbon dioxide 13 
water 26 

fonna1 dehyde 15 
methanol 0.52 
ac eta 1 dehyde 0.50 
formic acid 10 
ethanol 1.0 

propionaldehyde 1.4 
acetone 1.4 
2-propanol 0.47 
methyl acetate 0.50 
acetic acid 0.90 

l-propanol 0.64 
methyl ethyl ketone 0.52 
ethyl acetate 1.2 
2-butano1 1.2 
crotonaldehyde 0.84 

1-butanol 1.2 
di ethyl ketone 1.0 
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limit of detection is zero oxygen. However, in practice because of 

leakage the lower limit fs of the order of 1 part oxygen per mfll10n 

parts gas. Cell life and lineari~ of response combine to fix the upper 

limit of detection at 150 ppm oxygen for the continuous analyzer and 

2.0 per cent oxygen by volume for the detector. Because of the greater 

range of lfnearity and rapid response, a cell used as a detector was 

employed in most analyses. A detailed description of the Hersch cells 

and their operation may be found in Appendix C. 

The n-butane or argon-oxygen mixture could be diverted d1rectly to 

the analytical network, thus bypassing the reactor. Frequent analysis 

of the reactants was desirable for two reasons. First, the level of 

impurities, namely butenes, in the n-butane varied over a period of 

ti... Secondly, daily calibration of the Hersch detector was necessary 

for best results. 
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EXPERIMENTAl PROCEDURE 

A period of 12 to 16 hours was required to raise the temperature 

of the reactor from room temperature to a constant value in the range 

500 to 600°C. Similarly, a period of several hours was required for 

the column ovens of some chromatographs to achieve constant temperature. 

As a result, this equipment was left on continuously. 

At the beginning of each day, the impeller to the thermostat was 

set at 1800 rpm and the temperature controller was turned on. A period 

of two hours was allowed for adjustment of the temperature to the 

desired value for the day. Meanwhile, the following operations were 

performed. 

1. Vacuum pumps were turned on. 

2. Gas flows to the analytical system were adjusted and the de­

tectors were activated. 

3. An ice bath for the reference junction of the thermocouple 

was prepared. 

4. Gas flows through the reactor were adjusted for the first 

point. 

A chromatographic analysis of the impurities in the un reacted 

butane was made prior to taking data on the reaction. For oxidation 

work, calibration of the Hersch detector with a standard argon-oxygen 

mixture was generally made at this time. 

For the remainder of the day, data were collected on the reaction 

under study. Record was kept of the temperature, pressure, flow rates 
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of gas to the reactor, and the composition of the effluent from the 

reactor. A complete analysis of the products required about 45 minutes. 

From 30 to 45 minutes were allowed between points for attainment of 

steady-state operation at the new conditions. 

At the end of the day, the impeller and temperature controller 

were turned off. Approximate power settings were made to the thermo­

stat heaters for the desired temperature of the next day. The analy­

tical equipment was placed on stand-by for overnight. Flows of butane 

and argon through the reactor were maintained at all times but at a 

reduced rate when a run was not in progress. 

Gas chromatographs, recorders and electrical equipment were 

serviced every six months as part of a preventative maintenance program. 

Water traps and oxygen traps were replaced or regenerated as required 

or every two months. 
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TREATMENT OF DATA 

Calculations by Barker and Corcoran ( 1 ). using equations der1ved 

by Trombetta and Happel (48). indicated that the microreactor could be 

described accurately by an fsothermal. plug-flow MOdel. Oata requ1red 

for a kinetic analysis of the reaction fncluded the following: 

1. Temperature of the reactor. 

2. Pressure fn the reactor. 

3. Flow rates of the butane. oxygen. d1luent and quench streams. 

4. Compos1tfon of the reactor feed and effluent. 

5. Dfmensions of the reactor. 

6. Nature of the reactor surface. 

The duration of operation of the reactor was also important in studies 

on the aging of the reactor surface. 

The composition of the reactor feed was calculated knowfng the 

volumetr1c flow rates of the various components of the feed and assum1ng 

Dalton 1 s law and the 1deal gas law. The concentration of component 1 fn 

the feed was given as 

c; • .!! [PTJ 
fR RT' 

(1) 

where C1 · inlet concentration of the ith component. [aJ moles cc- l 

fi • flow rate of the ith component into the reactor measured at 

the temperature and pressure of the reactor. [aJ cc sec·l 
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fR • total flow rate of inlet gas measured at the temp'erature and 

pressure of the reactor. [a] cc sec- l 

Pr • reactor pressure. [a] psf 

T a reactor temperature. [aJ OK 

R a unfversal gas constant a 1205.9 psf cc °K-l moles71• 

The composftfon of the reactor effluent was measured usfng gas 

chromatography and a galvanfc analyzer. For a chromatogram. the peak 

area of component f fs related to the moles of i fn the sample fn the 

follow1ng manner: 

Af 
n1 a k ~ (2) 

where n1 • moles of the 1th component in the reactor effluent. [a] moles 

k a constant of proportionality. [a] moles (integrator units)-l 

Ai a peak area of component i. [a] integrator units 

R • relative .molar response of component i. dimensionless 

The amount of component 1 in the product mixture relative to the amount 

of butane could be computed as 

Ai 
Ni a A Hi 

B 
(3) 

where Ni a moles of component i per mole of butane in the product mix­

ture. dimensionless 

Hi • Rg/Ri a multiplier factor for comPQnent i. dilllensionless 

As conversions of butane were generally less than 1 per cent. Ni repre­

sents. within the accuracy of the analysis. the moles of product i 
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formed per mole of butane in the reactor feed. For appreciable conver­

sions of butane, a correction to the peak area must be made using a 

carbon balance over the products. If th~ mass density is assumed con­

stant throughout the reactor, i.e. neglecting the expansion of gases 

caused by reaction, the concentration of component i at the reactor exit 

may be computed as 

Ci • Ni CS • (4 ) 

The concentration of oxygen in the effluent was measured directly 

using galvanic cell, calibrated on the basis ot ~eak height. The cur­

rent generated by reduction of the oxygen was indicative of the amount 

of oxygen in the sample. The concentration of oxygen at the exit of the 

reactor was related to the concentration of oxygen measured in the 

quenched effluent by 

c- • Cl 
[

fR + tg] 
-u fR 0 

(5) 

where fg • quench flow rate measured at the temperature and pressure of 

the reactor, [.] cc sec·1 

C~ • concentration of oxygen in the diluted product mixture, [a] 

ppm or moles cc·1 

A mean contact time or space time was defined as 

V 
T - f ' 

R 
(6) 
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where ~ • mean contact time, [aJ sec- l 

v • volume of the reactor, [-] cc 

Assuming plug flow, a mass balance on reactant 1 yields for a tubular 

reactor the following equation: 

d't' • dX i 
'"'T -, (7) 
Ci -ri 

where Xi • fraction of reactant i converted into product, dimensionless 

-rl • rate of disappearance of reactant 1 by chemical reaction, 

[a] moles cc-1 sec- l 

Upon consideration of constant mass density throughout the reactor, 

as is the case with either no change in the number of moles with re-

action or at very low conversion of reactants 

and equation (7 ) becomes 

dX
i 

• dCi -' CO 
i 

dei • -ri • 
d-r 

(8) 

(9) 

Equation (9) may be integrated over the reactor length to obtain 

~ ·1 Ci 

dCi 

-ri 
• 

(10) 
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Possible rate expressions may be evaluated using the above equa­

tions and appropriate experimental data. Specific application of these 

equations are described in the discussion of results. 
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RESULTS AND DISCUSSION 

Reactor operat1on and energY transfer 

Barker and Corcoran ( 1 ) studied the pyrolys1s of n-butane using a 

gold, tubular-flow m1croreactor. The reaction was examined at conver­

sions of butane less than 2 per cent. temperatures from 529 to 595-C and 

total pressures from 5 to 20 psia. The results satisfactorily agreed 

with the work of Sagert and Laidler (3) and Purnell and Quinn (2) 

taken in quartz and pyrex reactors. respectively. with one striking ex­

ception. For a given pressure and temperature. departure from the ex­

pected three-halves order for the reaction was observed as the partial 

pressure of butane was decreased. 

At the higher concentrations of butane. the overall rate of the 

pyrolysis exhibited an order of three halves with respect to the concen­

tration of butane. Typical rate data are given in Figure 14 where the 

order of the reaction is equal to the slope of the curve at a given con­

centration of butane. The order gradually decreased with decreasing 

concentration of butane to the extent that at a butane concentration of 

5.5 X 10-6 moles cc-1• the order was as low as 0.25. A primary objec­

tive of the present work is to resolve the question of reaction order 

with respect to the pyrolysis of butane in a gold m1croreactor. 

A schematic of the reactor used by Barker is reproduced in Figure 

15 and may be compared with the similar assembly of Figure 2 used in 

this investigation. The major revisions in the reactor design are 

listed below and were aimed at reducing energy transfer near the inlet 
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Ff gure 14. Rate data from the work of Barker and Corcoran ( 1 ). 
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of the reactor. 

1. The point of intersection of the argon diluent and butane lines 

was removed from direct exposure to the thennostat. 

2. The mass of metal in contact with the inlet lines and the 

thermostat was minimized. 

The total pressure of the system was maintained near 15 psia. For 

partial pressures of butane below 15 psi" argon was mixed with the 

butane stream. Provisions were made for diluting the butane at the 

entrance of the reactor and/or at a point well-ahead of the entrance. 

By altering the point of mixing and measuring the rate of reaction for 

several concentrations of butane, an estimate of the effect of energy 

transfer in the entrance region could be obtained. 

Positioning the diluent line one-eighth of an inch below the ther­

mostat as had been required in the apparatus of Barker, the data shown 

in Figure 16 were taken at 575°C. The point of dilution of the butane 

is seen to exert a pronounced effect on the observed rate. For the 

completely premixed feed, the rate of disappearance of butane at a con­

centration of butane of 1.3 X 10-6 moles cc-1 is approximately 50 per 

cent of that for mixing at the reactor entrance. Moreover, the reaction 

accurately follows three-halves-order kinetics over the entire range of 

butane concentrations provided the butane is diluted prior to the -hot­

inlet region of the reactor. 

The influence of the point of mixing is more pronounced at higher 

temperatures. This is expected as a simplified analysis of the system 
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0100% dilution at entrance 
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Concentration of Butane x 107, moles cc-1 

Figure 16. Effect of the point of dilution on the pyrolysis of 
butane. 
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is to consider the reaction as occurring in two "reactorsM. One is the 

reactor tube in which the temperature is nearly constant at the experi­

mentally observed temperature for the reactor. The other, a short sec­

tion of the butane line prior to dilution, possesses a non-uniform 

temperature which is less than that of the reactor. The observed rate 

of reaction may be represented as follows: 

I 3/2 [ ]3/2 ( ) -RC H • k [C4H10 ] + k C4HlO 11 
4 10 inlet reactor 

For the case where 100 per cent of the argon is mixed with the 

butane at the entrance of the reactor, the concentration of butane in 

the inlet section may be 25 times that of the reactor. Assuming an 

activation energy of 65 kcal mole-1, it can be shown using the above 

equation that the average temperature of the inlet section would have 

to be about 125 degrees less than the temperature of the reactor for a 

inlet contribution of less than 5 per cent to the overall rate. Ideally, 

the temperature of the inlet lines would at all points be much less than 

the temperature of the reactor, but because of heat transfer along the 

gold tubing such is not always the case. 

In the present work, the point of dilution at the reactor entrance 

was contained in the transite lid of the thermostat and not directly 

exposed to the thermostat. This significantly diminished the rate of 

reaction in the undiluted butane stream. In the majority of tests, the 

proportion of argon metered at the inlet of the reactor was less than 

20 per cent of the total argon in the feed. A small proportion of MhotM 
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argon was mixed at the entrance in order to affect a rapid approach of 

the reactants to the operating temperature. 

Pyrolysis of n-butane 

The pyrolysis was studied in both untreated and acid-treated re-

actors. By untreated is meant that. aside from rinsing the tubes with 

acetone and subsequent drying. the reactor surface was as received from 

the manufacturer. Acid-treatment of the reactor. primarily for the 

purpose of removing oxides or chemisorbed oxygen of impurities in the 

99.99 per cent pure gold. was accomplished in the following steps. 

1. Nitric acid. 70 per cent by volume. was continually pumped 

through the reactor lines for a period of 30 to 40 minutes. 

2. Triple-distilled water was flushed through the lines until the 

water exiting the reactor was of neutral pH. The pH was monitored 

using a color-indicating pH paper. 

3. A vacuum was pulled on the reactor as the temperature of the 

system was gradually raised to normal operating levels. about 550·C. 

4. The vacuum was terminated when the reactor pressure leveled at 

less than 10 microns. Generally the vacuum procedure took from 8 to 12 

hours. 

5. Flow of argon through the reactor was initiated and maintained 

at atmospheric pressure until tests were commensed. 

Care was taken in all pyrolysis tests to prevent exposure of the 

reactor to oxygen at high temperatures. As indicated by a Hersch cell. 
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the level of oxygen in the reactor was at all times less than 2 ppm. 

The rate expression for the disappearance of butane was assumed 

to be of the following form: 

-R - k C
4
H

10 
- [C4H10]m, (12) 

where 

k s A exp [-Ec/RT] (13) 

For a differential reactor, a logarithmic plot of the rate of disap­

pearance of butane against the concentration of butane will allow a 

straightforward determination of m, the order of the overall reaction . 

Figure 17 is a summary of the data taken over the temperature range 535 

to 595°C in an untreated reactor. The order, m, equal to the slope of 

the isotherm, is found to be 1.50 ± 0.05. At the highest temperature, 

595°C, the order is slightly less (1.41 at the higher concentrations 

of butane); however, this most likely was a result of mixing the argon 

diluent and butane at the entrance of the reactor. Over a period of 

several weeks, the data varied less than 5 per cent. 

An Arrhenius plot of the data for the untreated reactor is shown 

in Figure 18. The frequency factor, A, and the activation energy, Ec ' 

of the rate constant were computed as 1.75 X 1017 cc1/2 moles-1/2 sec-1 

and 66.6 kcal mo1e-1, respecti vely. An activation energy of 65.4 kca1 

mole-1 was reported by Bark,er for a gold reactor under similar con­

ditions. Sagert and Laidler (3) observed an activation energy of 

59.9 kca1 mo1e- 1 in a quartz reactor. Conditioning of the 
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vessel or packing with quartz tubing resulted in higher activation 

energies. A value of 62.3 kcat mole-l was given for a packed reactor. 

The product mixture consisted primarily of methane, propylene, 

ethylene and ethane. Hydrogen, present in smaller quantities, could 

not be accurately measured at the low conversions of butane (0.02 to 

0.93 per cent) employed in the tests. Representing less than 1 per 

cent of the total products were l-butene. c-2-butene and t-2-butene. 

No 1, 3-butadiene or propane were observed in the products. 

The distribution of products is shown in Figure 19 as a function 

of the concentration of butane for several temperatures. In each in­

stance, methane and propylene were produced in approximately equal 

molar amounts and together represented from 68 to 71 per cent of the 

major products. The proportion of ethane and ethylene varied with 

temperature and concentration of butane. In Figure 20 is a plot of a, 

the ratio of ethylene to ethane in the products, as a function of tem­

perature and concentration of butane. High temperatures and low con­

centrations of butane favor formation of ethylene. The variation of 

a with temperature and pressure served as a basis for the hypothesis 

of Purnell and Qu1nn (2) that the decomposition of the ethyl radical 

is in its pressure dependent region\ Figure 21. 

The proportion of C2 hydrocarbons in the product mixture is rela­

tively constant throughout the range of butane concentrations for a 

given temperature. The function 8, defined as 
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[C2H4] + [C2H6] 
8 • • 

[CH4J + [C3H6] 
(14 ) 

is plotted against butane concentration for several temperatures in 

Figure 22. Although there is considerable scatter in the data. 8 is 

seen to be a weak function of temperature. The Arrhenius plot of 

Figure 23 reveals an activation energy of approximately 2.33 kcal 

mole-l • 

Although hydrogen could not accurately be measured in the products. 

a mass balance on the major products indicates that hydrogen is pro­

duced according to the following relationship: 

[H2] • 0.50 ([C2H4] - [C2H6]) + 0.75 ( [C3H61 - [CH41 ). (15) 

Asswning equal molar amounts of methane and propylene in the products. 

equation (15) reduces to the following: 

[H2] • 0.5 ( [CzH41 - [C2H61 ) • (16) 

Purnell and Quinn ( 2) observed the formation of hydrogen in agreement. 

within tlO per cent. with the simplified equation. For the present 

work. hydrogen is computed to represent from 3 to 8 per cent of the 

total products. 

The isomers of butene which were detected in the products repre­

sented less than 1 per cent of the total products. Little variation of 

the percentage was observed with changes in temperature or concentra­

tion of butane. 
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Pretreatment of ~ reactor ~ oxygen 

The extent of the reaction was significantly altered after the 

gold reactor had been treated with oxygen. Figure 24 presents results 

obtained after the reactor had been exposed to a stream of pure oxygen 

at 500°C for a period of several hours. 

The rate of pyrolysis was roughly 30 per cent of that in the 

untreated reactor. Composition of the products was comparable to that 

in the untreated reactor. A vacuum of less than 10 microns was exerted 

on the reactor at 580°C in an effort to remove any oxygen that might 

have been adsorbed on the surface. The attempt failed to restore the 

pyrolysis rate to the original level. 

Washing the surface with nitric acid did return the rate of pyrol­

ysis to a level comparable to that in the untreated reactor. However, 

after acid-treatment. operation of the reactor for several days. at 

conversions of butane of near 1 per cent. was necessary in order to 

achieve steady state. The rate of decomposition of the butane. as 

measured by a mass balance on the observed products. is shown in Figure 

25 as a function of time from initial operation of the acid-treated 

reactor. The initial rate of pyrolysis is depressed 50 per cent and 

only after 60 hours of operation did it reach a steady value. No such 

unsteady-state conditions were ever observed in the untreated reactors. 

The composition of the products during the start-up period changed 

drastically. The rates of formation of the various products as a func­

tion of time are presented in Figure 26. Initially 1-butene. t-2-butene 
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• untreated reactor 
o after exposure to "hot" oxygen 
o after exposure to "hot" oxygen 

and vacuum of 10 microns 

6 10 30 60 100 200 
7 -1 Concentration of Butane x 10 , moles cc 

Figure 24. A comparison of the pyrolysis in an untreated reactor, 
before and after exposure to "hot" oxygen. 
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and c-2-butene represented 47 per cent of the products; however, after 

60 hours of operation, they constituted about 5 per cent of the pro­

ducts. This latter value is more in line, although slightly high, 

with that expected in the pyrolysis. The presence of 1.3-butadfene in 

the products is in contrast to the results of the untreated reactor 

although Purnell and Quinn (2) had noted the formation of l,3-buta­

diene in a pyrex reactor. 

Production of methane rapidly increased in the initial stages of 

operation while the yield of propylene slowly increased. This may be 

a result of the deposition of carbon on the wall of the reactor. The 

yield of hydrogen, calculated from a mass balance, represented as high 

as 30 per cent of the products initially but decreased to a value of 

8 per cent when steaqy state was attained. The initial yield may have 

been greater provided carbon was formed during the initial stages of 

the start-up. After steaqy state was attained the composition of the 

products approximated the values for the untreated reactor. 

Apparently exposure of the reactor to oxygen removes a carbona­

ceous layer deposited in previous pyrolyses. Evidence of this was 

noted in the oxygen pretreatment. During the first 15 minutes of 

treatment, carbon dioxide was observed in the oxygen exiting the 

reactor. 

After removing the carbonaceous layer, oxygen is chemisorbed or 

forms an oxide with the impurities in the gold, notably copper and 

silver. Gold, itself, does not chemisorb oxygen nor does it form a 
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stable oxide at the conditions of pyrolyses (49, 50) . The acid-treat­

ment then removes the oxygen from the surface. Kummer (51), working 

with surface potentials, reported that oxygen did chemisorb on the 

impurities in a gold cylinder and that removal of the oxygen and im­

purities could be achieved by repeatedly etching the surface with nitric 

acid and heating to 500°C . 

In the start-up period of the acid-treated reactor, the carbona­

ceous layer is deposited and any acid or water which may have been ad­

sorbed on the surface is removed. The above scheme is plausible and 

consistent with the available data. Studies involving surface meas­

urements and the pyrolysis under controlled conditions would aid in a 

better understanding of the role of the reactor surface. 

Crynes and Albright (52) observed a similar phenomena associated 

with the cracking of propane at 700°C after their stainless-steel re­

actor had been pretreated with oxygen. A reduction in the rate of 

pyrolysis of propane was initially observed; however, after 140 minutes 

of operation, values of conversion and product composition approximated 

those of runs in untreated stainless-steel reactors. The rapid return 

to kinetics comparable to the untreated reactors is probably a result 

of the high conversions (30 to 40 per cent) of propane employed. Mate­

rial balances during the early operation of the treated reactor always 

indicated less carbon leaving than entering the reactor. This con­

firmed the formation of carbon or a carbonaceous layer in the reactor. 

Formation of cracked hydrocarbons steadily increased during the start-



-81-

up period but hydrogen decreased from 50 per cent to 8 per cent of the 

total products. This was comparable to the situation for the gold 

reactor. 

Pyrolysis ~~ stabilized acid-treated reactor 

After the rate of pyrolysis had reached a steady value in the 

acid-treated reactor, a series of tests were conducted for a comparison 

of the kinetics with that of the untreated reactor. Temperatures from 

535 to 595-C and total pressures near atmospheric were used in the 

tests. The rate of decomposition of the butane is shown in Figure 27 

as a function of the concentration of butane. The order of the reac­

tion with respect to butane was 1.51 t 0.03 over the entire range of 

experimental conditions. In these runs. the butane and argon were 

primarily premixed. As a result the order for the highest temperature 

did not decrease at the lower concentrations of butane. Within the 

accuracy of the data. the order was identical to that observed in the 

untreated reactor. 

The variation of the pyrolysis rate with temperature is presented 

in Figure 28 for a concentration of butane of 9.0 X 10-6 mole cc- l • An 

activation energy of 63.3 kcal mole- l was computed, a frequency factor 

of 2.45 X 1016 ccl / 2 mole- l / 2 sec-l • The activation energy is slightly 

less than the 66.6 kcal mole-l for the untreated reactor. Hence the 

reaction was found to be less sensitive to temperature in the acid­

treated reactor. The variation among reactors of the same type is often 

3 kcal mole- l • Barker and Corcoran ( 1) reported a value of 66.0 kcal 
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mole-l for an acid-treated gold reactor of the same dimensions (SlY • 

64 in-l ) as the present reactor. For chain reactions possessing long 

chains. the order and apparent activation energy of the overall reac­

tion are dete~ined by the dominant chain te~inating processes. Thus 

it may be concluded that termination of the chains occur by similar 

processes in both the untreated and acid-treated reactors. This is 

not surprising for a reaction that is considered to proceed primarily 

in a homogeneous manner. 

The distribution of the products was also similar for the acid­

treated and untreated reactors. The data were not as consistent in the 

acid-treated reactor. Methane and propylene were formed in approxi­

mately equal yields at concentrations of butane above 8.0 X 10-6 moles 

cc-l • 

In several cases at lower concentrations of butane and particu­

larly in the early runs in the ·stabilized· reactor. methane was formed 

in much greater amounts than was propylene. This is shown in Figure 

29. As may be seen when comparing Figure 29(a) and Figure 29(c). the 

yields of methane and propylene became closer with aging of the reactor. 

It is likely that although the rate of pyrolysis had reached a steady 

value. the product mix was still affected by the reactor pretreatment 

and acid-wash. Crynes and Albright (52) reported that the oxygen­

treated surface catalyzed the pyrolysis of ethylene and espectally 

propylene. If in the present work the ·excess· methane is assumed to 

be formed at the expense of propylene (on a carbon basis). the calcu-
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lated product distribution is the same as that for the untreated re­

actor. 

Barker and Corcoran ( 1 ) reported identical product composition 

for the reaction in untreated and acid-treated reactors. It is highly 

probable that with continued operation of the acid-treated reactor of 

the present work. the product mix would approach that for the untreated 

reactor. The distribution of products for long chains is primarily 

determined by the propagation steps. Therefore. the propagating se­

quence may differ slightly on the two surfaces in the early periods of 

operation. In aged vessels the propagation steps are more nearly the 

same for untreated and treated reactors. Possibly this is a result of 

a carbonaceous coating of the wall of the reactor in both cases. 

Figure 30 shows a • the ratio of ethylene to ethane in the pro­

ducts. as a function of the concentration of butane for several temper­

atures. The curves are strikingly similar to those of Figure 20 for 

the untreated reactor. Barker and Corcoran ( 1 ) indicated that the 

function a exhibfted a maximum at a concentration of butane near 

2.0 X 10-6 mole cc- l • A possible explanation migbt lie in the care 

that must be exercised in the measurement of the ethane concentration 

at the extremely low conversions of butane (O.05 per cent) below a 

concentration of 1.0 X 10-6 mole cc-1• Measurement of the products 

on the chromatographic column of Barker was difficult under these con­

ditions. Using a column of Porapak Q. sensitivity of the analysis was 

increased with respect to both ethane and ethylene. In the present 
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work. measurements were made using both columns. and in light of the 

data. no maximum in the function 0 was found at the lower concentra­

tions of butane. 

An Arrhenius plot of the function (o -1) yields values of the 

activation energy between 16 and 18 kcal mole- l . These m~ be com­

pared with an average value of 19.5 kcal mole- l for the untreated 

reactor. Within the limits of error, ±2 kcal mole- l , these are in 

good agreement. The proportion of C2 hydrocarbons in the products is 

presented in Figure 32. As in the case for the untreated reactor, the 

function, IJ. is nearly constant for a given temperature and is weakly 

a function of temperature. In the instances where methane was formed 

in excess of propylene. the values of IJ decreased. The average value 

of IJ for the acid-treated reactor is 0.45. in reasonable agreement 

with the value of 0.44 observed in the untreated reactor. Sagert and 

Laidler ( 3) reported values near 0.54 for their work in a quartz 

reactor. 

In summary. studies conducted in the untreated reactor and in the 

acid-treated reactor are very similar. An exception is to be noted 

in the early stages of operation of the acid-treated reactor. The 

reaction is seen to be sensitive to the condition of the surface of 

the reactor. Nevertheless, the majority of the decomposition is be­

lieved to occur homogeneously in the gas phase. A comparison of this 

work with the work of previous investigators is given in Figure 33. 

The data for the untreated and acid-treated reactors (S/V • 64 in-l) 
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are in good agreement with respect to the variation among workers. The 

data of Sagert and Laidler (3), using a quartz reactor with S/V • 1.7 

1n-l • also agrees with the present work. As Barker and Corcoran ( 1) 

were using a stagnant thermostat, the difference in the present work 

and that of Barker is believed to be primarily a difference in the 

measured temperature for the reaction. 

The mechanism of the pyrolysis of n-butane 

The pyrolyses of hydrocarbons are recognized as free-radical chain 

reactions. Rice ( 4) was first to propose the free-radical nature of 

the reaction. Others including Sagert and Laidler (3). Wang and 

Corcoran (15). Purnell and Quinn ( 2) and Barker and Corcoran ( 1 ) have 

presented mechanisms based on the concepts of Rice. 

Free-radical reactions are easily discussed in terms of three dis­

tinct phases: initiation, propagation and termination. Initiation of 

the chains in the pyrolysis of butane is considered to be the homolytic 

decomposition of butane into two free radicals. Only a small percentage 

of the total butane which reacts is attributed to the initiation se­

quence. Decomposition of the butane primarily takes place in the prop­

agation steps. The propagation reactions are recognizable in that free 

radicals are consumed and regenerated. Free radicals may be divided 

into two classes according to the type of propagation reactions in which 

they participate. Those that undergo monomolecular propagation steps 

are referred to as p radicals. Free radicals involved in bimolecular 

propagation reactions are termed Y radicals. The disappearance of 
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butane is primarily achieved by the reaction of butane with a Y radical. 

Chains are terminated with the recombination of free radicals. 

The lengthy mechanism proposed by Wang and Corcoran (15) is perhaps 

more nearly representative of the actual reaction than condensed schemes. 

The mechanism provided for secondary reactions of the products as well 

as additional alternative paths for free-radical participation by reac­

tion. A serious disadvantage of such a mechanism is the difficulty in 

treating the mechanism mathematically. In an effort to present a mech­

anism that is in agreement with a majority of experimental results and 

one whose consequences may be easily derived. a condensed mechanism is 

given below. This mechanism is similar to that proposed by Purnell 

and Quinn ( 2) and Barker and Corcoran ( 1 ). 

Initiation: 

Propagation: 

C4H10 - C2H5' + C2H5' 

C4HlO- C3H7' + CH3' 

C2H5' + C4HlO - C2H6 + C4H9' 

CH3' + C4HlO - CH4 + C4H9' 

C4H9' - C2H4 + C2H5' 

C4H9' - C3H6 + CH3' 

C4H9' - C4H8 + H' 

C2H5' - C2H4 + H' 

H' + C4HlO- H2 + C4H9' 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 



Tennina ti on: 

-95-

C
3
H

7
·-C

3
H

6 
+ H· 

C3H]" - C2H4 + CH)' 

C2H5' + C2H5'-C2H4 + C2H6 

C2H5· + C2H5' - C4H10 

(10 ) 

(11 ) 

(12) 

( 13) 

Trotman-Dickenson (53) has estimated that step (1) is approxi­

mately 4 kca1 mo1e-1 more favorable than step (2). This being the 

case, initiation by the fi rst-order decomposition of butane into two 

ethyl radicals would predominate. Propyl radicals are generated only 

in initiation of the chains, Consequently, the concentration of propyl 

radicals, assuming long chains, should be extremely low and steps (9) 

and (10) should have little effect on the overall product distribution, 

The recombination of two ethyl radicals is considered the pre­

dominate chain breaking process, Laidler and Wojciechowski (54) have 

recently shown that the recombination of two methyl radicals and the 

recombination of a methyl and ethyl radical are in their third order 

region at the conditions of pyrolysis . 

According to the scheme of Goldfinger, Letort, and Nic1ause (55), 

overall kinetics of three-halves is predicted for a free-radical reac­

tion which involves a first-order initiation and YYrecombination, The 

ethyl radi ca 1 is cons i de red primari 1y as a Y radi cal since step (3) 

is more rapid than step (8), Support for this mechanism is its agree­

ment with the kinetics of three-halves order observed experimentally. 
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The assumption of steady state is frequently applied to the free 

radicals of the pyrolyses of hydrocarbons. Steady state implies that 

the concentration does not change with time. Numerical proof of the 

validity of the assumption of steady state as it applies to the pyroly­

sis of butane is given in Appendix D. Making use of the steady-state 

hypothesis. relationships may be derived which predict the experimental 

kinetics of the pyrolysis. 

The rate of pyrolysis of the butane is predicted as follows from 

the mechanism: 

Approximate values of the rate constants are tabulated in Appendix D. 

Considerable variation in the value of several of the rate constants 

may be found in the literature. Substitution of the rate constants 

evaluated at 519°C into equation (17) reveals that the three-halves­

order tenn is dominant although the one-half-order tenn contributes 

about 30 per cent to the overall rate. This percentage was calculated 

using the high-pressure or first-order rate constant for step (8). the 
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decomposition of the ethyl radical. Purnell and Quinn (2) postulated 

that the decomposition of the ethyl radical is in its second-order 

region. Loucks and Laidler (56) later experimentally confirmed this 

fact. This being the case. kS was overated in the above calculation. 

Thus the contribution to the overall rate from the one-half order term 

is less than 30 per cent. Experimentally. the reaction is precisely 

three-halves order. 

The activation of the overall reaction may be estimated from the 

three-halves order term of equation (17). Insertion of the activation 

energies of Appendix 0 into the three-halves order term predicts a 

value between 50.4 and 59.4 kca1 mole-1• If the values of Purnell and 

Quinn ( 2) are used for activation energies. the apparent activation 

energy is predicted to be between 58.5 and 67.5 kca1 mo1e-1• The latter 

spread is in better agreement with the experimentally observed values 

of 63.3 kca1 mo1e-1 for the acid-treated reactor and 66.6 kca1 mo1e-1 

for the untreated reactor. 

Assuming long chains. an expression may be obtained from the 

mechanism which relates the ethylene and ethane yields in the products: 

A plot of the function ( a - 1)[C4H10] should be independent of the 

concentration of butane. Figure 34 is a display of the data at 595°C 

for pyrolysis in the untreated reactor. Indeed the function (a-1) 

[C4H,O] is found to be dependent on the concentration of butane. This 
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Figure 34. Variation of the function (a-1)[C4HlO] as a func­
tion of the concentration of butane. 
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result led Purnell and Quinn (2) to postulate that step (8), the 

monomolecular decomposition of the ethyl radical, was in its pressure 

dependent region. Thus k8 would be a function of the pressure or 

concentration of the activating species. 

The present work was performed at a constant total pressure near 

15 psia by use of an inert gas, argon. The efficiency of argon in 

transferring energy for step (8) must be less than 5 to 10 per cent of 

that for butane. Argon possesses an efficiency of 7 per cent that of 

cyclopropane in the isomerization of cyclopropane at 492°C (57). Data 

for butane were not available. However, it is generally accepted that 

the inert gases are relatively inefficient and that the efficiency of 

energy transfer increases to a limit with increasing complexity of the 

molecule. Therefore, it is probable that the monomolecular decomposi­

tion of the ethyl radical is in its pressure dependent region. 

Undoubtedly the C4H9• radicals are present as both primary and 

secondary radicals. The C4H9• are formed by abstraction of a hydrogen 

atom from butane. In abstraction, s-C4H9· are actually formed more 

easily than P-C4H9·. Kuppermann and Larson (58) estimated that ratio 

of rate of primary abstraction to secondary abstraction is 

k 
~ = 2.43 exp [-2640/RT] 

s 

According to McNesby and Gordon (59), the ratio is 

k 
~ = 1.50 exp [-2100/RT] 

s 

(19) 

(20) 
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At 595°C, these equations yield values of kp/ksof 0.52 and 0.44 re­

spectively. Step (5) occurs most likely through a P-C4H9' and step 

(6) through a S-C4H9·' Assuming that the rates of steps (5) and (6) 

are fast compared to the interconversion of the P-C4H9' and S-C4H9', 

the ratio of the C2 hydrocarbons to the methane and propylene in the 

products, defined as B. should be comparable to the relative abstrac­

tion rates. For the untreated reactor, a value of 0.457 was observed 

at 595°C. In addition the activation energy for the function B was 

computed to be 2330 cal mole- l in good agreement with the above work. 

The yields of methane and propylene are predicted to be equal 

from the mechanism. This was experimentally verified in the case of 

the untreated reactor and in the case of the aged acid-treated reactor. 

No distinction was made among l-butene, c-2-butene and t-2-butene 

in the mechanism. The formation of butenes is related to the yield of 

propylene by the following equation: 

[C3H6] k6 
" -

[C4Ha] k7 

The decomposition of C4Hg' by loss of hydrogen is known to be much 

slower than the decomposition involving severance of a carbon-carbon 

bond. However. much doubt exists to the exact values of k6 and k7. 

Using values from Appendix D, the concentration of the butenes in the 

products should be approximately one-sixth of the propylene concentra­

tion or about 5 per cent of the total products. This was in agreement 
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with the results in the acid-washed reactor~ however, total butene 

concentration was never greater than 2 per cent in the untreated re­

actor. Sagert and Laidler estimated that the activation energy for 
-1 1 step (7) was about 40 kca1 mole as compared with 31 kca1 mo1e-

listed in Appendix D. Assuming the higher activation energy, butenes 

should represent only about 0.1 per cent of the total products. An 

accurate value for the rate constant of step (7) would greatly con­

tribute to an understanding of the mechanism and the minor products of 

the reaction. 

In summary, the proposed mechanism is in reasonable agreement 

with the observed kinetics of the pyrolysis. Product distribution can 

be approximated on the basis of the mechanism. The limited accuracy 

with which the rate constants of the elementary reactions are known. 

however, limits an accurate and complete comparison of the mechanism 

and the experimental results. 
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Pyrolysis of Butane in the Presence of Trace Amounts of Oxygen 

Oxygen was observed to have a significant effect on the rate of 

decomposition of butane. In this section are discussed the experi­

mental observations obtained when pyrolyzing butane in the presence of 

trace quantities of oxygen. The term "trace quantities of oxygen" 

refers to amounts small enough that the oxygen is totally consumed in 

a small fraction of the time in the reactor. Concentrations of oxygen 

in the inlet mixture to the reactor were varied from 7 to 870 ppm, 

with primary emphasis on the area below 50 ppm. 

For a given inlet concentration of oxygen, the composition of the 

products of the reaction was studied as a function of temperature and 

concentration of butane. Temperatures from 535 to 625°C were employed 

and the concentration of butane was varied from 4 X 10-7 to 8 X 10-6 

moles cc- 1. The total pressure of the reactor was maintained between 

15 and 16 psia. All tests were conducted in a gold microreactor of 

S/V = 32 in- 1 which had repeatedly been acid-washed and heated to 500°C 

to remove oxidizable impurities present in the gold. 

Distribution of hydrocarbon products 

Paraffins and olefins observed in the pyrolysis of butane were 

also found in the oxidative pyrolysis. In addition small amounts of 

water were present at all levels of oxygen. Above initial concen­

trations of oxygen of 400 ppm, carbon dioxide was also detected in 

the products. 
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The relative yields of the hydrocarbon products are shown in 

Figure 35 as a function of the initial concentration of oxygen for a 

temperature of 595°C. The concentration of butane was fixed at 7.15 X 

10-6 mole cc- l , and the product distributions were recorded for resi-

dence times of 2.6 sec. Conversions of butane were less than 1.2 per 

cent. 

Increasingly larger fractions of 1-butene, t-2-butene, c-2-butene, 

and 1.3-butadiene appeared in the products as the oxygen level in the 
I 

reactants was increased. Butenes constituted less than 2 per cent 

of the products for the pyrolysis in the absence of oxygen. At an 

initial oxygen level of 870 ppm, the butenes represented 17.5 per cent 

of the hydrocarbon products. l,3-Butadiene comprised 1.5 per cent of 

the products, and traces of 1-pentene were detected in the product~. 
I 

The latter two compounds were not observed during the pyrolysis of 

butane in the absence of oxygen at conversions of butane below 2 per 

cent. Accompanying the relative increase of C4 and C5 olefins were 

decreases in the methane, propylene, ethylene. and ethane fractions. 

Figures 36 and 37 show the variation of the products as a func­

tion of the concentration of butane for 595 and 555°C. respectively. 

The concentration of oxygen in the inlet mixture was 14.5 ppm in each 

case. The relative proportion of the C4 olefins rapidly decreased 

with increasing concentration of butane. On the other hand, the rela­

tive proportions of methane, propylene, ethylene, and ethane increased 

with increasing concentration of butane. This rapid change of product 
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Figure 36. Distribution of hydrocarbon products at 595°C as a 
function of the concentration of butane. 
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composition with concentration of butane was noted to be more severe 

at higher temperatures. These observations may be explained by con­

sideration of the competitive pyrolysis and oxidative dehydrogenation 

of the butane. Butenes and water are the main products of the dehy­

drogenation while the lower-mo1ecu1ar-wefght olefins and paraffins 

primarily result from the pyrolysis. The pyrolysis. possessing an 

activation energy of 65 kca1 mole- l • is much more sensitive to temper­

ature changes than is the process of dehydrogenation. activation energy 

of 23 kcal mole-1• At the higher temperatures the cracked products 

are formed more rapidly than the butenes. Consequently. the rapid 

change in product composition occurs at lower concentrations of butane. 

Once the oxygen has been completely consumed. incremental increases 

in the yield of butenes result from their role as a minor product in 

the pyrolysis. The selectivity of the overall reaction with respect 

to the butenes would be expected to increase with higher initial oxygen 

concentrations. lower concentrations of butane and relatively low tem­

peratures. This is in agreement with the experimental observations. 

The formation of C4 olefins as a function of the oxygen concen­

tration is shown in Figure 38 for 595°C. For a residence time of 2.6 

sec, the average rate of formation of the C4 olefins was approximately 

proportional to the square root of the initial concentration of oxygen. 

The data shown are for a concentration of butane of 7.15 X 10-6 moles 

cc-1• Similar data were obtained for other butane concentrations. 

If the only products of the reaction between oxygen and butane 
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are C4 olefins and water, the molar ratio of the yield of C4 olefins 

to the oxygen level of the reactants should be relatively independent 

of the inlet oxygen level. A plot of this ratio against the inlet 

oxygen level is given in Figure 39 for a concentration of butane of 

7.15 X 10-6 moles cc-1 and 595°C. Indeed the ratio was not independent 

of the oxygen concentration. At the lower concentrations of oxygen, 

butenes are the primary result of the interaction of oxygen with the 

butane. However, as the concentration of oxYgen increases, alternate 

reactions between oxygen and the hydrocarbon become significant. These 

include the formation of carbon oxides as well as ethylene from the 

reaction with ethyl radicals. 

Distribution of cracked products 

Methane, ethane, ethylene and propylene are referred to as the 

cracked products because these are the primary products of the pyroly­

sis of butane in the absence of oxygen. It is interesting to compare 

the relative yields of the cracked products for the pyrolysis in the 

presence and absence of oxygen. Product distributions for the pyroly­

sis in the absence of oxygen were presented in Figure 19 of the pre­

ceding section. In Figure 40 are given the distributions of the 

cracked products as a function of the concentration of butane at 595°C 

for the reactants containing 14.5 and 8.0 ppm of oxYgen. The curves 

are similar to those for the pyrolysis in the absence of oxygen with 

two exceptions. In the presence of oxygen, methane was formed in 

slightly greater yields than was propylene. As the concentration of 
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oxygen was increased, the relative yield of ethylene increased above 

that expected from the normal pyrolysis. The increase in formation 

of methane was also observed by Nic1ause, et a1, (22) in studies of 

the pyrolysis of propane, isobutane and isopentane in the presence of 

oxygen. 

A plot of a, the ratio of ethylene to ethane in the products, 

against the concentration of butane is given in Figure 41. The inlet 

oxygen level was recorded as 14.5 ppm. The isotherms possess the same 

characteristics as observed for the pyrolysis in the absence of oxygen. 

Thi s inc1 udes a rapi d increase in a at the lower concentrati ons of 

butane. 

The distribution of the cracked products was relatively inde­

pendent of the initial concentration of oxygen. Data for a concen­

tration of butane of 7.15 X 10-6 moles cc-1 and 595°C are presented 

in Figure 42. The proportion of C2 hydrocarbons in the cracked pro­

ducts was approximately that for pyrolysis 1n the absence of oxygen. 

The function P , defined as the ratio of the concentrations of ethane 

plus ethylene to the concentrations of methane plus propylene, varied 

between 0.44 and 0.51 for the pyrolysis in the presence of oxygen. 

In the absence of oxygen, fJ varied between 0.42 and 0.47. In Figure 

43 are presented values of a and P as a function of the initial 

concentration of oxygen. The function P was independent of the ini­

ti al concentrati on of oxygen; however, a was observed as a weak func­

tion of the concentration of oxygen. The increase of a with increasing 
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oxygen concentration is suggested to arise from the reaction of oxygen 

with the ethyl radicals as follows: 

The similarities of the distributions of the cracked products for 

the pyrolysis in the absence or presence of oxygen is taken as evidence 

that these products are primarily formed by the same mechanism. That 

is to say, the cracked products resulting from the pyrolysis in the 

presence of oxygen are mainly formed from the chain reaction of alkyl 

radicals. The interaction of oxygen with the alkyl radicals leads to 

slightly higher yields of methane and ethylene in the oxidative py­

rolysis. 

Rate of the formati on of c racked products 

Assuming that the propagation steps are approximately the same 

for the formation of the cracked products in the absence or presence 

of oxygen, it is interesting to observe the effect of trace amounts of 

oxygen on the overall rate of formation of these products. Treating 

the reactor differentially, the rates of disappearance of butane based 

on the yields of the cracked products were calculated. These data are 

shown in Figure 44 as a function of the concentration of butane for an 

initial concentration of oxygen of 14.5 ppm. The order of the overall 

reaction was 1.50 ± 0.03 in agreement with the normal pyrolysis. The 

Arrhenius plot of Figure 45 reveals an activation energy of 81.3 kcal 

mole- l , considerably greater than the 63 to 66 kcal mole- l observed 
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in the absence of oxygen. The net result is a reduction in the rate 

of formation of the cracked products in the presence of oxygen. The 

dominant initiation and termination steps influence the overall order 

of the reaction and the apparent activation energy. The presence of 

oxygen m~ influence both the initiation and termination steps. 

Chain initiation is possible by the reaction of oxygen and butane 

to form butyl and hydroperoxide radicals. This process is 30 to 35 

kcal mole- l more favorable than the homolytic decomposition of butane. 

However, at the high temperatures of pyrolysis and with quantities of 

oxygen in the ppm range, the homolytic decomposition of butane is 

thought to predominate. 

The reaction of oxygen with an alkyl radical represents termina­

tion of chains which may lead to the cracked products. A reduction 

in the number of chain propagating radicals results and consequently 

a lower overall rate of reaction. Destruction of oxygenated free radi­

cals on the surface of the reactor m~ also contribute to the reduction 

in the overall rate of the decomposition of butane. 

Inihibition or acceleration 

Niclause. et al. (22) found that the pyrolysis of propane. 1so-

butane or isopentane in the presence of oxygen was drastically effected 

by the nature and extent of the surface of the reactor. Oxygen was 

observed to inhibit or accelerate the rate of decomposition of the hy­

drocarbon depending on the conditions of the reactor. In pyrex reactors 
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of relatively low surface-to-volume ratio (SlY - 2.0 in- l ), the pre­

sence of oxygen accelerated the reaction whereas at higher surface-to­

volume ratios inhibition was noted. Treatment of the surface of the 

reactor with PbO was also shown to effectfvely inhibit the reaction 

in the presence of oxygen. 

As gold tubing of inside diameters greater than 0.125 inch was 

not available commercially, it was impractical to study the reaction 

in gold reactors of SlY < 32 in- l • For a gold reactor of S/Y-32 in- l , 

the initial rate of decomposition of butane in the presence of oxygen 

was depressed in agreement with the work of Niclause. Data are shown 

in Figures 46 and 47 for temperatures of 595°C and 535°C respectively. 

At the lower temperature, the conversion of butane was approximately 

0.03 per cent for a residence time of 2.6 sec. At such low conver­

Sions, measurement of the yields of products was difficult. Conse­

quently, only a few points were taken in this region. 

In each case, a significant depression of the reaction was noted 

for traces of oxygen less than 7 ppm. Depression of the pyrolysis in 

a reactor which had been exposed to oxygen was discussed earlier. By 

comparison with the pyrolysis in presence of 0 to 10 ppm of oxygen, 

it is concluded that the oxygen is probably consumed in the removal 

or partial removal of a carbonaceous layer that had been deposited on 

the wall of the reactor during pyrolysis. 

It is commonly assumed (37, 66) that peroxy radicals, which m~ 

be formed by the direct combination of alkyl radicals and oxygen, are 
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more easily destroyed on the wall of a reactor than are alkyl radicals. 

This being the case, a reduction in the rate of decomposition of butane 

in the presence of o~gen would be expected in reactors of relatively 

high surface-to-volume ratio. As noted by Purnell and Quinn (60), 

the inhibition processes of the pyrolyses of hydrocarbons may be ex­

tremely complex and depend on the physical conditions as well as the 

identity of the reactants. 
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Oxidative Dehydrogenation of Butane 

The reaction between oxygen and butane in the temperature range 

470 to 595°C was examined in a gold microreactor, SlY • 32 in- l • The 

surface of the reactor had been acid-stabilized as discussed in the 

previous sections. Initial concentrations of butane were varied from 

0.6 X 10-6 to 7.5 X 10-6 moles cc- l while the oxygen content of the 

feed was varied from 400 ppm to 1 per cent by volume. 

In all runs, the conversion of butane was less than 1 per cent; 

the conversion of oxygen varied from 5 to 100 per cent. The total 

pressure was maintained between 14.8 and 16.5 psia in all tests. 

Distribution of products 

The primary products of the initial reaction were l-butene, 

t-2-butene, c-2-butene and water. The formation of carbon dioxide 

increased rapidly with increasing contact times in the reactor. Ethy­

lene, l,3-butadiene, propylene, methane and ethane were also noted in 

the products. Carbon monoxide, which could be detected in concentra­

tions as low as 200 ppm, was not found in the products. 

The formation of water was calculated from a mass balance on 

oxygen, assuming that only water and carbon dioxide were formed from 

the oxygen. All other products were measured. Water could be measured 

chromatographically; however, for initial concentrations of oxygen of 

1 per cent, the water analysis erratically yielded from 40 to 80 per 

cent of the amount predicted by a mass balance. For initial concen­

trations of oxygen of 400 ppm, the chromatograms indicated more water 
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than would result from 100 per cent conversion of the o~gen. It was 

concluded that water was condensing in the lines leading from the 

reactor. Evidence for this was the collection of water in the mano­

stat during oxidation runs. 

The formation of products as a function of space time are given 

in Figure 48 for 515°C. an initial concentration of oxygen of 9810 ppm 

and a concentration of butane of 2.3 X 10-6 moles cc-1• These data 

are representative of all the runs. Of interest was the non-linear 

production of the C4 unsaturates with space time. In large part. this 

was a result of the decreasing concentration of oxygen as the space 

time increased. However. the possibility of further reactions of the 

butenes is suggested. The formations of butenes were not observed to 

exhibit maxima with increasing space time as were noted by Barker and 

Corcoran ( 1 ) • The maxi rna would be considered evidence of secondary 

reactions of the butenes. 

The molar distribution of the products are shown in Figures 49. 

50 and 51 as a function of space time and initial concentration of 

oxygen. In these figures. the percentage of water in the products is 

found by subtracting the total percentage of products shown from 100. 

The following conclusions m~ be drawn from a comparison of the three 

figures: 

1. The relative formations of water and carbon dioxide increased 

rapidly with increasing space time and increasing concentrations of 

oxygen. 
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Figure 48. Formation of the products of the oxidative dehydro­
genation of butane as a function of space time. 



+-> 
c: 
<II ::s ..... 

l+-
I+-
UJ 

c: .... 
<II 
c: 

'" +-> ::s 
co 
I+-
0 

en 
<II ..... 
0 
~ 

0 
0 ..... 
~ 
<II 
0.. 

+-> 
U ::s 
~ 
0 
~ 

D-

en 
<II ..... 
0 
~ 

-127-

T=515°C 

0.06 
PTzz15.5 psia 
[C4H10]c2.3 x 10-6 moles cc-1 

[02}i =9810 ppm 
S/V:s32 in-1 

0.05 

0.04 

C3H6 

0.03 

0.02 

0.01 

Space Time, sec 

Figure 48. cont'd. Formation of the products of the oxidative 
dehydrogenation of butane as a function of space time. 
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Figure 48. cont'd. Formation of the products of the oxidative 
dehydrogenation of butane as a function of space time. 
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2. The fractions of butenes in the products decreased with in­

creasing space time. 

3. The relative formations of methane. ethane. ethylene and 

propylene increased with increasing contact time; however, the fraction 

of these compounds in the products decreased with increasing concen­

trations of oxygen. 

These trends are consistent with the concept that the product 

distribution is primarily determined by the reactions of the alkyl 

radicals. On the one hand. decomposition of the butyl radicals leads 

to formation of the cracked products as in the pyrolysis. On the other 

hand. reaction of butyl radicals with oxygen result in the formation 

of C
4 

olefins. 

In order to study the decomposition of the butane into various 

products. it is more instructive to examine the carbon selectivity of 

the products. The carbon selectivity of a given product is defined 

as its share of the total carbon appearing in the products. In Figures 

52 through 60. the carbon selectivities of the various products are 

given as functions of temperature. space time and concentrations of 

oxygen and butane. 

In Figures 52. 53. 54 and 55 the selectivities are shown as a 

function of space time for various initial concentrations of oxygen. 

In each figure. the selectivities for the butenes decreased as the 

space time increased. The selectivity for carbon dioxide increased 

rapidly with space time to a maximum limit. The maximum corresponded 
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Figure 52. Carbon selectivity as a function of space time for T=515°C, 
[C4H10]=2.30 x 10-6 moles cc-1 and [02]i=9810 ppm. 



-134- ' 

T-515°C 
PT-15.5 psia 

60 [C4H10]-2.31 x 10-6 moles cc-1 

[02]f-4000 ppm 
S/V=32 fn- 1 

50 

.... 
c:: 
(II 
u 
~ 

40 (II 
c.. 

R 

i' 1-C4HS or-
> .... .... 
u 
(II 30 r-
(II 

VI 

c:: 
0 

of 
<U 

U 

20 

-10 • • • c-2-C4HS 
C3H6 • 

;:- C2H4 g 
l,3-C4H6 

2 4 6 S 10 12 14 16 
Space Tfme, sec 

Figure 53. Carbon se1ectfvi~ as a functfon of space tfme for T=515°C, 
[C4H10]=2.31 x 10-6 moles cc-1 and [02]f-4OOO ppm. 



60 

50 

-tJ 
c: 
IV 
U 

'- 40 IV 
c.. 
~ 

~ ..... 
> ..... 
-tJ 
U 
IV 30 .... 
IV 

V') 

c: 
0 

of 
10 

U 

20 

10 

-135-

T=515°C 
PT=15.5 psia 
[C4H10]=2.33 x 10-6 moles cc-1 

[02]i=990 ppm 
S/V-32 in-1 

C2H4 

: ! 
2 4 6 

Space Time, 

CO2 

c-2-C4Ha 

: CH4 

sec 

Figure 54. Carbon selectivity as a function of space time for T=515°C, 
[C

4
H

10
]=2.33 x 10-6 moles cc-1 and [02]i~990 ppm. 



...... 
c: 
<IJ 
U 

60 

50 

s... 40 
<IJ 
C. 

.~ 

> 
.~ 

...... 
U 
<IJ 30 .... 
QI 

V') 

c: o 
of 
ro 

u 
20 

10 

-136-

T=515°C 
PT",15.7 psia 
[C4H10]=2.18 x 10-6 moles cc-1 

[02]i=375 ppm 
S/V=32 in-1 

---
• 

2 4 6 8 10 
Space Time, sec 

12 

Figure 55. Carbon selectivity as a function of space time for T=515°C, 
[C

4
H

10
]=2.18 x 10-6 moles cc-1 and [°2];=375 ppm. 
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Figure 56. Carbon selectivity as a function of space time for T=515°C, 
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to complete conversion of the oxygen. Consequently, for lower initial 

concentrations of oxygen, the maximum level was reached at shorter 

contact times. At 515°C, the formation of C4 olefins in preference 

to the cracked products was so favorable that for an initial concen­

tration of oxygen of 9810 ppm the total selectivity of the cracked 

products was less than 10 per cent. 

The effect of varying the concentration of butane may be seen by 

a comparison of Figures 52, 56, 57 and 58. Increased concentrations 

of butane effectively resulted in an increased rate of consumption of 

the oxygen for a given residence time. This was reflected in the 

selectivities by a decrease in the carbon dioxide value and increases 

in the values for the other products. The fact that the selectivity 

of l-butene increased with an increase in the concentration of butane 

may be explained by assuming that an increased amount of oxygen was 

used in reaction with the butane. This would leave less oxygen avail­

able for secondary reactions with the olefin products to form carbon 

dioxide. Since both the selectivities of the C4 olefins and the 

cracked products increased in roughly the same proportion with in­

creasing concentration of butane, the possibility of the same kinetic 

dependence on butane was suggested for the two processes. As was 

previously shown, the formation of the products of the pyrolysis obey 

three-halves order kinetics with respect to the concentration of 

butane. 

The effect of temperature may be gauged by a comparison of Figures 
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52, 59 and 60 which report the carbon selectivities for a given reac­

tant mixture at 515, 555 and 485°C respectively. At 485°C, the carbon 

products were essentially C4 unsaturates and carbon dioxide. At 485°C, 

the sum of selectivities for the cracked products was less than 1 per 

cent. In contrast, at 555°C this sum was approximately 32 per cent. 

The relative formation of cracked products increased markedly with 

increasing temperature. From these observations, it may be concluded 

that the activation energy of the process forming the cracked products 

is much greater than that of the process involving butene formation. 

Of interest was the result of extrapolation of the selectivities 

to ~ = O. In all of the cases the yield of carbon dioxide would be 

approximately zero. Thus, the consumption of oxygen in the initial 

reaction would result in complete conversion to water. The initial 

hydrocarbon products would appear to be primarily 1-butene, t-2-butene 

and c-2-butene. 1,3-Butadiene would be formed to a lesser extent. 

Only at temperatures above 550°C would the cracked products constitute 

a significant fraction of the products of the initial reaction. 

Relative formation of the ~ unsaturates 

The relative molar formations of l-butene, t-2-butene, c-2-butene 

and 1.3-butadiene are presented in Figure 61 for 515°C. The data were 

taken for concentrations of butane from 2.18 X 10-6 to 7.51 X 10-6 

moles cc- l and initial concentrations of oxygen from 375 to 9810 ppm. 

As may be noted, the relative composition of the C4 unsaturates was 
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Figure 61. Relative formation of C4 unsaturates as a function of space 
time for the oxidative dehydrogenation of butane. 
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independent of the concentrations of butane and o~gen in the range 

studied. 

Assume for the moment that the butenes were formed only by reac­

tion of primary and secondary butyl radicals which had been formed by 

the abstraction of a hydrogen from butane. This could be diagramed 

as foll~s: 

~. ka 
+ °2- H02 + ~ (a) 

~ kb 
• + O2 - H02 

• + ~ (b) 

k 
+~ ~+02~H02 ( c) 

k 

+~ ~+02~H02 ( d) 

Further assume that isomerization of p-C4Hg' to s-C4Hg' is slow. 

Benson (61) has estimated that this isomerization would have to proceed 

intramolecu1arly thr?ugh a four-centered transition state. The strain 

energy associated with such a ring is 27 kcal mo1e- 1. This coupled 

with an energy of 8 kcal mole- l for the abstraction of a hydrogen atom 

would yield an activation energy of at least 35 kcal mole- l • Thus it 

would seem probable that the radical isomerization is slow. 

Kupperman and larson (58) and McNesby and Gordon (59) observed 

that at 515°C the relative rates of abstraction of primary to secondary 

hydrogens were 0.45 and 0.40 respectively. Taking a value of 0.43 for 

kp/ks and assuming that 
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the ratio of l-butene to 2-butene in the products was calculated to be 

1.10. This compared favorably with the experimentally observed values 

of 1.15 to 1.00 for space times of 2 and 15 seconds respectively. 

If the s-C4Hg· can be considered to be in equilibrium with re­

spect to the cis-trans configurations, an estimate of the ratio of 

t-2-butene to c-2-butene may be made on the basis of equilibrium data. 

For 515°C Scott, et al (62) reported a value of 1.59 for the equili­

brium ratio of t-2-butene to c-2-butene. Voge and May (63) gave a 

somewhat lower value of 1.30. These may be compared with the value of 

1.75 calculated for the products from the data of Figure 61. Under the 

conditions of the reaction, c-2-butene, once formed, would not isom-

erize to t-2-butene to any extent. Experimental verification of this 

fact was provided by flowing 99.97 mole-per- cent pure c-2-butene 

through the gold reactor at 470°C. At contact times near 5 seconds, 

the t-2-butene in the effluent of the reactor was less than 0.05 per 

cent of the c-2-butene. Cundall and Palmer (64) reported an activation 

energy of 63 kcal mole- l for the isomerization. The ratio of t-2-butene 

to c-2-butene in the products varies slightly with temperature. The 

Arrhenius plot of Figure 62 reveals an activation energy of -3300 cal 

mole- l . Scott, et al (62) reported a value of -718 cal mole- l at 515°C 

at equilibrium. As activation energies are difficult to obtain within 

±2 kcal mole- l , the difference is not unexpected for such small acti-

vation energies. 

With increasing space time, the relative formation of 1,3-butadiene 

increased by approximately the same amount as the l-butene decreased. 
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Figure 62. Arrhenius plot of the t-2-butene/c-2-butene yield for the 
oxidative dehydrogenation of butane. 
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This suggests the possibility that l-butene is a precursor of 1,3-

butadiene. 

Relative formation of the cracked products 

The relative molar formation of methane, ethylene, ethane and 

propane are presented in Figures 63 and 64 for 515 and 555°C respec­

tively. The distribution of cracked products varied only slightly 

with contact time. With increasing temperature, the fraction of 

methane increased with a corresponding decrease in the fraction of 

ethylene. This is primarily a result of increased participation of 

the alkyl radicals in unimolecu1ar decomposition reactions at the 

higher temperatures. 

A comparison of the results of the pyrolysis in the absence of 

oxygen (Figure 19) reveals that the relative amount of ethylene in­

creased with increasing amounts of oxygen. At 515°C and 9810 ppm of 

oxygen in the reactants, the ethylene fraction was 2.5 times that for 

the oxygen-free pyrolysis under similar conditions. The proportion 

of methane and ethane decreased with increasing oxygen. 

The increased ethylene in the oxidation may be explained by con­

sidering the reaction of ethyl radicals with oxygen to form ethylene 

and a hydroperoxide radical. This alternate reaction would also lower 

formation of ethane which is primarily formed by abstraction of hy­

drogen by an ethyl radical. 

For the pyrolysis, it was assumed that the methane and propylene 

were formed from the same precursor, butyl radical. Methane is 
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formed at lower proportions than propylene for the oxidation at tem­

peratures below 530°C. A reaction of the methyl radical in addition 

to the abstraction ' of a hydrogen must be important under these con­

ditions. A possible route could be the reaction of the methyl radical 

with oxygen leading to carbon dioxide and water. 

?toichiometry of the overall reaction 

The moles of oxygen consumed per mole of butane reacted, defined 

as q. provided a measure of the stoichiometry of the reactants for the 

overall reaction. The variation of q with space time was random and 

was within ±3 per cent of the mean value. A similar random drift in 

q over a period of several weeks was also observed. 

Figure 65 presents the dependence of q on temperature in the 

range 470 to 530°C. The points were obtained by an average of q over 

space times from 1.5 to 15 seconds. Lower temperature favored higher 

values of q. For example. q varied from 3.0 at 530°C to 5.5 at 470°C. 

an increase of 85 per cent. 

The composition of the reactants also influence the value of q. 

In Figure 66. q is presented as a function of the ratio of the initial 

concentrations of oxygen to butane. For [02]i![C4HIO]i from 0.002 

to 0.10. q can be described by the following equation for a temperature 

of 515°C: 
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Figure 65. Moles of oxygen consumed per mole of butane reacted as a 
function of temperature. 
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Figure 66. Moles of oxygen consumed per mole of butane reacted as a 
function of the initial concentrations of oxygen and 
butane. 
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This change of q with temperature and initial conditions may be taken 

as evidence that the overall oxidation is composed of competing pro­

cesses of different stoichiometry. 

Overall rate of the reaction ----
In order to describe the kinetics of the reaction between butane 

and oxygen, the following rate expression was assumed for the disap­

pearance of butane: 

(23) 

where 

k a A exp [-Ec/RT] (24 ) 

Equations (23) and (24) were then substituted into equations (7) 

through (10) and the constants m, n, Ec and A were evaluated from the 

experimental data. It should be recalled that the assumptions of an 

idea 1 gas, i sotherma 1 plug f1 ow, cons tant pressure and cons tant dens tty 

throughout the reactor were employed. In conjunction with the above 

equations, the stoichiometry of the overall reaction was assumed to 

be of the following form: 

The coefficient, q, as discussed in the previous section, was found 

to be a function of the temperature and the initial conditions of the 

reaction; however, it was relatively independent of the residence time. 
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In order to evaluate the order, n, of the overall reaction with 

respect to o~gen, the disappearance of oxygen was measured as a func-

tion of the space time for a given temperature and initial mixture of 

reactants. An integral test of the rate expression was then made by 

assuming various values of n. Knowledge of the order, m, of the re­

action with respect to butane was not required as the concentration of 

butane varied less than one per cent throughout the reactor. 

A comparison of the data and rate expression for n = 0.5 is 

shown in Figure 67 for 515°C. The slopes of the lines are equal to 

k [C4H10 ]m. Agreement with the data was within 8 per cent in extreme 

cases; however, average deviation was less than 4 per cent. 

The order, m, of the reaction with respect to butane could be 

calculated from a log-log plot of the slopes of Figure 67 against the 

concentration of butane. This is shown in Figure 68. A value of 

1.4 ± 0.15 was obtained for m. 

Because of the relatively large error associated with the order 

with respect to butane, a value of m was obtained by a second method. 

The consumption of butane was calculated from the products by means 

of a mass balance. The formation of carbon in the reactor as a result 

of the oxidation was neglected as no physical evidence of its presence 

was ever observed under the operating conditions employed. The disap­

pearance of butane was plotted as a function of space time for several 

initial concentrations of butane. The temperature and initial concen­

tration of oxygen were held constant. An initial rate of reaction for 
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Figure 67. Integral test of the rate expression for an order with 
respect to oxygen at 0.5. 
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butane could then be obtained by graphical differentiation of the 

resulting curves at 1:' = 0. Evaluation of the order with respect to 

butane could then be accomplished using the following equation: 

The slope of a log-log plot of the initial rate against the concen-

tration of butane would correspond to the order, m. 

The procedure is illustrated in Figures 69 and 70 for 515°C and 

an initial concentration of oxygen of 1.0 per cent by volume. A value 

of m of 1.50 ± 0.05 was calcualted. 

Having determined the constants m and n, application of the rate 

expression was made over a variety of initial concentrations of butane 

and oxygen. Equation (7 ) may be integrated to yield the following 

expression: 

where 

(

1-aX

BJ

O.
5 

-1 

1-X 
B 

(27 ) 

(28 ) 

The right hand side of equation (27) is plotted against the space time 

in Figure 71 for 515°C and initial concentrations of oxygen from 375 

to 10,075 parts-per-million and concentrations of butane from 2.2 X 10-6 
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6 -1 3 to 7.6 X 10- moles cc The rate constant, k, varied from 0.73 X 10-

to 6.57 X 10-3 cc mole- l sec- l depending upon the initial concentrations 

of butane and oxygen. 

Ideally, a rate constant is desired which is only a function of 

temperature. Closer inspection of the data of Figure 71 reveals that 

k is relatively independent of the concentration of butane but is 

approximately inversely proportional to the square root of the initial 

concentration of oxygen. Thus, the following rate constant was defined: 

Equation (27) then becomes 

k'1:' 
= __ --,;:-=.,2 ;:--__ 

[C H ]0.5 (a-l) 
4 10 

(29 ) 

C::~t -'I (30) 

A comparison of k and k' as a function of the initial mixture of reac­

tants is given in Table 3. The average deviation of k' from a mean 

value of 0.39 cc1/ 2 moles- 1/ 2 sec-1 was 14 per cent. Variations of up 

to 20 per cent were observed in the rate over a period of four or five 

weeks. 

The variation of the rate constant, k', with temperature is pre-

sented in Figure 72 for initial concentrations of butane and oxygen 

of 2.3 X 10-6 moles cc-1 and 1.0 per cent by volume, respectively. 

Figure 73 is an Arrhenius plot of the rate constant, k'. An activation 

energy, Ec ' for the oxidative dehydrogenation was calculated as 23.1 ± 

0.5 kcal mole- l • The frequency factor, A', based on the rate constant 
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Table 3. Rate Constants, k and k', at 515°C. 

[C4HlO ] , [02]1 ' k, k' , 

(moles cc- l ) (ppm) (cc moles- 1 sec- l ) (cc~ moles-~ sec-1) 

2.18 x 10-6 375 6.75 x 10-3 0.50 

2.33 x 10-6 990 3.04 x 10-3 0.38 

2.31 x 10-6 4000 1.81 x 10-3 0.45 

3.91 x 10-6 10,075 0.91 x 10-3 0.35 

5.61 x 10-6 10,017 0.92 x 10-3 0.37 

2. 30 x 10-6 9810 1.13 x 10-3 0.45 

7.58 x 10-6 9910 0.73 x 10-3 0.29 
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k', was 1.6 ± 0.2 X 10 6 cc l/2 moles-1/2 sec- l • Based on the rate con­

stant k, a frequency factor of 4 ± 3 X 109 cc moles- l sec-l resulted. 

Appleby, et al (17) also concluded that the orders of the reaction 

with respect to butane and oxygen were approximately 1.5 and 0.5, re­

spectively. A value of 21 kcal mole- l was computed for the activation 

energy. However, as previously discussed, the distribution of products 

was different in the pyrex reactor of S/V • 6.7 in-l • 

Before concluding the discussion on the rate of the oxidation, it 

should be mentioned that there is no reason that a simple power-law 

expression of the rate is warranted. However, until a detailed mecha­

nism of the oxidation is established, the power-law expression has been 

demonstrated to approximate the experimental results for the initial 

reaction. 

The mechanism of the oxidative decomposition of butane 

In view of the complex dependence of the distribution of products 

on temperature, concentrations of the reactants and space time, addi­

tional data are required before a detailed reaction mechanism may be 

established. The gas-phase oxidation of hydrocarbons is recognized 

as a complex free-radical process (37, 46, 65). The nature and extent 

of the surface are also quite important in oxidations (22, 37). For 

the oxidative decomposition of butane, the influence of the surface 

is apparent from a comparison of the present work with that of Appleby, 

et al (17). Appleby, using a pyrex reactor (S/V • 6.7 in-l ), detected 

no carbon dioxide at conversions of butane below 8 per cent. In the 

present work carbon dioxide was observed at conversions of butane as 
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low as 0.1 per cent. The moles of butane combined with each mole of 

oxygen, when all of the oxygen was consumed, were reported to vary 

from ratios of 2 to 15. This should be compared with values of 0. 2 

to 1 in the present work. With these considerations in mind, possible 

schemes for the formation of the observed products have been suggested 

below. 

Initiation of the chains may occur by the following steps. 

n-C4HlO + 02 - C4H9· + H02· 

n-C4HlO- C2H5• + C2H5• 

n-C4HlO- CH3• + C3H]" 

(1) 

(2 ) 

( 3) 

As step (1) is 30 to 40 kca1 mole-1 more favorable than either step 

(2) or step (3), initiation by the reaction of oxygen and butane to 

form butyl and hydroperoxide radicals will predominate (66) unless 

the concentration of oxygen is extremely low (several parts-per-

mi 11 i on) . 

As evidenced by Knox (37), the abstraction of hydrogen by hydro­

peroxide radicals is thought to be a very slow reaction. Thus a means 

of converting the hydroperoxlde radicals into more active chain car­

riers is required. This may be accomplished by a degenerate branching 

process involving hydrogen peroxide. 

(4) 
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(5) 

Step (5) is known to be catalyzed by the surface of a reactor (67); 

however, the homogeneous reaction is thought to occur rapidly above 

470°C (37). The hydroxyl radicals may abstract a hydrogen from butane 

to form water and either a primary or secondary butyl radical, and 

the following chain of events may take place. 

·OH + C4HlO -H20 + p-C4Hg• (6a) 

·Gi + C4HlO- H20 + S-C4Hg· (6b) 

p-C4Hg' + 02 - H20 + l-C4HS (7a) 

s-C4Hg' + 02 - H20 + l-C4HS (7b) 

s-C4Hg' + 02 - H20 + t-2-C4HS (7c) 

s-C4Hg' + 02 - H20 + c-2-C4HS (7d) 

The isomerization of primary and secondary butyl radicals is assumed 

to be slow as suggested by Benson (61), The above scheme satisfac­

torily accounts for the distribution of butenes observed in the pro­

ducts, 1 ,3-Butadiene may be formed by the subsequent oxidation of 

l-butene in the following manner, 

l-C4HS + 02- l -C4H7' + H02' 

l-C4H7' + °2- l -C4H700 ' 

(S) 

(g) 
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(10) 

(11 ) 

Alternate to steps (6a) through (7d), the butyl radicals may de­

compose as in the pyrolysis, 

p-C4H9 ' - C2H4 + C2HS' ( 12) 

C2HS' + C4HlO - C2H6 + C4Hg' (13 ) 

C2
HS' - C2H4 + H' (14) 

s-C 4H9 , - C3
H6 + CH 3' (15) 

CH ' 
3 + C4H10- CH 4 + C4Hg' ( 16) 

H' + C4HlO-H2 + C4Hg' (17) 

In addition, the ethyl radical may react with oxygen to form ethylene 

and a hydroperoxide radical, 

( 18) 

Whenever sufficient oxygen is present, the reaction of the ethyl and 

butyl radicals with o~gen will be preferred to decomposition of the 

radical, This accounts for the increase yield of ethylene and butenes 

in the oxidations, 

In the apparent absence of carbon monoxide from the products, the 

oxidation of carbon monoxide must be extremely fast under the experi­

mental conditions or carbon dioxide must be formed by an alternate 
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route. Karmilova, et al (68) studied the oxidation of methane at 

574°C in the presence of l4CO. Only negligible amounts of carbon 

dioxide were formed from the labelled carbon monoxide. Thus, direct 

formation of carbon dioxide without intermediate formation of carbon 

monoxide is probable. The oxidation of fo~l and acetyl radicals 

arising from aldehydes is a possible direct route for the formation 

of carbon dioxide. Aldehydes are primary products of the oxidation 

of butane at temperatures from 250 to 350°C (69, 70) and may be formed 

from the reactions of peroxy radicals. Aldehydes may be readily 

oxidized at temperatures below 300°C, a fact which may explain the 

absence of aldehydes from the product mixture at 500°C. The oxida­

tions of aldehydes are extremely sensitive to the surface and in the 

presence of a high surface area, carbon dioxide is formed to near-total 

exclusion of carbon monoxide (71). 

Termination of the chains occur whenever two radicals combine to 

form stable products. Destruction of free radicals on the surface of 

the reactor also aids termination of the chains. In particular, 

oxygenated radicals are thought to be easily destroyed on surfaces . 

In conclusion, the above discussion of the mechanism of the oxi-

dative dehydrogenation of butane in the temperature range from 470 to 

600°C presents feasible routes to the formation of the observed pro­

ducts. However, the mechanism is not intended to be all-inclusive. 

For a better understanding of the mechanism, oxidations should be per­

formed employing radioactive tracer techniques. Study of the reaction 
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using mass spectroscopy might reveal intermediate species such as 

aldehydes. 

Partial oxidation of butane at lower temperatures 

For temperatures of 440 and 400°C, tests were conducted in a gold 

microreactor, S/V = 32 in- l , in order to ascertain the initial products 

of the oxidation. An initial concentration of oxygen of 10,000 ppm, 

concentrations of butane from 1.0 X 10-6 to 7.0 X 10-6 moles cc- l and 

space times of 20 sec were employed. Aldehydes and other oxygenated 

compounds characteristic of the low-temperature oxidation of paraffins 

were not observed in the effluent of the reactor. Their presence in 

concentrations of several parts-per-mi11ion would have been detected. 

At 440°C, slight formations of butenes were observed as a result of 

dehydrogenation; however, no reaction was noted at 400°C. 

The low-temperature oxidation is either totally suppressed in a 

gold reactor of S/V = 32 in-lor an induction period in excess of 20 

sec is required for a measurable rate of reaction. Jones, et al (25) 

reported total suppression of the low-temperature oxidation of propane 

in a packed-bed reactor, viz. a reactor of high surface-to-vo1ume ratio. 
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CONCLUSIONS 

The pyrolysis of n-butane was investigated in a gold microreactor 

of S/V = 64 in- l under the following conditions: 

Temperature: 535 to 595°C, 

Total pressure: 15 to 16 psia, 

Concentration of butane: 5 X 10-7 to 1 X 10-5 moles cc- l 

Conversion of butane: less than 2.5 per cent, 

Space time: 1 to 5 sec. 

The rate of disappearance of butane was accurately described by the 

following equation: 

(31) 

For an untreated reactor, 

k = 1.75 X 10-7 exp (-66,OOO/RT) ccl/2 moles-1/2 sec- l , (32) 

and for an acid-treated reactor, 

k = 2.45 X 1016 exp (-63,OOO/RT) cc moles-1/2 sec- l . (33) 

Considering experimental error, kinetics in untreated and acid-treated 

reactors were approximately the same. Departure from kinetics of three­

halves order was not observed at concentrations of butane below 4 X 10-6 

moles cc- l as had been reported in earlier work. This discrepancy in 

the earlier work was shown to be a result of undesirable energy transfer. 

Equal molar quantities of methane and propylene were observed. 
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Ethylene, ethane, and hydrogen constituted the remainder of the pro­

ducts. Higher temperatures and lower concentrations of butane favored 

increased formation of ethylene at the expense of ethane. A comparison 

of these results with the work of previous investigations indicated 

similar kinetics for the pyrolysis in gold, pyrex, or quartz reactors. 

This indicated that the reaction primarily occurs homogeneously. 

The influence of small quantities of oxygen on the pyrolysis of 

n-butane had not been previously investigated. Trace quantities of 

oxygen, 5 to 500 ppm, drastically effected the pyrolysis. Although 

formation of the cracked products was decreased approximately 70 per 

cent relative to the pyrolysis in the absence of oxygen, the distri­

bution of the cracked products remained unchanged. Yields of l-butene, 

t-2-butene, c-2-butene, 1,3-butadiene, and water increased with in-

creasing concentrations of oxygen. Increased proportions of butenes 

in the products were favored at lower temperatures and lower concen-

trations of butane. 

A study of the reaction between oxygen and butane was conducted 

in gold microreactors of S/V ,. 32 1n-1 under the following conditions: 

Temperature: 470 to 595°C, 

Total pressure: 15 to 16 psia, 

Concentration of butane: 7 X 10-5 to 8 X 10-6 moles cc- l , 

Initial concentration of oxygen: 375 to 10,000 ppm, 

Conversions of butane: less than 1.0 per cent, 

Conversions of oxygen: 5 to 100 per cent, 

Space time: 1 to 16 sec. 
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The surface of the reactor had been washed repeatedly with nitric acid 

and heated to 500°C to remove impurities in the gold that might chemi­

sorb oxygen. No previous study of the oxidative dehydrogenation of 

n-butane had been reported for conversions of butane less than 8 per 

cent. In the present investigation, conversions of butane, always less 

than one per cent, were generally between 0.2 and 0.5 per cent. Even 

at these low conversions, secondary reactions of olefin products were 

significant. 

The rate of disappearance of butane was described on the basis of 

the following equation: 

where 

k = 4 X 109 exp (-23,lOO/RT) cc moles- l sec- l • (35) 

The frequency factor varied within 75 per cent of the above value de­

pending upon the initial concentrations of the reactants. Improved 

agreement with the data, ±14 per cent, was achieved by defining a new 

rate constant as follows: 

(36) 

The initial reaction was the oxidative dehydrogenation of the 

butane with primarily formation of isomers of butene and water. As 

the reaction progressed, carbon dioxide, 1,3-butadiene, and the cracked 
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products increased. Aldehydes and other oxygenated compounds that 

result from the low-temperature partial oxidation of butane were not 

detected in the products. 

Increased yields of the cracked products were generally observed 

at higher temperatures, longer space times, higher concentrations of 

butane, and lower concentrations of oxygen. The stoichiomet~ of the 

overall reaction was also a function of the operating conditions. The 

moles of oxygen consumed per mole of butane reacted was proportional 

to the square root of the initial concentrations of oxygen to butane 

and inversely proportional to the temperature. Changes in the stoi­

chiometry and the distribution of products with temperature, concen­

trations of reactants, and space time was interpreted in terms of 

competitive reactions of the alkyl radicals. 

At temperatures below 440°C, no reactions between oxygen and butane 

were observed at space times up to 20 sec. It was concluded that 

either the low-temperature partial oxidation of butane is completely 

suppressed in a gold reactor of relatively high surface-to-volume ratio 

or an induction period in excess of 20 sec is required for the reaction 

to occur. 
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RECOMMENDATIONS FOR FUTURE STUDY 

Without modification of the analytical system, several projects 

could be undertaken that would contribute to a better understanding of 

hydrocarbon reactions. The co-pyrolysis of n-butane and propane is of 

possible interest as commercial thermal-cracking processes use these 

materials as feedstocks for the production of olefins. Since the py­

rolysis of propane requires higher temperatures than the cracking of 

butane, optimum control of the cracking process for increased selec­

tivity in the formation of products would be important. 

Along similar lines, commercial processes of the pyrolysis of 

paraffins are operated at high conversions of the paraffin. Olefins 

appearing in the products are known to inhibit the reaction. Thus, a 

study of the co-pyrolysis of n-butane and a low-molecular-weight olefin 

would be of commercial interest. With the olefin in the reactants, a 

controlled study of the inhibition at low conversions of n-butane could 

be made and the results compared with inhibition of the pyrolysis of 

n-butane at high conversions. The co-pyrolysis of n-butane and ethy­

lene might reveal information on the minor formation of the butenes in 

the pyrolysis of n-butane. 

The influence of small quantities of oxygen on the pyrolysis of 

butane at relatively high conversions as might be encountered in indus­

try has not been defined. In the initial stages of the reaction, oxy­

gen appears to act either as an inhibitor or a catalyst depending upon 

the nature and extent of the surface. In talking with research people 
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in industry, consensus was that small quantities of oxygen had no 

influence on the inhibited pyrolysis of high conversion of paraffin. 

With regard to the partial oxidation of n-butane, numerous areas 

of research remain untouched. A study of the dehydrogenation has not 

been made in vessels of various surfaces or over a range of surface­

to-volume ratios. The oxidative dehydrogenation of n-butane has not 

been studied in the presence of trace quantities of hydrogen peroxide 

or formaldehyde, compounds that are predicted to have a significant 

influence on the reaction from the proposed mechanism. The selective 

formation of carbon monoxide or carbon dioxide under various conditions 

in the oxidative dehydrogenation of butane has not satisfactorily been 

explained. Although the use radioactive tracer techniques would re­

quire additional investment in equipment, the origin of the carbon 

oxides could be elucidated by a study of this nature. 

Extension of the present work to include the partial oxidation of 

n-butane at lower temperatures could be achieved with the use of longer 

reactors for increased residence times. Should the low-temperature 

reaction be totally suppressed in reactors of relatively high surface­

to-volume ratios, reactors of larger diameter as well as length would 

be necessary. Gold tubing of larger diameter would have to be special 

ordered. The present analytical system was designed with the analysis 

of the oxygenated products of the low-temperature oxidation in mind. 

As olefins are more easily oxidized than the analogous paraffin, 

secondary reaction of the olefin products with oxygen may be Significant 
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in the partial oxidation of alkanes. Using the existing equipment and 

analytical network, studies of the oxidation of c-2-butene, t-2-butene, 

1-butene, and propylene could be accomplished. A comparison of the 

relative rates of oxidation of olefin and paraffin could be accom­

plished using co-oxidation experiments employing mixtures of olefin, 

paraffin, and oxygen in the reactants. 

The areas of endeavor that have been discussed. and undoubtedly 

the list could have been lengthened especially in the oxidation, pre­

sent a tremendous challenge for definitive research. In part, the 

obstacles are a result of the complexity of the product mixtures and 

their possible dependence upon the reactor surface. 
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NOMENCLATURE 

A frequency factor of an Arrhenius rate canstant 

Ec activation energy of an Arrhenius rate constant 

PT total pressure of the reactor 

R universal gas constant 

_R_ rate of disappearance of n-butane by reaction 
·~4H10 

S surface area of the reactor 

T temperature of the reactor 

V volume of the reactor 

XB fractional conversion of n-butane 

a q [C4H10Ji/[02Ji 

k Arrhenius rate constant 

m order of the reaction with respect to butane 

n order of the reaction with respect to oxygen 

q moles of oxygen consumed per mole of butane reacted 

a ratio of ethylene to ethane in the products 

8 ratio of C2 hydrocarbons to the sum of the methane and pro­

pylene in the products 

space time or mean contact time 
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APPENDIX A 

A tabular summary of data taken on the pyrolysis and partial 

oxidation of n-butane is presented. By convention. if the yield of a 

compound was identically zero. i.e. it was not observed as a product. 

then its value will be given as 0.0000. If a minor product was de­

tected but in a relatively minute amount, its value will be given as 

.0000. Asterisks denote that a particular compound was detected but 

not measured. 
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APPENDIX B 

A summary of the chromatograph network is given. Included are 

molar response values for the various detectors, calibration procedures 

and a description of the columns selected for use in the analysis. 
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Chromatography consists of the physical separation of two or more 

materials based on their differential distribution between a mobile 

and a stationary phase. In the case of gas chromatography, the mobile 

phase is a gas. Either a liquid or a solid is employed as the sta­

tionary phase. Once separated, the compounds are eluted to a detector 

with which a quantitative measurement of the amount of material is 

made. For this study, three flame ionization and two thermal conduc­

tivity detectors were employed. 

The thermal conductivity detectors (TCO) employed heated filaments 

to detect changes in the thermal conductivity of the carrier gas when 

diluted by components of the sample. A TCO responds in varying degrees 

to all compounds. Response is strongest for compounds whose thermal 

conductivity is most different from that of the carrier gas. For this 

reason, helium is commonly used as a carrier gas because of its rela­

tively high thermal conductivity; however, with helium as a carrier, 

the response for hydrogen is quite low. As a result, helium was used 

in the present work as a carrier in a chromatograph for the detection 

of water, carbon dioxide and formaldehyde. Argon was used as a carrier 

to a second chromatograph for measurement of hydrogen, oxygen, nitrogen 

and carbon monoxide. 

Flame ionization detectors (FlO) measure the minute current gen­

erated when a combustible material enters a hydrogen-air fiame. A DC 

potential of 300 to 400 volts is applied across two electrodes posi­

tioned near the flame. The ionized species are collected and the 
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current generated is amplified by an electrometer to values suitable 

for mi 11 i vo 1 t recorders. 

The FlO possesses high sensitivity (approximately 1000 times the 

sensitivity of a TeO under similar conditions) and a wide range of 

linearity of response. Linearities of the FlO used in this study were 

checked by successively diluting a sample of pure butane and noting 

the response. For all detectors, the response was observed to be 

1 inear wi th sample size through 100 p l. 

A disadvantage of the FlO is that it does not respond to all com­

pounds. Inorganic compounds and carbon oxides yield no response while 

compounds such as formaldehyde exhibit very weak responses. Response 

is a function of the number and type of burnable carbon atoms in a 

compound. Greater response is observed for compounds of greater carbon 

content. 

Sensitivity of the detector is also influenced by the ratio of 

the flow rates of hydrogen to air fed to the flame. The optimum flows 

are influenced by the design of the detector and must be determined 

by trial. Values of 15 ml/min of hydrogen and 250 ml/min were optimum 

for the Loenco FlO used in this work whereas the corresponding figures 

for the F&M FlO were 42 ml/min and 500 ml/min, respectively. 

Because the response of a given detector varies from compound to 

compound, calibration of each detector was required. Standard mixtures 

of known composition were prepared of the hydrocarbons, carbon oxides, 

water and fixed gases expected in the reaction. Responses of samples 
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of the standard mixtures were recorded for each detector and the 

average relative molar response on the basis of peak area was cal­

culated. Table 1 is a list of the relative molar responses for each 

detector. These values have a precision of about ±3 per cent (±5 per 

cent for the CEC TCD). 

The goal of the chromatograph program was the development of a 

system capable of measuring possible products in the pyrolysis and 

partial oxidation of butane. These included low-molecular-weight 

paraffins, olefins, aldehydes, alcohols, esters, ketones, organic 

acids, fixed gases, carbon oxides and water. The appropriate station­

ary phases, column lengths and operating conditions to produce the 

required separations were determined by trial and error using the a­

vailable literature as a guide. Table 2 is a summary of the columns 

and operating conditions selected for use in the chromatograph network. 

In addition to the columns selected, a variety of polar and non­

polar liquid phases were evaluated. Among these were adiponitrile, 

silicone oil, dioctyl phthalate, Carbowax 1500 and triethylene glycol. 

Other porous polymers tried were Porapak QS, Porapak S, Porapak T and 

Porapak N. Chromosorb P coated with 25 per cent adiponitrile separated 

the low-molecular-weight olefins and paraffins with much the same suc­

cess of the two part column (column number 1) selected for the task. 

In general, the Porapaks possessed similar retention characteristics. 

All gave an approximately symetrical peak for water, a difficult 

compound to resolve well on a liquid-loaded column. 
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Table 1. Relative Molar Response Values (Peak Area). 

Relative Molar Response Based on Peak Area 
Loenco flO F&M FlO CEC TCO Loenco TCO 

Helium Helium Argon Helium 
Com(!ound Carrier Carrier Carrier Carrier 

CH4 
0.265 0.247 (1.00) 

C2H6 0.505 0.494 0.758 

C2H4 0.505 0.491 0.704 

C3H6 0.745 0.748 0.961 

C3H8 0.750 0.750 

l-C4H8 1.00 1.00 

t-2-C4H8 0.98 

c-2-C4H8 0.98 

1.3-C4H6 1.00 

n-C4H10 ( 1 .00) (1.00) (1.00)* 

i -C4HlO 0.98 

H2O 0.485 

CO2 0.704 

CO 0.369 

H2 4.74 

O2 0.448 

N2 0.398 

*Butane peak was slightly overloaded. 
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APPENDIX C 

A description of the Hersch cell is presented. Included are the 

design of the cell, its operating characteristics and a discussion 

of the continuous and pulse modes of operation. 
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P. A. Hersch. in 1960. proposed a galvanic cell for the continuous 

trace monitoring of oxygen in gases (1). The Hersch cell consists of 

a silver anode and a lead cathode in contact with an electrolyte con­

taining hydroxide ions. Oxygen is reduced at the cathode with the 

generation of a galvanic current, the strength of which is dependent 

on the amount of oxygen reduced. The reactions occurring at the cathode 

and anode are, respectively: 

1/202 + H20 + 2e -2OH-

Pb + 30H - 2e - Pb02H- + H20 

The anode and cathode are connected by a microammeter to measure the 

response of the cell to the oxygen of a gas stream. Extreme sensi­

tivity to oxygen, a wide range of linear response, a rapid response 

and good stability are factors responsible for the widespread adoption 

of the Hersch cell as an analytical tool. 

The use of a Hersch cell as a detector in gas chromatography was 

advanced by R. W. Dickinson and developed by T. R. Phillips (2). A 

sample of the gas containing oxygen is injected into an oxygen-free 

carrier gas and transported to the cell where a galvanic response to 

the oxygen is obtained. The response. proportional to the amount of 

oxygen introduced into the cell, is symmetrical and peak heights, as 

opposed to the more rigorous treatment of peak areas, have been used in 

correlation of the oxygen concentration with the cell response (2. 3). 

Hillman (3) reported that oxygen concentrations of 20 ppm could be 
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detected within an error of 5 per cent and that the detector was linear 

for o~gen concentrations below 2 per cent by volume. 

Several reasons may be listed for the use of the Hersch cell as 

a detector. in preference to continuous monitoring. for the determina­

tion of oxygen in the partial oxidation of n-butane. 

(1) The upper range of linearity can be extended from 0.01 per 

cent to over 1.0 per cent oxygen without the use of sample splitting. 

(2) Error in the oxygen analysis in the ppm range may be reduced 

since cell drift is minimized. 

(3) The detector system m~ easily be used in sampling reactor 

systems that are operated below atmospheric pressure whereas continuous 

monitoring would require pumping equipment for the compression of the 

gas stream to slightly higher than atmospheric pressure. 

A Hersch cell for use as a specific chromatographic detector for 

oxygen was designed and built. Figure 1 presents a schematic of the 

cell design. similar to that of Hersch. The cell consists of a lead­

foil anode which is wrapped around a half-inch. stainless-steel tube. 

A silver-gauze cathode is separated from the anode by a 0.033 inch 

thick layer of Poron that is initially saturated with a 5N solution 'of 

KOH. The cell casing is made of Lucite. Entering the cell casing. the 

gas stream is bubbled through a 5N KOH solution 1n the saturator in 

order to reduce evaporation of the cell electrolyte. An adjustable 

reservoir of 5N KOH was connected directly to the saturator in order to 

extend the life of the cell. Gas samples of 200 p1 were injected 



Gas in 

I m 
I 

il 
,..-, k. II 

[=IiFf..1l'I.:~ ·~:jjjl?=-==fl11ln 
L....J ~ 'r-

o : • 

I • · , . 
· . 

Saturator-+------f I • 

• I 
• I • ft • 

5N K(}! --f--------f" I. ' 

• I 
10 

• I 

• I • 

" 
• > 

Reservoi r -t----+-I---I--

Lucite 
cyl inder 

-234-

Figure 1. Schematic of the Hersch cell. 
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into an argon carrier gas for transport through the cell. Oxygen in 

the argon had been removed by means of a trap of manganous oxide. 

A schematic of the electrical circuit for measuring the cell re­

sponse is given in Figure 2. Provision was made for nulling background 

current which may result from leakage of oxygen into the cell. Nor­

mally, background currents of 2 to 6 microamps, corresponding to 1 or 

2 ppm oxygen, were observed . The voltage drop across a known resistor 

was recorded on a millivolt recorder. By adjusting the value of the 

resistor, oxygen in concentrations of 0 to 4 per cent by volume of the 

sample could be measured within 3 per cent. linear response of the 

cell was from 0 to 1 per cent oxygen in the sample. The variation of 

response with size of the resistor was determined by Smith (4) as 

where vl ' v2 = cell output, mv, 

Rl , R2 = resistors, ohms, 

A z internal resistance of the cell, ohms. 

Daily calibration of the cell with an argon-oxygen mixture of known 

composition was performed in order to insure accurate analyses . Changes 

in the calibration were observed from week to week because of changes 

in the cell itself, e.g. a decrease in efficiency resulting from loss 

of electrolyte. 

Being an integral detector, the Hersch cell is expected to possess 
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1.35 v 0-2.5 megO 0-100 KO 

+ 

Hersch Cell 

200 

20 2000 

+ mv Recorder 

Figure 2. Electrical circuit for use wi th the Hersch detector. 
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a response (as measured by peak height) which is dependent upon the 

carrier gas flow rate. This was found to be the case. Using a sample 

of 153 ppm oxygen, the effect of carrier gas flow rate on the cell 

response was studied. Gas flow rates from 8.8 to 24.2 m1/min were 

employed. The peak height response of the cell was found to vary 

directly but in a non-linear manner with the carrier flow rate. A 

50 per cent greater response was recorded at 20m1/min than at 8.8 

m1/min; however, higher rates of carrier flow contributed to shorter 

cell life. A standard flow rate of 20 ml/min was established for 

routine analysis. At this value, cell life.,with daily use, was ap­

proximately one month. 

No interference of the cell response is caused by hydrocarbons. 

Only materials reacting with silver or the electrolyte affect the sensi­

tivity. Baker, et a1 (5) indicated that cathodes of gold or platinum 

perform satisf~ctorily and could be used in instances where materials 

in the sample interact with silver. The adverse effects of sample­

electrolyte interference are reduced by the contact of the sample with 

the electrolyte prior to the cell. e.g. in the saturator. 

Limited use of a continuous-monitor version of the Hersch cell 

was made in the pyrolysis and oxidation employing concentrations of 

oxygen below 100 ppm. Linearity of the cell was from 0 to 150 ppm and 

cell life averaged several months at these o~gen concentrations and 

a gas flow rate of 10 ml/min. Cell response was measured directly by a 

microammeter of 100 ohms internal resistance. SenSitivity of the cell 

was approximately 2.5 pa/ppm of oxygen. 
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APPENDIX 0 

The validity of the steady-state assumption as it applies to the 

pyrolysis of n-butane is presented . Numerical integration of a set 

of ordinary differential equations indicate that the induction period 

is of the order of 3 milliseconds . 
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VALIDITY OF THE STEADY-STATE APPROXIMATION 

APPLIED TO THE PYROLYSIS OF n-BUT ANE 

J. I. ILAKIMOII AND W . H. COICOIAN 

California 11IMti1U~ 0/ 'l'n:h"uloIlY, PCJJmaI'fHl, ('ulif. Y/II/H 

A quantltatl"e proof of the validity of the .teady~.tat. approximation In the 
mechanl.tlc treatment of the pyrolytll of n-bvtan. I, ,IYen. Th. length of the 
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con,tanh u,.d for the Individual .t.p. In ,h. mechanism were developed from 
a car.ful review of the IIt.rature. 

I N Tilt.: kintltk I rt~1l1 nwnt of chain lcftctiollll it 11 frequent.ly 
ttAA\lmet! Ihllt 11ll' rtlh'M of formatiun of the free radic.I. 

n, inlt'TI1uodinf(' s"l.'('ic~ lit" Ztlro. It iA apparent that thLa 
slt'rilIY -Ntul/.' (I' 11~,tlCl()..'\t"ti(1I18rY · !'Ilat(' IlAAumption ia not 
Upplil'tthll' hI t tlt~ in.indiun perinrl in which the free radicals 
illt'rt~"~' frllm Ih"ir initilll cuncenlrlltionH, uMuaUy zero, 
In their stt'tifIY 'stHit' "'ltl\lc~. The :-ItcndY·lltate appr01ima· 
lilll\ i~ snid 10 ht' vnlid if the duration of t.he induction 
period is mudl Mnu,lIer than tht' over-all reaction time. 
l~ualitati\'cly. if I he mletl of dClIotru('tion of the intermediate 
spe<'ic~ ArC lutt(e compared with the over-all reaction rate, 
tht' intermooinh' ~pt'1.:ies are rr('~nt in the reaction mixture 
in reh,tively low nmct'ntratitlnM, Rnd the 88IIumption of 
PSt'Ud{)SlIliiorUHY ltltHe ill gcnerlilly good. 

Pyrolysi, of n-Butane 

Of !lpN'iHi Pt't tuchemictil interest are the pyrolY8e8 of 
piUHllin hydrncurholltl and tlpecitically that of n-butane. 
":xjll'rinlt'nttll ItUUt hAve been collected on the pyrolYtlUJ 
of n-hUlltlic hy I'lt'verAI investhtaturll (Harker and Corcoran, 
I~H;'~; I'lItlUl11 tinct Quinn, 1962; Sal(ert and Laidler. 196.1; 
WHI1I(, I!~I). The dteadY-lltate aMHumption has been 
t'Lllpiuyt't1 10 correlate propOtied mechanism8 and 
expt'rimental tindint(s. Justification of the 8&Rumption has 
been based upnn the !l8tiRfactory agreement of predicted 
rt'sult~'i with experimental data ·- ·e.g., Wang et oJ. (1963), 
There hOlt been no e8timate of the induction period-· 
i.e .. t hI.' time required for the free radicaw of the 8ystem 
tn appronch thrir ste8dy-~tate concentratioll8. The 
t'xi~lenct' of j\ Mhort induction period is ~ufflcient evidence 
thnt the p~l'udo~tRtionary-"tutt' tlvproxirnation may be 
lI~d in precti<: 1 inK product concent rations for systema 
wh\l>\t' rt'fH"tiun time ililollK rriativc to the induction period. 
I r fllr !4ome reUKOn extremely fa~t pyrolynis reoctiom were 
dl'sirnhlt·. it would ilt, cunvcnient ttl htlve a reliable eati­
IlUllt' of tht, induction ptlrio<i . I n the work prstiOnted here. 
the p~udo-stl.'lUi.'" ~tlllc of mdieal t·oncentrationl in the 
pyrolysis of rJ -hutsllt;! is found to be reached in 8 few 
lllilli~t."t.·{lnd s. 

Several approxilllnh~ llIotht'lO!\tical testa (Giddings and 
.shill, 19ti~ ; HirS(.' hfl'lder, 19.'>7) have been propooed to 
tl'~t thc validity of the !ltcady-state hypothesia in individ­
ual cases; howcvt'r , the mm~t UCl'ural.e method is to &olve, 
s imu1t aneull~ly, the ~Ylltem of ordinary, coupled. fil1lt -order 
differential £.'<.Illution" which Kovcrn the reaction ayatem. 
By ust' of thill method, U l'riticlli quantitative treatment 
qf the 14tcll(l.v-~llltt.' n~u1llptinn II!I applied to the pyrolYlILi 

of n· butane hal) been made. and th~ length .. I" the inductiun 
period and (:oncentrAtiona or frt.>e radicaiH have ~n 
estimated. 

Procedure 

MechftniRmM involving the principal fundamental reac­
tions have been propoiled hy previnuK invt.'KtiKatorH (HArker 
and Corcoran. 1968; Purnell and quinn, 19t.i:l; SaKert nnd 
Laidler. 1963; Wang et aJ.., 19ft]) . Wang et al . (196:1) 
used the mOAt elaborate scheme. 19 elementary reacl.iunH, 
while others chose to disregard the apparently leAA 
important re8('tioIUI to give schem~ of six tn eight reac­
tiona. The shorter mechaniilms we re proJ}(med with the 
intention of predicting the dependence of the reaction~ 

on the primary molecular productK. To elucidate the roleR 
of the free radicals quantitatively. more inclusive mechan­
isma must be u~. 

A mechanism aimilar to thnt. flf Wang et ai. (196:H 

was choaen. A few additional step" ilhu:ltrating the at tAck 
of Cree radicah, on olefin productK were included; however, 
theee reaction. tlhould in general have little aiICniticancc 
for low converaioll8. Equations 1 tn 23 Mhuwn in Table 
I represent the mechanism. The selected rate conMtnnt!! 
for the individual reactioll8. also listed, repr~ent selectionH 
based on data in the literature, &orne of which were not 
available to Wang et aJ.. (1963). 

In the selection of the rate constants for Equations 
1 to 23 in Table I. the foUowing MCheme WltM used. 

Firat. literature vaJUe8 of the rate constanta were collect­
ed; then the experimental conditions under which the 
individual rate constanta were measured were reviewed. 
Where there appeared to be eqUAlly ctlrrect volUeH 01 
the rate conatanbl. preaented ynluee were averaged. 
Selected values of the rate constant.!l were then tabulated 
and slight modifications made for conllilltency among 
related reactions. Finally, any mooificRtionft made were 
analyzed uli.ng the original reference!! atl a check to prevent 
unjustified moditicatioN. 

Rate constants are given in Table II ror a pyrulYAi!! 
temperature or 519<' C. Activation energiett nre quoted in 
calories per gram mole while frequency factors have the 
units of reciprocal eeconde for first -order reactions and 
liters! «(f8m mole) (second) for second-order reactions. 

A feature of the mechanism is that free radicaltl (Jf 
carbon number greater than 4 are not considered. They 
woWd leed to product.8 such 88 hexane and heptene through 
combination and du.proportionation rnction.; however. 

Reprlnt.u from I!lEe PROCEll DniaN AND DIVILOPMINT. Vol. B, P.206, Apr1l1Y89 
COPVrlght 1969 bV the Amerlcon eMmal Soci.ty.nd reprlntld by p«ml_on of eM OOP\lragtu OVVMr 
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T.IoI. I. ' .......... _ ......... ,.,...,. of .......... 

('hllill "uliu 111111 ",,,.'li,,,,,, 
It) '''11 ... . I'lt.· + ",H" 

I'll l'.H " . . :! l' ,H.,· 

( :hltin-pnIINIIJl:"ILIII( I'\tIIIclion 
\:11 C,H ", ... H· • C,H., + H, 

(4) C,H .,. + CH .- . ~ C.H., + CH, 

tm l',H., .... CJH. + H· 

ttU C ,H, · ._, C.H. + CH~· 

(9) C.H,> · · C. H .... H · 

(Wi ('.H". - . C"H . ... CH." 

St'('1l11rl"fV rt',u,thuUl 
tl:ll ( ·, H ~ .. H · . C.H T, 

11:11 ( ' .II . .. CU, .• C.Hw· 

(14) (',11, +- CH." . • C.H,· 

(I."!l C,H. + C,H. , . _, C,H •. 

(1m C, H ... H· . C.H" 

l ' hrtin-tenninRtlnj( ~8.{' tiof\ll 

(1 7) H·.H · · ~ H J 

(11'1 ) H · . CH. · ·· · CH, 

(19) H · + CIH, · - -0 C,H. 

(20) CH,- + CIt,· .. CIH~ 

(21) CH.· + e,H. , · .. C.H. 

(:l:.!) C. II, .+ C,H, .• C.H ,~ 

'" • 1.0 II( lOl! tap -'7UtJOO/ H1' 

". - 1.0 )( UI" up -80,00111 H'J' 

... 8.3 )( 10'" up -82001 NT 

II. _ 1.0 )( 10" up -83001 NT 

At • 7.7 )( to" exp -10.0400/ Rl' 

A, • 2.6 )( 1010 es.p -39,fIOO / RT 

II , • 2.6 )( 10" up -37,600/ R'/, 

.II. _ 6.0 )( lOll ap -26,0001 RT 

Ir, .1.0 X 10" up -3I,OOOI RT 

.11'0. 1.0 )( 10~ np -2.,6001 RT 

Ir" - 1.6 x 10" up -22,0001 RT 

AI.I - 8.:1 )( IU '" up -uAlO/ itT 

. ,. - 1.0 x 10" .. p -60001 NT 

"It. 1.0 x 10-e:rp-7000/RT 

.. ,~ ... 1.0 x Itt up -69001 RT 

',. '" 1.0 x 10" e.p -6600I RT 

Ir" "" 6.0 X 10' 

Ir" ... 1.0 x 10-

Ir, • • 1.0 x 10" 

.... _1.0xlOu 

".,.3,0)( 10" 

.... 1.6)C lO'~ 

.... ,. 1.6 )( lO~' 

1~lnl.1I and 41111111 j IINI11 
WMuMII4 III . tlUII:1I 

I'umull and 4uilill (lOO:l) 
Kerr and 'I'mlllllln· ' )irkelllltlll (I iN)l) 
Wlln, d al (ItMi:1I 

}MIllIOn and f).more (1986) 
Sa •• n and Laidler (1963) 
Schilt' and Htuc:ie (1St; I) 
Thrum (I OOti) 
Wanl rt (It /100:1) 

Jonee and Steecie t 11"",:1) 
Kerr and Trotman-Ukkerwm (1ool) 

Boddy and St.e&eie (196(1) 
Purnell and Quinn (1962) 
Wa", t1 ai. (196.1 ) 

Bywater and Steacie (1951) 
LoucD and Laidler (1967) 
PumeU and Quinn 09(2) 

Jacbon and MeNtlIIby (1961) 
Kerr and Trotman-Dickeruwm (l961) 
Wang et ai. (196.1) 

Lin and LaidleT (1986) 
Kerr and Trotman-Oickenlofln (1961) 
WaDI ft Ill. (Uf6:i) 

KarT and Trotman-Diekenaon (1961) 
Wana: d ai . (1963) 

Lin and Laidle, (966) 
PunteU and Quinn (1962) 
s.,erl and Laidler (1963) 
Ken and Trotman-Uiekanaon (1961) 

Kerr and Trolnwn-Dick8MOn (1960) 
Kerr and Trotman-Diekerwln (1961) 
Walll d ai. (1963) 

Kerr and Tr0trn.8n·l>ickellJlun (19611 
WanK ,,01. (196:1) 

Wane" ai. (lOW) 

K.rr and Tmlman-Uicken.an (tOOl) 

Kerr and Trotman-DickeMOn (1961) 

Kerr and Trotman-UickelUlOn (1961) 

SeMon and DeMore (l965) 

BeNon and DeMore /196S) 

Benaon and DeMore (l96S) 
Wan. et ai. (1963) 

Kerr and Trotman-Dickeneon 11961) 

Karr and Trotman-Dick ...... ," (1981) 

Ivin and Bl.Mci. (l9~1) 
Kerr and l'rolmlln-DlckelllMlft (tOOl) 
Wane" oJ. (I00:H 

lvin.nd Btee.cie (1961) 
Kerr and Trotman-Dickerwon (1960) 
PurneU and Quinn (196:lJ 
!i..art and L. idler (196.1) 
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Tablen. Ilem.ntary .at. Con.tanh fo, '1'°(. 

t·. 1.0, ,,10 . "'~ . k" ~ " .1 )( 10" 1.1( •. moleHMC.) 
A' • h .M )l 10 ' . ",'1. k " .. 1.1 )( li l" 1. / (,. rno1e)(I«.) 
Jr . .:. :U l )( iiI" 1./1 1( . 1II"lro\l!Ot ... · I k .. '" 1.:2 )( 111" 1./(,. moJe)(IIK.) 
A', -' :1.0)l W' t / he . llIulc j(I't't', 1 Jr ,. ", :1.0)( 1I1"1 .{(,. mole)(NC.) 
A'. r 1.0 )( HI" 1. , h:. mlll(')(_·. ) N" "" 6.0 )( W i 1. / (I. roole)(IIeC.) 
k • .. 1.!) ( 10" 1Ie4:. ., •• 1.0)( to-I./(8. mole)(MC.) 
k : .. 1.1 x 10' ~:. . , . .. 1.0 X LO'~ 1./ (,. mole)(MC.) 
k. "' 1;.0 X 10' 1Iet' . k~, .. 1.0 )( 10" 1./(,. mole)(eec.) 
k~ .. :!.li x 10' lteC. k .. - :1.0 X 1011 1. / tJ. moJe)(.c.) 
k,., II: Ui )( to' 11K. ":u .. 1.6 x 10"'1. / (fl. mo1e)(IeC.) 
kll .. 1.:1 )( to' sec. k~, .. 1.6 x 10'" 1./(1'. moJe)(MC.) 
. , ' s :t!i)( 1O" I. i lR. mllll')(IW'(' .1 

nUlll' I l f thPSe hil(her-order molecular producu have been 
del edud experimentally. Alkyl radicals higher than C.H.· 
tire thought to be extremely untltable under pyrolyaie 
("onciitionR and, if formed, to decompose rapidly to the 
more Rtable lower-alkyl radicals. The mechanism also does 
not con~ider tertillry and normal butyl radicals separately 
but lumptl the two together. 

An i~()thermRI. coml18nt-volume batch reactor wu cho­
M'II AM n hA~iA for the calculationfl. Thl reetriction to 
a\l\ ilU.}t hl'rmld IIYflLom nppli8t' tu (: .. NIII whirl thl eft'ectl 
of Iwnlll I)f rent'tion ltrtl "mall tJ."., fur luw convereton. 
A lnn\t'riJlI lmlRnn' fur Hpt.lCi6M Ii in th •• yatem ,iv.,.: 

(24) 

wlH'rt, c. U ('OIll'l'nlrRtinn of species k, gram molee per cc., 
and H. '"' rille uf product.ion of It hy chlmical reacdon, 
ICrJlm mnleH l (cc.lllleC.) 

1o:quation :l4 ('uupled with reaction rates derived from 
Equations 1 to 23 yields the following set of differential 
equations governing the reaction system. The symbols 
listed below are used for brevity. 

{bmp(lnt'nt 

C.H,. 
C"H. 
C,· H. 
CH. 
C.H. 
C,H. 
C,Il. 

SyrniJ<X 

A 
8 
C 
Il 
.; 

" t; 

dCA; 
_.- = k~" 
dt 

CompolVnt Symbol 

C.H •. H 
CJH,· [ 

C,H •. J 
CII,· K 
H· L 
H. M 

(25) 

(26) 

(27) 

(28) 

(29) 
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(:I()) 

(33) 

(~4) 

(35) 

Tbeae equatiOI1ll were then IOlved numerically employing 
a Runge--Kutta·Gill, Ad.atna-Moulton differential equation 
8ubroutine on file in Caltech'8 computing center for lltie 

with lID IBM 7094 computer. AIJ pointed out by Hinh­
felder (1967) , equatiOI'1ll of this type are often difficult 
to 101ve numericaUy; thue, extremely small inc:rementll 
in time bad to be employed to prevent overflow on the 
computer. The lubroutine WM Nt up 80 that local trunca­
tion error W&II not .Uoweel to exceed 1 x 10 R (roughly 
equivalent to specifying sillli8canL figures to be pretMlrved 
locally throuahout the inte,ration). The computer eolution 

. wu interrupted periodic&lly and carbon~atom and 
hydroKen·atom balaneM wen made on the computed 
species concentrations 88 a check for continuity of the 
numerical interration. Approximate computing tUne for 
the aolution wu 15 minutes, 

In Figure I, the free.radical concentratiol1ll are plotted 
&II a function of time for a typical pyrolysis caae in which 
the initial pyrolyais miIture ia pure n-butane, the coneen-



Figure 1. Free-radical cancentrotiOnl o. a function of reac­
tion time for pyrolysis of "·buton. at 519° C. In a batch 
reodor and with on initial concentrotion of 0.002035 mol. 
p.r lit"'r 

I mlion of whi .. h iN U.O():ltI:Il; mille pC'r liter, Hnd the reaction 
iii nHrit'(l out III fl HJ"C . Any nmlptlrison of experiment 
with l~nkubltiunll 1Ie..·t~tlrily invtllvt.~ tJume error , tUnce 
C'X1H.'rim('nh'Uy t he initial butane pu~e8IWtJ impuriti8R. The 
induditm period, arbitrarily chOtJen 8.8 the time within 
which the concentrations of free radicals are within 10% 
of their ultimate values, is seen to be approximately 3.5 
mllli~{mda under theae conditions. The over·all reaction 
timCiJ are normally frum 1 flecond to 60 minutee. Only 
for reactinn timt.>N 88 luw 8B 8 few hundredths of 8 &eCond 
dtl~ thE' induct inn period reptef\ent an appreciable fraction , 
1(1" .. . of the tnUtI reactinn tim(l. The induction period 
(' IUI Ue eXJl('('h'd lo vary slightly with the initial butane 
('()IU'ent.rutiun hut remain in th~ millieecond. ranle. 
Although the at)ltolute level of the froo radicalA increaael 
with tlO increatle in the initial concentration of butane, 
thl' rate of formHtiOl~ of free rHdicola also mCre888ti, ae 
demolUltrated hy Equation!! :\2 through 36. 

A check may be made on the computed concentrations 
(If free rodini8 by employing the 'leady-etate 
8KHumption . · j ,e. , Hetting Equations 32 through 36 equal 
til ~.crn and int ruducinK oxperimental product concentra­
I iuuM Ill' Ihr mnloculttr IIpeciH intll thtt telultil1l' Nt of 
livu Ill.cIJhrftic l'<IUfttilllll', In Tllhle Ill. the.e calculated 
frtil'-rodlcRI concentratlun. at Mt~ady .tate are comparod 
wilh tho vulutlt' ohtained hy lIimultaneoul numerical 
inh'Krtltiun of EqulItionl 2f> thruuKh 37. Experimental 
product nHlt'tmt tilt inllM, luken from the work of S816rt 
dlul Laidler {l HH:n. were ulled for the calculation. The 
RvetllKt" de .... illtiun of the free· radical concentratioll8 com· 
pult'il wit h the R~umption of lteady state from the valu8H 
ohtHined withuut thAt 1l8lUmplion is 6%. 'fhia reeull ia 
addit iunoi prnof of the validity of the tIIteady-state aMump· 
t.iull fur the pyrolY8il' of the n-butane. 

To iniE.'t(rate HuccetlJ\fully the complete Il8t of differential 
t'llutltitln~ ari~inK from tht! material balancee (or the frae­
tI\ltklll wtll'l ionM, very amaH incrementa in the independent 
vurillhlt·, lillltl. muftt be ulkld. lJurioK the integration .hould 
lilt' ('onCl,lnl ratiun/j ut free radi(~ait' approach the value. 
l'nlt:ulutcd uH'lUrninK Mttlady "tale, thege "teady·etate valu. 
~holiid he in~rlNt into the otiKinol Mt!t of differential equa· 
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TaW. lb. Comparison of Computed ......... adkal 
c.nc.ntratlon •• t 10 MU .... nd. with C .. "en'fCltlons 

Calevlated Uslnl S'Md,.-Sla'e A .. umptktn 

C"III"IUlrJ ('", ... " . 
f 'ul"',/,"nt ( '''''0' ( I.' HIIl 

S, ... ,,'" .... '''1.· A .• ~IWI/I""" . 

Had""" 

CU. · 
C.H.· 
C.H,· 
e.H.· 
H· 

M"I"I M"I .. 
(',II ... Initial/.\' 

I.U1 x 10 I 

1.94 x IU • 
2.OB x 10 ,~ 

7.32 x 10 ... 
6.48 X 10 " 

M"I .. ' Af .. t.· 
C '.II ,~ 'nlllflll.v 

l.l ~ IU ' 
:l .U x 10 • 
:1.I ~ 10 
6 .4 ~ 10 
6 .1:1 wit)" 

t(Onl. Numerical int.egratiob could then continue, aMuminK 
.t..ady .taw and wlinllarge incremenu. in the independent 
varia hie. 
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PROPOSITION I 

ESTIMATION OF OXYGEN CONTENT 

OF GAS MIXTURES 

ABSTRACT 

The concentration of oxygen in a gas mixture may be found by 

metering the gas through a small-bore glass tube containing manganous 

oxide. The rate of advance of the MnO - Mn 304 interface is correlated 

with the oxygen concentration and flow rate. 
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INTRODUCTION 

Gas-solid chemical reactions have been commonly used to purify 

inert gas streams contaminated with oxygen (1,2, 3). The oxidation 

of the lower oxides of certain metals to more highly oxidized states 

are but one group of materials used in these processes. Manganous 

oxide (MnO) in the form of a fine green powder, may be oxidized rapidly 

at room temperature to a more stable oxide Mn
3
0
4

, a brownish grey 

powder. If a small bore glass tube is filled with MnO and a gas con­

taining oxygen is passed through the column, the MnO is oxidized at a 

rate proportional to the oxygen concentration of the sample. A sharp 

advancing MnO-Mn304 interface may be observed visually because of the 

color difference in reactant and product. By recording the gas flow 

rate and the time required for the interface to traverse a measured 

length of the tube. an estimate of the oxygen content of the inlet gas 

may be found. 

ANALYSIS 

Manganese dioxide (Mn02)' obtainable commercially from Baker 

Chemical Company, may be reduced to manganous oxide (MnO) with hydro-

gen at temperatures above 300°C (3). The basic steps involved in the 

reduction are shown below: 

2Mn02 + H2 
210°C 

.. Mn203 + H2O (1) 

3Mn203 + H2 
230°C .. 2Mn 304 + H20 • (2) 

Mn304 + H2 300°C • 3MnO + H2O ( 3) 



-247-

MnO, near room temperature, will re-oxidize immediately to the Mn304 

stage when exposed to oxygen according to equation (4). 

(4) 

If a mass balance is made on oxygen over a length of the test 

column for which the time has been recorded for the traverse of the 

moving interface, the following equation results. 

where F = inlet gas flow rate, [ =] cm3 mi n - 1 

Cr= total inlet concentration of gas, [= ] mole cm- 3 

x = A mole fraction oxygen of inlet gas 

cp= time required for interface to travel distance L, 

W = amount of oxygen absorbed per unit volume of bed, 

[=] mole cm-3 

A = inside cross-sectional area of tube, [=] cm2 

(5) 

[=] min 

L = length of bed traversed by interface in time .p, [=] cm. 

The following assumptions were made in the derivation of equation (5). 

1. All oxygen entering the column is absorbed rapidly by MnO 

at the interface. 

2. The reactor bed of MnO is uni form. 

Rearranging equation (5) yields the desired expression for the 

inlet oxygen concentration. 

(6) 



-248-

If CT, A, and W are assumed constant, equation (6) becomes 

x = k L 
A F<I> 

(7) 

where k = (WA)I CT' 

An expression for the amount of oxygen reacted per unit volume 

of bed, W, may be written as follows from consideration of equation 

( 4) • 

l/J PB 
W = 6M (8) 

where l/J = efficiency of ~O bed taken as the moles of tlnO reacted in 

the test section divided by the total moles MnO present in 

the same section 

PB = bulk density of granular tlnO bed, [=] gIllS cm- 3 

M = molecular weight of tlnO. 

If the gas is assumed ideal, an expression for CT may be written 

in terms of the temperature and pressure of the inlet gas, 

where R = universal gas constant = 82.06 atm cm3 mole- l oK- l 

T = absolute temperature of the inlet gas, [=] OK 

P = absolute pressure of the inlet gas, [=] atm. 

Substitution of equations (8) and (9) into equation (6) yields 

l/J It ART L 

6ftP F<I> 

(9) 

(10) 
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and 

k = IjJ 'iJ ART 
6MP 

( 11 ) 

PROCEDURE 

Two six-inch lengths of 0.25 inch 0.0. glass tubing having a 1.25 

mm 1.0. were selected for the test. A plug of glass wool was inserted 

into one end of each tube. Manganese dioxide (Mn02) powder, approxi­

mately 100 mesh with an average bulk density of 2.83 g cm- 3, was care­

fully poured into the tubes. The ends of the tubes were gently tapped 

intermittently during the packing to obtain a uniform bed. After 

packing, another plug of glass wool was placed in the open end of 

each tube. The columns were then equipped with Swagelock fittings 

using Teflon ferrules. 

The 1+102 (black) in the tubes was then reduced to ~o (green) 

by passing hydrogen through the tubes at approximately 370°C for 24 

hours. Upon cooling, a tube was placed vertically into the testing 

assembly as shown in Figure 1 and a run taken. After a test, the ~O 

was regenerated by reducing the Mn 304 with hydrogen at 370°C for 6 

hours . 

Test gases were prepared using an available gas make-up apparatus 

in which a gas cylinder was initially evacuated. Oxygen was admitted 

into the cylinder until the desired pressure was attained. The cylin­

der pressure was then boosted to 48 psig with argon. Assuming that 

Dalton's law was valid for the gas mixture, the oxygen concentration 
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could be calculated. 

Oxygen-free argon was used as a purge gas in the test assembly. 

Prior to insertion of an MnO tube into the assembly, the system was 

purged to remove previous oxygen samples. The tube was placed in the 

assembly, the purge gas valve closed, and the test gas valve opened. 

After a short time (30 to 60 seco~ds) to allow the gas entering the 

tube to become representative of the sample, a position of the inter­

face was noted by means of a cathetometer and simultaneously a stop­

watch started. The cathetometer was then adjusted to a new position 

and the watch stopped as the interface advanced past this position. 

The difference in cathetometer readings and time were recorded as in 

Table 1. Gas flow was regulated by a Nupro fine-metering valve and 

measured by manometrically recording the pressure drop through packed 

col umns of gl ass micro-spheres. The exit fl ow rate, F', from the r-tlO 

tube was also measured wfth a soap-film flowmeter. 

RESUL TS 

The data of Table 1, taken on gas mixtures from 0.39 to 4.1 mole 

per cent oxygen, were treated according to equation (7). Figure 2 is 

a plot of oxygen concentration versus L/(F~). The experimental rela­

tionship between the mole fraction of oxygen in a mixture and L/(F~) is 

seen to be in agreement with the linear theoretical analysis. The 

equation of the straight line representing the data is shown below: 

xA = 1. 723 L/( F~) • (12) 
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The average deviation of the data from the straight line is 9.0 per 

cent. The maximum and minimum deviations (13 to 20 per cent and 2 per 

cent) occur at the lowest (0.39 mole per cent) and the highest (4.1 

mole per cent) concentrations of oxygen, respectively. 

From equations (12) and (7), the value of k found experimentally 

from the particular test columns was 1.723 (cm2) (mole per cent O2), 

From equation (11), a value of 0.012 was calculated for the efficiency 

of the MnO bed under the following conditions: 

P • 1.15 atm 

PB = 2.31 gms cm- 3 

A = 0.01227 cmf 

Based on the experimental data, little difference in the analysis 

resulted from interchanging test columns. Regeneration of a column 

did not appear to change its reactivity. 

DISCUSSION 

The preliminary data indicate that, over the range of oxygen con­

centrations studied, the use of MoO columns as a means of measuring 

the oxygen concentration of a gas is feasible. The error in analYSis 

was greatest at oxygen concentrations below 0.5 per cent; however, 

there is no reason to believe that with refined techniques and equip­

ment the general method cannot be applied satisfactorily to gases con­

taining less than 0.1 per cent oxygen. 
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Quite probably, a reduction in the error of the analysis can be 

achieved by improvements in the testing arrangement. In the assembly 

used, a significant dead space was present between the sample source 

and the inlet to the test column. Reduction of this space would ef­

fectively reduce error resulting from the mixture of the sample gas 

with the purge gas. longer test sections and the choice of an optimum 

tube diameter may also improve results. 

The rather low column efficiency observed is a striking point. 

The variation of this parameter, a distinct possibility, with column 

size and flow rate was not investigated. Channeling of the gas stream 

through the MoO bed is probably the greatest source of low column 

efficiency. lack of sufficient time during an analysis for the dif­

fusion of oxygen to the centers of the MoO particles is another pos­

sibility. Increasing the temperature of the column from room tempera­

ture to 150°C might improve the efficiency as the reaction rate would 

be increased. 

White and Smith (3), in removing oxygen from contaminated inert 

atmospheres, found that MnO beds upon repeated regeneration (20 to 30 

cycles) crumbled and lost efficiency for absorbing oxygen. Because of 

the limited number of runs in the present experiment, this problem was 

not encountered; however, the problem may be overcome by routinely 

discarding the MnO after an optimum number of cycles. Studies of the 

bed efficiency with repeated use would thus be desirable. 
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PROPOSITION II 

A HIGl DEGREE OF SELECTIVITY IN THE 

ABSORPTION OF OLEFINS USING SULFURIC ACID 

ABSTRACT 

Olefins may be absorbed from gas mixtures by contact with sulfuric 

acid. By careful control of the concentration of the absorbing sul­

furic acid. a high degree of olefin selectivity may be exhibited. A 

simple scheme is presented for the laboratory preparation of research­

qu ality mixtures of gases such as the permanent and inert gases with 

controlled traces of the lower olefins. 
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INTRODUCTION 

The use of sulfuric acid as an olefin absorbent has been known 

for over fifty years. In 1949, F. R. Brooks, et. al., (1) developed a 

gas absorption apparatus for the analysis of gas mixtures commonly en­

countered in the petroleum industry. A degree of olefin selectivity 

obtained by the use of sulfuric acid solutions of different concentra­

tions (65 and 87 per cent) was utilized in this scheme for the deter­

mination of the concentration of isobutene and the aggregate concen­

tration of the n-butenes plus propylene. 

In 1955, P. W. Mullen (2), in a discussion of olefin absorbents, 

concluded that sulfuric acid in various concentrations appeared to 

offer about the only available method of differentiating among types 

of olefins by absorptiometric techniques. To the author's knowledge, 

all work to date involving olefin absorptions in sulfuric acid has been 

limited to the total separation of ethylene, propylene and n-butenes, 

isobutene, and higher olefin fractions. It would seem, at least in 

principle, higher degrees of olefin selectively could be obtained by 

careful control of the concentration of sulfuric acid. If feasible, 

the technique would be applicable to the laboratory preparation of 

research-quality hydrocarbon mixtures. Because of the destructive 

nature of the olefin absorption, the method would be limited to the 

preparation of mixtures of the lower olefins and compounds, such as 

cyclohexane, that are not reactive with sulfuric acid. To test the 

feasibility of the method, the absorption characteristics of a gas 
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mixture containing l-butene, t-2-butene, c-2-butene and isobutane have 

been studied with different concentrations of sulfuric acid. 

PROCEDURE 

The gas mxiture was prepared using C.P. grade cylinders of the 

pure compounds and an available gas make-up unit. A test cylinder was 

initially evacuated. The sample components were then introduced into 

the cylinder in the desired proportions by noting the pressure changes 

in the test cylinder upon the individual additions. Argon was adjed 

to the mixture as a diluent. Assuming Dalton's Law was valid for the 

mixture, the gas composition could be determined. The gas used in the 

preliminary experiments was of the following composition: argon, SO.O 

per cent; isObutane, 10.5 per cent; l-butene, 3.4 per cent; t-2-butene, 

2.7 per cent; c-2-butene, 3.4 per cent. 

The testing apparatus is shown in Figure 1. The test gas was 

bubbled through 500 ml of sulfuric acid at an average rate of 7.5 ml 

min- l • A scrubber containing dilute solution of potassium hydroxide 

served to remove sulfur trioxide vapor that might have been introduced 

into the gas stream. Water-soluble absorption products such as alcohols 

which might have entered the gas train were removed in a second scrubber 

containing water. Before the emerging gas stream entered the gas­

chromatography unit for analysis, water was removed from the gas by a 

trap of Drieite (anhydrous calcium sulphate). The scrubbed gas was 

analyzed using a 90 foot column of Carbowax 400 -- 8, 8' - oxydipro­

pionitrile on Chromosorb P and a flame ionization detector. 
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Six single-pass test runs were made using sulfuric acid in concen­

trations of 75.0, 82.0, 85.0, 87.5, 90.0 and 96 .0 per cent by weight. 

Each run generally covered a 24 hour period and gas analyses were per­

formed intermittently. Five to nine analyses were made per run, each 

analysis taking roughly 35 minutes. In addition, analyses of the test 

were made prior to beginning the series of tests and checked after the 

first four runs. No change in the test gas composition was observed. 

The peak areas from the chromatograms of each run were used in 

the determination of the absorption of the components. Isobutane, which 

is not absorbed by sulfuric acid in the range of concentrations of acid 

studied, was used as a standard in analysis of the chromatograms. In 

order to place all the analyses in proper prespective, each analysis 

was adjusted to obtain the same peak area for isobutane. 

RESULTS 

In general, after a two to three hour period of initial operation 

in which the various vessels and connecting lines were purged of gases 

of the previous test, the compositions of the scrubbed gas did not 

change . The results of the olefin absorption tests are given in Table 1. 

In the lower range of acid concentrations (70 to 77 per cent), the 

butenes were found to be absorbed in the following order: t-2-butene > 

c-2-butene > l-butene. In contrast the relative absorptions at acid 

concentrations above 90 per cent were in the following order : c-2-butene 

> t-2-butene > l-butene. In the intermediate area, c-2-butene was 



T
ab

le
 

1.
 

E
xp

er
i m

en
ta

 1
 R

es
 u1

 t
s.

 

Sa
m

pl
e 

S
ul

fu
ri

c 
A

ci
d 

A
dj

us
te

d 
Pe

ak
 A

re
a 

Pe
r 

C
en

t 
R

ed
uc

tio
n 

S
iz

e,
 

Co
nc

en
 tr

a 
t i

on
, 

u1
 

W
ei

gh
t 

Pe
r 

C
en

t 
i-

C
4H lO

 
1-

C
4H 8 

t-
2-

C
4H 8 

c-
2-

C
4H 8 

1-
C

4H 8 
t-

2-
C

4H 8 
c-

2-
C

4H 8 

50
 

8,
00

0 
2,

10
0 

1,
70

2 
2,

19
2 

10
0 

16
,3

25
 

4,
51

0 
3,

65
0 

4,
68

0 

50
 

75
.0

 
8,

00
0 

2,
03

0 
1,

59
7 

2,
08

6 
3.

3 
6.

2 
4.

8 

10
0 

75
.0

 
16

,3
25

 
4,

30
5 

3,
20

5 
4,

31
0 

4.
5 

12
.2

 
7.

9 

50
 

82
.0

 
8,

00
0 

1,
40

5 
92

8 
33

.1
 

57
.7

 
I 

10
0 

82
.0

 
16

,3
25

 
2,

95
5 

1 ,
91

5 
34

.5
 

59
.1

 
N

 
0

-
N

 I 

50
 

85
.0

 
8,

00
0 

63
2 

60
9 

20
0 

69
.9

 
64

.3
 

90
.9

 

10
0 

85
.0

 
16

,3
25

 
1,

40
8 

1,
35

4 
47

0 
68

.8
 

63
.0

 
89

.9
 

50
 

87
.5

 
8,

00
0 

41
4 

45
6 

12
6 

80
.3

 
73

.2
 

94
.4

 

10
0 

87
.5

 
16

,3
25

 
96

1 
1,

00
0 

26
4 

78
.8

 
72

.7
 

94
.3

 

50
 

90
.0

 
8,

00
0 

10
1 

58
 

20
 

95
.1

 
96

.6
 

99
.2

 

10
0 

90
.0

 
16

,3
25

 
20

7 
97

 
33

 
95

.5
 

97
.3

 
99

.4
 

50
 

96
.5

 
8,

00
0 

23
8 

11
 

3 
88

.7
 

99
.4

 
99

.9
 

10
0 

96
.5

 
16

,3
25

 
52

2 
13

 
6 

88
.5

 
99

.7
 

99
.9

 



-263-

clearly absorbed in the greatest proportion; however, absorption of 

t-2-butene and l-butene were approximately equal. A plot of the rela­

tive absorption versus the concentration of the absorbing acid is given 

in Fi gure 2. 

Visual observations of the absorption process were noted during 

the runs. The color of the 96.5 per cent sulfuric acid solution after 

19 hours of operation was a deep brownish-orange. The 75 per cent 

solution was still clear after 21 hours of operation while the solutions 

of intermediate concentrations varied from pale yellow to deep yellow 

to pale orange after 20 to 22 hours operation. No analyses of the 

compositions of these solutions were made. 

DISCUSSION 

The results may be rationalized by considering a probable reaction 

path during the absorption. The absorptions, as run, are unlikely to 

be equilibrium controlled because of the relatively short gas contact 

time in the acid absorber (approximately 3 to 5 seconds). Thus, olefin 

consumption may be examined on the basis of a kinetic-controlled reac­

tion. The stability of intermediate species and steric effects would 

thus be important. If the absorption is considered as a cationic hy­

dration or dimerization at the lower concentrations of acid and a 

cationic polymerization at the higher concentrations of acid, the first 

step of the absorption might be the electrophilic attack on the olefin 

of a hydrogen ion from the dissociated acid. Polymerization might then 
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take place in highly concentrated acid with the repeated attack on 

01 efi n mol ecul es by growi ng ca ti onic i ntennedi ates. Tenni nati on of a 

polymerization chain would occur with the loss of a proton to water. 

In less concentrated acids (higher water concentrations), the inter-

mediate cationic species might lose a proton to water at an early stage, 

i.e., dimerization . In even less concentrated acid, hydration of a 

cationic species may result in alcohol fonnation • . These reaction se-

quences are illustrated in the following steps for each of the three 

butenes. 

CH 3y -fCH2-YH-t CH2= fH 
C2H5l C2HSJ n C2HS 

CH 3y -CH2=YH 
C2H5 C2HS 

(I) (A) ~- CH 3CH - ()l 

~2H5 

CH 3CH 2CH iCH-CHiCH=CH I I I I I 
CH 3 CH 3 CH 3 nCH3 CH

3 

CH 3CH2CH -CH = CH 
I I I 
CH

3 
CH

3 
CH

3 

(II) (B) CH
3

CH
2y

H - OH 

CH
3 
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flH3 
lyH3 CH 3CH 2yH CH-~ CH =~ 

CH 3 CH 3 n CH 3 

yH3 

CH 3CH2YH - CH = '(H 
CH

3 
CH

3 

(III ) ( C) CH
3

CH
2y

H-OH 

CH
3 

Of the three cationic species initially fonned, the order of increasing 

stability is A < B < C. Th i s represents a poss ib le expl anati on of the 

absorption characteristics in the lower concentrations of acid where 

the order of increasing absorption was observed as I < II < III. In the 

more concentrated acid where polymerization might take place, stereo­

chemical effects might favor the absoprtion of II over III. 

CONCLUSIONS 

As a -thorough study of the use of various concentrations of sul­

furic acid for preferential absorptions of olefins on a preparative 

basis was not made, it cannot be concluded that this method is general. 
, 

The preliminary data do sufficiently indicate the strong possibility 

of the success for the controlled preparation of mixtures of saturated 

hydrocarbons and olefins by selective absorption using sulfuric acid. 

The preliminary work was restricted to small scale operation and mix­

tures of the n-butenes. The effects of residence time in the sulfuric-

acid absorber, composition of the inlet gas and temperature of operation 
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were not investigated. 

On the basis of the experimental data, a large number of passes 

would be required for the near complete preferential absorption of the 

2-butenes in a mixture of n-butenes. The sulfuric acid concentration 

would be critical in such a separation; however, such a purifying 

process should be possible. 
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PROPOSITION III 

PARALLEL-COLUMN, GAS CHROMATOGRAPHY FOR THE 

SEPARATION OF LIGHT GASES 

ABSTRACT 

A dual-column arrangement employing molecular sieve SA and either 

Porapak T or Porapak S is proposed for the separation of hydrogen, 

oxygen, nitrogen, carbon monoxide, carbon dioxide, and other light gases 

in gas chromatography. Uniqueness of the proposal is the combined 

choice of stationary phases and the connection of the columns in paral­

lel. Flexibility of the system is enhanced by temperature control of 

the columns individually. 
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INTRODUCTION 

The use of gas chromatography as an analytical tool has been 

widely accepted in the past decade. In the course of the analysis of 

gas nlixtures, the separation of hydrogen, oxygen, nitrogen, carbon 

monoxide, and carbon dioxide is frequently required. Such would be the 

case for the analysis of flue gases, combustion products, or in a study 

of the oxidation of carbon monoxide. A parallel column arrangement 

utilizing molecular sieve SA and either Porapak T or Porapak S is pro­

posed for use in the chromatographic analysis of these compounds. Pro­

per choice of column dimensions, carrier flow rates, and column temper­

atures would allow extension of the analysis to include compounds such 

as nitric oxide, methane, ethane, water, and formaldehyde. 

Previously, many stationary phases have been employed in the 

chromatography of these compounds. In addition, techniques of multiple 

columns, multiple detectors, solute trapping and column switching have 

been used. Since Kyryacos and Boord (1) first reported the separation 

of hydrogen, oxygen, nitrogen, and carbon monoxide on molecular sieve, 

the separation of mixtures containing oxygen and nitrogen has generally 

involved an analysis using some type of molecular sieve. Unfortunately, 

molecular sieve irreversibly absorbs carbon dioxide at normal operating 

temperatures «300°C). Adsorbtion columns of silica gel (2) or acti­

vated charcoal (3) have commonly been used in series with a column of 

molecular sieve for the complete analysis. Either two detectors or a 

column selector valve are required for the series column approach. Each 
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elective may add several hundred dollars to the cost of the analytical 

unit. 

Hollis (4), in 1966, reported the use of porous-polymer beads 

(Porapak) as a solid adsorbent with the separating properties of a 

liquid phase, e.g. reduced tailing of peaks caused by solute-adsorbent 

interaction. The beads were synthesized from monomers such as styrene, 

tertiary-butylstyrene, and ethylvinylbenzene that were crosslinked with 

divinylbenzene. Using Porapak Q at -78°e, hydrogen, nitrogen, and 

oxygen can be resolved but temperature programming is required for 

elution of carbon monoxide and carbon dioxide within a reasonable time. 

Obermiller, et al (5) described the use of porous polymers in the 

analysis of nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, 

hydrogen sulfide, and sulfur dioxide using a novel dual column (con­

nected in series) arrangement. Each element of a thermistor detector 

was alternately used as the reference and sensing element in the anal­

ysis. Analysis time was about 17 minutes. 

Recently, Lorenzo (6) has reported the use of a three-column 

system in series employing column switching for the determination of 

mixtures of nitrogen, oxygen, carbon monoxide, methane, carbon dioxide, 

ethylene, and ethane. Molecular sieve 5A and Porapak Q were selected 

as stationary phases, and the analysis required 25 minutes. 

PROCEDURE 

A schematic of the proposed dual column system using a combination 

of molecular sieve and porous polymer as the adsorbents is ' shown in 
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Figure 1. A lo5-foot column (0.125" 0.0.) of molecular sieve 5A was 

placed in parallel with a 2.5-foot column (0.125" 0.0.) of Porapak T. 

To avoid interference of peaks eluting early. a 6-foot length of 1/8" 

tubing was inserted in series with the Porapak column. For a total 

flow rate of carrier gas of 39.9 ml min- l through the network. flow 

through the Porapak column was 11.0 ml min- l . The temperature of each 

column could be controlled individually. The flow rate through each 

column was a function of the inlet pressure. the column temperatures. 

and the resistance to flow of each branch of the parallel network. If 

an adjustment of flow were desired with the only resultant change in 

the separation a result of that change in flow. a short length of tubing 

packed with glass beads could be added in series to the branch whose 

flow was to be decreased. 

RESULTS 

A chromatogram of a test gas is presented in Figure 2 for a total 

flow rate of 39.9 ml min- l • a sample size of 0.5 ml. and temperatures 

of the Porapak T and molecular sieve columns of 23 and 55°C. respec­

tively. A total time of 6 minutes was required for the analysis. The 

composition of the test gas is given below: 

Helium 
Nitrogen 
Hydrogen 
Carbon monoxide 
Ca rbon d; ox; de 
Oxygen 

mole per cent 

71.96 
8.25 
6.68 
6.56 
4.36 
2.19 
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CO 

1 2 3 4 

Porapak T Column 
Length: 2.5 ft 
I.D.: 0.093 in 
Temperature : 23°C 
Carrier Flow: 11.0 ml 

Molecular Sieve 5A Column 
Length: 1.5 ft 

. -1 mln 

I. D.: 0.093 in 
Temperature: 55°C 
Carrier Flow: 28.9 ml min- l 

J 

5 6 7 

Elution Time, minutes 
Figure 2. Chromatogram for parallel columns of Porapak T and 

molecular sieve 5A. 
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For instances in which small quantities of carbon monoxide, oxygen, 

and nitrogen are to be measured in the presence of an excessively large 

amount of carbon dioxide, the system just described is suitable. In 

other cases where trace analysis of hydrogen, oxygen, nitrogen, and 

carbon dioxide in carbon monoxide is required, elution of the peak for 

carbon monoxide last would be advantageous so as not to mask the smaller 

peaks. A 2.S-foot column (0.125" 0.0.) of Porapak S in series with a 

4-foot length of l/B" tubing can be substituted for the colUll1"l of 

Porapak T in the previous scheme. A chromatogram of the test gas on 

the Porapak S arrangement is presented in Figure 3. Total flow of helium 

carrier was 40.0 ml min- l with 13.3 ml min- l through the Porapak branch. 

The column of molecular sieve SA was at 2BoC while the column of Porapak 

S was at 23°C. Total time for the analysis was 6 minutes. As may be 

observed, the relative positions of the peaks for carbon monoxide and 

carbon dioxide have been reversed while retaining good peak shape. 

Advantages of the parallel-column method over the series-column 

technique may be listed as follows: 

1. Analysis time is decreased. 

2. Base line shifts accompanying ' co1umn switching are absent and 

the analysis is uninterrupted. 

3. A single detector is required. 

4. Temperature programming is not required although it may be 

utilized on each column individually for more complicated mixtures. 

5. Flexibility of peak position is enhanced by the capability of 

independently varying the flow rate through each column. 
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\ J 

4 

Porapak S Column 
length: 2.5 ft 
I. D. : 0 . 09 3 in 
Temperature: 23°C 
Carrier Flow: 13.3 ml 

Molecular Sieve 5A Column 
length: 1 .5 ft 
I. D. : 0.093 in 
Temperature: 23°C 
Carrier Flow: 26.7 ml 

CO 

~ 

5 6 7 

Elution Time, minutes 

Figure 3. Chromatogram for parallel columns of Porapak Sand 
molecular sieve5A. 

. -1 mln 
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Apparent disadvantages may be summarized as follows: 

1. Reproducible splitting of the sample is desirable. 

2. Repeated adsorbtion of carbon dioxide on the molecular sieve 

may reduce the sensitivity and effective life of the column. 

These disadvantages may be circumvented by following two rela­

tively easy procedures. First, the composite peak for hydrogen, oxygen, 

nitrogen, and carbon monoxide that is eluted from the Porapak column 

may be compared to the total peak area for the individual peaks on the 

molecular sieve column. Variation in the sample split is thus noted 

and the appropriate correction made to the analysis. Secondly, it is 

recommended that the column of molecular sieve be re-conditioned fre­

quently. This may be accomplished "in situ" by raising the temperature 

of the molecular sieve to 350°C for several hours while maintaining a 

low flow of carrier through the column. 

By means of temperature programming and/or optimum choice of 

col umn parameters, the technique that has been successfully demonstrated 

in the separation of hydrogen, air, and carbon oxides may be applied 

to other compounds. Among these might be mixtures of other inorganic 

gases such as the oxides of nitrogen or sulphur as well as mixtures 

containing compounds such as water, methanol, and formaldehyde. 

In conclusion, a chromatographic method based on parallel columns 

utilizing molecular sieve and porous-polymer beads as the stationary 

phases has been presented for the separation of the permanent gases. A 

complete, uninterrupted analysis using a single detector may be obtained 



-278-

from one sample. Peaks are eluted with good shape and analysis time 

;s minimized. 



-279-

REFERENCE 

1. G. Kyryacos and C. E. Boord, Anal. Chern., 29, 787 (1957). 

2. A. S. Meyer and I. B. Rubin, U. S. At. Energy Comm. Rept., 

ORNL-2866, UC-4, Chern.- General, TID-4500, 15th Ed., issued Feb. 18, 

1960. 

3. N. Takarniya and S. Mural, KOgyo Kagaku Zassh1, 63,1935 (1960). 

4. O. C. Hollis, Anal. Chern., 38, 309 (1966). 

5. E. L. Obermiller and G. O. Charlier, ~ Gas Chrornatog., §.' 446 

(1968). 

6. A. D. Ottenstein, 13th Pittsburg Conf. Anal. Chern. Appl. Spec­

troscopy, March, 1962. 


