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ABSTRACT 

An experiInental investigation has been conducted to study the 

near wake of a two-dimensional circular cylinder of 0.2 in. diameter 

at Moo = 6. Mean flow properties were determined from Pitot pres-

sure, static pressure, and hot-wire recovery temperature measure

ments at free stream Reynolds number of O. 905 X 10
4 

and 2. 95 X 104 

for both adiabatic and cooled models, the latter at o. 19 T . 
o 

The near-wake was laminar for the adiabatic model at both 

the Reynolds numbers tested. For the cold model, the near-wake 

was laminar for the lower Reynolds number and transition occurred 

in the near wake at the higher Reynolds number. The wake shocks, 

the shear layer edge and the thermal layer edge moved closer to the 

wake centerline with cooling and with increase in Reynolds number. 

The base pressure decreased with cooling and the sonic point moved 

closer to the model on cooling. In the recirculating region, the total 

temperature distributions exhibited a minimum close to the dividing 

stream line for all the cases, and the total temperature on the center-

line was nearly constant and equal to the value at the rear stagnation 

point (0.5 T for the cold models) indicating that the heat transfer in 
o , 

this region was mainly by convection. The existence of a thin thermal 

layer on the base was evident for the cold models. 

Preliminary experiments on the two-dimensionality of the 

flow and an emperical formulation for the viscous corrections to the 

measured Pitot pressure have been included in the Appendices. 
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1. INTRODUCTION 

Wak~s behind bodies moving at high speeds in air have been the 

subject of sthdy by many investigators over the pas~ several years. 

Initially the interest in these studies originated from a need for base 

drag estimates and hence was primarily a "base pressure problem." 

However, with the advent of hypersonic reentry vehicles, and the need 

to understand and evaluate the wake observable phenomena from a 

point of view of base heat transfer and wake discrimination, investi-

gations have been directed towards a more detailed study of the vari

ous aspects of both the near and far-wake flow field . Apart from their 

application, the understanding of the physical processes associated 

with these complex flows has always posed a great challenge . Hence, 

attempts to meet this challenge have been made by many investigators 

for more than a decade. 

A brief account of the theoretical and experimental studies, 

made to date, is given below in order to show the inadequacy of the 

theories and as welI"a lack of any experimental data to describe the 

near-wake flow field of a cold blunt body at hypersonic speeds and 

thus establishing the need for the present experimental investigation. 

Crocco-Lees Mixing Theory(l) and Chapman's base pres

sure model (2) are two of the earliest theoretical attempts at under

standing the near wake of bodies moving at supersonic speeds. 

In Crocco-Lees' theory, the flow is determined from the 

criteria that the solution must pass smoothly through the critical 

point of the equations obtained from the conservation of ove rall mas s 
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and momentum of the viscous layer. However, an empirical constant 

to take account of the mass entrainment rate was used in this theory. 

This basic idea later developed into the Integral Moment Method put 

forward by Iieeves and Lees (3) and later extended by Grange et al.(4) 

and by Klineberg, (5) where no empirical data are introduced. 

(2) . 
Chapman postulated that the base pressure was deterrruned 

by the criteria that the isentropic compression of the flow along the 

dividing streamline should be equal to the static pressure after isen-

tropic turning of the outer flow through the wake shock, implying that 

compression of the flow along the dividing streamline takes place over 

an infinitesimally short distance close to the rear stagnation point. 

(6 ) 
Chapman proposed a heat transfer model also, where he assumes 

the temperature in the recirculating region (considered to be a dead 

air region) to be equal to the temperature of the wall. BauITl, Denison 

and King (7) have extended the basic idea of Chapman to include the 

effects of initial boundary layer at separation and further determine 

the temperature in the recirculating region by considering a base bound-

ary layer and energy balance in the recirculating region. The outer 

conditions for calculating the base boundary layer are obtained froITl 

a ITlas s balance in the recirculating region. 

Theories for the growth of both laminar and turbulent far wake, 

including the effects of transition and pres sure gradient, once the 

initial profiles are provided, have been developed by =any investigators 

(references 8 to 13) .. 

Experimentally a fairly detailed picture of both the near wake 

and far wake of an adiabatic cylinder is known from the investigations 
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of McCarthy,(14) Dewey,(IS) and Behrens.(l6) The experim.ental investi

gations of MohlenhoffY 7) Kingsland,(lB) HerzogY 9) and Collins (20) 

deal with the problem. of m.ass diffusion in the wake of an adiabatic 

cylinder. Except for the recirculating region, the flow field in the 

near wake alld far wake of both the adiabatic and cold wedges have been 

m.apped in detail by Batt.(21) 

From. these theoretical and experim.ental studies the following 

observations could be m.ade: 

a. (16) ° The far wake results of Behrens for cyhnders and of 

Batt(21) for wedges were in reasonable agreem.ent with the theories 

for far wOakes thus indicating that further studies should em.phasize 

the near wake region. 

b. Chap m.an I s assum.ption that the com.pression region is 

sm.all was found to be incorrect from. these experim.ental studies, 

where the region of com.pression extended considerably both upstream. 

and downstream.. of the rear stagnation point for the range of Reynolds 

num.ber of these investigations. 

c. Though Batt (21) was unable to m.ake m.easurem.ents in the 

recirculating region of cold wedges, it was evident from. the total 

tem.perature distribution on centerline beyond the rear stagnation 

point, that the tem.perature in the recirculating region was consider

ably higher than the tem.perature of wall as assum.ed by Chapm.an, (6) 

but considerably less than that obtained by Baum., Denison and King.(7) 

d. Since no m.easurem.ents in the recirculating region could be 

m.ade by Batt(2l) due to various experim.entaJ difficulties, the existence 

or otherwise of the base boundary layer was not clarified. 
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e. The integral moment method applied to the case of an 

adiabatic circular cylinder gave results in reasonable agreement 

with the experimental results of Dewey for the near wake. However, 

an attempt to apply the same method to the cold cylinder gave some 

physically unrealistic results for the centerline enthalpy distribution. 

This was possibly due to lack of any guide from experimental results 

as to a proper choice of enthalpy profiles, which are essential for 

the success of the integral method. 

From the above observations it is evident that theories based 

on Chapman's model are very inadequate and that for the success of 

the integral moment method, experimental data are necessary to pro-

vide a guide for the choice of the profiles. The investigations of 

Mohlenhoff(l 7) and Kingsland (18) do not deal with the near wake. 

Since the investigations of Herzog and Collins deal with mass injection 

over only part of the cylinder, the analogous thermal problem would 

be partial cooling of the cylind.er. Thus the effect of cooling in a cold 

blunt body cannot be inferred from these mass diffusion experiments. 

It is hard to infer the effects of cooling on the near wake of a blunt 

- (21) 
body from the results of Batt on a cold wedge, since, (a) the sepa-

ration on a wedge is essentially fixed unlike that on a blunt body; 

(b) the boundary layer on a blunt body is subjected to a much greater 

favorable pressure gradient than on a wedge; and (c) the local Mach 

number at the outer edge of the shear layer is much higher for a wedge 

as compared to that for a cylinder, and correspondingly the local 
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Reynolds nUInber for a wedge is lTluch lower than that for a cylinder. 

Thus a need to experilTlentally investigate the near wake of a cold 

blunt body eXisted. 

Therdore the present experilTlental investigation was under-

taken in order to: 

a) find out the effect of cooling on the near wake of a blunt 

body; 

b) cOlTlpare these effects with that found for the wedge by 

Batt; (Zl) 

c.) find out the existence or otherwise of the the r=al boundary 

layer on the base; 

d) provide a guide for choosing the enthalpy profiles for the 

integral lTlolTlent lTlethod. 

The near-wake flow fields of both an adiabatic and cold (77o K) 

circular cylinder of O. Z" dialTleter at a nOlTlinal Mach nUlTlber of six 

and, Re D = 0.905 X 10
4 

and Re D = Z. 95 X 10
4 

were lTlapped using 
00, 00, 

Pitot pressure, static pressure and hot wire lTleasurelTlents. 
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II. EXPERIMENTAL TECHNIQUE 

II. 1. Wind Tunnel 

The experiments were conducted at a nominal Mach number 

of 6 in Leg I of the GALCIT Hypersonic Wind Tunnel. (22) This is a 

continuous flow, closed return tunnel with a 5" X 5" test section. 

The stagnation pressure is variable from 25 psia to 115 psia with an 

accuracy of ± o. 02 psia and the stagnation temperature is maintained 

at 40So K with an accuracy of± 10 K to avoid nitrogen condensation in 

the test section. The model was located 23 inches downstream of the 

throat on the horizontal center plane of the tunnel, in the forward 

portion of the 10 inch long test rhombus. Tests were made with stag-

nation pressures of 25 and SO psia corresponding to free stream 

4 4 
Reynolds numbers, Re 00, D = o. 905 X 10 and 2. 95 X 10 . 

All data were taken 2 hours after the tunnel was started to 

allow sufficient time for the tunnel wall to reach equilibrium tempera-

ture. The existing probe actuator system which is repeatable within 

± 0.001 in. was used for all pressure and hot wire measurements 

except for the preliminary tests described in Appendix A. Helipot 

potentiometers driven by the actuator mechanism provided linear 

electrical signals corresponding to the probe position for use in a 

Moseley XY recorder. 

II. 2. Model 

The details of the model geometry and installation are given 

in Fig. 1. The model consisted of a hollow steel cylinder of 0.2" 

outside diameter spanning the test section horizontally. In order to 

minimize the interaction of the cylinder with the tunnel wall boundary 
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layer and thus provide as nearly a two-dimensional flow as possible, 

some preliminary tests were made to determine the most favorable 

end configuration for the cylinder (see Appendix A). From these tests 

it was found that the ZOo, 5/8" long wedges mounted on the cylinder in 

the vicinity of the wall, as used by Behrens,(16) were the most effective 

among all the configurations tested. These wedges, which are almost 

completely inside the wall boundary layer, were aligned visually to 

within ± ZO of the free stream. 

Two copper-constantan thermocouples were imbedded Z inches 

apart in the center of the base region of the cylinder as shown in Fig. 1. 

The model was mounted in the tunnel in a manner similar to 

that used by Batt(ZI) (see Fig. 1). A schematic diagram of the liquid 

nitrogen cooling system is shown in Fig. Z (cf also Batt(Zl )). The 

cooling baths were provided at the inlet and outlet of the model in 

order to obtain spanwise uniformity in temperature. An inlet pressure 

of about 3 psig was required to cool the model to a temperature of 

II. 3. Pitot Pressure Probes 

Pitot pressure surveys were made with a O. 04Z in. diameter 

. probe flattened at the forward end to a 0.004 in. by 0.035 m. opening. 

The outside dimensions of the probe at the tip were 0.008 in. by 

0.051 in. (see Fig. 3). A 5-psi Statham pressure transducer, model 

No. PA Z08 Te-5-350, was used for most measurements. The trans-

ducer was calibrated against a silicon manometer and was found to 

be linear in the region of interest (Fig. 4). The Pitot pressures on 
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the centerline, close to the base, were Inore accurately Ineasured by 

Ineans of a silicon oil InicroInanoIneter, using a vaCUUIn reference 

pressure of less than 0.5 Inicrons. 

In order to Ineasure the reverse flow in the base region of the 

Inodel a special Pitot pressure probe shown in Fig. 5 was used. 

Using this probe, the Pitot pressure of the reverse flow was Ineasured 

only on the centerline, since it was felt that the IneaSllreInents at any 

significant distance away fro In the center line would not be reliable 

because of the narrow region of the reverse flow and the two-diInen-

sional nature of the probe. For the saIne reason, IneasureInents close 

to the rear stagnation point could be erroneous. Hence, reliance was 

placed only on the data obtained on the center line away froIn the rear 

stagnation point, where IneasureInents were expected to be reasonably 

accurate. The silicon oil InicroInanoIneter was used for these 

IneasureInents . 

II. 4 . Static Pressure Probes 

For static pressu.re IneasureInents beyond the rear stagnation 

point, the cone tipped static pressure probe illustrated in Fig. 3 was 

used. This is the saIne probe as used by Behrens (16) except for the 

distance of the reference edge froIn the orifice holes. The silicon 

oil InicroInanoIneter was used for the static pressure IneasureInents 

along the wake centerline, and the 5-psia StathaIn pressure transducer 

was used for the transverse surveys at a few stations. The static 

pressure on the centerline at axial locations closer than x/D = 2.0 

could not be Ineasured with this probe because of the probe geoInetry. 
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The static pressures on the centerline for axial locations, 

O. 5 ~ x/d $. 2.0, were measured one at a time by using the special 

probes shown in Fig. 6. The silicon oil micromanometer was used 

for these measurements. The tips of these probes were flat, and 

during measurement the tip was positioned against the base of the 

cylinder model so that the influence of the tip on the pressure meas-

urement was minimized. Hence, for each axial location, a probe 

with pres sure taps at the corresponding distance from the tip had to 

be used. The special probe holder shown in Fig. 6 allowed quick 

interchange of probes and also insured leak-proof assembly because 

of the O-ring seal. 

II. 5. Hot Wire Anemometer 

Fig. 7 shows the hot-wire probes used in the current set of 

measurements. Each probe consisted of a p1atinum-10% rhodium 

wire approximately 0.20 inch in length and 0.000497 inch in diameter 

(manufacturer's specification), soft soldered to two needle supports. 

Chromel-A1umel thermocouple wires (. 001 inch) were spot welded to 

within 0.01 inch of one support tip for each of the probes . All wires 

were calibrated in a manner outlined by Dewey. (15) Since the cali

bration of the wires before and after the run agreed within 2% which 

was within the measurable accuracy, no attempt was made to anneal 

the wires. From these calibration measurements, wire resistivity 

coefficients (a ) and reference resistance (R ) for zero cur rent at OOC 
r r 

were determined. 

For runs with a " cooled model, at 80 psia tunnel stagnation 

pressure, the wires 0.2 inch long broke frequently, because of the 
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frost particles flying off of the model. Hence, for these runs the 

length of the wire was reduced to O. 125 inch. 

It was neces sary to provide some s light sag in the hot wire to 

avoid frequent breakage. A typical magnified view ,of the hot wire is 

shown in Fig. 8, where the relevant dimensions were obtained by the 

use of a comparator. The assumed mean location of the hot wire 

from the slightly protruding tip of the needle was determined as illus-

trated in Fig. 8. The hot-wire shape was assumed to be a circular 

arc, and the effective location was taken to be such that the portions 

of the wire ahead and behind this location were equal. To obtain the 

reference for positioning the hot wire at any desired axial location, 

the protruding tip was touched to the center of the cylinder base under 

running conditions, the contact being detected by an electrical circuit. 

This setting was repea1!able to within O. 002 in. 

The flow measurements were made using the instrumentation 

system developed by Herzog(19) (Fig. 9), modified to be compatible 

with the larger diameter wire. A detailed description of the system 

is given by Herzog(19) and a brief description is given here. 

The current through the hot wire was measured by measuring 

the voltage across a 100 ohm resistance. Since variations in the hot 

wire voltage caused by changes in the flow variables were expected to 

be small compared to the mean value, the measurement was made 

more sensistive by amplifying the difference between the hot wire 

voltage and an accurately determined bucking voltage. The amplified 

signal was digitized by rneans of a shaft encoder attached to a Speedo

max self-balancing potentiometer, and the digitized output was 
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punched on IBM cards, along with a digital signal proportional to the 

probe transverse position. 

The bucking voltage and the amplification of the signal, fo r 

each of the five currents, were adjusted so that the speedornax re

corder reading varied approximately between 25% to 75% of its full 

range as the hot wire traversed acros s the wake at any axial location. 

The difference between the hot wire voltage and the bucking voltage 

was amplified by a Beckman amplifier and was recorded on an XY 

recorder. 

The output of the thermocouple on the tip of the hot wire support 

was amplified in order to read the temperature directly in °c on a 

digital voltmeter, and the reading was also punched on the ca rds. 

The linear, output versus temperature, relation assumed in such a 

setting did not result in an error for the support temperature of more 

than a fraction of a degree. The last 10 columns of the IBM card were 

used for identification, such as run number, date, and sequence of 

cards. 

The automatic sequencing and recording was controlled by the 

Datex control unit. The sequence of events in a typical run, after 

noting the five hot wire currents, the five bucking voltages, and 

the corresponding settings of the signal amplification, was. as follows: 

a) Probe was moved to a position and the position reading 

punched on the IBM card. 

b) The highest current was passed through the hot wire and, 

after some time delay to allow for equilibrium to be attained, the 

digitized output of the Speedomax .recorder was punched on the IBM 
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card and also point plotted on the XY recorder. 

c) The remaining four currents were used in sequence, as in 

(b) above, with the exception that no analog recording was made. 

d) Following the hot-wire output for the lowest current, the 

support temperature was punched on the IBM card, followed by the 

identification number in the last 10 columns . 

The sequence was repeated for. each point in the profile. 

The five currents, the five bucking voltages and the amplifi

cation factors were measured again at the end of the run, and the 

mean of the values before and after the run were used for data reduc

tion. In each case, these va lues were found to agree within ± O. 5"'. 
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III. DATA REDUCTION 

Corrections for Flow Gradients in Empty Tunnel 

Since Behrens (16) and Batt(2l) have shown that the maxirrlUm 

variation of~ the free stream static pressu re in the ~~gion of interest 

was less than 2%, no corrections were applied to th~ measured data 

to take account of these gradients. However, the variation of free 

stream Mach number with tunnel stagnation pressure was taken into 

account. 

III. 2. Pitot Pressure Correction 

On the basis of the results of Dewey (15) which indicate no 

measurable influence on the Pitot pressure measurements for angles 

of attack less than 120
, no corrections for this effect was applied for 

any of the Pitot pressure data, since the maximum flow inclination in 

the near wake, except in the recirculating region, is ~ 14
0

• 

Viscous corrections to measured Pitot pressure data at low 

. (23) (24) 
Reynolds numbers have been studled by Homann, Sherman, 

. ' (25). . . . . (26) (27) 
Potter and Balley, Sedov, Mlchallova and ChernYl, Schaaf and 

others. But none of these consider the corrections in the Mach number 

range 0.7 to 1.7. Since viscous correction to measured Pitot pres-

sure was found to be necessary in a considerable portion of the near 

wake flow, it was felt desirable to include the viscous correction in 

the mean-flow data reduction program. In order to do this it was first 

necessary to ITlake plausible estiITlates to the corrections in the Mach 

nUITlber range 0.7 to 1. 7 consistent with the corrections known exper-

iITlentally in the rest of the Mach nUITlber range. It was also considered 

necessary that the corrections should vary SITloothly as the Mach 
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number changes from subsonic to supersonic values. With this in 

mind an empirical formulation for the Pitot pressure corrections at 

low Pitot tube Reynolds numbers, agreeing closely with the experi-

mental results, was developed. The details of this formulation are 

discussed in Appendix B. The formulation is based on the idea that 

the corrections to the measured Pitot pressure data at supersonic 

Mach numbers may be considered to be made up of two parts, the 

first being the loss in Pitot pressure caused by the curvature of the 

shock in front of the Pitot tube as indicated by Sedov et al.(26) and the 

second being the viscous correction associated with the subsonic flow 

behind the shock. For lack of any experimental data close to Mach 

number I, an analytical expression fitted to match Sherman's subsonic 

results (24) was assumed to be valid up to Mach number 1. For super-

sonic flow, the same result was used for the correction due to the 

viscous subsonic flow after the shock, by taking the Reynolds number 

based on flow quantities after the shock. This was then subtracted 

from the overall corrections to the measured Pitot pressure given by 

the experimental results of Potter and Bailey(25) to obtain the correc-

tions due to shock curvature and other effects. An analytical expres-

sion to match these corrections associated with the shock, as functions 

of Mach number and Reynolds number, was then obtained. 

The Pitot probe (Fig. 3) used in most of the regions was 

0.008 in. by 0.051 in. outside dimensions, an aspect ratio of more 

than 6. The probe used for measuring the centerline reverse flow 

Pitot pressure, shown in Fig. 5 is in fact two-dimensional. Hence it 

was thought that the corrections based on a two - dimensional probe 
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would be Il'lore appropriate than that based on the three-diIl'lensional 

probe. Unfortunately no experiIl'lental data are available on the Pitot 

pressure corrections for two-diIl'lensional probes. fiowever, the 

theoretical analysis ofHoIl'lan~3) for subsonic flow shows that,for the 

saITle tangential velocity gradient at the stagnation point at the edge of 

the boundary layer, the corrections for a two-diIl'lensional probe are 

half the corrections for a three-diIl'lensional probe. FroIl'l the theo

retical analysis of Sedov et al. (26) for the corrections due to shock 

curvature, it is again seen that for the saIl'le shock curvature the 

corrections for a two-diIl'lensional shock is half that for a three-

diIl'lensional shock. It is expected that for a two-diIl'lensional probe 

the shock radius of curvature would be at least as Il'luch as that for a 

three-diIl'lensional probe of the saIl'le lateral diIl'lension. Since the 

corrections, if anything, reduce as the radius of curvature increases, 

it is reasonable to as SUIl'le that the corrections for a two-diIl'lensional 

probe is half that of a three-diIl'lensional probe. · Therefore, the Pitot 

pressure corrections for the probes used in the present set of Il'leas-

ureIl'lents were taken to be half that of the corrections for the three-

diIl'lensional probes whose experiIl'lental data have been used in the 

eIl'lpirical forIl'lulation. The expressions for the correction factors 

are given in Appendix B. 

The viscous corrections to the Il'leasured Pitot pressures at 

x/D = l. 75 and 2.0, for the adiabatic Il'lodel at Re D = 0.905 X 10
4

, 
00, 

shown in Fig. 10, were chosen for illustration, since the local Reyn-

4 
olds nUIl'lber was Il'liniIl'luIl'l for the adiabatic case at Re D= 0.905 x 10 

00, 

and since the Mach nUIl'lber varied froIl'l low subsonic to supersonic 
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values. The variation of {PP -PP . )/pP . across the wake, shown in 
m I I 

Fig. 10 illustrates that this correction does not necessarily decrease 

with increase of Reynolds number, though {PP _PP.)/pu
Z

, for sub-
m I 

sonic flow, varies roughly as the inverse of the Reynolds number, 

since pu
Z 

IpP. increases with Mach number up to M = '('!:". The max
I 

imum correction was of the order of IO;t. 

III. 3. Viscous Correction to Measured Static Pressure 

On the basis of the results obtained by Behrens (16) for viscous 

corrections to the measured static pressure, the maximum correction 

to the measured static pressure in the present investigation was found 

to be les s than z;t, and since the accuracy of measurement was of the 

same order, no correction was applied. 

III. 4. Hot-Wire Raw Data Reduction 

Hot-wire raw data reduction has been described by Dewey,(15) 

Behrens,(I6) and Batt.(ZI) However, a brief description is given here. 

Hot-wire raw data reduction consisted of calculating, for the 

finite hot wire used, the mean recovery temperature (T ), and the awm 

product of the Nusselt number and thermal conductivity of air corre-

sponding to the local stagnation temperature of the flow (Nu
m 

K
t

) using 

the following data: 

a) the calibration of the hot-wire 

b) the values of the five currents used and the corresponding 

settings of the bucking voltage and the amplification factors; 

c) the amplified, punched output of the difference between the 

hot-wire voltage and the bucking voltage. 
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The hot-wire voltage for a particular current was obtained 

by dividing the output by the appropriate amplification factor and 

adding the bucking voltage, and the hot wire resistance was obtained 

by dividing the hot-wire voltage by the current. In this manner the 

hot-wire resistance Rhw and the heat loss to the flow l
Z

R hw was found 

for each of the five currents. A straight line fit, with least square 

error, for 

resistance 

Rhw versus I2~w was used to obtain the adiabatic wire 

Z 
(R ) at 1 = 0 and the slope (d R_ /d I R_ ). The adia-awm -ow --hw 

batic recovery temperature of the hot wire (T ) corresponding to awm 

R was obtained using the resistance calibration of the hot-wire, 
awm 

Rh = R {1 + a (T -T )}. w r r w r 

where 

Nu , the measured Nusselt number is defined as 
m 

Nu 
m 

d 

= 
h d 

m 

~ 
= diameter of the hot wire 

K
t 

= thermal conductivity of air at the local stagnation 

temperature of the flow 

h = average measured heat transfer coefficient 
m 

= 

= 

1Tdl(T -T ) w awm 

R a 
r r 

1Tdl 

12 ~w 
(R -R ) hw awm 

t = length of the hot wire 

= 
R a 

r r 

1Td.t (slope) 

T = mean temperature of the wire at the current I 
w 

Tawm = mean recovery temperature of the wire 

(i. e. Tat I = 0) 
w 



= 

slope = 

R = r 

a = r 
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resistance of the hot wire at the current I 

d~w 
d 12 R 

hw 

reference resistance of hot wire at I = 0 and OOC 

coefficient of thermal resistance of hot wire 

Therefore Nu K
t 

= h d could be calculated. 
m m 

III. 5. Hot Wire End Loss Correction 

The calculation of mean flow quantities by means of hot wire 

anemometry is based on the correlation of dimensionless quantities 

such as the recovery factor and Nus selt number for an infinite hot 

wire in terms of the Mach number and Reynolds number. Therefore, 

the measurements made with a hot wire of finite length must be cor-

rected for the heat loss to the supports in order to obtain equivalent 

infinite wire values. 

Dewey(15) formulated these end loss corrections, by analyzing 

the conduction of heat from a finite wire, kept in a uniform flow with 

uniform temperature, to its end supports maintained at temperature 

T. He assumed that the thermal conductivity of the wire remained 
s 

constant and that the electrical resistance varied linearly with temper-

ature. His results have been used in applying the end-loss correction 

to the present set of data. His results are 

where 

T 
aw* = 

= 

(T -T) Wo awm s 
1 - Ub 

t Nu n m 



= 
tanh \)0 

\)0 
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= .! I Nu*Kt 
d K 

w 

[ 

Q' (T - T ) {(2WO -I ) Wo - I 2 } ] 
n s aWITl cosh \) 

= (l-w) I + 0 
o 2(1 + Q' (T -T)} (1 - WO)2 

n aWITl r 

The expression for the Nusselt nUITlber end loss correction factor Wn 

given here is that derived by Behrens (16) as a corrected version to the 

one forITlulated by Dewey.(15) It is seen that T * and, are functions 
aw n 

of Nu* Kt and hence an iteration procedure is necessary to find T
aw

* 

and Nu* Kt . 

1 ) 

2) 

3) 

4) 

5) 

The procedure is briefly as follows: 

AssuITle Ij.r 
n 

Then Nu* K t = Ij.rn NUITl Kt 

Find \)0 .... wO .... Ij.rn· 

Go to step (2) if Ij.r is not converged. 
n 

When Ij.rn converges, find Nu* Kt , and T aw* 

Batt(21) included these end-loss corrections, directly in the ITlean 

flow calculations. However, it was felt that it was better to carry 

out the end-loss corrections independently and then use the corrected 

infinite wire values in the ITlean flow calculations fo r the following 

reasons. First, ' the prograITls becoITle siITlpler. Second, inforITlation 

on the infinite wire teITlperature in the reverse flow region is obtained, 

though the ITlean flow properties in that region are difficult to find 

for a nUITlber of reasons. As stated in the next section, the T * for 
aw 
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low Mach nUITlbers is nearly equal to T
t
, the total teITlperature, and 

hence we would get inforITlation on the total teITlperature distribution, 

which would otherwise be lost if the end-loss prograITl and ITlean flow 

prograITl are cOITlbined. 

Ill. 6. Mean Flow Calculations 

Ill. 6. 1. Procedure Used in the Present Study 

data: 

The ITlean flow quantities were obtained using the following 

a) the Pitot pressure; 

b) the static pressure, assuITled constant across the wake and 

equal to the ITleasured value on the centerline; 

c) the infinite wire recovery teITlperature obtained after end-

loss correction to the hot-wire data; 

d) correlation of the infinite wire recovery factor (T1* = TawP't)' 

with Mach nUITlber and Reynolds nUITlber. 

Cor relation of infinite -wire recovery teITlperature with Mach nUITlber 

and Reynolds nUITlber. 

Dewey, (15) by cOITlbining the data of several investigators with 

his own ITleasureITlents, found that a single curve could satisfactorily 

describe the variation of the norITlalized recovery factor, 

Tl* = ("*-"e)/"f-"c) with Knudsen nUITlber froITl continuous flow to 

free ITlolecular flow. This correlation of "* with Kn has been used 

in the present calculations. " , the recovery factor for continuuITl 
c 

flow, varies froITl 1.0 for M = 0 to o. 95 for M = Z.O and reITlains the 

saITle for higher Mach nUITlbers. 'Ilf' the recovery factor for the free 

/ / 
y-l Z 

ITlolecular flow, is given by,,£ = (£1 gI) (1 + -Z- M ), where £1 and gl 
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are functions of the molecular speed ratio M/Y72. Tlf tends to I. 0 

at M = 0 and increases asymptotically to I. 166 as M increases to 

infinity. Thus, near M = 0 both l1f and Tlc tend to 1.0 and hence 'Tl* 

would also be close to 1. O. Therefore T aw* would be close to T fin 

the low Mach 'number regions such as the recirculating region, as 

indicated earlier. The variation of 11,c vs. M, gi and fl vs. M/Y72, 

and "* vs. Kn were given in the form of tables in the mean flow 

program. 

Details of the calculation. 

The Pitot pressure vs. Y /D, the static pressure on the center-

line, and the infinite-wire recovery temperature T * vs. Y /D, at any aw 

desired X/D location were read into the computer (IBM 360/75). 

Cor relation data on 'Tlf vs. M, l1c vs. M, and 'Tl* vs. Kn, were also 

read into the computer in the form of tables. Since Pitot pres sure 

and hot-wire measurements were made separately, the Y /D locations 

of the two measurements were not the same, and hence the Pitot pres-

sure data were interpolated to correspond to the same Y /D locations as 

the hot-wire data. 

The iteration scheme needed for calculating the mean flow 

quantities is given below: 

a) Assume 'Tl* = 11*1 say. 

b) Assume PP = PP ,the measured Pitot pressure. 
m 

c) Find T t = 11*1 T aw*' 

d) Find M from P /pp 

e) Knowing M, PP, and T
t 

any flow quantity can be calculated 

and thus viscous correction PP /PP. and Kn are calculated. 
m 1 
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(See Appendix B for viscous corrections). 

f) Find Tl*, Tlc and 11f cor responding to the mean flow quantities 

calculated. 

g) Find 11* = 11*Z from 11* = (Tl*-11c )/(11f- Tlc) 

h) Find PP. knowing PP and PP IpP. 
1 m m 1 

i) Check 11*Z and PPi with the initially assumed 11*1 and PP. 

If they satisfy the convergence criterion, then the calculated 

flow quantities are written out and punched. 

j) If convergence 'is not satisfied, take PP = PPi and 11*1 = 11*Z 

and go to step c) and continue the iteration until convergence 

is obtained. (Convergence was generally obtained within 

about 4 to 5 iterations.) 

It may be pointed out that the Nu* K
t 

data, available from the 

hot wire measurements after end-loss correction, have not been used 

in the mean flow calculations by the above procedure. Therefore a 

correlation of Nu* with Mach number and Reynolds number could also 

be obtained from these calculations. 

III. 6. z. Other Procedures for Mean Flow Calculations 

In Section III. 6. 1 the mean flow calculations are based on Pitot 

pressure, static pressure and Taw* data. Since Nu* K t data would 

always be available from hot-wire measurements, it is also possible, 

at least in principle, to obtain the mean flow quantities using either 

T aw*' Nu* K t and Pitot pressure data or T aw*' Nu* K t and static 

pressure data. For ease of reference, let us call the mean flow cal-

culations based on Pitot pressure, static pressure, and T * data as aw 
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in Section III. 6.1 as procedure (a), that based on T * Nu K and 
aw' * t' 

Pitot pressure as procedure (b) and that based on T Nu* K
t 

and 
aw*' 

static pressure as procedure (c). For procedures (b) and (c) corre-

lation of both Nu* and T aw* with Mach number and Reynolds number 

are needed. The correlation of T aw * with Mach number and Reynolds 

number has already been described in Section III. 6. 1. The correlation 

of Nu* with Reynolds number for various Mach numbers from ze ro to 

high supersonic values were obtained by Dewey(15) after a compre-

hensive review of data from various sources. Since the assumption 

of constant static pressure across the wake, used in Section III. 6. I, 

is definitely valid at least over a narrow region close to the centerline, 

the mean flow data obtained over that region from procedure (a) could 

be taken as correct, and. since Nu* Kt data were also available, Nu* 

could be calculated and a correlation of Nu* with Reynolds number and 

Mach number could be obtained. Results of such a correlation are 

shown in Fig. 11 along with Dewey's results. It is seen that the two 

correlations agree reasonably well for subsonic Mach numbers, but 

the correlations for supersonic Mach numbers are somewhat different. 

The discrepancy in the two correlations may perhaps be caused by in-

accuracies in the determination of wire conductivity and wire aspect 

ratio because of measurement difficultles. Using the correlation of 

Nu* with Reynolds number and Mach number obtained from the present 

investigations, an attempt was made with procedure (b) to extend the 

mean flow data to the regions where static pressure could not be 

assumed equal to that on the centerline. The iteration scheme for 

procedure (b) is as follows: 
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a) Assume Tl*l. 

b) Assume PP = PP , the measured Pitot pressure. 
m 

c) Find T t = T'I*l T aw*· 

d) Find K
t 

corresponding to T
t 

and hence Nu*. 

e) Assume M the Mach number. 

f) Find Ret d from M, PP and T t - say = (Re)l , 
g) Find Ret d from the infinite wire Nu*-Re correlation , 

corresponding to that M - say = (Re)Z 

h) If (Re)l and (Re)Z do not agree within the convergence 

criteria, change Mach number and go to step (f) and repeat 

until convergence is Obtained. 

i) Then from converged M, PP and T
t 

viscous correction to 

Pitot pressure PP m!PPi , T'I*, Tlf and T'lc can be calculated 

and hence Tl*Z can be found. 

j) Check for convergence of PP and PFf, and Tl*l and T'I*Z. If 

converged find all the mean flow quantities required. Other-

wise take Tl*l = Tl*Z and PP = PP i and go to step (c) and 

repeat the iteration. 

Typical Mach number distribution obtained! by procedure (b) is 

shown in Fig. lZ, along with the results obtained from procedure (a) 

described in Section III. 6.1. In view of the fact that the Nu* - M -

Reynolds number correlation obtained from the results of procedure 

(a) have been used in procedure (b), the agreement over the center 

region is reassuring. However, the Mach number distribution over 

the other regions obtained from procedure (b) shows considerable 

scatter. 
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Fig. 13 shows a comparison of the static pressure distribution 

obtained from procedure (b) with the measured static pressure distri

bution. Though the measured static pressure distribution might be 

somewhat in ,error in the shear layer region and the wake-shock region 

because of pr~be interference and flow inclinations; the trend for the 

static pressure to decrease away from the centerline is at least quali

tatively correct from the general stream line curvatures in that region. 

The static pressure obtained from procedure (b) shows considerable 

scatter and there is absolutely no agreement with the measured data. 

The scatter in the mean flow data obtained from procedure (b) 

may possibly be caused by some mismatch in the Pitot pressure and 

hot-wire data which were taken separately, and also possibly due to 

the extreme sensitivity of the results to small errors in the input data, 

when the correlation of Nu* with Reynolds number and Mach number 

is used for mean flow calculations. Therefore, procedure (b) was 

considered unsatisfactory for mean flow calculations for the present 

investigation. It was further felt that the mean flow calculations of 

procedure (c) using hot-wire data and the centerline static pressure 

data would also be unsatisfactory, since Nu* correlation with Reynolds 

and Mach number, which make the results very sensitive to slight 

errors in input data, has to be used even in this case. 

III. 7. Accuracy Estimates 

The accuracy estimates given below refer mostly to the meas

urement accuracy and no quantitative estimates could be made .for 

errors caused by extraneous factors, such as say non-twa-dimension

ality effects in spite of the optimum end devices us ed, the frost buildup 
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on the m.odel, etc. It is, however, believed that the errors due to 

these extraneous factors are sm.all. 

a) Positioning 

In order to elim.inate the m.echanical backlash effects, all 

vertical and axial positionings of a probe were carried out by m.oving 

the probe upward and forward respectively. The traverse m.echanism. 

had an accuracy of 0.001" in both axial and vertical settings. The 

use of electrical contact of the probe with the m.odel, for reference, 

perm.itted repeatability of the axial settings to within 0.002". For 

m.easuring the centerline static pressure, the probe was traversed in 

the vertical direction around the centerline and the centerline deter

m.ined from. the hum.p in the pressure distribution. After thus locating 

the probe on the centerline of the wake, the final reading was taken 

on the silicon m.icrom.anom.eter. This was particularly needed in the 

neck region and it is estim.ated that the probe was located to within 

± 0.002" of the center of the wake. 

b) Pitot Pressure Measurem.ents 

The m.easured Pitot pressure outside the recirculating region 

is estim.ated to be accurate to within · ± 1%. Since the probe inter

ference of the looped Pitot pressure probe is unknown, it is hard to 

estim.ate the accuracy of the Pitot pressure m.easurem.ent on the 

centerline in the recirculating region. It is expected, however, that 

away from. the rear stagnation point and close to the base the m.eas

ured values are reasonably accurate. The final Pitot pressure data, 

after taking into account the viscous corrections, are expected to be 

accurate to ± 2% in m.ost of the regions. 
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c) Static P res sure Measurements 

The repeatability of the static pressure measurement was 

within ± 2%. As mentioned earlier, no viscous correction to the 

measured static pressure was applied, as the correction was found 

to be at most 2%. 

d) Base Pressure Measurement 

Base pressure data were taken using the silicon micromanometer 

with the Pitot pressure probe positioned within 0.002" of the base on 

the centerline. The results of Collins (20) for the interference of the 

probe on the base pressure measurement is made use of in correcting 

the measured base pressure in the present investigation. The base 

pressure being very small in magnitude, the measurement accuracy 

is expected to be of the order of 5% only. 

e) Hot Wire Measurements 

The variation in R and a before and after the run was less 
r r 

than 2%. The resistance measurement at zero current, taking a linear 

extrapolation of R vs. 12R is expected to be accurate to ± 0.02 ohms . 

The overall accuracy in the measurement of T is estimated at , awm 

± 30 K. It is hard to estimate accurately the error associated with the 

end-loss correction and the correlation of the infinite wire data, on 

the final total temperature. A rough estimate is that the total temper

ature may be in error by as much as ± 5
0

K. 

f) ' Er ro rs as a Result of the Matching of Pitot P res sure and Hot-Wire 

Data: 

Since Pitot pressure data and hot-wire data were not taken 

simultaneously, it was necessary to match the two profiles at any x/D 
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station in order to obtain mean flow properties. It was noticed that 

when the shocks were matched the center bucket region was not very 

well matched. This was caused by the fact that the profiles were not 

quite repeatable in the central region, although beyond the shocks the 

profiles were quite repeatable. The deficit region was found to shift 

between tests by about ± O. 004" (± O. OZ D) for the cold model at 

4 
Re D = Z. 95 X 10 and by about ± O. OOZ" (± 0.01 D) for the other 

00, 

cases. Naturally, the midpoint of the shocks did not agree with the 

center of the deficit region. Since the profiles beyond the shocks were 

steady, it was decided that the profiles of the Pitot pressure data and 

the hot wire data should be matched so that the shock locations agreed, 

and the bucket region was shifted to be symmetrical with respect to 

the shocks. Such shifting was necessary, as otherwise the mean flow 

properties obtained from the mismatched Pitot and hot-wire data would 

be spurious and erroneous. The error committed by shifting and 

matching is considerably less than it would be otherwise. 

g) Mean Flow Calculations 

From a few static pressure traverses made, it was clear that 

the error made in the static pressure by assuming static pressure 

constant acro ss the wake was les s than 1 O~. Since the Pitot p res sure 

data are estimated to be accurate to ± Z~ in most of the regions, the 

resulting Mach number can be expected to be accurate to about 5~. 

Since the total temperature is accurate to within ± 5
0

K which is about 

l~ for the adiabatic models and about Z~ for the cold models, taking 

uncertainty in M of 5~, the uncertainty in the static temperature would 

be about 6~ and uncertainty in the velocity would be about s~, and 
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uncertainty in rnass flux would be about 5%. In view of the fact that 

interference of the looped Pitot pressure probe on the measurement 

of the Pitot pressure of the reverse flow is not known, no definite 

estimate of the accuracy of mean flow calculations of the reverse flow 

can be made. 
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IV. RESULTS AND DISCUSSION 

IV.1. Pitot Pressure 

The measured Pitot pressure profiles are shown in Figure 14. 

The general picture for all the cases is similar. However, the sepa-

ration shock is not as well defined for the adiabatic model for the low 

Reynolds number case. The narrowing of the width of the wake with 

cooling and with increasing Reynolds number can be: easily noticed. 

For the adiabatic model, at Re D = 0.905 X 10
4

, the separation shock 
00, 

and the wake shock merge with one another, whereas they are distinct 

for the other cases, and further, this distinction between the two 

seems to be enhanced with increasing Reynolds number and with 

cooling. 

These profiles have been used to determine the separation 

shock, wake shock and the shear layer edge in the near wake. Be-

cause of the interaction of the oblique shock wave with the subsonic 

region behind the bow shock on the probe, the Pitot pressure profiles 

exhibit considerable width even for a thin shock wave. Therefore, the 

location of the shock wave was assumed to be the mean of the inter-

sections of the vertical lines at the maximum and the minimum of the 

measured Pitot pressure profiles with the maximum gradient of the 

profiles between them. Insome cases, suchas determining the separation 

shock for the adiabatic model at Re D = 0.905 X 10
4

, where there 
00, 

were no maximum and minimum in the Pitot pressure distributions, 

the mean of the locations of the kinks was assumed to be the location 

of the shock. The shear layer edge was assuined to be given by the 

intersection of the maximum slope of the Pitot pressure profile in the 
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center bucket with the maximum measured value . The location of the 

shock and the shear layer edge as determined from the opposite sides 

of the profiles agreed within 0.02 Y ID, and these will be discussed 

later. 

The centerl ine Pitot pressure distribution is shown in Figure 

15. This is essentially a crossplot of Figure 14, except that close to 

the base the measurements made on the centerline using silicon micro-

manometer have been used. The pressure measured by the standard 

probe (Figure 3), when its tip was located close to the base with a gap 

of the order of 0.002" was taken to be the base pressure. The silicon 

micromanometer was used for this measurement also . 

. From the investigations of Behrens, (16) it is known that the 

near wake is laminar for the adiabatic model at both Re D= O. 905x 104 
00, 

4 
and 2.95 X 10. Since the behavior of the Pitot pressure distribution 

4 
for the cooled model at Re D = O. 905 x lOis very similar to that 

00, 

for the adiabatic model, the wake is taken to be laminar for this case 

also. However, the distribution for the cooled model at the higher 

Reynolds number departs from the other cases in a manner typical of 

transition. It was found during measurements that, for this case, . 

there was considerable variation from run to run and the measure-

ments were not very repeatable. This unsteadiness wa·s perhaps a 

result of the movement of separation point on the cylinder due to frost 

buildup and breaking -off of the model, coupled with transition effects. 

Therefore, scatter in the measured data for this case was consider-

ably more. Because of this transition at the higher Reynolds number, 

for the cold model, comparison of the results of the adiabatic and 
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cooled models are relevant only for the lower Reynolds number 

case. 

IV.2. Static Pressure 

The centerline static pressure distribution is shown in Figure 

16. The base pressure was obtained by the standard Pitot probe kept 

close to the base with a gap of the order of 0.002 in., as already 

mentioned. It can be noticed from Figure 16 that the peak in the 

static pressure is higher and closer to the model for the cold cases, 

compared to the adiabatic cases. The location of the static pressure 

peak is a good indication of the wake -neck location, and it is seen that 

the wake-neck moves closer to the model on cooling. The effect of 

Reynolds number on the neck location is negligible. Effect of Reyn-

olds number on the measured base pressure for the adiabatic model 

is seen to be negligible from Figures 15 and 16. However, after 

applying the corrections for probe interference based on Collins ,(20) 

results, it was found that the base pressure increased slightly with 

Reynolds number agreeing with the trend obtained by other investi-

gators. Figures 15 and 16 also show that the base pressure decreased 

with cooling. The basepressureforthe cold model at Re D=2. 95 X 10
4

, 
00, 

being much less than that for the cold model at Re D = 0.905 X 10
4 

is 
00,_ 

caused by the transition in the wake at the higher Reynolds number 

for the cold model. For comparison, it may be mentioned that for 

a wedge, Batt(2l) found that the base pres sure decreased with in-

crease of Reynolds number, and with cooling. The base pressure 

for a wedge is lower than the free stream static pressure, whereas 
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the base pressure for the cylinder is about the free streaITI static 

pressure or even slightly ITIore. Also, the static pressure after re

cOITIpres sion in the neck region of the cylinder wake is nearly three 

tiITIes the free streaITI static pressure. The overall pressure level 

in the near wake of a cylinder is considerably higher than that for the 

wedge because of the blast-wave-like behavior of blunt bodies at 

hypersonic Mach nUITIbers. 

IV. 3. Rear Stagnation Point Location 

The rear stagnation point location is defined by the equality 

of the Pitot pressure and the static pressure on the center line. For 

this purpose, the Pitot pres sure as ITIeasured by the standard probe 

shown in Figure 3 was used. Figure 17 clearly shows the ITIanner in 

which the rear stagnation point was dete rrnined. 

The variation of the rear-stagnation point with Reynolds nUITIber 

and cooling will be discussed later when these results will be cOITIpared 

with the results of other investigators. 

IV. 4. Centerline Pitot Pressure of Reverse Flow 

In order to obtain the ITIean flow quantities of the reverse flow 

in the recirculating region, the Pitot pressure of the reverse flow was 

ITIeasured using a looped Pitot probe shown in Figure 5. As discussed 

earlier in Section II. 3, the ITIeasureITIents were restricted to the 

centerline only. The results of the ITIeasureITIent are shown in Figure 

18. The static pressure distribution of Figure 16, and the location of 

the rear stagnation point obtained froITI Figure 17 are also shown in 

Figure 18, in order to show the ITIagnitude of the interference effects 
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of the looped Pitot probe near the rear stagnation point. It is seen 

that the Pitot pressure measured by the looped Pitot probe becomes 

less than the static pressure, even before the rear stagnation point 

is reached. In spite of this interference near the rear stagnation 

point, since the Pitot pressure measurements of the looped Pitot 

probe do approach the base pressure as the base is approached, it is 

believed that these measurements could be taken to be reasonably 

correct at least at x/D = 0.7 and 0.8 for the low Reynolds number 

cases, and at x/D = O. 7, 0.8, and 1. 0 for the higher Reynolds number 

cases. Therefore in obtaining the centerline distribution of the mean 

flow quantities,reliance is placed mainly on the data obtained at these 

points and on the location of the rear stagnation point obtained from 

Figure 17. 

IV. 5. Hot Wire Measurements 

The infinite wire recovery temperature variation is shown in 

Figure 19. These infinite wire values were obtained from the raw 

hot-wire data after applying end-loss correction as described in 

Sections Ill. 4 and Ill. 5. 

Except for the adiabatic model at the higher Reynolds number, 

the locations of separation and wake shocks cannot be determined 

accurately from the infinite wire temperature profiles. The positions 

of the shock as determined by these temperature profiles were gener

ally 0.01 Y /D farther from the centerline as compared to those ob

tained from Pitot pressure distributions. This may just be caused by 

the error in the assumption of the shock location within the width 

exhibited by the pressure and temperature profiles. 
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The, characteristic overshoot of the temperature profiles in 

the shear layer of the adiabatic models is clearly observed. The 

cold model profiles do not exhibit such overshoots. In the case of 

adiabatic models, the edge of the thermal layer was assumed to be 

given by the intersection of maximum slope beyond the overshoot and 

the minimum temperature beyond the overshoot. Whereas in the case 

of the cold models, the edge of the thermal layer was assumed to be 

given by the intersection of maximum slope of the temperature distri

bution in the bucket and the maximum temperature. Hence it is 

probable that the edge of the thermal layer so determined, in the case 

of adiabatic model, may be closer to the actual edge than that for the 

cold model. The mean edge of the the rmal layer so determined from 

the top and bottom profiles is discussed later. 

IV. 6. Mean Flow Calculations 

Using the Pitot pressure data and the infinite wire temperature 

data, and as suming the static pres sure to be constant acros s the wake 

and equal to the centerline value, mean flow properties were calculated 

as described in Section III. 6.1. · The static pressure was assumed to 

be constant up to the edge of the shear layer. From the Pitot pressure 

measurements with the normal probe, flow properties in the reverse 

flow region could not be calculated, since the measured pressure was 

naturally less than the static pres sure. The Pitot pres sure measured 

using the looped probe was used to obtain the centerline reverse flow 

properties. 
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i) Centerline Mach Number Distribution 

Figure 20 shows the centerline Mach number distribution for 

the four cases. 4 
For the cooled model at Re D = 2.95 X 10 , the 

00, 

Mach number beyond the rear stagnation point increases much more 

rapidly than for the other cases as a result of the transition in the 

wake for this particular case. The maximum Mach number of the 

reverse flow on the centerline increases with increasing Reynolds 

number and with cooling. This maximum Mach number reaches a 

value as high as 0.6 in the case of the cooled model for the higher 

Reynolds number. The sonic point on the centerline moves closer 

to the model with cooling. The effect of Reynolds number on the loca-

tion of sonic point for the adiabatic model is negligible. For the cold 

model, the sonic point location at the higher Reynolds number being 

closer to the model compared to its location at the lower Reynolds 

number is again a result of transition in the wake at this Reynolds 

number. 

ii) Centerline Velocity Distribution 

This is shown in Figure 21, non-dimensionalized with respect 

to the free stream velocity. The scatter in the data for the cooled 

model at Re D = 2.95 X 10
4 

is caused by various factors discussed 
00, 

already in Section IV.!. Just comparing the lower Reynolds number 

cases, cooling has only a small effect on the variation of the center-

line velocity distribution which indicates that the differences in Mach 

number distribution noted earlier are due to temperature effects. 

From comparing the results for the two Reynolds number for the 

adiabatic case, the centerline velocity increases at a slightly faster 
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rate for the higher Reynolds number case as compared with the lower 

Reynolds number case. 

The ~rnaximum velocity in the reverse flow region again in-

'creases with increasing Reynolds number and with cooling. It may 

be observed that the effect of cooling on this maximum reverse velocity 

is not as much as on the maximum Mach number in the reverse flow 

region. 

iii) Centerline Stagnation Temperature Distribution 

The centerline stagnation temperature distribution for both the 

adiabatic and cooled models is shown in Figure 22. It is seen that the 

rate of increase of the stagnation temperature along the centerline for 

the adiabatic model at Re D = 0.905 X 10
4 

is very small and it can 
00, 

almost be considered constant. The slight initial dip in the distribution 

could not be accounted for. For the higher Reynolds number, the 

increase along the centerline beyond the rear stagnation point is 

noticeable though still quite small. 

For the cold model, at Re
oo

, D = 0.905 X 10
4

, the stagnation 

temperature from X/D = 0.7 up to the rear stagnation point is almost 

constant and then begins to increase, and considerable temperature 

defect exists even at X/D = 10 for this case. The stagnation tempera-

ture measured upstream of the rear stagnation point is of the order 

of 0.48 times the free stream stagnation temperature, whereas the 

model was cooled to O. 19 times the free stream stagnation tempera-

ture. It is evident that there is a thin boundary layer on the model 

base. 
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The rapid increase of the stagnation temperature beyond the 

rear stagnation point for the cold model at Re D = 2.95 X 10
4 

is 
00, 

again a result of the transition occurring in the wake for this case. 

There is considerable scatter in the data for this case, perhaps as a 

result of the movement of the separation point on the cylinder due to 

frost buildup and breaking-off of the model, coupled with transition 

effects. The stagnation temperature is reasonably 'constant, within 

the experimental scatter, from X/D = 0.7 up to the rear stagnation 

point for this case also and it is about 0.5 times the free stream stag-

nation temperature. A thin boundary layer on the base is evident in 

this case also. 

The results of Zakkay and Cresci (28) on the near wake of a 

slender cone also show that the stagnation temperature on the center-

line is nearly constant up to the rear stagnation point except for a thin 

layer on the base. Since Batt(21) could not make any temperature 

measurements in the recirculating region of the wedge, for reason!! 

already stated, the presence of a thin thermal layer on the base was 

not evident from his experiments. 

The temperature at the rear stagnation point of sharp cones 

and wedges, for the same wall temperature, have been found to be 

about the same by many investigators (for example Batt,(21) Muntz 

and Softley(29\ The temperature at the rear stagnation point for 

wedges and cones for a wall temperature of O. 2 times the free stream 

stagnation temperature (T ), is about 0.3 T . However, Muntz and o 0 

Softley(29) found that the temperature at the rear stagnation point 

increased with increasing nose bluntness and for a 0.3 nose bluntness, 
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o 
9 sphe re cone at M = 12.8, the temperature at the rear stagnation 

point was about 0.6 T for a wall temperature of about 0.27 T • 
o 0 

Since, in the present investigation, we have found the temperature 

at the rear ~tagriation point of a cylinder cooled to 0.2 To is about 

0.5 T , it appears that the bluntness of the body affects the tempera
o 

ture at the rear stagnation point (which generally corresponds to the 

maximum static temperature in the wake) mo re than the two -dimen-

sional or three-dimensional nature of the body. 

The fact that, in the reverse-flow region behind the cooled 

models, the stagnation temperature on the centerline is constant and 

equal to that at the rear stagnation point, except very close to the 

base, indicates that there is very little conduction in the fluid in the 

recirculating flow and that the heat is mostly convected in this region. 

iv) Centerline Static Temperature Distribution 

The centerline static temperature distribution is a direct 

consequence of the stagnation tempe rature distribution and Mach 

number distribution and is shown in Figure 23. 

For the adiabatic model, since the variation of the stagnation 

temperature is small, whereas the Mach number increases as one 

proceeds downstream, the static temperature decreases as one pro-

ceeds downstream of the rear stagnation point. 

For the cold model, the variation of the stagnation temperature 

and the Mach number happens to be such that the static temperature is 

nearly constant at four times the free stream static temperature except 

close to the base, where the base boundary layer is evident. Again 

scatter in data for the cold model at Re ··D· = 2~ 95 xl 0
4 

is noticed beC;ause of 
00, 
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the various factors already mentioned. 

v) Mach Number Profiles 

The transverse variation of Mach number is Ilhown in Figure 

24. It should be noted that the origin for different X/D stations have 

been shifted by a constant amount. In the reverse flow region, the 

Mach number on the centerline was taken from the faired curves of 

the centerli~e Mach number distribution. Dashed curve shows fairing 

of the Mach number profiles through the point on the centerline. The 

edge Mach number in all cases is nearly 2.5. 

For the adiabatic model at Re D = 0.905 X 10
4

, the Mach 
00, 

number profiles for X/D = 0.7 and 0.8 look reasonable even beyond 

the separation shock even though the static pressure is assumed 

constant and equal to that on the centerline indicating that the separa-

tion shock is very weak for this case. 

This is not the case for the cold models, where the Mach 

number instead of continuously increasing tends to decrease as one 

passes through the separation shock. This indicates that the separa-

tion shock is of sufficient strength and assuming static pressure 

across the shear layer to be constant and equal to the centerline 

value, even beyond the separation shock, is erroneous. 

4 
For the adiabatic model at Re D = 2. 95 X 10 , the profiles 

00, 

do not go beyond the separation shock, but it is likely that the behavior 

would be similar to that of the cold model. 

vi) Velocity Profiles 

The velocity profiles are shown in Figure 25. Again, the 
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values obtained from the faired curves of the centerline velocity 

distribution have been used for fairing these velocity profiles in the 

reverse flow region. The u = 0 location was determined from these 

profiles. It is believed that the location of the u = 0 is determined 

more accurately by this method than by taking it to be the location 

where the Pitot pressure is equal to the centerline static pressure, 

as was done by some previous investigators. Since the Pitot pressure 

profile cuts the constant static pressure line at a very acute angle, 

this raises some ambiguity in the e~act location of the intersection 

point. Further, since at u = 0, the velocity is perpendicular to the 

probe, the basic criteria of the two pressures being equal at u = 0 

is inco rrect. 

The edge velocity is around 0.8 times the free stream velocity 

in all the cases. 

vii) Stagnation Temperature Profiles 

The stagnation temperature profiles are shown in Figure 26. 

Note that the scales for the adiabatic model and the cold model are 

different. Since for low subsonic Mach numbers the infinite wire 

recovery temperature is very close to unity for both continuum and 

free molecular flow, . it was felt that the infinite wire recovery tem

perature shown in Figure 19 would be close to the stagnation tempera

ture in the reverse flow. Therefore, it was felt that the infinite wire 

recovery temperature distribution shown in Figure 19 could be used 

in the reverse flow region to represent the stagnation temperature 

distribution in that region. In Figure 26 the infinite wire recovery 

temperature distribution in the reverse flow region is shown by dotted 
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lines. It may be observed that this infinite-wire recovery temperature 

distribution fairs smoothly into the stagnation temperature distribution 

outside of the reverse flow region. The stagnation temperature on the 

centerline oqtained from Pitot pressure of the reve:rse flow, the 

static pressure and hot wire data on the centerline are also shown 

by dark dots. It can be seen that these data agree closely with the 

infinite recovery temperature data on the centerline, confirming 

our expectation that the infinite wire recovery temperature and the 

total temperature are nearly equal for low subsonic Mach numbers. 

For some cases, the stagnation temperature profiles were 

extended somewhat into a region where static pressure could not be 

assumed constant by using the infinite wire temperature data given in 

Figure 19 and as suming the recovery factor to be the same as that 

obtained for the end point in the mean flow calculations. 

For the adiabatic model, the characteristic overshoot of the 

total temperature in the shear layer can be observed at both the 

Reynolds numbers tested. No such overshoot is observed for the 

cold model. 
4 . 

Except for the cold model at Re D = 2. 95 X 10 , where 
00, 

the behavior is somewhat irregular because of the various causes 

already mentioned, for all the other three cases the temperature 

profiles at the axial stations ahead of the rear stagnation point show 

an off-axis minimum. It was found that the location of the off-axis 

minimum was ' close to the location of the dividing streamline, the 

determination of which would be discussed in the next section. For 

the cold models, the cold boundary layer separating from the cylinder 

and the cold base boundary layer flow merges along the dividing stream 
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line and hence, the minimum stagnation temperature can be expected 

to be close to the dividing streamline. Since the recovery tempera-

ture of the cylinder model for the adiabatic case is about o. 92 times 

the free stream stagnation temperature, the effect is similar to a 

cold cylinder and an off-axis minimum for the stagnation temperature 

occurs for this case also. The recirculating flow gets heated as it 

flows along the dividing streamline towards the rear stagnation point 

and returns back to the base along the center. Therefore, the off-axis 

minimum and a hump around the center region in the total temperature 

distribution is fully understandable. 

IV. 7. Flow Field Structure 

The dividing streamline was foum in the following manner. 

Centerline mass flow values obtained from the faired curves of the 

centerline mass flow distribution shown in Figure 27 were used in 

completing the transverse mass flow profiles shown in Figure 28. 

The mass flow profiles in the reverse flow region were assumed to 

be of the {orm'" 

and 

the coefficients a 1 and a 2 were chosen so that these profiles faired 

smoothly with the rest of the measured profiles; a
O 

was given by the 

faired centerline value. Though even powers were chosen from the 

theoretical point of view that the profiles should be symmetrical, the 

coefficients a
l 

and a 2 had to be different fo.r, the top and bottom profiles 

in order to match with the measured profile. The mass flow profiles 

being thus determined (Figure 28), the t = 0 location was determinedby 
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integration. The assUITled analytical profiles, in most cases, matched so 

well with the measured profiles , that the analytical expres sion itself was 

used for determining 'I' = O. The locations of '1'=0 are also indicated on 

Figure 28. 

It was checked that the Y /D positions of pu = 0 as given by these 

profiles agreed well with the Y /D positions of u = 0 given by the velocity 

profiles shown in Figure 25. The mean of the 'I' = 0 and u = 0 locations 

from the top and bottom profiles have been used in Figure 29. 

The separation shock, the wake shock and the shear layer edge 

as determined from Pitot pressure profiles (Section IV. I) and the edge 

of the thermal layer as determined from the infinite wire temperature 

profiles (Section IV. 5) are also shown in Figure 29. 

It is clear from Figure 29 that there is considerable difference 

between the thermal layer edge and the shear layer edge in all the 

cases. The difference between the two edges is more for the cold 

model compared to the adiabatic model. It may be pointed out, for 

the sake of comparison, that Batt(21) did not make any difference 

between the shear layer edge and the thermal layer edge in his inves

tigation of the wake behind wedges. In fact he could not find the shear 

layer edge near the base from Pitot pressure profiles, because of the 

enormous expansion around the wedge corner, and he took the shear 

layer edge to be the same as the thermal layer edge found from the 

temperature measurements. The difference between the thermal 

layer edge and the shear layer edge is attributed to the fact that the 

boundary layer on the cylinder is subjected to a much higher favorable 

pres sure gradient compared to that on a wedge and, consequently, the 

velocity boundary layer becomes thinner compared to the thermal 
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layer and this is felt in the shear layer as well. The fact that the 

difference between the thermal layer and the shear layer for the 

cold model reduces as the wake -neck is approached can again be 

attributed to the fact that the flow is subjected to an 'unfavorable pres-

sure gradient as it approaches the neck. For the case of adiabatic 

model, it should be borne in mind that, because of the temperature 

overshoot and the manner in which the thermal layer is determined 

(see Section IV. 5), the difference between the thermal layer and the 

shear layer might be somewhat exaggerated. The edge of the thermal 

layer for the adiabatic model at Re D = 0.905 X 10
4 

for X/D less 
00, 

than 1. 5 could not be determined since the temperature overshoot was 

not well defined for these profiles. 

It can be seen from Figure 29 that the separation shock and the 

wake shock merge with one another for the adiabatic model at 
. 4 

Re D = O. 905 X 10 , whereas they are distinct for the other three 
00, 

. cases. For comparison it may be stated that the separation shock 

and the wake shock merged with one another for the wedge for all 

cases investigated by Batt.(21) 

The shock positions, the thermal layer edges, and the shear 

layer edges for the four cases have been superposed in Figure 30a for 

easy comparison. By comparing the thermal layer edges and the shear 

layer edges for the adiabatic and cold models at Re D = 0.905 X 10
4

, 
00, 

it is clear that cooling reduces the wake width to somewhere between 

2/3 to 3/4 of its adiabatic value. Comparing the thermal layer edges 

and the shear layer edges for the adiabatic model for the two Reynolds 

numbers, it is Seen that the wake width at Re D = 2.95 X 10
4 

is nearly 
00, 
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2/3 to 3/4 of the wake width at Re D = 0.905 X 10
4

. Since transition 
00, 

occurred in the wake for the cold model at Re D = Z. 95 X 10
4

, simi-
00, 

lar statements regarding the effect of cooling at higher Reynolds 

number, or the effect of Reynolds number for a laminar wake of a 

cold model, cannot be made apart from just stating that the wake 

width for this case was the minimum of all the four cases tested. 

The variation in the wake shock locations qualitatively corre-

lates with the variation of the shear layer edge for all the cases. 

It may be mentioned that the effeCt of Reynolds number and 

cooling on the wake width discussed above, for the cylinder, is quali

tatively the same as that found by Batt(2l) for wedges. 

The wake ne.ck for all the cases. lies somewhere between 

X/D = 2.0 to 3.0, the exact location being hard to determine because 

of the slow variation of the shear layer edge position with distance. 

However, one can observe the tendency for the neck to move closer 

to the model with increase of Reynolds number and with cooling. By 

comparing .the X/D locations of the peaks of the centerline static 

pressure distribution shown in Figure 16 and the shear layer edges 

shown in this Figure 30a, it seems reasonable to assume that the neck 

positions are given by the X/D location of the peaks in the static pres-

sure distribution. The trend in the variation of the neck location on 

this basis with Reynolds number and with cooling is more easily 

noticeable, and has already been discussed in Section IV. Z. 

Figure 30b shows a comparision of the separation shock, t = 0, 

and u = 0 lines to a larger scale. Except for the adiabatic model at 

the higher Reynolds number of Z. 95 X 10
4

, for which the separation 
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shock is higher up; for the others, the shock location is nearly the 

saITle. The recirculating region lengthens and the rear stagnation 

point is ITloved downstreaITl with increase of Reynolds nUITlber for the 

adiabatic ITlodel. At the lower Reynolds nUITlber for which the near 

wakes are laITlinar for both adiabatic and cold ITlodels, cooling shifts 

the rear stagnation point away frOITl the ITloclel. However, because 

of transition in the wake, for the cold ITlodel at the higher Reynolds 

nUITlber, the rear stagnation point shifts closer to the ITlodel with 

increase of Reynolds nUITlber for the cold ITlodel, and with cooling 

at the higher Reynolds nUITlber. 

IV.8. COITlparison with the Results of Other Investigators 

Figure 31 shows a cOITlparison of the centerline static pres sure 

distribution. There is general agreeITlent, but the base pressure and 

the peak pressure are lower for the present set of results. 

Figure 32 shows the variation of base pressure in terITlS of 

free streaITl Pitot pressure (i. e. the pressure at the forward stag-

nation point on the cylinder, with Reynolds nUITlber based on cylinder 

diaITleter and 'vis cosity corresponding to free streaITl stagnation 

teITlperature. 
(15) (19) . (20) 

The results of Dewey, Herzog, and Colhns 

are also included. Dewey and Herzog ITleasured the base pressure 

directly using a base tap. Collins (20) ITleasured the base pressure 

using a Pitot probe, the tip being kept close to the base within a few 

thousandths of an inch. He corrected for the probe interference, and 

the corrected base pressure is shown in Figure 32. In the present 

study also, the base pressure was ITleasured using a Pitot probe, the 

tip being kept close to the base. No calibration of the Pitot pressure 

against the pressure ITleasured by a base tap could be ITlade in the 
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present study because of the hollow model needed for cooling. The 

uncorrected base pressures obtained in the present study are shown 

in this figur~. Since the experimental conditions of the present study 

are close to that of Collins, the corrections to probe interference 

can be taken from his results and applied for the present results. 

If that is done, the base pressure for the lower Reynolds number is 

reduced by about O. S% and increased by about 4% for higher Reynolds 

number. These corrected values are also indicated. Taking into 

account the fact that the end devices used by the various investigators 

are different and that the accuracy of measureluent of such low pres

sures is only about ± S%, the agreement among the results of the 

various investigators can be considered t? be reasonable. 

Figure 33 shows the variation of the location of the rear stag-

nation point with Reynolds number. The results of the other investi

gators are also included. The rear stagnation point being somewhat 

closer to the model for the present investigation compared to the 

experimental results of the other investigators is consistent with the 

fact that the base pressures were lower in the present investigations 

compared to the result of the others. 

The difference in the results of Reeves and Lees(3) and that 

of Klineberg,(S) as pointed out by Collins (20) is due to slightly dif

ferent approaches adopted by them in their theoretical analysis. 

Klineberg treats a supercritical separation on the cylinder coupled 

to the near wake flow, whereas Reeves and Lees consider a fixed 

separation point. 
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The results of the cold model are also included in this figure. 

The near wake structure obtained from the present set of 

measurements for the adiabatic model is compared with that obtained 

by Collins (20) in Figure 34. They agree reasonably well except for 

the location of the rear stagnation point, which has been discussed 

already. The u = 0 line of the present results, at Re D = 0.905 X 
«>. 

lie somewhat lower than that of Collins ,(20) results. 
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V. SUMMARY OF RESULTS 

An experimental investigation has been carried out to deter-

mine the mean flow properties for the near wake behind a two-

dimensional circular cylinder of O. Z in. diameter at M = 6. O. 
00 

Tests were conducted for both the adiabatic and cold model at 

4 4 
Re D = O. 905 X 10 and Z. 95 X 10. For the cold model tests, the 

00, 

model was cooled to 77° K by an internal flow of liquid nitrogen through 

the hollow cylinder model. 

The main results which have been obtained from this investiga-

tion are as follows: 

4 I) Except for the cas e of the cold model at Re D = Z. 95 X 10 
00, 

for which transition occurred in the near wake, for all the other three 

cases, the near wake was laminar. 

Z) The base pressure decreased with cooling. The base pres-

sure for the adiabatic model (after correcting for the probe inter-

ference) increased slightly with increase of Reynolds number. For 

the cold model, because of transition at the higher Reynolds number, 

the base pressure decreased with increase of Reynolds number. 

3) For the adiabatic model, the rear stagnation point moved from 

X/D=1.45atRe D=0.905XI0
4

toX/D=1.70atRe D=Z.95X 10
4

. 
~, 00, 

At Re D= 0.905 X 10
4

, on cooling, the rear stagnation point moved to 
00, 

X/D = 1. 65. The rear stagnationpointwas atX/D = 1. 61 for the cold model 

at Re D= 2. 95 Xl 0
4

, .and this slight movement ofthe rear stagnation point 
00, 

towards the model with increase of Reynolds number for the cold case was 

caused by the transition in the near wake ofthe cold model at Re n=2. 95x 1 0
4
, 

00, 
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4) The location of the wake neck moved towards the model on 

cooling. 

5) The location of the sonic line on the wake cente r line also 

moved upstream with cooling. The location of the sonic point for the 

adiabatic model was hardly affected by Reynolds number and was 

around X/D po 3. Z. For the cold model, the location was at X/D"'" Z. 75 

4 4 
at Re D = O. 905 X 10 and moved to X /D "'" 2. 25 at Re D = 2. 95 X 10 

00, 00, 

because of transition at this Reynolds number for the cold model. For 

comparison with the wedge data, it may be noted that Batt found that 

wake centerline became supersonic for all his cases within an axial 

distance of two bas e heights. 

6) The wake shocks, the shear layer edge and the thermal 

layer edge moved closer to the wake centerline with increasing Reyn-

olds number and decreasing wall temperature. 

7) The separation shocks became stronger with increase of 

Reynolds number and with cooling. The location of the separation 

shock was nearly the same for all the cases, except for the adiabatic 

model at Re D = 2.95 X 10
4

, for which the location was slightly 
00, 

higher than for the others. 

8) Batt found that the separation shock coalesced with the wake 

shock for the wedges for <1.11 cases, whereas for the cylinder, this 

4 
happened for the adiabatic model at Reoo,D = 0.905 X 10 only and for 

the other cases the wake shock was quite distinct from the separation 

shock. 

9) The shear layer edge was closer to the centerline than the 

thermal layer edge for all the cases, because of the favorable pressure 
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gradient acting along the boundary layer on the cylinder prior to sepa-

ration. This is particularly evident for the cold cases. Further, 

for the cold cases, the. effect of the unfavorable pressure gradient 

along the shear layer, as the wake neck is approached, tending to 

bring the shear-layer and thermal-layer edges closer, is also 

evident. 

10) From the centerline total temperature distribution, for 

the cold model, it was apparent that there was a thin boundary layer 

on the base of the model. The total temperature was nearly constant 

between the rear stagnation point and close to the base and approxi-

mately equal to 0.5 times the free stream stagnation temperature 

fo r the cold models and dropp ed to the model tempe rature of O. 19 

times the free stream stagnation temperature within the thin boundary 

layer. For the adiabatic model, at the lower Reynolds number of O. 905x I O~ 

there was initially a slight decrease in the total temperature below that 

of the model recovery temperature and then it very gradually started to in-

crease beyond the rear stagnation point. The distribution could almost 

4 
be considered constant. For the adiabatic model at Re D = 2. 95 X 10 , 

00, 

the total temperature was constant up to the rear stagnation point and 

further downstream increased gradually to reach 0.98 times the free 

stream stagnation temperature at X/D = 10. The fact that the total 

temperature on the centerline in the recirculating region, except close 

to the base, is nearly constant indicates that there is very little heat 

transferred to the recirculating flow by conduction, and most of the 

heat transfer is by convection. 
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II} It was found that in the recirculating region, the transverse 

temperature distribution exhibited a minimum close to the dividing 

streamline indicating again that the heat transfer process in the re

circulating region is mainly by convection, except for the base heat 

transfer to the base boundary layer. 
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3 PRESSURE TAPS 0.007" OIA. 
AT 1200 INTERVALS IN 
0.022" 0.0. 0.012" 1.0. S.S. TUBE 

1.50" --.j 
0.083" 0.0. I 

-;-~----. 

CONE TIPPED STATIC PRESSURE PROBE 

FRONT VIEW 

SCALE; 2~:1 ~ 111 1Ir, "-1 '-- II 
1 14-.051 ~ 1 .6 .3 .8 ,.2 ~0.2511 0.0. 

-1-1_ _I~ t :!: ~t~~~~~~~F==::S 
T~811 .00~,J.04;'~.l.083':~~0. • 

PITOT PRESSURE PROBE 

Fig. 3 PITOT AND STATIC PRESSURE PROBES 
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0-5 psi STATHAM PRo TRANSDUCER V 
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Fig. 4 CALIBRATION OF PRESSURE TRANSDUCER 
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0.1806" 
(L) 1 " , 

\ 

+ 
'-0.000497" DIA. 

TYPICAL HOT WI RE CONFIGURATION 

ASSUMED CIRCULAR ARC 

-T'.....;..;......L..---:-...... f-----..e -------t~ 

:.01 

.0 
(x 

'" xI + x2 
~~~~~~~~=-~.~~.~--~~~~~xm= 2 

EFFECTIVE LOCATION 
OF HOT WIRE 

xl+x2 x = X - --.~--

• 8 

+ 

Fig. 8 HOT WI RE SAG AND EFFECTIVE LOCATION 
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T.C. ON HOT 
i'-.... WIRE SUPPORT -> OEKAVIOF.:R DIGITAL 
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- VOLT METER 
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Klineberg Ref. 5 
(Sw=O) 

FIG.33 LOCATION OF REAR STAGNATION POINT 
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APPENDIX A 

TWO-DIMENSIONALITY OF THE FLOW 

In order to obtain as ' good a two -dimensional flow as pos sible 

for the experiments described in the main text, preliminary tests 

described in this appendix were conducted. The tests were aimed 

primarily at minimizing the interaction and interference between the 

cylinder model and the side-wall boundary layer. The main criteria 

used in determining the two-dimensionality of the flow was the con-

stancy of spanwise Pitot and static pressure behind the cylinder model 

in the symmetry plane. As pointed out by Ginoux(30) the spanwise 

distribution being constant does not necessarily mean that the magni

tude of the quantity measured would correspond to the case of an 

infinite 2 -dimensiomtl flow. Therefore, in addition to obtaining as 

good a spanwise distribution as possible, it was indirectly confirmed, 

as explained later, that the values Ineasured at the centerplane corre

sponded to true two-dimensional value. All these tests were conducted 

on an adiabatic model at a tunnel stagnation pressure of 25 psia and a 

stagnation temperature of 40SoK at a nominal Mach number of 6. O. It 

is hoped that the final configuration for the end-device for obtaining 

two-dimensional flow arrived at by these tests would serve that purpose 

for the other cases in the main experirnent also. 

Models 

The basic rnodel as well as its adaptation to various cases is 

shown in Figure AI. It is a 0.2" dia. cylinder protruding into the test 

section. The long support prevented any significant vibration or 

deflection of the cylinder. 
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The model served as: 

(a) The "basic cylinder model," when the free end butted 

against the opposite side wall; 

(b) ~he "model with subsonic fences'" when subsonic fences 

w.ere fixed 011 it by means of epoxy resin; 

(c) The "model with supersonic fences," when supersonic 

fences were fixed on it; 

(d) The "model with wedge fairing of variable length," when 

wedge fairings were soldered onto it; and 

(e) the "protruding model" as well. 

For the case (d) above, the opposite port had a diamond shaped 

recess and thus the extent of wedge fairing protruding into the flow 

could be varied. 

In addition to the above, the O. ZIt dia. cylinder model with 

wedge fairings at both ends (Figure AI) used by Behrens, (16) was also 

used. In fact, this model was first tested before going on to case (d) 

and since this model showed improvement over that of the models with 

fences, it was decided to check on the effect of the spanwise extent of 

the fairing and thus led to case (d). 

The subsonic fence used here had the same dimensions as that 

used by Collins. (20) 

The dimensions of the Bupersonic fence were fixed by the 

following considerations. 

i) The trailing edge of the fence should be downstream of the 

sonic point, which, from the results of the previous investigators, was 

known to be around an X/D of 3.5 from the center of the cylinder. 
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ii) The top and bottoITl edges of the fence should be beyond the 

separation shocks, the locations of which were obtained frOITl Schlieren 

pictures tak~n by earlier investigators. 

Side-wall Mounted Traverse MechanisITl 

The traverse ITlechanisITl used for ITlaking Pitot and static 

pressure ITleasureITlents is shown in Figure A2. The vertical ITlotion 

was obtained by ITleans of a lead screw driven by a sITlall electric 

ITlotor. A 10 turn helipot potentioITleter was connected to the lead 

screw through a worITl gear. The spanwise traverse was ITlanual and 

was obtained through a rack, by rotating the knob attached to the 

pinion. A set s crew was provided to lock it in position. Backlash 

was prevented by hanging a weight froITl a thread attached to the rack 

and passing over a pulley and round the shaft of another potentioITleter. 

A dial reading was provided for this spanwise traverse. The output 

of the potentioITleter was fed into the X input of X-Y recorder and the 

dial reading was used to set the zero and range on the X-Y recorder. 

Pitot and Static Pressure Probes 

The Pitot pressure probe used in these tests is shown in Figure 

A-3. It had an opening of 0.006" X 0.08". The longer edges of the 

opening were parallel to the cylinder. 

The diITlensions of the static pressure probe are also shown in 

Figure A-3. The static holes were aligned parallel to the cylinder. 

The front end of the static probe was flat and sealed. When the static 

holes were located at an X/D of 3.0, the front end was within the re

circulating region and hence the blunt end is expected to have no 

appreciable effect on the static pressure ITleasurernent at X/D = 3. O. 
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However, in the case of the protruding cylinder model, the measure-

ment of the static pressure had to be limited to the base region and 

could not be extended beyond the free end. 

The Pitot and static pressure probes were simply introduced 

into the probe holder of the traverse and held in position by two small 

Allen set screws. This also permitted positioning of the probes at the 

desired X/D values. Leakage was prevented by two O-rings. 

By using shims between the tunnel side wall and the port on 

which the traverse was mounted, it was possible to adjust the side 

wall traverse such that the probe moved parallel to the cylinder within 

about 0.002". 

Both the Pitot and static pressures were measured by a 5 psi 

statham pressure transducer the output of which was recorded after 

suitable amplification on the X-Y recorder. The vacuum reference 

for the pressure transducer was maintained at less than 0.5 microns 

which was often checked by a McLeod gauge. 

Results and Discussion 

All the tests were run at a stagnation pressure of 25 psia, stag

nation temperature of 40SoK and nominal free stream Mach number of 

6. O. The free stream Reynolds number based on the cylinder diameter 

of 0.2" was 0.905 X 104 . 

Spanwise distribution of Pitot pressure at X/D = 0.6 and 

X/D = 2.0, and spanwise distribution of static pressure at X/D = 3.0 

for the basic cylinder model, the model with subsonic fences, the 

model with supersonic fences, and the model with wedge fairing at both 

ends (Behrens I model) are compared in Figure A-4. 
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The Pitot pressure distribution at X/D = 0.6 which corresponds 

very close to the base pressure, shows that for the basic cylinder 

model, the p,ressure increases ' initially as one proc~eds toward the 

wall from th~ centerline and then the trend reverse~ and the pressure 

drops near the wall. The same trend is seen for the static pressure 

distribution at X/D = 3.0 for the basic cylinder model. The Pitot 

pressure distribution at X/D = 0.6 and the static pressure distribution 

at X /D = 3.0 for the model. with subsonic fences, and the model with 

supersonic fences, show trends very similar to that of the basic 

cylinder model over the region between the fences to which the meas-

urements had to be limited. In fact, the Pitot pres sure distribution 

at X/D = 0.6 show greater pressure gradients for the model with 

fences than without it. On the othe r hand, it is seen that, for the 

model with wedge fairing at both ends, the Pitot pressure distribution 

at X/D = 0.6 and the static pressure distribution at X/D = 3.0 are 

more uniform and shows definite improvement towards two -dimension-

ality of the flow. 

From the Pitot pressure distribution at X/D = 2.0 shown in 

Figure A-4, no definite conclusion as to the superiority of any con-

figuration could be drawn. The waviness in this pressure distribution 

was attributed to the disturbances caused by tiny droplets of oil which 

formed all along the separation line on the cylinder. The difficulty of 

maintaining the probe in the plane of symmetry during a spanwise 

traverse might have also contributed to the waviness. 

It may be pointed out that the pressure level in the center region 

is nearly the same (within experimental scatter) for all these cases 
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indicating that the end effects are perhaps limited to the ends only. 

A sketch of the shock configurations at the root and the free 

end of a protruding cylinder in supersonic flow, based on the results 

of Sykes, (31) is shown in Figure A -5. The C distribution near the 
p 

root, along the stagnation line, is also shown in Figure A-5. It shows 

very clearly the upstream interaction of the side wall boundary layer 

with the cylinder. Because of theA. shock formation, C distribution 
p 

along the upstream stagnation line is quite understandable. Hence the 

stagnation pressure of the fluid which is going over the cylinder surface 

is not uniform along the span, and has a maximum somewhere between 

the wall and the centre. It is conjectured that most of the non-uniform-

ity in the pressure measurements downstream of the basic cylinder 

model is basically caused by this non-uniformity just upstream of the 

model. Therefore, since the the provision of fences either subsonic 

or supersonic in no way influences the upstream interaction, it is under-

standable that they hardly improve the flow uniformity compared to the 

basic cylinder model. On the other hand it is felt that the wedge fairing 

prevents the formation of the A. shock and the associated boundary 

layer separation. The interaction of the oblique shock waves from the 

leading edge of the wedge with the bow wave of the cylinder is expected 

to be local, and also weaker. Hence the better perforITIance of the 

wedge fairing is perhaps understandable. 

Since Behrens I model did show considerable improvement in 

the flow, it was felt that a study to find the optiITIUITI length of the wedge 

projecting into the flow from the wall would be worthwhile. Hence the 

ITIodel with wedge fairing of variable length shown in Figure A- I was 
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tested. For ease of testing, the wedge was provided on only one end 

and the length of the wedge projecting into the flow was varied by 

varying the extent to which the wedge was inserted into the reces s 

in the port. 

The pressure measurements were carried out over the half 

span containing the wedge since it was checked in a few cases that 

pressure distribution over the other half did not alter and corresponded 

to the case of the basic cylinder model. 

Figure A-6 shows the Pitot pressure distribution at an X/D of 

0.6 for various wedge projections. It is seen that up to L = 3/8" the 

pressure distribution almost corresponds to that of the basic cylinder 

model. For L = 19/32" which corresponds nearly to the case of 

Behrens I model (1/32" shorter l, the pres sure distribution has become 

quite uniform and beyond L = 19/32", the extent of the uniform pres

sure region decreases. 

Figure A-7shows the static pressure distribution at X/D = 3.0 

for various wedge projection lengths. This also shows similar trend. 

However, the static pres sure 4istribution does not become quite uni

form for L = 19/32", though it is reasonably satisfactory. In fact, 

though the pressure distribution improves as L is increased further, 

the extent of uniform region does not. From Figure A-6 it appears 

that the Pitot pressure distribution at X/D = 0.6 worsens beyond 

L = 19/32". 

Figure A-8 shows the Pitot pressure distribution for X/D = 3. O. 

It is seen that as L is increased beyond 19/32", the extent of the rela

tively uniform pressure distribution decreases. The shock from the 
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wedge appears first for L = t" indicating that the boundary layer is 

about 3/4". For the same reason, it is seen in Figure A-6 and A-7 

that the effed of the wedge is hardly felt up to L = til. 
On the whole it is reasonable to conclude that L = 19/32", or 

in other words the configuration of the Behrens' model is the optimum 

choice for the wedge fairing. 

As pointed out at the very beginning the uniformity in the span

wise pressure distribution may not necessarily mean that the magni

tude of the pressure corresponds to the true two-dimensional value. 

It was believed, however, that if the magnitude of the pressure in the 

center region was not affected when the end effects are of opposite 

character, then it could be as sumed that the value in the center region 

corresponds to the two-dimensional value. With this in view some 

tests with the protruding cylinder model were conducted. 

Figure A-9 shows the Pitot pressure distribution at X/D = 0.6 

and the static pressure distribution at X/D = 3.0 for various gaps 

between the cylinder end and one of the walls. For G = til, both of 

these pressure distributions agree with the pressure distributions for 

the zero gap case (i. e. basic cylinder model) probably due to the free 

end being within the boundary layer of the side wall which was expected 

to be about 3/4" thick. For these, it is seen that the pressure in

creases initially as one proceeds away from the center. 

For G = 1" and Ii", the pressure near the free end drops due to 

the expansion and flow around the edge (Figure A-5). The end effects 

in this case are obviously opposite in character to the case of G = o. 

If the end effects affected the center plane pressures, then clearly at 
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1 least for G = lz", the pressure at the center should have been less 

than that for G = 0 case. In fact G = Ii" is rather a severe case since 

the end is just 5 diameters away from the centerline. But it is seen 

from Figure A-9 that the pressure distribution in the center region 

and beyond is unaffected. 

Hence it can be reasonably concluded that the mid-plane pres-

sure measurements would correspond to the two-dimensional case 

even without any end device, but the use of wedge fairing at both ends 

{Behrens I model} would improve the two -dimensionality of the flow. 

Therefore, the configuration of the Behrens I model was used for the 

experiments described in the main text. It should, however, be pointed 

out that the two -dimensionality tests were conducted only for the adia-

batic model at 10 psig stagnation pressure, whereas the near wake 

experiments were conducted for both adiabatic and cold models and 

for stagnation pressures of 10 psig and 65 psig. It is hoped that the 

same conclusions regarding two-dimensionality would hold good for 

these other cases. 
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APPENDIX B 

VISCOUS CORRECTIONS TO MEASURED PITOT PRESSURE 

Brief Review 

and 

The ideal Pitot pressure (PP
i
) is given by 

PP. 
1 

PP. 
1 

p-

PP . 
1 

p-

1 2 = P+zpu for incompres sible flow 

-L 
= (1 + Y2 1 M2) y-1 for M < 1 

= (Y.±.!.. M2) /1 ~ ~ M2 _ Z:..!..) (/-1) 
2 I( y+l y+1 for M> 1 

The last expres sion is from the Rankine -Hugoniot relations for normal 

shocks. When the local Reynolds number based on the Pilot probe is 

small, the measured pressure will differ from this ideal pressure 

because of viscous effects. The correction to the measured Pitot 

pressure to obtain the ideal pressure has been the subject of study 

by many workers. Among them the recent publication by Schaaf(27) 

is a review and gives many references to the related work. The re

sults of Sherman (24) and Potter et. al. (25) provide considerable ex-

perimental data to evaluate the viscous corrections to the measured 

Pitot pressure. 

Figure B-1 shows the experimental results of Sherman(24) 

for the Pitot pressure correction, for M = 0.1 to 0.7. Results for 

both open .... endedl.nd source shaped tubes are given in this figure. It 

can be noticed that the corrections for the source shaped probe is 

more than that of the open end tube. The results of the source shaped 

probe agree quite well with the theoretical and experimental results 

of Homann(23) for spherical-headed probes in oil (M = 0). 
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Figure B'..2 shows the correction factors for the supersonic 

case taken from results of Potter and Bailey(25) and Sherman(24) 

(Figure 1-2 in reference (25)). It is seen that there is no variation 

in the correction factor with Mach number for the range of 1.8 to 5.8 

covered by these data. 

The theoretical and experimental results of Homann, (23) for 

incompressible flow, agree with each other reasonably well. Though 

no theory has been worked out for the compressible subsonic case, 

the reason for the increase in the measured stagnation pressure as 

compared with the ideal one is essentially the same as for the in-

compressible case, namely the viscous ramming effect as the Reynolds 

number reduces. 

For the supersonic case the experimental data (Figure B-2) 

indicate that as the Reynolds number is decreased, there is apparently 

first a decrease in the measured Pitot pressure below that of PP., 
1 

followed by a reversal and an abrupt increase as the Reynolds number 

is further decreased. 

Probstein and Kemp(32) have analyzed the viscous and incipient 

merged layers of the shock on the basis of Navier-Stokes and shock 

wave conservation equations simplified according to strong shock and 

constant density shock layer assumptions. Their solutions for an 

adiabatic probe and "y = 11/9 did not exhibit a minimum for PP m/PP. 
1 1 

for intermediate values of Re2r(P2/Pl)2 as shown in Figure B-2. How-

ever, such a minimum was obtained for very cooled probes. 

The theory of Levinsky and Yoshihara (33) used the Navier-Stokes 

equations and integrated the viscous, compressible flow equations 
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between the body and infinity along the stagnation streamline with the 

shock included. They found that PP m/PPr was relatively unaffected 

by cooling and it predicted PP m/PPr < I in the viscous layer regime. 

The results of this theory agree closely with the experimental results 
1 

for Re Zr (PZ I PI)Z greater than ZOO (Figure 11 and Figure 15 of Refer-

ence (Z5». However, a reversal in the behavior and a rapid increase 

in PP m/PPr > 1 as shown in Fig. B-Z is not predicted by this theory. 

Sedov et al (Z6) found theoretical expressions for PP Ipp . for 
n1. 1 

supersonic flow taking PPm to be the stagnation pressure behind a 

curved shock, calculated on the basis of conservation equations across 

the shock along the stagnation line taking into account the viscous and 

heat flow terms downstream of the shock, but assuming that the varia-

tion of viscous terms and of heat flow was small. The expressions 

for PP IpP. for both Z-dimensional and 3-dimensional flows were m 1 

* obtained in terms of Re ZR and Al = u 1 la where Re ZR is the Reynolds 

number based on the conditions downstream of the shock and the 

radius of curvature of the shock. The results indicate that PP IpP. 
m 1 

decreases below 1. 0 as Re ZR is reduced. However, in order to com

pare this theory with the experimental results, ReZR had to be related 

to Re Zr ' 

From NACA technical report R -1 by Van Dyke and Gorden, (34) 

we find that R/r for a sphere, for y = 1. 6, is about 1. 47. Using this 

value we found (PP -PP.)/PP. as predicted by this theory of Sedov(26) 
m 1 1 

was about twice as much as that given by the experiments in the range 

where the results of Levinsky and Yoshihara (33) agreed closely with 

the experimental results . This quantitative disagreement may probably 
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be due to the thin shock assumption made in reference (26) being not 

valid even in this flow regime. 

A second order asymptotic analysis of the curved shock 

structure expanded in terms of the small parameter 1 IRe
2R 

in a 

manner very similar to that done by Bush(35) was carried out. How-

ever, the final results for PP IpP. did not show any dip as Reynolds 
m 1 

number was decreased. PP IpP. was always greater than 1. 0 and 
m 1 

increased as the Reynolds number decreased, a behavior similar to 

that obtained by Probstein and Kemp. (32) 
) 

Thus, one finds that there is no suitable theory to date to predict 

the viscous effects on impact probes for the supersonic flow. There-

fore analytical expressions, giving the corrections to measured Pitot 

pressure, agreeing reasonably with the experimental data for both 

subsonic and supersonic flows and as well having a smooth transition 

from one to the other had to be obtained, more or less, on an ernperi-

cal basis. 

Emperical Formulation 

(a) Subsonic flow: 

Analytical expressions were fitted to experimental results of 

Sherman,(24) Figure B-1, for both open ended tube and source shaped 

probes. They are, 

and 

PP -PP. 
m 1 

1 2 
zpu 

PP -PP . 
m 1 

1 2 z p u 

= 6. 82 _ O. 1136 for open ended tubes 
Red 

for source shaped probes. 
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It can be shown from an analysis similar to that done by Homann (23) 

that, for incompressible flow, the correction for a two-dimensional 

probe is half that of an axisymmetric probe. It was assumed that this 

holds good in compressible subsonic flow also. The standard probe 

used in these experiments was of the open tube type and was 0.008" 

by 0.051" outside dimensions (an aspect ratio of approximately 6). 

Hence it was considered more appropriate to consider this probe as 

two-dimensional and take half the corrections of the axisymmetric 

p.robe. Hence 

PP -PP. 
m 1 

1 2 
z-pu 

= 3.41 _ 0.0568 
Re

H 
for the standard probe, 

where Re
H 

is based on H, the outside thickness of the probe. 

The probe used for reverse flow measurements, shown in 

Fig. 5 has pressure orifices on the surface of a 0.022" tube. There-

fore, the corresponding axisymmetric probe would be a spherical 

headed probe. Since the results of Sherman (24) for source shaped 

probes in air agreed with the incompressible flow results of Homann(23) 

for spherical-headed probes in oil, it was considered reasonable to 

take the corrections for this reverse flow-probe to be half that of the 

corrections for the source-shaped probe given by Sherman. (24) Hence 

PP -PP. 
m 1 

1 2 
z-pu 

= 

was taken as the correction formula for this special probe used in 

reverse flow regions where flow was always subsonic. 

Due to lack of any experimental data for Mach number 0.7 to 

1.0, it was assumed that the above relations hold even up to M = 1. O. 
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(b) Supersonic flow 

The torrections to the ITleasured Pitot pressure for supersonic 

flow was considered to be ITlade up of two parts, the one associated 

with the viscous subsonic flow after the shock and ahead of the Pitot 

probe and the other associated with the curved shock. It was further 

assuITled that the first part was given by the expressions given earlier 

for subsonic flow if the quantities are based on conditions behind the 

shock. That is 

PP -PP. 
ITl 1 

1 Z 
a PZuZ 

= 6.8Z 
Re Zd 

- 0.1136 

for axi-sYITlITletric open-ended probes, Or 

= 3.41 
Re

ZH 
- 0.0568 

for two -diITlensional open-ended probes. 

The correction associated with the curved shock was obtained 

by taking the difference between the overall correction given by the 

experimental results of Potter and Bailey(Z5) (Figure B-2) minus the 

corrections given by the above expressions due to the viscous subsonic 

part. Note that the experiITlentai data for the supersonic case are given 
1 

in terms of PP m/PPi versus ReZr(pZ/ PI)a and that the effect of Mach 

nUITlber in M = 1.7 to 6.0 range on the correction, if any, is cOITlpletely 

subITlerged in the experiITlentai scatter. Therefore in order to subtract 

the "Subsonic part" of the correction, it has to be expressed in terITlS 



where 

Z 
1 PZUZ 
Z PP. 

1 
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and are just functions of Mach number. 

After obtaining the values of the correction associated with 

shock emperically, an analytical expression was found which agrees 

reasonably with these values as functions of Mach number and 
1 P -

Re Zd (~ )Z, keeping in mind that the "shock corrections" should be 
PI 

zero at M = 1. 0 and that the overall corrections should vary little 

with Mach number beyond M = 1. 7. 

"shock correction" was 

The expression obtained for this 

) , 
\J 

PP 
(p~ 

1 1) shock = - { 80 + 0.53: FZ, 1336 } 

1 

where F = Re Zr ( PPZI )Z 

The overall correction in supersonic flow is then given by 

The overa ll correction as given by the above expression is also shown 

in Figure (B-Z). It is seen that the agreement is reasonably good. 

It should be pointed out that the above formulation is purely 

emperical and was undertaken in order to incorporate the viscous 

correction into the iteration scheme in the mean flow data reduction 

program and the separation of the overall correction into "subsonic 

correction" and "shock correction" is really not meaningful in the 

merged layer regime. 

I 
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