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ABSTRACT 

The object of this report is to calculate the admittance and 

the radiation pattern of aperture antennas fed by waveguides of arbitrary 

cross-section and radiating into dielectric slabs, whose constitutive 

parameters may be functions of position along the direction normal to 

the slab faces. 

For a given aperture field distribution the antenna aperture 

admittance and the radiation field are expressed here, for the first 

time, in terms of two auxiliary quantities directly related to the plane 

wave reflection and transmission coefficients of the dielectric slab. 

These quantities are the input admittance of the dielectric slab and the 

ratio of the total electric field amplitude transmitted at one end of 

the slab to the transverse field at the other, both calculated for plane 

waves as a function of incident propagation direction. This approach 

introduces a great simplification in the solution of the problem, 

pa!ticularly in the case of an antenna radiating into an inhomogeneous 

dielectric slab. 

A simple and powerful method has been devised for the computa

tion of the input admittance of an inhomogeneous dielectric slab as well 

as for the electric field ratio. In this case the impracticability of 

obtaining analytical results has necessitated the use of numerical 

techniques. 

Examples of the application of the theory to typical dielec

tric slabs are given and the results are discussed. 
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1. INTRODUCTION 

The study of antennas covered by dielectrics has been of 

particular interest to scientists and engineers in the last decade. 

Interest in this problem is generated because of two situations of 

practical importance that scientists have been confronted with. The 

first arises in connection with maintaining radio communication with 

space vehicles at reentry. High speed space vehicles reentering the 

earth's atmosphere are surrounded by an ionized gas layer or a plasma 

sheath which strongly affects the propagation of electromagnetic waves. 

The presence of the plasma sheath causes a mismatch between transmitter 

or receiver and the antenna, and a distortion of the antenna radiation 

pattern, thus creating problems in the maintenance of radio communi

cation between the vehicle and ground stations. As a result, the study 

of .the admit~ance and the radiation pattern of an antenna covered by 

plasma sheaths of varying properties is of primary importance. The 

second situation arises in connection with plasma diagnostics. Elec

tromagnetic waves in plasma make it possible to extract information 

about such plasma characteristics as electron densities or relaxation 

times. Often the first step in the measurement of these properties is 

the determination of the admittance of an antenna in the plasma. 

This report presents a new and simple method for the calcula

tion of the admittance and radiation pattern of antennas consisting of 

waveguide-fed apertures in infinitely ~onducting ground planes, and 

radiating into dielectric slabs of varying properties. The usefulness 



-2-

and simplicity of the method stem from the fact that the usual boundary

value problem approach, involving lengthy calculations for each special 

situation, is bypassed. 

As is well knmvn, for each of the two independent polarization 

directions of an incident plane wave and as a function of its propagation 

direction, a dielectric slab has a reflection coefficient and a trans

mission coefficient. Given the aperture field distribution, the ex

pression for the aperture admittance of the antenna is shown to involve 

these reflection coefficients or equivalently the input admittances of 

the slab. Similarly the slab transmission coefficients enter into the 

expression for the radiation field. The problem is formulated in such 

a way that it can readily be applied for any aperture shape and corres

ponding waveguide cross-section. In most instances we are interested 

in infinite slots and circular, annular or rectangular apertures in 

flat ground planes. Hence, we will be concerned particularly with these 

configurations. 

Furthermore the expressions derived are valid for any kind of 

dielectric medium of practical interest making up the slab - homogeneous, 

inhomogeneous or turbulent with constitutive parameters varying only 

along the direction normal to the slab faces. The present method is 

particularly useful for slabs which are not homogeneous isotropic media, 

since the difficulty involved in these cases is reduced to the calcula

tion of the appropriate reflection and transmission coefficients which 

then are used in the evaluation of antenna admittance and radiation 

field. 
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Antennas in lossy, dielectric media have been the subject of 

many studies for almost half a century. However since this report deals 

essentially with the admittance and radiation pattern of radiating 

apertures, only those investigations which have some bearing on the 

.present problem will be mentioned here. 

Levine and Schwinger (1,2) starting with integral equation , 

formulations, have arrived for the first time at variational expressions 

for the far field from an aperture in an infinite plane screen on which 

a plane scalar or electromagnetic wave is incident. Levine and Papas (3) 

in a similar way have found variational expressions for the admittance 

of an annular aperture in an infinite plane conducting screen fed by a 

coaxial waveguide and radiating into free space. Using similar techniques 

Lewin (4) has calculated the admittance of a rectangular waveguide-fed 

aperture radiating into free space. 

Variational techniques have consistently been used in the 

calculation of the admittance of dielectric covered waveguide-fed slots 

as well. In almost all cases the fields everywhere are expressed in 

terms of their Fourier transforms and the boundary-value problem is 

solved assuming the aperture field to consist of the dominant waveguide 

mode. The admittance of a rectangular waveguide-fed slot covered by a 

homogeneous plasma layer has been calculated by Galejs (5). However his 

formulation is quite involved and does not apply to plasma layers whose 

thickness is small compared to a wavelength. Ga1ejs (6,7) has also 

computed the admittance of plasma-covered annular and rectangular slot 

antennas assuming they radiate into a wide waveguide instead of an un-

bounded half-space. This approximation has allowed him to represent the 
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fields by a discrete sum of modes. Furthermore he has shOlm (8) that 

the same sunooation is obtained if a constant mesh size approximation is 

used for the numerical computation of the integral representing the 

admittance. Villeneuve (9) too has calculated the admittance of a 

rectangular waveguide radiating into a homogeneous plasma layer, through 

an application of the reaction concept of Rumsey. Both Galejs an~ 

Villeneuve, however, have considered only homogeneous plasmas whose 

electron densities are below the critical density, and hence the relative 

permittivity varies between zero and unity. In precisely this range the 

plasma does not support surface waves and hence they have not had to 

consider surface wave contributions to the aperture admittance. Compton 

(10) has presented the most straightfonvard method of calculating the 

admittance of aperture antennas fed by parallel-plate and rectangular 

waveguides and radiating into a lossy dielectric. His original formula

tion has been modified by Croswell, Rudduck and Hatcher (11) to account 

for the surface-\vave pole contributions to the admittance for low-loss 

dielectric slabs with permittivity greater than one. Fante (12) has 

described a simple technique for the admittance and the radiation 

pattern calculations of thin plasma slabs based on the impedance sheet 

notion. Finally, Bailey and Swift (13) have calculated the admittance 

of a circular waveguide aperture covered by a homogeneous dielectric 

slab with permittivity greater than unity. Recently Croswell, Taylor, 

Swift and Cockrell (14) suggested a method for the calculation of the 

admittance of a rectangular waveguide-fed aperture covered by an in

homogeneous plasma slab. However their method, based on the evaluation 

of the fields in the plasma region, is too involved even for numerical 
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computations. It calls for the numerical solution of the Helmholtz 

equation in inhomogeneous media, which is very complicated, but quite 

unnecessary for the solution of the problem in question. 

Two points need to be mentioned in connection with the above

mentioned analyses of the plasma-covered flush-mounted antennas. First, 

all investigations rely on boundary-value problem techniques. Second, 

the important case of antennas covered by inhomogeneous plasma slabs has 

not been studied at all in a useful way. 

The radiation pattern of aperture antennas covered by homo

geneous plasma slabs have been analyzed by various authors. Tamir and 

Oliner (15) have calculated the radiation field of an infinite slot 

covered by a plasma layer and have also considered the effect of surface 

wave poles on the radiation field. Knop and Cohn (16) have found the 

radiation field from apertures in ground planes covered by dielectrics. 

The radiation from infinite slots and apertures covered by anisotropic 

plasma sheaths have been studied by Hodara and Cohn (17) and Hodara (18). 

Before the present report, the radiation pattern of aperture antennas 

covered by inhomogeneous plasma slabs had not been analyzed. 

In the second chapter of this report a stationary expression 

for the aperture admittance is obtained, using as the aperture distribu

tion, the dominant mode of the waveguide as well as a combination of the 

dominant and higher-order modes. 

The third chapter is the main body of the report. Here the 

aperture distribution is thought as resulting from a superposition of 

plane waves. Using this idea, the aperture admittance and the radiation 

pattern are calculated in terms of the plane wave reflection and trans-
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mission coefficients. Specific calculations are made for a number of 

common geometries. 

The treatment of aperture antennas radiating into inhomo

geneous dielectric slabs requires a discussion of the properties of 

such media. This is done in the fourth chapter. Besides the differential 

equations for the reflection and transmission coefficients, other 

equations are derived which yield directly the input admittance and the 

ratio of the total electric field amplitude at one end of the slab to 

the transverse field at the other. 

The fifth and final chapter is devoted to a dicussion of the 

results obtained from some specific examples. 
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2. VARIATIONAL TREATMENT OF WAVEGUIDE-FED APERTURE ADHITTANCE 

A stationary expression is derived in this chapter for the 

admittance of a waveguide-fed aperture in an infinite conducting ground 

plane. .The application of the variational principle to problems of this 

nature is well known, however it will be wise to start our analysis from 

this point for the sake of presenting a complete treatment of the subject. 

We consider an aperture in an infinitely conducting ground 

plane at z = 0, fed by a cylindrical waveguide of arbitrary cross-

section located in the region z < 0, and radiating into a region 

z > 0 whose parameters may vary along the z-direction (Fig. 2.1). 

Assu~ing the waveguide to be operating in its dominant mode, 

only this mode '''ill be incident on the aperture. However higher order 

modes will be generated at the discontinuity and reflected back from 

the aperture, along with the reflected dominant mode. The transverse 

electric and magnetic fields at the aperture can be expressed as (19), 

E (x,y) V e (x,y) +I: V e (x ,y) (2.1) 
-0 0 -0 n -n 

n 

H (x,y) I h (x,y) + LI h (x,y) (2.2) 
-0 0 -0 n -n 

n 

Here V and I represent the total (incident plus reflected) amplitude 
o 0 

of the dominant mode, V and I represent the amplitudes of the re-n n 

flected high order TE and TH modes. The transverse mode functions 
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Fig. 2.1 A waveguide-fed aperture antenna 
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e (x,y), h (x,y) for the dominant mode, and e (x,y), h (x,y) for 
-0 -0 -n --n 

the higher-order modes, depend on the particular waveguide cross-section 

and satisfy the relations (19) 

h. = u x 
-l. e. (2.3) 

-l. 

and JJ~i (x,y) . e. (x ,y) dA o .. (2.4) 
-J l.J 

A 

where u is the unit vector in the z direction, and A denotes inte-

gration over the aperture area. 

For the reflected higher-order modes, 

I 
n 

- y V 
n n 

(2.5) 

where Yare the characteristic mode admittances. Now making use of 
n 

relations (2.3), (2.4), (2.5) and (2.1), equation (2.2) can be written as 

!!a(x,y) I u x e (x,y) a -0 

x e (x,y) JE (x,y) 
--n -0 

n A 

• e (x,y) dA 
--n 

(2.6) 

As a result of the well-known existence theorem for the elec-

tromagnetic fields, the magnetic field within the region z > 0 is 

uniquely determined by the tangential component of the electric field 

on the plane z = O. Hence through the use of a dyadic Green's function 
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g, the magnetic field in the region z > ° can be expressed as (2) 

H(x,y,z) = J Q (x,x',y,y',z,o).~ x ~(x',y') dA' (2.7) 

A 

The Green's function depends on the parameters of the region z > ° 
and satisfies an appropriate differential equation with boundary condi-

tions. The integration in (2.7) is over the aperture area only, since 

the tangential electric field vanishes over the conducting ground plane. 

The continuity of the tangential magnetic field at the plane 

z = ° results in the relation 

u x H (x,y) 
-0 

u x H (x,y,O) (2.8) 

Substituting (2.6) and (2.7) in (2.8) we obtain an integral equation for 

the aperture electric field: 

I e (x,y) = \' Y e (x,y) JE (x,y).e (x,y) dA 
cr-o L n--n -0 -n 

n A 

- ~ u x Q(x,x',y,y',O,O) x u 

A' 

• E (x' ,y') dA' 
-0 

(2.9) 

The admittance of the waveguide-fed aperture is defined as the 

ratio of the total dominant mode magnetic to electric field amplitudes. 

Y = I Iv 
o 0 

(2.10) 
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A variational expression for Y can be obtained if equation 

(2.9) is scalarly multiplied by E (x,y), integrated over the aperture 
-0 

area A and then divided through by V2 
[J E (x,y) . e (x,y) dA]2. 

-0 0 A-o 

The result is 

Y 1 

[J ~ (x,y) • 

A 

e (x,y) 
-0 

-if ~o(x,y) . (~x £(x,x' ,y,y' ,0,0) x~) • _~(x' 'Y')dAdA} 

M' 

(2.11) 

If the exact aperture electric field were known, the admittance 

Y could readily be found from (2.11). The exact field could only be 

found by solving the integral equation (2.9), which, in general, is an 

almost impossible task. Hence approximate methods must be devised, and 

one such method consists in writing Y as a variational expression. The 

expression (2.11) is stationary with respect to small variations oE 
o 

of the aperture electric field E 
o 

about its exact value determined by 

the integral equation (2.9). This means that substitution of an approx-

imate aperture electric field into (2.11) will still yield a good 

estimate for Y. Furthermore, expression (2.11) is seen to be homo-

geneous in E 
o 

It is easy to verify that the variation of Y due to small 

variations oE of E disappears. Making use of the symmetry property 
o 0 

of the Green's function (2), 
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G •• (x' ,x,y' ,y,O,O) 
J)' 

we obtain for the variation of Y, 

e 
-0 

e 
-0 

The right-hand side of (2.13) may be rewritten as 

(~ x Q. x ~) 6E 
-0 

(2.12) 

(2.13) 

dA 

The expression in brackets under the integral sign vanishes because of 

the integral equation (2.9). Hence 

6Y = 0 (2.14) 

The variational expression (2.11) can be put in the more 

convenient form 

~E (x,y) x H (x,y) u dA [J~(X'Y) . e (x,y) d~ 2 
-0 -0 -n 

A LY A Y 

[J ~(x,y) 
+ (2.15) 

dA] 2 
n n [foo (x,y) d~ 2 . e (x,y) . e (x,y) 

-0 -0 

A A 
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provided it is understood that the function to be varied is E (x,y), 
-0 

and that H (x,y) = H(x,y,O) is related to E (x,y) through equation 
-0 -0 

(2.7). This requires finding an appropriate Green's function, which, in 

practice, may be quite difficult. Instead it is easier to find a 

relation between the Fourier components of the electric and magnetic 

fields, as will be shown in the next chapter. 

The most simple and logical assumption is that the aperture 

electric field has the form of the dominant mode. Then 

E (x,y) 
-0 

V e (x,y) 
0-0 

(2.16) 

and the second term in (2.15) involving the summation vanishes because 

of (2.4). Thus for dominant mode aperture electric field approximation 

the admittance becomes 

y = ~2JE (x,y) x H (x,y) • u dA 
-0 -0 

Vo A 

where it is understood that 

relation like (2.7). 

H 
-0 

is linearly related to E 
-0 

(2.17) 

through a 

Comparisons of theoretical and experimental results have shown 

that the dominant mode aperture electric field approximation is adequate 

in most instances (11, 14, 20). However, for a more exact treatment, 

the aperture electric field could be assumed as a superposition of the 

dominant mode and some higher order modes. For simplicity let us 

consider only one higher order mode, 'vi th mode function which would 

be the next most highly excited mode, as indicated by the geometry of the 
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problem. The generalization to more than one, but a finite number of 

higher order modes \vill be evident. Accordingly, the aperture electric 

field could be written as 

E (x,y) 
-0 

V [e (x,y) + a. e.(x,y~ o -0 1. -1. J 

E (x,y) + a. E .(x,y) 
..::.0 0 1. -0 1. 

The resulting aperture magnetic field would be 

H (x,y) 
-0 

H (x,y) + a. H .(x,y) 
-00 1. -01. 

with ~o,i(x,y) = J Q. (x,x' ,y,y') . u x ~o,i(x' ,y') dx'dy' 

A 

Making use of the symmetry of the Green's function, the 

aperture admittance becomes in this case, 

y = _1 {JE x H 
V 2 -00 -00 

udA+ 2a . ft x H . 
1. -00 -Ol 

o A 

+ a.
2 JE . 

1. -01. 

A 

x H . 
-01. 

2 
Y + 2a. y . + a. (y .. + y .) 

00 1. 01. 1. 1.1. 1. 

A 

• u 

u dA 

(2.18) 

(2.19) 

(2.20) 
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where 

(2.21) 

Since Y is stationary, a. is determined from the condition 
1 

that dY/da. = O. Hence, 
1 

a. 
1 

y .. + Y. 
11 1 

Substituting (2.22) into (2.20) we finally obtain 

Y = 

(2.22) 

(2.23) 

The first term in (2.23) is the result of assuming an aperture 

electric field of the form of the dominant mode, and is the same as 

(2.17). It is also evident from equation (2.23) that when higher order 

modes are included a mutual coupling exists between the modes. Further-

more, the terms in equation (2.23), Yoo' Yoi' Yii , are of the form of 

(2.17), which suggests that once a method is known for finding the 

admittance assuming an aperture electric field of the form of the 

dominant mode, extension to a more general case is straightforward. 

Hence, in the future, only equation (2.17) will be considered. 
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3. APERTURE ANTENNA CHARACTERISTICS 

This chapter will deal with the derivation of some important 

relations for the calculation of the aperture admittance and the 

radiation pattern of the radiating structures that are being considered. 

The results will apply to any aperture shape and to most media of 

physical interest where the antenna is radiating. The method used is 

ne,v, yet quite simple, in that it bypasses the usual boundary-value 

approach. 

A. Plane Wave Synthesis of Aperture Distributions 

It is well known that an arbitrary time-harmonic field can 

be constructed by a superposition of plane waves, all of the same 

frequency, each with its appropriate amplitude, and traveling in all 

possible directions, real as well as complex (21). 

The region z < 0 of Fig. 2.1 in which the waveguide is 

located will now be considered as a semi-infinite region of free space 

wh'ere plane waves propagating in every possible direction are incident 

on and reflected from the half-space z > 0, in such a way that on the 

plane z = 0 a specified electric field configuration is obtained. 

This field will be the assumed aperture electric field over the aperture 

area, and will vanish everywhere else. Looking at the problem in this 

way, the evaluation of the aperture admittance and the radiation pattern 

will be greatly simplified, particularly if the structure is radiating 

into an inhomogeneous medium. It will be shown that the double Fourier 
~ 

transform E (u,v) 
--0 

of the aperture electric field E (x,y) is simply 
--0 
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related to the amplitudes of the plane \"aves in the region z < O. The 

calculation of the reflection and transmission coefficients for each 

plane wave will enable the computation of the aperture admittance and 

the radiation pattern. 

A plane electromagnetic wave of frequency w, traveling in 

free space can be represented by, 

where k = ~, 
o 0 

is a unit vector in 

ikn·r E e 

T] ~, E is the complex wave amplitude, 
o 

the propagation direction, n E 0, and an 

-iwt 
e time dependence is understood. 

n 

(3.1) 

We now suppose that such a plane wave traveling in the region 

z < 0 is incident on the boundary at z = 0, and use the subscript i 

to denote the incident fields and the unit vector in the propagation 

direction of the incident wave. 

The plane containing the vector in the direction of propagation 

(~i) and the normal to the boundary is called the plane of incidence. 

It is well known that any plane electromagnetic wave can be resolved into 

two components, One with the electric vector polarized perpendicular to 

the plane of incidence, and another for which the electric vector lies 

in this plane. Let us consider a spherical system of coordinates, where 

the incident wave propagates in a radial direction (Fig. 3.1)·. Then 

from (3.1) the incident fields can be written as 



x 
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z 

Fig. 3.1 A spherical system of coordinates for a 

plane ~lectromag netic wave. 
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E. (r) (E ~1jJ + E II~X) 
ikn. ·r e -~-

-~ - 1. 

!!i (~) neE ~ E e) ikn. ·r e -~-

\I 1.1( 

where ~i' ~X and ~1jJ are unit vectors in the radial, polar and 

azimuthal direction (Fig. 3.1). Clearly, the azimuthal component of 

(3.2) 

the incident electric field is perpendicular to the plane of incidence, 

hence it is denoted as E1.' while the polar component lies in this 

plane and is denoted as Ell. Often the perpendicular polarized component 

is referred to as transverse electric (TE) , while the parallel po1ar-

ized component is called transverse magnetic (TM). 

The phase of the incident plane wave can be written as 

n. 
--'l. 

r ux + vy + wz (3.3) 

where the direction cosines u, v, w of the vector n. 
-~ 

are expressed 
• 

in terms of the polar and azimuthal angles X and 1jJ as 

u = sin X cos 1jJ 

v sin X sin 1jJ (3.4) 

w cos X 

The direction cosines obviously satisfy the relation 
222 

u +v +w = 1. 

Considering the geometry of the problem it will be more con-

venient to express the fields (3.2) in a circular cylindrical coordinate 
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system with z as the longitudinal axis. Accordingly we have 

E. (r) (E 1. eljJ + Ell cos X e E sin X e ) 
ik(ux+vy+wz) 

e 
-J_ - -p II -z 

(3.5) 

H. (r) n(EII~1jJ EJ.. cos X e + EJ.. sin X e ) 
ik(ux+vy+wz) 

e 
-~ -p -z 

where e is a unit vector in the radial direction on the plane trans
-p 

verse to the z-axis, and we will let 

p 

The unit vector in the z direction is nmv denoted as e. -z 

Part of this incident wave will be reflected back from the 

boundary at z = 0, while part will be transmitted into the region 

(3.6) 

z > O. The fields of the reflected wave have also the form of (3.1), 

but now the subscript r will be used to denote them as well as the 

unit vector in the propagation direction of the reflected wave. It 

follows from the laws of reflection at a plane boundary that this unit 

vector can be written as 

n sin X e - cos X e -r -p -z 

=ue +ve 
-'X -y 

w e -z 

and hence the phase of the reflected w~ve is 

n . r = ux + vy - wz 
-r 

(3.7) 

(3.8) 
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Remembering that the perpendicular and parallel polarized 

components of the wave have different reflection coefficients, and de-

noting them by rl. and respectively, the reflected fields E (r) 
-r -

and H (r) can be written from (3.1) and (3.7) as -r -

E (r) (E r ~$ + Ellr ll 
cos X e + E r sin ) ik( uX+VY-'N'z) X e e -r - II II -z 1. 1. -p 

(3.9) 

H (r) = n(-E r e$ + E r cos X e + El.rl. sin ) ik(ux+vy-wz) X e e -r - 11 Il- l. 1. -p -z 

The sum of (3.5) and (3.9) represents the total fields in 

the region z < 0, arising from a single plane wave, propagating in 

a given direction, \,rhich is incident on and reflected from the boundary 

at z = O. The propagation direction of the incident wave changes as 

one varies the direction cosines u and v (or equivalently, the 

angles X and $). Associating with the waves propagating in the cone 

u + du, v + dv two complex amplitudes, one for perpendicular polar-

~ 2 
ization El.(u,v)k dudv, and another for parallel polarization 

" 2 
EII(u,v)k dudv, and integrating (3.5) and <3.9) over all possible 

directions of propagation, we can represent the most general fields in 

the semi-infinite region z < 0, bounded by the surface at z = 0 (21). 

Thus, 

co 

E(£l fff E L (e
ikwz + r L e-ikwZ)-",p + Ell" (e

ikwz + r lie -ikwZ)~ 
(3.l0a) 

E'" 11 2 (e ikwz r -ikwz) ) ik(ux + VY)k2d d j\J. - w - He ~z e u v 
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co 

(3.10b) 

+ i-V1 2 
(e ikwz + r e -ikwZ)e~eik(UX + vY)k2dudv - w 

.L .L -z 

where ='11 2 2 (3.11) w - u - v 

and E.L, Ell , and e 
-p 

are all functions of u and v. 

The fact that the limits of integration are from _00 to +00 implies 

that complex angles for the propagation direction are also included. 

This is necessary in order to represent arbitrary fields in the region 

z < O. 
"-

The amplitude functions E.L(u,v) and Ell (u,v) can now be 

expressed in terms of the prescribed electric or magnetic field on the 

plane z = O. If the electric field distribution is specified on the 

plane z = 0, then, the continuity of the tangential electric field 

requires that this must equal the transverse electric field at z = 0 

obtained from (3.10a). Thus 

00 

~(x,y) t { E~(u,V)(l + r~(u,v))~ + Ell (u,v)w(l + rll(u,v))~ 

(3.12) 

The expression within the brackets under the integral sign in 

Eq. (3.12) can be recognized as the two-dimensional Fourier transform of 
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the specified electric field distribution 

00 

E (x,y). 
-0 

Then 

E (u,v) 
-0 

[~1T]2 ff" ~(x,y) e-ik(ux + vY)dxdy 

_00 

(3.13) 

E.L(u,v) (1 + r.L(u,v))~ljJ + Ell (u,v)w(l+ r
ll 
(u,v))~ 

and 

It immediately follows from (3.13) that 

E.L(u,v) 

A 

Ell (u,v) 

E (u,v) .e,l, 
-0 -'t' 

1 + rJ.(u,v) 

E (u,v).e 
-0 :=P 

w(l + rll(u,v)) 

E01jJ (u, v) 

1 + r (u,v) 
J. 

E (u,v) 
op 

w(1 + r
ll 

(u,v) 

In terms of the specified electric field E (x,y) 
-0 

(3.l4a) 

(3.l4b) 

on the plane 

z = 0, the fields in the region z < ° are now given by Eqs. (3.10), 

(3.13) and (3.14). Of course, the reflection coefficients r (u, v) 
J. 

and 

fll(U,v) for plane waves traveling in the (u,v) direction, and incident 

on the boundary at z = 0, must be known. These plane wave reflection 

co~fficients depend also on the constitutive parameters of the medium 

in the region z > 0, which does not have to be homogeneous in the z 

direction. 

Finally, the magnetic field on the plane z = 0, H (x,y), 
-0 

and its Fourier transform, H (u,v) 
-0 

are given by, 

00 

n l{ ~I (u, v)(l - "II (u, v))~ - EL (u, v)w(l - "L (u, v))~ 
(3.15) 
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ex> 

~ (u, v) = [~1fJ 2 If !!a (x ,y) e -ik(ux + vy) dxdy 

_00 

(3.16) 

n ( Ell (u,v)(1 - r ll (u,v»~ - E.L (u,v)..,(1 

It can readily be seen that the magnetic field on the plane 

z = 0 is a function of the specified electric field on that plane. 

B. Aperture Admittance 

The results of the preceding paragraphs will now be used to 

obtain a general expression for the admittance of flush-mounted aperture 

antennas. For dominant mode aperture electric field approximation the 

admittance can be rewritten from (2.17) as 

y = __ 1_ (f-oE* (x,y) x H (x,y) . e dxdy v2~ -0 ~ 
o A 

(3.17) 

The asterisk denotes complex conjugates. Obviously this expression is 

the same as (2.17) since a real aperture field distribution is always 

assumed. Applying Parseval's theorem to (3.17) the admittance becomes 

00 

y - [~:J ff i: ( u, v) x 
_00 

H (u,v) 
-0 

Using (3.13) and (3.16), and then (3.14) 

(3.18) 



x H 
-0 

• e 
-z 

1 - r 
.L 
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1 - rill 
1 + r ll ) 

(3.19) 

The ratio of the tangential components of the magnetic and 

electric fields of the plane waves at the boundary surface z = 0 may 

be called the input admittance of the region z > 0, and is given, for 

each direction of polarization, in terms of the reflection coefficients 

by (22) 

and 

Y. (u,v) 
1.n.L 

Y. (u, v) = (n/w) 
1.n ll 

(3.20a) 

1 - rll(u,v) 
(3.20b) 

1 + rll(u,v) 

Relations (3.18), (3.19) and (3.20) can now be used to obtain 

a general expression for the admittance of a flush-mounted, waveguide-fed 

aperture antenna with the dominant mode aperture electric field approxi-

mation. The result is 

A 2 
Y. (u,v) + IE (u,v)1 y. (u,v) 

1.n.L op 1.n II 
dUdV) (3.21a) 

or equivalently, 
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y A 2 } Y. (p) + /EOp(p,I/J)/ Y. (p) pdpdl/J 
In.L lnll 

(3.2lb) 

where it has been made clear that the input admittances depend only on 

p, that is to say, on the plane wave incidence angles only. 

Sometimes it is more convenient to express the polar components 

of the transform of the aperture field, as they appear in the preceding 

expressions, in terms of their rectangle components, making use of the 

relations 

E (u,v) 
op 

E (u,v) oy . 

u v 
+ ""' / ') _.". E ( u , v) + -... rn 2;r====;;f;o; E ( u , v) 

~u£ + v£ ox ~u + v~ oy 

(3.22a) 

(3.22b) 

The expressions (3.21) are valid for antennas with any aperture 

shape, radiating into homogeneous as well as inhomogeneous media whose 

constitutive parameters vary only in the z-direction. In the light of 

expression (3.21) the aperture admittance can heuristically be inter-

preted as the "sum", with proper amplitudes, of all the input admittances 

of the plane waves that make up the ·assumed aperture field. In essence, 

the problem is now reduced to calculating the plane wave input admittances 

(3.20), which, in the case of an antenna radiating into a homogeneous 

medium, can readily be obtained. In case the permittivity of the 

medium is a function of the coordinate z, then the plane wave input 
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admittances will be obtained, in the next chapter, by a special method. 

If the region z > 0 consists of a dielectric slab of 

relative permittivity and thickness d, for 0 < z < d, and of 

a semi-infinite region of relative permittivity £2 for z > d, then 

the input admittance for either direction of polarization is given by 

the well-known expression from transmission-line theory (22), 

Y. 
~n 

Y Y2 - i Yl tan kd\"l 

1 Y 1 - i Y 2 tan kdw1 

(3.23) 

where Y
l 

and Y
2

, the characteristic admittances of media of relative 

permittivity and are given, for waves of each polarization 

direction, by (22) 

YlJ.. nW
l 

, Y 
111 

n (£l/wl ) (3.24) 

Y2J.. = nW2 , Y
211 n(s2h"2) (3.25) 

and ~Sl 2 2 ~£2 2 2 
wI - u - v w2 

- u - v (3.26) 

Making use of equations (3.24) and (3.25), equation (3.23) can be re-

written for each direction of polarization as 

Y. 
~n J.. w -

1 
iW

2 
tan kdw

l 

(3.27a) 
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and Y. 
lnU n 

£2wl - i£lw2 tan kdwl 
£lw2 - i£2wl tan kdw1 

(3.27b) 

Usually, the region z > d is free space, in which case we 

take and w in equations (3.27). 

If the region z > 0 consists only of a homogeneous dielectric 

medium of relative permittivity £2' then the input admittance is simply 

the characteristic admittance of the medium and is given by (3.25). 

Since only outgoing waves may exist in the semi-infinite region 

outside, care must be taken in choosing the proper branch of w2 in 

(3.27). In the dielectric slab, where standing waves are supported, 

the choice of a branch of wI is arbitrary. For the same reason, the 

proper branch of w2 must be chosen in (3.25) in case the region z > 0 

is a semi-infinite dielectric medium. The branches of wI and w2 
will 

always be selected such that, 

(3.28) 

Expressions (3.21) will now be applied to find the aperture 

admittance of antennas fed by waveguides of various practical cross-

sections and radiating either into semi-infinite homogeneous media or 

through homogeneous dielectric slabs into free space. 

First, let us consider a slot of infinite extent in the 

y-direction, and of width a, fed by a parallel-plate waveguide 

(Fig. 3.2a). In this case the field quantities are independent of the 
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y coordinate and the appropriate form of expression (3.2la) becomes 

00 

y = 2nk fIlE (u) 12 
V 2 oy 

y. (u) + IE (u)1
2 

Y. (U)\.dU 
J..n.l.. ox J..n \I j 

o _00 

The dominant mode (TEM) electric field of a parallel-plate waveguide 

has the form, 

V 
E (x) V e (x) a 

=~e 

-0 0-0 -v;. -x 

0 

and its Fourier transform is, 

where 

00 

E (u) = ~ fE (x)e- ikux dx 
-0 2n-o 

a = ka 

_00 

= V 0 -va sin (au/2) 

2n -(k (au/2) 
e -x 

for Ix 1:5: a/2 

for Ixl>a/2 

(3.29) 

(3.30) 

(3.31) 

Substitution of (3.31) into (3.29) gives the aperture admitt-

ance of the infinite slot. 



-30-

00 

sin
2

(au/2) Y. (u) du 
(au/2)2 lnll 

(3.32) 

o 

Next, we consider a rectangular waveguide with smaller cross-

sectional dimension a and larger dimension b (Fig. 3.2b). The 

dominant mode (TEla) electric field can then be written as 

E (x,y) 
-,:) 

V e (x,y) o -,:) V~ cos f- ~x, for Ixl:s;; a/2, Iy I :s;; b/2 

a otherwise 

The Fourier transform of this aperture field becomes 

E (u,v) 
-,:) 

~~ ~(x.y) e-ik(ux + vy) dx dy 

_00 

VFs sin (cm/2) cos (Sv/2) o as 
= 21£k 8 (au/2) 

e 
(1£/2)2 _ (Sv/2)2-x 

where a = ka , S kb 

Substitution of (3.34) into expressions (3.21) give the 

admittance of rectangular waveguide-fed apertures 

(3.33) 

(3.34 ) 

(3.35) 
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1 
I ? 7 2 22 2 2 a 2 l~ 2 2 Z I J 2 2 7 2 7 ~ 

-.:E- ~y ~ ~ 

=""'=--=c~ 
a b 

r----- 2 b 2a --~ 

C d 

Fig. 3.2 Common waveguide cross-sections 

(a) Parallel plate, (b) Rect angular, 

(c) Coaxial, (d) Circular 
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00 00 

0
2 

{ 2 2 9 cos(Sv/2) v u 
2 2 Yin (u,v) 2 2 + Yin (u,v) 2 2 dudv 

( rr / 2) - (S v / 2) .L u +v II u +v 
Y = a~~ ~[s~:~/~~2) 

-co-co 

(3.36a) 

or equivalently, 

Zrr 00 

y = ~ I1Sin (TcOS
1jJ) cos (-¥- sin 1/1) ~t2. (p) 

8 ~ ( .) 2 (S ~ In.L 

COS 21jJ+Y . (p) sin2~pdpd1jJ 
lnll ) 

o T cos 1jJ (;) - ¥- sin1jJj 
(3.36b) 

For a coaxial waveguide of inner conductor radius a, and outer 

conductor radius b (Fig. 3.2c), the dominant mode (TEM) electric field 

at the aperture is given by 

V e (p) 
0-0 

Va 1 

-Y2rrtn(b/a) p 
e , 
-p 

for a < p < b 

= 0 otherwise 

The transform of this field is readily found to be 

2rr 00 

E ( ,',) [1 l2 If E ( ,!,) e-ikpp cos (cp-1jJ) pdpd'!' 
-0 p, 'V = 2rrj -0 p, 'V 't' 

a a 

V 
i a 

= 2rr -Y2rr tn(S/a) 
e 
-p 

(3.37) 

(3.38) 
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Hence, the admittance of an annular aperture fed by a coaxial 

waveguide becomes from (3.2lb) and (3.38), 

y 
.tn (3.39) 

Finally we consider a circular waveguide of radius a (Fig. 3.2d) 

whose dominant mode (TEll)electric field is given by 

where 

and 

V e (p, ¢) 
o -0 

= 0 

A =-' ff 1 1 
11 VTI '/(X,II)2 - 1 J ( I) Vi 1. I xlr 

Xl is the first root of 
11 

JI(x) = 0 
1 

< a 

(3.40) 

for p > a 

The transform of this field must then be calculated and the 

final result turns out to be 

2TIOO 

!a(p,1/J) = [~TIJ2 If ~(p,¢)e-ikppCOS(<P-t/J)PdP d<P 

o 0 
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(3.41) 

The aperture admittance of a circular waveguide is found by 

substituting (3.41) into (3.21b), and is given by 

00 2 2 
2 f~l (ap)j [xJ.ixJ.ia)J 1 (ap)j ~ 

y = ------=-2-- Y. (p) + 2 2 Y. (p) pdp (xIt - loP 1nll (x{ia) _ p lnJ. 
(3.42) 

Y. in Eq. (3.32), (3.36), (3.39) and (3.42) are given either ln 

by Eqs. (3.25) or (3.27) depending on whether the antennas radiate direct-

ly or-through homogeneous dielectric slabs into semi-infinite homogeneous 

media. 

Most of the results that have just been obtained had been the 

subject of various investigations discussed in the Introduction. It 

has been shown here that all of these results fol10\17 quite simply from 

expressions (3.21). 

The integrals in (3.32), (3.36), (3.39) and (3.42) have the form 

00 

f fll (p) Y. (p) dp 
1 nil 

o 

00 

and f flo (p) Y. (p) dp lnJ. 
o 

(3.43) 

where the integrations are carried along the real axis of the complex 

p-plane. The functions f II(P) and f J.(p) have no singularities, but 

in the case of lossless dielectric slabs singularities appear, for real 
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p, in Y. (p) and Y. (p). Hence care must be taken in calculating 
1.011 1.n .L 

the admittance of an aperture radiating through a lossless dielectric 

slab into a homogeneous half-space, which, in the present discussion, 

we take as free space. Accordingly, we let El = E in the dielectric 

slab and write E2 = 1, w
2 

= w in the region of free space. The 

singularities are poles of order one due to the zeros of the denomi-

nators of Y. , in addition a branch due w=-Yl 
2 

(No to cut to - p . 1.n 

branch cut is needed for = liE 
2 

since the Y. wI - p are even 
1.n 

functions of this variable.) The location of the poles is determined by 

the zeros of the denominators of Y. , which are given, from equations 
1.n 

(3.27) by, 

D (p) 
.L 

w - iw 
1 

(3.44a) 

(3.44b) 

First, let us consider a dielectric slab with E > 1. The 

poles occur, for real p, only in the range 
2 

1 < p < E and in this 

range (3.44) may be written as 

-iDII(P) E-V p 
2 

liE 
2 (01./ E 2 

- 1 - p tan - p ) (3.45a) 

D .L (p) = 1./ E 
2 +1./ 2 

- 1 (0'1 E 2 
- p p tan - p ) (3.45b) 

where 0 = kd (3.46) 

The roots of (3.45) determine the eigenvalues for surface wave propagation 

along plane dielectric slabs (23). Since the dielectric slab covering 
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the waveguide aperture is located on a ground plane, the only surface 

wave modes that can exist are the even TM modes, for which D (p) = 0, 
II 

and the odd TE modes, for which D (p) 
1. 

0. In the calculation of the 

integrals (3.43) it will be necessary to find the residue due to each 

pole. The residue due to a pole at p = Pn determined by DII(Pn) = 0 

is 

Res(p ) 
n 

and the residue due to a pole at p = Pn determined by D (p ) 
1. n 

Res(p ) 
n 

2 
f.l.(Pn) (€ - P ) i __ ~=-__________________ n __ r=====~~ 

op n[l _ (-Pn€~2 _-_l)_S i_n_(r=20=~=€ =;~p n-=---2~ 
1 (28'J€ - P ) 

n 

The onset of each surface wave mode occurs at a thickness given by 

nTI 0=-;:::::::=== 
21/ € - 1 

n 0, 1, 2, 3, ... 

(3.47a) 

° is 

(3.47b) 

(3.48) 

where the even integers refer to the even modes, and the odd integers 

refer to the odd modes. 

For a plasma slab the relative permittivity € varies between 

unity and large negative values. In this case poles may occur, for real 

p, only in Y. (p) 
1nll . 

and only for 

(3.44a) may be written as 

< ° and p > 1. In this range 
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I E I~ p2 - 1 (3.49) 

For E: < - 1 and for any plasma slab thickness DII(p) == 0 has at 

least one real root corresponding to a surface wave. In addition, 

in the range 0 > E > - 1.0363 sufficiently thin plasma slabs support 

two more surface waves (24), one of which is a bacbvard wave, i.e. a 

wave \vhose phase and group velocities along the interface are in opposite 

directions. This fact has been ignored in previous calculations of the 

admittance of apertures covered by homogeneous thin plasma slabs. The 

residue due to a pole at p = Pi is found to be 

. f\l(p.) IE I 
Res(p.) == i __ -,~ ____ ~1~ __ ~ ________ r=======~~ 

1 ~ (IE I + Ijsinh(26\/IE I + p/~ 
a p. 1 - 2 "',,----- -----z 

1 p. _ 1 (26 V IE I + p. ) 
1 1 

(3.50) 

Whenever poles of the integrand lie on the real axis the path 

of integration in (3.43) must be deformed around them by semi-circular 

excursions in the complex p-plane. The choice of the path about each 

pole can be determined by considering an ideally lossless medium as the 

limiting case of a lossy medium with losses reduced to infinitesimal 

amounts. For a dielectric slab with E > 1 the path of integration 

is shown in Fig. 3.3a, and for a plasma slab with E < 0 in Fig. 3.3b. 

Except for a backward wave pole, marked b, the integration path passes 

below the poles. 
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1m p 1m p 

0 I ~Re p Re p 
p= I p=jE p= I (b) 

a b 

Fig. 3.3 Integration path for a loss less dielectric 

(a) £ > 1, (b) £ < 0 

The contribution of the surface wave poles to the admittance integrals 

is ni times the residue at the poles. (-ni times the residue at the 

backward wave pole.) This contribution, which represents the amount 

of power confined within the slab, is real and may be called the surface 

wave conductance. Between poles the admittance integrals are evaluated 

numerically, and the result is added to the pole contributions. 

In the case of lossy dielectric slabs no poles are located on 

the real p-axis and the numerical integrations are straightfonvard. 
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C. Radiation Pattern 

In the first section of this chapter, the fields in the 

region z < 0 were represented as a superposition of plane waves 

incident on and reflected from the plane z = 0, in such a way that, 

on that plane the prescribed electric field was obtained. In a similar 

way, the fields transmitted through a dielectric slab located at 

o < z < d into a semi-infinite region of permittivity £2 at z > d, 

can be written as, 

(X) . J ik"2(z-d) ik(ux+vy) 2 If [E~ TL~~ ~ w2 
E t (!) + EIIT II-- e EIITI~ ~z e e k dudv 

_00 
V£;.P £2 

(3.51) 

(X) ikw (z-d) ik(ux+vy) 2 

n FzIf (Ell Ti~~ 
~ W2 E~T~!O~e !!t (..E.) E.LT.L-- e + 

2 e k dudv 

V£;.P 
_00 

where the relations between El. and Ell and the transform of the pre

scribed electric field on the plane z = 0 are given by (3.14). T.L 

and T 1\ are the slab transmission coefficients with respect to the 

electric field for perpendicular and parallel polarizations, respectively, 

and all these quantities as well as ~~ and e 
P 

are functions of u 

and v. Using relations (3.14) in equation (3.51) the transmitted 

fields can be written directly in terms of the transform of the pre-

scribed aperture fie.ld: 



E (r) 
-t -

00 

H (r) 
-t - = nVSJ[ lEop 

_00 

We can identify T /[1 + r ] 
J. J. 
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+ E op 

ikw
2

(z-d) ik(ux+vy) 2 
e e k dudv 

ikw2 (z-d) ik(ux+by) 2 
e e k dudv 

(3.52) 

and T \I / [w (1 + r II) ] as the ratio of the 

total electric field amplitude transmitted at z = d to the transverse 

electric field at z = 0, for perpendicular and parallel polarized 

plane waves, respectively. 

If the region 0 < z < d consists of a homogeneous dielectric 

slab of permittivity E
l

, and we have a semi-infinite region of per-

m~ttivity E2 for z > d, 

are given by (22) 

then T /[1 + r ] 
J. .L 

(3.53a) 

(3.53b) 

In case the \.;hole region z > 0 consists of a homogeneous 
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dielectric medium of relative permittivity E2 , then letting El = E2 

in (3.53) we obtain, 

T iow2 1. e 
1 + r 

(3.54a) 
1-

and 
Til ~ iow2 

w(l + r II) 
e w2 

(3.54b) 

In the event the permittivity of the medium z > 0 varies as a 

function of the coordinate z, then T /[1 + r ] 
1. 1. 

and T /[w(l + r )] 
II 1/ 

will be obtained by a method described in the next chapter. 

Since the semi-infinite region where the antenna radiates is 

usually free space, we will henceforth take in 

equations (3.53) and (3.54). Likewise the transmitted fields in the 

free space region can be written from (3.52) as 

E (r) 
-t -

H (r) 
-t -

+ E e e e k dudv 
Til J ikw(z-d) ik(ux+vy) 2 

op w(l+r II) -X 

Til T1. J ikw(z-d) ik(ux+vy) 2 
e - Eo'" -1--- e e e k dudv w(l+r ll ) 1 'I' +r 1. -x 

(3.55) 

To find the radiation fields we need to calculate (3.55) for 

large kr. A typical field component is of the form 
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co 
ikrf(u,v) 2 

e k dudv (3.56) g(;) = ff g(u,v) 

-co 

where, using spherical coordinates for the space variables, f(u,v) 

becomes 

f(u,v) '" cos 
2 2 

- u - v + sin e (cos </> u + sin </> v) (3.57) 

The double integral (3.56) can be readily evaluated for large kr by 

applying twice the method of stationary phase. The point where 

f (u,v) = f (u,v) = 0, so that the phase is "stationary", is given by, 
u v 

u 
a 

sin e cos </> 

v sin e sin </> 
o 

(3.58) 

and the result of the integration of (3.55) to first order in l/kr 

turns out to be (25,26) 

(3.59) 

The stationary phase integration of (3.56) is easy to inter-

pret. We see that out of all the plane waves propagating in directions 

determined by u and v, and making up the fields at the observation 

point in the region z > d, only the wave that travels in a radial 

direction toward that point contributes significantly to the radiation 

field. 

In the case of the waveguide aperture radiating through a 
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loss less dielectric slab, singularities may appear on the path of 

integration, in the integrand of (3.56). Then, an evaluation of the 

integral by the method of steepest descent (15,27) reveals that these 

singularities, which correspond to surface waves, contribute to the 

radiation field only for e = n/2, and that for 8 # n/2 the result 

of the stationary phase analysis is still valid. 

The far-zone fields follow from (3.55) and (3.59). Hence-

forth g (8 ,</» will be written for ~(u = sin 8 cos ¢, v = sin 8 sin ¢) 
o 0 

to clearly denote the angular dependence of the far-zone fields. Thus 

we have 

(3.60) 

TII(S) e-iocos8 k cos S e
ikr 

- 2in E (8,¢) 
op w (8)( 1+ r II (8) ) r 

(3.61) 

For easy reference, the expressions for T/[l + rl.] and TII/[w(l + rll)l 

can be written dmm as a function of 8. From (3.53) we have, letting 

-YE -
= 

. 28 Sln 
(3.62a) 
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and 

£ 

(3.62b) 
wee) (l+f nee»~ 

The radiation pattern, Hhich is proportional to the angular 

dependent part of the far-zone Poynting's vector, can be written as 

E (e,¢) 
op 

2 

The far-zone fields and the radiation pattern of waveguide-

fed apertures radiating through a dielectric slab into free space are 

given by (3.60), (3.61) and (3.63) in connection with (3.62). If the 

apertures were radiating directly into free space, i.e. if no dielectric 

slab were present, then the far-zone fields and the radiation pattern 

. iew 
would still be given by (3.60), (3.61) and (3.63), but Hlth T/(l+f)=e 

as is readily evident from (3.54). Thus we see that the dielectric slab 

has the effect of multiplying the components of the far-zone fields with 

no dielectric slab present by the factors TJ.. / (1 + flo) or Tn / (1 + fn ) 

(given by (3.62) in case of a homogeneous slab) and 
-iew e which depend 

on e and the parameters of the dielectric medium, provided that the 

same aperture field distribution is assumed with or without the dielectric 

slab. 

To find the far-zone fields and the radiation pattern asso-

ciated Hith particular configurations the appropriate aperture field 

transforms must be evaluated and substituted in (3.60) and (3.63). 

By Hay of example, we \vill find the radiation pattern of a circular 

aperture fed by a circular t-Javeguide. The transform of the aperture 
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field is given by (3.41), and hence, apart from ignorable constants, 

we have 

E (e,cp) 
op 

x' (x'/a) J' (asine) 
11 II 1 

J
1 

(asine) 

k sin e sin cp 

cos cp 

(3.64) 

The radiation patterns for each of the two principal planes, the 

xz-plane (cp = 0, e variable) and the yz-plane (cp = n/2, e variable) 

are given respectively by 

and 

where 

where 

F(e,O) 

(3.65) 

2A 2i TII (e) 2 
F(e,n/2) = k IEop (e,n/2)1 1 + fll(e) 

EO1/! (e, 0) 

T/(l + r) 

and E (e,n/2) can be obtained from (3.64), and 
op 

iOw 
equals e if the aperture radiates directly into 

free space, and is given by equations (3.62) if it radiates through a 

homogeneous dielectric slab into free space. It can further be noted 

that F(e,O) and F(e,n/2) are proportional to the angular dependent 

parts of IEcp(r,e,0)1
2 

and IEe (r,e,n/2)1 2 
respectively. 
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4. REFLECTION AND TRfu~SMISSION PROPERTIES OF 

INHOMOGENEOUS DIELECTRIC SLABS 

When a waveguide-fed aperture antenna is covered by an in

homogeneous dielectric slab whose permittivity varies in a direction 

perpendicular to the slab faces (the z-direction), then the expressions 

developed in the previous chapter are adequate to calculate the aperture 

admittance of the antenna as well as the radiation pattern, provided the 

reflection and transmission coefficients of the inhomogeneous dielectric 

slab are kno\vu. Accordingly, the present chapter will be devoted to the 

calculation of these coefficients, and related quantities, for inhomo

geneous dielectric slabs. 

If the properties of the dielectric slab vary only in the 

direction normal to its plane faces, then the reflection and transmission 

coefficients will again depend only on the angle of incidence X and 

will be independent of the azimuthal variation of the incidence direction. 

Thus with no loss of generality the plane of incidence can be chosen 

as the xz plane and the fields taken to be independent of the coordin

ate y (Fig. 4.1). We then consider a dielectric slab for 0 < z < d, 

whose relative permittivity is given by E(Z). We assume the region 

z < 0 to be free space, and the region z > d to consist of a homoge

neous dielectric with relative permittivity E
2

• The permeability is 

taken to be equal to that of fieespace everywhere. We further suppose that 

a plane wave traveling in the region z < 0 is incident on the inhomo-
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geneous dielectric slab with an angle of incidence given by X, and is 

reflected by it. There will be a right traveling (transmitted) and a 

left traveling (reflected) wave in the inhomogeneous dielectric slab, 

as well as a transmitted plane wave in the region z > d. Our aim is 

to find two quantities related to the reflection and transmission 

coefficients, which are of interest in this report, without solving 

for the fields themselves. 

The differential equations satisfied by the reflection and 

transmission coefficients in an inhomogeneous medium can be derived by 

the method of invariant imbedding (28,29,30). We will choose instead 

a purely mathematical way (31) which gets at the desired equations in a 

clear and straightforward manner, and has the added advantage of 

obtaining directly equations for the two quantities of primary interest, 

the input admittance and the ratio of the total electric field amplitude 

at the right face of the slab to the transverse field at the left face. 

The two cases of polarization must be treated separately. Accordingly, 

first the case of the electric field polarized perpendicular to the 

plane of incidence will be treated, and then the case of the electric 

field polarized in the plane of incidence will be discussed. 

A. Perpendicular Polarization 

rand T 
L L 

In this case, keeping in mind that are respect-

ively the reflection and transmission coefficients of the slab, 

w = cos x, p = sin X, and letting A(x) = ikpx 
e , ilie 

fields in the homogeneous regions can be written down in the following 

fashion: 
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For z < 0, 

E (x, z) (e ikwz 
+ r.L e- ikwz) A(x) , = y 

H (x, z) wee 
ikwz r.L e -ih7Z) A(x), -n x 

(4. ;1..) 

H (x, z) pee 
ikwz + r.L e -ikwz) A(x). n z 

For z > d, 

E (x, z) T.L 
ikv12 (z-d) 

A(x), = e 
y 

ikw2 (z-d) 
H (x,z) -T.L n w

2
e A(x), x 

ik\.12 (z-d) 
H (x, z) = T.L n p e A(x). z 

(4.2) 

The fields in the inhomogeneous di electric slab can now be 

defined in a form similar to (4.1). Interpreting P.L(z) and R.L(z) as 

the amplitudes of the transmitted and reflect ed ,;"aves in this region, 

and letting w(z) ~(Z) - p2, we can write for 0 < z < d, 

E (x,z) = 
y 

H (x, z) 
x 

H (x, z) 
z 

(P.L(z) + R.L(z» A(x), 

-n w(z)(P.L(z) R.L(z» A(x), (4.3) 

n p (P.L(z) + R.L(z» A(x). 

Note that E and H are related through Maxwell's equation 
y z 

ikH n aE lax. Substituting equations (4.3) into Maxwell's equations z y 

aH aH 
x z a;- -~ =-ikn E(Z)Ey 

(4.4) 

aE 
and n ~ = -ikH az x 

(4.5) 
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we find, 

ddZ 
[w(z) (p - R )] - ikw2 (z) (P + R ) 

L L L L 
o (4.6) 

and d 
dz (p + R ) - ikw(z) (P - R ) 

L L L L 
o (4.7) 

Eliminating first dRL/dz and then dPL/dz between. equations (4.6) and 

(4.7) it is found that P (z) 
L 

and R (z) 
L 

satisfy the follmving pair of 

coupled equations: 

dP 1 
~ -ikw(z) P + -==--~.,-dz L 2w(z) 

1 
2w(z) 

d~v(z) (P _ R ) 
dz L L 

o (4.8) 

dw(z) (p _ R ) 
dz L L 

o (4.9) 

Furthermore, it follmvs from the continuity of the tangential 

fields at z = 0 and z = d, that 

and 

1 + r = 
L 

PL(O) + RJ.(O) 

w(O) (p J. (0) - RL (0)) 

(4.l0a) 

(4.l0b) 

(4.l1a) 

(4.llb) 

Since the amplitude of the incident wave was taken as unity, 

PL(z) is also the transmission coefficient at a point z, while 
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R (i)/P (z) = r (z) is the reflection coefficient at the point z . .L .L .L 

The equation that the reflection coefficient r (z) 
.L 

satisfies can be 

obtained from (4.8) and (4.9), and turns out to be a Riccati equation 

dr J.. 1 dw(z) . 2 
2w(z) dz (1 - r.L) - i2kw(z)r.L -- = dz 

As a boundary condition we have 

r.L(d) 
wed) - w

2 
wed) + w2 

(4.12) 

(4.13) 

which directly follows from (4.11). Also the relation between r.L (0), 

and the reflection coefficient of the inhomogeneous dielectric slab r.L' 

is from (4.10), 

r.L 
[w - w(o)] + [w + w(O)] r.L(O) 

[w + w(O)] + [w - weO)] rJ..(O) 

An equation for the input admittance normalized to the 

admittance of free space, 

is also easily found from (4.6) and (4.7) to be 

i 
k 

dy. 
l.n.L 
dz 

2 - w (z) 

(4.14) 

(4.15) 

(4.16) 
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The boundary condition is y. (d) =w
2

, 
1n .1 

and the input admittance of 

the slab is given by y in.l (0) = w (l-r .l/l+r ) • 

As already mentioned the transmission coefficient satisfies 

equation (4.8): 

where h.l (z) 

dP 
.1 dZ = h.l (z) P.l (z) 

1 d~v(zL 
ikw(z) - 2w(z) dz (1 - r (z)) 

.1 

(4.17) 

(4.18) 

The solution of (4.17) is trivial once r.l (z) is known from equation 

(4.12), 

z 
~hJ. (z) dz 

P.l (0) e 

The boundary condition at z = 0 becomes from (4.10a) or (4.l0b). 

2w 

[w + w(O)] + [w - w(O)]r (0) 
.1 

(4.19) 

(4.20) 

Finally, the transmission coefficient of the entire slab is given from 

(4.lla) or (4.llb) by 

T 
.1 

= _=-2w-,-(,-=d~)_ 
wed) + w2 

P (d) 
.1 

or combining (4.19) and (4.21) by 

(4.21) 
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P (0) 
1. 

d 
~ hl. (z) dz 

e 

P(z) is the amplitude of the right-traveling wave at the 

(4.22) 

point z when a wave of unit amplitude is incident on the left face 

of the dielectric slab. It will be convenient to define yet another 

function related to the transmission coefficient. Let T(z) be 

the amplitude of the wave transmitted through the right face of the 

dielectric slab when a wave of unit amplitude is incident at the point 

z. Then, by definition, 

p(z) T(z) 

The equation satisfied by 

T 

T (z) 
1. 

(4.23) 

is from (4.17) and (4.23), 

(4.24) 

and the boundary condition at z = d becomes from (4.11) and (4.23) 

T 1. (d) 
2,.". (d) 

wed) + w
2 

(4.25) 

Hence, 

d 
J hl. (z) dz z 

Tl. (z) Tl.(d) e (4.26) 

The transmission coefficient of the entire slab is given from (4.10) and 

(4.23) by 
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2w 
T.1 = [w + w(O)] + [w - w(O)]r (0) T.1 (0) 

.1 

which checks, as expected with (4.22). 

(4.27) 

The ratio of the total electric field amplitude at the right 

face of the slab to that at the point z inside the slab is given 

by T (z)/[l + r (z)]. For radiation pattern calculations it is of 
.1 .1 

interest to find the equation that this quantity satisfies in the in-

homogeneous slab. First noting that 

T.1 

1 + r.1 (z) 
(4.28) 

we have from (4.28) and (4.7) 

o (4.29) 

and the appropriate boundary condition is from (4.lla) and (4.23) 

1 (4.30) 

The the solution for (4.29) becomes 

(4.31) 
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Since, from (4.l0a) and (4.23) 

T .L (0) 

1 + r (0) .L 

we finally obtain 

T.L 
---= e 
1 + r .L 

T.L 

1 + r 
.L 

d 
ikf y. (z)dz 

o In.L 

(4.32) 

(4.33) 

As a partial check, we may apply equations (4.16) and (4.33), 

with which we are most interested, to the case of a homogeneous slab 

with relative permittivity for o < z < d, and a homogeneous semi-

infinite region of relative permittivity for z > d. In this 

case w(z) = JEl - p2 = wI for 0 < z< d, and equation (4.16) can 

be directly integrated, with the boundary condition y(d) = w2 . 

Writing y for y in.L' we have 

y(z) 

if dy 

y(d) 

which, upon integration, becomes 

k (d-z)wl 

and solving this latter equation for y(z) \ve have 
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yed) - iWI tan k(d-z)wI 
wI wI - iyed) tan kCd-z)w

I 

which, setting yed) = w2 ' checks for yCO) with e3.27a). 

To calculate (4.33) we rel',rite y (z) as 

y(Z) 

Letting 

y(d) cos k(d-z)w
I 

- iW
I 

sin k(d-z)wI 
wI wI cos k(d-z)w

I 
- iyed) sin k(d-z)wI 

u = wI cos k(d-z)wI - iy(d) sin k(d-z)wI 

we have 

then 

Hence 

d ilJ y(z) dz 

o 

u(d) 

f d~ 
u(O) 

which checks with (3.53a). 

B. Parallel Polarization 

wI 
In --------------~-------------

W 1 cos kdw
I 

- iy(d) sin kd\vI 

In the case of the electric field polarized in the plane of 

incidence, the fields in the homogeneous regions can be written down 

as follows: 
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For z < 0, 

E (x, z) (eikwz + r -ikwz) A(x) = w lie , x 

E (x, z) ( ikwz -ikwz A(x) (4.34) 
z -p e - file ) 

H (x, z) 
y 

( ikwz 
T) e - r -ikwz) lie A(x) 

For z > d, 

E (x, z) 
w2 ikw2 (z-d) 

A(x) =--TII e , x Fz 

E (x, z) - --L T 
ikw

2
(z-d) 

A(x) (4.35) e , z ~II 
£2 

H (x, z) n VS; Til 
ikw2 (z-d) 

A(x) . e 
y 

The meaning of the symbols used above and in the following 

paragraph should be clear from our treatment of the previous case. 

We then define the fields in the inhomogeneous dielectric 

slab, 0 < z < d, as 

E (x, z) 
x 

E (x, z) 
z 

H (x, z) 
y 

w(z) 
(P II (z) + RII (z» A(x) , 

Vs(z) 

P (P
11 

(z) - RII (z» A(x) , 
V;W 

n V;W (PII (z) - ~I (z» A(x) • 

(4.36) 
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Note that Hand E are related through Maxv!ell' s equation 
y z 

-ikndz)E z 

equations 

and 

we find, 

and 

3H 13x. Substituting equations (4.36) into Maxwell's 
y 

n (3Ex _ 3E zJ = ik H 
3 z 3x I y 

3H 
~ = ikT\ dz)E 
3z x 

o 

0, 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

from which it follows that PII (z) and 111 (z) satisfy the following 

pair of coupled equations 

dP11 1 dw(z) 1 ds (z) 
'd'"Z + ikw(z)PII + 2w(z) dz (P II + R II ) - 2dz) dz RII = 0 (4.41) 

dR11 1 dw(z) 1 ddz) 
'd'"Z + ikw(z)RII + 2w(z) dz (P II + RII ) - 2dz) dz P II o (4.42) 

From the continuity of the tangential fields at z = 0 and 

z = d we have the boundary conditions 

w(O) 
~ (P 11 (0) + RII (0)) (4.43a) 
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1 - r \I 
(4.43b) 

and 

wed) (Pn (d) + RII (d)) = ~ Til 

~ Fz 
(4.44a) 

V;W (PII (d) - RII (d)) = Fz Til (4.44b) 

The reflection coefficient r II (z) = RII (z) IP II (z) satisfies a 

Riccati equation, which can easily be obtained from (4.41) and (4.42): 

dz 
E(Z) d (W(Z») r2 

2w(z) dz dz) (1\ 

subject to the boundary condition, 

W2 wed) 

E:2 E:{d) 
rll(d) 

W2 wed) 
-+--
E2 E(d) 

- 1) - i2kw(z) rll (4.45) 

(4.46) 

which directly follows from (4.44). The reflection coefficient of the 

inhomogeneous dielectric slab f ll , fo11mvs from the relation bet\veen 

fl\(O) and fll in equation (4.43), and is 

[
w(O) _ J 
E(O) , 

[
w(O) + J 
E (0) wJ 

[
w(O) J 

+ dO) + wJ r II (0) 

rw(O) J 
+[dO) - ':1 fll (0) 

(4.47) 
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The equation for the nonna1ized input admittance, 

(4.48) 

can easily be obtained from (4.39) and (4.40). It is 

i dy in!! w
2

(z) 2 _ E (z) 
k dz- = dz) Yin!! (4.49) 

The boundary condition is YII(d) = E
2

/w
2

, and the input admittance of 

the slab is given by y. (0) = 
l.n 

l/w (l-r II /l+rll) . 

Since the incident electric field has unit amplitude the 

transmission coefficient is given by the same equation as (4.41), 

(4.50) 

where 

hll (z) 
1 

ikw(z) - 2w(z) 
dw(z) 1 dE(z) 

dz (1 + rl! (z» + 2dz) dz r ll (z) (4.51) 

With the knowledge of r ll (z) from equation (4.45) PI! (z) can 

readily be found. The boundary condition at z = 0 is from (4.43a) or 

(4. 43b) , 

1 2w 
, c;;:; [w(O) .1 
yE (0) E (0) + wJ + [;~~~ - wJ r ll (0) 

(4.52) 
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and 

z 

p lI(z) 
~h lI(z) dz 

e (4.53) 

The transmission coefficient of the entire slab is given from 

(4.44a) or C4.44b) by 

Til = 

2w(d) 
__ E:-,C_d), ( d) 
w PII 
~ + w(~ 
E:2 E: (d) 

(4.54) 

As in the previous case, it is convenient to introduce the 

function T(z) defined by equation (4.23). The equation satisfied by 

TII(z) is from (4.50) and (4.23) 

(4.55) 

and the boundary condition at z = d is from (4.44b) and (4.23) 

~dd) 
2w(d) 

Til (d) 
dd) C4.56) 

~ 
w 
~ + wed) 
E:2 E:(d) 

Hence 
d 
~hll (z) dz 

Til (z) Til (d) e (4.57) 

The transmission coefficient of the entire slab is then given from 
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1 

[
W(O) + ~ 
s(O) J 

-62-

2w (4.58) r~ () ~ Til (0) 
+ L: (~) -W

J 
r II (0) 

The ratio of the total electric field amplitude at the right 

face of the slab to the transverse field at the point z inside the 

slab is given by -V;C;;/W(z) [Til (z) /1 + r II (z)]. The equation satisfied 

by this quantity can be written directly from (4.39) if we first note 

that 

Til (z) Til 
== --:--~---

1 + rll(z) PII(z) + RII(z) (4.59) 

Then we have 

2 d (Ys(Z) Til (z) 1 
dz w(z) 1 + rll(z) + 

ik w (z) 
s(z) ( 

-v;c;j Til (z) _\ 

Yinll(z) w(z) 1 + r
ll 

(z);== 0 

(4.60) 

The appropriate boundary condition is from (4.44a) 

Jf0d} 
wed) (4.61) 

The solution of (4.60) then becomes 

~ TII(z) 
----

w(z) 1 + r II(Z) 

d 2 
ikJ w (z) ( 

z s(z) Yinll z) dz 
(4.62) 
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From (4.43a) and (4.23) we have 

:r;® _T_I_I(_O)_ 

w(O) I + r 11(0) w(l + r II) , 
(4.63) 

hence we finally obtain 

(4.64) 

Again, as in the previous case, we will apply equations (4.49) 

and (4.64) to the case of a homogeneous dielectric slab of relative 

permittivity and thickness d, adjacent to a semi-infinite region 

of relative permittivity €2. We can directly integrate equation (4.49) 

with w(z) = WI for 0 < z < d. and boundary condition y(d) = €2/w2. 

Writing now y for y in II ' we have 

y(z) 
. €l J ~ --. 2 

w 
I y(d) 

dy 

which, upon integration, becomes 

k(d-z)wI 

and, upon solving this latter equation for y(z), we obtain, 
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which, setting y(d) = ~2/w2' checks for y(a) with (3.27b) . 

Letting 

we have 

then 

Hence 

. To calculate (4.64) we rewrite y(z) as 

d 2 

{
WI 

ik -- y(z)dz 
~l 

a 

u(d) 

f 
u(a) 

du 
u 

I 
u(d) 

n u(a) 

which checks with (3.53b). 

Direct integration of equations (4.16) and (4.49) is possible 

only for a few special ~(z). In general, numerical methods must be used, 

which, in the present case, are fortunately quite simple. 
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A few remarks should nm" be made concerning some of the results 

obtained in this chapter. First, if the permittivity I::(z) is dis-

continuous at one or more points in the inhomogeneous medium care must 

be exercised in the calculation of the reflection and transmission 

coefficients. Separate expressions must be written for the fields in 

each section of the medium where the pennittivity is continuous, and the 

expressions for the tangential fields must be matched at the points of 

discontinuity of I::(Z) , in exactly the same way as was done at the 

boundaries of the inhomogeneous medium. 

However, y. (z), y. (z), [T,(z)/l + r,(z)] and also 
1.n.l. 1.n\l .J- .J-

[~/w(z)] [T \I (z) /1 + r 1\ (z)] are all continuous functions of z 

even if I::(z) is not, since the former two are the ratio of the tangential 

magnetic to the tangential electric field at the point z in the medium, 

and the latter two are proportional to the reciprocal of the tangential 

electric field at the point z. Thus the calculation of these quantities 

presents an additional advantage over the calculation of the reflection 

and transmission coefficients. 

If the inhomogeneous dielectric medium is a plasma there may 

be one or more points ,,,here I:: (z) = 0. (Then the plasma frequency equals 

the frequency of the electromagnetic waves). In such a case the solution 

of equation (4.49) may require some ingenuity. Suppose that dz ) = 0, o 

and, assuming that the first derivative of I::(z) does not vanish at 

can be written near z as 
o 

dz) = dE I 
dz z=z 

o 
(z - z ) 

o 
a(z - z ) 

o 
(4.65) 
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In a small interval of z near z - Lz < z < z + Lz, the 
o 0 

differential equation (4.49) can be written as (writing y 

EY 
dz 

'k 2 2 1 P 
a(z-z ) y 

o 
or ~ _ ik P 

2 
--:-..:;;d;,;;;z--;:-

2 - a (z-z) 
y 0 

which can be directly integrated on this interval to give 

for 

if z < z < z 
0 

I I 'k 2 Iz-z 1 
~ In 0 

y(z) y(z + Lz) a Lz 
0 

0 
+ 

{~ if z - Lz < z < 
0 

Thus, the solution around the point z can be found from (4.67), 
o 

provided that the solution at z + Lz 
o 

is previously calculated. 

In particular, 

I 
y(z - Lz) 

o 

2 
__ ~-=l~~ + ~ 
y(z +Lz) lal o 

(4.66) 

Lz 

(4.67) 

z 
0 

(4.68) 

The effect of the point z on the admittance is seen to be the addition, 
o 

"in series", of a real admittance. Furthermore, it can easily be checked 

that at the point z y vanishes, ,,]hile dy/dz becomes infinite. 
o 

Finally, it should be mentioned that if only the differential 

equations for the input admittances were of interest, they could be 

obtained in an even more direct and simple manner by making use of the 

fact that 
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dy. 
In.L 

dz ~z (~;y) and dYinll _ E..-.. (~) 
dz dz nE 

x 

and making direct use of Maxwell's equations. The formulation presented 

in this chapter is preferred simply because it enables us to derive the 

equations for the other related quantities of interest as well. 



-68-

5. RESULTS AND CONCLUSIONS 

The main concern of the present report has been the presentation of 

a method of analyzing waveguide-fed aperture antennas of arbitrary cross-

section and radiating into inhomogeneous media. However, it has been 

deemed useful that the method should be illustrated ,'lith examples which 

in themselves have some practical interest. Accordingly, the admittance 

and the radiation pattern of a circular aperture antenna fed by a circular 

waveguide and radiating into an inhomogeneous plasma slab has been cal-

culated for a few interesting inhomogeneity profiles. Besides being of 

practical value, the circular aperture antenna presents a computational 

advantage over the rectangular, since the admittance expression contains 

a single rather than a double integral. 

An inhomogeneous plasma slab of thickness d has been con-

sidered with the relative permittivity given by 

e:(z) 1 -
(w /w)2 f(z) (v/w) (w /w)2 f(z) 

P + i ______ ~P----------

1 + (v/w)2 1 + (v/w)2 
(5.1) 

where 
2 

w , 
p 

the square of the peak plasma frequency, is proportional 

to the peak electron density in the plasma slab, and the electron density 

normalized to its peak value is given by the function f(z), while the 

losses in the plasma are taken care of by an empirical collision 

frequency v. 

In the present report the plasma slab is chosen to have an 
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inhomogeneous boundary layer for 0 < z < d l and is homogeneous for 

d
l 

< z < d. Three different electron density profiles have been chosen 

for the boundary layer region 0 < z < d
l

. These are, 

a) a convex parabolic profile, 

fez) 

b) a linear profile, 

fez) = z/d l ' 

c) a concave parabolic profile, 

fez) 
2 2 

z /d l ' 

while fez) = 1 for d
l 

< z < d for all three cases (Fig. 5.1). The 

homogeneous plasma slab for which fez) = 1 for 0 < z < d, has also 

been considered. 

First, the calculations on the admittance of the circular 

aperture antenna are presented. For the inhomogeneous slabs, the 

input admittances Yin (p) 
1. 

and Y. (p) have been calculated by 
~nll 

numerically solving the differential equations (4.16) and (4.49) as a 

function of p, while for the homogeneous case they are given by 

expressions (3.27). These results have been used in the numerical 

integration of expression (3.42). It is easy to see that, at least 

for the homogeneous plasma slab, the integrand of (3.42) is of the 

order of -3 
p for large p, and hence it is possible to soon terminate 

the integration without appreciable error. The integrand has been 
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C linear profile 

o concave parabolic profile 

Fig. 5.1 Electron density profiles 
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checked for possible surface wave poles and such poles have been account-

ed for although their effect is negligible in the range of parameters 

under consideration. 

The dominant mode of the circular waveguide is the TEll 

mode. The aperture radius a has been chosen such that ka = a = 3n/4, 

which is just belmv the cutoff of the next propagating mode (TMOI)' 

The slab thickness has always been chosen to be kd = ° = 2n. 

The aperture admittance, Y, is nonllalized to the characteristic 

admittance of the waveguide dominant mode, Yo = nVl - (x 11 '/a)2. 

We have computed the real as well as the negative of the imaginary part 

of (Y/Y) = g - ib, called the normalized conductance, g, and the 
o 

nonnalized susceptance, b, respectively. g and b are plotted 

(w /w)2 2 
1 (underdense against in steps of 0.1 for 0.1 «m /w) < 

p p 

plasma), and in steps of 1.0 for 1 < 
2 

(w /w) < 
p 

10 (overdense plasma). 

(Figs. 5-2 to 5-5). There is a discontinuity in the scale of the 

horizontal axis at 2 
(w /w) = 1. 

p 
The point 

2 
(w /w) 

p 
o corresponds 

always to the aperture radiating into free space. The value of (Y/Y ) 
o 

at that point (not shown on the figures) is found to be 1.156 + i 0.043, 

which checks with previous calculations of this quantity (13). 

Figures 5-2 and 5-3 compare the aperture admittance obtained 

from each of the three inhomogeneity profiles and from the homogeneous 

slab, when the plasma is lossy with v/w = 0.4. The thickness of the 

boundary layer is given by 01 = kd
1 

(1/20)0 in Fig. 5-2 and by 

01 = (1/10)0 in Fig. 5-3. It is seen that the susceptance of a plasma 

with an inhomogeneous boundary layer is substantially decreased over 

the homogeneous slab. The least change occurs in the concave parabolic 
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case where the "air gap" is the least and the greatest in the convex 

parabolic case where the "air gap" is the largest. The change in the 

conductance is appreciable only for 
2 (w /w) > 0.7 and it seems to 

p 

be quite insensitive to the inhomogeneity profile. Comparing Fig. 5-2 

with Fig. 5-3 it is seen that increasing the boundary layer thickness 

to °1 = (1/10)0 makes the decrease of the susceptance in the presence 

of "air gap" even more pronounced. 

Figures 5-4 and 5-5 apply for an almost loss less plasma with 

v/w 0.025. In Fig. 5-4 °
1 

= (1/20)0, while in Fig. 5-5 01 ~ (1/10)0. 

The general behaviour of the curves is similar to those for v/w = 0.4. 

In particular, the susceptance is seen to be relatively independent of 

the collision frequency. The conductance decreases with decrease in 

collision frequency. Hmvever, it does not approach zero as the losses 

become vanishingly small in an inhomogeneous overdense plasma. This 

is due to the fact that at the point where the permittivity vanishes 

a real susceptance is added "in series" to Y, as was pointed out 

at the end of chapter 4. 

Finally, the normalized aperture admittance Y/Yo ' and the 

reflection coefficient, r, of the domi.nant mode electric field are 

related by 

(Y/Y ) 
0 

and r = 

Hence our knowledge of 

1 - r 
1 + r (5.2a) 

1 - (Y /Y ) 
0 

(Y/Y ) 1 + a 
(5.2b) 

(Y/Y) yields readily information about r. a 

In Figure 5-6 Irl, which is a measure of the power reflected back 
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into the waveguide, is plotted against 
2 (w /w) for each case of 

p 

(v/w) and 01' Only the results for the homogeneous slab and the 

inhomogeneous plasma with a concave parabolic profile have been shown. 

For the two other profiles, the results fall between the ones shown. 

It can be concluded that the existance of an "air gap" as well as an 

increase in the collision frequency results in a decrease in Irl. 
It can also be noted that for an overdense plasma with low losses Irl 
is insensitive to changes in 2 

(w /w) • 
p 

Next, the radiation pattern of the circular aperture antenna 

is discussed. Only the principal planes (the xz-plane, and the yz-plane) 

have been considered, and the ratio of the pm\Ter radiated at e = 0 

to that radiated in any direction in these planes is calculated in 

decibels. Thus for the xz-plane (¢ = 0, e variable) we have plotted 

F(O,O) 

10 loglO F(e,O) I
Ep. (r'O'O)1 

20 loglO E¢ (r,e,O) , 

while for the yz-plane (¢ TI/2, e variable) 

F(O,TI/2) 

10 loglO F(e,TI/2) 

is plotted against e. F(e,O) and F(e,TI/2) are given by (3.65). 

Again, \ole have always taken ex = 3rr /4 and 6 = 2rr. 

Fig. 5.7 shows the radiation patterns of a circular aperture 

antenna radiating into free space. The yz-plane radiation pattern shows 

that as e approaches TI/2 the electric field in that plane does 
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not vanish, as it does in the xz-plane. This is to be expected since it 

represents the normal field on the conducting ground plane. However, it 

is found that even a thin dielectric layer over the aperture drastically 

reduces the yz-plane radiation near e = n/2 making it approach zero. 

In Fig. 5-8 the antenna radiates into a lossless plasma, while 

in Fig. 5.9 the plasma is lossy with v/w = 0.4. In both cases we have 

chosen (w /w)2 = 1/2. The yz-p1ane radiation changes slightly according 
p 

to the inhomogeneity, while the xz-plane radiation is insensitive of the 

shape of the electron density profile. When the antenna radiates into 

a lossless plasma the radiation patterns have a wedge-like shape with a 

maximum near 45° and a sharp decrease of radiation at greater angles. 

This fact can be explained simply by remembering Snell's law. Since the 

plasma has a real positive permittivity smaller than that of free space, 

there exists a maximum permissible angle for plane waves refracted in 

the free space region. For 2 
(w /w) = 1/2, 

P 
this angle is 45°. When 

the plasma becomes lossy this fact isno longer true, the peaks disappear 

and the curves become smoother with the maximum at e = o. 

For (w /w)2 > I the radiation in all directions is very 
p 

weak, since the waves in the plasma are exponentially damped. In this 

case the shape of the radiation patterns would be smooth with no peaks, 

quite similar to Fig. 5.9. 

The various advantages of the present method of analyzing 

aperture antennas have been discussed at length in the course of the 

report. One main advantage, as regards the numerical computation of 

the results, should be mentioned here. The time for obtaining numerical 

solutions of linear second order differential equations has been 
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eliminated in the present formulation. In this report we deal with non

linear first order equations which require a far less time for solution 

by a computer, than linear second order equations. 

We will conclude with a discussion of the possible extensions 

of the method presented. First, the method could be extended to other 

than planar geometries. A treatment of cylindrical geometry, for example, 

would be particularly useful for the disoussion of plasma covered 

cylindrical antennas, and would be quite straightfoDvard to carry out. 

Second, the method could be used to apply to media other than the ones 

discussed in this report, such as turbulent, moving and anisotropic media. 

A medium whose contitutive parameters are functions of all three space 

coordinates would be harder to treat, and an extension of this method 

to such media mayor may not be possible. 
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