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Abstract 

The problem of lateral instability of a viscoelastic in-plane loaded structure is considered 

in terms of thermorheologically simple materials. As an example of a generally in-plane 

loaded structure, we examine the simple column under axial load: Both cyclic loading is 

considered (with constant or in-phase variable temperature excursions) as well as the case 

of constant load in the presence of thermal gradients through the thickness of the structure. 

The latter case involves a continuous movement of the neutral axis from the center to the 

colder side and then back to the center. 

In both cases, one finds that temperature has a very strong effect on the rate at which insta

bilities evolve, and under in-phase thermal cycling the critical loads are reduced compared 

to those at constant (elevated) temperatures. The primary effect of thermal gradients 

beyond that of thermally-induced rate accelerations is a rate increase occasioned by the 

generation of an "initial imperfection" or "structural bowing." This latter effect, which 

is proportional to both the temperature gradient and the coefficient of thermal expansion 

(presumed homogeneous in this study), can in fact be dominant. Because the coefficient of 

thermal expansion tends to be large for many polymeric materials, it may be necessary to 

take special care in lay-up design of composite structures intended for use under compres

sive loads in high-temperature applications. Finally, the implications for the temperature 

sensitivities of composites to micro-instability (fiber crimping) are also apparent from the 

results delineated here. 
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1. Introduction 

Besides fracture, an important structural failure mode revolves around the evolution of 

unstable lateral deformations, often characterized as buckling. When time-dependent ma

terial behavior is involved, such as associated with polymer-based composites, this behavior 

depends strongly on the time history of loading and, even more so, on temperature. While 

one can always estimate from the relaxation or creep properties of the material lower

bound load values below which instabilities never arise [Drozdov]' such bounds tend to be 

so low from a practical point of view that the designer is forced to use these materials 

at load levels at which instabilities can evolve eventually, but such that they develop on 

a time scale that is large compared to the anticipated life of the structure. Composites 

are typically used in their rigid or (near- )glassy state; it is then of interest to examine 

the variation in their response history as one deviates from typical low-temperature design 

conditions. 

The problem of buckling in viscoelastic structures has been considered by several authors. 

Most of these deal with response under constant axial or in-plane loads. Closely attuned 

to the present objective, Schapery has examined the cyclic loading of viscoelastic columns 

under constant temperature. We shall emphasize in the present study, as did Schapery, 

realistically wide time ranges of material response rather than with idealized behavior. 

However, the present effort focuses on the derivation of stability criteria and the effect of 

time-varying temperature cycles. 
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The large time-range for buckling evolution follows from the large range of time-dependence 

of polymers, even when they are married to rate-insensitive reinforcements such as graphite 

fibers. The "stiffness" of polymers drops by a factor of 102 to 103 with time or temperature 

increase as the glass-transition temperature is approached. Under these circumstances 

it is imperative that one appreciate the limitations placed on structures by operation 

at elevated temperatures. While it is obviously inappropriate to allow the use of these 

materials uniformly at or above the glass transition, the possibility exists that they are 

exposed to temperature gradients in which part of the material experiences near-transition 

temperatures, or situations may arise when such temperatures are accidentally approached 

or exceeded. 

With this motivation in mind we examine columns possessing thermorheologically simple 

material behavior subjected to two kinds of (axial) loading and thermal exposure: We 

consider first the case of a cyclically loaded column under constant as well as cyclically 

varying temperature, the latter being in phase with the loading. This problem will be first 

considered for the idealized material of a standard linear solid to establish certain limit 

behaviors. This simplified-material and exact analysis is then followed by a numerical 

evaluation involving realistically wide-spectrum time response following the behavior of 

polymethylmethacrylate (PMMA) as a model material. Along the length of the column 

the temperature distribution is presumed constant for all problems considered here. 

The next problem concerns the effect of a thermal gradient across the thickness of the 

structure. Mimicking steady-state thermal conditions we consider only a linear temper

ature variation across the column (although a different distribution poses no additional 

difficulty in principle). The consequence of this thermal variation is that with time the 
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material exhibits varying "stiffness" across the structure, since higher temperatures are 

associated with faster relaxation or creep, so that the neutral axis (surface) wanders as 

time progresses: While being located initially and also after infinite time at the center, it 

is subject to an intermediate excursion towards the cold side. 

Problems of time-dependent buckling instability in the absence of temperature gradients 

have been considered by other authors. We believe that a fair review of the state of the art 

in this respect is presented in references Glockner and Szyszkowski (1987) and Minahen 

and Knauss (1992). For our present purposes it suffices to state that in the context of 

the time-dependent, non-dynamic evolution of instabilities, the criterion as to when unsafe 

conditions have been achieved must be established through empirical arguments; in this 

regard we follow Minahen and Knauss (1992) and use the achievement of a predetermined 

lateral deflection as the criterion for failure. Also, in view of the results in this latter 

reference, namely that considerations of kinematically large deformations yield virtually 

identical results as the completely linearized analysis, we restrict ourselves here also to 

linear kinematics and material response. 
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2. General Formulation 

Following developments in Minahen and Knauss (1992) we consider an initially (very 

slightly) deformed column, of in-plane thickness h and unit out-of-plane thickness. In 

anticipation of dealing with thermal gradients through the thickness and the associated 

motion of the neutral axis, we designate that position with respect to the center-line as 

n(t). Let uo(x,t) denote the axial motion of the center-line, ax the (constant) coefficient 

of linear thermal expansion, and T( z) the temperature variation. The strain is then 

(1) 

along with the stress-strain relation 

(2) 

where 

, , t d( 
t - ~ = J~ <p[T(O] (3) 

is the reduced time (difference) based on the time-temperature shift factor <p(T). Moment 

equilibrium then provides the integro-differential equation 

j t jt a {au a2w} 
_11. [z - n(t)] -00 E(z, t' - n a~ axO 

(0 - [z - n(O] ax 2 d~ dz 
2 

(4) 

= P [w(x, t) + Wo(x) + net)] 

with wo(x) and w( x, t) denoting, respectively, the small initial imperfection (when needed) 

and the additional time-dependent lateral deflection as illustrated in figure 1. After ex-

panding Wo (x) and w( x, t) into the Fourier series 

00 

"" m7l'X w(x,t) = ~ Am(t)sin-
Z
- (5) 

m=l 
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00 

() "B . m7rX Wo x = L mS1n-Z-
m=l 

two equations result, one governing the location of the neutral axis 

1t 1t a [auo ] _ll[z-n(t)] -00 E(z,t'-n
ae 

ax(O dedz=Pn(t) 
2 

and the other representing moment equilibrium 

(7r)211 1t a 1 _ll [z - n(t)] -00 E(z, t' - n ae Hz - n(O]A(~)} d~ dz = P [A(t) + B] 
2 

(6) 

(7) 

(8) 

where, in anticipation of dealing only with the fundamental mode (m = 1) [see Minahen 

and Knauss (1992)], the subscripts m have been dropped. 1 Because the two problems 

to be considered subsequently need a somewhat different use of the last two equations, we 

shall deal with their applications in the specific contexts. 

1 It was shown in the work of Minahen and Knauss that, generally, of all the possible 

deformation modes the first one grows significantly faster than the higher ones. For this 

reason the first mode will dominate the deformation evolution. 
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3. Cyclic Loading 

Before dealing with a material possessing realistic time response, we consider first the 

case of the standard linear solid with the intention of characterizing the typical aspects of 

the problem and to allow for an evaluation of the numerical scheme applied later to the 

situation with more realistic properties. Computational solutions require compromises in 

the discretization of the integration so that a check on the reliability of the scheme is at 

least desirable, if not mandatory, in light of earlier experience in [Minahen and Knauss 

(1992)] . We choose a "square wave" loading history because it approximates typical use 

conditions better than a sinusoidal history, but also with the expectation that a piece-wise 

sequential solution is possible. The results obtained in the sequel for equal on/off times 

are readily generalized for unequal on/off ratios with square wave loading. The thermal 

excursions are of the same type so that a rise in load is accompanied by a rise in temperature 

and unloading is accompanied by a drop in temperature without considerations of thermal 

delay transients (c.f. figure 2) . In fact , it turns out that any piecewise-constant load 

history can be dealt with using the procedure developed below, such that the effects of 

loading functions with multiple load levels or discretized approximations of load histories 

which do not resemble square waves can be obtained with only slightly more effort. 

3.1.1 Standard linear solid; isothermal case 

Because in the present case the temperature is uniform throughout the geometry, the neu

tral axis remains at the center-line or midsurface. Equation (7) is thus satisfied identically 
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and, after normalizations in the form of 

_ pet) (71")2 
pet) = Pe(O) , Pe(t) == 1 E(t)! 

(t) - E(t) aCt) == Ah(t. ), 
r = E(O)' (9) 

(8) reduces to 

r(t')a(O+) + 1: ret' - n d:~O d~ = p(t)[a(t) + 1'] (10) 

where the relaxation behavior is characterized by 

E(oo) r --_. 
00 - E(O) , (ll) 

We effect a solution of (10) for a loading-unloading-loading cycle to show by induction that 

a sequential or recursive solution may be obtained. First integrate (10) across the load 

jump at i = 0 to obtain 

(12) 

and then establish the lateral column motion under time-invariant axial loading. This 

result was given in [Minahen and Knauss, 1992] for any load level Po as shown in figure 3, 

which is valid for the first loading portion, with the explicit form for this function being 

given, for arbitrarily long pulse duration t, by 

where 

C1 == a(O+) + Pol' , 
Po - roo 

_ \ Po - roo 
fL = -A , 

1 - Po 
Pol' C 2 == - ---''-'-'-

Po - roo 

(13) 

(14) 

We shall refer hereafter to (13) as the deflection function. Integrating (10) also across the 

unloading jump at t = to yields the corresponding deflection decrease 

6a = -po[a(io) + 1']. (15) 
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To obtain the deflection for the unloaded portion of the cycle we let 

p(t) = Po[h(t) - h(t - to)] (16) 

in (10), and deduce, with the aid of Laplace transformation and some tedious algebra, that 

during the time to < t < 2to the lateral midspan deflection is 

(17) 

with 

(18) 

One follows the same procedure for the time interval 2to < t < 3to and determines that 

during this second loading cycle, 

(19) 

where 

I-l and C2 are the same as in (14), and C3 is defined in (18). Comparison with (13) shows 

that this response can be determined from the deflection under step-loading in equation 

(13) through a "time shift" of the form 

(21) 

which observation is also illustrated in figure 4. Because further stepwise integration be-

comes very cumbersome even for this simple material problem, we deduce by induction 

that a sequence for further load cycles may be constructed through successive determina-

tion of the (glassy) jumps at the loading and unloading times plus segments of the loading 
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and unloading functions, (13) and (17) respectively, such that their magnitudes match the 

values at the beginnings or ends of the load cycles. 2 In this sense, these two curves 

become "master curves" for the deformation during the loaded and unloaded portions of 

the cycles. 

3.1.2 Long-term stability analysis 

This term-by-term construction of the solution becomes tedious and because we are inter-

ested only in the maximum deflection at the end of each cycle we are satisfied with tracing 

the history of that particular parameter since it will determine the eventual failure of the 

structure. To this end, we consider the accumulation of the deflection over any load cycle 

by considering the jumps at the loading and unloading time nto and (n + l)to, as well as 

the change during the respective time intervals. Starting with the deflection at the end of 

a loading cycle, a( nto), we find the subsequent (downward) jump 

a(ntt) = a(nto) - po[a(nto ) +,8] (22) 

the displacement at the end of the unloaded interval 

(23) 

the (upward) jump at the onset of a new loading interval 

a[(n + l)t+] = a[(n + l)C] + po[a[(n + 1)to1 + ,81 
o 0 1 - Po 

(24) 

2 This response history has also been computed numerically for comparison purposes 

and as a check on the algorithm used later. With 100 or 1000 time steps per cycle it was 

found that over the duration of 40 cycles the differences amounted to no more than 0.1 %. 

The same result prevailed for cycles possessing fractions of the loading/unloading cycle 

that differed from the 50/50 example illustrated here. 
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and the displacement at the end of the next loading interval 

(25) 

By combining (22) through (25) one finds 

~aeycle == a[(n + 2)t;)1- a(nt;)) (26) 

and therefore 

recalling that 0(0+) is given by equation (12). 

It is apparent that the character of the accumulated deflections is determined by the term 

multiplying a( nt;)). If this term is negative, successive deflection increments decrease with 

time so that the total deflection tends asymptotically to an upper limit. It is negative if 

(roo>' + J-L) > 0 which, with (14), indicates stability if 

2roo 
Po < Per == 1 + roo 

in which case the maximum deflection is asymptotic (i.e., ~aeycle = 0) to 

(28) 

(29) 

It is clear that if P 2: Per a bounded displacement is not achieved as t -+ 00; in fact, if 

P = Pcn the displacement amplitude diverges linearly with time or number of cycles, while 

it grows exponentially if P > pcr. Illustrations of these three distinct cases are given in 

figures 5-7. For these examples the standard linear solid model is 

ret) = 0.5(1 + e-(t/7 .21hrs)). (30) 
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3.1.3 Standard linear solid; in-phase thermal cycling 

Because of the piecewise construction of the solution, the extension to thermal variations 

is simple, whether that variation is in-phase or out-of-phase. The situation for thermal 

cycling which is phase-shifted with respect to the loading by a fixed amount is only slightly 

more complicated than the case presented here, while the case of thermal cycling with a 

different frequency than the load cycle does not seem to lend itself to any other than 

a completely numerical solution. From an engineering point of view, the synchronous 

load and temperature variation presents the most relevant problem and is the only one 

considered here. 

We assume that for this simple material model, a time-temperature superposition behavior 

such as indicated in figure 8 applies; the two shift factors corresponding to the two tem-

peratures Tl and T2 are ¢Yl = ¢Y(Tt) and ¢Y2 = ¢Y(T2)' The analysis follows identical lines 

of reasoning as before, except that t is replaced by the appropriate t / ¢Y. Thus equations 

(13) and (17) become, respectively 

(31) 

and 

We address first the question of stable/unstable deflection growth in the presence of these 

temperature variations. Following the same reasoning as that which led to equations (27) 

and (28) one finds that (27) is replaced by 

(33) 
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from which (28) becomes 

(34) 

For constant temperature, equation (28) is recovered. We note that for the thermal vari-

ations considered here typically ~d~2 ::::: 1 (and T(X) « 1); as a consequence one has 

Pcr/P~r :S 1, with the implication that a load level which renders stable long-term de-

formations can lead to unstable growth in the presence of thermal cycling. An example 

of this situation is demonstrated in figure 9, where the load level for the isothermal case 

illustrated for the example of stable deformation growth now causes unstable growth as 

the temperature excursions are added. It is important to recognize, however, that it is the 

cyclic nature of the temperature variations that is responsible for this unstable behavior 

and not merely a uniform change of the temperature: In the latter case, one would merely 

effect an acceleration of the time scale by which the deformation is achieved. The unstable 

behavior in the case of the cyclic temperature variation results from the fact that during 

the loading portion of the cycle when the temperature is higher, deformations grow to a 

larger extent than they recover during the unloaded portion when the temperature is low 

and when the creep response is retarded. 

3.1.4 Long-term stability conditions under vaJ·ious load and thermal behavior 

As TdT2 increases, ~d ~2 decreases and, upon exammmg (34), we find that P~r ap-

proaches T(X). This can be interpreted as the deflection increasing rapidly during the high-

temperature loaded portions of the cycle but recovering little during the lower-temperature 

unloading segments. If the recovery becomes negligible, the case of no recovery is ap-

proached (i.e. time-invariant loading), so that stability is determined by the generally 



13 

very low rubbery buckling load given corresponding to Too. On the other hand, as TdT2 

decreases, P~r approaches unity: The retarded deflection during low-temperature loadings 

is recovered at an accelerated rate during unloading such that deformation does not accu-

mulate, and only a load equal to the glassy buckling load, i.e., P = 1, can cause unstable 

deflection. 

We include here also the results for the case where the loading and unloading portions of 

a cycle are of different durations tl and t2 

T (1 + lib.) 
**(T) = 00 t2 cf>1 

Per lib. + T . 
t2 cf>1 00 

(35) 

For constant temperature (<PI = <P2) and equal loading and unloading durations (tl = t2), 

equation (28) is recovered. Similar to above, limits as tdt2 approach infinity or zero give 

values of p~; of Too and unity, respectively, which can be interpreted as representing cases 

of no-recovery continuous loading and periodic impulsive loadings . 

3.2 Realistic material response illustra.ted by PMMA 

Having dealt with the standard linear solid, primarily to establish the long-term stability 

boundary for the thermal cycling situation we turn to consideration of the counterpart 

problem but for a material with a realistically wide spectral distribution of relaxation 

times. As in an earlier presentation we employ the relaxation characteristics of poly-

methylmethacrylate (PMMA) as an exemplary material, though newer high-temperature 

materials will certainly possess more appropriate capabilities. However, we employ the 

properties of PMMA because these properties, including the time-temperature trade-off in 

the glassy and near-glassy domains , are well known; the same cannot be said about most 
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or all of the polymers typically used in the manufacture of composite materials. Although 

PMMA is an uncross linked polymer and as such does not offer a long-term equilibrium 

modulus, we associate such a limit with the entanglement plateau. It is not the purpose of 

this section to simply duplicate the earlier analysis for a different material, but to examine 

whether representations can be extracted from such an exercise that provides guidance for 

understanding qualitatively, and on a more realistic time-scale, the effect which cyclic load

ing can have on a thermoviscoelastic structure under constant and synchronous heating. 

In particular, we shall be interested in examining how the cyclic problem can be com

pared to that employing constant load as a reference, since the latter is readily computed 

approximately for realistic material behavior. 

We use the relaxation modulus shown in figure 10 which represents the combined mea

surements by Lu (1992) and McLoughlin and Tobolsky (1952) except that we eliminate 

the very long-term flow regime and replace it by rubbery equilibrium behavior. 3 We 

recognize that this relaxation behavior is not precisely that of thermoplastic-matrix com

posites applications but we believe it to be representative if we do not limit ourselves to 

fiber-dominated lay-up configurations; in any case, this statement is the more reasonable 

as we shall present all data and interpretations normalized by the short-time or glassy 

modulus. The governing integral equation (3) is evaluated numerically. 

While we shall thus substitute for the relaxation or creep characteristics of the compos

ite solid that of PMMA, with modifications as discussed above, it is imprudent to assess 

the behavior of carbon-reinforced polymers using the thermal expansion characteristics of 

3 For computational purposes we represent the relaxation function by a series of expo

nentials (Prony-Dirichlet series) of 30 terms. 
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PMMA. The reason is that the coefficient of thermal expansion of PMMA is about two 

orders of magnitudes larger than that of typical fiber-reinforced materials in the fiber di

rection, though, transverse to the latter, the expansion may also be large by comparison 

[Schapery (1991)]. In order to deduce engineering-relevant information from these com

putations it is therefore reasonable to choose an appropriately small coefficient of axial 

thermal expansion and use the text value of O'x = 3 X 10-6 rC. 

A note is in order on the criterion used to establish failure by buckling. Following Minahen 

and Knauss (1992), we use the attainment of a chosen deflection as the failure criterion. 

The time to failure is then the time to reach this deflection under any loading conditions. 

For demonstrative purposes, we may think of such a value as two or three multiples of the 

column thickness; we use a factor of 2.4 in this presentation. 

Before turning to a comparison of the effect of a thermal gradient on the time scale of 

failure, we illustrate first four cases of column deflection history under cyclic loading for 

"realistic" material properties, namely subcritical, critical, and supercritical behavior, as 

well as a case for how the sub critical case can become supercri tical (unstable) if ther

mal cycling accompanies loading. These situations are illustrated in figure 11 where the 

shaded area between each two curves represents the range of deformations as the column 

midpoint displacement increases under cyclic loading. The fourth figure in this group 

applies to the case of a load which in the constant temperature case is subcritical, but 

which becomes supercritical when the temperature accompanying the load cycle increases 

load-synchronously by 10°C, similar to figure 9 for the standard linear solid. We note first 

that for material behavior with a large range of relaxation times it is no longer reasonably 

possible to computationally establish whether the deflection tends toward a limit value 
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for very long (infinite) times. At best one observes that for supercriticalloading the rate 

of growth increases with time, while for the critical and subcritical loading the converse 

seems to hold. This behavior follows from the previously developed long-term stability 

boundaries which are also valid for a material with realistic relaxation behavior. 

It is apparent that any cyclic loading with maximal load amplitude Po will lead to failure 

after longer times than for the case when the same load Po acts invariantly with time; in 

fact, the same load which leads to eventual failure when constant may result in a long-term 

stable deflection when applied cyclically. On the other hand, it is of interest to examine 

the relative behavior between the two cases when the load in each case is normalized by its 

respective long-term stability boundary in such a way that the respective loads are related 

by 

(36) 

When this is done, as shown in figures 12-14, a very close agreement between the two 

responses is apparent. This result indicates that, while the realistic material response 

to cyclic loading may be analytically difficult and computationally time-consuming, the 

more-easily computed constant-load case can be used, by employing the above equivalence 

relation, to evaluate long-term behavior. It is worth noting that this equivalence cannot 

be used in comparing time-invariant and cyclic behavior in the case of the standard linear 

solid. Figures 15-17 clearly reveal tIllS lack of correspondence. Although in the critical 

loading case the constant-load deflection follows the average deflection under cyclic load, 

the other two cases show divergence. The lack of a realistic range of relaxation times does 

not allow the above-determined equivalence to be applied. 
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4. Effect of a Constant Thermal Gradient 

We next consider a column loaded axially at the center-line by a step load of magnitude P 

but in the presence of a transverse thermal gradient. Along the length of the column the 

temperature distribution is constant. We do not include for this section an intrinsic initial 

imperfection, because the thermal gradient induces a lateral, stress-free deflection, which 

we designate by Wo (x). Consider the coefficient of thermal expansion a to be a constant 

in the temperature range of interest. 

Because of the thermoviscoelastic material behavior and the thermal gradient the effective 

properties vary across the thickness so that the neutral axis, located a distance n(t) from 

the center-line, moves with time as dictated by (7) . The position of the neutral axis can 

be determined explicitly from that equation as 

(37) 

which can be evaluated numerically. However, it is first necessary to find auo/ax. 

Considering purely axial compression of the column, force equilibrium requires 

i a x (z, t) dA = P (38) 

or 

j t jt a [aUG ] 
_h. -00 E[t'(t, z) - e(~, z)] a~ ax W d~ dz = P. 

2 

(39) 

Discretization of this equation allows iterative determination of auo/ ax by using the 

Newton-Raphson method. Once auo/ax is known, one can solve (37) for n(t). Finally, 
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knowing net), one solves (8) for the displacement A(t) by discretization and the Newton-

Raphson method. 

In the case of a linear transverse temperature gradient, 

T(z) = az + b ( 40) 

and employing the Prony-Dirichlet series representation 

• 
E(z, t) = Eoo + L Eke- Akt (41) 

k=! 

along with the time-temperature superposition, the relaxation modulus becomes, for any 

value of z, 
• 

E(z,t) = Eoo + LEke-¢[~tz)lt (42) 
k=! 

or 
• 

E(z,t) = LEke-¢[~rz)Jt (43) 
k=O 

where Eoo is the oth-order coefficient. At t = 0+, we define 

• 
Eg == E(z,O+) = Eoo + LEk . (44) 

k=! 

4.1 Analytical results 

In conformity with the step loading one finds [from (39)J that, immediately after load 

application (t = 0+), 

( 45) 

or 

( 46) 
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and similarly for (7) and (8) that 

( 47) 

and 

+ _ B 
A(O ) - E I 2 • 

7 (f) -1 
(48) 

For the case that the column reaches a stable equilibrium at large times, we can determine 

the long-term results by observing that E(z, t) --- Eoo as t --- 00. Then (39) becomes 

(49) 

or 

(50) 

Similarly, (37) leads to 

noo == n( 00) = 0 (51) 

and finally, (8) gives 

(52) 

We next evaluate the stability regimes of the column, following Minahen and Knauss 

(1992) . We rewrite (48) and (52) as 

and 

+ _ PB 
A(O ) - po _ P 

cr 

PB 
A(oo) = poo _ P 

cr 

(53) 

(54) 
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P~r and Pc"": are the Euler buckling loads based on the instantaneous (glassy) and long-term 

(rubbery) moduli, respectively, and if P approaches these values from below, the glassy 

and long-term responses, respectively, become unbounded. This establishes three stability 

regimes. If the load is less than P::;: (54), the deflection eventually tends to the value 

given by (52). If the load exceeds P~r (53), the column buckles instantaneously. Finally, 

if the load level falls between these limits, the deflection grows gradually in an unbounded 

manner. This is illustrated in figure 18, where the column response of a load at 1% below 

P::;: is illustrated; the "supercritical" load is one percent above that critical load. 

4.2 Initial thermoelastic curvature 

The initial deformation of the column follows from the thermal gradient [Timoshenko and 

Goodier (1987)] . We begin with an unloaded column possessing thermal coefficients of 

expansion ax, a y, and a z (as in an orthrotropic material), as shown in figure 19. The 

solution is found by treating the column as if it were composed of separate elements 

of differential thickness in the transverse direction and applying a compressive stress to 

each element to suppress thermal expansion in the longitudinal direction. We then apply 

opposing forces at the ends to make the ends stress-free. St.-Venant's Principle allows the 

resulting stresses to be calculated away from the ends of the column without requiring the 

full solution. The superposition of these stresses for the longitudinal direction is then 

iJx = - EaxT(2) + -h1 It Ea xT(2)d2 + 1:: It EaxT(2)2d2 
_A _A 

2 2 

=-Eax(a2+b)+xl: EaxCa2+b)d2+ 1:32 I: Ea x(a2 + b)2d2 
2 2 

(55) 

=0. 
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One has the following strain equations: 

Ex = O'x(ai + b), Ey = O'y(ai + b), Ez = O'z(ai + b) 

(56) 

and the resulting displacements: 

Uy = O'y(ai + b)Y + e(x, i). (57) 

Uz = O'z Gi2 + bi) + f(x, y) 

By y-symmetry, e(x, i) = 0, and if we set U x = 0 at x = 0 then d(fj, i) = O. Knowing the 

shearing strains to be zero, we can find f(x, y) and thus 

(58) 

We therefore have 

(59) 

Now a transformation is made, from the x, y, i coordinates of figure 19 to x, y, z coordi-

nates as in figure 1; the origin is moved to the end of the column. The constant is adjusted 

to satisfy the boundary condition that wo(x) = 0 at x = O. Then 

(60) 

We express Wo in the form of a Fourier series: 

00 

wo(x) = L Bm sin m~x (61) 
m=l 
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in which case 

2 ['1 [( 1)2 12]. m7rX 
Bm = -1 Jo '2(Yx a x - '2 - '4 sm -1- dx 

In particular, we have 

and generally, 

if m odd; 
if m even. 

B _ BI 
m - ma 

(62) 

(63) 

(64) 

(65) 

so that a one-term approximation with BI alone is not unreasonable for our present pur-

poses. 

4.3 Quantification of failure times- design life 

As stated in the Introduction, the objective of this study is the determination of the time-

scale within which a structure will fail by "buckling." As in earlier studies [Minahen and 

Knauss, (1992)], the time-dependent problem of lateral structural deflections is charac-

terized by an evolutionary process from a small initial imperfection rather than a sudden 

response as in the elastic case. As a consequence it is necessary to define, for engineering 

purposes, a magnitude of (maximum) deflection which is considered to constitute struc-

tural failure. As previously stated, we choose a deflection of 2.4 times the column thickness 

h as the criterion of failure, and determine the (failure) time to achieve this value as a 

function of various temperature gradients. The example geometry is a column 500 mm 

long and 6.35 mm thick possessing the PMMA properties given in figures 8 and 10; also, as 

discussed before we choose a coefficient of thermal expansion that is commensurate with 

typical values for composites [Tsai and Hahn (1980)] . 
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Applying this failure criterion, design-life curves are obtained, by varymg the end load 

between zero and the glassy buckling load and plotting the load values (normalized by the 

glassy buckling load) versus the design lifetime. Figure 20 shows the results of computa

tions for several temperature gradients: the "cold" side is held at 30°C and the gradient 

difference is as indicated in the figure. Because of the highly nonlinear character of the 

time-temperature relation there appears to be no way to normalize these data into a more 

systematic context. In an attempt to condense the information we plot the same charac

teristics but shifted (using the time-temperature shift factor given in figure 8) according 

to the average temperature for each case; these plots are shown in figure 21. Beyond this 

representation it appears impossible to cast this data into a form that is more universally 

descriptive. It is obvious in either representation that because of the very strong tem

perature dependence of the rheological properties of the polymer the time-response of the 

instability process is similarly sensitive to thermal variations. 

The lack of a universally simple description makes the estimation of failure times subject 

to large (conservative) bounds. We discuss next certain invariant aspects of this estimation 

process. In figure 21 we have included the results for a constant temperature and note 

that if the temperature changes uniformly across the column this curve shifts according 

to the shift factor given in figure 8. Moreover, it has been shown by Minahen and Knauss 

(1992) that for realistic material properties these curves are well-represented through the 

function of the relaxation modulus when the argument of that function contains a factor 

multiplying the time, which factor depends on the initial imperfection. In the present 

case that factor would be proportional to the temperature gradient and the coefficient of 

thermal expansion. 
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We note that the response of the column must lie between curves computed for constant 

temperatures (isothermal curves) corresponding to the cold and hot sides. Certainly, the 

shortest failure time is estimated for the situation when the whole column is at the highest 

temperature. Using the relaxation function to conservatively estimate the design life of 

a column, it appears that one attains a more reasonable estimate than the highest and 

lowest temperatures would allow if one compares the relaxation modulus shifted to the 

average temperature. At times other than very short ones the estimation based on the 

constant high temperature is very conservative, in fact about three orders of magnitude. 

Simultaneously it is clear that a less conservative estimate for some load levels may not be 

conservative for others, especially the high loads. At low load levels of less than one-tenth 

of the glassy buckling load even the isothermal estimate for the average temperature is 

conservative relative to the gradient response. It is believed that this excessive conservatism 

poses no problem because it is seldom of interest to deal with such low "buckling" loads. 

While the present estimation process is indeed very conservative, it should be pointed out 

that it is correspondingly simple. If closer estimates than these are required, there appears 

to be no other way than to compute the response from (8). 



25 

5. Conclusion 

The evolution of unstable lateral deformations in a thermoviscoelastic column has been in

vestigated under a variety of loading conditions, including cyclic loading with synchronous 

temperature excursions, as well as time-invariant loading while subject to a transverse tem

perature gradient. Stability analysis in the cyclic loading case indicates that, while such 

loading under isothermal conditions leads to stable long-term deflections at loads greater 

than the rubbery buckling load (and therefore the long-term stability limit for constant 

loading), the addition of temperature cycling can induce unstable long-term deflection in 

cases with otherwise subcriticalload levels, even with relatively small temperature changes. 

Evaluation of the behavior of a material with a realistic time-response spectrum as rep

resented by that of PMMA leads to the conclusion that the envelope of deflections of a 

realistic material under cyclic loading can be approximated by the response to constant 

loading when an appropriate equivalent load normalization is used. 

Failure-time characterization through the use of the design life concept indicates that the 

normalized, temperature-shifted relaxation modulus can be used to conservatively estimate 

the response of a viscoelastic column under constant load in the presence of a thermal 

gradient. A shift of the relaxation modulus corresponding to the maximum temperature 

of the column provides an estimate of the design life at loads approaching the glassy 

buckling load. For loads less than 10% of the glassy buckling load, perhaps less likely to 

be seen in engineering practice, a shift corresponding to the average temperature of the 

column is perhaps a closer, while still conservative, estimate. 

This study has been conducted on a macroscopic level, but a last word concerning com par-
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ison to the local fiber buckling case is in order. Indeed the results should be applicable in 

some sense to the localized phenomena, for, while the boundary conditions differ, the es

sential aspects of the time-dependence and subsequent response do not. It should be noted 

that the "initial imperfection" used here is entirely due to the thermoelastic expansion of 

the material, and, assuming a positive coefficient, this will always result in the outside of 

the "bowing" being the hot side of the column, and the hot (accelerated time-response) 

side therefore being in tension due to the end loading. However, if a specific case arises 

where the heating is coupled with some transverse loading such that this tendency is over

come and the bowing reverses, ending up with the hot side in compression, the local fiber 

buckling/crimping becomes a much more critical issue, due to the decreasing stiffness in 

this area. In the majority of cases likely to be encountered in real-life application, however, 

the "hot-side-out" assumption is adequate. 
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Appendix: Numerical Solution of the Displacement Equation 

(8) can be solved by a straightforward numerical procedure with a Newton-Raphson ap-

proach. A special recursive relation is defined in order to facilitate time-stepping with-

out having to preserve previous values of parameters for the convolution. This numerical 

methodology is also used to solve (7) and (11); here we only give the details for the solution 

of (8). We recast (8) in Riemann form and define the function 

F(t) =0 

= (~7r) 2[: [Z _ n(t)] { [Z - n(O+)]Am(O+)E(z, t) 

+ 1~ E(z, t - 0 :~ {[z - nW]Am(O} d~ } dz 

-p [Am(t) + Bm]. 

We then discretize as follows: 

F(tr) =Fr 

= (~7rr t[Zi - n(tr)] {[Zi - n(O+)]Am(O+)E(Zi, tr) 

~E( . . )~{[zi-n(tj)]Am(tj)} A} A + L....- z"tr-t)_1 i...l.t i...l.Z 
. ~t 
)=1 

-P [Am(tr) + Bm]. 

Using (15), the previously developed expression for E(z, t), 

r. , } + t; {; Eke -~(tr-tj_,) ~([Zi - n(tj)]Am(tj)} ~z 

-P [Am(tr) + Bm]. 

Let 
r , 

G~,i = 2:Eke-¢(Zk;)(tr-tj-d~{[Zi - n(tj)]Am(tj)} 
j=1 
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Fr = (~7r r t[Z; -n(tr)] { [z; - n(O+)]Am(O+) ~ Eke - ,,~,t;) tr 

+ t G~';} ~z - P [Am(tr) + Em]. 
k=O 

Then, pulling out the j = r term, 

G~'; =Eke - ,,~:;).c.t ~{[z; - n(tr)]Am(tr)} 
r-I 

+ L Eke-,,~:;)(tr-tj-,) ~{[z; - n(tj)]Am(tj)} 

j=I 

~ r-l ~ 

+e-~.c.t L Eke -~(tr_l-tj_,) ~{[z; - n(tj )]Am(t j)} 
j=I 

and the summation is now equal to the previous value of G: 
. 2.J.:......c. t 

G~" =Eke-"(z;) ~{[Zi - n(tr)]Am(tr)} 

+e - ¢(:; ).c.tG;~I' 
This recursive relation allows solution of the equation at succeSSIve time steps without 

having to retain solutions for all prior times. We can also calculate 

of 2 q '" 
oAr = (~7r) L[z; - n(tr)] LEke-~.c.t[z; - n(tr)]~z - P. 

m ;=1 k=O 

Then, using the Newton-Raphson method, where A;" is the current guess for Am and A~ 

is the updated guess, 

A" = A' + ~A m m m 

Fr(A~) =Fr(A;" + ~Am) 

( 
') oFr(A;"') 

=Fr Am + oAm c.Am + ... 
We wish to find Fr = 0, so 

Therefore we approximate: 
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Figure Captions 

1. Viscoelastic Column Under End Load 

2. Cyclic Loading 

3. Column Response Under Step Load: Deflection Function 

4. Illustration of the Piece-wise Procedure 

5. Subcritical Load Case, Standard Linear Solid 

6. Critical Load Case, Standard Linear Solid 

7. Supercritical Load Case, Standard Linear Solid 

8. Time-Temperature Shift Factor for PMMA 

9. Effect of Temperature Cycling, Standard Linear Solid 

10. Relaxation Modulus ofPMMA at I(}()OC 

11. Realistic Deflection Response 

12. Comparison of Cyclic and Constant Loading, PMMA, Subcritical Load 

13. Comparison of Cyclic and Constant Loading, PMMA, Critical Load 

14. Comparison of Cyclic and Constant Loading, PMMA, Supercritical Load 

15. Comparison of Cyclic and Constant Loading, SLS, Subcritical Load 

16. Comparison of Cyclic and Constant Loading, SLS, Critical Load 

17. Comparison of Cyclic and Constant Loading, SLS, Supercritical Load 

18. Illustration of Critical Load 

19. Elastic Column Under Thermal Gradient 

20. Design Lifetimes for Different Temperature Gradients 

21. Shifted Designs Lifetimes for Different Temperature Gradients 

22. Design Lifetime Comparison With Modulus Curves 
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