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Abstract 

This study addresses the problem of characterizing strong ground motion for 

the purpose of computing the dynamic response of structures to earthquakes. A 

new probabilistic ground motion model is proposed which can act as an interface 

between ground motion prediction studies and structural response studies. The 

model is capable of capturing, with at most nine parameters, all those features of 

the ground acceleration history which have an important influence on the dynamic 

response of linear and nonlinear structures, including the amplitude and frequency 

content nonstationarities of the shaking. Using a Bayesian probabilistic framework, 

a simple and effective statistical method is developed for extracting the "optimal" 

model from an actual accelerogram. The proposed ground motion model can be 

efficiently applied in simulations as well as analytical response and reliability studies 

of linear and inelastic structures. 

The random response of linear and nonlinear oscillators subjected to the pro­

posed stochastic excitation is considered. The nonlinearity of the oscillator is ac­

counted for by equivalent linearization. A formulation is developed which approxi­

mates the original lengthy expressions for the second-moment statistics of the tran­

sient response by much simpler expressions. The results provide insight into the 

characteristics of the nonstationary response and the effect of the ground motion 

nonstationarities. It is found that the temporal nonstationarity in the frequency 

content of the ground motion significantly influences the response of both linear and 

nonlinear structural models. Simulations are also used to study the sensitivity of 

inelastic structural response parameters to the details of the ground motion which 

are left "random" by the model. The results can also be used to provide a quan­

titative assessment of the expected structural damage associated with the ground 

motion described by the model. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

In earthquake-resistant design of major civil engineering projects, there are 

two major problems to b e considered. One is predicting structural response to 

earthquake shaking so that the proposed structure can be designed to respond 

satisfactorily. This problem is in the domain of the earthquake engineer. The other 

problem is predicting the ground shaking that a structure may experience during its 

lifetime. This problem may be considered the domain of the geologist and strong­

motion seismologist, although earthquake engineers and geotechnical engineers may 

also get involved. 

The earthquake engineer would like a description of the ground motion which 

IS complete enough to reliably predict the corresponding dynamic response of a 

structure. Peak ground acceleration alone is clearly too crude for this purpose. 

A response spectrum provides a better description but it leads to difficulties, for 

example, in predicting nonlinear response and in-structure equipment response (the 

so-called "response of secondary systems"). Ideally, the earthquake engineer would 

like the geologist and seismologist together to provide full time histories of possible 

ground shaking and their probability of occurrence during the proposed lifetime of 

the structure. 

On the other hand, these scientists are limited by current theory and lack 

of knowledge of subsurface properties, fault rupture recurrence intervals, and so 

on, so that only a relatively simple description of the ground motion is possible. 

For example, the source model of Brune (1970) appears adequate for deterministic 
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predictions at very low frequencies, given two source parameters such as seismic 

moment and corner frequency, but the "high"-frequency content (say over 1 Hz) 

observed in accelerograms is generated at the source by local stress concentrations 

at "asperities," a mechanism not well understood. Also, the propagation of these 

frequencies is affected by variations in material properties which are uncertain on 

the scale of the wave lengths involved. Thus, deterministic prediction of high­

frequency ground motion requires detailed knowledge of the state of the Earth and 

the physical processes involved which is not usually available. One way to account 

for the uncertainty in such knowledge is to employ a stochastic process which gives 

a probabilistic description of the ground shaking. 

One goal of this study is to develop a model to characterize ground shaking 

which is complete enough for structural response studies and yet is simple enough 

for ground motion prediction. Ideally, we would like a description of strong ground 

motion which is independent of source and propagation models on the one hand and 

of structural dynamics models on the other hand. The description would then form 

a "fixed" interface through which ground motion prediction and structural response 

prediction can be coupled, while still allowing independent developments in theory 

and methodology in these two areas. Thus, we want to avoid expressing the ground 

motion in such a way that it is dependent on a particular structural dynamics model. 

If response spectra are used, for example, the earthquake engineer faces difficulties 

in predicting the inelastic response of a structure, since what is given is the peak 

response of a simple linear system. At the same time, if theoretical source models 

and propagation models are used to describe the ground mot ion , these are likely 

to be inadequate at "high" frequencies. A more complete description is preferrable 

even if it does require complementing the theoretical models with an empirical 

approach. 

The first objective of this thesis I S to characterize strong ground motion 111 

terms of a model in such a way that: 

1) It captures with a small number of parameters the essential features of 

the ground motion for the purpose of computing dynamic response, including the 

amplitude and frequency content nonstationarity of the ground motion, and since 
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a small number of parameters cannot give a complete description of the ground 

motion time history, a stochastic model is employed. 

2) It is simple to use in processing existing accelerograms and estimating the 

most probable model that gives the "best" fit, in a statistical sense, to the acceler­

ation data; 

3) It is efficient to use in simplified analytical random vibration and reliability 

studies; 

4) It is computationally efficient in generating artificial accelerograms for com­

puting structural response using simulations; 

5) The model parameters are physically meaningful so that they can be related 

to variables accounting for the earthquake source mechanism and propagation and 

local site effects in a seismic risk analysis. 

The second objective of this thesis is to approximate the existing lengthy ex­

pressions for the covariance of the nonstat ionary response of linear and equivalent 

linear systems (derived by applying the equivalent linearization m ethod to nonlinear 

systems) in such a way that a) the approximations preserve the essential features of 

the response without significant loss of accuracy, and b) direct insight into the effect 

of the ground motion nonstationarities on the nonstationary structural response can 

be gained. 

1.2 Summary of this Study 

A selective review of exist ing stochastic models is first presented in Chapter 

2, and then a general class of parametric models is proposed to stochastically char­

acterize t he nonstat ionarity of both the amplitude and frequency content observed 

in strong-motion accelerograms. The model is formulated in both continuous and 

discrete time by differential and difference equations, respectively. The discrete­

time formulation leads to a nonstationary autoregressive model of order p (AR(p)). 

Using a Bayesian probabilistic framework, a new simple and effective statistical 

method is developed in the discrete time-domain for extracting the "optimal" non­

stationary AR(p) model from an accelerogram. Representative accelerograms from 
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different earthquake events are studied by special subclasses of the general class of 

models in order to assess the extent to which the class needs to be parameterized. 

The adequacy of each subclass is judged by analyzing the residuals generated by 

each optimal model, by comparing the target accelerogram and a sample of simu­

lated accelerograms, as well as by comparing the corresponding elastic and inelastic 

response spectra. Brune's earthquake source model is incorporated in the model 

to increase the accuracy of the spectral amplitudes at very low frequenci es. The 

correlation between the time variation of the model parameters and the different 

wave groups present in strong motion accelerograms is also investigated. 

In Chapter 3, a parsimonious probabilistic ground motion model is proposed 

based on the findings reported in Chapter 2. The model is capable of capturing, 

with at most nine parameters, all those features of the ground acceleration history 

which have an important influence on the dynamic response of linear and nonlinear 

structures, including the amplitude and frequency content nonstationarities of the 

shaking. The model, which is a special case of the general class of models presented 

in Chapter 2, is formulat ed in both continuous and discrete time by stochastic 

second-order differential and difference equations , respectively. The coefficients of 

both equations are treated as slowly-varying functions of time. Statistical proper­

ties of the stochastic processes generated by these equations are studied in detail, 

and appropriate conversion relationships are developed to link the two formulations. 

The proposed ground motion model can be efficiently applied in simulations as well 

as analytical response and reliability studies of linear and nonlinear structures. The 

Bayesian statistical method for estimating the model parameters is illustrated by us­

ing representative recorded "target" accelerograms. The applicability of the model 

is checked by comparing the statistics of various linear elastic and inelastic response 

parameters of a single-degree-of-freedom structure computed for the ground motion 

model with the deterministic values of the same response parameters computed for 

the "target" accelerogram. 

In Chapter 4, random vibration analysis of both linear and nonlinear (soften­

ing) single-degree-of-freedom oscillators subjected to a stochastic excitation is con­

sidered. The nonlinearity of the softening structure is accounted for by the equiva-
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lent linearization method. A formulation is developed to approximate the original 

computationally lengthy expressions for the covariance of the transient response of 

the equivalent second-order linear oscillator by much simpler expressions. The pro­

posed approximation holds for a broad range of oscillator and excitation parameters. 

In particular, it treats time-varying equivalent linear oscillators with any value of 

the damping ratio, as well as excitations with time-varying amplitude and frequency 

content. Classically-damped multi-degree-of-freedom linear systems are also consid­

ered and the original equation for the covariance response of two modes is approxi­

mated by a much simpler equation. The approximations reduce the computational 

time involved in computing the response by more than an order of magnitude and 

they preserve the essential features of the response without significant loss of accu­

racy. The results provide physically meaningful insight into the characteristics of 

the nonstationary response to "earthquake-like" excitations. 

Chapter 5 uses the ground motion model proposed in Chapter 3 and the ap­

proximate simplified expressions for the covariance response developed in Chapter 

4 to provide insight into the effect of the ground motion nonstationarities on the 

response of linear and nonlinear elastic structural models. A simple mathematical 

analysis demonstrates the effects of softening of nonlinear structural models on their 

response. It is found that the temporal nonstationarity in the frequency content of 

the ground motion significantly influences the response of both linear and nonlin­

ear structures, and therefore it should not be neglected in the modeling of strong 

ground motion. 

Conclusions and directions for future work are presented in Chapter 6. 
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Chapter 2 

Modeling of Strong Ground Motion 
by Stochastic Differential and Difference Equations 

2.1 Introduction 

Earthquake accelerograms are obviously nonstationary time series. The non­

stationarity is manifested primarily in two different ways. First, the intensity of 

the ground acceleration varies with time; after arrival of the first seismic waves, it 

builds up to a maximum value over several seconds and then decreases gradually 

until it vanishes into the background noise. Second, the frequency content varies 

with time with a tendency to shift to lower frequencies as time increases. These 

non-stationarities can be attributed partly to the different intensity, frequency con­

tent and arrival times of the P-wave, S-wave and surface-wave groups, and partly 

due to the finite rupture-time and fini te fault area. 

The time-domain stochastic models that have been employed in the past to 

represent one or both of the above non-stationary features have generally had one of 

the following two types of structure. In Model I, shown in Figure 2.1(a), a stationary 

white-noise process is passed through a linear system in order to obtain the desired 

correlation structure (or power spectral density) and the result is multiplied by a 

deterministic envelope function so that the stationary filtered white noise gets the 

desired time-dependent variance. In Model II, shown in Figure 2.1 (b), the action 

of the linear system and the envelope function is reversed, so that stationary white 

noise is multiplied by an envelope function to give non-stationary white noise, which 

is then fed through a linear system, and the output represents an accelerogram. 

Models I and II are also referred to as a "modulated stationary process" and a 

"filtered modulated white-noise process ," respectively. The structure of the linear 
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system and the envelope function is chosen so that the output stochastic process 

resembles certain prominent features observed in real accelerograms. The linear 

system is usually assumed to be described in continuous or discrete time by a linear 

differential or difference equation, respectively. These equations might have either 

constant or time-varying coefficients. 

Housner and Jennings (1964) have computed and analyzed the response spectra 

of artificial accelerograms generated by ModelL In their work, the output of the 

linear system corresponds to the absolute acceleration response of a single-degree­

of-freedom oscillator subjected to white-noise base excitation. The power spectral 

density of the acceleration then has the form proposed by Kanai (1957) and Tajimi 

(1960). This model was motivated by a simple representation of the dynamics of a 

surface layer between the ground surface and the basement rock. In order to remove 

the unrealistic nonzero components at the very low frequency, Clough and Penzien 

(1975) included a high-pass filter into the low-pass Kanai-Tajimi filter. 

The envelope function proposed by Housner and Jennings is composed of a 

quadratic build-up phase, a constant phase, and an exponentially-decaying tail. 

Based on a theoretical result, Saragoni and Hart (1974) proposed the envelope 

function: 

J(t) = at f3 exp( -It) 0:::; t:::; To, (2.1) 

whereas Shinozuka and Sato (1967) suggested the parametric form: 

J(t) = a (exp(-;3t) - exp(-,t)) 0:::; t :::; To. (2.2) 

In these expressions, To is the duration of the strong-motion record. The above 

functions have simple parametric forms and were assumed to be representative of 

the time variation of the amplitude, or intensity, of ground shaking, thereby mod­

elling the rate of build-up, rate of decay, maximum intensity and strong-motion 

duration of the accelerograms. These authors employed continuous-time formula­

tions of the models and, with the exception of Saragoni and Hart, the models had 

a stationary frequency content. The work of Saragoni and Hart (1974) divides each 

accelerogram into three segments and models the frequency content of each seg­

ment by stationary processes. However, the arbitrary division into segments and 
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the abrupt change in the frequency content from segment to segment is not very 

satisfactory for simulating strong ground motion. 

Recently seismologists have also become interested in the stochastic represen­

tation of ground motion with stationary frequency content using simple versions 

of models I or II but relating the parameters of the model to theoretical models 

for source mechanisms and wave propagation (for example, Boore, 1983 and Safak, 

1988). 

Most recently, Yeh and Wen (1989) modeled the time variation of the frequency 

content by continuously changing the time scale of a stationary stochastic process to 

obtain a frequency modulated stochastic process. A frequency modulation function 

was used to relate the time-varying power spectrum to the original stationary pro­

cess. Methods based on least-squares fit were proposed to separately estimate the 

frequency and the amplitude modulation of the model. The energy function and the 

cumulative zero-crossings corresponding to the amplitude and the frequency mod­

ulation of the model were fitt ed to the expected energy function and cumulative 

zero-crossings of real accelerograms. 

The availability of recorded earthquake accelerograms in terms of discrete 

time series, as well as engineering interest in generating artificial accelerograms 

for numerical linear and non-linear response predictions , suggest the formulation 

of a stochastic ground motion model in discrete time. A general class of discrete 

stochastic models are the autoregressive moving-average (ARMA) models, which 

are commonly used to give a parsimonious parametric representation of time series 

which exhibit significant complexity (Box and Jenkins, 1976, Pandit and Wu, 1983). 

Recently, several studies have examined the suitability of ARMA models in 

characterizing ground accelerations. These models can be viewed as belonging to 

the class of models I and II (Figures 2.1( a) and 2.1(b)), with the linear system repre­

sented by a discrete difference equation. In the work by Chang et al. (1982), several 

ARMA models of different orders were identified, parameters were estimated and 

statistical measures were evaluated to test the goodness of fit between the mod­

els and the actual data. In the cases studied, it was found that ARMA(2,1) or 

ARMA( 4,1) models provided good fits to time segments of the earthquake accel-
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eration time histories. Polhemus and Cakmak (1981) also used ARMA(2,1) and 

ARMA( 4,1) models for the linear system in Figure 2.1 ( a) and a polynomial expres­

sion for the envelope function. A non-linear least squares procedure was applied 

to estimate the number of the polynomial terms needed as well as the values of 

the polynomial coefficients. Using the estim.ated time-dependent variance of the 

earthquake accelerogram, a "normalized" series was constructed and a stationary 

ARMA model was fitted to that series. The estimation of the ARMA parameters 

was done according to procedures discussed by Box and J enkins (1976). Com­

parisons between the response spectra of the original and simulated accelerograms 

showed good agreement for periods less than five seconds. 

In contrast to the work m entioned so far using ARMA models, which did not 

model the nonstationary frequency content observed in accelerograms, Jurkevics 

and Ulrych (1978) modeled the time-varying character of both the intensity and 

the frequency content using nonstationary AR(p) processes. The AR parameters 

were determined either by segmenting the record or by continuously updating the 

parameters in a time adaptive manner. To smooth out short-period variations, 

third degree polynomials were fitted to each of the parameters of a second-order 

model while Saragoni and Hart 's envelope function was fitted to the white-noise 

variance. The procedure was successfully demonstrated for the Orion Boulevard 

recording of t he 1971 San Fernando earthquake. In a later study (1979), the same 

authors used their model to analyze 40 "rock-site" accelerograms obtained during 

intermediate-sized earthquakes in Southern California . The results of the analysis 

were used to estimate empirical relationships for the duration and attenuation of 

shaking amplitude with epicentral distance. 

Nau et al. (1980, 1982) used a Kalman filtering t echnique to estimate sequen­

tially the coefficients of the ARMA model. Also, a numerical technique was devel­

oped for "nonparametric" estimation of the variance (envelope function) of the 

earthquake accelerogram. A "nonparametric" scheme for time variation of the 

parameters of an autoregressive (AR) model was also suggested by Gersch and 

Kitagawa (1985). They expressed the evolution of the AR parameters by a dif­

ference equation with white-noise forcing terms of unknown variance. The initial 
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conditions of the difference equations and the white-noise variances were the only 

unknown parameters to be estimated. 

In summary, the existing ground motion models formulated in continuous time, 

with the exception of that developed by Yeh and "Ven (1989), fail to incorporate 

the time variation of the frequency content of the ground motion in a m anner that 

is physically justified and is also efficient to use in both structural response simu­

lations and random vibration analyses. The time variation of both the amplitude 

and the frequency content of the ground motion can be efficiently modeled in detail 

by employing nonparametric discrete models. However, these models can only be 

used to match existing accelerograms and generate artificial accelerograms having 

similar statistical properties with the "target" one. The lack of a small number 

of physically meaningful parameters in the model restrict their applicability and 

make them inappropriate to use in seismic risk studies and in predicting possible 

future ground motions from a given seismic environment. Although nonparametric 

discrete models generate artificial accelerograms in a computationally efficient way 

for use in structural response simulations, they cannot be used for simplified ana­

lytical random vibration studies unless a simple continuous version of the model is 

available. 

In this chapter, a general class of parametric stochastic models is proposed to 

investigate in detail and subsequently model the nonstationarities in both amplitude 

and frequency content observed in strong-motion accelerograms. A small number 

of SDOF (single-degree-of-freedom) oscillators acting in series and possibly time­

varying replace the linear system in Figure 2.1(a) or (b). Each oscillator is described 

either in continuous time by a second-order differential equation or in discrete time 

by an AR(2) difference equation. The discrete-time formulation leads to a time­

varying AR(p) model and provides a convenient algorithm for analyzing and sim­

ulating accelerograms. For special subclasses of the general class of models, the 

discrete and the continuous model are linked by developing appropriate conversion 

relationships. 

Certain "target" accelerograms are studied to determine the adequacy of special 

subclasses of the general class of models in order to assess the extent to which the 
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class needs to be parameterized. The new contributions III this chapter are as 

follows: 

a) The development of a new simple and effective statistical method, based on 

a Bayesian probabilistic approach, to determine the "optimal" model, which is the 

most probable stochastic model , for a given subclass and a given "target" accelero­

gram. Each optimal model is then used to judge the adequacy of the subclass of 

ground motion models by analyzing the residuals generated by each optimal model , 

by comparing the t arget accelerogram and a sample of simulated accelerograms 

generated by the optimal model, as well as by comparing various linear elastic and 

inelastic response paramerers of a SDOF structure. 

b) The incorporation of Brune's model (1970) in the stochastic formulation to 

improve the accuracy of the spectral amplitudes at very low frequencies; 

c) The correlation of the time variation of the nonstationary features of the 

accelerograms with the time variation of the model parameters and the physical 

interpretation of such variations. Certain average trends concerning the time vari­

ation of the model coefficients will be identified; 

d) The study of the sensitivity of various response parameters to the details of 

the ground motion which are left "random" by the stochastic model. 

The findings in this chapter will provide background for developing and jus­

tifying the use of more parsimonious models in Chapter 3. The ultimate goal of 

these studies is to develop a simple and more efficient probabilistic representation 

of ground motion time histories. 

2.2 General Class of Strong Ground Motion Models 

The ground acceleration time history at a site during an earthquake is treated 

as a specific realization of an appropriate stochastic process. We focus our study on 

stochastic processes y( t) generated by the multiple cascading action of M second­

order linear systems. In order to make the ground motion model efficient to use in 

analytical random vibration studies and structural response simulations, as well as 

in estimation of its parameters, both continuous and discrete time formulations are 
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developed. The equivalence between the continuous and the discrete formulation 

for specific subclasses of the general class of models is also derived by developing 

appropriate conversion relationships. 

2.2.1 Continuous Model 

The mathematical form of the model has the continuous-time representation: 

Lj(t,fiJ Yj (t) = Yj-l (t), j = 1, ... , M, 

Yo (t) = f (t,ft) e (t), 

with the time-varying operator Lj(t,fD being defined by: 

(2.3) 

(2.4) 

where y(t) _ YM(t) , and e(t) is a continuous Gaussian stochastic time series with 

properties 

E[e(t)] = a and E[e(t) e(T)] = 8(t - T), (2.5) 

usually referred to as a continuous stationary white-noise process. The symbol 

E[ ] denotes mathematical expectation. The coefficients Wj(t,ft) , (j(t , ft) and the 

modulation function f ( t, ft.) are deterministic. Their time-varying structure is pos­

tulated depending on the application and, in general, it depends on a parameter 

set ft. These time-varying coefficients control the time-variation of the amplitude 

and the frequency content of the stochastic process y( t). Note that the set of equa­

tions (2.3) is equivalent to a continuous differential equation of order 2M , driven by 

a modulated continuous white-noise process. Because of the linearity of equation 

(2.3) , the process y( t) is a zero-mean Gaussian stochastic process. Therefore, t he 

autocovariance function (ACF) Ryy(tl ' t 2 ) defined as 

(2.6) 

com pletely describes the probability structure of Y ( t ). 

2.2.2 Discrete Model 



- 13-

Consider values of the continuous stochastic process in Section 2.2.1 at regu­

lar time intervals .6.t, then a stochastic sequence y(k.6.t) is obtained which can be ap­

proximately described by difference equations. Digitized earthquake accelerograms 

are modeled as specific realizations of this discrete stochastic process. To introduce 

a discrete model which approximates the sampled sequence, we first approximate 

the dynamics of the second-order continuous equation by the second-order difference 

equation: 

YU) _ bU) (B)yU) _ b(j) (B)y(j) = cU) (B)yU-l) 
k l,k - k-l 2,k - k-2 l,k - k-l , j = 1, ... ,M (2.7) 

where yij) approximates the value of the process yj(t) at time t = k.6.t. The forcing 

function yiO) of the discrete version of model (2.3) is yiO) = O"kO) ek, where ek IS a 

zero-mean, unit-variance Gaussian white-noise sequence with properties 

E[ed = 0 and (2.8) 

It is easy to show that the output stochastic sequence {Yk} {ViM)} satisfies an 

AR model of order p = 2111, given by the difference equation: 

P 

Yk = L ai,k Ul) Yk-i + O"k UD ek, k = 1, ... ,N (2.9) 
i=l 

where ai,k(fl), i = 1, ... , p and O"k(fl) are in general time-varying coefficients which 

depend on the parameter set fl. From the linearity of equations (2.9), the output 

discrete process is also a zero-mean Gaussian process, completely defined by its 

autocovariance function Rkl = E[YkY!]' 

In the next section, simplified subclasses of the general class of the model are 

studied. The auto covariance functions will be used in the next section to study 

the equivalence between continuous and discrete stochastic processes generated by 

specific subclasses of the general class of ground motion models (2.3) and (2.7). 

The coefficients of the discrete model are chosen such that the discrete and the 

continuous stochastic processes have the same statistical properties, that is, the 

same autocovariance fun ctions. The resulting conversion relationships allow inter­

pretation of the coefficients of the discrete model in terms of the coefficients of the 

continuous model , and vice versa. In Section 2.4, a general methodology is presented 
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to estimate the model parameters. The methodology is illustrated for specific sub­

classes. Section 2.5 deals with the structural response to ground motions generated 

by the ground motion model. Numerical results for the analysis and the modeling 

of real earthquake accelerograms are presented in Sections 2.6 and 2.7. 

2.3 Subclasses of Strong Ground Motion Model 

Although a stationary model fails to describe the nonstationarities observed in 

accelerograms, its structure constitutes a basis for understanding the more compli­

cated structure of the nonstationary model. Therefore, a mathematical description 

of the time-invariant linear system is first introduced, and it is then extended to 

include the time-variation of both the amplitude and frequency content which is 

observed in real accelerograms. 

2.3.1 Stationary Stochastic Model 

The stationary model is a special case of model (2.3) where both the oper­

ators Lj(t,£!.) and the modulat.ion function f(t,fJ..) are time-invariant. The mathe­

matical form of the stationary model has the continuous- time representation: 

Lj Yj (t) = Yj-dt), j = 1, . .. , A1, 

Yo (t) = f e (t) , 

wit.h the time-invariant operator L j being defined by: 

d2 d 
L j = dt 2 +2(jWjdt +w; , 

(2.10) 

(2.11) 

where y( t) YM( t) is a stationary stochastic process. In this case, the parameter set 

£!. includes the nat ural frequencies W j , the damping ratios (j, of each linear equation 

in (2.10) and the constant forcing term coefficient f. Because of the stationarity of 

y(t), its autocovariance function depends only on the time difference 7 = tl - t2, 

that is , Ryy (tl' t2) = Ryy (7). 

For the case M = 1, the ACF (autocovariance function) Ryy of the output 

stationary process y( t) has the simple closed form (Chang et al., 1982): 

f2 
Ryy (t) = 3 (<p ) e - (IWlt COS(W~t- <P 1) (2.12a) 

4WI (1 cos - 1 
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where 

(2.12b) 

Note that the ACF is a damped cosine wave, defined completely by the natural 

frequency and damping coefficient of the model, together with the power P of the 

input white-noise process. 

The sampled stationary stochastic sequence y(k6.t) can be approximated as in 

(2.7) by the set of the time-invariant second-order difference equations 

Y
(j) - b(j)y(j) - b(j)y(j) - c(j)y(j) J' 1 M 
k 1 k-l 2 k-2 - 1 l k-l' =, ... , (2.13) 

where y~j) approximates the value of the process yj(t) at time t = k6.t. Beck and 

Park (1984) show how to choose each second-order difference equation so that it 

constitutes the minimal-parameter discrete model that best fits the dynamics of the 

oscillator described by the second-order differential equation. The coefficients b~j), 

b~j) and c~j) are selected by imposing two conditions. The first condition enforces 

the free vibration solutions of the discrete and continuous second-order equation to 

be equal at each time tk = k6.t, which results in the relationships: 

bij) = 2exp(-wj(j6.t) cos (WjJl- (J6.t); if (j::; 1 

bi
j
) = 2exp(-wj(j6.t) cosh (WjJq -l6.t); if (j 2: 1 

b~j) = -exp (-2wj(.i6.t) 

(2.14a) 

(2.14b) 

(2.14c) 

For the second condition, the transfer function of the discrete equation is forced 

to optimally match the transfer function of the continuous one, in a least-squares 

sense, over the frequency band from DC to the Nyquist frequency 1/(26.t). This 

determines the optimum value of the coefficient c~l). The accuracy of the approx­

imation deteriorates as the oscillator frequency approaches the Nyquist frequency, 

that is, as the number of time-steps per period decreases. For 10 time-steps per 

period, a very accurate discrete model is obtained for the oscillator. 

Model (2.13) with forcing function y~O) = 0-(0) ek is the discrete verSIOn of 

model (2.10) for the stationary case. The value of 0-(0) is determined by enforcing 

the variances of the discrete and the continuous output processes to be equal. The 
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output stochastic sequence {Yd 

order p = 2M of the type 

{yiM
)} satisfies a time-invariant AR model of 

P 

Yk = 2:= aiYk-i + (7ek, 
i=l 

k = 1, ... ,N (2.15) 

In the case M = 1, the discrete ACF of the stationary output sequence {yd 

takes the simple closed form (Chang et al., 1982): 

(2.16a) 

where 

and the variance (7~ has the form : 

(2.16c) 

The discrete autocovariance function is also a damped cosme wave, defined 

completely by the natural frequency and damping coefficient of the model and the 

variance of the discrete white-noise input process. Enforcing equality of the respec­

tive variances in (2.16c) and in (2.12a) (t = 0) for the discrete and the continuous 

output processes, the relationship between (7 and f is obtained in the form: 

1 - a2 (72 

1 + a2 (1 - a2/ - ai 
(2.17) 

The relationships (2.14a-c) are equivalent to equating separately the frequencies 

and damping factors of the continuous and discrete ACFs. Thus, these relationships 

also imply that the ACF of the discrete process approximates the ACF of the 

continuous process at the time intervals where the first is defined . The order of the 

approximation is controlled by the differences in the phases of the two ACFs. The 

accuracy of the approximation deteriorates as the oscillator frequency approaches 

the Nyquist frequency. For 10 time-steps per oscillator period, the match between 
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the two ACFs is very good. Note that in the case of M = 1 and for a white-noise 

forcing function, Nau et al. (1980) have shown that choosing an ARMA(2,1) model, 

rather than an AR(2) model, gives an exact match between the discrete and the 

continuous ACF at the points where the first is defined. The transfer function of the 

ARMA(2, 1) model gives a slightly better fit to the typical strong-motion spectral 

amplitudes at the very low frequencies where the AR(2) model has a theoretically 

incorrect behavior. However , the frequency content of real accelerograms in this 

range is contaminated by noise and so can lead to unreliable estimation. As it 

will be seen later, Brune's source model (1970, 1971), which is based on physical 

considerations, is employed to correct the very low frequency spectrum in this work. 

2.3.2 Piecewise Time-Invariant Model 

The discrete version of the stationary stochastic model is modified herein 

to account in a piecewise manner for the time-variation of both the amplitude and 

the frequency content observed in accelerograms. Mathematically, the piecewise 

time-invariant (PTI) model is described by the difference equation: 

P 

Yk = L ai ,kYk-i + CTkek 

i=1 

(2.18) 

where the coefficients of this equation and the variance of the white-noise input 

sequence have the piecewise-constant representation: 

L L 

ai ,k = L a~l) R~l) , CTk = L CT(1) R~l) , (2.19) 
1=1 1=1 

The superscript (l) specifies a time segment of initial and final time tl- 1 = N/_1Clt 

and t/ = N/Clt respectively, and R~l) is a rectangular window given by 

(2.20) 
= 0 elsewhere. 

The coefficients a~l), CT(l) are the unknown parameters of the model and together 

they control both the time variation of the frequency content and the intensity 



- 18 -

of the ground acceleration. However, the piecewise-constant representation of the 

coefficients ai ,k accounts primarily for the time variation of the frequency content. 

On the other hand, the a(l) 's account primarily for the time variation ofthe intensity 

of the accelerogram. The piecewise time-invariant model will be utilized in Section 

2.5 to explore in detail the nonstationarity of strong-motion accelerograms. 

In the PTI model, the sequence {Yd within each segment and sufficiently far 

from the segment boundaries approaches stationarity. The correlation structure 

of the sequence during each segment is described by the expressions developed in 

the previous section for the discrete case or the equivalent continuous stationary 

process. The parameters in those expressions are replaced by the parameters a~l) 

and a( /) corresponding to each segment I. Close to the boundaries of each segment, 

the process {Yk} is not stationary since its correlation structure is influenced by the 

transient effect arising from the sudden change ofthe coefficients according to (2.19). 

The more the oscillators are da.mped, the smaller the nonstationary zone close to 

the boundaries that is influenced by the transient effect. In applications considered 

herein, the oscillators are heavily damped and also, for purposes concerning stable 

parameter estimation, the length of each segment is chosen to be much longer than 

the time-length of the transient zone. The stationary model is a special case of the 

PTI model for L = 1. 

2.3.3 Envelope-Modulated White Noise Model 

The envelope-modulated white-noise (EMWN) model has the discrete form 

k = 1, ... ,N. (2.21 ) 

where jk(fl.) measure the intensity of the accelerogram at time t = k!:lt. Examples 

of parametric functions previously used in modeling the intensity are the envelope 

functions (2.1) and (2.2) and the one proposed by Jennings and Housner (1964). 

The EMWN model will prove useful for modeling the intensity of earthquake ac­

celerograms and estimating the envelope parameters independently of the frequency 

content. 
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2.3.4 Piecewise Time-Invariant Frequency Content Model 

The Piecewise Time-Invariant Frequency Content (PTIFC) model has the 

discrete time representation 

(2.22) 

I 

where Yk' k = 1, ... , N is the PTI discrete process given in equation (2.18). The 

piecewise constant representation of the coefficients accounts for the time variation 

of the frequency content. The slowly-varying envelope function h(fl), which may 

assume the form (2.1), (2.2), or others, models in a continuous manner the variation 

of the intensity with time and it does not alter significantly the relative contribution 

of each spectral component to the output for each segment. 

2.4 Bayesian Methodology for Parameter Estimation 

In this section, a probabilistic methodology for estimating the model param­

eters is presented. We use probability in the Bayesian sense of a multi-valued 

logic, so p(a/c) denotes a measure of the plausibility of the proposition a given the 

information in proposition c. Bayes' theorem is a consequence of the axioms of 

probability logic: 

( /b ) 
= p(b/a,c)p(a/c) 

p a ,c p(b/c). (2.23) 

Bayes' theorem can be applied to data to extract information about the values of 

a parameter set of a model (Box and Tiao, 1973). To illustrate this, let M denote 

a given class of stochastic models characterized by a parameter set fl and let Jf.. 

denote a data sample to be characterized by the model. As we are uncertain what 

value of fl is appropriate before the data is examined, we treat the parameters as 

uncertain variables and use probabilities to quantify our uncertainties about their 

values. Applying Bayes' theorem for the parameter set fl and the data Jf.., expression 

(2.23) takes the form: 

( 
;,) _ p(Y/fl,.M)p(fl/kf) 

P fl/ Y ,A1 - () 
- p Jf../M 

(2.24) 

where p(fl/ M) is the probability distribution of fl prior to the collection of the data, 

and it is a personal judgement of the plausibility of various values of the parameters. 
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Relation (2.24) can be rewritten 

(2.25) 

where the form of the p(Ji./fl., Jill) can be deduced from the structure of the assumed 

model, as will be seen later in some specific applications. The constant I\, is chosen 

so that it normalizes p(fl./ Ji. , Jill) according to: 

1 p (fl./ u, M) dfl. = 1 , (2.26) 

where n is the range of interest of the parameter set fl.. Relation (2.25), which 

gives the posterior probability distribution of the parameter set fl., indicates how 

the prior distribution of fl. is modified by the information from the sample Ji.. The 

most probable values ~ given the data Ji. are those which maximize p (fl./U, M) over 

n. These are used to give the most probable model in 111, which is taken to represent 

the observed process. This choice is clearly the most rational one if a single model 

in M is to be chosen, but it is also the correct choice asymptotically for large sample 

sizes in the sense that representing the whole class M by the most probable model 

entails no loss of information when the class M is identifiable (Beck, 1990). 

2.4.1 General AR(p) Model with Time-Varying Coefficients 

Let Mp denote the nonstationary AR(p) model 

P 

Yk = L ai,k (fl.) Yk-i + bk (fl.) ek, (2.27) 
i=l 

where ek is a zero-mean, unit-variance Gaussian white-noise sequence and ai,k(fl.), 

bk(fl.), i = 1, .. . ,p are in general time-varying coefficients which depend on the 

parameter set fl.. Let also Ji.N == [Yl, Y2, ... ,Ynl be an observed sequence of the 

process of interest, then using Bayes ' theorem for the sets of variables Ji.N and fl., 

the posterior probability distribution of the model parameters is: 

(2.28) 

From the structure of the AR(p) model, the value Yk at the time t = kflt depends 

only on the p previous values Yk-l, . .. ,Yk-p of the linear process . Therefore, the 
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probability distribution of the sequence Yk given the parameter values takes the 

form: 

N 

P (Y..Nlfl, Mp) = P (YN, ... ,yJ/fl, Mp) = II P (Yk/Yk-l, ... ,Yk-p,fl, Mp) . (2.29) 
k=l 

Since each ek is a unit Gaussian random variable, the p(yk!Yk-l, ... ,Yk-p, fl, Mp) 

is also Gaussian, given by: 

P(Yk I Yk-" ... , Yk-p,li, Mp) = VZ;;~'(!1) exp [- 2bi\!1) (Y k - ~ a;,.(§) Y k -;) '] 

(2.30) 

It is assumed that the p(fl/ !vIp) is a locally non-informative prior distribution for 

the parameter set fl, which means that all values of the parameters over a large range 

are considered equally plausible a priori (Box and Tiao, 1973). Mathematica.lly, it is 

assumed that p(fl/Mp) is constant over a large but finite range of interest n. Using 

this assumption and (2.28) , (2.29), and (2.30), the posterior proba.bility distribution 

of the parameters given the data Ji.. N and the modelll/[p, takes the form: 

(2.31 ) 

Expression (2.31) gives the updated joint probability distribution of the param­

eter set fl, given the data sequence Ji..N and the class of models A1p. The most 

probable value Q of the model Mp is obtained by maximizing relation (2.31) and it 

defines the "optimal" AR(p) model to represent the given sample accelerogram Ji..N. 

Defining a more convenient function FUD , such that 

(2.32) 

the optimization problem is converted to a. nonlinear minimization of the objective 

function F(fl). 

Expression (2.32) is the general formula for obtaining the most probable non­

stationary AR(p) model and is independent of the choice of the para.metric form for 
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the coefficients ai,k and bk. The above method is simple and it is developed fully in 

the time domain utilizing the acceleration data directly in its digitized form. Un­

like frequency-domain methods which are applicable only to stationary cases, the 

present time-domain method a) is applicable to the estimation of the nonstationary 

features of accelerograms, b) it can directly incorporate smooth parametric varia­

tions of the model parameters and c) it simultaneously treats the amplitude and 

the frequency content nonstationarities. Next , we specialize expression (2.32) for 

specific subclasses of the general class of models. 

2.4.2 Piecewise Time-Invariant Model 

Recall that the coefficients of the piecewise time-invariant model have the 

representation (2.19), so after algebraic manipulations, the posterior probability 

distribution of the parameter set fl takes the form: 
L 

P(fl/}LN,Mp) = IIp(l) (f!..(I)/}LN,Mp) (2.33) 
[=1 

where 

fl(l) = (a~l), ... ,a1i) ,(j(l») , 

c(l)(j(N~-NI-l) exp [2 [-(:)], 'f (Yk - ta~l)Yk-i)2l 
(j k=N1_ 1 +1 z=l 

(2.34) 

Expression (2.33) implies that the parameter subsets fl(l) corresponding to different 

segments are statistically independent. Thus, the most probable values are obtained 

by maximizing each p(!l([) /}L, A!fp) independently. 

For simplicity, introduce for each I the set {y~l) , i = 1, . . . ,N(l)} such that for 

all I: 
~ (l) . _ 1 N(l) 

YNI-l-p+i=Yi ' z- , ... , (2.35) 

where N(l) = N[ - N 1- 1 . Then using (2.34), the corresponding objective function 

F(l)(!l(l») can be rewritten more conveniently as: 

F(l)(ftY») = In c + N In (j + 2!2 (Q - i)T (Q - i) 

+ 2!2 (Q p - Qp ) T (yTy) (.Q:p - Qp ) (2.36) 
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where 

Y2 

11..= 
( 

Yp+l ) 
Yp+2 

y~+]J , 

YN-l+p 
YN-2+p 

YN 

(2.37a) 

(2.37b) 

(2.37c) 

We have dropped the superscript I in equations (2.36) and (2.37) for clarity. For 

this case, the minimization of (2.36) results in a closed form expression for the most 

probable values of the model parameters in the form ~(l) = (Q~l), a-(I)), where Q~l) is 

given by (2.37a) and a-(l) is given by: 

[h(I)]2 1 (h(l) h(l»)T( h( l) h(l») 
a = N(l) 11.. - ~ 11.. - ~ (2.38) 

2.4.3 Envelope-Modulated White-Noise Model 

For the envelope-modulated white-noise model defined by (2.21), the objec­

tive function F(ft) takes the form: 

N 1 N 2 

FUD = In c + Lin !k (ft) + 2 L j!j(B)' 
k=l k=l k -

(2.39) 

The condition that is satisfied at the minimum of F(fl.) , is: 

(2.40) 

where ~ is the value at which the minimum is attained and Bi is the i-th parameter 

of the envelope function !k(ft). For Bi = cr, the scaling parameter for the envelopes 

(2.1) or (2.2), condition (2.40) gives 

( )

2 
N 

1 L Yk 
N K=l !k (~) = 1. 

(2.41) 
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Therefore using the proposed methodology, the most probable envelope function 

jk = fk(ft) is chosen so that the process {Yk/ jk, k = 1, ... , N } has unit sample 

variance. In general, the optimum value ft cannot be determined analytically but 

must be calculated numerically using a minimization algorithm. 

2.4.4 Piecewise Time-Invariant Frequency Content Model 

The procedure which estimates the parameters of a piecewise time-invariant 

frequency content (PTIFC) model given an accelerogram is divided into three steps. 

Step 1. The envelope-modulated white-noise model is utilized to model the 

intensity of an accelerogram in a prescribed interval [to, tIl , and the most probable 

envelope j(t) is estimated by minimizing (2.39). In this case , j(t) is a prescribed 

continuous-time measure of the standard deviation of the process (equations (2.1) 

or (2.2), for example) with the optimal estimates of the parameters. 

Step 2. A time series with constant intensity is obtained by dividing the original 

accelerogram by the estimate of its time-varying standard deviation jk, according 

to 

k = 1, ... ,N. (2.42) 

Step 3. The "optimal" model with frequency content which is either time­

invariant or piecewise time-invariant is obtained using the transformed constant­

variance series hh, k = 1, ... , N} as described in Section 2.4.2. For parameter 

estimation purposes, the length of each segment in the piecewise time-invariant 

case must be chosen: 

a. short enough so that the predominant frequency of the modeled segment re­

mains almost constant over its length and 

b. long enough so that the estimation procedure is capable of reliably determining 

the information about the frequency content of the segment. 

The estimation procedure was divided into three steps to avoid interaction 

during the optimization between the parameters accounting for the time variation 

of the amplitude and the frequency content. This interaction, when it was consid-
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ered with an inadequate model (for example, the number of segments L was not 

sufficient to model an accelerogram with significant time-varying frequency con­

tent), led to erroneous results for the most probable envelope function. In addition, 

the three-step procedure is computationally efficient for the piecewise time-invariant 

model. In this case, the most probable model is obtained explicitly by the formu­

las (2.37a) and (2.38) and by an additional numerical minimization of the nonlin­

ear three-parameter function (2.39). However, in the case where the parameters 

are optimized simultaneously, a numerical minimization of the nonlinear (pL+3)­

parameter function (2.32) is involved. 

2.5 Structural Response and Ground Motion Model Adequacy 

The purpose of this section is to study the adequacy of ground motion mod­

els from the structural response point of view. In past studies, the adequacy of a 

ground motion model was judged by how well it models certain features of the target 

accelerogram. A few studies have compared linear structural response parameters 

computed from the simulated and the original accelerograms. However, a few sim­

ulations do not provide enough information about the statistics of the structural 

response, nor do they determine whether the structural response corresponding to 

the original accelerogram falls within the statistics computed for the ground motion 

model. 

This section deals with the linear elastic and nonlinear inelastic structural 

response to ground motion defined by the ground motion models. A simple hys­

teretic model is first defined and then it is used to formulate the equation of motion 

of a SDOF structure in terms of the ductility of the response. Linear elastic models 

can be treated as a special case. Finally, the problem of assessing the adequacy of 

a ground motion model using the statistics of various response parameters is ad­

dressed. Applications of this study will b e given in Section 2.7, where the modeling 

of several accelerograms is discussed. 
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2.5.1 Nonlinear Hysteretic Model 

References and discussion about various nonlinear hysteretic models may be 

found in Thyagarajan (1989). For the purpose of this study, it is desirable to use a 

simple, practical and yet general enough force-deflection relation which is useful to 

model the dynamic behavior of a wide range of softening materials and structures. 

The force-deflection relation for the virgin loading of the hysteretic model used in 

the present study is given by the differential equation 

(2.43) 

The three model parameters K, Ru and n are sufficient to capture the essential 

features of the hysteretic behavior being modeled. K is the initial stiffness, Ru is 

the ultimate strength and n controls the smoothness of the transition from elastic to 

plastic response of the force-deflection curve. The effect of n on the force-deflection 

relation is shown in Figure 2.2 taken from Jayakumar (1987). The force-deflection 

relation for any loading other than the virgin loading is given by the differential 

equation 

dR = K [1 _I R. - Ro In] 
dx 2Ru 

(2.44) 

where Ro is the restoring force at the point of load reversal chosen appropriately to 

satisfy the rules for transient loading presented by Jayakumar (1987). The inconsis­

tencies and difficulties associated with the way other models ('iVen, 1976 and 1980, 

and Ozdemir, 1976) handle initial loading, unloading and reloading are eliminated 

because of a better modeling of the steady-state and transient-loading response 

behavior. A more complete discussion and comparison of this model with other 

hysteretic models as well as its application in system identification of hysteretic 

structures may be found in Jayakumar (1987). 

The hysteretic loops for the model (2.44) are closed and exhibit no drift as 

shown in Figures 2.3 and 2.4. An important feature of the model is that the initial 

stiffness K and the ultimate strength Ru may be selected in a manner that is 

physically meaningful. For example, they can be determined during design from 

material properties and the structural drawings of a building. Next, the model is 

incorporated into the equation of motion of a SDOF structure. 
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2.5.2 Equation of Motion 

The SDOF structure under consideration is schematically shown in Figure 

2.5. The governing equation of motion of the structure subjected to a horizontal 

earthquake ground excitation yet) is 

lvIx(t) + Cx(t) + R(t) = -M yet) (2.45) 

where M is the mass of the system and C is the viscous damping coefficient. The 

displacement of the mass M relative to the ground is denoted by x(t). The restoring 

force R(t) is nonlinear hysteretic and it is given by (2.43) and (2.44). Define the 

displacement ductility of the response by 

f-L(t) = x(t) 
xy 

(2.46) 

where 

(2.4 7) 

is the nominal yield displacement of the structure, then the equation of motion 

(2.45) is given in terms of the ductility of the response as follows 

where 

[L(t) + 2(wofJ,(t) + w5P(t) = _ w5 yet) 
17 g 

(K 
Wo = VM and (= C 

2Mwo 

(2.48) 

(2.49) 

is the initial natural frequency and viscous damping ratio of the structure respec­

tively, 

pet) = R(t) 
Ru 

is the normalized restoring force, Ru is the ultimate structural strength and 

Ru 
17=­

lvfg 

(2.50) 

(2.51 ) 

is the nondimensional parameter expressing the structure's strength relative to its 

weight. The normalized restoring force pet) is governed by 

(2.52) 
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which is the nondimensional version of (2.43). The structural parameters which 

influence the response are the initial angular frequency Wo, the damping ratio (, 

the strength coefficient ,/], and the parameter n controlling the transition from the 

elastic to the plastic response. 

Since a stochastic ground motion model is used to probabilistically handle the 

details of the ground acceleration time history, the structural response to the ground 

motion is also going to be probabilistic. Simulations can be used to obtain the 

statistical distribution of various structural response parameters. The remainder of 

this section deals with the definitions of the probabilistic linear elastic and inelastic 

response spectra associated with various structural response parameters, and their 

use in judging the adequacy of a ground motion model. 

2.5.3 Probabilistic Linear Elastic and Inelastic Response Spectra 

The response spectrum can be used in structural engineering to characterize 

the response of a single-degree-of-freedom linear oscillator with undamped natural 

frequency Wo and damping ratio ( to a ground motion input. The spectra plotted 

as a function of frequency Wo is one means of assessing the frequency content of the 

strong ground motion. For a deterministic input, the response spectrum is defined 

as a function of Wo and ( as 

RS (wo, 0 = max Iq (t) 1 
O~t<oo 

(2.53) 

where q( t) might stand for either displacement or velocity or acceleration of the 

oscillator. 

When a stochastic model is used to characterize an earthquake, an extension 

to the deterministic response spectrum is necessary. If the input of the oscillator 

is a stochastic process, then the oscillator response q( t) will be a stochastic process 

as well. In this case, the quantity that replaces (2.53) could be the mean response 

spectrum defined as 

E [RS (wo, OJ = E [max Iq (t) I] 
O~t<oo 

(2.54) 

The mean response spectrum is a measure of the maximum response q( t) at tained 

by the oscillator, on the average. A more important quantity for design is the level 
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which has some probability of not being exceeded. This leads to the definition of the 

probabilistic response spectrum for a level of confidence p as the value P RS( Wo, (, p) 

for which the probability relation 

Prob{RS (wo , () :::; P RS (wo, (,pn = p (2.55) 

holds. 

The utility of the probabilistic response spectrum is due to the fact that it 

answers in probabilistic terms the question of whether a structure will "safely" 

sustain a given class of stochastic ground motion. Thus, when stochastic models 

are utilized to quantify our uncertainty of the ground motion, probabilistic response 

spectra are useful tools to assess the threat posed to structures, despite the simple 

theoretical basis of the spectra. For a fixed (, the level curves wi th confidence p not 

to be exceeded, where p ranges between 0 to 1, give a good picture of the statistical 

distribution of the response quantity under consideration for different Wo. 

For an inelastic structure, the use of PRS can be extended to provide the statis­

tical distribution of various response parameters indicative of damage. In general, 

let q(!is) be a response parameter and fis be the set of the structural parameters 

influencing the response. For example, !is = (wo, (, 'rJ, n) for the hysteretic structure 

(2.48). The mean response defined by 

(2.56) 

is a measure of the response attained by the oscillator, on the average. The level 

curves q(!is' p) for a level of confidence p, are defined such that the probability 

relation 

(2.57) 

holds. The level curves provide information about the statistical distribution of the 

response parameter q(fis). A probabilistic inelastic response spectrum is defined 

as the set of level curves q(fis , p) plotted versus one structural parameter while 

holding the other structural parameters fixed. Each curve corresponds to different 

values of p ranging between 0 to 1. The inelastic probabilistic response spectra 

provide an insight into the statistics of various inelastic response parameters and 
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their sensitivity with respect to structural parameters, and with respect to the 

details of the ground motion. 

These response spectra will be used in Section 2.7 to study the sensitivity of 

various structural response parameters to the details of the ground motion which 

are left random by the ground motion model, as well as to evaluate the adequacy 

of the ground motion models to represent all the important features present in the 

accelerograms. For this, the mean response and the level curves of confidence p = 

0.01 , 0.1,0.5, 0.9 and 0.99 are computed for 500 simulations using the optimal model 

for a given "target" accelerogram. To enable comparisons between different models, 

the same 500 white-noise samples are used for each probabilistic inelastic response 

spectrum. The response parameter corresponding to the target accelerogram is also 

plotted. Since a target accelerogram is considered to be a sample of the underlying 

stochastic process, its response in most of the ranges of structural parameters should 

lie between the 1% and 99% level curves. In addition, the variation of the mean 

response corresponding to the stochastic process should approximately follow the 

average variation of the deterministic response. The ranges of structural parameters 

for which the target accelerogram response lies below the 1 % and above the 99% 

level curves can be taken as the ranges for which the ground motion model does 

not perform well. Also, a measure of the sensitivity of the response to the details of 

the ground motion which are left random by the ground motion model is provided 

by the difference of the logarithm values corresponding to the 1% and 99% level 

curves. Therefore, plotting of the probabilistic response spectra on a logarithmic 

scale gives a direct measure of the sensitivity by the separation of the 1% and 99% 

level curves. 

2.6 Analysis of Earthquake Accelerograms Using Autoregressive 
Models 

2.6.1 Moving Time-Window Approach 

A moving time-window approach is first used to analyze in detail the non-
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stationarity of the accelerograms. Stationary AR(p) models are fitted to successive 

segments of the accelerogram. Each segment is centered at a time tm and has length 

w. Using (2.37) and (2.38), the most probable AR model is estimated for each seg­

ment. By moving tm from the begining to the end of the record using time steps 

6ts, the nonstationarity of the accelerogram is obtained in terms of the time vari­

ation of the model parameters. For the second-order model, the natural frequency 

WI, damping ratio (1 and standard deviation 0" Y can be computed according to the 

expressions (2.14) and (2.16c) respectively. 

2.6.2 Physical Interpretation of Time Variation of the Model 
Coefficients 

The earthquake accelerograms, listed in Table 2.1 under their Caltech record 

name, are analyzed using the second-order model. The records are representative 

of different types of earthquake events. The acceleration time histories are shown 

in Figure 2.6. The objective of this analysis is to investigate in detail the time­

variation of the correlation structure of the accelerograms in terms of the model 

parameters and then link it to the corresponding physical processes involved. The 

undamped frequency WI, the bandwidth WI (1 and the damping ratio (1, computed 

by the moving-window approach, are plotted in Figure 2.7, while the standard 

deviation O"Yk is plotted in Figure 2.8. In the computations, 6ts = 0.2 seconds and 

the value of w is shown in Table 2.1. 

Although the plots in Figures 2.7 and 2.8 are complicated, certain similari­

ties are observed regarding their time variation for the different earthquake events 

analyzed. In general, there is a high and a low-frequency variation of the model 

parameters. The high-frequency variation is a feature of the modeling procedure 

and it can be smoothed out by increasing the time length of the segment used in 

the analysis. Primary a ttention is therefore given to the low-frequency variation. 

The accelerograms from the San Fernando and the Imperial Valley earthquakes 

show a significant time variation of the parameters WI and (1' However, the ac­

celerograms from the Helena and Parkfield earthquakes , which are much shorter 

in duration, could be considered to have constant frequency content throughout 

the strong shaking, that is, the first four and five seconds of the accelerograms, 
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respectively. In general, the undamped frequency WI is decreasing with time while 

the damping ratio (1 is increasing with time. In order to interpret the results, we 

consider the physics of the earthquake process and the resulting wave propagation 

through the Earth's structure. 

Several different kinds of waves are propagated from a disturbance in the Earth. 

The complexity of the Earth structure results in dispersive body waves (P and S) 

as well as surface waves. P-waves, which are propagated with the highest velocity, 

reach the recording site first. S-waves, which have lower velocity of propagation and 

lower frequency content than P-waves, arrive at a later time. Surface waves, which 

have even lower velocities of propagation and lower frequency content, reach the 

recording site after the initial body waves have arrived. The arrival time and the 

intensity of each wave type depend on the source mechanism, the distance between 

the source and the site and the complexity of the Earth's structure, resulting in a 

complex recording with its frequency content in general moving towards lower fre­

quencies with time. The undamped frequency WI, 'which is an approximate measure 

of the predominant frequency present in the accelerogram, is expected to decrease 

with time. The damping ratio ( 1, which is a measure of the width of the frequency 

range around WI which contributes strongly to the accelerogram, is expected to 

increase with time. The large increase in damping observed in Figure 2.7 at later 

times is due to the presence of both the lower-frequency surface waves and the 

higher-frequency body waves, resulting in a more broadband process. An observa­

tion common for several accelerograms is that the damping ratio of the second-order 

model is of the order of 20 to 30% for P and S-waves and only when surface waves 

are arriving does the damping ratio increase to values as high as 60% or more. 

These observations are important in structural response and should be taken into 

account in the ground motion modeling. 

The curves in Figures 2.7 and 2.8 can be utilized for identifying the pres­

ence, and quantifying the duration, intensity and frequency content, of the different 

wave groups present in strong-motion accelerograms. Such information is difficult 

to obtain by direct examination of the acceleration time histories because of the 

overlapping of the different wave groups. For illustration purposes, the three com-
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ponents of the C048 record are analyzed. This record was obtained at 8244 Orion 

Boulevard in the San Fernando Valley, with the epicenter of the 1971 earthquake 

approximately due North of the site. Recall that each wave group has a different 

frequency content, and therefore its arrival time corresponds to the time at which a 

substantial change of the parameters WI and (1 of the stochastic model occurs. In 

the two horizontal components, such changes occur in Figure 2. 7( a,b) at approxi­

mately 2, 10 (see wI-curves) and 15 (see (I-curves) seconds. Also, the time variation 

of the wave group intensity consists of an initial build-up phase followed by a peak 

and then a decaying tail. The peaks show up in Figure 2.8(a,b) at approximately 

7, 12 and 19 seconds. These peaks correspond to different wave groups since the 

value of the model parameter WI is different for each peak, ranging from 3 to 4 Hz 

for the first, 1.5 to 2.5 Hz for the second and 0.5 to 1.0 Hz for the third. Consider­

ing wave propagation phenomenon, the first peak corresponds to an S-wave group 

while the second and the third might correspond to surface wave groups (Love and 

Rayleigh waves). Weak P-waves show up in the first 2 seconds in the horizontal 

components with the value of WI ranging from 4 to 5 Hz. These P-waves clearly 

show up as the dominant waves in the first 10 seconds in the vertical component 

in Figures 2.7(c) and 2.8(c). The third peak observed in the two horizontal com­

ponent, is also recorded in the vertical component, suggesting it is possibly due to 

Rayleigh waves reflected back from the Santa Monica Mount ains to the south of 

the site. The problem of reliably identifying the presence of each wave group in 

accelerograms can be resolved better by correlating the results obtained from the 

analysis of several spatially-distributed accelerograms. This analysis, as well as the 

consistency observed between the time variation of the model parameters and the 

different wave groups present in strong-motion accelerograms will be used in fu­

ture work to develop appropriate relations between the model parameters and the 

variables accounting for the regional seismicity and the local site effects. 

2.7 Modeling and Simulation of Earthquake Accelerograms 

The objectives of this section are as follows: 

1) to introduce different subclasses of the general class of models and to verify 
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the extent to which each subclass characterizes the important features observed 

in real accelerograms by comparing a) the "target" accelerograms with samples of 

simulated accelerograms generated by each optimal model, b) the corresponding 

response spectra and c) the residuals and their Fourier transforms generated for 

each optimal model. In particular, the effects of higher-order models are studied; 

2) to demonstrate how well the statistical time-domain method performs when 

it is used to estimate the model parameters; 

3) to use the probabilistic response spectra to study the sensitivity of various 

linear elastic and inelastic response parameters to the details of the ground motion 

which are left random by each ground motion model. 

2.1.1 Modeling of the Intensity Using Various Models 

The envelope functions (2.1) and (2.2) proposed by previous authors to 

model the intensity of the accelerograms are computed by fitting the envelope­

modulated white-noise model. To enable comparisons with the piecewise time­

invariant results in Figure 2.8, the most probable envelopes are also plotted in 

the same Figure for different estimation intervals [to, td. In general, the fit for the 

envelope (2.1) is better for the cases where the "energy" in the interval of estimation 

is mostly contributed by the shear-wave groups. This suggests that the shape of the 

envelope models the time-variation of the intensity of the shear waves quite well. 

This observation supports the theory developed by Saragoni and Hart (1974) that 

the time variation of the expected intensi ty of a wave type propagating through the 

Earth follows a distribution given by the envelope (2.1). For the time intervals [to, tIl 

which include significant energy also from the P-wave and surface-wave groups, the 

envelope function gives an overall fit to the data, usually underestimating the high 

intensity of the shear-wave groups and overestimating the lower intensity P-wave 

(in the case of horizontal components) and surface-wave groups. For these intervals, 

using the family of curves (2.2), the fit is generally improved. 

The envelope functions (2.1) and (2.2) fail to provide a good fit to the initial 

nonzero intensity always present in the digitized accelerograms coming from analog 
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accelerographs, and also to the time of the maximum intensity. As can be seen in 

Figure 2.8, a significant improvement is obtained by considering the four-parameter 

envelope function: 

f( t) = a (t + to).8 exp (-, (t + to)) (2.58) 

which is the Saragoni and Hart's envelope function shifted in time by to. Therefore, 

since this envelope function is more flexible to fit the data, it is used to model the 

intensity of the accelerograms in what follows. 

2.7.2 Modeling of the Frequency Content Using PTIFC Models 

In order to explore the time variation of the frequency content, we consider 

different numbers L of segments and we vary the order p of the AR model from 

2 to 8. Although not all of the results are presented, conclusions listed herein are 

based on detailed analysis of the accelerograms contained in Table I using differ­

ent subclasses of the model. These accelerograms cover a wide range of ground 

motion characteristics in both intensity and frequency content. The NOOvV hori­

zontal component of the C048 record which has a significant time variation of the 

frequency content is chosen as an example to demonstrate the three steps involved 

in the modeling procedure. Figure 2.9 shows the transformed series of stationary 

intensity, constructed according to step 2 in Section 2.4.4 for the most probable 

envelope function with the form of equation (2.58). 

The time-invariant frequency content models are first used to model and simu­

late this component. The "target" accelerogram and one simulation for each of the 

second and fourth-order time-invariant frequency content model are shown in Figure 

2.10(a,b,c). The plots correspond to the same white-noise sample to aid in compar­

ison of different models. Figure 2.11( a,b) shows the corresponding "white-noise" 

sample {ed that generates the "target" accelerogram for each model correspond­

ing to Figure 2.10 (b, c). Such a sample is obtained from equation (2.18) after 

replacing its parameters with the computed most probable ones and using the real 

acceleration data sequence. It is obvious from the plots (a), (b) and (c) in Figure 

2.10 and the plots (a) and (b) of the residuals in Figure 2.11 that a time variation 
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of the frequency content is exhibited which is not modeled by the time-invariant 

frequency-content models. From the probabilistic linear response spectra curves 

shown in Figure 2.12(a,b) for p = 2 and 4, it is concluded that higher-order models 

do not significantly improve the match between the probabilistic response spectra 

and the response spectra of the "target" accelerogram. Although only the acceler­

ation response spectra are shown, similar response characteristics are observed for 

the displacement and the velocity response spectra. 

Since the time variation of the frequency content is expected to be of substantial 

importance for strongly excited nonlinear (softening) structures, its incorporation 

into the ground motion model must be considered. The piecewise time-invariant fre­

quency content models are thus used to examine the time variation of the frequency 

content. Simulations for the NOOW component are shown in Figure 2.10( d,e) for 

each of the most probable second and fourth-order piecewise time-invariant model. 

For the detail modeling, we arbitrarily chose the number of segments L = 9 and the 

lengths of each segment according to the last column in Table 2.2. To enable com­

parison of the different models, the corresponding residuals are plotted in Figure 

2.11(c,d) . As can be seen from Figures 2.10 and 2.11, the piecewise time-invariant 

model successfully captures the time-variation of the frequency content of real ac­

celerograms. The improvement obtained by higher-order time-invariant frequency­

content models is small compared to that obtained by second-order models with 

time-varying correlation structure. Plots of the probabilistic response spectra curves 

are shown in Figure 2.12(c,d). Higher-order piecewise time-invariant models do not 

alter the probabilistic response spectra significantly. 

Figure 2.13 compares the response spectra of the rest of the accelerograms 

shown in Table 2.1 with the probabilistic response spectra computed for the most 

probable second-order piecewise time-invariant model. Table 2.2 indicates the num­

ber of segments and their corresponding time-lengths used in the computations. The 

probabilistic response spectra in Figures 2.12 and 2.13 provide a good fit to the 

response spectra of the "target" accelerograms for periods less than approximately 

5 seconds. The overestimation of the response spectra for long periods of the linear 

oscillator (approximately over 5 seconds) is due to the fact that an AR(p) model 
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cannot represent the intensity of the low-frequency content of the recorded accelero­

grams. Complete accelerograms have a zero DC component while AR(p) models 

always have a non-zero DC component. The low-frequency content is expected to 

strongly influence the response of inelastic structures (Iwan and Paparizos, 1988). 

A method that improves the low-frequency content of these models is discussed in 

Section 2.7.3. 

Based on the statistics of the maximum acceleration of the response in Figures 

2.12 and 2.13 and on similar statistics for the maximum displacement and velocity 

of the response, it is concluded that the lower the structural frequency, the more 

sensitive the response is to the details of the ground motion left random by each 

ground motion model. Comparing Figure 2.12(a) and Figure 2.12(c), the sensitivity 

of the maximum acceleration of the response to the details of the ground motion 

corresponding to the TIFC model is less than the sensitivity corresponding to the 

PTIFC model, especially in the range of structural frequencies from 1 to 3Hz. 

The Fourier transform of the residuals {ek} for the cases considered in Figure 

2.11 are shown in Figure 2.14(a,b,c,d). For a suitable member of the given class 

of models, the average variation with frequency of the input spectrum is expected 

to be approximately constant like a sample of white noise. Higher order models 

match better the observed "exponential-like" decay (Anderson and Hough, 1984) of 

the spectral components in the high-frequency content of the accelerograms. The 

intensity of this frequency range, which is small compared to the low-frequency 

spectral components, is overestimated by the second-order model. This overestima­

tion shows up in Figure 2.14 as a deviation of the spectral intensity of the residuals 

at high frequencies below its expected constant value. 

Summarizing, in most cases examined, second and fourth-order models pro­

vided a good statistical fit to the data contained within successive sufficiently small 

portions of accelerograms. This is in agreement with the results obtained by Chang 

et al. (1982) and Nau et al. (1980) for the ARMA models. For engineering design 

purposes, a piecewise time-invariant second-order AR model provides an acceptable 

description of the ground motion, particularly in the range that corresponds to the 

larger amplitude spectral components. 
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2.7.3 Modeling of the Very Low Frequency Content 

An improvement of the incorrect spectral amplitudes present at low fre­

quencies for the AR(p) model can be obtained by including in the previous analysis 

Brune's source model (1970). According to Brune, the source power spectral accel­

eration for shear waves has the normalized shape: 

(2.59a) 

where We is the corner frequency. Using certain assumptions, Brune related We to 

the source radius r and the shear-wave velocity (3 by: 

2.34(3 
We = 27l'Je = --. 

r 
(2.59b) 

Several authors, including Boore (1983) and most recently Safak (1988), have used 

Brune's source model for the modeling of ground motion using seismological models. 

The proposed modified method which gives the correct low frequency behavior 

is schematically shown in Figure 2.15. The critically damped oscillator, which cor­

responds to Brune's model (2.59a), accounts for the form of the spectral amplitude 

near the source. The linear second-order system, which corresponds to model (2.7), 

accounts for the intensity of the source as well as propagation and local site effects. 

The power spectral density of the combined model is shown in Figure 2.16 for time­

invariant AR(2) model. It is clear that the modification introduced by Brune's 

model gives an w-square behavior of the very low-frequency spectral amplitudes 

of the accelerogram without substantially affecting the spectral amplitudes of the 

model (2.7) at frequencies greater than about 2we . 

The equation for the critically damped oscillator has the form: 

x = Z , (2.60) 

Using relationships (2.14) a.nd approximating z by: 

"() zk+l - 2Zk + Zk-l k;\ A l' . d Z tk = 2 ' tk = ut, ut = samp lllg peno , 
~t 

(2.61 ) 

the discrete system that corresponds to equation (2.60) is given by the difference 

equation 

(2.62) 
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where a = e-wc~t. The modified model is computationally efficient and generates 

artificial accelerograms with the correct low-frequency content. To determine the 

parameter of model (2.62), we do not use the estimation method developed pre­

viously because it would be ill-conditioned in view of the low intensity spectral 

amplitudes, and hence poor signal-to-noise ratio, in the very low frequencies of real 

accelerograms. The corner frequency We can be computed from source mechanism 

studies of the earthquake generating the ground motion; for example, by using 

(2.59b). The other parameters of the model are estimated as if Brune's filter was 

absent since they control the higher frequency content of the model spectrum not 

affected by the presence of Brune's model. 

From source mechanism studies of the San Fernando earthquake (McGuire and 

Hanks, 1980), the value of the corner frequency is Ie = 0.2Hz. The probabilistic 

acceleration response spectra computed for the PTIFC model that includes Brune's 

correction are shown in Figure 2.17 for the C048.1 record in Table 2.2. Compar­

ison with Figure 2.13 shows no obvious visual difference for oscillator periods less 

that about 5 seconds. For oscillator periods over 5 seconds, which correspond to 

frequencies less than Ie = 0.2Hz, there is an improvement in the match of the prob­

abilistic linear response spectra and the response spectra of the target accelerogram. 

Probabilistic linear elastic response spectra for the velocity and the displacement 

are shown in Figures 2.18( a) and (b), respectively. A very good "match" between 

the deterministic and the probabilistic linear elastic response spectra is observed 

for most of the range of structural frequencies. 

Figure 2.19 shows the probabilistic inelastic response spectra for the accelera­

tion and velocity described in Section 2.5.3. The inelastic spectra for the maximum 

ductility and the residual ductility are shown in Figure 2.20. The PTIFC model 

corresponding to the C048.1 component in Table 2.2 is used. The structural param­

eters are n = 3, 17 = 0.3 and ( = 0.05. The statistics of the maximum ductility 

in Figure 2.20( a) indicate that the response of the structure becomes inelastic with 

high probability for initial structural frequencies with values ranging from about 

2 to 10Hz. From Figures 2.19(a), 2.19(b) and 2.20(a), and from comparisons with 

Figures 2.17(b) and 2.18(a), it is concluded that the more inelastic the response 
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is, the less sensitive the acceleration and the velocity of the response and the more 

sensitive the displacement ductility of the response are to the details of the ground 

motion. However, the residual displacement ductility, shown in Figure 2.20(b), is 

much more sensitive to the details of the ground motion than the maximum dis­

placement ductility, velocity and acceleration. 

From Figures 2.17, 2.18, 2.19 and 2.20, the probabilistic linear elastic and in­

elastic response spectra match well the response spectra of the target accelerogram, 

justifying the adequacy of the PTIFC model for capturing the essential features of 

the ground motion as far as dynamic response is concerned. 

2.8 Conclusions 

A general class of parametric stochastic models , formulated in both continuous 

and discrete times by stochastic differential and difference equations respectively, 

has been examined for its adequacy to characterize strong motion accelerograms for 

use in structural response studies. The ground motion model captures parametri­

cally both the amplitude and the frequency content nonstationarity of the ground 

motion and it probabilistica.lly treats the uncertainty associated with the details of 

the ground acceleration time history. 

Applying Bayesian statistical inference on the discrete formulation , a method­

ology was developed to extract from the given class of models the optimal model 

that best fits, in a probabilistic sense, the characteristics of a "target" accelerogram. 

In contrast to most other methods for estimating the nonstationary characteristics 

of an accelerogram, the proposed methodology is simple to implement, and it can si­

multaneously treat the amplitude and the frequency content nonstationarities. The 

methodology is successfully demonstrated for specific subclasses of the general class 

of models by using several "target" accelerograms. 

The temporal nonstationarities observed in real accelerograms can be mod­

eled by varying the coefficients of the stochastic equations in a piecewise-constant 

manner. Using a moving time-window approach and second-order models, the time­

variation of the frequency content of the accelerograms is adequately described in 
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detail in terms of the variation of the undamped frequency and damping ratio (or 

bandwidth) of the second-order continuous model. The undamped frequency which 

is an approximate measure of the predominant frequency of the ground motion 

shifts to lower values as time advances. The damping ratio, which is an approxi­

mate measure of the frequency range that strongly contributes to the ground motion 

increases with time. These variations were linked to seismic wave propagation phe­

nomenon. For most of the accelerograms investigated, the portions controlled by P 

and S-waves correspond to values of the damping ratio in the range of 20 to 30%. 

The portions controlled by surface waves, however, correspond to damping ratios 

as high as 60% or more. These average trends are useful when structural response 

to simulated ground motions is to be considered. 

From analysis of several representative accelerograms, it is concluded that the 

second-order model captures most of the information contained in successive seg­

ments of an accelerogram over the range of structural frequencies. Higher-order 

models do not significantly improve the results. The properties of simulated motions 

show general characteristics similar to the characteristics observed in real accelero­

grams. The incorrect low-frequency content present in the AR models is improved 

by introducing Brune's source model. The probabilistic linear elastic (displace­

ment, velocity, and absolute acceleration) and inelastic (maximum displacement 

ductility ratio, residual displacement ductility ratio, velocity, and absolute accel­

eration) response spectra "match" well the corresponding response spectra of the 

"target" accelerogram over the range of structural frequencies. Linear structures 

with lower natural frequencies are more sensitive to the details of the ground ac­

celeration time history. In addition, the more inelastic the response is, the less 

sensitive the velocity and the acceleration of the response is to the details of a 

the ground acceleration time history which has its overall features fixed. However, 

the ductility, and especially the residual ductility, of the response are much more 

sensitive to these details. 

The specific subclass of piecewise time-invariant second-order models therefore 

appears adequate for representing the ground motion for the purpose of computing 

structural response. However, there are too many parameters in such a model to 
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contemplate making it a part of seismic risk analyses where the model parameters 

must be related to the seismic environment of a site. In Chapter 3, a more parsimo­

nious ground motion model is proposed which draws on the results of this chapter 

and which appears to be promising for seismic risk studies which involve ground 

motion time histories rather than simplified representations such as peak ground 

quantities. 
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Record No. Earthquake Event Component w (sec) 

C048.1 San Fernando, 1971 NOOW 3 
C048.2 San Fernando, 1971 S90W 3 
C048.3 San Fernando, 1971 DOWN 2 
B025 Helena, Montana, 1935 S90W 3 
B034 Parkfield, Ca, 1966 N85E 3 

El Centro Array, Stn 12 Imperial Valley, 1979 S50W 2 

Table 2.1. List of some representative accelerograms for assessing stochastic ground motion model. 

Record No. ti tf Number of Time-Length of 

(sec) (sec) Segments Each Segment (sec) 

C048.1 0 30 9 2,3,3,3,3,3,4,4,5 

C048.2 0 30 9 2,3,3,3,3,3,4,4,5 

B025 0 5 3 2,2,1 

B034 0 10 5 2,2,2,2,2 

El Centro Array, Stn 12 0 30 9 1,3,3,3,3,4,4,4,5 

Table 2.2. Various technical information about the accelerograms in Table 2.1 for PTIFC mod­

elling. 
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stationary Linear stationary 
white nOIse process Envelope acceleration 

System ret) x(t)=f(Uy(t) e(t) U] y(l) .. L( e(l) 1 

(a) 

stationary nonstalionary 
Linear white noise Envelope white noise acceleration 

e(t) f(t) w( t)=f( Ue(t} 
System 

x(t) .. l[ w(t)] U) 

(b) 

Figure 2.1. (a) Model I, (b) Model II, for ground acceleration. 



LU 
U 
CI: 
0 
u.. 
c...!) 
z 
CI: 
C 
~ 

(J1 

LU 
CI: 

400.00 

300.00 

200.00 

100.00 

- 45 -

K -150.0 

ru : 200.0 

n =00 

2. 0 
DISPLACEMENT 

l 
I 
l 

I , 

3. 0 4.0 
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Figure 2.5. Schematic diagram of a SDOF structure. 
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Figure 2.10. The NOOW component and one simulation for each optimal model of different sub­
classes. (a) "Target" accelerogram. (b) and (c) TIFC models with p=2 and p=4, 
respectively. (d) and (e) PTIFC models with p=2 and p=4 , respectively. 
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Figure 2.11. The computed "white-noise" sample that generates the NOOW component for each 
optimal model in Figure 2.10. 
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Figure 2.14. The Fourier transform of the "white-noise" samples in Figure 2.11. 
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Figure 2.16. Power spectral density of the AR(p) model (dashed-dotted curved) and the combined 
AR(p) and Brune's model (solid curve). 
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Figure 2.17 . Comparison between the 5% damped acceleration response spectra of the " target" ac­
celerogram (solid line), the mean response spectra (dashed-dotted line) and the proba­
bilistic response spectra (dashed lines which from top to bottom correspond to p =0.99, 
0.90, 0.50, 0.10, 0.01) computed for optimal PTIFC AR(2) model in Figure 2.10, in­
cluding Brune's source model. (a) 0.04-20s period , (b) 0.1-2s period. 
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Figure 2.18. Comparison between the 5% damped response spectra of the "target" accelerogram 
(solid line), the mean response spectra (dashed-dotted line) and the probabilistic 
response spectra (dashed lines which from top to bottom correspond to p =0.99, 0.90, 
0.50 , 0.10,0.01) computed for optimal PTIFC AR(2) model in Figure 2.10, including 
Brune 's source model. (a) Velocity, (b) Displacement. 
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Figure 2.19. Comparison between the inelastic response spectra of the "target" accelerogram (solid 
line), the mean response spectra (dashed-dotted line) and the probabilistic response 
spectra (dashed lines which from top to bottom correspond to p =0.99, 0.90, 0.50, 0.10, 
0.01) computed for optimal PTIFC AR(2) model in Figure 2.10, including Brune's 
source model. Structural parameters n = 3, '1 = 0.3 and ~ = 0.05. (a) Acceleration, 
(b) Velocity. 
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Figure 2.20. Comparison between the inelastic response spectra of the" target" accelerogram (solid 
line), the mean response spectra (dashed-dotted line) and the probabilistic response 
spectra (dashed lines which from top to bottom correspond to p =0.99, 0.90, 0.50, 0.10, 
0.01) computed for optimal PTIFC AR(2) model in Figure 2.10, including Brune's 
source model. Structural parameters n = 3, '7 = 0.3 and ~ = 0 .05. (a) Ductility, (b) 
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Chapter 3 

Parsimonious Probabilistic Modeling of 
Strong Ground Motion 

3.1 Introduction 

In Chapter 2, stochastic second-order differential and difference equations were 

found to be adequate in modeling the details within a segment of the ground ac­

celeration time history. However, the large number of parameters involved in rep­

resenting the temporal nonstationarity in both the amplitude and the frequency 

content of ground motion, make the model inappropriate to incorporate in seismic 

risk studies and to use in constructing future acceleration time histories at a site 

consistent with a given seismic environment. The purpose of this chapter is to in­

corporate a small number of physically meaningful parameters in the second-order 

model in such a way that the model captures the essential features of the motion for 

the purpose of computing dynamic response. The findings in Chapter 2 will provide 

the background for proposing more parsimonious models. For this, the coefficients 

of the stochastic second-order differential and difference equations are treated as 

slowly-varying. Important statistical quantities such as the autocovariance function 

and evolutionary power spectral density function are first developed and simplifi­

cations are further introduced for broadband processes in Section 3.2. In Section 

3.3, appropriate conversion relationships are developed to link the continuous and 

the discrete formulations. A nine-parameter ground motion model is proposed in 

Section 3.4. Numerical results for verifying the adequacy of the model are also 

presented. Several remarks on the practical application of the model are given in 

Section 3.5. 
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3.2 Stochastic Second-Order Differential Equations with Variable 
Coefficients 

The earthquake ground acceleration y( t) at a site is treated as a stochastic 

process described by the second-order linear differential equation 

ii + 2(g(t)wg(t)iJ + w~(t)y = f(t)e(t), (3.1) 

where a dot denotes derivative with respect to t, (g(t), wg(t) are in general time­

varying coefficients, f(t) is a deterministic function and e(t) is a zero-mean Gaussian 

white-noise process. Equation (3.1) is a special case of the set of equations (2.3). 

The statistical properties of the process generated by (3.1) are next studied and 

simplified for slowly-varying coefficients and broadband processes. 

3.2.1 Autocovariance Function 

U sing the generalized Duhamel's integral, the value of the process y( t) at 

time t is 

y ( t) = 1 t h ( t, s) f ( s ) e ( s ) ds, (3.2) 

where h( t, s) is the impulse response function of the system. Making use of (3.2) 

and the property (2.5) of the white-noise process, the auto covariance function of 

the stochastic process y( t) has the integral form 

rmin(t,s) 

Ryy(t,s) = Jo h(t,r)h(s,r)f2(r)dT. (3.3) 

Letting s = t in the expression for the autocovariance function, the instantaneous 

variance Ry(t) of the process y(t) takes the form 

(3.4) 

Under the assumption of slowly-varying coefficients, stated in mathematical terms 

as: 

and >, .(t) = IWd(t)1 1 
2 - 2w d (t) W 9 (t) <t: , 

(3.5) 
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where Og (t) = (g (t)wg (t) and Wd (t) = Wg (t) .)1- (; (t), an approximate closed­

form solution for the impulse response function h(t,s) is derived (Appendix A.1) in 

the form: 

exp [- tOg(r)dr] [jt ] 
h(t,s)= J S sin wd(r)dr 

Wd(t)Wd(S) S 

t2s (3.6) 

= 0; t < s 

The impulse response is an exponentially-decaying oscillatory function with 

instantaneous rate of decay governed by the bandwidth Og(t) and instantaneous 

frequency of oscillations Wd(t). In the special case of constant Wg and (g, expression 

(3.6) simplifies to the well-known exact expression for the impulse response func­

tion of a differential equation with constant coefficients. For the linear differential 

equation (3.1), the instantaneous relaxation time is rrel(t) = l/og(t). This time 

gives a direct measure of the correlation time rcor of the output stochastic process 

y( t). An approximate measure of the time r n (s) required for h( t, s) to decay below 

n percent of its maximum value is 

(3.7) 

This value which depends only on the instant bandwidth Og(t) of equation (3.1) 

decreases as the bandwidth increases. 

Using the approximate form (3.6) for the impulse response function, the general 

expression for the autocovariance function of the process y( t) becomes 

Next, the special case of wide-banded processes is considered. The statistical 

properties of yet) are examined for white-noise excitation and then the results are 

extended to the case of slowly-modulated white-noise excitation. 

Consider the case where age t) is "sufficiently" large or, equivalently, the corre­

lation time rcor is "sufficiently" small so that the slowly-varying coefficients Og(t) 
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and wg(t) can be assumed to remain constant over the time interval [t - Tn, t]. 

For small enough n, the contribution to the value of the integrals in (3.8) comes 

mostly from the integration in the interval [8 - Tn, 8], while the remaining contribu­

tion is negligible. Neglecting the contribution of the integation outside the interval 

[8 - Tn, 8] in (3.8), the autocovariance function is further approximated by 

(exp[-a g (8)(t - 8)]l
S 

2 
Ryy(t,8)~ 2() f (T)exp[-2a g(8)(8-T)] 

Wd 8 0 

sin [Wd (8) (8 - T)] sin [Wd (t) (t - T)] dT ; t 2:: 8 (3.9) 

In the special case of a white-noise input, that is, f(t) = fo, the integration in 

(3.9) is performed analytically, leading to 

(3.10) 

where 

(3.11) 

foexp[-a (8)(t + 8)] [ /.] 
A (t, 8) = 4w~ (:) Wg (8) (g (8) COSWd (8)( t + 8) - vI - q (8 )smWd (8) (t + 8) 

exp [-a 9 (8) (t + 8)] [1 ( ) ( )] + 2 () () -;:--( ) cosw d 8 t - 8 , t > 8 4Wd 8 Wg 8 ...,g 8 
(3.12) 

and tan<pg (8) = a g (8) fWd (8). The variance of the process y(t) takes the form 

R~W) (t) = R~~) (t, t) = r~w) (t) + B (t) (3.13) 

where 

(w)()_ fa 
ry t - 4w~ (t)a g (t) 

(3.14) 

e-2 0'g(t)t 

B (t) = fo 4w~ (t)wg (t) 

[- (g ~t) + (g (t) cos (2Wd (t) t) - )1 - (~(t)sin (2Wd (t) t)] (3.15) 
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For "sufficiently" large t and s, depending on the value of Cl:g(t), the contribution 

of the terms A(t , s) and B(t) containing the exponential factor exp[-ag(s)(t + s)] 
becomes negligible. 

For large time difference T, the presence of the exponential factor in (3.11) 

leads to negligibly small values for r~~) (T, s). For smaller T, which yields significant 

values for r~~) (T, s), the coefficients Cl: g ( s) and wg( s) are assumed to remain almost 

constant throughout the interval [s, t], and therefore the autocovariance function 

in the neighborhood of the time s depends approximately on the properties of the 

system at the time s only. 

For a slowly-varying function f(t) whose value can be assumed to remain essen­

tially constant over the time interval [S-Tn , s], expression (3.9) can be approximated 

by 

Ryy(t , s) ~ ryy (T,S) = r~~) (T,s)f2 (s) (3.16) 

Also, for this case, the variance is given by 

Ry (t) = R~ w) (t) f2 (t) (3.17) 

The exact autocovariance function can be obtained numerically by treating 

equation (3.1) as a two-dimensional vector differential equation. The covariance 

matrix of the output vector process then satisfies the Liapunov matrix difFerential 

equation. Its numerical solution is used as a reference later in the applications to 

check the accuracy of the analytical approximations (3.16) and (3.17). 

3.2.2 Evolutionary Power Spectral Density Function 

A discussion on the evolutionary spectral representation of a stochastic pro­

cess is given in Appendix A.3. Using Priestley's definition, the EPSD function of 

the stochastic process y(t) is derived in Appendix A.3 in the form 

Syy (w, t) = 11' h (t , s) f( s) e -iw(,-,) dsl' (3.18) 

If we assume as before that the bandwidth Cl:g(t) is "sufficiently" large so that 

Cl:g(t) and wg(t) can be assumed to remain essentially constant over the time-interval 
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[s - In, s], then (3.18) takes the approximate form: 

1 11t . 12 Syy (w, t) ~ w~ (t) -00 f (s)exp [-etg (t) (t - s)] sin [Wd (t) (t - s)] e-tw(t-s)ds 

(3.19) 

In the case of white-noise excitation, that is, f(t) = fo = constant, the inte­

gration in (3.19) can be performed to obtain: 

(3.20) 

where H(w, t) has the form: 

1 
H (w, t) = -w2 + w~ (t) + 2cxg (t) wi (3.21) 

The quantity H(w, t) can be viewed, in an approximate sense, as the Fourier trans­

form with respect to I of the impulse response function h(t + I, t) referred to time 

t, that is, 

H(w,t)= l:h(t+"t)e-iWTd, (3.22) 

For a slowly-varying envelope function f(t), the expression for the EPSD is 

approximated by: 

Syy (w, t) = IH (w, t) 12 f2 (t) (3.23) 

3.2.3 Relation Between ACF and EPSD Function 

It can be seen that in the case of sufficiently large value of cxg(t) in addition 

to cxg(t), wg(t) and f(t) being slowly-varying, the covariance function and the EPSD 

are related by: 

Ryy (t + I, t) ~ 1: Syy (w, t) eiWT dw, (3.24) 

i.e., Ryy(t +1, t) is the Fourier transform of the EPSD as it is in the case of constant 

coefficients. Therefore, the EPSD is also, in an approximate sense, a complete 

description of the stochastic process y(t), since the crucial quantity Ryy(t + I, t) is 

completely determined. The EPSD can be viewed as the frequency decomposition 

of the total energy at time t. 
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3.3 Discrete Equation and Its Relation to the Continuous One 

The values of the continuous stochastic process y( t) at regular time intervals 

tlt form the discrete stochastic sequence {y( ktlt)}. Let Yk be an approximation to 

the value of y(t) at the time t = ktlt, then the sequence {yd is assumed to satisfy 

the second-order difference equation: 

Yk - al (k) Yk-l - a2 (k) Yk-2 = a (k) ek (3.25) 

where al (k), a2 (k) are slowly-varying coefficients, a (k) is a deterministic envelope 

function and ek , k = 1, ... ,N is a discrete zero-mean, Gaussian white-noise process 

satisfying (2.8). As in the stationary case, conversion relationships between the 

parameters of the continuous and the discrete equation are obtained by imposing 

two conditions. The first condition enforces the free vibration solutions of the 

discrete and the continuous equation to be equal at time tk = ktlt , k = 1, ... , N. 

Therefore, the two linearly independent solutions x~l) and x~2) of the homogeneous 

part of the continuous equation must satisfy: 

It is shown in Appendix B that the above condition results in the approximate 

relationships: 

al (k) = 2exp (-wg (tk) (g (tk) tlt) cos (w g (tk) J1 - q (tk)tlt) 

a2 (k) = -exp (-2wg (tk) (g (tk) tlt) 

(3.27a) 

(3.27b) 

For time-invariant coefficients, relationships (3.27) are exact and independent of the 

index k. 

The second condition, which relates the forcing parts of equations (3.1) and 

(3.25), enforces the autocorrelation functions of the discrete and the continuous 

process to be equal at the points of definition of the discrete process, that is , 

(3.28) 

The covariance function of the discrete process is derived in Appendix C and 

using equation (3.28) it leads to the relationship 

f(tk)vM . 
a (k) = () exp [-a g (tk) tlt] sm [Wd (td tlt]. 

Wd tk 
(3.29) 
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The assumption of slowly-varying coefficients ag(t) and wg(t) is involved in the 

approximations (3.27) and (3.29). According to the relationships developed herein, 

the coefficients of the discrete model are interpreted in terms of the coefficients of 

the continuous model, and vice versa. 

3.4 Parsimonious Ground Motion Model 

From the previous analysis, it is concluded that the well-known expressions for 

the autocovariance function and PSD function of stationary processes generated by 

stochastically-excited second-order differential equation with constants coefficients 

wg , (g and f, can be extended in an approximate sense to the case of slowly-varying 

coefficients and heavily-damped equations by just replacing the constants in the 

stationary expressions with the corresponding time-varying ones. Therefore, the 

statistical structure of the stochastic process at time t is approximately equivalent 

to the statistical structure of the stationary process generated by equation (3.1) 

holding its parameters wg(t), ag(t), and f(t) constant at their values at t. 

Guided by the properties of the stationary process, the EPSD function provides 

all pertinent information regarding the frequency and amplitude content of the 

stochastic process y(t) at time t. The model coefficients wg(t), ag(t) and f(t) have 

the following interpretations. The instantaneous frequency wg(t) is an approximate 

measure of the predominant frequency present in the process at time t. The damping 

ratio (g(t) is an approximate measure of the frequency range around wg(t) which 

contributes strongly to the output at time t. Using (3.17) to account for the effects 

of the time variation of wg(t) and (g(t), the form of the modulation f(t) determines 

the output variance Ry(t) of the stochastic process at time t. The time variation 

of Ry (t) specifies the way the variance of the stochastic process y( t) changes with 

time independently of its frequency content. Such interpretations are not true if 

the assumptions requiring the process to be broadband and coefficients to be slowly 

varying are removed. For lightly-damped processes and substantial changes of the 

model coefficients, the frequency decomposition of the process at time t is given by 

the integral form (3.18). 

The previous concepts are next applied in the modeling of ground motion. The 
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time variation of wg(t), (g(t), and Ry(t) is chosen such that the stochastic process 

y(t) resembles certain features observed in real accelerograms. In order to make the 

model efficient to use in seismic risk analyses and in future predictions of acceleration 

time histories from a given seismic environment at a site, parametric functions need 

to be constructed for the time variation of the model coefficients in terms of a few 

physically meaningful parameters. The parametric forms accounting for the time 

variation of wg(t), Ctg(t), and Rg(t) should be consistent with physical considerations 

and, in addition, they should be general enough to realistically account for the 

nonstationarities observed in real accelerograms. 

Based on detailed analyses of earthquake accelerograms in Chapter 2, an expo­

nentially decaying function for wg ( t) and a linearly varying function for the band­

width Ctg(t), that is, 

Wg(t,~) = (PI + ¢2 e-¢>3
t 

Ctg(t,~) = ¢4 + ¢5 t 

(3.30) 

(3.31) 

provide an overall adequate fit to the observed average time-variation of these quan­

tities. Here, ~ are the model parameters and those defining the envelope. 

The parameters ¢1, ¢2, and ¢3 in the expression for W 9 ( t,~) can be related to 

physical parameters accounting approximately for the dominant frequencies wP ' W s , 

and Wr of the P , S, and surface waves present in the ground motion, respectively. 

Since P-wave groups dominate the motion in the beginning, S-waves dominate at 

the maximum, and surface waves dominate towards the end of the earthquake ac­

celeration time history, the relationship between the parameters ¢1, ¢2, and ¢3 and 

the parameters wP ' w s , and Wr can be obtained by assuming that 

Wp == Wg(O,~) = ¢1 + ¢2 

- (t B) - A-. + A-. -¢>3 t max Ws = Wg max,_ - 'f'1 'f'2 e 

(3.32a) 

(3.32b) 

(3.32c) 

where tmax is the time that the intensity of the ground motion attains its maximum. 

Solving for ¢1, ¢2, and ¢3, and substituting into (3.30), the expression for Wg(t,~) 
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in terms of the parameters wP ' Ws, and Wr is 

(3.33) 

The two parameter </;4 and </;5 in the expression for a g ( t,~) can be related to 

the damping ratio of the second-order model at two different times. For example, 

if (p and (r are the damping ratios corresponding approximately to P and surface 

wave groups, respectively, and assuming that w(t,~) ~ Wr after sufficient time tr, 

then 

(3.34a) 

and 

(3.34b) 

In this case, the expression for a g (t, ft.) in terms of (p and (r is 

(3.35) 

The standard deviation Ig(t) = -JRy(t) of the output process y(t), which 

accounts for the time-variation of the intensity of the accelerograms, is adequately 

modeled by the envelope function 

Ig (t) = Imax r f3 exp [,8 (1 - r)], r= 
tmax + to 

t + to 
(3.36) 

For to = 0, envelope function (3.36) is the same as the one proposed by Saragoni 

and Hart [1974] defined by Equation (2.1). In their work, the explicit parameters 

a and, are related to the parameters Imax and tmax as follows: 

,8 ,= , 
tmax + to 

a = Imax ( e ) f3 
tmax + to 

(3.37) 

The parameters Imax and tmax are the maximum intensity and the time of the 

maximum intensity of the ground acceleration, respectively. The variable to is the 

time of the first non-zero acceleration before the triggering time, introduced to 

provide flexibility in fitting the data, and it is not a real parameter in the model. 

The parameter ,8 is a nondimensional measure of the duration of the accelerogram. 
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If the duration of strong ground shaking is defined by the time interval over which 

the intensity is higher than, say, >. percent of the maximum intensity I max , then 

the duration tdur is related to (3 by: 

(3.38a) 

where Sl, S2 are the roots of the equation 

in(O.Ol>') = (3 (in Si + 1 - 8i), i = 1,2 (3.38b) 

A nondimensional plot of the envelope (3.36) is shown in Figure 3.1( a) for different 

values of (3. The nondimensional duration Tdur is plotted in Figure 3.1(b) versus (3 

for)' = 10 and 20. 

Incorporating these average trends into the second-order time-varying model 

and including Brune's source model (Section 2.7.3), an earthquake accelerogram can 

be completely characterized by at most nine parameters cP1, cP2, cP3, cP4, cPs, I max , 

tmax , (3 and f e, forming a set fl.. Utilizing the discrete version (3.25) of the model, 

the Bayesian methodology in Section 2.4.1 can be used efficiently to estimate the 

optimal model, i.e., the most probable parameter set ~ that provides, in a statistical 

sense, the best fit to a "target" accelerogram. For this, the conversion relationships 

(3.27a), (3.27b), and (3. 29) between the discrete and the continuous formulation 

are used , and the object ive function (2.32) is minimized in terms of the parameter 

set fl.. The estimation procedure will be illustrated for specific accelerograms in the 

next section. 

3.4.1 Analysis and Sirnulation of Earthquake Accelerograms 

The C048.1 and the EI Centro Array, Stn 12 accelerograms given in Tables 

2.1 and 2.2 are used as examples to demonstrate results and check the model ad­

equacy. Both records are chosen because they show a significant time-variation of 

their correlation structure. The optimal models were computed for both accelero­

grams and the corresponding smooth variations of wg(t), cyg(t) and Ig(t) are plotted 

in Figures 3.2 and 3.4. For comparison purposes, the results from the more detailed 

modeling computed by the moving time-window approach in Chapter 2, are also 
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shown in the same figures. The discrete model (3.25) is used to synthesize artificial 

accelerograms. The original accelerogram and two simulations are shown in Figures 

3.3 and 3.5 for each target accelerogram. From these figures, it is clear that the 

nine-parameter model captures very well the average time variation of the ampli­

tude and the frequency content. Also, simulations show characteristics similar to 

those observed in real accelerograms. 

The optimal model for the C048.1 record is next used to test the basic model 

assumptions and check the accuracy of the approximations developed for the auto­

covariance function. Comparison of the approximate autocorrelationfunction (3.16) 

with the exact one computed numerically is shown in Figure 3.6 for different times 

s. The dotted lines in Figure 3.6 correspond to the exact autocovariance function 

of the equivalent discrete process computed by using the conversion relationships 

(3.27) and (3.29). A very good accuracy is observed which justifies the use of the 

simple approximate expressions in modeling broadband ground acceleration time 

histories. 

The EPSD function of the optimal models corresponding to the two recordings 

are shown in Figures 3. 7( a) and (b). These figures demonstrate that the instan­

taneous frequency components that strongly contribute to the acceleration time 

history shift to the lower frequencies as time advances. The effect of this shift on 

the response of linear and nonlinear structures will be studied in Chapter 5. 

3.4.2 Structural Response and Model Adequacy 

The C048.1 record in Table 2.1 is used to study the structural response of 

linear elastic and inelastic structures. The probabilistic 5% damped linear elastic 

response spectra computed from the optimal model are shown in Figure 3.8 and 

they are compared to the response spectra corresponding to the "target" accelero­

gram. Brune's model with Ie = O.2Hz has been included to correct the very low 

frequency components. The probabilistic inelastic response spectra for the accelera­

tion, velocity, displacement ductility, and permanent residual displacement ductility 

are shown in Figure 3.9 and they are also compared to the inelastic response spectra 

corresponding to the "target" accelerogram. The values of the structural param-
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eters (see Section 2.5) are 11, = 3, T/ = 0.3, and ( = 0.05. The level curves with 

probability of 99, 90 , 50, 10 and 1 percent to be exceeded are shown. The mean 

value of each response parameter is also shown. It is expected that the 99 and 1 

percent level curves on the spectral will provide a lower and an upper bound for the 

response spectra of the "target" accelerogram. The response parameters computed 

from the "target" accelerogram lie between the 1 % and 99% level curves for almost 

every range of initial structural frequencies. This is an indication that the ground 

motion model performs well in modeling the features of ground acceleration for the 

purpose of computing structural response. 

The separation between the 1% and 99% level curves is directly proportional 

to the sensitivity of the response to the details of the ground motion left random 

by the ground motion model. It is observed that the lower the structural frequency, 

the more sensitive the maximum displacement , velocity, and accelerat ion are to the 

random characteristics of the ground motion model. From the maximum ductility 

response statistics in Figure 3.9( c) , the structure becomes inelastic with high prob­

ability for initial structural frequencies ranging from 2 to 10Hz. From comparisons 

between the linear elastic and inelastic response statistics in Figures 3.8 and 3.9, the 

maximum velocity and acceleration are less sensitive to the random characteristics 

of the ground motion model than the corresponding elastic quanti ties in the fre­

quency range from 2 to 10Hz of strong inelastic response. Moreover, in this range, 

the maximum ductility of the response is more sensitive to the random details of 

the ground motion than the m aximum displacement of the elastic system. Finally, 

the residual ductility shown in Figure 9( d) is very sensitive to the random details 

of the ground motion model. 

3.5 Concluding Remarks 

A new ground m otion model was proposed to treat probabilistically the un­

certainty associated with the ground acceleration time history, and t o model with 

at most nine parameters the fea.tures of the accelera tion time history which are 

important for computing dynamic response. Using relationships (3.32) , (3.35), and 

(3.38), the parameters in the set fl of the model can be explicitly expressed in t erms 
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of the more physical parameter I max , t max , tdur, fe, W P' W s , w r , (p and (r. These 

parameters account for the maximum acceleration, the time that the maximum 

occurs, the duration of shaking, the corner frequency and the average dominant 

frequencies of the different wave groups present in the accelerogram. One could 

benefit from the simple interpretation of the model parameters to construct full 

acceleration time histories with certain desired characteristics. 

The probabilistic methodology developed in Chapter 2 to extract the "opti­

mal" nonstationary discrete model from an actual accelerogram was successfully 

demonstrated by using specific accelerograms that show significant time variation 

in both amplitude and frequency content. The methodology, which treats simulta­

neously the amplitude and frequency content nonstationarities, is much simpler to 

implement than other methods. The discrete model provides an efficient algorithm 

for the systematic processing of a database of accelerograms, and therefore asso­

ciates each accelerogram with at most nine parameters. An important application 

of such a database would be to employ appropriate seismic risk analyses to prob­

abilistically relate the model parameters with variables accounting for the seismic 

environment at a site. This will provide the means of predicting the full accelera­

tion time histories at a site by probabilistically specifying the nine parameters of 

the model. 

Extracting a stochastic model from an accelerogram also allows the sensitivity 

of the structural response to the details of the ground motion to be examined, 

while the overall features of the excitation are fixed. The discrete model provides a 

simple and computationally efficient algorithm for the generation of an ensemble of 

artificial digitized accelerograms with similar characteristics to a given earthquake 

accelerogram, and it treats probabilistically the uncertainty associated with the 

acceleration time history. These simulated accelerograms could be further used in 

response studies of linear elastic and inelastic structures. The results of such studies 

indicate that the lower the structural frequency of linear structures, the more the 

displacement, velocity and acceleration are sensitive to the details of the ground 

motion. Also, the more inelastic the response of a structure is, the less sensitive the 

maximum velocity and absolute acceleration is to ground motion details. However, 
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the maximum ductility and especially the residual ductility of the inelastic response 

are very sensitive to the details of an acceleration time history which has its overall 

features fixed. 

The simplified statistical structure of the continuous model is promising for 

incorporating the model in analytical random vibration studies and for mathemati­

cally studying the importance of the temporal nonstationarity in both the amplitude 

and frequency content of ground motion on the response of both linear and nonlinear 

structures. These studies are presented in the next two chapters. 
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Figure 3.1. (a) Nondimensional time variation of the ground motion intensity for different values 
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Figure 3.2. Time variation of (a) undamped frequency Wg (solid curves), bandwidth Wg~g (dashed­
dotted curves), damping ratio ~g, and (b) intensity fg obtained by the nine-parameter 
model (smooth curves) and the moving time-window approach (other curves) for the 
C048.1 record in Table 2.1. 
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Figure 3.7. The EPSD function plotted at different times (a) C048.1, (b) El Centro Array, Stn 12. 
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Figure 3.9. Comparison between the inelastic response spectra of the C048.1 accelerogram (solid 
line), the mean response spectra (dashed-dotted line) and the probabilistic response 
spectra (dashed lines which from top to bottom correspond to p =0.99, 0.90, 0.50, 0.10, 
0.01) computed for the nine-parameter optimal model. Structural parameters n = 3, 
'1 = 0.3, and ~ = 0.05. 
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Chapter 4 

Transient Response Characteristics of Stochastically 
Excited Linear and Nonlinear Systems 

4.1 Introduction 

The stochastic properties of the response of a structure subjected to a stochas­

tic excitation are completely defined by the joint probability density functions of 

the response. For linear structures and for Gaussian excitation, the response is 

also Gaussian. Therefore, only the mean and the covariance response is needed to 

completely determine the joint probability density function of the response. The 

problem of determining the covariance response of a linear structure subjected to 

nonstationary excitation has been well-formulated. A selective review of the ex­

isting methods may be found in Hou (1990). Among the difFerent methods, the 

Liapunov direct method is often used to obtain numerical solutions for the covari­

ance response. In the case of lightly-damped structures and wide-banded excita­

tions, approximate methods (Caughey and Stumpf, 1961, Spanos, 1983 and Igusa 

1988) have been introduced to considerably simplify the problem. For wide-banded 

excitations, such as earthquake ground motion, with nonstationarities in both the 

amplitude and the frequency content, the existing approximate methods often result 

in significant errors. The reason is that in the range of system and excitation param­

eters of practical interest, the assumptions for the validity of the approximations 

are violated. 

In this chapter, an approximate method is developed to considerably simplify 

the original equations for the covariance of the nonstationary response of linear 

systems for a broader range of system and excitation parameters. The method treats 

wide-banded excitations often encountered in earthquake applications. The basic 
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idea is to approximate the Liapunov differential matrix equation for the mean-square 

response of a structure by a much simpler lower-order differential equation. For the 

case of single-degree-of-freedom (SDOF) oscillators, the approximations cover any 

range of oscillator parameters and they are not restricted to the case of lightly­

damped oscillators as in Spanos(1983) and Igusa (1988). In addition, conditions 

for the approximations to be correct as well as higher-order terms that improve the 

approximations are derived. Multi-degree-of-freedom (MDOF) linear systems are 

also treated to considerably improve the existing approximations (Bucher, 1988) , 

and to extend their range of applicability to nonstationary non-white excitations. 

The response of nonlinear SDOF structures is also considered. Extensive re­

views regarding the nonlinear random vibration problem may be found in Graendall 

and Zhu (1983), and Spanos and Lutes (1986). For the purpose of this study, tran­

sient equivalent linearization is used to replace the equation of motion of a nonlin­

ear SDOF oscillator by an equivalent second-order linear differential equation with 

variable coefficients. For a Gaussian excitation, this approximate solution technique 

assumes that the response is also Gaussian and, therefore, its statistical properties 

are completely determined by the mean and the covariance of the response. Con­

sidering the equivalent linear system, the Liapunov differential matrix equation for 

the covariance of the response becomes nonlinear. Assuming that the equivalent 

linear coefficients are slowly-varying functions of time, a similar formulation to that 

of the linear oscillator is developed to considerably simplify the equations for the 

mean-square and the covaria.nce of the response of the equivalent linear oscillator. 

The approximate analysis developed for the linear SDOF oscillator is used as a 

guide for treating the case of the nonlinear SDOF oscillator. 

Besides the considerable simplifications attained by the approximate formula­

tion, they also provide insight into the nonstationary response characteristics of a 

linear and nonlinear SDOF oscillator under the following assumptions, i) the excita­

tion process is broadband with slowly-varying correlation structure (e.g., earthquake 

loads), and ii) the coefficients of the equivalent linear oscillator are slowly varying 

functions of time. Similarities and differences with the stationary response charac­

teristics are also explored. Simplified example excitations as well as the realistic 
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earthquake excitation described in Chapters 2 and 3 of this thesis are used to verify 

the accuracy of the approximations. The results indicate that the essential be­

haviour of the response is preserved without significant loss of accuracy, which is 

often of the order of 1 % for cases of practical interest. 

4.2 Mathematical Formulation of the Response 

Let the response of a stochastically excited linear or nonlinear SDOF oscillator 

be governed or approximated by the differential equation 

x(t) + 2a(t)x(t) + w2 (t)x(t) = G(t) ( 4.1) 

where aCt) = ((t)w(t) and wet) are deterministic time-varying coefficients and the 

excitation G( t) is assumed to be a zero-mean Gaussian stochastic process. In sum­

mary, the equation of motion (4.1) arises in the following situations: 

1. Modal analysis of linear MDOF structures subjected to random loads. Equa­

tion (4.1) corresponds to the modal equation with constant modal frequency 

wet) = Wo and constant damping ratio ((t) = (. Usually ( « 1 with typical 

range from 0.01 to 0.1. 

2. Transient equivalent linearization applied to a stochastically excited nonlin­

ear SDOF oscillator. Equation (4.1) corresponds to the equivalent linear sys­

tems with equivalent frequency wet) = weq(Q(t)) and equivalent damping ra­

tio ((t) = (eq(Q(t)), where Q(t) is the mean-square matrix of the state vec­

tor (x(t), x(t))T. For strongly excited nonlinear structures, the assumption 

(eq ( Q( t)) < < 1 need no longer be valid. 

3. Modeling of stochastic loads to use as inputs for structural response studies 

with w( t) and (( t) being prescribed functions of time. Specific examples are 

the general class of models proposed in Chapters 3 with evolutionary power 

spectral density function , and the well-known Kanai (1957) and Tajimi (1961) 

model. In ground motion modeling, the process x(t) is usually broadband with 

typical values of (( t) ranging from 0.2 to 0.6. 

For mathematical convenience, equation (4.1) is rewritten in state-space form 
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as 

i(t) = A(t)z.(t) + fl(t) (4.2) 

where 

_ (X(t)) 
.£(t) - x(t) , A(t) = (-W~(t) -2~(t))' fl(t) = (G~t)) ( 4.3) 

From the linearity of equation (4.1) and the Gaussian assumption of the excitation, 

the response vector (x, x)T is also a zero-mean Gaussian stochastic process. 

The solution of equation (4.2) in terms of the principal matrix <1>( t, 7) is 

The principal matrix <1>( t, 7) is obtained from the solution of the system 

ci>(t, 7) = A(t)<1>(t ,7) 

<1>(7,7)=1 

( 4.4) 

(4.5) 

where < . > denotes differentiation with respect to the independent variable t. For a 

time-invariant matrix A( t) = A, a closed-form solution can be obtained for the prin­

cipal matrix <1>(t, 7) which depends on the time difference t - 7. For a time-variant 

matrix A( t) a closed-form solution does not exist, in general, and numerical inte­

gration is necessary. For slowly varying A(t), however, an approximate closed-form 

solution can be obtained. Such an approximation, together with the appropriate 

conditions for its validity, are derived in Appendix A, and it will be used later in 

this analysis. 

4.2.1 Mean-Square Response 

Let Q(t) = E[!f(t).f.T(t)] denote the mean-square matrix of the response. 

Assuming zero initial conditions for !f(t), Q(t) is obtained by the solution of the 

Liapunov differential matrix equation 

Q(t) = A(t)Q(t) + Q(t)AT(t) + L(t) + LT(t) 

Q(O) = 0 
( 4.6) 
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where 

(4.7) 

The Liapunov differential matrix equation is nonlinear for a stochastically equivalent 

linear system since the matrix A(t), and the principal solution <I>(t, r) appearing in 

the "forcing" integral term L(t), depend on the solution matrix Q(t) in this case. 

Let qij(t), i = 1,2, j = 1,2 denote the entries of the covariance matrix Q(t) and 

Lij(t), i = 1,2, j = 1,2 denote the entries of the matrix L(t). From the symmetry 

of Q(t), equation (4.6) can be cast in the component form 

qll(t) = 2q12(t) 

q12(t) = q22(t) - w
2(t)qll (t) - 2a(t)q12(t) + L12(t) 

q22(t) = -2w2(t)q12(t) - 4a(t)q22(t) + 2L22(t) 

4.2.2 Covariance Response 

(4.8a) 

(4.8b) 

( 4.8c) 

Let S(t,s) = E[~(tkt(s)] denote the covariance of the response vector ~(t) 

between the times t and s, then the differential matrix equation for obtaining 5( t, s) 

IS 

S(t,s) = A(t)5(t,s)+UT (t,s), t~s 
(4.9) 

5(s, s) = Q(s) 

where 

(4.10) 

with U(t, t) = L(t). 

For the special case (4.3) of the vector equation (4.2), the quantity U(t,s) is 

simplified to 

(

0 r <I>12(s,r)E[G(t)GT (r)]dr ) 
U(t,s) = Jo s 

o 10 <I>22(s,r)E[G(t)CT (r)]dr 
(4.11 ) 
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4.2.3 Special Case: Modulated White-Noise Excitation 

The case of second-order linear systems with modulated white-noise excita­

tion is of special interest for the following reasons. It simplifies the formulation for 

the covariance response, it provides the essential characteristics for the mean-square 

response of wide-banded modulated nonwhite excitations, and it is often used to 

model stochastic structural loads. Let 

G(t) = J(t)e(t) ( 4.12) 

be a modulated white-noise process, where J(t) is a deterministic envelope function 

and e( t) is a stationary white-noise process with properties 

E[e(t)] = 0 and E[e(t )e(s)] = {j(t - s) (4.13) 

Under such an excitation, the forcing integral terms L(t) and U(t, s) which appear 

in the formulation of the covariance matrix equation simplify to 

L12(t) = J2(t)if?12(t , t) = 0 

L22(t) = J2(t)if?22(t, t) = J2(t) 

U(t,s)=O, t>s 

( 4.14) 

and, therefore, they are independent of the principal matrix solution if? ( t, T). Solving 

equation (4.9), the covariance of the response at two different times t and s can be 

expressed in terms of the covariance response for t = s as 

Set,s) = if?(t,s)Q(s) ( 4.15) 

Once the mean-square matrix of the response has b een found, the covariance of the 

response can easily be obtained by using (4.15). 

For the general non-white excitation, the numerical integration for computing 

the mean-square matrix or the covariance matrix of the response is usually time­

consuming because of the additional numerical integration required for each time 

step to evaluate the convolution integral (4.7) or the integral (4.10), respectively. 

One of the purposes of this study is to approximate these integrals by simple al­

gebraic expressions, and therefore to reduce considerably the computational time. 
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Most of the results are presented for the mean-square response and they can be 

easily extended to evaluating the covariance response since the integral (4.10) is 

similar to the convolution integral (4.7). In the analysis that follows, it is assumed 

that the oscillator is underdamped (( < 1). The case of linear SDOF oscillators 

is first treated and then the approximate formulation is extended to the case of 

nonlinear SDOF oscillators. 

4.3 Formulation for the Mean-Square Response of Linear Time­
Invariant SDOF Oscillators 

For a linear SDOF oscillator with angular frequency Wo and damping ratio (, 

the Liapunov differential equation (4.8) for the transient mean-square response is 

linear with time-invariant coefficients wet) = Wo and ((t) = (. 

4.3.1 Mean-Square Displacement 

Eliminating q12(t) and q22(t) from the set of equations (4.8), the following 

third-order differential equation in terms of qll (t) is obtained 

qg)(t)+6aqii)(t) + [4W6 +8a2] qg)(t)+8aw6qll(t) = 4L22(t)+8aLI2(t)+2LI2(t) 

( 4.16) 

The characteristic equation has one real negative root PI = -2(wo and two complex 

roots P2 = -2(wo + i2wo 'vII - (2 and P3 = -2(wo - i2wo vII - (2. Therefore, the 

third-order linear differential equation for qll (t) can be split into the first-order 

linear differential equation 

qll(t) + 2aqll(t) = 2r(t) 

qll(O) = 0 
( 4.17) 

associated with the real negative root , and the second-order linear differential equa­

tion 
i;(t) + 4m:(t) + 4w6r(t) = get) 

(4.18) 
1'(0) = 0, 1'(0) = 0 

for the term r( t), which is associated with the two complex roots. The forcing term 

of the second-order linear differential equation is 

(4.19) 
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and it simplifies to g(t) = j2(t) for the modulated white-noise excitation (4.12). 

The mean-square displacement response satisfies a first-order differential equa­

tion which is less complicated and more workable than the third-order differential 

equation (4.16). The forcing term r( t) is still complicated and it is obtained by in­

dependently solving the second-order differential equation (4.18). As it will be seen 

later, the dynamics of the first-order differential equation provides all the essential 

characteristics of the response while the dynamics of the second-order differential 

equation has secondary effects on the mean-square response. 

Spanos (1980, 1983) used an entirely different approach to obtain a first-order 

differential equation similar to the equation (4.17) obtained herein. In his formu­

lation, Spanos used the stochastic averaging method where he introduced in the 

beginning of his analysis the following approximations: 

a. The SDOF oscillator is lightly-damped; 

b. The excitation is broadband and its EPSD is slowly varying; and 

c. {excitation strength} = O(()x{response strength}. 

The present analysis is general and it does not incorporate any approximations. 

It results in a first-order differential equation for the mean-square displacement, 

similar to that obtained by Spanos , with the only difference being in the forcing 

terms. Our forcing term is a generalized function r( t) given by (4.18) and does not 

incorporate any approximations. It turns out that under the approximations used 

by Spanos, the two formulations yield identical results. 

4.3.2 Mean-Square Velocity 

U sing the first-order differential equation (4.17) for the mean-square dis­

placement and (4.8b), the mean-square velocity q22(t) is related to the mean-square 

displacement ql1 (t) by the simple algebraic expression 

( 4.20) 

where 

(4.21 ) 
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4.3.3 Mean-Square Absolute Acceleration 

If -G(t) represents the base acceleration of the oscillator , then the absolute 

acceleration a(t) of the response is given by 

a(t) = x(t) - G(t) = -2o:x(t) - w6 x (t) ( 4.22) 

Using (4.8a) , (4. 17) , and (4.20), the mean-square absolute acceleration qa(t) = 

E[a2(t)] is related to the mean-square displacement qll(t) of the response by the 

simple algebraic expression 

( 4.23) 

where 

(4.24a) 

and 

(4.24b) 

4.3.4 Displacement-Velocity Correlation 

Using (4.17) and (4.8a), the quantity q12(t) is related to the mean-square 

displacement qll (t) of the response by the simple algebraic expression 

4.3.5 Similarities Between Transient and Stationary Mean-Square 
Response 

( 4.25) 

The expressions for the transient mean-square response are a generalization 

of the expressions 

2L22 + 4o:L 12 

qa = w5(1 + 4(2)qll - 4(2w6L12 

q12 = 0 

( 4.26) 

( 4.27) 

( 4.28) 

( 4.29) 
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governmg the stationary response of a SDOF oscillator excited by a stationary 

stochastic process. Relations (4.26) to (4.29) can easily be derived by setting Q = 0 

in the Liapunov matrix equation (4.6). The mean-square velocity and the mean­

square absolute acceleration of the nonstationary response are related to the non­

stationary mean-square displacement by simple algebraic expressions which could 

be viewed as a generalization of the stationary relations (4.27) and (4.28) , respec­

tively. The additional terms E22(t), E12(t) and Ea(t) appearing in the expressions 

(4.20) and (4.23) account for the nonstationarity of the response. As it will be seen 

in the numerical results in Section 4.4.2, E22(t), E12(t) and Ea(t) are in general small 

compared to unity and they can be neglected. Therefore, the mean-square velocity 

and absolute acceleration can be obtained in terms of the mean-square displacement 

by the stationary relations, after replacing the time-invariant quantities with the 

time-varying ones corresponding to time t. 

4.3.6 Exact Solution for the Mean-Square Response 

The solution of equation (4.17) can be derived in terms of the convolution 

integral 

qll(t) = 2it e-2(,w o(t-r)1'(r)dr ( 4.30) 

where r(t) is obtained by the solution of (4.18) in terms of the convolution integral 

1 it r(t) = - e-2 (,wo(t-r) sin2wd(t - r)g(r)dr 
2Wd 0 

( 4.31) 

Substituting the integral form (4.31) for r( t) into (4.30), interchanging the order 

of integrations and after algebraic manipulations, an exact solution for qu (t) is 

derived in the form 

1 it 1 it qll(t) = ~ e-2 (,wo(t-r)g(r)dr - ~ e-2 (,wo(t-r) COS2Wd(t - r)g(r)dr 
2Wd 0 2Wd 0 

( 4.32) 

For certain get), it is possible to evaluate these expressions analytically and so 

obtain an exact closed-form solution for the mean-square response. If the integra­

tions cannot be performed analytically, it is more efficient to numerically integrate 

equations (4.8), rather than the integrals in (4.32). 
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4.3.7 Exact Solution for the Covariance of the Response: Modulated 
White-N oise Excitation 

For modulated white-noise excitation, the covariance of ei ther the displace­

ment or the velocity or the absolute acceleration of the response has been derived 

in Appendix E in the form 

cos [Wd( t - s) + <p(s)] 
S( t, s) = q( s) exp ( -a( t - s )) -"'""-----'--~"""77""..:.......::.....:...:. 

cos [<PC s)] 
( 4.33) 

where q( s) is the mean-square of the displacement, or the velocity or the absolute 

acceleration of the response, respectively. The expressions for <p( s) corresponding 

to a particular response quantity are given in Appendix E in terms of the system 

parameters and the mean-square matrix of the response. The above expression for 

Set , s) is exact , simple, gives more insight than the original expression (4.15) , and 

it holds for any range of oscillator parameters. Additional simplifications for S( t, s) 

depend on simplifying the expressions for the mean-square response. 

4.4 Approximation for the Mean-Square Response of a Linear 
Time-Invariant SDOF Oscillator 

The objective of the following sections is to approximate the mean-square 

displacement of the response in such a way that the essential features of the response 

are preserved without significant loss of accuracy. An efficient way to do this is to 

use the two-timing method to solve the second-order differential equation (4.18) for 

an arbitrary forcing term get). The slow time is governed by t and the fast time 

T = wot is governed by t he reciprocal of the "high" angular frequency "'-'0. Doing 

so, a series expansion for ret ) is derived (Appendix D) in the form: 

ret) = (i~:~2 {1- ~i~i ~ (J1 ~ (2 ,c) 
_ 2( get) + g(O) Y ( 1 . - (1 - 2C)) 

2wog(t) 2wog(t) y'1 - (2 ' 

(1 4(2) get) + g(O) (1 ((3 4(2)) 
- - (2wO)2g(t) (2wo)2g(t) Y y'1 _ (2 ' - -

~ (g(i)(t)) 00 (g(i)(O) )} + ~ 0 (' r () + L 0 ( r ·) y (p , sin <p ) ( 4.34a ) . 2wo 19 t . 2wo 19(t 
1=3 z=3 
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where the function c.p (p, sin ¢) has the exponentially decaying oscillatory form 

c.p (p, sin ¢) = p exp (-2(wot) cos (2wdt + ¢) (4.34b) 

The first three terms in the series expansion are derived and only the order of 

magnitude of the higher-order terms is shown. The solution for r(t) consists of a 

non-oscillatory term plus an exponentially decaying oscillatory term with period of 

oscillations 7r j Wd. In general, the solution of (4.17) to each non-oscillatory term 

in the expansion for r(t), cannot be obtained analytically. However, for the i-th 

oscillatory term denoted in general by 

(4.35) 

an exact analytical solution exists in the form 

( 4.36) 

and gives the contribution to the value of qll(t) due to the i-th oscillatory term in 

r(t). It is interesting to note that the magnitude of the oscillatory terms in r(t) 

is divided by the damped angular frequency Wd in the corresponding solution for 

qll(t), and its magnitude depends on g(i)(0)j(2wo)i, i = 1,2, .... 

For heavily-damped oscillators, that is for large (, the oscillatory terms decay 

quickly to zero. A feel for the time interval over which the oscillatory terms con­

tribute significantly to the value of the quantity r( t) can be gained by considering 

that for a fixed ( each oscillatory term decays to n% of its maximum value after 

In(100)-ln(n)J (2 
PT = 1-

27r( 
( 4.37) 

cycles of oscillations with period 7r jWd. The value of PT versus ( is graphed in 

Figure 4.1 for different values of n. For lightly-damped oscillators, that is ( « 1, 

the oscillatory terms persist for several cycles of oscillations. 
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4.4.1 Approximate First-Order Differential Equation for the Mean­
Square Displacement 

The proposed approximations are a) to neglect the small oscillatory terms 

in the series expansion, an assumption that preserves the essential features of the 

response, and b) to treat g(t) as a slowly-varying function and, assuming that 

g(O) = 0, to retain only the dominant term 

g(t) 
ro(t) =-

. 4w2 
o 

( 4.38) 

Substituting (4.38) into (4.17), the mean-square displacement of the response can 

be obtained by solving the much simpler first-order differential equation 

The solution of (4.39) is 

'. g(t) 
qll(t) + 2(WOQll(t) = -2 2 

Wo 

1 1t Qll(t) = -2 e-2(wo(t-r)g(r)dr 
2wo 0 

(4.39) 

( 4.40) 

and involves the evaluation of a convolution integral. Depending on the complex­

ity of g(t), the approximate mean-square displacement of the response can either 

be obtained numerically by integrating equation (4.39), or alternatively, it can be 

obtained analytically by simplifying the convolution integral in (4.40). 

The conditions for neglecting the higher-order terms are directly determined 

by the series expansion, and they are mathematically stated as 

i = 1,2, ... (4.41) 

These conditions specify how slow the forcing term g(t) should vary with time so 

that the dominant solution ro( t) is an adequate approximation, and they will be 

referred to as the "slowly-varying" conditions for g(t). For example, the condition 

for i = 1 is roughly that the fractional change of g( t) over a cycle of oscillation is 

much less that 47r. An advantage of the series expansion is that even if the slowly­

varying conditions are violated, the dominant term can be corrected to any degree 

of accuracy by including the next higher-order terms in the expansion. 
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4.4.2 Accuracy of the Approximations using Modulated White-Noise 
Excitation 

Numerical studies are performed which are intended to verify the accuracy 

of the proposed approximations for the transient mean-square response. For the 

case of modulated white-noise excitation, the forcing term, equation (4.19), admits 

the simple and exact representation 

( 4.42) 

where J(t) is the slowly-varying modulation. 

Two kinds of modulation function which are widely used in earthquake en­

gineering are the following. (a) The exponential-type modulation (Shinozuka and 

Sato) given by 

( 4.43) 

for which both the exact and the approximate equations for the the mean-square 

response can be solved analytically. (b) The Gamma modulation (Saragoni and 

Hart) given by 
t 

J(t) = Jm T (3e(3(l-r) , T=- (4.44) 
tm 

for which an analytical solution for the exact or the approximate mean-square 

response exists only in the case 2(3 =integer. All other values of (3 require numerical 

integration of the exact or the approximate equation. An exact analytical solution 

in terms of a series may be found in Hou (1990) and Iwan and Hou (1986) for any 

value of (3. However, for 2/3 not an integer, the solution requires the summation of 

an infinite series. 

The Gamma modulation is used as an example to test the accuracy of the first­

order differential equation (4.39), and to illustrate the difference between the exact 

and the approximate mean-square response. The most informative way to present 

the results is to rewrite the governing equations in a dimensionless form. Define the 

dimensionless time T = t/tm where tm is the time at which the maximum of the 

Gamma modulation occurs, the number of cycles of oscillations 1] = tm/To needed 

to reach the maximum, and the normalized mean-square responses 

4aw2 

rll(T) = -J2 0 qll(tmT) 
tn 

( 4.45) 
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4a 
r22(T) = f'fn q22(tmT) ( 4.46) 

4awo 
r12(T) = f'fn q12(tmT) (4.4 7) 

which compare the responses to the equivalent stationary responses obtained for 

a constant modulation with power f;"· Then, the equations (8a-c) for the exact 

mean-square response take the form: 

I 

r 11 ( T) = 47r1]r12 ( T ) 
I 

r12(T) = 27r1] (r22(T) - r11(T) - 2(r12(T)) ( 4.48) 

r~2(T) = 27r1] (-2r 12 (T) - 4(r22(T) +4(T2/J e2/J(1-T») 

The first-order equation for the approximate mean-square response takes the form 

( 4.49) 

and it depends only on the product 1]( and not on ( and 1] alone. Both exact and 

approximate solutions are obtained by numerically integrating equations (4.48) and 

(4.49), respectively. The results are presented and compared in Figures 4.2(a-d) for 

two values of f3 corresponding t.o different forms of t.he modulation envelope, and 

for four values of 1] ranging from 1] = 0.5, the short duration excitation, to 1] = 5, 

the long duration excit.ation. 

The longer the duration of the excitation and the smaller the value of the 

critical damping, the better the approximation. In fact, for 1] = 2 and 1] = 5 (long 

duration excitat.ion) the approximat.e mean-square response is almost ident.ical to 

the exact one for values of the critical damping ranging from 1 to 25%. These 

results are consistent with the mathematical analysis since for long duration input. 

t.he slowly-varying condit.ions (4.41) are satisfied. Also, the next highest-order term 

containing the derivative of g( t) is proportional to the damping ratio (. Therefore, 

its contribution is small for lightly-damped oscillators. 

The "large" discrepancies between the exact and the approximate mean-square 

response which exist in the very beginning of the response for short duration excita­

tion are due to the violation of conditions (4.41). The quantity g(t) is close to zero 

in the very beginning and thus higher-order terms have a significant contribution 
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to ret). As time advances, get) builds up to higher values and conditions (4.41) 

specifying the slow variation of g( t) hold. Therefore, the approximation for r( t) is 

expected to be unrealistic in the beginning of the response, resulting in large dif­

ferences between the exact and the approximate response as illustrated in Figures 

4.2( a-d). However, the differences are not of particular interest because the mean­

square response is negligibly small at these times. For n = 0.5 (the short duration 

excitation) the modulation passes its peak before one cycle of oscillation which 

indicates that conditions (4.41) for neglecting the higher-order terms in the approx­

imation for 1·(t) are violated. Therefore, the case TJ = 0.5 shown in Figure 4.2(d) is 

an extreme test of the proposed approximation. Although significant discrepancies 

exists, the essential features of the response are still preserved. 

Next, we numerically study the effect of the quantities E12(t), E22(t), and Ea(t) 

in the expressions (4.20) and (4.23) relating the mean-square velocity and absolute 

acceleration with the mean-square displacement of the response. The exact values 

of E12(t), E22(t), and Ea(t) are computed using (4.48) for different damping ratios. 

The results for f3 = 0.5 shown in Figures 4.3( a) and 4.3(b) correspond to values of 

TJ = 5 and TJ = 1, respectively. The results for f3 = 4 and for the same values of TJ 

are shown in Figures 4.3( c) and 4.3( d). For illustration purposes, the normalized 

displacement response r12 (T) is included in these figures. After the response has 

built up to a few percent of its maximum value, the contribution of E12(t), E22(t), 

and Ea(t) in equation (4.20) and (4.23) can be neglected, especially at the times 

near the maximum of the response. At all other times, the higher the damping 

ratio is, the higher the contribution of E12( t), E22(t) , and Ea( t) in the response. For 

excitations with longer durations, i.e., higher 17, these quantities can be neglected 

wi thout significant loss of accuracy. 

Summarizing, the simplified formulas for approximating the mean-square 

response were found to be very accurate and extremely accurate for medium to 

long duration excitations, respectively. Also, no large discrepancies were found be­

tween the exact and the approximate response for excitation with very short dura­

tion. Although the Gamma modulation was used to illustrate the conditions under 

which the proposed approximate formulas work well, the results can be easily carried 
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through for other modulations as long as they satisfy the slowly-varying conditions. 

In the case of non-white excitation with slowly-varying correlation structure, which 

will be studied in Section 4.7, g(t) also turns out to be a slowly-varying function 

of time. Therefore, the results concerning the discrepancies between the exact and 

the approximate mean-square response corresponding to the modulated white-noise 

excitation can be carried through for non-white excitation with slowly-varying cor­

relation structure. 

The approximate first-order differential equation is used to derive additional 

response characteristics. The normalized mean-square response depends only on 

the product 1]( and the modulation parameter /3. Plots for different values of /3 and 

for values of 1]( ranging from 0.01 to 0.5 are shown in Figures 4.4. The maximum 

normalized response can be computed by setting r' = 0 in the equation (4.49). The 

maximum response l'm(Tm) attained at the time Tm is therefore given by 

( 4.50) 

where the normalized modulation fN( TM) = f(t)/1m. Thus, the maximum nor­

malized response rm is equal to the value of the normalized modulation computed 

at the time that the maximum mean-square response is attained. In other words, 

at the maximum, the normalized response crosses the normalized excitation. This 

is also depicted in Figures 4.4, where each individual figure corresponds to a fixed 

modulation parameter /3. These figures give complete qualitative information about 

the nonstationary mean-square response for oscillators characterized by angular fre­

quency Wo and damping ratio ( and for modulations characterized by the maximum 

intensity fm, the time tm that the maximum intensity occurs and the variable /3. 

4.5 Formulation for the Mean-Square Response of Nonlinear SDOF 
Oscillators 

The analysis developed to approximate the mean-square response of a linear 

SDOF oscillator provides background for analyzing and extending the approxima­

tions to the more complicated case of nonlinear SDOF oscillators. In the nonlinear 

case, there are certain difficulties because of the time variation of a( t) and w( t) for 

the equivalent linear system which will be addressed in what follows. 
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4.5.1 Mean-Square Displacement 

Eliminating q12(t) and qzz(t) from the set of equations (4.8), the following 

third-order differential equation in terms of ql1 (t) is obtained 

qg)(t) + 6a(t)qii)(t) + [4wZ(t) + 8az(t) + 2a(t)] qg)(t)+ 

[8a(t)wZ(t) + 4w(t)w(t)] qu(t) = 4L22(t) + 8a(t)L12(t) + 2L1Z (t) (4.51) 

Guided by the formulation developed for the linear oscillator, the third-order differ­

ential equation can be split into a first-order and a second-order differential equation. 

The complete set of equations is given in Appendix F. Utilizing the slowly-varying 

conditions (A.14a) for a(t) and w(t) to neglect the small-order terms (Appendix F), 

it can be shown that the mean-square displacement response satisfies the first-order 

differential equation 

ql1(t) + 2 [a(t) + 8(t)] qll(t) = 2r(t) 

qll(O) = 0 

with the excitation r( t) satisfying the second-order differential equation 

r(t) + 4 [a(t) - ~8(t)] l~(t) + 4w2(t)r(t) = g(t) 

r(O) = 0, 1~(0) = 0 

where 

and the forcing term 

g(t) = 2L22 (t) + 4a(t)Llz(t) + L12(t) 

In the case where 

a(t) == a(Q(t)) and w(t) == w(Q(t)) 

( 4.52) 

( 4.53) 

(4.54) 

( 4.55) 

( 4.56) 

equations (4.52) and (4.53) are nonlinear. The mean-square displacement qll (t) can 

be computed by solving (4.52) and (4.53) simultaneously or equivalently by solving 

the original Liapunov nonlinear matrix equation (4.7). The advantage of the above 
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formulation is that the transient mean-square displacement of the response satisfies 

a first-order, in general, nonlinear differential equation of the form (4.52). It will 

be shown that under certain conditions, the dynamics of the first-order differential 

equation provide all the essential characteristics of the response, while the dynamics 

of the second-order differential equation has only a secondary effect on the response. 

Also, the forcing term r( Q( t), t) will be approximated by a simple algebraic expres­

sion involving Q(t). In the case where r is only a function of qll(t), the mean-square 

displacement can be obtained by solving only the first-order differential equation 

( 4.52). 

4.5.2 Mean-Square Velocity 

Substituting q12 from (4.8a) into (4.8b) and using the first-order differential 

equation (4.52) for the mean-square displacement qIl (t), it can be shown that the 

mean-square velocity q22(t) is related to qu (t) by the simple algebraic expression 

( 4.57) 

where 

( 4.58) 

4.5.3 Mean-Square Absolute Acceleration 

If -G(t) represents the base acceleration of the oscillator , then the absolute 

acceleration aCt) of the response is given by 

aCt) = x(t) - G(t) = -2a(t)x(t) - w 2 (t)x(t) ( 4.59) 

Using (4.8), (4.52), and (4.57), the mean-square absolute acceleration qa(t) = 

E[a2 (t)] takes the form 

( 4.60) 

where 
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and 

( 4.61) 

4.5.4 Displacement-Velocity Correlation 

Using (4.52) and (4.8d), q12(t) is related to the mean-square displacement 

qll (t) by the simple algebraic expression 

q12(t) = - [a(t) + bet)] ql1 (t) + ret) 

4.5.5 Similarities Between Transient and Stationary Mean-Square 
Response 

( 4.62) 

Consider an oscillator with natural frequency and ratio of critical damping 

which depend on the mean-square response, then its response under stationary 

excitation approaches stationarity after a sufficient amount of time. Therefore, 

treating all the quanti ties that appear in (4.7) as time invariant and setting Q = 0, 

the stationary mean-square response is obtained in the form: 

(Q) 
_ 2L22 ( Q) + 4a( Q)L12 ( Q) 

ql1 - 4a(Q)w2(Q) 

q22(Q) = W 2(Q)qll(Q) - L 12 (Q) 

qa(Q) = w4 (Q)[1 + 4(2(Q)Jql1(Q) - 4(2(Q)w2(Q)L12(Q) 

q12(Q) = 0 

( 4.63) 

( 4.64) 

( 4.65) 

( 4.66) 

where a(Q), w(Q) and Li2(Q) depend on the stationary mean-square response. In 

general, expressions (4.63) to (4.66) are nonlinear and it is only in the linear case 

that they provide an explicit solution for the mean-square response. 

The mean-square velocity and the mean-square absolute acceleration of the 

nonstationary response are related to the nonstationary mean-square displacement 

by simple algebraic expressions which could be viewed as a generalization of the 

stationary relations (4.64) and (4.65), respectively. The additional terms t22(t), 

t12(t) and taCt) appearing in the expressic,>ns (4.57) and (4.60) account for the non­

stationarity of the response. As it will be seen in the numerical results, t22(t), t12(t) 
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and f.a(t) are in general small compared to unity and they can be neglected. There­

fore the mean-square velocity and absolute acceleration can be obtained in terms 

of the mean-square displacement by using the stationary relations, after replacing 

the time-invariant quantities with the time-varying ones corresponding at time t. 

4.6 Approximation of the Liapunov Matrix Equation for a 
Nonlinear SDOF Oscillator 

For nonlinear oscillators represented by equivalent linear systems, that is, for 

linear second-order differential equations with time-varying coefficients, an exact 

series expansion for r( t) is not possible to deduce as was done in the time-invariant 

case. However, the formulation developed for the time-invariant case can be used as 

a guide to develop an approximate analysis for the time-varying one. In the time­

invariant case, a) the effects of the initial conditions were neglected by eliminating 

the oscillatory terms in the series expansion for r( t), and b) the slowly-varying 

conditions for g( t) were used to approximate the solution of the second-order dif­

ferential equation by the dominant term ro(t) of the particular solution. The same 

idea is applied to the time-varying case. 

We seek a particular solution rp(t) of the second-order differential equation 

( 4.67) 

neglecting the effects of the initial conditions. If we write the solution rp(t) as a 

series expansion in successively smaller terms 

then equation (4.67) is satisfied by choosing 

get) 
ro(t) = 4w2(t) 

ri(t) + 4 [aCt) - !8(t)] ri(t) 
ri+l(t) = 4w2 (t) , 

( 4.68) 

( 4.69) 

i = 0,1,2, ... (4.70) 

The conditions for approximating rp(t) by the dominant term ro(t) in the series 

expansIOn are 

and i = 0,1,2, ... (4.71) 
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The slowly-varying conditions can be rewritten in terms of the forcing term get) as 

g(i)(t) 
I (2w(t))ig(t) I « 1, i = 1,2, ... (4.72) 

which are a generalization of the conditions obtained in the time-invariant case. 

These conditions have to be supplemented by the slowly-varying conditions for the 

time-varying coefficients wet) and aCt) which in terms of the first derivatives are 

given by (A.14a). The conditions (4.72) and (A.14a) quantify how slow get), wet) 

and aCt) should vary with time for the dominant solution to be an adequate ap­

proximation. Using (4.69) and (4.70), the contribution ofthe next higher derivative 

of g( t) in the expansion for r p ( t) can be found to be 

r1(t) . [ 1 8(t)] get) 
ro(t) = 2 ((t) - 2' wet) 2w(t)g(t) (4.73) 

Substituting the dominant solution ro(t) into (4.52), the mean-square displace­

ment of the response can be obtained by solving the simpler first-order difFerential 

equation 
. get) 
qll(t) + 2 [aCt) + 8(t)] qll(t) = 2() 

2w t 
(4.74) 

The solution of equation (4.74) may be expressed in terms of the convolution integral 

q11(t) = fat exp [ fTt -2 laCs) + 8(s)] dS] geT) dT in iT 2w2( T) 
(4.75) 

The computational savings achieved by solving equation (4.74) instead of the orig­

inal equation (4.6) will be discussed in a later section. 

4.6.1 Covariance of the Response: Modulated White-Noise 
Excitation 

For slowly-varying aCt) and wet) and for modulated white-noise excitation, 

the expressions for the response covariances can be approximated by closed-form 

expressions. Substituting the approximations for ry(t,s) and h(t,s) given by (A.15) 

into (4.15) and after algebraic manipulations, it can be shown that 

S11 (t, s) = q11 (s) 
Wl(.t) {jt }Cos{J:w~(Ode-<pg(t,S)} 
--;--( ) exp - ag(Ode {A-. ( )} 
W S 8 cos ~g t,s 

(4.76a) 
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where 

r(s) { Qll(S) * *} ian [<pg(i,s)] = Ql1(s)w'(i) 1 + r(s) [s (t) -.s (.s)] (4.76b) 

which is a generalization of the formula (4.33) derived for the special case of time­

invariant a(i) and w(i). Similar expressions can be obtained for S22(i,s) and 

Sa(i,s). 

4.7 Approximation of the Forcing Integral Term of the Liapunov 
Matrix Equation 

The integrals L12 (i) and L22(i) in the Liapunov matrix equation can be rewrit­

ten as 

Li2(i) = lt cI>i2(t,i - T)E[G(t)G(t - T)]dT, i = 1,2 (4.77) 

In general, they cannot be evaluated analytically except in a few cases. Specifi­

cally, when G( i) is a modulated white-noise process or a stationary process with 

rational power spectral density (for example, a process modeled by a (2n)-th-order 

differential equation with white-noise input) and, in addition, the coefficients of the 

equivalent system are time invariant (for example, equation of motion of a linear 

oscillator), the integrals admit simple closed-form representations. It is the purpose 

of this section to study the general conditions for analytically approximating the 

integrals by simpler algebraic expresssions. At the same time, specific applications 

will be given which cover more complicated cases than before which are of practical 

interest. These cases include excitation processes possessing certain evolutionary 

power spectral density and equivalent linear structural models with time-varying 

frequency and damping ratio. 

4.7.1 Broadband Excitation and Slowly-Varying Structural 
Paralueters 

Let Tc( i) be the length of the time interval of non-zero correlation of the 

stochastic process G( i) at time t, that is, the auto covariance r g( i, t-T) E[( G( t)G( i­

T)] satisfies 
rg(i, t - T) -=1= 0 for T E [0, Tc(i)] 

r 9 ( i , t - T) ~ 0 for T > Tc (t ) 
(4.78) 
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The more broadband the process is, the less the correlation length Tc(t). The 

integrals Li2(t) can be approximated by 

rTc (t) 
L i2 (t) = Jo q,i2(t, t - r)rg(t, t - r)dr, i = 1,2 (4.79) 

where the integration in the interval [Tc(t), t] has been neglected because of the 

condition in (4.78). These integrals can be completely determined, at least numeri­

cally, by knowing the principal matrix solution q,(t, t - r) for r E [0, Tc(t)] and the 

autocorrelation rg(t,t - r) of the excitation. For constant matrix A(t) = A , a sim­

ple closed-form solution for the principal matrix exists in terms of exponential and 

trigonometric functions (Appendix A.2). For time-variant A(t), a closed-form solu­

tion for the principal matrix cannot be obtained in general. In particular, when the 

matrix A(t) = A(Q(t)), i.e. , it depends on the mean-square matrix of the response, 

equations (4.5) and (4.8) are no longer independent and they have to be solved 

simultaneously. 

A formulation is next introduced to approximate the integrals Li2 (t) without 

solving (4.8). The idea is to assume that A( t) is slowly varying so that it can be 

considered to remain constant in the interval [t - Tc(t) , t]. Therefore , the principal 

matrix q,(t, t - r) can be approximately obtained for r E [t - Tc(t), t] by solving 

the time-invariant differential equation ci> = Aq, with the fixed value of A = A(t). 

A rigorous mathematical solution for q,( t, t - r) which takes into account the slow 

variation of A( t) and also provides the slowly-varying conditions for the solution to 

be sufficiently accurate is given in the Appendix A.2. The integral forcing terms 

can be approximated by 

rTc(t ) 

L i2 (t) = Jo q,i2(t, t - r)rg(t, t - r)dr, i = 1,2 ( 4.80) 

where the superscript < * > denotes the approximation of h(t,r) and 77(t , r) in 

the formulas for q,i2(t,r) in the broadband case by h*(t,t - r) and ry*(t,t - r), 

respectively. The expressions for h*(t , t - r) and ry*(t, t - r) which are given in 

Appendix A.2 simplify the integrals L12(t) and L22 (t) to 

1 rTc( t) [' ] 
L12(t)=w'(t)Jo exp[-a:(t)r]rg(t,t-r)sin w(t)r dr ( 4.81a) 

and 
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1 rTc(t) 
L22(t) = w'(t) Jo exp[-a(t)T]rg(t,t-T)COS [W'(t)T] dT 

( 
W'(t)) 

- a(t) + 2w' (t) L12 (t) (4.81b) 

The main result here is that the integrands involve exponential and trigonometric 

functions with the coefficients a( t) and w( t) being independent of the variable of 

integration T. 

4.7.2 Lightly-Damped Oscillators 

For the following application, an oscillator is considered to be lightly-damped 

if the damping ratio ((t) is small enough so that the term exp[-((t)W(t)T] ~ lover 

the interval [0, Tc(t)], i.e., ((t)w(t)Tc(t)« 1. Therefore, the integrals in (4.81) can 

be approximated by 

L () _ C(w(t), t) 
12 t - w(t) ( 4.82a) 

and 

1 (w(t) ) L22(t) = 2S(w(t), t) - ((t) + 2w2(t) C(w(t), t) (4.82b) 

where S(w, t) is the EPSD function of the excitation process given by 

S (w, t) = 2100 

rg(t, t - T) cos (WT) dT ( 4.83) 

and C(w, t) is given by 

C(w ,t) = 100 

rg(t,t - T)sin(wT)dT (4.84) 

Neglecting the O( () terms and using the slowly-varying assumption to neglect 

terms involving time derivatives, the forcing term g( t) in (4.56) takes the simple 

form: 

g(t) = S(w(t), t) ( 4.85) 

This forcing term includes the case of oscillators with slowly-varying angular fre­

quency and damping ratio, and therefore it is a generalization of the result obtained 

by Spanos (1983) for time-invariant oscillators. 
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4.8 Application to Some Special Cases of Nonstationary Excitation 

Consider stochastic loads with autocorrelation function of the form 

1'g (t, t - T) = F (~(t), T) ( 4.86) 

where ~(t) is the vector of the excitation model parameters accounting for the 

time variation of the correlation structure of the excitation process, and F(.,.) 

is a general functional operator of ~(t) and T. For specific functions F(~( t), .) of 

T, such as polynomials, exponentials, trigonometric functions or a combination of 

these, the integration in (4.81) can be carried out analytically without requiring the 

exact time variation of the equivalent structural parameters 0:( t) and w( t) or the 

excitation model parameters ~(t). In this case, the forcing term g( t) takes the form 

get) = g(w(t),a(t),~(t)) ( 4.87) 

where g(.,.,.) is a functional which depends only on the form of the functional op­

erator F(., T), that is, the general structure of the excitation model. The proposed 

formulation is next applied to simplify Li2 (t) and simplify the forcing term g( t) 

for three cases of excitation. Two of them are modulated filtered white-noise and 

filtered modulated white-noise excitations which have been widely used in the past 

to model nonstationary environmental loads , such as earthquake loads. The third 

case deals with nonstationarities in both the amplitude and the frequency content of 

the excitation and includes the particular case of the stochastic earthquake loading 

proposed in Chapters 2 and 3 of this thesis. The ground motion model in Chapter 

3 is used as an example to verify the accuracy of the approximations. 

4.8.1 Modulated Filtered White-Noise Excitation 

The envelope modulated, filtered stationary white-noise process has an au­

tocovariance function of the form 

( 4.88) 

where the modulation I( t) is usually assumed to be slowly varying and R( T) is the 

autocovariance function of a stationary, usually broadband process. Using Priest­

ley's definition, the evolutionary power spectral density of the broadband process 
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defined by (4.88) can be approximated by 

( 4.89) 

where SF(W) is the power spectral density of the stationary filtered white-noise 

process. 

For time-invariant oscillators and for sufficiently large time t, the integrals in 

(4.81) take the form 

L12(t) = J 2 (t)Ic(wo) 

L22 (t) = J2 (t) (Is(wo) + a1c(wo)) 
( 4.90) 

where the integrals 

(4.91) 

and 

( 4.92) 

are independent of t. In the case where analytical integration to obtain Ic(w) and 

Is( w) is not possible, numerical integration is required only once. The expression 

for the forcing term g( t) becomes 

where 

2 {J(t) } get) = J (t) [2Is(wo) + 2a1c(wo)] 1 + )...(wo)2woJ(i) 

)...(wo) = 2wolc(wo) 
Is(wo) + a1c(wo) 

( 4.93) 

( 4.94) 

If we neglect the contribution of the term )...(wo)j(t)j (2woJ(t)) then the mean-square 

response of an oscillator subjected to filtered modulated white-noise excitation can 

be approximately obtained by the mean-square response of the same oscillator sub­

jected to a modulated white-noise excitation where the modulation is the same as 

before and the power spectral density of the white noise is 2Is(wo) + 2a1c(wo). This 

argument has been used in the past (Caughey and Stumpf, 1961) to approximate 

the response of lightly-damped oscillators, with the quantity 2Is(wo) + 2a1c(wo) 
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being replaced by its limit SF(WO) as ( -? o. The expression (4.93) is general and 

independent of the damping ratio ( of the oscillator. 

4.8.2 Filtered Modulated White-Noise Excitation 

The filtered modulated white-noise process is generated by first multiplying 

the white-noise process by the envelope and then passing the output through the 

filter. The evolutionary power spectral density function of such a process is given ex­

actly by (4.89), while the autocovariance function has the approximate form (4.88). 

The modulated filtered white-noise process and the filtered modulated white-noise 

process are approximately the same for slowly-varying modulation and for filters 

with a broadband transfer function. Therefore, the approximations developed in 

section 4.8.1 also apply for this case. 

4.8.3 Stochastic Ground Motion Models 

A general class of stochastic processes which is usually proposed to model 

the ground motion satisfies either of the following equations 

EQUATION I: 

EQUATION II: 

P(t)xg(t) = J(t)e(t), 

P(t)xg(t) = e(t), 

G(t) = R(t)xg(t) (4.95) 

G(t) = J(t)R(t)xg(t) (4.96) 

where e(t) is a zero-mean Gaussian white-noise process, J(t) is a deterministic 

envelope function modeling the amplitude nonstationarity of the ground motion and 

P( t) and R( t) are linear time-varying differential operators modeling the frequency 

content of the ground mot.ion which is assumed to vary with time. In the special case 

of time-invariant operators P( t) and R( t), equation I and II correspond to filtered 

modulated white-noise and modulated filtered white-noise excitations, respectively. 

Subclasses of the stochastic processes generated by (4.95) or (4.96), such as 

white noise, modulated white noise, filtered white noise and filtered modulated 

white noise with rational (usually second-order) time-invariant transfer function for 

the filter, have been extensively used in the past to model ground motion. In this 

section, we extend the previous approaches to include the time variation of the op­

erators P( t) and R( t) and we demonstrate how these processes can be incorporated 
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in existing random vibration analyses in order to simplify the expressions for the 

mean-square transient response. 

In particular, let the ground motion G(t) be described by one of the following 

models 

MODEL 1: 

MODEL 2: 

MODEL 3: 

G1 (t) = Xg(t) 

G2 (t) = Xg(t) 

G3 (t) = -2ag(t)xg(t) - w:(t)Xg(t) 

where Xg(t) is the output of the second-order differential equation 

( 4.97) 

( 4.98) 

( 4.99) 

(4.100) 

with ag(t), wg(t) and f(t) being slowly-varying functions of time. Modell has been 

proposed in Chapter 3 to model the ground motion, while model 3 is the extended 

version of the well-known Kanai-Tajimi model with variable coefficients. Equation 

(4.100) is a special case of equation (4.1) with modulated white-noise input. Let 

the stochastic process G(t) be broadband, that is, its correlation time Tc(t) be 

sufficiently small so that the time variation of ag(t), wg(t) and f(t) over the time 

interval [t - Tc(t), t] can be ignored without significant loss of accuracy. In this 

case, the statistical properties of G( t) in the neighborhood of t can be obtained 

by an equivalent stationary process generated by equation (4.1) with the values of 

the corresponding constant coefficients being the instantaneous values ag(t), wg(t) 

and f(t). Therefore, the autocovariance function of the ground motion G(t) can 

be approximately obtained from (4.33) by letting r = q12 = O. This results in the 

autocovariance function 

cos {w~(t)(t - s) - <pg(t)} 
E[G(t)G(s)] = qg(t) exp {-ag(t)(t - s)} cos {<pg(t)} (4.101) 

and the EPSD function 

( 4.102) 
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where the form of qg(t) and ¢g(t) and the values of KI, K2, K3 and K4 depend on 

the particular model used for G(t). If GCt) = GI(t) , then 

ag(t) 
qg(t) = qll(t), tan [¢g(t)] = ,--( )' KI = 1, K2 = K3 = K4 = 0 (4.103) 

Wg t 

If G(t) = G2(t), then 

ag(t) 
qg(t) = q22(t), tan [¢g(t)] = -,--( )' K2 = 1, KI = K3 = K4 = 0 (4.104) 

Wg t 

If G(t) = G3(t), then 

(4.105) 

The autocovariance function has the general form (4.86) with 

The integration for evaluating L12(t) and L22 (t) can be carried out analytically, 

resulting in tvm types of terms for each of the integrals. One type contains the factor 

exp{ -[ag(t)+a(t)]Te(t)} which is neglected in this approximation because it is zero 

for sufficiently large time t. Therefore, the value of each integral is approximated 

by the remaining term resulting in 

where 

(4.106a) 

(4.106b) 

A(t) 
fe(t) = G(t) (4.107a) 

B(t) 
fs(t) = G(t) (4.107b) 

A(t) = [aCt) + ag(t)f + [Wi (t)f - [w~(t)f 
I 

+ 2 [aCt) + ag(t) ]wg(t) tan [¢g(t)] (4.107c) 

B(t) = [aCt) + ag(t)] {[aCt) + a g(t)]2 + [Wi (t)] 2 + [W~(t)] 2} 

+ W~( t) tan [¢g( t)] { [a( t) + age t)]2 - [Wi (t) r + [W~( t) r} (4.107 d) 

G(t) = [w2( t) - w~(t)] 2 + 4w(t)wg(t) [a( t) + ag (t)] 

[w(t)(g(t) + wg(t)((t)] (4.107e) 
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The forcing term g( t) takes the form 

where 

and 

Rg (w(t), a(t), wg(t), ag(t)) = 2Is(t) + 2 ( a(t) - ~d(~i)) Ic(t) 

( ) _ L12 (t) 
lOR t - Rg(t) 

( 4.108) 

(4.109) 

(4.110) 

For slowly-varying structural parameters and excitation parameters, the forcing 

term g(t) is a slowly-varying function of time as well. In most earthquake engi­

neering applications, these approximations considerably reduce the computational 

effort for evaluating the integrals without sacrificing much in their accuracy. As 

it will be seen in Chapter 5, these expressions also provide direct insight into the 

response characteristics. 

For lightly-damped oscillators, the following limit is true 

(4.111) 

where S(w,wg(t) , ag(t)) == S(w,t) as given by (4.102). Several studies (Spanos, 

1983) restricted to the response of lightly-damped oscillators have used the EPSD 

function to approximate the forcing term g( t) . Contour plots of the fractional error 

E£(t) = S (w(t), wg(t), ag(t)) - qg(t) Rg (w(t), a(t), wg(t), ag(t)) 
qg(t) Rg (w(t) , a(t),wg(t), ag(t)) 

( 4.112) 

introduced by the lightly-damped approximation are shown in Figure 4.5 for the 

ground motion model 1. These plots, which cover different ranges of oscillator and 

ground motion parameters of practical interest, show the ranges where the error 

is significant. For accurate estimation in these ranges, the original approximate 

expresssion (4.108) for evaluating g(t) has to be used. Since it is usually not known 

apriori where the error Edt) is large, it is best to always use (4.108). 

Next, to get an estimate of ER(t), we consider the case of linear oscillators and 

ground models with time-invariant coefficients Wo and C. This is a special case of 

the filtered modulated white-noise model discussed in section 4.8.2 with 

. f(t) 
ER (t) = A(WO) ( ) 

2wof t 
(4.113) 
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where '\(wo) is defined in (4.94). 

Using the slowly-varying condition Ij(t)/(2wof(t))1 « 1, the contribution of 

€R(t) would be significant only if '\(wo) » 1 or more. Contour curves for '\(wo) are 

shown in Figure 4.6 for the model 1. These curves cover a wide range of oscillator 

and ground motion parameters and provide an insight into those values of the 

parameters for which the quantity €R(t) can be neglected. 

4.8.4 Accuracy of the Approxhnations Using the Proposed Stochastic 
Ground Motion Model 

The excitation model proposed in Chapter 3 to model the ground motion 

IS used to check the accuracy of the approximations and numerically illustrate 

the discrepancies between the approximate and the exact mean-square response. 

An efficient but still time-consuming method for evaluating the exact mean-square 

response is to rewrite the structural model equation (4.1) and the ground model 

equation (4.100) as a four-dimensional first-order vector equation and numerically 

integrate the corresponding Liapunov matrix equation for the mean-square response. 

This is done here to provide a basis for assessing the approximate results presented 

above. 

It is not possible to perform a complete numerical study and illustrate the 

order of the accuracy of the approximations for a wide range of oscillator and 

excitation parameters. Of the infinite number of possible time variations for the 

excitation parameters, only two are examined. The first case corresponds to the 

Orion Blvd. recording where the standard deviation and damped-frequency of the 

excitation process are shown in Figure 4.7. The Orion Blvd. recording shows a 

significant time variation of the model parameters and therefore it is supposed to 

be a representative case expected in modeling strong ground motion. The exact and 

the approximate mean-square response of a linear oscillator are compared in Figure 

4.8 for 5% damping and for Wo = 7,5,3 and 1Hz. The approximations are quite 

accurate with a maximum percentage error of the order of 1 %. The second case is 

an extreme case artificially designed to violate the slowly-varying conditions. The 

corresponding standard deviation and damped-frequency of the excitation process 
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are shown in Figure 4.9. This case is unrealistic for processes modeling strong 

ground motion. The exact and the approximate mean-square response of a linear 

oscillator are compared in Figure 4.10 for 5% damping and for Wo = 7,5,3 and 

1Hz. The discrepancies are of the order of a few percent, preserving the essential 

characteristics of the response . 

For a nonlinear structure, the time variation of the equivalent linear parameters 

w(t) and a(t) depends on the nonlinearity of the restoring force. The dependence 

will be addressed in more detail in Chapter 5. However, to complete this analysis 

we use the dependence as given by equations (5.5) and (5.6) to check the accuracy 

of the approximations for the nonlinear case. Comparison between the exact (solid 

curves) and the approximate (dashed curves) STD response are shown in Figures 

4.11(a) and 4.12(a) for two different nonlinear oscillators. The excitation parameters 

are shown in Figure 4.7 for the Orion Blvd. recording. The initial damping ratio 

for both oscillators is (0 = 0.05. The time-varying frequency wet) is computed 

by the expression (5.5) and it is shown in Figures 4.11(b) and 4.12(b) for the two 

oscillators. The parameter aCt) = (owo is constant for both cases. The differences 

between the exact and the approximate solution observed in Figures 4.11(a) and 

4.11(b) for the oscillator with initial frequency w(O) = 5Hz are of the order of a 

few percent. Discrepancies of similar order were also observed for other variations 

of w( t) and a( t) provided that the conditions validating the approximations were 

satisfied. For example, for the oscillator with initial frequency w(O) = 1Hz, shown 

in Figure 4.12(a) and (b), the discrepancies between the exact and the approximate 

mean-square displacement are of the order of 20% or higher. In this case, the 

excitation parameters wg(t) and qg(t) shown in Figure 4.7 vary significantly over 

the equivalent period of the oscillator which is approximately 10 seconds (see Figure 

4.12(b)). Therefore, the large discrepancies between the exact and the approximate 

solutions are due to the violation of the slowly-varying conditions. 

4.8.5 Computational Aspects 

By approximating the original expreSSIOns (4.8) for the transient mean­

square displacement, velocity and absolute acceleration of the response by the 
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simplified expreSSIOns, we reduce considerably the computational effort involved 

in a digital computer for evaluating the response quantities. Compared with the 

time-consuming operations in the numerical integration of (4.8), the computational 

savings achieved by these approximations are as follows: 

a. For stable and accurate numerical scheme for integrating (4.8), the time step 

depends on the shortest period 27r/Wd(t) of the oscillator. However, the time 

step for integrating the corresponding first-order scalar equation is indepen­

dent of the equivalent period of the oscillator since the oscillations have been 

eliminated. Therefore, much longer time steps can be used which reduce con­

siderably the number of numerical operations required for computing the mean-

square response. 

b. In general, numerical integration is required for each time step to evaluate the 

integrals L12 (t) and L22(t). However, the simple and quite accurate algebraic 

approximations in (4.87) are another source of considerable reduction of the 

computational effort. 

c. An additional source of reduction is that a one-dimensional scalar equation 

requires less numerical operations than a three-dimensional vector equation. 

The computational savings are noticeable, for example, when linear or nonlinear 

probabilistic response spectra are to be computed using the existing approximate 

formulas in random vibration theory (Mason and Iwan, 1983) for solving the first­

passage problem. In such a case, the number of times that the solution is required 

is very large since it depends on the range of initial stiffnesses, damping ratios and 

ductilities of the nonlinear structural model used to compute the response spectra, 

as well as on the number of iterations required for each of the above structural 

parameters to obtain results of acceptable accuracy. 

4.9 Extension of the Approximations to Classically-Damped 
MDOF Linear Systems 

Consider an n-degree-of-freedom, viscous damped, linear system having classi­

cal modes, then the response at some point of the system can b e expressed in terms 
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of modal contributions as 
N 

x(t) = LPiXi(t) ( 4.114) 
i=l 

where Pi is the effective participation factor for mode i at the point of interest, and 

Xi(t) is the response of the i-th normal mode satisfying the modal equation 

(4.115) 

In this equation the forcing functions G(t) could be the base excitation and Wi 

and (i are the i-th modal frequency and damping coefficient, respectively. The 

mean-square response R(t) = E[x2(t)] can be written as: 

n n 

R(t) = L LPiPjRij(t) ( 4.116) 
i=l j=l 

where 

( 4.117) 

Therefore, the mean-square respone can be obtained by the weighted summation of 

the mean-square response Rii(t) of each mode, plus the covariance response Rij(t) 

of two modes i and j, with the weighting coefficients being the product of the 

corresponding effective modal participation factors. 

The equation for Rij(t) is next formulated and approximations are introduced 

to simplify the original exact equations. The state-space representation of, say, the 

i-th modal equation is given by (4.2) with Wo and ( replaced by Wi and (i. Let 

( 4.118) 

be the covariance of the i and j state vectors, then it satisfies the matrix differential 

equation (assume zero ini tial condi tions ) 

where 

Q(ij)(t) = AiQ(ij)(i) + Q(ij)(t)AJ + L(i)(t) + L(j)T(t) 

Q(ij)(O) = 0 
( 4.119) 

(4.120) 

(4.121) 
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and q>(i) (t - T) is the principal solution matrix for the i-th modal equation. If i = j, 

then the equation for the symmetric matrix Q(ii) is exactly the same as the matrix 

equation (4.6). Therefore, the approximation developed previously also holds for 

the components of Q(ii). In particular, Rii(t) _ Q~ili)(t) can be obtained either 

exactly by a third-order equation or approximately by a first-order equation. For 

i i= j, the components of Q(ij) satisfy 

011 = Q21 + Q12 (4.122a) 

. 2 (i) 
Q12 = Q22 - Wj Q11 - 2(jWjQ12 + Ll2 (4.122b) 

• 2 (j) 
Q21 = Q22 - Wi Q11 - 2(iWiQ21 + Ll2 (4.122c) 

022 = -W;Q12 - 2(iWiQ22 - WJQ21 - 2(jWjQ22 + L~~ + L~~ (4.122d) 

where the superscript [( ij)] has been dropped in the above equations, for clarity. 

Eliminating Q12, Q21, and Q22 from the above equations, a fourth-order equation 

for Q~it)(t) == Rij(t) is obtained. Treating for simplicity the case (i = (j = (, the 

characteristic polynomial of the fourth-order equation has the roots 

where 

Pl,2 = -2(w ± 2iw yh - (2 

P3,4 = -2(w ± 2iw),V1 - (2 

W= 
Wi +Wj 

2 

(4.123) 

( 4.124) 

W· -w' 
).= 1 J (4.125) 

Wi +Wj 

Following ideas similar to those in Section 4.3.1, the fourth-order differential equa­

tion for Rij(t) can be split into two second-order differential equations as follows 

where 

with 

Hij + 4(wRij + 4w2[(2 + ).2(1 - (2)]Rij = 2rij(t) 

rij(t) + 4(wrij(t) + 4w2rij(t) = 9ij(t) 

Fij(t) = (L~1(t) + LW(t)) + 2(w(L~1(t) + L~~)(t)) 

+ ~(t~1(t) + tW(t)) + (w(>. + 2)(Li1(t) - LW(t)) 

( 4.126) 

( 4.127) 

( 4.128) 

(4.129) 
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For modulated white-noise input, g(t) = j2(t) where f(t) is the input modulation. 

Although for demonstration purposes it is assumed that (i = (j, similar analyses 

can be performed for (i =1= (j. 

Based on the approximate analysis in Section 4.4, the solution of the second­

order differential equation (4.127) can be approximated by 

r- -(t) = gij(t) 
1) 4w2 (4.130) 

provided that gij(t) is slowly-varying. Conditions (4.41) with Wo and g(t) replaced 

by wand gij(t) determine the conditions for the approximation to be valid. Sub­

stituting (4.130) in (4.126), the covariance of the i and j mode can be obtained 

approximately by solving the second-order differential equation 

(4.131) 

The terms in expression Fij(t) can be approximated according to the analysis in 

Section 4.7. In Section 4.8.4, the approximation was found to be very accurate for 

"earthquake-like" excitations. 

Next, numerical results are presented to check the accuracy of the apprOXl­

mate second-order differential equation and compare it with existing approxima­

tions (Bucher, 1988). A first-order differential equation was proposed by Bucher to 

approximate Rij(t). In his analysis, he first treated the case of modulated white­

noise excitation and then he generalized his approximations for colored white-noise 

by defining, without mathematical justification, the form of the input in his first­

order differential equation. The approximation proposed here, which is based on 

a more rigorous mathematical analysis, predicts different response characteristics 

from the ones proposed by Bucher. Also, the proposed approximation treats general 

excitations with nonstationarities in both amplitude and frequency content. Com­

parisons between the different approximations and the exact one for modulated 

white-noise input and for various values of w, and), are shown in Figures 4.13 and 

4.14 for ( = 0.02 and ( = 0.05 , respectively. The modulation is of the form (4.44) 

with fm = 1, tm = 1, and {3 = 0.5. Bucher's approximation fails to predict the 

qualitative features of the response in some cases. In other cases, it is less accurate 
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than the proposed approximation which seems to be extremely accurate for all cases 

examined. 

4.10 Conclusions 

The transient equivalent linearization method was used to replace the equa­

tion of motion of a nonlinear oscillator by an equivalent second-order linear differen­

tial equation with time-varying coefficients. The special case of time-invariant coef­

ficients corresponds to the equation of motion of a linear oscillator. An approximate 

formulation was developed to replace the original, computationally lengthy expres­

sions for the second-moment statistics of the transient response by much simpler 

expressions. The conditions for the approximations are: a) the excitation process 

is broadband and b) the coefficients of the second-order linear differential equation 

are slowly-varying functions of time. The analysis treats general excitations with 

nonstationarities in both the amplitude and the frequency content. The approx­

imations provide meaningful insight into the characteristics of the nonstationary 

response. Similarities with the stationary response exist and were identified by the 

analysis. The formulation was extended to approximate the covariance response of 

MDOF systems. 

The proposed approximations preserve the essential characteristics of the 

response without significant loss of accuracy. They are also computationally ef­

ficient with typical reduction in computing time of one to two orders of magnitude. 

The stochastic process proposed to model earthquake loads in Chapter 3 was used 

as an example to numerically validate the approximations. Earthquake loads, in 

general, fulfill the conditions developed for the approximations. Therefore, the ap­

proximate equations are suitable to apply for the seismic analysis of linear and 

nonlinear structures. 
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Figure 4.4. Approximate nondimensional mean-square displacement (solid curves) of the response 
of a linear SDOF oscillator subjected to a modulated (dashed-dotted curve) white-noise 
excitation. 
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Figure 4.7. Time variation of (a) the standard deviation and (b) the damped-frequency of the 
nine-parameter earthquake model fitted to the Orion Blvd. recording. 
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Figure 4.8. Comparison between the exact (solid curve) and approximate (dashed curve) mean­
square displacement response of a linear SDOF oscillator with 5% damping and Wo = 
7,5,3, 1Hz. The excitation is the nine-parameter model shown in Figure 4.7. 
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of an equivalent linear SDOF oscillator . (a) STD of the response (b) structural fre­
quency w(t). Wo = 1Hz, (0 = 0.05. The excitation is the nine-parameter model shown 
in Figure 4.7 whose damped frequency variation is repeated again in (b). 
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Chapter 5 

Importance of Temporal Nonstationarity In 

the Frequency Content of Ground Motion 
for Linear and Nonlinear Structural Models 

5.1 Introduction 

The two features which are clearly observed in real accelerograms are the 

changes of intensity and frequency content with time. Past models dealing with 

ground motion modeling, in order to simplify the random vibration analysis, have 

often neglected the change of the frequency content with time. This is also partly 

because it was difficult to incorporate this change in simple continuous ground 

motion models and identify it from earthquake records, and also partly because it 

was believed that it had no significant effect on linear structural response. Recently, 

several models have been developed to include the time variation of the frequency 

content since it is believed to be very important for inelastic response of structures. 

Conte et al. (1989) used time-varying ARMA models to represent the change 

in the frequency content with time, and then they used simulations to study the 

variability of various inelastic structural response parameters. However, the sensi­

tivity of the structural response parameters to the time-varying frequency content 

was not addressed in their study. Yeh and Wen (1989) proposed a continuous model 

to represent the time variation in the frequency content of the ground motion which 

is efficient to use in random vibration analysis. Using statistical linearization and 

Wen's hysteretic model, they studied the sensitivity of the response to the non­

stationarity in the frequency content of the ground motion. In their work, various 

response parameters were compared for two types of nonstationary excitation. The 

first type is the uniformly modulated random process with time-variant intensity 

but time-invariant frequency content, while the second type is the amplitude and 
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frequency modulated random process with time-variant amplitude and frequency 

content. The frequency content of the uniformly modulated random process was 

chosen to approximately match the frequency content of the amplitude and fre­

quency modulated random process during the high intensity excitation period. 

Comparisons presented by Yeh and Wen (1989) show that the maximum of 

the standard deviation of the displacement, the energy dissipation and the ductility 

differ for the two types of excitations by a factor of two or more for low structural 

frequencies. No differences were found for high structural frequencies. The dif­

ferences were attributed to the fact that the lengthening of the structural periods 

coincide with the change in the frequency content of the ground motion resulting 

to strong amplification of the response. However, it is not clear whether the dif­

ferences in the various response parameters computed by Yeh and Wen are due to 

their explanation or due to the significant differences of the excitation processes in 

the lower intensity excitation periods. 

Further analyses are needed to study in detail the importance of the temporal 

nonstationarity in the frequency content of the ground motion and to demonstrate 

convincingly that the lengthening of the structural period may sometimes track the 

time variation of the dominant frequency of the ground motion. In Chapter 3, a 

simple and yet general model was used to incorporate a realistic time variation of the 

amplitude and frequency content of the ground motion. In Chapter 4, the ground 

motion model was used in conjunction with a simplified approximate method to 

calculate efficiently the mean-square response of linear and equivalent linear SDOF 

oscillators. It is the purpose of this chapter to use the simple formulation developed 

previously for the mean-square response to provide insight into the effect of the time­

varying frequency content on the response of both linear and nonlinear structures. 

5.2 Description of Earthquake Ground Motions 

For the purpose of this study, two types of excitation are used to model the 

same ground acceleration time history. Both excitations model the amplitude non­

stationarity of the ground motion and they differ only in the way they model the 

frequency content of the ground motion. The first excitation, denoted by (TV), has 
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time-varying frequency content, while the second excitation, denoted by (TI), has 

time-invariant frequency content throughout the duration of the excitation. The 

(TV) excitation is generated by the nine-parameter ground motion model proposed 

in Chapter 3. The (TI) excitation is generated by the time-invariant frequency 

content model proposed in Chapter 2. 

The parameter of the (TV) and (TI) model are estimated as described in Chap­

ters 2 and 3 using the Orion Blvd. accelerogram in Figure 2.1(a). The frequency 

content of the (TI) model is chosen to fit the frequency content of the segment of the 

accelerogram with the stronger intensity, that is, from 2 to 12 seconds. Therefore, 

the frequency content of the (TI) model is about the same as the frequency content 

of the (TV) model during the high intensity of the S-wave groups of the ground 

motion. The time variation of the standard deviation is the same for both models 

and it is plotted in Figure 5.1(a). The time variation of the damped frequency w~ 

of both ground motion models is plotted in Figure 5.1(b). The damped frequency 
I 

W 9 is an approximate measure of the predominant frequency present in the ground 

motion at time t. 

5.3 Linear SDOF Structural Model 

From the results in Chapter 4, the characteristics of the mean-square dis­

placement of the response of a linear structure can be obtained approximately by 

examining the first-order differential equation 

. qg(t) 
qll(t) + 2(WOqll(t) = --2 Rg (wo, (wo,Wg(t), cyg(t)) (5.1) 

2wo 
where Wo is the structural frequency, ( is the damping ratio, and qg(t) is the mean­

square acceleration of the excitation measuring the time variation of the intensity 

of the ground motion. The form of Rg (wo, (wo,Wg(t), cyg(t)) depends on the struc­

ture of the normalized evolutionary power spectral density (EPSD) of the ground 

acceleration defined by 

S ( () ( )) 
_ 5 (w, Wg(t), cyg(t)) 

N w, Wg t ,CYg t - ( ) qg t 

where S (w, wg(t), cyg(t)) is the EPSD of the ground motion model. As ( -+ 0, 
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The characteristics of the mean-square displacement of the response depend on 

the characteristics of the forcing term in the right hand side of (5.1). The contribu­

tion of the time variation of the intensity of the ground motion to the response is 

directly controlled by qg( t). The contribution of the time variation of the frequency 

content of the ground motion is controlled by the form of Rg (wo, (wo,Wg(t), Q'g(t)) 

independently from the amplitude. It is evident that both the amplitude and the 

frequency content nonstationarity control the shape and the intensity of the forcing 

term in (5.1). Consider the case oflightly-damped oscillators and for ground motion 

with constant frequency content, that is, constant normalized PSD function, then 

the shape of the forcing term is controlled only by the amplitude nonstationarity 

qg(t) of the ground motion while the normalized PSD computed at the oscilla­

tor frequency Wo remains constant throughout the shaking. However, when the 

time-varying frequency content is included, the spectral component of the ground 

motion computed at the oscillator frequency Wo varies with time, altering the shape 

of the forcing term in (5.1). Therefore, the characteristics of the response in the 

time-varying case are expected to be different from those in the time-invariant one. 

To demonstrate the importance of the time variation of the frequency content 

of the ground motion, we compute and compare the mean-square displacement of 

the response for the two types of excitations shown in Figure 5.1. The maximum 

of the standard deviation (STD) of the response, the corresponding time that the 

maximum occurs and the duration of the STD of the response are computed for os­

cillator frequencies ranging from 1 to 8Hz. Comparisons are shown in Figure 5.2 for 

the two types of excitation. The response quantities considered in these figures are 

both the displacement and the absolute acceleration. The duration is defined herein 

as the difference between the two times that the STD of the response up crosses and 

downcrosses 50% of its maximum value. The maximum response, the time of the 

maximum response, and the duration of the response approximately describe the 

shape of the nonstationary response. The complete time histories of the STD of the 

displacement response are plotted in Figures 5.3(a), 5.4(a), and 5.5(a) for three rep­

resentative cases corresponding to Wo = 1.5Hz, 3.2Hz, and 6Hz , respectively. The 

structural frequency Wo = 3.2Hz was chosen to be very close to the predominant 

frequency w~ of the (TI) ground motion model. Figures 5.3(b) , 5.4(b), 5.5(b), show 
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the time variation of the corresponding structural frequency Wo. For comparison 

purposes, each figure includes the time variation of the dominant frequencies w~ (t) 

(dashed curves) of each ground motion model. The solid curves in these figures 

correspond to the (TV) model while the dashed-dotted curves correspond to the 

(TI) model. All numerical results correspond to 5% damping ratio. 

For the (TI) excitation, the time variation of the forcing term in (5.1) remains 

the same regardless of the values of the oscillator parameters Wo and ( which control 

only the intensity of the forcing term. Therefore, the resulting shape for the r.m.s. 

of the response is controlled mainly by the product (wo. The time of the maximum 

and the duration of the STD of the response shown by the dashed-dotted lines in 

Figure 5.2 demonstrate numerically that the shape of the nonstationary STD of the 

response does not vary significantly over the oscillator frequencies examined. For 

the (TV) excitation, however , the shape of the forcing term in (5.1) is significantly 

altered depending on the values of the oscillator parameters Wo and (0. The resulting 

shape of the STD of the response in Figure 5.2 is therefore expected to be different 

for different values of Wo. The solid lines in Figure 5.2 corresponding to the time 

of the maximum and the duration of the STD of the response demonstrate the 

dependence of the response characteristics on the oscillator frequency Wo. From 

Figure 5.2, and from Figures 5.3(a), 5.4(a) and 5.5(a), it is concluded that the 

maximum responses as well as the duration of the responses corresponding to the 

(TI) and the (TV) excitations may differ by a factor of 2 or higher. 

From Figures 5.3 , 5.4 and 5.5, it is evident that the time that the STD response 

achieves its maximum is controlled approximately by the time the predominant fre­

quency curve wg ( t) of the ground motion crosses the oscillator frequency curve. 

This phenomenon, which will be referred to as the resonance effect, considerably 

amplifies the response only when the dominant frequency of the ground motion 

approxima.tely coincides with the oscillator frequency. Because of the time varia­

tion in the frequency content of the ground motion, the duration of the resonance 

effect is small compared to the duration of the excitation. For the (TI) excitation, 

however, once the oscillator and the excitation are in resonance, they continue to 

be throughout the duration of the excitation. Despite this, the (TV) excitation still 
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gives a slightly larger maximum STD even when the oscillator frequency and the 

(TI) excitation frequency coincide, as shown in Figure 5.4. 

Concluding, the time variation in the frequency content of the ground motion 

significantly affects the characteristics of the linear response. Ground motion models 

should therefore take into account the temporal nonstationarity in the frequency 

content of the ground motion whenever the response of linear structures is to be 

studied. 

5.4 Nonlinear SDOF Structural Model 

A simple nonlinear structural model of softening type is used to obtain an 

insight into the effect of the temporal nonstationarity in the frequency content of 

the ground motion on nonlinear response. The simplified equation obtained in 

Chapter 4 for the mean-square response of the equivalent linear systems is used to 

mathematically analyze this effect. In addition, the amplification of the response 

due to the "moving resonance" effect is mathematically modeled and is numerically 

demonstrated using realistic ground motion models. 

5.4.1 Force-Deflection Relation 

The nonlinearity of the oscillator is modeled by a nonlinear elastic softening 

restoring force. The force-deflection relation is shown in Figure 5.6 and it is similar 

to the backbone curve of a yielding system in that the stiffness decreases as the 

displacement increases. The mathematical relation is 

2 -1 (
7rKox) R(t) = ;Rutan 2Ru 

2 r -1 (7r X ) = - J1 o:rytan --7r 2 Xy 

(5.2) 

where Ru and Ko is the ultimate strength and the initial stiffness of the system, 

respectively. The quantity Xy = Ru/ Ko is similar to the elastic limit displacement 

of a yielding system and is called the nominal yield displacement. The quantity 

p = x/xy is similar to the ductility ratio of a yielding system. The ductility ratio 

p measures the nonlinearity of the system and it varies from 0 (linear oscillator) to 
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00. 

Inelastic behavior is not modeled by the nonlinear relation since for an inelastic 

system which is loaded beyond some point, the unloading path differs from the 

loading path. However, the nonlinear elastic model (5.2) is useful to assess and 

demonstrate the effect of the temporal nonstationarity in the frequency content of 

the ground motion on the response of nonlinear structures of softening type. 

5.4.2 Equation of Motion Using the Equivalent Linearization Method 

The response of the SDOF nonlinear oscillator to a ground excitation IS 

governed by the equation of motion 

x(t)+2(owoi:(t)+w~(t)R~t) = G(t) 
Ao 

(5.3) 

where R(t)/Ko is given in (5.2), Wo is the initial (small-amplitude) structural fre­

quency, (0 is the viscous damping ratio, and G( t) is taken to be a zero-mean Gaus­

sian stochastic process. For the complicated restoring force (5.2) and for the ground 

excitation considered in this study, an exact solution for the response statistics is 

not available. The equivalent linearization method is used to obtain approximate 

response statistics. The method of equivalent linearization was first introduced in­

dependently by Booton (1954) and Caughey (1963), and later it was generalized 

by Iwan and Yang (1971), and Atalik and Utku (1976). Iwan and Mason (1980) 

extended the method to general nonstationary response. 

According to the equivalent linearization method, the nonlinear equation (5.3) 

is replaced by the equivalent linear one 

x(t) + 2((t)w(t)i:(t) + w2 (t)x(t) = G(t) (5.4) 

The equivalent linear parameters wet) and ((t) are obtained by minimizing the 

mean-square of the error that arises in estimating the nonlinear system by a linear 

one. This error is defined by the difference between the nonlinear and the lin­

ear equation. Comparisons with numerical simulations suggest that the method 

approximates the nonlinear response well. 
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It turns out that for the restoring force (5.2), the equivalent linear parameters 

are given by (Jeong, 1985) 

where 

~ 

w(t) = w (qll(t)) = Wo [y'1r,exp (,2) erfch)] 2 

O'(t) = 0' (q1l(t)) = ((t)w(t) = (oWo 

J2 Xy ,=-
7r~ 

(5.5) 

(5.6) 

(5.7) 

Therefore, the equivalent linear parameters depend only on the mean-square dis-

placement of the response. Similarly, the standard deviation of the ductility ratio 

IS 

STD(p,(t)) = ~ (5.8) 
Xy 

and depends only on qll(t). The response of the equivalent linear system (5.4) 

depends on the viscous damping (0, initial structural frequency wo, and the nominal 

yield displacement x y . 

5.4.3 Characteristics of the Mean-Square Response; Moving 
Resonance Effect 

Substituting the expression (4.108) into the equation (4.75) and using ex­

pressions (5.5) and (5.6), the characteristics of the mean-square displacement of 

the response of the equivalent linear oscillator (5.4) are obtained approximately by 

examining the simple first-order differential equation 

till (t) + 2 [(owo + 8( ql1 (t))] ql1 (t) = 2w2q(q~t: (t)) Rg (w (q1l (t)) , (owo, Wg (t), O'g( t)) 

(5.9) 

where Wo is the initial structural frequency, (0 is the initial damping ratio, and qg (t) 

is the mean-square acceleration of the excitation measuring the time variation of 

the intensity of the ground motion. The form of Rg(w(ql1(t)),(owo,wg(t),O'g(t)) 

depends on the structure of the normalized power spectral densi ty of the ground 

acceleration. 

Several factors affect the mean-square displacement of the response of simple 

nonlinear oscillators. The time variation of the intensity qg( t) of the ground vari­

ation is one factor that controls the forcing term in equation (5.9). The degree of 
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nonlinearity of the oscillator described by the ductility ratio 11 is another factor to 

affect the response. For the softening force-deflection relation (5.2) and for a fixed 

ductility ratio 11, the instantaneous equivalent frequency W(qll(t)) decreases with 

increasing qll (t). The forcing term in (5.9) is amplified for softening systems due 

to the presence of w (qll ( t)) in the denominator. 

Next, consider for simplicity lightly damped oscillators. As (((t)) ---t 0, 

(5.10) 

the normalized evolutionary power spectral density of the ground motion model. 

The time variation of the value of the EPSD computed at the instantaneous equiva­

lent frequency of the oscillator also affects the response by increasing it or decreasing 

it, depending on the shape and the time variation of the normalized EPSD. As an 

example, the normalized EPSD corresponding to the Orion Blvd. recording is shown 

in Figure 5.7. It is clear that the predominant frequencies of the ground motion 

shifts to the lower frequencies with increasing time. This is often the case expected 

in earthquake ground motions. It may happen that the decrease of the structural 

frequency of the softening structure tracks the decrease of the predominant fre­

quency of the ground motion resulting in significant amplification of the response. 

This "locking" of the structural frequency with the predominant frequency of the 

ground motion will be referred to as the "moving resonance" effect. If the condition 

that the oscillator is lightly damped is removed, then similar arguments hold by 

considering the function Rg (w (qll(t)) , (owo,wg(t), cyg(t)) instead of the normalized 

EPSD function S N (w (qll (t)) ,Wg( t), CYg( t)). 

The moving resonance effect for the (TI) excitation is less likely to occur. The 

reason is that as soon as the structural frequency coincides with the dominant 

frequency of the ground motion, the response is considerably amplified and the 

structure softens. The softening, which is reflected as a decrease of the structural 

frequency, moves the structure out of resonance with the ground motion. 

Numerical results are next presented to illustrate the effects of the temporal 

nonstationarity in the frequency content on the response of the simple nonlinear 

structure. The responses corresponding to the (TI) and the (TV) excitations de-
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scribed in Section 5.2 are compared. The normalized EPSD function for both exci­

tations are plotted and compared in Figure 5.7. All numerical results correspond to 

5% initial damping ratio. The maximum of the STD response, the corresponding 

time that the maximum occurs and the duration of the STD response are computed 

for oscillator initial frequencies ranging from 1 to 8Hz. The responses are compared 

in Figure 5.8 for the two types of excitation. The response quantities considered are 

both the displacement and the absolute acceleration. The solid curves correspond to 

the (TV) model while the dashed-dotted curves correspond to the (TI) model. It is 

evident from these plots that although both excitations model the same earthquake 

record, the characteristics of the response differ considerably. This is an indication 

that the change in the frequency content with time observed in ground motion is 

important to incorporate in the ground motion models. 

In order to reveal in detail the characteristics of the response and their depen­

dence on the ground motion model, representative nonlinear oscillators are used 

to compare the full time history of the response. The STD of the displacement 

responses corresponding to (TI) and (TV) excitations are compared in Figures 

5.9(a), 5.10(a), 5.11(a) and 5.12(a). Each figure corresponds to different param­

eters of the nonlinear oscillator. The time variation of the corresponding equivalent 

structural frequencies w(qll(t)) computed by (5.5) are plotted in Figures 5.9(b), 

5.10(b), 5.11(b) and 5.12(b). For comparison purposes, each figure also includes 

the time variation of the dominant frequency w~ (t) of each ground motion model 

(dashed curves). 

In Figure 5.9, the maximum STD response corresponding to the (TV) excita­

tion differs from the maximum response corresponding to the (TI) excitation by a 

factor as high as three. For the (TI) excitation, the oscillator is behaving almost lin­

ear·ily since the equivalent frequency does not vary significantly. Recalling the case 

of linear oscillators in Figure 5.3(a), the responses were different only by a factor of 

two. The additional difference computed for the nonlinear oscillator is attributed to 

the moving resonance effect occuring for the (TV) excitation from approximately 

the first to the seventh second of the excitation, as seen in Figure 5.9(b) where 

the structural frequency tracks the changing predominant ground motion frequency 
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over this time period. 

In Figure 5.10 the initial structural frequency is the same as that in 5.9 but 

the strength Ru of the structural model is lower. Both responses are nonlinear as 

indicated by the large changes in equivalent structural frequencies in the plots in 

Figure 5.10(b). The responses have approximately the same maximum value, but 

they differ in duration. The moving resonance effect is also demonstrated in Figure 

5.10(b) for the (TV) excitation. 

In Figures 5.11 and 5.12 the initial structural frequencies were chosen to be 

close to the dominant frequencies of the strong S-waves of the ground motion. In 

Figure 5.12(b) and for the (TI) excitation, the equivalent linear oscillator is never 

in resonance with the ground motion. Similarly, for the (TV) excitation, over 

the first 10 to 15 seconds of the highest ground intensity, the equivalent linear 

oscillator is not in resonance with the ground motion. However, at later times when 

the weaker surface waves of the ground motion are arriving, the equivalent linear 

oscillator resonates with the ground motion from approximately 15 to 22 seconds, 

causing an amplification of the response. Therefore, in this case, the maximum 

STD response is controlled primarily by surface waves rather than the S-waves. 

Modeling the ground motion by the (TI) excitation where the S-waves control the 

response results in an underestimation of the importance of the weaker intensity 

surface waves. Comparing the solid curves in Figures 5.11(a) and 5.12(a), it is 

clear that the resonance effect occuring at later times in Figure 5.12(b) causes a 

significant increase in the duration of the response. This large change in duration 

between structures with initial structural frequencies Wo = 3 and Wo = 4Hz also 

shows up in Figure 5.S. 

Concluding, the temporal nonstationarity in the frequency content of the 

ground motion has a significant effect on the response of nonlinear structures of 

softening type, especially when lengthening of the structural periods tracks the 

shifting of the dominant frequencies of the ground motion. 
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Chapter 6 

Conclusions 

In this study, a new nonstationary ground motion model was proposed which 

IS complete enough for structural response studies and yet is simple enough for 

ground motion predictions. The model captures with at most nine parameters all 

the features of the ground motion which are important for computing dynamic 

response, and it probabilistically treats the uncertainty in the remaining details as­

sociated with the ground acceleration time history. The model is formulated in both 

continuous and discrete time by stochastic differential and difference equations re­

spectively, and conversion relationships are developed to link the two formulations. 

The modeling of the time-varying characteristics which are observed in real accelero­

grams is accomplished by varying the coefficients of these equations in a continuous 

manner. The maximum intensity of shaking, the time that the maximum occurs, 

the duration of shaking, the corner frequency, and the average dominant frequencies 

of the different wave groups present in an accelerogram are the explicit parameters 

of the model. One can exploit the simple interpretation of the model parameters to 

construct full acceleration time histories with certain desired characteristics. Uncer­

tainties associated with the general ground motion characteristics may be handled 

by treating probabilistically the model parameters. 

Using a Bayesian probabilistic framework and the discrete formulation of the 

model, an effective method was developed for estimating the most probable model 

that best fits, in a statistical sense, the nonstationary characteristics of a given 

"target" accelerogram. Unlike other methodologies applied to estimation of model 

parameters from earthquake data, the proposed methodology is simple to implement 

and it simultaneously treats the amplitude and the frequency content nonstation­

arities. Applications to a large database of accelerograms can provide the means of 
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associating each accelerogram with a nine-parameter description which covers both 

amplitude and frequency nonstationarities. 

The proposed ground motion model can be efficiently applied in simulations as 

well as analytical response and reliability studies of linear and nonlinear structures. 

Extracting a stochastic model from an accelerogram allows the sensitivity of the 

structural response to variation in the details of the ground motion to be examined, 

while the overall features of the excitation are fixed. The discrete model provides a 

simple and computationally efficient algorithm for the generation of an ensemble of 

artificial digitized accelerograms with similar characteristics to a given earthquake 

accelerogram. Such simulated accelerograms were used in response studies of linear 

elastic and inelastic structures. The results of such studies indicate that the lower 

the structural frequency of linear structures, the more the displacement, velocity 

and acceleration are sensitive to the details of the ground motion. Also, the more 

inelastic the response of a structure is , the less sensitive the maximum velocity and 

absolute acceleration is to the ground motion details. However, the maximum duc­

tility and especially the residual ductility of the inelastic response are very sensitive 

to the details of an acceleration time history which has its overall features fixed. 

The simplified statistical structure of the continuous model can be efficiently 

used in analytical random vibration studies and for mathematically studying the 

importance of the temporal nonstationarity in both the amplitude and frequency 

content of ground motion on the response of both linear and nonlinear structures. 

Such analytical random vibration studies were considered in this work. Using the 

equivalent linearization method, an equivalent second-order linear differential equa­

tion with time-varying coefficients replaced the equation of motion of a nonlinear 

oscillator. The special case of time-invariant coefficients corresponds to the equa­

tion of motion of a linear oscillator. An approximate formulation was developed 

to replace the original, computationally lengthy expressions for the covariance of 

the transient response by much simpler expressions. The approximations provide 

meaningful insight into the characteristics of the nonstationary response. Similar­

ities with the stationary response exist and were identified by the analysis. The 

formulation was extended to approximate the covariance response of multi-degree-
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of-freedom systems. The proposed approximations preserve the essential character­

istics of the response without significant loss of accuracy. They are also computa­

tionally efficient with typical reduction in computing time of one to two orders of 

magnitude. 

The approximate random vibration analysis treats "earthquake like" excita­

tions with nonstationarities in both amplitude and frequency content, and therefore 

the approximate equations are suitable to apply in the seismic analysis of linear and 

nonlinear structures. The simplified approximate formulation was used to math­

ematically analyze and demonstrate the effect of the temporal nonstationarity in 

the frequency content of the ground motion on the response of linear and nonlinear 

single-degree-of-freedom oscillators. From the analysis , it was concluded that the 

characteristics of both linear and nonlinear response strongly depend on the time 

variation of the frequency content of the excitation. Time-invariant frequency con­

tent models are inappropriate to model ground motions with time-varying frequency 

content. In particular, the temporal nonstationarity in the frequency content of the 

ground motion can have a substantial effect on the response of nonlinear structures 

of softening type, especially when the lengthening of the structural periods due to 

the softening of the structure tracks the shift of the dominant frequencies of the 

ground motion. 

The proposed ground motion model is a.lso promising for use in seismic risk 

analyses in which uncertainties in the variables accounting for the seismic environ­

ment at a site would be reflected in uncertainties in the model parameters. Em­

ploying such studies, it would be possible to probabilistically specify future ground 

motions at a site in terms of the full acceleration time history rather than the 

simplified peak ground quantities commonly used in present practice. 

In future work, it is proposed to use probability as a mathematical tool to si­

multaneously treat ground motion uncertainties, structural model uncertainties as 

well as damage model uncertainties, and to study the sensitivity of various response 

parameters indicative of damage to these uncertainties , and finally to probabilisti­

cally assess reaching various limit states such as structural damage. This will allow 

more comprehensive seismic risk studies to be done for major structures which can 
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deal directly with inelastic response, avoiding the difficulties that arise in current 

practice when peak ground motion quantities or elastic response spectra are used 

to describe potential ground motions at a site. 
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APPENDIX A 

1. Solutions of Homogenous Second-Order Differential Equation 
with Slowly-Varying Coefficients 

In general, there is no closed-form solution of the second-order differential equa-

tion 

(A.l) 

where a dot denotes derivative with respect to the independent variable t and (g and 

Wg are time varying. However, in the case of slowly-varying coefficients, approximate 

closed-form solutions can be derived. A perturbation technique is used here to 

approximately solve the equation (A.I). 

Introducing a new variable 7 by: 

then, 

Setting 

d 

dt 

t 
7 = - , ). large 

). 

1 d 
). d7 

and -=---

equation (A.I) may be rewritten in the form: 

(A.2) 

(A.3) 

(A.5) 

where now a prime denotes derivative with respect to the independent variable 7. 

Define a new dependent function 4>(7) by: 

-' x 
4>(7)=-::-

x 
(A.6a) 

then, 

(A.6b) 

, 1/ 

Solving (A.6a) and (A.6b) for x and x and substituting into equation (A.5), we 

find that 4>(7) satisfies the first-order nonlinear differential equation: 

(A.7) 
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Expanding <p( T) in powers of A: 

(A.S) 

substituting (A.S) into (A.7) and equating terms of the same order, we finally obtain 

the equations for the first two terms in the form 

(A.9a) 

(A.9b) 

The condition between the first two terms under which the expansion (A.S) is valid 

IS: 

I 
<PI (T) I ~ A 
<Po (T) 

Solving (A.9a) and (A.9b) for <Po and <PI respectively, we get: 

Noting from (A.6a) that: 

and using the expansion (A.S) we get: 

(A.10) 

(A.11a) 

(A.11b) 

(A.12a) 

(A.12b) 

Changing the variable of integration in (A.12b) according to (A.2), the two linearly 

independent solutions of (A.1) are finally obtained as 

1= 1,2 

(A.13a) 
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where 

Pg (s) = - ~ [(g (s)wg (s)J / 2w~ (s) (A.13b) 

and 

Wd (s ) = Wg (s) )1 - (i (s). (A.13c) 

Using the values of <Po and <PI, the condition under which the expansion (A.8) is 

valid becomes: 

(A.14) 

or equivalently, 

(A.14a) 

where Qg(t) = (g(t)Wg(t). Introducing the period Td of the system as Td = 27r/Wd 

we can rewrite (A.14a) in the form: 

(A.14c) 

The responses 'rI(t, r) to a unit initial displacement and h(t , r) to a unit initial 

veloci ty applied at time rare 

respectively, where 

exp[-J:(g(s)wg(s)ds] [it . 1 
g ( t, r) = cos W d ( S ) ds 

VWd(t)Wd(r) T 

2. Principal Matrix Solution 

The principal matrix solution <1>( t, r) satisfies 

~(t, r) = A(t)<1>(t, r) 

<1>(r,r)=[ 

(A.15a) 

(A.15b) 

(A.15c) 

(A.16) 
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where A( t) is given by (4.3). It is straightforward to show that 

<Pll(t,T) = 17(t,T) 

<P21(t,T) = r,(t,T) 

<P12(t, T) = h(t, T) 

<P22(t, T) = h(t, T) = Wd(t)g(t, T) - { Qg(t) + ~d(!i)} h (t, T) 

where the slowly-varying formulas were used in (A.20). 

( A.17) 

(A.18) 

(A.19) 

(A.20) 

For large enough (g (t), both 1]( t, T) and h( t, T) decay quickly to zero after a 

few cycles of oscillations. For slowly-varying Qg(t) and wg(t), we can ignore their 

time variation over the first few cycles and approximate the expressions (A.15a) 

and (A.15b) by the simpler ones 

(A.21a) 

(A.21b) 

where 

*( )_exP(-(g(t)wg(t)(t-T)] (()( )] g t , T - ( ) cos W d t t - T 
Wd t 

(A.21c) 

These expressions are exact for time-invariant (g and w g . 

3. Evolutionary Spectral Representation of A Stochastic Process 

For a stationary process x( t), the covariance function Rx (t, s) depends only on 

the time difference T = t - s. A useful quantity referred to as the power spectral 

density (PSD) can be introduced in this case as the Fourier transform of the covari­

ance function. The PSD, which describes the frequency decomposition of the total 

energy of the process, is also a complete description of the zero-mean Gaussian sta­

tionary process because the covariance function can be determined from the inverse 

Fourier transform. 

For the case of a nonstationary process, Priestley (1965, 1967) extended the 

definition of the PSD. If a zero-mean Gaussian stochastic process admits the spectral 
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representation 

x (t) = I: H (w ) e iwt dZ (w ) (A.22) 

where H (w) is deterministic and dZ (w) is an orthogonal stochastic process such 

that 

E [dZ (w)] = 0 

E [dZ (WI) dZ* (W2)] = 8 (WI - W2) dw, 

then the PSD of x(t) is given by: 

Sxx (w) = IH (w) 12 

(A.23a) 

(A.23b) 

(A.24) 

Similarly, a nonstationary stochastic process can be generated from the spectral 

representation 

x(t) = I: G(w,t) eiwtdZ(w) (A.25) 

where in this case G(w, t) varies with time. According to Priestley, the evolutionary 

power spectral density (EPSD) for such a process is defined as 

Sxx (w, t) = IG (w , t) 12 (A.26) 

In this case, the EPSD is not a complete description of the nonstationary process 

because the crucial quantity Rxx( t, s), which turns out to be given by 

Rxx (t,s) = E[x(t)x(s)] = I: G* (w,t)G(w,s)eiw(t-S)dw, (A.27) 

depends also on the phase of G(w, t). For t = s the variance of the process is 

obtained in the form 

R(t)=RxxCt,t)=E[x2 (t)] = I: S(w,t)dw (A.28) 

The variance R( t) may be interpreted as a measure of the total power of the process 

at time t and CA.28) gives a frequency decomposition of the total power in which 

the contribution from frequency w is Sew , t)dw. Therefore, the EPSD retains its 

interpretation as a frequency decomposition of the total energy. 
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Next, we derive an approximate closed-form expression for the EPSD of the 

process defined by (3.1). Substituting the spectral representation of white noise 

(A.29) 

into (3.2) and interchanging the order of integration, we get that 

(A.30) 

According to the definition, the EPSD is 

(A.31) 

where in the case of slowly-varying coefficients, h(t ,s ) is approximated by (3.6). 
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APPENDIX B 

Relationships Between the Coefficients of Second-Order 
Discrete and Continuous Equations 

Solving the algebraic system (3.26) for the two unknowns al(k) and a2(k) at 

each k and using expressions (A.13) for X ~l)(tk) and x~2)(tk) ' we finally obtain that 

(B.la) 

a2 (k) = -

where 

k, I integers (B. Ie) 

In practice, 6.t is very small and ag(t) and Wd(t) can be assumed to remain essen­

tially constant over the period 6.t. Therefore, without losing accuracy, expressions 

(B.l) can be approximated by: 

al (k) = 2exp [-(g (tk)Wg (tk) 6.t] cos fWd (tk) 6.t] 

a2 (k) = -exp [-2(g (tk)Wg (t k) 6.t] 

(B.2a) 

(B.2b) 
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APPENDIX C 

Second-Order Discrete Equation 

The general solution of the discrete equation (3.25) and the autocovariance of its 

output is derived herein. The discrete impulse response Uk,m is first derived by 

solving the auxiliary problem 

Uk m = 0 , 

where Ok,m is the Kronecker-delta given by: 

if k = m; 
if k =1= m. 

k< m, 

(C.la) 

(C.lb) 

(C.2) 

Since the coefficients of al(k) and a2(k) have been chosen so that the free vibration 

solutions of (C.l) are :1:~ll)(k~t), 1= 1,2, we can express the solution to this problem 

in the form: 

{ 
Ax(l)(k~t) + Bx(2)(k~t) 

Uk = h. h' 
,m 0 , 

if k 2 m; 
if k < m , 

(C.3) 

then (C. 1) is satisfied for every k different from m, m + 1. The constants A and B 

are determined by enforcing Uk,m to satisfy equation (C.l) at k = m and k = m+ 1. 

Finally, using the expressions (A.13) and (B.2b) for x~i)(k~t), i = 1,2 and a2(m) 

respectively, the exact relation for Uk,m becomes: 

h (tk' t m ) 

Uk,m+l = h (t
m

+
1

, t
m

) 

= 0 k < m 

Using the principle of superposition, Yk may be written in the form: 

k k 

Yk = L Uk,m(J" (m) em = L Uk,m+l (J" (m + 1) em+l, k = 1, ... ,N 
nt=l m=O 

Using (C.4), and the property of the discrete white-noise process 

(C.4) 

(C.5) 

(C.6) 
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the discrete auto covariance function of the process Yk , k = 1, ... ,N becomes 

k 

E [YkYs] = I: Uk,m+l Us,m+l a2 (m + 1) s ::::- k (C.7a) 
m=O 

s::::-k (C.7b) 

On the other hand, the A CF of the continuous process y( t) can be approximated 

by numerically integrating expression (3.3). Using the trapezoidal rule, the integral 

in (3.3) is replaced by the summation: 

k 

Ry(t,s) = I: h(t,tm)h(s,tm)f2(tm)6.t - %h(t,to)h(s,to)f2(t O)6.t (C.8) 
m=O 

where tm = m6.t and k6.t = min{ t, s}. From (C. 7b) and (C.8) and assuming that 

f(t o) = 0, it is found that relation (3.28) holds if 

(C.9) 

The accuracy of the approximation deteriorates as the oscillator frequency wg(t) 

approaches the Nyquist frequency, that is, as the number of time-steps 6.t per 

period decreases. That is so, because the trapezoidal rule approximation applied 

for the integral in (3.3) becomes less accurate for large time steps. For ten time-steps 

per period, an accurate numerical integration algorithm is obtained. Assuming that 

the variation of W g (t) and 0: g (t) is not significant over the interval 6.t, expression 

(C.9) is further approximated by (3.29). 
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APPENDIX D 

Solution of the Second-Order Differential Equation Using the 
Two-Timing Method 

Consider the second-order differential equation 

ret) + 2(wor(t) + W5r(t) = get) 

with initial conditions 

1'(0) = 0 and reO) = 0 

(D.1) 

(D.2) 

We seek a solution in the form of a series such that when g( t) varies slowly with 

time and the angular frequency Wo is high, the first few terms in the series expansion 

would provide a reasonable approximation to the solution 1'( t). For this , the two­

timing method is used with the slow time to be governed by t and the fast time to 

be governed by the reciprocal of the angular frequency Wo. 

Introducing the fast time T by 

T = wot 

then 

ret) = r (:0) == X(T) 

where x( T) is a function of the independent variable T with 

I 1 
x(T)=-r(t) 

Wo 
and 

The differential equation for x( T) becomes 

with initial conditions 

where 

X(O) = 0 and 
I 

X (0) = 0 

1 
t=t(T)=-T=ET 

Wo 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

(D.8) 
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We seek a solution of the form x( T) = X (T, t( T)) where X ( T, t) is a function of 

two variables T and t. Then 

I (. ) _ dX ( T, t ( T )) _ oX ( T, t) oX ( T, t) 
X T - dT - OT + € ot (D.9) 

"( ) _ d2X(T,t(T)) _ 02X(T,t) 2 02X(T,t) 202X(T,t) 
x T - dT2 - OT2 + € OtOT + € ot2 (D.10) 

We expand X( T, t) into powers of € 

and we substitute it into the equation (D-6) and (D-7). Collecting terms of the 

same order in € we have the system 

{ 

L ~o( T, t) = 0 

Xo(O, O) = 0, oXo (0,0) = o} 
OT 

{

LXI(T,t)=O } 

Xl (0,0) = 0, OXIO~' 0) = 0 

{ 

L X2(T, t) = g(t) } 

X (0 0) = 0 oX2 (0,0) = 0 
2 , , OT 

(D.12) 

(D.13) 

(D.14) 

{ 

L Xi(T , t) = _202Xi-1 (T , t) _ 02 X i-22(T,t) _ 2COXi-1 (T,t) } 
OtOT ot ot D.15) 

X -(0 0) = 0 oXi (0,0) OXi - 1 (0,0) = 0 
l' , OT + ot 

which can be solved successively. Integrating the equations and eliminating the 

secular terms produces 

Xo (T,t) = Xl (T , t) = 0 (D.16) 

X 2 ( T, t) = g( t) - g( 0) 'P ( J 1 ~ (' , ( ) ( D.1 7) 

X (T t) = _2?og(t) + og(O) ( 1 -(1 - 21'2)) (D.18) 
3, "'ot ot <p \11-(2' '" 

r 2 02g(t) 02g(0) ( 1 2 ) 
X 4 (T,t)=-(1-4() 0 2 + 0 2 <p J ,-((3-4() (D.19) 

t t 1-(2 . 

Xi (T , t) = 0 (ii)(t)) + 0 (g(i)(O) <p (p, sin <f )) (D.20) 
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where r.p (p, sin <p) denotes the exponentially decaying oscillatory function 

r.p (p, sin <p) = p exp ( - ( T ) cos ( J 1 - ( 2 T + <p ) (D.21) 

Substituting T = wot and using the expansion (D-ll), the final expression for 

r ( t) becomes 

where r.p (p, sin <p) is the exponentially decaying oscillatory function 

r.p (p, sin <p) = p exp (-(wot) cos (Wd t + <p) (D.23) 
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APPENDIX E 

Covariance Response of A Linear Oscillator Subjected to 
Modulated White-Noise Excitation 

Substituting the time-invariant version of expressions (A.17) to (A.20) into equa­

tion (4.15) and after algebraic manipulations, it can be shown that the covariance 

S( t, s) of a response quantity takes the simple form 

cos [Wd(t - s) + 1>(s)] 
S(t,s)=q(s)exp(-(wo(t-s)) cos [1>(s)] (E.1) 

where q( s) and 1>( s) are given as follows. 

For the covariance of the displacement response 

q(s) = qll(S), 
( 

tan [1>(s)] = +E12(S) 
}1- (2 

For the covariance of the velocity response 

q( s) = q22 ( 3 ), tan [1>(s)] = --r=::::::(==:::: 
}1- (2 

For the covariance of the a.bsolute accelera.tion of the response 

(E.2) 

(E.3) 

q(s) = qa(s), 
tan [1>(3)] = ({[I + 2E22(S)]- 4(2 [1 + E22(S)]} + (1 + 4e) E12(S) 

1 + 4(2 [1 + 2E22(S)] + 4(E12(S) 
(E.4) 

For stationary response, E22 (s) = E12 (s) = Ea (s) = O. 
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APPENDIX F 

Complete Set of Equations for the Mean-Square Displacement 
of the Nonlinear Response 

The differential equation (4.51) can be split into the first-order differential equa­

tion 
ql1(t) + 2s*(t)qll(t) = 21'(t) 

qu(O) = 0 
(F.1) 

with the excitation 1'( t) satisfying the second-order differential equation 

r(t) + 40:*(t)1;(t) + [2w*(t)]2 1'(t) = g(t ) 
(F.2) 

1' (0) = 0, 1~ (O) = 0 

where 

o:*(t) = o:(t ) - O.58(t) (F.3) 

.5 * ( t) = 0: ( t) + 8 ( t ) ( F.4 ) 

[2w*(t )]2 = [2w(t)f - 2a(t ) - 40:(t)8(t) - 8(t) + 482(t) (F.5) 

g(t) = 2L22 (t) + 40:(t)L12(t) + L12 (t) (F.6) 

and 8(t) satisfies the nonlinear differential equation 

Assuming that 0: ( t) and w( t) are slowly-varying, the dominant solution for 8( t) 

becomes . . . 
ww - 0:0: Wd 

8(t) = 2(w2 _ 0: 2 ) = 2Wd (F.8) 

and it can be used to simplify the expressions (F-1) to (F-6) in the form shown in 

section 4.5.1. 


