Geodetic Measurement of Deformation in the Offshore of Southern California

Thesis by
Francis H. Webb

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

1991
(Submitted June 4, 1990)

Acknowledgements:
The initial concept of this project was proposed by Duncan C. Agnew and Bradford H. Hager. Financial support was provided through grants from the National Science Foundation, NSF EAR86-18542, and from the National Aeronautics and Space Administration, NASA NAG5-842. The collection of the data was made possible through the help and cooperation of a large number of people and agencies who generously volunteered their time and assistance. The operation of the receivers in the field was handled primarily by volunteers from Scripps Institute of Oceanography, Caltech, University of California, Los Angeles, and Massachusetts Institute of Technology, along with additional support from University of Colorado, UNAVCO, and Jet Propulsion Laboratory. Receivers were provided by UNAVCO, Ohio State University, Defense Mapping Agency, Pacific Missile Test Center. UNAVCO and James Stowell were invaluable in providing support for the field campaigns. At the National Geodetic Survey, Gerry Mader, Bill Strange, and Miranda Chin are thankfully acknowledge for providing software and training for processing the GPS observables. The geodetic strain analysis would have been quite painful and tedious, if it had not been for software developed at the NGS by Nancy Drew and Richard Snay, who have done a great service to the community in developing DYNAP.

Access to geodetic markers was provided in numerous cases through the good will of land owners. The late Carey Stanton is thanked for his assistance in allowing for the occupation of bench marks on his island, Santa Cruz Island. The Pacific Missile Test Center and Rich Dixon are thanked for providing field transportation, personnel, and support for stations on San Nicolas Island and at Point Mugu. Frank Ugollini and the National Park Service are thanked for allowing for, and assisting in, occupations of monuments on Santa Barbara and San Miguel Islands.

I am especially grateful for the support that I have received from Cheryl Contopulous, Mark Fahnestock, Jean Grinnols, Andy Gaynor, Phil Ihinger, Barkley

Kamb, Cathy Smither, and Gerald Wasserburg. It has always been enjoyable working with my peers from the other institutions: Mark Murray and Kurt Feigl at MIT, and Kristine Larson from IGPP. Thanks go to my office mate, Shawn Larsen, for many enlightening conversations on a wide variety of subjects. I am indebted to Bruce Murray for his advice and for his generosity in allowing this research to be performed on his computer.

I also would like to acknowledge the emotional support and encouragement that I have received from my family and friends during these years at Caltech: Terri, Sean, Eugene, Mark, Jon, Paul, and Sacha.

For the record, there are three dates worth mentioning in relation to the completion of this dissertation: March 31, 1990 was the day Caltech withdrew my support despite assurances I had received that I would be supported through June of 1990; June 4, 1990 was the day I defended and the first anniversary of the Tianemen Square massacre; February 28, 1991 was the day Kuwait was liberated by the allied forces and my committee signed off on my revised thesis.

Abstract

Geodetic measurement of deformation in the offshore of southern California. Geodetic surveys using signals from satellites of the Global Positioning System (GPS) have allowed for the reoccupation of historical triangulation markers for crustal deformation studies and the recovery of a long history of geodetic data that date to the late 1800's. From June 1986 to May 1988, six GPS experiments were conducted in California that incorporated more than 50 first-order triangulation stations on the channel islands of southern California and the mainland into a precise GPS network. Interstation vectors were calculated from the GPS observables using the National Geodetic Survey's (NGS) GPS22 software. The results of these analyses provided baseline component precisions better than several parts in 10^{7}. The vectors from all of the GPS surveys were combined and used with historic triangulation observations to estimate shear-strain rates across the Santa Barbara Channel and Oxnard plain, and across the southern California Continental Borderland. Simultaneous reduction was used to evaluate the shear-strain rates from the combination of these data. Shear-strain rates across the Santa Barbara channel are from 0.2 to $0.4 \mu \mathrm{rad} / \mathrm{yr}$ with a direction of maximum contraction of from N23W to N20E, averaged over a hundred years of geodetic data. For networks that cross the Continental Borderland, the data were insufficient to reliably estimate strain rates.

The direction of shortening implied by the geodetic data agrees with that inferred from the trends of late Quaternary and Holocene faults and folds in the Santa Barbara channel. When the shear-strain rates across the channel are modeled as uniaxial convergence, this indicates shortening from $13 \pm 5 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 23 \mathrm{~W} \pm 5$ across the western part of the channel to $18 \pm 5 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 20 \mathrm{E} \pm 5$ across the eastern part. By adding the western channel velocity to the geodetic velocity of the Vandenberg VLBI site with respect to North America, a velocity path across the Pacific-North American plate boundary can be constructed to the offshore islands of $56 \pm 4 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 38 \mathrm{~W} \pm 4$,

exceeding the NUVEL-1 plate-model velocity for Pacific-North American plate motion in California by $7 \mathrm{~mm} / \mathrm{yr}$.

Table of Contents

Acknowledgements ii
Abstract iv
Chapter 1 Introduction 1
Chapter 2. Geodetic Data
2.1 Introduction. 5
2.2 Triangulation and trilateration surveys 6
2.2.1 Introduction 6
2.2.2 Adjustment of the historic geodetic data 8
2.3 GPS 13
2.3.1 Introduction 13
2.3.2 Satellite Geodesy using GPS 14
2.3.2 Analysis methods 17
2.3.2.1 GPS22 Analysis 19
2.3.2.2 Field Campaigns and procedures 21
2.3.3 GPS results 23
2.3.3.1 Precision 24
2.3.3.2 Accuracy 25
2.3.3.3 Differences associated with different orbit sources 26
2.3.3.4 Interstation GPS vector adjustment. 30
2.4 Summary 31
Chapter 3 Strain rate analyses
3.1 Introduction 59
3.2 Strain rate modeling from geodetic data 62
3.3 Methods 65
3.3.1 Implementation of simultaneous reduction technique 67
3.3.2 Data combinations 69
3.4 Network results 71
3.4.1 Santa Barbara Channel and Oxnard Plain 71
3.4.1.1 Santa Barbara Channel
Triangulation-GPS data set 71
3.4.1.2 Santa Barbara Channel GPS, Triangulation, and Trilateration data set 73
3.4.2 Borderland 76
3.4.2.1 Northern Borderland 77
3.4.2.2 Southern Borderland 79
3.5 Relative Quality of the Strain rate estimates 81
3.6 Summary 84
Chapter 4. Geodetic results and their relationship to the geologic environment 105
4.2 Geodetic strain-rate representation 106
4.3 Tectonic setting 109
4.3.1 Ventura Basin Tectonics 110
4.4 Geological strain indicators within the geodetic networks 112
4.4.1 Oxnard Plain 112
4.4.2 Santa Barbara Channel networks 113
4.4.2.1 Eastern Santa Barbara Channel 116
4.4.2.2 Central Santa Barbara Channel 118
4.4.2.3 Western Santa Barbara Channel 120
4.4.2.4 Seismicity and stress 121
4.4.3 Northern Borderland Borderland 122
4.4.4 Coseismic elastic strain release 123
4.7 Summary 123
Chapter 5. Pacific-North American Plate motion from geodeticestimates of strain rates in the offshore ofsouthern California
5.1 Introduction 132
5.2 San Andreas Discrepancy 133
5.3 Previous geodetic studies 134
5.4 Velocity path approach 136
5.5 Offshore geodetic velocity path 138
5.6 Other velocity paths 140
5.7 Discussion 143
5.7 Summary 144
References 149
Appendix A Local ties between GPS stations and triangulation marks 158
A. 1 San Miguel Island 159
A. 2 Santa Cruz Island 160
A. 3 Laguna Niguel 161
A. 4 Castro Peak 162
A. 5 Santa Barbara 21956 163
A. 6 San Fernando 1898 163
A. 7 Laguna 21951 164
Appendix B 172

Chapter 1

Introduction

Until recently, our knowledge of plate tectonic motions was based primarily on the analysis of marine magnetic anomalies, the orientations of transform faults in the ocean basins, paleomagnetic pole positions, and earthquake slip vectors. This information has lead to the development of global plate velocity models that have been useful in the quantification of tectonic activity through the predictions from the plate models of the rates of deformation in these areas. The plate motions predicted from these models are averages over several millions of years and have been used to interpret regional geological deformational histories and developments.

While the assumption of rigid plates is generally true for the oceanic plates, apparently continental crust does not behave rigidly. It is the non-rigid behavior of this crust that results in some of the more interesting geology. The detailed understanding of crustal deformation recorded in rocks along plate boundaries is best interpreted with respect to the rates and style of deformation implied by the plate tectonic environment of the region as predicted from plate reconstructions. A more complete understanding of the present day kinematics of the crust along these plate boundaries should create a deeper understanding of the geological development of a region.

The San Andreas fault is generally recognized as the main boundary between the Pacific and North American plates in California. This transcurrent boundary, embedded within the crustal rocks of North America, is the locus of many geological structures that
demonstrate substantial non-rigid behavior of the crustal rocks throughout the history of Pacific-North American plate interaction [e.g., Atwater, 1970]. The development of relatively young folds and basins along this boundary is evidence that some of the plate motion is being transferred to the crust and that slip measured along the San Andreas fault alone can not account for all of the relative plate motion. Geologic and geodetic investigations indicate that only about 75% of the relative plate motion can be accounted for as slip along the San Andreas fault [Minster and Jordan, 1984; DeMets et al., 1987]. Deformation both east and west of the San Andreas fault has been proposed to account for the remaining motion, the so-called San Andreas discrepancy. In central California, both extension across a broad region of the North American continent in the Basin and Ranges and faulting along coastal California have been proposed to account for the missing motion [Minster and Jordan, 1984; Minster and Jordan., 1978]. The partitioning of this discrepancy in southern California is more complicated than in central California, because of the presence of more active structures and faults with various trends both west and east of the San Andreas fault. Slip rates have been determined for many of the onshore faults, but they can not account for all of the missing motion. Faults in the offshore have been recognized as active from marine geophysical studies and seismicity [Legg, 1985], but the determination of rates of deformation across them has eluded investigators.

The determination of present day plate motions and the testing of deformation models of the behavior of the plates and the crust have been aided by the development of space based geodetic techniques. Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI) have been used since the early to mid 1970's (SLR) and the early 1980's (VLBI) to investigate and monitor strain around the world on baselines from several 100 to many 1000's of km long [NASA, 1988]. Baselines can now be measured to better than the centimeter level allowing for the determination of present day plate motions. Results from these investigations suggest that present day plate velocities
between sites in the interior of plates agree well with those predicted from global plate models and that the velocity of sites along plate margins suggests non-rigid plate behavior [Ryan, 1987; Smith et al., 1989b]. These techniques have been very successful in characterizing the deformation, on regional to intercontinental baselines, and have been applied to the onshore region of southern California where they have provided information on the distribution of the plate motion across the onshore part of the PacificNorth American plate boundary [Clark et al., 1987; Sauber, 1989]. However, the cost of deployment makes these techniques impractical for monitoring dense networks covering scales of $1-100 \mathrm{~km}$.

The development of Global Positioning System (GPS) based geodetic techniques has allowed the investigation of crustal strain in areas that had previously been inaccessible by VLBI and SLR. This is mostly due to the low cost of GPS receivers, their ease of operation, and portability. GPS techniques are being demonstrated to have accuracy and precision that are comparable to that of VLBI and SLR [e.g., Blewitt, 1989], but at a much lower cost. The portability of GPS receivers makes them ideally suited over those other techniques for the densification of geodetic networks in regional areas to further understand the crustal deformation process.

In this study recently developed GPS based geodetic techniques are used in combination with terrestrial geodetic data to characterize the kinematics and strain rates of the deformation in the offshore region of southern California. GPS surveys were performed to first order triangulation monuments along the coast and to the offshore islands of southern California. The data collected during these surveys were analyzed to determine interstation vectors among monuments with historical triangulation observations. The results of the GPS analyses have been used with the historical data to model the strain rates across the offshore region of southern California. The data set is rich enough to delineate the spatial changes in the strain rate field. These changes have implications for the distribution of strain across the Pacific-North American plate
boundary in California. Chapter 2 discusses the different types of geodetic data used, the GPS surveys, and the data analyses. Chapter 3 discusses the methods used to model the strain rates from these data and the relative significances of those estimates. Chapter 4 discusses the the strain rate results for the different geodetic networks in the Santa Barbara Channel and Continental borderland with respect to long term geological estimators of strain within those networks. And Chapter 5 discusses the implications of these strain rates for the relative motion between the Pacific and North American plates.

Chapter 2.

Geodetic Data

In this chapter, both the triangulation and GPS data sets and the processing that has been applied to each will be described. For the triangulation data, the processing has been minimal relative to that which has been done with the GPS observables. The following analyses have removed most of the blunders and systematic errors present in both sets of data from the final database, so that they do not bias the strain estimates that have been calculated from these data in Chapter 3.

2.1 Introduction:

Many types of geodetic observations have been collected in the offshore region of southern California. The data used to estimate crustal strain in Chapter 3 consisted of three types of geodetic data representing several years to many decades of observations. These geodetic observations are of different precisions and have been collected by different agencies, from the first triangulation surveys in the late 1800's to the most recent GPS surveys in 1988. The data include triangulation, trilateration, and interstation vectors determined from the analysis of signals from satellites of the Global Positioning System (GPS). The geodetic observations were made to horizontal control marks of the National Geodetic Survey (NGS) and its predecessor agencies. For the strain analyses it was desirable to reoccupy the original historical geodetic mark with GPS. However, this was not always possible, since some of the original marks had been destroyed and others
had poor sky visibility for GPS observations. This resulted in some of the GPS observations being made from eccentric marks that were tied to the historical triangulation stations via a conventional ground survey. (The ties between the triangulation stations and their GPS eccentric marks are found in Appendix A.)

Several organizations have been involved in the collection of the data. The GPS observations were made by a university consortium consisting of Scripps Institute of Oceanography, Massachusetts Institute of Technology, University of California at Los Angeles, and the California Institute of Technology with assistance from Federal and local agencies. The triangulation observations were part of the Project REDEAM data set [Snay et al., 1987] and were provided by the NGS. The trilateration was collected for A. G. Sylvester of the University of California at Santa Barbara (UCSB) by Greenwood and Associates, Santa Barbara, and reduced by Larsen et al. [1988].

2.2 Triangulation and trilateration surveys:

2.2.1 Introduction:

Triangulation and trilateration collected between 1873 and 1971 are the two types of historic geodetic measurements with which the results of the GPS analyses will be compared. These measurements are very different in their collection and distribution in the study area. Triangulation observations are simple measurements that require little, if any, corrections. The observations are of horizontal angles between stations in the plane of the observing instrument, which is tangent to the geoid. The procedures have remained relatively constant since the first surveys in the late 1800's. The only corrections that need to be applied are for deviations between the geoid normal and the normal to the figure of the earth, the ellipsoid [Bomford, 1980; Vanicek and Krakiwsky, 1986]. Trilateration, introduced in the early 1970's, involves the measurement of the distance between the instrument and the target based on the two way travel time of a light wave that is emitted from the instrument and reflected by the target back to the
instrument. Corrections are applied to the measurement to account for variations in the refractive index of the atmosphere along the path of the signal. For long lines, >10 's of km , the proper calculation of this correction requires the collection of meteorological data along the path of the signal during the measurement [Bomford, 1980; Vanicek and Krakiwsky, 1986].

Triangulation observations are the oldest, dating back to the late 1800 's. Triangulation surveys were performed along the coast primarily to aid navigation through the precise mapping of the coastline [Snay et al., 1987]. Observations from these surveys comprise the majority of the historic geodetic data used in this study. These surveys were performed in the early 1870 's, late 1890 's, early 1920 's, 1940's, 1950's, and $1960^{\prime} \mathrm{s}$.

The survey of a triangulation network took several years to complete. During the observing campaigns, rigorous field procedures were prescribed in order to ensure that observations of the highest precision were acquired. At most of the triangulation stations, horizontal angle observations are made with a theodolite to other stations in the network. Observations are made in rounds, starting on one station, observing the other stations in the round and closing on the first station. The number of observations depends on the precision of the survey, the survey order, and on the instrument used [Gossett, 1950]. The mean of the observations is reported as the observed direction.

First order surveys are the most precise. Each target station in a first order survey is observed 32-48 times. The standard errors of the mean of each direction are $0.6,0.7$, 1.2, and 2.1 arc seconds for first, second, third, and fourth order surveys, respectively [Gergen, 1975; Snay et al., 1987]. (0.6 arc seconds $=15 \mathrm{~cm}$ at 50 km). Many stations along the coast of California were observed during these surveys with precisions varying from first order to fourth order. However, during some of the surveys, conditions were such that the observational precision was less than the order of the survey. In these cases the precision of the observation is greater than that of the associated survey order. Some
of the first, second and third order directions have standard errors as large as 2.1 arc seconds.

Many stations were surveyed during the last century, but repeat surveys of the coast usually did not repeat the same stations of the original networks. Between surveys, stations were destroyed or rendered unusable by obstructions. Because of this and the low precision of the observations from and to many of the stations, much of the data are of limited utility for evaluating crustal strain.

Since crustal shear strain rates in California are typically $\sim 0.1-0.2 \mu$ radians $/ \mathrm{yr}$ [Savage, 1983] and the precision of a first order triangulation measurement is ~ 3.0 μ radians [Gergen, 1975], only the highest precision triangulation data are capable of providing reliable estimates of crustal strain rates, if collected frequently over several decades. Some of the stations included here fall into this category. Even though they were not occupied with GPS, they have a long history of observation using conventional geodetic techniques and can provide constraints on the other observations within the networks.

In addition to the horizontal direction observations, a limited number of astronomical positions and azimuths were observed for some of the stations during the historical surveys. The astronomical positions have been used to correct the observations for deflections of the vertical, but the astronomical azimuths have not been used. The large standard error in these measurements ($>7 \mu$ radians) [Snay et al., 1987] and possible systematic error between the reference frame of these observations and the GPS reference frame (Appendix A) make these azimuths unsuitable for evaluating crustal rotations.

2.2.2 Adjustment of the historic geodetic data:

Even when the highest standards are applied during the data collection, blunders and systematic errors can occur. In order to evaluate the data set for blunders, the
observations were adjusted on a "survey by survey" basis. In this context, "survey" means a period of time during which the data were collected. The adjustment procedure involves the determination of the horizontal station positions (latitude and longitude) from the observables (i.e., horizontal directions and mark-to-mark distances) using a linearized, weighted least-squares technique. The observation equation is written as

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=\mathbf{b}^{*}+\mathbf{V}(\mathbf{x}) \tag{2-1}
\end{equation*}
$$

\mathbf{F} is a model function relating the vector of station positions, \mathbf{x}, to the vector of true observations, \mathbf{b}^{*}, and $\mathbf{V}(\mathbf{x})$ is a residual function of misfit between the model and the observations.

Because the model, \mathbf{F}, is non-linear, it is linearized using a first order Taylor expansion about a priori station positions, \mathbf{x}_{0},

$$
\begin{equation*}
\mathbf{b}=\mathbf{b}^{*}-\mathbf{F}\left(\mathbf{x}_{0}\right)=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}}\left(\mathbf{x}-\mathbf{x}_{\mathrm{o}}\right)-\mathbf{v} \tag{2-2}
\end{equation*}
$$

The vector $\mathbf{F}\left(\mathbf{x}_{0}\right)$ is known and subtracted from the observations, \mathbf{b}^{*}, to give the observation residual vector \mathbf{b}

$$
\begin{equation*}
\mathbf{b}=\mathbf{b}^{*}-\mathbf{F}\left(\mathbf{x}_{0}\right) \tag{2-3}
\end{equation*}
$$

Letting the design matrix, \mathbf{A}, of partial derivatives be

$$
\begin{equation*}
\mathbf{A}=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}\right)}{\partial \mathbf{x}} \tag{2-4}
\end{equation*}
$$

the observation equation can be written as

$$
\begin{equation*}
\mathbf{A} \mathbf{x}^{\prime}=\mathbf{b}+\mathbf{v} \tag{2-5}
\end{equation*}
$$

where \mathbf{x}^{\prime} is a vector of corrections to \mathbf{x}. Letting \mathbf{W} be the weight matrix of the inverse of the observational errors, then the least squares estimate is given by

$$
\begin{equation*}
\mathbf{x}^{\prime}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{b} \tag{2-6}
\end{equation*}
$$

Equations for the partial derivatives relating the observables (horizontal directions and mark-to-mark distances) to the model can be found in Milbert and Kass [1987].

The triangulation surveys contained only precise horizontal direction observations. These surveys thus lack an origin, scale, and orientation, and are insufficient to solve for the station positions. To surmount these deficiencies in the data, a network scale and orientation are introduced during the adjustment of the triangulation surveys, with the adjustment being performed with respect to the station coordinates of a reference station. For trilateration surveys, only a network orientation needs to be constrained.

The triangulation data were provided in computer readable form by the NGS as part of its Project REDEAM data set that was generated for the redefinition of the North American Datum (NAD) in 1983 [Snay et al., 1987]. The REDEAM data set consists of observations from various Federal, state, and local organizations that are archived by the NGS [Snay et al., 1987]. The locations of stations used in this study are shown in Figure 2-1 and tabulated in Table 2-1.

The triangulation data set was divided up into six temporally independent surveys in order to check that all of the observations during a given time period were consistent and that none of the observations were unconstrained by the data within the network. The surveys used are from the 1870 's, 1890's, 1920's, 1940's, 1950's, and 1960's.

Observations to or from stations, for which these observations were insufficient to constrain the station positions, were eliminated from the data set, thus removing potentially unchecked sources of systematic error. All of the data are tabulated in Appendix B and the spatial distributions of each survey are show in Figure 2-2.

Histograms of the frequency distribution of the standardized residuals

$$
v_{i}=\frac{x_{i}-\left\langle x_{i}\right\rangle}{\sigma_{i}}
$$

of the observations for the survey adjustments are shown in Figure 2-3, where x_{i} is the observed data,$\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$ is the estimated observation, and σ_{i} is the standard error of $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$.

These distributions are plotted with normalized Gaussian frequency distributions $\mathrm{f}(\mathrm{v})$, [Bevington, 1969],

$$
f(v)=\frac{n}{\sqrt{2 \pi}} e^{-\frac{1}{2} v}
$$

that is implicit in least squares estimation [Press et al., 1987], where v is the standardized residual and n is the number of observations. The Gaussian distributions suggest that the adjusted residuals are close to being normally distributed for all of the surveys except the 1960 survey. Four points from this survey had normalized residuals that were $>10 \sigma$. These observations were removed from the data set.

However, for each survey from the 1900's, there are observations with values $>3 \sigma$. These data have probabilities of occurring less than 99.7% of the time [Bevington, 1969; Press et al., 1987] and are, thus, most likely data outliers or observational blunders. Because their probability of occurrence, in the assumed Gaussian model, is so small, the inclusion of these observations in the least squares estimation will distort the
estimated parameters in an effort to bring these outliers in line with the model [Press et al., 1987].

To counter the effect of these possible blunders on the strain estimation in Chapter 3, a second triangulation data set has been derived. In this set, the surveys were adjusted as before, except that observations with standardized residuals $>3 \sigma$ are rejected after each adjustment. This procedure is iterated until all of the adjusted observations were within 3σ. The data from these surveys are also tabulated in Appendix B and the general spatial distributions are the same as those shown in Figure 2-2, except that the 1870 observations from the southern islands have been removed.

Quantitatively, the relative fit of the data can be compared using the statistic

$$
\begin{equation*}
\sigma_{o}^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{x}_{\mathrm{i}}-\left(\mathrm{x}_{\mathrm{i}}\right)}{\sigma_{\mathrm{i}}}\right)^{2}}{\left(\mathrm{n}-\mathrm{n}_{\mathrm{par}}\right)} \tag{2-7}
\end{equation*}
$$

called the variance of unit weight, where x_{i} is the observed data, $\left(\mathrm{x}_{\mathrm{i}}\right)$ is the adjusted observation, σ_{i} is the standard error of $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle, \mathrm{n}$ is the number of observations, and $\mathrm{n}_{\text {par }}$ is the number of parameters estimated. This is a commonly used statistic in geodesy for evaluating the goodness of fit of the data [Snay, 1986] and is equivalent to a χ^{2} over degrees of freedom statistic [Bevington, 1969]. A value of 1 suggests that the residuals are normally distributed and that their standard errors are good estimates of of the true errors. For values other than $1, \sigma_{0}$ can be used as a weighting factor for scaling the estimated error [Bevington, 1969]. The variances of unit weight for each survey are tabulated in Table 2-2 and indicate a good fit for each survey, except for the 1950 survey which is notably worse than the other surveys.

2.3 GPS

2.3.1 Introduction:

As part of a 5 year study to monitor crustal deformation in the central and southern California [Agnew et al., 1988] static GPS relative positioning was used to determine the present positions of many of these historic triangulation markers. The GPS data were collected in six multi-day campaigns conducted between June 1986 and May 1988. The campaigns were designed to characterize the distribution of strain through the recovery of the historical data base and the establishment of a GPS monitoring network. Many historical first order triangulation marks were occupied with GPS receivers, and several new GPS marks were established. Many of these marks have been occupied several times since the first survey in 1986.

Efforts were concentrated on the reoccupation of the same GPS stations in each network during each subsequent occupation. However, expansion of the original networks, limited receiver availability, poor data quality, receiver malfunctions, and other miscellaneous logistical concerns made this unfeasible, resulting in the heterogeneous reoccupation of the GPS networks. Because some of the historical marks were difficult to reach with GPS receivers or unsuited for GPS observations, these marks were tied to the GPS networks through: one-time-only occupations during larger campaigns; short local GPS surveys to the local, primary GPS station; or with conventional geodetic surveys (Appendix A). Over the course of the observational campaigns, approximately 50 first order triangulation marks and/or their reference/eccentric marks have been occupied (Fig. 2-4).

The GPS data consist of approximately 283 station days of data that have been collected over a two year period during six GPS campaigns using Texas Instruments TI4100 GPS receivers provided by UNAVCO, Ohio State University (OSU), Pacific Missile Test Center (PMTC), NGS, and USGS. The data collection involved the cooperation of several different institutions and universities. In addition to these
organizations, numerous volunteers participated in operating receivers in the field. The US Forest Service, US Park Service, the FAA, and several land owners generously allowed access to their land.

Before discussing the GPS data and the processing applied to these in this study, GPS, the observables, and the observable models will be reviewed. This review is based primarily on the treatment by King et al. [1985], Wells et al. [1986], and Röcken [1988].

2.3.2 Satellite Geodesy using GPS:

The Global Positioning System (GPS) is a passive navigation system that is being developed and deployed by the United States Department of Defense (DOD) for real time positioning. The system is designed to provide world-wide point-positioning 24 hours a day, through the use of timing and orbital information broadcast by the satellites. The accuracy of the point-positioning depends on the satellite geometry, number of satellites tracked, the accuracy of the satellite ephemerides, and the sophistication of the receiver. Receivers that can receive both carrier signals and decode the timing and ephemeris messages on the carriers can provide real time point-positioning with an accuracy of about 30 m through the acquisition of signals from at least four satellites with which the receiver can calculate its position and time bias from GPS time [Wells et al., 1986]. Submeter point-positioning can be obtained with post-processing of the observables [Malys and Jensen, 1989]. Higher accuracy can be attained through relative positioning when the signals are received by two or more receivers and the data are post-processed to account for path delays, orbital errors, and the behavior of the satellite and receiver clocks.

The system is divided into three parts, consisting of space, control, and user segments. The space segment is a constellation of satellite transmitters that, when fully operational, will contain 21 satellites, 18 operational and 3 spares, in six $20,000 \mathrm{~km}$
orbits inclined at 63° to the earth's equatorial plane. Each satellite is identified by a unique number, called PRN. Three satellites will be evenly spaced in each orbital plane. This orbital configuration will provide the ability for world-wide, around the clock positioning from at least four satellites. Over the period of the observations collected for this thesis, the system has been in a developmental phase. During this phase, only 7 of the prototype Block I satellites were operating properly. The orbital planes of these satellites provided long data arcs over North America with limited sky geometry that was dominated by north-south satellite tracks.

The control segment is responsible for monitoring the accuracy and health of the satellites, updating the broadcast message, and maneuvering the satellites in their orbits when necessary. Five control stations spaced evenly around the world track the satellites and monitor the behavior of their clocks. These data are transmitted to the Master Control Station in Colorado Springs, Colorado, where they are processed and daily satellite ephemerides and satellite clock corrections are calculated. This information is transmitted hourly to the satellites, which in turn transmit them as their broadcast ephemerides. The satellites passively broadcast on two L-band carriers this orbital information and timing codes that can be used by the user segment on the ground, with the appropriate GPS receiver, for navigation, positioning, and surveying.

The two carriers are designated L1 and L2 with frequencies of 1575.42 MHz and 1227.60 MHz , respectively. Two different phase modulations along with the broadcast ephemerides are transmitted on these carriers. These modulations are streams of pseudorandom sequences of ± 1, called P-code and C/A code. P-code is present on both the L1 and L2 carriers and C/A code is only on L1. Each satellite is assigned its own unique C / A and P -codes.

The two observables collected by the TI4100 receiver and used in relative positioning are the carrier phase and pseudorange at both the L 1 and L 2 frequencies. The pseudorange measurement is derived from the time shift required to correlate the
incoming P-code with a replicant generated by the receiver, multiplied by the speed of light. This range does not represent a true range to the satellite, because it is contaminated by propagation path delays and clock biases between the clocks in both the receiver and satellite, and GPS time. The carrier phase is the difference between the incoming, Dopler-shifted satellite signal, with the codes removed, and the phase of the nominally constant frequency oscillator in the receiver. This phase difference is accumulated as the relative positions of the receiver and satellites change.

Precise relative positioning is obtained with GPS through the post-processing of the observables from a network of receivers. During the processing, relative station positions are estimated through the modeling of the observables for the geometric path delay. The models are designed to remove the effects of signal path delays from the ionosphere and troposphere, clock drifts and biases from GPS time, and orbital errors. The most common observable model involves the differencing of phase measurements between satellite and station pairs, called double differencing. Through differencing, the effects of common-mode clock, atmospheric, and orbit errors are reduced [King et al., 1985]. There are other processing schemes, such as the use of undifferenced observable models, which model these "noise" sources rather than reducing them through differencing.

In addition to the observable modeling, post-processing also corrects for data collection defects, known as cycle slips, resulting from the loss of lock by the receiver on the incoming carrier phase. These cycle slips result from the inability of the receiver to accurately predict the phase changes from one measurement to the next, resulting in the resetting of the accumulated phase. Loss of phase lock can occur due to loss of satellite signal from obstructions, erratic receiver or satellite clock behavior, strong ground reflections of the signal (multipath), and the inability of the receiver's ionospheric and tropospheric models to account for unusual ionospheric or tropospheric conditions (e.g.,
during solar storms and terrestrial storms). The fixing of cycle slips can be a painstaking and tedious task.

2.3.2 Analysis methods:

Most of the GPS observables were analyzed using a double-difference computer algorithm under development at the NGS and provided by Dr. Gerry Mader of the NGS. The NGS GPS processing system will be referred to as GPS22, the observable processing routine; however, other modules are part of this system. A brief description of the processing algorithm is provided below. An undifferenced processing system under development at JPL, called GIPSY, was used to process some of the short GPS ties. A detailed description of the GIPSY algorithm and the observable models can be found in Sovers and Border [1987].

Phase observable model

The development of the phase observable model and the partial derivatives required for inverting the GPS observables for station coordinates can be found in King et al. [1985], Wells et al. [1986], and Röcken [1988]. The phase observable model for the phase received at receiver i from satellite j at GPS time $t_{i o}$ at receiver i is given by

$$
\begin{equation*}
\varphi_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{io}}\right)=\varphi_{\mathrm{Sj}}\left(\mathrm{t}_{\mathrm{io}}\right)-\varphi_{\mathrm{Ri}}\left(\mathrm{t}_{\mathrm{io}}\right)+\mathrm{n}_{\mathrm{ij}}+\varphi_{\text {noise }} \tag{2-8}
\end{equation*}
$$

where φ_{Sj} denotes the phase transmitted by satellite $\mathrm{j}, \varphi_{\mathrm{Ri}}$ is the phase of the oscillator of receiver i , and n_{ij} is the initial integer cycle bias between the satellite and receiver oscillators.

Further simplification is obtained through modeling the transmitted satellite phase

$$
\begin{equation*}
\varphi_{\mathrm{Sj}}\left(\mathrm{t}_{\mathrm{io}}\right)=\omega_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{io}}-\mathrm{t}_{\mathrm{o}}\right)-\omega_{\mathrm{o}} \tau_{\mathrm{ij}}+\varphi_{\mathrm{Sj}}\left(\mathrm{t}_{\mathrm{o}}\right) \tag{2-9}
\end{equation*}
$$

where $\varphi_{S} f\left(t_{0}\right)$ is the initial phase at an arbitrary initial time t_{0}, ω_{0} is the nominal carrier frequency, and τ_{ij} is the flight time between satellite j and station i . The flight time includes the geometric path delay, the tropospheric delay, and the ionospheric delay and is given by

$$
\begin{equation*}
\tau_{\mathrm{ij}}=\frac{\left|\mathbf{r}_{\mathrm{i}}-\mathbf{s}_{\mathrm{j}}\right|}{\mathrm{c}}+\tau_{\mathrm{ij} \text { trop }}+\tau_{\mathrm{ij} \text { ion }} \tag{2-10}
\end{equation*}
$$

where \mathbf{r}_{i} and \mathbf{s}_{j} are the earth centered vectors to the receiver and satellite at reception and transmit time, respectively; $\tau_{\mathrm{ij} \text { trop }}$ and τ_{ij} ion are the tropospheric and ionospheric path delays, respectively.

The phase of the receiver's oscillator is modeled as

$$
\begin{align*}
\varphi_{R i}\left(t_{i o}\right. & =\varphi_{R i}\left(t_{0}\right)-\omega_{o}\left(t_{i o}-t_{0}\right) \\
& +\omega_{o}\left(q_{i}+r_{i}\left(t_{i}-t_{0}\right)+\frac{1}{2} s_{i}\left(t_{i}-t_{0}\right)^{2}\right) \tag{2-11}
\end{align*}
$$

where the first term is the initial phase offset of the receiver oscillator, the second term is the accumulated phase since t_{o}, and the last term describes the behavior of the receiver oscillator with respect to the receiver's time, t_{i}, which is related to the true GPS time, t_{io}, by

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}=\mathrm{t}_{\mathrm{io}}+\Delta \mathrm{t} \tag{2-12}
\end{equation*}
$$

where Δt, the time offset and drift, is modeled as

$$
\Delta t=q_{i}+r_{i}\left(t_{i}-t_{0}\right)+\frac{1}{2} s_{i}\left(t_{i}-t_{0}\right)^{2}
$$

From these equations the phase observable model for the one-way phase from satellite j to receiver i can be written as

$$
\begin{align*}
\varphi_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{io}}\right)= & -\omega_{\mathrm{o}} \tau_{\mathrm{ij}}+\mathrm{n}_{\mathrm{ij}} \\
& +\omega_{\mathrm{o}} \Delta \mathrm{t} \\
& +\varphi_{\mathrm{Ri}}\left(\mathrm{t}_{\mathrm{o}}\right)+\varphi_{\mathrm{S}_{\mathrm{j}}\left(\mathrm{t}_{\mathrm{o}}\right)}+\varphi_{\mathrm{noise}} \tag{2-14}
\end{align*}
$$

The double differenced observable model can be formed for the phase difference at receivers i and l from satellites j and m by differencing the one-way phase observable model (Eq. 2-14) between satellite and receiver pairs, to get

$$
\begin{align*}
\Delta^{2} \varphi_{\mathrm{iljm}}\left(\mathrm{t}_{\mathrm{io}}\right) & =-\omega_{0}\left(\tau_{\mathrm{lm}}-\tau_{\mathrm{lj}}+\tau_{\mathrm{ij}}-\tau_{\mathrm{im}}\right) \\
& +\left(n_{\mathrm{lm}}-n_{l \mathrm{lj}}+n_{\mathrm{ij}}-n_{\mathrm{im}}\right)+\varphi_{\mathrm{noise}} \tag{2-15}
\end{align*}
$$

where the first term contains all the path delays and the second term contains all of the integer biases.

2.3.2.1 GPS22 Analysis

The NGS processing system used consisted primarily of a front end module, MERGE, and an observable modeling and station position estimation module, GPS22. In addition to these routines, the raw TI4100 observables were converted from TI4100 binary to machine readable form with a modified version of the original routine UNPACK written at the USGS. Data editing was done with modified versions of CYFIX and EDATA (NGS routines) and interactive graphics routines written by myself.

The NGS modules written for a Hewlitt-Packard HP9000 were modified to run in a VAX/VMS environment. All the data processing was performed on a MicroVAX II.

The front end modules convert the raw phase and pseudorange observables, orbits, and meteorological data to three databases: DT, OR, and HD. The DT database contains the phase measurements corrected for the TI4100 frequency biases, pseudorange, a priori tropospheric corrections, and crude cycle slip fixes for all stations and satellites. The OR database contains the satellite state vectors at each epoch. These vectors are based on a sixth order polynomial interpolation to either a broadcast ephemeris point in the middle of the observing session or to precise, 15 min tabular orbits provided by the Naval Surface Weapons Center (NSWC) through the NGS in the WGS84 reference frame. The HD database contains a priori station coordinates, surface meteorological data, and antennae site vectors (i.e., offsets between the antennae and the ground marks).

These data bases are used by GPS22 to estimate interstation vectors through a double difference technique using one reference station and satellite. Prior to estimating solutions, a single frequency solution is estimated for each frequency. Triple difference residuals are calculated from these solutions for cycle slip fixing. A sixth order polynomial is fit to the triple difference residuals and epochal differences greater than 1 cycle at half cycle increments are resolved. This process is iterated at both frequencies until all of the triple difference cycle slips are fixed. The data are then visually inspected for any remaining cycle slips, which are corrected. Unresolvable cycle slips can not be handled by the software through the estimation of another phase bias parameter, as is done with other GPS processing systems. In these cases, the cycle slip is fixed as best as it can be visually.

Once all of the cycle slips have been removed, the interstation vectors are estimated using the ionosphere free linear combination of the phase observables, L3, (also known as LC)

$$
\begin{equation*}
\varphi_{\mathrm{L} 3}=\varphi_{\mathrm{L} 1}-\frac{\frac{\omega_{2}}{\omega_{1}}\left(\varphi_{\mathrm{L} 2}-\frac{\omega_{2}}{\omega_{1}} \varphi_{\mathrm{L} 1}\right)}{\left(1-\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}\right)} \tag{2-15}
\end{equation*}
$$

where ω_{1} and ω_{2} are the L1 and L2 frequencies respectively [King et al., 1985]. During the estimation, receiver clock drift, $\Delta \mathrm{t}$, is modeled by the pseudorange as

$$
\begin{equation*}
\Delta t=\frac{\rho_{\mathrm{t}}\left(\rho_{1}+\frac{\omega_{2}^{2}}{\left(\omega_{2}^{2}-\omega_{1}^{2}\right)}\left(\rho_{1}-\rho_{2}\right)\right)}{\mathrm{c}} \tag{2-16}
\end{equation*}
$$

where ρ_{t} is the theoretical range, ρ_{1} and ρ_{2} are the L1 and L2 pseudoranges, respectively, and c is the speed of light. A constant tropospheric scale height is estimated at each station that is applied to the a priori tropospheric correction estimated in the front end processing. When phase and pseudorange data are available from fiducial tracking stations, the Keplerian elements of the satellite orbits are adjusted by holding the coordinates of the tracking stations fixed in the SV3 reference frame of Murray and King [1988]. All solutions are estimated with the initial phase biases, n_{i}, solved for as real numbers, known as bias free estimation. The estimation procedure uses a linearized least squares inversion of the observables through the formation of a design matrix of partial derivatives and the estimation of corrections to the a priori estimates. (For a detailed discussion of the least squares inversion of the double differenced phase observable model see King et al. [1985], Wells et al. [1986], and Röcken [1988].)

2.3.2.2 Field Campaigns and procedures:

The location of GPS receivers was controlled by several factors: Access, obstructions, sky visibility, and available historical data. The primary criterion of the
historical data recovery part of this cooperative project was the direct occupation of historical triangulation marks with a sufficiently long history of observations. If these marks had been destroyed or were unsuited for GPS observations because of poor sky visibility, obstructions, suspected strong ground-reflections of the signal (multi-path), or lack of easy access to the mark, another near by mark was chosen or established to which a suitable ground survey existed or could be acquired to the triangulation mark. In addition to the historical station recovery, the experiments were conducted to establish a GPS network to monitor crustal strain. For this part of the project, it was not necessarily desirable to establish GPS stations over the historical monuments that are usually found on the tops of mountain peaks, with difficult access. Because of this, the recovery of all of the triangulation stations took six campaigns spread over two years.

The collection of the GPS data for this project involved the mobilization and coordination of a group of field crews and equipment. The networks occupied consisted of from a minimum of 3 to as many as 15 field receivers with a crew of from one to five people for each receiver, depending on site access and safety. Static relative positioning with GPS requires that the receivers acquire data from the same satellites at the same time. In order to assess the precision of the results and to allow for redundancy, observations are usually made over several days for each experiment. Several experiments were usually conducted over a 2 to 3 week period. This required a high degree of coordination among the different investigators, field crews, land owners, and transportation providers to ensure that the receivers were on their stations and tracking the intended satellites on schedule.

Data were collected under a variety of field conditions. Weather varied widely including rain, wind, extreme heat, and freezing temperatures. Antennae were set up on the tops of peaks, along highways, in small clearings and fields, and near chain link fences and radio communication transmitting towers. In designing the experiments, an effort was made to avoid sites that were suspect to have "bad" multipath. It was not
always possible to avoid suspected multipath sites. Sites which had been suspected of causing severe multipath problems that might interfere with the data, did not result, for the most part, in significant and/or unusual data loss or data problems.

TI4100 receivers and antennae were used for all of the observations. The operating software for most of the field TI4100's was GESAR versions 1.0 through 1.5 developed at Applied Research Laboratory, Texas. Some receivers used the Texas Instruments navigation software, GEOMARK. The receivers recorded the carrier phase, pseudorange, and the broadcast satellite ephemerides on the two L-band frequencies, L1 and L2, on four dual frequency channels. Phase and pseudorange were usually collected at 30 sec intervals for approximately 8 hours from satellites $3,6,8,9,11,12$, and 13 (PRN) in 4-satellite observation scenarios. The receivers operated by GEOMARK recorded data at 3 sec intervals. And the data from the June 1986 experiment provided by the NGS were collected at 6 sec intervals. Antennae were set on top of tripods ~ 1 to 1.5 meters above the mark. Slant heights were measured between the base of the antenna preamplifier and the center of the mark with tape measurers before and after observations. Phase and pseudorange observables were also used, when available, from a continental network of fiducial tracking stations. These data were provided by the NGS from TI4100's of the NGS CIGNET tracking network. These receivers were operated by the NGS's CORE operating system.

2.3.3 GPS results:

The data from each experiment have been independently processed by many of the other investigators involved in the experiments [Dong and Bock, 1989; Larsen et al., 1988; Larson, 1990] using several different analysis systems and algorithms. The primary objective of my GPS data analyses was to acquire interstation vectors among these triangulation marks at an accuracy greater than that of the original triangulation surveys for use in conjunction with the historical geodetic data for the evaluation of the
distribution of crustal strain rates in the offshore region of southern California.
Deformation results based on the repeated GPS occupations have been reported elsewhere [Larson, 1990].

The data from each day of each experiment were analyzed separately. During the analyses, double differences are formed between one reference station and satellite, and the clock at the reference station is used as the reference clock. The estimated interstation vectors in an earth-centered and earth-fixed cartesian system from each day are then adjusted in a weighted least squares vector adjustment to determine the best fit interstation vector for the experiment.

2.3.3.1 Precision

The precision of the interstation vectors can be assessed by calculating the repeatabilities of each interstation vector as determined from several days of GPS solutions, for each experiment. The daily repeatability of a baseline component, S , is defined as:

$$
\begin{equation*}
S=\frac{n}{(n-1)} \sqrt{\frac{\sum_{i=1}^{n}\left(\frac{R_{i}-(R)}{\sigma_{i}}\right)^{2}}{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}}} \tag{2-17}
\end{equation*}
$$

where n is the number of days of observations, R_{i} and σ_{i} are the estimate and formal error of the estimate on the i th day, and $\langle\mathrm{R}\rangle$ is the weighted mean [Blewitt, 1989].

The daily repeatabilities are shown for each experiment in Figure 2-5, for the north, east, up, and length components as a function of length. The lines on the plots represent 1 part in $10^{6}, 10^{7}$, and 10^{8} repeatabilities. Each experiment shows low (i.e., good) repeatabilities in the north and length components and relatively worse repeatability
in the east and up components. Directions observed during the triangulation surveys were typically $<50 \mathrm{~km}$ apart with some as much as $\sim 150 \mathrm{~km}$ apart. The repeatabilities indicate relative positioning precisions for stations within the historical geodetic network ($<150 \mathrm{~km}$) of about a centimeter in the north and a few centimeters in the east, well below the precision of the triangulation of 15 cm for the typical baseline length and 45 cm for the extreme 150 km baseline.

2.3.3.2 Accuracy:

When combining GPS vectors from different experiments and networks, the primary concern is ensuring that the vectors that were solved for are in a common reference frame. In the most general sense, GPS vectors are in the reference frame of their orbits. During the data processing, the satellite orbits are adjusted into the reference frame of a set of fiducial tracking stations. The accuracy of the coordinates of these tracking stations in an earth-fixed and earth-centered reference frame controls the reference frame of the satellites and thus of the station position solutions. For most of the experiments, tracking station data were available. During the estimation, the tracking station coordinates were constrained to their coordinates in the SV3 reference frame. SV3 has been shown to provide accurate GPS interstation vectors and baseline lengths, when compared with VLBI results for stations in California [Dong and Bock, 1989].

As a test of the accuracy of the results presented here, results from three of the experiments (JAN87, SEP87, and MAY88) have been compared against other techniques at two different length scales. Vectors estimated during the SEP87 experiment between VNDN and CHUR (at Churchill, Manitoba, Canada) have been compared with the SV3 reference frame vector between these two stations. This provides a test of the accuracy of the analysis on an extremely long ($>3200 \mathrm{~km}$) baseline, along which errors should be amplified. A test of the accuracy at short baseline lengths was performed by comparing baseline lengths from two baselines within the network with EDM measurements
performed in the 1970's that are present in the REDEAM data set. The baselines are ROAD-JACK, $\sim 1.6 \mathrm{~km}$ (MAY88) and SOLI-CHAF $\sim 1.1 \mathrm{~km}$ (OCT87). The lines cross regions where significant strain is unlikely to have occurred since the EDM measurements were made.

The VNDN-CHUR comparison is shown in Figure. 2-6. North, east, up, and length scatter relative to the SV3 position (filled circle) are within the a posteriori 2 -sigma error bars for the GPS estimates and the 2 -sigma error of the SV3 relative position. The scatter is on the order of several parts in 10^{8} to a few in 10^{7}, in good agreement with the precision of the experiment and with the precision and accuracy of bias free GPS estimates shown by others [Blewitt et al., 1988; Dong and Bock, 1989]. This suggests an accuracy of the measurements equivalent to the precision of the experiment. For the short baselines, the lengths compare well with the EDM lengths (Table 2-3). The GPS estimates are within the precision and accuracy of the EDM measurements of a few millimeters.

2.3.3.3 Differences associated with different orbit sources:

Usable fiducial data from the same tracking stations for each experiment were not always available. Many of these tracking stations were being established and developed during the course of this study. Only a few existed during the earlier experiments and some have experienced unexpected operational problems. This has resulted in a very heterogeneous fiducial network for the study as a whole, from June 1986 to May 1988. A common reference frame for all of the fiducial stations, SV3, has been calculated by Murray and King [1988] and these fiducial station coordinates have been used in the data analysis, when possible.

Orbits have been treated in three different ways during the data analysis. The data from the JUN86, JAN87, and SEP87 experiments were processed by constraining the coordinates of the tracking stations to their SV3 coordinates and adjusting the Keplerian
elements of NSWC satellite ephemerides during the solution. During the MAR88 experiment, tracking station data were not available at the time that the data were processed. In order to bring these orbits into the SV3 system, the best fit coordinates of local GPS stations, which had been determined during the JAN87 and SEP87 experiments, were constrained and the orbits adjusted during the processing of the MAR88 data. For the short GPS ties of the MAY88 experiments, broadcast orbits were used. Tracking data from CIGNET tracking stations were obtained, but were unusable, requiring that the solutions be calculated in the reference frame of the broadcast orbits, WGS-84. Errors between broadcast orbits and precise NSWC orbits, both of which are in the WGS-84 reference frame, have been reported to cause no significant differences greater than the several millimeter level for 5 km long baselines [Davis et al., 1989] and at worst 1 part in 10^{6} with typical values of 0.1 to 0.2 parts in 10^{6} for continental scale baselines [Remondi and Hofmann-Wellenhof, 1989]. This would result in negligible errors in the short ties of the MAY88 experiment.

In order to test the effect of adjusting WGS-84 orbits into the SV3 system on the orientation of the network vector solutions, daily solutions were calculated for three days of observations during the SEP87 experiment using both adjusted orbits from fiducial data in the SV3 system and NSWC orbits. Comparison of the orientations of the networks indicate a slight clockwise rotation of the network and slight length scale changes. But these changes are small, on the order of a few parts in 10^{7}, and therefore should not significantly effect the local ties that use the non-adjusted orbits (Table 2-4).

In addition to the direct comparison of individual vectors, an effective deformation resulting from the different orbit sources was calculated from the solutions from the three days of observations. This orbit source deformation, \mathbf{D}, is modeled as

$$
\begin{equation*}
\mathbf{u}_{\text {NSWC }}=\mathbf{u}_{\text {SV } 3}+\mathbf{D}\left(\mathbf{u}_{\text {SV } 3}-\mathbf{u}_{\mathrm{o}}\right) \tag{2-18}
\end{equation*}
$$

where \mathbf{u} is the vector of the geodetic positions in longitude, λ, latitude, φ, and elevation, h,

$$
\mathbf{u}=\left[\begin{array}{l}
\lambda \tag{2-19}\\
\varphi \\
h
\end{array}\right]
$$

and \mathbf{D} is the orbit source deformation matrix

$$
\mathbf{D}=\left[\begin{array}{lll}
\mathrm{d}_{\lambda \lambda} & \mathrm{d}_{\lambda \varphi} & 0 \tag{2-20}\\
\mathrm{~d}_{\varphi \lambda} & \mathrm{d}_{\varphi \varphi} & 0 \\
\mathrm{~d}_{\mathrm{h} \lambda} & \mathrm{~d}_{\mathrm{h} \varphi} & 0
\end{array}\right]
$$

the components of D are related to the horizontal deformation matrix \mathbf{L}_{0} via

$$
\mathbf{L}_{\mathrm{o}}=\left[\begin{array}{cc}
\mathrm{d}_{\lambda \lambda} & \frac{\mathrm{r}_{\mathrm{p}}}{\mathrm{r}_{\mathrm{m}}}{ }_{\varphi \lambda} \tag{2-20}\\
\frac{\mathrm{r}_{\mathrm{m}}}{\mathrm{r}_{\mathrm{p}}} \mathrm{~d}_{\lambda \varphi} & \mathrm{d}_{\varphi \varphi}
\end{array}\right]
$$

and to the network tilt, τ, via

$$
\tau=\left[\begin{array}{l}
\tau_{1} \tag{2-21}\\
\tau_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{-\mathrm{d}_{\mathrm{h} \lambda}}{\mathrm{r}_{\mathrm{p}}} \\
\frac{-\mathrm{d}_{\mathrm{h} \varphi}}{\mathrm{r}_{\mathrm{m}}}
\end{array}\right]
$$

The terms involving the shape of the earth, r_{p} and r_{m}, are given by

$$
\begin{equation*}
r_{p}=\frac{a}{w} \cos \varphi \tag{2-22}
\end{equation*}
$$

$$
\begin{align*}
& r_{m}=\frac{a\left(1-e^{2}\right)}{w^{3}} \tag{2-23}\\
& w=\left(1-e^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}} \tag{2-24}
\end{align*}
$$

where a and e are the WGS-84 ellipsoid radius and eccentricity, and φ is the latitude of a reference position, \mathbf{u}_{0}. These results are summarized in Table 2-5 in terms of the clockwise network rotation, α,

$$
\begin{equation*}
\alpha=\frac{\mathrm{d}_{\lambda \varphi}-\mathrm{d}_{\varphi \lambda}}{2} \tag{2-25}
\end{equation*}
$$

the direction of minimum extension, β,

$$
\begin{equation*}
\beta=\frac{1}{2} \tan ^{-1}\left[\frac{d_{\lambda \varphi}+d_{\varphi \lambda}}{d_{\varphi \varphi}-d_{\lambda \lambda}}\right] \tag{2-26}
\end{equation*}
$$

the strain parallel, $\varepsilon \|$, and perpendicular, $\varepsilon \perp$, to β, and the direction, ζ, and magnitude, δ, of maximum network tilt

$$
\begin{align*}
& \zeta=\tan ^{-1} \frac{\mathrm{~d}_{\mathrm{h} \lambda}^{2}}{\mathrm{~d}_{\mathrm{h} \varphi}^{2}} \tag{2-27}\\
& \delta=\left[\mathrm{d}_{\mathrm{h} \varphi}^{2}+\mathrm{d}_{\mathrm{h} \lambda}^{2}\right]^{\frac{1}{2}} \tag{2-28}
\end{align*}
$$

These results suggest that different orbit sources can have a several part in 10^{7} effect on these GPS solutions. An effect of this magnitude should not significantly affect the short local ties that use these orbits.

2.3.3.4 Interstation GPS vector adjustment:

After all of the experiments were processed, a set of best fit vectors were obtained through a weighted least squares adjustment of all of the interstation vectors from all of the experiments. All of the individual experimental GPS interstation vector solutions are combined into one set of interstation GPS vectors. This was accomplished by using the daily GPS interstation vector solution from each experiment to solve for earth-centered and earth-fixed cartesian coordinates of each station relative to a fixed station using a weighted least squares algorithm.

The interstation vector model for the station positions of station i and j is

$$
\begin{equation*}
\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{j}}=\mathbf{x}_{\mathrm{ij}} \tag{2-29}
\end{equation*}
$$

where \mathbf{x}_{i} and \mathbf{x}_{j} are the position vectors of stations i and j , and \mathbf{x}_{ij} is the interstation GPS vector from station j to station i solved for during the processing of the GPS phase observables.

In matrix form, the equations are

$$
\begin{equation*}
A x=\mathbf{b} \tag{2-30}
\end{equation*}
$$

where \mathbf{A} is the $\mathrm{M} X \mathrm{~N}$ design matrix, \mathbf{x} is the vector of unknown station positions of length N, and \mathbf{b} is the vector of interstation GPS vectors of length M. Explicitly, the equation has the form

The first three equations are the reference station coordinates $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and the other equations relate the interstation vector from station i to the reference station, and from station j to station i to their respective cartesian coordinates.

Weighted least squares is used to estimate the station positions. Each component of the interstation GPS vector is weighted by the inverse of the formal error for that component of the solution. Variance factors calculated for the individual experiment adjustments and the repeatabilities of each experiment suggest that the formal errors of the GPS22 solutions underestimated the interstation vector component errors. (Appendix B contains the final interstation vector database for all of the experiments with the formal errors scaled by the sigma of unit weight for the data set as a whole.) Figure 2-7 shows a histogram of the standardized residuals of the adjustment.

2.4 Summary:

The historical triangulation data set contains approximately 900 direction observations collected in the 1870 's, 1890's, 1920's, 1940's, 1950's, and 1960's between the mainland of southern California and the offshore islands. A small number of trilateration observations were made in the early 1970's across the Santa Barbara Channel. GPS interstation vectors have been computed from GPS carrier phase and
pseudorange observables. These vectors tie the GPS network to the triangulation and trilateration networks at a precision greater than the historical triangulation observations.

Stations

Figure 2-1. Station location map showing the locations of all of the triangulation stations and regional GPS stations used. Numbers refer to stations identified in Table 2-1.

Table 2-1

Number	ID	Name	Lat	Lon
1		ARGUELLO 1875 (destroyed)	34.583	120.561
2		SANTA BARBARA 1857 (destroyed)	34.405	119.715
3	sbeo	SANTA BARBARA 21956	34.404	119.716
4	sbis	SANTA BARBARA ID 21940	33.472	119.041
8	gavi	GAVIOTA 1873	34.502	120.199
9	sdad	SOLEDAD 1887	32.840	117.252
10	devl	DEVILS PEAK 21951	34.029	119.784
11	high	HIGH 1951	34.019	119.576
12	hime	HIGH MOUNT 1857	34.026	119.584
13	roed	ROAD1951	33.253	119.514
16		PONTT DUME 18561947	34.002	118.807
17	nsmi	NEW SAN MIGUEL 1873 (destroyed)	34.040	120.387
18	3 cw 2	SANTA CRUZ WEST 21956	34.073	119.918
19	3 cw 1	SANTA CRUZ WEST 1874 (destroyed)	34.073	119.918
20	cent	CENTER 21934	33.995	119.753
21		VICENTE 1951	33.741	118.411
22		CATALINA PEAK 1876 (destroyed)	33.387	118.401
23	west	WEST PEAK 1875	33.460	118.569
24	jack	JACKSON 1951	33.240	119.505
25	scre	SANTA CRUZ EAST 1857	34.055	119.565
26	sole	SOLEDAD 1872	33.951	120.106
28	ctr 3	CASTRO 1898 RM3	34.086	118.786
29	ctro	CASTRO 1898	34.086	118.786
30	nig	NIGUEL 1884 (destroyed)	33.512	117.734
31	chaf	CHAFFEE 21923	34.301	119.331
33	$\operatorname{lag} 2$	LAGUNA 21951	34.109	119.065
34	scla	SANTA CLARA 1898	34.326	119.039
35	soli	SOLIMAR CADH 1974	34.298	119.343
38		SAN PEDRO 1853 (destroyed)	33.746	118.336
40	bluf	BLUFF 1862	32.927	118.519
41	boul	BOULDER 1862	32.896	118.468
42	harb	HARBOR 1860	32.998	118.562
43	saf3	SAN FERNANDO 1898 RM3	34.330	118.601
46	19a	PICO L-9A LACO 1971	34.329	118.601
47	safo	SAN FERNANDO 1898 (destroyed)	34.330	118.601
50		LAGUNA 1857 (destroyed)	34.109	119.065
201	safe	PICO L9-C	34.330	118.601
202	smig	NEW SAN MIGUEL RM2	34.040	120.387
203	scrw	SANTA CRUZWEST 1923 RM2	34.073	119.918
204	3 be 2	Temp GPS mark (destroyed)	34.405	119.717
205	cato	SOSTICE CYN B2 AUX	34.086	118.786
206	niga	NIGUEL 1884 A	33.515	117.730
207	twin	TWIN	33.232	119.479
208	cotr	COTAR	34.120	119.154
209	ctrl	CASTRO PEAK RMI	34.086	118.786
210	nigb	NIGUEL 1884 B	33.514	117.730
211	sbat	Temp.survey station (destroyed)	34.404	119.716
212	sbes	SANTA BARBARA 21956 RMS	34.404	119.716
500	lent	La Cumbre Peak GPS	34.494	119.714
501	pver	PVER7268(SV3)	33.744	118.404
502	voin	VNDNRM1(SV3)	34.556	120.616
503	brus	BRUSH(NGS), Catalina lsland	33.407	118.405
701	algo	ALOORMA3(SV3)	45.763	78.073
702	aust	AUSTGPS(SV3)	30.144	97.756
703	chur	CHURGPS(SV3)	58.588	94.088
704	fldv	FTDRM4(SV3)	30.468	103.947
705	flar	FTOR7266(SV3)	36.486	121.773
706	moje	GOLDUTEX(SV3)	35.150	116.888
707	mojl	GOLDNCMN1(SV3)	35.150	116.891
708	ovro	OVRO7114(SV3)	37.047	118.294
709	plat	PLAT7258(SV3)	39.993	104.726
710	rich	R1CHGPS(SV3)	25.464	80.384
711	valr	VNDN7880(SV3)	34.376	120.616
712	hayo	HAYOCP3(SV3)	42.431	71.488
713	wafd	WESTGPS(SV3)	42.421	71.493
714	yknf	YEL1GPS(SV3)	62.319	114.469

Table 2-1. This table lists the station names, identification numbers, and 4-character ID's corresponding to the locations marked in Figure 2-1. Stations without a 4-character ID are not tied to the GPS network. SV3 indicates that the station was used as a fiducial station during the GPS processing, if the GPS data were available and that the station coordinates were held fixed in the SV3 reference system of Murray and King [1988].

1890 Triangulation

Figure 2-2 The maps show the distribution of the geodetic observations with time. A solid circle indicates that the station is tied to the GPS network. The dotted lines and arcs indicate the observed directions.
1870's and 1890's triangulation - The survey networks were first established during the mid- to late- 1800's. During this period, stations were established along the coast of southern California and on the offshore islands. The offshore networks were fairly sparse with observations in the Santa Barbara channel area and among the islands of the Continental Borderland. Almost all of the observations from the Santa Barbara channel have standard errors of 1.2 arc seconds (i.e. mostly third order). However, some of the observations are less precise with standard errors of 2.1 arc seconds. Almost.all of the

1940 Triangulation

observations from the Continental Borderland have standard errors of 2.1 arc seconds; the other two are third order.
1920's triangulation - The surveys of the 1920's observed many of the stations surveyed during the 1800's in the Santa Barbara Channel, but none in the Continental Borderland. The observations are almost entirely first and second order with standard errors of 0.6 and 0.7 arc seconds, respectively.
1940's triangulation - The survey of the 1940's was a first order reoccupation of the marks on Santa Catalina and San Clemente islands since the the surveys of the late 1800's. A new mark was established on Santa Barbara Island that was not tied to the older network.

1950's triangulation - This is the most complete and extensive first order triangulation survey. The entire offshore area was covered during this survey from Point Arguello to La Jolla and out to San Nicolas Island. Many stations were reoccupied for the first time since they were established in the late 1800's. Some of the marks at these stations had been destroyed or obstructions had been built making the original mark, if it remained, unusable. At these stations new marks were established. The new marks were not necessarily tied to the original marks, resulting in a loss of the original data history. 1960's triangulation - The survey of the 1960's was a first order reoccupation of the marks in the Oxnard Plain area

Figure 2-3 The quality of each of the triangulation surveys was evaluated by performing a network adjustment on the data from each survey. Because of the limited temporal overlap and the low precision of the surveys from the 1870's and 1890's, observations from these surveys were adjusted together as two independent networks: $1800 \cdot \cdot 1$ and $1800 \cdot \cdot 2$, for the Santa Barbara channel and Continental Borderland networks, respectively. The results of the adjustments are shown in Table 4. a) Histograms of the standardized residuals for each of the network adjustments are shown. The x-axes are in units of the standard error, σ, of the adjusted value. The solid line plotted on the

histograms is a Gaussian distribution. Note that almost every survey has highly improbable adjusted values $>3 \sigma$. (The triangulation of the 1960's contains 4 adjusted values $>10 \sigma$ that are not shown.) These observations are considered to be possible blunders within the data set. b) Histograms for a sub-set of the triangulation observations in which only observations with adjustments $<3 \sigma$ were retained.

Table 2-2
Summary of triangulation survey adjustments

Period	Stations	Directions	DOF	$\chi 2$	σ_{o}^{2}
$1800-1$	10	$38(37)$	$13(12)$	$1.0(0.7)$	$0.08(0.06)$
$1800-2$	6	$14(14)$	$3(3)$	$1.6(1.6)$	$0.54(0.54)$
1920	11	$131(129)$	$72(70)$	$110.9(66.7)$	$1.54(0.93)$
1940	5	$26(24)$	$12(10)$	$23.7(10.5)$	$1.98(1.05)$
1950	27	$659(580)$	$363(307)$	$1096.7(474.6)$	$3.02(1.55)$
1960	6	$31(29)$	$11(9)$	$5.8(5.5)$	$0.52(0.61)$
$(1960$	6	34	11	132.2	$10.15)$

Table 2-2. DOF is the number of degrees of freedom during the adjustments. $\sigma_{0}{ }^{2}$ is the reduced χ^{2} for the adjustment. $1800-1$ is data from the Santa Barbara Channel, 1800-2 is data from the Continental Borderland. The values for 1960 in parentheses are for the survey data set that includes four rejected observations with standardized residuals $>10 \sigma$ that are not show in Figure 2-3. The other values in parentheses are for the reduced data set in which data outliers $>3 \sigma$ and unconstrained observations have been removed.

GF'S

Figure 2-4. The solid lines connecting stations indicate the baselines estimated from the six GPS experiments conducted between 1986 and 1988 summarized in Table 2-6.

(w) 42ON
(4) 2803
Figure 2-5. North, east, up, and length repeatability plots for the GPS experiments. Lines of constant repeatability are plotted for 1 part in $10^{6}, 10^{7}$, and 10^{8}. a) JUN86

Fig. 2-5a (cont.)

Fig. 2-5b JAN87

Fig. 2-5b (cont.)

Fig. 2-5c SEP87

Fig. 2-5c (cont.)

Fig. 2-১d (cont.)

Fig. 2-5e MAR88

Fig. 2-5e (cont.)

Fig. 2-5f All experiment baselines combinea.

Fig. 2-5f (cont.)

Residuals

Figure 2-6. VNDN-CHUR vectors from SEP87 (open circles) plotted with SV3 VNDNCHUR vector (solid circle) plotted against weighted mean in a) vertical and length, and b) north and east. Error bars are 2 -sigma errors. SEP87 vector errors are weighted by the variance factor for the experiment. Scatter suggests several parts in 10^{8} to a few parts in 10^{7} agreement among data and reference frame, on this long ($>3200 \mathrm{~km}$) baseline.
Baseline
Table 2-3. Differences between mean GPS lengths for two short baselines and EDM lengths. EDM observations are from the REDEAM
data set. Numbers in () are the formal errors.

Baseline	days				
		length SV3 (m)	Δ length NSWC-SV3 (m)	Δ length (ppm)	Δ Azimuth
VNDN-BLHL	3	$91174.228(0.010)$	$-0.009(0.015)$	0.10	$0.17(0.10)$
VNDN-CENT	3	$100986.581(0.017)$	$0.010(0.014)$	0.10	$0.10(0.20)$
VNDN-SCRW	2	$83674.818(0.013)$	$0.004(0.015)$	0.05	$0.02(0.20)$
VNDN-SCRE	2	$111637.919(0.013)$	$-0.033(0.014)$	0.30	$0.18(0.10)$
Table 2-4. Differences between NSWC orbits and SV3 adjusted NSWC orbits for SEP87 experiment. Values are based on multi-day					
vector adjustments for both the NSWC and SV3 orbit daily solutions. Azimuth difference is in micro radians of clockwise rotation.					
Numbers in () are the formal errors..					

Numbers in () are the formal errors..

parallel to $\beta, \varepsilon \perp$ is the strain perpendicular to β, ζ is the direction of maximum tilt, δ is the tilt in μ radians. Numbers in () are the formal
errors.

Experiment Name	Inclusive dates	Station days of data	Processing	Orbit source	$\sigma_{0}{ }^{2}$
Major Campaigns					
JUN86	16.JUN. 86 - 19.JUN. 86	48	GPS22	NSWCa	11.9
JAN87	29.DEC86-7.JAN. 87	123	GPS22	NSWCa	8.6
SEP87	23.SEP.87-27.SEP. 87	32	GPS22	$\mathrm{NSWC}_{\mathrm{a}}$	4.3
OCT87	5.OCT. 87 - 8.0СT. 87	17	GPS22	NSWCa	1.7
MAR88	8.MAR. 88 - 18.MAR. 88	47	GPS22	Broadcastb	3.0
GPS ties					
Santa Barbara 21956	29.SEP. 87	4	GIPSY	Broadcast $_{\text {c }}$	N/A
Chaffee 21923	4.OCT. 87	4	GPS 22	NSWC	N/A
Niguel 1884	11.OCT. 87	2	GPS22	NSWC	N/A
MAY88					
San Nicolas Island	10.MAY. 88 -11.MAY. 88	6	GIPSY/GPS 22	Broadcast ${ }_{\text {c }}$	3.1
San Clemente Island	13.MAY-88-15.MAY. 88	8	GIPSY/GPS 22	Broadcast ${ }_{\text {c }}$	2.5
Santa Cruz Island	17.MAY. 88 - 19.MAY. 88	11	GIPSY/GPS22	Broadcast ${ }_{\text {c }}$	3.1

NSWC- Precise tabular orbits provided by NGS. Sixth order polynomial fit to 15 min . satellite state vectors for each satellite for each day of observations.
arsined to coordinates derived during previous experiments in the SV3 reference frame.
c-Broadcast orbits for GPS22 solutions derived from sixth order polynomial fit to broadcast ephemeris. GIPSY broadcast orbits derived from force modeling of satellite trajectories over several days of broadcast ephemerides.

Figure 2-7. Histogram of the standardized residuals for the GPS adjustments is shown. The x-axis is in units of the standard error, σ, of the adjusted value. The solid line plotted on the histogram is a Gaussian distribution. The occurrence of values outside of the Gaussian distribution suggests that the formal errors of the adjustment under estimate the true error of the GPS vectors.

Chapter 3

Strain rate modeling

The purpose of this chapter is to quantify the strain rates in the offshore region of southern California from geodetic observations. In this study geodetic data collected since the late 1800's are used to calculate average rates of crustal strain across networks that extend from the offshore islands of southern California to the mainland. The geodetic data includes triangulation, trilateration, and GPS interstation vectors which have been combined to estimate strain rates averaged over the time period of the observations, from 15 to more than 115 years. The data types and their distribution were discussed in the previous chapter. In this chapter the strain rate modeling will be discussed, strain rates estimated for networks in the offshore region, and the quality of those strain estimates assessed. The heterogeneous nature of the data sets used requires that the estimated parameters be evaluated for reliability by common statistical tests and other, more qualitative means. By rating the estimates in this manner, the estimated parameters gain more realistic confidence estimates.

3.1 Introduction:

Geodetic data are widely used to measure crustal deformation in California. Several investigators have presented analyses of triangulation [Savage and Burford, 1973; Snay et al., 1987; Thatcher, 1975], trilateration [Lisowski and Prescott, 1981; Savage and Burford, 1973; Savage et al., 1987], and space-based geodetic observations
[Clark et al., 1987; Ryan, 1987; Sauber, 1989; Ward, 1988] that indicate strain rates in California on the order of $0.1-0.8 \times 10^{-6} /$ year . These types of observations can provide both reliable estimates of strain accumulation in seismically active areas [Savage, 1983] and critical information on the earthquake cycle, if the data are collected before and after fault rupture. Both types of observations can be used to test constitutive models of the crust that suggest time varying strain rates near faults during the earthquake cycle, if the data are of sufficient precision and quality.

After the 1906 San Francisco earthquake and the recognition of substantial ground displacements of survey monuments [Reid, 1910], the United States Coast and Geodetic Survey (USC\&GS) initiated their triangulation campaign of the 1920's. The adjustment of the data from this campaign was used to evaluate the amount of deformation that had occurred since the first surveys in coastal California, 30 to 60 years earlier [Bowie, 1928]. Station displacements between this survey and the first surveys in the mid- to late- 1800's were interpreted to, possibly, be the result of tectonic motions along the coast. The results of these adjustments suggested a few meters of displacement in the coastal region relative to stations in northeastern and southern California. In northern California, the displacements are consistent with the geological sense of displacement for slip on the San Andreas fault. In the western part of southern California, though, these results indicate $\sim 40 \mathrm{~mm} / \mathrm{yr}$ of left lateral slip parallel to the San Andreas fault.

The direction of station displacements in southern California is opposite to that which has since been observed geodetically [Clark et al., 1987; Savage and Burford, 1973] and shown geologically [Crowell, 1981] along the San Andreas fault. It is unlikely that this contradiction of what is now understood about the sense of displacement on the San Andreas fault is real. More likely the calculated displacements are biased by the analysis of the data and the sparseness of the data set. Bowie's analysis used the adjusted positions of stations from only two observational epochs approximately

50 years apart, holding a number of stations on both sides of the San Andreas fault fixed with respect to each other. Bowie [1929, p.3] states that the maximum relative station displacement in southern California of 3.6 feet "..can easily be accounted for by the accumulation of accidental errors of triangulation" and [Bowie, 1929, p.20] " that there seems to be no method of differentiating the effects of [earth movements or accidental errors of observation] . . . "

Since then, numerous investigators have used geodetic observations to evaluate the present-day strain rates along geologically and seismically active faults [Savage and Burford, 1973; Thatcher, 1979a] and in other areas of suspected crustal disturbances [Snay, 1986; Zoback et al., 1985]. Many of these efforts have used existing geodetic data such as those collected periodically by the United States Coast and Geodetic Survey (USC\&GS) and the National Geodetic Survey (NGS), while others have relied upon data collected explicitly for crustal deformation studies, such as those collected by the United States Geological Survey (USGS).

The crustal strain estimates presented here will be based on combinations of two types of measurements: Terrestrial and extraterrestrial. Prior to the development of GPS techniques for precise relative positioning, these geodetic data had never before been combined to evaluate crustal strain. This is now possible, because high precision extraterrestrial surveying, with relatively portable GPS receivers, has allowed for the reoccupation of these historical marks and the recovery of this temporally long data base. The significance of the relatively large uncertainties in the triangulation observations is diminished by the high precision of the GPS observations and the time that has passed since the triangulation surveys were performed.

Because the data used in this study have been collected by several agencies at irregular time intervals from different networks of stations, there are many temporal, spatial, and observational heterogeneities in the data set. The various networks have different numbers of observations spread over different time intervals. In addition to
this, the data have been collected using techniques with very different precisions. Thus, the strain rate estimates for each network can not a priori be considered to be of equal quality, since each network has its own individual peculiarities.

3.2 Strain rate modeling from geodetic data:

The full displacement rate tensor has six components representing the displacement rate field in three dimensions. For the present study, these dimensions are in a local north, east, and up coordinate system. Because elevation changes have not been observed during the historical surveys, only the horizontal displacement rates can be estimated. In doing so, it is assumed that the vertical changes do not significantly affect the horizontal position of the stations. (Geologically rapid rates of uplift have been determined in the coastal region of Santa Barbara and Ventura [Lajoie et al., 1979], but leveling along this coastline suggests that these rates are low [Yerkes et al., 1980] and may be affected by oil withdrawal in the Ventura region [Buchanan-Banks et al., 1975].)

Let $\mathbf{u}_{\mathrm{i}}(\mathrm{t})$ be the geodetic position in latitude, φ, and longitude, λ, of station i at time t.

$$
\mathbf{u}_{\mathrm{i}}(\mathrm{t})=\left[\begin{array}{l}
\lambda_{\mathrm{i}}(\mathrm{t}) \tag{3-1}\\
\varphi_{\mathrm{i}}(\mathrm{t})
\end{array}\right]
$$

In the horizontal displacement rate model, the position of a station at time t, relative to an arbitrary reference time, t_{0}, is described by

$$
\begin{equation*}
\mathbf{u}_{\mathrm{i}}(\mathrm{t})=\mathbf{u}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{o}}\right)+\mathrm{L}\left[\mathbf{u}_{i}(\mathrm{t})-\mathbf{u}_{0}\right]\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right) \tag{3-2}
\end{equation*}
$$

where the displacement rate matrix \mathbf{L} is decomposed into symmetric and anti-symmetric matrices

$$
\begin{equation*}
\mathbf{L}=\mathbf{E}+\mathbf{W} \tag{3-3}
\end{equation*}
$$

\mathbf{E} is the symmetric strain rate tensor

$$
\mathbf{E}=\left[\begin{array}{ll}
\mathrm{e}_{11} & \mathrm{e}_{12} \tag{3-4}\\
\mathrm{e}_{12} & \mathrm{e}_{22}
\end{array}\right]
$$

in a north-east coordinate system with east directed along the 1-axis and north along the 2-axis and \mathbf{W} is the rotation matrix

$$
\mathbf{W}=\left[\begin{array}{cc}
0 & \mathbf{w}_{12} \tag{3-5}\\
-\mathbf{w}_{12} & 0
\end{array}\right]
$$

Several deficiencies in the data set from the lack of accurate distance and azimuthal observations throughout the observational history prevent the unique determination of \mathbf{L}. Even though azimuthal data have been collected at some of the triangulation stations, the accuracy of these data, >7 radians [Snay et al., 1987], is too low to allow for the reliable estimation of network rotations. \mathbf{W} is therefore indeterminable. Also, in most cases accurate length observations were not collected with the triangulation observations. In this case, all of the components of the strain rate tensor E can not be solved for explicitly. The data provide only enough information to solve for angular changes and, therefore, only the shear strains.

In order to account for these deficiencies when using triangulation data, it is common to use the parameterization

$$
\begin{equation*}
\gamma_{1}=\left(e_{11}-e_{22}\right) \tag{3-6}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{2}=2 \mathrm{e}_{12} \tag{3-7}
\end{equation*}
$$

called engineering shear strains. In this representation the maximum shear strain rate, γ, and its direction, ψ, are given by

$$
\begin{align*}
& \gamma=\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)^{\frac{1}{2}} \tag{3-8}\\
& \psi=\frac{1}{2} \tan ^{-1}\left(\frac{\gamma_{1}}{\gamma_{2}}\right) \tag{3-9}
\end{align*}
$$

and the direction of minimum extension, β, by

$$
\begin{equation*}
\beta=\frac{1}{2} \tan ^{-1}\left(\frac{-\gamma_{2}}{\gamma_{1}}\right)=\psi \pm \frac{\pi}{4} \tag{3-10}
\end{equation*}
$$

This parameterization can be thought of as representing pure or simple shear. The preferred representation is a matter of interpretation dependent on the individual geological setting, since these parameters are independent of the network rotation, \mathbf{W}. Decreases in the right angle between lines oriented north and east are measured by γ_{2} and increases in the right angle between lines oriented N45E and N45W are measured by γ_{1}. Right lateral shear across a vertical plane striking N45W is measured by γ_{1} (or left lateral across a vertical plane striking N45E), and right lateral shear across a vertical plane striking N90E (or left lateral across a plane striking NOOE) is measured by γ_{2}. Even though, the strain mechanism in a given area may not be by shear along vertical shear faults, these parameters provide quantitative estimates of the horizontal strain rate and direction for relative comparisons between different regions.

In these analyses two statistics will be reported: The standard deviations (formal errors) associated with the estimated parameters which are measures of the data strength of the estimated parameters, and the sigma of unit weight,

$$
\begin{equation*}
\sigma_{o}=\sqrt{\frac{\sum_{i=1}^{n}\left(\frac{x_{i}-\left(x_{i}\right)}{\sigma_{i}}\right)^{2}}{\left(\mathrm{n}-\mathrm{n}_{\mathrm{par}}\right)}} \tag{3-11}
\end{equation*}
$$

where $\mathrm{x}_{\mathrm{i}},\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$, and σ_{i} are the i th observation, the estimate for the i th observation, and standard error of the estimate, n is the number of observations, and $n_{p a r}$ is the number of estimated parameters. This latter statistic is a measure of the normality of the post fit variance distribution. σ_{0}^{2} is equivalent to a chi-squared over degrees of freedom statistic [Bevington, 1969; Snay, 1986; Vanicek and Krakiwsky, 1986]. Values of 1 suggest that the model variance distribution is normally distributed and that the a priori weights are a realistic estimation of the true error. Other values significantly different from 1 suggest that the model variance distribution is not normally distributed and/or the a priori weights are poor estimates of the the data uncertainty.

3.3 Methods:

The method used for the determination of strain rates from geodetic data depends on the type of geodetic data available. When estimating these strain rate parameters from data that are of one type, there are standard methods that are usually employed. For example, Frank's method [Frank, 1966] has been used widely for the analysis of strain rates from triangulation data. [Sauber, 1989; Thatcher, 1979a; Zoback et al., 1985]. With this method, angles, that have been repeatedly measured, are used to calculate the engineering shear strains γ_{1} and γ_{2}. The change in the horizontal azimuth of an observed direction is modeled as

$$
\begin{equation*}
\Delta \alpha_{\mathrm{ij}}=\Delta \mathrm{t} \frac{1}{2}\left[\gamma_{1}\left(\sin 2 \theta_{\mathrm{j}}-\sin 2 \theta_{\mathrm{i}}\right)+\gamma_{2}\left(\cos 2 \theta_{\mathrm{j}}-\cos 2 \theta_{\mathrm{i}}\right)\right] \tag{3-12}
\end{equation*}
$$

where the θ 's are the azimuths to stations i and j , and $\Delta \alpha_{\mathrm{ij}}$ is the observed angular change during some period, $\Delta \mathrm{t}$. This technique could be employed in the analysis of the present data set that consists mostly of angles and interstation earth-centered and earthfixed GPS vectors by reducing both to a common reference surface and calculating the angular changes. However, since there are other observations within the networks, than just those to the stations that have been repeated in time, this algorithm would not exploit all of the information in the data set.

Rather than reducing the GPS vectors to angles on an ellipsoid and comparing angles, the method of simultaneous reduction [Bibby, 1982] has been used. With this method, the data are used to solve for both station coordinates on a reference ellipsoid at each epoch and displacement rate parameters. Changes in station positions from one epoch to another are modeled by estimating both an average, network displacement-rate tensor and the station positions at each epoch. In doing this, stations, which are repeatedly occupied, provide information on the temporal changes in station positions. Other stations, which are occupied during only one epoch, provide strength to the positions at that epoch. This is preferable to Frank's method, because stations whose observations have not necessarily been repeated in time (and would be ignored by Frank's method) add strengthen to the positions of the other stations which may have been observed at other epochs. In these analyses, only triangulation observations from the primary triangulation stations within the GPS network are used.

A recent analysis of strain accumulation in the New York area using Frank's method suggested large amounts of right lateral shear strain [Zoback et al., 1985]. Subsequent analysis of a larger data set in the same region [Snay, 1986] using the method of simultaneous reduction found no statistically significant strain. It was shown
that the analysis of strain using Frank's method does not allow one to evaluate the data for reliability and blunders, and may result in misinterpretation of data weaknesses and survey blunders as tectonic strain.

3.3.1 Implementation of simultaneous reduction technique:

Drew and Snay [1988; 1989] have developed a computer algorithm that implements simultaneous reduction for estimating the displacement-rate tensor from a set of geodetic data through a weighted least squares algorithm. Their program called DYNAP (DYNamic Adjustment Program) is a modification of the geodetic adjustment program ADJUST, authored by Milbert and Kass [1987]. The observational equations for the data can be found in Milbert and Kass [1987] and a matrix representation can be found in Drew and Snay [1989] and Feigl et al. [1990].

The displacement rate model of DYNAP is

$$
\begin{equation*}
\mathbf{u}(\mathrm{t})=\mathbf{u}\left(\mathrm{t}_{0}\right)+\mathbf{C}\left[\mathbf{u}(\mathrm{t})-\mathbf{u}_{0}\right]\left(\mathrm{t}-\mathrm{t}_{0}\right) \tag{3-13}
\end{equation*}
$$

where \mathbf{u} is the vector of station coordinates in latitude, φ, longitude, λ, and elevation, h , C is the displacement rate matrix,

$$
\mathbf{C}=\left[\begin{array}{ll}
c_{\varphi \varphi} & c_{\varphi \lambda} \tag{3-14}\\
c_{\lambda \varphi} & c_{\lambda \lambda} \\
c_{h \varphi} & c_{h \lambda}
\end{array}\right]
$$

t_{0} is a reference time, and \mathbf{u}_{0} is the origin. The components of \mathbf{C} are related to the horizontal displacement rate matrix L via

$$
\mathbf{L}=\left[\begin{array}{cc}
\mathrm{c}_{\varphi \varphi} & \frac{\mathrm{r}_{\mathrm{m}}}{\mathrm{r}_{\mathrm{p}}} \mathrm{c}_{\lambda \varphi} \tag{3-15}\\
\frac{\mathrm{r}_{\mathrm{p}}}{\mathrm{r}_{\mathrm{m}}} \mathrm{c}_{\varphi \lambda} & \mathrm{c}_{\lambda \lambda}
\end{array}\right]=\mathbf{E}+\mathbf{W}
$$

and to the network tilt rate, τ, via

$$
\begin{gather*}
\tau=\left[\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{-\mathrm{c}_{\mathrm{h} \varphi}}{\mathrm{r}_{\mathrm{p}}} \\
\frac{-\mathrm{c}_{\mathrm{h} \lambda}}{\mathrm{r}_{\mathrm{m}}}
\end{array}\right] \tag{3-16}\\
\mathrm{r}_{\mathrm{p}}=\frac{\mathrm{a}}{\mathrm{w}} \cos \varphi \tag{3-17}\\
\mathrm{r}_{\mathrm{m}}=\frac{\mathrm{a}\left(1-\mathrm{e}^{2}\right)}{\mathrm{w}^{3}} \tag{3-18}\\
\mathrm{w}=\left(1-\mathrm{e}^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}} \tag{3-19}
\end{gather*}
$$

where a and e are the radius and eccentricity, respectively, of the WGS-84 ellipsoid, and φ is a reference latitude. In this model, crustal motion is assumed to be linear in both time and geodetic position, and homogeneous over the area of the network.

Inputs are initial preliminary positions, elevations, data, and constraints. Because the data sets lack sufficient information to determine all of the components of \mathbf{C}, certain constraints had to be applied. For all of the networks, elevation observations at epochs other than the GPS epoch are unavailable, requiring that elevations be constrained to their GPS derived values and preventing the determination of the height dependent components of C. Azimuthal constraints were also applied to all of the networks, because no common, reliable observations, other than the GPS solutions, provide
information on the orientation of the networks. One orientation between two stations was constrained to the GPS derived value for each network throughout the period of the observations. For the data sets with precision trilateration, this and the elevations were the only constraints necessary. For networks using only triangulation or triangulation and GPS vectors, in addition to the azimuthal and elevation constraints, a common scale needed to be defined throughout the period of the observations. This was accomplished by constraining a GPS vector between two stations over the time period of all the observations, thus introducing a constant scale and orientation to these data sets. The azimuth constraint precludes the determination of the network rotation rate, \mathbf{W}, and the scale constraint results in an indeterminable dilatational strain rate, $\left(\mathrm{e}_{11}+\mathrm{e}_{22}\right)$. These constraints do not bias the crustal motion parameter estimates, since no other information in the data set affects these free network parameters [Drew and Snay, 1989].

3.3.2 Data combinations:

Various station and data combinations have been used to estimate the strain rates over the networks: Triangulation -triangulation (TT), triangulation-GPS (TG), triangulation-trilateration (TL), trilateration-GPS (LG), and triangulation-trilaterationGPS (TLG). The combination used depends on the availability of that data. In Chapter 2, it was shown that some of the surveys have a few spurious points, outliers. Least squares techniques weight large outliers heavily [Menke, 1984; Press et al., 1987]. This can result in the erroneous estimation of the model parameters [Menke, 1984; Press et al., 1987]. The results discussed below are from the data set that excludes these outliers. Strain rates were calculated using both data sets (see Table 3-1) and the differences between the two were small. By estimating strain rates using these different data combinations, the strength and weakness of the estimates and data can be evaluated. Estimated parameters, that are independent of the data set used, are the most reliable
averaged rates over those time periods, while estimates that depend strongly on the data combination used are the least reliable.

3.4 Network results:

Three regional networks have been defined based on the geological deformational style of each of these regions. These networks are subdivided into smaller networks, if the amount of data available will permit this and if the strain is thought to be heterogeneously distributed across the larger network. The sub-dividing allows the determination of strain over a smaller spatial and possibly more homogeneous region, however, with fewer observations. Table 3-1 summarizes the strain analyses for all of the networks and all of the data combinations.

The stations occupied span the offshore region from the Santa Barbara coast line to the Northern Channel Islands, and from the coast of Orange and San Diego counties west and north to the Northern Channel Islands. The three major networks are the Santa Barbara Channel and Oxnard Plain, the Northern Borderland between the northern channel islands and San Nicolas and Santa Barbara islands, and the Southern Borderland between San Nicolas island and the coast line of San Diego and Orange counties (Fig. 3$1)$.

From hundreds to tens of triangulation observations have been used, depending on the network. The channel network and the borderland networks differ in the quality of the data and the time span of the data available to each. The Santa Barbara Channel/Oxnard Plain networks have the largest number of observations, spread over the longest time period, while the northern and southern networks have triangulation data mostly from only one epoch in the mid 1900's.

3.4.1 Santa Barbara Channel and Oxnard Plain.

The geodetic networks in the western Transverse Ranges cover the Santa Barbara Channel and Oxnard Plain (Fig.3-2). The data set includes triangulation dating to the 1870 's, precision trilateration, and GPS interstation vectors. There are over 475 directions in this network. The directions represent five epochs of observations with as many as $60-90$ years between the first and last triangulation observations. Each subnetwork has at least 3 epochs of observations with at least 50 years between the first and last triangulation observations. Of the observations, 60% are from the 1950's, 22% from the 1920's, and the rest are split between the 1870's, 1890's, and 1960's. In 1971, precision trilateration was performed across the channel to stations on the northern channel islands. These stations were occupied with GPS during the mid-1980's along with the GPS occupations of the triangulation stations.

The strain rate solution for the overall network from triangulation and GPS observations is consistent with generally north-south directed shortening. The rate of maximum shear strain , γ, is $0.10 \pm 0.01 \mu$ radians/year and the direction of minimum extension, β, is $\mathrm{N} 05 \mathrm{~W} \pm 4$ with $\sigma_{\mathrm{O}}=1.18$. Subdivision of the network into a Santa Barbara Channel network (SBC) and an Oxnard Plain network (OP) (Figures 3-2a and 32b) suggests two different strain regimes. The SBC network is characterized by $\gamma=0.24$ $\pm 0.02 \mu \mathrm{radians} /$ year and $\beta=\mathrm{N} 01 \mathrm{~W} \pm 2$ with $\sigma_{0}=1.07$ and the Oxnard Plain network by $\gamma=0.04 \pm 0.04 \mu \mathrm{radians} / y$ year and $\beta=\mathrm{N} 43 \mathrm{~W} \pm 29$ with $\sigma_{\mathrm{O}}=1.21$.

3.4.1.1 Santa Barbara Channel Triangulation-GPS data sets:

The SBC network has been further subdivided into three smaller networks and the strain rates estimated using various combinations of the geodetic data to test the reliability of these estimates across the channel. The channel has been divided up into eastern Santa Barbara Channel (ESBC), central Santa Barbara Channel (CSBC), and western Santa Barbara Channel (WSBC) networks (Figures 3-2c, 3-2d, and 3-2e). The strain rate estimates from these networks show that the generally north-south directed
shortening of the overall network solution is also present in these smaller regions, but that the direction varies from N23W ± 7 in WSBC network to $\mathrm{N} 10 \mathrm{E} \pm 4$ in the CSBC network and N19E ± 4 in the ESBC. The shear strain rates also changes from relatively low in the WSBC, $0.17 \pm 0.04 \mu$ radians/year , intermediate in the CSBC, 0.26 ± 0.04 μ radians/year, and high in the ESBC, $0.30 \pm 0.05 \mu$ radians/year σ_{0} for these estimates are $0.81,1.00$, and 0.55 for ESBC, CSBC, and WSBC, respectively.

The triangulation only solutions for the channel are substantially different from these triangulation-GPS solutions and have generally larger σ_{O} 's (Table 3-1). This is most likely attributed to the generally shorter time period over which the triangulation only estimates are averaged combined with the larger uncertainties in the triangulation data.

Feigl et al. [1990] have reported that in 1942 ARGU was reset in a new location and that there exists no tie between the old location and the new location. Observations from ARGU were both included and excluded in the strain analyses, and were found to have no effect on the strain rates (see values in Table 3-1 for the WSBC). The good agreement between the analyses that include ARGU and those that exclude seems to suggest that the post 1942 position of ARGU is "close" to the pre-1942 position. A similar situation occurs at CHAF. The USC\&GS site description for Chaffee states that in 1923 a new mark was set, Chaffee 2 1923, in "approximately the same position" as Chaffee 1867, the "old" survey mark. Bowie [1928] reports that the new mark at Chaffee "..was established as near as possible to the old one, and it is believed to be not more than 4 inches away from the old one." The additional effect that this data has on the strain analysis is negligible. Unlike, with ARGU where the observations both before and after the movement of the mark were of the highest precision (first order), the late 1800's observations at Chaffee were third order. This, combined with the ± 4 inch uncertainty in its inferred position relative to the new mark, gives the data $1 / 9$ the weight of the post movement observations, and thus little effect on the solution.

3.4.1.2 Santa Barbara Channel GPS. Triangulation, and Trilateration data set:

 Precision trilateration collected in 1971 covers most of the ESBC and CSBC networks with a few lines in the WSBC network (Fig. 3-3). In general the trilateration stations are co-located with the triangulation stations except for LACU on La Cumbre Peak and HIMT on Santa Cruz Island. The differences in network geometry between triangulation-GPS networks and trilateration-GPS networks are small. Therefore, the strain rate estimates from the two data types should be comparable, if strain rates are constant over the 15 and 100 year time scales.Strain rates were estimated using three sub-sets of the trilateration-GPS data set. The networks are geometrically similar to the SBC, CSBC, and ESBC networks. Separate estimates were not calculated for the equivalent WSBC network, because the number of EDM lines was small and those lines did not cover the network evenly. The overall SBC network solution estimates $\gamma=0.10 \pm 0.06 \mu$ radians/year and $\beta=\mathrm{N} 43 \mathrm{E} \pm$ 15 with $\sigma_{0}=0.41$. The magnitude of the strain rate is indistinguishable from the triangulation-GPS only solution, but, with a 50° difference in the direction of minimum extension. The ESBC network which had the highest shear strain rate at 0.37 μ radians/year with $\beta=$ N20E has a very low shear strain rate, $\gamma=0.07 \pm 0.08$ μ radians/year with $\beta=\mathrm{N} 31 \mathrm{E} \pm 35$ and $\sigma_{0}=0.44$. The CSBC network has a shear strain rate comparable to the triangulation-GPS solution of $\gamma=0.24 \pm 0.14 \mu$ radians/year with $\beta=\mathrm{N} 41 \mathrm{E} \pm 13$ and $\sigma_{\mathrm{O}}=0.36$.

Strain rates were estimated using the triangulation-trilateration data combination for the ESBC network. Since few of the triangulation stations are common to the trilateration stations, the triangulation observations were tied to the trilateration observations by connecting these sets of stations through the use of GPS vectors between the local triangulation and trilateration stations. These vectors were constrained to be invariant with time. These vector ties and the network are shown in Figure 3-4. The
solution for this network has shear strain rates comparable to those of the ESBC network, $\gamma=0.32 \pm 0.10 \mu$ radians $/$ year with $\beta=\mathrm{N} 22 \mathrm{E} \pm 10$ and $\sigma_{\mathrm{O}}=1.07$.

The source of these differences between both the triangulation-GPS and triangulation-trilateration solutions and the trilateration-GPS solutions has not yet been determined. The differences may represent real strain rate variation between the ~ 100 year average of the triangulation-GPS/trilateration observations and the 17 year average of the trilateration-GPS observations. Alternatively, systematic error in the reduction of the trilateration data and/or local monument instability may be causing the large difference in the direction of minimum extension between the triangulation-GPS and triangulationtrilateration and the trilateration-GPS estimates. Comparisons of trilateration derived strain rates with GPS derived strain rates have shown no appreciable difference between the two techniques in California [Prescott et al., 1988]. However, in those analyses, the agreement is based on frequent GPS and trilateration observations of $10-40 \mathrm{~km}$ baselines that had been collected over several years to months and not observation by each technique. With only the one epoch of trilateration, the low strain rate, and the short time period between the trilateration and GPS observations, small monument instabilities and observational blunders between the two surveys could have significant affects on the strain estimates.

All of the lines in the trilateration network were not observed with GPS and this may be the cause of the differences between the triangulation-GPS and the trilaterationGPS strain analyses. In particular, the line from DEVL to HIMT was estimated under less than ideal circumstances. HIMT was tied to the overall GPS network through a 2.5 day GPS experiment in May of 1988. During this experiment, data from continental fiducial stations were unusable, requiring that the baselines be estimated using broadcast orbits. This should not have resulted in large errors in the positions of the estimated stations (Chapter 2). However, an examination of the mark-to-mark distances among the trilateration stations suggests that the position of HIMT may be in error in its eastern
component. All of the lines generally are consistent with a NNE contraction across the channel, except for the DEVL-HIMT line. The inferred GPS length for this line is 0.0739 m shorter than the 1971 EDM length, inconsistent with the NNE shortening implied by both the triangulation-trilateration and triangulation-GPS analyses. At this time it can not be determined if this inconsistency is real or the result of the data modeling, orbits, and/or set up error. Set up error may be unlikely. Independent estimates of these baselines by Larsen [1990] indicate large differences in the GPS estimates of the baselines that include HIMT (Table 3-2). The good agreement among the other GPS baselines suggest that the two different analyses, in general, provide consistent solutions, but that the analysis of the data from HIMT is spurious. This question can best be answered by a direct measurement of the DEVL-HIMT line.

The low σ_{o} values for the trilateration-GPS estimates relative to σ_{o} for the estimates that use triangulation data should not necessarily be interpreted as an indication that the trilateration-GPS estimates are more reliable. The data in these two data combinations are of different flavors for estimating the strain rates. The triangulation observations, while having greater uncertainty in each observation, have several epochs of observations with between 30 and 115 years between the GPS observations and the triangulation. Alternatively, the trilateration observations are few with only 15 years between them and the GPS observations, and, most importantly, only one epoch of trilateration. This lack of several observational epochs may be the cause of the much smaller σ_{0} 's for the trilateration-GPS, than for the triangulation combinations. This is because there is less variance when fitting two epochs of observations to a time dependent model than when fitting several epochs.

In order to average over the influence of this limited sampling, all of the data types have been combined to estimate the 3 components of the horizontal strain rate tensor, E, for the ESBC and CSBS networks. This combination for the two networks gives strain rate estimates consistent with the triangulation-GPS estimates in both
direction of minimum extension β and magnitude of maximum shear strain γ (Table 3-1). The rates are slightly lower than those estimated with the triangulation-GPS data set alone. Since the trilateration provides a scale, the estimates of the three components of the strain tensor can provide information on the type of strain across the channel. For both of these networks, the strain components suggest approximately uniaxial strain across the channel. The maximum shortening strain rate is -0.20μ strain/year directed $\mathrm{N} 20 \mathrm{E} \pm 4$ for the ESBC network and $-0.15 \mu \mathrm{strain} / \mathrm{year}$ directed $\mathrm{N} 15 \mathrm{E} \pm 4$ for the CSBC network. σ_{0} for these two solutions are 0.76 and 0.85 , respectively.

This reasonable agreement in the directions of minimum extension among the trilateration-triangulation, triangulation-GPS and trilateration-triangulation-GPS estimates suggests that these geodetically determined strain rates are reliable for both the 30-100 year and the 15 year averages. The disagreement in the magnitudes of the strain rates seem to suggest that the strain rates have decreased over the last 15 years.

3.4.2 Borderland:

The borderland networks include stations on Santa Rosa, Santa Cruz, San Nicolas, Santa Barbara, Catalina, and San Clemente islands and stations along the coast of Los Angeles, San Diego, and Orange counties. The data set consists of only triangulation observations and GPS vectors; no reliable trilateration data are available. The major triangulation stations that were occupied were established in the early 1940's and 1950's. Many stations were established in the late 1800 's and early 1900 's, but station destruction and lack of GPS observations to these stations makes them unusable for this study. The borderland has been divided up into two large networks: The Northern Borderland (NBL) and the Southern Borderland (SBL) networks. Almost all of the triangulation data in the borderland was collected during the surveys of the 1950's, with a few observations in the 1940's. These observations are too sparse and too closely spaced in time to allow for the determination of strain rates based only on the
triangulation data set. The strain rate estimates are based on the combined triangulation-GPS data set. The lack of observations widely spaced in time and the apparently low data quality from closure problems during the collection of the 1950's data in the borderland (Chapter 2) limit the reliability of the estimates.

3.4.2.1 Northern Borderland

The extent of the NBL network is shown in Figure 3-5. Only the stations on Santa Rosa, Santa Cruz, San Nicolas, and Santa Barbara islands and Castro Peak are "co-located" triangulation-GPS stations. GPS observations were made to the triangulation stations Point Dume 1800 and Vicente 1951, but these observations were insufficient to test the repeatability of the GPS estimates and were not used to estimate their station positions. At each of these two sites, less than half a day of useful GPS data were obtained on days without tracking network data. Solutions can be obtained with this little data, but there are no ways, in the absence of more GPS data to determine if the solution is biased by the satellite geometry and/or field blunders. Field blunders have occurred during some of these experiments and were only noted, and recovered from, during the post-processing of the GPS observables, because of anomalously large daily repeatabilities.

Because there is only one epoch of triangulation observations, strain rates can not be estimated based on triangulation data alone and the strain rates have been estimated for three sub-sets of the triangulation-GPS data. These sub-sets compose three overlapping networks consisting of the overall network of triangulation-GPS stations and other triangulation stations (NBL), and two triangulation-GPS station networks (NBL-1, NBL-1a) (Fig. 3-5a, 3-5b, and 3-5c).

The solution for the overall NBL network is $\gamma=0.04 \pm 0.03 \mu$ radians/year and $\beta=\mathrm{N} 53 \mathrm{~W} \pm 36$ with $\sigma_{0}=0.97$. This solution suggest that the strain rate averaged over the entire network is indistinguishable from zero. A similar result is obtained when the
triangulation stations without GPS observations are eliminated and only data from the triangulation-GPS stations are used, NBL-1 network (Fig. 3-5b), with $\gamma=0.06 \pm 0.05$ μ radians/year $\beta=$ N80E ± 15 with $\sigma_{\mathrm{O}}=0.94$. Network NBL-1A contains only triangulation-GPS stations that form a closed polygon (fig. 3-5c). The results for this solution are different from the previous two. While $\beta=\mathrm{N} 36 \mathrm{~W} \pm 7$ is indistinguishable from the NBL network estimate with its low shear strain rate, the shear strain rate of NBL-1A of $\gamma=0.17 \pm 0.06 \mu$ radians/year with $\sigma_{0}=0.69$ suggests significant shear strain across the network.

The inconsistencies among these three solutions would seem to indicate that the strain is either not homogeneously distributed across the network or the strain is unresolvable with this limited data set. The only difference among the data sets is the presence of observations from triangulation stations at which there are no GPS observations. This would seem to suggest that, with this limited data set, the inclusion of these other observations is having a significant impact on the strain rate estimates. Since these observations should add strength to the station positions at the 1950 data epoch and the overall strain rate estimates, the estimates based on the overall network including all of the data should be the most reliable and representative of the strain rate across the northern Borderland.

But, a comparison of the residuals associated with each of these solutions suggests that these additional observations may be detracting from the solution. The NBL and NBL-1 solutions both have large ($>3 \sigma$) standardized GPS residuals associated with station CTR3, and NBL has large ($>3 \sigma$) standardized direction residuals associated with station CTR3. Data set NBL-1A represents the elimination of these data and data from LAG2 for which the ground survey tie between the GPS and triangulation stations is long ($\sim 8 \mathrm{~km}$) and is considered to have the least suspect triangulation observations.

3.4.2.2 Southern Borderland

The SBL network is shown in Figure 3-6. The overall network has 163 triangulation observations from the 1940's and 1950's. Twenty-four observations from the 1940's are from among Santa Barbara, Santa Catalina, and San Clemente islands and 139 from the 1950's are from all of the other stations. Except for triangulation observations from stations Catalina Peak and San Pedro 1800, both of which have been destroyed and were not recovered with GPS, the data are from "co-located" triangulationGPS observations. Station Niguel 1884 has also been destroyed, but GPS observations from its reference marks and ground surveys have allowed for recovery of this site with a somewhat large uncertainty (see Appendix A for discussion of the site tie). Since the two epochs of triangulation data are temporally close and the majority of triangulation data are from one epoch, the strain rate estimates are based solely on triangulation-GPS data sets with different combinations of data being used to test suspect strain rate estimates.

The estimates based on the entire data set, SBL, are $\gamma=0.20 \pm 0.03$ microradians/year and $\beta=\mathrm{N} 16 \mathrm{~W} \pm 4$ with $\sigma_{0}=1.11$. This estimate includes data from stations Catalina Peak and San Pedro at which no GPS observations were made. When these stations are eliminated from the solution, the estimates change significantly. For this smaller data set, SBL-1, of 76 directions, $\gamma=0.07 \pm 0.04$ microradians/year and β $=\mathrm{N} 15 \mathrm{~W} \pm 15$ with $\sigma_{\mathrm{O}}=0.95$. To check for non-homogenous strain distribution, the region has been divided up into three sub-networks: inner (ISBL), intermediate (MSBL), and outer (OSBL) (Fig. 3-6b, 3-6c, and 3-6d). The ISBL network lacked sufficient data to solve for the strain rate parameters, so a fourth network I/MSBL that overlaps some of the area of the MSBL network was defined (Fig. 3-6e).

The OSBL network forms a triangle among San Nicolas, Santa Barbara, and San Clemente islands. Shear strain estimates for this network use 51 directions to triangulation-GPS sites. The estimates suggest strain indistinguishable from zero: $\gamma=$ $0.10 \pm 0.10 \mu$ radians/year and $\beta=\mathrm{N} 64 \mathrm{~W} \pm 19$ with $\sigma_{0}=0.96$. During the collection
of the triangulation surveys in the 1950's, the observers apparently had problems with these data. The observations from Jackson 1951 on San Nicolas Island to stations on Santa Barbara and San Clemente islands were repeated many times on the same night and over several days. This type of observing is indicative of closure problems during the observations [Gossett, 1950]. The inability to close these figures may have been to due to a number of factors, such as horizontal refraction, and indicates that the observational accuracies are suspect (Chapter 2).

The MSBL network includes two nearly complete triangulation resurveys of the stations among Santa Barbara, Catalina, and San Clemente islands in the 1940's and 1950's. Catalina Peak is the only station for which there are not GPS observations in this network. Strain rate parameters were estimated both with and without directions from Catalina Peak. These estimates differ substantially from each other in the magnitude of the maximum shear strain rate. When Catalina Peak directions are included, $\gamma=0.08$ ± 0.10 microradians/year and $\beta=\mathrm{N} 05 \mathrm{~W} \pm 15$ with $\sigma_{0}=1.30$, and, when those directions are excluded, $\gamma=0.17 \pm 0.13$ microradians/year and $\beta=\mathrm{N} 01 \mathrm{E} \pm 11$ with σ_{0} $=1.11$. For the former solution, 66 directions were used as opposed to 23 for the later. Again, the additional information provided by the Catalina Peak observations would justify the preference of those solutions over the solutions without that additional data, however, large ($>3 \sigma$) standardized direction residuals associated with observations to Catalina Peak suggests that these data may not be reliable.

For the ISBL network, there are too few triangulation observations to determine the strain rate parameters based only on triangulation-GPS sites. Only two sets of directions exist among these three stations, WEST, NIGL, and SDAD, and all of these observations are from NIGL. Additionally, NIGL is tied through a ground survey to the GPS mark. The large uncertainty in this tie adds decimeters of uncertainty to 1980's position of NIGL. Strain rates were estimated, though, in a similar manner as the previous networks by including data from Catalina Peak and San Pedro. Figure 3-6d
shows the triangulation data and GPS sites used. The estimates are $\gamma=0.48 \pm 0.21$ microradians/year and $\beta=\mathrm{N} 09 \mathrm{E} \pm 6$ with $\sigma_{\mathrm{O}}=1.40$. In order to get some data redundancy on strain rate estimates for this network, a fourth network, I/MSBL, is defined that includes the ISBL network and angles from stations within ISBL network and to stations within ISBL and MSBL networks. Both the shear strain rate estimate, $\gamma=$ $0.40 \pm 0.05 \mu$ radians/year, and the direction of maximum shortening, $\beta=\mathrm{N} 17 \mathrm{~W} \pm 3$, are close to the values for the ISBL network. Standardized direction residuals for directions to and from NIGL are large ($>3 \sigma$). These observations represent 50% of the total directions and are dominating the strain rate estimates. The reliance of the strain rate estimates on directions from this one station and the poor fit of these observations to the model suggest that the estimated parameters are not representative of the average strain field across the network.

3.5 Relative Quality of the Strain rate estimates:

To test if these strain-rate estimates are significantly different from zero strain, the data were modeled under the assumption of no strain (i.e., $\mathbf{C}=0$ in Eq. 3-13). The Ftest is used to test whether the two sample variances from these two models, one assuming deformation and the other assuming no deformation, are consistent. If the statistic F

$$
\begin{equation*}
\mathrm{F}=\frac{\chi_{2}^{2}}{\chi_{1}^{2}} \tag{3-21}
\end{equation*}
$$

is $\ll 1$ or $\gg 1$, the two hypotheses are significantly different. The probability distribution of F is given by the incomplete beta function, I, [Bevington, 1969; Press et al., 1987] with the probability that the two variances, n_{1} and n_{2}, are the same, P , given by

$$
\begin{align*}
& P=2 I\left(\frac{n_{2}}{2}, \frac{n_{1}}{2}, \frac{n_{2}}{\left(n_{2}+n_{1} F\right)}\right) \tag{3-22}\\
& I(a, b, x)=\frac{\int_{0}^{x} t^{t-1}(1-t)^{b-1} d t}{\int_{0}^{1} t^{t-1}(1-t)^{b-1} d t} \tag{3-23}
\end{align*}
$$

Thus, the probability that the two distributions are different is given by 1-P. Low probabilities of significant differences implies a zero strain rate for that network, while high probabilities implies significant strain.

In order to reflect in the strain rate estimates variations in the data sets, a quality ranking for the estimated strain rate parameters is defined. This quality is a qualitative estimate of the relative reliabilities of the modeled parameters. Strain rate qualities are defined on a relative scale of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E . " A " qualities are the highest and " E " qualities the lowest. Several factors are considered necessary to accept the strain rate estimates for a region as reliable. Most important of these is whether or not the solutions pass the F-test for significance or insignificance of strain rates (Fig. 3-7). This statistic controls the initial ranking. Estimates are then degraded one category in quality for each of the following criteria that the solution fails: 1) At least two epochs of historical observations with greater than T years between them, where T is given by

$$
\mathrm{T}=\frac{\text { average historical observational uncertainty }}{\text { estimated strain rate }}
$$

and 2) Reliable ground ties between GPS marks and the local triangulation station. The results from the Santa Barbara Channel and Oxnard Plain networks are the most reliable and self consistent. The OP solution is consistent with zero strain and has a
2% probability of being different from the zero strain-rate solution. There are more than 60 years between the first and last triangulation surveys and reliable ground ties. But the network includes one ground tie of 8 km (COTR to LAG2) therefore, the OP network is ranked as B quality with zero strain rate. In the Santa Barbara Channel, the WSBC, CSBC, and ESBC networks all have strain rates that are significantly different from zero at the 90% confidence level, with reliable ground ties and 4 epochs of triangulation. These network strain estimates are, therefore, ranked as A quality.

For the borderland networks, the strain rate estimates are all of low quality consisting of only one epoch of observations (or two closely spaced epochs). Both the Northern Borderland and Southern Borderland regions have networks with zero strain and with indeterminable strain rates. NBL, and OSBL have model strain rates that are indistinguishable from zero with reliable ground ties. At the 90% confidence level, these solutions are indistinguishable from the zero strain solutions. However, because they have only one epoch of triangulation, they are ranked as B-quality estimates for zero strain rates. The MSBL network solutions for each of the data combinations are indistinguishable from zero at the 85% confidence level. Since this network only has one epoch of observations, it is ranked as a B-quality zero strain-rate estimate.

The ISBL and I/MSBL networks have only one epoch of observations and an unreliable ground tie at NIGL which is included in the majority of the observations. The triangulation station Niguel 1884, NIGL, was destroyed in 1986 leaving only two of its reference marks, NIGU and NIGB, that are both within 25 m of each other and $\sim 400 \mathrm{~m}$ from NIGL. Angles between NIGL and its reference marks were observed before the station was destroyed, but the distances were not. Because of this and the geometry of these marks, the data are insufficient to confidently recover the position of the triangulation station NIGL with respect to the GPS marks, NIGU and NIGB. This is an important station with respect to the strain-rate analysis. Without data from this station, the solution is singular. The strain rate estimates for these networks are ranked as D and

E qualities for indeterminant strain rates, because of P, the questionable ground tie, and the one epoch of triangulation data.

3.6 Summary

The strain rates in the offshore of southern California were determined by combining historical geodetic observations with GPS interstation vectors using a simultaneous reduction technique that averaged the strain over the area of several networks. Only triangulation observations and GPS interstation vectors were common to all of the networks. A limited set of trilateration observations spanned two networks in the Santa Barbara Channel. Strain rate estimates are based on combinations of all of the available data types for the networks and on subsets of available data when fewer than two reasonably spaced historical geodetic data epochs were available. The results indicate significant rates of strain in the Santa Barbara channel (SBC). Strain rates across the Oxnard Plain (OP), the Northern Continental Borderland (NBL), and the Outer Southern Continental Borderland (OSBL) are consistent with near zero strain.

Network | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| types |$~ \gamma_{1} \quad \gamma_{2} \quad \gamma_{\max } \quad \beta \quad \sigma_{0}{ }^{2} \quad 1$ 1-P Quality

$\overline{\text { ISBC/OP }}$								
a	TG	0.11 ± 0.02	0.02 ± 0.02	0.10 ± 0.01	$-5 . \pm 4$	1.18	0.51	E
		$(0.10 \pm 0.01$	0.02 ± 0.02	0.11 ± 0.01	-6. ± 4	1.18	0.46	E)
b	TT	-0.01 ± 0.05	0.10 ± 0.06	0.10 ± 0.06	-46. ± 17	1.57	0.04	B
		(-0.08 ± 0.05	0.12 ± 0.06	0.14 ± 0.06	$-62 . \pm 11$	2.42	0.06	B)
2 SBC								
${ }^{a}$	TG	0.23 ± 0.02	0.01 ± 0.02	0.24 ± 0.02	$-1 . \pm 2$	1.07	0.80	B
		$(0.22 \pm 0.02$	0.01 ± 0.02	0.22 ± 0.02	$-2 . \pm 2$	1.40	0.92	A)
b	LG	-0.01 ± 0.05	-0.10 ± 0.05	0.10 ± 0.06	43. ± 15	0.19	0.87	C
c	TLG	0.20 ± 0.02	0.01 ± 0.02	0.20 ± 0.02	$-1 . \pm 2$	1.13	0.93	A
		(0.20 ± 0.02	0.01 ± 0.02	0.20 ± 0.02	-2. ± 3	1.45	0.87	B)
d	TT	-0.22 ± 0.11	-0.27 ± 0.10	0.35 ± 0.10	$-65 . \pm 10$	1.78	0.24	C
		(-0.33 ± 0.11	0.33 ± 0.09	0.46 ± 0.09	$-68 . \pm 6$	2.76	0.28	C)
${ }^{e}$	TG*	0.19 ± 0.03	-0.06 ± 0.02	0.20 ± 0.03	$9 . \pm 3$	0.69	0.92	A
		$(0.21 \pm 0.03$	-0.07 ± 0.02	0.22 ± 0.03	9. ± 3	0.94	0.89	B)
$3 O P$								
a	TG	0.00 ± 0.04	0.04 ± 0.04	0.04 ± 0.04	-43. ± 29	1.21	0.02	B
		$(0.01 \pm 0.04$	0.06 ± 0.04	0.06 ± 0.04	$-41 . \pm 17$	1.77	0.02	B)
b	TT	0.02 ± 0.08	-0.01 ± 0.09	0.02 ± 0.08	18. ± 114	0.96	0.00	B
		(-0.01 ± 0.07	-0.04 ± 0.09	0.04 ± 0.09	49. ± 56	1.72	0.00	B)
${ }^{\text {c }}$	TG*	0.00 ± 0.04	0.03 ± 0.05	0.03 ± 0.05	$-48 . \pm 35$	1.29	0.01	B
		(0.00 ± 0.04	0.05 ± 0.05	0.05 ± 0.05	$-44 . \pm 25$	1.52	0.02	B)
4 ESBC								
a	TG	0.28 ± 0.05	-0.23 ± 0.04	0.37 ± 0.05	20. ± 3	0.76	0.99	A
		(0.24 ± 0.04	-0.19 ± 0.04	0.30 ± 0.05	19. ± 4	0.81	0.89	B)
b	LG	0.03 ± 0.09	-0.06 ± 0.07	0.07 ± 0.08	31. ± 35	0.16	0.97	B
c	TLG	0.20 ± 0.04	-0.16 ± 0.04	0.26 ± 0.04	20. ± 4	0.83	0.97	A
		(0.19 ± 0.04	-0.14 ± 0.04	0.24 ± 0.04	19. ± 4	0.86	0.83	B)
d	TL	0.23 ± 0.10	-0.22 ± 0.12	0.32 ± 0.10	22. ± 10	1.28	0.59	E
		(0.19 ± 0.09	-0.21 ± 0.11	0.29 ± 0.10	24. ± 10	1.37	0.21	B)
e	TT	-0.11 ± 0.23	0.24 ± 0.25	0.26 ± 0.25	$-58 . \pm 25$	1.60	0.03	N/R
		(-0.10 ± 0.21	0.05 ± 0.20	0.12 ± 0.23	-77. ± 45	1.92	0.03	N/R)
f	TG*	0.40 ± 0.06	-0.29 ± 0.05	0.49 ± 0.06	$18 . \pm 3$	0.65	1.00	A
		$(0.32 \pm 0.05$	-0.22 ± 0.05	0.39 ± 0.06	17. ± 3	0.75	0.94	A)
5 CSBC								
a	TG	0.26 ± 0.04	-0.10 ± 0.03	0.27 ± 0.04	$10 . \pm 4$	0.67	0.98	A
		(0.24 ± 0.04	-0.11 ± 0.03	0.26 ± 0.04	12. ± 4	1.00	0.93	A)
b	LG	0.04 ± 0.10	-0.24 ± 0.14	0.24 ± 0.14	$41 . \pm 13$	0.13	0.87	C
c	TLG	0.18 ± 0.03	-0.11 ± 0.03	0.21 ± 0.03	16. ± 4	0.73	0.95	A
		(0.18 ± 0.03	-0.13 ± 0.03	0.22 ± 0.03	$18 . \pm 4$	1.02	0.90	A)
${ }^{\text {d }}$	TT	0.46 ± 0.21	-0.06 ± 0.17	0.46 ± 0.21	4. ± 10	1.39	0.18	B
		(0.27 ± 0.18	-0.03 ± 0.16	0.27 ± 0.18	3. ± 17	2.76	0.04	A)
${ }^{e}$	TG*	0.16 ± 0.05	-0.15 ± 0.04	0.22 ± 0.04	22. ± 6	0.30	1.00	A
		(0.16 ± 0.05	-0.16 ± 0.03	0.23 ± 0.04	22. ± 6	0.66	0.95	A)
6 WSBC								
a	TG	0.12 ± 0.04	0.12 ± 0.04	0.17 ± 0.04	$-23 . \pm 7$	0.55	0.95	A
b	TT	-0.10 ± 0.23	-0.20 ± 0.15	0.22 ± 0.17	$58 . \pm 27$	0.63	0.20	C
c	TG*	0.11 ± 0.05	0.12 ± 0.04	0.16 ± 0.04	$-23 . \pm 8$	0.15	1.00	A
7 NBL								
a	TG	-0.01 ± 0.04	0.04 ± 0.03	0.04 ± 0.03	-53. ± 36	0.96	0.04	B
		(-0.02 ± 0.04	0.01 ± 0.03	0.02 ± 0.04	$-13 . \pm 36$	1.53	0.01	B)
b	TT	0.16 ± 0.34	0.43 ± 0.28	0.46 ± 0.31	$-35 . \pm 9$	1.12	0.10	B
		(0.16 ± 0.34	0.43 ± 0.28	0.46 ± 0.31	$-35 . \pm 9$	1.12	0.10	B)
8 NBL-1	TG	-0.06 ± 0.05	-0.02 ± 0.04	0.06 ± 0.05	$80 .+15$	0.90	0.04	B

Table 3-1. Shear strain rate estimates

Network	Data types	$\gamma 1$	$\gamma 2$	$\gamma_{\text {max }}$	β	$\sigma_{0}{ }^{2}$	1-P Q	lity
9 NBL-1a	TG	$(-0.02 \pm 0.04$	-0.04 ± 0.04	0.05 ± 0.04	59. ± 21	1.19	0.03	B)
		0.05 ± 0.05	0.17 ± 0.05	0.17 ± 0.06	-36. ± 7	0.48	0.64	E
		(0.06 ± 0.05	0.11 ± 0.05	0.12 ± 0.06	$-30 . \pm 8$	1.03	0.16	C)
10 SBL								
a	TG	0.17 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	$-16 . \pm 4$	1.24	0.65	E
		(0.20 ± 0.03	0.11 ± 0.03	0.22 ± 0.03	-14. ± 3	1.59	0.70	E)
b	TG*	0.06 ± 0.04	0.04 ± 0.04	0.07 ± 0.04	$-15 . \pm 15$	0.92	0.11	E
		(0.12 ± 0.03	0.05 ± 0.04	0.13 ± 0.04	$-11 . \pm 8$	1.12		E)
11 OSBL								
	TG	-0.06 ± 0.06	-0.08 ± 0.11	0.10 ± 0.10	64. ± 19	0.95	0.09	B
		$(-0.06 \pm 0.06$	-0.04 ± 0.10	0.07 ± 0.08	73. ± 32	0.98	0.06	B)
12 MSBL								
I2	TG	0.08 ± 0.10	0.01 ± 0.05	0.08 ± 0.10	$-5 . \pm 15$	1.69	0.15	C
		$(0.18 \pm 0.10$	0.02 ± 0.05	0.20 ± 0.10	$-3 . \pm 7$	2.12	0.12	C)
b	TG*	0.17 ± 0.13	0.00 ± 0.06	0.17 ± 0.13	1. ± 11	1.24	0.13	C
		(0.18 ± 0.12	0.00 ± 0.06	0.18 ± 0.12	1. ± 10	1.21	0.17	C)
13 ISBL								
	TG	0.45 ± 0.18	0.15 ± 0.15	0.48 ± 0.21	$-9 . \pm 6$	1.95	0.25	E
14 I/MSBL								
a	TG	0.34 ± 0.05	0.22 ± 0.05	0.40 ± 0.05	$-17 . \pm 3$	1.54	0.89	D
		(0.33 ± 0.04	0.20 ± 0.04	0.39 ± 0.04	$-16 . \pm 3$	2.18	0.85	D)
b	TG*	0.25 ± 0.06	0.26 ± 0.09	0.36 ± 0.09	$-23 . \pm 5$	1.02	0.59	E
		(0.26 ± 0.05	0.22 ± 0.07	0.33 ± 0.07	$-20 . \pm 5$	1.44	0.64	E)

Table 3-1. Shear strain rate estimates for the various networks, subnetworks, and data types: triangulation (T), trilateration (L), and GPS (G). An asterisk (*) indicates that the analysis used contains a subset of the triangulation observations used in the previous analysis and contains data only from stations at which GPS measurements were made. P is the F-test probability of significantly different variances for the data fit to a strain model and a zero strain model. Quality is a relative ranking of the strain rate estimate with A being the highest and E the lowest.

Figure 3-1. Map of the three regional networks. The regional networks are further subdivided into smaller networks for which strain rate parameters have been estimated.
121.00 W
Figure 3-2. Maps of the Santa Barbara Channel and Oxnard plain networks geodetic networks showing triangulation
observations. A solid circle indicates that the station is tied to the GPS network. Tt = dotted lines and arcs indicate the observed
and directions. a) Santa Barbara Channel network

Figure 3-2b. Oxnard Plain network

Figure 3-2c. Eastern Santa Barbara Channel network

Figure 3-2d. Central Santa Barbara Channel network

Figure 3-2e. Western Santa Barbara Channel network

Figure 3-3. Map of precision trilateration observations collected across the Santa Barbara Channel in 1971.

Figure 3-4. Maps of ESBC triangulation-trilateration network (TL) showing the trilateration lines and the GPS vectors. Because the same stations were not observed during the trilateration survey in 1971 as during the triangulation survey of the 1950's, the triangulation stations need to be tied to the trilateration stations in order to recover the data for the strain analysis. This is done with the GPS vectors shown on the lower map. These GPS vectors are time invariant vector ties between the triangulation stations and the local trilateration stations.

120.75 w
Figure 3-5. Maps of the Northern Borderland geodetic networks showing triangulation, and GPS observations. GPS vectors
are not plotted a) Northern Borderland network, NBL, containing all of the observations

Figure 3-5b. Northern Borderland network, NBL-1,

Figure 3-5c. Northern Borderland network, NBL-1A.

120.00 W
Figure 3-6. Maps of the Southern Borderland geodetic networks showing triangulation, and GPS observations. GPS vectors are not plotted a) Southern Borderland network

Figure 3-6b. Outer Southern Borderland network

Figure 3-6c. Median Southern Borderland network
ISBL
33.85
Figure 3-6d. Inner Southern Borderland network
Figure 3-6e. Combined Inner and Median Southern Borderland network

Probability of Significant Strain

Figure 3-7. Strain estimate quality is based on the F-test for significantly different variances between the strain solution and the no strain solution. 1.0 indicates that variances are different and suggests that the strain-rate estimate is reliable; 0.0 indicates that variances are indistinguishable and the data fits a "no strain" solution equally well as the "strain" solution. High probabilities suggest significant strain rates and low probabilities suggest near zero strain rates. The qualities are ranked from "A" to " E " at increments of 0.1 . "A" being the highest and " E " the lowest. " E " qualities indicate that no determination about the strain rate can be made.

Baseline	leDM	$L_{\text {Larsen et al }}$	lWebb	$l_{\text {Webb }}=1$ Larsen et al.
CHAF-HIMT:	38350.273	-8.2	-2.1	6.1
LACU-HIMT:	53282.202	-7.2	-6.6	0.6
LACU-DEVL:	52030.224	-10.5	-9.7	0.8
CHAF-DEVL:	51533.879	-8.3	-7.1	1.2
GAVI-SOLE:	61720.369	6.8	7.6	0.8
GAVI-DEVL:	64859.053	7.4	7.6	0.2
DEVL-HIMT:	18494.944	-0.8	-7.4	-6.6
DEVL-SOLE:	30930.512	-0.6	0.6	1.2
LACU-SOLE:	70287.175	-7.3	-5.6	1.7
LACU-GAVI:	44550.542	0.7	0.4	-0.3
LACU-CHAF:	41268.926	1.3	2.4	1.1

Table 3-2. Showing differences between the observed Santa Barbara channel trilateration, $\mathrm{l}_{\text {EDM }}$, and GPS estimates of those lengths by Larsen et al. [1990], $\mathrm{l}_{\text {Larsen et }}$ al , and the GPS estimates presented here, $1_{\text {Webb. }}$ IEDM is in meters, and $l_{\text {Larsen et al., }}$, $l_{\text {Webb }}$ and the GPS-GPS difference $l_{\text {Webb }}-l_{\text {Larsen et al }}$ are in centimeters. If the lines including HIMT are excluded, the mean GPS-GPS difference is $8 \pm 6 \mathrm{~mm}$.

Chapter 4.

Geodetic results and their relationship to the geologic environment

4.1 Introduction:

The geodetic analyses of the previous chapter indicate regions of both significant strain and near zero strain for several networks in the offshore of southern California and provide quantitative estimates of the direction of maximum contraction and the strain rates averaged over several decades to more than a hundred years. In order to assess the longterm importance of these measurements for understanding the tectonics and kinematics of southern California, these strain rates will be evaluated against the style and rate of deformation recorded in the geological record. The geological direction of shortening can be inferred from the trends of mapped faults and fold axes for the geological time scale, and from focal mechanism studies for the geodetic and seismologic time scale. However, because both the most recent geological history of deformation in this region is incompletely known and the seismological record is limited, these data sets together can only be used to place constraints on the strain field for interpreting the significance of the geodetic strain rates as estimators of the long-term strain rate.

In this chapter, the evidence for the style and rate of deformation across the Santa Barbara Channel, Oxnard Plain, and Northern Borderland regions will be discussed and the geodetic estimates will be evaluated against this evidence. Strain estimates from the other networks are less reliably determinable and will not be discussed. Consistency between these long- and short-term indicators and the geodetic estimates would indicate
that the geodetic strain rates are reliable estimates of the geologic strain field.
Inconsistencies, though, may indicate that the strain fields are not necessarily constant in time or that the data, geologic and/or geodetic, are not strong enough to properly resolve the strain fields.

4.2 Geodetic strain-rate representation:

The strain-rate estimates based on the triangulation-GPS data set are used for the comparisons, because this is the only data set that is entirely common in observation type among all of the networks and spans the longest time period of observations with the most epoches (see Chapter 3). Because each network is a different size, shear-strain rate comparisons between the different networks are biased by the scale of the network. This scaling is removed by converting the strain-rates to length-dependent deformation rates. Since the primary mode of geological deformation in this part of the western Transverse Ranges is through crustal shortening [Dibblee, 1982d], the shear-strain rates have been reduced to equivalent uniaxial convergence rates across the networks, providing a useful quantity for comparison with geological slip rates.

Studies to the northeast [Eberhart-Phillips et al., 1990] and northwest [Feigl et al., 1990] of the Santa Barbara channel suggest non-uniaxial geodetic strain. However, these are in areas where both significant strike-slip faulting and north-northeast directed shortening are recorded in the geological record. Strike-slip faulting near and within the Santa Barbara channel networks has been recognized, but late Quaternary horizontal slip rates on these faults are considered to be low [Yerkes and Lee, 1987]. The highest rate is north of the channel networks on the east trending Santa Ynez fault, $<10 \mathrm{~mm} / \mathrm{yr}$. On the faults within the networks, the horizontal slip rates are on the order of $1 \mathrm{~mm} / \mathrm{yr}$ or less. This is an order of magnitude smaller than the geological contraction rates of 10-20 $\mathrm{mm} / \mathrm{yr}$ [Davis and Namson, written communication, 1989] across the same areas. Other geodetic studies in the Santa Barbara channel [Larsen, 1990] indicate near uniaxial strain
rates across the eastern channel and a combination of northwest-southeast extension and northeast-southwest contraction across the central channel, averaged over 17 years.

Uniaxial convergence is modeled by finding the uniaxial strain-rate, ε, in the direction of maximum contraction, β, derived from the shear-strain analyses. Let \mathbf{U} be the uniaxial strain-rate tensor

$$
\mathbf{U}=\left[\begin{array}{ll}
\varepsilon & 0 \tag{4-1}\\
0 & 0
\end{array}\right]
$$

that is related to the strain-rate tensor \mathbf{E}

$$
\mathbf{E}=\left[\begin{array}{ll}
\mathrm{e}_{11} & \mathrm{e}_{12} \tag{4-2}\\
\mathrm{e}_{12} & \mathrm{e}_{22}
\end{array}\right]
$$

in a north-east coordinate system, with east directed along the 1 -axis and north along the 2-axis. \mathbf{U} is related to \mathbf{E} through a rotation \mathbf{R} by

$$
\begin{equation*}
\mathbf{E}=\mathbf{R} \mathbf{U R}^{\mathrm{T}} \tag{4-3}
\end{equation*}
$$

\mathbf{R} is a rotation from the the uniaxial strain system in the direction of maximum contraction β, to the north-east system and has the form

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \beta & -\sin \beta \tag{4-4}\\
\sin \beta & \cos \beta
\end{array}\right]
$$

The strain-rate tensor \mathbf{E} can then be represented as

$$
\mathbf{E}=\left[\begin{array}{cc}
\varepsilon \cos ^{2} \beta & \varepsilon \sin \beta \cos \beta \tag{4-4}\\
\varepsilon \sin \beta \cos \beta & \varepsilon \sin ^{2} \beta
\end{array}\right]
$$

Using the following relationships between the estimated shear-strain rates, γ_{1} and γ_{2}, and the components of \mathbf{E} :

$$
\begin{gather*}
\gamma_{1}=\left(\mathrm{e}_{11}-\mathrm{e}_{22}\right) \tag{4-5}\\
\gamma_{2}=2 \mathrm{e}_{12} \tag{4-6}\\
\beta=\frac{1}{2} \tan ^{-1}\left(\frac{-\gamma_{2}}{\gamma_{1}}\right) . \tag{4-7}
\end{gather*}
$$

the uniaxial strain-rate, ε, is given by

$$
\begin{equation*}
\varepsilon=\frac{\gamma_{1}}{\left(\cos ^{2} \beta-\sin ^{2} \beta\right)} \tag{4-8}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon=\frac{\gamma_{2}}{2 \sin \beta \cos \beta} \tag{4-9}
\end{equation*}
$$

The relative convergence rate, v , for the motion of the average network-crossing length scale, 1 , in the direction of maximum contraction is given by

$$
\begin{equation*}
\mathrm{v}=\varepsilon 1 \tag{4-10}
\end{equation*}
$$

and tabulated in Table 4-1.
The geodetic data provide no information on network rotation. Therefore, in this model, network rotation is assumed to be zero. Regional geologic rotation rates in the Transverse Ranges over the last 15 Ma have been inferred from paleomagnetic data to be on the order of 5-100 / Ma [Hornafius et al., 1986]. These investigations indicate that the western Transverse Ranges has rotated clockwise as a block beginning in the Middle Miocene. The data show a decrease in the rotation rate in the western Transverse ranges from 10 Ma b.p. to the present. The average rotation rate over the last 5 Ma is $5^{\circ} / \mathrm{Ma}$ $(0.09 \mu \mathrm{rad} / \mathrm{yr})$. If this rotation is continuing at present at this rate, then the contribution
to the network displacement rates would be on the order of a few mm/yr of block rotation of the networks spanning the Santa Barbara channel.

4.3 Tectonic setting:

The Santa Barbara Channel and Oxnard Plain are part of the western Transverse Ranges geomorphic province. The topography and structures of the Transverse Ranges cut across the general northwest-southeast structural grain of California by forming the only east trending mountain range in the state [Dibblee, 1982d]. Situated in the Big Bend region of of the San Andreas fault, the Transverse Ranges extend from east of the San Andreas to the coastline as a broad elevated mountains range. The Santa Ynez Mountains uplift and the Channel Islands uplift form the northern and southern boundaries, respectively, to the western Transverse Ranges. Between these two uplifts, the Santa Barbara Channel and Ventura basin form a deep sediment filled tectonic trough. East of Ventura, the onshore extension of this depression narrows and is bounded to the south by the Oak Ridge uplift. The Oxnard Plain lies between the Oak Ridge uplift and the Santa Monica Mountains uplift to the south. North of the western Transverse Ranges, the structures include folds, faults, and sedimentary basins that trend westnorthwest. This is intermediate in trend between the dominant northwest trend of the Coast Ranges and the west trend of the Transverse Ranges. To the south, deep northwest trending submerged fault bounded basins and ridges of the Continental Borderland abut abruptly against this west trend along the Santa Monica Mountains and Channel Islands uplifts [Dibblee, 1982d].

Several balanced cross sections constructed across the western Transverse Ranges by Davis and Namson [1988; 1989, written communication] represent the most complete synthesis of the available data on the subsurface structures and the deformational style. These sections, based on surface geological maps, seismic reflection profiles, and well data, suggest that the western Transverse Ranges are part of a fold and
thrust belt that has experienced significant rates of shortening in the last 2-4 Ma. The shortening has been interpreted as the result of fault bend folding and blind thrusting along a 10-15 km deep decollemént, of a north over south thrust system. Most of the shortening has been interpreted as being consumed in folds and thrusts from the near shore northern channel platform, where the thrust system wedges back along south dipping back thrusts, to north of the Santa Ynez mountains. Some of the convergence is consumed in structures further offshore. From the restored sections, calculated average slip rates over the last $2-4 \mathrm{Ma}$ indicate $\sim 10-25 \mathrm{~mm} / \mathrm{yr}$ of convergence across the western Transverse ranges [Davis and Namson, 1989, written communication] (Table 4-2; Fig. 4-1). It is not possible to determine from the reconstructions which faults have been more active than others during the last 2-4 Ma.

4.3.1 Ventura Basin Tectonics:

Most of the information on the style, timing and rates of deformation during the last 2 Ma come from geologic investigations of structures in the Ventura Basin. Many of the structures there extend into the offshore along the north channel platform and in the coastal region between Santa Barbara and Ventura. The Ventura basin in the late Tertiary formed a broad west trending asymmetrical syncline. During the late Quaternary, in the eastern part of this structure, uplift of the Oak Ridge and southward thrusting of the north flank of the syncline over the basin severely narrowed this depositional trough [Dibblee, 1982c; Dibblee, 1982d]. This thick sequence ($>10 \mathrm{~km}$) of Pliocene to Pleistocene aged strata is bounded to the north and south by opposed reverse fault systems and is separated from the San Fernando basin to the east by the young Oak Ridge-Santa Susanna Mountains and Simi Hills uplifts.

Many of the structural trends of the Ventura Basin continue into the offshore west of Ventura. These include the Ventura-Rincon anticline, Pitas Point -Ventura fault, Javon Canyon fault, Oak Ridge fault, the Montalvo anticline and the Red Mountain fault
[Luyendyk et al., 1982; Yeats, 1983; Yerkes et al., 1980; Yerkes and Lee, 1979; Yerkes and Lee, 1987]. In addition to these structures, several east trending near shore folds and thrust faults occur between the Red mountain and Oak Ridge faults west of Ventura [Luyendyk et al., 1982]. Holocene vertical slip rates estimated on some of these faults indicate relatively low rates of vertical slip ($<1 \mathrm{~mm} / \mathrm{yr}$) [Yerkes and Lee, 1987] in contrast to the relatively high uplift rates estimated from investigations of uplifted marine and stream terraces in the Ventura area ($\sim 10 \mathrm{~mm} / \mathrm{yr}$) [Lajoie et al., 1979]. This may suggest that folding and faulting along blind thrusts, and not slip on faults that break the surface, are the primary mode of vertical deformation, and crustal shortening.

Yeats [1983] concluded that decollemént tectonics began in the Ventura basin as recently as 2 Ma ago at relatively high rates. The convergence associated with this region has occurred through a combination of folding and thrust faulting. Across Ventura, north-south convergence has occurred during the last 0.2 Ma at a rate of $23 \mathrm{~mm} / \mathrm{yr}$ based on stratigraphy and fold geometry. $20 \mathrm{~mm} / \mathrm{yr}$ of this rate is consumed across the Ventura Anticline and Cañada Larga Syncline. Prior to this, the thrust faults under the Ventura Anticline were active between the last 1.3 Ma and 0.65 Ma , reaching a maximum slip rate of $2.8 \mathrm{~mm} / \mathrm{yr}$ at 0.65 Mab b.p. [Yeats, 1983]. The spatial distribution of the deformation rate to the east is not well constrained. At least $12 \mathrm{~mm} / \mathrm{yr}$ of convergence has been documented further to the east near Filmore [Yeats et al., 1988].

The Yeats [1983] estimate of $23 \mathrm{~mm} / \mathrm{yr}$ of late Quaternary convergence across a 40 km section through Ventura agrees well with the average rate over the last 2-4 Ma of Namson and Davis [1988] of $17.6-26.5 \mathrm{~mm} / \mathrm{yr}$ for their regional, 123 km -long crosssection, from the southern San Joaquin Basin to Ventura and with the $17 \mathrm{~mm} / \mathrm{yr}$ estimate of Rockwell [1984], from Ojai to Ventura. But, $23 \mathrm{~mm} / \mathrm{yr}$ exceeds the minimum slip rate solution of $8.8-15.9 \mathrm{~mm} / \mathrm{yr}$ for the section from the Big Pine Fault to Ventura (Section 5 of Fig. 4-1). This, together with the change in the deformation rate on the Ventura Anticline, may imply that during the last 0.2 Ma the regional shortening was almost
entirely being consumed in the folding of the Ventura Anticline and Cañada Larga Syncline and that prior to 0.2 Ma , the $\sim 23 \mathrm{~mm} / \mathrm{yr}$ of slip was being consumed along other structures. This would seem to indicate that the location of the active structures along which the regional shortening is being consumed can change on a time scale of < 0.5 Ma .

However, the cross-sections of Yeats [Yeats, 1983; Yeats et al., 1988] and of Namson and Davis [1988] interpret the deformation differently and the admissibility of each other's sections has been questioned [Namson and Davis, 1989a; Namson and Davis, 1989b; Weldon and Humphreys, 1989; Yeats and Huftile, 1989]. Because the cross-sections of Namson and Davis [1988] are demonstrably restorable and represent a minimum slip solution over a longer section than the sections of Yeats [Yeats, 1983; Yeats et al., 1988], the 2-4 Ma average minimum slip rate across this part of the western Transverse Ranges is probably best constrained to be between $8.8-15.9 \mathrm{~mm} / \mathrm{yr}$. The 23 $\mathrm{mm} / \mathrm{yr}$ of Yeats [1983] across the Ventura Anticline for the last 0.2 Ma may represent an increase in the deformation rate in the Ventura region during the latest Quaternary, through a concentration of the regional shortening there.

4.4 Geological strain indicators within the geodetic networks:

4.4.1 Oxnard Plain:

The geodetic strain-rate estimate of zero significant strain across the OP network ($0 \pm 4 \mathrm{~mm} / \mathrm{yr}$) agrees well with the observed geological structures and inferred geological history of this area for the last 2-4 Ma [Dibblee, 1982b; Namson, 1987; Yeats, 1983]. This network which crosses relatively undeformed strata is bounded to the north by the Oak Ridge fault and to the south by the Malibu Coast fault (Fig. 4-2). Each of these trends has been active in the last 2-4 Ma [Dibblee, 1982b]. On the basis of stratigraphic well data, Yeats [1983] concluded that nearly all of the late Quaternary shortening across the Ventura basin occurs north of Oak Ridge, and thus north of the OP network.

Restored balanced cross-section across this part of the western Transverse ranges [Namson, 1987] interpret the Oxnard Plain to contain relatively undeformed strata and no active faults. The active structures wrap around the uplifted Oak Ridge-Simi Hills uplift, north of the network. Thrust faults and fold axes bend from a generally east west trend south of Ventura to northeast near Santa Paula, back to east-west north of the Oak Ridge-Simi Hills uplift. Some of these structures pass between station CHAF in the northwest corner of the network and the other stations, but the majority of the network lies in a geologically stable area.

4.4.2 Santa Barbara Channel networks:

The strain direction and deformation rate indicators for each of the three networks that cross the Santa Barbara channel are mainly derived from maps [Junger, 1979; Yerkes et al., 1980], seismic reflection profiles [Junger, 1979; Luyendyk et al., 1982], restored balanced cross sections [Davis and Namson, 1989, written communication], fault slip studies [Sarna-Wojcicki, et al., 1987; Keller et al., 1980; Yerkes et al., 1987], and marine terrace studies [Lajoie et al., 1979]. Two general structural trends that are contained within each of these networks are a zone of folding and thrust faulting along the northern channel platform and an antiformal uplift along the northern channel islands. Another major structural zone, the Mid-channel fault zone extends from Hueneme submarine canyon, near Oxnard, westward to Gaviota at a N70W trend with apparently north side up Quaternary slip [Junger, 1979]. In addition to the folds and faults, marine terraces record regional variations in the deformation rate.

The folds and faults along the northern channel platform [Vedder, et al., 1980; Luyendyk et al., 1982] indicate generally north directed shortening that has been active during the late Quaternary and Holocene. From seismic reflection profiles, several near shore east trending thrust faults and folds have been mapped [Vedder, et al., 1980; Luyendyk et al., 1982; Dibblee, 1982c]. Active thrust faulting has been suggested for
some of these faults between Santa Barbara and Ventura on the basis of bathymetric breaks. Up to 10 m of south side up thrust faulting has been interpreted to break the sea floor and Holocene deposits along the Goleta-Rincon fault [Luyendyk et al., 1982], implying a vertical slip rate of $>1 \mathrm{~mm} / \mathrm{yr}$. Further to the west, possible Holocene sea floor breaks less than 1 m were also recognized on the offshore extension of the south branch of the Santa Ynez Fault [Luyendyk et al., 1982], with minor amounts of left slip suggested on some of these faults [Dibblee, 1982c].

Discontinuous uplifted marine terraces from Ventura to Point Conception record large variations in rates of vertical deformation which may be indicative of spatial variation in convergence rates across the channel. Typical uplift rates along the southern California coast, south of the Transverse Ranges, are low, from $\sim 0.1-0.6 \mathrm{~mm} / \mathrm{yr}$, while along the east trending structures between Goleta and Ventura, uplift rates range from 4$10 \mathrm{~mm} / \mathrm{yr}$ [Lajoie et al., 1979]. The most rapid uplift rates on the west coast of the conterminous United States are near Ventura ($\sim 10 \mathrm{~mm} / \mathrm{yr}$) on the foot wall of the Red Mountain Thrust. The uplift rate of marine terraces decreases to the west where at Point Conception it is within the range of typical values for southern California. If uplift is the result of crustal shortening due to folding or thrust faulting, as has been suggested for the Ventura area [Lajoie et al., 1979], this decrease would seem to suggest decreasing active convergence to the west. However, the sampling of marine terraces is discontinuous and limited to only three localities. Only a few, different onshore structures are overlain by terraces that have been studied and the along strike variation of deformation on a single structure has not been determined.

Less active, but more complex, deformation is indicated from marine terrace elevations and the trend and style of faulting along the generally west-northwest trending anticlinal Channel Islands uplift. The uplift extends from the mainland as part of the Santa Monica Mountains anticlinorium to the southwestern part of the Santa Barbara basin, where it terminates in a northwest plunge. It has an overall structural and
physiographic trend that is intermediate between the trend of the Transverse Ranges and the Peninsular Ranges [Junger, 1979]. The lack of Pliocene deposits on the northern channel islands and in the Santa Monica Mountains has been interpreted as an indication that uplift of this west-northwest to west trending antiform began during the Pliocene [Dibblee, 1982a; Junger, 1979]. Little Pliocene or Quaternary activity has occurred on the north side of the antiform with the majority of the deformation occurring on the south side of the antiform in response to convergence between the east trending antiform and the northwest trending ridges of the Continental Borderland [Junger, 1979].

The preservation of several emergent marine terraces on the northern channel islands [Orr, 1960; Orr, 1968; Weaver, 1969] significantly above the height of the latest sea level high stand indicates that uplift of the islands has continued during Pleistocene time. Because the ages of the terraces and, thus, their correlation with the sea level record are not known, the uplift rates can not be calculated. It has been suggested [Patterson, 1979], based on geographic position and elevation, that the lowest terrace on Santa Cruz Island may be correlative with the Point Dumé terrace, to the east. The Point Dumé terrace has been correlated, on the basis of faunal assemblages in the terrace deposit [Lajoie et al., 1979] with the 120 ka sea level high stand. On this basis, the uplift rate of the northern channel islands may be quite low ($<0.6 \mathrm{~mm} / \mathrm{yr}$). This rate is within the typical range for uplifted marine terraces along the southern California coast, implying substantially less active deformation than to the north along the northern channel platform during the last 100 ka .

In addition to this young relatively slow uplift, two Pleistocene left-lateral strikeslip faults, the Santa Cruz Island fault and Santa Rosa Island fault, cut Santa Cruz and Santa Rosa islands roughly in half. Cumulative post-Miocene slip on these faults is considered to be low from the lack of offset on the channel islands platform [Junger, 1979]. Correlation of a seismically imaged fold axis with the Christi Anticline on Santa Cruz Island argues for 10 km of post Miocene slip on the Santa Cruz Island fault
[Luyendyk et al., 1982] implying an average maximum slip rate of $\sim 2 \mathrm{~mm} / \mathrm{yr}$. Deflected stream channels across the Santa Cruz Island fault indicate late Quaternary left-lateral motion, however, no evidence of Holocene activity has been reported [Patterson, 1979].

The concentration of young folds, the offset of Pleistocene and Holocene deposits, the high 2-4 Ma convergence rates (10-25 mm/yr), and the high late-Pleistocene uplift rates $(4-10 \mathrm{~mm} / \mathrm{yr})$ along the northern part of the channel indicate that the most active structures within the networks lie along the northern channel platform. Along the Channel Islands uplift, the lack of active late-Pleistocene and Holocene structures and the geologically low uplift ($<0.6 \mathrm{~mm} / \mathrm{yr}$) and slip rates ($<2 \mathrm{~mm} / \mathrm{yr}$) indicate substantially less active deformation than to the north. These later geological deformation rates are at the limit of the triangulation uncertainty (3μ radians/observation) given the ~ 100 years since the first triangulation surveys and the size of the networks ($>50 \mathrm{~km}$). This suggests that the low deformation rate along the Channel Islands uplift is probably geodetically unresolvable.

4.4.2.1 Eastern Santa Barbara Channel

The eastern Santa Barbara Channel network (ESBC) extends from Santa Cruz Island north across the channel to Ventura and Santa Barbara. The network spans the zone of deformation in the mid-channel, obliquely crossing the near shore folding and faulting between Ventura and Santa Barbara (Fig. 4-3a). The stations on Santa Cruz island pin the southern end of the network to the Channel Islands uplift north of the left slip faults along this trend. The geodetic convergence rate estimates across this network indicate $18 \pm 5 \mathrm{~mm} / \mathrm{yr}$ of $\mathrm{N} 20 \mathrm{E} \pm 3$ directed convergence over the last ~ 110 years.

Some of the geological shortening recorded in the trends of late Quaternary and Holocene faults and fold axes within the network agree well with the geodetic direction of convergence. The offshore faults and folds within the ESBC network have two similar, but different trends, though. Most of the near shore faults and folds between the
coastline and the Pitas Point fault are concave northward with trends that vary from N70E ($\beta=$ N20W) near Pitas Point to N90-80W ($\beta=$ N00-10E) near Santa Barbara. These faults include the south Rincon, Pitas Point, and Goleta-Rincon faults [Luyendyk et al., 1982], and the Rincon Anticline. Some faults and folds within this region have trends similar to those of faults and fold axes south of the Pitas Point fault with a N70-80W trend ($\beta=\mathrm{N} 10-20 \mathrm{E}$). South of Pitas Point these include the Pitas Point fault, Oak Ridge fault, Montalvo Anticline, and Mid-Channel fault. The Mesa and Lavigia faults and the Montecito anticline which are north of the Goleta - Rincon fault have trends from N80W to N60W. These later trends imply a N10-30E direction of shortening, β, that is in good agreement with the geodetically estimated direction of N 20 E .

Active convergence is apparently taking place with a N20E direction of shortening along the Oak Ridge trend. The Oak Ridge structural-trend strikes N17E within the ESBC network. Paleontologic data from a well along the Oak Ridge trend indicate a mid-Holocene age for a reflector involved in the folding [Yeats, 1982]. In addition, active deformation is suggested by earthquake swarms that have occurred along the Oak Ridge trend several times during the instrumental record: June-August, 1968 [Hamilton et al., 1969], October-September 1983 [Henyey and Teng, 1985]. Focal mechanisms for only a few of these events [Henyey and Teng, 1985] have been published and indicate a N30E direction of maximum contraction .

The rates of convergence across these structures are difficult to assess, and must be inferred from deformation rates in the nearby onshore. As stated previously, convergence across this part of the western Transverse Ranges for the last 2-4 Ma has averaged $9-16 \mathrm{~mm} / \mathrm{yr}$ [Davis and Namson, 1989, written communication] and may be as high as $20 \mathrm{~mm} / \mathrm{yr}$ during the last 0.2 Ma in the Ventura Basin [Yeats, 1983]. The westward continuation of these structures into the eastern Santa Barbara Channel and the presence of Holocene deformation in the channel seem to suggest that deformation within
the ESBC network may be occurring at rates from $9-20 \mathrm{~mm} / \mathrm{yr}$, in good agreement with the geodetically determined rate of $18 \pm 5 \mathrm{~mm} / \mathrm{yr}$.

The sum of the horizontal slip rates on faults within the network is significantly less than the geodetic convergence rate. The vertical and dip slip rate components have been determined for the onshore portions of the Javon Canyon, Red Mountain, and Pitas Point faults and are summarized in Morton and Yerkes [1987]. All of these slip rates are low ($<2 \mathrm{~mm} / \mathrm{yr}$) and are Holocene averages. When these slip rate components are converted into horizontal components, the horizontal rates sum to $1.5-3.0 \mathrm{~mm} / \mathrm{yr}$. In addition to these fault slip rates, the shortening across the onshore Oak Ridge structural trend has been estimated to be $12 \mathrm{~mm} / \mathrm{yr}$ averaged over the last 100 ka [Yeats, et al., 1988].

Within the ESBC network, the sum of the horizontal slip on the faults and this part of the Oak Ridge trend is $13.5-16 \mathrm{~mm} / \mathrm{yr}$. This rate agrees with the geodetic convergence rate of $18 \pm 5 \mathrm{~mm} / \mathrm{yr}$ and is close to the $20 \mathrm{~mm} / \mathrm{yr}$ of late Pleistocene convergence in the Ventura Basin. However, this sum does not include shortening due to folding on other structures nor does it include slip rates on all of the offshore faults. This would seem to suggest that slip on other faults and structures within the network may total to $\sim 2-4 \pm 5 \mathrm{~mm} / \mathrm{yr}$. This could be consumed through shortening on other faults and folds within the network which are consistent with a N20E direction of maximum shortening (e.g., the Mid-Channel fault, and the Montalvo Anticline), and/or through shortening and minor left slip along \sim N90-70E trending structures (e.g., the GoletaRincon and Pitas Point faults).

4.4.2.2 Central Santa Barbara Channel:

Many of the same stations and geological structures in the ESBC network continue westward into the CSBC network (Fig. 4-3b). The stations on the southern edge of the Santa Barbara channel on Santa Cruz Island are common to both networks
and sit along the Channel Islands uplift. On the northern edge of the channel only the station in Santa Barbara (SBAO) is common to both. GAVI of the CSBC network sits on a high peak in the Santa Ynez Mountains south of the Santa Ynez fault, and CHAF of the ESBC network sits on folded Pleistocene strata along the northern edge of the Ventura basin, near Ventura. The area over which these structures are spread in the ESBC network narrows westward into the CSBC network where they are confined to the northern channel platform. The geodetic convergence rate estimates across this network indicate $16 \pm 2 \mathrm{~mm} / \mathrm{yr}$ of $\mathrm{N} 10 \mathrm{E} \pm 4$ directed convergence over the last ~ 100 years.

Fold and fault trends mapped along the northern channel platform in the CSBC network have trends that agree well with the geodetic direction of convergence, β, of N10E. These faults with late Pleistocene to Holocene offsets [Luyendyk et al., 1982; Yerkes and Lee, 1987] are south dipping with reverse slip and recognized sea floor offsets on the eastern edge of the network and in the ESBC network [Luyendyk et al., 1982]. Fault trends change from N70W ($\beta=\mathrm{N} 20 \mathrm{E}$) on the eastern edge of the network to N80-90W ($\beta=\mathrm{N} 00-10 \mathrm{E}$) in the central and western parts of the network. Only the late Pleistocene and younger faults along the northern channel platform have trends that agree with the geodetic direction of shortening. South of the Mid-Channel fault zone early to late Pleistocene faults trend N80-90E ($\beta=$ N $00-10 \mathrm{~W}$). Fold axis trends in the Pliocene Sisquoc offshore of Goleta [Dibblee, 1982c] are mostly N80-90W with a few N70W trends. These fold trends imply a N00-10E direction of maximum contraction, β, that is in good agreement with both the late Quaternary to Holocene direction of shortening indicated by the fault trends and the geodetically estimated direction of shortening of N10E.

Convergence rates from restored balanced cross sections [Davis and Namson, 1989, written communication] suggest 55.8 km of shortening in the last 2-4 Ma (14.0$25.4 \mathrm{~mm} / \mathrm{yr}$) from the San Andreas fault south to the Santa Barbara channel. At least 7.8 $\mathrm{km}(2-4 \mathrm{~mm} / \mathrm{yr})$ of this shortening is consumed in the offshore, south of the end of the
section (Fig. 4-1). To agree with the geodetic data, 50-100\% of the average shortening rate along the section would have to currently be occurring in the Santa Barbara Channel.

4.4.2.3 Western Santa Barbara Channel:

The WSBC network extends from San Miguel and Santa Rosa islands of the Channel Islands uplift to the western end of the Santa Ynez mountains uplift (Fig. 4-3c). Late Quaternary folds and faults within the area of the network are concentrated along the near shore platform of the north channel coastline and are the westward continuation of the zone of deformation along northern channel platform present in the ESBC and CSBC networks. The structures near and within this network suggests more complex deformation than in the other networks. The trends of fold axes and faults change from east to west across the network from generally N70W to N80E back to N70W along the northern channel platform, with some additional N35-55E trending faults. The midchannel is devoid of faults with younger than early to late Pleistocene activity [Yerkes and Lee, 1987]. The geodetically modeled convergence rate across this network indicates 13 $\pm 4 \mathrm{~mm} / \mathrm{yr}$ of convergence directed $\mathrm{N} 23 \mathrm{~W} \pm 7$.

The geodetically determined direction of maximum contraction differs significantly from most of the geological indicators within network. The westward continuation of the N80W trending structures of the CSBC network change trend at the offshore extension of the south branch of the Santa Ynez fault. There, structural trends of faults and folds along the north channel platform change from N80W to N70-90E. This implies a change in the direction of maximum contraction for the thrust faults and folds from N20E to N00-20W which agrees with the geodetically determined direction of maximum contraction of $\mathrm{N} 23 \mathrm{~W} \pm 7$. But, the extent of structures with this trend is limited to the region between Point Conception and Gaviota. The trends of onshore fold axes in the Pliocene Sisquoc formation north of Point Conception and the trends of
offshore thrust faults between Point Conception and Point Arguello indicate a N00-35E direction of shortening.

The structures with trends consistent with the geodetically determined shortening direction occur near the offshore south branch of the Santa Ynez fault. This fault in the offshore has been interpreted from seismic sections and sea floor profiles as an oblique left slip thrust fault with 550 m of left slip and 950 m of reverse slip and a $60^{\circ} \mathrm{N}$ dip [Yerkes et al., 1980]. The fault trends N30E, implying a direction of maximum contraction of N15W for pure strike slip faulting and of N60W for pure thrust faulting. The mean direction of maximum contraction, weighted by the relative amounts of strikeslip and dip slip motion on the fault, is N44W, significantly different from the geodetically determined direction that agrees with the direction of maximum contraction implied by pure strike-slip motion on the fault. In addition to these trends, several relatively short thrust faults with N35-55E trends cut across some of the approximately east-west trending folds suggesting a superposition of shortening in a N35-55W direction on the Pliocene to Pleistocene structures.

Convergence rates from restored balanced cross sections [Davis and Namson, 1989, written communication] suggest $10.5-19.0 \mathrm{~mm} / \mathrm{yr}(41.8 \mathrm{~km}$ of shortening in the last 2-4 Ma) from the San Andreas fault southwest to the Santa Barbara channel (Fig. 41) along a section line oriented normal to the major structures at N20E across this part of the western Transverse Ranges. This section suggests that little of the deformation is consumed in the folds within the WSBC network.

4.4.2.4 Seismicity and stress:

There is agreement between the direction of maximum contraction from the geodetic data with the direction of compression indicated by seismicity studies. Seismicity in the western Transverse Ranges is consistent with active north-south convergence with several moderate to large historical earthquakes having occurred in and
around the Santa Barbara Channel in 1812 (magnitude 7+), 1925 ($\mathrm{M}_{\mathrm{L}} 6.3$), 1941 (M_{L} 6.0), 1973 ($\mathrm{M}_{\mathrm{L}} 5.1$) and 1978 (M_{L} 5.1) [Yerkes and Lee, 1987]. Active north-south thrust and decollemént tectonics are indicated by low angle compressive earthquake focal mechanisms along a $12-15 \mathrm{~km}$ seismicity floor which has been interpreted to be a midcrustal, sub-horizontal detachment [Hadley and Kanamori, 1977; Webb and Kanamori, 1985]. From the analysis of focal mechanisms from 200 events within the ESBC network with magnitudes from $M_{L} 2$ to 6 from the period 1970 to 1975, it was concluded that the stress regime has near horizontal pressure axes directed N24E, approximately normal to the strike of the Big Bend segment of the San Andreas fault [Yerkes and Lee, 1987]. This compressive stress direction was inferred to be primarily the result of reverse displacement along the east-west trending Red Mountain-San Cayentano, Pitas Point-Ventura, Mid-Channel, and Anacapa-Santa Monica reverse faults [Yerkes and Lee, 1987]. This direction of compressive stress and the direction of minimum compressive stress from bore hole break outs of N24E in the Santa Barbara channel [Mount, 1989] agree well with the geodetic direction of shortening of $\mathrm{N} 20 \mathrm{E} \pm 3$ for the ESBC network.

4.4.3 Northern Borderland:

The Northern Borderland network extends across the southern boundary between the western Transverse Ranges and the continental borderland. The geodetic strain-rate estimates are indistinguishable from a zero strain-rate solution $(0 \pm 2 \mathrm{~mm} / \mathrm{yr})$. The area covered by the network is structurally complex including northwest trending strike-slip faults of the Continental borderland, east trending thrust faults of the Channel islands uplift, and left lateral strike-slip faults of the northern channel islands [Junger, 1976; Junger and Wagner, 1977]. Seismicity studies suggest that the area just east of the network, offshore of Santa Monica, forms an active transition zone between the strikeslip faulting of the Borderland and the compressional tectonics of the Transverse Ranges [Hauksson and Saldivar, 1989]. Within the network, though, only a few Holocene and

Pleistocene fault offsets have been identified. These have been mapped along NW-SE striking faults between the Northern Channel islands and Santa Barbara and San Nicolas islands and along the eastern extension of the Santa Cruz Island fault [Greene and Kennedy, 1986]. The lack of young folds within the network argues for zero shortening between San Nicolas and Northern Channel islands, since the Pliocene [Junger, 1976].

4.4.4 Coseismic elastic strain release

The elastic strain released by two moderate earthquakes within the networks was insufficient to affect the strain-rate estimates. The $1978 \mathrm{M}_{\mathrm{L}} 5.1$ Santa Barbara and the $1981 \mathrm{M}_{\mathrm{L}}$ 5.1 Santa Barbara island earthquakes [Corbett, 1984] occurred between the last historical observations and the first GPS observations near stations SBAO, of the SBC network, and SBIS, of the NBL network. The coseismic strain release was modeled as an elastic dislocation using the formulation of Okada [1985]. Fault plane orientation, width, depth, and coseismic slip were obtained from the analysis of Corbett [1984] and are summarized in Table 4-3. The parameters that would give the maximum surface displacements were chosen for the models. The elastic strain released by each of these events was $<5 \mathrm{~cm}$ of relative station displacement of the monuments. This is less than 0.6μ strain which is five times smaller than the triangulation uncertainty and thus unresolvable by the strain analysis.

4.5 Summary:

The three networks that span the Santa Barbara Channel (ESBC, CSBC, and WSBC) indicate generally north-south convergence across the channel with the direction of maximum contraction changing from east to west along the channel from $\sim \mathrm{N} 2 \mathrm{E}$ to \sim N20W. When scaled by the average network crossing length scale in this direction, a slight decrease in the convergence rate is indicated, from $18 \mathrm{~mm} / \mathrm{yr}$ in the east to 13 $\mathrm{mm} / \mathrm{yr}$ in the west. The geodetic direction of maximum contraction is agrees with at least
some of the Holocene-Pleistocene structures in the channel. These structures are mainly thrust faults and fold axes that indicate generally NOOE to N10E directions of shortening, β, with the highest concentration of structures in the eastern channel. The geologically youngest deformation seems to be concentrated along the northern channel platform. In the CSBC and ESBC networks, the agreement is with the majority of the Pleistocene and younger deformation. In the WSBC network, most of the structures agree better with the direction of maximum contraction implied by the geodesy and geology of the CSBC and ESBC network than with the direction of maximum contraction of the WSBC network. Some young structures, though, do agree with the N24W direction of maximum contraction of the WSBC network. These structures offset the older N00-10E structures, implying that the direction of shortening in this part of the channel may have changed during the most recent Quaternary to a more westerly direction than to the east. The geological record of deformation since the Pliocene in the Oxnard Plain and Northern Borderland networks are consistent with these strain-rate estimates of zero significant geodetic $(0 \pm 4 \mathrm{~mm} / \mathrm{yr})$.

Uniaxial convergence rates

Network	β	ε	$V_{\text {min }}$	$\mathrm{V}_{\text {max }}$	$\mathrm{V}_{\text {ave }}$
SBC	$-1 . \pm 2$	-0.23 ± 0.02	7 ± 2	17 ± 2	13 ± 2
ESBC	20 ± 3	-0.37 ± 0.07	15 ± 3	21 ± 4	18 ± 5
CSBC	10 ± 4	-0.28 ± 0.04	11 ± 2	21 ± 3	16 ± 2
WSBC	-23 ± 7	-0.17 ± 0.06	9 ± 3	17 ± 6	13 ± 4

Table 4-1. Convergence rate estimates across the triangulation-GPS networks in the Santa Barbara Channel. β is the azimuth of maximum shortening; ε is the modeled uniaxial strain rate in μ strain $/ \mathrm{yr}, \mathrm{V}_{\min }, \mathrm{V}_{\max }$, and $\mathrm{V}_{\text {ave }}$ are the minimum, maximum, and average network convergence rates, respectively, in $\mathrm{mm} / \mathrm{yr}$. These rates are calculated from the minimum, maximum, and average channel crossing length scale of the network in the direction of maximum contraction, β.

Figure 4-1 Map of southern and central California showing location of regional balanced cross sections of Davis and Namson [1989, written communication]. GF- Garlock fault, LA- Los Angeles, SAF- San Andreas fault, SB- Santa Barbara, SGF- San Gabriel fault.

Table 4-2
Cross section Total shortening (km) slip rate ($\mathrm{mm} / \mathrm{yr}$)

1 San Luis Obisbo
26.8
9.2
41.8
55.8 (7.8)

35
31
12
21.4-29.7
6.7-17.2
2.3-4.2
10.5-19.0
14.0-25.4
8.8-15.9
7.8-14.1
5.5-3.0
5.4-13.5

Table 4-2. Average convergence rates for the last $2-4 \mathrm{Ma}$ across balanced cross-sections in the western Transverse Ranges [Davis and Namson, 1989, written communication]. Numbers refer to cross sections in Figure 4-1.

Figure 4-2. The strain rate for the Oxnard Plain network suggests zero stain across this region $(0 \pm 4 \mathrm{~mm} / \mathrm{yr})$. The structures shown are complied from published maps [Yerkes et al., 1980; Junger, 1979; Luyendyk et al., 1982; Dibblee, 1982b]. Thrust faults are shown with barbs on the hanging wall. Long dashed lines indicate that the fault is approximately located. Short dashes are for approximately located faults with early to late Pleistocene slip. The locations of the geodetic stations are indicated by the filled circles. VA- Ventura Anticline, RM- Red Mountain Thrust.

Figure 4-3. Maps of the three networks that span the Santa Barbara Channel (ESBC, CSBC, and WSBC) The geodetic direction of convergence is shown as the thick, shaded arrows on each map. The structures shown are compiled from published maps [Yerkes et al., 1980; Junger, 1979; Luyendyk et al., 1982; Dibblee, 1982b]. Thrust faults are shown with barbs on the hanging wall. Long dashed lines indicate that the fault is approximately located. Short dashes are for approximately located faults with early to late Pleistocene slip. The locations of the geodetic stations are indicated by the filled circles.
a. Eastern Santa Barbara Channel network

Figure 4-3b. Central Santa Barbara Channel network

Figure 4-3c. Western Santa Barbara Channel network

Table 4-3

Event	φ	λ	l	w	d	α	δ	$\operatorname{slip}(\mathrm{m})$
a	33.0	119.75	40	5	15	318	90.0	1
b	34.0	120.50	12	6	15	285	15.0	1

Table 4-3. Parameters used to calculate coseismic elastic-strain release from the Santa Barbara Island earthquake (a), and the Santa Barbara earthquake (b). Parameters are derived from Corbett [1984] to give the maximum possible slip using the formulations of Okada [1985]. φ and λ are the latitude and longitude of the corner of the fault plane; $1, \mathrm{w}$, and d are the length, width, and depth of the fault plane in kilometers; α and δ are the strike and dip of the fault plane. The Santa Barbara Island earthquake was modeled as pure strike-slip and the Santa Barbara earthquake as pure thrust, both with 1 meter of slip.

Chapter 5.

Pacific-North American Plate motion from geodetic estimates of strain rates in the offshore of southern California.

5.1 Introduction:

In this chapter, the distribution of the motion between the Pacific and North American plates is addressed using space geodetic station velocities, and the geodetic strain rates estimated for the offshore of southern California in Chapter 3. These determinations of the offshore strain-rates suggest that the distribution and the magnitude of the Pacific-North American relative motion be re-evaluated. Specifically, previous models of the plate motion distribution across central and southern California [Bird and Rosenstock, 1984; DeMets et al., 1987; Minster and Jordan, 1984; Minster and Jordan, 1987; Weldon and Humphreys, 1986] which lacked specific knowledge of offshore deformation rates have made several assumptions and predictions of the deformation offshore that are inconsistent with the current data.

Rigid-plate models that have been developed over the last 15 years reasonably describe the motions of the plates from global inversions of marine magnetic anomaly patterns, transform fault trends, and seismicity [e.g., Chase, 1978; Minster and Jordan, 1978; DeMets et al., 1990]. These models form the framework on which other studies of plate interactions and geological investigations are based. However, substantial non-rigid plate behavior has been recognized where these plate boundaries lie within the continents or along their margins [e.g., Atwater, 1970]. Quaternary and older deformations in the
western United States have been attributed to non-rigid plate interaction between the Pacific and North American plates resulting from the intra-continental nature of the plate boundary there [e.g., Minster and Jordan, 1984]. Estimates of plate motions from observations along this plate boundary must, therefore, be biased by this non-rigid behavior.

5.2 San Andreas Discrepancy

In California the San Andreas fault is generally recognized as the primary boundary between the Pacific and North American plates forming a 1000 km long intracontinental transform fault [e.g., Atwater, 1970; Minster and Jordan, 1984]. Geological and geodetical estimates of the slip rate on the San Andreas fault indicate that most of the relative plate motion can be accounted for by deformation along it [Savage and Burford, 1973; Weldon and Humphreys, 1986]. However, these observations can only account for $\sim 65-75 \%$ of the average plate velocity for the last 2-4 Ma. Extension in the Basin and Ranges and faulting along the continental margin west of the San Andreas fault have been proposed to account for this missing motion, called the San Andreas "discrepancy" [Minster and Jordan, 1984]. But, the rate and direction of extension in the Basin and Ranges are insufficient to account for all of the missing motion, and the slip rates on the faults west of the San Andreas are poorly constrained [e.g., Minster and Jordan, 1984; Bird and Rosenstock, 1984; Weldon and Humphreys, 1986].

The discrepancy is defined as the difference between the observed deformation velocity, as indicated from geological and/or geodetical analyses, and the velocity predicted by global plate models. Attempts at resolving the discrepancy have focused on the comparison of the total velocity of the incomplete set of geodetically and/or geologically determined fault slip and deformation rates in the western United States with a global plate model vector. The discrepancy is then resolved by partitioning the discrepancy vector along faults of known Quaternary activity, but for which the slip rates
are poorly constrained and/or unconstrained [e.g., Minster and Jordan, 1984; Bird and Rosenstock, 1984; Weldon and Humphreys, 1986; Minster and Jordan, 1987]. In these analyses, deformation rates that are averaged over time periods of from a few hundred to millions of years, geologically, and/or a few tens of years, geodetically, are compared with the global rate averaged over the last 2-4 Ma.

Since the discrepancy was first pointed out based on the RM-2 global plate model of Minster and Jordan [1978], a new global plate model, NUVEL-1, has been developed [DeMets et al., 1990]. The NUVEL-1 model uses a larger data set than RM-2 and contains more direct data on the relative Pacific-North American plate velocity than RM2. In the NUVEL-1 model, 5 spreading rates determined from marine magnetic anomalies in the Gulf of California are used as direct measurements of Pacific-North American relative velocity. In contrast, only 1 was available and used in the RM-2 model, and that rate has since been found to be in error [Minster, public communication].

At the 95% confidence level, these models have essentially the same location for the Pacific-North American relative motion Euler pole. Thus, they give essentially the same direction of relative plate motion. The main difference is the magnitude of the relative motion. The NUVEL-1 model is slower than RM-2 by $0.07 \pm 0.03 \mathrm{deg} / \mathrm{m} . \mathrm{y}$. (8% slower). When mapped to the linear plate velocity in California, this corresponds to a 15% decrease in the relative plate motion in California and implies that the magnitude and orientation of the San Andreas discrepancy is smaller than previously believed (Fig. 5-1) [DeMets, et al., 1987].

5.3 Previous Geodetic Studies

On a global scale, space-based geodetically determined rates agree well with rates averaged over a few millions of years, as estimated from global plate models. Satellite Laser Ranging (SLR) has been used to monitor plate motions since 1976. The results from these observations indicate good agreement between the SLR modeled station
velocities, SL7.1, and the station velocities predicted by AMO-2 and NUVEL-1 [Smith et al., 1989a]. (AM0-2 is an absolute motion model based on the relative motion model RM-2). The linear correlation for the geodesic velocities of sites within the plate interiors between the SL7.1 and the AM0-2 and NUVEL-1 models are 0.999 and 1.031, respectively, indicating good agreement with both plate models [Smith et al., 1989a]. Previous preliminary analyses had a somewhat lower linear correlation of 0.61 with the RM-2 model [Christodoulidis et al., 1985]. These results yielded high relative plate rates [NASA, 1988] that were geologically unreasonable. The better agreement of the latest results is probably due to a combination of improved modeling, analysis techniques, and an increased number of observations spread over a longer time period.

Recent geodetic estimates of the velocity of stations in California based on the analysis of VLBI observations collected over the last 7 years suggest that the western most of these stations are moving at velocities that are within a few millimeters of the full NUVEL-1 velocity [Clark et al., 1987; Kroger et al., 1987; Sauber, 1989; Ward, 1988]. The velocity of the station at Vandenberg (VNDN) deviates insignificantly from the NUVEL-1 velocity for the Pacific plate. The VLBI station at Monument Peak (MONP), east of San Diego, is also close to the NUVEL-1 Pacific plate velocity. The velocity distribution across southern California from these VLBI analyses along with velocities derived from other geodetic stations has been interpreted to be consistent with distributed right lateral shear across southern California [Sauber, 1989; Ward, 1989].

VLBI observations have been used in global studies of plate motions. In these studies, the observed baseline evolution from stations around the world are used to invert for station velocities, in contrast to the regional studies mentioned above that only use data from baselines that span the San Andreas fault. Initially these global studies achieved results that were in good agreement with the RM-2 global plate model for Pacific-North American relative motion [NASA, 1988; Ryan, 1987]. With the
availability of a few more years of data, inversion of these data have converged on agreement with the NUVEL-1 plate model. [Argus and Gordon, in prep; Ward, in press].

These analyses and the regional ones would seem to suggest: 1) that the PacificNorth American plate motion is distributed entirely onshore across southern California between Vandenberg and the San Andreas fault with additional motion being accommodated through Basin and Range extension [DeMets et al., 1990]; 2) that in California the crustal velocity field is most sensitive to the regional right-lateral shear of the plate motion rather than to the convergent deformation implied by structures that have formed over the last 0-4 Ma in parts of southern California; 3) that VNDN is part of the Pacific plate; and 4) that offshore of California, deformation rates are negligible.

But, these global VLBI analyses that agree well with the NUVEL-1 plate model [Argus and Gordon, in prep; Ward, in press] rely on the assumption that the VLBI station at VNDN is on the Pacific plate and that little or no deformation is occurring in the offshore of California, outboard of VNDN. In contrast, the geology of the offshore of southern California suggest active deformation during the last 2-4 Ma, and the triangulation-GPS strain-rate estimates suggest that deformation is occurring at a significant rate (Chapters 3 and 4). If the onshore and offshore geodetic deformation rates are added, then the geodetically determined velocity distribution across southern California exceeds the relative plate motion velocity predicted by the NUVEL-1 model.

5.4 Velocity path approach:

The distribution of strain across the Pacific-North American plate boundary can be evaluated by constructing velocity paths along which the known deformation rates are summed. Paths that start on the North American plate and end on the Pacific plate should sum to the relative plate velocity. This is true if all of the deformation is accurately accounted for along the path, the path actually begins and ends on these plates, and the plate model is applicable.

The velocity path approach has been employed by several investigators [Bird and Rosenstock, 1984; Minster and Jordan, 1984; Weldon and Humphreys, 1986; Minster and Jordan, 1987; Sauber, 1989; Humphreys and Weldon, in prep] to evaluate the Pacific-North American plate boundary strain distribution. Minster and Jordan [1984], Bird and Rosenstock [1984], and Weldon and Humphreys [1986] used existing geological data to estimate the misfit between the geological deformation observed onshore and the relative Pacific-North American motion predicted by RM-2. Similarly, Minster and Jordan [1987] and Sauber [1989] determined the discrepancy from the RM-2 and NUVEL-1 models, respectively, using ground based and space based geodetic data.

Both the geological and geodetic studies recognized four tectonic regions which their velocity paths must contain. Stable North America extends from the east coast of the United States to the Basin and Ranges. There, crustal extension of the non-rigid continental crust is occurring at significant rates through normal faulting from Arizona northward and from the Colorado Plateau west to the Sierra Nevada. The extension rate across the Basin and Ranges has been estimated to be 10.1 ± 0.7 at $\mathrm{N} 63 \mathrm{~W} \pm 5$, geologic, and 9.7 ± 2 at $\mathrm{N} 56 \mathrm{~W} \pm 10$, space-based geodetic [Minster and Jordan, 1987]. Extension across the southern Basin and Ranges between the Rio Grande Rift and San Andreas fault in southern California is considered to be 1-2 orders of magnitude less active than the northern Basin and Ranges, implying a negligible rate of 0.1-1.0 mm/yr [Humphreys and Weldon, in prep.]. West of the Basin and Ranges, the San Andreas fault is the primary plate boundary structure accommodating most of the relative plate motion through right lateral strike-slip faulting at a geologic and geodetic rate of $34 \pm 3 \mathrm{~mm} / \mathrm{yr}$ directed N41W ± 2 in central California [Minster and Jordan, 1984]. In southern California, south of the Transverse Ranges, right lateral strike-slip faulting is distributed on the San Andreas, San Jacinto, and Elsinore faults. The geologic velocity across each of these faults has been estimated to be $30 \pm 7 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 48 \mathrm{~W} \pm 5,12 \pm 4 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 53 \mathrm{~W} \pm 7$, and $5 \pm 3 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 49 \mathrm{~W} \pm 14$, respectively, [Humphreys and Weldon, in
prep]. Strain estimates from geodetic networks that cross these faults [Savage, 1983; Thatcher, 1979b] are consistent with these rates.

Finally, west of these faults active deformation in the offshore region along several faults has been recognized, but the strain rates across these structures are poorly constrained or unconstrained by geologic data. In central California, on the San Gregorio-Hosgri system, Hall [1975] has proposed 80-95 km of right lateral strike-slip displacement since the Pliocene, implying an average rate of $16-19 \mathrm{~mm} / \mathrm{yr}$ directed ~N40W. Near San Simeon where part of this fault system comes ashore, late Quaternary slip rates have been estimated to be from $8-10 \mathrm{~mm} / \mathrm{yr}$ [Weber, 1979] to $4+6 /-2 \mathrm{~mm} / \mathrm{yr}$ [Hanson et al., 1987] on the San Simeon strand of the Hosgri system with an orientation of $\mathrm{N} 40 \mathrm{~W} \pm 15$. Pleistocene slip rates may be as high as $19 \mathrm{~mm} / \mathrm{yr}$ [Weber, 1979]. In southern California, several active right lateral strike slip faults have been recognized in the continental borderland (e.g., Newport-Inglewood, Coronado Bank, and San Clemente Island faults) [Legg, 1985], however, no slip rates have been determined for these fault zones.

5.5 Offshore Geodetic Velocity path:

I have constructed a velocity path from stable North America to the Pacific plate by using VLBI station velocities of Sauber [1989] to connect the offshore networks to stable North America. (Other analyses such as Clark et al., [1987], Kroger et al., [1987], and Ward [1988] have results that are, within error, identical to those of Sauber [1989] for velocity VNDN and MONP with respect to North America). The networks that are connected to the mainland with determinable strain-rate estimates are limited to the Santa Barbara Channel and Northern Borderland regions. Three networks with different strain rates cross the channel. Two of these networks, the WSBC and ESBC, are "pinned" to the mainland near the VLBI stations VNDN and SANP, respectively, which can be used to connect the deformation path from North America out to San Nicolas Island through
the Santa Barbara Channel and Northern Borderland networks. The strain estimates for the Northern Borderland suggest $0 \pm 4 \mathrm{~mm} / \mathrm{yr}$ of shortening across this network. Triangulation-GPS based strain-rate estimates in the southern Borderland are not considered reliable enough to connect a similar VLBI-triangulation-GPS path from MONP through the borderland to San Nicolas Island.

Both SANP and VNDN lie roughly along strike of an active zone of north-south crustal convergence in the western Transverse Ranges. SANP sits within this zone in the Ventura Basin and VNDN sits north of it in the Santa Maria Basin. Across this zone 10$15 \mathrm{~mm} / \mathrm{yr}$ of crustal convergence has occurred during the last 2-4 Ma [Davis and Namson, written com., 1989] and as much as $20 \mathrm{~mm} / \mathrm{yr}$ has occurred within the Ventura Basin [Yeats, 1983], with most of this convergence being interpreted to have occurred on structures that straddle the SANP VLBI site.

Sixty-three VLBI observations have been performed at VNDN over a 4 year period between 1983 and 1987. Baseline evolution between VNDN and the other VLBI stations observed [Ma et al., 1989] lie along well defined trends, indicating consistent and constant relative motions. On the other hand, only 4 experiments include SANP with observations between 1983 and 1987, and with the second experiment containing a large $(\sim 4 \mathrm{~cm})$ outlier from the baseline evolution trend of the MOJAVE12 - SANP baseline. The large 2-sigma uncertainties on the SANP velocity suggest that the velocity of SANP is poorly determined and within error of the VNDN VLBI velocity.

Because of this, the limited set of VLBI observations at SANP, and the uncertain relationship of the SANP VLBI site to the active tectonics of the area, the mainland velocity path is chosen to end at VNDN. In doing so, the velocity path from North America includes Basin and Range extension, shear along the San Andreas fault, and Transverse range deformation north of VNDN, ending at the western part of the Santa Barbara Channel. There are four different networks solutions with which to cross the channel: SBC, WSBC, CSBC, and ESBC. The WSBC network would make the most
sense, since this network contains stations in the area of VNDN. The velocity path then passes from stable North America, through VNDN, the western Santa Barbara Channel (WSBC), and the Northern Borderland (NBL) to San Nicolas island (Fig. 5-2). Figure 5-3 shows the velocity path plotted with the RM-2 and NUVEL-1 velocity models for central California Pacific-North American relative plate motion. Error ellipses are cumulative 1 -sigma errors. This velocity path yields an end path velocity of 59 ± 8 $\mathrm{mm} / \mathrm{yr}$ at $\mathrm{N} 37 \mathrm{~W} \pm 7$ which exceeds that predicted by NUVEL-1 by 23% and is coincidentally within error of the RM-2 velocity (Table 5-1).

5.6 Other velocity paths:

Other geodetically derived velocity paths can be estimated for the relative motion between these plates using results from VLBI and SLR solutions. The previously mentioned VLBI analyses are based on regional studies of VLBI baseline evolutions for stations in North America. VLBI analyses [e.g., Ma et al. 1989] and SLR analyses [e.g., Smith et al., 1989a] for stations within the plate interiors and along the plate boundaries can be used to estimate deformation across these boundary zones.

The SLR global solutions can be used to infer a velocity path from North America to Hawaii. As before, VLBI solutions are used to get from North America to the coast at Monument Peak, MONP. SLR velocities are then used to get from the coast to Hawaii, crossing the southern Borderland. SLR velocities are chosen to estimate the motion across this part of the path instead of VLBI, because there are no VLBI observations from MONP to stations on the Pacific plate, but there are SLR observations.

Smith et al. [1989b] and Robbins et al. [1989] present station geodesic velocities for several SLR stations on the North American and Pacific plates with respect to the absolute motion model AM0-2 of Minster and Jordan [1978]. The SLR geodesic velocities are with respect to stations Greenbelt, in Maryland, and Hawaii. Since Greenbelt and Hawaii are in the interiors of the North American and Pacific plates,
respectively, they are not affected by plate boundary deformation. Velocities relative to them are equivalent to velocities relative to the North American (NOAM) and Pacific (PAC) plates, respectively.

In the SL7.1 solution, the station velocities of Mazatlan, Mexico, (MAZ) which was assumed to be on the NOAM plate, and Monument Peak (MONP), which was assumed to be on the PAC plate should not be moving with respect to the NOAM (i.e., Greenbelt) and PAC (i.e., Hawaii) plates, respectively. However, there is some residual motion between these two stations and the NOAM and PAC plates. MAZ moves at 7 ± 3 $\mathrm{mm} / \mathrm{yr}$ directed $\mathrm{N} 40 \mathrm{~W} \pm 16$ with respect to NOAM, and MONP moves at $15 \pm 2 \mathrm{~mm} / \mathrm{yr}$ directed $\mathrm{N} 23 \mathrm{~W} \pm 10$. These deviations suggest non-rigid plate behavior between Greenbelt and Mazatlan and between Hawaii and Monument Peak.

By calling the former deviation continental deformation between Mazatlan and Greenbelt and adding it to the NUVEL-1 velocity at the mouth of the Gulf of California (23N 108W), the relative Pacific-North American velocity that includes the SLR derived deformation across North America is $57 \pm 3 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 52 \mathrm{~W} \pm 3$. Similarly, by adding the SLR discrepancy at Monument Peak (MONP) to the VLBI velocity for MONP with respect to North America, the end velocity of $54 \pm 7 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 39 \mathrm{~W} \pm 6$ is the PacificNorth American geodetic velocity at Monument Peak that includes deformation between Monument Peak and Hawaii. Both of these velocities exceed the magnitudes of their respective NUVEL-1 horizontal velocities by about 10%, but in the same direction as predicted by NUVEL-1 estimate. This is in good agreement with the previously determined VLBI-triangulation-GPS estimate for Pacific-North American relative plate motion in southern California at San Nicolas Island, which exceeds the NUVEL-1 estimate by about 20%.

VLBI has been used to estimate the motion between these plates by constructing a relative motion Euler pole from VLBI baseline evolution transverse and length rates for baselines that span the plate boundary [Argus and Gordon, in prep]. Argus and Gordon
[in prep] used baselines from two stations on the North American plate, one at Fairbanks, Alaska, and the other at Fort Davis, Texas, and three stations on the Pacific plate, at Hawaii, Kwajalein in the western Pacific, and Vandenberg.

The time evolution of a VLBI baseline from station 1 to station 2 is defined in a length, L, transverse, T, and vertical, V, coordinate system, where

$$
\begin{align*}
& \mathbf{L}=\mathbf{X}_{2}-\mathbf{X}_{1} \tag{5-1}\\
& \mathbf{T}=\mathbf{L} \times \mathbf{X}_{2} \tag{5-2}\\
& \mathbf{V}=\mathbf{T} \times \mathbf{L} \tag{5-3}
\end{align*}
$$

and \mathbf{X}_{1} and \mathbf{X}_{2} are the geocentric vectors to the two stations.
Assuming that the two stations are on separate plates, the station velocities in the direction of the length and transverse components should be a measure of the relative plate motion. Argus and Gordon [in press] calculated a rotation pole, ω, describing the Pacific-North American relative motion. In the calculation, ω is related to \dot{v}_{i}, the component of the velocity in the direction $\widehat{\mathbf{v}_{\mathrm{i}}}$ (length or transverse) and the station position, \mathbf{X}_{2}, by

$$
\begin{equation*}
\dot{v}_{\mathrm{i}}=\left[\left(\omega \times \mathbf{X}_{2}\right), \widehat{\mathrm{v}_{\mathrm{i}}}\right] \tag{5-4}
\end{equation*}
$$

This analysis assumed that there is no deformation occurring in the offshore region of California (i.e., Vandenberg is assumed to be on the Pacific plate). However, the triangulation-GPS strain rates seem to suggests significant rates of deformation VLBI observations from VNDN to Hawaii and Kwajalein, on the Pacific Plate, indicate relative
motion between VNDN and these stations. The error in their analysis could allow for $5 \pm$ $7 \mathrm{~mm} / \mathrm{yr}$ of motion along the plate boundary [Argus and Gordon, in prep].

5.7 Discussion:

Previous path integral formulations across the Pacific-North American plate boundary have relied upon unknown deformation rates in the offshore of southern and central California and have been constructed to close on an assumed relative plate-motion vector, resulting in the so called San Andreas discrepancy vector. This discrepancy vector is then distributed as deformation along tectonic boundaries. Some of these previous models recognized offshore faulting as a possible source of the discrepancy [Bird and Rosenstock, 1984; Minster and Jordan, 1984; Weldon and Humphreys, 1986] while others have explicitly or implicitly rejected this possibility [Argus and Gordon, in prep; DeMets et al., 1987; Ward, 1988].

The mean of the VLBI-triangulation-GPS and SLR-VLBI velocity paths indicate active deformation in the offshore and gives an estimate of the relative Pacific-North American motion of $56 \pm 4 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 38 \mathrm{~W} \pm 4$. Slip rates on the offshore faults can be estimated as the difference between this rate and the onshore VLBI velocity. For the faults outboard of VNDN, such as along the San Gregorio-Hosgri system, this would amount to $13 \mathrm{~mm} / \mathrm{yr}$ of motion directed N 23 W . If this is projected onto the strike of this fault zone, $\mathrm{N} 40 \mathrm{~W} \pm 15$, it would amount to $12 \mathrm{~mm} / \mathrm{yr}$ of strike-slip motion with $4 \mathrm{~mm} / \mathrm{yr}$ of convergent motion. The strike-slip rate agrees within error with the late Quaternary estimates of the slip rate on the San Simeon strand of the Hosgri system of 4-13 mm/yr [Hall, 1981; Hanson et al., 1987].

The deformation rate in the Continental Borderland between Monument Peak and San Nicolas Island would be $17 \mathrm{~mm} / \mathrm{yr}$ at N22W. This segment of the path crosses several active right lateral strike slip fault zones [Legg, 1985] for which good fault orientation information exists, but no reliable rate information is available. Humphreys
and Weldon [in prep] estimate the velocity across this part of southern California from the Elsinore fault, just east of Monument Peak to the San Clemente Island fault zone, to be $15 \pm 13 \mathrm{~mm} / \mathrm{yr}$ at $\mathrm{N} 23 \mathrm{~W}+9 /-25$, values that agree with the geodetic estimate. If the geodetic velocity is projected onto the mean strike of these faults, N37W. This implies $16 \mathrm{~mm} / \mathrm{yr}$ of strike slip motion and $4 \mathrm{~mm} / \mathrm{yr}$ of convergent motion.

The difference between the velocity paths presented here for southern California and the Gulf of California, and the NUVEL-1 global plate model velocity suggests that the 2-4 Ma average velocity of NUVEL-1 may underestimate the magnitude of the relative motion between the Pacific and North American plates as derived from the 10-110 year average of the geodetic model. The geodetic rate coincidentally agrees well with the RM-2 model rate. This agreement with the RM-2 rate is not an indication that the RM-2 model is preferable, but an indication that the NUVEL-1 model underestimates the geodetic rate of relative motion between the Pacific and North American plates by an amount equivalent to the difference between the RM-2 and NUVEL-1 rotation rates, $\sim 15 \%$.

5.8 Summary:

The offshore deformation vector implies relatively high rates of motion on the offshore fault systems of $\sim 12-16 \mathrm{~mm} / \mathrm{yr}$. The combination of this estimates from geodetic data with VLBI and SLR velocities from stations on the mainland of southern California and Hawaii suggest that the integrated geodetic velocity from the North American plate to the Pacific plate exceeds the NUVEL-1 velocity by $8 \mathrm{~mm} / \mathrm{yr}$. A similar discrepancy is also present at mouth of the Gulf of California when the NUVEL-1 Pacific-North American relative velocity there is added to the geodetic SLR velocity of Mazatlan. These differences between the geodetic velocity and the NUVEL-1 plate model seem to suggest that the global plate model under estimates the geodetic rate of relative motion between the Pacific and North American plates by $\sim 15 \%$.

Figure 5-1. Linear velocity vectors for Pacific-North American relative plate motion at $36^{\circ} \mathrm{N} 120.6^{\circ} \mathrm{W}$ [after DeMets et al., 1990]. The NUVEL-1 and RM-2 models are shown as the solid and dashed lines, respectively. SAF and B\&R are slip rates for the San Andreas fault and Basin and Range, respectively.The dash-dotted lines are the discrepancy vectors for Pacific-North American relative plate motion The RM-2 discrepancy is $14 \mathrm{~mm} / \mathrm{yr}$ directed N08W and the NUVEL-1 discrepancy is $8 \mathrm{~mm} / \mathrm{yr}$ directed N18E.

Figure 5-2. Velocity paths from stable North America with VLBI to the coastline at VNDN, across the Santa Barbara Channel through the WSBC network and out to San Nicolas Island (SNI) through the NBL network. Also shown is another path from North America to SNI through MONP VLBI to the Pacific Plate with SLR.

Figure 5-3. Velocity path from stable North America to the California Continental borderland using offshore strain rate estimates from Chapter 4. Also plotted is the VLBISLR Pacific-North American relative motion vector at MONP (see text for discussion).

Table 5-1

Path	Velocity	Azimuth	σ_{a}	σ_{b}	ζ_{b}
NOAM-PACVNDN-SNI	58.6	-37.0	8.1	7.1	26.0
NOAM-PACMONP	54.1	-38.8	7.1	6.5	33.9
NOAM-PAC			4.5	3.8	16.2
NOAM-PACMAZ	56.4	-37.9	2.6	2.0	23.0

Table 5-1. Geodetic velocities (in $\mathrm{mm} / \mathrm{yr}$) for Pacific-North American motion in southern California. NOAM- North American Plate, PAC- Pacific plate, VNDN- Vandenberg, SNI- San Nicolas Island, MONP- Monument Peak, MAZ- Mazatlan, Mexico. σ_{a} and σ_{b}, are the lengths of the semi-major and semi-minor axis of the error ellipse and ζ_{b} is the azimuth of the semi-minor axis.

References

Agnew, D. C., Bock, Y., Jordan, T. H., King, R. W., Dixon, T. H., Hager, B. H., Jackson, D. D., Prescott, W. H., Stowell, J. L., Schutz, B. E., and Strange, W. E., 1988, GPS measurements in central and southern California: EOS Transactions of the American Geophysical Union, v. 68, p. 282.

Argus, D. F., and Gordon, R. G., 1990, Comparison of Pacific-North America plate motion determined from Very Long Baseline Interferometry with that determined from magnetic anomalies, transform faults, and earthquake slip vectors: Journal of Geophysical Research, in press.

Atwater, T., 1970, Implications of plate tectonics for the Cenozoic tectonic evolution of western North America: Geological Society of America, v. 81, pp. 3513-3536.

Beckmann, A., Larisch, H., and Schuster, O., 1988, Determination of azimuths from GPS measurements and comparison with common methods, in E. Groten and R. Strauss, GPS-Techniques Applied to Geodesy and Surveying: Heidelberg, Springer-Verlag, 459-465 pp.

Bevington, P. R., 1969, Data Reduction and Error Analysis for the Physical Sciences: New York, MacGraw-Hill, 336 pp.

Bibby, H. M., 1982, Unbiased estimate of strain from triangulation data using simultaneous reduction: Tectonophysics, v. 82, pp. 161-174.

Bird, P., and Rosenstock, R. W., 1984, Kinematics of present crust and mantle flow in southern California: Geological Society of America Bulletin, v. 95, pp. 946-957.

Blewitt, G., 1989, Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km : Journal of Geophysical Research, no. 94, pp. 10187-10203.

Blewitt, G., Melbourne, W. G., Bertiger, W. I., Dixon, T. H., Kroger, pp. M., Lichten, S. M., Meehan, T. K., Neilan, R. E., Skrumeda, L. L., Thornton, C. L., Wu, S. C., and Young, L. E., 1988, GPS geodesy with centimeter accuracy, in E. Groten and R. Strauss, GPS-Techniques Applied to Geodesy and Surveying: Heidelberg, Springer-Verlag, 30-40 pp.

Bomford, G., 1980, Geodesy: Oxford University Press, 855 pp.

Bowie, W., 1928, Comparison of old and new triangulation in California: U. S. Coast and Geodetic Survey Special Publication 151, pp. 50.

Buchanan-Banks, J. M., Castle, R. O., and Ziony, J. I., 1975, Elevation changes in the central Transverse Ranges near Ventura, California: Tectonophysics, v. 29, pp. 113-125.

Chase, C. G., 1978, Plate kinematics: The Americas, East Africa, and the rest of the world: Earth and Planetary Science Letters, v. 37, pp. 355-368.

Chrisrodoulidis, D. C., Smith, D. E., Kolenkiewicz, R., Klosko, S. M., Torrence, M. H., and Dunn, pp. J., 1985, Observing tectonic plate motions and deformations from satellite laser ranging: Journal of Geophysical Research, v. 90, pp. 92499263.

Clark, T. A., Gordon, D., Himwich, W. E., Ma, C., Mallama, A., and Ryan, J. W., 1987, Determination of relative site motions in the western United States using Mark II very long baseline radio interferometry.: Journal of Geophysics Research, v. 92, pp. 12,741-12,750.

Corbett, E. J., 1984, Seismicity and crustal structure studies of southern California: Tectonic implications from improved earthquake locations: California Institute of Technology, Ph. D. thesis.

Crouch, J. K., Bachman, S. B., and Shay, J. T., 1984, Post-Miocene tectonics along the central California coast, in J. K. Crouch and S. B. Bachman, Tectonics and Sedimentation along the California Margin: Pacific Section S. E. pp. M., 37-54 pp.

Crowell, J. C., 1981, An outline of the tectonic history of southeastern California, in W. G. Ernst, The Geotectonic development of California: N.J., Prentice-Hall, 583600 pp .

Davis, J. L., Prescott, W. H., Svarc, J. L., and Wendt, K. J., 1989a, Assessment of the Global Positioning System Measurement for Studies of Crustal Deformation: Journal of Geophysical Research, v. 94, pp. 13,635-13,650.

Davis, T. L., Namson, J., and Yerkes, R. F., 1989b, A cross section of the Los Angeles area: Seismically active fold and thrust belt, the 1987 Whitter Narrows earthquake, and earthquake hazard: Journal of Geophysical Research, v. 94, no. B7, pp. 9644-9664.

DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S., 1990, Current plate motions: Geophysical Journal International, v. in press,

DeMets, C., Stein, S., and Argus, D. F., 1987, A revised estimate of Pacific-North America motion and implications for western North America plate boundary zone tectonics.: Geophysics Research Letter, v. 14, pp. 911-914.

Dibblee, T. W., 1982a, Geology of the Channel Islands, southern California, in D. L. Fife and J. A. Minch, Geology and Mineral Wealth of the California Transverse Ranges: Santa Ana, Calif., South Coast Geological Society, 27-39 pp.

Dibblee, T. W., 1982b, Geology of the Santa Monica Mountains and Simi Hills, southern California, in D. L. Fife and J. A. Minch, Geology and Mineral Wealth of the California Transverse Ranges: Santa Ana, Calif., South Coast Geological Society, 94-130 pp.

Dibblee, T. W., 1982c, Geology of the Santa Ynez-Topatopa mountains, southern California, in D. L. Fife and J. A. Minch, Geology and Mineral Wealth of the California Transverse Ranges: Santa Ana, Calif., South Coast Geological Society, 44-56 pp.

Dibblee, T. W., 1982d, Regional geology of the Transverse Ranges province of southern California, in D. L. Fife and J. A. Minch, Geology and Mineral Wealth of the California Transverse Ranges: Santa Ana, Calif., South Coast Geological Society, 7-25 pp.

Dong, D., and Bock, Y., 1989, GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California: Journal of Geophysical Research, v. 94, pp. 3949-3966.

Drew, A. R., and Snay, R. A., 1988, The Crustal Dynamics Adjustment Program (DYNAP), NGS, Rockville, Md.

Drew, A. R., and Snay, R. A., 1989, DYNAP: Software for estimating crustal deformation from geodetic data: Tectonophysics, v. 162, pp. 331-343.

Eberhart-Phillips, D., M. Lisowski, and M. D. Zoback. (1990). "Crustal strain near the Big Bend of the San Andreas fault: Analysis of the Los Padres-Tehachapi trilateration network, California." J. Geophys. Res. v. 95(B2): 1139-1154.

Feigl, K., King, R. W., and Jordan, T. H., in press, Geodetic measurement of tectonic deformation in the Santa Maria fold and thrust belt, California: Journal of Geophysical Research, v 95, pp. 2679-2700.

Frank, F. C., 1966, Deduction of strains from survey data: Bulletin of the Seismological Society of America, v. 56, pp. 35-42.

Gergen, J. G., 1975, The new adjustment of the North American Datum: The observables: ACSM Bull., v. 51, no. Nov. 9, pp. 9.

Gossett, F. R., 1950, Manual of Geodetic Triangulation: v. 247, pp. 344.
Greene, H. G., and Kennedy, M. P., 1986, Map of the Geology of the mid-southern California Continental Margin: California Division of Mines and Geology,

Hall, C. A., Jr., 1975, San Simeon-Hosgri fault system, coastal California: economic and environmental implications: Science, v. 190, pp. 1291-1294.

Hall, C. A., Jr., 1981, San Luis Obispo transform fault and middle Miocene rotation of the western Transverse Ranges, California: Journal of Geophysical Research, v. 86, pp. 1015-1031.

Hanson, K. L., Lettis, W. R., Mezger, E. L., and Weber, G. E., 1987, Late Pleistocene deformation along the San Simeon fault zone near San Simeon, California: Geol. Soc. Amer. Cordillerean Sec. 83rd Ann Meet., Abst. with Prog., pp. 386.

Hauksson, E., and Saldivar, G. V., 1989, Seismicity and active compressional tectonics in the Santa Monica Bay, southern California: Journal of Geophysical Research, v. 94, no. B7, pp. 9591-9606.

Henyey, T. L., and Teng, T.-L., 1985, Seismic studies of the Dos Cuadras and Beta offshore oil fields, southern California, Univ. of. So. Cal., Univ. of. So. Cal. Geophy. Lab. Tech. Report, 85-2

Hornafius, J. S., Luyendyk, B. P., Terres, R. R., and Kamerling, M. J., 1986, Timing and extent of Neogene tectonic rotation in the western Transverse Ranges, California, Geol. Soc. Am. Bull, v. 97, pp. 1476-1487.

Humphreys, E., and Weldon, R., 1989, Kinematic constraints on the rifting of Baja California.: AAPG Memoir on the Gulf of California., in press,

Humphreys, G., and Weldon, R. J., in prep, Deformation across southern California: A local estimate of Pacific-North American relative plate motion.

Junger, A., 1976, Tectonics of the southern California borderland, in D. G. Howell, Aspects of the geologic history of the California Continental Borderland: American Association of Petroleum Geologists, Pacific Section, 486-498 pp.

Junger, A., 1979, Maps and seismic profiles showing the Northern Channel Islands Platform, Continental Borderland, California, U. S. Geol. Surv. Misc. Field. Stud. Map, MFS-991

Junger, A., and Wagner, H. C., 1977, Geology of the Santa Monica and San Pedro basins, California Continental Borderland, U. S. Geol. Surv. Misc. Field. Stud. Map, MF-850

King, R., Masters, W. E. G., Rizos, C., Stolz, A., and Collins, J., 1985, Surveying with GPS: Kensington, Australia, School of Surveying, University of New South Wales.

Kolenskiewcz, R., C., M., Torrence, M. H., and Dunn, pp. J., 1989, A comparison of SLR and VLBI coordinates and geodesic rates: v. 70, no. 43, pp. 1052.

Kroger, P. M., Lyzenga, G. A., Wallace, K. S., and Davidson, J. M., 1987, Tectonic motion in the western United States inferred from Very Long Baseline Interferometry measurements, 1980-1986: Journal of Geophysical Research, v. 92, no. B13, pp. 14151-14163.

Lajoie, K. R., Kern, J. pp., Wehmiller, J. F., Kennedy, G. L., Mathieson, S. A., Sarna-Wojcicki, A. M., Yerkes, R. F., and McCrory, pp. F., 1979, Quaternary marine shorelines and crustal deformation, San Diego to Santa Barbara, California, in pp. L. Abbott, Geological Excursions in the Southern California Area: Boulder, Colo., Geological Society of America, 3-15 pp.

Larsen, S., Agnew, D. C., and Hager, B. H., 1988, Strain accumulation in the Santa Barbara channel: 1971-1987: presented at the AGU Chapman Conference on GPS Positioning, Ft. Lauderdale, Florida, September 1988.

Larson, K. M., 1990, Precision, accuracy, and tectonics from the Global Positioning System: University of California at San Diego, Ph. D. thesis.

Legg, M., 1985, Geologic structure and tectonics of the inner Continental Borderland offshore northern Baja California, Mexico: University of California at Santa Barbara, Ph. D. thesis.

Legg, M., Luyendyk, B. pp., Mammerickx, J., and de Moustier, C., 1989, Sea Beam survey of an active strike-slip fault: The San Clemente fault in the California Continental Borderland: Journal of Geophysical Research, v. 94, no. B2, pp. 1727-1744.

Lisowski, M., and Prescott, W. H., 1981, Short-range distance measurements along the San Andres fault in central California, 1975 to 1979.: Bulletin of the Seismological Society of America, v. 71, pp. 607-1624.

Lorenzetti, E., and Tullis, T. E., 1989, Geodetic predictions of a strike-slip fault model: Implications for intermediate- and short-term earthquake prediction: Journal of Geophysical Research, v. 94, no. B9, pp. 12343-12361.

Luyendyk, B. P., Hajic, E. J., Crippen, R. E., and Simonett, D. S., 1982, Side-scan sonar and high-resolution reflection maps of the Santa Barbara Channel seafloor, University of California, Santa Barbara, California Sea Grant College Program, T-CSGCP-006.

Ma, C., Ryan, J. W., and Caprette, D., 1989, Crustal Dynamics Project data analysis 1988: VLBI geodetic results 1979-87.: NASA Technical Memorandum, TM 100723.

Mader, G. L., 1986, GPS22: GPS Observable Processing Software, NGS, Rockville, Md.

Malys, S., and Jensen, P. A., 1989, Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment: EOS Transactions of the American Geophysical Union, v. 70, no. 43, pp. 1053.

Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory: San Diego, Harcourt Brace Jovanovich, 268 pp.

Milbert, D. G., and Kass, W. G., 1987, ADJUST: The horizontal observation adjustment program, National Oceanic and Atmospheric Administration, Technical Memorandum, NOS NGS-47.

Minster, J. B., and Jordan, T. H., 1984, Vector constraints on Quaternary deformation of the western United States east and west of the San Andreas Fault, in J. K. Crouch and S. B. Bachman, Tectonics and Sedimentation along the California Margin: S. E. pp. M, Pacific Section, 1-16 pp.

Minster, J. B., and Jordan, T. H., 1987, Vector constraints on western U,S. deformation from space geodesy, neotectonics and plate motions: Journal of Geophysics Research, v. 92, pp. 4798-4804.

Minster, J. B., and T.H., J., 1978, Present-day plate motions: Journal of Geophysics Research, v. 83, pp. 5331-5354.

Morton, D. M., and Yerkes, R. F., 1987, Recent reverse faulting in the Transverse Ranges: U. S. Geological Survey Professional Paper 1339, pp. 1-5.

Mount, V., and Suppe, J., 1987, State of stress near the San Andreas fault: Implications for wrench tectonics: Geology, v. 15, pp. 1143-1146.

Murray, M., and King, R. W., 1988, SV3 coordinates of GPS Receivers, MIT, Internal Memorandum.

Namson, J., 1987, Structural transect through the Ventura basin and the western Transverse Ranges, in T. Davis and J. Namson, Structural Evolution of the western Transverse Ranges: Los Angeles, California, Pacific Section of the Society of Economic Paleontologists and Mineralogists, 29-42 pp.

Namson, J., and Davis, T., 1988, Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation: Geology, v. 16, pp. 675-679.

Namson, J., and Davis, T., 1989a, Reply to Yeats, R. S. and Huftile, G. J. : Comment on "Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation": Geology, pp. 772-773.

Namson, J., and Davis, T., 1989b, Reply to: Weldon, R. J. and Humphreys, G., Comment on "Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation": Geology, pp. 770-771.

NASA, 1988, NASA geodynamics program summary report: 1979-1987, National Aeronautics and Space Administration, NASA Technical Memorandum, TM 4065.

NGS, 1988, Input Formats and Specifications of the National Geodetic Survey Data Base: Rockville, Md., Federal Geodetic Control Committee.

Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space: Bulletin of the Seismological Society of America, v. 75, no. 4, pp. 1135-1154.

Orr, P. C., 1960, Late Pleistocene marine terraces on Santa Rosa island, California: v. 71, no. 7, pp. 1113-1119.

Orr, P. C., 1968, Prehistory of Santa Rosa Island, Santa Barbara County: Santa Barbara Museum of Natural History, 235 pp.

Patterson, R., 1979, Geology of the Santa Cruz Island fault: University of California at Santa Barbara, M. S. thesis.

Prescott, W. H., Davis, J. L., Svarc, J. L., and Wendt, K. J., 1988, Repeated Global Positioning System measurements: Results at scales from 5 to 200 km : EOS Transactions of the American Geophysical Union, v. 69, no. 44, pp. 1150.

Prescott, W. H., King, N. E., and Gu, G., 1984, Preseismic, coseismic, and postseismic deformation associated with the 1984 Morgan Hill, California
earthquake: California Division of Mines and Geology Special Publication 68, v. 68, pp. 137-148.

Press, W. H., Flannery, B. pp., Teukolsky, S. A., and Vetterling, W. T., 1987, Numerical Recipes: The Art of Scientific Computing: Cambridge, Cambridge University Press, 818 pp.

Reid, H. F., 1910, The mechanics of the earthquake, The California Earthquake of April 18, 1906: State Earthquake Investigation Committee Report II, Carnegie Inst. of Washington, pp. 192.

Remondi, B. W., and Hofmann-Wellenhof, B., 1989, GPS broadcast orbits versus precise orbits: a comparison study: GPS Bulletin, v. 2, no. 6, pp. 8-20.

Rocken, C., 1988, The Global Positioning System: A new tool for tectonic studies: University of Colorado, Boulder, Ph. D. thesis.

Rockwell, T. K., Keller, E. A., Clark, M. N., and Johnson, D. L., 1984, Chronology and rates of faulting of Ventura River terraces, California: Geological Society of America Bulletin, v. 95, pp. 1466-1474.

Ryan, J. W., 1987, NASA/Crustal Dynamics result: Station motions from global scale VLBI baselines: EOS Transactions of the American Geophysical Union, v. 68, pp. 284.

Sauber, J., 1989, Geodetic measurement of deformation in California, NASA Technical Memorandum, TM-1000732.

Savage, J. C., 1983, Strain accumulation in the western United States: Annual Review of Earth Planetary Science, v. 11, pp. 11-43.

Savage, J. C., and Burford, R. O., 1973, Geodetic determination of relative motion in central California.: Journal of Geophysical Research, pp. 832-845.

Savage, J. C., Prescott, W. H., and Lisowski, M., 1987, Deformation along the San Andreas fault 1982-1986 as indicated by frequent Geodelite measurements: Journal of Geophysical Research, v. 78, pp. 6001-6007.

Smith, D. E., Douglas, N. B., Williamson, R. G., Torrence, M. H., Robbins, J. W., Klosko, S. M., Dunn, P. J., and Fricke, S. K., 1989a, Global plate motions latest results from LAGEOS laser ranging, ed., presented at the 16th Crustal Dynamics Principal Investigator's Meeting.

Smith, D. E., Kolenskiewcz, R., Dunn, P. J., Torrence, M. H., Klosko, S. M., Robbins, J. W., Williamson, R. G., Pavlis, E. C., Douglas, N. B., and Fricke, S. K., 1989b, Present-day tectonic motions from laser ranging to LAGEOS, ed., presented at the16th Crustal Dynamics Principal Investigator's Meeting.

Snay, R. A., 1986, Horizontal deformation in New York and Connecticut: Examining contradictory results from the geodetic evidence: Journal of Geophysical Research, v. 91, pp. 12695-12702.

Snay, R. A., Cline, M. W., and Timmerman, E. L., 1987, Project REDEAM: models for historical deformation, NOAA Tech. Rep., NOS 125 NGS 42.

Sovers, O. J., and Border, J. S., 1987, Observation Model and Parameter Partials for the JPL Geodetic GPS Modeling Software "GPSOMC", Jet Propulsion Laboratory, JPL 87-21.

Stock, J., and Molnar, P., 1988, Uncertainties and implications of the late Cretaceous and Tertiary position of North America relative to the Farallon, Kula, and Pacific plates: Tectonics, v. 7, no. 6, pp. 1339-1384.

Thatcher, W., 1975, Strain accumulation and release mechanism of the 1906 San Francisco earthquake: Journal of Geophysics Research, v. 80, no. 35, pp. 48624880.

Thatcher, W., 1979a, Horizontal crustal deformation from historic geodetic measurements in southern California: Journal of Geophysics Research, v. 84, no. B5, pp. 2351-2370.

Thatcher, W., 1979b, Systematic inversion of geodetic data in central California: Journal of Geophysics Research, v. 84, pp. 2283-2295.

Thatcher, W., and Lisowski, M., 1987, Long-term seismic potential of the San Andreas fault southeast of San Francisco, California: Journal of Geophysics Research, v. 92, no. B6, pp. 4771-4784.

Vanicek, P., and Krakiwsky, E., 1986, Geodesy: The Concepts: North-Holland, p. 697.
Vedder, J. G., Beyer, L. A., Junger, A., Moore, G. W., Roberts, A. E., Taylor, J. C., and Wagner, H. C., 1974, Preliminary report on the geology of the Continental Borderland of southern California, U. S. Geol. Surv. Misc. Field. Stud. Map, MF-624.

Ward, S. N., 1988, North America-Pacific plate boundary, an elastic-plastic megashear: evidence from very long baseline interferometry: Journal of Geophysical Research, v. 93, pp. 7716-7728.

Ward, S. N., 1989, Pacific-North American plate motions: New results from Very Long Baseline interferometry: EOS Transactions of the American Geophysical Union, v. 70, no. 43, pp. 1052.

Ward, S. N., in press, Pacific North American plate motions: New results from very long baseline interferometry: Journal of Geophysical Research,

Weaver, D. W., 1969, Geology of the northern Channel Islands: Pac Secs. A.A.P.G. and S.E.P.M., p. 199.

Webb, T. H., and Kanamori, H., 1985, Earthquake focal mechanisms in the eastern Transverse Ranges and San Emigdio mountains, southern California, and evidence for a regional decollement: Bulletin of the Seismological Society of America, v. 75, pp. 737-758.

Weber, G. E., 1979, Geologic investigation of the marine terraces of the San Simeon region and Pleistocene activity on the San Simeon fault zone, San Luis Obispo County, California, U. S. G. S., Final Technical Report, Contract No.14-08-0001-18230

Weldon, R., and Humphreys, G., 1986, A kinematic model of southern California: Tectonics, v. 5, pp.33-48.

Weldon, R. J., and Humphreys, G., 1989, Comment on "Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation": Geology, pp. 769-770.

Wells, D., Beck, N., Delikaraolou, D., Kleusberg, A., Krakiwsky, E. J., Lachapelle, G., Langley, R. B., Nakiboglu, M., Schwartz, K., Tranquilla, J. M., and Vanicek, P., 1986, Guide to GPS Positioning: Fredricton, N. B., Canada, Canadian GPS Associates.

Yeats, R. S., 1981, Quaternary flake tectonics of the California Transverse Ranges: Geology, v. 9, pp. 16-20.

Yeats, R. S., 1982, Low-shake faults of the Ventura basin, California: Neotectonics in southern California, 78th Annual Meeting of the Geological Society of America Cordilleran Section, pp. 3-15.

Yeats, R. S., 1983, Large-scale Quaternary detachments in the Ventura basin, southern California: Journal of Geophysical Research, v. 88, no. B1, pp. 569-583.

Yeats, R. S., and Huftile, G. J., 1989, Comment on "Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation": Geology, pp. 770-772.

Yeats, R. S., Huftile, G. J., and Grigsby, F. B., 1988, Oak Ridge fault, Ventura fold belt, and Sisar decollement, Ventura basin, California: Geology, v. 16, pp. 11121116.

Yerkes, R. F., Greene, H. G., Tinsley, J. C., and Lajoie, K. R., 1980, Seismotectonic setting of the Santa Barbara Channel area, southern California, U. S. Geol. Surv. Misc. Field Stud., MF-1169

Yerkes, R. F., and Lee, W. H. K., 1979, Maps showing faults and fault activity and epicenters, focal depths and focal mechanisms for 1970-1975 earthquakes, western Transverse Ranges, U. S. Geol. Surv. Misc. Field Studies Map, MF1032.

Yerkes, R. F., and Lee, W. H. K., 1987, Late Quaternary deformation in the western Transverse Ranges: U. S. Geological Survey Professional Paper 1339, pp. 7182.

Yerkes, R. F., Sarna-Wojcicki, A. M., and Lajoie, K. R., 1987, Geology and Quaternary deformation of the Ventura area: U. S. Geological Survey Professional Paper 1339, pp. 169-178.

Zoback, M. D., Prescott, W. H., and Krueger, S. W., 1985, Evidence for lower crustal ductile strain localization in southern New York: Nature, v. 317, pp. 705-707.

Appendix A

Local ties between GPS stations and Triangulation marks

Several of the triangulation stations were unrecoverable with GPS. The stations had either been destroyed or were unsuitable for GPS observations. This required that the GPS observations be made from eccentric marks and that the triangulation marks be tied into the larger GPS network through a local tie. The eccentric marks were original reference marks, other horizontal control marks, or newly established GPS marks. The local ties were made using GPS, local ground surveys conducted by the author, and/or local ground survey data proided by the NGS in the station descriptions (also known as the USC\&GS/NGS Horizontal Control Data recovery notes, available from the NGS). The azimuths, distances and angles were then adjusted to obtain the best position offsets between the GPS mark and the triangulation station(s). During the adjustment, station elevations are held to their a priori values, unless vertical angle observations are available and the elevations can be solved for. The local geodetic coordinates, \mathbf{g}, were then transformed from the WGS-84 ellipsoid into earth-centered and earth-fixed (ECEF) coordinates, \mathbf{v}, at the latitude, φ, and longitude, λ, of the station using

$$
\mathbf{A} \mathbf{g}=\mathbf{v}\left[\begin{array}{ccc}
-\sin \phi \cos \lambda & -\sin \lambda & \cos \phi \cos \lambda \\
-\sin \phi \sin \lambda & \cos \lambda & \cos \phi \sin \lambda \\
\cos \phi & 0 & \sin \phi
\end{array}\right]\left[\begin{array}{l}
\mathrm{dn} \\
\mathrm{de} \\
\mathrm{du}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{dx} \\
\mathrm{dy} \\
\mathrm{dz}
\end{array}\right]
$$

[Milbert and Kass, 1987]. The ties were treated in the later data adjustment as ECEF vectors with a priori sigmas as calculated from the adjustment of the tie observations. If a limited amount of ground survey data was available, the a priori sigmas of the tie were conservatively assumed to be 0.05 m . In cases with only horizontal observations, the vertical differences between markers are assumed to be zero.

Differences in the orientation of the local surveys with respect to the overall GPS network and its geodetic reference frame are a potential source of error in the positions of the tied bench marks. The orientations in the local geodetic reference frame were calculated from astronomical azimuths in the REDEAM data base and/or from observed and adjusted azimuths in the site descriptions. Laplace corrections were applied to the observed azimuths. Comparisons of observed Laplace azimuths with azimuths derived from GPS coordinates suggest that the GPS reference frame is locally rotated counterclockwise 2.2 ± 3.7 arc seconds from the geodetic reference frame of the Laplace azimuths (Table A-1). This amount of angular difference corresponds to $<.001 \mathrm{~m}$ for tie networks up to 100 m in dimensions.

The data available for the ties varied from site to site. Some sites had many angles, horizontal distances, and azimuths, while others only had one horizontal distance and azimuth. Each tie will be discussed below. The ECEF offsets are reported in units of meters.

A. 1 San Miguel Island:

The triangulation mark New San Miguel 1873 and its reference marks were searched for. Only the reference mark New San Miguel RM2 1934 was found and was used for GPS observations during the MAR88 experiment. This mark is tied to the triangulation station through an observed azimuth, $37^{\circ} 21^{\prime} 57.58^{\prime \prime} \mathrm{S}$, and a taped horizontal distance of 7.3455 m from the NGS recovery note of 1934. The ECEF vector
assuming that both marks are at the same elevation and nominal 0.05 m measurement uncertainties, is :

To - From	X	Y	Z
SMIG-NSMI	$-5.4986(0.0573)$	$-0.5640(0.0011)$	$-4.8377(0.0414)$

A. 2 Santa Cruz Island:

The primary GPS mark on Santa Cruz Island is CENT. This is a USC\&GS mark set in 1923. It is not part of the primary triangulation network, but is easily accessed on the island for GPS observations. The triangulation stations DEVL, SCRW, and SCRE have been tied into the GPS network during the JAN87 and SEP87 campaigns. Two other stations were tied to the GPS network via GPS observations in MAY88. The primary triangulation marks and the GPS marks are listed below:
Designation Name Type of tie Occupation

SCRW
Santa Cruz West RM1 1924
GPS
SEP87

SCW1	Santa Cruz West 1874	Ground	Destroyed
SCW2	Santa Cruz West 2 1951	Ground	(exists, not occupied)
HIGH	High 1951	GPS	MAY88
HIMT	High Mount 1951	GPS	MAY88
DEVL	Devils Peak 1951	GPS	JAN87
SCRE	Santa Cruz East 1898	GPS	SEP87

CENT has been occupied during several campaigns and is confidently tied to the regional GPS network. During the SEP87 campaign, SCRW, Santa Cruz West RM1 1924, was occupied for two days during a large campaign in Central California that also included the occupation of CENT. These data have allowed SCRW to be tied into the GPS network. SCRW is a reference mark set in 1924 with ties to both SCW1 and

SCW2. The tie to each of these stations consisted of one horizontal distance and one local astronomical azimuth. The local ground ties used are reported in the USC\&GS Horizontal Control Data recovery notes of 1861,1934 , and 1956. SCRW is 9.446 m in azimuth $199^{\circ} 23^{\prime} \mathrm{S}$ from SCW1 and 9.296 m in azimuth $199^{\circ} 55^{\prime} 1.5^{\prime \prime}$ from SCW2 The vectors, assuming all the marks are at the elevation of SCRW and nominal 0.05 m north and east measurement uncertainties, are:

To - From	X	Y	Z
SCRW-SCR2	$5.1811(0.0573)$	$2.6700(0.0011)$	$7.2420(0.0414)$
SCRW-SCR1	$5.2072(0.0573)$	$2.7635(0.0011)$	$7.3812(0.0414)$

Stations HIGH and HIMT were tied to the GPS network during a three station GPS campaign in MAY88. These data were analyzed using GIPSY with broadcast orbits. The orientation of the baselines in the GPS reference frame was checked for biases by adjusting 359 direction measurements from 54 triangulation stations on Santa Cruz Island that included HIGH and HIMT. In this adjustment, the azimuth and distance between SCW2, CENT, and DEVL were constrained to their GPS values. The adjusted values for the azimuth between HIGH and HIMT were found to be within 0.1 arc second of the MAY88 GPS tie solutions, suggesting no significant orientation bias in the MAY88 solution.

A. 3 Laguna Niguel:

The triangulation station at Niguel 1884 (NIGL), was destroyed shortly before the JUN86 experiment. Two reference marks, Niguel 1884 A (NIGU), and Niguel 1884 B (NIGB), still exist. NIGU, the primary GPS mark, is tied into the GPS network by many days of observations during several campaigns. NIGB and NIGU were simultaneously occupied for one day in OCT87. The tie between NIGL and NIGU uses
data from the NGS recovery note for 1981. These data include several angles between all three of these stations and one other, 18 LSB69. Mark-to-mark distances were only available between NIGU, NIGB, and 18 LSB69. The tie was acquired using the GPS vector and the local ground tie distances and angles, constraining the station elevations to be their a priori values (Fig. A-1). The ECEF vectors with a posteriori scaled sigmas, assuming all the marks are at the elevation of NIGU, are:

To - From	X	Y	Z
NIGU-NIGL	$377.5454(0.3768)$	$-56.5097(0.0505)$	$189.7310(0.3341)$
NIGB-NIGL	$364.9135(0.3799)$	$-78.2278(0.0524)$	$151.3927(0.3345)$

A. 4 Castro Peak:

Castro Peak has been used for triangulation observations since the late 1800's. Since then, two stations on the peak have been used for triangulation: Castro Peak 1898 (CTRO), and Castro Peak RM3 (CTR3). CTRO is unsuitable for GPS observations and CTR3 has been destroyed. The GPS mark, CATO, is a Los Angeles City survey control mark stamped SOSTICE CYN B2 AUX 1 LAC. This mark is tied to the triangulation stations using local ground survey information from the NGS site recovery notes of 1898, 1923, 1951, 1963, and 1975, and a survey performed by A. Donnellan and myself. The surveys included two azimuths, several taped and EDM horizontal distances. These data were adjusted and the adjusted positions were used to compute ECEF vector offsets from the GPS mark.

To - From	X	Y	Z
CTR1-CATO	$13.7223(0.0108)$	$-15.4697(0.0013)$	$-10.2711(0.0080)$
CTR3-CATO	$-12.1343(0.0108)$	$4.2322(0.0013)$	$-3.1535(0.0080)$
CTRO-CATO	$2.0084(0.0108)$	$-9.1950(0.0013)$	$-10.4798(0.0080)$

CTR4-CATO 20.0525 (0.0108) -7.0117 (0.0013) 5.1881 (0.0080)
CTAZ-CATO $-1135.7302(0.0577) \quad 1554.2145(0.0033) 1204.0544$ (0.04369)

A. 5 Santa Barbara 2 1956:

Poor sky visibility at the triangulation station Santa Barbara 21956 (SBAO), and its reference marks required that GPS observations be made from a temporary GPS set up in a field west of the triangulation station. This temporary station, SBA2, was surveyed to the triangulation stations by N. King and myself using a TOPCON GTS-38 total station. These observations and observations from the NGS recovery notes of 1956, 1959, 1972, and directions in the REDEAM data set from Santa Barbara 21956 to Santa Barbara 21956 RM5 (SBA5), Santa Barbara 21956 RM6 (SBA6), and Santa Barbara 2 AZ MK were used to calculate the north, east, and up offsets from the GPS antenna to the triangulation marks. The adjusted offsets were used to calculate ECEF vectors among the stations. The ECEF interstation vectors including elevation differences between the stations with 1 -sigma a posteriori uncertainties are :

To - From	X	Y	Z
SBAO-SBA2	$45.6240(0.0140)$	$-60.5497(0.0117)$	$-30.5065(0.0249)$
SBA5-SBA2	$31.8990(0.0140)$	$-52.2874(0.0117)$	$-29.5580(0.0249)$
SBA6-SBA2	$54.6334(0.0175)$	$-61.5388(0.0177)$	$-25.2432(0.0350)$

A. 6 San Fernando 1898:

San Fernando 1898 (SAFO) was not recovered and a nearby Los Angeles County survey control marker, Pico L-9C (SAFE), was occupied with GPS. Horizontal angles, mark-to-mark distances, and elevations from the NGS recovery notes of 1952, 1956, 1959, 1963, and 1971, and adjusted azimuths from the Los Angeles County Survey

Control notes for Pico L-9 were used to calculate the north and east offsets between the GPS mark SAFE, and the triangulation marks. The ECEF vectors with a posteriori 1sigma uncertainties are:

To - From	X	Y	Z
SAF3-L_9A	$-13.7781(0.0091)$	$39.7420(0.0022)$	$50.3369(0.0055)$
SAFO-L_9A	$-16.6325(0.0094)$	$31.4151(0.0017)$	$28.4103(0.0064)$
L_92-L_9A	$-4.9359(0.0172)$	$72.9992(0.0040)$	$90.3892(0.0089)$
SAF2-L_9A	$-3.0562(0.0108)$	$9.1229(0.0013)$	$18.4879(0.0080)$
SAFE-L_9A	$-23.6467(0.0076)$	$86.2845(0.0014)$	$84.1930(0.0088)$

A. 7 Laguna 2 1951:

Laguna 21951 (LAG2) is on Pacific Missile Test Center property and is unsuited for GPS observations. Station Mugu Cotar (COTR) on the PMTC was occupied with GPS during the JAN87 experiment. The tie between COTAR and LAG2 is a first order survey adjustment of the PMTC network [Rich Dixon of the PMTC, written com.] in the WGS-84 system. The WGS-84 latitude, longitude and elevations (m) are

COTR	340712.63528	1190914.32436	-34.561
LAG2	340630.76108	1190354.49855	404.657

The PMTC station coordinates were converted into an ECEF vector. First order surveys have a precision of several ppm [Gosset, 1951]. A conservative 10 ppm positional error was assigned to each component of the vector.

To - From X Y
COTR-LAG2 -6632.3524 (0.0830)-4937.4258 (0.0830)-821.8911 (0.0830)

Figure A-1. North-east position scatter of separate solutions based on triangulation from NIGU, NIGB, and NIGL plotted about the best fit position.

Stations	$\eta(\operatorname{arcsec})$	$\alpha_{\text {Laplace }}$		$\alpha_{\text {GPS }}$	$\alpha_{\text {Laplace }}-\alpha_{\text {GPS }}$ Year
CTRO-SCLA	4.7 E	1384754.8	1384757.8	-3.0	1923.83
CHAF-LAG2	7.5 E	3105615.5	3105619.4	-3.9	1970.83
GAVI-SBAO	8.9 E	2383504.8	2383508.5	-3.7	1971.00
HARB-BOUL	4.8 E	3222322.9	3222324.1	-1.2	1878.
LAG2-CHAF	12.6 E	1310508.0	1310517.3	-9.3	1960.17
LAG2-CHAF	12.6 E	1310509.2	1310517.3	-8.1	1970.92
ROAD-SBIS	4.9 E	2405638.0	2405639.5	-1.5	1971.00
SAFO-SCLA	4.6 E	0892828.4	0892830.1	-2.7	1923.75
SBIS-LAG2	2.7 E	1781243.3	1731243.7	-0.4	1971.00
SBAO-CHAF	6.6 E	2875113.2	2875116.1	-2.9	1970.92
SCRE-GAVI	1.7 W	1303120.9	1303117.7	3.2	1924.92
SCRE-GAVI	1.7 W	1303120.6	1303117.7	2.9	1874.17
HARB-WEST	4.8 E	1791737.2	1791733.9	3.3	1908.17

Table A-1. Geodetic azimuths from the south for several stations in the triangulation-GPS network. η is the deflection of the vertical used to calculate the Laplace azimuth from the observed astronomical azimuth from the first station to the second. η is calculated from the difference between the astronomical position and the GPS position at the observing station. Differences are reported in arc seconds. Mean difference is -2.2 ± 3.7 arc seconds.

Observation type	from	to	date	observation	s.e.	source		
HD	1	3	198187	0	0	0.00	0.70	NGS
HD	1	2		303	33	58.80	0.70	NGS
HD	1	4		328	8	48.50	0.70	NGS
HD	2	3	198187	0	0	0.00	0.70	NGS
HD	2	4		17	75	23.20	0.70	NGS
HD	2	1		118	80	37.00	0.70	NGS
HD	3	1	198187	0	0	0.00	0.70	NGS
HD	3	4		4	42	7.70	0.70	NGS
HD	3	2		5	52	6.00	0.70	NGS
SD	1	4	198187		54.8670	3.0	NGS	
SD	2	4	198187		23.1180	3.0	NGS	
SD	2	1	198187	45.7901	3.0	NGS		
ID	1	nigu Niguel_A	33305.232926117434 .908335	233.69				
ID	2	nigb Niguel_B	33305.08414711743	4.912492	233.69			
ID	3	nigl Niguel_1884	33304.493877117440 .307559	233.71				
ID	4	mk18 Mark18 1sb69	333055.07257611743	5.000833	233.69			

Table A-2. Observations used in the determination of the NIGU ground tie. $\mathrm{HD}=$ horizontal direction, $\mathrm{SD}=$ mark-to-mark distance in meters, $\mathrm{ID}=$ station name and a priori latitude, longitude and elevation. Standard errors (s.e.) are in arc seconds (HD) and millimeters (SD). All data are from NGS Horizontal Control site description recovery notes of 1981.

Observation type	from	to	date		servation	s.e.	
HD	401	46	1971427	82	$21 \quad 1.90$	1.20	
HD	401	43		92	$25 \quad 55.90$	1.20	
HD	401	201		182	$25 \quad 19.00$	1.20	
HD	47	406	1963315	0	00.00	1.20	
HD	47	407		2	$25 \quad 27.00$	1.20	
HD	47	43		234	4425.00	1.20	
HD	43	406	1963315	43	$34 \quad 22.20$	1.20	
HD	43	407		66	6518.00	1.20	
HD	43	47		95	$51 \quad 36.40$	1.20	
HD	43	401	1971317	0	00.00	1.20	
HD	43	46		160	353.80	1.20	
SD	46	201			123.1177	20.0	
SD	401	201			23.6340	20.0	
SD	401	43			52.6370	20.0	
SD	401	46			116.4740	20.0	
SD	46	43			65.5170	10.0	
SD	46	47			45.4230	10.0	
SD	43	47			23.2210	10.0	
SD	43	407			45.8010	10.0	
SD	47	407			27.6360	10.0	
GA	201	46	197411	329	934.60	1.50	LACO
GA	47	406	197411	301	$13 \quad 35.50$	1.50	LACO
GA	43	406	197411	304	4457.70	1.50	LACO
ID	43	saf3 3		34194.799976118360 .362230113 .80			
ID	46	19_a		34194.612187118360 .240385108 .78			
ID	47	safo		34194.725005118			360.353275108 .60
ID	201	safe		34194.956141118 34194.967087118			360.483515103 .05
ID	401	19_2					360.391385108 .78
ID	406	azimuth mark		$\begin{array}{lll} 34 & 19 & 4.967087 \\ 34 & 118 \\ 4.166400 & 118 \end{array}$			355.264400108 .78
ID	407	saf2		34194.16640011834194.671462118			360.270015113 .80

Table A-3. Observations used in the determination of the SAFE ground tie. $\mathrm{HD}=$ horizontal direction, $\mathrm{GA}=$ geodetic azimuth, $\mathrm{SD}=$ mark-to-mark distance in meters, $\mathrm{ID}=$ station name and a priori latitude, longitude and elevation. Standard errors (s.e.) are in arc seconds (HD and GA) and millimeters (SD). Data are from NGS Horizontal Control site description recovery notes of 1981. Mark: 19_2 = PICO L-9 aux 2 ecc 1 LAC 1971, saf2 = SAN FERNANDO 1898 RM 2, azimuth mark = azimuth mark of the NGS Horizontal Control site description recovery notes of 1981.

Observation from type	to	date	observation		s.e.	source
HD 4	8	1987101	0	00.00	0.60	CIT
HD 4	1		126	6545.25	0.60	CIT
HD 4	8	1987101	0	$0 \quad 0.00$	0.60	CIT
HD 4	1		126	$65 \quad 51.00$	0.60	CIT
HD 4	8	1987101	0	$0 \quad 0.00$	0.60	CIT
HD 4	2		10	134.00	0.60	CIT
HD 4	1	1987101	0	00.00	0.60	CIT
HD 4	8		233	$30 \quad 15.00$	0.60	CIT
HD 4	2	1987101	0	$0 \quad 0.00$	0.60	CIT
HD 4	8		349	9414.00	0.60	CIT
HD 4	3	1987101	0	$0 \quad 0.00$	0.60	CIT
HD 4	8		243	3253.00	0.60	CIT
HD 1	2	196931	0	00.00	0.60	CIT
HD 1	3		138	$85 \quad 17.00$	0.60	CIT
HD 1	2	196931	0	$0 \quad 0.00$	0.60	CIT
HD 1	3		138	$85 \quad 55.00$	0.60	CIT
HD 4	8	1987101	0	00.00	0.60	CIT
HD 4	3		116	6323.00	0.60	CIT
HD 1	3	196931	0	$0 \quad 0.00$	0.60	CIT
HD 1	2		221	$10 \quad 3.00$	0.60	CIT
VA 4	8	1987101	95	$54 \quad 14.00$	1.00	CIT
$\mathrm{VA} \quad 4$	1	1987101	89	9429.00	3.00	CIT
$\mathrm{VA} \quad 4$	8	1987101	95	$54 \quad 18.00$	1.00	CIT
VA 4	8	1987101	95	5417.00	1.00	CIT
VA 4	1	1987101	89	$94 \quad 18.50$	3.00	CIT
$\mathrm{VA} \quad 4$	8	1987101	95	5420.00	1.00	CIT
VA 4	2	1987101	86	$65 \quad 56.00$	1.00	CIT
$\mathrm{VA} \quad 4$	2	1987101	86	$65 \quad 32.00$	1.00	CIT
$\mathrm{VA} \quad 4$	3	1987101	89	$94 \quad 53.50$	1.00	CIT
VA 4	3	1987101	89	$94 \quad 57.50$	1.00	CIT
VA 4	3	1987101	89	9458.50	1.00	CIT
SD 4	8			73.1650	3.0	CIT
SD 4	1			12.7590	3.0	CIT
SD 4	8			73.1650	3.0	CIT
SD 4	1			12.7600	3.0	CIT
SD 4	8			73.1650	3.0	CIT
SD 4	2			5.5510	3.0	CIT
SD 4	3			22.7840	3.0	CIT
SD 4	2			5.5590	3.0	CIT
SD 4	3			22.7840	3.0	CIT
SD 1	2			16.0170	3.0	CIT
SD 1	3			10.4830	3.0	CIT
SD 1	2			16.0410	3.0	CIT
SD 1	3			10.4900	3.0	CIT
SD 1	2			16.0500	3.0	CIT
SD 1	3			10.4850	3.0	CIT
GA 1	3	1956100	52	2314.20	0.70	NGS
GA 1	3	19561010	52	$23 \quad 52.50$	0.70	NGS
GA 1	2	19561010	273	3354.20	0.70	NGS
GA 1	2	19561010	273	3332.50	0.70	NGS

Obser tyI		to	date	observation	s.e.	source
ID	1	sba		3424	658695	425.924460
ID	2	sba		3424	. 61866	425.987134
ID	3	sba		3424	. 679406	425.891928
ID	4	Ten		3424	648308	425.972818
ID	8	SB		3424	795381	430.195833

Table A-4. Observations used in the determination of the SBA2 ground tie. HD = horizontal direction, $\mathrm{VA}=$ vertical angle, $\mathrm{GA}=$ geodetic azimuth, $\mathrm{SD}=$ mark-to-mark distance in meters, ID = station name and a priori latitude, longitude and elevation. Standard errors (s.e.) are in arc seconds (HD, VA, and GA) and millimeters (SD). Data are from NGS Horizontal Control site description recovery notes of 1981. sba6 = SANTA BARBARA 21956 RM6, sba5 = SANTA BARBARA 21956 RM5, sbao = SANTA BARBARA 21956

Appendix B

The triangulation observations for both of the data sets derived in Chapter 2 are listed in the following tables in the NGS Blue Book format. Figure B-1 describes the Blue-Book format for horizontal observations. Station serial numbers correspond to those listed in Table 2-1. Table B-1 contains all of the horizontal direction observations. Table B-2 contains the subset set of the horizontal directions that has been edited for possible data blunders, as explained in Chapter 2. The trilateration observations are contained in Table B-3. Table B-4 lists the components, and the uncertainties, of the interstation GPS vectors estimated for each experiment day. The SV3 fiducial coordinates are listed in Table B-5.

Figure. B-1. Description of NGS Blue Book format

*22*001	8			019	090130000	0080
*22*001	8			017	121424373	0100
*20*001	9	2	19240930	008	061430880	0060
*22*001	9			019	090130029	0060
*20*001	10	3	19241102	008	061430534	0060
*22*001	10			019	090125727	0060
*22*001	10			017	121424415	0060
*20*001	13	3	19241102	008	061430798	0060
*22*001	13			019	090125936	0060
*22*001	13			017	121424462	0060
*20*029	12	4	19230301	047	000000000	0060
*22*029	12			038	099560896	0060
*22*029	12			050	243355632	0060
*22*029	12			034	286413841	0060
*20*029	13	3	19230302	038	099560860	0060
*22*029	13			050	243355583	0060
*22*029	13			034	286413796	0060
*20*008	1	3	19251113	002	178180366	0060
*22*008	1			025	204575108	0060
*22*008	1			019	226113179	0060
*20*008	15	5	19241105	002	000000000	0060
*22*008	15			025	026394481	0060
*22*008	15			019	047532531	0060
*22*008	15			017	095112722	0060
*22*008	15			001	181415550	0240
*20*008	16	4	19241106	002	000000000	0170
*22*008	16			025	026394355	0060
*22*008	16			019	047532573	0070
*22*008	16			001	181415410	0240
*20*008	17	3	19241107	002	000000000	0060
*22*008	17			017	095112652	0060
*22*008	17			001	181415411	0060
*20*008	18	2	19241119	002	000000000	0060
*22*008	18			001	181415610	0060
*20*008	19	2	19241119	002	000000000	0060
*22*008	19			001	181415590	0060
*20*008	22	5	19241120	002	000000000	0060
*22*008	22			025	026394419	0060
*22*008	22			019	047532556	0060
*22*008	22			017	095112687	0060
*22*008	22			001	181415528	0060
*20*050	3	4	19231105	029	089553295	0060
*22*050	3			038	114592435	0060
*22*050	3			025	257082812	0060
*22*050	3			002	293173764	0060
*20*050	4	4	19231106	029	089553321	0060
*22*050	4			038	114592444	0060
*22*050	4			025	257082822	0060
*22*050	4			002	293173658	0060
*20*017	2	3	19241108	008	000000000	0240
*22*017	2			019	066225650	0240
*22*017	2			001	326295907	0080
*20*017	3	2	19241108	008	000000000	0060
*22*017	3			019	066225855	0120
*20*017	4	3	19241108	008	000000000	0060
*22*017	4			019	066225844	0060
*22*017	4			001	326300064	0060
*20*017	5	3	19241113	008	000000000	0060
*22*017	5			019	066225716	0060
*22*017	5			001	326295930	0060
*20*017	6	3	19241113	008	000000000	0060

*22*017	6			019	066225789	0060
*22*017	6			001	326295965	0060
*20*047	13	3	19231027	038	056024798	0070
*22*047	13			029	109021728	0060
*22*047	13			034	166181619	0060
*20*047	93	3	19231027	038	056024814	0060
*22*047	93			029	109021716	0060
*22*047	93			034	166181645	0060
*20*038	15	2	19231018	029	241020121	0060
*22*038	15			047	268062939	0070
*20*038	16	2	19231019	029	241020202	0060
*22*038	16			047	268062877	0060
*20*038	17	2	19231017	029	000000000	0060
*22*038	17			047	027042761	0060
*20*002	1	3	19251110	019	099003664	0060
*22*002	1			008	175483886	0060
*22*002	1			008	175484095	0060
*20*002	11	3	19241111	050	000000000	0070
*22*002	11			025	041435825	0060
*22*002	11			019	088252864	0060
*20*002	12	3	19241110	050	000000000	0070
*22*002	12			025	041435871	0060
*22*002	12			019	088252862	0060
*20*034	38	4	19231107	047	000000000	0060
*22*034	38			029	049254224	0060
*22*034	38			050	096242823	0060
*22*034	38			025	149061219	0060
*20*034	39	2	19231108	029	049254196	0060
*22*034	39			050	096242782	0060
*20*025	10	3	19241112	034	019471183	0110
*22*025	10			050	044135914	0110
*22*025	10			002	302070109	0090
*20*025	11	3	19241112	034	000000000	0110
*22*025	11			050	024264528	0090
*22*025	11			002	282194861	0080
*20*025	12	5	19241113	034	019471296	0070
*22*025	12			050	044135997	0070
*22*025	12			019	235251861	0060
*22*025	12			008	272161768	0060
*22*025	12			002	302070042	0060
*20*025	13	3	19241114	034	019471232	0070
*22*025	13			008	272161828	0060
*22*025	13			019	235251792	0060
*20*025	14	5	19241114	034	019471247	0070
*22*025	14			050	044135918	0070
*22*025	14			019	235251826	0240
*22*025	14			008	272161798	0240
*22*025	14			002	302070075	0060
*20*019	1	3	19251115	008	017414254	0060
*22*019	1			002	073001458	0060
*22*019	1			025	139370535	0060
*20*019	4	4	19241115	025	000000000	0060
*22*019	4			008	238043744	0060
*22*019	4			002	293230664	0060
*22*019	4			001	220225503	0060
*20*019	5	5	19241115	025	000000000	0060
*22*019	5			017	171453232	0060
*22*019	5			001	220225431	0070
*22*019	5			008	238043759	0080
*22*019	5			002	293230752	0080
*20*019	6	4	19241115	025	000000000	0240

*22*019	6			001	220225482	0060
*22*019	6			008	238043745	0060
*22*019	6			002	293230693	0060
*20*002	29	2	19241119	031	000000000	0070
*22*002	29			008	175484119	0060
*20*002	30	2	19241119	031	000000000	0070
*22*002	30			008	175484050	0060
*20*041	2	003	19401106	022	000000000	0070
*22*041	2			004	313415770	0070
*22*041	2			042	315530881	0070
*20*041	3	002	19401105	022	000000000	0070
*22*041	3			042	315530338	0070
*20*041	4	002	19401105	022	000000000	0070
*22*041	4			042	315530608	0070
*20*022	1	003	19401023	041	249063586	0070
*22*022	1			042	261454646	0070
*22*022	1			004	341425364	0070
*20*042	2	002	19401105	041	000000000	0070
*22*042	2			022	236460391	0070
*20*042	3	004	19401027	004	000000000	0070
*22*042	3			023	039323641	0070
*22*042	3			022	059243073	0070
*22*042	3			041	182382845	0070
*20*004	1	004	19401030	023	210020172	0070
*22*004	1			022	217142359	0070
*22*004	1			042	257525274	0070
*22*004	1			041	258201015	0070
*20*023	1	002	19400319	042	061535450	0070
*22*023	1			004	154303466	0070
*20*023	2	004	19401022	022	000000000	0070
*22*023	2			041	054035738	0070
*22*023	2			042	061535632	0070
*22*023	2			004	154303508	0070
*20*001	2	2	19511202	008	000000000	0060
*22*001	2			026	043574213	0060
*20*041	5	2	19511018	042	000000000	0060
*22*041	5			022	044065606	0060
*20*041	6	4	19511022	004	000000000	0060
*22*041	6			042	002111030	0060
*22*041	6			022	046180399	0060
*22*041	6			024	331314679	0060
*20*041	7	3	19511022	004	000000000	0060
*22*041	7			042	002111004	0060
*22*041	7			024	331314743	0060
*20*041	8	2	19511208	022	000000000	0060
*22*041	8			030	038154570	0060
*20*041	9	2	19511210	022	000000000	0060
*22*041	9			009	086140953	0060
*20*041	10	2	19511210	022	000000000	0060
*22*041	10			009	086140610	0060
*20*041	11	3	19511210	022	000000000	0060
*22*041	11			030	038154853	0060
*22*041	11			009	086140562	0060
*20*041	12	3	19511202	042	000000000	0060
*22*041	12			022	044065341	0060
*22*041	12			030	082224091	0060
*20*041	13	2	19511207	042	000000000	0060
*22*041	13			030	082224423	0060
*20*029	4	2	19521117	034	000000000	0060
*22*029	4			047	073182184	0060
*20*029	5	2	19560604	034	043062255	0060

*22*029	5			038	216205318	0060
*20*029	6	3	19560605	033	000000000	0060
*22*029	6			047	116244263	0060
*22*029	6			038	216205010	0060
*20*029	7	4	19560605	033	000000000	0060
*22*029	7			034	043062020	0060
*22*029	7			047	116244197	0060
*22*029	7			038	216205005	0060
*20*029	8	3	19560607	033	000000000	0060
*22*029	8			034	043062087	0060
*22*029	8			047	116244248	0060
*20*029	9	2	19560607	033	000000000	0060
*22*029	9			034	043062076	0060
*20*029	10	3	19560606	033	000000000	0060
*22*029	10			034	043061929	0060
*22*029	10			047	116244103	0060
*20*028	1	3	19510814	016	059343922	0100
*22*028	1			033	143383504	0060
*22*028	1			034	186464086	0060
*20*028	2	2	19510816	033	000000000	0060
*22*028	2			016	275560346	0060
*20*028	3	2	19510816	033	000000000	0080
*22*028	3			016	275560238	0080
*20*028	4	3	19510820	016	000000000	0060
*22*028	4			033	084035663	0060
*22*028	4			038	300252158	0060
*20*028	5	3	19511023	038	000000000	0060
*22*028	5			021	005392063	0060
*22*028	5			016	059344092	0060
*20*028	6	2	19511023	038	000000000	0120
*22*028	6			029	343053460	0140
*20*028	7	3	19511025	038	000000000	0060
*22*028	7			021	005392033	0060
*22*028	7			004	067115054	0060
*20*028	8	3	19511025	038	000000000	0060
*22*028	8			021	005392052	0060
*22*028	8			004	067114988	0060
*20*028	10	3	19591109	004	000000000	0060
*22*028	10			033	076264301	0060
*22*028	10			029	275535910	0140
*20*028	11	2	19591109	033	013274202	0060
*22*028	11			004	297005791	0060
*20*022	4	2	19511010	038	000000000	0060
*22*022	4			030	068324985	0060
*20*022	5	3	19511010	038	000000000	0060
*22*022	5			030	068325318	0060
*22*022	5			041	177594094	0060
*20*022	6	3	19511013	023	000000000	0060
*22*022	6			038	071065612	0060
*22*022	6			041	249063563	0060
*20*022	7	2	19511013	023	000000000	0060
*22*022	7			038	071065592	0060
*20*022	8	3	19511014	041	000000000	0060
*22*022	8			023	110532176	0060
*22*022	8			038	182001705	0060
*20*022	9	2	19511018	023	000000000	0060
*22*022	9			004	341425324	0060
*20*022	10	3	19511019	004	000000000	0060
*22*022	10			023	018170619	0060
*22*022	10			038	089240148	0060
*20*022	11	3	19511022	042	000000000	0060

*22*022 11			004	079570724	0060
*22*022 11			023	098141340	0060
*20*022 12	3	19511026	023	000000000	0060
*22*022 12			030	139394620	0060
*22*022 12			009	181422904	0060
*20*022 13	3	19511027	023	000000000	0120
*22*022 13			024	323484627	0140
*22*022 13			004	341425340	0120
*20*022 15	3	19511028	024	000000000	0060
*22*022 15			004	017540720	0060
*22*022 15			023	036111190	0060
*20*022 16	3	19511028	024	000000000	0060
*22*022 16			004	017540708	0060
*22*022 16			023	036111304	0060
*20*031 3	3	19510808	034	000000000	0060
*22*031			033	046555101	0060
*22*031			011	131552165	0060
*20*031	2	19510813	034	000000000	0060
*22*031 5			033	046555113	0060
*20*031	2	19510813	034	000000000	0060
*22*031 6			033	046555375	0060
*20*031	2	19511025	034	000000000	0060
*22*031			033	046555135	0060
*20*031 8	2	19511107	011	020174609	0060
*22*031 8			010	038434264	0060
*20*031	2	19511107	011	020174605	0060
*22*031 9			010	038434018	0060
*20*031 10	2	19511113	010	038434126	0060
*22*031 10			002	092324757	0060
*20*031 11	2	19511113	010	038434136	0060
*22*031 11			002	092324566	0060
*20*031 12	2	19510100	034	000000000	0060
*22*031 12			025	134222517	0070
*20*031 13	2	19560612	034	000000000	0060
*22*031 13			003	204035081	0070
*20*031 14	3	19560613	034	000000000	0060
*22*031 14			033	046555100	0060
*22*031 14			025	134222384	0060
*20*031 15	3	19560613	034	000000000	0060
*22*031 15			018	161092268	0080
*22*031 15			003	204035174	0060
*20*031 16	2	19560613	034	000000000	0060
*22*031 16			003	204034925	0060
*20*031 17	2	19560614	033	000000000	0060
*22*031 17			018	114132910	0060
*20*031 18	2	19560614	033	000000000	0090
*22*031 18			018	114132920	0090
*20*031 19	3	19560620	033	000000000	0060
*22*031 19			025	087263202	0060
*22*031 19			003	157075966	0060
*20*031 20	2	19591030	033	000000000	0060
*22*031 20			003	157075900	0060
*20*031 21	2	19591030	033	000000000	0060
*22*031 21			003	157075752	0060
*20*031 22	3	19591109	033	000000000	0060
*22*031 22			011	084593176	0060
*22*031 22			010	103252498	0060
*20*031 23	3	19591109	033	000000000	0060
*22*031 23			011	084593127	0060
*22*031 23			010	103252346	0060
*20*031 24	2	19591109	011	020174457	0060

*22*031	24			010	038433755	0070
*20*031	25	2	19591110	010	103252091	0060
*22*031	25			003	157075636	0060
*20*031	26	2	19591110	010	038434046	0060
*22*031	26			033	295181666	0060
*20*010	3	5	19511106	002	000000000	0060
*22*010	3			031	045263114	0060
*22*010	3			011	084441619	0060
*22*010	3			004	123014756	0060
*22*010	3			024	154465162	0070
*20*010	4	4	19511106	002	000000000	0060
*22*010	4			031	045263073	0060
*22*010	4			011	084441742	0060
*22*010	4			004	123014732	0060
*20*010	5	4	19511111	011	000000000	0060
*22*010	5			004	038172994	0070
*22*010	5			024	070023303	0070
*22*010	5			026	160230406	0060
*20*010	6	2	19511117	026	004442481	0060
*22*010	6			008	075011088	0060
*20*010	7	2	19511117	026	004442442	0060
*22*010	7			008	075010978	0060
*20*010	8	3	19591104	026	000000000	0060
*22*010	8			003	114484013	0060
*22*010	8			011	199365296	0060
*20*010	9	2	19591104	026	000000000	0060
*22*010	9			011	199365078	0060
*20*010	10	6	19591105	026	000000000	0060
*22*010	10			003	114484104	0060
*22*010	10			031	160190490	0060
*22*010	10			011	199365272	0060
*22*010	10			004	237542553	0060
*22*010	10			024	269392896	0060
*20*010	11	3	19591106	031	000000000	0060
*22*010	11			011	039174590	0060
*22*010	11			024	109202163	0060
*20*010	12	3	19591106	031	000000000	0060
*22*010	12			011	039174497	0060
*22*010	12			024	109202304	0060
*20*010	13	3	19591105	026	000000000	0060
*22*010	13			011	199365542	0060
*22*010	13			024	269392983	0090
*20*008	2	2	19511115	002	000000000	0060
*22*008	2			026	068285277	0060
*20*008	3	2	19511115	002	000000000	0060
*22*008	3			026	068285152	0060
*20*008	4	2	19511116	002	000000000	0060
*22*008	4			001	181420132	0060
*20*008	5	3	19511126	002	000000000	0060
*22*008	5			010	040200141	0060
*22*008	5			001	181415595	0060
*20*008	7	3	19560612	003	000000000	0060
*22*008	7			018	047482560	0060
*22*008	7			001	181365100	0060
*20*008	8	2	19560612	003	000000000	0060
*22*008	8			018	047482727	0060
*20*008	9	2	19560619	025	128454319	0060
*22*008	9			018	149592454	0070
*20*008	10	2	19560619	025	128454263	0060
*22*008	10			018	149592463	0060
*20*008	13	2	19560620	003	000000000	0060

*22*008	13			018	047482258	0060
*20*042	5	2	19511006	004	000000000	0060
*22*042	5			022	059243216	0060
*20*042	6	2	19511006	004	000000000	0060
*22*042	6			041	182382536	0060
*20*042	7	4	19511007	022	000000000	0060
*22*042	7			030	034082829	0060
*22*042	7			041	123135303	0060
*22*042	7			024	268005198	0060
*20*042	8	3	19511008	024	000000000	0060
*22*042	8			004	032343667	0060
*22*042	8			022	091590692	0060
*20*011	1	3	19511102	031	052254622	0060
*22*011	1			033	094331448	0060
*22*011	1			010	290092663	0060
*20*011	3	5	19511103	002	000000000	0060
*22*011	3			004	157131396	0060
*22*011	3			024	192160536	0060
*22*011	3			033	094331578	0060
*22*011	3			010	290092730	0060
*20*011	5	6	19591107	010	000000000	0060
*22*011	5			003	069450675	0060
*22*011	5			031	122161942	0060
*22*011	5			033	164234695	0060
*22*011	5			004	227034479	0060
*22*011	5			024	262063503	0060
*20*011	6	3	19591107	010	000000000	0060
*22*011	6			003	069450702	0060
*22*011	6			024	262063542	0060
*20*024	1	2	19510829	013	028073687	0070
*22*024	1			004	115152575	0060
*20*024	2	2	19510829	013	028073758	0070
*22*024	2			004	115152664	0060
*20*024	3	3	19511102	013	000000000	0070
*22*024	3			004	087075008	0060
*22*024	3			041	139170099	0060
*20*024	4	3	19511103	013	000000000	0070
*22*024	4			011	023440782	0060
*22*024	4			004	087074850	0060
*20*024	5	3	19511106	013	000000000	0080
*22*024	5			010	011400252	0070
*22*024	5			004	087074782	0070
*20*024	6	4	19511111	013	000000000	0070
*22*024	6			010	011395897	0090
*22*024	6			011	023440474	0070
*22*024	6			004	087074862	0060
*20*024	7	4	19511115	013	000000000	0070
*22*024	7			011	023440571	0060
*22*024	7			004	087074982	0060
*22*024	7			026	352591299	0060
*20*024	8	3	19511115	013	000000000	0070
*22*024	8			004	087074909	0060
*22*024	8			026	352591430	0060
*20*024	9	4	19511117	013	000000000	0070
*22*024	9			004	087074933	0060
*22*024	9			022	108451587	0060
*22*024	9			042	134432061	0060
*20*024	10	3	19511117	013	000000000	0070
*22*024	10			004	087074820	0060
*22*024	10			042	134432016	0060
*20*024	11	5	19591105	026	000000000	0060

$\star 22 \star 024$	11			013	007004846
$\star 22 \star 024$	11			010	018405003

*22*033	21			031	058524807	0060
*20*030	2	5	19511007	009	000000000	0060
*22*030	2			042	084563366	0060
*22*030	2			022	108421064	0060
*22*030	2			023	117064622	0060
*22*030	2			038	146150510	0060
*20*030	4	3	19511009	042	000000000	0060
*22*030	4			022	023453952	0060
*22*030	4			038	061183307	0060
*20*030	5	5	19511202	009	000000000	0060
*22*030	5			041	076244130	0060
*22*030	5			022	108421098	0060
*22*030	5			023	117064562	0080
*22*030	5			038	146150301	0060
*20*030	6	2	19511206	009	000000000	0060
*22*030	6			041	076244120	0060
*20*016	2	3	19510829	004	000000000	0060
*22*016	2			028	171132523	0080
*22*016	2			038	282323298	0110
*20*016	3	2	19510830	004	000000000	0060
*22*016	3			028	171132692	0100
*20*016	4	3	19511018	028	000000000	0070
*22*016	4			038	111190848	0070
*22*016	4			004	188463357	0070
*20*016	5	2	19511018	028	000000000	0080
*22*016	5			038	111190824	0080
*20*016	6	2	19511022	004	000000000	0070
*22*016	6			028	171132350	0070
*20*016	7	2	19511024	021	000000000	0060
*22*016	7			004	072125060	0060
*20*016	8	2	19511024	021	000000000	0060
*22*016	8			004	072125155	0060
*20*016	9	2	19511127	028	000000000	0070
*22*016	9			038	111190746	0070
*20*047	2	2	19521116	029	000000000	0060
*22*047	2			034	057155928	0060
*20*047	3	2	19560605	029	109021895	0060
*22*047	3			034	166181859	0060
*20*047	7	2	19560607	029	109021883	0060
*22*047	7			034	166181737	0060
*20*047	9	2	19560628	038	056024891	0060
*22*047	9			029	109021837	0060
*20*047	10	3	19560628	038	000000000	0060
*22*047	10			029	052592795	0060
*22*047	10			034	110152870	0060
*20*038	2	2	19511013	023	025391983	0060
*22*038	2			028	123385928	0060
*20*038	3	3	19511018	022	000000000	0060
*22*038	3			023	025392045	0060
*22*038	3			016	114324794	0060
*20*038	4	4	19511019	022	000000000	0060
*22*038	4			023	025392241	0060
*22*038	4			016	114324700	0240
*22*038	4			028	123385866	0060
*20*038	5	2	19511019	022	000000000	0170
*22*038	5			023	025392160	0170
*20*038	6	3	19511022	022	000000000	0070
*22*038	6			004	056391503	0090
*22*038	6			016	114324703	0070
*20*038	7	2	19511023	022	000000000	0060
*22*038	7			028	123390226	0060

*20*038	8	2	19511025	030	000000000	0060
*22*038	8			028	197332437	0060
*20*038	9	2	19511025	030	000000000	0060
*22*038	9			028	197332423	0060
*20*038	10	2	19511103	023	000000000	0120
*22*038	10			004	030595110	0120
*20*038	11	2	19560531	030	089142878	0060
*22*038	11			029	286481542	0060
*20*038	12	4	19560531	030	089142864	0060
*22*038	12			029	286481554	0140
*22*038	12			047	313524380	0060
*22*038	12			047	313524391	0060
*20*038	14	2	19560605	047	000000000	0060
*22*038	14			029	332553345	0060
*20*004	4	3	19511018	016	000000000	0060
*22*004	4			038	044390676	0060
*22*004	4			023	071233316	0060
*20*004	6	3	19511019	023	000000000	0060
*22*004	6			022	007122191	0060
*22*004	6			024	147405019	0060
*20*004	7	5	19511022	033	000000000	0060
*22*004	7			023	093253405	0060
*22*004	7			022	100375925	0060
*22*004	7			041	141434189	0080
*22*004	7			024	241062829	0060
*20*004	8	3	19511025	028	000000000	0060
*22*004	8			016	001092489	0060
*22*004	8			038	045482871	0060
*20*004	9	3	19511025	028	000000000	0060
*22*004	9			016	001092181	0060
*22*004	9			038	045483045	0060
*20*004	11	3	19511027	016	000000000	0060
*22*004	11			041	119414077	0060
*22*004	11			024	219042685	0060
*20*004	12	3	19511027	022	000000000	0060
*22*004	12			041	041054523	0060
*22*004	12			024	140282880	0060
*20*004	13	3	19511028	022	000000000	0060
*22*004	13			042	040382708	0060
*22*004	13			041	041054545	0060
*20*004	14	3	19511028	022	000000000	0060
*22*004	14			042	040382752	0060
*22*004	14			041	041054678	0060
*20*004	16	4	19511103	024	000000000	0070
*22*004	16			010	072471941	0070
*22*004	16			011	081333478	0070
*22*004	16			033	118532939	0070
*20*004	18	4	19591108	024	000000000	0060
*22*004	18			010	072471916	0060
*22*004	18			011	081333548	0060
*22*004	18			033	118533016	0060
*20*002	4	2	19511113	031	000000000	0070
*22*002	4			010	080443103	0140
*20*002	5	3	19511114	031	000000000	0060
*22*002	5			011	055191688	0060
*22*002	5			010	080442766	0060
*20*002	6	3	19511114	031	000000000	0060
*22*002	6			011	055191836	0060
*22*002	6			010	080442964	0060
*20*002	7	3	19511115	010	000000000	0060
*22*002	7			026	026575291	0060

*22*002	7			008	095041238	0060
*20*002	8	3	19511115	010	000000000	0060
*22*002	8			026	026575410	0060
*22*002	8			008	095041229	0060
*20*003	1	2	19560612	025	052193798	0060
*22*003	1			018	099050057	0060
*20*003	2	3	19560612	031	000000000	0060
*22*003	2			025	052193479	0240
*22*003	2			018	099050003	0060
*20*003	3	3	19560613	031	000000000	0060
*22*003	3			025	052193754	0060
*22*003	3			018	099050074	0060
*20*003	4	3	19560613	031	000000000	0060
*22*003	4			033	010382360	0060
*22*003	4			025	052193633	0060
*20*003	6	3	19560614	031	000000000	0060
*22*003	6			025	052193656	0060
*22*003	6			018	099045918	0060
*20*003	7	4	19560620	031	000000000	0060
*22*003	7			025	052193618	0060
*22*003	7			018	099050171	0060
*22*003	7			008	176001586	0060
*20*003	8	3	19560620	031	000000000	0060
*22*003	8			018	099050204	0060
*22*003	8			008	176001512	0060
*20*003	9	2	19560702	018	000000000	0060
*22*003	9			008	076551514	0060
*20*003	10	3	19591022	031	000000000	0060
*22*003	10			010	080470379	0060
*22*003	10			026	107480581	0060
*20*003	11	3	19591022	031	000000000	0060
*22*003	11			010	080470324	0060
*22*003	11			026	107480423	0060
*20*003	12	3	19591023	031	000000000	0060
*22*003	12			011	055202165	0060
*22*003	12			010	080470330	0060
*20*003	13	3	19591023	031	000000000	0120
*22*003	13			011	055201970	0120
*22*003	13			010	080470025	0120
*20*003	14	2	19591030	031	000000000	0060
*22*003	14			033	010382395	0060
*20*003	15	4	19591123	031	000000000	0060
*22*003	15			033	010382377	0060
*22*003	15			011	055202035	0060
*22*003	15			010	080470153	0060
*20*003	16	4	19591123	011	000000000	0060
*22*003	16			010	025264153	0060
*22*003	16			031	304393586	0060
*22*003	16			033	315180158	0060
*20*034	4	2	19510808	033	000000000	0060
*22*034	4			031	078293958	0060
*20*034	5	3	19510813	028	000000000	0060
*22*034	5			033	047002696	0060
*22*034	5			031	125300590	0060
*20*034	6	2	19510917	033	001094434	0070
*22*034	6			031	079392026	0060
*20*034	7	2	19511112	033	000000000	0060
*22*034	7			031	078293691	0060
*20*034	9	2	19521117	047	028233054	0060
*22*034	9			029	077491266	0060
*20*034	11	2	19560510	031	000000000	0060

*22*034	11			033	281302179	0060
*20*034	12	2	19560510	031	000000000	0060
*22*034	12			033	281302169	0060
*20*034	13	3	19560510	031	000000000	0060
*22*034	13			029	234290456	0060
*22*034	13			033	281302040	0100
*20*034	14	2	19560510	031	000000000	0060
*22*034	14			029	234290584	0060
*20*034	17	2	19560604	029	000000000	0060
*22*034	17			033	047011914	0060
*20*034	18	2	19560604	029	000000000	0060
*22*034	18			033	047011782	0060
*20*034	19	3	19560604	029	000000000	0060
*22*034	19			033	047011548	0060
*22*034	19			047	310341789	0060
*20*034	20	5	19560605	047	000000000	0060
*22*034	20			029	049254337	0060
*22*034	20			033	096265829	0060
*22*034	20			029	049254527	0060
*22*034	20			033	096270093	0060
*20*034	21	3	19560607	047	000000000	0060
*22*034	21			029	049253993	0060
*22*034	21			033	096265633	0060
*20*034	22	2	19560612	033	000000000	0060
*22*034	22			031	078293740	0060
*20*034	23	3	19560613	033	000000000	0060
*22*034	23			025	052391475	0070
*22*034	23			031	078293710	0060
*20*034	24	3	19560614	033	000000000	0060
*22*034	24			025	052391252	0070
*22*034	24			031	078293815	0060
*20*034	25	3	19560614	033	000000000	0060
*22*034	25			025	052391401	0060
*22*034	25			031	078293744	0060
*20*034	27	2	19590428	031	079392304	0070
*22*034	27			047	264424522	0070
*20*025	2	5	19560614	018	000000000	0060
*22*025	2			003	066353703	0060
*22*025	2			031	124344074	0060
*22*025	2			034	144215312	0070
*22*025	2			033	168484860	0240
*20*025	3	2	19560612	018	000000000	0070
*22*025	3			033	168484415	0070
*20*025	4	3	19560615	018	000000000	0060
*22*025	4			031	124343770	0060
*22*025	4			033	168484310	0060
*20*025	5	2	19560619	018	000000000	0060
*22*025	5			008	036505455	0060
*20*025	6	2	19560619	018	000000000	0060
*22*025	6			008	036505585	0060
*20*025	8	5	19560620	018	000000000	0060
*22*025	8			003	066353538	0060
*22*025	8			031	124343680	0060
*22*025	8			034	144214888	0070
*22*025	8			033	168484079	0060
*20*018	1	2	19560612	003	154210918	0060
*22*018	1			025	221000916	0060
*20*018	2	2	19560613	003	000000000	0090
*22*018	2			031	038003171	0090
*20*018	3	3	19560614	003	000000000	0060
*22*018	3			031	038003414	0060

*22*018	3			025	066390146	0060
*20*018	4	3	19560614	003	000000000	0060
*22*018	4			031	038003477	0060
*22*018	4			025	066390118	0060
*20*018	5	3	19560620	008	000000000	0060
*22*018	5			003	055162415	0060
*22*018	5			025	121552632	0060
*20*026	2	2	19511115	010	000000000	0060
*22*026	2			024	070584847	0060
*20*026	3	2	19511115	008	000000000	0060
*22*026	3			002	043245585	0060
*20*026	4	2	19511202	001	038154069	0060
*22*026	4			008	061045573	0060
*20*026	5	2	19511202	001	038153887	0060
*22*026	5			008	061045541	0060
*20*026	6	2	19591022	003	000000000	0060
*22*026	6			010	038101754	0060
*20*026	7	2	19591022	003	000000000	0060
*22*026	7			010	038101751	0060
*20*026	8	2	19591022	010	000000000	0070
*22*026	8			024	070584953	0070
*20*026	9	2	19591023	010	000000000	0060
*22*026	9			024	070584779	0060
*20*009	6	2	19511007	022	000000000	0060
*22*009	6			030	029151729	0060
*20*009	7	2	19511207	022	000000000	0090
*22*009	7			030	029151833	0090
*20*009	8	2	19511207	041	000000000	0060
*22*009	8			030	055371887	0060
*20*009	9	2	19511207	041	000000000	0060
*22*009	9			030	055371800	0070
*20*021	1	2	19511025	016	000000000	0060
*22*021	1			028	009305929	0060
*20*021	2	2	19511025	016	000000000	0060
*22*021	2			028	009305957	0060
*20*023	4	3	19511102	038	000000000	0060
*22*023	4			022	083133978	0060
*22*023	4			004	237441360	0060
*20*023	5	3	19511102	038	000000000	0060
*22*023	5			022	083133845	0060
*22*023	5			004	237441230	0060
*20*023	6	3	19511202	038	000000000	0060
*22*023	6			030	051180280	0060
*22*023	6			022	083133985	0060
*20*023	7	3	19511205	038	000000000	0060
*22*023	7			030	051175978	0060
*22*023	7			022	083133848	0060
*20*038	18	2	19511018	022	000000000	0060
*22*038	18			021	077020363	0060
*20*038	19	2	19511019	022	000000000	0170
*22*038	19			021	077020670	0240
*20*038	20	2	19511025	030	000000000	0060
*22*038	20			021	150562980	0060
*20*038	21	2	19511025	030	000000000	0060
*22*038	22			021	150562991	0060
*20*038	30	2	19511106	021	000000000	0060
*22*038	30			023	308371704	0060
*20*038	31	2	19511106	021	000000000	0080
*22*038	31			023	308371620	0090
*20*038	32	2	19511126	021	000000000	0060
*22*038	32			028	046365528	0060

*20*038	33	2	19511126	021	000000000	0060
*22*038	33			028	046365782	0060
*20*021	22	2	19511025	016	000000000	0060
*22*021	22			038	137144468	0060
*20*021	23	2	19511025	016	000000000	0060
*22*021	23			038	137144442	0060
*20*031	32	2	19560612	034	000000000	0060
*22*031	32			033	046555505	0060
*20*031	33	2	19560612	034	000000000	0070
*22*031	33			003	204035508	0070
*20*031	37	2	19560614	033	000000000	0060
*22*031	37			025	087263475	0060
*20*008	31	2	19560612	003	000000000	0060
*22*008	31			001	181364970	0060
*20*033	31	2	19560604	034	00000000	0060
*22*033	31			029	089521932	0060
*20*018	14	2	19560619	008	000000000	0060
*22*018	14			025	121552087	0060
*20*018	15	2	19560619	008	000000000	0060
*22*018	15			025	121552161	0060
*20*018	16	2	19560620	008	00000000	0060
*22*018	16			031	093165508	0110
*20*028	12	002	19630628	034	000000000	0060
*22*028	12			043	073181887	0060
*20*028	13	002	19630628	034	000000000	0060
*22*028	13			043	073181706	0060
*20*028	17	002	19640518	033	000000000	0070
*22*028	17			034	043080526	0070
*20*028	1	002	19640518	033	000000000	0070
*22*028	1			034	043080411	0070
*20*033	18	002	19600100	031	021350903	0120
*22*033	18			034	076094243	0070
*20*033	22	002	19640521	034	000000000	0070
*22*033	22			028	089512839	0070
*20*033	23	002	19640521	034	000000000	0070
*22*033	23			028	089512791	0070
*20*043	1	002	19630627	028	131094468	0060
*22*043	1			034	188230036	0060
*20*043	2	002	19630627	028	131094473	0060
*22*043	2			034	188225968	0060
*20*034	26	002	19601103	033	00000000	0070
*22*034	26			031	078293856	0120
*20*034	30	002	19630628	043	028213059	0060
*22*034	30			028	077495925	0060
*20*034	31	002	19630628	043	028213128	0060
*22*034	31			028	077500019	0060
*20*034	33	002	19630717	043	028213146	0060
*22*034	33			028	077500097	0060
*20*034	34	002	19640520	028	000000000	0070
*22*034	34			033	047002696	0070
*20*034	35	002	19640520	028	000000000	0070
*22*034	35			033	047002751	0070

Table B-2
*20*029 11
*22*029 11
*22*029 11
*20*050 2
*22*050 2
*22*050 2
*22*050 2
*20*047 12
*22*047 12
*20*002 10
*22*002 10
*22*002 10
*22*002 10
*20*034 37
*22*034 37
*22*034 37
*22*034 37
$* 20 * 025$
$* 22 * 025$
9
*22*025 9
*22*025 9
*22*025 9
*20*001 4
*22*001 4
*22*001 4
*20*008 14
*22*008 14
*22*008 14
*22*008 14
*22*008 14
*20*017 1
*22*017 1
*22*017 1
*20*019 3
*22*019 3
*22*019 3
*22*019 3
*20*001 7
*22*001 7
*22*001 7
*20*001 8
*22*001 8
*22*001 8
*20*001 9
*22*001 9
*20*001 10
*22*001 10
*22*001 10
*20*001 13
*22*001 13
*22*001 13
*20*029 12
*22*029 12
*22*029 12
*22*029 12
*20*029 13
*22*029 13
*22*029 13
*20*008 1

3

4

2
4

4

5
都 .

 .
-
,
,
-
003

00
00
002
0
0

003

00

000000000	0180
073182096	0180
316541632	0180
000000000	0209
167125362	0209
203220325	0209
270042478	0180
000000000	0180
057155927	0180
013311926	0180
208174678	0180
250014601	0180
296431693	0180
000000000	0180
052414348	0180
263353253	0180
313011526	0180
000000000	0209
036505946	0209
066414176	0209
144215258	0209
168483978	0209
024225586	0180
055524226	0180
355530280	0180
033445062	0180
060243890	0180
081382020	0180
128562273	0180
215264732	0180
042582659	0209
303052946	0209
336352894	0209
000000000	0209
048372232	0209
066190531	0209
188142720	0209
061430872	0060
090125991	0060
121424468	0060
061430982	0080
090130000	0080
121424373	0100
061430880	0060
090130029	0060
061430534	0060
090125727	0060
121424415	0060
061430798	0060
090125936	0060
121424462	0060
000000000	0060
099560896	0060
243355632	0060
286413841	0060
099560860	0060
243355583	0060
286413796	0060
178180366	0060

*22*008	1			025	204575108	0060
*22*008	1			019	226113179	0060
*20*008	15	005	19241105	002	000000000	0060
*22*008	15			025	026394481	0060
*22*008	15			019	047532531	0060
*22*008	15			017	095112722	0060
*22*008	15			001	181415550	0240
*20*008	16	004	19241106	002	000000000	0170
*22*008	16			025	026394355	0060
*22*008	16			019	047532573	0070
*22*008	16			001	181415410	0240
*20*008	17	003	19241107	002	000000000	0060
*22*008	17			017	095112652	0060
*22*008	17			001	181415411	0060
*20*008	18	002	19241119	002	000000000	0060
*22*008	18			001	181415610	0060
*20*008	19	002	19241119	002	000000000	0060
*22*008	19			001	181415590	0060
*20*008	22	005	19241120	002	000000000	0060
*22*008	22			025	026394419	0060
*22*008	22			019	047532556	0060
*22*008	22			017	095112687	0060
*22*008	22			001	181415528	0060
*20*050	3	004	19231105	029	089553295	0060
*22*050	3			038	114592435	0060
*22*050	3			025	257082812	0060
*22*050	3			002	293173764	0060
*20*050	4	004	19231106	029	089553321	0060
*22*050	4			038	114592444	0060
*22*050	4			025	257082822	0060
*22*050	4			002	293173658	0060
*20*017	2	003	19241108	008	000000000	0240
*22*017	2			019	066225650	0240
*22*017	2			001	326295907	0080
*20*017	3	002	19241108	008	000000000	0060
*22*017	3			019	066225855	0120
*20*017	4	003	19241108	008	000000000	0060
*22*017	4			019	066225844	0060
*22*017	4			001	326300064	0060
*20*017	5	003	19241113	008	000000000	0060
*22*017	5			019	066225716	0060
*22*017	5			001	326295930	0060
*20*017	6	003	19241113	008	000000000	0060
*22*017	6			019	066225789	0060
*22*017	6			001	326295965	0060
*20*047	13	003	19231027	038	056024798	0070
*22*047	13			029	109021728	0060
*22*047	13			034	166181619	0060
*20*047	93	003	19231027	038	056024814	0060
*22*047	93			029	109021716	0060
*22*047	93			034	166181645	0060
*20*038	15	002	19231018	029	241020121	0060
*22*038	15			047	268062939	0070
*20*038	16	2	19231019	029	241020202	0060
*22*038	16			047	268062877	0060
*20*038	17	002	19231017	029	000000000	0060
*22*038	17			047	027042761	0060
*20*002	11	003	19241111	050	000000000	0070
*22*002	11			025	041435825	0060
*22*002	11			019	088252864	0060
*20*002	12	003	19241110	050	000000000	0070

| $\star 22 \star 002$ | 12 | | | 025 | 041435871 |
| :--- | :--- | :--- | :--- | :--- | :--- | 00060

*20*023	1	002	19400319	042	061535450	0070
*22*023	1			004	154303466	0070
*20*023	2	004	19401022	022	00000000	0070
*22*023	2			041	054035738	0070
*22*023	2			042	061535632	0070
*22*023	2			004	154303508	0070
*20*001	2	2	19511202	008	000000000	0060
*22*001	2			026	043574213	0060
*20*041	5	2	19511018	042	000000000	0060
*22*041	5			022	044065606	0060
*20*041	6	4	19511022	004	00000000	0060
*22*041	6			042	002111030	0060
*22*041	6			022	046180399	0060
*22*041	6			024	331314679	0060
*20*041	7	3	19511022	004	00000000	0060
*22*041	7			042	002111004	0060
*22*041	7			024	331314743	0060
*20*041	9	2	19511210	022	00000000	0060
*22*041	9			009	086140953	0060
*20*041	11	2	19511210	022	000000000	0060
*22*041	11			030	038154853	0060
*20*041	12	2	19511202	022	044065341	0060
*22*041	12			030	082224091	0060
*20*041	13	2	19511207	042	00000000	0060
*22*041	13			030	082224423	0060
*20*029	4	2	19521117	034	000000000	0060
*22*029	4			047	073182184	0060
*20*029	5	2	19560604	034	043062255	0060
*22*029	5			038	216205318	0060
*20*029	6	3	19560605	033	000000000	0060
*22*029	6			047	116244263	0060
*22*029	6			038	216205010	0060
*20*029	7	4	19560605	033	000000000	0060
*22*029	7			034	043062020	0060
*22*029	7			047	116244197	0060
*22*029	7			038	216205005	0060
*20*029	8	3	19560607	033	00000000	0060
*22*029	8			034	043062087	0060
*22*029	8			047	116244248	0060
*20*029	9	2	19560607	033	00000000	0060
*22*029	9			034	043062076	0060
*20*029	10	3	19560606	033	000000000	0060
*22*029	10			034	043061929	0060
*22*029	10			047	116244103	0060
*20*028	1	3	19510814	016	059343922	0100
*22*028	1			033	143383504	0060
*22*028	1			034	186464086	0060
*20*028	2	2	19510816	033	000000000	0060
*22*028	2			016	275560346	0060
*20*028	3	2	19510816	033	000000000	0080
*22*028	3			016	275560238	0080
*20*028	4	3	19510820	016	000000000	0060
*22*028	4			033	084035663	0060
*22*028	4			038	300252158	0060
*20*028	5	3	19511023	038	000000000	0060
*22*028	5			021	005392063	0060
*22*028	5			016	059344092	0060
*20*028	7	3	19511025	038	000000000	0060
*22*028	7			021	005392033	0060
*22*028	7			004	067115054	0060
*20*028	8	3	19511025	038	000000000	0060

*22*028	8			021	005392052	0060
*22*028	8			004	067114988	0060
*20*028	10	2	19591109	004	000000000	0060
*22*028	10			033	076264301	0060
*20*028	11	2	19591109	033	013274202	0060
*22*028	11			004	297005791	0060
*20*022	4	2	19511010	038	000000000	0060
*22*022	4			030	068324985	0060
*20*022	6	3	19511013	023	000000000	0060
*22*022	6			038	071065612	0060
*22*022	6			041	249063563	0060
*20*022	7	2	19511013	023	000000000	0060
*22*022	7			038	071065592	0060
*20*022	9	2	19511018	023	000000000	0060
*22*022	9			004	341425324	0060
*20*022	10	3	19511019	004	000000000	0060
*22*022	10			023	018170619	0060
*22*022	10			038	089240148	0060
*20*022	11	3	19511022	042	000000000	0060
*22*022	11			004	079570724	0060
*22*022	11			023	098141340	0060
*20*022	12	2	19511026	023	000000000	0060
*22*022	12			030	139394620	0060
*20*022	13	3	19511027	023	000000000	0120
*22*022	13			024	323484627	0140
*22*022	13			004	341425340	0120
*20*022	15	3	19511028	024	000000000	0060
*22*022	15			004	017540720	0060
*22*022	15			023	036111190	0060
*20*022	16	3	19511028	024	000000000	0060
*22*022	16			004	017540708	0060
*22*022	16			023	036111304	0060
*20*031	3	3	19510808	034	000000000	0060
*22*031	3			033	046555101	0060
*22*031	3			011	131552165	0060
*20*031	5	2	19510813	034	000000000	0060
*22*031	5			033	046555113	0060
*20*031	7	2	19511025	034	000000000	0060
*22*031	7			033	046555135	0060
*20*031	8	2	19511107	011	020174609	0060
*22*031	8			010	038434264	0060
*20*031	9	2	19511107	011	020174605	0060
*22*031	9			010	038434018	0060
*20*031	10	2	19511113	010	038434126	0060
*22*031	10			002	092324757	0060
*20*031	11	2	19511113	010	038434136	0060
*22*031	11			002	092324566	0060
*20*031	12	2	19510100	034	000000000	0060
*22*031	12			025	134222517	0070
*20*031	13	2	19560612	034	000000000	0060
*22*031	13			003	204035081	0070
*20*031	14	3	19560613	034	000000000	0060
*22*031	14			033	046555100	0060
*22*031	14			025	134222384	0060
*20*031	15	3	19560613	034	000000000	0060
*22*031	15			018	161092268	0080
*22*031	15			003	204035174	0060
*20*031	16	2	19560613	034	000000000	0060
*22*031	16			003	204034925	0060
*20*031	17	2	19560614	033	000000000	0060
*22*031	17			018	114132910	0060

*20*031	18	2	19560614	033	000000000	0090
*22*031	18			018	114132920	0090
*20*031	19	3	19560620	033	000000000	0060
*22*031	19			025	087263202	0060
*22*031	19			003	157075966	0060
*20*031	20	2	19591030	033	000000000	0060
*22*031	20			003	157075900	0060
*20*031	21	2	19591030	033	000000000	0060
*22*031	21			003	157075752	0060
*20*031	22	3	19591109	033	000000000	0060
*22*031	22			011	084593176	0060
*22*031	22			010	103252498	0060
*20*031	23	3	19591109	033	000000000	0060
*22*031	23			011	084593127	0060
*22*031	23			010	103252346	0060
*20*031	24	2	19591109	011	020174457	0060
*22*031	24			010	038433755	0070
*20*031	25	2	19591110	010	103252091	0060
*22*031	25			003	157075636	0060
*20*031	26	2	19591110	010	038434046	0060
*22*031	26			033	295181666	0060
*20*010	3	2	19511106	002	000000000	0060
*22*010	3			024	154465162	0070
*20*010	4	3	19511106	002	000000000	0060
*22*010	4			031	045263073	0060
*22*010	4			011	084441742	0060
*20*010	5	3	19511111	004	038172994	0070
*22*010	5			024	070023303	0070
*22*010	5			026	160230406	0060
*20*010	6	2	19511117	026	004442481	0060
*22*010	6			008	075011088	0060
*20*010	7	2	19511117	026	004442442	0060
*22*010	7			008	075010978	0060
*20*010	8	3	19591104	026	000000000	0060
*22*010	8			003	114484013	0060
*22*010	8			011	199365296	0060
*20*010	10	6	19591105	026	000000000	0060
*22*010	10			003	114484104	0060
*22*010	10			031	160190490	0060
*22*010	10			011	199365272	0060
*22*010	10			004	237542553	0060
*22*010	10			024	269392896	0060
*20*010	11	3	19591106	031	000000000	0060
*22*010	11			011	039174590	0060
*22*010	11			024	109202163	0060
*20*010	12	2	19591106	031	000000000	0060
*22*010	12			024	109202304	0060
*20*010	13	3	19591105	026	000000000	0060
*22*010	13			011	199365542	0060
*22*010	13			024	269392983	0090
*20*008	2	2	19511115	002	000000000	0060
*22*008	2			026	068285277	0060
*20*008	3	2	19511115	002	000000000	0060
*22*008	3			026	068285152	0060
*20*008	5	3	19511126	002	000000000	0060
*22*008	5			010	040200141	0060
*22*008	5			001	181415595	0060
*20*008	7	3	19560612	003	000000000	0060
*22*008	7			018	047482560	0060
*22*008	7			001	181365100	0060
*20*008	9	2	19560619	025	128454319	0060

*22*008	9			018	149592454	0070
*20*008	10	2	19560619	025	128454263	0060
*22*008	10			018	149592463	0060
*20*042	5	2	19511006	004	000000000	0060
*22*042	5			022	059243216	0060
*20*042	6	2	19511006	004	000000000	0060
*22*042	6			041	182382536	0060
*20*042	7	3	19511007	022	000000000	0060
*22*042	7			030	034082829	0060
*22*042	7			024	268005198	0060
*20*042	8	3	19511008	024	000000000	0060
*22*042	8			004	032343667	0060
*22*042	8			022	091590692	0060
*20*011	1	3	19511102	031	052254622	0060
*22*011	1			033	094331448	0060
*22*011	1			010	290092663	0060
*20*011	3	5	19511103	002	000000000	0060
*22*011	3			004	157131396	0060
*22*011	3			024	192160536	0060
*22*011	3			033	094331578	0060
*22*011	3			010	290092730	0060
*20*011	5	6	19591107	010	000000000	0060
*22*011	5			003	069450675	0060
*22*011	5			031	122161942	0060
*22*011	5			033	164234695	0060
*22*011	5			004	227034479	0060
*22*011	5			024	262063503	0060
*20*011	6	3	19591107	010	000000000	0060
*22*011	6			003	069450702	0060
*22*011	6			024	262063542	0060
*20*024	1	2	19510829	013	028073687	0070
*22*024	1			004	115152575	0060
*20*024	2	2	19510829	013	028073758	0070
*22*024	2			004	115152664	0060
*20*024	3	3	19511102	013	000000000	0070
*22*024	3			004	087075008	0060
*22*024	3			041	139170099	0060
*20*024	4	2	19511103	013	000000000	0070
*22*024	4			004	087074850	0060
*20*024	5	2	19511106	013	000000000	0080
*22*024	5			004	087074782	0070
*20*024	6	4	19511111	013	000000000	0070
*22*024	6			010	011395897	0090
*22*024	6			011	023440474	0070
*22*024	6			004	087074862	0060
*20*024	7	4	19511115	013	000000000	0070
*22*024	7			011	023440571	0060
*22*024	7			004	087074982	0060
*22*024	7			026	352591299	0060
*20*024	8	2	19511115	013	000000000	0070
*22*024	8			004	087074909	0060
*20*024	9	4	19511117	013	000000000	0070
*22*024	9			004	087074933	0060
*22*024	9			022	108451587	0060
*22*024	9			042	134432061	0060
*20*024	10	3	19511117	013	000000000	0070
*22*024	10			004	087074820	0060
*22*024	10			042	134432016	0060
*20*024	11	5	19591105	026	000000000	0060
*22*024	11			013	007004846	0070
*22*024	11			010	018405003	0070

$\left.\begin{array}{llllll}* 22 * 024 & 11 & & & 011 & 030445336\end{array}\right) 0060$

*22*030	2			022	108421064	0060
*22*030	2			023	117064622	0060
*22*030	2			038	146150510	0060
*20*030	4	3	19511009	042	000000000	0060
*22*030	4			022	023453952	0060
*22*030	4			038	061183307	0060
*20*030	5	5	19511202	009	000000000	0060
*22*030	5			041	076244130	0060
*22*030	5			022	108421098	0060
*22*030	5			023	117064562	0080
*22*030	5			038	146150301	0060
*20*030	6	2	19511206	009	000000000	0060
*22*030	6			041	076244120	0060
*20*016	2	3	19510829	004	000000000	0060
*22*016	2			028	171132523	0080
*22*016	2			038	282323298	0110
*20*016	3	2	19510830	004	000000000	0060
*22*016	3			028	171132692	0100
*20*016	4	3	19511018	028	000000000	0070
*22*016	4			038	111190848	0070
*22*016	4			004	188463357	0070
*20*016	5	2	19511018	028	000000000	0080
*22*016	5			038	111190824	0080
*20*016	6	2	19511022	004	000000000	0070
*22*016	6			028	171132350	0070
*20*016	7	2	19511024	021	000000000	0060
*22*016	7			004	072125060	0060
*20*016	8	2	19511024	021	000000000	0060
*22*016	8			004	072125155	0060
*20*016	9	2	19511127	028	000000000	0070
*22*016	9			038	111190746	0070
*20*047	2	2	19521116	029	000000000	0060
*22*047	2			034	057155928	0060
*20*047	3	2	19560605	029	109021895	0060
*22*047	3			034	166181859	0060
*20*047	7	2	19560607	029	109021883	0060
*22*047	7			034	166181737	0060
*20*047	9	2	19560628	038	056024891	0060
*22*047	9			029	109021837	0060
*20*047	10	3	19560628	038	000000000	0060
*22*047	10			029	052592795	0060
*22*047	10			034	110152870	0060
*20*038	2	2	19511013	023	025391983	0060
*22*038	2			028	123385928	0060
*20*038	3	2	19511018	022	000000000	0060
*22*038	3			016	114324794	0060
*20*038	4	3	19511019	022	000000000	0060
*22*038	4			023	025392241	0060
*22*038	4			016	114324700	0240
*20*038	5	2	19511019	022	000000000	0170
*22*038	5			023	025392160	0170
*20*038	6	3	19511022	022	000000000	0070
*22*038	6			004	056391503	0090
*22*038	6			016	114324703	0070
*20*038	7	2	19511023	022	000000000	0060
*22*038	7			028	123390226	0060
*20*038	8	2	19511025	030	000000000	0060
*22*038	8			028	197332437	0060
*20*038	9	2	19511025	030	000000000	0060
*22*038	9			028	197332423	0060
*20*038	10	2	19511103	023	000000000	0120

*22*038	10			004	030595110	0120
*20*038	11	2	19560531	030	089142878	0060
*22*038	11			029	286481542	0060
*20*038	12	4	19560531	030	089142864	0060
*22*038	12			029	286481554	0140
*22*038	12			047	313524380	0060
*22*038	12			047	313524391	0060
*20*038	14	2	19560605	047	000000000	0060
*22*038	14			029	332553345	0060
*20*004	4	3	19511018	016	000000000	0060
*22*004	4			038	044390676	0060
*22*004	4			023	071233316	0060
*20*004	6	3	19511019	023	000000000	0060
*22*004	6			022	007122191	0060
*22*004	6			024	147405019	0060
*20*004	7	3	19511022	022	100375925	0060
*22*004	7			041	141434189	0080
*22*004	7			024	241062829	0060
*20*004	8	2	19511025	028	000000000	0060
*22*004	8			016	001092489	0060
*20*004	9	2	19511025	028	000000000	0060
*22*004	9			038	045483045	0060
*20*004	11	3	19511027	016	000000000	0060
*22*004	11			041	119414077	0060
*22*004	11			024	219042685	0060
*20*004	12	3	19511027	022	000000000	0060
*22*004	12			041	041054523	0060
*22*004	12			024	140282880	0060
*20*004	13	3	19511028	022	000000000	0060
*22*004	13			042	040382708	0060
*22*004	13			041	041054545	0060
*20*004	14	3	19511028	022	000000000	0060
*22*004	14			042	040382752	0060
*22*004	14			041	041054678	0060
*20*004	16	4	19511103	024	000000000	0070
*22*004	16			010	072471941	0070
*22*004	16			011	081333478	0070
*22*004	16			033	118532939	0070
*20*004	18	4	19591108	024	000000000	0060
*22*004	18			010	072471916	0060
*22*004	18			011	081333548	0060
*22*004	18			033	118533016	0060
*20*002	4	2	19511113	031	000000000	0070
*22*002	4			010	080443103	0140
*20*002	5	3	19511114	031	000000000	0060
*22*002	5			011	055191688	0060
*22*002	5			010	080442766	0060
*20*002	6	3	19511114	031	000000000	0060
*22*002	6			011	055191836	0060
*22*002	6			010	080442964	0060
*20*002	7	3	19511115	010	000000000	0060
*22*002	7			026	026575291	0060
*22*002	7			008	095041238	0060
*20*002	8	3	19511115	010	000000000	0060
*22*002	8			026	026575410	0060
*22*002	8			008	095041229	0060
*20*003	1	2	19560612	025	052193798	0060
*22*003	1			018	099050057	0060
*20*003	2	3	19560612	031	000000000	0060
*22*003	2			025	052193479	0240
*22*003	2			018	099050003	0060

*20*003	3	3	19560613	031	000000000	0060
*22*003	3			025	052193754	0060
*22*003	3			018	099050074	0060
*20*003	4	3	19560613	031	000000000	0060
*22*003	4			033	010382360	0060
*22*003	4			025	052193633	0060
*20*003	6	3	19560614	031	000000000	0060
*22*003	6			025	052193656	0060
*22*003	6			018	099045918	0060
*20*003	7	4	19560620	031	000000000	0060
*22*003	7			025	052193618	0060
*22*003	7			018	099050171	0060
*22*003	7			008	176001586	0060
*20*003	8	3	19560620	031	000000000	0060
*22*003	8			018	099050204	0060
*22*003	8			008	176001512	0060
*20*003	9	2	19560702	018	000000000	0060
*22*003	9			008	076551514	0060
*20*003	10	3	19591022	031	000000000	0060
*22*003	10			010	080470379	0060
*22*003	10			026	107480581	0060
*20*003	11	3	19591022	031	000000000	0060
*22*003	11			010	080470324	0060
*22*003	11			026	107480423	0060
*20*003	12	3	19591023	031	000000000	0060
*22*003	12			011	055202165	0060
*22*003	12			010	080470330	0060
*20*003	13	3	19591023	031	000000000	0120
*22*003	13			011	055201970	0120
*22*003	13			010	080470025	0120
*20*003	14	2	19591030	031	000000000	0060
*22*003	14			033	010382395	0060
*20*003	15	4	19591123	031	000000000	0060
*22*003	15			033	010382377	0060
*22*003	15			011	055202035	0060
*22*003	15			010	080470153	0060
*20*003	16	4	19591123	011	000000000	0060
*22*003	16			010	025264153	0060
*22*003	16			031	304393586	0060
*22*003	16			033	315180158	0060
*20*034	4	2	19510808	033	000000000	0060
*22*034	4			031	078293958	0060
*20*034	5	3	19510813	028	000000000	0060
*22*034	5			033	047002696	0060
*22*034	5			031	125300590	0060
*20*034	6	2	19510917	033	001094434	0070
*22*034	6			031	079392026	0060
*20*034	7	2	19511112	033	000000000	0060
*22*034	7			031	078293691	0060
*20*034	9	2	19521117	047	028233054	0060
*22*034	9			029	077491266	0060
*20*034	11	2	19560510	031	000000000	0060
*22*034	11			033	281302179	0060
*20*034	12	2	19560510	031	000000000	0060
*22*034	12			033	281302169	0060
*20*034	13	3	19560510	031	000000000	0060
*22*034	13			029	234290456	0060
*22*034	13			033	281302040	0100
*20*034	14	2	19560510	031	000000000	0060
*22*034	14			029	234290584	0060
*20*034	18	2	19560604	029	000000000	0060

*22*034	18			033	047011782	0060
*20*034	19	3	19560604	029	000000000	0060
*22*034	19			033	047011548	0060
*22*034	19			047	310341789	0060
*20*034	20	2	19560605	029	049254337	0060
*22*034	20			033	096265829	0060
*20*034	22	2	19560612	033	000000000	0060
*22*034	22			031	078293740	0060
*20*034	23	3	19560613	033	000000000	0060
*22*034	23			025	052391475	0070
*22*034	23			031	078293710	0060
*20*034	24	3	19560614	033	000000000	0060
*22*034	24			025	052391252	0070
*22*034	24			031	078293815	0060
*20*034	25	3	19560614	033	000000000	0060
*22*034	25			025	052391401	0060
*22*034	25			031	078293744	0060
*20*034	27	2	19590428	031	079392304	0070
*22*034	27			047	264424522	0070
*20*025	2	3	19560614	018	000000000	0060
*22*025	2			031	124344074	0060
*22*025	2			034	144215312	0070
*20*025	3	2	19560612	018	000000000	0070
*22*025	3			033	168484415	0070
*20*025	4	2	19560615	018	000000000	0060
*22*025	4			031	124343770	0060
*20*025	6	2	19560619	018	000000000	0060
*22*025	6			008	036505585	0060
*20*025	8	4	19560620	003	066353538	0060
*22*025	8			031	124343680	0060
*22*025	8			034	144214888	0070
*22*025	8			033	168484079	0060
*20*018	1	2	19560612	003	154210918	0060
*22*018	1			025	221000916	0060
*20*018	2	2	19560613	003	000000000	0090
*22*018	2			031	038003171	0090
*20*018	3	3	19560614	003	000000000	0060
*22*018	3			031	038003414	0060
*22*018	3			025	066390146	0060
*20*018	4	3	19560614	003	000000000	0060
*22*018	4			031	038003477	0060
*22*018	4			025	066390118	0060
*20*018	5	3	19560620	008	000000000	0060
*22*018	5			003	055162415	0060
*22*018	5			025	121552632	0060
*20*026	2	2	19511115	010	000000000	0060
*22*026	2			024	070584847	0060
*20*026	3	2	19511115	008	000000000	0060
*22*026	3			002	043245585	0060
*20*026	4	2	19511202	001	038154069	0060
*22*026	4			008	061045573	0060
*20*026	5	2	19511202	001	038153887	0060
*22*026	5			008	061045541	0060
*20*026	6	2	19591022	003	000000000	0060
*22*026	6			010	038101754	0060
*20*026	7	2	19591022	003	000000000	0060
*22*026	7			010	038101751	0060
*20*026	8	2	19591022	010	000000000	0070
*22*026	8			024	070584953	0070
*20*026	9	2	19591023	010	000000000	0060
*22*026	9			024	070584779	0060

*20*009	6	2	19511007	022	000000000	0060
*22*009	6			030	029151729	0060
*20*009	7	2	19511207	022	000000000	0090
*22*009	7			030	029151833	0090
*20*009	8	2	19511207	041	000000000	0060
*22*009	8			030	055371887	0060
*20*009	9	2	19511207	041	000000000	0060
*22*009	9			030	055371800	0070
*20*021	1	2	19511025	016	000000000	0060
*22*021	1			028	009305929	0060
*20*021	2	2	19511025	016	000000000	0060
*22*021	2			028	009305957	0060
*20*023	4	3	19511102	038	000000000	0060
*22*023	4			022	083133978	0060
*22*023	4			004	237441360	0060
*20*023	5	2	19511102	038	000000000	0060
*22*023	5			004	237441230	0060
*20*023	6	3	19511202	038	000000000	0060
*22*023	6			030	051180280	0060
*22*023	6			022	083133985	0060
*20*023	7	2	19511205	030	051175978	0060
*22*023	7			022	083133848	0060
*20*038	19	2	19511019	022	000000000	0170
*22*038	19			021	077020670	0240
*20*038	20	2	19511025	030	000000000	0060
*22*038	20			021	150562980	0060
*20*038	21	2	19511025	030	000000000	0060
*22*038	22			021	150562991	0060
*20*038	30	2	19511106	021	000000000	0060
*22*038	30			023	308371704	0060
*20*038	32	2	19511126	021	000000000	0060
*22*038	32			028	046365528	0060
*20*021	22	2	19511025	016	000000000	0060
*22*021	22			038	137144468	0060
*20*021	23	2	19511025	016	000000000	0060
*22*021	23			038	137144442	0060
*20*031	37	2	19560614	033	000000000	0060
*22*031	37			025	087263475	0060
*20*028	12	2	19630628	034	000000000	0060
*22*028	12			043	073181887	0060
*20*028	13	2	19630628	034	000000000	0060
*22*028	13			043	073181706	0060
*20*028	17	2	19640518	033	000000000	0070
*22*028	17			034	043080526	0070
*20*028	18	2	19640518	033	000000000	0140
*22*028	18			029	199265590	0200
*20*033	18	2	19600100	031	021350903	0120
*22*033	18			034	076094243	0070
*20*033	22	2	19640521	034	000000000	0070
*22*033	22			028	089512839	0070
*20*033	23	2	19640521	034	000000000	0070
*22*033	23			028	089512791	0070
*20*043	1	2	19630627	028	131094468	0060
*22*043	1			034	188230036	0060
*20*043	2	2	19630627	028	131094473	0060
*22*043	2			034	188225968	0060
*20*034	26	2	19601103	033	000000000	0070
*22*034	26			031	078293856	0120
*20*034	30	2	19630628	043	028213059	0060
*22*034	30			028	077495925	0060
*20*034	31	2	19630628	043	028213128	0060

*22*034 31			028	077500019	0060
*20*034 33	2	19630717	043	028213146	0060
*22*034 33			028	077500097	0060
*20*034 34	2	19640520	028	000000000	0070
*22*034 34			033	047002696	0070
*20*034 35	2	19640520	028	000000000	0070
*22*034 35			033	047002751	0070
*20*029 24	2	19630314	027	087500480	0070
*22*029 24			028	345002380	0070

*52*031
*52*500
*52*500
*52*031
*52*008
*52*008
*52*010
*52*010
*52*500
*52*500

* 52 * 500

Table B-3

710105	012	383502730 X	0380
710105	012	532822020 X	0510
710105	010	520302240 X	0520
710105	010	515338790 X	0510
710105	026	617203690 X	0610
710105	010	648590530 X	0640
710105	012	384949440 X	0180
710105	026	702305120 X	0300
710105	026	445505420 X	0700
710105	008	412689260 X	0440
710105	031		

860616	t	-1781678.7467	0.0682	790607.7371	0.0688	322539.7092	0.0484	1975720.5304	0.1085		gps22
860616	pver-west	21959.4287	0.0899	8333.9244	0.0651	25986.1293	0.0552	35027.8421	0.1240	67	gps22
860616	pver-boul	30080.7521	0.0973	42898.3728	0.1246	78336.1641	0.0663	94242.6477	0.1717	e167	gps22
860616	pver-ftdv	-1201260.9823	0.0006	662024.0659	0.0006	290843.4646	0.0006	1402103.3244	0.0006	e167	gps22
860616	pver-hayo	-4017862.8923	0.0006	-212745.4428	0.0006	-773932.2116	0.0006	4097249.5546	0.0006	e167	gps22
860616	pver-monu	-139163.4255	0.0893	132310.9557	0.0663	78002.7784	0.0558	207260.9019	0.1246	e167	gps22
860616	pver-mojl	-169028.3791	0.0006	-23422.1099	0.0006	-145575.4559	0.0006	224302.0319	0.0006	167	gps22
860616	pver-nigu	-48432.1720	0.0670	41938.8659	0.0539	21078.1488	0.0434	67445.0304	0.0961	167	gps22
860616	pver-pnft	-155816.8324	0.0719	91289.1448	0.0570	11770.6492	0.0465	180972.7642	0.1029	167	gps22
860616	pver-rich	-3486771.2077	0.0006	1004022.6567	0.0006	782321.5281	0.0006	3711827.3025	0.0006	e167	gps22
860616	pver-twin	102677.3545	0.0756	-20848.5277	0.0670	47290.9603	0.0527	114951.0120	0.1141	e167	gps22
860617	vndn-aust	-1934297.5335	0.0583	935191.8683	0.0558	397080.2569	0.0391	2184894.3931	0.0893	g168	gps22
860617	ndn-west	-130659.4283	0.0639	152917.8931	0.0515	100526.7145	0.0403	224858.5968	0.0918	g168	gps22
860617	vndn-monu	-291782. 2099	0.0676	276894.9616	0.0564	152543.3413	0.0422	430205.9376	0.0980	g168	gps22
860617	vndn-nigu	-201050.9759	0.0632	186522.7822	0.0527	95618.7612	0.0403	290439.6507	0.0918	g168	gps22
860617	vndn-otay	-249359.9650	0.0694	274408.0570	0.0570	180265.6440	0.0428	412281.3072	0.0998	g168	gps22
860617	vndn-pnft	-308435.6550	0.0651	235873.2222	0.0564	86311.1775	0.0428	397766.7025	0.0961	g168	gps22
860617	ndn-sdad	-221687.4850	0.0682	243402.6616	0.0558	158259.5476	0.0422	365289.3114	0.0980	g168	gps22
860617	ndn-ftdv	-1353879.7801	0.0006	806607.9908	0.0006	365384.0826	0.0006	1617749.1888	0.0006	g168	gps22
860617	vndn-hayo	-4170481.6907	0.0006	-68161.5180	0.0006	-699391.5940	0.0006	4229268.5096	0.0006	g168	gps22
860617	vndn-rich	-3639390.0064	0.0006	1148606.5824	0.0006	856862.1459	0.0006	3911351.3569	0.0006	g168	gps22
860617	vndn-pver	-152618.7975	0.0006	144583.9253	0.0006	74540.6184	0.0006	223054.5059	0.0006	g168	gps22
860617	vndn-twin	-49941.4932	0.0651	123735.5497	0.0527	121831.5155	0.0415	180686.3502	0.0936	g168	gps22
860617	ndn-boul	-122538.1683	0.0936	187482.3746	0.0967	152876.7799	0.0583	271176.2403	0.1469	g168	gps22
860617	vndn-moj1	-321647.1770	0.0006	121161.8155	0.0006	-71034.8385	0.0006	350974.4154	0.0006	g168	gps22
860618	vndn-aust	-1934297.5009	0.0564	935191.8526	0.0577	397080.2555	0.0403	2184894.3573	0.0905	f169	gps22
860618	vndn-bouc	-262494.7874	0.1166	231944.8536	0.0601	111498.9826	0.0589	367605.7013	0.1438	f169	gps22
860618	vndn-west	-130659.4466	0.0645	152917.7141	0.0484	100526.8537	0.0409	224858.5480	0.0905	f169	gps22
860618	vndn-laj1	-222616.4283	0.0732	241982.0941	0.0539	155966.7913	0.0459	363921.7609	0.1017	f169	gps22
860618	vndn-monu	-291782.2386	0.0663	276894.9827	0.0527	152543.3544	0.0422	430205.9753	0.0949	f169	gps22
860618	vndn-twin	-49941.4451	0.0725	123735.5554	0.0564	121831.5421	0.0490	180686.3588	0.1042	f169	gps22
860618	vndn-otay	-249360.0580	0.0701	274408.0796	0.0533	180265.6906	0.0434	412281.3989	0.0980	f169	gps22
860618	vndn-ftdv	-1353879.7803	0.0000	806607.9909	0.0000	365384.0820	0.0000	1617749.1888	0.0000	f169	gps22
860618	vndn-hayo	-4170481.6904	0.0000	-68161.5178	0.0000	-699391.5942	0.0000	4229268.5094	0.0000	f169	gps22
860618	vndn-pver	-152618.7972	0.0000	144583.9247	0.0000	74540.6174	0.0000	223054.5049	0.0000	f169	gps22
860618	vndn-rich	-3639390.0058	0.0000	1148606.5817	0.0000	856862.1455	0.0000	3911351.3560	0.0000	f169	gps22
860618	vndn-bluf	-119385.8749	0.0905	183426.8218	0.0936	150120.4809	0.0595	265395.0732	0.1426	f169	gps22
860618	vndn-mojl	-321647.1768	0.0000	121161.8150	0.0000	-71034.8386	0.0000	350974.4151	0.0000	f169	gps22

\qquad

 Nowo

vndn-blan vndn-blhl vndn-cent vndn-cotr 4 vndn-ftor vndn-losp vndn-madc vndn-ovro vndn-algo vndn-blan vndn-cent

 vndn-ftor vndn-lacu vndn-madc vndn-ovro 응
T
5
5

5 | 0 |
| :--- |
| | vndn-chaf

vidn-devl vndn-fibr 4
4
5
5
5 vndn-gavi
vndn-lacu \circ
5
5
5
5 0
0
0
5
5 vndn-pver vndn-algo vndn-brus vndn-fibr vndn-ftor vndn-gavi \circ
0
0
1
5
5

4
0
0
1
0
5
5 10
5
5 vndn-soli vndn-algo vndn-brus vndn-devl vndn-fibr vndn-ftor H
0
1
1
0

5 5 \begin{tabular}{l}
\circ

\hline

1

5

5

 vndn-plat

4

0

0

1

5

\hline
\end{tabular} 0

-1
0
1
5
5

5 H. | 0 |
| :---: |
| 0 |
| 0 |
| 4 |
| 4 |
| 0 | pver-brus -1

0
0
1
μ
0
0 4
-7
4
1
4
0
3 43
4
4
4
4
0
3
2 0
0
0
1
1
0
0
3 4
0
0
0
4
4
2
 न
0
0
1
4
0
3 5
5
5
4
0
0 pver-vlsr vndn-brus vndn-devl vndn-ftor 0
7
1
$\frac{5}{0}$
5 vndn-mill vndn-ovro 1
0
0
0
1
0
5 40
0
0
1
5
5
5 17
0
1
1
5
5
5 -1
1
1
1
5
5 $\begin{array}{ll}4 & 4 \\ 0 & 0 \\ 0 & 4 \\ 1 & 1 \\ 0 & 0 \\ 5 & 0\end{array}$

앵 द च्यु स 																																																																																																																												

 స్ळ

 NNG

ज个ゥ
内人

No

Table B-5
SV3 Fiducial Station Coordinates (meters)

ID	X	Y	Z
algo	918127.7167	-4346061.8756	4561984.2549
aust	-743774.1273	-5460643.7270	3200347.4262
chur	-236416.9523	-5430055.7677	3307612.1244
ftdv	-1324191.8149	-5332059.7133	3232043.4878
ftor	-2697026.6896	-4354393.2306	3788077.7592
hayo	1492410.0956	-4457290.2044	4296819.1641
moj1	-2356424.4176	-4646613.5373	3668462.4083
moja	-2356214.6131	-4646733.9445	3668460.5720
ovro	-2410422.3887	-4477802.5734	3838686.9267
plat	-1240708.0633	-4720454.2657	4094481.7835
pver	-2525452.7972	-4670035.6471	3522886.9520
rich	961318.4115	-5674058.3042	2740565.4244
vlsr	-2678099.9767	-4525456.7503	3597399.0227
vndn	-2678071.5945	-4525451.7224	3597427.5698
wsfd	1492233.0859	-4458091.5739	4296045.8999
yknf	-1224064.3320	-2689833.0360	5633432.6270

