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PRLFACE

Shortly after arriving ot Peacadera in June, 1941, Dr., ¥, A, Biot presented
the anthor with the prcohblem which is given in reference 1. For shertneas of
form, reference 1 is simply referred to as Report 5. br. Biot had already
doe some worr on this pretlem ~nd Led conceived tﬁe ides of the wvortex zprroxi-

1,
:

mrtiong which #re set Torth in secticn I-1 vart II of Rewort 5. Under the
gridence of Dr. Piot thils provlem was sterted, and after it was well along he
sugrezted that it te used for the author's thesis, Tris wag brovght to the
attentisn of Dr. Treodsre von KArmsn who epuroved the enuggestion provided that
some part would he solitary work so thet the requirerents of a thesle wovld be
satiasfied, Thet part of the problem which wes to be considered as solitsry
work was nnt settled until Zerntenber, 1942, at which time EHeport 5 was nearly
conpleted.

It i tc be otserved th-t Rerort 5 corsliders only the simple wing and
dnes not trect the wing~aileron combination, It wns then egreed upon by
Urs. Q;L Karndn end Biot th~rt thre treatment of t-is phase o the sul ject would
satisfy the sbtove mentioned requirewents, snd thus the following pages have
been writter., It is to be pointed ovt that this thesis can be coneidered as
a sun*ieﬂunt or & sequel to Report 5 and in reading it 1s necessary to mve a
copy of t"is report at hand,

Acknowledgrent has heen made to the authers concerned within the body
of the text excevt where reference is mede to Heport 5, in which dve credit is
given, At this voint, ‘owever, the suthor wishes to exoregs hie zratitude
and tuanks for tre inforration 2nd help given him by the staff merbere of the
Califorria Institute of Tecrmology.

C. T. Boehnlein

Minnearolis, Minvesota.

Noverter, 1543G.



Swmmary of Symbols

Tre following grouve of symbols are mot included in this list: the
symbols Introduced in Report 5, certain other symbols of a temporsry nature
which are self-understood, nnd more or less standard symbols such as are used
for thie Bessel functions, the logarithnic base &, the imaginary unit £, etc.

Roman, Upper Case

,43 instantaneous value of the total circulation about en oscillating wing-
ajleron combination introduced in section 1-4.

éﬁéﬂ defines an irtegral concerning the downwash along the chord, introduced
in section -4, corresponds to Sz of Report 5.

53? defines an integral which is a component psft of t32ﬁ ; introduced in
section I-4, derived in section 1-6.

l33ﬁ defives an integral concerning the downwash along the chord, intrcduced
in section I-4, correspords to 83 of Report 5.

éi;ﬂ defines an integral which is a2 component part of 1333 » introduced in

<

section I=4, derived in section I-6.

s function of reduced velocity, def@ged by Theodorsen in reference 2,
introduced in section I-9, same as /A~ used by Lombard.

£, Ei, Ea

define integrals of the vorticity along the sileron chord, introduced
in section Il-2 as exvressions (2,1),(2.2),(2.3).

f " o ’
EO‘ Eo ) EO”’) Eo ) EIJ ‘ce, E:i”, E-‘:‘.o

A
L.

define integrals which are component parts of Lo, £,, and £,
introduced in section II-3, =s expressions (:.9), (&.10), etc.

the real part of Sg introduced in 1I-13.

the wing 1ift per unit of span, positive upwarc.

L/) ) L}; 4 L‘i ’ Lﬁ

coefficlents in the wing 1ift expressicn, used only in section I-E.

/M the wing moment per unit of span about the mid-point of the chord,
positive when stalling.

/v!z the wirg moment per unit of span sbout the axis of rotation, positive
when st=11ing, introduced in section I-9, Theodorsen's notsticn.

A4e identical to AA@ introduced in section I-1C, Lombard's notation.

/Vﬂg the moment of the aileron per unit of span sbout its hinge, positive

when stzlling, introduced in section II-Z as expression (2.4)



M J/V)};.,/W«, Me

coefficients in the wing moment expreesion, used only in section I-8,
/VQ< imaginary part of E;; introduced in section II-13.

2 a function of reduced velocity, defined dy Lombard in reference 4,
introduced in section I-10.

e symbolizes an integral, introduced in section II-5 28 expression (5.4),

R,,F\D?_,"',Rm .
primarily nondimensional functions of alleron chord, Lombard's notation,

see appendix B

:54{ a function of reduced veloclty, aspect ratio. and eileron chord, defined
by expression (8.9) section II~§

Jo(k,8.), 5,(k,e05), -, Ss(h,8,)
functions of aspoct ratio and aileron chord, A = ;%— or
introduced in section I1I-4,

7;‘) 7;/...}7;‘4
primarily nondimensional functions of alleron ¢hord, Theodorsen's
notation, see appendix A,

W
X

Homap, Lower Case

& ratic of distance between midpoint of the chord and ajleron hinge
divided by semichord, Theodorsen's Notation.

ao ) q 4 aa

functions of aspect ratic, repeated here from Report 5, part Il, page 30,
In thiz thesis see section [l=tE. _

dn coefficlents of a Fourier series, used in aprendix C only.
& chard, seme ag in Report 5.
Eo s € 1€

auxiliary notation used to assemble allereon hinge monept expression
tutroduced in section Il-8 as expressions (&,7), (€.8), and {£,2).

ral ugsed here to designate a function of asgpect ratio, reduced velocity, and
eileron chord, introduced in section 1I-9, as expression (9.4)
Ly, L, %

f%nctions of same variables as * above, introduced in section Ii=f ss
expressions ({.?}, (8.4), and ({.f}, component perts of

E,, tT ﬁnn ﬂ:;"‘.'ﬁn
component parts of ﬁ,, f, and TZ,introduced in sections II-4, [l-3,

and II-€,



Ve instantapnecus wvertical displacement of the midpoint of the chord due to
wing oscillations, positive downward,=zsme as in Heport 5.

ha instanteneocus vertical displacement of the point on the chord deslgnated
re the axis of rotation due to wing oscillations, positive downward,
introduced in section I-8,

k used in apvendix C to designate % ard JL

71, mase of an alr cylinder per unit of span with the chord a2s diameter,
introduced in sectionm II-10,

w- downwash velocity, positive downward.

W velcclity of relative downwash from lesding edge te aileron hings, due
to wing oscillations, introduced in section I-i.

W; velocity of relative downwash along allieron chord, due to wing
neciliations, iatroduced in section I-5.

Wa nged té syrbolize the velocity of relative downwash due to wing
oscillations, includes both Ws and Wi , introduced in section 11-C.

ol

w;‘l wE") L();
downwash due to weke troiling, shed, tip and bound vorticity respectiveiy
for wing-eileron corbination, intreduced in seection II-C,

X designates distance meagured alorg the chord, origin et midpoint,
vositive toward treiling edge.

Xo distance from midpeint of chord to aileron hinge.

X, distence from midpoint of the chord to the center of 1ift, used in
section I1-¢ only.

Ye instantanecus vertlcal displecement of the point on chord designated as

the axis of rotation, due to wing cscillations, positive upwurd, intro-
duced in gection I-10, Lombard's notstion.

Greek, Upper and Lower Caxe

A angle of zileron deflection reletive to its neutr-l poeition, positive
when it increases the lift. See figure 5,1 section I-5.

£7° circulmstion due to the oscillations of & wing-asileron combvination,

‘ introduced in section I-4.

l;?', ]:3‘7 ) ];'1“1
circulation due to the wake treiling, shed, tip and bound vorticity
respectively of a wipg-alleren combination.

g the rat o of the distance between the forwsrd quarter chord noint and
the axie of rotation divided by the wing chord, See figure 10,1
section I-1C, Lomberd's notation.



used as a variable of integration, related to X by expression (3.2
section II-3,

a term which designrtes the position of the aileron hinge, See ox-
pression (5.6) section I-5. - :

used mas & veriable of Integration, related to X by expression (5,5)
section I-3, This term dcee not appear in final expressions for wing
1ift, wicg moment, and ailleron hinge moment. See line below.

ratio of aileron chord divided by total chord, used only in sections
I-10 and appendix B, Appears in final expressions only. See
definition of T given above.



Chapter I I-1

WING LIFT AND #ING MOMENT

1-1 A Prelimipary Remark
As is stated in the preface this dissertation is a supplement or a

sequel te¢ reference 1 which was written by Dr. M, A. Biot and the author.
For shortnegs of form reference 1 is referred to a8 Report 5, The basic
theory used herein is described in Heport 5 and many formulae are talken
bodily from this report. In reading this dissertation it is therefore

essentisl that a copy of Report 5 is at hand.



1.2  Purypose
A formula for the 1ift of en oscillatiog wing and one for the wing
moment are derived in Heport 5. The moment formula is taken about a lateral
exis through the midpoint of the chord. The formulae of Report 35, however,
assume a wing without an aileron, consequently, the effects of a wing with an
aileron having oscillatory motion are unknoyn in so far as Repert 5 isg concerned,
It is the purpose of @his thesls to derive the formulaes for an oscil-
lating wing of finite span, which wing has an aileron. These formulae are,

the wing 1lift, the wing moment and the moment of the sileron sbout its hinge,



I3
I3 Summary

All the fundamental considerations as get forth in Repert 5 szlsc apply
here. The summary of Repcrt 5 (pege 2 part I) written by Dr. Blot is hereby
thought of as & part of this summary. This is especially true of the wing
1ift and wing moment formulae developed herein, since tle introductiocn of an
aileron produces nc new functione of the reduced veloclty and aspect ratio.
The particular functions referred to in Report 5 are B and Gr -

These functions occur unchanged in the formulae for the wing 1ift and the
wing moment for an oscillating wing with an aileron. From this point of view
the contents contalned herein are pﬁrely & seguel to Report 5.

The moment of the aileron about its hinge, as derived here, forms a mo}e
or less separate derivation, although it is dependent on some of the results
of Report 5. The same vortex pattern and the same epproximations as used in
Heport 5 are alsc used here, Further, there sre no new approximations intro-
duced but & new function designsted as E;g ariges from the derivation,
This new function 3§R is similar to .Ef and Ei;z given in Heport 5 in
thet 1t is a function of reduced velocity - and aspect ratio, but different
in thet E;% is also a function of the raetio of alleron chord to wing chord
or as glven here & nondimensional persmeter which gives the location of the
nil-eerbn hinge. When the aspect rstio is infinite then f'; = 5,(-\, = STR =1
where C' is the function described by Theodorsen in reference 2. The
nunerical values of EiR have not a&s yet been calculated.

In order to integrate cert:in expressions pertazining to Eiﬁ Fourier
geries end termwlse integration are used. The coefficients of this series
are the modified Bessel functions, the veriable being proportional to the
reciprocal of the aspect raotio, while {he trignometric terms depend on the

above mentioned nondimensional parameter which locates the silerorn hinge,

All other integrals are teken from Report § with the exception of one for which



no integration was found , Fortunately, this latter integr2l cancels from the
finished formulae.

The results are given in four forms, The first form is as derived,
agsuming thst the vertical displacement of the wing is measured at the midpoint
of the chord. In order thot the formulee cen be easily compared toc the results
of Report 5 they are given in a second form which is called here the coefficient
form. The third form, called here the Theodorsen form, is given soc that direct
comparison can be made with Theodorsep's work in reference 2. The fourth form
ie given because it perhaps lends itself better to the numericel calculations
of wing flutter analysis; it is called here the Lombard form., If a comparison
ia'madl it will be found that this fourth form is identical to thet usad by

Lémbard in reference 4,
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I-4 Iptroduction

As mentioned in the summary the fundamentel considerations set forth in
Report 5 apply here. The same vortex pattern will be assumed except that in
the determination of the circulation the effect of the alleron will be in-.
cluded.

On page 5% of Report 5 the sxpression for the total circulation is given
by means of equation (6,1) which is

A=+ ["+["+ "

where /', [" /ﬂj"ﬁare the component parts of the circulation about the
wing respectively due to the wake trsiling vortices, the shed vorticity, and
the tip trailing and bound vortices, while I7° is due to tie wing oscillatione.
Since ths only ltem of change is the addition of an aileron the only term which
changes directly is e, This means that /' ° must be derived so as to
include the effects of the aileron. The terms /' I™ wrd ™ %o e
sure include A ag a common factor and do change but only &s a consequence
of the change of the factor A .

Following Theodorsen's notation given in reference 2, the Gresk letter
/2 is chosen to designate eileron deflaction, hence & used ss subscript will
indicate that the terms taken from Report 5 must be adjusted so as to incluéc
the effect of the aileron. Following this scheme expression (6.1) of Report 5
can now be written as

As = 74 7 B+

where /ﬂd designates the total circulation about an oscillating wing with
aileron. It is evident that /g = must be derived. For a wing with aileron

equation (6.3) page 55 of Report 5 now takes the following form:

Aﬁ:F"‘ QL:‘:' Gt. (4.‘)



1d
where now the effect of the alleron is included. The terms F, Qo , end Q
have here the seme meaning as in Report 5 and likewise the numerical values
of Report 5 can be used here.
Before the wing 1ift and wing moment formulse for the case of 2 wing with
an aileron can be determined two more terms of RHeport 5 must be modifisd, viz,,
£, end 83 . If the subscript B3 is properly attached to expression (2,73)

which is given on page 70 of Revort 5, it becomes for the wing with aileron

= & £ ! & ‘ : (4.2)

Here Bfﬂ mast be calculated for & wing with aileron but /7 can be taken from
Report 5. If the same operation ls applied to expression (2.36) given on

page 76 of Report 5, the expression becomes
= 2 _I_ / - = GO 2. Ql oo
53,6 = B:p + AAC [8 + LAC 11 C2 + 25‘)\6 - ‘X_“"z, P + E; (4.3)

where B_;g must be derived for a wing with aileron. Ths values for 5 Thowsver

can be teken directly from Heport 5.
The equations of section IIl-3 of Report 5 can now be put in form so that
they indicate the inclusion of an alleron. From Report 5 page 7€ the lift-

expression (3.4) is given as
L=pUA+5ilwch-piwB,

If A is replaced by A, eand B, by B,s the expression becomes

L=pUAs +%LwCAp —pészﬁ (4.4)
where this expression desigsnates symbolically the 1ift of an osclllisting wing
of finite apen with alleron. It is to be pointed out that the subscript 8
is omitted from the 1ift symbol J. . This should not cause any confusion,
since if /9-:;6' zﬁ'—'—O expression (4.4) reducee to expression (I.4) paze 78
of Report 5. If expression (.5) given on page 78 of Report § is treated io

the same menner as the 1ift expression 1t becomes



I-4

M=-pUbB,, “;%Siiu)Aﬁ + 5 (wBs (4.5)

which gives the moment of a wing with alleron about a lateral axis through
the midpoint of the chord positive when it tends to stall the wing. Hare
agein the subseript 4 has been omitted from the symbol M for the seme reason
as in the case of expression (4.4). A symbol Mﬁ will be employed howsver,
to designate the aileron hinge moment. |

Before introducing A&  and Qg in expressions (4.4) and (4,5) it is
advisable to eliminate A from expressions (4.2) and (4.3) by means of the
relation that

w=AU (4.8)

which relstion is found as equation (6.3) on page 39 of Repert 5. Performing

this operstion om expression (4.2) it becomes

o UQ
52ﬂ=52ﬁ+ApC[—2'—+ U,D; G ol B E'}

(4.7)

eand likewise expression (4.3) can be written as
| 19) 2 U U G
= 0 —_ e Lo
533" 38 +ABC1[8 +Lu}(, ¥ (Lw ) - 2iwcC
.o 2 UG ] '
(wor TRl e

Substituting (4.1) and (4.7) in expression (4.4) it becomes on algebraic

reduction as follows:

lwe
. Qt + 173 E.
= — cw B2 ir °
L F 82/9 +F }; Qe+ Cu — F _ (4.9)
On page 79 of Report 5, E is defined by expression (3.6) which expression
is
Q + M‘gcﬁ'

ER: = Qo+ Qi - F | (4.10)
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Thus expression (4.9) can be written as

. o o cormend
L=piwB, + pUL" KR (4.11)
In like manner expression (4.5) can be brought into the following form by means
of substituting expressions (4.1) (4.7) and (4.8) and reducing algebraically;

thus
M=—pUB;, + 5 (wBj, -—chl;;"

. (;.—-F: +.‘;ff s Eiifgﬁifg-

O 7o~ U
+ Zifcly
+ B Qo+ Q- F (4.12)
On page BO of Report 5, Ei;_ is defined by means of expression (3.8) which
expression is 2lwc
o Q-F+a4F -~ =5—F

il Qo +Q - F (4.13)

Substituting this in expression (4.12) it becomes
- 0 fj ; <] f) _li > R

M==pUB;, +ZiwBy— T UclE® +Z7UCl Qg (4.14)

From the appearance of expressions (4.,11) and (4.14) it is evident that the
wing 1ift and the wing moment formulae willbe completed as soon as ];:: B;;g,
and 35, are derived.

The expression for the moment of the aileron about its hinge however,
requires considerably more development. Since Report 5 considers the entire
wing, 1. e, from leading edge to trailing edge, the results of Report 5 do not
lend themselves directly to this phase of the probvlem, The solution of the
ileron hinge moment must be introduced by considering the air pressure acting
on the aileron. Since the development of the aileron hinge moment is rather
lengthy no formulse will be introduced here. Therefore, in the following
pages the wing 11ft end the wing moment equations will be developed first.

The 2ileron hinge moment will be taken up last starting with the pressure

equation which is given as equation (1.3) page 55 of Repart 5.



I-5 #Ning-Alleron Oscillaticns Eie;glag:e@ by Eguivalent Dowawssh

In Heport 5 section I-6 pages If-41 the expressiorn for the relative
downwash is derived from the kinematice of the wing's cscillatory motion.
Tris 1s worked out for a wing without sn =il=ron. Here it is essential to
inclnde tie effect of the =ileron. Since the solution of this derivation is
linear it is only necegsary to derive the effect of the sileron #lone, then
the expression for the wing-nileron combination is obteained by the process of
superposition.

Figure 5.1 has been drawn similsr in some respects to figure €.2 page
39 of Renort 5 but in additlon figure 5.1 possesses an eileron. This figure
showgs the coordinate systeﬁ and depicts the angle‘é? i. ., the angle of
sileron deflection. The point £ design~tes the leading edge, F the trail-
ing edge, and G the mileron hinge. The origin 1s =t the midpoint of the
ctord 2nd ie design-ted as point (J . The X—axis is considered as the

line £ G produced. The

Ly NF\ \,1 abscisea of the sileron

hinge is tealen az Ao

The point P with abscissa
Fig. 5.1 Ting-illeron Combination. . X is an arbitrary point
on the aeileron,

From figure 5.1 it is apparent that expression (e.€) given on page 40
of Report 5 is applicable to th>t nort of the wing designated by the line £ G
hence it can be said th-t the Jdownwash is

wo=~h -Ux ~Lwa X, for —%SXSXQ {5.1)

vhere'}; designates the vertical velocity of the point O , positive when
downward. From the information glven on paxe 40 of Report 5 it follows that

the angular velocity
= { WA



apd meking use of this relation,expression (5.1) becomes

wr, =—H-—Uo(~°.kx 3 for —%SX'S.XO (5.2)
The latter expression being the same ss (5.1) is however, in = simpler forw.

From figure 5.1 it is apvarent that the angle of aileron deflection &
ig measured relative to the line £ G produced, which as drawn has an sngle
of ettack X , consequently the angle of attack of the aileron GF is
A+ S . The angles ot and & are taken o gnrll that with good avvroxime-
tion the sin (e +8) = ¢+ cnd the coOS(a+/) = /. 3ince
the methods of superposition ere to be used the sngle O will be set sqgual
to zero. Under the imposged conditions the undisturbed air gtream U "
has an upward component normal to the aileron of magnitude ug . Since
an upward velocity is here considered as a negative downwash the contributien
of this component to the downwach is —U,G

Ag in Report 5 the anguler velocity X is considered positive when it
is in the direction of increasing ol . In like manner let /é designate the
angular velocity of the aileron G F , positive with increasing & es indi-
cated in figure 5,1. Since the methods of superposition are used here take
dk:: O 3 Under this condition the linear velocity of the point P due to
the angular velocity Ké is (;(—-XO)A§ P The angulasr velocity ﬂé cruses the
point F of figure 5,1 to move downward, hence the motion of the undisturbed
air relative to point [ is upward. 16 contritution of this motion to
downwash is evidently =— (x —Xo) /é .

The total effect produced on the downwash by alleron when h=x=X=0
is -—U,@—[X“Xo)/é
The downwash eguivalent to the asileron G f when h, &, and X are not zero

is obtaired by superposing the above exrression on eguation (5.2}, thet is

. -
w; = wg —UB—(x=Xo)8 , for X.SX=S7F (5.2)

Je &

.y



I-5

Wy = =h —UX = XX —=UB —(x-X%X0) 3
f (o4
or X, <X < =
(5.4)
where A = the downwash velocity equivelent to the silernn.
For the convenlence of subsequent integration a new variable T will

be introduced, defined by the following relation

I
x_a cos T i

In order to designate the hinge G (figure 5.1) a constant €, is so chosen

that C
Xo = 7 €090 (5.€)

The particular cholce of the Greek letters T and © are consistent with
Report 5 except that no constant O, 1s introduced 1n that report.. helation
(5.5) is introduced on page 44 of Report 5 as equation (1.3) and © ‘becomes
one of the varisbles of integration on page 58 of Report 5. However, as will
be seen the present use of T will in no way confuse its use as designating
the ratio of aileron chord to wing chord.

Making use of relations (5.5) cnd (5.€) expressions (5.2) and (5.4) can
be put in the following forms:

w, =—h —-ch-g-‘:_f!cosl‘
for ©,<T=<TT L)

and .
. c X _ <8
wp = —h —Ux — = casT —Ug~ —a—(C()ST'—- cos 90)

for O<sT=6, (5.8)



I-6,

1-6 Derivationg of &, B.e, Bss

From page 43 of Report § Munk's integral for the determination of the
circulation is given as expression (1.2) and is here reproduced as expressicn
(6.1); thus

B
/"'=~/ur"(l+cos~’r)d’t"
o

where C = the length of the chord. To evaluate this integrel, however, the

(6.1)

downwash W~ must be a known function of T . The expression for /;;'o cen
now be obtained by substituting relations (5.7) and (5.€) in Munk's integral.
From the limits of integration it ie clear however, that w; must be integrated

from O to ©, , and W3 from ©, to TT . Following this scheme Js becomes

8, . ,
B s / [_;,; Tt Q;_!COST—U,G - Qéé(co: T - cos eo)](wcos'r)d’r
o

o
—C/ [*H ~Uw —C—a‘i‘cos’r](h‘cost') At
8

©

Thig integral can be written as

bia
ls °= I[H+U°(+%9“-cos’l‘](l+c;osr)d’t‘
o]

So ’
+J [U,@ + Ez—é(cosf—coseo)](l+cos’r)a/’r
o

and on integretion it becomes

EO: 7TC‘(H+U°(+%§?—‘} + UCﬂ(Q, +.an90)

+C_;£((l%° — 8,088, +5in8, — ;1"’5""7260)
(€.2)

It is very convenlent to express };-o in terms of the Thecdorsen's
constants {see reference 2). These congtants are given in sprendix A in terma

of the notation used here, Introducing these constants expression (6.2)



becomes

= 1re(h +Uo<+§f) +Uc,5’7;,+§;i£'7:

(6.3)
To derive B;’p integral (1.7) page 58 of Report 5 must be used. Tris
integral is . ™
Ba "-'EC‘ w-sin® T dT (6.4)
o

This integral presents the eeme problem in regards to the interval of integre-
tion as F" it being necessary to integrate from O to ©, and then from

©, to TT . Substituting expressions (5.7) and (5.0) integral (6.4) becomes
2/6‘ 2/ [h Uo&— co_s"Z“ g — —E(coa't‘-c.oseo)-]ﬁlﬂl’l'd”['

-%— [‘h U~ acos‘t']mnz’l_"'d’t‘
60

which can be written as

Bzﬂ = --—/[/’l + UO(+~C-——cos ’L"Jsma’l,"d’t’

] [Uﬂ +—’—(co_->’1"—cose)J:>ma’L‘d’r

o

Integrating ~nd resarranging 520,5 tekes the following form:

c2 B .
B:, = —;;[W(h +Uo<) +U,8(60 —Smooc'oseo)
+ Ez.é(% Sin36, —8,c05 6, + 5in6,co0s26, U

(6.5)
Making use of the Theodorsen constznts as given in 2sppendix 4 expression (6.5)

becomes

Ry =~S[mr(h +Us) ~UB T, ~

N,

7’—] - (6.6)
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The last integrel of this section is B; i This is given as integral
(1.12) on page 61 of Report 5 as follows:
7
B_;::Q W s AT cas TP AT (6.7)

Z
(]

Substituting expressions (5.7) and (5.8) integral (€.7) becomes
L"go
¢3 g 3 ;
;ﬂ - -2:-] [—h —Un\'—&—g—‘cosfr—Uﬁ - —%g(cos’t‘— cos Bo)]sinz TcosTdAT
o

7r
+:¢ij Z-h ~Uex —% cos’t’]sin‘l’ cosff}/f
S

or

™
A = . L G Bk .
B-?/S’“ _4][/77"[]0(?—‘& co:mJIsm”t"cosTD/T
“o

8 '
3
- %/ [U,G’-f— %g(cos’r—coseo)],sinzfcog’L’d’r
o

On integrating, the above expregsion is brought to the following form:

2' -
Big == %[7%6204 + 4+ UcBsing,

268/ 0 ! _. I ;
+ (g2 — gz sinae ~Fcos6.5in7g,) |

(6.8)

Again, meking use of Thecdorsen's constants it can be shown that

(€.9)

B;,Q = —ZQIZ;%CI‘S( + UC/Q(T-Q"'T;) _%(‘G ~"‘7;-(-05’60)"]



I-7  Ving Lift and Wirg Moment

The formulee for the wing 1ift and the wing moment can now be put in their
final form. The formula first to he assembled is the wing 1ift, expression
(4.11). This expression requires the substitution of E3;; expression (€.86),
and /g ° expression (6.3). Making these substitutions the formula for wing

1ift becomes

= - plw g—d[w(h +U) -~ UBT, TJ}
TJ—PUE{WC(H +Uo<+%‘i)+Uc,57,'o +C—f§77,}

L:%—Tpcziw[h'+[]o<—g§ —-%77]

+rpcUE[h+Us +& + UBT, + S2T, |

3

which is one form of the expression for the wing 1ift per unit of span positive
when upwerd. Expression (7.1) is nct however, in a suiteble form for applica-
tion.
Expression (7.1) can be put in 2 more suitable form as follows: From
page 5 part I of Report 5 the following relations are obtained:
h=he'w*

cw ©

of =& @
A third expression concerning the angle 23 can be written as

6: ’ge‘wt

e

where /3 is the complex emplitude.

Differentiating the above three exy presgions gives



(ot

b -iwhe

twi

A= (W @

e

e :iw,é_é’i“’t

which by means of the first three expressions can be put in the following form:

h=iwh
& = Lo ok (7.2)
B =iwp

If the seme cperation is applied again the above three relations become
h =({owh=—w?*h

B=lwph=—w>pH
The first bracketed quantity of (7.1) hes {0 ae a factor. If each
term of the brackets is multiplied by this factor and relations (7.2) and
(7.2) are applied, expression (7.1) becomes

L=:4rljoc2 [h +Ud<~-@27;—- .____é‘-ﬁ'?,"

+1 pcUR [+ Uoc+ 52 UBTo'*"ZF—]/_z]

(7.4)
This form ls suitsble for spplication, but for betterment and cohnnrison three
others will be introduced. Before introducing these other forms the wing
moment eguation will be assembled.
The wing moment is given by expression (4.14). To assemble expreesion
(4.14), the expressions for [g° , B. ¢ nnd Bjg are needed. These nre

ziven by expressions (6.3), (6.6), sand (6.9). Substituting, M becomes



M= _PU{—%[IT(H+UO<) ~UBT; - <£ Tj}
4 4 Lw{—g{[if-gf& +UCB(T;=T,) "Q%é(_rﬁ’rc‘”@ﬂ}
_ ch{n‘c(ﬁ +Ux+<2) + UB T +C—Z-5i77,}
+-§UCG",R },nc(h+ch+ 2)+UchTo + WT}

Before applying the operations contained in relations (7.2) and (7.:), an

intermediate form of thie expression will be written as follows:

~--pc [U[ UB(T +To)+ Ty e T,.)J

+Lw[?-0(+2n,ﬁ( )—-Zlﬁ(—f;-f-—ﬁcoseo)]

*Ua;a[h**U"‘* +UET, +5 ?TT’-J}

(7.8)
Applying the operations expressed by relations (7.2) and (7.3) the above

expression becomes

- Uc 2 .. %
M= -——Pcl{_u+ C&+HE2 (14T,

(7.€)



I-7
which gives the wing moment per unit of span, positive when stalling and about

a latersl axis through the midpoint of the chord.



[ =]
f
)

I-¢  fipg Lify_ end Wing Moment, Coefficient Form
Expressions (..7) and (Z.9) given in section III-Z of Report 5 are in
the so-called coefficient form. Thie form {2 exvlained in section 3 of

Report 3, in particuler, page 6 part I. These forms s=s shown on page & of

the abvove reference are

L =Lyl & Latk
M:Mhh + Mo

If the coefficient of A is added the above will sppear es

L:th + Lqu + [_lgﬂ

M:Mhh + M«O('*' M,BB

The eynbol Mg is here used to designate a coefficient, snd in Chapter II it
is used to desigueste the azileron hinge moment, No confuslon should arise fo
the use of A{g as a coefficient is limited to this section only. In Hevert

5 however, the mbove two expresaions are slightly modified e& shown below,
L:Lh‘/’l b = LogO( +[_ﬂﬁ

M=Muh + Maox + M8
vhere, by apclying the firat of the relations (7.”) it is seen thet

/__H ::—-.i—-/_..h and M},:z—!——fﬂh

(W w

Applying reletion (7.7) with the excention of the first, to expression

4 .
{7.,1) it teomces

L-;_Epc*;w [H +Us = 2T o “‘”ﬂT]

T emw

FTpCU R [A+Ust+ Gfote BT, + G2 T ]

Cn collecting terms t'e expressiom becomes in coefficient form the following.
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L= Trch[ LwC +F’]/7 +Tpcl*® [“”C “”C)F]cx

+ Pl 4 (SE)T - 45T +H(Tu+ 55 T) R B
(8.1)
If thie is compared to expression (3.7) page 79 of Beport 5 it will be obgerved
that the coefficients of 4 and X are identical.
Applying the same procedure to expression (7.5) &e is done to the wing
1ift expression, the wing moment can be changed into the coefficient form.

Thig involves the swbstitution of & = (W and £ = (WP .

Substituting in expression (7.5) it becomes

M“*P@{U[‘WC“*UT—?(E”;) + 28T+ 5T )]

[ L + B (T -T) - L2 A(T 4T wose)]

—~UQGg[ i+ Ux + 2ot 5T, + 20 77,]}

On rearranging terms the expression csn be written as

=T oc2lUQ.h T et 1[“’"C" _fwe (we “]
M=ZpcrUQrh +7zp U | gzgm - 35 ~U+ a7 ) QX

6 e i (7— +Tc05<9) + L;;(E +Jé~7,_,)

(T +SET )8 + T, + T, | B

(g,2)
Compering this with expression {f 9) page B0 of Report 5 it is ohserved thst

the first two coefficlents coincide.



I-9 Jipg Lift and Wing Moment, Theodorsen Form

As the above subtitle implies the Theoﬁorsen forme as they are called
herein are the forms of the wing lift and the wing moment expressions as
- Theodorsen presented them in the N. A. . A., T. R. No. 496, see reference 2,
For this purpose figure 2 of Theodorsen's report has been reproduced as
figure 9.1 consistent with the notation used here.

In figure 9.1 the point 4 is the axis of rotation. It is located a
diltance_%? aft of the midpoint O of the chord. The quentity < is here
used in the same sense as it is by Theodorsen and is to be sure a pure number
but may be elthe?zponitivc or negative, The only conflict between Theodorsen's
notation and the notation as used here is the lower case ¢ . Here the lower
caseé ¢ is used to designate the length of the chord, while Theodorgen uses
it as a nondimonnional guantity to designate the distance O G shown on figure
9.1. See also aprendix A. The balance of the notation is the same ag shown
in figure 5.1.

Here / 4is assumed to be the vertical component of the velocity (positive
downward) of the point O,
figure 9.1. In order to

distinguish between the

vertical velocity of point

O and that of point A

let h; designate the
vertical velocity of point
Fig. 9.1 - Point 4 , the Axis of Rotation. A  which, according to
Theodorsen, is considered
positive when downward. Due to the oscillatory motion of the wing and the

meaning of the axis of rotation it follows that the point A is moving ou &

' straight vertical line. This is not true for the point O because its

L] a o
motion is the vector sum of h,_, and *25‘ X, The path of point O due to
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CZS o is on a circular arc described about point A as a center, and therefore,
the resultant path of point O 1is not a vertical straight line. Since here
the aﬁplitude of o« 1s assumed to be small, it follows with good apvroximation
that the point O can be considered as moving on a straight vertical line;

hence

(9.1)

and from the above argument it also follows that
h:ha——"
(9.2)

The 1ift, expression (7.4) can now be put in Theodorsen's form dy sub-

stituting expressions (9.1) and (9.2) as shown below;

Lz—z-r,ocl[}};, o<+Uo<—U’9 T]
+mpcUR [ﬁ cx+Ud-+ Uﬁﬁ IﬁTJ

which ¢an be written as
o W yenf i v _QCy U T - &8 ]
=Z Pt ha # U - = ‘L‘rlr”‘ -3

+ TPl B[ ha + Ust+ § (5~ a)s + YT, + L7,

] (9.3)
If the notation of!this expression is completely translated into that of Theo-
dorsen, it will bte found that this expression is identical to expression
(XVIII) of N. A, C. A., T. R, No. 496, except that zg- replaces Theodorsen's
i g Attention is also called to the fact that Theodorsen takes the lift
ag positive downward.

Expression (7.6) gives the moment about the midpoint of the chord which
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is considered positive if it is a stalling moment. Theodorsen takes the
moment =bout the point A of figure Y.l but in 1like mannmer he considers it
slso positive when stalling. Let M. designate the moment about the point
Y T Figure 9.2 shows the lift vector L , at a distance X: , from the

midpoint O of the chord

4] AL
’ EF . The point E is
&9
£ <2 _ e the leading edge. The axis
O # of rotation is shown as point
<~ X,——>

A  on this figure. From

Pig. 9.2 - Showing Lift Vector [ . figure 9.2 it follows that
M= —'X‘L_
and
Ma = ‘-(Xl - E—% ) L_
== L# T icr

from which it follows that

Mi=M +< L

(9.4)
Before making use of expression (9.4), relation (9.1) will be substituted

in expression (7.6) as shown below:
e pe i i+ )
F US BTy +4T) — S2A(T5 +7
2 AlTs vz ) = 7R (11 +licosa,)
—UQ‘R[H,Jon( + —-(a-a)o'c

B 2
+gﬁ‘7:°+%f7;']}

(9.5)

Substituting expressions (9.3) and (9.5) in expression (9.4) the wing moment



about the axis of rotation is obtsined as follows:

. IrE .
Ma=—g pcC? 4c>(+320( +n.,6’[ +T5,)

-+ UC;S[ 27,’)«- (7_ +Tcose)
UG [ K+ + £ (=) 2T, o T,J}
{4;)0 [ha+Uot—a° '97‘ %-#7,‘]

+rr,ocUE[h;+U0< +&(E-a)x

- 2T + ]

The above expression can be put in the following form;
=-——Fc22,~——h +ZE(%-a)s +£ (g + )&
+U—(77,+T),8+ =(T +aB +4T,) 8
-;f,—-;[ﬁ +(coseo—a)77];§}

+§pclU(2aE+§R)[h'a+Uot +5(£-a)



I=g
Tha above coefficlent of ;9 cen be sltered through an identity which exists

betweenl three of the Theodorsen constants. This identity is as follows;

Tg=Ti—Tg — Tucos 6,
(9.9)
This identity can te quickly proven by the substitution of the constants as
given in sppendix A, If this identity ig substituted as written =bove for

Tz in expression (9.8) the coefficient of B becomes

il

ZU—?T— 7; +a7:; +'§,T;l) '

ST —Te (s =) Ty +£70]

If the coefficient of ,8 is changed as indicated and expression (9.8) is
trenslated intov’i'heodorsen's notation, it will be found identical with ex-
pression (XX) of reference 2 provided the factor (aaﬁffR +Q—R) "

in expression (9.8) is replaced by 2(a + —'é) C. Attention is
called to the fact that 2 = Q. = C wvhen AR =OQ (see
Report 5 page 2 pert I) from which it follows thet

zaFE + éRl‘: 2(a+—'2—)C" when MR =0 5
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1-10 Wipg Lift end Wing Moment, Lombard Form

The wing 1if£ and the wing moment exvression will now be put in what is
called here the Lombard form, To do this it is necessary tb introduce some
of the Lombard notation., The complete explanation'bf Lombard 's notation is
found in appendix II of reference 4. The notation of Report 5 will also dbe
retained in this section, however, it is necessary to adopt some new notation
end this will be taken from Lombard's work.

Here, as well as in Report 5, the symbol T has been used as one of the
varisbles of integrationm, It will now be used to designste the ratio of
ailercon chord divided by wing chord. This should cause no confusion since
the aforesaid variable of integration does not occur in the final formulae.
In section 1-5, X, 1is defined as the abscissa of the aileron hinge, see

figure 5.1. From this it follows that

This relation can be put in terms of cos 6§, if expression (5.6) is em-
ployed, thus
i
T =S5 ~— cos©
2 ( :) (10.1)
or
as e, = | —~= 2%
(10.2)
The next verisble to be introduced is £ ; this is similsr to Theo-
dorgen's A in that it locates the axis of retation. The reletion between
(& and & cen best be derived by means of a figure, snd for this purpose

figure 10.1 iec shown. In this figure £F represents the wing chord where



the point £ is the leading edge en

< ac
ﬁ____,__,*___)i DR . %
= :
e 1

Figz. 10.1 - Lombard's &£ , -

d

in relation to Theodorsen's (L

=snd from this it follows that

&

1]

or

F

=(a+y)

1.10
the trailing edge. As in figure
9.1 the point A represents
the axis of rotation, From
figure 10,1 it is espparent

that

._a__.c.::
€C >

<
L

(10.3)

(10.4)

In order to mzke the resulis appear more nearly like those of Lombard,

the following additional notation will te used.

below; thus

/W%i= A4a

. = g/@ £
and

Eﬂ? = "hh

This notation is defined

It is to be pointed out that the barred notstlon is not used here as it is

uged by Lombard, see reference 4, ¢. g. Lombard writes

e -

By substitution of the above notation amd the R’s given in appendix B,

expression (2.3) divided by s, aprears as follows;

[F—?— — [y’&— Ux +<(a-%)& ~R3U/6"—f?4c:/5tj
—4

$B[5-vn-c(t-g)a-Fus - Bed]

1M =)
\ Ao D/
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The above expression is in reality the Theodorsen form in Lombard's notation.
Lombard expresces the formula for wing 1ift in the coefficient form.

In order to put expression (10.,5) in coefficlent form, relations (7.2)
and (7.3) musf be applied. Applying these reletions and collecting the terms
in such s manner as to form the coefficients of Ye , oXC, and Bc
expression (10.,5) becomes
L

= 4
- ~ | 4w

SUI

g R -w|ye

-—[(;;:—E)uo?‘—-él g:F?:__Aq -EIIF:?'(f—-—E)-Lw——]O(C

"'"Equ R, caP"‘LWc(Ra +R_3):]/8C

(10.6)

The minus signs before the bracketed guantities in the above expreseslon have
been introduced in order to meke expression (10,6} directly compasrable to
Lombard 's work. In the arrangement of the dynamical equations as given by
Lombard the aerodynamic coefficiente appear with opposite signs, which is the
usual thing in oprotlems of h=armonic motion.

If the terms due to the elastic constants of tie wing and those of
the wing mass are omitted in expressions (5.04), (5.05), and (5.06) page 119
of Lombard's Thesis (reference 4), then with a slight change of notation,
these expressions coincide precisely with the three bracketed guantities of

P—

formila (10.6) except that fz replaces the P in Lombard's oxpréssionl.‘

¥ Lombard credits the symbol F to R Kassner =and H, Fingad.o, see page 56
of Lombard's Thesie, reference 4, It ia identical to the  of Theodorsen.
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To put the wing moment formula into the lombard form, the noteations of
this section end thet of anpendix B is substituted in expression (9.8), section
I-9. Attention is called to the fact that expression (9.8) is the wing moment
about the axis of rotation positive when stalling; it is designated ag /Me
in this section., Performing the above mentioned substitutions the expressicn

for the wing moment divided by Ctn,_ cen te written as

. P - ; E °w
L= —[(e-g) e +UlE-% + (-5 + 52) &

QR'_

ol
|

|

30

)[Ge — U —c(£-e)

[ad c 3
- FUs - 3p]

(10,7)
which again might be called the Theodorsen form in Lombard's notation,
The next step in the procedure is to epply relations (7.2) and (7.3) of

section I-7. Applying these relations expression (10,7) becomes



-4
i

(]

(]

M _

o, = [(——s)w +4Lw—(e

— [—(Ea—%+§3§)wa +£w-éq(~;’§—e)

+4iw—g(fé+“-§*;§)(ﬁ-§)—4%2(£P+ )]uc

{ (R-Ryg)w?+ & [Ry—R, (R + @;E)J

+L'wfg[R6—R3E* Re (25 + s

(10.8)
The above expression is in al form so thet it can be compared wifh expressions
(5.07), (5.08), and (5.09) page 119 of Lombard's Thesis (reference 4). Here
it will be noticed that EE + ;q-“l;:——ip;l replaces FD—E in the
expressions as given by Lombard. On page 2 part I of RHeport 5, it is pointed
out thet for a wing of infinite aspect ratlo E = .Q_P_ =

The symbol C used by Theodorsen is identical to the P wused by Lombard,
heﬁce it can be said that for a wing of infinite aspect ratio f:f =§:R = P
from which 1t follows that EE + Qﬁgﬁ = P& when the aspect ratlo

AR =Q . Under this condition the two expressions become identical.



Chapter II I1-1

AILERON HINGE_MCOMENT

11-1 TIhe FPressure Expressicn

4s pointed out in the introducticn, section I-4, the derivation of the
moment expression for the alleron about its hinge starts with the pressure
expression given as (1.3) page 55 of Report 5. It will be noticed thet this
expreesion is given on the second page of chapter III of Repert 5 and thet
this chapter starts with Euler's equetion for fluid motion, consequently, it
can be rightfully seid thet the allcron hinge moment starts with first princi-
ples, Attention ieg called to the fact thst Euler'e oqust;on in Report 5 was
linearized, hence this approximation is inherent with the sbove mentiocned
pressure expression,

The pressure expression referred to is azs follows:

X
R x) =) :~pU[uz_(x)— U, (x )] -pa‘%-j [uz(x) - u.(x)]dx
_e..%

(1.1)

This expregsion gives the difference in pressure between upper and lower sur-
faces of the airfoil at the point X 2¢ shown on fi-ure 1.1. In this figure

"E FF representc the chord where the

. < L
€ ‘ 2 int £ designates the leading ed
f’ﬁ‘ point esignates the leading edge.
F
= g - ke the figure indicstes the origin O
| , is at the midpoint of the chord.
Pig. 1.1 -~ Flat Plate Wing The dimension £ estsblishes & point

slightly upstream from the leesding
edge, the reason for which ie given on page 55 of Report 5. Expression (1.1)
ig written in functional notetion to emphagize the terms dependent on X
As explained on page 56 of Report 5, the strength of the circulation J’ ;

ver unit of length can be written in functionel notstion as



§ = - -f{,,‘(x) L %) ‘ ,
(1.2)

rhare ({,(x) =and (A,(x) BTe the perturbntlon velonoities at the polnt X (f']gnrn
1.1) on the upper snd lower aurfaces recpeaciively. Jubrtitouting expreasion

{1 ) in (’l.l} and dropping the funotlional natatlion 1t bacomes

; T i 75
E - ‘PU" ! j .;‘fI/ X o x

.
’ -

At this point the & 1o the lower jimlt ¢an be set -qéal to zera. It 1n true
that J tende to Infinlty ms the leading alge of a plane alrfoll is approached,
lwwever, the integral exista. An a matter of fact the tntl(rllll f I:J,

i
debermines the circulation abont a wing of Infinite epan, Followling the

proacedure mentioned above Lhe presnure mpmt\un beoconme

A

o s /q\/}(" t ,-(:‘/ Nl x (1.3)
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11-2 Alleropn Hinge Moment, Fundamental Form

Before starting the derivation of the aileron hinge moment, three terms
symbolized by £,, £, snd £ will be introduced. These represent integrals

which will appear in the subsequent development and are defined as follows:

£
/ ¥ dx
(2,1)

X

£
£ =] J x dx {2.0)
Xo ,

z
Ez. "-] a’XZC/X
Xo

In the above, ¥ 1is the strength of the circulation psr unit of length, X,

Eo

il

% e the point at the trailing edge of the

airfoill, and the integration is token along the alleron chord GF as shown

is the coordinate of the hinge,

in figure 2.1.

In figure 2.1 the wing-aileron combtination is scheratically represented

by the streight line £GF . The point £ represents the leading edge, the

peint G the aileron hinge, and the
-v-——x IR
peoint F the trailing edge, hence the
E o & £k e
c J e line segment G-~ ies the aileron chord,
| SRS _2- P— =) (= x°
1t dX is an element of ailercn chord,
Fig. 2.1 - Wing-dileron, the 1ift per unit of span is (12 ~ ) clx
snd the moment of this element about
the polut G s (g -}?)(X"Xo)ab(. From this it follows thet the =ileron
hinge moment per unit of span is
<
=
Ma == | (o= py(x-22) elx
Ao (7.4)

where the inus sign is introduced such that stalling moments are positive.
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Substituting expression (1.3) in (2.4) it becomes

Mﬁ=fj [pUd’+p§— Xc:(x}(x-xo)dx

o 2
which can he arranged as

C c

F TE

-patU | EMM_XO/XO% [ retx et}

2
Use can now be mede of integrals {(Z.1) and (2.2); thus Mg becomes

M/e = —PU(E,“ono)

-2

_ﬁ{j:j[[;&dx]xdx—-xo[&%[i;idx}dx} il

The two latter integrals of (2.5) can be brought into a better form by
means of an integration by parts.

Before carrying out this work a function
F(x) 4is defined as follows;, thus let

Fex) = f Xd.)(

(2.6)
The firet of the two latter integrels can now be written as

jjé U:; XdX]xO(x =£°%F(x)x dx

In applying the psrts formula /m/b_ v [vdu
then du= F'(dx and v=

j,_ . From (2.6) it follows that du= Ydx hence
= g =

] [fcmx]xalx %F(X)JZ -j‘zg- ¥ olx

Xo ~a

2

let u- Fex) and dv = xdx

N

Xo Ao

=
= SFE - FFo) -5 hxdx

Xo
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The terms F (§) and F(Xo) must be interpreted, the latter term of the above
being £, as defined by expression (2.3).

The term F (<) by expression (2.6) is

F(—é—):/ “Ydx

which is the total circulation about the wing, he re symbolised by Ag , see

section I-4, hence

F(%)':-A/s

The term F (x,) in like mannsr is

Xo
F(x) = Y dx

#ith reference to the coordinate system shown in figure 2.1 it is evident that

Fixy) =j Y x ~jaz)’dx
_% X i

and by the above discussion and expression (2.1) this can be written as

F(xs)= As — E,

The first of the twe latter integrals from expression (2.5) now becomes
e (* : %
o ® J
/ [J ddx)xdx = §4s - H(As-E) - LE,
Xo "2

Tno & similar way the last integral of expressior (2,5) can be put in the

following form

/z[ ji[dx]clx = S A%, (Ag—Eo) — E,
Xo =5

The zbova procedure is similar to that given on pages 57 and 58 of Report 5,

Substituting the last two results of the above paragrach expression

{2.3) becomes
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My = — PU(E - x.E,)
2 2
M-8 (A-E)-zE

a f
“FILT
_ x%% As = Xo(Ae —Eo) — E}}

which expression can be srranged rs follows:

B Ey = ¥ Ep)
2 o ; - o1 =

Making usze of the operational methods as set forth in section I-7 the

Mg =

above expreesion can be written as

Mﬂ = PU(XOEO _E])
-£ L'Wg(é ~xo) Ag =(XFE,—= 2%, E, + 1;.;)}

Substituting relation (5.6) of section I-5 the above expression becomes

Mg = PU(C, cos8, Eo ~E,) ~ g ) (;‘L(/ - (.‘o‘.@o')e‘/]/ﬁ,
: P s c 2 . = 3 B
- .zlu)C(“.I cos* 06, Eo ~LOS Ooﬁ_, + .éi.)
(2.8)
Expresaion (”,Ff) appeers to be in the most convenlent form for the work as

presented here,
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The terms £,, £,, and £, are anslogons to the terms /" , B, , and B,
of Report 5. It is now necessary to evaluate these terms. In order to
evaluate the terms £,,£, and £, they must be put in more definite form.
From page 100 of Report 5 expression (1D) gives ) as

i
¥= 2 wrsin®*T il 3 2.

T 75N oS B ~¢cosT ITC 5ind (3.1)
fe)

In this expression W’ the dewnwash is considered as a function of T , and T

is related to X through relation (5.5) of section I-5. In the seme way the
variable © of expression (3.1) is relsted to the X of the terms £,, £,, end
£, , see expressions (2.1}, (2.2) and (2,3). This relation is
X = —%— cos 6
(3.2)
Substituting (3.1) and making use of relationm (Z.2), integrals (2.1),

(2.2) and (2.3) can be put in the following form

Oy 1T
i W'.S:n"'t T8 (z.3)
o 0
N s i T I
O W sin g .
E’—.ZWJ / s e= cosT €05 odtrde + S Sl e, i)
o ‘o
s (%7 ursineT T
it o S L . 2 ‘___ e A
E‘?-"‘#Trj cog @ —cosT cos*&drde + ( i smzs)
(9] o 305)

In the above expressions one integretion has been performed, viz., that part
wshich embraces the term -é-ge?’:;g- of expreseion (i.1). To complete the evalua-
tion the function of T which determines the downwaesh (v~ must be given.

In Heport 5 the downwash wr is determined by a pilecemeal process where

the resultant downwesh in the notation of that report is given as



-
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&

wo= w'+w" +w'" et we

1

see page 44 of Report 5. The formulase for w' w-" and w'are the same as
given in Report 5 except that the A in these formulae is here replaced by
Ag , see expression (4.l) section I-4, The W must be modified for that
pert of the wing which is aileron, otherwise it is the same.

Let the symbol Wz be defined such that

W= Wy for O=T= B,
and
Wg = Wy For O XT =TT

Both w; and wr are given here in section I-5 as expressions (5.7) and (5.8)

respectively. The resultant downwash &s used here can now be written as

wr= W' + W + u{é"'-quz

(3.6)
where the subscript A has been attached to the terms w, w ' and w ' to
indicate that A, is used in their respective formulae in place of the A of
Report 5.

Attention is called to the fact that the T  present in axpressions
(3.0), (3.4) and (3.5) is the total circulation sbout the wing and is here

egual tOtAﬁic From this and expression (3.6), £, can be written as follows;

e, (1T .
Eo-:‘,—c‘-’:j/ / (%"’%”‘.‘WB”“‘F%) SLHET d_[.ds + Aﬂeo
0 ‘0

8§ —cos T TT
coes 65.4)
In section I-4 the term Ag is given as

As=l + "+ [T+ 5°

Substituting the above relation in expression (2.7) 1t becomes



O, r 7T
C ] 1 it Sih‘;'/r
= = PRl AU L, (70 ) P LBy o 7
TT] /( 8 o g ) cos ©— cos’td
o “o

+ (B 57)

]

Let four symbols £g, £ ,E. and £, be defined as follows;

€058 —cosT cos T T

j]w _3T frde + JBSs

u W sin2T /; =]
f [ i Emp—csae Aves + B
i
m_, o Sin* T G S,
_—[ j Wi cose—-cosrdrde.{- i i3

51:72’( E’°eo
___] j il ol e o o

Comparing these four expressicns with (3.8) it follows that

E,=Ej+E}+ES +E
and following similsr logic with &, end £ it can be shown that

E, w5 E{' +E;”+E,“' s E’o
and that

Egs EL4ES +E"HE

(3.9)

(2.10)

(3.11)

(5.12)

(5.13)

(3.14)

{3.15)

where expressions eimilar to (3.9), (3.10), (3.11) and (3.12) exist defining

the component parts of (3.14) and (3.15). These eight expressions will not

be given here as in the case of £, but will be talen up as each one of these

parts is evaluated. As in Report 5, it can be said that £ is that part of

Eo, due to the trailing vortices, that £, is that part of £, due to the

shed vorticity, etc.
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11-4 perivation of E.. E., Ea

In the evaluation of the twelve terms givenm in expressions (3,13), (3.14)
~and (3.15) it is, from the nature of the integrals, more logical to derive these
terms: in sequence, £, K E, £, E E/etc. The first term to be considered
fa £ » The formula for qu' which_represents the downwash induced on the wing
by the trailing vortices, can be written from the expression given at the top

of page 45 Report 5 as

i
~ Ag € N‘_ 4+ LA, s & cosT
T 2T (2+iAn) | 2 ¥ AN

+EC__ (e-,%cos'l' _ E%us‘t‘cos T_)J (4.1)
/

It is here to be noticed thet Ag has replaced the A in the aforesaid refer-
ence, otherwise the two expressions are identical.

Subatituting (4.1) in expression (3.9) it becomes
[ Ae @ 4’ ZkA= L3 T e%cos’r’_
27r/z(2+alrz,) 2+

L (9"’7“’51— s, r)]} ST lrde s S

(3

Il

. CO036 —coST T

which can be arranged as follows.
c
T LAz ...cas"L' 2
Eu:: CARE : 4+ e sin*T dee
° 2T, (2+iAn) 2you coso —cosT

(4.2)
COST cosT gin* T T E 8,
/ ] cose—cosfr d’rde T

In the above there are two distinct integrals which are symbolized as S,(%:;Bo)

and S, (%‘,6) thus

__»69) = j fencos'l,' sitp= T d’rde | (4.3)

c0sS @ —cosT

and

s, (n ,s) _ / [ ScorT cosTsin*T 6/T6/6 (4.4)

cos5© — 05T
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These symbols are written with functional notation to emphasize the fact that
both 5&_%:%} and 5,(};—1,6,) ars functions of g—' and G,.

With this new notation expreseion (4.2) can now be written 'aa
i ’

. chAse’ 4+ LN, ¢ .
Eo_—ZTr/Z,(Z-}LA;z‘) g 2+m: + E]jo(ﬁ,'e°)

Is" (4.5
—%'s,cg;,e‘,}r Fo. )

The intagrals which 50(7:5’:6;) and S,(—}z‘,eo) represent are worked out in appendix

C. The values of these two expressions are given below:
5(.0)=8fq (£ ,6) ‘ (4.6)
and

(%»%):%[Io(?‘cz,)ﬁihﬁo‘ 2 (% - cos 95)0‘(%.)90)] (4.7)

where Jo(;lc-) e the modified Bessel function of zero order. The symbol

U(%“eo) represents the following Fourler series;

OO
0(56) = 2. Lp (%) sin ne, (4.8)

This series is the result of the integration described in Appendix C, and as

shown, is also a function of % and S, -

To finish the above formulae substitute for 2, ths expression,

c AR o
A== (4.9)
which relstion is expression (2.2) part II - page 13 of Report 5. Thus ex-

pression (4.5) becomen

R Age / “h 4
Eo = 7‘?‘4?(/+ {[14-53_ +4R+/J o (% 89

; I7'6. (4.10)
- %Sl(%"eo)} + ’GIT

and expressions (4.6) [4,7) and (4.8) become



]
4

A< /
Jo(ke)= S T (Ee)

(4.11)
A< ;
I »Gﬁ):-z[lo(%) sin &, —Z(ﬁi —~cos e, O’(%)GJ g
o0
O”(% )8,) = Z_L,(%)sin ne, (4.13)
=1 g

Following the same scheme as exemplified in expression (2.€) page 4€ of

Report 5 a symbol Tor is chosen such that
__eR [ / 4 4
ﬁTﬁﬁR(l+Q§,A‘Q) LAC 4?+ﬁ+ IJS"(-‘R’G")

B
o 4 (4014)
-»3 (& 99}

The subscript O of the symbol 7;-,- is chosen so as to design-te it as part of

the £, group and the T associates it with the trailing vortices. By means

of thig £, can be written as

. Agh '8
Eo: i—r? : 3 BTrP_ (4,15)

It 18 to be pointed out that for is & function of R , 6, and AC , which
means that it is a function of aspect r~-tion, aileron chord, and the reduced
velocity.

Ag outlined at the beginning of t-is section, the £5 would be evaluated
in the order &, , £, .Ea' , ete. " The next term in this sequence ie £,/ .
This term is defined by substituting ws' (exvression (4.1)) for w- and [,;' for

in expre:sion (3.4); thus

C
= e [fl_«tﬂ_\}__ pReosT
h 2TT/‘((2+¢RJ1,) 24N/,

‘ (4 18)
e ﬁcos‘t' /(cos'l:' ) sin cly
+ /t (e € cosT Co0S6—CosT 23

This expression can be arranged as follows,
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=i )
s 0t As N [."L‘fL—/\/Z ,{Lug't Slnz"_bosed y
LT AT, (2 + (AN) 2+ (AN »z. Co56 —cosT QTGS

Co0s6 —CoST 2T

B cosT 2T eld (4.17)
I]C’”’ camp- ST T 2088 d?de} tscineg, o

As was done for expression (4.2) here also the two integzrals will be symbolized

by S,(%,6,) and Safg,eo " thus

cos’l" 2
(4] 5IN*T cos &
52(7{?’6") // Cose— co*fd’rde (4.,1¢)
con. L [ ok T sin?Tcose
(R. °)—r7-jje Y Teae - Cos’rd’rde (4.19°
¢ ‘o (4.12)

Substituting these two exprasgions £, becomes
&
- CtAs" 4+LM,. | ¢ g
El= mmninimay | Lev e + 7] Sl )
~555(50)§ + Sosina,

Expressions (4.18) and (4.19) as worked out in sprendix C are given below in

(4.20)

terms of aspect ratie A , rather than & ; thus

S, (.6 = & [L(%) G, + L(¥)sine. -2 (4 - cos 60)0‘ (%)90)} (4.21)

5, (%r0)=2[1+ E-Reose,+cos 26, T(h ) + 5 (%) 6

+—§[_ %H)I (%) + 2R (%) +3L,(f?’—)]5m9

+S[(ROLEE) ~m(F ) LS TR ()

- RI(£) ~I;(4))sinze,

(4.22)
Substituting relation (4.9) in expression (4.20) it becomes
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2
, cAs @R 1 4 4
oG . A = 5 6,
£, RTTAR(] + LAc ){[,Jr (Ac +,42+’:\52(/R> )
8 3
) c (4.23)
- = S;(% sso')} + 2;}, S1n6,

Let 7‘[«,— deuiﬁnate the following expression:

_ e = _ 4 +
fr = R+ Q‘é&,cp) {[/4— —‘—%2:#—?-‘_ R +[]52(‘R)e")
4 « (4.24)
=5 (R e")}

Here the subscript / of ¥, designates its relation to £, while the T as

before, associetes it with the trailing vortices. The term £, can now be

written as

AsClr | cl’ .

E'= 21 B RS, (4.25)

4
It is to be noted that 7, differs from A in that 5,(%)6.) and 5, (%, 8,)
replace So(%;ao) and 5,(%:9‘,) respectively,
The term E‘: is defined by substituting expression (4.1) for w- in

expression (3.4) and fg' for [T ; thus

£ A,E”" 44—_[1&_@,%%5?
B2+ ik ) L2+ AN,

d_cos’t' CcosT 2
+ 5 (é’ —enrnc’ cos’t)]}jm tr=c 8 dtde

co58 — cosT

=22+ Z—sm aeo) : (4.26)

which can be written as

-5 &

- Al 4+ AR ¢ L 71”‘°5T5m7~’rc.05’~6

&, = & ™ drde
2T g, (arAny Jlzvikn TR - c056—C0ST

T .
B ? & cosT SIN?*T cos?B
sy e/’z‘ co ——_———_~—d
’&j] cho::@ cos T Tcle
C ‘0

(2

(—- +sinze, ) (4.27)



This expression involves two more integrals which are defined as

G < T
& cos A 2
54(’61,)60) - jljf J?LC Sm.__ L adrde

ccs @ —(cosT (4,26)

d cosT' 6‘{}72'1‘ 05?6
"(’ e") 77'] / & T ose—cos © drde (4,29)

Substituting the above two symbols in expression (4.77) it becomes

=G
r. _C3h % 4+ ALk, £] <
. b 8T/A (2 + i) [Zadxm t 54 (% aD

o ct lg’
,255(-,5-,,90)% +Cle

The integrals (4.28) and (4.29) are worked out in Appvendix C and are

’ (4.30)
7528,

ghown below in their A fors;

Sl 5 v8,) :%[Hﬁ—? - MR cos6, +a0529°] O’(%)Go) + ﬁifz(%)ao
+E[~(EF-)I(%) +2RL(%) +3L($) |sine,
+3 [(R)L(F) -R(E + LK) + 7 L(k)

—RL(E) ~L(R)]sinze. (4.31)

f expreasion (4.22) is subtracted from expression (4,31) it will be found that

54(% ) B6) can be written as follows,
\54,(%)60) 253(%)60) . gl;(%)s:’n B, ‘ (4.32
In like manner it can also be shown that
A
51(%'60): Sf (%)80) +ZI,(%) eo (4.33)

The above two relations can also be obtained if the two integrands defining
these expressions are first subtracted snd then integrated, see appendix C.

The last expression of this group is Ss(%8s)which is given below:



ja‘(;"%):g[ : "I (,n ]9 +* 6{;‘RC0639_352605280
&5

A'R(H-—)c:ose ~LR2(J

2
+é—[(4+3§

;4—-;)} 0’(%)90)
BN -2 (1R L)
~3(1- —)I( ) I5(—§;)J s 6,

3 ; %
+a =25 L0R) + (b A+ 50 ) L (%)

- & (1+ 28, (4 )+3’RI (;R)—iff(ﬁ%)*;Ié(%)]sinzeo

+5[($ 214 - E 0+ 28 L(%)

-
R (12T

~8(1+ 3 (%)
IR - BI(4) - (%) sin3e,

(4.34)
Expression (4,30) in terms of agpect ratio is as follows;
o
. i Ay 2" [ / 4 4
52"477/4?(”&.%54?) /f%,@ + ,R+J54(,R»SU)
; 35)
A B e ;. (4.35)
~ % 5 (£ e e e )
A gymbol faT can now be defined as shown below:
S &
é’ / 4 A
far = AR(1 + (AC R) [i+ (e g2 * ?*’_‘] 54(»@'80)
8
4 ' (4.3€)
“7255(% ’6")%

The term Ea' can now be written as

c?A c2l7' /e, I
Ep= <t for + T (7 tzsne2e6,) (4.37)
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11-5 Derivation of £o , E. , L&

The second group of terms to be derived is E: y Ep , and £, . This
group arises from the shed vorticlty. To obtain the downwash for this group

take the expression given at the top of page 47 of Report 5 and replece A by

As ; thus
w_u__LXAﬁ d§ _ 11358 (A priEm(imeooT)
s 5%54-!—@:;17 TT(I+6iAMN)

o >

As in appendix C pege 95 of Report 5 the variable £ will be changed to the

nondimensional varisble 5 through the reletion that

C
Making this substitution, wy'' becomes
_.L'l\f-s

o Bl L}\A,gé,mc' = o _ LI358(AAs o ~jar, (1= ©05T)

< 217 T —cosT n‘[/-!—ﬂ\;(‘) (5.1)

’
Substituting the above in expression (3.10), £, takes on the following

form,

8,
w _ € {AAs "7"’
E""ITJOJ;Q &= < — cos”rcl

c
1.1358CAAg e—,—;—ﬁ'—(/-cast) } sin®*T " _

T I (I +6iAN) Ccos8-cosT
L B,
T
Rearransing the above expression it becomes
2 ~TT 0O —L:'A"E'g 2
" MC e = "sin*t
o = it j J j (S —¢co5T)(cos6-CcosT) el deele
/
L1358 (Ac "/TeCT > T RRST iz -
B, O ool ol 2 ‘ ..l S -
7Tz{l+6t3/{.)A € A € COSO-COST "
(¢
~+ 5-7.769— (502)

The first integral of expression (5.2) is worked out in appendix D. The

value of this Integral is
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&, 1T - Hee
A LP S
( 5 T oS8 —C05T) a8 -
o Yo /i
g -ids O
2 . i .
=mc€ T (m-e) -5l T Qusine, (5.3)
where (R, is defined in appendix D as
é‘%&; __C}(.f
Q,=€ j(s, = Ben—t (504)

No integration was found for the above integral, however, it fortunately cancels
from the aileron hinge moment equation,

The second integral of expression (5.2) is seen to be the same as inte-—
gral (4.3) if /% is replaced by ,"g‘?‘ Following the scheme of integral (4.3)

let

S ;
C = _'— 127‘ ~——coS5T _5,,»11’[’
So(:an. ,60) =TT [ 4 —— drde (5.5)
[0}

cosg—~cosT
o

and from appendix C it follows thet

3 24/, |
Se(757 65) ="C4* o {Tom8) (5.6)

where in this case

o0
o (57,6 = 2 I,(%5) sin ne,

In order to write the above expressions in terms of aspect ratio substitute

relation (4.9); thus

S5(55€.) = 6 R T (55 6,) - (5.7)
and
i )
T (58 = ;Iw(gﬁ) sin ne, (5.8)

. / . < : i
where I,,(_s—,ﬂ) is the modified Beesel function of order 77.



I1-5

Substituting expressions (5.:) and (5.5) in expression (5.2), it becomes

e

) ke _ ik
-u_ LAC -2 | 271 2 2T o772 :
=S A [‘i‘x‘c (-6~ 55 € " Gusine, |

¥ C
a8 L XE " TZX, o Iz G,
ey ey € [Tr Solsmr€)) + g

Making use of relation (4,9) again the above expression can be brought to the

following form,
II_A g
E —-,Frﬁ[rr—e.,—aa:,meo]

/

‘AC ” \ d
/1358 ( Ag € IR So(glﬁ’ea> Y f;'r?a

(1 +28cm) (5.9)
As in section II-4 let 7, be defined as follows
. /
1.1358 LAC 3R !
Yo 58 = e & 50(54?)90) (5.10)

|4 2LA6 43
S A
The letter S , in the subseript indicates its association with the shed

vorticity. The term £, con now be written as

e :—’%—Lﬁ~@0~&zsme‘,} + éﬁg‘?— t Iﬁ—f%?- (5.11)

The next term of the group is £,” . This term is defined when wy '
(expression (5.1)) is substituted in expression (3.4) of section II-3, FPer-

forming these operations, £, becomes
chc
-5

‘ ‘A
£ o= 5 97" YT T e AC
% "2'”00 21T : € — cosT

2 = ’ - .
1.1358 (AAs e‘@?,("LNT)} Sin*Tcos® o o

T (i+6(\) cos@—~cosT

o crgu .
+ SsFsinG,

which can be put in the following form:
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,_‘53;?

E’n__ lArTC:A,GE) j] (f_ bln‘TLObB C[B olr el

o5 r)(ao: 6—C05T)

3 = 'x - === cosT 2 C
_4LI358 (L .C A,_g lZ/{,f [ efzm SIN*T 056 SINPT 058 fo f o

2T2(1+6LAN) €056 —costT
Sl
+ =Zsineg,
21 (5.12)

Like expression (5.2), expression (5.12) involves two integrals, the
first of which is treated in apvendix D, In this appendix the following result

ie given,

ZACg
5/ﬂ21‘case
j f (S’ cosT)(cos 6 - CoST) Agdrde
2 ‘%‘9 : 2 e
olova é [rr—smao -+ m(?‘r~&,)]
r e 4
— € {Dmae + 5 sme]az
u\ A
ST ol @ & :
~ A0 2 sine, R, + “M),_F’ 6, [H QJ (5.13)

The terms @, and Qi which sppear in the above integrazl are defined on page

49 of Report 5 as expressions (2.3) and (3.4) which are here repeated as follows:

(AC
™ -:9: @/ Ac
e L H
Ro=2 (%) (5.14)
{Ac
Qi =ZiAce*® ,(2)("159) (5.15)

where H;‘)(liﬁ) and H,"')(E‘EE) are the so-called Hankel functions, The term

(A, is defined by expression (5.4).

The second integral of (5.12) cen be made the same as the integral (4.1€)

if ;% is replaced by E’Qf?, y from thig it follows that
727 5T s5(n?*T cose
) = Q""” Z
3, (’27’ o) TT cos T — CO5 © 5.16)
&)
This integral is worked out in apvendix C and 52(7‘2—};‘,’90) is given below in

terms of aspect retic, thus
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5.-:('3‘2‘5’30):34{’[ (57) @ + Lo(55) sin &,

-z (BR—COSS‘,) a —%?- e )
(5.17)
Substituting expreesion (5.13) and replacing the second integral -by
7 2, (;%;)60) expression (5.12) becomes
LAc

E= ;’\nca Ao B B {2" e F | m-sine, + £ (- 0y)

il £l 4
MC@ [sm 28, 5 sme]Qz

(Ac (Ac
-5 ‘ ~ tAc :
(llc)lé) 5in 6, QO Sl v (17\C)?' & = ea[’ + GI}}

| e C
AL T IR, Ny
Eri(veiany 8 € [775a(§ﬁ’8°ﬂ
<3 ..
+ 2T Sii1 6,

Substituting for fZ,“-‘—%—Q, the above expression reduces to

"o CA;[ . 217 25iné, 26,
=g |T-oie + Je * “pr Qe t g @

~(=sinag, + (Rc sir e,) Qz]

1.1358 (AC? 34’2
Ag € S, (ﬁ’eo)

‘l(l +3t1c )
cls
+ S5 sine, o
(5.18)
Like expression (5.10) a fs is defined such that
S 3
= LI358Lhe  55R .

s = ; € 5. (37 80) (5,19)

3iAc
I+ —E—-—/R

With thie, expression (5.1€) can be written as follows,
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s 2sine, 2o,
2 [ﬁ(’+¢1c)+5’”9+'ﬁz_a‘° CGL‘

. . 2 .
—(sine, cose, + msmeo) GL?_]

CA‘_G = Cr‘” . g
+ 27T ﬁS & "-2"?%:.‘31?’190

(5.20)
The last term in this group is Ez" which is derived in the ssme manner
as E.': and £,

To define this term substitute exvression (5.1) in

exnression (2.5) of section II-3; thus

” w -3¢
" : XA,Q 'L-A—E é
] / E / —E:(‘DST a/g

c
11358 IAAs o~ E?r,(’"“”ﬂ}

z 2
SR cos ed?u«/@

TT(1+6(AN,) Co56 —CosT

QZ_L(J +4 5“7290)

iriting the above in the same form as was done in the preceeding work it be-
comas

n_ EAEP e T SIHETCO.SZS
%% 81 2 As € ]jf (€ — cosT)(cos 6~ cosﬂdrde

_ L3588 {AC3A s p ~ian, 2% €T sim2T cos2e
4772(f+6cm) / /6 clrde

Cos B - cos T

c B e,

+— (=2 +5 526

+I ' E 7 o) (5.21)
The first integral of the above is treated in apvendix D and the second

in sppendix C. The result for the first integral is



1I=5

FEE 6’4%‘:‘;‘5::12
L) Ts-cos T e h:«;ﬂ) dsdrde
icza y
Li\’g {n‘—-—~zsmea +¢u(’+ 7%)
+~"—>-[ Lsinze, + IR o ao] R
tAC |2 AC o
+z.%;[£2;i° + sin 60] Q,
, - 4
_.smeo[uo; &by (co5 8, + zAc ]Gz} (5.22)
where @, » (, » and Q, are defined by expressions (5.14), (5.15) and (5.4)
respectively.
If in expression (4.28) - 1s replaced by == it becomes
S = =0 (.29

where on comparison it is seen that the above integral is the seme as the

secornd integral of expression (5.21). As worked out in appendix C expression
(5.23) in terms of aspect ratio is as follows;
/ e
54(3—5:90) = 3R [/ +36M*~/IEMRcosO, + c;osz@o} 0’(3—';5,@0)
/
+ IR Ig(g'/a) ()
3 .
+ —?A?[—(7Z R (7)) + 24 RL (5%) +3»RI3(§’R)]sm 6,

g’[ (142> + 1)1, (55%) — 12 R(72R> +1) L 5%
+ 144 R*L(zR) —12 RI1,(55) —Ls (3-};)] sin 26,
(5024)
Substituting expressions (5.22), (5.23) and (4.9) in expression (5.21)

it reduces to



) i 41T 2
—é‘*-zbli’)‘ZGo-i- :ﬁ(}""m)

2 435in e '
+——[251n29 * =me +eolQo

4 285
+og[ 5+ sins]Q

y I 4
+5m¢90[c05“61, + m(cos&,-’r e )} Q, %

J

11358 (A3 Rl ’
AT 1+ E'i'AcR) As € " O (55 &)
cR " Q, | :
+ 4; (#é,_. + ZSU’T aeo) (i}uHS)

A symbol f,, will now be defined for the aspect ratic term of £, as follows:

11358 LA o 3= I
s == S Shae, © 7 Sulam0) M2
2

Making use of expression (5.26) Ezu can be put in Its finel form;

£y = CAH{TT 2 - gsinze + 1c( * )
2 4 sine,
¥l [ SIN28, + —57— + eaj} Qo

\4;

J‘_ °~I—5H’79]Q|

= smso{coszeo + L)fc (coso, + Z%f)] Q?‘}

C2As cxla 8, ;o (5.2%)
. 47T 7;S+ﬁ477" (—é—+251n26‘3>
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11-6 Derivations of & , & , E”

The group of terms £,'', £ , nnd E,” arise from the bound and tip
trailing vortices discussed on pages 7-10 part II of Report 5. The effects
of the tip trailing and the bound vortices on the downwagh are summed in &
single expression given on page 32 part II of Report 3, It is exprescsion
(5.8). A table of constents to be used in connection with this expression
is given on page 35 part Il of Report 5. This same table can be used here,
The only item which is changed in the above mentioned expression 1s to replace

A by As; . Expression (4.1) given on page 51 of Heport 5 is more convenient

than the above mentioned expression and is here introduced with the subscript

/A3, thus
T~ A-f ﬂ_‘ a?. ! o = az v 2
' "E_E'E[a°+ 2t ma(d+dy)cos T + o GBS (6.1)

where Q, , @, , and Q, are given in Table I page 35 part II of Report 5.
The firet term E;”' of this group is defined by expression (3.11) of

section II-3, which on substitution of expression (6.1) becomes

’I‘ a ‘
= 2 ;
[ e+ B -hiasmrems
T ) iy
+ %cos’-‘l‘]} =30 2 drde + [;}_r9°

cos G—cosT

This expression is now put in the following form;

&,
o a =2 Sin* T
El =55 g(ao )jjcose g dtTde
cos I—SH'I T
a, + ¢
2( ‘ a)/ ] CO:S-CoaT C/I" a

cos* T Sin*r f,;’“’ee
jj COSG'“’STdr /9} T (6,2)

Exvression (6.2) invelves a double integration, the first of which can

be iutsgrated by means of the follewing formula;



17
{16

- Ir
co:ﬂT‘ sinnNe
i e T el SRR ’
/ tos T~ 9056 = 5in e (€6.3)
“o
where /7= 0 , /] +2+3,""°° . Thiz integral is not discussed here but is well

known in the subject of thin airfoll theory and its solution represents a
Cauchy principal value, The derivation of thie formuls is given by von Karmén
and Burgers on pages 173 and 174 of Aerodynamic Theory, volume II, reference 3.
The second part of this integration being elementary in nature will not be

discussed »nd the final value of £, will be given 2t once; tims

] A e . .
E" = 96’;7[(4sa°+24a,+15a2) sine, - 6(a,+a,) sirnze,
: '
+ &, s1In3 e ] -+ =)
. ° T (6.4)

A symbol f,, will ve defined such that

I .
. =§—g[(480,,+24a, +154;) sing, ~ & (d, +d,)s5in26,

r‘llﬂ
+ azamssaj + =
(6.5)
from which it follows that
— A /——11108
£, =L he + o (607)

The second term of this group is &' . It ie defined by substituting
expression (£.1) and replacirg /7 by [ in expression (3.4) of section II-4;

thus

m : a, /
£, j ] {znc[a‘, 2+ 4 —s(d+a)cosT

a, in?T cos O
+_ZC 27.-] A e o ¢l sin 6,
€05 08~-Cco5T 21 (€.8)

The technigue of the integration of expression (€.8) being the same as that
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used on expression (6.2), the intervening steps will he omitted and the result

written down directly,

I CAs
L= 3841

R#sm+24afu5mgaf42ﬁm+aasmeo
+ (2aq,+i2a,+9 A,)5in26, —4(d,+ &) sin36,

3 » gl
= 4+ _.._L‘l—-
+ 3 C(;_SIHA-‘,’SO] > sih e, (6.9)

A symbol f,, will now be esteblished as follows;
i .
m2755%6QJZAMT5ﬁJ—ﬁﬁ“*adﬂ”%

+(240,+12a,+ 96;)s5in 20, —4(d +4;) 5in 36,

+§ ' 5in460]

(6.10)
Using this expressicn, E,"' can be put in the following form,
---~ C CE.III_
kq *?%fc,-‘r 2 2 B (&:11)

The last term of this group is £, ond defining it by substitution ex-

pregsion (6.1) for w- and [§'" for [ in expression (3.3) it becomes

©, 7T
A a,
[ {slar g ¥t raes

a; 2 Sin*T e03® o
i }} cosB —cos T dtde

+ J (Qsa Y —sin By )
= (6.12)

Here £gain, owing to the similarity of the integraticn, the outlire of this

procedure will be omitted and the result given directly as shown below:



Ii=E

lff*-_ Cz "
L2 = 5367 [(/44a0+ 72U, +48A,)5/n6, + (164, +Ba, +7a;) sin 36,

= : . ;
+ 5 d,5in 56, -3(4,+ ) (46,+ 4sinz26, + sm4eo)J

CZ ,;-”u 60 : .
+ g (2 rg sin2e)
(6,1%)
A term ﬁc is defined as
/ ;
b Ted [(/445{0 + 724+ 484,)sin6,+ (164,+8d, +74,) sin 36,
+2a,si
F asm.:reo—3(:5(.+6(1](460+4s.‘n29, + 5,’,—,490” (6, 147
The term £, can now be written as
m CZAE CZI—”“ e
£ S SE(G v puinza) a9
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11-7 Derivation of £ , E£° _, &
The last group of terms are £, , [£° , and .° . This group arises

from the motion of the wing-alleron combination. The downwash equivalent to

this motion is given in section I-5, The expressions are

LU,‘:—H—UO‘—CTZ%COST—U,S - %é(cos'l'—cosﬁo) (7.1)

for OS TG, » 8nd

. (‘ -
Wy=~-h-Ux - 5 CosT | (7.2)

for 6, sT<TT,
Substituting these two expressions in expression (3,172) and integrating

in their respective intervals as defined above /£,° becomes

B o, :
Ej:%/ {f {—h—Uoc—«%’-‘cw'r——Uﬂ
(2] o

e
.- E—é(‘_as’r — 60560] L ot T

C0sB—-cosT
o

IHQT /—’060
+je [ h-Us - 2 COSTJW AT d6+%r~—

cos 6 - LOS"L’
o

The above integration can be arrangzed as followe,

{f j [h +Ust + £ = cos'r] Coj‘gz_:OST dtde

+f f [U, (cosl’-—COSG)] ojg—’—;%g-;fdrde}
o ‘o )
Is° &
+ TT (703)

The first integretion of the first integral of expression (7.2) is

Ty .
g coL 5N T
f [h+UC(+ . cosT]cose—cos‘t“O(T
o

- x 1 ——_— ) 5 7 = > - -
which can be handled by the integral formula (€.Z) sectiocn II-€. After zoply-
3 4 & TArvasl s & Vm - A% % YA 4§ - g i nm b;, - NS i | » Y“t" L

ing thig formula the seécond integration becomes elementary.

11 7 31 | W ko e o e Tep e oy
will hte noticed that t'e seécond integral:of expresesion (7.Z), 1.e.



CosB—coa‘r

8, r 8, i
]j [Ué’-f%g(cos't—-cosso)} ST drile

ie gymmetrical, which means that T snd © can be interchanged without
changing the value of the integral. 7o evaluate this integral the same
technique can be spplied here as wss applied by von Kdrmén and Burgers in
Volume II of "Aercdynamic Theory" section 11 pages 53-56, (reference 3)._
The integral cer also be integrated in the ordinary way, however, as it turns
cut it is a Couchy principal value, If the above mentioned process of inte-

gration is carried out the value of £, becomes

sin 6,

i :—C[(H+Uo()5ineo S %;-sinzeo+ Uﬁré‘o

- | _
~ &7 (6sinze, +cos2e, ;] + e

The definition of £,° involves expressions (7.1) snd (7.2) as well as
expression (3.4) of section 11-3, however, [  must be replaced by [&°

Following this procedure E, becomes

£y qnj {J il o Uo<—--cost UA

- 'E—(C’OST -€oS 9‘,)]

_,[h 2T cos 8 d
Cos O -cas’(_‘

m
: Cok 51N T cos @ g
. L ; 5
+f[ h- U & C%Tlcoss—cos’t’ drrde + 217 SN 6,
o

which can be arranged as
0 &* a h C oh 5 sin2T cos B C/ 6/
E’H_ZTF [ +Ua+_2-CO T]Coseucosfr Tas
(o] o

% 8, :
g e . N 5iN%*T cos©®
+/] [U;H— £ (wsT CO'>9°)]co>e cosrdrd&}
o 72 ‘

(7.5)

The outline of tie integration ie tre seme here as in the case of expression



(7.3) hence the result will be given directly; thus
Ef=——= [Lh+Ud)(8 +—-sm 28,) +- “**(am G, + ~-3n13e )
+ .—(rjrf(so"-fs}'n ) Fig SODH’T@ -8, cose)} +~2-F3meo
(7.6)
The lest term of this group is Ea This ie defined by substituting

expressions (7.1) and (7.2) for w- and replacing " by I;° in expression (Z.5);

thus

C3 e eﬂ o

0 4 e .

£, = {[ [*h—ch =S T
o o

2 2
..UB—~ ***** (cosT CC’SB)JSM Tca_s G -

CO>G LOST

T

. - o 2 z
+J, [«h_LTo(ﬁﬁe—c’L-cast’me il edT e

c0s 6~ cos T
o

, --
Eﬂ + —Zsm EBO)

which can be written as
" S (M *Tcos28
e : CH sin"T cos
E =—g% {j j [h + Lol 5= COSTJ = P drde
o “o

&, So - ; 2 2
+J c[ LU/9+£§(605T-¢05 8,)} - e n ] 6drde}
C o

Cos> @ — oS5 T

e P

" ] o
*‘:Efr‘(a v 7sin2g) (747)

@

Here also, the integration procedure being the same as in the preceeding, the

result will be given directly, thus

E, = ~E- r(h +U)(2sing,— Zsim20,)
& / 2Uz '
——é—(e + 5 26, o 21 51N 480) + ——ﬁ——eosme,,
ca 92 36, . . Lo
+ —Z—ﬁ(sm e, + 210_:_“ = 5sn86(’;+rc§a:n*'aao)]

+ /E;]jo(g-e + ;%sin 290)
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I1-8 Agsembly of Fo , Ei , E.

Expression (2,13) section II-3 indicates that 4. is the sum of expres-

gsions (4.15), (5.11), (6.7), and (7.4). In assembling £, the last term £9

will be written first; thus

Lo —‘—-—C[(h-&-ch).)me + —é-:,mae + U’QG >ing
;i(ﬁosin 26, + c05'ze°-1)] + _7_‘5’-.%_53_9
& ,/’dT;_gT & ’,%1”'_90
- %ﬁ[’rr—q,- Qasin 6| + i‘f;—Tfi’f + B
+ A,;Tfoc 5 T;;'reo
which can be written as
Eo=—¢C [(H +Ux)sing, + %—-smea +%’:e sin 8,
= %57;-(6 sin28, + cos 26, ~ l)]

A ( '
_rri[TT— 6= Q5118 + Tor + o + ﬁ"]

F (R )

In section I-4 under the discussion of circulation it was pointed out
that
Ag =+ + 5"+ 5™
where As is the total circulation sbout the wing, If this is substituted in
the expression for £, it will be noticed that the last term will cancel the

€, term in the second bracketed quantity and that £, becomes



I11-8

4 3 . Q‘l 5 ke o
Eo= = [(h < Uo()ﬁm 8, + '%—SH‘! 28, % —[%_f— 8, 8118,
_ S g g
BT 54”28 + cos £E6,~ )J
ﬂt’i[rr- Q; sin @, + f]
T 2 o e (801)
where
f: = f::r + tx, ¥ Tos (Bo2)

Prom expression (2.14) it is apperent that £, is the sum of expressions
(4.25), (5.20), (6.11) and (7.€). The procedure for determining £, being

similar to E., the result will be written as follows:

E=— Zc; [(h +UR) (8,4 s5in26,) + %’-‘ (sing, + —3’—sm3@o)
(8 + s5ih e)+ (95”’16 -6, co?@oﬂ
CA;S« 25”180 20
T 2w [F(“'L?.c)“L o Qo+ 5 &
— SING (LObe + )G +f]
(8.3)
where )
h=Tr o+ Ta+ e (2.4)

Expression (3.15) designetes £, 8s a sum of expression (4.37), (5.27),

(6.14) and (7.8). This result is also given without comment as follows;
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3 .
£ £ (6 + 0z sina - §in'e)

C & : d o« U, y
* hé—-(80+ Sin26, + 7 sin4e,) + aﬂﬂ 6, sIn 6,
8 8, _36
— (sin® L
t 5 ( B, +4 4

477 ¢AC (AC

2 l 45in 6 E

+ el ZoinRe, + e+ 6 B
4 20, g

+C"—.AC}:““—”‘[AC + sSin ]Q;

—~ sineg am29+ (w58+ )]@sz}- o1

B.5
where

f;_ = 7; + 725 + fi‘?C (856)

Owing to the fact that the expressions which make up the aileron hinge

moment are bulky, the following symbols will be defined as a temporery expedient;

thus let
e, = E°- 5;;~5 | (6.7)
&= B = ;gosinso (e.8)
g By = C;EO(% + gsinge,) (£e9)

From this and expressions (£.1), (8.3), and (€.5) it follows that



L= & + TATE[WF“'S"”SO Q. + i] (8.19)
- CAg - R2s5tn&,
£=e+ Smi+3a+ 2> a. + 52 a,
: -3 s
-smso(coseo-i- g—i—a)Ql + ﬁ] ©.11)
- C2As e 2
E= &t SFrimit meli+ 550
2 A5in e,
+L)\(- [Sfﬂﬁ CODS =+ —l'—)‘--c"-— -+ 80:] GO
2 4e

i 4 i
— s51ne [60528 + = fAc ((.0_3 60 + m}] Q?. -} } (b.lzj
hlso from expressions (7.4), (7.6) and (7.8) it follows that

o= —-C[(/ﬂ' +Ux)sing, + % sn2ag, + gfeojin G

T
~ B (Q 31N26, + cos 26, — i)J (8.13)

,:—%{[(thUoQ e .l -§SIH26)+ ————(bme +§5m36)
Jp’(@ 4=5111 H‘)AV%f_f(eosfn@o—-B;z.ob@o)] (8.14)

'5 . ; 7
gzz——%- [(h+UO(){2,5in90~—' ‘%‘5”’1360)
(6 +s5iN 26, + —-sm46 ) -+ Ergfi@osmq

C ) 8s 3 . 4
+ 55 (sinte,+ & - F a,sin 26, + 5 sin2ze,)] (8.15)
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TI-9 Allsron Hinge Moment

Before assembling the aileron hinge moment forumla it will be found con-
venient tc replece (© in expression (Z.£) by its equivalent AU, and write
expressicn (2.8) as follows;

M 5 =p U(g- €056, £, —E,)
+fgllh‘[‘%cosieo E,—cosg,E,+ —[é:‘- - Cj“’ - €03 6) ]
(s.1)
Tre fect that (W= AU is set forth on pages &€ end 35 of Revort 5 and is here
given as expression (4.6) of section I-4,

From the above it appears thast there are two quantities to construct with
the £ . The first is given in the parenthesis end the second in the
brackets. The quantity first to be treated is the parenthesis end substituting

expressions (6.,10) and (8,11) it becomes

%cose.,Eo- E,?%cos 8, €.~

C Az 2 B 5“16%
+?.Tr[ (et gy = g = A') “TAc Q

_ R8: o 4 23INE, - ]
T (A Q + LAC Qo +Tocos6, - 1, (9.2)
The second expression of (9.1) requires the substitution of expressions (8.1C),

(£.11) snd (8,12); performing this substitution it reduces to

CA
£ os?0, F,— cos8, E, + —E—L " *—Zﬁ(/—- cos eo)z

b
:-‘C?CO)"'G‘, 6::;; = CO5(90€.0 = gj
chAs R
+4Tf l)\L {ZIT[I+ "‘—6056]
[ 4sin 8, N
+'L The + 64 SIYIELC05‘9;}(QO
4 511 8,

+2[5m6+“c——e ca:e]Q, 4‘53”2 G

+‘-2‘—“[fcofe-¢ff_ose +f}} . (9.3)
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Substituting expressions (9,7) =md (9.3) in expression ($.1), M. becomes
PU 53 cos 6 63 ek C”l

Mc [—- cos*Q, €, — c056,€, + %]}

4 ’DUCAA{[B - 3in 6, coss]Q, + 2[ inG, — 8, cosQ]Q

+2(1§c056, )+—~—(7‘cose ~-Rleese+ )}

-

This can be put in a more condensed form by making use of the Theodorsen con-
stants and by the introduction of a new aymbol r . From aprendix A it apvears

that
T, = ~(6,~ sine,cos8,)

and
7,',-_—7; = E(Sine — 8, cose)

For the symbol f‘ let

Ff=alk

f, cos20,~2 f cos G, + fz) (9.4)

From this it follows that the above expression for AN, can be written as
G

Mﬁ:PU(—E €os L, €, —'6,)

+ -g L‘wc(%coslgo €, — cos@, e, + %2_)

s

e A [~ Tao + (- T) Q@+ o
Before substituting expressions (€,10), (&£.14), and (F.15) for & , & , end
€, respectively, it is advisable to change the trigonometric functions in
thege expregsiors to functione of a single angle, in order that the Theodorsen
constants of aprendix A may be guickly applied. If these changed expressions
sre subatituted ond the factor (w in expression (9.35) treated by expressicns

vy =N

(7.2} and (7:3)

of section I-7, expression (9.3) becomes
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cerch . .
My = ﬁ_— { E—a::‘._ (90 cos @, —~siné, +3—me39°)

YU(h+UX)(8,-5in6,cos8,)

ct i 3
+ sz (90 (;0590—-%.SIrrjso—smeocoszeo)
25
foa . 4 ;
4 & (—é— i G, o5 8, +,~'§5m360 o, = %2)

. 3 %;"H(Ql +35In*6, - 26,51 @, cos So)

1.. / . A
Tf( "?:C05460 "'é-‘»“”leo cos26, _-—'2- - % - 80250529(5

+
NI

8, . . .
+-—2°~51r160 cos36, + ;—i- Bp 3116, cos e‘,}]

FUCA,;[Q T,40,(Ta=T;) + ]

(9.6)

The above expression lends itself to the use of the Theodorsen constants (ses
appendix 4). In some ceses, however, the constants must be transformed by

means of the trigonometric identities, Making use of these constants ex—

pregsion (9.6) becomes

pc?. ;e ) % ' i
Mo == aT-U(R+U) T + YE2 T

af) _ s c2 8
+ R (T + Temse) = AT+ G2 T

PUC/‘,/&[ Qo—& =+ Q:(Tﬂ.-n) +f] (
9.7)

The next step in this development is to insert the value of Ag ., In
order to minimize the work the latter part of expression (9.7) will be treated
alone. This part will be combined later with the first pert thus completing

the formula for the aileron hinge moment. Substituting expression (4.1) of

gection I-4 the above mentioned latter pert of expression (9.7) becomes



A ~0Ty + QT =T) +F]

= e[ a T a(T-T) + )

which can be put in the foilowing form;

As|-QTy+ Q(T= i) + |

B F T 7

e L + S BT

_/—:Q T = T Q‘ —Tl_z - 71—2
4 47T MR T e —F (9.8)

At thls point let a quantity g;,g be defined such that

) £
Bl e metb af e
S = 0 Ta T
Qg+ Gy ~F (9.9)
provided 0<6,< 7T . The reason for the interval being open at the lower

endnoint ig due to the fact that %——* o ag &,— O, The quantity
F is independent of G, and therefore remains constant., A rough investige-
tion was made of the term —%; which indicated that this too tends to infinity
98 By—> O. For 8,=7 however,T,=7r , 7,=—7 and ¥ is finite, hence
no difficulty ie to be expected at the upper end point. In the expression
for Ms , it is seen that 35, is multiplied by 7,. and from the rough investi-
gation it appears that 7,;5;_ —0 58 8 —> 0. The reason for defining
'5—,42 as chown in expression (9.9) iz to meke the hinge moment formula as 1t

appears here comparable to the existing formulee for infinite aspect ratio,

Ir §R ig written in terms of Lombard's notation (see appendix B) it becomes

F RS r
;):' _ Q+ '_F\’—e + 77T Rg
E @, + Q —F (3.12)

provided O <Tx1{., Here T designates the ratio of ailsron chord divided

by wing chord, see expression (10.2) section I-10. Since 5. is complex,
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notation is here given for its real and imaginary parts; thus
Sk 2 Kt LNg (9.11)
Substituting exvression (9,9) and expression (6.3) of section 1-6 for

/=° , in exvpression (9.8) it becomes

As|=Q T, +Q(T,~To) + 7]

= [ﬂ'c(H +Uo + C:() +UCs ], + g}éﬂ[ﬁ—ﬂi]

(9.12)
Flacing (9.10) in expression (9,.7) and combining terms, it becomes
iy = Pt "C;;T Uces C3t o
b= g | TN+ T (T 2T)+ 57 (T + T cos )
173 Uich c:B
+SF (L T=T) + ar Wt T
_ = [/ ca . LB cs }
UTzSR(h“‘UO‘*L:,—*‘——TT 770+4ﬂ,7;) .

which is the complete formula for the aileron hinge moment.
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I1-10 Alleron Hinge Moment, Coefficient Form

Although expression (9.,13) is the finished formuls, it might be desirable
to put this expression in coefficient form as is done with the wing 1ift and
wing moment formulae in section I-8, In order to put formula (9.13) in co-
efficient form it is necessary cnly to apply identities (7.2) and (7.3) of
section I-7 and then collect the terms which form the coefficients of /1 ,
and 4 (see section I-B). Applying identities (7.2) and (7.3) to expression

(9.13) it becomes

*x (T + T co56,)

3 2 4
L7468 § Lwe wrct
+ S (BT )+ S USTy % -7 ATs
~UT, 5, (htvux+ e x+ BB, LWC,BT,)]

(10.1)
The termg of the above expression will now be collected and arranged as co-

efficients of  , ok , =nd B ; thus

C?. % c .
Me= EES U S 7 - 5]

+ U (7 + 2T -

407 (TT+ T(-O.S@a)

41 Zf’

_(,+LLUC STZ

ayu
2 el s
& [ s i~

- (r+ T8 |

(10.2)
The above result is now in the form used in Report 5, however, it ia obvious

that no comparison can be made with the formulae of Heport 5.



II~11 Ajleron Hinge Moment, Theodorgen Form
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The Theodorsen form of the aileron hinge moment eguation is practically

the same as expression (3,13) except that /; and h must be replaced by A,

and /i, by means of relations (9,1) and (9,2) of section I-9,

expression (9.13) becomes

Mﬂ_f’c {%(;’;‘_ac&

7 )7+ 2%
2 2
+ (T +Teos0,) + LL(7,7,- 1)
Ucsh g
® Zm T

which on collecting terms takes the following form,

e - Uc o
Mg = T{%hﬂ,— + —ff’-‘(z; +27T,)

2
+ &[T +(ws0,-a) 7 | + FE(TT-F
UC‘;@. ‘/5
v Wt ar T
&l _q) + UBT

“h

If this is done

)

7;]} {31.1)

If the above formula is compared with expression (XIX) of Theodorsen's

work (reference 2) it will be found that the coefficient of ij-"e". does not

appear the same as the corresponding term in Theodorsen's expression. This

coefficient as given in expression (11.1) can be drought into the form as given

in Theodorsen's work if use is made of the following identity existing vetween

the Theodorsen constants,. This identity is

T=2% +T —aTy

From this 1t follows that

{i1.2)



T4 +2Ty =Ty + 2{21‘94’7; —a*r;] '
:2{21—9'*7—' —T‘(a—?%)] (11.3)
Also from aopendix A it follows that

27T, =Ty + (cos6, ~ a)T: (11,4)

which is the coefficient of 9—‘4"—‘. Substituting expressions (11.3) and (11.4)

in formula {11.1) it becomes

Me=EE {ghT+Uf°‘[2T+T ~Tpla~2)]

C‘L&' 2 2.5
=T+ LE(TT,- ) + UC'G‘E,T $ £4 5
o |9}
—Ur,zsk[hﬁ Uox +€2é‘{é'--a)+ H2 +C'8 T]}
(11.5)
which, aside from & difference of notation and & slightly different arrangement,

is identical to formula (XIX) of reference 2 if 5. is replaced by Theodorsen's
C'
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I11-12 Aileron Hinge Moment, Lombard Form

To put the eileron hinge moment formula in the Lombard form, the terms
defined in section I-10 and the ’s given in appendix B are substituted in
expression (11.1). Performing these substitutions the aileron hinge moment

divided by C I, becomes

M (X3 4 s
m Ry Gy~ Ra LTk = E(Ry ~RyB)

UZ . ve
—RIO—C—/G—RHU/G—RIZCIe

-—Ra—gsﬁ[-ge + U + C(é-—&)o’(

R, Re o
P FUS + el ] (2.1

Attention is also called to the fact that (, =— /1, and that AJ, is the moment
per unit of span.

To put expression (12.1) in its final form, apply relations (7,2) end
(7.3) of section I-7 and arrange in coefficient form as shown below,
Me

e *[R"W?—- iw%tzRasfﬁ] Ye

‘ _— 2 =2
- {—(RT“ RyE)w?+ Lw%—’[f?g ¥ g 5 -"2——-2)] % %Ra SR}D(C
. - 2
- [_ Rew™ +iw & (Rt RuSp) + & (’%°+R'3§ﬂ)]’ec (12.2)

The above expression is in a form which is comparable with Lombard's work, see

expressions (5:10), (5:11), end (5:12), page 119, reference 4.
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II-1& Conclugion
| The principal theme of this thesis is to develop aerodynamic formuleae
for an oscillating wing-alleron combination of finite span., This ig done in
the preceeding pages. Hence, the principal theme of this conclusion is the
effect of span or, bvetter eay, the effect of aspect ratioc on the aerodynamic
formulae of an oscilleting wing-aileron combination,

From the nature of this problem it epvears adviaable tc split the con-
clusion into two parts, one concerning the wing 1ift and wing moment, the
other concerning the aileron hinge moment. The derivations of the formulse
for wing 1ift and wing moment are in reality &n extension of the work which
is glven in Report 5, while the derivation of the aileron hinge moment is a
problem which starts from first principles.

Part 1

In chapter I, the wing 1ift and wing moment formulae az developed in
section JI~-B are comparsble to the corresponding formulae of Herort 5. Cn
comparing expressions (8,1) and (€.2) of section I-£ it will be obgerved that
they are respectively identical with expressions (Z.7) pace 79 and {Z.9) page
€0 of Report 5, except that the two former expressions have terms due tc the
presence of the alleron, i, e, the coefficlents of 4. Further, if the co-
efficients of B in expressiong (£.1) and (€,2) of section I-E are examined
it will be observed that the only terms sffected by aspect ratio are 2 and
Q,, . From section I-8 it follows that expression (XVIII) for the wing 1ift
a§ given by Theodorsen in reference 2 can be made to apoly to a wing of finite
span if Theodorsen's (" is replaced by the ZE of Heport 5. In like manner
it elso followe from section I-9 that the wing moment expression, i. e. ex-
pression XX of reference 2, can be made to apply to a wing of finite gpan if
the factor E(Cl*~%)(f in Theodorsen's expression is replaced hy the fector

Cgczﬁg + Eiﬂ) where Ez and EZR are taken from Report 5. A similar
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comparison is pointed out in section I-1C concerning Lombard's work in reference
4,

From the above paragraph it can be concluded that there ar; no basic
differences between the formmlae for finite aspect ratio and those for infinite
sspect ratio. Hence, to study the effect of aspect ratio It is necessary only
to study its effect on 5, and Qg . This has been done in Repdrt 5 and the
effect of the aspect ratio on EE and Ei; is shown in figure & part I of that
report. It can therefore be said that the coﬁclusions glven in section 7
part I of Report 5, which were written by Dr. M, A, Biot, can be teken over as
s unit ingofer as the wing 1ift and wing moment formulae of chapter I are con-
cerned,

Part 11

The aileron hinge moment formula &s developed here has been compared
with Theodorsen's formula in section II-11 and with Lombard's formula in section
II=12. From these comparisons it can be concluded that there are no basic
differences, For example, it ls necessary only to replace the (" in formula
XIX of reference 2 by Ei& in order %o obtain the aileron hinge moment formula
for » wing of finite aspect ratio. It was also pointed out that S, — =P
28 AR — g0 , in this case the formulae become idantiqal. Hence, to study
the effect of espect ratio on the aileron hinge moment mesns the study of Eiﬂ
in comparison with ¢ or P .

Attention is called to the fact that S, is a function of reduced velocity

a%%-, aspect ratio, and alleron chord or, more precisely, T whereas C or
£ ere functions of reduced velocity only. In addition, the guantity Ei;
like ' or FE is corriplaxn Consequently, since the numerical work is somewhat
lengthy, the author wag excused from evaluating Sg insofer as this thesis is

concerned, It ig therefore deemed as inadvissble to attempt any concrete cone-

clusion about the varistions Si with aspect ratlc, without the numerical values,



References

Blot, M., A, and Boehnlein, C. T.; Aerodynemic Theory of the Cscillating
Wing of Finite Span; Heport No. 5; Approved by Th. von Karmén; California

Institute of Technology, Pzsadena 1942. Herein referred to as Report 5.

Theodorsen, Thecdore; General Theory of Aerodynamic Instability and the
Mechanism of Flutter; T. R. No. 496, N. A, C. A. 1940, |THerein referred

tO as N.'Ac Co Aa r T. Rn -5 496.

von Kérman, Theodore and Burgers, J. M.; _ Asrodynamic Theory; Volume II;

W. F. Durapd. Editor-in-chief.

Lombard, Albert E. Jr.; An Investigation of the Conditions for the
Occurrence of Flutter in Alrcraft end the Development of Criteria for
the Prediction and Eliminetion of such Flutter, (s doctor's thesis),

Celifornia Institute of Technology, Pasadena; 1939.

Hardy, G. H., A Course of FPure Mathematics; seventh edition; Cambridge

at the University Pregs, 1938; in particular, Chapter VIII, section 203,



The definitions of the following symbols are taken from N. A, C. A,

TR-496, reference 2, however, the lower case ¢ , used by Thecdorsen has been

replaced by cos6,, likewise the Vi~ c* has been replaced by sip g,, and

cos'C by 6, .

T o= - %sin 6,(2+co>'"-6°) + 0,c058,
T, = €050, (I — <0528,) —6,5in6,(1+cos?8.) + 6,5 cos 6,
L= (é'- +¢€0526,) 8, + £ 6,c056,5in6,(7+ 2 cos?e,) - 5 (1—cos*8,)(5c05%6,+4)
7,= =6, + cos56, sin &,
To= ={I=c0s*8, )~ 6F ¥ 28, cos 055110,
Ts = T3
T = --(-8'-+cos“8°) 6, + g' c058,5in 6, (7+2C05260)
Ty = —55in6,(2cos26,+ 1) + 6, cos 6,
L= t[dsine, v am)= S-p+aT)  were p=—3sin,
To= 5in6, + 6, |
T, = 6,(i—2c038,) ¥ 5in6, (2 — c058,)
T.= 5iN6,(2 +<056,) —8,(2c056,+ 1)
= E’[—n - (cos @, — a)*r,}
= "/"% + '69'6" €038,
Identities:
2Ty = T — Tycos6, see section I-9

ot
1}

2T ¥+, =aTy see section II-1l
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aAppendix B

ard Constants

Relow iz given a table of the

ses appendix A,

Lombard's Thesis, reference 4.

4T
Sl
-
R}“'T#-
o Ty
(PRl
7
Re= ~7F
s
f\.,‘)‘:—:ﬁ:( i Jkio)
Ry= 45|27 -2 T+ T+ aTy(T
R= Zm|-Ti+ 2T (v-3)]
-
feg= e
RO 1 =) B ks erlons
ﬁlf&lﬁ[zﬁ at 7:’] =T G
) 2
E:oz ;T_E(T_;' 7; ‘/o)
T Ta
A= -";}T;
T
Ria= = gpre
R 7—;07;2‘. 'RIRS
i3 T2 A
Tu Tz Fa g
M H7Te 4
Neote. RJS and F?m
Dr. M, A, Blot.

Lombard 's Thesis.

The second equivalents for A,

Lombard-R5 in terms of the Theodorsen 7 5,

This table is taken from the nomenclature, sppendix II of

Aqfr (237% = Iy *‘7Z)

)=

were taken from a report on wing flutter writtern by

and /<y are not glven in



Appendix §

Aspect Ratio Integrals

The integrals of this appendix are called aspect ratio because they are
the results of the aspect ratlo terms in the functlons £, , E£ , ~nd £, as
Ziven in chepter I1I, however, these integrels are also functions of the aileron
chord, For the purpose of worklng ount these irtegrals a Bymbol A will be

dafined such that

or
c
- 127 (c 2)

Py this means integrale (4.2) =nd (5.3) of chapter II arpear the same, and one
derivation sufficee for both,

Integral (4,3) now becomes

Sl k,8,) = ”//6) pees € __sin"T o

case—co:»'r {s ¢)
In order to integrate, the Fir=t step is to write G?Axosr in a Fourier half
range cosine series, thus
PRI o & shies T oS BT s ¥ty o FIT o (c 4)

Multiply the above expression by «T nnd integrate from O to 7T as shown below:

T 144 T IT
j@km’fdz‘ ~_-j(‘l,, At +/(l,w51?0('[’ + jaz cos 2T AT +++-
0 © (o} . e}
-
+j(1,,cosﬂ‘fd't’ 2 R
(6]

All of the above inteyrals of the right memher reduce to zerc except the first,

end from it the following result is obtained:

(C 5)

T
ao:j é;kcos’td,r
©

Inte,ral (B 1) given on page 85 of Heport 5 becomes after substitution

of (C 1) the following,



m

j et wosnTdT = ml, (k)
o (¢ 8)

where [ (k) is the modified Bessel function. If /7 takes on the value zero
the above becomes
Tr
f g r et gop e pp ] {)
o (c 7)
Substituting this result in (C 5) the value of <o becomes
a= [,( k) (c 8)
To obtain the balence of the coefficients, multiply expresesion (C 4) by
cos NT dT and integrate from O to 77. Following this procedure d, becomes
CJ’,,:EI,,(K) (c 9)
for h= 1,23+ Meking use of (C 8) and (C 9) the series (C 4) can be written as
‘ @
ehesT-1(k) + 2 ZIn(k) cosNT
il ’ (C 10)
Before substituting meries (C 10) in (C 3) the integral will be slightly

modified in form; thus

; & i
o yhesT Yy = sin%6 )

So(k,eo)“—"ﬁj je {COST'{“COS‘@‘m-}drd@

o ‘o
With the exception of the fraction the sbove can be integrated by means of
(C 6) and becomes

G

So(kheo) = j [It (k) ~h L{k) COs 9] 6{6

Q ‘

KecosT__sin"6 sin?e
7Tj f € cos T— ('059 drde (c 11) *

Substituting (C 10) and (C 11) it becomes

5(k8)] I(k)+I K)cODG]d@

\(\J.G sinfe /
&= “[ f {I(k) + 2 > I, (k)COSI’?T}ZB-—;:“:—C—(‘)’;édTGiS



¢

Assuming that the above satisfies the reguirements such that it can be written

S, (k.8,) =j .[[,(K)+[o(k)cose de ~,-,.~’rI°(k)j [ ——ﬂ-drc{e
(o) =} (4}

COST —cos6

25 hw [ simeeent g
o “o

COST—-Cos Q

(C 12)
It is apperent thet in expression (C 12) the following integration is

involved; thus

T
j cos T d{_ = 77 sin e
o

cosST—C0S O sine
(¢ 13)

where /7=0,[,2--. This is integral (2 D) given on page 101 of Report 5 except
that the symbols have been changed to sult this problem. The result is a
Cauchy principal value, see also pages 173 and 174 of reference 3. Using

(C 13) expression (C 12) can be written as

5, (k,8) =j O[I,(k) + IO(K)COSG} de

n=f

<0 g,
2 Z]:,(k)fo sin@ sinh1 e de '8 34

From the trigonometric identities the integrand in the above integral cam be
transformed as follows,
siNe sinnNée = E’[cos(n—t)e e Cos(r.7+i)e] (C 15)

Substituting (C 18) dn (C 14) and integrating it becomes

Se(k,6,) = L(Kk)e, + L (k) sine,
- n

=/

In(k)j%[co_s(n—!)é - cos(n-i-l)e]de

In order to avoid the difficulty apparent in the remaining integral when /7-=/

the series will be separated and the above expression written as



S (k.6) = L(k)6, + L(W sing, ~ I’(k)] de

—;I,,(k)] :DS(H_I)GO{G

o0 9,
+ ;I,,[k)[ cos(n+1)ede6

which becomes on integration
oo

S,(K,8,) = I,(k)sing, — %:z I (k) sinrgn-—[!) =

D
sin(r+() &,
* ;I"(‘L{) A

| &

(C 16)

Before changing the form of (C 1€) the limit S.(k,8,)as the aspect ratio

tendes to infinity will be evsluated. From expression (C 1) and (C 2), and

from the fect that m;—%ﬁ which is given in Report 5, it is evident that
P |
K :*R (C 17)
or
J
= C 18
A =3z (c 18)

hence as R—+00 it follows for either of the above two equivaients that K—0

From the properties of the Bessel functions it follows that

forh—ﬁ[,2,3,"‘ and for h=0

limit I(k) =1

K0

hence if 6, # Q it follows frem expression (C 16) that

limitS,(K,8,) = sins,

(c 19)

The procedure of rearranging expression (C 16) will now be given in detail.

In the first eseries in this expression let m=h-! and in the second let m=H+1

then

S5o(K6,) = LK) sin 6, — ;Imﬂ (k) Si%mfe

= inte,
+ 2 L () 2

{us)
&
&
bt
-
e
g

at term of the right member in

the geco:nd

series the above



can be written es

® ;
So{k,eo} = ; [I"’"'(k) - Im«H (K)] i_'f_’rﬁ’?jfg_ (¢ 20)
From the properties of the Bessel functions the following recurrence formula

exigts; thus

2n
Iﬂ—l(k) - Ih-yl(k) = k Iﬂ(k) (C 21),:
Substituting this in expression (C 20) end at the same time writing ¢7 for /77
it becomee
2 @
S(h6) == 2 T,(k)sinhe
el ’ (c 22)

At this polnt & symbol J (k,0,) will be defined such that

T (k,8,) = :4; L, (k)sinne,

(c 23)
Expression (C 22) can now be written in its final form as
5.(k,8,) = f"—o‘(ne)
T K E (C 24)

This expression is given in section II-4 as expression (4.6) where A= and
in section II-5 es expression (5.6) where A = ,—2%;' .

Next in order of derivation is S,(%§,8,) which is first defined by the
integral (4.4) given in section II-4, Making use of expression (C 1) thie

integral can be wrltten as

e .
s ! ° skcos T cosTsin®T d (J‘{
sy = || @t ST s o |
. cos © —cosT (C 25)

To bring this into a form easier to handle, the fraction in the integrand will
be changed as follows,

cosTsin®*T

cos3T—cosT
os @ -cosT

CoS6 —CoST

sin*Bcos 6

4 cosT — sin*g — Ba
cos+T + cos 6 cos (S} cos T—C056 (C 26)

i



Substituting this in (C 25) it becomes

Go 1T
05T
Gy(R B) = —I‘fFJ e"“” {cosaf + cos9 cosT
o J
in%
—§W16—~3Mw9529 drde
cosT — cos0 (¢ 27)

The first three terms of the integrand can be integrated by mesns of (C €) as

shown below,

5,(k,8,) =/6°{é’—[fo(f<) + Iz(k)} + [, (k)cose —IO(K)stGEde

i é)KCOSr 2
j/ sin O cosO de@

Cos T—ccs 6 (C 28)

Substituting expression (C 10) and rearranging it becomes

s,(k,8,) -___] °[%[2 (k) + I,(k)cos e + %Ia(k)cos ze] de

- ——] j ?I (1) +2>:I (k):.osne}”’” 0038 frde

oS
S (¢ 29)

which as in the cese of So(k,0,) cen be written as

5,(k,8,) :f [—‘2— Li(k) + L(Kk)coso + ;“?,*IO(K)COSZG] de
o

<0 S,
*E.’:[:;IN(K)fsin ne sine cosede
o

where use of integrel (C 13) has been made at this point. By means of the
trigonometric identities
5INHe sind ces6 = ;{- [cos(n-a)e 2 COS(H+2)6]

substituting this end integrating the first three terms (C 30) becomes

s(k,e) = % Li(k)e, + [(k)sine, + —;Io(k)sin 26,

k=4

"Elilﬂ(“)/% [cos(nﬁ?_)e - cos(r?+2)e]d6

-

In this cese the term which glves trouble 1s obtained for n==z , hence the

above 1iec written =8



S.(k.6) = £ 1,(K) 8, + L(K)sine, + &+ [(k)sin 26,

- E";I,(k)j I -é—lz(K)j de

o
o0 eD
I P) pAs——
(== Bo
+ ‘é:,;fn_(k)/ cos(n+2)6 de
, ‘

which on integration becomes

S(k8) = 2 L(k)sine, + £I(kK)sinze,
= ~2)6
_21_2- (k) sin (rl

%i L SELILe,

=4 Hn+ 2
7 (c 31)
From expression (C 31) it is also guite evident thet
. . -~ g Es ._l_ . -
[t Si(k,e,) =z sin 26, : (¢ 22)

The procedure to be used in transforming (C 31) into a form more suitzhle
for numerical celculation is the same as that used in the case of S.(K.8,) but
here the work is somewhat more involved. To begin, let 77=r-r in the first

gseries of (C 31) and let m=n+2 in the second, then

which can be written as
s(k.8,) = 2 L(k)sine, — ZL(k)sine,

t 52 [Loak) = Lpya(i)] 5275

ma2



G

In the recurrence formula (C 21) first let N=M—1 and then let N= '+

which given the following two formulee:

L. z(k) m(i‘:} = ,?,,(T_’) Im L

and

) ~Tmaa (i) = B L ()

Adding the above two expressions gives

£ el K] — m+2(/k) = Z_i;'zz[fm-:(k) + fm*,(/")-_\

- % [Im*i(k) - Ih'i#-l(’k.)]

Applying the recurrence formula (C 21) to the latter brackets, the expression
can be written as

Ln-a(K) = Lpua(k) = B\ Lo (k) + Dosi(K) = 1 (K))] (¢ 24)
Substituting the above in (C 30) and separating the series it can te brought

to the following form;

S,(K,G,) = %],(K) .51'..*1-80 — L(K)sine,

o0
+ 7’2 ”_Z;Im_,(n):sinmeo 4 L 2 Lis(K)sinme,

=2

K
- izz I,., (k) sinme,

1T

:x

(c 25)

Now consider each of the above series gepzrately. In the first of the

sbove series let N=rm-~( , then

00 fa=)

LIm_,(K)sf_n me, = hZ'I,, (k)sin(n+1)e,
-2 =

co
= ZI,,(R)[:*»’:—: He,cos s, + cos Ne,sin eu]

n=1

In the second series let =m+/ , then



H

18 ?Me

ZI,,,,, K)sinihe,

=2

I.(k)sin(r1-1)6,

L (k)sinne, cose, ~ cos neo:slneo] ~-L(k)sineg,

g
i

Adding the above two expressions gives

n}; L., (K)sinme, + ,,,Z%I’"*‘ (K)sinme,

2cos6, Z I,(k)sinne, — I.(K)sine,
=

]

2cos 0, O (k,06,) —1, (k) - I, (k)sine,

where expression (C 23) has been applied. Combining the first two terms of
(C %5) by means of the recurrence formula and substituting the above expression

(C 35) becomes
S,(k,8) = %Ia(k)sine, + ;’;[acoseo T(k,8,) — I,,_(k)sin eo]

ZIm(k):m e,

=2

ﬁﬂh)

which can be written as

5,0k6,) = 5l (Kisine, +

(M

g (k,5,) cos 8,
‘f [E 1,,(k)sinme, - I,(K)sineo]

hAgain applying expression (C 23) to the above expression ond eliminating

Ia(k) by means of the recurrence formula the above expression becomes

S.(k,0.) = #[I,(k) sine, — 2 ( ﬁ ~ cos86,) o-(k.ea)} (C 36)
which is identical to expression (4.21) of section I1-4 if K ie set equel to
2
AR

For the next integral substitute /ﬂ='%% in integral (4.1¢6) mection Il-4

=8 shown below,

O ¢
i) T & COs@
: s s

Lose —0s T (G 57)



¢
Comparing the above intesrand with the integrand of (C Z) it is seen that the
two are the same excent that (C &7) has an eadditional factor cos6, in the
nunerator. Hence, multiplyiog the integrands of (C 14) by ce3© , the function

Sa(K,6,). can te written at once es

Sa(k,eo) = j ” [I,(u) cosd + I,(k) cos? 9] de

oo Bo
- ’EZI,,(K)j S5iN B Ccos6 sin He 5/6
=t s (C ag)

To bring the second integrand into form substitute the following trigonometric
identity,
5inBces@sinne= 5 |cos(n-2)6 - COS(H+2)6] (c 39)

Substituting (C 39) and integrating the first expression (C 3&) becomes

5,(k,80)= L (k) 5in@, + [,(n)( & + S sinze,)

” 3
4

o0
- ._.éz Iﬂ(k)] [cos(rI“Z)Q - cos(n+2)e:l de
A (C 40)
Before integrating the series, they will be sepnréted snd the one containing

the cos(n-2)e terms will be expanded for y7=1 and H=2 ; thus integreting (C 49)

hecomes

Sa(k,8,) = L(k)sing, + IO(K)(% ¥ 3r 8lr e, )

— £I(x)sine, - £ L(K)8,

g sin(r1~-2)8,
P AL

=2
S in(r+2)e
J_ 11g) o
* ZHZ::I"(H) nt+ e (¢ 41)

At this voint the 1imit S2(K,6) esn te seen at once to be
g —
limitS,(k.6) = S + Lsinzeg (c 42)
k——'(’) artir e 2 . 2 v
The procedare used in reducing (C 41) to its final form is much the same

=g thet used in reducing (C Z1) and will not be given in detail. If, however,



the procedurs is carried out, it will be found thet the result becomes
5.(k,8,)= —;;[L(K) 6, + 1, (k)sing, — 2 ( ',»i‘ — €05 90) O’(,k,e‘,)J (C 43)
Before leaving S, (k,6,) it might be well to show the direct derivation
of formula (4.2&) of section II-4 which in A notation can be written as
/
S.(k,6) = Si(k.6) + 1 1L(kH)e,
To derive this directly subtract integral (C 25) from (C 37); the resulting

expression is

8 7
in2T Cos 6 cosTSIN*T
Sa(k,6) = 5i(k,6,) = 77 / / A e
g 0

Cos6-co0ST €030 —C0ST

Thie result reduces to

eo s
jz.(KJ@n) "Sr{k,ea) = '/‘T/ / ekwsTﬁjl’laT L{T 0(6
o ‘o

which integrates at cnce as
S.(k,0,) — S (h,8,) :[L,(k) *f;_(kﬂ%
The above can be reduced by means of the recurrence formnula to
5.(%,6) — S, (k,6,) = + LK) 6, (c 44)
From section lI—4 expression (4,19) becomes on sudbstitution of kT%
the following ;

= : !
‘-)3("()60) = ﬁ/

o

e, 1 )
KcosT sin*Tcoso

/ € cosT COSE6—-COST dtde

0

(C 45)
This integrel is similar to (C 25) for if the integrand of (C 25) be multivlied
by COSE€  the integral becomes (C 45)., Multiplying the integrends of (C 30)

by COS 6 the first integral of (C 45) is obtesined; thus

&
S, (k,6,) =/ L—é-la(ﬁ()cose + I (k)cos?e + £ [ (i) cosze cose} do
o

[se) e,
swics 8 :;L,(m/ SN e sinacos2ode
B o

3ince the ahove can he used in the derivetion of 5_.,—(‘\‘,60) it is well to rewrite



Sg(k,eo)—:/‘ a[%lg(k)cose i %I,(k)(/ + 0> 26)
T iL,(k)(cose + C0536)] ae

o ch
- Z [,,(K)j SINNesin2e cose de
=i & (C 46)

The trigonometric identity which must be subetituted for the second integrand

in (C 46) is shown below;

SN sSIN26 cos 6

- T’J s{n-))e + cos(¥x1-3)8 ~ cos(ﬂ+3)9~ccs(n+/)e] (c 47)
From this expression it is spparent that after substitution, each term of the
resulting series will be made up of four terms, From the procedure which
foliows it is advisable to write the result with four separste series. As

in the preceeding cases 1t is necescsary before integrating to sepsrate from
the series containing the cos(n-1,6 , the term for which /i=! and in addition
the series containing the €05(n-3)9 , the term for which #=3 . In the latter

series however, the terms for which =+ and #=2 will also bs separsted.

Performing this substitution =nd integrating (C 46) becomes

S;(k,8) = zfa(K)SWB t L L(k) (6, + S5M26) +4 LK) (sing,+ £sin3e)

__jfj[f(}‘)ea ""%ZI(#) Sin 1)9

1= 2 -

~

- g (k) sin2g - —éI,,_(K%smeo ~ 2 I,(K)e,

_ﬁifh(k)w

-3
? in(h +3)6, 5 (
N Sm n sin(A+14)6,

which can bte written ~s



Q

S5{kB) = ;L—[L,(t«)(sin a, + 5 5in36,) + L(k)(8, + £ sinee,)

L(k)sine, - I3(K) g,

+’/‘ 'I( K) J!r::”;”,_’l_am ? im0 )sm(n 1) 6,

2 &,in("i +?)_9— - J||](,7 3)£’
+g’,‘f,,(k, e XI(H) - (¢ 49)

Pron the ahove exrrvegainn it la mipsrent that
ey I -
/HT?(I:f (k() = ,.,()meo-r‘?sm;ee‘,) (¢ 50)
Faollowing » procedures simller ta that need in 5,(k,8,) , the gerieas of
(C 42) c2n bep written tn teramg nf (,T(k,()o) % The manipulation of the terms

ia guite long and anly the (inal resnlt will he glven hcot'b' which 1e

1

e = b [ g o Feosa v s e ooy &t Lne,

s ¢ l] - ; :
2 ['“ ';:!,;(“"2 1 l”,(iﬂ 1 "-‘if?(lﬂ) t l',{k)r] S Q)
: ‘( wt

' H (k) - _,_r’, ( -’5'? 1) ‘4, I,(0)

okl kK

I | ‘

» . ] PUR. Pq' -
,: » Iq( \) ” I‘(,\\] L1 S G'_

(¢ pY)
The alove sspresstion s nof as yed in }llu boat Tovm for numerical e';plpn'lh"\u“n'
alince tlw lNessal functionag sahould be voduped to ardere of pero and one . T™hie
form, however, ta much hetter for numerlionl calonlation than (O 49) since here
1t la anly necssenvy (o compute one egevies 1, e, , (e a0t this must e come

rited Cor S, 0k, 6.).

Kapreastion (4.:7) aection 11.4 deafinen '-.‘(k y0,4) whieh in tere of tle

s notatlion hagomes
Q,, it '
] s ARG o
Sl b T o= [ / ( IR SRTLL RS T p
C A At da ra mod
o "o it ot st ¢ (€l RBe)
T tatearal aty e olitzined Loy mltialylug the lntegraud of (O &%) Ly (o=®



C
The firct integral is therefore derived from expression (C Z€) by introducing

the factor ccs5¢ as followa,

S, (k,€) =/ [L(H) cos?0 + l—o(k)coﬁe}de

o
[s) (=28
* 2; I,,(k)/ sin© cos?e sinnede
o

which can be written as

0, ‘ _
s, (k,6,) :j [.—éj,(k)(u cos26) + %I (K)(3cos 0 + 60336)] de
Q

-ZL,(k j S e ::.ma'e cos @ de (C 52
If the above expression is compared with (C 46) 1t will be noticed that the

two integrale involving the series =re the same. With the aid of (C 4E) the

above expression can be integrated at once; thus

Sy(he)= ZL K)(6, + —sm 26,) + '[(k)(asme + +sin 30,)
Il - Sin(r—1)a&,
"zI,(/‘)@o - )LL ;_:T,_L(K)“‘*,:,(T_“‘,—")—*"

- é L(k) sin zg@, — :%JZ(K)SIne - —I (Ke,

_ }lif(k)sm(” -3)6,
r=i
sin(n+3)e, sin(n +1) 8,
+—ZI() N ER ZI{) CEY

which can be written as

B a)= 2’ [1‘,('«)(33»‘:16, % 55 8in 3¢) + L(K)(e, + 5sinze,)

—I,(K)sine, — I;(k)o,

3 sin(n+l)Q, L= sin(n-1)8,

B I T e = £ B
sin(n +3)86, = sin(t1-3}6,
+ZL,(/) e P WAL

(C 54



Prom the above it can be seen that the
Lrraai - 5‘,(!1’,6,,) = 7'1(3 sin e, + -é-sinj’so) (C 55)
Manipuleting the series of (C 54) by methods used heretofsr and by using

the recurrence formula it can be brought to the following form,

S.(k,6,) [H- e 2cos0,+ Cosaeo]()‘(k,eo) + -;—IZ(K) e,

:)I(k)+ Iz(k)+ L(k)]sm@

Xl@

+["21E
2 . J _
+{ (& + 8109 - 57 (5 =+ ) L(0 + KzIB(k)

~ i Lty = £ 1,00]sinze,
(C 56)
The derivation of expression (4.32) section II—4 will now be shown which
in the Kk notetion can be written as
Su(k,8,) — S3(k,6,) = %I,(’K)sin@o (¢ 57)
Meking use of the expressions (C 45) =2und (C 52) the above difference can be

written es -

.6

[ o( E’kcoﬂ'[ 5ir12T cos 20
/ j Co50 — COST
0

I

5 " )
Oy (H,6:) — S‘R(K)eo) T

SIN*T cos ©
— oS T—— dT :]{
€cos @~cosT ] =

which reduces to

&,
Sy(k,6,) ~ S5(K&) = #j/?““aﬂsinircosed’rde

o /o (C 58)
The first integretion of (C 5€) is made by use of (C 6) which becomes

eO
Sylk,6,) ~ 53(k,6,) = —2’—[Ic(k) - IZ(A')] f cose de
o
Since I, (k) — [(K) = ké'[f(k) expression (C 57) follows at once.
The last exprescsion to be derived is Ss(k,9,) - This ig defined by

integral (4.29) which in K notation becomes



(@]

e, /77
] K cos T 5m2‘t'C0526a/
3 =7 ~0 T eda
5,_,(!(,90) (7/ / &€ CosT — G (C 35)

This integral can be obtained if the integrand of (C 45) !s multiplied by
cos© and from this it follows that the first integration can be obtained by

multiplying the integrand of (C 46) by cos® . This is done =8 shown below,

8 '
55(/’(,(90):} \%I‘,_(k)c%za +5 L(k)(cos 6 + cosze cos 6)
0

+zjfc(/r)(coszf9 + COS 30 cose)J de

—ZI (k) smne SinZ26 cos?6 de (C 60)

'

which can be arrenged =s

‘ 60 -

= 1 | %

S5 (#,6,) =zf '_*é[,,(K)(I+2C05 26 + cos 46)
(v}

+I,(K)(3c'ose + cos36) + [,(k)(/+cos 26)]6(6

|
2 = (c 61)

- )
iI,,(k)] ;innesinze (1+cosze)de
(o]
Integrating the first integral of (C 61) and rearranging the second, it becomes
Ss(k,a,) = ﬁ[lo(k)(e,, +5in 26, + = 5iN486,)
+ I,(k)(35ineo+ +sin3e,) + L(K)(6,+ % sin zeo)}

~2’» Z Z (k) sm!’ie sinzede

M-
™Me :

Ih(k)/ sinne sin 4ede

=1 (C e2)
The trigomometric identities to be opplied in this case =re
sihnesinz26-= %[COS(”—“E)G - cos(rHZ)G]
and
5N Heé sin 46 = —é[cos(’rw‘;)e - cos(n+.4)e]
Apnlying these trigonometric identities, and sepsrating the proper terms,



expression (C 62) can be written os

Si(k,6)= —éﬂ oK) = L (A)J 3, +'_4f(k) }sme

[
+[I°(K)+ =1, (m} in 26, + = L,(K)sin 36, + 41 (k)sm4e}

) . :;m(n 2 1 sin(h+2)6,
i 2 Lol 25, tx ;,I )=z —
aD o0
) sin(h-4)8 ) sin(h+4)6,
. 8 K)o ese g oL el el |
8 ;L’( ) n-4 T :;,I”(K) n+4
(Cc 83)
The value of Ss(k,0) for A=0 will be taken from (C 63); thus
lrmn‘ Ss(k,6,) = (6 +5in26, + 7 Sin 48,) (C 64)

The function will now be glven in its final form as shown below

Ss(r8)= [Io(k) -L(n) e,

L 3
+ 5(?? Cosj‘eo—qi—%coszeo+(7+

%)cose‘,‘(;{%vL%g)]U(k,eo)
é. [(4+ =% 4 f)],(n) —(ﬁi + %f)[z(k)

~(3 - /’,—rzaJI:,(‘H) -15(11’)} sine,

+ [~ ELo0r (3448 + o)Lt - (B +48) Lk

+-§f‘8‘élq(.‘()‘%Ig(K)h:éIG{k)}S"nzeo
+ 3 [G+1BI0-(2 +38)L00+ (1 + ZO) L0

Lt )I(K)+ S Lk - Ie(“)‘é“17(f()}5'ln3eo

(C 65)
Although the higher order Bessel functions in (C 65) can be reduced, they

must be computed for O (K,6,) . It wes therefore thought best to leave expression

(C 65) as is, for it may be necessary to compute the Bessel functions up to and

including [ (k) Iin order to obtain e satisfactory value for T (K,60).

Using tre resultes of the

preceeding paragrephs the limit of the function



«

f will now be shown to be zero =e the aspect ratio tends to infinity.

From secticn I1-9 expression (9.4) is given as

z:z(gcoseo—ﬁ)4—“°(famae -2fcos, +1) (c €6)
It can now be shown that

it F=o0 ‘ (c 67)

From section 11-8 expreseions (€.2), (€.4), and (€.6) are respectively
e foa L ¥ By (c €8)
= fr + T+ fo (C €9)
] ¢ 70
fim £+ fut | )

It can be shown for the nine terms given in the right hand members of (C 6é¢),

(C €9), and (C 70), that
limit [ = limit s = -« - = limit . =© (¢ 71)

AR-r o0 A >0 R oo
from which it follows that
/mm‘f //mn‘ ] = /m./f f (¢ 72)

R —~oo
and hence the limit (C 6%7).
To start this proof take the function 72,— which is glven as expression

(4.14) section II-4. Since the limit of = product is equal to the product

of the limits it fonou that the 1imit of (4.14) is

LUIAOIOTL Fag ™ /”r).fA'\’(/-f-L)\CA?) {l: T LM;R

3 . 4 ~i 3 7
+E+’],{£’ZZ£SO(E'Q) Rgzafi(%,ea}
From (C 19) end (C 32) it follows that the shove can be written as
i)
e~ l
. N L I
it Lo = L RO+ Ber) |LT+ ik

<} NI 1
+;?_+,]5‘neo = 45"’126‘;)}

(c 73)

from which it followe that

lina/t for=0 (c

~2
N



C
The function fs is given as expression (5.1C) section II-5. The limit

of this expression can be obtezined as shown below,

}
gt o = it |- 750 €7 | Uimit Si(0e) -
Substituting (C 19) this expression becomes
ot f = /fmif[— Co ] 6’*3—%J sinG,; =0
R @ 1+ 23R & (c 7€)

The l=st finction of f, is 7, 2nd it is given as expression {€.5) sec-

tion I1-6. The limit equation is

w oy . » ;
e ML 2O +
i/ﬁ/j o pe gﬂ”fj [(48 A,+ 24a, + 154, )sin 6,

- 6(a,+a)sinze + A, Sinseo] i
G 7

From expressions (5.6), (5.7) end (5.8) of section I-5 part II of Report 5 it

followas that

it ae = limit a, = it = -
iy B = it = Joug 4 =0 (@ 58

It can now be gaid that
it foe = O (c 79)
/R > oo
Frow exnressions (C 74), (C 7€) ond (C 79) it follows that
limiitfo = @ (¢ 80)
AR 08
In order to obtain the limits for f; and f, expressions (4.24), (4.26),
(5,19), (5.26), (6.10) and (€.14) from sections II-4, I1-5, and 1I-6 are
needed; from appendix C the results given by (C 42), (C 50), (C 55) and (C 64)
are slso needed, The procedure is the same as thet for X and the details

will not be given here, but if this work is carried out it will be found that

expression (C 72) is trve and hence the validity of (C 67) follows,



Appendix D

Intepgrals of Section II1-5

In section II-5 the integral (5..) is given eos

€, (7T r 0 iR =
]]/ £ ITT__ el ds
s ds (€~ cos T)(cosO ~cosT) (0 1)

Reversing the order of integration the shove expression becomes

®, 8 77 e—%"g 2 T
sin
j[/ (gatosT}(&Sge-costJdrdedg
o 7

The integrand will be separated in partial fractions as shown below,

{D 2)

. sin*v _ g-) . _ |
(G —cosT)coS@ ~CosT) € =058 §—=<Co5T

_ _sin*e ] ]
€ ~(0s@ W5T~(ose

Substituting this in (D 2) it becomes

@ e, T LA
y e 2 ’sin*t d
||| s 4 deds
A _

* éo "‘c / s5in% e | | 4 d 0(
:j [ {j [v;-cose g—cosT g’—ccse ’ CoOs T—(C0s58 - '] T} Bag
t ‘o

Within the brackets of (D 3) are three quantities which form three ceps—

(p 3)

rate integrals with respec® to C which will be teken up one &t a time, The

first integral is the type given by B. O, Peirce as io. 300 which is

(X - ! Sm-f[b+acosx]
a+ bcosx Vaz_ A~ a+ bcos x

(D 4)
where the constant of integration has been omitted. Avolying (D 4) to the

firet term of integral (D &) and omitting the fractionsl coefficlent it becomes

o dt o | skt [ ?;CO:T—I]": Tr
o C—-cosT - qa_‘r = CO05 T V-gz_, (D 5)

The second quantity im the brackets is the tyne given by (C 13) end therefore

"

dt
= - (D
/cu:,r-cose = (D &)
Q




D
The third quantity is the —/ which on integration yields —1T. Sudbstituting

these t'ree results the integral (D 2) takes the following form;
(AC

S o2 Ssiner drded
jjj —-COST)(cose-cosr) TRGEE

(AC [ee=7" ,
J E’ E g l} de dc

3 = casg (D 7)

The integration with respect to © in the above integral ies given by

expression (D 4) and applying this formula (D 7) becomes

g, (T _%SQ —
[ "] ettt drdeds
70 70

(S —~ cosT)(€0s 6-cosT)

0 {Ac
, == T et CCOS59,~ 4 _
::—rr/ e = [ sin g-—coseo §—+601dg (D 8)

For the counvergence of this integrel ag well re those which follow see G. H.
Hardy, section 203, reference 5. To tring (D B) into its final form the parts

formla f-l-w(?f = U ‘j v du is used, In savplying the partes formula let

— ot GC086, —| s
U = Sin € —cosé, =& +8,

and .
._.‘?ASS'
doyr= & = ° ge
From thig it follows that
5fﬂ(3
e 1 . L. .. |

(B8 — coss,) \/‘“
and
> _{Ac 1S
o g 2
v tAC
Substituting the mbove in the perte formila, Integrel (D £) becomes

" LAl

N i -ee .
’ € 2 “sin?*T
[j J(‘; CcOs T)(Ccos8 Losr)drf,/edc;

O

LA 5 o o
. .t S50,
= e (.S‘IH e = 1T 4 @0)
”\C , L - c058, 2
' ° [
- (_.;_c i
2T . <’ :
- S sinr B, WS, - 7.
{AC ? ((‘ — (05 Gr\) yl v 3 3 (n )
The hracketed guantlity In (D 9) tende tn zern =ae ': tende to Infinlty, however,

towey limit. §i. @, = tt hanomee -1 2 N . ubkion wag found Ffor the
; y "



remaining integral of (D 9) so a symbol (L, was defined as shown below;

.. ,® _ A)u';
‘;L e -3 d
Q= e /‘ (f-—cas@)v gzihT-‘ S (D 10)

This is given as expression (5.4) section II-5. Integral (D 9) can now be

written in its f;nal form as

T E)ﬂ%g Lo
j[ [ it dtdede
o 0

(€—cosT)(cos e —co5T)

L y _dAg
g 2l = (W—@o)——a—r—ré’ &

[AC BYs & sin &,

(D 11)
The above is glven as integral (5.3) section I1-5,

The next integral of this aprendix is given as (5.13) section II-5, On
compering this integral with (D 1) it will be observed that if the integrand
of (D 1) is multiplied by cose it becomes integral (5.13) of section II-5,
From this it fcllows that a first integral can be cbtained by multiplying the

integrand of (D 7) by cos 6 . Performing this multiplication (D 7) becomes

% , @ 1T _i’:_‘":g
o 2 . 2
j e s £ €058 dr de ds
£ i (€ - cosT)(cos6 ~cosT)

o8 ings 5
=rrj j eﬁﬁg{Ecoa‘e—cose}dedg
(4] [o]

€ - Ccos8 (D 12)
which can be written as

RO B e

e SIN?T cos O diedsis

(S —cosT)(cos@~cosT)
) 7o o
W i wi z
- T R o THY -
- [}e {s’hcose Y§*-I'—cosordeds (D 13)

f (o]
Within the brackets of (D 13) are three expressions, insofar es © i

concerned, The first forme an integral of type (D 4) and the remaining two

integrals are very simple,hence (D 13) becomes



f rr 3 SIN*T co. 6
, /o} (r; cosT)(cos 6 -Co5T) drdeds
©
(°° i c T
sl E®C ] BE gy SEO58 )
-ij = [ He S - €05 8,

— e Vs~ — SiHGO] de
(D 14)

The parts formula fu dv = wuv —fv‘c/u must now be applied, and for this let

_ e 5! Ecosé —1 =3 o
U= —= S sir Ve cose cos 6 B,Y¢*—1 — 3@,

and
iAc

-

C
v = & ac .

From which it follows that

» <1 eo e i = 5 - 2
duw = (rr o ¢ - sun‘_%l s __'_B.QE__)L{G'

2 (S-co98,)Vez S — cos B,
2nd
[
~ =
S o~ 2 e z

T IAC
Substituting the above in (D 14) it becomes

LAL.

_sir)z”tcose
j[ j =- COSU(LOSG—cosr)drdedg

& <o
__2n 25 (1S .*n§’go>e _ o2 .
-~ B[S (-5 2R - a5 - 5]
21T m-Q_(:g It € sing | SCos 8y —i 8s (,(
+ FH—=1 & F [~— e = B - — - === ] D 15)
{ AC ; 2 (g-cos6,) gz _T i T —Cos5 § Y= 1' & (

In the above expression the lower limit of the (UP-term offers no difficulgy,
the upper limit, however, muct be evolusted by means of 1'Hospitelis rule

congidering the following exu:aseisn; thus

- 5 sin By cOS@ - 8 ‘/

i = (D 16)

From which it follows th=t the limit of the sbove expression is zero. Tre

r-«

s

®
1
)

remnining integral of (D 15) can also be seperated into two convergent

thus (D 15) co»n be written as

-}



D
= —“’”’1 TCos6 ~
// (‘:—g&;’f)(0038~cosr) 1/{6(,(
LI

® tlr.g
H e
_ EITSMG/ _ se _ e

{hC (c -LO:‘B‘[;’-I
ore (-dAeg | €cos6,-1 B
— — : a 1A 0‘_~ — ——
(AC ¢ (5‘ g Coss, ¥ E’“'—T‘ )dg (D 17)

/

Cperating once with long division on the integrand of the first integrel
of the right hend member of (D 17) it can be separated into two convergent
integrals. If &, is adied end subtracted in the integrand of ti1e second,
it nlso can be separated into two convergent integrals, By these means (D 17)

can be written in the following form;
_tic

e Sy |
/] (g SIPT €056 1 (e e

— O3T)(co5O~CoS T)

co _.l.l‘-‘-'
= AN g T(Tr sing,) — =X sin e] ez—a-j;dt;
LAC o0 e _ ke l V—f;—_—-—r‘
= =0 g cosej ez> e
- LAC (S =05 g )fesay’
ar ooe,.,"—;i (Siﬁ‘ 2cos6, -1 gt & i )C(Lj
[)c g — (oS 6, c a

_ 2 / R
(D 18)

Considering the integrals of the right hand member of the above expression,

the first 1s given on vage 96 of Heport 5 and is
tAc )
oo Q‘ngg - —Tfé-t— Ha(a)(aég}

Vee- (D 19)
where /7, (AS) 1is the Hankel function. The second integral is o R,
see expression (D 10), and the third is integral (D &), The fourth integrsl

ig siven on pe.e 98 of Report 5 which is



{AC

L i
raSy 5 _ e @ (ac
/8 (\@ )a/S‘ cea_ H= (%)

where H,‘Z)(%E) is the Hankel functicn of order one.

(D 20)

Before substituting it ie advisable to write (D 19) ond (D 20) in terms of
Qo and Q, respectively, This is done by making use of expressions (5.14)
and‘(s.l:’i) of section II-5 which converts (D 19) and (D 20) into the forms
shown below, |

Lo -Ate L ke

e - _ i}
- LAc (D 21)

© i, o a lif
€ (- 1)=~5=€ % (1+ Q)
[ Ve iAC (D 22)
Substituting the above results in (D 1) it becomes

Ac
_€ 7 SimTcose - rdede
(5 — cosT)(cos6 —CosT)
c ‘0

1

-

A% 2
= i 2 -t P ot o=

JTT
— — 2 ———
¥ sin26, + u\c sin SOJ Q.

{Ag
417'.5)”90 z 4776, =
+2phe e ¥ o, + 418 e 14 a]

(D 23)
which is the form as presented in section II-5, see integral (5.13).

The last integral of this appendix is integral (5.22) of section II«5.
On examination of this integral it is seen that the first integration is

obtained if the integrandg of expression (D 13) are multiplied by cO0s€ | thus
(AC

w,9 M =8

& £ % “sin*t cos*@ At
[/J (€C~cosT)(coSE ~COST) Cdeds
! (5]

‘A“¢ g L
s _ . - _ " :} "
= TTJ I & COSD €2 cose —cos?e | dedt

{D 24)

which can bte written ae



‘ = smz'l‘cosle |
/// (';"—“—O‘;T)(wrse—cosﬂ drdeds

b A 2
—:.TT[/ gE [I‘SIL“’(E—;;R““OE’G g)
1 Yo

- ﬁ; - ‘2"(‘0526] dede (D 28)
Integral (D 4) applies to the first term in the above parenthesis, »nd the

balance of the integration is evident; hence (D 25) becomes
7 - dAc

e £ 2 “sin?t cost &
// - —== 2 drde ds
/I 70

(c:—cm"r)(cose CosT)

JA(.

S T

In the above 1-ntegra1 the pert in the brackets can hbe shown by 1'Hospital's
rule to tend to zero as a limit when T tends to infinity; hence, according
to G. H, Herdy, section 203, raference 5, the integral converges.
To continue the integration the parts formula fudv-: uv —f‘v'c/u
ias used, where .
+ 9 8Vs - + 2+ Lsinze,

and
clc

dv = = "’.a’g
The expressions for du and V- will not be given here, however, after

intesrating by parts, (D 26) takes the following form,

w e, rr Al i
/ / (f - 0S8’ [_)F::;";“;O:i_)drdo a5 = L;\Tc e ["“ -9, ~ & sin aq,}
_an Amé)‘ !1}5,: [ac;si <1 G cos B~ Shsinge - me
(AC S~ cose, (S - caﬁﬂ)/g:’ [
et e g s W



D
The detsils of the follewling integretion will not be given here, however,
the procedure will be outlined below. The first step 1s to tszxe the second
term in the brackets of the integral and separate it by means of long division

go that it appears es shown below;

S “sing, _ &sing , sing,cose. 5in &, 05% 8,
(§=co36)T3-T  |5*=T" Ve (5—cosg)ye=_y . (D 28)

If (D 28) is resubstituted in (D 27) the second fraction can be intezrated by
(D 21) and the third fraction can te handled by (D 10) which leaves the first
fraction unintegrated, Agsguming that the above operationg have been performed,
add to the integrand of the remaining integral the following two zeros;

2%{?:7-—2QWE:T
and

25N €0 — 251N 6,

Tre remaining integrel can now be separrted into three convergent integrals,
one of which, say the first, can be recognized through (D 14) to be integral
(D 23), except for the common factor 77. The second reluces algebraically
to integral (D 21), and the third is integral (D 22). If this method is

follcwed, 1htegral (D 27) becomes

tg
= Z sin*T cos* 9
[ (q-;o:'r)(cose - cosr) ds dvde

(he
55 o, _ I 47T =
= 2ne {rr-—-é-ﬂ Z5in26, + 52 (1 + 7=)

+ [-— sinz2e, + I35 4 60] Qo

iNC LAC
4 26,
+t'}lc[lhc s.me]Q,

: . 2
5|n9[COS 6, + )\C(COSG + XC]Q}' (D 29)

This is integral (5.22) of section II-5.



