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Abstract

Vapor bubble collapse problems lacking spherical sym-
metry are solved using a method of simulation designed especial-
ly for these problems. Viscosity and compressibility in the liquid
are neglected. The method of simulation uses finite time steps
and features an iterative technique for applying the boundary con-
ditions at infinity directly to the liquid a finite distance from the
free surface. Two cases of initially spherical bubbles collapsing
near a plane solid wall were simulated, a bubble initially in con-
tact with the wall and a bubble initially half its radius from the
wall at the closest point. In both cases the bubble developed a
jet directed towards the wall. Free surface shapes and velocities
are presented at various stages in the collapses., Velocities are
scaled like \/—?—I—J where p is the density of the liquid and Ap

is the difference between the ambient liquid pressure and the vapor

cm Zz 1 atm.
sec density of water

pressure. For %E =10° ( the jet had a
speed of about 130m/sec in the first case and 170m/sec in the
second when it struck the opposite side of the bubble, Collapse

in a homogeneous liquid was simulated for bubbles with nonspherical
initial shapes described by the radii T, = Ro[l + le- Pz(cos 6)]

and r, = RO[I - -1—16- Pz(cos 9)] where Pz(cos 8) is the second
degree Legendre polynomial. Bubble shapes in both cases were
close to those predicted by linearized theory. A simple perturba-
tion study of.the effect of a small pressure gradient on a collapsing

bubble shows that gravity is ordinarily negligible for bubbles

initially one cm. in radius or less,.



I. INTRODUCTION

A. Topics in Nonspherical Bubbie Collapse

The study of the behavior of a bubble in a liquid is greatly
simplified by the assumption of spherical symmetry. Following
Rayleigh‘s[ g classical analysis of a problem first solved by Besant,
the inviscid collapse of a spherical cavity in a homogencous, incom-
pressible liquid under a constant ambient pressure, numerous authors
have studied the behavior of spherical bubbles under a wide range of
conditions, Far less is known about the nonspherical behavior of
bubbles. Becausec problems lacking spherical symmetry have proven
too complex for direct analysis, they have been investigated primari-
ly by qualitative reasoning, experiments, and perturbations from
spherically symmetric solutions. Omne result of these studies has
been the theory that cavitation damage is causecd by the action of

(2]

liquid jets formed on bubbles near a solid surface

[3]

A perturbation study by Rattray suggested that the effect of
a solid wall in disturbing the flow during the collapse of an initially
spherical bubble could cause the formation of a liquid jet directed
towards the wall, Rattray assumed that the bubble was sufficiently
far from the wall so that the deviation from spherical symmetry would
be small (of order ¢€) over much of the collapse with a predominance
of the lower spherical harmonics in an expansion, Both the bubble
radius and the velocity potential were expanded in a harmonic series

with the assumption of axial symmetry. The coefficients of the n'th

s ; n
harmonic were assumed to be of the order of magnitude ¢, The
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resulting solution suggested a reentrant jet for a high degree of
deformation, This jet formation was only speculative, however,
since it is not unlikely under any circumstance for a series of
Legendre functions to display singular behavior near the axis of sym-
metry when the series is considered outside its range of validity.

The importance of the influence of a solid boundary on bubble
collapse as a possible factor in cavitation damage was further empha-

[ 4]

sized by Plesset who argued that the stresses caused by the col-
lapse and subsequent rebound of a spherical bubble containing a small
amount of permanent gas falls off rapidly as the distance from the
bubble is increased. These stresses are too small to damage a solid
boundary unless the boundary is guite close to the bubble, Thus a
solid wall must have an important effect on the collapse of any bubble
capable of damaging it,

[5]

Experiments by Benjamin and Ellis confirmed that jets
form on bubbles collapsing near a solid wall, Large vapor bubbles,
generally about one centimeter in radius, were grown from small
nuclei by the application of a negative pressure, High speed photo-
graphs were taken of these bubbles as they collapsed near a plane
solid surface. The ambientpressure was maintained atabout 0. 04 atm
during collapse so that collapse velocities would be reduced to facili-
tate the photography. These bubbles were nearly spherical as they
started collapsing., First they became elongated in the direction
normal to the wall; then they tended to flatten and form an inward mov-

ing jet on the side of the bubble opposite the wall, From their photo-

graphs Benjamin and Ellis estimated the jet speed to be about
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10 meters/second. Benjamin and Ellis concluded that since velocitics
are scaled like the square root of the pressure, the jet spced under
atmospheric arabient pressure would be increased by a factor of about
five, It should be remarked, however, that the characteristic pressure
in this case is not the ambient pressure but the difference between the
ambient pressure and the vapor pressure inside the bubble. Because
the vapor pressure of water at room temperature is not negligible
compared to 0. 04 atm., the scaling factor should be greater
than five, This problem will be explored more fully in Chapter 1V,
Another major topic in nonspherical bubble studies has been
the behavior of small asymmetries of a nearly spherical bubble in an
infinite, homogeneous liquid. The distortion of the shape of a nearly
spherical bubble is commonly expanded in spherical harmonics so

that the radius of the bubble is

0

r (0,0,t) = R(t) +§

L4
n=1

a (t) Y (1-1)

where Yn is a spherical harmonic of degree n. ZFor perturbation
solutions the coefficients an(t) are assumed to be much smaller than
the mean radius R(t).

The central problem is the solution of an(t) for a given func-
tion R(t) and a set of initial conditions. If the problem is lincarized,
6]

the various harmonics uncouple The general linearized equation

for an(t) was solved for bubbles collapsing or expanding under a
[7]

constant ambient pressure by Plesset and Mitchell , who were able

to express their solution in terms of the hypergeometric function.
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One important result is that as the mean radius collapses to zero,
an(t) grows in magnitude like R% and oscillates with increasing
frequency. Thus even a small asymmetry will become important
after the bubble has shrunk sufficiently,

Naudé and Ellis[ 8] used the theory of Plesset and Mitchell to
analyze their experimental study of the collapse of nearly hemispher -
ical bubbles. Using eclectric sparks, they generated roughly hemi-
spherical bubbles on a plane solid surface and photographed them as
they collapsed. Since the solid wall acts as a plane of symmetry, the
theory of Plesset and Mitchell is directly applicable.

A perfectly hemispherical bubble would, of course, remain
hemispherical as it collapsed and could be described by a spherically
symmetric theory such as Rayleigh's. The asymmetry in this case is
due to initial asymmetry in shape or velocity rather than the presence
of the solid wall. Such bubbles can exhibit a wide range of behavior,
depending on the initial conditions, including the formation of a jet on
the axis of symmetry. Although the solution of Plesset and Mitchell
does not require the lower harmonics to dominate as does Rattray's
solution for the collapse of an initially spherical bubble near a plane
wall, the assumption that ianl K R meane that the linearized solution
cannot be used to describe the jet formed on a nearly hemispherical
bubble at the time that it strikes the wall,

The analysis by Naudé and Ellis showed that the distortion in
the shape of their bubbles was primarily composed of the second har -
monic with a small contribution from the fourth harmonic. No odd

harmonics were present, of course, due to the plane of symmetry,
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a(t) a (t)

Naudé and Ellis presented the experimental values of == and 2
a (o) a (o
2 4 )

over the first half of the collapse (1.02> R{t)> 0.5), These values
agrec with the perturbation solution. Since the contribution from the
second harmonic was fairly large, Naudé and Ellis had to add the
second order effect of az(t) on a4(t) to obtain close agreement in the
fourth harmonic. This second order effect was solved using an as-
sumption analogous to Rattray's, that the lowest harmonic was
dominant.

Because the photographic techniques used so effectively by
Benjamin and Ellis had not yet been developed, it is not possible to
obscrve jetting directly from the photographs of Naudé and Ellis,
They were able to produce some pitting in soft aluminum, however,

[9]

Similar experiments by Shutler and Mesler also produced pitting.
Shutler and Mesler concluded that jets formed but were too weak to
cause the pitting which they attributed to rebound bubbles. These

results were later challenged by Benjamin and Ellis,

B. Numerical Simulation of Bubble Collapse

The advantages of a numerical technique for simulating non-
spherical bubble collapse are clear. Experiments are difficult and
give only sketchy results., Perturbations from spherically symmetric
solutions are not valid for large deformations. A numerical solution,
however, can check results and supply detailed information, Numer-
ical methods can also be applied to situations which might be very
difficult to produce in the laboratory.

Attempts to apply the well-known Marker-and-Cell or MAC



-

technique to nonspherical bubble collapse have not yet been success-
ful, A report by Mitchell, Kling, Cheesewright, and Hammitt[ 1a]
considers the feasibility of using the MAC method for this purpose.
Before this report is discussed, the MAC method will be briefly
described.

The Marker-and-Cell technique is a general method for
simulating incompressible, viscid flows with an assortment of bound-
ary conditions including free surfaces. In practice it has been applied
only to two-xlimensional problems, either plane or axially symmetric
flows., The basic calculations are Eulerian. A domain in the two-
dimensional Eulerian space is covered by a grid of rectangular cells,
The pressure and the velocity are assumed to be nearly constant over
a single cell, The pressure distribution is specified by its value at
the center of each cell, The horizontal velocity u and the vertical
velocity v are specified at the midpoints of the vertical and hori-
zontal sides of each cell, respectively, as illustrated in Fig. 1,

The pressure and the two components of velocity are related
through the continuity equation and the two components of the equation
of motion, Thesc three cquations can be combined to give an expres-
sion for the Laplacian of the pressure as a function of the components
of the velocity and their first and second space derivatives, In the

plane flow case, for example,

2z 2 2 82 2
lv2p=8“+zwau" # Ha (I-2)
P 9x” s '()y?'

For the finite difference approximation to this equation and other

details concerning the MAC method reference may be made to
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[11]

Welch, Harlow, Shannon and Daly

The calculations progress by a series of finite time steps or
cycles. At the beginning of each cycle the velocity field is known so
that the right-hand side of Eq. (I-2) can be evaluated at each cell.
Poisson's equation can then be solved by some iterative technique,.
Once the pressure distribution is known, it can be combined with the
known velocities in the equation of motion to find the derivatives of
both components of velocity with respect to time. These derivatives
are used to establish the velocity at each cell for the next cycle At
later. The {inal step in the cycle is to displace the markers, which
represent small particles moving with the fluid. In practice there
will be several of these markers in each cell, Their velocities are
found by simple interpolation. These markers are used to represent
streamlines and to define the shape of the free surfaces. The manner
in which a cell is treated during a cycle depends on whether it is a
full cell containing markers, an empty cell without markers, a free
surface cell containing markers but adjacent to an empty cell, or
some special case such as a cell adjacent to a solid boundary. After
a certain amount of bookkeeping (determining which cells are full, etc.),
the next cycle is ready to begin.

Mitchell, Kling, et al raised two main questions in their report,
The first question, a common one in flow simulation, is how should
the calculations be initiated. They considered bubble collapse caused
by an instantaneous decrease of the pressure inside the bubble from
the ambient pressure to some fixed lower value., Their concern that

this initial pressure discontinuity would somehow persist in the
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calculations was not justified; any discontinuity should be smoothed
out completely by the initial cycle of the MAC method, The point
remains, however, that the initiation of the calculations must be ex-
amined closely. It will be seen that an analysis of the carly stage of
bubble collapse made in Chapter III of this thesis results in improved
accuracy and efficiency over this portion of the collapse.

The second question is how can a flow in an unbounded region
be described in a necessarily bounded domain. The collapse of a bub-
ble is driven by the difference between the pressure inside the bub-
ble and the pressure infinitely far away. Although interest is center-
ed on the flow near the bubble, the far field cannot be ignored.
Rayleigh's solution for the collapse of a spherical bubble stated that
the difference between the pressure of the liguid and the ambient
pressure is the sum of two terms, which decrease in magnitude like
d_1 and d"4 as d, the distance from the bubble center, is increascd.
For nonspherical collapse the pressure will have asymmetric terms,
which decrease like d—z and faster. One crude method of applying
the ambient pressure might be to extend the outer boundary of the
domain a number of radii away from the bubble and take the pressure
on the outer boundary to be the ambient pressure, A more refined
method was provided by Mitchell, Kling, et al, who suggested that
Rayleigh's solution for the pressure be used at the outer boundary.
The outer boundary should be far enough away from the wall so that
the asymmetric terms will have died out, This method is based on
the linearized assumption that the spherically symmetric part of the

collapse is not affected by the asymmetries of the problem. The
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method presented in Chapter III of this thesis avoids this assumption
by using an iterative technique for applying the condition at infinity
directly to the outer boundary.

Another consideration in applying the MAC meathod to bubble
collapse is one of stability, The theory of Plesset and Mitchell
shows that even a small error, or disturbance on the bubble surface,
can become significant as the bubble collapses. Any finite difference
method will, of course, introduce small errors over the length of a
single cell. However, tﬁe MAC method is especially crude at free
surfaces and can easily give large errors that obscure the results,
These errors arise because the MAC method does not modify the
finite difference equation at an irregular boundary such as a free
boundary but simply imposes the condition that the pressurce at the
center of a free surface cell is equal to the pressure on the free sur-
face. Modified finite difference equations at an irregular boundary,
usually referred to as irregular stars, are essential for an accurate
solution near the boundary. In their numerical study of finite-

[12]

amplitude water waves Chan, Street, and Strelkoff observed that
the waveforms became unstable after a few cycles using the MAC
method. They obtained satisfactory results, however, with their
SUMMAC method, a modified MAC technique using irregular stars
at the free surface.

It is apparent that the problem of nonspherical bubble collapse
is one which is not readily solved by a general flow simulation method

such as the MIAC technique. Because nonspherical collapse is of such

interest, it is worthwhile to develop a special method from first
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principles., This is done most efficiently if the problems of greatest

interest are first defined and examined,
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II. AN EXAMINATION OF THE PROBI.EMS TO BE SOLVED
BY NUMERICAL SIMULATION

A, Definition of the Problems of Interest

One problem of interest in nonspherical collapse is to deter -
mine the effect of a plane solid wall in deforming a collapsing bubble.
Typically a spherical bubble and the liquid surrounding it are visual-
ized as being at rest under a uniform ambient pressure until t = 0
when the pressure inside the bubble is instantaneously reduced by
Ap. For a compressible liquid this instantancous pressure drop will
produce a shock and aninstantaneous radial velocity at the bubble

surface[ 13]

- U ... S Y T (I1-1)
pc

An alternate visualization of the problem, entirely equivalent
in the incompressible limit, is useful because it eliminates the
question of shocks and is more realistic experimentally. The bubble
is grown from a small nucleus by the application of a negative ambient
pressure., As the bubble grows the ambient pressure is increased
continuously to the desired value where it is held constant, The bub-
ble will reach some maximum size and then collapse under the constant
ambient pressure. For spherically symmetric growth all segments of
the bubble surface will be at rest when the bubble reaches its maximum
size. In the incompressible limit the entire liquid will also be at rest.
With the absence of shocks compressibility will not become important
until speeds in the liquid are comparable with the speed of sound.

Thus the liquid can be assumed to be incompressible with the
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understanding that solutions are valid for small Mach numbacrs only.

The asymmetries caused by the solid wall should be separated
from thosc due to initial asymmetries in shape or velocity of the typc
analyzed by Plesset and Mitchell, The bubble is therefore taken to be
initially spherical and at rest,and any other extraneous asymmectric
effects such as gravity are also omitted.

The easiest and most widely applicable problem is one which
neglects all nonessential features. Therefore the following assump-
tions will be made.

1. The liquid is incompressible.

2. The flow is nonviscous,

3. The vapor pressure is uniform throughout the bubble

interior.

4. The ambicent pressure and the vapor pressure are constant

with time.

5. The bubble contains no permanent gas.

6. Surface tension effects are negligible,

Only the firstthree assumptions are essential to the method of
simulation developed in this thesis. The last three assumptions are
made to keep the essential features of the problem in the foreground.
For most cases of bubble collapse the viscous stresses are much
smaller than the inertial stresses. Thus in descriptions of bubble
collapse,viscosity is usually neglected or kept only as s »mall refine-
ment. Unlike the spherically symmetric case, which is always ir-
rotational, viscosity must be neglected in nonspherical collapse if

strict irrotationality is to be preserved. As for the assumption of
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uniform pressure inside the bubble, this assumption will remain valid
as long as speeds on the bubble surface are below the speed of sound
in the vapor.

The problem is specified by the following conditions:

P, = ambient pressure, (11-2)
p,, = Vapor pressurc inside the bubble, (I1-3)
Ro = initial radius of the bubble, (11-4)

b = initial distance {rom the plane wall to the

center of the bubble. (II-5)
Because the flow is taken to be irrotational, the velocity

vector v can be written in terms of a velocity potential ¢
— —> —_
V(Xs t) = VQD(X, t) . (Ilhé)

The liquid is assumed to be incompressible so that ¢ must satisfy

Laplace’s equation throughout the liquid,
Vo=, £ =0 (11-7)

The pressure boundary conditions, (II-2) and (II-3), can be

restated in terms of ¢ and v = IVgoI with the aid of Bernoulli's
equation
L3R = c(t) (I1-8)
t 2 p e . -

Infinitely far from the bubble the velocity is zero, and the pressure is
the ambicent pressure. The velocity potential is an arbitrary function
of time only. Because this function of time has no physical signifi-

cance it may be taken to be zero,
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limite(x,t) = 0, (11-9)
X "o

and since v >0 at infinity,

A
=l p——E (II-10)

On the solid wall the component of velocity normal to the wall must be
zero, Thus

dg 0

5 © , at the solid wall, (II-11)

where % denotes the derivative normal to the solid surface. The

condition that the liquid is initially atrest may be stated as
—
¢(x,t) = constant = 0 when t =0 . (I1-12)

The generality of this problem becomes evident when it is
stated in its nondimensional form. Let the nondimensionalized
guantities be temporarily denoted by a star. Then the nondimension-

alized velocity and displacement are
v
e
P
t* = % éi) 4 g0>|: = __ﬁo—-ﬂ_ 5 etC,
' o P i

and X, = 'RX_ (I1-13)
O

—>
"r-" =
st

so that
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l.aplace's equation is unchanged in the nondimensional form as are
the homogeneous boundary conditions, (II-9) and (II-11), and the
homogeneous initial condition (II-12). The only changes are in the
initial conditions, (II-4) and (II-5), and the boundary condition (II-10)

which have the nondimensional form:

RO = initial radius =1 , (II-14)
b, = initial distance fromwallto center of bubble = I—{E_ 5 (II=18)
R,
and
acp:': V‘:":
5-1-:?—1"' —7 = 1 " (11—16)

Thus the problem is completely characterized by the single

parameter R—k-)- . The inclusion of surface tension or other effects
o

would have added more parameters and reduced the general applica-
bility of the solution. Now that the nondimensionalized form has been
introduced, Eqs. (II-14), (1I-15), and (II-16) will be used, but the star
notation will be dropped in the sequel.

Another problem of interest is the collapse of a bubble with
some asymmetry in its initial shape. A numerical solution is extreme -
ly difficult for any three dimensional problem not possessing at least
axial symmetry. The shape of any axially symmetric bubble can be
described by its radius,

>8]

rS(B,t) = R(t) +2 an(t)Pn(cos a) (I1-17)

n=1

where Pn is the n'th Legendre polynomial, The odd coefficients
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vanish for cases with both plane and axial symmetry. These cases
are convenient because the same method developed for collapse near a
plane wall may be applied directly to problems with both plane and
axial symmetry with the wall forming a plane of symmetry. If it were
desired, of course, this method could be casily modified to ¢liminate
the wall,

The same assumptions can apply for this type of problem as
for the collapse near a solid wall. The nondimensional forms are also

equivalent with the characteristic length being

R, = R(0) = mean radius at t =0

Instead of just a single parameter this problem is characterized

by an infinity of parameters:

a_(0) a (0)
s and =

o [2p
p

B. General Characteristics of a Numerical Method Suited to These
Problems

Now that the problems of interest have been defined, the
general features of a method of flow simulation especially suited to
them can be discussed. Clearly the irrotationality of these problems
is best exploited by solving them in terms of the velocity potential,

A single variable gives a great simplification to almost every aspect
of the calculation, If desired, both the velocity and the pressure can
be easily calculated from a solution in terms of the potential.

The numerical method should also reflect the fact that the
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interest in these problems is centered on the flow at and near the

[rec surface.  'The shape of the collapsing bubble is of far greater
significance than a detailed description of the streamlines far [rom the
bubble. Markers like those used in the Marker~-and-Cell method arve
of little use in representing the results. The task of defining the free
surface can be performed by alternate methods so that markers are
not needed,

The method used in this thesis calculates the velocity only on
the bubble surface, The potential should vary most rapidly near the
bubble and vary quite slowly far from the bubble, Thus it is neces-
sary to have a highly accurate and detailed solution near the bubble
surface. For a finite difference method this means that the grid should
be finest near the free surface., This can be accomplished either by a
single nonuniform grid or a series of grids with each successive grid
more closely confined to the immediate neighborhood of the bubble and
finer than the preceeding grid. The later method is the one used for
calculations in this thesis for reasons discussed in Chapter III. The
need for an accurate solution in the neighborhood of the free surface
also emphasizes the necessity of using irregular stars,

A basic question in the numerical simulation of axially sym-
metric bubble collapse is whether to base the finite difference scheme
on spherical coordinates as was suggested by Mitchell, Kling, et al
or on cylindrical coordinates. One advantage of spherical coordinates
is that a regular grid in spherical space with the origin inside the bub-
ble will have a greater concentration of points near the bubble than

will a regular grid in cylindrical space. The location of the origin of
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the spherical system can present a problem, however, especially if
the bubble is highly deformed. Because of the singularity, the origin
cannot be placed in or adjacent to the liquid. Another disadvantage of
spherical coordinates is that the boundary condition at the wall cannot
be easily imposed. For a finite difference method based on cylindrical
coordinates, the boundary condition at the solid wall is simple and
straightforward to apply. For these reasons a finite difference scheme
based on cylindrical coordinates was adopted in this thesis. A spher-
ical coordinate system with the origin on the solid wall was used in

applying the condition at infinity to the outer boundary, however,
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III. DIESCRIPTION OF THE NUMERICAL METHOD

A, TheUse of Finite Time Steps

All problems considered are axially symmetric so that the bub-
ble and the liquid surrounding it can be described in any half plane
bounded by the axis of symmetry. These problems are also assumed
to contain a plane solid wall or a plane of symmetry so that they can
be further reduced to a single quadrant,

The method of flow simulation is based on a series of finitc
time steps. The shape and the potential distribution of the free sur-
face forming the bubble is known at the beginning of each time step.
The boundary condition at the free surface combined with the condition
at infinity and the boundary conditions at the solid wall and the axis of
symmetry will determine the potential throughout the liquid. The
velocities of points on the free surface can then be calculated. If the
time step At is small enough, the velocities will remain relatively
unchanged throughout the time step. Then the displacement of a point

—
on the free surface with velocity v is approximately

Ax = vAt | (I1I-1)

Bernoulli's equation is used to get the rate of change of the

potential of a point moving with the free surface,

[a)

Dp 9¢ >3 _ O¢ 2
ﬁ'E-—Tt“{'VV(fO_W‘*‘V x

in the form
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2
];3,—5” =14 3=, (IT1-2)

where the nondimensional variables have been used, For At

small the change in the potential of a displaced point on the frece sur-

face is approximately

2
AQD :(l + YZ-—-) At % (III"S)

The velocities in equations (III-1) and (III-3) are, of course, computed
at the beginning of the time step. After the free boundary has been
displaced and the potentials on it changed accordingly, the new bubble
shape. with the new potential distribution on the free surface can be

used for another time step.

B. The Finite Difference Equations

The finite difference method for solving the potential problem
is based on a cylindrical coordinate system (r,z). The r coordinate
measures the distance from the axis of symmetry, and the 2z coordi-
nate measures the distance from the solid wall or the plane of sym-

metry. Laplace's equation in the case of axial symmetry is

]
Pop ¥ FPp T ¥ps = o . (111-4)

Finite difference approximations to Laplace's equation can be

found in many places. Shaw[ 4 , in particular, describes the ap-
proximation to Eq. (III-4). The domain of interest in the (r,z) planc
is covered with a square grid or net formed by a family of horizontal

(z = constant) net lines parallel to the solid wall and a family of
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vertical (r = constant) net linecs parallel to the axis of symmetry,
Lines of both families are separated by a constant distance h called
the mesh length. The potential distribution throughout the liquid is
described by the potentials of points, called nodal points, where the
two families of net lines intersect. The free boundary is represented
in the calculaticn by the set of points where the free surface and the
net lines intersect (see Fig. 2).

A typical nodal point and its four neighboring nodal points,
ecach a distance h from the central point, form a regular star. If a
star is coentered in the liquid but is near the free surface, sorne of its
outer nodal points may fall inside the bubble. Such stars are called
irregular stars because the nodal point inside the bubble must be re-
placed by a free surface point of known potential creating a leg short-
er than the meshlength h, Stars centered inside the bubble are not
used in the calculations. The positions of points in both regular and
irregular stars with respect to the central or 0 point are identified
by the numbering system illustrated in Fig. 3.

The finite difference equation at a star is derived by expand-
ing the potential about the central point and neglecting the higher
derivatives (see Shaw, for example). The equation for most regular

stars is

A . 8

2r
o

h
+ = 4 = 0 x
5 + 9"3 + ‘#’4 4’2 P s (I11-5)

where ?; is the potential at the i'th point of the star and T is the
distance of the central point from the axis of symmetry. Equation

(IIT-5) may also be written as a formula for the potential of the central
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point in terms of the potentials of the other points of the star.

1 h h
(PO:Z[@4+(P2+¢1[\1+21‘0)+(P3l1-_2—1"—;] . Wr-a)

Both the boundary conditions on the solid wall and the boundary condi-
tions on the free surface require special treatment for certain stars.
Stars centered near the axis of symmetry also need special considera-
tion because of the -11— Py term in the Laplacian. ¢ can be expanded

for constant z in powers of r about the axis of symmetry,
@ = a+br® +. . . (r small, =z constant) . (II1-7)

A linear term cannot be present in the expansion of ¢ as a
function of r with =z fixed since it would imply a line source of fluid

on the axis. For a regular star centered on the axis of symmetry

_ 1 el
lim B + =] = 4b = e opeten (I11-8)
= 0 ol
Thus the finite differcnce approximation is
¢ +¢ + 4 - 6p =0 (I11-9)
2 4 1 o
or
o =7 lo +o -do] (I11-10)
o~ 6" 4 1 )

Stars centered directly adjacent to the axis of symmetry at
r = h should also be considered. The equation for these stars is also
derived from an expansion about the axis of symmetry for constant =z,

In this case the resulting equation for regular stars is
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1
) = = o ks = =
Po=g B +8 *8 ~#) . (1I1-11)

Since the solid wall forms a plane of symmetry, stars centered

on the wall must satisfy
¢ =9 ‘ (I11-12)

2 4
This condition is imposed simply by using the appropriate star equa-
tion with cpz substituted for 904.

The boundary condition at the free surface enters the calcula-
tion through the irregular stars. Equations for these stars contain
the sizes of the irregular legs as parameters but are derived in the
same way as the corresponding regular star equations., One very
minor exception is a star centered at r =h with an irregular point 3
(the point closest to the axis of symmetry). The potential cannot be
expanded about the axis in this case because there is no liquid at the
axis. The irregular version of Eq. (II1- 6) is used for this rare
case.

C. Solution of the Star Equations Using the Liebmann Method with
Overrelaxation.

Each star equation can be written as a formula for the potential
of the central point of the star in terms of the central potentials of
neighboring stars. The Liebmann iterative method is used with over-
relaxation to find the potential distribution that solves all star equa-
tions simultaneously. Each iteration of the Liebmann method covers
every star in the net column by column. The central potential at each
star is, in turn, replaced with a new value based on the star equation.
The Liebmann method employs this new potential in the equations of

any neighboring stars that are encountered later in the iteration.
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This procedure is in contrast with another common method, the
Richardson method, which does not use the new potentials until an
iteration has been completed. An initial estimate of the potential
distribution is necessary to start the Liebmann method. Usually this
is provided by the potential distribution from the preceeding time
step. The first time steps and time steps immediately following a
change in the nets are initiated from a uniformly zero potential.

The convergence of the Liebmann method for large nets is

[15]

greatly accelerated by the use of overrelaxation Suppose P? g
is the potential of the central point that satisfies the star equation.

Then the old potential ? .14 is replaced by

)

¢new = ('Dold ¥ Q‘(q)s - (’Oold

ifae<2 |, (I11-13)

The constant o is called the relaxation factor., A simple
estimate of the optimum relaxation factor and the rate of convergence
for large nets was developed for the plane case by P.R. Garabediar[i 16J,
He estimated that after N iterations the error would be reduced by
a factor of the order of magnitude

-qNh

E =0(e ) (ILI-14)

where q is defined by
q = Re{2C -J4C? - Zkf} ] (II1-15)

The constant C is related to the relaxation factor by
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2
o = m (III-I 6)
and k1 is the lowest eigenvalue of the problem
Va4 + krle:O . (II1-17)

The boundary conditions on U are the same as on the error in the
potential; U is zero on boundaries of known potential and has a zcro
normal derivative on boundaries where the normal derivative is known.
An analysis analogous to Garabedian's is made of the axially
symmetric case in Appendix A, The results are identical if the
Laplacian in Eq. (III-17) is taken in its three dimensional form.
Clearly convergence is most rapid when g is maximized. Garabedian
pointed out that if C 1is made greater than kl/./_Z, the real part of
- J4CE - 2.1(21 will decrease sharply reducing convergence considerably,

but if C 1is less than or equal to the optimum kl/J 2, then
- JACF - 2k* is purely imaginary so that
1

(2-2)
g2 Em (I11-18)

If we assume that o is large enough to cover the lowest eigenvalue,

i.e,

2
@2 = = aoptimum ’ (LI-19)

then the rate of convergence is a function of o only,

E=0

exp—N(4;2a}) . (II1-20)

A useful example is that of two concentric spheres with known
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potential distributions on their surfaces. Let d mecasure the distance
from their common center. If the radii of the inner sphere and the
outer sphere are di and dO respectively, thc¢ boundary condition on
U is

u-=-0 , at d = di and d=d ; (I11-21)

The eigenfunction with the smallest eigenvalue is a linear
combination of the zeroth order spherical Bessel functions, jr (}, r)
)
and y _(k,r). From the boundary conditions

sin kl(d—di)

U, 2 e (I11-22)

where

k = d””T - 33151_ (I11-23)
O 1

is the smallest eigenvalue and J is the number of mesh lengths be-

tween spheres. The optimum relaxation factor is then

O'c>ptimum — e S % (I11-24)

L#

{1

If the relaxation factor is this optimum value, then the error reduction

factor is

E = O(exp . N( (1T1-25)

J—ZnJ) ‘

J

Thenumber of iterations necessary to achieve a given error reduction
is proportional to J.

The finite difference approximation to Laplace's equation, the
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Liebmann method, and overrelaxation are all well-known techniques
that have been applied to many different problems. The more special-
ized aspects of the method associated with the present problem will

now be discussed.

D. The Condition at Infinity Applied to the Outer Boundary

It was stated in Chapter I that an iterative method has becn
developed for applying the condition at infinity to the outer boundary.
The outer boundary in this case refers to the boundary of the net exclud-
ing the free boundary, the axis of symmetry, and the solid wall. The
method is based on a spherical coordinate system (d, 8) with its origin
at the intersection of the axis of symmetry and the solid wall. The
distance from the origin is d; the angle with the axis of symmetry is
0. Each step begins with a net like the one in Fig. 4. The shape of
this net is chosen to give the nodal points on the outer boundary a near-
ly constant value of d. A slight point to point variationin d is un-
important, however. Irregular stars are unnecessary on the outer
boundary. The average value of d on the outer boundary will be
referred to as do.

The potential can be expanded in a series of axially symmetric
harmonics that will be valid for values of d large enough to complete-

ly contain the bubble

-(zk-{— 1)

Q0
¢(d,0) =>; (A kdZk + By d ) By (cos ) - (I11-26)
k=0

Only the even Legendre polynomials are used in the expansion because

of the symmetry of the plane wall. The condition that the potential
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approaches zero infinitely far from the bubble may be restated as
A =0 n=1,2,3 « « « = (IT1-27)

The A coefficients will be zero only when the potential distribution on
the outer boundary is consistent with the condition at infinity.

The higher harmonics should die out most rapidly as d increas-
es. Itis assumed that do is large enough so that the Po(cos 0) and
Pz(cos 6 ) terms effectively describe the potential on the outer boundary.
The P4 (cos ) term is also included in the calculation,but do is
large enough in practice to keep this term negligible. The potential at

the outer boundary may then be written as

' B B B
= o 2 2 4 4 :
qo(do,G) -(Ao+ T + Azdo + —-3) Pz(cos 6)+ A4do+——5)P4(cos a)
o d d
o o
=C +C P (cosO)+ CP (cos8) . (I11-28)
o 2 2 4 4

Each time step begins with a trial potential distribution on the
outer boundary. This potential distribution is usually provided by the
results of the previous time step. The potential problem is solved
using these trial outer boundary values for the potential. The condition
that the A coefficients must vanish may be stated as a relationship be-
tween the i)otential and its radial derivative. Therefore, the radial
derivative is calculated at each nodal point on the outer boundary. All
nodal points on the outer boundary of nets like the one in Fig. 4 have
other nodal points directly below them and to their left. The derivative
in the vertical direction can be calculated by fitting a second order

polynomial through the outer boundary nodal point (r,z) and the two
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nodal points directly below it. From Eq. (IT1-46) which is derived in

Section F of this chapter, one obtains

Q@

z (r,z) = 2(¢(r,z) - ¢ (r,z-h) ) - %(w(r,Z) - ¢(r,z - 2h) ) (III-29)

h

@

The horizontal derivative is calculated by the same method and is then

combined with the vertical derivative to produce the radial derivative:

dg o Q¢ ;
-g_d (do,a) (E)rcose +(E)Z81n9
B
o — +(2A d = 3_"') P (cos 0)
d 2 2 0O 4 2
o) o
B
ak d - 5—%)P4(cos 6)

(0]
% 4
(@]

+

= Do + DZPZ(cos o) + D4P4(cos ) . (III-30)

The C and D coefficients are easily evaluated from the
potential on the outer boundary and its radial derivative. The A and

B coefficients are determined by the C and D coefficients. In

particular,
o 2
Bo i Dodo
B =(2C d4’-Dad Y/s5 ,
2 2 O 2 O
and B =(4C d°-D d°%)/9 . (I1I-31)
4 4 O 4 0O

The condition that the A coefficients vanish can be stated as
a relationship between the C and B coefficients or, equivalently, be-

tween the C and D coefficients:
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C =B /d = "'D d i)
O (o] (o] o o
3
= = (2 -D d :
C =B /d’= (2C -D d)/5 ;
C=B /d°=(4C -D 4 )/9 . (11I-32)
4 4 O 4 4 O

With the neglect of the higher harmonics, Eqgs. (III-32) will be satisfied
only when the potentials on the outer boundary are consistent with the

condition at infinity. KEquations (III-32) suggest that the B coefficients
calculated from Egs. (III-31) may be used to form new potentials at the

outer boundary nodal points from the formula

B, B B
¢(d,0) = — + 2 P (cos 0) + —2 P(cos ) . (I11-33)
d_3 2 dS 4

The iteration scheme is to solve the potential problem with the
new outer boundary potentials, then findthe B coefficients from KEqgs.
(III-31) and use them in Eq. (III-33) to establish outer boundary poten-
tials for the next iteration. Let a superscript n on a coefficient
denote the value of that coefficient during the n'th iteration. Equation

(II1-33) specifies that

e . gBld =-D%
O Q (e] O (6]
6 a3 et . % WE
2 2 o] 2 2 O
cj‘” =B%/a’= (4C’ - Dla )19 . (I11- 34)

If the coefficients converge, they will converge to a solution of Egs.
(III-32).

The convergence of this method can be studied analytically for
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the simple case of a perfectly hemispherical bubble on a solid wall
with an axially symmetric potential distribution on the bubble surface.
Let di be the radius of the bubble. The potential on the bubble sur-

face may be expanded as

20

rp(di, 0) = Z szPZ k(cos 6) . (IIT-35)
k=0

Then the correct potential at the outer boundary is

d, d. \’ d, \°
@ (do, 6) = Fo(-a—u) + FZ s P2 (cos 8) + F4 (-i_) P4(cos g) +.
O o o
(I11-36)
d.
The ratio d—l is assumed to be sufficiently small so that higher
o]

harmonics are negligible at the outer boundary. Let the error in the

potential at the outer boundary be expanded in Legendre polynomials:

n _ nh n n )
% (dO,Q) - (do,9) = Eo + EZPZ(cos o) + E4 P4 (cos ) + . .

(I11-37)
Then from Eq. (III-36) the coefficients are given by
n n di n Bon di
By =M = Fo(d_) 2B Y Fo{a_) *
o o o
d i’ d,
En.—.Cn-F(d_l_)_And?‘+ = F(d_l .
2 2 2| d o a_ 2|\ d
8. 1° BO d °
En:CnnF(HLJ =ATa% _* _p (L) - (I11-38)
4 4 4| d 4 © dos s |d

Since the potential is known on the free surface the solution there is

always correct. Thus
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AY +BYMd4, =F
(0] (5] L (6]
A%+ B4} =F (I11-39)
2 1 2 1 2

and Altat+ B = F
4 1 4 L 4

Equations (III-38) can be combined with Eqs. (III-39) to obtain

L dod,
B P g B et
(@] o 1 (@]

da-da.
O 1
da®a?
B = Fdi+ E° sulate (III-40)
2 2 z g3.4°%
O ¥
and
d°a’
T LR A ET s
4 41 1 45_4°
(o] 1

From Eqs. (III-34) the C and E coefficients for the next iteration

will be
d. d 4
n+1 1 n 1 n+l1 n 1
Koy =Fag |t 32 ’{Eo =B o ;
O (] 1 (0] 1
d. 3 & a?
o BEE F(-li £ ER gt B ) , (II1-41)
z 2| d 2 gx_ g 2 2 B
(@] 1 (@] 1
and
d, 1 a’ i " g
ok :F(d—* +E —L ,(E‘” o I s ) ,
4% 2 4° g’ ¥ 4 45 .g?
(@] 1 (@] 1

If di/do is small, then the errors can be greatly reduced in
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a single iteraticn. It is now obvious why more terms were not includ-
ed in the calculation to improve the validity for smaller valucs of do;
convergence is enhanced by keeping the radius of the outer boundary
large. In practice three or four iterations were sufficient to establish
a satisfactory potential distribution on the outer boundary starting
from a uniformly zero distribution, and only a single iteration was
necessary to adjust for the small changes between consecutive time
steps.

The net used to establish the outer boundary potentials had a
radius of 40 mesh lengths or, occasionally, 50 mesh lengths. The
initial bubble shape had a radius of 5 mesh lengths in this net for the
problem of an initially spherical bubble collapsing near a solid wall
and a mean radius of 10 mesh lengths for the problem of an initially
nonspherical bubble collapsing in a homogeneous liquid.

One case, for example, started with a nonspherical bubble
with a radius of

1
d, = 1 - 19 Pz(cos 0) (I11-42)

where

mean radius = 1 = 10 mesh lengths

The radius of the outer boundary was four times the mean
radius of the bubble. The potential was unity over the entire bubble
surface. Since the deviation from spherical (or hemispherical) was
only ten percent, a first order estimate of CO and Cz can be made

by linearizing the condition on the free surface_,6 To first order
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B
~ O 3 ___2_ . : 5
1 a—' } Z PZ((,OS 0) + W
i d.l
(ITI-473)
- 1 o
= Bo 1+ 10 Pz(cos 0)]+ BZPZ(cos B) + .
so that
B =1.0 or C = 0,25
o o
and

u

B

-0.1 or C = -0.0016
2 2

This gives a rough check on the values actually computed, which are
listed in Table I. Differences arc due to second order terms necglected
in Eq. (II1I1-43) and the fact that the accuracy of the numerical solution
is limited because the free surface is represented by only a finite

number of points in this net, twenty-one in this case,

TABLE I

Values of the C Coefficients Computed while Establishing
a Potential Distribution on the Outer Boundary

Iteration > i c”
o ) 4
initial values 0.0 0.0 0.0
n=1 0,.28664 -0,0042862 0.0018235
n =2 0,24474 -0.00010602 -0.00057663
n =3 0.25159 -0.0014508 0.000044342
n=4 0.25038 -0,0013336 -0.000018905
n=>5 0.25060 -0,0013661 -0.0000094077

An examination of Table I shows that the convergence of the co-

efficients does not follow Eqs. (I1I1-41), The Cg coefficient converges
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more rapidly than expected; while C:, which should converge faster
than CZ’, does not converge at all until CE is somewhat settled.
Finally C4n, which should converge the fastest of all, merely declines
in magnitude without approaching a limiting value. One possible ex-
planation is that the asymmetry of the bubble shape has coupled the co-
efficients. If di is no longer a constant, then Eqs. (III-39) will be
coupled causing the coefficients of the error to couple., But this coup-
ling cannot explain, for example, why CZn and (34n are erratic during
the first few iterations while CI; converges. The true cause is reveal-
ed by the observation that an increase in the number of iterations used
by the Liebmann method reduces this type of behavior. Any change in
Cg or any other of the coefficients alters the outer boundary potentials
and introduces an error in the potential solution near the outer boundary.
The Liebmann method reduces this error by a factor depending on the
number of iterations used. The overall effect of the reduced error
should be much smaller than the change in the potentials, But if the
changes in the outer boundary potentials are much larger than C2 or
C4, the reduced error may still have a large effect on them. In this
case C2 is much smaller than CO, and C4 is negligible. Thus Czn
and C4n are highly susceptible to changes in CI; as has been observed.
This does not pose a practical problem, however, since it is of no value
to determine Cz and C4 more accurately than CO.

The accuracy of the coefficients is enhanced by keeping the
number of points used to represent the free surface as large as pos-
sible. Convergence demands that the outer boundary of the net be as

far as possible from the bubble. Both these conditions can best be
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simultancously satisfied for cases in which the bubble is close to the
solid wall, Then as the bubble collapses, the scale of the net used to
establish the outer boundary potentials can be halved from time to
time. This procedure effectively moves the outer boundary closer to
the free surface. The outer potentials are then re-established. In
practice these potentials were observed to be consistent with their
values during the preceeding time step when the new outer boundary
points were interior points. Values of the C coefficients for time
steps immediately before and after a typical scale change arec pre-

sented in Table II.

TABLE II

Values of the C Coefficients for Time Steps
Immediately Before and After a Typical Scale Change

C C
o 2 C4
time step preceeding scale change 0.1377 0.0002603 | 0.0000754
time step following scale change 0.2699 0.002600 {-0.0000292

Ideally, neglecting the change between consecutive time steps, Co
should be doubled and CZ increased by a factor of eight, The sccond
set of coefficients is the more accurate since the net used to find them
contained twenty-four free boundary points while the net used for the

first set contained only twelve free surface points.

E. The Application of a Series of Nets to Obtain a Detailed Solution

Once the potentials on the outer boundary are established, they

are applied in the solution of the potential problem. The large mesh
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length of the net used to establish the outer boundary potentials gives
only a rough solution necar the free boundary. Thercfore a scries of
progressively finer nets is used to provide a more detailed description
there. Another possibility would be to use a large single net composecd
of various regions of uniform mesh length with the mesh lengths of
these regions decreasing as the free surface is approached. This would
have one advantage in that a more detailed description of the free sur-
face would increase the accuracy of the outer boundary potentials. If
this single net contained a large number of points, however, the con-
vergence of the Liebmann method could be quite slow. It can be seen
from Garabedian's results that the number of Liebmann iterations
needed for a given factor of error reduction is, assuming a uniform
mesh, inversely proportional to the mesh length. Thus the total num-
ber of operations required is inversely proportional to the cube of the
mesh length., If a detailed solution of a potential problem is required,
it is more economical to first obtain a solution using a coarse net and

[17]. Thus a series of nets is the most ef-

then apply the finer nets
ficient method for obtaining a detailed solution near the free boundary,
It is convenient if each net of the series has a mesh length half
the mesh length of the preceeding net. Then a nodal point of the finer
net falls either directly on the location of a nodal point in the preceed-
ing net, midway between two such points, or equidistant from four of
these points. In the first case the initial potential is taken directly
from the preceeding net. The potentials must be averaged in the other

two cases., Since each net of the series is contained in the preceeding

one, the outer boundary potentials are taken from the preceeding net.
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The shapes of all nets except the first one of the series are arbitrary.
Usually these nets were shaped to give a minimum distance of ten to
twenty mesh lengths between the free surface and the outer boundary,
A typical series of nets is illustrated in Fig. 5.

In practice either three or four nets were used in the series.
The finer nets had a large percentage of their nodal points located in
the bubble interior. Although these '"interior'' points have no active
role in the calculations, they do occupy storage. Since the number of
these points quadruples when the mesh length is halved, storage requirec-
ments can limit the number of nets that can be used in a series. For
an initially spherical bubble collapsing near a solid wall the final net
contained an average of 100 free surface points. Because of the plane
of symmetry, the final net contained an average of 50 free surface
points for the case of a nonspherical bubble with axial and plane sym-
metry collapsing in a homogeneous liquid. Whenever the number of
free boundary points fell below these levels, another net was added to
the series. Whenever the scale of the first net was halved, a net was
subtracted from the series.

The relaxation factor for the first net of the series was estima-
ted from the model of a sphere of radius do with a point of known
potential (representing the free boundary) at its center. The optimum
relaxation factor for J =40 is o = 1-895 from Eq. (III-24), After
N Liebmann iterations, the error will then be reduced by a factor of
E = O(exp(0,.111N) ). Thus 40 iterations will reduce the error by a
factor of about 85, This is enough to adjust for the small changes be-

tween consecutive time steps. The changes in the outer boundary
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potentials between consecutive time steps are always much smaller
than the changes at the free boundary. The potential problem is solved
at least twice using the first net of each time step, once to establish
the new outer potentials and once using them. Thus the first net is
subject to at least 80 iterations under the proper free boundary condi-
tions. If the outer potentials must be established from a uniformly
zero distribution, an increased number of iterations such as 50 is
advisable because of the large changes at the outer boundary.

The finer nets contain errors of predominantly small wave -
lengths. For these nets a relaxation factor capable of handling errors
extending a distance of 20 meshlengths from a spherical boundary should
be adequate. From Eq. (1II-24) o =1.80 when J = 20. The initial
errors in the finer nets will be small in magnitude. Also errors near
the free boundary left by one net will be reduced by following nets.
Therefore 15 iterations should be sufficient for the intermediate nets,
This gives an error reduction factor of about 30 for « = 1,80, Al-
though the initial errors are quite small, more iterations are advisable
for the final net of the series because the velocities at the free surface
points are calculated from its solution. A choice of 25 iterations gives
an error reduction factor of about 250 for o =1.80.

The potentials of typical points near the free surface as they
appear in the various nets of the series give some insight into the
calculations, Two examples are given here. In the example presented
in Table III, the points are on a horizontal net line and three nets are
used in the series. In the example presented in Table IV, the points

are on a vertical net line (as in Fig. 6) and four nets form the series.
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The symbol hi refers to the mesh length of the i'th net of the series.

TABLE IIT

Example of Potentials Near the Free Surface
on a Horizontal Net Line

distance along net line | potential in | potential in potential in
from free surface first net second net third net
0 0.4376928 0.4376928 0.4376928
0.8421 h3 0.4237445
1.8431 h3 0.4078838 0.4085018 0.4084863
2'8421‘“5 0.3944585
3.8421113 0, 3815605 0.3815108
4, 8421 h3 0.3695085
5.8421113 0.3577823 0.3584075 0.3583410

TABLE IV

Example of Potentials Near the Free Surface
on a Vertical Net Line

distance along
net line from

potential in

potential in

potential in

frce surface first net second net third net

0 1.77944 1.177944 1.77944
0.5917h
4

1 5917114 1.105793
2.5917h
4

3.5917h 1.027130 1.027021
4
4 5917'}14

5 5917}14 0.959042
6.5917h
4

0.897183 0.900305 0.899897

1

I,

potential in
fourth net

. 177944
150050
.105800
. 064858
026908
. 991664
. 958863
. 928276

.899693
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These examples show that the potential at a point changes only
slightly between consecutive nets of the series; the errors in the initial
potentials of the finer nets are small, as expected. They also show
that the potential in the final net varies smoothly with the distance from
the free boundary and can be described accurately by a quadratic over
the distance of a few mesh lengths. This behavior is useful in the

velocity calculations,

F. Calculation of Velocities on the Free Surface

The velocity components in both the r and 2z directions must
be found at all free boundary points of the final net. Each free boundary
point will lie on either a vertical net line or a horizontal net line. The
velocity calculation will be described for a point on a vertical net line.
The method is completely analogous for points on horizontal net lines,
If the mesh length of the final net is sufficiently small, each free bound-
ary point will be part of an irregular star with a regular point opposite
the free boundary point as in Fig. 6. The only exception for free bound-
ary points on vertical net lines occurs when the bubble touches the wall
with an acutc angle of contact. Then there are stars with irregular
vertical legs centered on the solid wall, Let Ppr Por and 2 be the
potentials of the free boundary point, the central point of the irregular
star, and the point opposite the free boundary point, respectively. The
potential along the vertical net line is approximated near the free
boundary point by a quadratic fitted through points B, O, and D.
Writing this quadratic as an expansion about the boundary point for a

constant r gives the form
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¢ =¢pn % a(z-—zB) + b(z—zB)2 : (II1-44)

The coefficients a and b are determined from the potentials at points

O and D, The vertical velocity is then

By —1[—(ZD-ZB ZONZB ‘1
= &w (B2 ) — (p ~¢.) ~|0———|le_~¢.,) . (III-45)
TZB D “o Lzo Ziey o 'B Zn"7q D BJ
Or, since ]zD—zO] = R,
899) ) sgn(zD—zB) [R'+l ) O ]
(E“EB% B | % ¥o¥p) "xar @pp (HL-45)
where
N = - _ |Zo“ZBI _length of irregular leg
- Zh"Z, - h " length of regular leg
When N is smaller than some minimum value A _. |, point D is used

Min

in place of point O, and the next point along the net line (point E in
F'ig. 6) replaces point D. This adds unity to \.

If the irregular star is centered on the solid wall, the potential
may be expanded about the wall along a vertical net line. Sirce the

potential is an even function of 1z,
=9, +bz*+ . . . (for T = constant). (III-47)

Thus the vertical velocity may be approximated by

99 . .

Once the derivative in the vertical direction has been found, the

derivative in the horizontal direction can be calculated from the two
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[ree boundary points on either side of point B, points A and C, A
linear approximation is used for the potential between adjacent frece
surface points. Expansion of the potential about point B along the

free surface gives to first order the form

» 8@) _ d¢ .
oa” 5 o5 5Za™s) +|5% s B TR - (L= 48]

Equation (III-49) produces an estimate for the horizontal velocity,

. 2«1) _
(f\(p] QDA ¢B— (BZ B(ZA‘ ZB)
irwes A = . (II1-50)
ot B (rA rB)

To avoid any systematic errors, this estimate is averaged with
another estimate of (—g—(’%)B made using the free surface point C on
the other side of B. Since the method for finding the horizontal veloc-
ity is essentially to subtract the known vertical component from the
velocity tangential to the free surface, the tangent to the free surface
cannot be nearly vertical if accurate results are desired. If the nor-
m:al to the free surface makes too small an angle with the horizontal
dircction, then the velocities are not calculated at that point, and the
point will not be used in forming the displaced [ree boundary for the
next time step. Similarly free boundary points on horizontal net lines
arc not used where the normal to the free surface is nearly vertical,
The percentage of points eliminated by this criterion is small, how-
ever, since the free surface will cross few vertical net lines where its
normal is ncarly horizontal and vice versa. It is also wise to eliminate
onc of a pair of adjacent free surface points that are extremely close

to each other (a few hundredths of a mesh length) since there is a
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chance that their paths may cross when they are displaced.

After the free boundary points of the final net are displaced
according to Eq. (III-1) and have had their potentials changed accord-
ing to Eq. (III-3), they are used with the proper scaling to define the
free boundary in all of the nets of the next time step. These displaced
points are not directly applicable, however, since they do not in gencral
fall on the net lines. To obtain the points wherc the {rec surface inter-
sects the net lines, consecutive pairs of displaced points are connccted
by straight lines as illustrated in Fig. 7. A free boundary point is
established wherever one of these lines intersects a net line. Its
potential is determined by linear interpolation between the endpoints.

G. Special Treatment for the Initial Time Step and the Early Stage
of Collapse

Equations (III-1) and (III-3) are accurate only if the velocities
are relatively constant between consecutive time steps. The criterion
to be used in choosing the size of a time step should be that the vel-
ocities of the free boundary points must change by less than a given
percentage between consecutive time steps. This is clearly impos-
sible for the first time step if the velocities are initially zero. By
examining the early stage of the collapse, however, Eqs. (III-1) and
(III-3) can be modified to give greater efficiency and accuracy for the
beginning time steps.

Consider a bubble completely at rest at t=0. Early in the
collapse all velocities will be small. At a point on the free surface

Dx

e | = «
Bt v 1

(II11-51)

E
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and

Dy _

2
=% =1 & 5 =1 +0K*) . (I1I-52)

™| —

As a first approximation take the velocity to be zero in Eqs. (III-51)
and (III-52), Then the initial shape of the bubble will remain unchanged,

and the potential will have a uniform value of

9 =t over the frec surface. (I11-5%)

The potential distribution throughout the liquid is then

o(x,t) = G(x)t (I11-54)
where G(;) satisfies
VZG(x) = 0 throughout the liquid, (I11-55)
G(;) -0 as |;;| -0 |, (III-56)
G(;) =1 on the initial free surface . (I11-57)

Now the gradient of the potential is

Vo(x,t) = V(x)et (I11-58)
where

Vix) = VG(x) . (I11-59)

As a second approximation take

v(E®, 1) = teV(x) . (ITI-60)

Then after an initial time step of At ,
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At
— — 1 e
Ax = V(x) g tdt = % ‘(:)(/.\tl )* (111-61)
Yo
and
At
o (%) = S l(1 + 3 VEEIE)at = At |1+ g VEEAL P (111-62)
o 2 1 6 1 :

For the initial time step the potential problem is set up with the
initial free surface at a potential of unity. The resulting velocities at
free surface points are used in Eqgs. (III-61) and (III-62) to find the dis-
placements and potentials of these points.

Since the radius or the mean radius is initially unity in the non-
dimensional form, the magnitude of V(;) is of order unity. Thus Eqgs.
(II1-61) and (III-62) improve Eqs, (III-1} and (I1I-3) by adding terms of
order (Atl )> . Further refinements would add terms of order (A'cl P
and higher., The method used for the two cases discussed in Chapter IV
was to take an initial time step based on Eqgs. (III-61) and (I11-62) fol-
lowed by time steps based on Egs. (III-1) and (III-3). The changes in
velocities between consecutive time steps immediately following the
initial tirme step must be small compared to the velocities established
by the initial time step. Therefore the initial time step was made as
large as possible (At1 = 0,25) subject to the condition that (At1 "',

An improved method was used for the two cases discussed in
Chapter V. Equations (III-1) and (III-3) are correct if the velocities of
the free surface points remain constant while they are displaced. An
estimate of the behavior of the velocity during the initial time step led

to Egs. (III-61) and (I1II-62), The rate of change of the velocity can be
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similarly estimated for all time steps in the carly stage of collapse,
This portion of the collapse is characterized by low velocities and can
be defined by the condition that the velocities on the free surface must
be small compared to\ /A;_p or unity in the nondimensional form,

Consider a bubble in its early stage of collapse. Bernoulli's
equation (II-16) gives an estimate for the time derivative of the
potential at points on the free surface;

e =1 - z_v’-: 1 +0((%) . (I11-63)

Now consider any point on the free surface during the interval
t <t<t +4At, Let v_ be its velocity at t =t . The rate of change
n n n n

of the i'th component of the velocity of the point is

Dvl Bvi s avi
= Ny, = .
Bt I +veVv e + v « Vv

&7, (I1I-64)

Since :;n is a constant, Eq. (III-64) may be written as

i . 0 | ¢ >,
o aa axi 5t + = Vo (I11-65)
. B;,Ez__’gié’_Jr O(vz)) . a-i—(gff') (II1-66)
i i

Since %?- satisfies Laplace's equation throughout the liquid and ap-

proaches zeroinfinitely far from the bubble,comparison of Eqs. (III-63)
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and (III- 2) shows that

agp _ (lp 2 . »
= + O(v®), throughout the liquid, (II1-67)

Substitution of Eq. (III-67) into (I1II-66) produces

Dvi(t) v. (t)

= 1 G
Ot T ; (III-68)

Equation (III-68) provides an estimate of how the velocity changes dur-
ing time steps in the early stage of collapse. Using this estirnate in
place of the approximation that the velocity remains constant, modified
forms of Eqs. (III-1) and (II-3) can be found, Integration of Eq. (III-68)

from t = tn gives

v
E n :
v=t —E"r-l' for tnS < tIl o Atn . (111—69)
then
VAN
i 't tn—» %'[(thrAtn)z-tri] e
DAx = S\ vdt = v (I1I-70)
t n
t n
n
and
+A
e 0 %-[(tnmtnf 2]
B 1= (1+7v)dtzAt + v |2
n 2 n
t t
n n
(III-71)

Note that Eqgs. (III-70) and (III-71) reduce to Eqgs, (III-1) and ([II-3) as

At
'L becomes smaller. They also reduce to Eqs. (III-61) and (III-62)

n =
v
n >
as t -0 and — —> V.
10 tn

In the improved method the initial time step is made using
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Eqs. (III-61) and (III-62). The time steps imm.ediately following the
initial time step are then made using Eqs. (III-70) and (III-71). With
this method the initial time step does not need to be large to insure the
accuracy of the following time steps. The sizes of the time steps arc
steadily reduced throughout the carly stage of collapse to compensate
for the increasing error in approximation (III-69). This approximation
remains of some value even as late as t = 0.40. Later time steps are
based on Eqgs. (III-1) and (III-3).

Equation (III-67) indicates that the potential increases linearly
in time during the early stage of collapse. When a time step in the
carly stage of collapse takes its initial potentials and outer boundary
potentials from the previous time step, it is worthwhile to multiply

these potentials by a factor reflecting this increase with time
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Iv. COLLAPSE NEAR A SOLID WALL

A. Results of Numerical Simulation

The collapse of an initially spherical bubble necar a plane solid

wall was simulated for two cases, In Case 1 the parameter -R—b- was
o

unity; that is the bubble boundary was in contact with the solid wall

and tangent to it. In Case 2 ﬁb- was 1,5; the closest distance from
the bubble boundary to the solic;) wall was initially half the radius of the
bubble. Ninety-four time steps were used for Case 1 and seventy-
seven for Case 2. Calculations were stopped when the liquid jet reach-
ed the opposite wall of the bubble since the assumption of incompres -
sibility is no longer valid. The bubble shapes for selected time steps
from Cases 1 and 2 are shown superimposed in Figs., 8 and 9, respect-
ively, Table V lists the time interval from the initiation of collapse for
each shape and the downward velocity on the upper portion of the bub-
ble at the axis of symmetry. The time intervals, which are scaled
like Ro/z{% , are given in units of Ro(p/Ap)%. The velocities, which
are scaled like\/’gpp , are given in m/sec for the special value

1 atm.
density of water

Ap _ 10°dynes/cm?

(IV-1)

P 1_Og/v.:m3
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TABLE V

Time Interval from Initiation of Collapse and the Velocity of the Bubble
Boundary at the Axial Point most distant from the Wall for the Cases

Illustrated in Fig. 8 and Fig. 9

Figure 8
Shape Time Velocity

A 0.63 7.7 m/sec
0.885 19 m/sec

& 0.986 42 m/sec

D 1.013 65 m/sec

E 1.033 100 m/sec

F 1,048 125 m/sec

G 1.066 129 m/sec

H 1.082 129 m/sec

I 1.098 128 m/sec

J 1.119 128 m/scc

Figure 9

Time Velocity

0.725 10 mn/scc
0.875 17 m/sec
0.961 35 m/sec
0.991 53 mm/sec
1.015 94 m/sec
1.028 142 m/sec
1.036 160 m/sec
1.044 165 m/sec
1,050 170 m/sec

Selected shapes for Case 1 are shown individuallyinFigs, 10,11, and

12; shapes for Case 2 are shown in Figs, 13, 14, and 15. Potentials

and the two velocity components at lettered points on the bubble bound-

ary are listed in table VI and VII.

The potentials, which are scaled

like RO I%E , are listed in their nondimensional form. The velocities

are given in m/sec assuming the special value of Eq. (IV-1),
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The pressure in the liquid at the solid wall was calculated at the axis
of symmetry in Case 2. It was found to rise steadily from an initial
value of -.92Ap below ambient to about 14Ap above ambient pres-

sure at the time the jet reaches the opposite boundary of the bubble,

B. Discussion of Results

The solid wall influences the bubble carly in thc collapse chief-
ly by reducing the upward motion of the lower portion of the bubble.

As a res;llt the bubble becomes elongated in the direction normal to the
wall as was predicted by Rattray[ 3] . The bottom of the bubble still
moves upward towards the bubble center in Case 2, but since this up-
ward motion is reduced, the centroid of the bubble moves towards the
wall displaying the well-known Bjerknes effect.

As the bubble acquires kinetic energy, this energy is concen-
trated in the upper portion of the bubble which eventually flattens and
forms a jet. Once the jet is formed, the speed of its tip remains fair-
ly constant, It may be argued intuitively that when a liquid jet is bound-
ed mainly by a free surface at constant pressure, most of the liquid in
the jet will be near this constant pressure. Since the pressure gradient
is small, the acceleration should also be small.

The behavior of the upper portion of the bubble in Case 2 is not
very different from Case 1., The overall shapes appear quite different,
however, because the bottom of the bubble must remain in contact with
the solid wall in Case 1 but is allowed mobility in Case 2, The jet
speed in Case 2 (about 170 m/sec under atmospheric Ap) is somewhat

larger than the speed in Case 1 (about 130 m/sec). This behavior is as
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expected since a bubble which is farther from the wall collapses with
less distortion and can concentrate its energy over a smaller volume,
Note that after jet formation the bubble volume, excluding the jet, is

greater in Case 1 than in Case 2,

The jet appears to be the result of the deformation caused by
the presence of the wall during the early part of the collapse rather
than the influence of the wall at the time of the jet formation. It is
known from the theory of Plesset and Mitchell that a small deformation
can lead to jetting later in the collapse. In Case 2 the bubble is too
many radii from the wall at the time the jet is formed for the wall to
have an important influence on the flow near the bubble surface.

It should be remembered that in most situations the bubble can
collapse under a pressure momentarily greater than atrmospheric pro-
ducing higher speeds. A magnetostrictive oscillator at the California
Institute of Technology, for example, produces a periodic pressure

[4]

amplitude of about ten atm This oscillator has a natural
frequency of 15 X 10° cycles per second corresponding to a wavelength
of about ten cm. in water., Since the total collapse time for both Case 1
and Case 2 is roughly R\ /5% , bubbles with initial radii of the
order of 10-2 cm or less experience a nearly constant local pressure
as they collapse, Pressure gradients are unimportant for these
particular bubbles since the wavelength is so much larger than their
racdii; their collapses are driven by the local pressure.

The effects of additional nonspherical influences such as a

distorted initial shape should, in general, decrease the jet speed by

increasing the asymmetry of the collapse. It is possible, however,
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that a bubble may have an asymmetry that partially cancels the effect
of the wall allowing the bubble to concentrate more of its energy in a
faster jet.

Although the bubble is initially quite close to the wall in Case 2,
the final jet must pass through the liquid for a distance of more than
five times its diameter before it reaches the solid wall, The jet in
Case 1, which strikes the wall directly, seems the more capable of
damage. Apparently these bubbles must almost touch the wall initially
to be capable of damaging it.

A jet of speed v directly striking a solid boundary produces

an initial pressure given by the water hammer equation[ 18] g

C
pSS

Pwi = PrC1V (IV-2)

pLCL+psCs
where the L and s subscripts refer to the liquid and the solid, re-~
spectively, Usually P<Cq is large compared to P1.C1, producing the
approximation

Pme™ PpP¥ o

A speed of 130 m/sec, for example, corresponds to an impact stress
of about 2000 atm.

[18]

Experiments by Hancox and Brunton have shown that mul-
tiple impacts by water at a speed of 90 meters/sec can erode even
stainless steel. They mounted specimens on the rim of a 'rotating
wheel so that the specimen would pass through a stream of water once

every rotation. Approximately 4 X 10° impacts were required to pro-

duce erosion pits on a specimen of 18/8 austenitec stainless steel with
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an initial average scratch depth of 12um or greater. The jet was
1.3 mm in diameter for this experiment.

Hancox and Brunton suggested that the small surface depres-
sions, which are the first sign of erosion in metals, are caused by
local yielding at soft spots on the surface. This, they believed, ex-
plains why a stainless steel with an average yield strength of
11,000 Kg/cm?® erodes at a velocity of 90 m/sec corresponding to a
water hammer pressure of 1,300 Kg/cm? .

Benjamin and Ellis present two series of photographs of bubbles
collapsing near a solid v;rall in Figs. 3 and 4 of their paper. The col-
lapse illustrated in Benjamin and Ellis' Fig, 4 is very similar to Case 2
in this thesis. The collapse illustrated in their Fig. 3 falls between
Case 1 and Case 2, Benjamin and Ellis estimated the jet speed in their
Fig. 3 to be about 10 m/sec. During collapse they maintained an
ambient pressure of about 0, 04 atm., The vapor pressure of the water
is very important at this reduced pressure. Since Benjamin and Ellis
did not mention the temperature of the water, this pressure cannot be
determined directly. However, Ap can be deduced from the total col-
lapse time which they gave as 10 ms. The total collapse time for a

spherical bubble is, according to Rayleigh,

T = 0,915 B, /5% g (IV-3)

The total collapse times for Cases 1 and 2 are only slightly greater
since most of the time is consumed early in the collapse while the bub-
ble is nearly spherical. For collapse near a solid wall, then, the total

collapse time is roughly
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or [ _
T RO Ap ) (IV-4)

Since R = 1.0cm. and 7 = 10 ms, the pressure difference for the
o

collapse in Fig. 3 of Benjamin and Ellis is roughly
Ap = P = P, ™ 104dynes/cm7‘ = 01 atm. (IV-5)

A vapor pressure of 0.03 atm. corresponds to a temperature of about

76°F. Speceds under one atmosphere pressure difference should be in-
creased by a factor of ten giving an estimated jet speed of roughly

100 m/sec so that the experimental observation of Benjamin and Ellis

is reconciled with the calculations performed here.

3] Ap

*Rattray[ derived the formula Rl v i .'915 )

R
1+ 0. 41 ——)+o o

2b 2b

from his perturbation analysis.
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V. COLLAPSE OF INITIALLY NONSPHERICAL BUBBLES

A. Results of Numerical Simulation

Two cases of initially nonspherical bubbles collapsing in a
homogeneous liquid were simulated. For the first of these (Case 3)

the initial bubble shape, described by its radius
1
rS(B,O) =1+ 10 Pz(cos ) (V-1)

was roughly that of a prolate ellipsoid. The other case (Case 4) had an

oblate initial shape with a radius of

1
rS(B,O) =1-19 Pz(cos 9) . (V-2)

The liquid was assumed to be initially at rest in both cases, A total
of seventy-six time steps were used for Case 3 and eighty-six for
Case 4.

Bubble shapes for selected time steps for Cases 3 and 4 are
shown superimposed in Fig. 16 and 17, respectively. Table VII lists
the time from the initiation of collapse for all of these shapes. The
velocity of the bubble surface on the plane of symmetry and on the axis
of symmetry is also listed for each shape. As in Table V, the velocities
are given for the conditions specified in Eq. (IV-1l) and the times are

listed in nondimensional form.
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Since it is of interest to compare the results of numerical
simulation with the linear theory, a least squares fit was uscd for cach
bubble shape to determine the best values for the mean radius and the

coefficients in the expansion

5
rS(G, t) = R(t) + Eazn(t)Pzn(cos 8) , (V-3)

n=1

This fit was successful except for the last few time steps, when the
bubble was highly distorted. Figures 18 and 19 show a (t), a (t),

2 4
and a (t) as functions of R(t). For comparison az(t) computed from

the linear theory of Plesset and Mitchell is also included.

13, Discussion of Results

The initial elongation of the bubble in Case 3 along its axis
causes the velocity on the bubble surface to be greatest at the poles
early in the collapse, This eventually causes the formation of jets on
the axis of symmetry, which have a velocity of about 100 m/sec under
the conditions in Eqs, {IV-1) when they strike. Similarly, the velocity
on the bubble surface is a maximum at the plane of symmetry in Case 4
causing the bubble to assume a '""dumbbell' shape. As the center of the
bubble in Case 4 constricts about the axis, the radial velocity ncar the
plane of symmetry grows indefinitely. This unlimited risc in radial
velocity is a result of the assumption of axial symmetry; a small
initial distortion lacking axial symmetry would prevent it.

According to the linearized theory, az(t)/az(O) should follow
the same curve for both Case 3 and Case 4, and all other coefficients

should remain zero throughout the collapse., The numerical solution
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during the first part of the collapse conforms more closely to lincar
theory than might be expected for an initial distortion of ten percent,
During the final part of the collapse, the nonspherical terms in the
bubble shape and velocity grow to the order of magnitude of the spher-
ical terms, causing the higher harmonics to be excited. The behavior
of a4(t) closely follows the second order results of Naudé and Ellis[ 8]
(not shown here), Throughout the collapses az(t) remains surprisingly
close to the linear estimate., The theory of Plesset and Mitchell pre-
dicts that a.z(t) will oscillate with increasing frequency as the mean
radius approaches zero. The distortion in both cases is large enough,
however, so that parts of the bubble strike each other before an entire
oscillation can be completed. The main conclusion te be made from
these results is that linear theory provides a fairly good representa-

tion for this type of collapse.
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VI. EVALUATION OF THE NUMERICAL PROCEDURE

A, Accuracy

The accuracy of a solution based on the method of simulation
presented here depends on several types of errors. The error left by
the Liebmann method in the solution of the potential distribution was
discussed in Chapter III. A sufficient number of Liebmann iterations
were used in practice to make this error unimportant, Another type of
error discussed in Chapter III is the one left by the iterative method
used to establish the outer boundary potentials. This error was also
unimportant in practice since the changes in the outer boundary poten-
tials between consecutive time steps were well under one percent of the
potentials on the free surface, and a single iteration of the outer bound-
ary procedure reduces this error considerably.

Two additional sources of error will be discussed in this
Chapter; first, the use of nets of finite mesh length to describe the bub-
ble and the surrounding liquid at a given time and second, the use of
finite time steps to obtain the behavior of the bubble as it changes with
time. The mesh length is important for the first and last nets of the
series. It was pointed out in Chapter III that an insufficient number of
free boundary points in the first net can reduce the accuracy of the
outer boundary potentials. Comparisons of the potentials before and
after the scale of the first net was halved, such as in Table II, indicate
that the magnitude of the errors in the outer potentials before the scale
change was small compared to the potentials on the free surface. For

example, Table II indicates that the errors in the outer boundary
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potentials before the scale change combined with the changes between
the consecutive time steps were of order 0,003 compared to potentials
of order unity on the free surface.

Since, in general, the interpolation between time steps quickly
smooths out features the size of a mesh length in the final net or small-
er, the mesh length should be kept small compared to the essential
features of the bubble. In Fig. 12, for example, point D is a distance
of fourteen mesh lengths from the axis of symmetry, and a total of
fourty-four free boundary points describe the jet on one side of the
axis. Twenty-four free boundary points describe the jet on one side of
the axis for surface H in Fig. 16. While the mesh length of the final
net can be halved very economically simply by adding another net to the
series, the computer time necessary for a collapse is roughly pro-
portional to the number of time steps used. Since this number was kept
to a minimum, the errors caused by the use of finite time steps must
be carefully examined.

Equations (III-1) and (III-3) are valid if the velocity of the free
boundary point, ;;(t), remains constant for tn Ll tn + At, If At

is small, then during the displacement :(t) can be approximated by

- — A_)
vit) =vit )+ &F (t-t) (VI-1)
where
Av = V(tn + At)- V(tn) ’ (VI-2)

The displacement of a boundary point, obtained by integration of

Eq. (VI-1)is
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AX) =

-

(V(tn) + x_;(tn + At) ) At

ST

v

<

gt - (VI-3)

The change in the potential of the displaced point may be stated in terms
of VAV by integrating Eq. (III-2) using Eq. (VI-1) and then neglecting
terms of order (/_\V)Z;

1

A(p =11 5h i VA.\Z/-)At & (VI"4)

—

Since VAV is not known before the time step, Eqs. (I11-1) and
(III-3) usc the velocity at the beginning of the time step ;(tn) instecad.
Until the jet is formed, the maximum acceleration on the free surface
occurs at the axis of symmetry in Cases 1, 2, and 3. An effort was
made during this part of the collapse to choose the sizes of the time

steps such that the difference between v and v(tn) at the axis of

AV

symmetry was less than four percent of v A similar limit was

AV
used in Case 4 for the free boundary point on the plane of symmetry.
Some insight into how such an error affects the velocities during non-

spherical collapse can be gained by examining its effect on spherical

collapse. For an upper limit assume

vit ) =.9%v (VI-5)

AV

Equations (III-1) and (III-3) may be combined for spherical collapse to

produce

1
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Ag 1.04 1
—_— = + 5 (.96)v . (VI-T7)
AR V Ay 2 AV

To first order in Av, this difference equation is equivalent to the dif-

ferential equation

1.04

- +;—(.96)v : (V1-8)

De
PR

For spherical collapse the potential problem at each time step has the

solution

v=-% (VI-9)
Equation (VI-8) may be written as

- BER) 0% 4 L (96 (V1-10)
o

_ é_%(}‘{z) =1.04 + 220 2 (VI-11)
Integration of this equation produces the solution

R\ 2-96 %
v = (1,03) %[(—R—O) —IJ (VI-12)

where v is given in units of /%E Eq. (VI-12) corresponds to the true

[1]

solution given by Rayleigh ;

_ 2 [ap
V_'E- ?[

Thus during the first part of the collapse the velocity for a given bubble

1

R \® J
_RE) -1} . {V1-13)

radius according to Eq., (VI-12) is about three percent greater than its
true value. When RO/R reaches 2.0, the velocity (under the condi-

tions specified in Eq. (IV-1) ) is about 12 m/sec and the net error is
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about two percent. The net error becomes zero at RO/R =4, 4 where
v = 65 m/sec. At RO/R = 10 the velocity is 210 m/sec and the net
error is minus two percent, The velocity in Eq., (VI-12) is the

velocity calculated as a function of radius and not % = v(tn) which

is four percent less according to Eq. (VI-5). Thus for any given
bubble radius during the first part of the collapse the elapsed time
from the initiation of collapse should be about one percent greater
than its true value. Since most of the collapse time is consumed be-

fore RO/R becomes large, the error in the total collapse times

should not be much greater than one percent,

Although Eq. (VI-12) suggests that the use of finite time steps
produces errors of only a few percent in the velocities, it does not
indicate exactly how the nonspherical portion of the collapse will be
affected. In particular, since the deviation of az(t) from the values
predicted by linear theory is so small in Cases 3 and 4, it is of inter-
c¢st to know how much of this deviation is actually caused by the use of
finite time steps. Therefore, the collapse of a nonspherical bubble
satisfying the linearized assumptions was determined using the same
time steps employed in Cases 3 and 4., This linearized problem can
be solved quite easily, even without the aid of a computer. It is first
necessary to find the linearized forms of Eqs. (III-1) and (III-3)., The
derivation of these forms is roughly parallel to Plesset's derivation
of the general linearized equation for a,n(t)[ 6] .

In the linearized approximation to Cases 3 and 4, the second

harmonic is the only nonspherical term in the radius of the free

boundary;

1-q((), t) ~ R(t) + a(t)PZ(cos G) (Vi-14)
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It is assumed, of course, that Ia (1:)| « R(t). The potential in the

liquid surrounding the bubble is

wld; 8,8 = F

A(t)R{t) B(t)R*(t)
d 3

P (cos 6) (VI-15)
4d 2

where d is the distance from the center of the bubble. To first order

the potential on the free surface can be written as

el (0,1),0,t] = A(t) + C(t)P (cos0) - (VI-16)
where
Aa
CaB -2 , (VI-17)

The radial velocity on the free boundary at t = t is to first order

8(,0 L4 °
(-.——d-_-)d:r = R(tn) + a(tn) Pz(cos 0) (VI-18)
t =tS
n
Lo 3B 2Aa
. (_R_ - B4 )PZ(COSQ) . (VI-19)
Thus at t =1t ,
n
. A
R== (VI-20)
and
Bs-|on g 08 (VI-21)
R R2

Bernoulli's equation applied on the free surface at t = tn produces to

first order

Dy _ap ., 1 gz, g3 0 2 -
oe = t 5 R+RaPz(cos ) + O(a“) (VIi-22)

or
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AsBB gl i, BB p & & (VI-23)
P2 P 2 R
and
< .. C
feflie D128 88 (VI-24)
R| R RZ

Equations (VI-20) and (VI-21) provide the linearized equivalent
of Eq. (III-1):

A
AR = R(t_+At_) - R(t_) = -Atn[E)

(VIi-25)
t=it
n
and
Aa = a(t_+At )-a(t ) = -At (29— ~+ iE’-’) (VI-26)
= = S n n’' = nl R 2
R
t:tn

A
quations (VI-23) with ,—Fp =1 and Eq. (VIi-24) provide the linearized

equivalent of Eq. (III-3):

(VI-27)

AA = A(t_+At ) - A(t ):At(1+1__A)
n n n n ZR"‘
t_

=t
n

and

AC = C(t_tAt ) - Clt_) = Atn[—A(§—c + éi‘” (VI-28)

R 2
= t=t
n
Similarly, the linearized equations corresponding to Eqs. (III-70) and
(II1-71) are

[(tn+Atn)"—trf]

A
AR = - il -2
R 7 (R ; (VI-29)
1 t:t
n
2 2
[ (t_+At Y-t °]
B 5 o B B_JDH 2B , (VI-30)
2t R 2
R t=t
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[ (¢ +at P-t’] (A 2
AA - At + =3 ’ (VI-31)
o 6% R =t
n n
and
[ (t_+Aat P-t>]
B o el B T 0 °E  BB (VI-32)
32 R IR R?

n =t

Finally, assuming /'%B =1 and RO =1, the linearized forms of

Eqs. (II-61) and (III-62) are

1

AR = - > (AP, (V1I-33)

B = % ;_ NI (VI-34)

LA = At[] + % (at)? " (VI-35)
and

AC= 3 (AtPa(0) . (VI-36)

The same time steps used in Cases 3 and 4 were applied to
Eqs. (VI-25) through (VI-36) to obtain an adjusted linearized solution.
The difference between this adjusted linearized solution and the true
lincarized solution represents the error caused by the use of finite time
steps. The adjusted lincarized solution is shown with the true linearized
solution and the second harmonic determined from the numerical solu-
tion in Fig. 20 for Case 3 and in Fig. 21 for Case 4, It is seen that
the second harmonic from the numerical solution is even closer to
linear theory when the effect of finite time steps is taken into account.

A brief description of the calculation of the true linearized

solution which appears in Figs. 18 through 21 may be of interest. As
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a check two different methods were used. First the hypergeometric
function from the theory of Plesset and Mitchell was evaluated by sum-
ming a complex power series. The second method was to convert the

second order differential equation for a into a pair of coupled first

2
order differential equations in (—RB-) .
o

(VI-37)

= (VI-38)

and integrate them using a standard subroutine. Although the two
methods gave identical results, the second method was much faster,
especially for small values of ]5—3— . A summation at R/Ro = 0,08,
for example, requires about 20, (;)00 complex terms to give four place
accuracy. A comparison of the true linearized solution for B illus -
trated in this thesis with the same curve given by Naudé and Ellis[ 2 ]
reveals a discrepancy for the smaller values of _RE . Apparently
o

Naudé and Ellis, who used the summation method, did not include

enough terms in this region,

B. Stability

Instability is a common problem in flow simulation. Errors

that are small when they are introduced can often grow large enough to

19]

obscure the results. Hirt[ observed that a major difficulty in

applying the Marker-and-Cell technique to high Reynolds number flows
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was the instability caused by ''diffusion-like truncation errors' in the
finite difference approximations used throughout the liquid. This type
of instability can be reduced by increasing the viscosily and using
smaller time steps. For the method of simulation used in this thesis
it is pertinent to observe that each time step specifies only the condi-
tion of the free surface for the next time step; the potential distribution
in the liquid itself is used merely as an estimate for the Liebmann
method. Since the finite difference approximations in the liquid involve
only space variables, they cannot produce diffusion-like errors similar
to the ones analyzed by Hirt.

The small errors left on the free surface by the finite difference
approximations are carried from one tirme step to the next and are a
possible source of instability. However, these errors, which are the
order of a mesh length in size are usually smoothed out by the interpola-
tion between successive time steps. In general a free boundary point
does not fall directly on a net line when it is displaced and must be
averaged with the adjacent free boundary points. Free boundary points
on the axis of symmetry and on the plane of symmetry are exceptions
since these points are constrained to follow the sarne net lines through-
out the collapse. Errors are not smoothed out at these points and so
remain in the calculations. As might be expected, these errors be-
have roughly like the small disturbances in the theory of Plesset and
Mitchell; they oscillate at a rate corresponding to one of the higher
harmonics. Since the instability analyzed by Plesset and Mitchell is
mild in nature (increasing like R_’i as R —+0), it should not be a

problem if the errors on the axis and plane of symmetry are kept small.
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This type of instability was most evident in Case 2. The
small dimple on the axis of symmetry in surfaces D,E,F, and G in
Fig., 9 and in Figs. 14 and 15 is caused by it. Most of the error on
the axis seemed to be produced whenever the scale of the final net
was halved. By keeping the number of these scale changes to a min-

imum and by using a fairly large value (0.19) of ) in calculating

MIN

the velocity, this type of error was greatly reduced in Cases 3 and 4.

C. Validity of Assumptions

The numerical procedure used here is based on a set of as-
sumptions listed in Chapter II. Although all of these assumptions are
common in spherical bubble studies such as Rayleigh's classic paper,
they will be briefly reviewed in light of the nonspherical solutions,

For all cases except Case 4 the maximum velocity on a bubble collaps-
ing in water under a pressure difference of one atm. was under

200 m/sec compared to a sound speed of 1500 m/sec in water and

410 m/sec in water vapor. Under these conditions the assumptions of
incompressibility and uniform vapor pressure remain acceptable.

For spherical collapse the only viscous stress on the free sur-

face is normal and is equal to 4u % The relative effect of viscosity

on spherical collapse can be investigated by comparing the total initial

energy of the bubble to the viscous loss during collapse;
A%

0 L
: R
L, = Viscous Loss = ~4p XO g 4V (VI-39)

B

3

where V = 7 TR If the effect of viscosity on the collapse is small,

this integral may be estimated by assuming that the collapse velocity
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is given by Rayleigh's (nonviscous) theory. Since viscosity slows
down the collapse, this estimate will be greater than the actual loss,

If R(R) is given by Eq, (VI-13) the loss is

2/Ap§vo 3 5 [V,

v 1
8 Ap 4w -5/6
=z i fﬂ"’_ R;S x//I—xdx i

(0]
Ap 4 2
LV< 14, 6 )——5—- 5 RO . (VI-40)

The ratio of the viscous energy loss, LV’ to the initial energy of

or

the bubble, VOAp, does not exceed the value

< 14, 6p

V _Ap i
° R_p{ap/p)?

In the situations usually encountered it follows that the viscous loss is
not important. The viscous stresses for the nonspherical cases con-
sidercd in this thesis are roughly of the same order as in spherical
collapse. This can be easily seen in Cases 3 and 4 by using linearized
theory to estimate these stresses. By a simple application of linear-
ized theory outlined in Appendix B, the viscous stresses on a surface

described by r, = R + az(t)PZ(cos 8) + a4(1:)P4(cos 6) are

.

& 8a2 4az "
= = o - 6
Gdd_4u R-{-,u B + = R)Pz(cos )
R
) s
+pil2 =% +12a R P (cos0) (VI-41)
R 4 R2 4

and



faz 2
= Ll 2. s :
049 = M| 7 Za.z Rz)cos@ sin 6
o 1.1 7 3 3
. _4 s — — — 51 -
+ 8u = %&a4 R)(Z cosB+Zc059 sin@ | (VI-42)
a a a f{ a 1'?,
From Figs. 18 and 19 it can be seen that . V- W T
. R R R* R?
are of the order of % or smaller,

For spherical bubbles collapsing in water under a pressure
difference of one atm., surface tension effects become important for
initial radii less than 107 cm, Although surface tension was not in-
cluded in the calculations, the method could be easily adapted to include

[ 6]

it. The linearized equations of Plesset include surface tension and

can provide a good estimate of its effect on nonspherical collapse.
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VIiI. THE EFFECT OF GRAVITY

Gravitational effects were not included in any of the c:iscs pre-
sented in this study. If, however, the bubble is oriented so that axial
symmetry will be preserved, gravity or any other pressure field may
be imposed by including it in the Bernoulli equation., Then Eq. (III-3)

will have the form

(p_(z)-p )
Ag :[_ﬁ_p_-l— + %-VZJ At | (VII-1)

Another possible application of the method of simulation used
in this thesis could be to an initially spherical bubble collapsing under
a uniform pressurc gradient. To develop some feeling for this type
of problem and also to obtain an estimate of the effect of gravity, it
is desirable to have a simple perturbation solution for the effect of a
pressure gradient on nonspherical collapse. The chief difficulty is
that buoyancy causes the bubble to translate along its axis of sym-
metry with a velocity Uu(t) which couples the linearized equations.

One approach used by Yeh and Yang[ 20]

was to integrate these
coupled equations numerically for various situations. In this case,
however, it is more suitable to apply a method developed by Penney,

[21] in their investigation of oscillations of gas bub-

Price, and Ward
bles formed by underwater explosions. If the buoyant velocity u(t)

is assumed to be much smaller than the mean collapse velocity R(t),
the higher harmonics uncouple leaving three equations involving u(t),

R(t) and the second harmonic,.

The equations of Penney, Price, and Ward will be derived in
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the more convenient form of the theory of Plesset and Mitchell. The

shape of the bubble is described by
0
r, = R(t) + Z a.n(t)Pn(cos 6) (VII-2)
n:Z

where Ianl « R. The origin is determined by the requirement that

al(t) must vanish, The pressure field will be described by

P~ P, =P(2) =p - pglz-z) (VII-3)
where the center of the bubble is initially at % = z. Only cases in
which the variation in p(z) over a bubble diameter is small compared
to Pg will be considered,

For such cases the buoyant velocity wu(t) should be small

compared to R throughout mmost of the collapse, Thus there are two

small quantities,

a
n

e i
R

R

= O(e) and =Q() . (VII-4)

As in the theory of Plesset and Mitchell only first order terms in e
will be retained. It will be seen that first order terms in 6 have no
effect on the linearized distortions in shape. To have a first order
effect u(t) must be large enough so that 6%2= O(e). Terms of order
5% = Ofe 3/?‘) and higher must be neglected to uncouple the equations.

The free surface is described by the equation

rs(a,t) -d=1(4,6,t) =0 , (VII-5)

where the (d,8) coordinates are measured from the origin in the
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bubble moving with speed u(t) in the positive z direction. The time
derivative in the moving (d,8) coordinate system is related to the

time derivative in the fixed coordinate system by

d 0
o +
(m) | -(Tt w(t) 3
moving fixed
) 0 sinf® 9
:(?)T : +“(t)(°059 54 T Td 9‘5) (V-6
fixed
The kinematic free boundary condition is
Df _|af ot |cos o 2L _ sin® of
Dt |0t ¢ 34  — d . 90
moving d-rs
il B2 . V6 B - g
Yaada T d 3@ o ’ {V11-7)

s

where V4 and vg are the components in the d and 8 directions of
the velocity relative to the fixed coordinate system. Equations (VII-5)
and (VII-7) produce
" o ar
r :(-a—t— . —[ d-u(t)cos 6 - ——-—(v9+u(t)51n8) WJ
moving s _rs
or

és = (vq) -ucos6+0(s%) . (VII-8)
1

s

The velocity potential ¢ outside the bubble can be expanded in

the form

bo b cos 0 = n
o= = + z o P (cos8) . (VII-9)

Equations (VII-2) and (VII-8) produce
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O¢ _ 3 ¢
{Ba)r - ucos 6 + T

‘ 00
l.{+uc059 +z

2
n==2

n(t)Pn(cos 8 . (VII-10)

To first order in e, Eq. (ViI-10)is satisfied by

@ = - —H—Rzﬁ - Ru cos 6
24?
co
n+2 L
" R : R 3f2
n=2

With the aid of Eq. (VII-5) the Bernoulli equation on the free surface

may be written as

8(,0) ) 1 3¢ . ) 1l 2 .(Ve _plz)
(51:— —u(-ﬁ COSQ'"&'MSan +-2-vd+(—d- ok
" Ts
Py
= - g(zc—zo) - gr_cos 9 (VII-12)

where z, =2, is the total distance traveled by the moving coordinate

system. That is

t
z, -z :S‘ u({t)dt . (VII-13)
o
It has been mentioned that the variation in pressure over a bubble
diameter, 2pg R , must be small compared to p_. More exactly,
it will be seen that

LER <o) . (VII-14)
pO

Thus to first order in € the pressure on the bubble surface is
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p(z) _ (VII-15)

p

Po
—_— - g(zc—zo) - gRcos 0
JE 5

From Eq. (VII-11) the first term of Eq, (VII-12) is to first ordcr in

|

3o\ 1 d ,_a¢ 1 d .3
Ttr = - ﬁ. -Jt— (R. R.) ZRZ. 'd—t' (R U)COSG
| Hpy 3
n d 2.0 n ntd * .
*Z = (RR) ~ oy B~ oar Ray,
n=2

'z 2a b
R ., R] P_(cos6) + Ofe Az y (VII-16)

Similarly, to first order in € the second term of Eq. (VII-12) is

- u[(f(-Fu cos B)cos 6- 1 . 29] 3f2
: 5 usin +O(e™°)
r

: o .
- ulv,cos 0 - . sin 0
s
= - uf{cose - u¢|cos®6 - % sinzﬂ]

= -uRcos @ - uZPZ(cos 8) (VII-17)
Finally the third term is to first order in e
v 2
17 2 ( G] 1 2 * 1 2 2
2—-(vd+—a— =5 R +uRcos@+-2-ucos9
Ts
Q0
. > L 2. 2 32
4 B E anPn(cos 8) + g Wsin 0 +O(e”*)
n==2
00
I .5 s , 1 i A .
= > R*+uR. cos 6 + T u® + % uZPZ(cos ) + R z anPn( cos 8)
n=2 (VII-18)

The equation resulting from the substitution of Eqs. (VII-15) through

(VII-18) into Eq. (VII-12) must be independently satisfied by the terms
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proportional to each of the Legendre polynomials. The terms constant

in 6 give

e 30, Po o1, k
o
The terms proportional to cos@ give
- . 1 e
> uR + > Ru = gR . (VII-20)
Terms proportional to Pz(cos 0) give
BE &3R5 = Ba =~ 2@ (VII-21)
2 2 2 4

and terms proportional to Pn(cos 0) give for n=3,4,5. . . ,
RE_+3Ra_- (n-1)Ra_=0 . (VII-22)

With a little manipulation Eqs. (VII-19), (VII-20), and (VII-21) can be
shown to be equivalent to those of Penny, Price, and Ward except for
a term in Eq. (VII-20) which has been neglected in this treatment.
Equation (VII-22) is unchanged from ordinary linear theory, but

Eq. (VII-21) contains the effect of the buoyant velocity on a.z(t),

Eq. (VII-20) may be integrated to give

t
iy = 2, RPat . (VII-23)
3
R o

[22]

This equation, which was first derived by Herring , exactly
describes the buoyant motion of a spherical hollow initially at rest,

-3
Although u increases like R as R —~ 0, in many cases the asym-

metry of the bubble will cause large deformations before u reaches

a significant magnitude.
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If the effect of the buoyant velocity is small, an estimate of

~t
R’dt can be made using the Rayleigh solution;
Yo
> t R 3
B3 R
S R(t)dt:S‘ = dR (VII-24)
Yio R R
o
R 3
= g R3 dR
RO/Z po(R’o )
R s -1
_ p R3
1 5/6
=5 Bf [20 S\ e dx (VII-25)
Po Y(R/R PV 1-x

The integral

dx 12a20 (VII-26)

11 1 11 1
I{le) = B (—6— § 7) - Baf(_é_ 5 Z) (VII-27)
where
» 1
= p-1,_.yd-1, _ T(p)(q)
B(p,q) ~‘\0 x7 (I-x)" dx = Tﬁﬁa—r
and
e p_l q_l
BQ(P:Q) E§ X (I—X) dx
o

It is more convenient, however, to express I(e) as an
expansion in powers of (l-a). The integral may be rewritten as

1 -1/ 1
I(a/) :S\ X(l_(]- 'X) ) dx :g
a

o 1-x

00
= (>‘ d (l-x)n)dx (VII-28)
=0

/1)
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1 11
-6-- ---6- asve (n-s,'e )
where do =1 and d

3oy > 0. The recursion relation
connecting coefficients is
n:_n_n“.s_lﬁ_ d. ., m=1,2,8 ... V29
For any a > 0,
X 1
I(a) =) 4 y (1 -x)" 2 ax
{2 B
@
n=0
‘Y (v -1)v o 1/zdv (where v =1-x)
n= o hos
0
AE o) Y2 ) (1 et Y2
n+3/z n+1/z
n=0
00
~ ntz| 1 {1-a)
—Z e -a) ZoiT = 2533
n=o0
0
& Z(d -d )
N 1/2 —_—n Bl B
= 2(1 -a) +Z/ e (1-a) ) (VII-30)
n=1

A further simplification in Eq. (VII-20) can be made using the recur-
sion relation (VII-29);

1 d
I(Q’) = (1 O.’)z (2 = %Z mﬂ%ﬁm (l—a')nﬂ
n=o

1}

(1-a)? (2 - 2 (l-e) - 5 (1-aP - g (1-aP - . ) (VII-31)
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o0

. R

d
: n n+i ; —_—
The power series Z I EaaT (1-c) contains only positive co-
n=o
efficients and converges in the limiting case « = 0., Since convergence

is slowest at o = 0, the error from truncating the series will be

greatest there. Define the truncated solution,

_ 5 N g A -af*™ VII-32
I8 1-d)\e -~ 5 /) mEEEs : V-2
n=0
and error ,
_ IN(a)—I(a)

The value of I(0) calculated from the tabulated gamma functions is

1.4003, Values of IN(O) and EN(O) are listed in Table IX,

TABLE IX
Truncated Solution and Error for o = 0

N 0 1 2 3
IN(O) 1,4444 1.4167 1.4089 1.4057

E\(0)]| 0.0315 0.0117 0,0061 0.0039
Thus
5 1 :
I(e)= fI=a |2 - 5 [E ) ~ e (1-a) (VII-34)

gives a maximum error of about one percent.
Equations (VII-23), (VII-25), and (VII-34) combine to produce

an approximate solution for u(R),
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gR
wR)= 5 2 /2 B J1-(/R,Y [2- S{1-®/R P

R
Y Rl (VII-35
??;( o] ) ] ' a5
This solution may be applied to Eq. (VII-21), It is consistent with

previous approximations to use Rayleigh's solution in the left side of

Eq. (VII-21) to eliminate t as an independent variable with the result

d?a da
[o) -2 3 2 3 -3 2 3 -4
-fp—R_;[s (15);7+zs 3l t e az]

. (VII-36)
where s = R/RO. Application of Eq. (VII-35) produces
“u-) Tafan) 2 T g,
== By ;;—f 3(1_53)[ - 3 (1-) - 5 (I—SB)T ; Ll
3p

The general solution of Eq, (VII-37) consists of Plesset and
Mitchell's solution of the homogeneous equation added to a gravity
induced particular solution ap(s) satisfying the homogeneous initial
conditions

ap(l) = 0 and ép(l) =0 (VII-38)
2

3pgR
: . . _ o
'he function a,p(s)/H where H = RO(T__p ) was calculated by

numerical integration of Eq, (VII-37) and is plotted in Fig, 22,
Consider Eq, (VII-35) again, Combining it with Eq, (VII-24)
produces an estimate for the ratio of the buoyant velocity to the mean

collapse velocity,
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32

5 3 1 gy
[2 - 3 (1=(R/R,P) - 5z (1-(R/R_P)
(VII-39)
Equation (VII-14) may be deduced from this relationship. According

to this estimate,
3
) as R/RO =0 (VII-40)

2
) .0 Ve
R Py R

2
Unless (1-1-] is of order e :‘Z lan] for nonspherical collapse,
R
the effect of buoyancy will be unimportant. Even for a bubble radius

initially as large as one cm in water under atmospheric pressure,

R
of its initial radius. Under ordinary conditions gravity is not signif-

2
gravity gives (3] =010 2 )} when the bubble has shrunk to one tenth

icant for the range of bubble sizes of interest in cavitation.



-106-

APPENDIX A

Garabedian's Estimate of the Relaxation Factor Applied
to the Axially Symmetric Case

To show that Garabedian‘s[ 16] analysis is formally unchanged
in the axially symmetric case, his derivation will be given while adapt-
ing it to the axially symmetric situation. The value of the potential
during the n'th Liebmann iteration at the nodal point r =ih, z =jh will be
referred to as <p: The Liebmann method with overrelaxation applied

to Eq. (III-5) can be described by

n+1 n n+1 n+1 h
sopy - of ) = efon sl wil 5l - )

n n
+"’i,jJrlJ““"iJrl,j(l o) - 4 13) ' bRl

This equation may be rearranged in the form

]:_Z ‘f’?,j-l w?-x,j (1 - Tzh_r) +‘P?,j+1+‘0?+1,j(1 - '2}—11:“)_ 45,5
- Ay L e )
+~§: ?,J--n
t Zrh o ?+113 (P;l-l,j} w n+1 ?,j) (A-2)

where C is specified by Eq. (III-16).

The n index is assumed to correspond to a time-like variable
T which increases by a value of h with each Liebmann iteration,.
For small values of h Eq. (B-2) is equivalent to the partial differen-

tial equation
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1
to -t 5o T2Ce . (A-3)

1
Pow T P T, =F zT | 21

2 i o ZZ rT7

The substitution s = T + -lé- + g— is used to produce the canonical

form

quo = (77} . + ZCQUS . (A"4)

S

| =

Equation (A -4) is formally identical to Garabedian's equation for the

plane case. Separation of variables leads to Garabedian's result that

¢ = ¢ (r,2) +z [a, exp(-q s) +b_(-q_'s)]U_(r, z) (A-5)

n=1
where q_ amd q'n are related to the n'th eigenvalue of Eq. (III-17)

by

g = 26 - JAEE - Zk; and q', =2€ + fac? - Zk; . (A-6)

n

The function qoo(r, z) represents the solution of Laplace's equation and
the added terms in Eq, (A-5) represent the error. The term in the
error containing 4, decreases at the slowest rate. As N the
number of Liecbmann iterations increases, this term decreases like

exp(-qNh) where q is defined by Eq. (III-15).
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APPENDIX B

An Estimate of the Viscous Stresses on a Nonspherical Bubble

Although linearized theory neglects viscosity, it can be used

to estimate the viscous stress if the effect of viscosity on the flow is

small, Linearized theory[ J states that a bubble described by a radius
of
an
r, o= Ro + aZPz(COS 8) + a4P4(cos 6) where \—R- ] = Ofe) (B-1)

has the velocity potential

__RR _ R f{)
¢ = - =g 3 (az+ Za.z = Pz(cos 0)
3d
6 L]
R |: R
) 5d5 a4+ 23.4 "I"{)P4(COS 9) & (B—Z)

The two components of the velocity are

8¢ RPR . R%|- R
= = Foropm— =Y 6
V4= 5q = + = (az+ 2..':».Z R Pz(cos )
d d
= _—-—Ré [z'a. + 2a E) P (cos 6) (B-3)
q° 4 4 RI "4

5 +‘2a %)cbs@ sin 6

Vg = 3 50 T F 2 2
6 Ll
R a + 2a _Ii) (Z cos’6 + 3 cosf|sinf (B-4)
BH e 4 RIV2 2

For the axially symmetric case the two nonzero elements of the stress

tensor in spherical coordinates[ 22] are
Bvd
"%3qa = "% BT (B-5)

and



5 100
(B-6)

= F = - _]; avd + ave - ig.
ap = H\T 3o 5d ~ 4
the values of these elements on the free surface

To first order in €
are
RR2 R* |- R
- = m— 2 =) 9
%34 2,_&(2 = r a2+ az R_)Pz(cos )
s
6 L]
R” | R)
+ 6 '-7" (a4+ 2&4 'R P4(C0b 8))
S L ]
- 4y R tul8 % 142 R p(coso)
R R z R? 2
3 R
+u 12 & +12a = P, (cos 0) (B-7)
R 4 R2

and
_ T R
T a9 "1R+ =3 +RHaz+2
6 ) 7 3
% %T%+%)(a4+2a ( cosG+2 cosG)sme
a e
= bu|% +2a —|cosf sinb
R
. R
5 3
+8u—§—+2a H-——CObG-I -Z—cose)sinG

(B-8)
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