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Abstract 

Vapor bubble collapse problems lacking spherical sym-

metry are solved using a method of simulation designed especial-

ly for these problems. Viscosity and compressibility in the liquid 

are neglected. The method of simulation uses finit e time s teps 

and features an iterative t e chnique for applying the boundary con-

ditions at infinity directly to the liquid a finite distance from the 

free surface. Two cases of initially spherical bubbles collapsing 

near a plane solid wall were simulated, a bubble initially in con-

tact with the wall and a bubble initially half its radius from the 

wall. at the closest point. In both cases the bubble developed a 

jet directed towards the wall. Free surface shapes and velocities 

are presented at various stages in the collapses. Velocities are 

scaled like j ~p where p is the density of the liquid and ~p 
is the difference between the ambient liquid pressure and the vapor 

~p 6 ( cm ) Z 1 atm. . 
pressure. For - = 10 -- '" d .ty f t the Jet had a p sec enSl 0 wa er 

speed of about 130m/ sec in the first case and 170 m/ sec in the 

second when it struck the opposite side of the bubble. Collapse 

in a homogeneous liquid was simulated for bubbles with nonspherical 

initial shapes described by the 

and rs = Ro[l - /0 Pz{cos8)] 

degree Legendre polynomial. 

radi.i r s = Ro[l + /0 Pz{cos 8)] 

where P (cos 8) is the second 
z 

Bubble shapes in both cases were 

close to those predicted by linearized theory. A simple perturba-

tion study oLthe effect of a small pressure gradient on a collapsing 

bubble shows that gravity is ordinarily negligible for bubbles 

initially one cm. in radius or less. 
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1. INTRODUCTION 

A. Topic s in Nonspherical Bubble Collapse 

The study of th e behavior of a bubble in a liquid is greatIy 

simplified by the assurrlption of spherical symnlctr y . Foll owin.g 

Rayleigh's[ 1) classical analysis of a problem first solved by Be~;ant, 

the inviscid collaps e of a spherical cavity in a homogen eous, In corn -

pressible liquid under a constant ambient pressure, numerous Cluthor :,; 

have studied the behavior of spherical bubble s under a wide range of 

conditions. Far l e ss is known about the nonsph e rical behavior (jf 

bubbles . Because problems lacking spherical s ymme try have proven. 

too com,plex for direct analysis, they have been i.nvestigated primari-

ly by qUiiljt~tive reasoning, e x periments, and perturbations from 

spherically sym,metric solutions. One result of these studies has 

been the theory that cavitation damage is caus ed b y the action o f 

liquid jets forHled on bubbles n e ar a solid surfac) 2). 

A perturbation study by Rattray[ 3) sugg e sted that the effect of 

a solid wall in disturbing the flow during the collaps e of an i n itially 

spherical bubble could cause the formation of a liquid jet di rected 

towards the wall. Rattray assumed that the bubble was sufficiently 

far from the wall so that the deviation from sphe rical symmetry w ou ld 

be small (of order E) over much of the collaps e with a predorninanc e 

of the lower spherical harmonics in an expansion. Both the bubble 

radius and the velocity potential were expanded in a harmonic series 

with the assumption of axial sym,rnetry. The coefficients of the n'th 

harmonic were assulued to be of the order of luagnit u de En . T he 
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resulting solution suggeste d a reentrant jet for a high degree of 

deformation. This jet formation was only spe cula tive, howe v~' r , 

sinc~ e it is not unlikely u n d e r any circurnstance fo r a s erie s of 

L e gendre fUllctions to display s ingu l ar behavior n ear th e ax i s o f s y m -

Inc try when the series is considered outside its range of validity. 

The irnportance of the influence of a solid boundary on bubble 

collapse as a possible factor in cavitation damage was further e mpha­

sized by Plesset[ 4] who argued that the stresses caused by the col-

lapse and subsequent rebound of a spherical bubble containing a small 

amount of permanent gas falls off rapidly as the distance from the 

bubble is increased. These stresses are too small to damage a solid 

boundary unless the boundary is quite close to the bubble . Thus a 

sohel wall tHust have an irnportant effect on the collapse of any bubble 

capable of damaging it. 

Experiments by Benjamin and Ellis[ 5] confirmed that jets 

form on bubbles collapsing near a solid wall. Large vapor bubble s , 

generally about one centimeter in radius, were grown from s mall 

nuclei by the application of a negative pressure. High spe ed photo-

graphs were taken of these bubbles as they collapsed nea r a plane 

solid surface. The ambient pres sure was maintained at about 0 . 04 atm 

eluring collapse so that collaps e v elo c itie s wou ld b e r e duc ed to facili-

tate the photography. These bubble s were near ly s p h e rical as the y 

started collapsing. First they became elongated in the direction 

normal to the wall; then they tended to flatten and form an inward mov-

ing jet on the side of the bubble opposite the wall. From their photo-

graphs Benjamin and E llis estimated the jet spe e d t o be about 
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10 meters/second. Benjamin and Ellis concluded that since velociti u ,<-; 

are scaled like the square root of the pressure, the jet speed under 

atmospheric am,bient pressure would be increased by a factor of about 

five. It should be remarked, however, that the characteristic pressure 

in this case is not the ambient pressure but the difference between the 

ambient pressure and the vapor pressure inside the bubble. Because 

the vapor pressure of water at room temperature is not negligible 

cOlnpared to 0.04 atm., the scaling factor should be greater 

than five. This problem will be explored more fully in Chapter IV. 

Another m.ajor topic in nonspherical bubble studies has been 

the behavior of small asymmetries of a nearly spherical bubble in an 

infinite, homogeneous liquid. The distortion of the shape of a nearly 

spherical bubble is commonly expanded in spherical harmonics so 

that the radius of the bubble is 

<Xl 

r s (8,rp,t) = R(t) + L 
n=l 

a (t) y 
n n 

(I -1 ) 

where Y
n 

is a spherical harmonic of degree n. For perturbation 

solutions the coefficients a (t) are assumed to be much smaller than 
n 

the mean radius R(t). 

The central problelTI is the solution of a (t) for a given func­
n 

tion R(t) and a set of initial conditions. If the problelTI is linearized, 

the various harlTIonics uncouple[ 6]. The general linearized equation 

for a (t) was solved for bubbles collapsing or expanding under a 
n 

constant ambient pressure by Plesset and Mitchell[ 7 ], who were able 

to express their solution in terms of the hypergeolnetric function. 
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One important result is that as the mean radius collapses to zero, 
1 

an(t) grows in magnitude like R -4: and oscillates with increasing 

frequency. Thus even a small asymrnetry will become important 

after the bubble has shrunk sufficiently. 

Naude and Ellis[ 8] used the theory of Plesset and Mitchell to 

analyze th e ir experilnental study of the collapse of nearly hernispher-

ical bubbles. Using electric sparks, th ey generated roug hly hemi-

spberical bubbles on a plane solid surface and photographed them. as 

they collaps e d. Sinc e the solid wall acts as a plane of symmetry, th e 

theory of Plesset and Mitchell is directly applicable. 

A perfectly h e lnispherical bubble would, of course, remain 

helnispherical as it collapsed and could be described by a spherically 

symmetric theory such as Rayleigh's. The asymmetry in this case is 

due to initial asymmetry in shape or velocity rather than the presence 

of the soliel wall. Such bubbles can exhibit a wide range of behavior , 

depending on the initial conditions, including the formation ()f a jet on 

the axis of symlnetry. Although the solution of Plesset and Mitchell 

does not require the lower harmonics to dominate as does Rattray's 

solution for the collapse of an initially spherical bubble n ear a plane 

wall, the assumption that i a I «R means that the linearized solution 
n 

cannot be used to describe the jet formed on a nearly hemispherical 

bubble at the ti=e that it strikes the wall. 

The analysis by Naude and Ellis showed that the distortion in 

the shape of their bubbles was prilnarily composed of the second h a r-

lnonic with a slnall contribution from the fourth h armonic. No odd 

har rnonics were present, of course, du e to the plane of s y=metry. 
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it (t) a (t) 
l 4 Nauc16 and Elli s pr esented the eXperilTICntal vahws of 

aroJ a nd il((,) 
l 4 

over th e first h;:df of the collapse (1.0 > R(t) > 0. 5 ). The se vahle s 

agree with the perturbation solution. Since th e contributio n frorn th e 

second harrnonic was fairly l arge , Naude and Ellis had to add the 

second order effect of a (t) on a (t) to obtain clo se agreement in the 
Z 4 

fourth harmonic . This second order effect was solved using an as -

sumption analogous to Rattray's, that the lowest harmonic was 

dornina nt. 

Because the photographic techniques us ed so effe ctively by 

Benjarnin and Ellis had not yet b een developed, it is not pos sible to 

observe jetting directly from the photographs of Naude a nd Elli s . 

They were able to produce some pitting in soft aluminum, however. 

Similar experiments by Shutler and Mesler[ 9J a lso produced pitting . 

Shutler and Mesler concluded that jets formed but were too weak to 

cause the pitting which they attributed to rebound bubbles. These 

results were later challenged by Benjamin and Ellis . 

B. Numerical Sirnulation of Bubble Collapse 

The advantages of a numer ical technique for simulating non-

s pherical bubble collapse arc clear . Experime nts are difficult and 

give only sketchy re s ults. Perturbations frorn sph('l' i caJ ly r;ymmetric 

solutions are not valid for larg e deformation s . A numerical sol.ution, 

however, can check results and supply detailed information. Numer-

i.cal methods can also be applied to situations which might be very 

difficult to produce in the laboratory. 

Attempts to apply the well -known Marker-and-Cell or MAC 
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technique to nonspherical bubble collapse have not yet been tiuccess­

ful. A report by Mitchell, Kling, Cheesewright, and Hammitt[ 10J 

considers the feasibility of using the MAC method for this purpose. 

Before this report is discussed, the MAC method will be briefly 

described. 

The Marker-and-Cell technique is a general method for 

sim.ulating incornpres sible, viscid flows with an as sortment of bound-

ary conditions including free surfaces. In practice it has been applied 

only to two-din1ensional problel11s, either plane or axially symmetric 

flows. The basic calculations are Eulerian. A domain in the two-

din1ensional Eulerian space is covered by a grid of rectangular cells. 

The tJressure and the velocity are assumed to be nearly constant over 

a single cell. The pressure distribution is specified by its value at 

the center of each cell. The horizontal velocity u and the vertical 

velocity v are specified at the midpoints of the vertical and hori-

zontal sides of each cell, respectively, as illustrated in Fig. 1. 

The pressure and the two components of velocity are related 

through the continuity equation and the two components of the equation 

of lTlotion. These three equations can be combined to give an exprcs-

sion for the Laplacian of the pressure as a function of the components 

of the velocity and their fir st and second space derivatives. In the 

plane flow case, for example, 

(I -2) 

For the finite difference approximation to this equation and other 

details concerning the MAC method reference may be made to 
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, 11] 
Welch, Harlow, Shannon and Dali . 

The calculations progress by a series of finite time >oteps or 

cycles. At the beginning of each cycle the velocity field i s known so 

that the right-hand side of Eq. (1-2) can be evaluated at each c e ll. 

Poisson's equation can then be solved by some ite rative technique. 

Once the pressure distribution is known, it can be combined with the 

known velocities in the equation of motion to find the derivatives of 

both compone nts of velocity with respect to time. These derivatives 

are used to establish the velocity at each cell for the next cycle Lit 

later. The final step in the cycle is to displace the nlarkers, which 

represent sluall particles lUoving with the fluid . In p ractic e there 

will be several of these lUarkers in each cell. Their velocities a r e 

found by sin1ple interpolation. These markers are used to repr esent 

streamlines and to define the shape of the free surfaces. The manner 

in which a cell is treated during a cycle depends on whether it i s a 

full cell containing markers, an empty cell without markers, a free 

surface cell containing markers but ac.jacent to an empty cell, or 

sorne special case such as a cell adjacent to a solid boundary. After 

a certain an10unt of bookkeeping (detern1.ining which cells are full, etc.), 

the next cycle is ready to begin. 

Mitchell, Kling, e t al raised two n1ain questions in their report. 

The first question, a comn1on one in flow sin1ulation, is how should 

the calculations be initiated. They considered bubble collapse caused 

by an instantane ous decrease of the pressure inside the bubble fron1 

the ambient pressure to some fixed lower value. Their concern that 

this initial pressur e discontinuity would sOn1ehow persist in the 
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calculations was not jus tified; any discontinuity sho uld be smoothed 

out comple tely by th e initial cycle of th e MAC m e thod. The point 

remains , howe ver, that th e initi a tion of the cal c ulation,; must: be ex -

cl l11ined closely. It will b e s een that an analysis of the ear ly st'Lgc of 

bubble collapse made in Chapter III of this thesis r esults in improved 

accuracy and efficiency over this portion of the collaps e . 

The second question is how can a flow in an unbounded region 

be described in a necessarily bounded domain. The colla pse of a bub-

ble is driven by the difference between the pressure inside the bub-

ble and the pressure infinitely far a w ay. Although inter e st is center-

e d on the flow near the bubble, the far field cannot be ignored. 

Rayleigh's solution for the c ollaps e of a spherical bubble s t a ted that 

the difference between the pressure of the liquid and the ambient 

pressure is the surn of two terms, which decrease in magnitude like 

_1 _4 
d and d as d, the distance from th e bubble center, is inc r eased. 

For nonspherical collapse the pressure will have asymmetric term s, 

-2 
which decrease like d and faster. One crude method of applying 

the ambient pressure might be to extend the outer boundary of the 

domain a number of radii away from the bubble and take the pressur e 

on the outer boundary to be the ambient pressure. A more refined 

method was provided by Mitchell, Kling, e t aI, who sugges ted that 

Rayleigh's solution for the pressure be u se d at th e oute r boundary. 

The outer boundary should be far e nough away from the wall so that 

the asymmetric terms will have died out. This method is based on 

the linearized assumption that the spherically symme tric part of the 

collapse is n ot affected by the asymmetries o f the problem . The 
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method presented in Chapter III of this thesis avoids this assumption 

by using an iterative technique for applying the condition at infinity 

directly to the outer boundary. 

Another consider a tion in applying the .MAC rnethod to bul)bJ(, 

collapse is one of stability. The theory of PIes set and Mitche ll 

shows that even a small er ror , or disturbance on the bubble surface, 

can become significant as the bubble collapses. Any finite difference 

method will, of course, introduce small errors over the length of a 

single cell. However, the MAC method is especially crude at free 

surfaces and can easily give large e rrors that obscure the results. 

These errors arise because the MAC method does not modify the 

finite difference equation at an irregular boundary such as a fr ee 

boundary but sin,ply imposes the condition that the pressur e at the 

center of a free surface cell is equal to the pressure on the fr ee sur-

face. Modified finite difference equations at an irregular bounuary, 

usually referr ed to as irregular stars, are essential for an accurate 

solution near the boundary. In their numerical study of finite­

an,plitude water waves Chan, Street, and Strelkoff[ 12] obs e rved that 

the waveforms beCalTIe unstable after a few cycles using the MAC 

n,ethod. They obtained satisfactory results, however, with their 

SUMMAC method, a modified MAC technique using irregular stars 

at the free surface . 

It is apparent that the problem of nonspherical bubble collaps e 

is one which is not readily solved by a general flow simulation method 

such as the MAC technique. Because nonspherical collapse is of such 

interest, it is worthwhile to develop a special method from first 
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principles. This is done most efficiently if the problems of greatest 

interest are first defined and examined. 
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II. AN EXAMINATION OF THE PROBLEMS TO BE SOLVED 

BY NUMERICAL SIMULATION 

A. Definition of the Problems of Interest 

One problem of inte r es t in nonspheric al collapse is to deter-

mine the effect of a plane solid wall in deforming a collapsing bubble. 

Typic a lly a sphe rical bubble and the liquid surrounding it ar e visual -

ized as being at rest under a u niform ambient pressur e until t '" 0 

when the pressure inside th e bubble is instantane ously reduced by 

D.p. For a con~pressible liquid this instantaneous pressure drop will 

produce a shock and an instantaneous radial velocity at the bubble 

surface[ l3] 

at t = 0+ (II -1 ) 

An alternate visualization of the problem, ent irely equivalent 

in the incompressible limit , is us eful becaus e it eliminates the 

question of shocks and is more realistic expe rimentally. The bubble 

is grown from a small nucleus by the application of a n e gative ambient 

p re ssure . As the bubble grows the ambient pressur e is increased 

continuous ly to the desired value where it is held constant. The bub-

ble will r each some maximum size and then collapse unde r the constant 

a mbie nt pressure. For spherically symmetric growth all segments of 

the bubble surface will be at rest when the bubb l e reaches its maximum 

size. In the incompressible limit the entire liquid will also be at rest. 

With the absence of shocks compressibility will not become important 

until speeds in the liquid are comparable with the speed of sound. 

Thus the liquid can be assumed to be incompressible with the 
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understanding that solutions are valid for small Mach nUlnbt,rs only. 

The asymmetries caus ed by the solid wall should be separated 

£I'orn those due to initial asymmetries in shape or velocity of th e type 

;:lllalyzed by Plesset a nd Mitchell. The bubble is th e refore t<lkcn to be: 

initially spherical and at rest,and any other extraneous asymm(;tric 

effects such as gravity are also omitted. 

The easiest and most widely applicable problem is one which 

neglects all nonessential features. Therefore the following assump­

tions will be made. 

1. The liquid is incompressible. 

2 The flow is nonviscous. 

3 . The vapor pres sure is uniforITl throughout th e bubble 

interior. 

4. The anlbicnt pressure and the vapor pressure ar c constant 

with tirne. 

5. The bubble contains no permanent gas. 

6. Surface tension effects are negligible. 

Onlythefirstthreeassumptionsare essential to the method of 

simulation developed in this thesis. The last three assump tions are 

nlade to keep the essential features of the problem in the foreground. 

For most cases of bubble collapse the viscous stresses are much 

smaller than the inertial stresses. Thus in descriptions of bubble 

collapse .. viscosity is usually neglected or kept only as n. "mall refine­

ment. Unlike the spherically symmetric case, which is always ir­

rotational, viscosity must be neglected in nonspherical collapse if 

strict irrotationality is to be preserved. As for the assumption of 
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uniform pressure inside the bubble, this assumption will rernain valid 

as long as speeds on the bubble surfa.c e are below the speed of sound 

in the vapor. 

The problem is specified by the Iollowing conditions: 

p ::: an1bicnt pressur e , 
oJO 

p ::: vapor pressur e inside the bubble, 
v 

R ::: initial radius of the bubble, 
o 

b ::: initial distance from the plane wall to the 

c enter of the bubble. 

Because the flow is taken to be irrotational, the velocity 

-vector v can be written in terms of a velocity potential rp 

-- -v(x, t) ::: Vrp(x, t) 

(II - 2 ) 

(II - 3 ) 

(II -4) 

(II - 5) 

(II - 6 ) 

The liquid is assvmed to be incompressible so that rp must satisfy 

Laplace's equation throughout the liquid, 

2 -V rp(x, t) ::: 0 (II -7) 

The pressure boundary conditions, (II-2) and (II-3), can be 

restated in terms of rp and v::: IVrpl with the aid of Bernoulli's 

equation 

ocp v Z £. at + "2 + p ::: c(t) (II - 8 ) 

Infinitely far from the bubble the velocity is zero, and the pre s sur e is 

the ambient pressure . The velocity potential is an arbitrary ft~ncli()n 

of time only. Because this function of time has no physical signifi-

cance it may be taken to be zero, 



... 
l~IT1it'l'(x, t) = 0 

I ~ I-ex) 

and since v - 0 at infinity, 

Then on the 

8'1' 
at+ 

c (t) -
p ex) 

r 

fr e e surfac e , 

v l Pex)-Pv 
2 = 

p 

-15 -

(II - 9) 

~P 
= 

p 
(II-IO) 

On the solid wall the cOIT1ponent of velocity norIT1al to the wall IT1ust b e 

zero. Thus 

at the solid wall, (II-II) 

8 
where ihi denotes th e d e rivative normal to the solid surface. Th e 

condition that the liquid is initially at rest IY\ay be stated as 

-'I' (x, t) = constant = 0 when t __ 0 (II-I2) 

The generality of this probleIT1 becoIT1es evident when it is 

stated in its nondiIT1ensional forIT1. Let the nondiIT1ensionalized 

quantities be teIT1porarily denoted by a star. Then the nond iIT1ension-

alized velocity and displaceIT1ent are 

- --~ v - x 
V;:~ and :x;:' Ro 

(Il-13 ) 

JAP 
p 

so that 

t,:, = ~ojApP '1',:, = 'I' etc. , 

I¥ R -
o P 
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Laplace I S equation is unchanged in the nondimensional form as are 

the homogeneous boundary conditions, (II-9) and (II-II), and the 

homogeneous initial condition (II-12). The only changes are in the 

initial conditions, (II-4) and (II-5), and the boundary condition (II-IO) 

which have the nondimensional form: 

Ro ,:, co initial radius = 1 

b,:, = initial distance frornwall to center of bubble =-

and 

= 

(II-I4) 

-~ ,(Il-l 5) 
R o 

(II-I6) 

Thus the problem is completely characterized by the single 

parameter 
b 

R Th e inclusion of surface tension or other effects 
o 

would have added more parameters and reduced the general applica-

bility of the solution. Now that the nondimensionalized form has been 

introduced, Eqs. (Il-I4), (II-I5), and (II-I6) will be used, but the star 

notation will be dropped in the sequel. 

Another problem of interest is the collapse of a bubble with 

sOlne asynlmetry in its initial shape. A numerical solution is extreme-

ly difficult for any three dimensional problem not possessing at least 

axial symmetry. The shape of any axially symmetric bubble can be 

described by its radius, 

00 

r s (8, t) - R(t) + I 
n=I 

a (t)P (cos 0) 
n n (II -17) 

where P is the n'th Legendre polynomial. The odd coefficients 
n 
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vanish for cases with both pl<me and a.xial symmetry. These cases 

are convenient because the same method developed for collapse near a 

plane wall may be applied directly to problems with both plane a nd 

:1.."ial syrrllTletry with the wall forming a plane of symmetry. If it w e re 

d es ir e d, of course, this m.ethod could b e easilymodifieu to eliminate 

the wall. 

The same assumptions can apply for this type of problerTl as 

for the collap s e near a solid wall. The nondimensional forms arc also 

equivalent with the characteristic length being 

R = R(O) = mean radius at t = 0 
o 

Instead of just a single parameter this problem is characterized 

by an infinity of parameters: 

a (0) 
n 
R 

o 
and 

a (0) 
n 

n=2,4,6. 

B. G e neral Characteristics of a NUITlerical Method Suited t o These 
Problems 

Now that the problcITls of inte rest have been defined, the 

general features of a method of flow simulation especially suited to 

them can be discussed. Clearly the irrotationality of these problems 

is best exploited by solving them in terms of the velocity potential. 

A single variable gives a great simplification to almost every aspect 

of the calculation. If desired, both the velocity and the pressure can 

be easily calculated from a solution in terms of the potential. 

The nurrrerical method should also reflec t the fact that the 
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interes t in thes e proble tns is centered on the flow at and near the 

i"r",' SlIrrdC('. '['hv s hape' "f th e coJ.lajJ"ing bubble i s of Lll' gJ.'Cdt( '1' 

s 'i gl lifi,'anu' tilan i' rklai.led d<:s c' L'iptlon of the s tl'c ;lIn Ji IH.! S [;11: f,'(),,, iii" 

bubble, Markers like those us ed in the Marker-and-C e ll method are 

of little use in representing the results. The task of defining the free 

surface can be perfortned by alternate methods so that marker s are 

not needed, 

The method used in this thesis calculates the velocity only on 

the bubble surface, The potential should vary most rapidly near the 

bubble and vary quite slowly far from the bubble, Thus it is neces­

sary to have a highly accurate and detailed solution near the bubble 

surface, For a finite difference method this tneans that the grid should 

be finest near the fr ee surface, This can be accorrlplished either by a 

single nonuniforn1 grid or a series of grids w i th each successive grid 

more closely confined to the immediate neighborhood of the bubble and 

finer than the preceeding grid. The later method is the one used for 

calculations in this thesis for reasons discussed in Chapter III. The 

need for an accurate solution in the neighborhood of the free surface 

also emphasizes the necessity of using irregular stars. 

A basic question in the numerical simulation of axially sym­

n1ctric bubble collapse is whether to base the finit e difference scheme 

on spherical coordinates as was suggested by Mitchell, Kling, et al 

or on cylindrical coordinates. One advantage of spherical coordinates 

is that a regular grid in spherical space with the origin inside the bub­

ble will have a greater concentration of points near the bubble than 

will a regular grid in cylindrical space. The location of the origin of 



-19 -

the spherical system c an pr esent a problem, however, especially if 

the bubble is highly deformed. Because of the singula rity, the origin 

cannot be placed in or adjacent to the liquid. Anoth e r (litladvantag" oj" 

spherical coorclinatctl is that the boundary condition at th e wall cannot. 

be easily imposed. For a finite difference method bas ed o n cylindrical 

coordinates, the boundary condition at the solid wall is simple and 

straightforward to apply. For these reasons a finite difference scheIT1e 

based on cylindrical coordinates was adopted in this thesis . A spher ­

ical coordinate system with the origin on the sol~d wall was used in 

applying the condition at infinity to the outer boundary, how eve r. 
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III. DESCRIPTION OF THE NUMERICAL METHOD 

A. The Use of Finite Time Steps 

All problems considered are axially symmetric so that the bub-

ble and the liquid surrounding it can be describ e d in any half plane 

bounded by the axis of symmetry. These problems are also assurrwd 

to contain a plane solid wall or a plane of symmetry so that they can 

be further reduced to a single quadrant. 

The method of flow simulation is based on a series of finit e 

time steps. The shape and the potential distribution of the free sur-

face forming the bubble is known at the beginning of each time step. 

The boundary condition at the free surface combined with the condition 

at infinity and the boundary conditions at the solid wall and the axis of 

syrnmetry will determine the potential throughout th e liquid. The 

velocities of points on the free surface can then be calculated. If th e 

time step At is small enough, the velocities will remain relatively 

unchanged throughout the time step. Then the displacement of a point 

on the free surface with velocity v is approximately 

-> -+ 
Ax = v A t (III -I ) 

Bernoulli's equation is used to get the rate of chang e of the 

potential of a point moving with the free surface, 

acp + vz 
~ 

in the form 
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(IIl-2) 

where th e nondirnen s ional variable s have be e n u se d. F o r L>t 

slnall the change in the pote ntial of a rlisplac e d point on the f ree s tl r -

i:lce is approximately 

(IIl-3 ) 

The velocities in equations (III-I) and (IlI-3) are, of course, computed 

at the beginning of the time step. After the free boundary has been 

displaced and the potentials on it changed accordingly, the new bubble 

shape with the new potential distribution on the free surface can be 

used for another time step. 

B. The Finite Differ e nce Equations 

The finite diffe rence rnethod for solving the pote ntial pr o blem 

is based on a cylindrical coordinate syste m (r, z). The r coordinate 

measures the distance from the axis of symmetry, and the z coordi-

nate measures the distance from the solid wall or the plane of sym-

metry. Laplace's equation in the case of axial symmetry is 

(III-4 ) 

Finite difference approximations to Laplace's equation can b e 

found in many places. Shawl 14], in particular , de s cribes the ap-

proximation to Eq. (III-4). The domain of interest in th e (1', z) plane 

is covered with a square grid or net formed by a family of horizontal 

(z = constant) net lines parallel to the solid wall and a family of 
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vertical (r = constant) net lines parallel to tlw axi s of Hytnn w try. 

Lines of both families are s e parated by a constant distance h called 

the me sh length. The potential distribution t h r oughou t the liquid is 

described by the potentials of points, . called nodal points, where the 

two families of net lines intersect. The free boundary is represented 

in the calculation by the set of points where the fre e surface and the 

net lines intersect (see Fig. 2). 

A typical nodal point and its four neighboring nodal points, 

eac h il dista nc e h fro n1 the central point, form a regular s';ar . If a 

s t:Jr i s centered in the liquid but is n car the fr ee surface, s o rn e o f it s 

o ut e r nodal points may fall inside the bubble. Such stars are called 

irregular stars because the nodal point inside the bubble must b e re-

placed by a free surface point of known potential creating a leg short-

e r than the meE;h length h. Stars cente red inside the bubble are not 

used in the calculations. The positions of points in both regular and 

irregular stars with respect to the central or 0 point a r e identified 

by the numbering system illustrated in Fig. 3. 

The finite difference equation at a star is derived by expand-

ing the p o tential about the centr a l point and ne g lecting the higher 

derivative s (s ee Shaw, for example). The equation for most regular 

stars is 

cp (1 + 2 h 1 + cP (I - ~) + cP + cP - 4cp = 0 
1 r 3 tor 4 Z a 

0, 0 

(III-5) 

where cp o is the potential at the i'th point of the star and r is the 
1 0 

distance of the central point from the axis of symmetry. Equation 

(IIl-5) may also be written as a formula for the potential of the c e ntral 
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point in terms of the potentials of the other points of the star. 

(III-G) 

Both the boundary conditions on the solid wall and the boundary condi -

tions on the free surface require special treatment for certain star s. 

Stars centered near th e axis of symlTIetry also need special consider a -

1 
tion becaus e of the r'l'r tCrlTI in the Laplacian . 'I' can be expand ed 

for constant z in powe rs of r about the axis of symmetry, 

'I' = a + br
l + . (r small, z constant) (III-7 ) 

A linear terlTI cannot be present in the expansion of (0 as a 

function of r with z fixed since it would imply a line source of fluid 

on the axis. For a regular star centered on the axis of symmetry 

1) 4 ('I' -'I' 0) 
lim ('I' + - 'I' = 4b'" _-.:...1 __ 

r -> 0 rr r r I} 
(III-8 ) 

Thus the finite difference approximation is 

'I' + 'I' + 4'1' - 6'(1 = 0 
2 4 1 a 

(III - 9) 

or 

'1'0 (III -10) 

Stars centered directly adjacent to the axis of symmetry at 

r = h should also be considered. The equation for these stars is also 

derived from an expansion about the axis of symmetry for constant z. 

In this case the r esulting equation for regular stars is 
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(III -1 1 ) 

Since the solid wall forms a plane of symrnetry, star s centered 

on the wall must satisfy 
(III -12) 

This condition is imposed simply by using the appropriate sta r equa-

tion with <p substituted for <p • 
Z 4 

The boundary condition at the free surface enters the calcula-

tion through the irregular stars. Equations for these stars c ontain 

the sizes of the irregular legs a s parameters but ar e derived in the 

same way as the corresponding regular star equations. One ve ry 

minor exception is a star centered at r = h with an irregular point 3 

(the point closest to the axis of symmetry). The potential cannot De 

expanded about the axis in this case because there is no liquid at the 

axis. The irregular version of Eq. (III- 6) is used for this rare 

case. 

C. Solution of the Star Equations Using the Liebmann Method with 
Overrelaxation . 

Each star equation can be written as a formula fo r the p o t enti a l 

of th e central point of the star in tenns of the central pote n tial s of 

neighboring stars. The Liebmann iterative method is used with over-

relaxation to find the potential distribution that solves all star equa-

tions simultaneously. Each iteration of the Liebmann metho d covers 

every star in the net column by column. The central potential at each 

star is, in turn, replaced with a new value based on the star equation. 

The Liebmann method employs this new potential in the equations of 

any neighboring stars that are encountered later in the iteration. 
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This procedure is in contrast with another comnlOn method, the 

Richardson method, which does not use the new potentials until an 

iteration has been cornpleted. An initial estimate of the potential 

distribution is necessary to start the Liebmann method. Usually this 

is provided by the potential distribution from the preceeding time 

step. The first tim.c steps and time steps immediately following a 

change in the nets are initiated from a uniformly zero potential. 

The convergence of the Liebmann method for large nets is 

greatly accelerated by the use of overrelaxation[ 15]. Suppose 'P s 

is the potential of the central point that satisfies the star equation. 

Then the old potential cP old is replaced by 

cP new = cP old + a(cp s - cP old) 

1 :;; a < 2 (III -13 ) 

The constant a is called the relaxation factor . A simple 

estimate of the optimum relaxation factor and the rate of convergence 

for large nets was developed for the plane case by P. R. Garabedia~ 16]. 

He estirnated that after N iterations the error would be reduced by 

a factor of the order of magnitude 

E =o(e -qNh) (III -14) 

where q is defined by 

(III -15) 

The constant C is related to the relaxation factor by 
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0' = 

and k is the lowest e igenvalue of the problem 
1 

(III -16) 

(III-I7) 

The boundary conditions on U are the same as on the "rror in the 

potential; U is zero on boundaries of known potential and has a 2cru 

normal derivative on boundaries where the normal derivative i s known. 

An analysis analogous to Garabedian's is made of the axially 

symmetric case in Appendix A. The results are identical if the 

Laplacian in Eq. (IIl-17) is taken in its three dime nsional form . 

Clearly convergenc e is most rapid when q is maximized. Garabedian 

pointed out that if C is made g reater than k/./2, 
1 

the real part of 

- J4CZ 
- 2k2 will decrease sharply r educing conve rg ence considerably, 

1 

but if C is less than or equal to the optimum 

- j4C2 
- 2k2 is purely imaginary so that 

1 

2 (2 -0') 
q= ~ 

k/.[2, 
1 

then 

(III -1 8 ) 

If we assume that 0' is large enough to cover the lowest e igenvalue, 

i. e. 

2 
0' ?:. ---"k-hr--

I + _1_ 

.f2 

= 0' . 
optlmum 

(III -1 9 ) 

then the rate of convergence is a function of 0' only, 

(III-20) 

A us eful example is that of two concentric spheres with known 
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potential distributions on their surfaces. Let d measure t hl' (i i stancl! 

from their common center. If the radii of the inn e r spher e and the 

outer sphere are d. 
1 

and d respectively, th e boun dary condition on 
o 

U is 

U = 0 at d = d. 
1 

and d = d 
o 

(1II-21) 

The eigenfunction with the smallest eigenvalue is a linear 

cOlnbination of the zeroth order spherical Bessel f unctions, 

a.nd y (k,r). FrOlTl the boundary conditions 
o 

where 

sin k (d-d.) 
1 1 

U -
1 d 

TI 

k = d -d. 
1 0 1 

TI 

= Jh 

j (k, 1') 
o 

(III-22) 

(1II-23) 

is the smallest eigenvalue and J is the number of mesh lengths be-

tween spheres. The optimum relaxation factor is then 

a. 2 
optlmum = -----

1 + _iT __ 

i2J 
(III-24) 

If the relaxation factor is this optimum value, then the error reducti o n 

factor is 

(III - 25) 

The number of iterations necessary to achieve a given error reduction 

is proportional to J. 

The finite difference approximation to Laplace's equation, the 
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Liebmann method, and overrelaxation are all well-known techniques 

that have been applied to many different problems. The more special-

ized aspects of the method associated with the present problem will 

now be discussed. 

D. The Condition at Infinity Applied to the Outer Boundary 

It was stated in Chapter I that an ite rative method has be e n 

developed for applying the condition at infinity to the outer boundary . 

The outer boundary in this case refers to the boundary of the net exclud-

ing the free boundary, the axis of symmetry, and the solid wall. Th e 

method is based on a spherical coordinate system (d, e) with its origin 

at the intersection of the axis of symmetry and the solid wall. The 

distance from the origin is d; the angle with the axis of symmetry is 

e. Each step begins with a net like the one in F ig . 4. The shape of 

this net is chosen to give the nodal points on the outer boundary a n ear -

Iy constant value of d. A slight point to point variation in d is lln-

ilnportant, however. Irregular stars are unnecessary on the outer 

boundary. The average value of d on the outer boundary will b e 

referred to as d . 
o 

The potential can be expanded in a series of axially symmetric 

harmonics that will be valid for values of d large enough to comple te -

ly contain the bubble 

00 

<p (d e) = '\ (A d Zk + B d-(Zk+ I)) P , L z k zk zk (cos e) • (III-26) 

k=o 

Only the even Legendre polynomials are used in the expansion becaus e 

of the symmetry of the plane wall. The condition that the potential 
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'Lpproaches zero infinitely far from the bubbl e may be restat.ed as 

A = 0 
2 n 

n=1,Z,3. (TTl-27 ) 

The A coefficients will be zero only when the potential distribution on 

the outer boundary is consistent with the condition at infinity. 

The higher harmonics should die out most rapidly as d increas-

es. It is assumed that d is large enough so that the P (cos e) and 
o 0 

P (cos e) terms effectively describe the potential on the outer boundary . 
2 

The P (cos e) term is also included in the calculation~but d is 
4 0 

large enough in practice to keep this term negligible. The potential at 

the outer boundary may then be written as 

+ B 2) 
d 3 

o 

P (cOSe)+(A d 4 + B4 )p(coso) 
l 40 d S 4 

o 

= c + c P (cos e) + c P (cos e) 
o l 2 4 4 

(IIl-Z8) 

Each time step begins with a trial potential distribution on the 

outer boundary. This potential distribution is usually provided by the 

results of the previous time step. The potential problem is solved 

using these trial outer boundary values for the potential. The condition 

that the A coe fficients must vanish may be stated as a relationship be-

tween the potential and its radial derivative. Therefore, the radial 

derivative is calculated at each nodal point on the outer boundary. All 

nodal points on the outer boundary of nets like the one in Fig. 4 have 

other nodal points directly below them and to their left. The derivative 

in the vertical direction can be calculated by fitting a second order 

polynomial through the outer boundary nodal point (r , z) and the two 
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nodal points directly b(~low it. From Eq. (III-46)jwhi c h is derived HI 

Section F of this chapter, one obtains 

o<p haz (r,z) 
1 = 2(",(r, z) - '" (r, z-h) ) - "2 ('" (r, z) - <p (r, z - 2h) ) .(III-29) 

The horizontal del"iv'ative is calculated by the same method and is then 

combined with the vertical derivative to produce the radial derivative: 

B 
o 

d l 
o 

+( 2A d - 3 
l 0 

BZ) P (cos 0) 
d 4 l 

o 

+ (4A d 3_ 
4 0 

5 B4 )P(COSO) 
d 6 4 

o 

_ D + D P (cos e) + D P (cos 0 ) 
o 2 2 4 4 

(III- 30) 

The C and D coefficients are easily evaluated fr01TI the 

potential on the outer boundary and its radial derivative. The A a nd 

B coefficients are determined by the C and D coefficients. In 

pa rti cula r , 

B = - D d 2 

o 0 0 

B = (2C d 3 _ D d 4) / 5 
2 Z 0 2 0 

and B = (4C d 5 _ D d 6 ) / 9 
4 4 0 4 0 

(III- 31) 

The condition that the A coefficients vanish can be stated as 

a relationship between the C and B coefficients or, equivalently, be-

tween the C and D coefficients: 



-32 -

C = B /d == - D d o 0 0 0 0 

C =B /d 3 = (2C -D d )/5 
z z 0 Z Z 0 

C = B /d 5= (4C - D d )/9 
4 40 4 40 

(III-32) 

With the neglect of the higher harmonics, Eqs. (III-32) will be satisfied 

only when the potentials on the outer boundary are consistent with the 

condition at infinity. Equations (III-32) suggest that the B coefficients 

calculated fl-om Eqs. (III-3l) may be used to form new potentials at the 

outer boundary nodal points from the formula 

<p (d, 8) 
B 

o 
= -d + 

B 
z 

d 3 

B 
P (cos 8) + -1 P (cos 8) 

Z d 5 4 
(III- 33) 

The iteration scheme is to solve the potential problem with the 

new outer boundary potentials, then find the B coefficients from Eqs. 

(III-3l) and use them inEq. (III-33) to establish outer boundary pote n-

tials for the next iteration. Let a superscript n on a coefficient 

denote the value of that coefficient during the n'th iteration. Equation 

(lII-33) specifies that 

C n+! = B n/ d - - Dnd 
0 o 0 0 0 

n+1 
Bn/d 3 (2Cn _Dn d )/5 C = = 

Z Z 0 Z Z 0 

n+ ! 
Bn/d 5= (4C' - rfd )/9 (III - 34) C = 

4 4 0 4 4 0 

If the coefficients converge, they will converge to a solution of Eqs. 

(III-32). 

The convergence of this method can be studied analytically for 
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the simple case of a perfectly hemispherical bubble on a solid wall 

with an axially symmetric potential distribution on the bubble surface. 

Let d. be the radius of the bubble. The potential on the bubble sur-
1 

face ITla y be expanded a s 

()() 

<p(el i , 0) :: L FzkF
z 

k(cOS e) 

k::o 

Then the correct potential at the outer boundary is 

(lI[- 35 ) 

3 5 

<p (do,e):: Fo(:~) + F z( :~) P z (cos e) + F4( :~) P 4 (cos e) +. 

(IlI- 36) 

The ratio 
d. 

1 

d is assumed to be sufficiently small so that higher 
o 

harmonics are negligible at the outer boundary. Let the error in the 

potential at the outer boundary be expanded in Legendre polynomials: 

(IIl- 37) 

Then from Eq. (III-36) the coefficients are given by 

( d. ) B n d . 
En = C

n F _1 =An+~-F1-1) 
0 0 od 0 d od 

000 

F z( :~) 
3 B

n 

F z( :~) 
3 

En C n 
:: And Z + Z 

:: -- -
Z Z Z 0 d 3 

0 

F 4( :~) 
5 Bn 

(:~ ) 
5 

En C
n 

= And 4+ 4 
F 

(IlI-38) 
= -- -

4 4 4 0 d 5 4 

0 

Since the potential is known on the free surface the solution there is 

always correct. Thus 
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n + B /d. =0 F o 1 0 

(III -39 ) 

and 

Equations (III-38) can be combined with Eqs. (III-39) to obtain 

d d. 
B n = F d. + En~ 

o 0 1 0 d -d. 
o 1 

(III-40) 

and 

From Eqs. (III - 34) the C and E coefficients for the next iteration 

will be 

C n+l = F (di )+ En 
d. 

( E~+l 
d. 

1 = En 1 

0 o d 0 d -d. , 
0 d -d. 

0 0 1 0 1 

(d. f d: 
,( E~+l 

d 3 

) C n+l F _1_ + En 1 = En 1 (III-41 ) -. , 
2 2 d 2 dl. - d~ 2 d3 - d~ 0 

0 1 0 1 

and 

(d. S 
ciS 

( n+l 
ciS 

) C n + 1 1 n 1 = En 1 

4 = F d) + E ,E 
4 0 4 d S -d~ 4 4 d S -d~ 

0 1 0 1 

If d./d 
1 0 

is small, then the errors can be greatly reduced in 
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a single iteratio n. It is now obvious why more terms w e re nol includ-

ed in the calculation to improve the validity for smaller v a lues of d ; 
o 

convergence is enhanced by keeping the radius of the oute r b o undary 

large. In practic e thr ee or four iterations were suffici e nt to establish 

a satisfactory potential distribution on the outer boundary starting 

from a uniformly zero distribution, and only a single iteration was 

necessary to adjust for the small changes between consecutive time 

steps. 

The net used to es tablish the outer boundary pote ntials had a 

radius of 40 m esh l eng ths or, occasionally, 50 mesh l e ngths. The 

initial bubble shape had a radius of 5 mesh lengths in thi s n et for thr., 

problem of an initially spherical bubble collapsing near a solid wall 

and a mean radius of 10 mesh lengths for the problem of an initially 

nonspherical bubble collapsing in a homogeneous liquid. 

One case, for example, started with a nonspherical bubble 

with a radius of 

(III-42) 

where 

luean radius = 1 = 10 mesh lengths 

The radius of the outer boundary was four time s the mean 

radius of the bubble . The potential was unity over the entire bubble 

surface. Since the deviation from spherical (or hemispherical) was 

only ten percent, a fir st order estimate of C and C can be made 
o 2 

by linearizing the condition on the free surface To fir st order 
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B B 

'" 
0 + 2 P(cosO) + ;:r:- d] Z 

1 
1 

(IIl-4 3 ) 

so that 

and 

B '" - O. I or C '" -0.0016 
2 l 

This gives a rough check on the values actually computed, which ar e 

Iii'tecl ill Table 1. Differenc es are due to second order t erms nc' glectcd 

in Eq. (III-43) and th e fact that the accuracy of the numerical solution 

is lin.ited because the free surface is represented by only a finite 

llurnber of points in this net, twenty-one in this case. 

TABLE I 

Values of the C Coefficients Computed while Establishing 
a Potential Distribution on the Outer Boundary 

C
n 

C
n 

C
n 

0 2 4 
Iteration 

initial values 0.0 0.0 0.0 

n = 1 0.28664 -0.0042862 0.0018235 

0.24474 -0.00010602 -0.00057663 

n 3 0.25159 -0.0014508 0.000044342 

0.25038 -0.0013336 -0.00001 8905 

n = 5 0.25060 -0.0013661 -0. 0000094077 

An examination of Table I shows that the convergence of the co -

efficients does not follow Eqs. (III-41). The C
n 

coefficient converg es 
o 
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rnore rapidly than expected; while which should conve rge faster 

C
n 

is sornewhat settled. 
n 

than C , 
o 

does not converge at all until o 

Finally Cn, 
4 

which should converge the fastest of all, mer e ly cic,cJ.ine s 

in magnitude without approaching a limiting value. One pos sible e x-

planation is that the asymmetry of the bubble shape has coupled the co-

efficients. If d. is no longer a constant, then Eqs . (III-39) will be 
1 

coupled causing the coefficients of the error to couple. But this coup-

ling cannot explain, for example, why C nand C n are erratic during 
z 4 

the first few iterations while C~ converges. The true cause is reveal­

ed by the observation that an increase in the number of iterations used 

by the Liebrnann rnethoci reduces this type of behavior. Any change in 

C
n 

or any other of the coefficients alters the outer boundary potentials 
o 

and introduces an error in the potential solution near the outer boundary. 

The Liebmann method reduces this error by a factor d e pending on the 

number of iterations used. The overall effect of the reduced error 

should be much smaller than the change in the potentials. But if the 

changes in the outer boundary potentials are much larger than C or 
z 

C, the reduced error may still have a large effect on them . In this 
4 

case C 
z 

and C 11. 
4 

is much smaller than Co' and C is negligible . 
4 

Thus C n 
z 

are highly susceptible to changes in C
n 

as has been observed. 
o 

This does not pose a practical problem, however, since it is of no value 

to determine C
z 

and C
4 

more accurately than Co. 

The accuracy of the coefficients is enhanc e d by keeping the 

number of points used to repre sent the free surface as large as pos-

sible. Convergence demands that the outer boundary of the net be as 

far as possible from the bubble . Both these conditions can best be 
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s i rnultaneously satisfied for cases in which the bubble is c lose t o th e 

solid wall. Then as the bubble collapses, the scale of the net us ed to 

establish the outer boundary pote ntials can be halved from time to 

time. This procedure effectiv e ly move s the outer boundary closer to 

the free surface. The outer pote ntials are the n re - es tablished. In 

practic e these potentials were observed to be consistent with their 

values during the prece e ding time step when the ne w outer boundary 

points were interior points. Value s of the C coefficients for tirne 

s t eps irnmedlately before a nd after a typical scale change are pr e -

sented in Table II. 

TABLE II 

Values of the C Coefficients for Time Ste ps 
Immediately Befor e and After a Typical Scale Change 

C 
2 

C 
4 

time step preceeding scale change 0 . 1377 0.0002603 0.0000754 

time step following scale change 0.2699 0.002600 -0.00002 92 

Ideally, neglec ting th e change between cons ecutive time steps, C 
a 

should be doubled and C increase d by a factor of eight. The second 
z 

set of coefficients is the rnor e accurate since the net u sed to find them 

contained twenty-four free boundary points whil e the net us e d for the 

fir st set contained only twelve free surfac e points. 

E The Application of a Series of Nets to Obtain a Detailed Solution 

Once the pote ntials on the outer boundary are e stablished, they 

ar e applie d in the solution of the potential problern. The large mesh 
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l<!ngth of the net used to establish the outer boundary potentials giv(,s 

only a rough solution nC'ar the free boundary. Ther efor" a s<!ri.<!s of 

progressively finer n e t;; is used to provide a l'l'lore d etaile d des cr jption 

there. A.J.1.other possibility would be to use a large sing.le net cornposed 

of various regions of uniform mesh l ength with the mesh lengths of 

these regions decreasing as the free surface is approached. This would 

have one advantage in that a more detailed de'scription of the free sur-

face would increase the accuracy of the outer boundary potentials. If 

this single net contained a large number of points, however, the con -

vergenC'e of the Liebmann method could be quite slow. It can be seen 

£1'on1 Garabedian's results that the number of Liebmann iterations 

n e eded for a given factor of error reduction is, assuming a uniform 

Hlesh, inversely proportional to the mesh length. Thus the total num -

bel' of operations required is invers ely proportional to the cube of the 

n1.esh length. If a detailed solution of a potential problem is required, 

it is more economical to first obtain a solution using a coars e net and 

. [ 17] h . f h then apply the flner nets . T us a serles 0 nets is t e most ef-

ficient l'nethod for obtaining a detailed solution near the free boundary. 

It is convenient if each net of the series has a mesh length half 

the mesh length of the preceeding net. Then a nodal point of the finer 

net falls e ither directly on the location of a nodal point in the precee d-

ing net, midway between two such points, or equidistant from four of 

these points . In the first case the initial potential is taken directly 

from the preceeding net . The potentials must be averaged in the other 

two case s. Since each net of the series is contained in the preceeding 

one, the outer boundary potentials are taken from th e preceeding net. 
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NE T 2 NET 

Fig. 5 A Ty!)ic al Seri es of N e t s 
(E a c h N e t E x t e nd s t o th e Bu bbl e Surface) 
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The shapes of all nets except the first one of the se r i es a r e arbitrary . 

Usually these nets wer e shaped to give a minimum di s tanc e of ten to 

twenty mesh lengths between the free surface and th e oute r boundary. 

A typical series of nets is illustrated in Fig. 5. 

In practice either three or four nets were used in the s e ries . 

The finer nets had a large percentage of their nodal points locate d in 

the bubble interior. Although these "interior" points h a v e no ac tive 

rol e in the calculations, they do occupy storag2. Sir-c e the numb e r of 

these points quadruples whe n the mesh length is halve d, s tor a g e r e quir c: -

ments can limit the number of nets that can be used in a s e ries . For 

an initially spherical bubble collapsing near a solid wall the final n e t 

containe d an average of 100 fr e e surface points. Becaus e of the plane 

of symmetry, the final net containe d an average of 50 fre e surface 

points for the case of a nonspherical bubble with axial and plane sym-

metry collapsing in a homogeneous liquid. Whenever the numbe r of 

free boundary points fell below these levels, another net was added t o 

the series. Wheneve r the scale of the first net was halve d, a n e t was 

subtracted from the series. 

The relaxation factor for the first net of the s e ries w as esti rna -

ted from the model of a sphere of radius d with a point o f known o 

potential (representing the free boundary) at its cente r. The optimum 

relaxation factor for J = 40 is a = 1.895 from Eq. (III-24). After 

N Liebmann iterations, the error will then be r e duc e d b y a f ac tor of 

E = O(exp(O. III N)). Thus 40 iterations will reduce the error by a 

factor of about 85. This is enough to adjust for the small changes b e -

twe en c onsecutive tim e steps. The changes in the outer boundary 
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potentials between consecutive tiIne steps are always Inuch smaller 

than the change s at the free boundary. The potential probleIn is solved 

at least twice using the first net of each tiIne step, once to establish 

the new outer potentials and once using theIn. Thu s the first n et is 

subject to at least 80 iterations under the proper fre e bound a .ry condi­

tions. If the outer potentials Inust be established froIn a uniforInly 

zero distribution, an increased nUInber of iterations such as 50 is 

advisable because of the large changes at the outer boundary. 

The finer nets contain errors of predoIninantly SInal! wave­

lengths. For these nets a relaxation factor capable of handling e rrors 

extending a distance of 20 Ineshlengths froIn a spherical boundary should 

be adequate. FraIn Eq. (III-24) a = 1.80 when J = 20. The initial 

errors in the finer nets will be sInall in Inagnitude. Also erJ:ors near 

the free boundary left by one net will be reduced by following n ets. 

Therefore 15 iterations should be sufficient for the inte rm.edlate nets. 

This gives an error reduction factor of about 30 for a = 1.80. Al­

though the initial errors are quite sInal!, Inore iterations are advi sable 

for the final net of the series because the velocities at the free surface 

points are calculated £rOIn its solution. A choice of 25 ite rations gives 

an error reduction factor of about 250 for a = 1.80. 

The potentials of typical points near the free s urface as they 

appear in the various nets of the series give SOIne insight into the 

calculations. Two exaInple s are given here. In the exaInple pre sented 

in Table III, the points are on a horizontal net line and three nets are 

used in the series. In the exaInple presented in Table IV, the points 

are on a vertical net line (as in Fig. 6) and four nets forIn the series. 
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T h e symbol h . r e f e rs to the me s h l e ngth o f th,~ i ' t], n e t of the se ri es . 
1 

TABLE III 

Example of Potentials N e ar the Free Surface 
on a Horizontal Net Line 

distance along net line potential in pote ntial in pote nti a l in 

from fre e surfac e first n e t second net third n e t 

0 0 . 4376928 0.4376928 0 . 437692 8 

0.8421h 0.42 3 7445 
3 

1 . 8431 h 0 . 4078838 0.408 5018 0.40~4863 
3 

2.8421h 0. 3<)44 585 
.\ 

3.8421 h 0.3815605 0.381 5 1 08 
3 

4 . 8421 h 0 . 36 9 508 5 
3 

5.8421 h 0.3577823 0.35 8 4075 0.3583410 
3 

TABLE IV 

Example of Potentials Near the Free Sur fac e 
on a Vertical Net Line 

distance a long 
n e t line frorn pote nti a l in pote ntial in potentia l in p o t e ntial i n 
free surfac e fir s t n e t second net third n e t fou r th n e t 
-' - .---- .. - - - + ----.-----+- - --1-- -----_. - .----.-.-----

o I 1.77944 1.177944 1.77944 1 . 177 944 

0 .5 917h 1 . 150050 
4 

1.5917h 
4 

2.5917h 
4 

3.5917h 
4 

4.59 17h 
4 

5 . 591 7h 
4 

6 .5917 h 
4 

7.5917h 
4 

1.027130 

0.897183 0.900305 

1.105793 1.1058 00 

1.0648 58 

1.027021 1.026908 

0. 9 91664 

0.959042 0.958863 

0.92827 6 

0.899897 0 . 899 6 9 3 
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These eX-3.IT1pl e s show that the potential at a point c hanges onl y 

slightly between cons e cutive nets of the serie s ; the errors in th e initia l 

potentials of the finer nets are sIT1all, as expe cted . They al s o s how 

that the potential in the final net varies SITlOothly with the distance from 

the fr ee boundary and can be described accurat ely by a quadratic ove r 

the distance of a few IT1esh lengths. This behav ior is useful in. the 

velocity calculati.ons. 

F. Calculation of Velocities on the Free Surfac e 

The velocity components in both the rand z dire c tions mu s t 

be found at all fre e boundary points of the final net. Each fr ee hound a ry 

point will lie on eithe r a vertical n e t line or a horizonta l net line. The 

v{~locity calculation will be described for a point on a vertical. net line . 

The ITlethod is cOIT1pletely analogous for points on horizontal net lines . 

If the ITlesh length of the final net is sufficientl y sITlall, each free bound­

ary point will be part of an irregular star with a regular point opposite 

the fre e boundary point as in Fig. 6. The only exception for free bound­

ary points on vertical net lines occurs when th e bubble touche s the wall 

with an a c ute angle of contact. Then there are stars with ir regular 

vertical legs centered on the solid wall. Let 'fB' 'Po' and <PD be th e 

potentials of the fr e e boundary point, the central point of the irregular 

star, and the point opposite the free boundary point, respe ctively. The 

potential along the v e rtical net line is approxiluated near the free 

boundary point by a quadratic fitted through points B, 0, and D. 

'vVriting this quadrati c as an expansion about the boundary point for a 

constant r give s the £orITl 
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(III-44) 

The coefficients a and b are determined from the potentials at points 

o ::lnd D. The vertical velocity is then 

Or, since 

where 

A: = 

I z -z I = h 
Do' 

- --- = z -z D 0 

= length of irregular leg 
length of regular leg 

. (III-45) 

(III-46) 

When A. is smaller tl,an sorne minimum value A. M- , point D is used 
In 

in plac e of point 0, and the next point along the net line (point E in 

Fig. 6)replacef; point D . This adds unity to A.. 

If the irregular star is centered on the solid wall, the potential 

may be expanded about the wall along a vertical n e t line. Since the 

potential is an even function of z, 

'P = 'P + bz
2 + . o 

(for r = constant). (III-47) 

Thus the verticill velocity may be approximatE:d by 

8rp '" 2b z '" 
8z B (III-48 ) 

Once the derivative in the vertical direction has been found, th e 

derivative in the horizontal direction can be calculated from the two 
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[re',' Goundary !Joints 011 either side oJ point 13, points A awl. C, l\ 

.linear approxirnation is used for the potential betw e en adjac e nt fr"e 

surface points. Expansion of th e potential about point B along th e 

free surface gives to first order the form 

(III- 49) 

Equation (III -49) produce s an estimate for the horizontal velocity, 

'PA-'P B - (~~) (zA- z j3) 
B ( ~'P. ) . '" or 

13 
(III-50) 

To avoid any systernatic errors, this estimate is av e raged with 

another estinlate of ( o<{') made using the free surface point C on or B 

the other side of B, Since the method for finding the horizontal veloc-

ity is essentially to subtract the known vertical component from the 

velocity tangential to the free surface, the tangent to the free surfac e 

cannot be nearly vertical if accurate results are desired, If the nor-

rnal to the free t;urface makes too small an angle with the horizontal 

dlrcction, then th e velocities ar e not calculated at that p o int, and th e 

poill!: will lJot b e lls e d in forming the displaced [ree bOllDda.l' y [or th (~ 

ncx.t tirne step, Similarly free boundary points on horizontal net. Jines 

arc 110t used wh e re th e normal to the free surface is nearly v er tical, 

The percentage of points eliminated by this criterion is small, how-

ever, since the free surface will cross few vertical net lines where its 

normal is n e arly horizontal and vice versa, It is also wise to eliminate 

one of a pair of adjac e nt free surface points that ar e extremely close 

to each other (a few hundredths of a mesh length) since the r e is a 
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chance that thei:r paths may cross when they are displaced. 

Aiter the free boundary points of the final net are displaced 

according to Eq. (III-I) and have had their potentials chang e d accord-

ing to Eq. (III-3), they are used with the proper scaling to define th e 

free boundary in all of the nets of the next time step. Thes e di.splace d 

points are not d i. rectly applicable, however, sinc e the y do not in g' , n c r a i 

fall on the net lines. To obtain the points where th(, free surfac ,", int<~ r-

sects the net lines, consecutive pairs of displaeed points are conn(, cted 

by straight lines as illustrated in Fig. 7 . A free boundary point is 

established wherever one of these lines intersects a net line. Its 

potential is determined by linear interpolation between the endpoints. 

G. Special Treatme nt for the Initial Time Step and the Early Stag e 
of Collapse 

Equations (III-1) and (III-3) are accurate only if the v e locities 

are relatively constant between consecutive time steps. The criterio n 

to be used in choosing the size of a time step should be that the v e l-

ocities of the free boundary points must change by less than 't given 

percentage between consecutive time steps. This is clearly impos-

sible for the first time step if the velocities are initially ze r o. B y 

examining the early stage of the collapse, however, Eqs. (Ill-I) and 

(III-3) can be modified to give greater efficiency and accuracy for the 

beginning time steps. 

Consider a bubble completely at rest at t=O. Early In the 

collapse all velocities will be small . At a point on the free surface 

I ~~ I = v « 1 (III - 51 ) 



and 

D<p 
Dt 
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(III-52) 

As a first approximation take the velocity to be zero in Eqs. (III-51) 

and (III-52). Then the initial shape of the bubble will remain unchang ed , 

and the potentia l will have a uniforn'l valu e of 

<p - t ove r th e free surface. 

The potential distribution throughout the liquid is th e n 

-+ 
where G(x) satisfie s 

throughout the liquid, 

on the initial free surface 

Now the gradient of th e potential is 

-+ -+-+ 
'Vrp(x, t) = V(x).t 

where 

-+ -+ -+ 

V(x) = 'VG(x) 

As a second approximation take 

---+ ---+ ---+- --+ 
v(x, t) = t ·V(x) 

Th e n after an initial time step of At 
I 

(III-54 ) 

(III-55) 

(III-56) 

(III-57 ) 

(III-58) 

(III-59) 

(III-60) 
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t d t (Ill-bl) 

and 

At 

cp(;) = S 1 ( I + } y2(;)tZ )dt = A\ (I + ~ y 2 (;)(At/) 
o 

(III-62) 

For the initial time step the potential p roble m is s e t up with the 

initial fre e surface at a potential of unity. The resulting v e locitie s at 

free surface points are used in Eqs. (IIl-6I) and (III-62) to find th e di s -

placelnents and potentials of these points. 

Since the radius or the mean radius is initially unity In the non -

--- ---dimensional forrn, the magnitude of Y(x) is of orde r unity . Thu s Eq s . 

(IlI-6I) and (IlI-62) improve Eqs. (III-I) and (III-3) by adding terms of 

order (At )2. Further refinements would add terms of order (At)4 
1 1 

and higher. The method used for the two cases discussed in Chapte r IY 

was to take an initial time step based on Eqs . (III - 6I) and (III-62) fol-

lowed by time steps based on Eqs. (III-I) and (IlI-3) . The chang e s in 

velocities between consecutive time steps imm,ediately following the 

initial time step must be small compar e d to the velocities e stablishe d 

by the initial tirrIe step. The refore the initial time step w a s mad e a s 

large as pos sible (At =, 0.25) subject to the condition that (At)4 « 1. 
1 1 

An improve d m e thod was used for the two cases discuss e d in 

Chapter V. Equations (Ill-I) and (III-3) are correct if the velocities of 

the fre e surface points remain constant while they ar e displaced. An 

e stimate of the behavior of the velocity during the initial time step led 

to Eqs. (IIl-6I) and (Ill-62). The rate of change of the velocity can be 
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sirnilarly estirnated for all time steps in the ,~arly stage of c ollaps e , 

This portion of the collapse is characterized by low velocitie s and can 

be defined by the condition that the velocities on the free surface must 

be small compared to-V~P or unity in the nondimensional form. 

Consider a bubble in its early stage of collapse. Bernoulli's 

equation (II-16) gives an estimate for the time derivative of the 

potential at points on the free surface; 

8cp 
'dt= (III-63 ) 

Now consider any point on the free surface during the interval 

t < t < t + At. Let v be its velocity at t = t. The rate of change n n n n 

of the i'th component of the velocity of the point is 

-+ 
Since v is a constant, Eq. (III-64) may be written as 

n 

Dv. 
1 '" 

Dt 

(III-64) 

(III-65) 

(III-66 ) 

Since *- satisfies Laplace's equation throughout the liquid and ap­

proaches zero iniinitely far from the bubble,comparison of Eqs. (III-63) 
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and (III- 2) show s that 

o<p <p 2 at = t + O(v), throughout the liqujd. (III-67) 

Substitution of Eq. (III-67) into (III-66) produces 

Dv. (t) 
1 

v . (t) 
1 

t 
(III- 68 ) 

Equation (III-G8) provides an estiITlate of how the velocity changes dur-

ing tiITle steps in the early stage of collapse. Using this estirnate in 

place of the approxiITlation that the velocity reITlains constant, ITlodified 

forms of Eqs. (III-I) and (III-3) can be found. Integration of Eq. (III- G8) 

from t = t gives 
n 

then 

and 

t +.D. t 

A<p = S n n(l 
t 
n 

for t < t < t + At: n- - n n (III-69) 

(III-70) 

(III -71 ) 

Note that Eqs. (III-70) and (III-71) reduce to Eqs. (Ill-I) and (IIl- 3) as 

At 
n 

t n 
becomes sDlaller. 

v 
n -~ 

as t -> 0 and -t ~ V. 
n 

n 

They also reduce to Eqs. (Ill-GI) and (III-G2) 

In the irnproved rnethod the initial time 3tep is made using 
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Eqs. (IlI-61) and (IlI-62). The time steps imrr.ediately following the 

initial time step are then made using Eqs. (III-70) and (III-71). With 

this luethod the initial time step does not need to be large to insur e the 

ac curacy of the following time steps. The sizes of th e tirne steps arc 

steadily reduced throughout the early stage of collapse to compensate 

for the increasing error in approximation (III-69), This approximation 

remains of some value even as late as t = 0,40. Later time steps are 

based on Eqs, (III-I) and (III-3), 

Equation (III-67) indicates that the potential increases linearly 

in time during the early stage of collapse, When a time step in the 

early stage of collapse takes its initial potentials and outer boundary 

potentials from the previous time step, it is worthwhile to multiply 

these potentials by a factor reflecting this increase with time . 
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IV. COLLAPSE NEAR A SOLID WALL 

A. Results of NUlUcrical SiInulation 

The collapse of an initially spherical bubble near a plane soliel 

b 
wall was sirTIulated for two cases. In Case 1 the parameter R was 

o 
unity; that is the bubble boundary was in contact with the solid wall 

:111<1 LLngent to it. In Case 2 : was 1.5; the closest distance from 
o 

the bubble boundary to the solid wall was initially half the radius of the 

bubble. Ninety-four tilUe steps were used for Case 1 and seventy-

seven for Case 2. Calculations were stopped when the liquid jet reach-

c d the opposite wall of the bubble since the assumption of incompres-

sibility is no longer valid. The bubble shapes for selected time steps 

from Cases 1 and 2 are shown superimposed in Figs. 8 and 9, respect-

ively. Table V lists the tilUe interval froTI) the initiation of collapse for 

each shape and the downward velocity on the upper portion of the bub-

ble at the axis of sylUmetry. The tilne intervals, which are scaled 

like 11. j }' , are given in units of R (pi c.p)~. The velocities, which 
o '-'p a 

are scaled like) ~p are given in ml sec for the special value 
p 

~p = 10
6 

dynes/clU2 

Pl. 0 g / ClU
3 

1 atm. 
(IV -1 ) 

density of water 
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INITIAL SPHERE 

77777777 

Fig. 8 Bubble Surfaces from Case 1 
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INITIAL SPHERE 

~777/77777777777777 
WALL 

Fig . 9 Bubble Surfaces fr01TI C as e 2 
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TABLE V 

Tirne Interval fr om Initiation of Collapse and the Velocity of the Bubble 
Boundary at the Axial Point most distant from the Wall for tlle C ases 

Illustrated in Fig. 8 and Fig . 9 

Figure 8 Figur e ') 

Shape Time Velocity Time V eloc i. ty 

A 0.63 7.7 m/ sec 0.72 5 10 In/se c 

B 0.885 19 m/ sec 0.875 17 In/ sec 

C 0.986 42 m/ sec 0.961 35 In/ sec 

D 1.013 65 m/ sec 0.991 53 In/ sec 

E 1.033 100 m/sec 1. 016 94 m/ sec 

F 1.048 125m/sec 1.028 142 rn/ sec 

G 1 .066 12 9 m/ sec 1.036 160 m/sec 

I-I 1.082 129m/sec 1.044 165 m/sec 

I 1.098 128 m/sec 1.05 0 170 m / sec 

J 1.11') 121) m/sec 

Se l ected shapes for Case 1 are shown individually in Figs. 10, 11, and 

1 2; shapes for Case 2 are shown in Figs. 1 3, 14, and 1 5. Potentials 

and the two velocity components at l ettered points on the bubble bound-

a r y are listed in table VI a nd VII. The potentials, which are scaled 

like R JAP are listed in their nondimensional form. The velocities o p , 

are g i ven in nr/sec assuming the special valli(, of Eq . (IV-I). 
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A 
_--- Ii ..----

Fig _ 10 Bubbl e Surface from Case 1 at t = 0 _ 96 
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Ro 

Fig. 11 Bubble Surface from Case I a t t = I. 024 
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Fig. 12 Bubble Surface from C ase I at t = 1.086 
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Fig. 13 Bubble Surface from Case 2 at t = O. 935 
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Ro 

Fig. 14 Bubble Surfac e from Case 2 at t = 1.019 
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F i g . 15 Bubble Surface from Case 2 at t =- I . 042 
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The pressure in the liquid at the solid wall was calculated at the axis 

of syrn.metry in Case 2. It was found to rise steadily from an initial 

value of -.92Ap below alnbient to about 14Ap above ambient prcs-

sure at the tilne the jet reaches the opposite boundary of the bubble . 

B. Discussion of Results 

The sol id wall influences the bubble early in the collapse chicf -

ly by reducing the upward motion of the lower portion of the bubble. 

As a result the bubble becomes elongated in the direction normal to the 

wall as was predicted by Rattray[ 3]. The bottom of the bubble still 

rnoves upward towards the bubble center in Case 2, but since this up-

ward rnotion is reduc ed, the centroid of the bubble moves towards the 

wall disp l aying the well-known Bjerknes effect. 

As the bubble acquires kinetic energy, this energy is concen-

boated ln the upper portion of the bubble which eventually flattens and 

form.s a jet. Once the jet is formed, the speed of its tip remains fair-

ly constant. It lnay be argued intuitively that when a liquid jet is bound-

ed ll.l.ainly by a free surface at constant pressure, most of the liquid in 

the jet will be near this constant pressure. Since the pressure gradient 

is small, the acceleration should also be small. 

The behavior of the upper portion of the bubble in Case 2 is not 

very different from Case I. The overall shapes appear quite different, 

however, because the bottom of the bubble must remain in contact with 

the solid wall in Case I but is allowed mobility in Case 2. The jet 

speed in Case 2 (about 170 m/ sec under atmospheric Ap) is somewhat 

larger than the speed in Case I (about 130 m/sec). This behavior is as 
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expected since a bubble which is farther from the wall collapses with 

les s distortion and can concentrate its energy over it srnal1er volume. 

Note that after j e t forrnation the bubble volume, excluding the jvt, is 

gl"l';lte'r in Case' I than in Case 2. 

The jet appea.r s to be the result of the defor mation caused by 

t he presence of the wall during the early part of the collapse rather 

than the influence of the wall at the time of the jet formation. It is 

known from the theory of PIes set and Mitchell that a small deformation 

can lead to jetting later in the collapse. In Case 2 the bubble is too 

many radii froIn the wall at the time the jet is formed for the wall to 

h ave a n ilnportant influence on the flow near the bubble surface. 

It s hould be reH1embe red that in most situations the bubble can 

cc>ll"p'ie, under ;\ pr ess ure m .on1cntarily greater than atrnosphc'ric pro-

clucing higher speeds. A magnetostrictive oscillator at the California 

Institute of Technology, for example, produces a periodic pressure 

amplitude of about ten atm[ 4]. This oscillator has a natural 

frequency of 15 X 103 cycles per second corresponding to a wavelength 

of about ten cm. in water. Since the total collapse time for both Case 1 

and Case 2 is roughly R;Jji, bubbles with initial radii of the 
_2 

order of 10 CIn or less experience a nearly constant local pressure 

;) 5 they collapse. Pressure gradients are unirnportant for these 

partic ular bubbles since the wavelength is so much larger than their 

r;tclii; their collapses are driven by the local pressure. 

The effects of additional nonspherical influences such as a 

d istorted initial shape should, in general, decrease the jet speed by 

i n creasing the asymlnetry of the collapse. It is possible, however, 
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that a bubble may have an asymmetry that partially cancels the effect 

of the wall allowing the bubble to concentrate more of its energy in a 

faster jet. 

Although tl"le bubble is initially quite close to the wall in Case 2, 

the final jet must pass through the liquid for a distance of more than 

five times its diameter before it reaches the solid wall. The jet in 

Case I, which strikes the wall directly, seems the more capable of 

danlage. Apparently these bubbles must almost touch the wall initially 

to be capable of dan"laging it . 

A jet of speed v directly striking a solid boundary produces 

an initial pressure given by the water hammer equation[ 18], 

(IV -2) 

where the Land s subscripts refer to the liquid and the solid, re-

spectively. Usually Psc s is large compared to PLcL producing the 

approxinlation 

A speed of 130 m/sec, for example, corresponds to an impact stress 

of about 2000 atm. 

Experiments by Hancox and Brunton[ 18] have shown that mul-

tiple irnpacts by water at a speed of 90 meter s / sec can erode even 

stainless steel. They mounted specirnens on the rirn of a 'rotating 

wheel so that the specirnen would pass through a stream of water once 

every rotation. Approximately 4 X 1 if impacts were required to pro-

duce erosion pits on a specirnen of 18/8 austenitec stainless stee l with 
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an initial average scratch depth of 12 JLm or greater. The jet was 

1.3 mm in diameter for this experiment. 

Hancox and Brunton suggested that the small surface depres­

sions, which are the first sign of erosion in metals, are caused by 

local yielding at soft spots on the surface. This, they believed, ex­

p lain s why a stainless steel with an average yield str e ngth of 

11,000 Kg/cmz erodes at a velocity of 90 m/sec corresponding to a 

water h a mmer pressure of 1,300 Kg/cmz . 

Benjamin and Ellis present two series of photographs of bubbles 

collapsing near a solid wall in Figs. 3 and 4 of their paper. The col­

lapse illustrated in Benjamin and Ellis' Fig. 4 is very similar to Case 2 

in thi s thesis. The collapse illustrated in their Fig. 3 falls between 

C ase I and Case 2. Benjamin and Ellis estimated the jet speed in their 

Fig. 3 to be about 10 m/ sec. During collapse they maintained an 

anlb i ent pressure of about 0.04 atm. The vapor pressure of the water 

is very important at this reduced pressure. Since Benjamin and Ellis 

did not mention the temperature of the water, this pressure cannot be 

determined directly. However, ~p can be deduced from the total col­

laps e time which they gave as 10 ms. The total collapse time for a 

spherical bubble is, according to Rayleigh, 

T = 0.915 Ro./li (IV -3) 

The total collapse times for Cases I and 2 are only slightly greater 

since most of the time is consumed early in the collapse while the bub­

ble is n early spherical. For collapse near a solid wall, then, the total 

collapse time is roughly 
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(IV -4) 

Sinc e R "" 1.0 cm. and T = 10 ms, the pressur e differenc e for th e 
o 

collaps e in Fig. 3 of Benjamin and Ellis is roughly 

£l.p = P - P "" 104 dynes/ cmz "" . 01 atm. 
CXl v 

(IV - 5) 

A vapor pressure of 0.03 atm. corresponds to a temperature of about 

7 ()" F. Sp<'l'cls under one atmosphere pressure diffe renc e should he in-

creased by a factor of t e n giving an estimated jet speed of roughly 

100 m/ sec so that the experimental observation of Benjamin and Ellis 

is r e conciled with the calculations performed here. 

':'Rattray[ 3] derived the formula 

from. his perturbation analysis . 
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V. COLLAPSE OF INITIALLY NONSPHERICAL BUBBLES 

A. Results of Numerical Simulation 

Two cases of initially nonspherical bubbles collapsing in a 

hornog e n e ous liquid were simulated. For the first of these (Case 3) 

the initial bubble s hape, described by its radius 

(V -I) 

was roughly that of a prolate ellipsoid . The other case (Case 4) had an 

oblate initial shape with a radius of 

1 
r s (8,0) := 1 - 10 Pz(cos8) (V-2) 

The liquid was assumed to be initially at rest in both cases. A total 

of seventy-six time steps were used for Case 3 and eighty-six for 

Case 4. 

Bubble shapes for selected time steps for Cases 3 and 4 are 

shown superimposed in Fig. 16 and 17, respectively. Table VII lists 

the time from the initiation of collapse for all of these shapes. The 

velocity of the bubble surface on the plane of symmetry and on the axis 

of symm.etry is also listed for each shape. As in Table V, the velocities 

are given for the conditions specified in Eq. (IV-I) and the times are 

listed in nondimensional form. 
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Since it is of interest to compare the results of numerical 

sin1Lllation with the linear theory, a least squares fit was us ed for each 

bubble shape to detern,ine the best values for th e mean radius and th e 

coefficients in the expansion 

5 

r (B,t) = R(t) + '\ a (t)P (cosB) 
s L In In 

(V -3) 

n = l 

This fit was successful except for the last few time steps, when the 

bubble was highly distorted. Figures 18 and 19 show a (t), a (t), 
Z 4 

and a (t) as functions of R(t). For comparison a (t) computed from 
6 l 

the Line a r th eory of Plesset and Mitchell is also included. 

B. Discussion of Results 

The initial elongation of the bubble in Case 3 along its axis 

causes the velocity on the bubble surface to be greatest at the poles 

early in the collapse. This eventually causes the formation of jets on 

the axis of symmetry, which have a velocity of about 100 m/ sec under 

the conditions in Eqs. (IV-I) when they strike. Similarly, the velocity 

on the bubble surface is a maximum at the plane of symme try in Case 4 

causing th e bubble to assume a "dumbbell" shape. As the center of the 

bubblc in Case 4 constricts about the a.."Xis, the radial velocity ncar the 

plane of symmetry grows indefinitely. This unlimited rise in radial 

velocity is a result of the assumption of axial symmetry; a small 

initial distortion lacking axial symmetry would prevent it. 

According to the linearized theory, a (t)/ a (0) should follow 
Z l 

the same curve for both Case 3 and Case 4, and all other coefficients 

should remain zero throughout the collapse. The numerical solution 
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during the first part of the collapse confornls morc closc.ly to linear 

theory than Inight b e expected for an initial distortion of Len p c rcl,nt. 

During tJll' final part of the collapse, the nonspheric;l.l t e l'm s in the 

bubble shape and velocity grow to the order of magnitude of the spher-

ieal tenns, causing the higher harmonics to be excited. The behavior 

of a (t) closely follows the second order results of Naudc and ElliJ 8] 
4 

(not shown here). Throughout the collapses a (t) remains surprisingly 
z 

clo s e to the linear estimate, The theory of Plesset and Mitchell pre-

dicts that a (t) will oscillate with increasing frequency as the mean 
z 

racliu s approaches zero. The distortion in both cases is large enough, 

however, so that parts of the bubble strike each other b e fore an entire 

oscillation can be completed. The main conclusion to be made from 

these results is that linear theory provides a fairly good representa-

hon for this type of collapse. 



-79-

VI. EVALUATION OF THE NUMERICAL PROCEDURE 

A. A cecu ac y 

The accuracy of a solutiDn based on the method of simulation 

pr e s e nte d here depends on several types of errors. The error left by 

the Lie blnann method in the solution of the potential distribution w a s 

discus s ed in Chapter III. A sufficient nUlnber of LiebInann iterations 

w e re u se d i n practice to make this error unimportant. Anothe r type o f 

e rror discussed in Chapter III is the one left by the iterative method 

used to e stablish the outer boundary potentials . This e rror was also 

UnilTIportant in practice since the changes in the outer boundary poten­

tials b e tween consecutive time steps were well under one perc e nt of the 

potentials on the fre e surface, and a single iteration of the outer bound­

ary proc edure reduces this error conside rably. 

Two additional sources of error will be discussed In this 

Chapte r; first, the u s e of nets of finite mesh length to d e scribe the bub­

ble and the surro;rnding liquid at a given time and second, the u s e of 

finite tilne steps to obtain the behavior of the bubble as it changes with 

time . The mesh length is important for the first and last n e ts of the 

series. It was pointed out in Chapter III that an insufficient number of 

free b oundary points in the fir st net can reduce the accuracy of the 

outer boundary potentials. COlTIparisons of the potentials before and 

a fter the scale of the first net was halved, such as in Table II, indicate 

that the lTIagnitude of the errors in the outer potentials before the scale 

chang e was slTIall compared to the potentials on the free surface. For 

example , Table II indicates that the errors in the outer boundary 
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potentials before the scale change com.bined with the changes b e tween 

the consecutive tim.e steps were of order 0.003 compared to potentials 

of orde r unity on the free surface. 

Since, in general, the interpolation betwecn timc steps quickly 

srnooths out features the size of a m.esh length in the final net or sm.all-

er,them.esh l e ngth should be kept sm.all com.pared to the essenti al 

f eatur es of the bubble. In Fig. 12, for exam.ple, point D is a distanc(, 

of fou rteen m.esh lengths from. the axis of sym.m.etry, and a total of 

fourty-four free boundary points describe the jet on one side of the 

axis. Twenty-four free boundary points describe the jet on one side of 

the axis for surface H in Fig. 16. While the m.esh length of the final 

n et can b e halved very econom.ically sim.ply by adding another net to the 

series , the com.puter tim.e necessary for a collapse is roughly pro-

portional to the num.ber of tim.e steps used. Since this num.ber was kept 

to a minin-mm., the e rrors caused by the use of finite time steps must 

b e carefully exam.inecl. 

Eq11ations (III-l) and (III-3) are valid if the velocity of the free 

->-
boundary point, v(t), rem.ains constant for t < t < t + L:l.t. 

n n 
If L:l. t 

->-
is small, then during the displacem.ent v(t) can be approxim.ated by 

(VI -1 ) 

where 

-+ ->- -+ 
L:l.v = v(t + L:l.t)- v(t ) 

n n 
(VI-2) 

The displacem.ent of a boundary point, obtained by integration of 

Eq. (VI-I) is 
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6.; " -2
1 

(;(t ) + ;(t + At) ) At 
n n 

-+ 

= v AV6.t (VI - 3) 

The change in the potential of the displaced point ITlay be stated in t e rITlS 

of v
AV 

by integrating Eq. (III-2) using Eq. (VI-I) and then neglecting 

terITlS of order (6.v)z; 

(VI-4 ) 

Si nce v AV is not known befor e the time step, Eq s. (III-I) a nd 

.~ 

(III-3) ll se the velocity a t the beginning of the tim c s t cp v(t ) i nstead . 
n 

Until the j et is form e d, the ITlaximum acceleration on the fre e surfa c e 

occurs at th e axis of sYITlITletry in Cases 1, 2, and 3 An effort was 

ITlade during this part of the collapse to choose the sizes of the tiITl e 

steps such that the difference between v AV and v(tn ) at the axis of 

sYITlmetry was less than four percent of v AV. A siITlilar liITlit was 

used in Case 4 for the fr e e boundary point on the plane of symITletry. 

SOITlC insight into how such an error affects the velocities during non-

sphcrical collapse can be gained by exaITlining its effect on spherical 

collap se. For an upper liITlit aSSUITl e 

(VI-5) 

Equations (III-I) and (III-3) ITlay be cOITlbined for spherical collaps e to 

produc e 

(VI-6) 

or 
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~q; 1.04 + 1 (96) 
~R = v AV 2· v AV (VI-7) 

TG firs t order in .6. v , this difference equation is equivalent to th e dif-

[ere'!lhal L'quati on 

(VI -8) 

For spherical collapse the potential problem at each time step has the 

solution 

Equation (VI -8) may be written as 

01' 

D(vR} 
DR 

1. 04 1 ( 96) 
= Y +2' v 

1. 04 + 2. 96 yl -2-

Integration of this equation produces the solution 

~(R~ 2.96 Jt 
v=(1.03)iL'R~i -1 

(VI - 9) 

(VI-IO) 

(VI-II) 

(VI-12) 

where v is given in units of J¥ Eq. (VI-I2) corresponds to the true 

solution given by Rayleigh[ 1] , 

(VI-13 ) 

Thus during the first part of the collapse the v e locity for a given bubble 

radi.us according to Eq. (VI-I2) is about three percent greater than its 

true va lue . When R /R reaches 2.0, the velocity (under the condi­
o 

tions specified in Eq. (IV -I) } is about 12 m/ sec and the net er ror is 
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about two percent. The net error becomes zero at Ro/ R = 4.4 where 

v = 65 m/sec. At R /R=IO thevelocityis210m/sec and the net 
o 

error is minus two pel·rent. The velr)city in Eq. (VI-I2) is the 

AR . velocity calculated as a function of radius and not -- ::: v(t ) whIch 
.6. t n 

is four percent less according to Eq. (VI-5). Thus for any given 

bubble radius during the first part of the collapse the elapsed time 

h·orn the initiation of collapse should be about one percent greater 

than its true value. Since most of the collapse time is consumed be­

fore R /R becomes large, the error in the total collapse times 
o 

should not be rnuch greater than one percent. 

Although Eq. (VI-12) suggests that the use of finite time steps 

produces errors of only a few percent in the velocities, it does not 

indicate exactly how the nonspherical portion of the collapse will be 

affected. In particular, since the deviation of a (t) from the values 
z 

predicted by linear theory is so small in Cases 3 and 4, it is of inter-

cst to know how much of this deviation is actually caused by the use of 

finite time steps. Therefore, the collapse of a nonspherical bubble 

satisfying the linearized assumptions was determined using the same 

time steps employed in Cases 3 and 4. This linearized problem can 

be solved quite easily, even without the aid of a computer. It is fir st 

necessary to find the linearized forms of Eqs. (III-I) and (III-3). The 

derivation of these forms is roughly parallel to Plesset's derivation 

of the general linearized equation for a (t)[ 6]. 
n 

In the linearized approximation to Cases 3 and 4, the second 

harmonic is the only nonspherical term in the radius of the free 

bOllnclary; 

r (0 t) ". R(t) + a(t)P (cos 0) s J l 
(VI-14 ) 
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It is assuITled, of course, that / a (t)/ «R(t). The potential in the 

liquid surrounding the bubble is 

cp(d,O,t) = A(t1R (t) + B(t)R
3
(t) P(cosO) (VI-IS) 

d3 2 

where d is the distance from the center of the bubble. To first order 

the potential on the free surface can be written as 

,dr (O,t),e,t] = A(t) + C(t)P (cose) 
S z 

\ litlelO C 

The radial velocity on the free boundary at t = t 
n 

( ocp ) • • od = R(t ) + art ) P(cosO) 
d=r n n z 
t =t S 

n 

= A _( 3B _ 2Aa) P (cos 0) 
- R R RZ 2 

Thus at t oo t , 
n 

and 

(VI -16) 

(VI -17) 

IS to first order 

(VI -18) 

(VI-I9) 

(VI -2 0) 

a = - (~ + :: ) (VI - 21 ) 

Bernoulli's equation applied on the free surface at t = t produces to 
n 

fir s t orde l' 

(VI-22) 

or 
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(VI-23) 

and 

(VI-24 ) 

Equations (VI-20) and (VI-21) provide the linearized equivalent 

of Eq. (III-l): 

and 

6.R = R(t +6.t ) - R(t ) n n n = -6.t (!::) 
n R t=t 

n 

6.a = a(t +.6.t )-a(t ) = -6.t (3
C + Aa) 

n 11 11 n R R2 

(VI-25) 

(VI-26) 

t=t 
n 

Eqnations (VI-23) with j6.~) ._ land Eq. (VI-24) provide the linearized 

eq uivalent of Eq. (III - 3): 

and 

6.C=C(t +6.t )-C(t )=6.t [AR(R3C + Aa)] 
11 11. n n R2 

t=t 
n 

(VI-27) 

(VI-28) 

Siluilarly, the linearized equations corresponding to Eqs. (III-70) and 

(III-71) a r e 

6.R = - (VI - 2 9) 

6.a = (VI-30) 
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and 

il.c = [~ (3; + ;a)] 
t = t 

n 

(VI-31) 

(VI-32) 

Finally, assumingJApP = I and Ro = I, the linearized forms of 

Eqs. (II-61) and (III-62) are 

(VI-33) 

(VI-34) 

(VI-35) 

and 

-Cl.C = } (~d a(O) (VI-36) 

The same time steps used in Cases 3 and 4 were applied to 

Eqs. (VI-25) through (VI-36) to obtain an adjusted linearized solution. 

The di£[el"(,llce between this adjusted linearized solution and the true 

lilh'ari~.cd SOlUtiOll represents the error caused by the lIse of finite tirne 

steps. The adjusted linearized solution is shown with the true linearize:] 

solution and the second harmonic determined from the numerical solu-

tion in Fig. 20 for Case 3 and in Fig. 21 for Case 4. It is seen that 

the second harmonic from the numerical solution is even closer to 

linear theory when the effect of finite time steps is taken into account. 

A brief description of the calculation of the true linearized 

solution which appears in Figs. 18 through 21 may be of interest. As 
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a check two different methods were used. First the hypergeometric 

function from the theory of PIe s s et and Mitchell was evaluated by sum-

rning a complex power series. The second method was to convert the 

second order differential equation for a into a pair of coupled fir st 
z 

and integrate them using a standard subroutine. Although the two 

methods gave identical results, the second method was much faster, 

especially for small values of :. 
o 

for example, requires about 20,000 

A summation at R/R =0 0.08, 
o 

complex terms to give four place 

accuracy. A comparison of the true linearized solution for a illus-
2 

trated in this thesis with the same curve given by Naude and Ellis[ 8 J 

reveals a discrepancy for the smaller values of RR Apparently 
o 

Naucle and Ellis, who used the summation method, did not include 

enough terms in this region. 

B. Stability 

Instability is a common problem in flow simulation. Errors 

that are small when they are introduced can often grow large enough to 

obscure the results. Hirt[ 19] observed that a major difficulty in 

applying the Marker -and-Cell technique to high Reynolds number flows 
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was the instability caused by "diffusion-like truncation errors" in the 

finit e differ ence approximatio ns used throughout the liquid. This type 

of instability can be r educed by increasing the viscosity and using 

slll aller tirne steps. .For the method of simulation us e d in this th es is 

it is pertinent to observe that each time step specifies only the condi-

tion of the free surface for the next time step; the potential distribution 

in the liquid itself is used merely as an estimate for the Liebmann 

method. Since the finite difference approximations in the liquid involve 

only space variables, they cannot produce diffusion-like errors similar 

to the ones analyzed by Hirt. 

The small errors left on the free surface by the finite difference 

approxilnations are carried from one tirne step to the next and are a 

possible source of instability. However, these errors, which are the 

o rder of a mesh length in size are usually smoothed out by the interpola-

t ion between successive time steps. In general a free boundary point 

d oe s not fall directly on a net line when it is displaced and must b e 

averaged with the adjacent free boundary points. Free boundary points 

on the axis of symmetry and on the plane of symmetry are exceptions 

since these points are constrained to follow the sarne net lines through-

out the collapse. Errors are not smoothed out at these points and so 

re lnain in the calculations. As might be expected, these errors be-

have roughly like the small disturbances in the theory of Plesset and 

Iv1itchcll; tl1ey oscillate at a rate corresponding to one of the higher 

hal'lnonic s. Since the instability analyzed by PIes set and Mitchell is . 
mild in nature (increasing like R -4' as R - 0), it should not be a 

p roblem if th e errors on the axis and plane of symmetry are kept small. 
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This type of ins tability was most evident in Cas e 2 . The 

small dirnple on the axis of symmetry in surfaces D, E, F, and G In 

Fig. 9 and in Figs . 14 and 15 is caused by it. Most of the error on 

the axis s eemed to b e produced whenever the scale of the final net 

was halved. By keeping the number of these scale changes to a min-

imum. and by using a fairly large value (0.19) of AMIN in calculating 

the velocity, this type of error was greatly reduced in Cases 3 and 4. 

C. Validity of Assumptions 

The numerical procedure used here is based on a set of as-

sumptions listed in Chapter II. Although all of these assumptions are 

con-lmon in spherical bubble studies such as Rayleigh IS clas sic paper, 

they will be briefly reviewed in light of the nonspherical solutions. 

For all cases except Case 4 the maximum velocity on a bubble collaps-

ing in water under a pressure difference of one atm. was under 

200 m/ sec compared to a sound speed of 1500 m/ sec in water and 

410 IU/ sec in water vapor. Under these conditions the as sUnIptions of 

incompressibility and uniform vapor pressure remain acceptable. 

For spherical collapse the only viscous stress on the free sur-

R 
face is normal and is equal to 411- R' The relative effect of viscosity 

on spherical collapse can be investigated by comparing the total initial 

energy of the bubble to the viscous loss during collapse; 

LV = Viscous Los s = -411- S 
o 

Vo • 
R 
R dV (VI-39) 

where 
4 3 

V = "3 "ITR If the effect of viscosity on the collapse is small, 

this integral may be estimated by assuming that the collapse velocity 
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is given by Rayleigh's (nonviscous) theory. Since viscosity slows 

down the collapse, this estimate will be greater than the actual loss. 

If R(R) is given by Eq. (VI-I3) the loss is 

4fL ~JLit SoVO( 4~ vri ;:0 -1 dV 

-5/6 ~ x V I-x dx 

o r 

(VI-40) 

The ratio of the viscous energy loss, Ly, to the initial energy of 

the bubble, V Lip, does not exceed the value 
o 

< 14. 6f.L 

In the situations usually encountered it follows that the v iscous los s i s 

not important. The viscous stresses for the nonspherical cases con-

sidcrcd in this thesis are roughly of the saIne order as in spherical 

collapse. This can be easily seen in Cases 3 and 4 by using linearized 

theory to estimate these stresses. By a simple application of linear-

ized theory outlined in Appendix B, the viscous stresses on a surface 

described by r = R + a (t)P (cos 8) + a (t)P (cos 8) are 
s Z Z 4 4 

• ( 8~ 4a. ) 
-(J = 4Jl ~ + Jl _2_ + __ 2 R P (cos e) 

dd R R R2 2 . 
+ fL (12 aR4 + 12a R) P (cos 8) 

4 R2 4 
(VI-4l) 

and 
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+ 2a it) cos e sin e 
Z RZ 

+8~(; +2a4'~)(~ cos
3 e + i COSe)Sine 

. . . 
a a a R 

Fronl Figs. 18 and 19 it can be seen that ~ ~, Z 

• RZ 
R 

are of the order of R or smaller 

(VI-42) 

and 

For spherical bubbles collapsing in water under a pressure 

difference of one atm., surface tension effects become important for 

-3 
initial radii less than 10 cm. Although surface tension was not in-

cluded in the calculations, the method could be easily adapted to include 

it. The linearized equations of Plesset[ 6] include surface tension and 

can provide a good estimate of its effect on nonspherical collapse. 
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VII. THE EFFECT OF GRAVITY 

Gravitational effects were not included in any of the cases pre-

sented in this study. If, however, the bubble is oriented so that axial 

syrnmetry will be preserved, gravity or any other pressure field may 

be imposed by including it in the Bernoulli equation. Then Eq. (III-3) 

will have the form 

(VII-I) 

Another possible application of the method of sinlUlation used 

in this thesis could be to an initially spherical bubble collapsing under 

<1 uniform pressure gradient. To develop some feeling for this type 

of problem. and also to obtain an estimate of the effect of gravity, it 

is desirable to have a simple perturbation solution for the effect of a 

pressure gradient on nonspherical collapse. The chief difficulty is 

that buoyancy causes the bubble to translate along its axis of sym-

metry with a velocity u(t) which couples the linearized equations. 

One approach used by Yeh and Yang[ 20] was to integrate these 

coupled equations numerically for various situations. In this case, 

however, it is more suitable to apply a method developed by Penney, 

Price, and Ward[ 21] in their investigation of oscillations of gas bub-

ble s forrned by underwater explosions. If the buoyant velocity u(t) 

is assumed to be much smaller than the mean collapse velocity R(t), 

the higher harmonics uncouple leaving three equations involving u (t), 

R(t) and the second harmonic. 

The equations of Penney, Price, and Ward will be derived l.n 
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the more convenient forrn of the theory of Plesset and Mitchell. The 

shape of the bubble is described by 

a (t)P (cos 8) 
n n 

(VII-2) 

where I a I «R. The origin is determined by the requirement that 
n 

a (t) must vanish. TIle pressure field will be described by 
I 

p - p = p(z) = p - pg(z-z ) 
00 v 0 0 

(VII-3) 

where the center of the bubble is initially at Only cases in 

which the variation in p(z) over a bubble diameter is small compared 

to p will be considered. 
o 

For such cases the buoyant velocity u(t) should be small 

compared to R throughout Inost I)f the collapse. Thus there are two 

sm.all quantities, 

la~ = O(e ) and I il= 0(6) (VII-4 ) 

As in the theory of Plesset and Mitchell only first order terms in e 

will be retained. It will be seen that first order terms in 6 have no 

effect on the linearized distortions in shape. To have a first order 

e ff e ct u(t) must be large enough so that 6 z= O(e). Terms of order 

0' = OlE 3/Z) and higher must be neglected to uncouple the equations. 

The free surface is described by the equation 

r (8, t) - d = f(d, e, t) = 0 s 
(VII-5) 

wher e th e (d,8) coordinates are measured from the origin in the 
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b ubble moving with speed u(t) in the positive z direction. T he time 

derivative in the moving (d, e) coordinate system is related to the 

tirn e d eri.vative in tile fixed coordinate system by 

( a) 
at " lT10vlng 

(a) a =.,.,-;:- +u(t)az 
at f" d Z lxe 

=(-:r ) " + u(t) (cos e 
fIxed 

a sin e a) 
FcI - -d- atJ . 

The kinematic free boundary condition i s 

Df I af ) ( Dt =\at "- u(t) cos e 
mOVIng 

af 
FcI 

sin e 
-d- af ) 

8ii d=r 
s 

(VII-6) 

(VII-7 ) 

whe r e v d and ve are the components in the d and e directions of 

the velocity relative to the fixed coordinate system. Equations (VII-5) 

and (VII-7) produ ce 

or 

; s =( ~~) "= [v d -u(t)cos e 
movIng 

rs = (v d ) - u cos e + 0(6
3 

) 

l' 
S 

(VII-8) 

The ve l ocity potential 'P outside the bubble can be expanded in 

the form 

b b cos e 00 
b 

0 
+ 1 

+L 
n p (cose) cP = d n+l 

d Z d 
n 

n=2 

(VII-9 ) 

Equations (VII-2) and (VII-8) produce 
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(
a ~) = u cos 8 

r 
s 

• + r 
s 

00 

= R + u cos e + I a (t)P (cos 8) 
n n 

To first order In E, Eq. (VII-IO) is satisfied by 

n+Z [ • ] 
R +1 a + 2a B-R P (cos 8) + O(E*) 

(n+I )dn n n n 

(VII-IO) 

. (VII-II) 

With the aid of Eq. (VII-5) the Bernoulli equation on the free surfac.: 

IT1ay be written as 

= - g(z -z ) - g r cos 8 
cos 

p(z) 
=--

p 

(VII-I2) 

where z - z is the total distance traveled by the IT10ving coordinate 
c 0 

sys tem. That is 

z 
c 

- z 
o 

= S t u(t)dt 
o 

(VII-13 ) 

It has been IT1e ntioned that the variation in pres sure over a bubble 

diaIT1eter, 

it will be seen that 

IT1ust be sIT1all cOIT1pared to p . 
o 

.e..gB. < 0 (Ii ) 
Po 

More exactly, 

(VII-l4) 

Thus to first order in E the pressure on the bubble surface is 
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Po 
- g(z -z ) - gR cos 0 

p C 0 
(VII-IS) 

Fron1 Eq. (VII-II) the first term of Eq. (VII-Il) is to first oni(, r 111 (. 

( *-1 r '" 
s 

1 d 
- R crt 

+ I[; 
n",2 

- 2a 
n 

(RzR) _ 1 

2Rz 

d (RzR) -crt 

d 
(R3u)cose crt 

a 
n+4 . . n 

n+1 R - n+l Ra n 

(VII-16) 

Sinlilarly, to fir st order in E the second term of Eq. (VII -12) is 

sinet __ -U[CR+uCOSe)c:ose- }usinZe]+O(E 3/Z ) 

s 

• 
'" - uR cos e - uZp (cos e) 

Z 
(VII-I7) 

Finally the third term is to first order in E 

Z) ve I' . 
+( d 1 '" '2 R

Z + uR cos e 
r 

s 

~ p (cos e) + 8
1 

u Z sinze +O(E 3/Z ) 
n n 

n",2 
00 

'" } RZ+uP_cos e + ir u z + ir uZPz(cose} + R L ~nPn(COse} 
n",2 (VII-I8) 

The equation resulting from the substitution of Eqs. (VII-IS) through 

(VII-l8) into Eq. (VII-I2) must be independently satisfied by the terms 
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p roportional to each of the Legendre polynomials. The terITlS constant 

in e give 

The terITlS proportional to cos e give 

3 • I 
2" uR + "2 R~ = gR 

TerITls proportional to P (cos e) give 
z. 

Ra + 3 Ra - Ra 
2 2 2 

= 
9 2 -u 
4 

and terms proportional to P (cose) give for n = 3,4,5 . 
n 

.. 
Ra + 3Ra 

n n 
- (n-1 )R.a 

n = 0 

(VIl-I 9) 

(VIl-20 ) 

(VII-21) 

(VIl-22) 

With a little manipulation Eqs. (VII-19), (VII-20), and (VIl-2I) can be 

shown to be equivalent to those of Penny, Price, and Ward except for 

a term in Eq. (VII-20) which has been neglected in this treatment. 

Equation (VII-22) is unchanged from ordinary linear theory, but 

Eq. (VII-2I) contains the effect of the buoyant velocity on a (t). 
z 

Eq. (VII-20) ITlay be integrated to give 

u(t) = ~ S t R3 dt 
R3 0 

(VII-23 ) 

This equation, which was first derived by Herring[ 22], exactly 

describes the buoyant motion of a spherical hollow initially at rest. 

-3 
Although u increases like R as R -+ 0, in many cases the aSYITl-

ITletry of the bubble will cause large deformations before u reaches 

a significant magnitude. 
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If the effect of the buoyant velocity is small, an estimate of 
" t 
\ R3 dt can b e made using the Rayleigh solution; 

Vo 

"' t SR 3 
\ R3(t)dt = ~ 
J o R R 

dR 

o 

(R
3 

2 Po 0 ) 
3" P R3 -1 

= 1 R 4 j 3p 
3" 0 2p 

o 

The inte gral 

r. 1 

I(a) =: J 
a 

dx 

can be e xpressed as an incomplete beta-function: 

(11 1) (11 1) I(a) = B b' "2 - Ba b ' "2 

w h e r e 

-. 1 
( p-l q-l 

B(p,q)=J x (I-x) dx = 
o 

a nd 

dx 

It is mor e convenient, however, to expre s s I(a) a s an 

(VII-24) 

(VII-2S) 

(VII-26) 

(VII-27) 

expansion in powers of (I-a). The integral may be rewritten as 

I( a ) = S 1 
a 

-1/6 r 1 ( f ) x(I-(I-x» dx = J _x_ I..J dn(I-x)n dx 

~ a~ n=o 

(VII-28 ) 
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where d = 1 and d = o n > o. The r ecur s i on r e lation 

connec ting coeffic i e nts i s 

d - n-5/6 d - n =- 1, 2, :3, . . . . (VII - 2 9 ) 
11. n n-I 

For any a> 0, 

00 

'\' 
1(0') = / , d n 

n =o 

00 

S 1 x (l_x )n-I/2 dx 

a 

---- So I n-12 "'2 d (v-l)v dv 
J n I-a 

n=o 

(where v = I-x) 

= _ ~ d I (1_ a )n+3/2 
I~ n \ n+3/ 2 

n =o 

(1 -a )n+ I/Z ) 

- n+ 1/2 

00 

= L 2dn (l-a)n+V2( 2n~1 (I-a)) 
- 2n+3 

n=o 

2(d -d ) 
n n-l (l_a)n+ I / 2 . 
2n+l (VII-30) 

A fur the r silUpliiication in Eq . (VIl - 20) can b e lUade using the r ecur-

sion rela tion (VIl-29) ; 

00 

1(0' ) = (l-a ) ~ (2 - ~ L 
n =o 

d 
n 

(n+1 }(2n+3) 

= (l_a)t ~2 - ~ (I-a) - * (1_0')2 - ~ (1_ 0' )3 - . . .). (VIl-31) 
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00 
d 

The power series 
n n+l 

(n+1 )(2n+3) (I-a) contains only positive co-

n=o 
efficients and converges in the limiting case a = O. Since convergence 

is slowest at a = 0, the error from truncating the series will be 

greatest there. Define the truncated solution, 

and error, 

( 
!'i d (l_a)n+l 

IN '" (I-a) 2 - ~ ~o (n~ }(2n+3) 

IN(a )-I(a) 

I(a } 

) (VII-32) 

(VII-33) 

The value of I( 0) calculated from the tabulated gamma functions is 

1.4003. Values of IN(O) and EN(O) are listed in Table IX. 

TABLE IX 

Truncated Solution and Error for a = 0 

N 0 1 2 3 

IN(O) 1.4444 1. 4167 1. 4089 1.4057 

EdO) 0.0315 0.0117 0.0061 0.0039 

Thus 

(VII-34) 

gives a maximum error of about one percent. 

Equations (VII-23), (VII-25), and (VII-34) combine to produce 

an approximate solution for u(R), 
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u(R) 

(VII - 3 '») 

This solution may be applied to Eq. (VII-21). It is consis tent with 

previous approximations to use Rayleigh's solution in the left side of 

Eq. (VIl-21) to eliminate t as an independent variable with the result 

da ] 3 _l Z 3 -4 + (- s . - 3)- + - s a 2 ds 2 Z 

whe re s = R/R. Application of Eq. (VIl-35) produces o 

dZa da 
4 3 Z (3 3) 3 Z 3 s (l-s ) --+ --3s s -- +-

ds 2 2 ds 2 

= 

(VIl-36) 

(VIl-37) 

The general solution of Eq. (VIl-37) consists of Pies set and 

Mitchell's solution of the homogeneous equation added to a gravity 

induced particular solution a (s) satisfying the homogeneous initial 
p 

conditions 

a (1) = 0 and a (1) = 0 p p (VII-38) 

l3 Pg R o )2 
The function a (s )/H where H - R was calculated by p - 0 2p 

numerical integration of Eq. (VIl-37) and is plotted in Fig. 22. 

Consider Eq. (VII-35) again. Combining it with Eq. (VII-24) 

produces an estimate for the ratio of the buoyant velocity to the mean 

collapse velocity, 
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u 
= . 

R 
(VII-39) 

Equation (VII-14) may be deduced from this relationship. According 

to this estimate, 

as R/R -+ 0 
o (VII-40) 

Unle s s (~) 2 is of order E =.I I an I for nonspherical collapse, 

the effect of buoyancy will be unimportant. Even for a bubble radius 

initially as large as one cm in water under atmospheric pressure, 

. . ( U )2 -6 gravIty gIves ~ = 0(10 ) when the bubble has shrunk to one tenth 

of its initial radius. Under ordinary conditions gravity is not signli-

icant for the range of bubble sizes of interest in cavitation. 
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APPENDIX A 

Garabedian's Estimat e of the Relaxation Factor Applied 

to the Axially Symmetric Case 

To show that Garabedian's[ 16] analysis is formally unchanged 

in the axially syrnmetric case, his derivation will be given while adapt-

ing it to the axially symmetric situation. The value of the potential 

during the n'th Liebmann iteration at the nodal point r = ih, Z = jh will be 

. d n reierre to as <p •.• 
1J 

The Liebmann method with overrelaxation applied 

to Eq. (III-5) can be described by 

n+1 11 (n+1 n+1 ( h) 4(<p •. -<po .) = 0' <p .. +<po .1- 2r 
1,J 1,J 1,J-I 1-1,J 

n n ( h) n) + <p. • + +<p. . 1 + -2 - 4<p. . 
1,J 1 1+1,J r 1,J 

(A-l) 

This equation may be rearranged in the form 

= - <po . -<p. . -<po . +<p . . 1 ( n+l n n+1 n 1 
hZ 1,J 1,J 1-1,J 1-1,J 

+ _1_ n+ 1 n n+ 1 n ) 
h Z (<Pi,j-<Pi,j-<Pi,j-l+<Pi,j-l 

1 n+ 1 n 2C n+ 1 n 
+ 2 rh (<p. 1 . -<p . 1 .) + -h (<p. • -<p. .) 1- ,J 1- ,J 1,J 1,J 

(A-2) 

where C is specified by Eq. (III-H). 

The n index is assumed to correspond to a time-like variable 

T which increases by a value of h with each Liebmann iteration. 

For small values of h Eq. (B-2) is equivalent to the partial differen-

tial equation 
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(A-3 ) 

The substitution s 
r z 

::: T+ Z + Z is used to produce the canonical 

form 

,,' 1 v rp = - rp + 2C rp 2 s s s (A-4) 

Equation (A-4) is forIn.ally identical to Garabedian's equation for the 

plane case. Separation of variables leads to Garabedian's result that 

00 

rp = rp (r, z) + \' [a exp( -q s) + b (-q 's)] U (r, z) 
o L n n nn n (A-5 ) 

n =I 

whe re q amd q' are related to the n'th eigenvalue of Eq. (III-I7) 
n n 

by 

q = 2C - J 4Cz - 2k' n n 
and q' = 2C + j4CZ 

_ 2kz 
n n 

(A-6 ) 

The function rp (r, z) represents the solution of Laplace's equation and 
o 

the adde d terms in Eq. (A-5) represent the error. The term in the 

error containing q decreases at the slowest rate . As N the 
1 

number of Liebmann iterations increases, this term d e creases like 

exp(-qNh) where q is defined by Eq, (III-I5), 
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APPENDIX B 

An Estimate of the Viscous Stresses on a Nonspherical Bubble 

Although linearized theory neglects viscosity, it can be used 

to estimate the v iscous stress if the effect of viscosity on the flow is 

small. Linearized theor) 6] states that a bubble described by a radius 

of 

a 
r = R + a P (cos e) + a P (cos e) where I ~ I = O(e ) 

s 0 Z Z 4 4 K 

has UlC velocity potential 

cp = - R:R - 3:: (az + 2az ~l Pz(cos e) 

- R6 (~ + 2a
4 
~ 1 P

4
(cos e) 

5d5 4 

The two components of the velocity are 

8cp RZR R4 ( R) 
vd = ad = + - a + 2a R P (cos e) 

dZ d4 Z Z Z 

R6 ! . 
+ - a + 2a ~) P (cos e) 

d6 4 4 4 

R4 (~ . 
. 

1 8cp R) . sine ve - Cfatr =- - a + 2a R cos e 
d4 Z Z 

6 • 

~ cose)sine R \. R) ( 7 3e + ~ a
4 

+ 2a
4 

R 2" cos + 

(B -1 ) 

(B -2) 

(B -3 ) 

(B -4) 

For the axially symmetric case the 

tensor in spherical coordinates[ 22] 

two nonzero elements of the stress 

are 

(B-5 ) 

and 
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aVe V 0 ) 
ad - d (B -6) 

To first order in E the values of these elements on the free surface 

are 

_ add = Zf.L(Z RR
z 

+ 4 R4 (.;. + Za ~)p (cos e) 
rZ r 5 Z Z Z 

S S 

+ 6 ;- f~ + Za ~) P (cos 0») 
r \ 4 4 4 

S 

= 4IJ- ~ +IJ-(S ~ + 4az R~) Pz(cosO) 

+ f.L (IZ aR4 + lZa R) P (cos e) 
4 RZ 4 

(B-7 ) 

and 

• 
-adO =11ft + ~ + Ift)(az +2az ~)cose sine 

+ (1ft ~ W +~( a
4 

+ 2a
4 

~) (; cos
3

0 + ~ cos 0) sine 

a • 

= 6IJ- \ ~.+ Zaz R~) cos e sine 

+ SIJ-(; + 2a
4 

R~) Ii cos
3

0 -I- ~ coso) sinO (B -S) 
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