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ABSTRACT 

An Adaptive Controller capable of stabilizing dynamic systems 

containing multiple lightly damped resonances is synthesized . The con­

troller acts to stabilize the dynamic system by introducing cascade 

compensation which has zeros of transmission very close to the critical 

resonant frequencies . Very little a priori knowledge is needed about 

the frequencies at which the resonances occur because the Adaptive 

Controller itself measures these frequencies while the system is opera­

ting. It then adjusts its internal parameters on the basis of these 

measurements to insure that the overall system performance is satis­

factory . Since the measurement process can be performed continually, 

this adaptive control technique is applicable to systems whose resonant 

frequencies change slowly with time. 

Both the measurement and compensation functions are performed 

by a digital computer. The resonant frequencies are measured by cross­

correlating a signal generated by the dynamic system with a set of 

pariodic signals whose frequencies span the frequency intervals in 

which the resonances are known to occur . The necessary compensation 

is instrumented in a set of difference equations stored in the digital 

computer . Certain coefficients which appear in these difference equa­

tions are adjusted according to logic programmed into the computer. 

Necessary and sufficient conditions are derived to describe 

the conditions under which the proposed system can be successful. The 

fact that the system can perform successfully is demonstrated by a 

detailed digital simulation of an adaptive autopilot for a highly 

flexible ballistic missile. 
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1.1 Introduction 

CHAPl'ER I 

ADAPrIVE CONTROL SYSTEMS 

In the paso generation the field of Feedback Control System 

Engineering has developed to the point where, for large classes of 

systems, it is much more a science than an art. A decade ago t he prin­

ciple tools used in system synthesis were a large scale" analogue computer 

and extensive simulation s t udies. Today the important techniques avail­

able for linear system synthesis associat ed with such names as Nyquist, 

Bode, Nichols, Evans and Wiener are familiar to most graduating engineers 

who have taken a course in servomechanism analysis (1)(2). The field 

of linear sampled-data systems has been thoroughly developed in works 

of Linvill, Ragazzini, Jury and others (3)(4). Significant strides have 

been t aken, too, toward the development of techniques for handling simple 

non-linear syst ems via describing function and/or phase-plane techniques. 

Very recently the rediscovered works of the Russian mathematician 

Liaponov have caused excitement for, in the eyes of some, it appears 

that through Liaponov methods of stability analysis it may be possible 

to develop a general approach to the problem of non-linear system 

design ( 5)(6) . 

Despite the happy stat e of affairs which a reading of t he 

preceding paragraph seems to imply, there is much room for improving 

and adding to t he contents of t he cont rol designer's little bag of 

analytical techniques . The additions would be most welcome in regard 

to the treatment of non-linear systems, where what is available lacks 

the unit y and generality evident in the treatment of constant-coefficient 
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linear systems. A good deal of effort is being directed toward the 

solution or amelioration of precisely this problem. 

However, another area of investigation has captured the 

imaginations of many engineers interested in the field of automatic 

controls . The class of systems included in this area has been given 

the rather glamorous title of "Adaptive Control Systems . " Similar 

systems have also been referred to as "self- adapting," "self-optimaliz­

ing," "self-adjusting," and in a few other ways as well. The glamour 

in the word "adaptive" lies in part in the fact that adaptability is 

an attribute which is traditionally associated with living organisms . 

It would be exciting indeed to develop a mechanism which exhibited an 

appreciable capacity for organized learning and the ability to alter 

its characteristics or function depending upon sensory information 

received from its environment . The ability of a system to evaluate 

its own performance and to take action to improve this performance is 

a concept which is close to t he foundation of adaptive control principles . 

A good deal of time and effort and a great number of words 

have been consumed in an effort to arrive at a satisfactory definition 

of t he term "adaptive control system. " Three difficulties seem to 

block attempts at reaching this goal. 

First, words such as "adaptive" and "adaptation" have been 

part of the English vocabulary for years, long before they were intro­

duced in to the technical vocabulary of control engineering. Thus a 

bias exists regarding what connotation the word should have when applied 

t o a par t icular mechanism. This problem is compounded because , as is 

true with many familiar words , alt hough most of us use the word more or 
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less correctly , we do not know its precise definition and thus the 

same word means slightly different things t o different people . 

Second, the word "adaptation" already possesses two relat ively 

distinct implicat ions depending upon the field in which i t is being 

used. The following definition from Webster's Unabridged New Inter-

national Dictionary (Second Edition) demonstrates t his point ; 

Adaptation: Adjustment t o environmental conditions, 
specifically: 

a) Physiology and Psychology, adjustment of a 
sense organ, as t he eye or receptors in the 
skin, to t he int ensity or quality of stimu­
lation, as of light , temperat ure or pressure 
prevailing at the moment , by changes in 
sensit ivity. 

b) Biology, modification of an animal or plant 
(or of i t s parts or organs) fitting it more 
perfectly for existence under the conditions 
of its environment ; applied es pecially to a 
process of evolutionary change in s t ructure 
and function, in organisms of a group or race . 

Evident ly, what is required of the control engineer's lexicographer is 

the addition of a subheading "c" to the above definition . 

Third , and perhaps most important, has been a desire to form 

a definition which will exclude from the select ranks of "adaptive 

control systems" all cont rol systems which were designed before this 

new word was added to the technical vocabulary . If the "adaptive" con-

cept is something new and excit ing it must surely follow, the argument 

goes , that "conventional" cont rol systems do not exhibit the "adaptive" 

feat ure . Unfortunately, this "exclusion principle" is not easy to 

implement in a definition , nor is it necessarily a desirable objective . 

This writer is not going t o add to the growing lis t of definitions of 

adaptive syst ems . The significant point is t hat t he success of any 
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particular control system, "adaptive" or "conventional," depends on 

whether or not it performs the function for which it was designed. 

Whether or not i t conforms to the requirements of some arbitrary def-

inition of a particular class of systems is irrelevant. 

A survey of the adaptive control field up to the beginning 

of 1959 is available in the literature (7). A broad classification 

of adaptive systems is stated in this article . The classes select ed 

are somewhat arbitrary and there is considerable overlapping between 

classes . Essentially all feedback control or regulatory systems fall 

in at least one category . The article serves as an excellent intro-

duction t o the field of adaptive controls and it is worthwhile to re-

peat here some of its major points . The five classes of adaptive 

systems suggested are: 

1. Passive Adaptation 
2. Input Signal Adaptation 
3. Extremum Adaptation 
4. System-variable Adaptat ion 
5. Syst em-characteristic Adaptation 

Systems which display passive adaptation (Class 1) do not 

change t heir internal parameters in response to variations in environ-

ment or performance. Rather, they have been designed t o perform sat-

isfactorily over a wide range of environmental variations. Feedback 

itself illustrates the principle . The reduction of effects of element 

changes through the use of feedback is well known. 

The next order of complexity is displayed by systems which 

are input-signal adapt ive (Class 2). In this form of system, the 

"measurement function" makes its first appearance . Measurements are 

made of t he environment in which t he system is operating (i.e., the 
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inputs to t he system form the environment) and internal system parameters 

are altered to improve t he performance of the over-all system based on 

t he results of these measurement s . This measurement function is fre­

quently performed by a port ion of the control system which is distinct 

from the main loop . 

In ext remum-adaptive sys t ems (Class 3) , adjustments are made 

t o minimize or maximize some system variable . Actually these systems 

form a sub - class of classification 4 (system variable adapt ation) but 

the authors of the referenced article felt this type of system to be 

important enough t o warrant a class of its own . 

In system-variable adaptive systems (Class 4), internal param­

eters may be changed on t he basis of measurements made of variables 

occurring within t he sys t em . The logical re l ationship between the 

measured quantities and the selected parameter variations is frequently, 

but not necessarily, incorporated in a separate port ion of t he control 

loop which enforces the adaptive act ion . 

In system-characteristic adaptive sys t ems (Class 5), a measure 

of the actual system performance is obtained based on a comparison made 

bet ween the actual and the desired sys t em response. Thus such indirectly 

available charact eristics as damping ratio or peak overshoot may be used 

as performance criteria . A good deal of overlap occurs between Classes 

4 and 5. The logical comput ing func t ion for systems of Class 5 is 

ordinarily somewhat more complex than that employed in Class 4 syst ems . 

For a bibliography of adaptive systems which have been classi­

fied according to the groupings discussed above t he reader is referred 

once again to Reference (7) . 
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One of t he difficulties apparent in this and any at tempt to 

classify adapt ive systems which is not mathematically precise is the 

fac t t hat a particular system, when viewed one way, will fall under one 

heading while the same system, perhaps with its block diagram drawn 

slightly differently, will appear t o fa l l in a different category . For 

example, t he reader may look at Figure l . la . Depending upon the cri-

terion used by the gain set ting computer this syst em appears to fall 

in either Class 4 or Class 5. A closer look at what the gain setting 

computer does might reveal the true situation to be what is shown in 

Figure l . lb , which is nothing more than a saturation non- linearity . 

This would be considered to fall int o Class 1 by someone following the 

suggestions above . Many people, however, would like t o withhold the 

magic term "adapt ive" and not use it at all in connect ion with a simple 

non- linearity of t his type . It is easy to see that much time can be 

spent trying to resolve such semant ic problems , but it is hardly time 

well spent. 

A remark made by Dr . J. G. Truxal seems appropriate . 

An adapt ive feedback syst em ~is~ ••• one 
which is designed wi t h an adaptive viewpoint . 
This sounds superficial when you first hear it 
but there is really considerable merit because 
nobody has any idea how t o design a system with 
an intent ional non-linearit y introduced into 
t he system to obt ain desirable results . By 
this adaptive viewpoint one obtains a logical, 
simple, and straight forward technique towards 
the inclusion of a non- linear element wit hin 
the system to obtain some reasonable perform­
ance specificat ions or meet some reasonable 
optimization criteria (8) . 

The adaptive viewpoint seems to be particularly useful when 

applied t o systems whose characteristics and parameters change slowly 
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( a ) 

.-- GAIN SETTING 
f--

COMPUTER 

t 

INPUT + e m OUTPUT 
_,"i.,/ K G(s) 

( b) 

INPUT + e =r. m OUTPUT 
_, "i.,/ G(S) 

Cigure 1.1: Is thi s system adaptive? 
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compared wi t h the response time of the system. Under these conditions 

it may be possible to improve system performance by monitoring cer t ain 

critical parameters and adjusting these and/ or other parameters in an 

appropriate manner. In commenting on what is necessary in the design 

of such an adaptive system Dr. J. Aseltine has said 

First, you must have a measure of system per­
formance while the system is operating; second, 
you must have a means for converting this measure 
of performance into numbers or some measure of 
how good the performance is; then, finall~ you 
must have a means of using this number to change 
the system itself (8). 

It is evident that the number of variations in the concept 

of adapt ive control systems is approximately equal to the number of 

people who have thought about the problem. In accordance with the 

belief that a single example is worth a thousand words, the next sec-

tion is devoted to a discussion of several adaptive systems which have 

been discussed in the literature. Following tha t , this chapter con-

cludes with an outline of the problem and a description of those adap-

t ive techniques which are the principle subjects of this paper. 

1.2 Previous Adaptive Systems 

Several examples of adaptive sys t ems which have been described 

in t he lit erature are presented below. The problem of selection here 

was conSiderable, for t he amount published in the last few years on 

this subject would, if collected, fill many large volumes. The examples 

selected illust rate the feature the writer feels to be most important 

in an adaptive system. Specifically, some degree of uncertainty must 

exist regarding the struct ure of the system being controlled or re-

garding the values of various parameters describing the system and its 
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environmenc . Measurements are therefore made while t he sys t em is op­

erating to reduce t his uncertainty to t he point where it is possible 

t o design a control sys t em which will perform in a sat isfact ory manner. 

Furthermore, t his design is accomplished automatically during system 

operation by the adaptive control system itself. 

Interest in adapt ive sys t ems antedat es the current activity 

in the area of control systems by many years. It is not too surprising 

t hat workers in the life sciences (neurology, physiology, biology, etc.) 

recognized the importance of adapt ive behavior long ago. After all, 

one of the fundamental character~stics of living organisms, at least 

t hose which are likely to survive, is precisely their adaptabili t y. 

Ashby has devoted a book (9) to the problem of "the origin of the 

nervous system's unique abili t y t o produce adaptive behavior." A 

form of behavior is adaptive, he asserts, "if it maintains the essential 

variables within physiological limits ." FurtherlOOre, the essent ial 

charact eristics of adapt ive behavior in a living organism are achieved 

by a trial and error process. "The basic rule for adaptation by trial 

and error is: If the trial is unsuccess ful, change the way of be­

having; when and only when it is successful, retain t he way of behaving." 

A system which behaves in this way Ashby has t ermed an "ultra-stable" 

sys t em, i.e., it does not have t o be designed to be stable but will 

aut omatically seek a stable s t ate. 

As an example of a mechanism which is adaptive and ultra­

s t able Ashby suggested and built a relatively simple system which he 

called the "homeost at. " The device had four principle variables, 

Xl ••• X4 , which were t he angular deflections of four heavily damped 
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magnet coils. Each coil was driven by a current equal t o a linear 

combinat ion of the deflections of each of t he four coils. Because of 

the heavy damping, the equat ions of motion of t he system are obtained 

by equating the turning t orques (proportional to t he coil currents) 

on each coil t o the damping torque (proportional to the angular rate 

of the coil) on each coil. The result ing system of equat ions is 

~i --- ~ dt (i a 1,2,3,4) (1.1) 

It is evident that the stability of the over-all system depends upon 

t he values of the sixteen coefficients aiJ' In t he homeostat , twelve 

of t hese coefficients were fixed while four coefficients (one for each 

magnet) were determined by the set t ings of four twent y-five posi t ion 

s t epping-switches. The coefficient s corresponding to each sett ing of 

a stepping-switch were preselect ed from a t able of random numbers. 

The ith stepping-switch will increase its position by one unit every 

T seconds (where T can be chosen anywhere bet ween one and ten) if 

Xi > 450
• Thus, if the system is unstable it changes its parameters 

in a random fashion unt il it finds a sett ing which keeps all t he 

variables within the limit s prescribed. The number of possible dif­

ferent systems, then,is 254 = 390625. 

The homeos t at exhibit s several undesirable properties which 

make it a rather inefficient adaptive system. First, because it has 

no memory it cannot learn from experience. Second, in cases where 

only a small fraction of t he totality of possible st ates is stable i t 

takes the homeos tat excessively long t o reach a s t able equilibrium 

condit ion. I t may be argued t hat with no a priori knowledge of how the 
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parameters which are being changed affect the system's performance) 

adaptation in a random fashion is as good as any other method. How-

ever, there are few, if any, engineering applications in which a priori 

information is not available about the dynamics of t he system under 

considerat ion and about how certain control parameters affect the 

system. Indeed, a mathematical model of t he system is usually speci-

fied, although t he precise values of certain critical parameters may 

not be known. Since random adaptation does not seem particularly use-

ful it follows t hat changes in control parameters must be made on the 

basis of measurements made of the state of the system. 

The problem of measurement is very critical. What are the 

measurements necessary to obtain information in the mos t convenient 

wa~ and what quantities should be determined? Much thought has been 

given t o the problem of determining process dynamic characteristics 

when very little is knowna priori of what the system is (10)(11). 

Kalman has suggested a self-optimalizing control system which auto-

mati cally measures the pulse transfer function of the dynamic process 

being controlled and, on the basis of these measurements, automatically 

selects the coefficients of a digital controller which result in opti-

mum over-all system performance. Optimum in t his case was defined to 

mean a controller which forced the error resulting from a step input 

to become zero in minimum time and re~in zero for all time thereafter 

(dead beat control)(12). 

Kalman's system configuration is shown in Figure 1.2. If 

t he dynamic process is linear and time invariant it is well known that 

* t he sampled outputs C*(kT) can be related to the sampled inputs M (kT) 
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by a difference equation of the following form (note that the notation 

* * = M (kT) and Ck = C (kT) has been adopted): 

( 1.2) 

If we use the notation ziCk = Ck+i and define C(z) = Ck and 

M{z) = Mk it follows that 

£W. = 
M(z) 

(1.3) 

For most physical systems it is true that ao = 0 since the effect of 

an input is usually not felt at the output instantaneously. Therefore, 

(1.4 ) 

The information available about the system at time NT are the values 

of Ck and ~ (k = 0, 1, •• , N). The a i and b i must be computed from 

these values. Once the a i and b i are known it is possible to design 

the optimum controller. Kalman computed the a i and b i on the basis of 

a weighted least squares filtering technique where the weighting as­

signed higher weights to recent values of M* and C* than to older 

measurements. Particular values of nand q must be selected in advance. 

The accuracy of system representation goes up as nand q are increased, 

but so does the amount of computation necessary. 

Another interesting adaptive system is based on the relation-

ship which exists between the cross-correlation function between the in-

put and output of a linear time variant system. If a physical system 
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having an impulse response g(t) is excited by a stat ionary noise signal 

having an auto-correlation fUnction ~ii( 7' ), then the cross-correlation, 

~iO( r ), between input and output is 

00 J g(x) ~ii( r - x) dx 
- 00 

If the excitat ion noise has a bandwidt h considerably larger than that 

of the system being tested, ~ii ( r ) is effectively an impulse and, 

from Equation 1 . 5 

(1 .6) 

i . e . , the cross-correlation between the system's input and output is 

identically equal (within the validity of the approximation) to the 

system's impulse response . Anderson, Aseltine, Mancini and Sarture 

have described a self -adjusting system based on this principle (13) . 

Their system configurat ion is shown in Figure 1 . 3 . White noise is in-

troduced into the system along wit h the signal which is to be followed . 

The system output is crosa - correlated with the white noise input to 

obtain the syst em' s impulse response . The impulse response is con-

vert ed to a figure of merit (a number ) which is used to adjust system 

parameters . The t echnique was applied successfully to a second order 

system. The system automatically adjusted a single parameter in order 

to maintain a constant closed loop damping ratio . 

The final example treated in this section is a system sug-

gest ed by Staffin (14) (15 ). The method is applicable to systems whose 

open loop transfer function has a lightly damped dominant pole pair 

whose natural frequency is not known precisely . The configuration is 
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shown in Figure 1.4 . The dynamic process is assumed t o have a trans-

fer func t ion of t he form 

C(s) K Gp(s) 
--= ---------

M(s) 1 + 2 :5 s / tAn + s2/oo~ 
(1 .7) 

where 

i=l 
Gp(s) = -=-m~--- ( 1 . 8) 

7/(1 - slbi) 
i-I 

The condition of light damping requires that 

J ~< 1 (1 .9) 

while the requirement that the pole pair be dominant means t hat 

( 1.10) 

It is proposed t o cancel the lightly damped pole pair by 

using tandem compensation having a lightly damped pair of zeros a t 

frequency OOn . Therefore OOn mus t be measured during operation of the 

system. K will also be measured to allow the selection of a gain Kc 

t o yi eld an optimum loop gain . The proposed measurement t echnique is 

quite Simple. Choose two frequencies 001 and 002 such t hat 

( 1 . 11) 

Then it follows t hat 

( 1 . 12) 
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(1.13 ) 

(1.14 ) 

Knowing ~ makes it possible to select from a set of available filters, 

G1(s) •••• GW(s), the one having zeros which most nearly cancel the dom­

inant pole pair. It is claimed that, under suitable res t rictions, the 

necessary measurements can be made with adequate accuracy while t he 

sys t em is operat ing. 

This final example was included because it is an approach 

to a problem somewhat similar to t he problem s t udied in this inves t i-

gation. The next section describes what this problem is and what 

approach will be taken to achieve a solution. 

1.3 Scope of the Present Investigation 

It has been shown that the success of many adaptive techniques 

depends upon the validity of the following hypot hesis: 

It is possible to synthesize a controller 
which will provide sat isfact ory system per­
formance l! enough information is available 
concerning critical system parameters. 

This assumption is t he founda t ion upon which rests t he success of the 

last t hree systems described in Sec t ion 1.2. It is reasonable to 

say t hat if all critical system parameters are known and do not vary, 

adapt abili t y in the sense used here (i.e., t he ability to change 
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paramet ers if system performance is unsatisfactory) is an unnecessary 

and expensive attribute. Not hing is gained by incorporating a sophis-

t icated measuring computer in t he system since it can only tell us 

what is already known. If some system parameters vary but are well 

specified as functions of time or as functions of directly measurable 

quantities (e.g., dynamic pressure of Mach number for an aircraft con-

t rol sys t em) an adaptive system mayor may not be preferable depending 

upon whether or not i t s over-all reliabilit y and probabilit y of suc-

cessful operation exceed that of a non-adaptive system. In the case 

where critical paramet ers vary and furthermore are not predi c t able 

with adequate accuracy between members of an ensemble of sys t ems in 

which they occur, the ability to adapt may be imperative. 

It is a dynamic system of the latter type with which this 

investigat ion is principally concerned. The general adapt ive cont rol 

problem may be specified analytically as follows: 

dXi 

dt 

where 

Given: A dynamic system specified by the 

following system of equations: 

:. F (X ••• X , 
i 1 n 

0( 
1 

Xi (t) = ith 

o(i(t) = ith 

IIi (t) = i t h 

t = time 

••• \' III ••• ~ , t) 

s t ate variable (i ~ 1, ••• , n) 

control parameter (i = 1, ... , 
critical sys t em parame t er (i = 

(1.15) 

hi) 

1, ••• ,.£ ) 

The system is completely determined by this set of equations for, if 

all the ~ i and IIi are known functions of time and initial conditions 
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are specified on the Xi' then the Xi are determined for all future 

times. 

Required: To select the proper values for 0( 1 , •• o(m 
at all times to insure that the 
over-all system response satisfies 
some specified performance criterion. 

It will be assumed that the adaptive system considered is a member of 

the class of systems that satisfy the hypothesis stated at the begin-

ning of this section, i.e., if all the ~l ••• ~~ are known at a 

particular time it is possible to assign values to the <>< 1 ••• 0( m 

which insure satisfactory system performance. 

In the following chapters a special case of this type is 

treated in detail. The author's interest in this problem arose during 

the course of his association wit h Space Technology Laborat ories where 

he expended considerable effort on the problem of designing autopilots 

for highly flexible missile systems. The characteristic feature of 

the flexible missile design problem is the presence of many extremely 

lightly damped resonances due to the structural flexibility of the 

vehicle. Actually, of course, a complet e representation would require 

an infinite number of such modes. Fortunately, the frequencies as-

sociated with the higher modes can be attenuated by proper design and 

only a finite number of modes need be considered. This, then, is the 

origin of the sys t em with multiple lightly damped resonances. A block 

diagram of t he system described is shown in Figure 1.5. Although the 

problem arose in connection with ballistic missile autopilot design, 

it is evident that the configurat ion shown could arise in a number of 

other ways. 
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In the following chapters the problem is developed in detail 

and it is demonstrated that, under suitable assumptions, the system 

satisfies the hypothesis stated in the beginning of this section. The 

critical parameters which must be measured during the operation of the 

adaptive system are obtained. A technique for measuring these variables 

directly is suggested and analyzed. The results of a complete simula­

tion of the adaptive system are presented. Finally, areas which appear 

to the author to be fruitful for further research are mentioned. 
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CHAPl'ER II 

THE FLEXIBLE MISSn.E CONTROL PROBLEM 

2.1 Introduction 

Textbooks on the subject of automatic control theory tradi­

tionally have stressed, in their examples, f ,irst or second order systems. 

Even in cases where higher order systems are touched upon, it is fre­

quently assumed that a dominant closed loop pole pair will exist which 

determines the essential character of the system's transient response 

and stabilit y. It is assumed that if close control can be maintained 

over the locat ion of t his dominant pole pair the remainder of the po~es 

of the system will not be troublesome. 

This chapter deals with a problem which has become extremely 

important during the last few years. The problem is that of designing 

an autopilot for a highly flexible space vehicle or ballistic missile. 

In addition to the great practical importance of this space age problem, 

it is also of considerable academic interest as an excellent illustra­

tion of a high order complex system which cannot be reduced to the con­

venient example of a first or second order servomechanism. High per­

formance missiles are quite flexible because of the effort which is 

made to keep the s t ructural weight of the vehicle to a minimum. Every 

additional pound used to s t iffen the vehicle structure can mean a pound 

less available for a payload or several miles decrease in range for a 

fixed payload. Thus with performance capability at a premium it ap­

pears that the control system designer is going to have to live with 

low structural natural frequencies for some time to come. 
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The remainder of this chapter contains a de t ailed discussion 

of the dynamics pertinent to the design of a cont rol system for a 

highly flexible missile. Design criteria are specified and t he con­

ventional approach to the problem is discussed. The limitations of 

this approach are pointed out. I t is intended that this chapter will 

be the foundation on which an understanding of the adaptive approach 

described in later chapters can be based. 

2.2 Essential Characteristics 

Approximate dynamic equations describing the perturbed motion 

of a ballistic missile about its nominal trajectory are presented in the 

Appendix. Although these equations are formidable as t hey stand, they 

do not do justice to t he complexit y of the problem and neglect several 

effects of considerable importance. The model used in the derivation 

does not, for example, represent the effects of propellent sloshing 

in liquid fueled vehicles. Nor does it represent the sizable i nertial 

reaction forces which act on the body of the vehicle due to the swivel­

ling of the massive rocket engine which generates the vehicle's thrust. 

These effec t s were neglec t ed in order to enable a detailed simulat~on 

of the system to be made on an Electrodata-220 digital computer. Had 

a much more detailed model been used, the solution t ime would have 

been prohibitive. A complete list of the approximat ions and assump­

tions implicit in t he form of the equations is given in the Appendix. 

In spit e of these approximations, however, the sys t em does exhibit 

t he feature of principle interest in this investigation, i.e., the 

presence of multiple lightly damped resonances. 
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The lightly damped resonances arise directly from the struc-

t ural characteristics of the vehicle which, in flight , looks like a 

beam with a transverse dis t ributed forcing function acting on it. The 

transverse forces are due t o aerodynamic effects, the component of the 

rocke t engine's thrust which acts normal to t he vehicle, and inertial 

reaction forces acting at t he point where the engine is attached to 

t he main airframe. The boundary conditions at the ends of t he beam 

are the usual "free-free" end conditions, i.e., there can be no inter-

nal shear and no internal moment at either end of the beam. 

Figure 2.1 shows the geome t ry of the situation being described. 

Below is a list defining t he symbols appearing in t he figure. 

~X' ~y 

c.m. 

c.p. 

M 

I 

-+ 
V 

i 

unit vectors defining an orthogonal set of 
inertial reference axes. ey is orlented in the 
direction of t he local vertical. eX is direc­
t ed "downrange." eX and ey define the pitch 
plane of the missile's trajectory. 

unit vectors defi ning a set of orthogonal 
coordinate axes whose origin is fixed at the 
center of mass of t he missile. ~x lies along 
the undeformed elast ic axis and ~y is normal 
to t his direction. 

the location of the center of mass 

the location of the cent er of pressure 

the distance from t he c.m. of t he vehicle to 
any point on the rigid body axis. l)i is posi­
tive for points forward of the c.m. and 
negative for points aft of the c.m. 

the t ot al mass of the vehicle 

the total inertia of the vehicle about an 
axis passing through the c.m. normal to the 
pitch plane 

the instant aneous veloci t y of t he c.m. 

gravity vector 
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T rocket engine thrust 

o angle between line of action of T and the 
deflected elastic axis at the point of thrust 
application 

g angle between local vertical and the x axis 

0( ~ngle Sf attack, equal to the angle between 
V and ex 

u deflection func t ion, equal to the dis t ance, 
normal to the undeformed elastic axis, be­
tween the deflected elastic axis and the 
undeformed elastic axis 

t t~ 

Most of the parameters which characterize the missile and 

its trajectory vary with time. For example, mass and moments of in-

ert ia change as fuel is burned. Velocity changes continuously during 

flight . However, if it is assumed that the missile follows a known 

nominal trajectory all these parameters are known as functions of time 

and it is possible to derive a linearized set of const ant coefficient 

differential equations which are appropriate to any particular time. 

A stability analysis of this quasi-s t ationary set of equations can 

be performed using the powerful tools available for linear constant 

coefficient systems. The results are valid if the parameters change 

slowly compared wit h the response time of the control system. In order 

to insure that the system performance is satisfactory for all times 

of flight, it is necessary to analyze the system on this quasi-

stationary basis for several t imes of flight spanning the trajectory. 

In the examples discussed in this chapt er, four times of flight have 

been selected. These are: launch (where the velocity equals zero); 

max Q (Q refers to aerodynamic pressure, and aerodynamic effects are 
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of great importance when Q is at i t s maximum value); midburn (velocity 

is high and the aerodynamic effect is still of some importance); and 

burnout (assumed t o occur out of t he atmosphere and the aerodynamic 

effect is negligible). 

Using t he model of the dynamic syst em developed in the Ap-

pendix, i t is possible to derive transfer funcoions between t he various 

significant variables. A normal mode representation is used for the 

deflect i on function u( ? ' t). If t he loop transmission at higher mode 

frequencies is well attenuated (as it will be in a well designed auto-

pilot), it is possible to approximate the deflection function closely 

with only a small number of terms of t he normal mode expansion. For 

the purposes of this investigation i t is assumed that only the first 

three terms are necessary (see the discussion of this point in the 

Appendix, p.152). Therefore, 

= ( 2 . 1) 

where 

qi(t) = ith generalized bending co-
ordinate (2.2) 

and 

¢i ( '5 ) = ith bending mode shape (i t h 
eigenfunct ion of the free- (2.3 ) 
free beam equation) 

It is convenient to define the following quantit y for use in the lat er 

port ions of this chapt er: 

Ai ( 5 ) 
d¢i 

slope of the ith = --= 
d 5 bending mode eigen- (2.4) 

function 
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The following notation will be employed when using these mode shapes 

and mode slopes 

and 

( 2 . 6) 

where 

= value of ~ at location A (2 . 7) 
along the axis of the missile 

The approximate open loop transfer functions of interest are 

shown in Figure 2 . 2. A feedback loop has to be closed around the sys-

tem to provide t he capability of following a commanded attitude varia-

tion Qc • Angular position feedback is generally supplied by a position 

gyro located at coordinate ~P' and a rate gyro locat ed at ~R is used 

t o provide the predict ion necessary to stabilize the sys t em. The 

complete model of the control system is shown in block diagram form 

in Figure 2.3 . This is t he configuration which will be analyzed. 

The symbols needing definition in the figures are: 

ILc (note that IL > 0) c 

(IL~ > 0 if the c.p. is forward of 
t he c . g . 

= aerodynamic force act ing normal to the unde­
formed elastic axis per unit angle of attack 

= natural frequency of the ith free -free 
structural rode 

= damping of the ith natural mode (for the 
lightly damped modes of int erest it will 
be assumed that 3 i = 0 . 005) 

= attitude gain constant 

= attit ude rat e gain constant 
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z natural frequency of t he engine resonance 
(assumed throughout to be 60 radians / sec) 

= damping of engine resonance (assumed through­
out t o be 0.1) 

= break frequency of hydraulic system (somewhat 
at disposal of designer; 10 ~ ros ~ 50) 

Gc(s) = compensation transf er function used to 
improve system perf ormance 

QE = effect ive total angle compared with com-
manded input 

5T = value of 1? at t he point of t hrust 
application 

Design criteria for the cont rol syst em are frequently speci-

fied in t erms of gain margi n and phase margin. I t is common to require 

at least ! 10 db of gain margin and ! 300 of phase margin at all t imes 

of flight. A posit ive (negat ive)algebraic sign associated wit h a gain 

margin means that an increase (decrease) of gain by a factor numerically 

equal to t he margin will make the system uns t able . An algebraically 

positive (negative) phase margin means that an addit ional phase lag 

(lead) numerically equal to the margin will drive the syst em unstable 

(the additional phase shift is introduced at t he frequency at which 

t he magnitude of the loop gain is unity) . Since the system under con-

sideration is of the condit ionally stable variety, both posit ive and 

negat ive gain margins are of significance. In order t o meet the design 

requirements at all times of flight i t is necessary, in general, to 

change certain control paramet ers such as ~ (attit ude gain) and 

KR (rate gain) and possibly the shaping Gc(s) several times during 

the flight. In order t o keep t he aut opilot reliabili. y high the 

number of such changes during a flight should be kept as low as possible . 
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Before examining the effects of the lightly damped feedback 

paths, it will be instructive "to analyze the stability of the system 

in the absence of bending. To simplify matters further, Gc(s} has 

been set equal to unity. Figure 2.4 shows this condition. The loop 

transmission, QE/E , is 

(2.8) 

The system is stable if the rational function p(s} 2 1 + G(s} has no 

zeros with positive real parts. The number of right-half-plane roots 

of the equation pes} 2 0 can be determined by using the Nyquist 

stability criterion (16). From Equation 2.8, letting s 2 jw, 

• 1 

The exact shape of the locus of Equation 2.8 depends, of 

course, upon the particular numerical values chosen for the various 

parameters appearing in the equation. During operation of a typical 

control system, ~c and ~~ will vary strongly with time, WE and ~ 

will be essentially constant, and the control parameters KD and KR 
will be at the disposal of the autopilot designer. Figure 2.5 shows, 

in the form of a log magnitude and phase plot, how the transmission 

might vary as a function of flight time for a typical set of parameters. 

The parameters which are the same for all the curves are: 
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0) -E 60.0 

0E~ 0.1 

"'H~ 15.0 

1),= 3~ 

The times of flight shown are launch, max Q (time of maximum aerody-

namic pressure, Q), midburn, and burnout. The values of ~c and ~~ 

for these times of flight are: 

Launch 

4.11 

o 

4.84 

2.34 

Midburn 

5.86 

0.61 

Burnout 

19.66 

o 

The location of the zero db line is shown for three different values 

of 1),. It is assumed in this application that t he value of 1), is at 

the disposal of t he autopilot designer and must be selected to meet 

\ 
the gain and phase margin criteria stated on page 32 (i.e., ~ 10 db 

gain margin and! 300 phase margin). In anticipation of t he diffi-

culties which considerat ion of the lightly damped resonances will 

introduce it will also be required t hat the low frequency loop-gain 

be made as small as possible. 

Because t he ballist ic missile system which we are considering 

is open loop unstable (it has a pole in the right half plane due to 

its unstable aerodynamic configuration) t here is a certain minimum 

loop gain required to insure stability. It is easy t o demonstrate by 

use of t he Nyquist Criterion that the magnitude of the low frequency 

loop gain must be greater than unity if the system described by 

Equation 2.9 is to be stable. But from Equation 2.9, the magnitude 

of the low frequency gain ~s KD ~c/~~. Therefore t he following 
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inequality must hold j ust to ma i ntain marginal stability: 

(2.10) 

In order to meet t he specification of at least -10 db gain margin, 

the right hand side of this inequalit y must be mult iplied by a factor 

equivalent t o 10 db, i . e . , by a factor of 3.162 . In light of this we 

rewrite Equation 2. 10 in the following form: 

(2 . 11) 

In order to keep the gain low, the equalit y sign is used . 

It should be noted from the relation above that the minimum 

required value of KD approaches zero as ~~ approaches zero . Thus, 

in regions of the flight where aerodynamic effects are negligible it 

appears that the attitude gain KD can be made as small as we like . 

There is, however, a lower limit to the value which we can 

assign t o Kn . This limit arises from a static accuracy requirement . 

The model presented in t he appendix has assumed implicitly that the thrust 

vector passes through the missile c . m. when 0 = 0 and ~( S ,t) = 0, 

i . e . , for this condition the thrust produces no moment about the c . m. 

However, t he nominal zero of 0 is set in practice by optically align­

ing the center line of the rocket t hrust chamber with the center line 

of the body of the missile . In practice there will be some misalign­

ment error , Om' equal to the angle between the line of action of the 

thrust vector when ° = 0 and the line joining the c . m. of t he system 

and the pcint of application of the t hrust vect or . Since in the steady 

state the thrust vect or must pass through the c . m., the steady state 
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value of 0, ass, must satisfy the equation 0ss'" -Om . From 

Figure 2. 4 it may be seen that 0ss III KD E. 65 . The steady state at­

t itude error, £ 88' 1s therefore 

A lower limit of 1/2 i s frequently specified for Ko, which means that 

the steady state attitude error due t o thrust vector misalignment is 

at most twice the value of the misalignment . Typically this will keep 

the attitude error below 10 . 

In general, then, the minimum allowable value of Kp at any 

time of flight 1s set by the following pair of inequalities: 

0 . 5 for 3 . 162 IJ. ..... /IJ. ~ 0 . 5 
"" c ..,; 

KD is usually not programmed to vary continuously . Rather, 

in the interest of reliability and simplicity it is programmed to change 

its value at several discrete times . If we limit ourselves to one gain 

change for the example under conSideration, it is reasonable to choose 

~ ... 1. 53 from launcb t o mldburn and K.o'" 1 from midburn to burn· 

out . If a second gain cnan~~ were allnwen i t ~ould be desirable to 

reduce KD to 1/2 ( its lowest allowable value ) as soon af ter mldburn as 

possible consistent with the phase margin requirements . The stability 

margins can be read directly from Figure 2 . 5 for the t wo values of 

gain chosen and are tabulated below . 
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Gain Margins ( db ) Phase Me.r~1n.s 
{degree s 

La unch -00, + 30 33 

Kn III 1. 53 MaxQ -10, + 28 . 5 31 

Midburn -23 .3, + 26 .9 36 

{ M1dburn -19 .6, + 30.6 31 
~ = 1 

Burnout - Q), + 2<> .0 40 

In order t o get a feeling for how the system should behave 

when lightly damped resonances are pr esent , the following observations 

are made from Figure 2.3. Each of the resonant transmissions from 

o to Q
E 

is summed with the rigid body transmission . The t ransmission 

associated with the kth mode will be called Gk( s ) and 18 given by 

(2. 14) 

To ob t ain the frequency response one makes the substi tution s.~, 

which gives 

A Nyquis ~ plot of the normalized function 

F( ju) • 1 ... X + jY 
1 - u2 + j 2j u 

(2.16) 

is shown in Figure 2.6. I : is easy to show tha t the equation descrlb-

ing this function , when u is eliminated , is 

(x .- 1/4)2 + (Y + 1/4.) )2 = (1/43)2 for -!J X/y « 1 
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Furthermore, 

u ~ 1 +1 x/y for J X/y « 1 ( 2 . 18) 

For the lightly damped resonances of in terest (!, -< 0 . 01 ) the fig­

ure is a circle of radius 1/ ( 4~) centered at X = 1/4 and Y. -1/ ( 4~ ). 

The peak transmission is very nearly 1/( 2~ ) at an angle of _90°. 
From Equation 2 . 15 and 2 . 16 the phase and magnitude of Gk( J~) 

in the vicinity of resonance 1s 

The Nyquist plot of t his function for 00 ~ ~k is approximately a 

circle passing through the origin. The diameter of the kth mode circle 

passing through the origin makes an angle ~k with the posi t ive real 

axis, where 

- t an- l Kn Apk ( radians ) if ~Tk ft-Rk < 0 
~Amc Q)k 

1fJk '= 

XDAPk 
( 2 . 20) 

rr - tan- l ( radians ) if ¢Tk A Rk > 0 
~ARK CDk 

The to~al loop t ransmission ~hrough the kt h resonance is obtained by 

lwlt lplying Gk( JCD) by the contents of the blocks in Figure 2.3 labeled 

rrCompensaLion," nHyaraulic Actuator," and "Engine Resonance , " all 

evalua t ed at CD =~. QE/E is then the sum of all t he resonant trans­

missions and the rigid body transmission . Figure 2 . 7 shows an example 

of the form of the loop : ranamission which results when resonances are 

inclUded for the case where KD Gc ( s ) - 1. Three resonant modes are 

included at frequencies of 17, 35, and 53 radians per second. A mode 
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is unstable if its circle in the Nyquist diagram encircles the -1 

pOint . For the parameters chosen Figure 2.1 shows :hat the system 

will have a divergent 2nd mode oscillation . Although the loop trans-

missions at first and third mode frequencies is greater than unity, 

these modes are stable due to the orientation of :hese bending loops. 

Equations 2.18 and 2 . 19 show that the magnitude and orienta­

tion of the resonant loops depends upon the bending mode slopes )lPk . 

and )lRk at the points where the position and rate sensors are located. 

In particular, if the slope at either of the sensor locat ions changes 

sign the output of the device will be changed in phase by exactly 1800 • 

Figure 2 . 8 showe how the mode slopes might vary during t he course of a 

flight . This variation means that the phase angle at 'oIhieh the pee.k 

resonant transmissions occur can change considerably during the course 

of a missile flight , 8S can the magnitude of the resonant transmission. 

There ere essentially two ways by which a resonant mode may 

be stabilIzed . First, t he t ransmission a t a resonant frequency may 

be reduced by appropriate compensation to the point where the loop 

transmission at resonance is less than unity . In this case the mode 

is said ,to be "gain stabilized." A gain stabilized mode 'oIill be stable 

regardless of the phase of the loop transmission at resonance . Second, 

although a large resonant loop occurs a t resonanc~ a mode '01111 be 

stable if He orien tat ion on the Nyquist diagram 1s such that the - 1 

point is not encircled . In this csse the mode is said to be "phase 

stabilIzed . " A phase s t ab11Ized mode will be de -s tabilized if the 

phase shift at. resonance changes enough to swing the reaonant loop 

into a position such that it encircles the -1 point . Using these 
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Fi gur e 2.8: Typical normalized bending mode slopes 

for three time s of flight (t
3
>t 2>tl ). 

100 



-45-

concepts ve see that , in Figure 2 . 7, modes 1 and 3 (at frequencies of 

17 and 53 radians per second, respectively ) are phase stabilized while 

mode 2 (at 35 radians per second) is unstable . 

In light of the previous discussion concerning the variation 

with time of the bending mode slopes and the direct effect this has 

on the phase at resonance, it is evident that great care must be taken 

to insure that t he phase is correct at the frequency of each phase 

stabilized mode . This is quite difficult to do for several bending 

modes simultaneously, especially so because the system characteristics 

are not known exactly ane vary considerably with time . In addition, 

the system characteristics at higher bending mode frequencies are not 

well known due to inaccuracies at high frequencies in any system model 

which is used . 

The following section describes the approach which Is cur­

rently followed in the design of autopilots for h1ghly flexible 

vehicles. 

2.3 The Present Design Approach 

It should be recognized that. in t he model described in the 

preceding sec t ion ell coupling between the autopilot and the structural 

resonances occurs via the autopilot sensing devices, i . e . , the pos1tion 

and rate gyros. While a more complete representation would indicate 

other possible methods of coupling, further analysis shovs t,hat by 

far the dominant coupling does indeed occur via the sensors . In ad­

dition, because a rate sensor emphasizes high frequency Signals, the 

coupling through the rate gyro is usually far more detrimental than 

coupling t hrough the pos1tion loop . Thus the rate gyro is usually 
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located in as favorable a location along the length of the missile 

as 1s possible. 

This favorable position is close to an an: inode of the first 

or second bending mode (8 point where ;li( ~R) = 0 for i c 1 or 2). 

In this way the gyro effectively does not pick up the mode and thus 

it is not coupled to the autopilot. However, an accurate knowledge 

of the missile's mode shapes is required to accomplish thi~ and the 

autopilot deSign , t herefore, 1s highly dependent upon the missile's 

structural characteristics . Due to 'the fact that the mode shapes 

change considerably during the duration of a flight ( thus the position 

of the various antinodes change) it may be necessary to use several 

rate gyros and use their outputs individually or sum them in pre-selec-

ted proportions depending upon the time of flight. It 1s not pOSSible, 

in general , to place a single sensor near an antinode of more than 

one mode . 

The properties of the final control system design are highly 

dependent upon whether the rate gyro 1s located forward or aft of ~he 

first mode ant inode . If the rate gyro is located forward of the first 

mode antinode, ~'ll~l > 0, while if t he gyro is locat ed aft of t he 

first mode antinode, ~ Tl A Rl < O. Referring to Equation 2.19 we 

see that, for very small A plI 

~t 
(radians ) for ~T1 ARl < 0 (gyro aft ) 

'f1 ( 2.21) 

(radians ) for ~Tl ARl > 0 (gyro forward) 

Remember that the angle ,til specifies the phase at which the maximum 
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first ~de transmission occurs when all phase shift in the autopilot 

is neglected . 

When forward mounted gyros are used , an attempt 1s made t o 

introduce as much phase lag as possible at the first bending frequency 

by put ting lag networks in series in the loop . Since these lag net­

works also introduce attenuation at higher frequencies , it may be pos­

sible t o gain stabilize all higher modes when this method is applicable. 

Unfort unately, when the first mode frequency 1s too low, it is not 

possible to introduce enough lag LO stabilize the first bending mode 

without also sacrificing 8 significant portion of the rigid body sta­

bility margins . It is then necessary to place the rate gyro aft of 

the first mode antinode and minimize cont rol system phase shift at the 

first mode frequency in order to keep the system s t able . Since lag 

networks in this case cannot be put in at very low frequencies rela­

tive to t he higher bending frequencies , it is usually not possible to 

gain stabilize ell higher modes . In the system represented by Figure 

2.1, for example, the rate gyro 1s locat ed aft of the first mode anti­

node . Thus the phase of the first mode transmission through the rate 

gyro alone (neglecting all phase shift in :·he autopilot ) 1s 00 (by 

Equation 2 . 21). The fact that the first mode resonance as shown actu­

ally occurs a t an angle of approximately -210 is due to the effect of 

lag in the autopilot and the con~ributlon of the posi t ion sensor (which 

in the example was located forward of t he first mode antinode ) to the 

t otal loop gain . It is evident from Figure 2.1 that the autopilot 

does not cut off rapidly enough to gain stabilize either the second 

or third bending mode. 
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Aerodynamic and bending problema place t wo contradictory 

requirements on~he value of t he low frequency loop gain . In order 

to s t abilize t he rigid body in a region where aerodynamic forces are 

large ( i . e . , at max Q) it is desirable to have a high loop gain in 

order to maintain a tight control loop . However, a low loop gain is 

desirable at all times to minimize bending transm1ssions . The resolu­

tion ot a compromise between these two competing fac t ors depends upon 

the parameters of the particular system ,under considerat 10n. 

In general a solution is achieved by tailoring the control 

system parameters a t each time of fl1ght t.o the nominal missile char­

ac t erist ics which apply at that time . Control loop gains and filters 

are changed either continuously or, more commonly, a t several pre­

determined t i mes during the flight of the missile . Thus an extremely 

detailed design must be performed if any slight change occurs in missile 

characteristics. The control system parameters Which are t be result 

of t he design effort are, in particular, extremely sensitive t o changes 

1n bending characteristics . An improvement in design Which would re­

sult in a system which was relatively insens i t ive to the magnitude of 

the bending frequencies and bending mode shapes would be extremely 

desirable . 

The mater1al present ed in this chapter was intended t o serve 

as an illustration of how a system with lightly damped resonances 

might arise. The example of the ballis t ic missile illustrates the 

point that t hese resonances are the most severe obstacle to a straight­

forward control system design . Any effort to improve control systems 

for t his class of systems should aim directly at ameliorating this 
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problem. The following chapters describe t he principles and operation 

of an approach to the problem which leads to a system which is no 

longer highly sensitive to bending characteristics and, in this regard, 

must be considered an improvement over the conventional design 

approach. 
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CBAPl'ER II I 

LIGHTLY DAMPED RESONANCES AND ADAPl'IVE CONTROL 

3.1 Introduction 

With the background provided by Chapter II it is possible 

to examine the desirabili ty of incorporating adaptive features in a 

controller for systems w1th lightly damped resonances . Let us first 

restate the analytic formulation of the adaptive control problem which 

vas presented on page 19. 

Given: A dynamic system specif1ed by the following set of equations: 

where 

x1(t) ... ith s t ate variable (i-l, •••• , n) 

0( i (t) = 1 th control parameter (1 ... 1, •••• , m) 

f31(t) ... ith critical sys t em parameter ( 1 = 1, ••• ,..l) 

t ... time 

Not e that the quantities ~i are not known precisely during 

the design of the system 1n cnses where adaptive control is desirable. 

Reguired: To select the proper values of 0(1' ... , o(m at 

all t imes to insure that t he overall system response 

satisfies some specified design criteria. 

The charact eristic fea ~ure of the hypothetical highly resonant 

system of concern here is t he fact that t he frequencies of ~he reson-

snces are no t known with precision. In the ballistic missile illus-

t ration it will be recalled that there were an infinite number of 
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these resonant frequencies corresponding to the natural frequencies 

of an unsupported (free-free ) beam. Fortunately, for all practical 

purposes, only a finite number of these resonances are of interest. 

These frequencies correspond to the 131 in Equation 3.1. .It will be 

demonstrated in Section 3 of this chapter that it is possible to de­

sign a particular type of control system which will result in a satis­

factory system response if this finite number of critical frequencies 

is known accurately enough. Certain auxilliary res t rictions Which 

mus L be met are also discussed in Section 3. 

Since the syste:n is time-varying and has critical parameters 

which are not known precisely it w111 be necessary t o measure these 

parameters in real time as the system. is operating. '!'his information 

vill then be used to adjust parameters in the controller. The proposed 

adapt ive system configuration 1s shown in Figure 3.1. The adaptive 

feature of this system is the secondary feedback loop. A signal y(t) 

1s processed in a "parameter measurement computer" which provides 

commands to the controller to adjust int ernal parameters. In accor­

dance with standard notation" the input signal to t he controller 1s 

an error signal e( t ) and the output of the controller is the "manipu­

lated variable" m(t) . m(t) 1s the s ignal which activates tbe dynamic 

system ( it would correspond to the angle a in the missile example). 

As is frequent ly the case wi t h adaptive systems" it 1s con­

venient now to t hink of the adapt ive portion of the control system as 

performing two relatively distinct functions. The first may be termed 

the "identification f unction" and the second termed the "correction 

function ." In any particula.r system" it mayor may not be possible 
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to identify separate portions of the system performing these functions. 

Likewise, they may be occurring simultaneously or during different 

portions of the control cycle. During the first phase of the opera­

tion the pre-determined critical system parameters are measured t o 

within the desired degree of accuracy. Action is taken to vary the 

adjustable system parameters during the second phase of the adapting 

process. The principle feedback loop is opera t Ing throughout the 

process ot adapting. 

Informat ion about the resonant frequencies is obtained by 

processing a signal yet) (see Fig. 3.1). The signal yet) can be any 

arbitrary function of the state of the sys t em and is generated in such 

a manner as t o insure that if any oscillation at a resonant frequency 

1s occurring i t will be seen in yet). In the missile example)y{t) 

could be the output of a rate-gyro mounted on the missile in 8 loca­

t ion where all the bending slopes of interes t have a non-zero value 

(the nose and tail of the missile are two such locations). If the 

system is oscillating at more than one resonant frequency, signal com­

ponents will be present in yet) at each of these frequencies. 

The adjus table controller parameters will initially be set 

to values which nominally provide a stable system at taO. As t he 

charac teristics of the dynamic system change with time it is possible 

that one or more of the resonant modes will become unstable, and an 

oscillat ion will begin to build up near the corresponding natural fre­

quency. The Adaptive Frequency Measuring Computer (hereafter referred 

to as the FMC) will detect a component at this frequency of oscilla-

tion in yet) and via its internally programmed logic will cause parameters 
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to be changed in t he controller to restabllize the system. It 1s im­

med1ately apparent that if this concept is to be successful in a real 

physical sys t em t he adap08.tion ( l . e ., the change from an unstable to a 

stable configuratlo~ must take place rapidly enough to insure that the 

resonant oscillations do not reach a destructive level . Structural 

vibrations of a missile, for example , lead to large dynamic loads on 

the structur~ and the missile will break up if the maximum design loads 

are exceeded . 

The nature of the controller itself meri t s some comment a t 

this poin t . The cont roller will be restric ~,ed to be a t ime varying 

piecewise linear operat or which produces an out put met ) through piece­

wise linear operations performed on the input signal eCt ). The physi­

cal realizat ion of this cont roller could be achieved by ut ilizing active 

electrical networks to perform the'desired operations . In order to 

modify the transfer characteristics of this continuous controller it 

would be neceseary to change the values of physical components such as 

resistors and capacitors . 

The controller can also be realized wit hin a digital computer 

by programming t he solution of a set of difference equations relating 

"the input and output. signals . Such digital systems are considerably 

more flexible than convent ional analogue cont rollers . In order to 

modify the transfer characteristics of t he digital controller i t is 

only necessary t o change the values of certain paramet ers which are 

st ored in t he digital cOr.lput er . This can be done quIte easily. 

Cont rol systems which incorporat e dig1tal computers directly 

in the control loop are celled "sampled- dat a" control systems ( due to 
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the fact that digital computers operate only on discrete samples of a 

continuous signal ). The adaptive system which 18 the subject of this 

thesis is a sampled- data system. Both the controller and the adaptive 

parameter measuring computer are instrumented in a digital computer . 

The sampled- data configuration is shown in Figure 3.2. The two switches 

represent samplers which sample e ( t ) and y et ) every Ts and Ty seconds 

respectively . Two different sampling rates are used because , as will 

be shown , the signal e {t ) need not be sampled at the high rate which 

is necessary for yet ). Thus some economy of computing capacity is 

effected by making Ts »Ty • In a ccordance with standard notation, 

starred quantities ( e . g . , e*( t » represent sa~pled signals . Note, in 

Figure 3.2, that a zero order hold circuit 18 used to convert the 

discrete output m*{ t ) of the digital computer into a piecewise constant 

signal met ) which is used as an input to the highly resonant system 

dynamics . 

A great body of literature is available on the standard 

techniques which are available for analyzing linear constant coeffi-

cient sampled- data systems . It will be assumed that the reader is 

familiar with the Z- transform as applied to linear sampled- data sys-

tems, and this analytic technique will be used freely in subsequent 

sections of this thesis . Familiarity with the NyqUist stability cri-

terion and the root-locus technique as applied to sampled-data systems 

is elso assumed . A good treatment of these subjects is available 

elsewhere . (1)(4). 

The details of en adapt ive control technique applicable 

to highly resonant systems are presented in the following sections . 
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First, the problem of determining the sys tem's nat ural frequencies 

will be considered . Following this a means of utilizing this informa­

tion in a digi tal controller will be presented . The chapter will 

close with 8 summary of the important points developed in the body 

of the chapter . 

3 . 2 Detection ~ Frequency Measurement 

This sectlon will treat the problem of parameter identifica­

tion in the system under consideration . The pa,rame t ers of interest 

are t he frequencies of the system's lightly damped resonances . The 

numerical values of these frequencies will be obtained by operating 

on the signal y( t) . The basic concept underlying the adaptive port ion 

of the control loop is the following: if the system is unstable due 

to a particular resonance, an oscillation will begin to build up very 

near the natural frequency of that resonance . An oscillation at this 

frequency will appear in y (t), ana its presence will be detec ted and 

its frequency measured in the adaptive FMC . 

Two conflicting requirements are immediately apparent . First, 

t he values of the resonant frequencies must be determined 8S rapldly 

as possible to insure that corrective action is taken before the oscil­

lations reach a destructive level . Second, the frequencies mus t be 

determined very accurately to insure that effective adaptive adjust­

ments of controller parameters can be made . The accuracy with which 

one can measure the frequency of e Signal, however, is proportional 

to the lengt h of the signal which one has to examine . Thus in order 

to locate the frequency with great precision one must wait until an 

appreciable length of signal is available for processing. On the 
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other hand , in order t.o insure that the system does not destroy itself 

due to resonant oscillations one must determine the frequencies in the 

minimum possible time . 

The key to rapid determina t ion of the resonant frequencies 

1s parallel operation of many tuned elements . The principle of the 

method developed in this inves t igation 1s shown in Figure 3.3. The 

signal yet ) is multiplied by a set of 9inueoids which spans the fre­

quency range in which the lightly damped resonances are known to occur. 

Both sines and cosines are necessary to allow for the r andom phase of 

the sine wave which may be present in yet ). The process of multipli­

cation produces sum and difference frequency components in the result­

lng signals . These signals are now averaged by integrations in separate 

channels for finite lengths of time 0i . The integrators have appre­

ciable output s only when yet ) contains a discrete frequency sinusoidal 

s ignal whose frequency is very close to the frequency of the multiply­

ing sinuSOid . The output of each integrator is measured every 0i 

seconds . The integrator outputs are then squared and summed in pairs 

to yield discrete output s Pik as shown in Figure 3 . 3,where: 

P
ik 

D output of ith channel during 

time interval kO i ~ t < ( k + l )Qi 

Pik will be used to determine whether or not an oscillation of fre ­

quency close to roi is present a t time t = k01• The precise meaning 

of "close to" 1s made explicit in the analysis performed later in this 

section. 

A modification of tbis technique can be used to simplify tbe 

necessary computations . The signal y( t ) can be multiplied by two sets 
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of square waves which are 900 out of phase instead of sinusoids 900 

out of phase. By t his change the relatively complex and time consum­

ing multiplication operation can be replaced by a simple ga t ing opera­

tion. Since even harmonics are absent in t he Fourier development of 

a square wave, and the third harmonic 1s smaller than the fundamental 

by a factor of three (higher harmonics being even less significant), 

this modification of the frequency measuring technique should not lead 

to appreciable error. Care must be taken in the deSign, however, to 

insure that a high f requency oscillation does not lead to on appreci­

able output in a lo~er frequency (1/3 of the high frequency, for 

example) channel. 

The operation of tbe FMC 1s best analyzed by examining tbe 

output of a single channel for an assumed input y(t). The only dif­

ference between channels is the frequency of the multiplying sinusoidal 

or 'square wave signal. This frequency, ~i' will be called the center 

frequency of the channel. The analysis of the square wave FMC requires 

a Fourier expansion of the square wave and a similar analysis for each 

Fourier component. Since this involves only repeating analyses of the 

type required for the sinusoidal FMC only the latt er will be treated 

in detail below. 

There are several cases of int erest. First, and most simple, 

1s the case when y(t) is a pure sine wave of unknown frequency ~ and 

unknown phase ¢'. Second is the case when y(t) is the sum of two 

signals, one of which is a pure sine wave of unknown frequency and 

phase; the second signal 1s a random noise signal which is uncorre­

leted with the sine wave and which has specified statistical 
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characteristics, i . e . : 

yet ) = s et ) + net ) 

where 

s et ) ... A sin (wt + ¢t ) 

net ) - random noise signal 

After the analyses of these more or les8 tractable cases, 8 few words 

will be devoted to what one might expect the signal yet ) to be like 

in actual system operation and how accurately frequency measurements 

can be performed for this case . 

Pik may be expressed analytically in several ways . The fun­

damental definition of Pik is given by ( see Figure 3.3) : 

where 

s ... ( l/Ql ) 
lk 

and 
kg i 

e ik = ( l/gl ) J dtl y( t. l ) cos ro1 Ltl - ( k-l )gi .J 
( k-l )Qi 

(3.4) 

In what follows we shell require that Qi be an integral number of 

periods of the frequency roi . Therefore 

where 

(3 . 6 ) 

Ni = number of cycles of frequency mi contained in the 

interval Q1 



-62-

In t he r emainder of this chapter we shall drop the subscr ipt f r om the 

quantity Ni and call it simply N. It should be r emembered, however , 

that N is not necessarily the same for all channels . 

Making the change of variables t Sl 0)01 - ( k-l )OiJ and 

using Equation 3.6 in Equations 3.4 and 3. 5 results in 

or 

21CN 

c itt = ( 1/21CN) S 
o 

o 
[

t + ?1tN( k- l)] dt sin t y 
ro i 

2nN 

Pik = ~1/( 2nN) 2_7 5 2'ItN 

j dxdu cos (x-u ) 

o o 

(3 . 8 ) 

In spite of the formidable looking equations defining Pik ' 

there 1s one particular yet ) for which the int egrals yield an extremely 

simple result . If yet ) = A sin (mit + ¢) a direct evaluation of 

Equation 3 . 10 leads to the result that Pik = A2/4 . Thus the channel 

output for this case 1s independent of the random phase of y(t ). 
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Furthermore , 85 will be shown later 1n t his chapter, the channel output 

decreases rapidly as the frequency of the sinusoid present in yet) 

departs from mi" If 8 number of channels is used the frequency, ~m' 

of the channel which yields the lergest output Pik (i.e., P
mk

> P
ik 

for i 1 m) can be used as an estimate of the discrete frequency present 

in y(t). 

The number of frequency measuring channels which must be used 

is dependent upon the precision with which one wants to measure the 

signal frequency and upon the amount of a priori information which is 

available about the signal frequency. Fewer channels are needed, for 

example, to measure a frequency known to lie within a specified 10 

radian band-width than are required to measure the same frequency, 

with equal accuracy, if it can fall anywhere within a 100 radian inter-

val. It is convenient to define accuracy on 8 per-unit basis as follows: 

a frequency estimat e a:J * is accurate within a factor '5 (per-unit) if 

(3.11) 

where m • the true signal frequency . 

We will now compute the minimum number of channels, K, neces­

sary to measure en unknown frequency , ~, to an accuracy t ~ , assuming 

that the center frequency of the channel with greatest output, ~m' is 

used a8 the est1mate of roo 
«-

Thus, (.0 .,.~. It is assumed that the 

inequality d ~ Cl) ~ Rd 1s known to be true ( see Figure 3.4). Suppose 

the center frequencies of the measuring channels are designated by 

~1(1 = 1, ••• , K) and (.01+1 > ~i. Then for any frequency ~ ly1ng in 

the interval Cl)i ~ ~ ~ Cl)i+l one or t he other of the folloYing 
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relationships must be true if t he accuracy requirement is to be 

satisf1ed: 

co - 6.'11 <: 5 (a ) -co 

or (3 . 12) 

00;1,+1 - co 
~ 5 co (b ) 

The critical case occurs when the equality holds in Equat ions 3.12 a 

and b) and then we have, atter 

- :a 

For small ~ this becomes 

e11minating (0 

l+ ~ 

1 - ~ 

trom the t wo equations : 

(3.14) 

It t he ratio (01+l/COi 1s any greater than t his it will not be possible 

to satisfy the accuracy requirement tor every co in the interval 

COl ~ co ~ co1+1 • Figure 3.4 shows how the frequency measuring channels 

will be spaced in t he int erval d ~ co ~ Rd . In order to insure an 

accuracy of ~ for co a d, it ls necessary to select ~ as follows : 

(3 .15) 

In order to insure an accuracy ~ for co = Rd it is necessary to se­

lect (Ok as follows: 

COx ~ Rd( 1 - ~ ) (3. 16) 
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In order to minimize K it 1s necessary to use the equality signs 1n 

each of the above relations. When the equality signs are used it fol-

lows from Equations 3.15 and 3.16 that 

~ "" R(l - 5 ) 
COl (1 + ~ ) 

But it follows from Equation 3.13 that 

CIlK ~ (1 + l )K-l 
col 1 - I 

(3.17) 

(3.18) 

Equating the right hand sides of relations 3.17 and 3.18 leads to the 

following: 

or 

R = (1 + l )K 
1 - ~ 

ln R "" K In 1 + l 
1 - l 

(3.19) 

For small ~ ( l < 0.1) we may replace In[(l + ~ ) I( 1 -)V by 

and retain 3 significant figure accuracy. Thus Equation 3.20 becomes 

1n R ~ 2K 5 (3.2l) 

Since K must be an intege%j not all values of R and ~ are allowable. 

A simple example illustrates how Equation 3.21 ~y be used. Suppose 

it 1s specified that a 2:1 range of frequencies must be spanned by the 

frequency measuring channels and that an 3ccuracy of at least ~ is 
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required. Thus R ... 2 and ~ "'0 .02 . Solving Equation 3 . 21 for K gives 

K,.. ( 1/2 ~) ln R::o ( l/O . 04)ln 2,.. (0 . 693/0 . 04) ... 17 .3 

Since only integer values of K are allowable, it will be necessary to 

choose K D 18 to get the desired accuracy over the range specified . 

The final accuracy will be 

5 :0 ( 1/2K) ln R .. (0.693/36) ... 1 . 925~ 

If K .. 17 were used, the final accuracy would have been 

~ ... (0 . 693/34) ,.. 2 .03~ 

It is possible to obtain this accuracy using fewer measuring channels 

if a more sophis t icated technique is used to estimate the frequency 

which 1s present . This improved met hod is based upon an interpolation 

procedure which allows the use of frequencies other than the ~i a s 

estimates of the unknown frequency~ . Since the improvement obtain­

able is dependent upon tbe form of the Pik outputs as a function of ~, 

a discussion of this technique will not be presented until the end of 

the treatment of Case 1 below. 

The form of Pik will now be computed for several specific 

functions yet) . 

Case 1: y( t),.. A sin (rot + ~) 

It is assumed t hat the phase of y, ~, can take on any value 

with equal probability. Thus we can define a new random variable ~ik' 

Where 
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which also takes on any value with equal probabilit y . elk and elk 

are therefore functions of the random variable ' ~ik ' end ar e given by 

( see Equations 3.7 and 3.8) 

and 

2'J(N 

sik ... (A/2'ItN) S dt sin t sin [[1 + ~ ) t + ~lk)] 
o 

2'JtN 

elk = (A/21tN) J dt cos t sin [[1 + "( ) t + ~ikiJ 
o 

where 

After considerable algebra , the following expression for Pik is 

obtalned ( see Equation 3.3) : 

where r ik 1s a random variable defined by 

(3.26) 

and 

o ~ r 1k ~ 1 

The bracketed port1on of Equation 3.25 1s i t self a random variable 

t hrough i ts functional dependance on r lk • Define 

(3.28) 



-69-

and 

(3.29) 

= normalized fUndamental output component of 

any particular frequency measuring channel 

Using these definitions it follows that ve may write 

(3.30) 

Figure 3.5 is a plot of the normalized fundamental output 

component, po, of any particular frequency measuring channel as a func­

tion of a normalized frequency error, x, (Where x :II N~), between the 

signal frequency ~ and the channel center frequency ~i. 

Note that for a specified value of N t he abscissa is directly 

proportional to the per-unit difference in trequency between ~ and m1 

(because y( .,. (~ - GOl) /~ ). Thus, for example, if N '" 10, the output 

of the channel falls to one half its maximum possible value when 

~ .,. 0.044. If N = 5, the out put of the channel falls to one-half its 

maximum possible value when 't.,. 0.088. In general , pO falls to one­

half 1ts maximum possible value for 1'" 0.44/5. For the remainder 

of this section we shall be considering only the channel which produces 

the largest out put for a given sinusoidal input. We can 8seume that, 

by proper selection of the interchannel spacing factor 5 and t he num­

ber, N, of periods over which the integration is carried, there will 

always be at least one channel for ~lhich /~ 1< 1/2J!l. For these 

channels, which are t he ones of interest in the following analys1s, 

it 1s evident that for sizable If (N > 5) it is reasonable to treat 

1 as a small quantity. 
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The ordinate in Figure 3. 5, I . e . , the quantity po , is In-

dependent of the random phase of the input signal . We should like to 

o consider P to be the principle component of the output P1k, of any 

frequency measuring channel . This 1s possible if the deviatIon from 

po due to the random variable rik is small. To demonstrate that this 

is indeed the case we shall compute the expected value of Pik and its 

standard deviation . Since Pik is a random variable only through its 

dependence on the function F(It. , rik) , we shall first compute the 

expected value and standard deviation of F. From Equation 3.28 it 

follows, upon avereg1ng over rik, that 

E( F) = 1 + [J n... /2 ) / ( 1 + 't /2f!2 = expected value of F (3. 31) 

and 

"F 1II .fi g \ /2 ) / ( 1 + ~/2JJ .. standard devietlon of F 

For small '\ t.hese expressions become 

E(F) = 1 + ~/4 

= 1 to first order in ~ 

and 

to first order in yt 

For the channels of interest we have shown that 

I ~J < 1/( 2N) 

Therefore we may combine Equation 3 . 34 and 3. 35 to obtain 

OF < 1/( 2/2 N) .. O.354/N 
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It is evident that for large N the expected value of F approaches unity 

very rapidly, and the variance of F approaches zero . 
, 

It is poss1ble to obtain expressions for the maximum and 

minimum values Which F may attain by observing that , for a specified 

value of 't , Equation 3 . 28 is a monotonic function of r 1k ( monotonic 

1ncreas ing for ~) 0, and monotonic decreasing for '1 < 0). Thu6 

F takes on its maximum or minimum value when r ik is at the limit of 

its range of values . Since , by Equation 3.27, 0 ~ r ik ~ 1 we 

conclude that, to first order in Il' 

1 - ''(' ~ F ~ 1 + '~I 

It is now possible to state what the maximum difference is between 

the t rue value of Pik and the value A2po/4, which is Lhe fundamental 

component of the output . Using Equa t ton 3 . 30 we write 

I Pik - A2po/4 J = J< F - 1) I A2pO/4 

~ J7/A2pO /4 
(3 . 38) 

to first order in ~ 

The per unit difference between Pik and the fundamental component of 

t he outpu t is less than /If./. :Recalling the limitation on the possible 

values of I~ I we conclude that this per-unit difference is les8 : han 

0 . 5/N. This is a small difference for appreciable values of N. 

Since no a prior! information 1s available about t he ampli-

tude of the Sisnal) it 1s not possible to determine the signal frequency 

from the amplitude of the output of a single channel . However , it is 

possible t o identify t he frequency of a signal by oper ating eevera~ 

frequency measuring channels simultaneously with each channel tuned 

to a slightly different frequency . One or t wo of these channels , if 
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8 sinusoidal oscillation is present, will have an output significantly 

larger than the rest of the outputs. The center frequency of the chan-

nel with the largest output is then an estimate of the true frequency 

of the sine wave . 

Two conceptually different functions must be performed by 

the frequency measuring computer. First, it must determine whether 

or not a sinusoidal oscillation is present . Second , it must deter-

mine the frequency of the oscillation if the oscillation is present. 

In order to prevent the decision that an oscillation is present when 

it really is not, a detection threshold level L must be established. 

If and only if the output Pik of some channel exceeds the threshold L, 

the measuring computer will decide that an oscillation was present 

during the time interval {k-l} Gi ~ t ~ k Qi. The value of L depends 

upon t he response of the measuring computer to random noise inputs 

(which will be considered later) and upon the amplitude of the smallest 

oscillation which it is required to detect . 

If the oscillation "A sin (oot + ~)" occurs at a frequency 

exactly equal to the center frequency , mil of some channel, the l1 for 

that channel will be zero and the corresponding pO will be unity. The 

corresponding Pik is A2/4 (see Equation 3.3). It is very unlikely, 

however, that an oscillation will occur exactly at any channel center 

frequency . 

Suppose the oscillation occurs between ooi and ooi+l at a 

frequency ooi (l + >t ). For small values of ~ I two adjacent channels 

have their center frequencies in the ratio ( see Equation 3.14) 
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The two channel outpu-:.: s will be equal when ~ ~ ~, and their magni­

tudes w111 be 

Since it is necessary to detect the presence of a signal even when its 

frequency occurs at this worst location, i . e ., midway between two 

channel frequencies , it follows that the minimum input amplitude which 

can be detected witb certainty is 

(3.40) 

Conversely, if it 15 necessary to detect the presence of oscillations 

of amplitude Amin or great er, the detection threshold level should be 

(3.41) 

pO (N ~ ) is simply the ratio of the minimum to the maximum 

possible output of the channel nearest in frequency to the input fre-

quency ( for a constant input amplitude ), and it is necessary to specify 

a numerical value for this quantity . This, in turn, determines the 

value of N ~ (via either Equation 3 .29 or Figure 3. 5) . Since ~ 1s 

det ermined by the accuracy requirement, we now know N. Thus we have 

e systematic procedure for selecting all the parameters of the FMC . 

A value must now be selected for pO ( N ~). The system will 

usually have e requirement to detect all signals above some minimum 

amplitude . To this end a certain L must be selected . In order to 

minimize the occurrence of FMC responses to spurious input signals 

( e . g . , random noise which w111 be discussed later ) it is desirable 
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to set L as high 85 possible . From Equa t ion 3 . 41 it is evident that 

the required L decreases as pO (N ~) decreases . Therefore it 1s desir­

able to keep pO ( N ~ ) as large 8S possible . However, i f its value is 

too large it becomes possible for t he effects of noise and the random 

phase of the input sinusoid to cause the output ot the wrong channel 

( i . e . , not the channel closest in frequency to the applied frequency ) 

to be a maximum relative to its neighbors . Thus some compromise must 

be reached . The value of pO(N ~) = 1//2 seems a convenient compromise . 

From Figure 3 . 5 one finds that this requires N ~ = 0 . 32 . This is not 

claimed to be an opt1mum setting for tbese parameters but it is a 

practical one . It is not believed that this setting is extremely criti-

cal . The discussion of an interpolation scheme below will shed more' 

light on tbe effects of changes in this setting. 

The conventional quality factor , Q, is defined as Q ... (1.)0/ ~ (I.), 

where l:. 6) is the frequency interval between the lower and upper "be lf 

power" points ( the frequencies at whicb tbe output drops to 1/./2 of 

its maximum possible amplitude). But the "balf power" frequencies are 

(l.)i ( 1 : >'{1/2>' where y( 1/2 = 0 . 32/N. Therefore 

D. (I.) = ~i 11/2 = 0 . 64 (J)l/N, and 

Q = N/O. 64 ~ 1 . 56 N 

We will now analyze a simple interpolation technique which 

leads to a considerable improvement in frequency measuring accuracy . 

Consider the three frequency measuring channels which lie closest to 

the signal frequency (1.) . Call these three channel center frequencies 

())_ , (1.)0' and 04, where for small ~ t he defining relations are ( see 

Figure 3 . 6) ; 
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Q) • COo (l - 2 ~ ) 

6)+ III CDO (1 + 2 ') 

/0</ ~ 1. 

(a) 

(b) 

(e) 

000 Define p_, Po, end P+ to be the fundamenta l components of the outputs 

associated with co_, COOl and (0+, respectively. 

Define Y = N ~ (3.44) 

Then 

~= 
sin2 iy~2 + 0( 

L1f:'( 2 + ~ ff 
) (a) 

po = 2 
sin -,0< 

0 
('TlYo< ) 

pO = sin 
+ 

* The FMC will supply an estimate, co , of the true input frequency, 

where 

(3.46) 

end 

This method of estimation is called "parabolic Interpolation." In 

effect a parabola is passed through the three ordinates P~, P~, and 

P~}end the frequency at which this parabola has its maximum value is 

* Q). The resulting accuracy is, by definition 
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* A* .. Q) - 0) 

co 

(3.48) 

If no int erpolat ion had been performed, the frequency estimate would 

have been 0)0 and the accuracy 

The ratio of the accuracy with interpolation to the accuracy with no 

interpolat ion is 

Figures 3.7 and 3.8 display Equations 3.48 and 3.50 in graphical form. 

The abscissa, 0( , in each of these figures 1s directly proportional to 

~he input frequency (Equation 3.43c). The ordinate of Figure 3.7 is 

t he accuracy with which the input frequency is determined as a fraction 

of the channel spacing ~. For example, if we choose y = 0.3, we find 

that the poorest accuracy w111 be achieved when O{;: 0.65. This BC-

curacy will be A* ~ 0.206'5 • 

N :III Y / J ... 6), A * .5 0 .206 ~ 

Thus if } had been 0.05' ( implying 

~ 
.. 0.01. Thus the frequency of the 1n-

put signal would be determined to better than l~. Without interpolation 
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it 1s possible to have an accuracy as poor as ~ . For the example 

above ~ = 0.05, so the input signal is determined to better than 

5~. The ordinate in Figure 3.8 is equal to the ratio of the accuracy 

with interpolation to the accuracy without interpolation. 

Figures 3.7 and 3.8 are based upon calculations made with 

o P alone . In realit y the output of any frequency tracker channel will 

o not be P , but will be Pik e A discussion of how much improvement in 

accuracy interpolation provides in the more realistic case will be 

presented at the close of the following section, which describes the 

response of the FMC when "no ise" is present . 

It should be observed in Figure 3.7 that the final accuracy 

provided by the interpolation technique is strongly dependent upon the 

value of the quantity N ~. This parabolic fitting technique would 

yield precisely the correct answer ( under the assumption that the 

fundamental component is t he complete output of any channel ) if 

pO ( N ~) were exactly a pa rabolic function of its argument . The range 

over which po must be parabolic for the solution to be exact in form 
I 

extends from -3N~ N '( ~ 35 J. For small values of N~ , pO is 

quite close to parabolic in shape over this range . For larger values 

of N ~ t he precision of the parabolic approximation deteriorates and, 

therefore , so does the accuracy obtainable from this nethod of inter-

polation. In order : 0 have an interpolation result which provides an 

accuracy five times better than the inter-channel spacing factor , ~ , 

it is necessary to select a value for N ~ of approximately 0 . 3. This 

leads roughly to the value pO( Nl) = 1/[2 and agrees with our earlier 

selection of this parameter . 
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Case 2: yet ) = n' (t ) + A sin (rot + ~ ) 

The question of how accurately the frequency of a pur e sinu­

soid can be measured becomes more complex when the signal is obscured 

by the pr esence of noise . Following the nomenclature of detect ion 

theory we shall call yet ) the "stimulus" of the FMC . Each of the 

outputs , Pik , of the FMC will be called a test "statist ic . " The 

detection problem 1s t.hat of determining whether the "signal," 

A sin (rot + ~), is or is not present during a certain finite length 

sample of the stimul us . Each of the FMC channels is looking for a sig­

nel close to, its own center frequency , coi • If the t est statistic is 

8 good one , only t he channels close in frequency to co will produce 

sizable output~and the channel having the greatest output should be 

closest in frequency to co . 

Before it is possible to approach this problem analytically, 

it is necessary to know something of the statistical characteristics 

of the noise, n' (t ). ( It is assumed that the r eader is familiar with 

the theory of rando~ processes and the concepts of correlation func­

tions , spectral densities , stationary processes , etc . Definitions of 

the terms used in the following analysis agree with those of Refer­

ence 17 . For further background material , see References 17 and 18 . ) 

The problem of characterizing the noise in yet) is formidable for sev­

eral reasons . A detailed study of all the possible noise sources which 

contribute to n' (t ) would be an ambitious project . In a missile , the 

primary sources of random noise are the winds and gusts through Which 

the missile flies during its trajectory in the atmosphere . Since 

misaile parameters and environmental conditions all change with time) 
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it 1s evident that nt(t ) does not have statistical characteristics 

which are independent of time . Furthermore, different missiles will 

have different statistics at nt ( t ) because their transfer functions 

between the input source and the stimulus are significantly different . 

Even if an accurate statistical characterization of nt ( t ) were obtain­

able, the computations involved in its application would be prohibitive . 

Therefore , rather than att empt to determine the statistical character­

istics of nt ( t ) from the basic underl ying random processes, we shall 

assume that certain properties of the noise are known a priori. Be­

fore stating what these properties are it is necessary to Justify one 

simplifying approximation which will be made . 

It should be recalled from the previous paragraph that n'(t ) 

is not stationary noise ( i . e ., noise whose statistical properties are 

independent of time ). However , in computing the effect of noise on 

any particular frequency measuring channel one only considers a short 

sample of the noise function, specifically a finite length 3ample whose­

durat i on is equal to the integration time Qi pertinent to the channel 

under consideration. In order for the overall adaptive system to func­

tion properly it is necessary that the system change only slightly 

during this finite time in-t erval . Thus , over the length of any single 

s8n~le of n' ( t ) vhich is used in the FMC it 1s safe to say that the 

statistical properties of the noise do not change, i . e . , that it is 

stationery. This stationary short sample is now assumed to have come 

from a stationary random process with the same statistical character­

istics. We now st a t e the information which we assume to know about 

the random noise: 
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1. n' {t) is a sample function of a stationary process 

2 . n' ( t ) and ~ are statistically independent random variables 

3. The autocorrelation function R' (tll t 2) is known, where 

(3 . 51 ) 

= the mean value of n' ( t l ) n' ( t 2 ) 

averaged over the ensemble of sample 

functions n' ( t ) 

The autocorrelation function is one of the simplest statlstl-

cal characterizations of a random signal . For a stationary process, 

knowledge of the autocorrelation function implies knowledge only of 

the way in which the signal energy is distributed as a function of 

frequency . The autocorrelation function will arise naturally in the 

mathematical development of the problem and, in order to get numeri-

cal results it will be necessary to assume a mathematical form for it. 

Assumption 1 implies that the autocorrelation function is a 

function only of the difference between tl end t 2 , 1.e . , 

Defining 

and 

we have 

R' ( t ,t ) • R'( t l - t ) 
122 

Y .. tl - t2 

which is the fundamental definition of the autocorrelation function 

of a stationary proces s . 
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Assumption 2 is a very reasonable one. It states that the 

phase of the sinusoidal signal is statistically independent of the 

noise nt(t). This assumption is stated explicitly because in the an­

alysis which follows the sinusoidal signal is treated a6 a determin­

istic signal, I.e., it is completely known . Averages will be taken 

over the ensemble of noise signals nt (t) treating ¢ as a known quantity. 

This met hod is possible only if nt(t) and ¢ are statistically 

independent. 

We must now demonstrate that Pik is a useful test statistic 

when the stimulus consists of a discrete frequency sinusoid and addi­

tive stationary random noise . To accomplish this goal we shall compute 

the expected value and the variance of Pike We shall show that the 

expected value, under reasonable a s sumptions concerning the input signal­

to-noise ratio in y(t), is approximately equal to po whenever a dis­

crete frequency is present whose frequency is close to the center fre­

quency of the channel. The output of all other channels will be very 

much smaller . Furthermore, the variance will be quite small . Thus, 

it will be shown , Pik is a suitable statistic for this type of input 

signal . 

In what follows, Pik is assumed to be a random variable only 

through its dependence upon nt(t). In order to make the problem manage­

able it will be necessary to assume, at an early stage of the analysis, 

that nt(t) has a Gaussian distribution. Numerical results will then 

be computed for an assumed form of the autocorrelation function of 

the noise. It is convenient to define the following functions: 



-86-

Since, for this case, 

y et ) ... n' ( t ) + A sin (~t + 9) 

it follows by combining Equations 3.54, 3. 55, and 3.56 that 

y I t + ~~k -1») = net ) + Set ) 

Thus, using Equation 3. 57 in Equation' 3 . 9 , it follows that 

and 

21lN 21tN 

P ik ... Ll/( Z1r1l)2 J J S dxdu cos ( x-u ) 

o 0 

• LP{x) + s(x17 L~( u ) + s{ull 

21tN 2'JtN 2 JtN 2'JtN 

~k a Ll/( 2nN)~7 S S J S dxdudvdz cos (x-u ) cos (v-z ) 
o o o o (3.59) 

From Equation 3. 58, it follows that ( recalling that t he process of 

taking an ensemble average co~wutes with the integr al operator ): 

2rcN 2'ltN 

E/Jik_7 ... Ll/(?:rrN:! J S dxdu cos (x- u) 
a o (3.60 ) 

• { EL?( x ) n( u17 + Sex ) S(u >} 
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Terms involving tbe mean value of the nOise, ELQ{x17, do not appear in 

Equation 3.60 because of the limits of integration which have been 

chosen, i.e., because 

2nN S dx cos (x - u) = 0 

o 

(3.61) 

The variance of Pik , ~, is 8 measure of the spread of the random 

variable Pik about its mean value. By definition, 

The variance is computed in a straightforward manner by taking the 

ensemble average of both sides of Equation 3. 59 and subtracting the 

square of Equation 3.60 from both sides of the equality. After much 

algebra and repeated use of Equation 3. 61 and symmetry properties of 

the autocorrelation functions, the following expression for the vari-

ance is obtained: 

21m 2'1tN 2'Jl'N 2'JtN 

~ = f J J S dxdudvdz cos (x-u) cos (v-z ) 

o o o o 

• t ELn{x) n{u) n(v) n( z17 + 4 Sex ) s ( v ) ELU(u ) n( z17 

- ELn( x ) n(u17 EiO(v) n(z17} 

The expression is particularly formidable because it contains an en-

semble average of tbe product of four random variables . In general , 

knowledge of the noise autocorrelation function alone is not sufficient 

to evaluate expressions of this type. For the case when net) is a 
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Ga~s8ian random var iable with zero mean , however , t he fol lowing r ela-

ti~nship holds ( see Reference 18, E~uation 4.3 - 5): 

EL?{x ) n{u ) n{v) n{z17 ... ELQ(x) n{u17 ELn(v ) n( z17 

+ Ei:D( x) n(v17 ELO( u ) n( z17 

+ ELO(x) n( z17 Ei:O(u) n(v17 

0.64) 

It is possible t o analyze the case when net ) does not have zero mean) 

but the algebra involved is considerably more messy . For the r emainder 

of this analysis it will therefore be assumed that 

Ei:O( t 17 ... 0 0. 65 ) 

Assuming that net ) is a Gaussian s1gnal and us1ng Equation 3. 64 in 

Equation 3.63 we find that 

2N'lt 2N'lt 2N1t 2N'lt 

S J J 5 dxdudvdz cos 
o 0 0 0 

(x-u) cos (v-z ) 

(3.66) 

·lEL?(x) n(v17 EL?(u) n( z17 + 2 Sex) S(v ) Ei:O(u ) n( z17J 

Equations 3 . 60 and 3.66 are the expr essions which r esult 

when a direct calculation 1s made of the expected value and variance 

of Pike These expressions are still too complicated to yield much 

information from a qualitative examination . It is convenient now to 

define several new variables in terms of Whic h the sign1ficance of 

these expressions becomes more apparent. First we define a normalized 

autocorr elation function P( t 1 - t 2) by the relation 



where 

(3.68) 

= the average power in the noise 

end, therefore 

P<O) = 1 

It should be recalled that the original noise signal in the 

stimulus was defined to be n' ( t ), end the function n( t ) was defined 

by Equat ion 3.55. By use of Equations 3. 53, 3. 55 and 3.67 it 

follows that 

Now define the following quantities: 

21lW 21CN 

Is = Ll/(21Tlf):J S S dxdu sin x sin u .. j.)(x-u) 

o 0 

21tN 2J(N 

Ie = Ll/(zrm):l S J dxdu cos x cos u ..,0 ( x-u ) 

o 0 

21CN 21tN 

P = Ll/(2:f(JJ):J {L S dx s in x s(xlf + L S dx cos x sex? 1 
o 0 (3.73) 

= E( Pi k) when n' ( t ) = 0 

Note that by the definition of P we imply that P is equal to the 

quantity which was called Pi k in the preceding section where noise 

wa s not considered ( see Equation 3.25). 

By using the quantities defined above it 1s possible t o reduce 
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Equations 3. 60 and 3. 66 to the following forms: 

21tl'l 

£. = 2 { W2 ( 12 + I2 ) + jjWN/ ( 2J{N):7< I L J dx P N S C s 
o 

IJ jdX COB x S( x17
2 > ~ 

o 

sin x S(xd + 

It should be emphasized that these two expressions are t he exact solu-

tlon for the expected value and variance of the output of any FMC chan-

nel when the stimulus 1s of the form ( see Equation 3. 56)! 

yet ) a n'(t ) + A sin (rot + ¢) 

provided that nt ( t ) is a stationary Gaussian random variable with zero 

mean. 

Several special cases will now be di s cussed . First, observe 

that when no noise 1s present the variance becomes zero and the ex-

pected value reduces to Equation 3.73 (which is the same as Equation 

3.25 ) as we would expect . For this case the analysis 1s precisely 

the one which was discussed in the previous section which dealt with 

the no-noise case . 

Ifex t we examine the output when t here is no discrete frequency 

sinusoid presen't in the stimulus . For this case application of 

Equations 3 .74 and 3.7 5 yields 

(3.16) 
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(3.17) 

Thus the expected value and variance of Plk ere both proportional to 

the average power contained in the noise. The magnit ude of the IIcon-

stant" of proportionality depends upon the form of the noise flutocor-

relation function through Equations 3.71 and 3.72. For most cases of 

interest it will be 8 number considerably smaller than unity. 

Finally we consider the case where the stimulus contains 

both a discrete frequency sinusoid and additive random noise. For 

this case Op 1s a complicated function to estimate due to the form 

of its dependence on Set) (see Equation 3.75). It is possible, how-

ever, to obtain an upper bound for Op in a relatively convenient 

form. To this end we define the variable I to be 

I = max (I I I ) s c 

where the definition implies that I equals the larger of the two vari-

ables Is and Ic. Using this definition and Equation 3.75 we find that 

It follows from Equation 3.74 that 

(3.80) 

P can be related in a direct manner to the average power in 

the signal component of the stimulus . The average power in a signal 

. of the form A sin (oot +~) is just A2/2. But P for this same input 

is A2/4 ( see Equation 3.25) if 00 is equal to t he center frequency of 

the channel under consideration. If the input frequency is not exactly 
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at one of the channel center frequencies, the output of the channel 

nearest this frequency will be somewhat less than A2/4. By selection 

of the quantity PO(N~) m l/~ (see page 14) we have insured that, 

for the channel closest in frequency to ~, the following inequality 

holds: 

If we now define the input average power by 

<3.81) 

we may write 

It is evident that the poores t output signal to noise ratio will occur 

when the right hand equality holds above, 1.e., when 

Finally we define the input signal to noise ratio, D, by 

(3.84) 

. 
If we use Equation 3.83 to define the relation between P and the input 

power level and use Equation 3.84 in expressions 3.79 and 3.80 we find 

that 

and 

Once the autocorrelation function of the noise 1s specified, 

Ic and Is can be evaluated by integration. The algebra, unfortunately, 
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becomes extremely involved unless the autocorrelation function has a 

simple form . Numerical methods can always be used end the functions 

evaluated by digital computation if the need arises . The calculation 

has been performed analytically for the case of first order low pass 

noise . By definition, this noise has an autocorrelation function 

The power spectral density of this noise 1s just the Fourier cosine 

transform of the autocorrelation function and is given by 

2WN/ "" coi G( CI3 ) ... --.;;.;~-...;;;;..--

1 + (oo/e( O)i ) 2 

and 

~ COi = the half-power frequency of the noise 

From Equation 3 . 70 

P( x - u ) = e-od x - u / 

(3 .88) 

Direct integration of Equations 3 . 71 and 3.72 gives the results 

I :: 
C 

__ 0( __ [1 + 

2'JtN( o( 2 + 1 ) 
1 - e-2rcN 

a( 1 
'JtN o({~ 2+1) 

0( 

[ 
2 1 -21tN 0( J 1 0{ --""_- _e"'--__ _ 

1 ) - 1tN o<{o<, 2 + 1 ) 2'JtN( !;.{ 2 + 

(3 . 90 ) 

(3.91) 

Figures 3.9 and 3.10 are graphs of the functions Is and Ie 

as a function of c( for several different values of N. It 1s evident 

that , for a given value of O{ , Is is always larger than Ic . Therefore, 

in Equations 3.85 and 3.86 we may set I :: Is . Furthermore, for a given 
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value Qf N these curves attain their maximum values for ~ ~ 1, at 

which point they both are approximately equal to 1/4nN ( for N 7 2) . 

Substituting 

I ... 1/4'JtN 

into Equations 3.85 and 3.86 gives 

Op = P j O.9/ND / 1 + O. 225/ND 

(3.94) 

These results apply for the worst possIble case of low pass noise , 

.v i.e . , the case where 0{ = 1. For any other value of 0( , the value 

of I is smaller, which in turn insures that the variance of the out­

put is smaller and the deviat10n from P is smaller . Bote that the 

case 0( :: 1 implies that the half-power frequency of the noise is 

exactly equal to the center frequency of the FMC channel which pro-

duces the largest output . For this worst case the require~nt 

o p « P implies 

/ O.9/ND « 1 (3.95 ) 

If we assume that "much less t han" should mean at least an order of 

magnitude, we arrive at the requirement (approximately) , 

D > 9O/N 

Since other considerations restrict N to moderate values, roughly ten 

or less, we require an input signal to noise power ra t io of 9 or greater 

to insure that noise does not affect our FMC outpu~ significantly. 

This result applIes for the worst case of low pass noise, 1. e . , when 

the bandwidth of the noise 1s approxlmately equal to the center 
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frequency of the FMC channel under consideration. 

Further investigation of this problem would require more 

information about R' (7' ). As was indicated at the beginning of this 

section, this is a large problem in itself . It is obvious that if 

the signal to noise ratio in the stimulus is large enough, random ad­

ditive noise will not cause appreciable errors in frequency measure­

ment . What "large enough" implies must be computed in detail for the 

type of noise that is present in any particular situation. The results 

of this section indicate that the problem requires additional consid­

eration. In the missile control system example , it is felt that noise 

will not be a serious problem because the noise in the stimulus is 

primarily the missile's transient response to winds, gusts and guidance 

inputs . These wave forms have a frequency content which usually falls 

off well below the bending frequencies . Thus a( will be considerably 

less than unity if this noise is approximated as low pass noise . In 

addition, the amplitude of this noise is expected to be quite small . 

Only two types of signals have so far been considered as 

possible stimuli for t he FMC . The first of these, a pure sine wave, 

is an idealization which rarely, if ever, will be met in practice . 

Even for t his ideal case, however , it was observed that a small amount 

of noise is present in the FMC output due to the random phase of the 

sinusoid . The second assumed form for the stimulus consis t ed of a 

pure sinusoid and additive stationary noise . An undesirable noise 

output i s produced due to the input noise and its interaction with 

the signal . Finally, it should be noted t hat ~he real stimulus will 

not, in general , precisely resemble either of these ca ses . It wl1l 



-98-

resemble more closely additive noise combined with e sinusoid whose 

phase , frequency and amplitude are slowly changing with time . Obvi­

ously, if the frequency measuring scheme proposed her e is to be 

effective neither phase , frequency , nor amplitude can be allowed to 

change sppreciably during the integration time of any channel intended 

to measure that frequency . 

The rate at which the amplitude of the sine wave grows (or 

decreases ) is related to the damping factor of the sinusoid . Since 

this rate must be small the damping factor is small and , as a first 

approximation the growing sinusoidal sIgnal will be 

Set ) = A( l +J rot ) sin(~t + ¢) for 'JCIlt J « 1 (3.97) 

where the origin of the time scale is assumed to be exactly at the 

s t art of an integration interval . The integration will extend from 

t = 0 to t = 2nN/CIli . At the beginning of this interval , the ampli­

tude of the signal envelope is A, alid at the end of Lhe interval the 

envelope has grown to an amplitude A( l + 2rtNJ~/CIli ). Since for all 

channels having a significant output the relation CIl -;;r G01 must be 

true, the final envelope amplitude is approximately A( 1 + 21tN6). 

For this case the channel output is approximately the same value as 

would be obtained if the channel were excited by a constant amplitude 

sinusoid of amplitude A( l + N1c ,:5). This amplitude is Just equal to 

t he envelope amplitude at the center of the integration interval. 

The system with lightly damped resonances which is of con­

cern has already been constrained to involve parameters Which change 

slowly with time . The frequency of the sinusoid in the stimulus changes 
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at a rate which is very nearly equal to the rate at which the natural 

freque~cies of the system vary. The performance of the FMC will be 

satisfactory provided that, during any integration interval associated 

with the measurement of a particular frequency, that frequency changes 

by an amount smaller than the bandwidth of the channel which is making 

the measurement. 

It will now be assumed that the system to which the adaptive 

frequency measuring t echnique 1s to be applied satisfies the constraints 

discussed above. The question now arises as to what to do with the in­

formation which the FMC is obtaining. This matter is treated in the 

following section. 

3.3 Digital Compensation 

Once the critical frequencies are determined, it is necessary 

to synthesize compensation which will stabilize the system. It was 

shown in Chapter II that the frequency response curves of systems with 

lightly damped resonances are characterized by large amplitude peaks 

at the resonant frequencies. Figure 2.7 shoved the type of Nyquist 

plot which one expects. If some way could be found to reduce the 

amplitudes of the large bending "loops" in this figure so that their 

diameters were always less than unity, all of these resonant modes 

would be "ga1n stabilized." (See p. 43). 

One possible way to reduce the amplitude response at the 

resonant frequencies is to place zeros of transmission at these fre­

quencies. Since the Frequency Measuring Computer is continually de­

termining the frequencies of all troublesome modes, we know quite ac­

curately what the desired zero locations are. Digital compensation 
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is the most convenient way to instrument such shaping because of the 

ease with which poles and zeros may be moved about in the Z-plane . 

Associated with the pole-zero configura t ion which is introduced to 

stabilize the system will be a particular frequency response ( magnitude 

and phase ) characteristic . Other than providing attenuation at the 

frequencies specified by the FMC, the digital shaping should have as 

little effect as possible . In particular, the compensation selected 

should have the following properties: 

1 . It should introduce transmission zeros at the frequencies 

specified by FMC . 

2 . It should not introduce appreciable low frequency phase lag . 

3. It should have a low frequency gain of unity . 

4 . It should have 83 low a gain as possible at high frequencies 

in order to prevent amplification of higher bending mode 

transmission . 

The objective of the adaptive control system ideally is to 

insure that all resonant modes of importance are gain stabilized, i . e . , 

the loop transmission at and near all resonant frequencies is less 

than unity . If this aim is achieved instability cannot occur due to 

the lightly damped resonances . 

Highly complex, high order filters could be designed in an 

attempt to satisfy all the requirements stated above. Several poles 

and zeros could be used to compensate for each resonant instability . 

The purpose of this inves t igation, however, is to demonstrate the 

feasibility of a particular concept of an adaptive cont rol system, 

Bnd we should like to do it as simply as possible . No quantitative 

att empt will be made at an optimization of the filter configuration 
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postulated below; a qua11tative argument will serve t o demonstrate 

its reasonableness. 

The simplest possible way to satisfy requirement 1 above is 

to introduce conjugate pairs of zeros on the unit circle in the Z-plane. 

The angular position is chosen in accordance with the following cond1-

t10n ( see Figure 3 .11): 

where 

T s 

ro~ = ith mode frequency as specified by the FMC 
(radians per second) 

T = control sampling period (seconds) 
s 

(3. 98) 

~ = angular position around unit circle of zeros 
i introduced to compensate for osc1llation at ith 

resonant frequency (radians ) 

i = subscript denoting which mode is being accounted 
for by a particular set of zeros (1 • 1, 2, •• , n) 

For the compensation to be physically realizable, it 1s necessary to 

have at least as many poles as zeros in the Z-plane. As far as require-

ment 1 is concerned, it does not matter where these poles are located 

(provided they do not coincide with the zeros). The closer the poles 

are to t he zeros, however, the sharper will be the fIlter (i.e., the 

fIlter will have less and less effect at frequencies far removed from 

* roi as the pole i8 moved toward the zero). It is desirable to locat e 

the poles inside t he unit circle, for poles outside t he unit circle 

would very likely lead to unstable closed loop roots. The compensa-

t ion poles mus t be kept an appreciable dis t ance inside the unit circle 

or they will lead to a peaked frequency response similar to the response 

due to the resonances. 



-102-

Z - PLANE 
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-j 1.0 

Figure 3.ll: Pole-zero configuration used to 
th stabilize t he i resonant frequency. 
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The configuration selected in this investigation is shown 

in Figure 3.11. A pole is located on the radius from the origin of 

the Z-plane out to each zero . Its distance from the origin iS ~i' 

where 0 J ..J) i ~ 1 . The form of the compensat ion introduced to 

stabilize the ith mode is therefore 

z2 - 2 z cos ~ i + 1 

:2 
cos ~i + Pi 

wpere Ai is selected to make the zero frequency gain unity . Thus, 

(3.100) 

In order to obtain the frequency response of this transfer funct1on, 

it 1s only necessary to make the sUbstitution 

where 

and 

z = exp (j 0) Ts ) = exp ( j VI ) 

~ = 0) Ts ( radians ) 

0) = frequency at which response is being 
calculated (radians per second ) 

(3.101) 

(3.102) 

(3.103) 

It 1s possible to plot a normalized frequency response using 

~ as a normalized frequency variable . This normalization eliminates 

Ts as a significant parameter) end the resulting curves can be used to 

obtain results for any specified value of Ts' Note that f represents 

the angle around the unit circle at which a particular frequency , 0), 

is located. Figures 3.12 a to 3.14 b show the gain and phase charact­

eristics of Equation 3.99 as a function of ~ (measured in degrees ) 

for three different values of ~1 ( measured in degrees) . 
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Note that the bandwidth of the filter decreases rapidly as 

JOi approaches unity . Also, the low frequency phase lag for a given 

~1 decreases significantly as j01 approaches unity. Finally, the high 

frequency gain (gain for ~T8 -~) decreases a6 JOi approaches one. 

First , a small )1i is desirable to insure that there is ade­

quate attenuation at the true bending frequency even if the ro~ supplied 

by the FMC is slightly in error . The width of the frequency band which 

is attenuated appreciably is the factor which sets the FMC accuracy 

requirement. Second, a large jOi is desirable to minimize low fre­

quency phase shift and to keep the high frequency gain as low as pos­

sible for this filter configuration . Figures 3 . 15a, band c are ap­

proximate plots of the data in Figures 3 . 12 to 3 . 14 in a manner which 

shows the effect of J01 directly. (The subscript i is not indicated 

in the curves since t hey are applicable for any i .) The use of these 

curves is best demonstra t ed by an example such as the following : find 

the maximum allowable value for J01 if it is known that the FMC is 

accurate to ± ~ and that 20 db or more of attenuation must be intro­

duced in a mode with ~i = 1000
• An examination of Figure 10c (because 

~i a 1000
) shows that JOi must be lees than 0 .7 (the 980 curve cor­

responds to - ~). 

The compensation will initially be chosen with zeros located 

at their nominal position at t = O. As time progresses, the resonant 

frequencies w1ll slowly change. When an oscillation begins to build 

up because one or more resonances become unstable, the FMC will detect 

t he oscillat ion, measure its frequency and adjust the appropriate 

compensation zeros to lie at the measured frequency . For each 
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r esonance which is to be cancelled there will be a corresponding pair 

of cancellation zeros . 

For frequencies ro which lie very close to the frequency ~~, 

it is possible to express the magnitude of the function D1(Z) in the 

following form ( see Equations 3. 98 , 3.99, 3 . 100 , and 3.102): 

(3.104) 

where 

~i cot( ~i/2 ) ( 1 + fl ~ - 2 ,p cos ~j) 
( 3 .105) 

The constant y is simply related t.o the geometrical location of the 

Z-plane poles and zeros of Di ( z). Typically it is of the orner of one 

to three so long as the poles associated with the compensation function 

do not lie t oo close to the unit circle . Evaluated for the parameters 

JO = 0 .7 and ~i = 600
, for example, we find that y = 1.74. 

Necessary and sufficient conditions ( Equations 3.112 and 

3 . 125 ) will now be derived which place bounds on the allowable FMC 

measurement error as a function of the uncompensated loop transmission 

at any resonant frequency we wishLo gain stabilize . If the necessary 

condition is not satisfied it is in general impossible to gain sta-

bilize the mode being considered. If the sufficiency condition 1! 

sat1sfied, it is certain that the adaptive technique will gain stabilize 

the mode being considered . There is a region of operation where the 

necessary condition is fulfilled but the sufficiency condition is not 

met . Under these circumstances it 1s possible, but not certain, that 

the system will work . 
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It is convenient to define the following quantities: 

roi = open loop natural frequency of the ith resonant mode 

roc = closed loop frequency of oscillation of t he 1th mode 

~; = FMC estimate of the frequency roc 

~i == roiTs 

Il =roT Pc c s 

~* <= Q)*T 
c c s 

M = the magnitude of the loop gain at tbe open loop 

resonant frequency ooi' excluding the effects of Di( z ) 

K = j Di (ejQ)iTS )1 

The compensation, Di( z ) , which is introduced to stabilize 

the ith mode must satisfy the following inequality if this mode is to 

be gain stabilized: 

(3.106) 

Since we know t hat the compensating zeros are placed at angles ~~ 

while the angle at which the open loop resonant frequency occurs is 

~i' we may evaluate K approximately using relation 3 . 104 . Thus 

where it has been assumed tbat 1 ~1 - ~: I <~ 1 . Combining Equations 

3.106 and 3 . 107 gives 

(3 . 108) 

The left hand portion of the above inequality is jus t the per unit 
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error that is made 1n the attempt to position compensation zeros at 

the open loop resonant frequency. This error is attributable to two 

distinct causes . First, even if the FMC were perfect there would be 

a per unit error e because the FMC measures the closed loop frequency 

of oscillation rather than the open loop natural frequency of the 6Y5-

tem. Second, there is a per unit error ~ because the FMC is not per-

fect and gives an erroneous estimate of what the closed loop frequency 

is. E ~nd A are , by definition, 

C3 .110) 

Combining Equations 3.108, 3.109 and 3.110, we require that the 

inequality 

, € +6 I < 1/(2"(M) C3 .111) 

must be satisfied if the mode under consideration 1s to be gain sta -

bi11zed. The necessary condition that must be satisfied by the FMC 

is obtained by setting e = 0 in Equation 3.111, i .e., even if the 

closed loop and open loop frequencies are equal (the best condition 

so far as the FMC is concerned) it is necessary for the FMC to produce 

estimates of the resonant frequency such that 

/61 <. l/(2YM) (3.112) 

Similarly, if ve assume that the FMC 1s perfect ( i .e., ~ = 0 ) ve 

obtain from Equation 3.111 an upper bound on the t olerable difference 

between open loop and closed loop natural frequencies : 
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IE J < 1/( 2YM) 

Finally we recognize Lhat inequality 3 . 111 will certainly be satisfied 

if the necessary condition 3 . 113 1s satisfied and if 

J II J < l/( 2YM ) - I f J (3 . 114) 

When relation 3 . 114 holds for any particular resonant mode we are cer-

tain that the adaptive control technique which has been suggested will 

gain stabilize that mode, i . e . , this condition is sufficient to insure 

success . 

We now obtain an upper bound for IEl by examining t he locus 

of tbe closed loop root which originates at the Z-plane open loop pole 

location Pi ' where 

The loop transmission may be written 95 

(3 . 116) 

The pole originating at Pi will be found at tbe point 

( 3 . 117) 

By application of the usual Root Locus technique we find that 

1.1. = -G( z' ) (3.118 ) 

If we assume that the closed loop pole at z' is much closer to Pi 

than are any of the singularities of G{z) we may write 



(3.119) 

Thus , the magnitude of ~ may be vritten 

(3. 120) 

But J G( eJ~i )1 is re l ated t o the peak loop gain at resonance , M, by 

( see Equations 3.115 and 3.116): 

M IS I G( ej~i )1 1( 1 - e-:~ ~i ) 

~ IG( eJ~i )' I( '$ ~i ) 

Combining Equations 3. 120 and 3. 121 leads to 

l ~ l ';t :S ~i 

(3.121) 

= magnitude of t he distance betveen the open and 

closed loop pole l ocations for the ith r esonant 

mode 

Since both the closed and open loop poles lie very close to the unit 

circle it follows that the difference between the angular locations 

of the closed loop pole , ~c' and the open loop pole , ~i ' are related 

by the following inequality: 

Combining relations 3. 109, 3. 122 and 3.123 we obtain 

(3. 124) 

Finally, combining Equations 3. 114 and 3.124 yields 



-1l9-

/ll/ -< l/(2YM) - ~ M 

Relation 3.125 is a sufficiency condition which, if satisfied, guar­

antees the success of the proposed adaptive system. 

As an example of the application of sufficiency condition 

3.125, consider the following hypothetical lightly damped resonant 

mode and compensation: 

J :II 0.005 

Y = 2.0 

The largest allowable loop gain at the resonant frequency assuming a 

perfect FMC (i.e., ~ = 0) is 

M '" 1//2:r~ = 7.08 := 17 db. 

If M = 6.0 (15.56 db), the accuracy must be greater than 

On the other hand, the necessary condition 3.112 gives, for this latter 

condition 

16/( 4.l~ 

3.4 Summary 

Section 3.2 contained an analysis of the sine-wave-correla­

tion Frequency Measuring Computer (FMC ) for several different assump­

tions concerning the form of the input stimulus yet). The analysis 

examined the output of a single FMC channel and showed that such a 

channel would have a sizable output only when the stimulus contained 

a sinusoidal signal at 8 frequency close to the center frequency of 
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the channel. By utilizing a group of such channels tuned to a set of 

frequencies which spans the frequency interval of interest it 1s pos­

sible to detect the presence of 8 discrete oscillation and to measure 

its frequency with considerable precision in a short length of time. 

A modification of the sine-wave-correlation technique was 

mentioned which reduces the amount of computing necessary to measure 

a frequency . This modification is the square-wave-correlation FMC , in 

which the sti~ulus is correlated with a set of square waves of differ­

ent frequencies . This device can be analyzed by making a Fourier 

Series expansion of the square waves and performing a calculation 

identical to the one for the sine wave FMC for each Fourier component. 

Since the amplitude of the fundamental frequency component of ·the 

square wave is 8 factor of three greater than the amplit ude of the third 

harmonic and all other harmonics are even smaller, only the first har­

monic need be considered in the first approximation . By using the 

square-wave FMC the complicated and relatively lengthy multiplication 

operation can be replaced by a simple and rapid gating operat ion, thus 

reducing considerably the necessary computing capability. 

It is possible , in principle, to measure the frequency of 

a discrete frequency sinusoid imbedded in additive noise with great 

precision using the method described in this chapter. This greet ac­

curacy 1s achieved at the expense of integrating over a long time inter­

val and using a very large number of very closely spaced FMC channels . 

This is not possible in practice for several reasons: first , no real 

oscillation is going to continue indefinitely with constan~ amplitude 

and frequency , i .e., an absolutely pure infinite length sinusoid 1s a 
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mathematical fiction; second , an answer is needed in a relatively short 

length of time if adaptive adjustments of cont roller parameters are 

going t o be made on the basis of these measurement s ; finally, hardware 

requirements dictate the use of only a relatively few channels if the 

system is to be at all practical . Thus compromises must be made be ­

tween the accuracy which is desired and the length of time over which 

the correlations are to be performed . 

One possible form which might be selected for the adaptive 

digital compensation was presented in Section 3.3. It was shown that, 

if certain conditions are satisfied, t he proposed adaptive t echnique 

can gain stabilize the resonant modes of lightly damped systems . The 

adoptive system will work even though very little a priori information 

i s available concerning the frequencies and amplitudes of the various 

resonant modes . 

The next chapter describes a detailed simula~ion study which 

demonstrates the feasibility of this type of adept ive cont. roller for 

syst ems with lightly damped resonances . 
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CRAPl'ER IV 

SIMULATION Q! THE SYSTEM 

In the preceding chapter an adaptive control sys t em was pro­

posed to stabilize a system with multiple lightly damped resonances. 

It 1s assumed that the frequencies of the resonances are imprecisely 

known and can vary slowly with time. Under these circumstances the 

application of an adaptive system which can measure the conditions 

of the "plant" that it is controlling and adjust its own parameters 

on the basis of this information seems desirable. The operation of 

the overall system was discussed in the preceding ch8pte~and the adap­

tive Frequency Measuring Computer (FMC) was analyzed in detail. The 

complete system is a high order multiple loop non-linear feedback 

control system in which the non-linearity is a complicated function 

of a system variable y(t). At present there ere no adequate analytic 

techniques for evaluating exactly the performance of a system of this 

type. For this reason 8 detailed simulation of the complete adaptive 

system was implemented to investigate its performance characteristics. 

The specific example of a highly flexible missile was chosen because 

the author is familiar with systems in this category and was able to 

obtain the pertinent parameter data from Space Technology Laboratories. 

The simulation was programmed for the Burroughs-220 dig1tal computer 

which is available for research use at the California Institute of 

Technology. 

The missile dynamic equations which were used in the simu­

lation are presented in the Appendix . These equations were integrated 
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step by step by the standard fourth order Runga-Kutta integration tech­

nique (19). Difference equations were programmed to represent the 

sampled-data portion of the cont rol loop. Certain coefficients in 

these difference equations were adjusted in accordance with logic pro-

gremmed into the simulation of the FMC. The computer output consists 

of the following information: 

1. Transient response points for any desired sys~em 
variables. 

2. The output s of the FMC channels. 

3. The coefficients of the difference equation 
compensation ( these are printed whenever they 
are changed by command of the FMC). 

Due to the fact that the miseile dynamic equations are of 

high order, the integrat ion of the differential equations t akes con-

siderable time. Tbe program ran roughly with a ratio of 300 to 1 between 

computer time and real time, 1.e., to obtain one second of transient 

response data took 300 seconds (five minutes) of machine time. Each 
h 

run took from 45 minutes to 1 hour, since rougly ten seconds of real 
A 

time were needed to observe whether or not the adaptive action of the 

system caused it to converge to 8 stable operating configuration. 

Because of the lengthy running t ime it was not possible to 

conduct a very extensive investigation of the effects of variations 

of a great number of parameters. Only the square wave FMC was simu-

lated for there is no doubt that the sine wave FMC will perform at 

least as well. Parameters (e.g., the interchannel spacing and inte-

gration t imes) were selected for the FMC logic after a bit of trial 

and error experimentation. It was found that for these FMC parameters 
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the system did effectively stabilize responses for several different 

sets of bending characteristics. The transient responses all started 

with the system unstable in one or more bending modes and with no 

sampled-data compensation in the loop. The FMC then measured the fre­

quency (or trequencies) of the unstable response which began to build 

up and introduced digital compensation which placed zeros of transmis­

sion at the measured bending frequencies. The simulation results give 

one confidence that the technique can succeed when applied to other 

light~y damped systems. 

The following section of this chapter presents the results 

of the computer simulation study. The final section describes some 

of the details of the simulation which was performed. 

4.2 Results 2! ~ Simulation 

Tbe results presented in this section are almost entirely 

in graphical form. The transient response curves shown are plots of 

0p, the output ot the position sensing device, as a function ot time. 

All initial conditions were assumed to be zero and the commanded 

a t titude, 0c' in each case was a step input of amplitude 10 applied 

at time t. O. The graphs are presented in pairs, the first showing 

the transient response of the system when the adaptive loop is inopera­

tive (therefore no digital compensation 1s present in the control loop), 

and the second showing the response when the adaptive logic 1s func­

tioning. Qp was selected as the output variable because both the rigid 

body attitude, Q, and the bend1ng oscillations shov up clearly in this 

function. It 1s not necessary, therefore, to plot each of the sener­

a11zed bending coordinates; qi' and the rigid body attitude separately. 
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In the original tabulated computer outputs all of this information is 

available. 

All the runs vere made with aerodynamic parameters which 

correspond to a time of flight where aerodynamic effects are very im­

portant (i.e., near max Q). This, in general, is the most difficult 

time of flight to design for (due to the competing int erests of bending 

and aerodynamics with regard to optimum gain settings). It was assumed 

that if the adaptive technique could be successful for this flight 

condition it would be possible to insure ~hat its operation would be 

successful at any other time ot f light. Bending parameters (i.e., the 

mode slopes at the rate and position sensing locations) and the mode 

frequencies ) differ significantly in the following examples. 

The transient response runs are presented in Figures 4.1a 

through 4.5b. The curves demonstrate how the action of the adaptive 

FMC stabilizes an ot.herwise unstable dynamic system. The parameters 

pertaining to the missile dynamic equations for each of these graphs 

are listed in Section 4.3, as are the parameters pertaining to the 

FMC portion of the simulation . (See Tables 4.1 and 4.2 at the end 

of this chapter.) 

Note that 1n each of these examples the bending frequency 

oscillations are not conrplet,ely eliminated by t he adaptive loop, i.e., 

although the closed loop bending poles are forced into a stable region 

they do not have appreciable damping. This is not necessarily detri­

mental provided that these oscillations remain at tolerable levels. 

That the oscillations do not have appreciable damping 1s closely con­

nected with the fact that a cancellation technique is being used 
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(i.e., the lightly damped system poles ere being cancelled by compen­

sation zeros). When cancellation is inexact (as it always is) a closed 

loop pole will exist very close to the location of the open loop pole 

and the cancellation zero. This closed loop pole is responsible for 

the oscillations under discussion. Since the amplitude of the oscil­

lation is almost constant it is the type of signal whose frequency 

the FMC can measure with greatest accuracy. As the missile para~ters 

change,the frequency of the oscillation changes) and the compensation 

zeros can follow this motion. 

The fact that unstable oscillations initially build up quite 

rapidly results from the lack of any compensation at t = O. Because 

no cancellation zeros are located close to the open loop bending poles 

these poles can move an appreciable distance outside the unit circle 

(in the Z-plane), which leads to a rapid build up of the oscillation. 

In practice the system would begin operating with compenaation zeros 

which would hopefully be quite close t o the proper locations. Only 

as system parameters slOWly changed would the system gradually drift 

into an unstable condition, and the FMC would then move the zeros to 

better loca t ions. 

Figure 4.1a shows a system which is initially unstable at 

its second mode frequency (approximately 35 radians/second). Figure 

4.lb shows that this instability is removed when the adaptive loop is 

in operation. 

Figure 4.2a shows a system which is unstable at several 

bending frequencies. Figure 4.2b shows how the response is stable 

when the adaptive loop is in operation. 
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Figure 4.3a shows a system which has an unstable second mode 

and possibly an unstable first mode oscillation. Figures 4.3b and c 

show how the response is changed for two different sets of FMC para­

meters. From Table 4.2 we find that the integration intervals used 

in measuring the first mode frequency were three and six periods of 

the multiplying square wave for Figures 4.3b and c, respectively. 

The paramet er 5 was equal to 0.06667 in Figure 4.3b and 0.03333 in 

Figure 4.3c. It follows from the analysis presented in Chapter III 

that the FMC is supplying first mode frequency estimates twice as 

often in Figure 4.3b as in Figure 4.3c. On the other hand, the ac­

curacy of these estimates in Figure 4.3c is roughly twice as good as 

the accuracy in Figure 4.3b. Note that in Figure 4.30 it 1s not ap­

parent that the oscillations are diminishing in amplitude. Evidently 

the FMC hes not located the natural frequency of the first mode with 

sufficient accuracy to stabilize it. In Figure 4.3c the amplitude of 

the oscillation is definitely decreasing, although very slowly, and 

its initial magnitude is approximately twice as great as in Figure 

4.3b. The larger amplitude is due to the fact that the unstable oscil­

lation had an opportunity to grow for twice as long in the former case 

as in the latter. 

Figures 4.4a and b, and Figures 4.58 and b illustrate once 

again how the adaptive action of the FMC leads to a stable response 

in an otherwise unstable configuration. 

4.3 Description of the Simulation 

A block diagram of the system under consideration is shown 

in the Appendix in Figure A.l. The simulation can be conveniently 
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divided into three parts which are discussed independently below . 

Each part requires an input from) and generates an output to) one or 

both of the remaining parts . The three parts are: 

1. The missile dynamic equations . 

2. The compensation difference equations . 

3 . The FMC and its associated logic . 

Each of these buIlding blocks of the simulation will now be discussed. 

Integration 2! ~ Missile Dynamic Equations 

The equations which describe the dynamic behavior of the 

open-loop missile system are presented in the Appendix as EquatIons 

A. 2 to A.ll. These equations constitute a twelfth order system of 

linear ordinary ditferential equations with constant coefficients . 

These equations can be written in the canonical form 

(4.1 ) 

Note that the F functions are dependent on the quantity Bc(t) ( through 

Equation A. 6) , Which i s the output ot the difference equation portion 

of the simulation. These equatIons were integrated by the standard 

tourth order Runga-Kutta integration technique . 

C0!P6nsat10n Simulation 

The equations describing the digit al compensation which was 

used are presented in the Appendix as Equations A. 13 to A. 19. The 

difference equations are sixth order. Certain coefficients in the 

difference equations ere under the control of the FMC . The compensa-

tion block requires an input, e o(nTs ) from the simulation of the 

missile dynamic equat1ons, and an 1nput from the FMC which controls 
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the ~ompensation parameters. An output, 0c(t), 1s generated which 

1s used in the missile dynamic equation simulation. 

~ Simulation 

The FMC requires an input , yet), from the missile dynamic 

equation simulation. This signal is not available in continuous form 

but is sampled every Ty seconds . Each channel of the FMC performs in 

exactly the way described in Chapter III. Because we must now con-

sider a large number , of frequency measuring channels it 1s convenient 

to rewrite Equations 3.3, 3.4 and 3.5 in different notation. Since 

three different frequencies are being measured we define ( for i ... l,2,3) 

51 ... the interchannel separation factor of the 
channels used to measure the ith mode frequency 

where 

and 

~i a an 6 priori estimate of the Ith mode angular 
frequency (radians/second) 

K. = the number of channels being used to measure the 
~ ith mode frequency (Ki must be odd) 

Nt = the number of cycles of frequency ~ij contained 
in the time interval Qij 

- ( ~ 't:
i

)j-(K1+1 )/2 
(XIij .. (A)i 1 + e;. '7 (1=1,2,3) 

(j=1,2, ••• ,K1 ) 

... the angular frequency of the jth channel 
that Is being used to measure the ith 
mode frequency (radians/second ) 

(1=1,2,3) 

(j=1,2, ••• ,~) 

(4.2) 

(4.3) 

• the time interval for the iJth channel 
over which the stimulus is correlated 
with the local signal ( seconds ) 
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Since a square wave FMC is being used, the local multiplier 

signals are defined to be 

and 

where 

fij ( t ) = sgn(sin ~lj t) 

Bij ( t ) • sgn(cos ~lj t) 

sgn(x) = f+1 
-1 

if x >/ 0 

if x < 0 

(4.4) . 

(4.5) 

(4. 6) 

The ijth channel produces an output every Q1j seconds. This output 

at time t = kQ1j (where k is an ,integer) is just 

Memory space is available for storage of all of the Pij 
3 

Quant ities (i.e., there are 2: Ji. storage locations used for this 
iozl' 

purpose). Each time an output Pij becomes available it is stored in 
-

its allotted location ( the previous Pij value 1s therefore lost) and 

compared with a preselected threshold level L (it would be possible 

to have different threshold levels, Li 1 for each of the modes being 

measured but this WBS not done in the simulation). If Pij < L, no 

adaptive action takes place . If Pij ~ L, the presence of a discrete 

frequency oscillation is indicated and its frequency is determined by 

a parabolic interpolation scheme as described below. 



Suppose that the test stat is t ic which has exceeded the three-

hold is Pks ' The quantity Pkm is now determined by sorting through 

the Pks (for sel, ••• , Ka), where 

Plan ... max Pks e 
(sal, ••• ,K) 

s (4.8) 

Since Pm 1s the largest of ell the Pks it follows that the discrete 

frequency, ~k' which is present in the stimulus is closer to ~ than 

* to any of the other ~iJ' An estimate, ~k' of ~k is made by the FMC 

according to the following parabolic interpolation algorithm (see p. 77): 

(4.9) 

where 

(4.10) 

It is now necessary to use the estimate of the kth mode fre-

quency to modify the digital compensation which is being used to gain 

stabilize that mode. The compensation difference equations are pre-

sented in the Appendix in Equations A.14 to A.16. In Z-trans form 

nota t ion these become 

* * 2 2 £ (z)/ t (z) = D (z) ::0 (z + aklz + a~n)/(z + b~lz + b~n) 
k k-l k ~ ~ ~ 

(ksl,2,3) (4.11) 

A comparison with Equat ion 3.99 leads to the following expressions 

for the coefficients: 

a kl "" -2 cos en; Te (a) 

a
k2 

::0 1 (b) 

b ki == P k 8 k i 

(4.12) 
(c) 

, ..p 2 0k2::: k (d) 
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Since Ts and~k are known fixed quantities, the value of 

~ supplied by Equation 4.9 is all that is needed to change the com­

pensation coefficients . Actually, only 8kl and bkl are altered. The 

compensation gain, Ao, 1s now recomputed using Equation A.17 which 

is repee.ted below for convenience: 

3 
Ao a 7Jr L(l + bkl + bk2) / ( 1 + akl + ak~ 

1=1 

( 4.13) 

In all the simuletion runs made) the system was started with 

Bkl = Bk2 • bk1 • bk2 ... 0, and Ao. 1. Thus no compensation was in 

the loop . As the FMC measured the frequenc1es of the oscillations 

present in yet ) t he necessary coefficient s were modified as required 

by Equations 4.12 and 4 . 13. Thus the system adapted on the basis of 

real time measurements of its performance. Tables 4.1 and 4.2 present 

lists of the many parameters which are necessary to perform the system 

simulation described in this chapter. 
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CHAPrER V 

FINIS -
5.1 Summary ~ Conclusions 

A particular type of Adaptive Controller was synthesized 

which is capable of stabilizing dynamic systems which contain multiple 

lightly damped resonances . The controller acts to gain stabilize 

( see p. 43) the dynamic system by inserting into the control loop 

compensation which has zeros of transmission very close to the crit1-

cal resonant frequencies . The zeros must be close enough to the open 

loop resonant frequency to insure that the loop gain at and near these 

frequencies is less than unity. Very little a priori knowledge is 

needed about the frequencies at which the resonances occur because 

the Adaptive controller itself measures these frequencies while the 

system is operating. It then adjusts its internal parameters on the 

basis of the measurements t o insure that the overall system perfor-

mance is satisfactory. Since the measurement process can be performed 

continually this adaptive control technique is applicable to systems 

whose resonant frequencies change slowly with time. 

Both the measurement and compensation functions are performed 

by a digital computer. The resonant frequencies are measured by cross-

correlating a signal generated by the dynamic system with a set of 

periodic signals whose frequencies span the intervals in which the 

resonant frequencies are known to occur. Thus the only information 

needed to allow successful operation of the Frequency Measuring 

Comput er (FMC ) is the frequency range of the resonant frequencies which 

are present. The necessary compensation is instrumented in a set of 
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difference equations which are stored in the digital computer . Cer-

tain coefficients which appear in these difference equations are ad-

Justed according to logic which is programmed into the FMC . 

The circumstances for which the proposed system can be suc-

ceseful are stated by the necessary and sufficient conditions derived 

in Section 3.3. The fact that the system actually performs as expected 

was demonstrated by a detailed simulation of a complete adaptive con-

trol system. The particular example studied in the simulation involved 

the design of an autopilot for a highly flexible ballistic missile 

where lightly damped structural resonances are a serious problem. 

It 1s possible t hat certain resonant modes cannot be gain 

stabilized by the adaptive technique proposed in this investigation. 

This will be the case if the loop t ransmission at a resonant frequency 

is so large that the FMC errors prevent the insertion of adequate at-

tenuation at this frequency . In the ballistic missile example, for 

instance, it is usually the case that the first mode resonance is too 

great to be gain stabilized by the proposed adaptive technique. It 

/ 
is necessary, therefore, to phase stabilize the first mode and apply 

the adaptive technique to higher mode resonances only . 

A characteristic feat ure of the cancellation compensation 

which is employed is that it leads to very lightly damped (but stable ) 

oscillations in the resulting closed loop system. These oscillations 

will not be detrimental provided that their amplitudes are not exces-

sive . In fact, the presence of these oscillations with relatively 

c.onstant amplitudes for long periods of time makes possible more 

accurate operation of the FMC than would otherwise be the case . 
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Although the proposed technique insures stability of the 

resonant modes at almost all times (there will be short intervals in 

which unstable oscillations can grow slowly until they are detected 

by the FMC), care must be taken in the overall system design to insure 

that the compensation tha~ is introduced does not tend to destabilize 

the low frequency roots of the system. Thus quasi-stationary stability 

analyses must be performed for different times of flight, in the mis­

sile example, to insure that the low frequency (rigid body) performance 

of the system is satisfactory for the various possible compensatIon 

configurations which can occur. 

5.2 Suggestions for Further Study 

There are several possible areas in which additional effort 

could lead to interesting results. Further investigation of the prop­

erties of the FMC when noise is present in the stimulus is one such 

area . One would like to be able to make a precise statement regarding 

the capability of the FMC to r~asure the frequency of a sinusoidal 

component in the stimulus within a specified accuracy. The precise 

mathematical statement would involve the probability with which the 

accuracy could be obtained as 8 function of certain input parameters 

(e. g., signal to noise ratiO, and parameters of the FMC such a8 ~ 

and B). It would then be possible to arrive at design criteria which 

would allow an optimization of this portion of the system. 

The actual design and instrumentation of a special purpose 

computer to perform the frequency measuring function in an efficient 

manner would be of interest. Before t his should be attempted, however, 
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it would be desirable to have the answers to the problems stated in 

the paragraph above. 

A more detailed examination of the forms of dIgital compen­

sation which can be used to stabilize the system once the resonant 

frequencies have been measured would be of interest. The compensation 

chosen was selected only because of its simplicity and is not optimum 

in any known sense. For example, it might be desirable to locate the 

zeros somewhat inside the unit circle instead of exactly on the unit 

circle as was done in this investigation. Or, if some information 

were available concerning the phase of the loop transmission at the 

resonant frequencies, it might be possible to increase the damping of 

the closed loop resonant poles by deliberately placing the compensation 

zeros slightly higher (or lower) in frequency than that Which is 

measured. 

Finally, a great deal more effort can be applied to develop 

a better understanding of the role adaptive systems should play in the 

control area. Any approach would be welcomed which can give one a 

quantitative measure of the effectiveness of an "adaptive" system 

compared with one of more conventional design. Attention should be 

directed toward the basic limitations of the parameter measurement 

functIon in terms of accuracies obtainable and time required to make 

the measurements. 
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APPENDIX 

APPROXIMATE EQ,UATIOlfS QE MOTION !.Q.!! 

A FLEXIBLE BALLISTIC MISSILE 

Large r ocket vehicles are excellent examples ot physical 

systems which exhibit multiple lightly damped resonances . Equations 

at motion useful for analyzing the stability at B control system tor 

such a vehicle ere presented in this appendix . Equations of motion 

based on a more exact model of the real physical system are available 

elsewhere ( 20 ). 

The equat ions presented here describe an idealized model of 

the true physical system since several effects of import ance have been 

neglected in the interest of simplicity . The characteristic feature 

of the flexible missile control problem, i . e . , the presence of mul -

tlple lightly damped resonances , is included in the equations . Had 

the equations of motion been derived for a much more realistic model, 

their solution would have taken a prohibitive amount of time on the 

digItal computer which was evail~ble to the author ( a Burroughs 220). 

Among the more important approximations implicit in t he form of the 

equations are the following: 

1 . The effects of propellent sloshing are neglected . 

2 . Only three bending modes are considered . 

3. The generalized force corresponding to each bending 
mode consists so~ely of the engine thrust component 
acting normal to the centerline of the missile multi­
plied by the corresponding mode deflection at the point 
of thrust application . 

4. The mass and inertia of the rocket engine do not 
produce forces or moments on the missile due to 
inertial reaction effects ( i . e . , the tltail wags 
dog" effect. is neglected ). 
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In addition, the following approximations were made: 

5. The hydraulic power servo transfer function is 
represented by a lag and a quadratic pole pair 
due to the dynamic load of the rocket engine. 

6. Aerodynamic effects are represented by a normal 
force acting at the center of pressure of the 
missile. 

7. The effects of the equation stating the balance 
of forces normal to the missile's nominel 
trajectory are neglected. 

8. The dynamics of all sensing devices are neglected. 

9. Non-linear and second order effects are neglected. 

10. System parameters vary slowly compared to the 
response time of the control system and are 
considered to be constants at any particular 
time of flight. 

As stated in Assumption 2, the normal mode expansion of the 

deflection function, u( ~ , t), is truncated after three terms . Thus 

we writ e (see list of Definition of Symbols) 

For many cases of interest this is a reasonable approximation. In 

certain applications, however, the approximation is not valid. None-

theless, the resulting system of equations describes a model of the 

true physical system which i s adequate for our slmuls -c ion study. 

The geometry of the system t o be analyzed was shown in 

FIgure 2.1 and most of the pertinent parameters were discussed there 

(see PP. 25ff). Since the derivation of t he equations of motion is 

a relatively routine application of Newton's laws and Lagrange's 

equations, the details will not be spelled out here. The resulting 
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linearlzed equatIons which describe the complete closed loop control 

system are presented below in the form which was used in the simula-

t1on. A block dlagram representation of these equations Is shown In 

Figure A.l. 

M1ssile Dynamic Equations 

Rigid Bodl Dynamics 

Bending Resonances 

qi III T¢Ti O/M - 2;5 i COl 91 - Q)~ 91 

(1=1,2,3) 

Hydraulic Actuator and Engine Resonance 

• o III m-(O - 5 ) 
A 11 c A 

Sensor Out puts 

FMC Stimulus 

(A.2) 

(A.6) 

(A.1) 

(A.8) 

(A.10 
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• •• 
yr:aQ -0) Y 

Y Y 

• 

Digital Compensation Equations 

s* = o,n 

l' * e* 
c. k,n" k-l,n 

3 

for t = n T 
8 

elsewhere 

Ao ... 7T /Jl + bkl + bk2) /( 1 + Bkl + Bi{.,)J 
i ... 1 

* o = A c,n 0 

o (t) ... 0* for nTs oS t < {n + l)Ts c c,n 

(A.ll) 

(A.12) 

(A.13) 

(A.14,A.15,A.16) 

(A.18) 

(A.19) 



A 

, 
A 

A* 

Ai 

AO 

a
kJ

, b
kJ 

cik 

D 

d 

e ( t ) 

...... 
e , e :x y 

trx ' try 

FMC 

I 

-156-

PARTIAL LIST OF SYMBOLS 

amplitude of discrete frequency 
sinusoid present in y(t ) 

FMC accuracy when interpolation 
scheme is not used 

FMC accuracy when parabolic 
interpolation scheme is used 

low frequency gain of D ( z ) 
( defined by Equation 3 . tOO ) 

low frequency gain of the adaptive 
digital compensation = A1AzA3 

difference equation coefficients 
of the adaptive filter 

cosine component of the output of 
the ith FMC channel at time 
2ttRik/~i ( defined by Equation 3.8) 

signal to noise ratio in y(t ) 
( defined by Equat ion 3.84 ) 

compensation introduced to stabilize 
the ith resonant mode ( defined by 
Equation 3.99) 

lowest possible value of an unknown 
f r equency ~ ( see p . 63 ) ( radians per second ) 

error signal in general control system 

defined on p . 25 

defined on p. 25 

Frequency Measuring Computer 

random variable defined by 
Equation 3.28 

1. moment of inertia of the 
misaile ( defined on p . 25 ) 

2. the larger of the two quan­
tities ~s and Ie (defined by 
Equation 3.78) 

{slug ft~ 
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defined by Equation 3.71 

defined by Equation 3.72 

1. the number of FMC channels 
necessary to measure an unknown 
frequency to within a specitied 

"accuracy (see p. 63) 
2. the magnftuO! of the digital 

compensation introduced to 
stabilize the ith resonant mode, 
evaluated at the true open loop 
natural frequency, ~i' of tbat 
mode ( see p. 115) 

attitude position sain constant 

attitude rate gain constant 

FMC threshold detection level 

1. mass of the m1ssile (defined 
on p. 25 ) (slugs) 

2. magnitude of the loop ga.in at the 
open loop resonant frequency ~1' 
excluding the effects of Di(z) 
( defined on p. 115) 

number of cycles of local multiplier 
frequency over which any :particular 
FMC channel 1ntegre.tes 

number ot cycles of frequency m1 
contained in the time interval Qi 

normall~ed random variable defined 
by Equation 3.55 

stationary additive noise present 
in yet) 

aerodynamic normal force per unit 
angle of attack 

output of ith FMC channel during time 
interval kQ! ~ t < (k+l)Qi. Used 
as test statistic to detect the pres­
ence of a discrete frequency oscilla­
tion in yet); olso used to estimate 
the frequency ot the signal present 
in y(t) 

(lb. /rad1an) 
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normalized fundamental output com­
ponent of any frequency measuring 
channel (defined by Equation 3.29) 

Output of any frequency measuring 
channel when y(t) contains no ad­
ditive noise (defined by 
Equation 3.73) 

ith generalized bending coordinate 

ratio of highest to lOYest possible 
values of an unknown frequency ~ 
( see p. 63 ) 

autocorrelation function of the 
noise in yet) ( defined by 
Equation 3.53) 

random variable defined by 
Equat10n 3.26 

normalized signal component of yet) 
defined by Equation 3.54 

Laplace transform complex variable 

signal component of yet) 

sine component of the output of the 
ith FMC channel at time 2'Jt5i k/mi 
(defined by Equation 3.7) 

rocket engine thrust 

sampling interval at input to 
digital compensation 

sampling interval at input to FMC 

bending deflection function 
(defined on page 27) 

velocity of the missile'S center 
of mass 

average power of the noise com­
ponent cf yet) (defined by 
Equation 3.68) 

( n . ) 

(lb.) 

( seconds ) 

(seconds ) 

(ft . ) 

(ft. ./second ) 
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average power of the signal COM­
ponent of yet) (def1ned by 
Equetion 3.81) 

normalized frequency var1able • N 11 
(see p. 69) 

input "stimulus" to the FMC 

Z-transform variable 

1. angle of attack 
2. normalized frequency variable 

defined by Equation 3.43c 

ith adjustable control parameter in 
general adaptive system (see 
Equations 1.15 and 3.1) 

angular position around unit circle 
(in Z-plane) of ith closed loop fre-

(radians) 

quency of oscillation (see p. 115) (radians) 

angular position around unit circle 
(in Z-plane) at whic~ FMC places comp­
ensation zeros to stabilize ltb 
resonant mode (see p. 115) (radians) 

1. 1tb critical system parameter in 
general adaptive system (see 
Equations 1.15 and 3.1) 

2. angular position around unit 
circle (1n Z-plane) of zeros 
introduced to co~ensate . for 

oscillations at the 1th 
resonant frequency (aee p. 101) (radians) 

3. angular posItion around unit 
circle (1n Z-plane) of open loop 
resonant frequency of the 1th 
resonant mode (see p. 115) (radians) 

normalized variable Q 5~ (defined 
by Equation 3.44) 

per unit measurement error due to 
FMC (see p. 116) 

angle be~ween line of action of T 
and the deflected elastic axis at 
the point of thrust app11cation 
(defined on p. 27) 

engine deflect10n commanded by 
autopilot 

(radians) 

(radians) 
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equivalent angular displacement at 
the base of the hydraulic actuator 
lever arm ( radians ) 

per unit measurement error due to 
difference between open loop 
natural frequency and closed loop 
frequency of oscillation ( see p. 116) 

sampled signal in digital computer 
at time t:= nT 

6 

damping of i th resonance 

damping of engine resonance 

per unit difference between the 
frequency of the sinusoidal signal 
present in yet ) and the center 
frequency of a particular FMC 
channel ( see p . 68) 

normalized "half power" frequency 
of an FMC channel ( see p. 75 ) 

angle between inertial reference 
line and undeformed elastic axis 
of a missile ( see Figure 2 . 1 ) (radians ) 

angular position measured by a 
position gyro located at 
position , lIZ ~ P ( see Equation A. 8) ( radians ) 

angular rate measured by a rate 
gyro located at position l = l R 
( see Equation A. 9) (radians/second ) 

attitude commanded by guidance loop ( radians) 

integration time of Ith FMC channel 
( see p. 58 ) ( seconds) 

integration time of ijth FMC channel 
( see p . 140) ( secondS ) 

angular rate measured by a rate 
gyro located at pas 1 tion ~ ... ~ y 
( see Equation A.10 ) 

bending mode slope (= d~l ( ~ ) /d ~ } 
for ith mode ( ft.- 1) 
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vector ( in ~he Z-plane ) between the 
open and closed loop ith mode pole 
locations 

normalized correction in frequency 
estimated by the FMC by parabolic 
interpolation method ( see 
Equations 3.46 and 4.10) 

1. distance from the cent er of mass 
of the missile t o any point on 
the undeflected elastic axis 
( see p . 25 ) ( ft .) 

2 . per unit accuracy of FMC when 
interpola t ion scheme is not 
used ( see p. 63 ) 

3. interchannel spacing fac ":·or of 
FMC channels ( see p . 65 ) 

interchannel spacing factor for FMC 
channels being used t o measure t he 
i t h reaonant frequency ( see p . 140) 

1 
normalized autocorrelation function 
defined by Equa tion 3.70 

standard deviation of Pik ( see p . 87) 

random phase of sinusoidal compon-
ent of yet ) ( radians ) 

bending mode deflect ion for ith mode ( dimensionless ) 

random variable re l ated to ~ ; 
defined by Equation 3.22 

normalized variable ( ~ ~s ) 

frequency of sinusoidal signal 
present in yet) 

FMC estimate of the frequency ~ 

natural frequency of engine 
resonance 

hydraulics break f r equency 

1 . ith mode natural frequency 
2. center frequency of ith FMC 

channel 

( radians ) 

( radians ) 

( radians/second ) 

(radians/second ) 

( radians/second ) 

( radians/second ) 

( radians/second ) 

( radians/second ) 
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a priori es t imate of ith mode 
resonant frequency (see p. 140) 

closed loop frequency of oscilla­
tion (see p. 115) 

FMC estimate of the frequency Cl)c 
(see p. 115) 

center frequency of the ljth FMC 
channel (see p . 140) 

(radians/second) 

(radians/second) 

(radians/second) 

(radians/second) 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

-163-

REFERENCES 

Truxal, J. G.: Automatic Feedback Control System Synthesis, McGraw­
Hl11 Book Company, Inc., New York, 1955. 

Newton, G. C., Jr., Gould, L.A., and Kaiser, J. F.: Analytical 
Design 2! Linear Feedback Con~rols, John Wiley and Sons, Inc., 
New York, 1957. 

Jury, E. I.: Sampled-Data Control Systems, John Wiley and Sons, 
Inc., New York, 1958. 

Ragazzlni, J. R., and Franklin, G. F.: Sampled-Data Control Systems, 
McGraw-Hill Book Company, Inc., New York, 1958. 

Kalman, R. E., and Bertram, J. E.: "Control System Analysis and 
Design Via the 'Second Method' of Lyapunov. I. Cont1nous-Time 
Systems," Journal of Basic Engineering, Transactions of the 
American Society of Mechanical Eng1neers, Vol. 82, Series D, 
50. 2, June 1960, PP. 371-393. 

Kalman, R. E., and Bertram, J. E.: "Control System Analysis and 
Design Via the 'Second Method' of Lyapunov. II. Discrete-Time 
Systems," Journal of Basic Engineering, Transactions of the 
American Society of Mechanical Engineers, Vol. 82, Series D, 
No.2, June 1960, pp. 394-400. 

Aseltine, J. A., Mancini, A. R., and Sarture, C. W.: "A Survey 
of Adaptive Control Systems," Institute of Radio Engineers Trans­
actions ~ Automatic Control, PGAC-6, Dec-.-l~pp. 102-108. 

Gregory, p. C. (Editor): Proceedings 2! ~ Self-Adaptive Flight 
Control SympOSium, W.A.D.C. Technical Report 59-49, March 1959, 
p. 199 and p. 348. 

Ashby, W. R.: Design for ~~, 2nd Ed., John Wiley and Sons, 
Inc., New York, 1960. 

Goodman, T. P., and lillsley, R. H.: "Continuous Measurement of 
Characteristics of Systems with Random Inputs: A Step Toward 
Self-Optimalizing Control," American SocIety of Mechanical 
Engineers TransactIons, Vol. 80, November 1958~pp. 1839-1848. 

Shinbrot, M.: "On the Analysis of Linear and Non-Linear Systems," 
American Society of Mechanical Engineers Transactions, Vol. 79, 
April 1957, pp. 5~-552. 

Kalman, R. E.: "Design of a Self-Optimizing Control System, tt 
American Society of Mechanical Engineers Transactions, Vol. 80, 
February 1958, PP--. 468-478. 



13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

-164-

Anderson, G. W., Aseltine, J. A., Mancini, A. R., and Sarture, C. W.: 
"A Self-Adjusting System for Optimum Dynamic Performance," Insti­
~ of ~ Engineers National Convention Record, Par~ 4, 1958, 
pp. 182-190 

Staffin, R.: Executive-Controlled Adaptive Systems, Doctoral 
Dissertation at the Polytechnic Institute of Brooklyn, 1959. 

Staffin, R.t "Executive-Controlled Adaptive Systems," American 
Institute of Electrical Engineers Transact1ons, Part II, Vol. 78, 
January 19bO, PP. 523-530. 

Wilts, C. H.: Principles of Feedback Control, Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts, 1960. 

Devenport, W. B., Jr., and Root, W. L.: An Introduction !£ the 
Theory £! Random S1ana1s ~ Noise, McGraw-Hill Book Company , 
Inc., lew York, 1958. 

Laning, J. H., Jr., end Battin, R. H.: Random Processes in Auto­
matic Control, McGraw-Hill Book Company, Inc., New York, 195~ 

Hildebrand, F. B.: Introduction to Bumerical Analysis, McGraw­
Hill Book Company, Inc., New York, 1956, p. 237. 

Young, D.: "Generalized Missile Dynamics Analysis II. Equations 
of Motion," Space Technology Laboratories Technical Report, 
GM-TR-0165-00359, Los Angeles, April 7, 1958. 


