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ABSTRACT

An Adaptive Controller capable of stabilizing dynamic systems
containing multiple lightly demped resonances is synthesized. The con-
troller acts to stabilize the dynamic system by introducing cascade
compensation which has zeros of transmission very close to the critical
resonant frequencies, Very little a priori knowledge is needed about
the frequencies at which the resonances occur because the Adaptive
Controller itself measures these frequencies while the system is opera-
ting. It then adjusts its internal parameters on the basis of these
measurements to insure that the overall system performance is satis-
factory. Since the measurement process can be performed continually,
this adaptive control technique is applicable to systems whose resonant
frequencies change slowly with time,

Both the measurement and compensation functions are performed
by a digital computer, The resonant frequencies are measured by cross-
correlating a signal generated by the dynamic system with a set of
periodic signals whose frequencies span the frequency intervals in
which the resonances are known to occur, The necessary compensation
is instrumented in a set of difference equations stored in the digital
computer, Certain coefficients which appear in these difference equa-
tions are adjusted according to logic programmed into the computer,

Necessary and sufficient conditions are derived to describe
the conditions under which the proposed system can be successful, The
fact that the system can perform successfully is demonstrated by a
detailed digital simulation of an adaptive autopilot for a highly

flexible ballistic missile,
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CHAPTER I

ADAPTIVE CONTROL SYSTEMS

1,1 Introduction

In the past generation the field of Feedback Control System
Engineering has developed to the point where, for large classes of
systems, it is much more a science than an art, A decade ago the prin-
ciple tools used in system synthesis were a large scale.analogue computer
and extensive simulation studies, Today the important techniques avail-
able for linear system synthesis associated with such names as Nyquist,
Bode, Nichols, Evans and Wiener are familiar to most graduating engineers
who have taken a course in servomechanism analysis (1)(2). The field
of linear sampled-data systems has been thoroughly developed in works
of Linvill, Ragazzini, Jury and others (3)(4), Significant strides have
been taken, too, toward the development of techniques for handling simple
non-linear systems via describing function and/or phase-plane techniques,
Very recently the rediscovered works of the Russian mathematician
Liaponov have caused excitement for, in the eyes of some, it appears
that through Liaponov methods of stability analysis it may be possible
to develop a general approach to the problem of non-linear system
design (5)(6).

Despite the happy state of affairs which a reading of the
preceding paragraph seems to imply, there is much room for improving
and adding to the contents of the control designer's little bag of
analytical techniques, The additions would be most welcome in regard
to the treatment of non-linear systems, where what is available lacks

the unity and generality evident in the treatment of constant-coefficient
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linear systems, A good deal of effort is being directed toward the
solution or amelioration of precisely this problem,

However, another area of investigation has captured the
imaginations of many engineers interested in the field of automatic
controls, The class of systems included in this area has been given
the rather glamorous title of "Adaptive Control Systems," Similar
systems have also been referred to as "self-adapting,” "self-optimaliz-
ing," "self-adjusting,” and in a few other ways as well, The glamour
in the word "adaptive" lies in part in the fact that adaptability is
an attribute which is traditionally associated with living organisms,
It would be exciting indeed to develop a mechanism which exhibited an
appreciable capacity for organized learning and the ability to alter
its characteristics or function depending upon sensory information
received from its environment, The ability of a system to evaluate
its own performance and to take action to improve this performance is
a concept which is close to the foundation of adaptive control principles,

A good deal of time and effort and a great number of words
have been consumed in an effort to arrive at a satisfactory definition
of the term "adaptive control system,” Three difficulties seem to
block attempts at reaching this goal,

First, words such as "adaptive” and "adaptation” have been
part of the English vocabulary for years, long before they were intro-
duced into the technical vocabulary of control engineering, Thus a
bias exists regarding what connotation the word should have when applied
to a particular mechanism, This problem is compounded because, as is

true withmany familiar words, although most of us use the word more or
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less correctly, we do not know its precise definition and thus the
same word means slightly different things to different people,

Second, the word "adaptation" already possesses two relatively
distinct implications depending upon the field in which it is being
used, The following definition from Webster's Unabridged New Inter-
national Dictionary (Second Edition) demonstrates this point;

Adaptation: Adjustment to environmental conditionms,
specifically:

a) Physiology and Psychology, adjustment of a
sense organ, as the eye or receptors in the
skin, to the intensity or quality of stimu-
lation, as of light, temperature or pressure
prevailing at the moment, by changes in
sensitivity,
b) Biology, modification of an animal or plant
(or of its parts or organs) fitting it more
perfectly for existence under the conditionms
of its environment; applied especially to a
process of evolutionary change in structure
and function, in organisms of a group or race,
Evidently, what is required of the control engineer's lexicographer is
the addition of a subheading "c" to the above definition,
Third, and perhaps most important, has been a desire to form
a definition which will exclude from the select ranks of "adaptive
control systems” all control systems which were designed before this
new word was added to the technical vocabulary, If the "adaptive" con-
cept is something new and exciting it must surely follow, the argument
goes, that "conventional" control systems do not exhibit the "adaptive"
feature, Unfortunately, this "exclusion principle” is not easy to
implement in a definition, nor is it necessarily a desirable objective,
This writer is not going to add to the growing list of definitiomns of

adaptive systems, The significant point is that the success of any
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particular control system, "adaptive” or "conventional," depends on
whether or not it performs the function for which it was designed,
Whether or not it conforms to the requirements of some arbitrary def-
inition of a particular class of systems is irrelevant,

A survey of the adaptive control field up to the beginning
of 1959 is available in the literature (7). A broad classification
of adaptive systems is stated in this article, The classes selected
are somewhatarbitrary and there is considerable overlapping between
classes, Essentially all feedback control or regulatory systems fall
in at least one category, The article serves as an excellent intro-
duction to the field of adaptive controls and it is worthwhile to re-
peat here some of its major points, The five classes of adaptive
systems suggested are:

1, Passive Adaptation
2., Input Signal Adaptation
3. Extremum Adaptation
k, System-variable Adaptation
5. System-characteristic Adaptation

Systems which display passive adaptation (Class 1) do not
change their internal parameters in response to variations in environ-
ment or performance, Rather, they have been designed to perform sat-
isfactorily over a wide range of environmental variations, Feedback
itself illustrates the principle, The reduction of effects of element
changes through the use of feedback is well known,

The next order of complexity is displayed by systems which
are input-signal adaptive (Class 2), In this form of system, the

"measurement function" makes its first appearance, Measurements are

made of the environment in which the system is operating (i.e., the
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inputs to the system form the environment) and internal system parameters
are altered to improve the performance of the over-all system based on
the results of these measurements, This measurement function is fre-
quently performed by a portion of the control system which is distinct
from the main loop.

In extremum-adaptive systems (Class 3), adjustments are made
to minimize or maximize some system variable, Actually these systems
form a sub-class of classification 4 (system variable adaptation) but
the authors of the referenced article felt this type of system to be
important enough to warrant a class of its own.

In system-variable adaptive systems (Class 4), internal param-
eters may be changed on the basis of measurements made of variables
occurring within the system, The logical relationship between the
measured quantities and the selected parameter variations is frequently,
but not necessarily, incorporated in a separate portion of the control
loop which enforces the adaptive action,

In system-characteristic adaptive systems (Class 5), a measure
of the actual system performance is obtained based on a comparison made
between the actual and the desired system response, Thus such indirectly
available characteristics as damping ratio or peak overshoot may be used
as performance criteria, A good deal of overlap occurs between Classes
4 and 5, The logical computing function for systems of Class 5 is
ordinarily somewhat more complex than that employed in Class 4 systems,

For a bibliography of adaptive systems which have been classi-
fied according to the éroupings discussed above the reader is referred

once again to Reference (7).
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One of the difficulties apparent in this and any attempt to
classify adaptive systems which is not mathematically precise is the
fact that a particular system, when viewed one way, will fall under one
heading while the same system, perhaps with its block diagram drawn
slightly differently, will appear to fall in a different category. For
example, the reader may look at Figure 1l.,la, Depending upon the cri-
terion used by the gain setting computer this system appears to fall
in either Class 4 or Class 5, A closer look at what the gain setting
computer does might reveal the true situation to be what is shown in
Figure 1l.1b, which is nothing more then a saturation non-linearity,
This would be considered to fall into Class 1 by someone following the
suggestions above, Many people, however, would like to withhold the
magic term "adaptive" and not use it at all in connection with a simple
non-linearity of this type, It is easy to see that much time can be
spent trying to resolve such semantic problems, but it is hardly time
well spent,

A remark made by Dr, J. G. Truxal seems appropriate,

An adaptive feedback system / is_/ ... one
which is designed with an adaptive viewpoint,
This sounds superficial when you first hear it
but there is really considerable merit because
nobody has any idea how to design 2 system with
an intentional non-linearity introduced into
the system to obtain desirable results, By
this adaptive viewpoint one obtains a logical,
simple, and straightforward technique towards
the inclusion of a non-linear element within
the system to obtain some reasonable perform-
ance specifications or meet some reasonable
optimization criteria (8).

The adaptive viewpoint seems to be particularly useful when

applied to systems whose characteristics and parameters change slowly
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compared with the response time of the system, Under these conditions
it may be possible to improve system performance by monitoring certain
critical parameters and adjusting these and/or other parameters in an
appropriate manner, In commenting on what is necessary in the design
of such an adaptive system Dr, J, Aseltine has said

First, you must have a measure of system per-

formance while the system is operating; second,

you must have a means for converting this measure

of performance into numbers or some measure of

how good the performance is; then, finally, you

must have a means of using this number to change

the system itself (8).

It is evident that the number of variations in the concept
of adaptive control systems is approximately equal to the number of
people who have thought about the problem, In accordance with the
belief that a single example is worth a thousand words, the next sec-
tion is devoted to a discussion of several adaptive systems which have
been discussed in the literature, Following that, this chapter con-

cludes with an outline of the problem and a description of those adap-

tive techniques which are the principle subjects of this paper.

1.2 Previous Adaptive Systems

Several examples of adaptive systems which have been described
in the literature are presented below, The problem of selection here
was considerable, for the amount published in the last few years on
this subject would, if collected, fill many large volumes, The examples
selected illustrate the feature the writer feels to be most important
in an adaptive system, Specifically, some degree of uncertainty must
exist regarding the structure of the system being controlled or re-

garding the values of various parameters describing the system and its
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environment, Measurements are therefore made while the system is op-
erating to reduce this uncertainty to the point where it is possible

to design a control system which will perform in a satisfactory manner,
Furthermore, this design is accomplished automatically during system
operation by the adaptive control system itself,

Interest in adaptive systems antedates the current activity
in the area of control systems by many years, It is not too surprising
that workers in the life sciences (neurology, physiology, biology, etc.)
recognized the importance of adaptive behavior long ago. After all,
one of the fundamental characteristics of living organisms, at least
those which are likely to survive, is precisely their adaptability.
Ashby has devoted a book (9) to the problem of "the origin of the
nervous system's unique ability to produce adaptive behavior," A
form of behavior is adaptive, he asserts, "if it maintains the essential
variables within physiological limits," Furthermore, the essential
characteristics of adaptive behavior in a living organism are achieved
by a trial and error process, "The basic rule for adaptation by trial
and error is: If the trial is umsuccessful, change the way of be-
having; when and only when it is successful, retain the way of behaving,”
A system which behaves in this way Ashby has termed an "ultra-stable"
system, i,e,, it does not have to be designed to be stable but will
automatically seek a stable state,

As an example of a mechanism which is adaptive and ultra-
stable Ashby suggested and built a relatively simple system which he
called the "homeostat,” The device had four principle variables,

Xl - Xh, which were the angular deflections of four heavily damped
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magnet coils, Each coil was driven by a current equal to a linear
combination of the deflections of each of the four coils, Because of
the heavy damping, the equations of motion of the system are obtained
by equating the turning torques (proportional to the coil currents)
on each coil to the damping torque (proportional to the angular rate

of the coil) on each coil, The resulting system of equations is

by
dxi a,.X
d_t- i ng- iJ J (1 » 1,2,3’1") (1-1)

It is evident that the stability of the over-all system depends upon
the values of the sixteen coefficients ajj. In the homeostat, twelve
of these coefficients were fixed while four coefficients (one for each
magnet) were determined by the settings of four twenty-five position
stepping-switches, The coefficients corresponding to each setting of
a stepping-switch were preselected from a table of random numbers,
The ith stepping-switch will increase its position by one unit every
T seconds (where T can be chosen anywhere between one and ten) if

Xy > 45°, Thus, if the system is unstable it changes its parameters
in a random fashion until it finds a setting which keeps all the
variables within the limits prescribed. The number of possible dif-
ferent systems, then,is 25“ = 390625,

The homeostat exhibits several undesirable properties which
make it a rather inefficient adaptive system, First, because it has
no memory it canmnot learn from experience, Second, in cases where
only a small fraction of the totality of possible states is stable it
takes the homeostat excessively long to reach a stable equilibrium

condition, It may be argued that with no & priori kmowledge of how the

-
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parameters which are being changed affect the system's performancq,
adaptation in a random fashion is as good as any other method, How-
ever, there are few, if any, engineering applications in whicha priori
information is not available about the dynamics of the system under
consideration and about how certain control parameters affect the
system, Indeed, a mathematical model of the system is usually speci-
fied, although the precise values of certain critical parameters may
not be known, Since random adaptation does not seem particularly use-
ful it follows that changes in control parameters must be made on the
basis of measurements made of the state of the system,

The problem of measurement is very critical, What are the
measurements necessary to obtain information in the most convenient
way, and what quantities should be determined? Much thought has been
given to the problem of determining process dynamic characteristics
when very little is knowna priori of what the system is (10)(1ll),
Kalmen has suggested a self-optimalizing control system which auto-
matically measures the pulse transfer function of the dynamic process
being controlled and, on the basis of these measurements, automatically
selects the coefficients of a digital controller which result in opti-
mum over-all system performance, Optimum in this case was defined to
mean a controller which forced the error resulting from a step input
to become zero in minimum time and remain zero for all time thereafter
(dead beat control)(12).

Kalman's system configuration is shown in Figure 1,2. If
the dynamic process is linear and time invariant it is well known that

*
the sampled outputs C*(kT) can be related to the sampled inputs M (kT)
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by a difference equation of the following form (note that the notation

M, = M*(kT) and C, = C*(kT) has been adopted):

ck+b1 Ck“1+ P +bn Ck_n= ao Mk+ e : ] aq Mk_q (102)

If we use the notation ziC = C

K w+q @ond define c(z) = C, and

M(z) = M, it follows that

c(z) _ 8 * ajz "t + ..+ agz™?

-1 -n
M(z) 1+ bzt + .. + bz

(1.3)

For most physical systems it is true that a, = O since the effect of

an input is usually not felt at the output instantaneously, Therefore,
- i -q

BYZ T e ¥ BLE

c(z) " 1 q

) =
M(z) 1+ bz7" 4 ..+ bz

= (1.4)
The information available about the system at time NT are the values
of C, and Mk (k =0, 1, .., N)i. The ay and bi must be computed from
these values, Once the a; and by are known it is possible to design
the optimum controller, Kalman computed the a; and b; on the basis of
a weighted least squares filtering technique where the weighting as-
signed higher weights toc recent values of M and C* than to older
measurements, Particular values of n and q must be selected in advance,
The accuracy of system representation goes up as n and q are increased,
but so does the amount of computation necessary,

Another interesting adaptive system is based on the relation-

ship which exists between the cross-correlation function between the in-

put and output of a linear time variant system, If a physical system
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having an impulse response g(t) is excited by a stationary noise signal
having an auto-correlation function ¢11(7'), then the cross-correlation,

¢10(T'), between input and output is

@

9o(T) = | ) 907 - 0) x (1.5)
-00
If the excitation noise has a bandwidth considerably larger than that
of the system being tested, @,,(7) is effectively an impulse and,

from Equation 1,5

#:.(7) = &(T) (1.6)

i,e., the cross-correlation between the system's input and output is
identically equal (within the validity of the approximation) to the
system's impulse response, Anderson, Aseltine, Mancini and Sarture
have described a self-adjusting system based on this principle (13),
Their system configuration is shown in Figure 1,3, White noise is in-
troduced into the system along with the signal which is to be followed.,
The system output is cross-correlated with the white noise input to
obtain the system's impulse response, The impulse response is con-
verted to a figure of merit (a number) which is used to adjust system
parameters, The technique was applied successfully to a second order
system, The system automatically adjusted a single parameter in order
to maintain a constant closed loop damping ratio,

The final example treated in this section is a system sug-
gested by Staffin (14)(15). The method is applicable to systems whose
open loop tramsfer function has a lightly damped dominant pole pair

whose natural frequency is not known precisely. The configuration is
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shown in Figure 1.4, The dynamic process is assumed to have a trans-

fer function of the form

c(s) X Cple) i
M(s) 1+ 23s/m, + se/mﬁ \
where
k
T7(1 - s/ay)
0 (s) = —== (1.8)
P m N
77 (1 - s/oy)
i=1
The condition of light damping requires that
5 241 (1.9)

while the requirement that the pole pair be dominant means that

o (< |ag] or o, | (1.10)

It is proposed to cancel the lightly damped pole pair by
using tandem compensation having a lightly damped pair of zeros at
frequency By Therefore o must be measured during operation of the
system, K will also be measured to allow the selection of a gain KE
to yield an optimum loop gain., The proposed measurement technique is

quite simple, Choose two frequencies © and @y such that

3oy € oy @y <<layf or o] (1.11)

Then it follows that

,Jc(wl)’
I Kl BJWI (1.12)
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and

l Cla,) l~ IX |
- 1.13
M(w,) | [1 - (ma/mn)e | ( )
Solving for o yields
I c(o,) |
on = o, (1.1%)

Ic(wy)] + [KM(w,) |

Knowing o, makes it possible to select from a set of available filters,
Gl(s)....GN(s), the one having zeros which most nearly cancel the dom-
inant pole pair, It is claimed that, under suitable restrictions, the
necessary measurements can be made with adequate accuracy while the
system is operating.,

This final example was included because it is an approach
to a problem somewhat similar to the problem studied in this investi-
gation. The next section describes what this problem is and what

approach will be taken to achieve a solution,

1.3 Scope of the Present Investigation
It has been shown that the success of many adaptive techniques
depends upon the validity of the following hypothesis:
It is possible to synthesize a comtroller
which will provide satisfactory system per-

formance if enough information is available
concerning critical system parameters,

This assumption is the foundation upon which rests the success of the
last three systems described in Section 1,2, It is reasonable to
say that if all critical system parameters are kmown and do not vary,

adaptability in the sense used here (i.e,, the ability to change
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parameters if system performance is unsatisfactory) is an unnecessary
and expensive attribute, Nothing is gained by incorporating a sophis-
ticated measuring computer in the system since it can only tell us
what is already known, If some system parameters vary but are well
specified as functions of time or as functions of directly measurable
quantities (e.g., dynamic pressure of Mach number for an aircraft con-
trol system) an adaptive system may or may not be preferable depending
upon whether or not its over-all reliability and probability of suc-
cessful operation exceed that of a non-adaptive system, In the case
where critical parameters vary and furthermore are not predictable
with adequate accuracy between members of an ensemble of systems in
which they occur, the ability to adapt may be imperative,

It is a dynamic system of the latter type with which this
investigation is principally concerned, The general adaptive control
problem may be specified analytically as follows:

Given: A dynamic system specified by the

following system of equations:

axXy
== Fi(xl e Xy X e < pl cee By 5 1) (1.15)
where
x,(t) = 1*® state variable (1 =1, ..., n)
«;(t) = 1*® control parameter (i = L5 ey B
ai(t) = i"B critical system parameter (i = Lamnsigal)
t = time

The system is completely determined by this set of equations for, if

all the «,; and B, are known functions of time and initial conditions

-
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are specified on the X,, then the Xi are determined for all future

i?
times,
Required: To select the proper values for o(l ses X

at all times to insure that the

over-all system response satisfies

some specified performance criteriom,
It will be assumed that the adaptive system considered is a member of
the class of systems that satisfy the hypothesis stated at the begin-
ning of this section, i.e., if all the B, ... Qe are known at a

particular time it is possible to assign values to the =« ,.. o(m

T
which insure satisfactory system performance,

In the following chapters a special case of this type is
treated in detail, The author's interest in this problem arose during
the course of his association with Space Technology Laboratories where
he expended considerable effort on the problem of designing autopilots
for highly flexible missile systems, The characteristic feature of
the flexible missile design problem is the presence of many extremely
lightly damped resonances due to the structural flexibility of the
vehicle, Actually, of course, a complete representation would require
an infinite number of such modes, Fortunately, the frequencies as-
sociated with the higher modes can be attenuated by proper design and
only a finite number of modes need be considered. This, then, is the
origin of the system with multiple lightly damped resonances, A block
diagram of the system described is shown in Figure 1,5. Although the
problem arose in connection with ballistic missile autopilot design,

it is evident that the configuration shown could arise in a number of

other ways.
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In the following chapters the problem is developed in detail
and it is demonstrated that, under suitable assumptions, the system
satisfies the hypothesis stated in the beginning of this section. The
critical parameters which must be measured during the operation of the
adaptive system are obtained, A technique for measuring these variables
directly is suggested and analyzed. The results of a complete simula-
tion of the adaptive system are presented, Finally, areas which appear

to the author to be fruitful for further research are mentioned,
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CHAPTER II

THE FLEXIBLE MISSILE CONTROL PROBLEM

2.1 Introduction

Textbooks on the subject of automatic control theory tradi-
tionally have stressed, in their examples, first or second order systems,
Even in cases where higher order systems are touched upon, it is fre-
quently assumed that a dominant closed loop pole pair will exist which
determines the essential character of the system's transient response
and stability, It is assumed that if close control can be maintained
over the location of this dominant pole pair the remainder of the poles
of the system will not be troublesome,

This chapter deals with a problem which has become extremely
important during the last few years, The problem is that of designing
an autopilot for a highly flexible space vehicle or ballistic missile.
In addition to the great practical importance of this space age problem,
it is also of considerable academic interest as an excellent illustra-
tion of a high order complex system which cannot be reduced to the con-
venient example of a first or second order servomechanism, High per-
formance missiles are quite flexible because of the effort which is
made to keep the structural weight of the vehicle to a minimum, Every
additional pound used to stiffen the vehicle structure can mean a pound
less available for a payload or several miles decrease in range for a
fixed payload, Thus with performance capability at a premium it ap-
pears that the control system designer is going to have to live with

low structural natural frequencies for some time to come,
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The remainder of this chapter contains a detailed discussion
of the dynamics pertinent to the design of a control system for a
highly flexible missile, Design criteria are specified and the con-
ventional approach to the problem is discussed, The limitations of
this approach are pointed out, It is intended that this chapter will
be the foundation on which an understanding of the adaptive approach

described in later chapters can be based,

2.2 Essential Characteristics

Approximate dynamic equations describing the perturbed motion
of a ballistic missile about its nominal trajectory are presented in the
Appendix, Although these equations are formidable as they stand, they
do not do justice to the complexity of the problem and neglect several
effects of considerable importance, The model used in the derivation
does not, for example, represent the effects of propellent sloshing
in liquid fueled vehicles, Nor does it represent the sizable inertial
reaction forces which act on the body of the vehicle due to the swivel-
ling of the massive rocket engine which generates the vehicle's thrust,
These effects were neglected in order to enable a detailed simulatdon
of the system to be made on an Electrodata-220 digital computer, Had
a much more detailed model been used, the solution time would have
been prohibitive, A complete list of the approximations and assump-
tions implicit in the form of the equations is given in the Appendix,
In spite of these approximations, however, the system does exhibit
the feature of principle interest in this investigation, i.e., the

presence of multiple lightly damped resonances,
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The lightly damped resonances arise directly from the struc-
tural characteristics of the vehicle which, in flight, looks like a
beam with a transverse distributed forcing function acting on it. The
transverse forces are due to aerodynamic effects, the component of the
rocket engine's thrust which acts normal to the vehicle, and inertial
reaction forces acting at the point where the engine is attached to
the main airframe, The boundary conditions at the ends of the beam
are the usual "free-free" end conditiomns, i.e., there can be no inter-
nal shear and no internal moment at either end of the beam,
Figure 2,1 shows the geometry of the situation being described,
Below is a list defining the symbols appearing in the figure,
éi, !} unit vectors defining an orthogonal set of
inertial reference axes, 3& is o;&gnted in the
direction of the local vertical, ey is direc-
ted "downrange,” €y and ¥y define the pitch
plane of the missile's trajectory.
€x, €, unit vectors defining a set of orthogonal
coordinate axes whose origin is fixed at the
center of mass of the missile, &, lies along
the undeformed elastic axis and € is normal
to this direction, ’
c,.m, the location of the center of mass
CePe the location of the center of pressure
'g the distance from the c¢,m, of the vehicle to
any point on the rigid body axis, § is posi-
tive for points forward of the c.,m, and
negative for points aft of the c.m,
M the total mass of the vehicle
P § the total inertia of the vehicle about an

axis passing through the c.m, normal to the
pitch plane

<4

the instantaneous velocity of the c.m,

I gravity vector
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; rocket engine thrust

4] angle between line of action of T and the
deflected elastic axis at the point of thrust
application

(=] angle between local vertical and the x axis

= angle gf attack, equal to the angle between
V and e

X
u deflection function, equal to the distance,

normal to the undeformed elastic axis, be-

tween the deflected elastic axis and the

undeformed elastic axis

t time
Most of the parameters which characterize the missile and

its trajectory vary with time, For example, mass and moments of in-
ertia change as fuel is burmed, Velocity changes continuously during
flight, However, if it is assumed that the missile follows a known
nominal trajectory all these parameters are known as functions of time
and it is possible to derive a linearized set of constant coefficient
differential equations which are appropriate to any particular time,
A stability analysis of this quasi-stationary set of equations can
be performed using the powerful tools available for linear constant
coefficient systems, The results are valid if the parameters change
slowly compared with the response time of the control system, In order
to insure that the system performance is satisfactory for all times
of flight, it is necessary to analyze the system on this quasi-
stationary basis for several times of flight spanning the trajectory.
In the examples discussed in this chapter, four times of flight have
been selected, These are: launch (where the velocity equals zero);

max Q (Q refers to aerodynamic pressure, and aerodynamic effects are
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of great importance when Q is at its maximum value); midburn (velocity
is high and the aerodynamic effect is still of some importance); and
burnout (assumed to occur out of the atmosphere and the aerodynamic
effect is negligible).

Using the model of the dynamic system developed in the Ap-
pendix, it is possible to derive transfer functions between the various
significant variables, A normal mode representation is used for the
deflection function u(g ,t). If the loop transmission at higher mode
frequencies is well attenuated (as it will be in a well designed auto-
pilot), it is possible to approximate the deflection function closely
with only a small number of terms of the normal mode expansion, For
the purposes of this investigation it is assumed that only the first
three terms are necessary (see the discussion of this point in the

Appendix, p.152). Therefore,

u(g,t) = 1% a;(t) ¢;(§) (2.1)
where
q4(t) = i®® generalized bending co-
ordinate (2.2)
and

¢i(§) = 1i'P® pending mode shape (ih
eigenfunction of the free- (2.3)
free beam equation)

It is convenient to define the following quantity for use in the later

portions of this chapter:

agy

Ai(g) = i e . glOpe. of ddie 17D
d§ bending mode eigen- (2.4)
function
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The following notation will be employed when using these mode shapes

and mode slopes

¢A1 = ¢i( %A) (2.5)
and

Ay = AUEBY (2.6)
where

§A = value of E at location A (2.7)

along the axis of the missile

The approximate open loop transfer functions of interest are
shown in Figure 2,2, A feedback loop has to be closed around the sys-
tem to provide the capability of following a commanded attitude varia-
tion ©,. Angular position feedback is generally supplied by a position
gyro located at coordinate ‘gp, and a rate gyro located at '§£ is used
to provide the prediction necessary to stabilize the system, The
complete model of the control system is shown in block diagram form
in Figure 2.3, This is the configuration which will be analyzed,

The symbols needing definition in the figures are:

N, = % (= §T) (note that u_ > 0)
N
n = _ol (ke > O if the ¢,p, is forward of
< E 3 ECP the c.g.
H°< = aerodynamic force acting normal to the unde-

formed elastic axis per unit angle of attack

@y = natural frequency of the ith free-free
structural mode

:Si = damping of the i‘P natural mode (for the
lightly damped modes of interest it will
be assumed that 31 = 0,005)

Kb = attitude gain constant

Kh = attitude_rate gain constant
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= natural frequency of the engine resonance
(assumed throughout to be 60 radians/sec)

:BE = damping of engine resonance (assumed through-
out to be 0,1)

og = break frequency of hydraulic system (somewhat
at disposal of desigmer; 10 £ wy £ 50)

G.(s) = compensation transfer function used to
improve system performance
QE = effective total angle compared with com-

manded input
Ty, = value of § at the point of thrust
application
Design criteria for the control system are frequently speci-
fied in terms of gain margin and phase margin. It is common to require
at least + 10 db of gain margin and + 30° of phase margin at all times
of flight, A positive (negative)algebraic sign associated with a gain
margin means that an increase (decrease) of gain by a factor numerically
equal to the margin will make the system unstable, An algebraically
positive (negative) phase margin means that an additional phase lag
(lead) numerically equal to the margin will drive the system unstable
(the additional phase shift is introduced at the frequency at which
the magnitude of the loop gain is unity), Since the system under con-
sideration is of the conditionally stable variety, both positive and
negative gain margins are of significance, In order to meet the design
requirements at all times of flight it is necessary, in general, to
change certain control parameters such as K (attitude gain) and
Kh (rate gain) and possibly the shaping Gc(s) several times during
the flight, In order to keep the autopilot reliability high the

number of such changes during a flight should be kept as low as possible,

-
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Before examining the effects of the lightly damped feedback
paths, it will be instructive to analyze the stability of the system
in the absence of bending, To simplify matters further, G, (s) has
been set equal to unity, Figure 2,4 shows this condition, The loop

transmission, Op/E , is

2 g
o(s) = -E - be (Kp * Ks) g oy (2.8)

€ (2 -, ) (s +ay) (s2+ 28, ugs + ag?)

The system is stable if the rational function P(s) = 1 + G(s) has no
zeros with positive real parts, The number of right-half-plane roots
of the equation P(s) = O can be determined by using the Nyguist

stability criterion (16)., From Equation 2,8, letting s = jw,

Kp( o /ig VI + Jo/(Ky/KR)]
(1 + Jo/fig ) (1 - Joifig ) (1 + Jo/eog)

G(Jo) =

(2.9)
h |

[T+ 235 Jo/og + (Ju/og)?]

The exact shape of the locus of Equation 2.8 depends, of
course, upon the particular numerical values chosen for the various
parameters appearing in the equation, During operation of a typical
control system, p. and will vary strongly with time, wp and wg
will be essentially constant, and the control parameters K, and K
will be at the disposal of the autopilot designer, Figure 2,5 shows,
in the form of a log magnitude and phase plot, how the transmission
might vary as a function of flight time for a typical set of parameters,

The parameters which are the same for all the curves are:
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o = 60,0
w01

(oH=15.0
fpicshy
The times of flight shown are launch, max Q (time of maximum aerody-

namic pressure, Q), midburn, esnd burnout, The values of B and Hog

for these times of flight are:

Launch Max Q Midburn Burnout
e k11 b8k 5.86 19.66
B 0 2.34 0.61 0

The location of the zero db line is shown for three different values
of Kb. It is assumed in this application that the value of KD is at
the disposal of the autopilot designer and must be selected to meet
the gain and phase margin criteria stated on page 32 (i.e., + 10 db
gain margin and + 30° phase margin), In anticipation of the diffi-
culties which consideration of the lightly damped resonances will
introduce it will also be required that the low frequency loop-gain
be made as small as possible,

Because the ballistic missile system which we are considering
is open loop unstable (it has a pole in the right half plane due to
its unstable aerodynamic configuration) there is a certain minimum
loop gain required to insure stability, It is easy to demonstrate by
use of the Nyquist Criterion that the magnitude of the low frequency
loop gain must be greater than unity if the system described by
Equation 2,9 is to be stable, But from Equation 2.9, the magnitude

of the low frequency gain is K pc/g< « Therefore the following
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inequality must hold just to maintain marginal stability:
Kybolbg > 1 (2.10)

In order to meet the specification of at least -10 db gain margin,
the right hand side of this inequality must be multiplied by a factor
equivalent to 10 db, i,e,, by a factor of 3,162, In light of this we

rewrite Equation 2,10 in the following form:

K> 3.162 g /i, (2.11)

In order to keep the gain low, the equality sign is used,

It should be noted from the relation above that the minimum
required value of Kb approaches zero as p approaches zero, Thus,
in regions of the flight where aerodynamic effects are negligible it
appears that the attitude gain KD can be made as small as we like,

There is, however, a lower limit to the value which we can
assign to K. This limit arises from a static accuracy requirement,
The model preséanted in the appendix has assumed implicitly that the thrust
vector passes through the missile c,m, vhen & = 0 and u(g st) = 0,
i,e,, for this condition the thrust produces no moment about the c.m,
However, the nominal zero of § is set in practice by optically align-
ing the center line of the rocket thrust chamber with the center line
of the body of the missile, In practice there will be some misalign-

ment error, 8_, equal to the angle between the line of action of the

m?
thrust vector when 5 = O and the line joining the c,m, of the system
and the point of application of the thrust vector, Since in the steady

state the thrust vector must pass through the c.m,, the steady state



38

value of 8, 84, must satisfy the equation &, = -5 . From
Figure 2,4 it may be seen thet §, = KD Ess‘ The steady state at-

titude error, & is therefore

ss’
E’Sl - 'bm/KD (2.12)

A lower limit of 1/2 is frequently specified for 1%, which means that
the steady stete attitude error due to thrust vector misalignument is
at most twice the value of the misalignment, Typically this will keep
the attitude error below 1°,

In genersl, then, the minimum allowable value of Kb at any

time of flight is set by the following pair of inequalities:

3.162p°(/p,c for 3.1612u,</u.c > 0.5
K >/ (2.13)
0.5 for 3.162 “o(/“’c £ 0.5

KD is usually not programmed to vary continuously., Rather,
in the interest of reliability and simplicity it is programmed to chenge
its value at several discrete times, If we limit ourselves to one gain
chenge for the example under consideration, it is reasonable to choose
KD = 1,53 from launch to midburn and Kb = 1 from midburn to burn-
out, If a second gain changs were allowed 1t would be desirable to
reduce Kb to 1/2 (its lowest allowable value) as soon after midburn as
possible consistent with the phase margin requirements, The stability
margins can be read directly from Figure 2.5 for the two values of

gain chosen and are tabulated below,
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Gain Margins (db) Phase Margins
*Iésssssif

Launch -c0, + 30 33
Ky = 1,53 4 Mex Q -10, + 28.5 31
Midburn -23.3, + 26.9 36
Midburn -19.6, + 30.6 31
o= Burnout -©®, + 20,0 ko

In order to get a feeling for how the system should behave
when lightly damped resonances are present, the following obeervations
are made from Figure 2.3. BEach of the resonant transmissions from
8 to OE is summed with the rigid body transmission, The transmission

associated with the k'B mode will be called Gk(s) and is given by

-T Py o2

Mmkg 32+25kwks+mk

Gk(s) .

- (K, )\Pk + KR/&RK s) (2.14)

To obtain the frequency response one makes the substitution s = jm,

which gives

G, () i (K Ape *+ 3 KgAg W :
o ) mka KD = KR < 1l - (m/mk)e ¥ 25& (Q‘/"’k)
(2.15)
A Nyquist plot of the normalized function
F(Ju) = L = X+ JY (2.16)

l-u2+325u

is shown in Figure 2.6, It is easy to show that the equation describ-

ing this function, when u is eliminated, is

(x - 1/8)2 + (Y + 1/83)2 = (1/8%)2 zor 33X/ (K1 (2.17)
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Furthermore,
u?1+Xx/x for BXx/¥ KL1 (2.18)
For the lightly damped resonances of interest (5 < 0,01) the fig-
ure is & circle of radius 1/(4%) centered at X = 1/4 and Y = -1/(43).
The peak transmission is very nearly 1/(23) et an angle of -90°,
From Equation 2,15 and 2,16 the phase and megnitude of G (Jw)

in the vicinity of resonance is

* By

Mmk

Kb’&Px
(-@. ) ()= § —————) } Yeo/w) (2.19)

Gk(-k‘) = +

The Nyquist plot of this function for o X o, is approximately a
circle passing through the origin, The diameter of the kP moge circle

passing through the origin makes an angle ‘}aﬁ with the positive real

axis, where

-ten~t KD)PK (radians) if ¢‘1‘kl‘ﬂk <o
Kp Rk
T- ten-l _DZ Pk (ragiens) if ¢TkARk >0

KR ARk ®k

The total loop transmission through the kB resonance is obtained by
rultiplying G.(Jw) by the contents of the blocks in Figure 2,3 labeled
"Compensation," "Hydraulic Actuator,"” and "Engine Resonance," all
evaluated at © = o, OE/E is then the sum of all the resonant trans-
nissions and the rigid body transmission, Figure 2.7 shows en example
of the form of the loop ‘ransmission which results when resonances are
included for the case where Kb Gc(s) = 1, Three resonant modes are

included at frequenciles of 17, 35, and 53 radians per second, A mode
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is unstable if its circle in the Nyquist diagram encircles the -1
point, For the parameters chosen Filgure 2.7 shows ‘hat the system
will have a divergent 2nd mode oscillation, Although the loop trans-
missions at first and third mode frequencies is greater than unity,
these modes are stable due to the orientation of these bending loops,
Equations 2,18 and 2,19 show that the magnitude snd orienta-
tion of the resonant loops depends upon the bending mode slopes ;LPk
and ,le at the points where the position and rate sensors are located,
In particular, if the slope at either of the sensor locations changes
sign the output of the device will be changed in phase by exactly 180°,
Figure 2.8 shows how the mode slopes might very during the course of a
flight, This variation means that the phase angle at which the peak
resonant transmissions occur can change considerably during the course
of a missile flight, ss can the magnitude of the resonant trensmission,
There are essentially two ways by which a resonant mode may
be stabilized, First, the transmission at a resonant frequency may
be reduced by appropriate compensation to the point where the loop
trensmission at resonance is less than unity.' In this case the mode
is seid to be "gain stabilized.” A gain stabilized mode will be stable

regardless of the phase of the loop transmission at resonance, Second,
although a large resonant loop occurs at resonance, a mode will be
stable if its orientation on the Nyquist diagram is such that the -1
point is not encircled, 1In this case the mode is said to be "phase
stabilized," A phase stabilized mode will be de-stabilized if the
phase shift at resonance changes enough to swing the resocnant loop

into & position such that it encircles the -1 point, Using these
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concepts we see that, in Figure 2,7, modes 1 and 3 (at frequencies of
1T and 53 radians per second, respectively) are phase stabilized while
mode 2 (at 35 radians per second) is unstable,

In light of the previous dilscussion concerning the variation
with time of the bending mode slopes and the direct effect this has
on the phase at resonance, it is evident that great care must be taken
to insure that the phase is correct at the frequency of each phase
stabilized mode, This is quite difficult to do for several bending
modes simultaneously, especially so because the system characteristics
are not known exactly and very considerasbly with time, In additionm,
the system characteristics at higher bending mode frequencies are not
well known due to inaccuracies at high frequencies in any system model
which is used,

The following section describes the epproach which is cur-
rently followed in the design of autopilots for highly flexible

vehicles,

2.3 The Present Design Approach

It should be recognized that in the model described in the
preceding section e2ll coupling between the autopilot snd the structural
resonances occurs via the autopilot sensing devices, i,e,, the position
and rate gyros, While a more complete representation would indicate
other possible methods of coupling, further analysis shows that by
far the dominant coupling does indeed occur via the sensors, In ad-
dition, because a rate sensor emphasizes high frquency signals, the
coupling through the rate gyro is usually far more detrimental than

coupling through the position loop. Thus the rate gyro is usually
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located in as favorable a location along the length of the missile
as 1s possible,

This favoreble position is close to an antinode of the first
or second bending mode (2 point where 21( ER) =0 for i=1or 2),
In this way the gyro effectively does not pick up the mode and thus
it 1s not coupled to the autopilot, However, an accurate knowledge
of the missile's mode shapes is required to accomplish this, and the
autopilot design, therefore, 1s highly dependent upon the missile's
structural cheracteristics, Due to the fact that the mode shapes
change considerably during the duration of a flight (thus the position
of the various antinodes changei it may be necessary to use several
rate gyros and use their outputs individually or sum them in pre-selec-
ted proportions depending upon the time of flight, It is not possible,
in general, to place a single sensor near an antinode of more than
one mode,

The properties of the final control system design are highly
dependent upon whether the rate gyro is located forward or aft of the
first mode antinode, If the rate gyro is located forward of the first
mode antinode, ¢TIA‘R1 2 0, wvhile if the gyro is located aft of the
first mode antinode, @ " A'Rl < 0. Referring to Equation 2,19 we
see that, for very small AP].’

0 (radisns) for ¢‘1’l )LR]. < 0 (gyro aft)
Y, * (2.21)

m (radians) for ¢T1 ARI D 0 (gyro forward)

Remember that the angle 'l(/l specifies the phase at which the maximum
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first mode trensmission occurs when e&ll phase shift in the autopilot
i3 neglected.

When forward mounted gyros are used, an ettempt is made ‘o
introduce as much phase lag as possible at the first bending frequency
by putting lag networks in series in the loop, Since these lag net-
works also introduce attenuation at higher frequencies, it may be pos-
sible to gain stabilize all higher modes when this method is applicable,
Unfortunately, when the first mode frequency is too low, it is not
possible to introduce enough lag to stabilize the first bending mode
without also sacrificing a significant portion of the rigid body sta-
bility margins, It is then necessary to place the rate gyro aft of
the first mode antinode and minimize control system phase shift at the
first mode frequency in order to keep the system stable, Since lag
networks in this case cannot be put in at very low frequencies rela-
tive to the higher bending frequencies, it is usually not possible to
gain stabilize sll higher modes, In the system represented by Figure
2.7, for example, the rate gyro is located aft of the first mode anti-
node, Thus the phase of the first mode transmission through the rate
gyro alone (neglecting all phase shift in the sutopilot) is 0° (by
Equation 2,21), The fa;t that the first mode resonance as shown actu-
2lly occurs at an angle of approximately -27° is due to the effect of
lag in the eutopilot and the contribution of the position sensor (which
in the example was located forward of the first mode antinode) to the
total loop gain, It 1s evident from Figure 2,7 that the autopilot
does not cut off rapidly enough to gain stabilize either the second

or third bvending mode,
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Aerodynamic and bending problems place two contradictory
requirements on the value of the low frequency loop gain, In order
to stabilize the rigid body in & region where aerodynamic forces are
large (i,e,, at max Q) it is desirable to have a high loop gain in
order to maintain a tight control loop, However, a low loop gain is
desirable at all times to minimize bending transmissions, The resolu-
tion of a compromise between these two competing factors depends upon
the parameters of the particular system under consideration.

In general a solution is achieved by tailoring the control
system parameters at each time of flight to the nominal missile char-
acteristics which apply at that time, Control loop gains and filters
are changed either continuously or, more commonly, at several pre-
determined times during the flight of the missile, Thus an extremely
detailed design must be performed if any slight change occurs in missile
characferietics. The control system parameters which are the result
of the design effort are, in particular, extremely sensiiive to changes
in bending characteristics, An improvement in design which would re-
sult in a system which was relatively insensitive to the magnitude of
the bending frequencies and bending mode shapes would be extremely
desirable,

The material presented in this chapter was intended to serve
as an illustrastion of how a system with lightly damped resonances
might arise, The example of the ballistic missile illustrates the
point that these resonances are the most severe obstacle to a straight-
forward control system design., Any effort to improve control systems

for this class of systems should aim directly at ameliorating this
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problem, The following chapters describe the principles and operation
of an approach to the problem which leads to a system which is no
longer highly sensitive to bending characteristics and, in this regard,
must be considered an improvement over the conventional design

approach,
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CHAPTER III

LIGHTLY DAMPED RESONANCES AND ADAPTIVE CONTROL

3.1 Introduction

With the background provided by Chapter II it is possible
to examine the desirability of incorporating asdaptive features in a
controller for systems with lightly damped resonasnces, Let us first
restate the analytic formulstion of the adeptive control problem which
was presented on page 19,

Given: A dynamic system specified by the following set of equations:

X /at = Fi(Xy, eeey Xy Xqeeey opy Bryesey By, t) (3.1)
where
Xi(t) = 1" gtate variable {i=1. oee, B)
«4(t) = 1*B control parameter (i=1l, ,.,., m)
B4(t) = 1*0 criticel systen parameter (1L =1, ,..,£)
t = time

Note that the quantities 51 are not known precisely during
the design of the system in cases where adaptive control is desirable,
Required: To select the proper values of °(1.' ceeyof, 8%
ell times to insure that the overall system response

satisfies some specified design criteria,

The characteristic feature of the hypothetical highly resonant
system of concern here is the fact that the frequencies of the reson-
ances are not known with precision, In the ballistic missile illus-

tration it will be recalled that there were an infinite number of
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these resonant frequencies corresponding to the natural frequencies

of an unsupported (free-free) beem, Fortunately, for all practical
purposes, only a finite number of these resonances are of interest,
These frequencies correspond to the 31 in Equation 3.l. It will be
demonstrated in Section 3 of this chapter that it is possible to de-
sign a particular type of control system which will result in a setis-
factory system response if this finite number of critical frequencies
is known accurately enough, Certain auxilliary restrictions which
mus!l be met are also discussed in Section 3,

Since the system is time-varying and has critical parameters
which are not known precisely it will‘ba necessary to measure these
parameters in real time es the system 1s operating, This informetion
will then be used to adjust paraweters in the controller, The proposed
adaptive systewm configuration is shown in Figure 3,1, The adaptive
feature of this system is the secondary feedback loop. A signal y(t)
is processed in a "parameter measurement computer" which provides
commands to the controller to adjust internal parameters, In accor-
dence with standard notation, the input signal to the controller is
an error signal e(t) and the output of the controller is the "manipu-
lated variable” m(t). m(t) 1s the signal which activetes the dynamic
system (1t would correspond to the angle 8 in the missile example).

Ae 1is frequently the case with adaptive systems, it is con-
venient now to think of the adaptive portion of the control system as
performing two relatively distinct functions, The first may be termed
the "identificetion function"” and the second termed the "correction

function.”" In any perticular system, it may or may not be possible
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to identify separate portions of the system performing these functions,
Likewise, they may be occurring simultaneously or during different
portions of the control cycle, During the first phase of the opera-
tion the pre-determined critical system parameters are measured to
within the desired degree of accuracy, Action is tsken to vary the
adjustable system parameters during the second phase of the adapting
process, The principle feedback loop is operating throughout the
process of adapting,

Information about the resonant frequencies is obtained by
processing a signal y(t) (see Fig, 3.1). The signel y(t) can be anj
arbitrary function of the state of the system and 1s generated in such
a manner as 1o insure that if any oscillation at a resonant frequency
is occurring it will be seen in y(t). In the missile examplg,y(t)
could be the output of a rate-gyro mounted on the missile in a loce-
tion where all the bending slopes of interest have & non-zero value
(the nose and tsil of the missile are two such locations)., If the
system is oscillating et more than one resonant frequency, signal com-
ponents will be present in y(t) at each of these frequencies,

The adjustable controller parameters will initially be set
to values which nominally provide a stable system at €t = O, As the
characteristics of the dynamic system change with time it is possible
that one or more of the resonant modes will become unstable, and an
oscillation will begin to build up nesr the corresponding natural fre-
quency, The Adaptive Frequency Measuring Computer (hereafter referred
to as the FMC) will detect & component at this frequency of oscilla-

tion in y(t) and vies its internally programmed logic will cause parameters
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to be changed in the controller to restabilize the system, It is im-
mediately apperent that if this concept is to be successful in a real
physical system the adaptation (i.e,, the change from an unstable to a
stable configuration) must take place rapidly enough to insure that the
resonant oscillations do not reach a destructive level, Structural
vibrations of a missile, for example, lead to large dynamic loads on
the structure,and the missile will break up if the maximum design loads
are exceeded,

The nature of the controller itself merits some comment at
this point, The controller will be restricted to be a time varying
plecewise linear operator which produces an output m(t) through piece-
wise linear operations performed on the input signal e(t), The physi-
cal realization of this controller could be achieved by utilizing active
electrical networks to perform the'desired operations, In order to
modify the transfer characteristics of this continuous controller it
would be necessary to change the values of physical components such as
resistors and capacitors,

The controller can also be realized within a digitel computer
by programming the solution of a set of difference equations relating.
the input and output signals, Such digital systems are considerably
more flexible than conventional analogue controllers, In order to
modify the transfer characteristics of the digital controller it is
only necessary to change the values of certain parameters which are
stored in the digital computer, This can be dome quite easily,

Control systems which incorporate digital computers directly

in the control loop are called "sampled-data" control systems (due to
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the fact that digital computers operate only on discrete samples of a
continuous signal), The adaptive system which is the subject of this
thesis is a sampled-data system, Both the controller and the adaptive
parameter measuring computer are instrumented in s digital computer,
The sampled-data configuration is shown in Figure 3,2, The two switches
represent samplers which sample e(t) and y(t) every T, and Ty secoﬁds
respectively, Two different sampling rates are used because, as will
be shown, the signal e(t) need not be sampled at the high rate which
is necessary for y(t)., Thus some economy of computing capacity is
effected by making T :$>Ty. In accordance with standard notation,
starred quantities (e.z,, e®(t)) represent sampled signals, Note, in
Figure 3,2, that a2 zero order hold circuit is used to convert the
discrete output m’(t) of the digital computer into a piecewise constant
signal m(t) which is used 2s sn input to the highly resonant system
dynamics,

A great body of literature is available on the standard
techniques which are available for analyzing linear comstant coeffi-
cient sampled-data systems, It will be assumed that the reader is
familiar with the Z-transform as applied to linear sampled-data sys-
tems, and this analytic technique will be used freely in subsequent
sections of this thesis, Familiarity with the Nyquist stability cri-
terion and the root-locus technigue as applled to sampled-data systems
is also assumed, A good treatment of these subjects is available
elsevhere. (1)(4).

The details of an adaptive control technique applicable

to highly resonant systems are presented in the following sections,
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First, the problem of determining the system's natural frequencies
will be considered, Following this a means of utilizing this informs-
tion in a digital controller will be presented, The chapter will
close with a summary of the important points developed in the body

of the chapter,

3.2 Detection and Frequency Measurement

This section will treat the problem of parameter identifica-
tion in the system under consideration, The parameiers of interest
are the frequencies of the system's lightly damped rescnances, The
numerical values of these frequencies will be obtained by operating
on the signal y(t)., The basic concept underlying the adeptive portion
of the control loop is the following: 1if the system is unstable due
to a particular resonance, an oscillation will begin to build up very
near the natural frequency of that resonance, An oscillation at this
frequency will appear in y(t), and its presence will be detected and
its frequency measured in the adaptive FMC,

Two conflicting requirements are immediately apparent, First,
the values of the resonant frequencies must be determined as rapidly
as possible to insure that corrective action is taken before the oscil-
lations reach a destructive level, Second, the frequencies must be
determined very accurately to insure that effective asdaptive adjust-
ments of controller parameters can be made, The accuracy with which
one can measure the frequency of a signal, however, is proportional
to the length of the signal which one has to examine, Thus in order
to locate the frequency with great precision one must wait until an

_appreciable length of signal is available for processing., On the
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other hand, in order to insure thst the system does not destroy itself
due to resomant oscillstions one must determine the frequencies in the
minimum possible time,

The key to rapid determinstion of the resonent frequencies
is parallel operstion of many tuned elements, The principle of the
method developed in this investigation is shown in Figure 3.3. The
signal y(t) is multiplied by & set of sinusoids which spans the fre-
quency range in which the lightly damped resonances are known to occur,
Both sines and cosines are necessary to allow for the random phase of
the sine wave which may be present in y(t). The process of multipli-
cation produces sum and difference freguency components in the result-
inz signals, These signels are now averzged by integrations in separate
channels for finite lengths of time 01. The integrators have appre-
cisble outputs only when y(t) contains e discrete freguency sinusoidal
signsl whose frequency is very close to the frequency of the multiply-
ing sinusoid. The output of each integrator is measured every Oi
seconds, The integrator outputs sre then squared and summed in pairs

to yield discrete outputs Pik as shown in Figure 3.3,vhere:

Pik = output of ith channel during

(3.2)
time interval k01ﬁ$ t £ (k2 1)0i

Pik will be used to determine whether or not an oscillation of fre-
quency close to ®, is present at time t = kOi. Th? precise meaning
of "close to" is made explicit in the analysis performed laster in this
section, |

A modification of this technique can be used to simplify the

necessary computations, The signal y(t) can be multiplied by two sets
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of square waves which are 90° out of phase instead of sinusoids 90°
out of phase, By this change the relatively complex and time consum-
ing multiplication operation can be replaced by a simple gating opera-
tion, Since even harmonics are absent in the Fourier development of

a square wave, and the third harmonic is smaller than the fundamental
by a factor of three (higher harmonics being even less significant),
this modification of the frequency measuring technique should not lead
to epprecisble error, Cere must be taken in the design, however, to
insure thet a high frequency oscilletion does not lead to an appreci-
able output in e lower frequency (1/3 of the high frequency, for
example) channel,

The operation of the FMC is best analyzed by examining the
output of 2 single channel for an assumed input y(t). The only dif-
ference between channels is the frequency of the multiplying sinusoidal
or 'square wave signal, This frequency, w;, will be called the center
frequency of the channel, The analysis of the square wave FMC requires
a Fourier expansion of the square wave and a similar analysis for each
Fourier component, Since this involves only repeating analyses of the
type required for the sinusoidal FMC only the latter will be treated
in detail below,

There are several cases of interest, First, snd most simple,
is the case when y(t) is a pure sine wave of unknown frequency ® and
unknown phase @', Second is the case when y(t) is the sum of two
signals, one of vwhich 1s a pure sine wave of unknown frequency and
phase; the second signal is a random noise signal which is uncorre-

lated with the sine wave and which has specified statistical



Ol
characteristiayi.e.:

y(t) = s(t) + n(t)
where
s(t) = A sin (0wt + ¢')

n(t) = random noise signal

After the snalyses of these more or less tractable cases, a few words
will be devoted to what one might expect the signsl y(t) to be like
in actual system operation and how accurately frequency measurements
can be performed for this case,

P, may be expressed analytically in several ways, The fun-

ik
demental definition of P, is given by (see Figure 3.3):

Pik = sik2 + cika (3-3)
where
' k0
sik = (1/01) Ji dt, y(tl) sin @, [?1 - (k-1) 01_7 (3.4)
(k-l)oi
and
k9
cy = (1/84) Jﬁ at; y(t,) cos e [‘tl - (k-l)Oi i/ (3.5)
(k-l)Oi

In what follows we shall require that O, be an integral number of

i
periods of the frequency o;. Therefore

01 oo (mi/‘”i) (3-6)
where
Ni = number of cycles of frequency 0y contained in the
interval 01
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In the remainder of this chapter we shall drop the subscript from the
quantity Ni and call it simply N, It should be remembered, however,
that N is not necessarily the same for all channels,

Making the change of variasbles t = “1‘51 - (k-l)Oi_] and

using Equation 3.6 in Equations 3.4 and 3,5 results in

o
sy = (1/2mN) J dt sin t y [t . i’i@(k-l)] (3.7)
o
2
Cip ™ (1/2mm) J 4t cos t y[t "'%::N(k'l):) (3.8)
i
o

2y 2l
Pik = [l/(M)2_7 S S dxdu cos (x-u)
o 0o

(3.9)
oy [x + Eﬂﬁ(k-l)] y[u + M(k-l)]
®y o4
or
e 2
Py = [1/(2m)2 ] < 5 dt sin t y[t 4 2”’\f!'(k-l)]
o ®4
(3.10)

2N 2
+ < J dt cos t ¥y [t *sz(k"l)]
o] mi

In spite of the formidable looking equations defining Pik’
there is one particular y(t) for which the integrals yield an extremely
simple result, If y(t) = A sin (o4t + @) a direct evaluation of
Equetion 3.10 leads to the result that P, = A2/4, Thus the channel

output for this case is independent of the random phase of y(t).
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Furthermore, as will be shown later in this chapter, the channel output
decreases rapidly as the frequency of the sinusoid present in y(t)
departs from . If & number of channels is used the frequency, ®s

of the chennel which yilelds the largest output Pik {505 Pmk'> Pik
for i # m) can be used as an estimate of the discrete frequency present
in y(t).

The number of frequency measuring channels which must be used
is dependent upon the precision with which one wants to measure the
signal frequency and upon the amount of a priori information which is
available about the signal frequency, Fewer channels are needed, for
example, to measure a frequency known to lie within a specified 10
radian band-wldth than are required to measure the same frequency,
with equal accuracy, if it can fall anywhere within a 100 radian inter-

val, It is convenient to define accuracy on & per-unit basis as follows:

=
a frequency estimate @ 1s accurate within a factor ?; (per-unit) 1if

(3.11)

vhere ® = the true signal frequency.,

We will now compute the minimum number of channels, K, neces-
sary to measure en unknown frequency, o, to an accuracy + ?5, agsuming
that the center frequency of the channel with greatest output, 0,y is
used as the estimate of w, Thus, @ = w,. It is cssumed that the
inequality d £ o $ Rd is known to be true (see Figure 3.4). Suppose
the center frequenciles of the measuring channels are designated by

mi(i = 1, coey K} and I -, ®,. Then for eny frequency ® lying in

the interval m; & o £ ®;,, one or the other of the following
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relationships must be true if the accuracy requirement is to be

satisfied:
w - 04
[ < g (a)
a (3.12)
® -
i+l S
® TR (v)

The critical case occurs when the equality holds in Equations 3,12 a

and b, and then we have, after eliminating o from the two equations:

() 1+
T (3.13)
mi 1 - E
For small % this becomes
.
i+l
—gi—- =1 + 2 ; (3.1%)

If the ratio °°1+1/°°i is any greater than this it will not be possible
to satisfy the accuracy requirement for every ® in the interval

®w; £ o £ W41 Figure 3.4 shows how the frequency measuring channels
will be spaced in the interval d £ w € Rd. In order to insure an

accuracy of § for = d, it 1s necessary to select ®, as follows:
o ¢ a1+ ¥) (3.15)

In order to insure an accuracy ; for @ = Rd it is necessary to se-

lect ”K as follows:
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In order to minimize K it is necessary to use the equality signs in
each of the above relations, When the equality signs are used it fol-

lows from Equations 3,15 and 3,16 that

® R(L -§)
;‘f = W (3.17)

But it follows from Equation 3.13 that

mK 1+ E ) (3.18)

wy

Equating the right hend sides of relations 3,17 and 3,18 leads to the

following:
K
1 (—i—*—%——) (3.19)
or
1nR=Kln1+; (3.20)

- §
For smell § ( ; < 0,1) we may replace lnﬂ'l +¥ y/(1 —}27 by
mA1+%3)/(1-F)=2% +0(33) ¥z}
and retain 3 significent figure accuracy, Thus Egquation 3,20 becomes
mRY 2k (3.21)

Since K must be an integer) not all values of R and § are allowable,
A simple example illustrates how Equation 3,21 may be used, Suppose
it is specified that a 2:1 range of frequencies must be spanned by the

frequency measuring chasnnels and that an accuracy of at least 2% is
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required, Thus R = 2 and }so.oz. Solving Equation 3,21 for K gives
K=(1/2%) 1a R = (1/0.08)1n 2 = (0.693/0.04) = 17.3

Since only integer values of K ere allowable, it will be necessary to
choose K = 18 to get the desired accuracy over the range specified.

The final accuracy will be
§ = (1/2K) 1n R = (0.693/36) = 1.925%
If K = 17 were used, the final accuracy would have been

§ = (0.693/34) = 2.038%

It is possible to obtain this accuracy using fewer measuring channels
if a2 more sophisticated technique is used to estimate the frequency
which is present, This improved method is based upon an interpolation
procedure which allows the use of frequencies other than the ®wy as
estimates of the unknown frequency o, Since the improvement obtain-
able is dependent upon the form of the P1k outpute as a function of ®,
a discussion of this technique will not be presented until the end of
the treatment of Case 1 below,

The form of Pik will now be computed for several specific
functions y(t).
Case 1: y(t) = A sin (ot + @)

It is assumed that the phase of y, ¢, can take on any value
with equal probability, Thus we can define a new random variable ¢ik'

where

P = ¢ + 2m(k-1) (m/mi) (3.22)
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which also takes on any value with equal probability, 84k and Syk
are therefore functions of the random varieble ¢ik’ eand are given by

(see Equations 3,7 and 3.8)

2
8y = (A/2mN) J at sin t sin /{1 + »() t + ¢1k)-7 (3.23)
0
and
2
¢y, = (A/2mN) J dt cos t sin /{1 + ’() t o+ ¢ik)-7 (3.24)
)
vhere

r(a(oo/mi)-l),—l

After considerable algebra, the following expression for Pik is

obtained (see Equation 3,.3):

: A2 gin® e {1+ 202+ 7/2) vy s 2l
T (w2 (1+ x/2)2 :
vhere ry, is a random variable defined by
g, = sin® (N n+ ¢1k) (3.26)
and
0 ¢ rip $ 1 (3.27)

The bracketed portion of Equation 3,25 is itself a random veriable

through its functional dependance on Tike Define

1+ 2v(1+ r(/a)ru
T+ /) (3.28)

F( ’(, rik) =



and

P° = PO(N7]) = %i§§§§§3- (3.29)

= pnormalized fundamental output component of
any particular frequency measuring channel

Using these definitions it follows that we may write

Py = (A2/4) P° B3, ry) (3.30)

Figure 3,5 is a plot of the normalized fundamental output
component , p° , of any particular frequency measuring chennel as a func-
tion of & normalized frequency error, x, (where x = R?(), between the
signal frequency o end the channel center frequency a,.

Note that for a specified value of N the abscissa is directly
proportional to the per-unit difference in frequency between ® and g
(vecause n = (o - ®y)/w ). Thus, for example, if N = 10, the output
of the channel falls to one half its maximum possible value when
By 0,0b4, If N = 5, the output of the channel falls to one-half its
maximum possible value when }( = 0,088, In general, P° falls to one-
half its meximum possible value for - 0.44 /N, For the remainder
of this section we shall be considering only the channel which produces
the largest output for a given sinusoidal input, We can assume that, ‘
by proper selection of the interchannel spacing factor g and the num-
ber, N, of periods over which the integration is carried, there will
alvays be at least one channel for which /l(l { 1/28, For these
channels, which are the ones of interest in the following analysis,
it is evident that for sizable N (N > 5) it is reasonasble to treat

)Z as a small quantity,
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The ordinate in Figure 3.5, i.,e,, the quantity P°, is in-
dependent of the random phase of the input signal, We should like to
consider P° to be the principle component of the output Pik' of eny
frequency measuring channel, This is possible if the deviation from
P° due to the rendom variable ry, is smsll, To demonstrate that this
is indeed the case we shall compute the expected value of P1k and its
standard deviation, Since Py, is & random varisble only through its
dependence on the function F(Q., rik): we shall first compute the
expected value and standerd deviation of F, From Equation 3,28 it

follows, upon averaging over ry,, that

B(F) = 1 + [(n/e)/(l e "/2)_72 = expected value of F (3.31)

and

o, = Jz2 [T »(/2)/(1 + 1_/2)_7 = standard devistion of F (3.32)

For small ,\ these expressions become

B(F) = 1+ /b
el to first order in n (3:33)
and

o, = Inl//2  to first order in N (3.3%
For the channels of interest we have shown that

In] € 1/(aw) (3.35)

Therefore we mey combine Equation 3,3% and 3.35 to obtain

9, < 1/(2/2 N) = 0.354/N (3.36)
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It is evident that for large N the expected value of F epproaches unity
very rapidly, and the variance of F approaches zero,

It is possible to obtain expressiona for the meximum and
minimum velues which F may attain by observing that, for a specified
value of 7(, Bquation 3,28 is a monotonic function of rik (monotonic
increasing for 1( 2 0, and monotonic decreasing for 7z< 0). Thus
F takes on its maximum or minimum value when e is at the limit of
its range of values., Since, by Equation 3,27, 0 £ r;, < 1 we

conclude that, to first order in *(,

1-/»(14F$1+/7I (3.37)

It is now possible to state what the maximum difference is between
the true value of P, and the value AaPo/h, vhich is the fundamental

component of the output, Using Equation 3,30 we write

[ By, - 428°/ [= [(F - 1) | A%P°/n
2.0 (3038)
$ Dl to first order in 1

The per unit difference between Pik and the fundamental component of
the output is less than 11/. Recalling the limitation on the possible
values of /r(/ we conclude that this per-unit difference is less -han
0.5/H. This is a small difference for appreciable values of N,

Since no a priori information is available about the ampli-
tude of the signal)it is not possible to determine the signal fregquency
from the smplitude of the output of 2 single channel, However, it is
possible to identify the frequency of a signal by operating several
frequency measuring channels simultaneously with each channel tuned

to a slightly different frequency., One or two of these channels, if
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a sinusoidal oscillation is present, will have an output significantly
larger than the rest of the outputs, The center frequency of the chan-
nel with the largest output is then an estimate of the true frequency
of the sine wave,

Two conceptually different functions must be performed by
the frequency measuring computer, First, it must determine whether
or not a slnusoidal oscillation is present, Second, it must deter-
mine the frequency of the oscillation if the oscillation is present,

In order to prevent the decision that an oscillation is present when

it really is not, a detection threshold level L must be established,

If and only if the output P;, of some channel exceeds the threshold L,
the measuring computer will decide that an oscillation was present
during the time interval (k-1) Gi £t Lk 01. The value of L depends
upon the response of the measuring computer to random noise inputs
(which will be considered later) and upon the amplitude of the smallest
oscillation which it is required to detect,

If the oscillation "A sin (wt + @)" occurs at a frequency
exactly equal to the center frequency, wy, of some chennel, the Yl for
that channel will be zero and the corresponding P° will be unity, The
corresponding Pik is Ae/h (see Equation 3.3). It is very unlikely,
however, that an oscillation will occur exactly at any channel center
frequency.

Suppose the oscillation occurs between Wy and @41 at a
frequency wy(1l ™m ). For small values of § , two adjecent channels

have their center frequencies in the ratio (see Equation 3.1k4)

(‘°1+1/°°1)/” l+2%
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The two channel outputs will be equal when n = g, end their magni-

tudes will be

Pix = Pin, & T (a2/m) P (VE) (3.39)

Since it is necessary to detect the presence of a signal even when its
frequency occurs at this worst location, i,e,, midway between two
channel frequencies, it follows that the minimum input amplitude which

can be detected with certainty is

~ L
Ain=2 [/ ;o-(;:g—)- (3.40)

Conversely, if it 1s necessary to detect the presence of oscillations

of amplitude Ami or greater, the detection threshold level zhould be

n
L= (a2, /4) PO(NE) (3.41)

PO(N £) is simply the ratio of the minimum to the maximum‘
possible output of the channel nearest in frequency to the input fre-
quency (for a constant input amplitude), and it is necessary to specify
a numerical velue for this quantity, This, in turn, determines the
value of N§ (via either Equation 3.29 or Figure 3.5). Since ; is
determined by the accuracy requirement, we nov know N, Thus we have
2 systematic procedure for selecting all the parameters of the FMC,

A value nust now be selected for P°(l¢§). The system will
usually have a requirement to detect all signals above some minimum
amplitude, To this end a certain L must be selected, In order to
minimize the occurrence of FMC responses to spurious input signals

(e.g., rendom noise which will be discussed later) it is desirable
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to set L as high as possible, From Equation 3,41 it is evident that
the required L decreases as PO(NE) decreases, Therefore it is desir-
able to keep PO(NE) as large as possible, However, i1f its value is
too large it becomes possible for the effects of noise and the random
phase of the input sinusoid to ceause the output of the wrong channel
(1.e., not the channel closest in frequency to the applied frequency)
to be a maximum relative to its neighbors, Thus some compromise must
be reached, The value of P°(N§) = 1/[2 seems a convenient compromise,
From Figure 3.5 one finds that this requires N§ = 0,32, This is not
claimed to be an optimum setting for these parameters but it is a
practical one, It is not believed that this setting is extremely criti-
cal, The discussion of an interpolation scheme below will shed more
light on the effects of changes in this setting.

The conventional quality factor, Q, is defined as Q = mo/Aan,
vhere A® 1s the frequency interval between the lower and upper "half
power" points (the frequencies at which the output drops to 1/,/5 of
its maximum possible amplitude), But the "half power" frequencies are
wy(l + )’(1/2), where 41/2 = 0,32/N, Therefore

Dw = 20y 7y /5 = 0.64 o, /N, and
Q = N/O.64Z 1,56 N (3.42)

We will now analyze a simple interpolation technique which
leads to a considerable improvement in frequency measuring accuracy,
Consider the three frequency measuring channels which lie closest to
the signal frequency ., Call these three channel center frequencies
©_, ®,, and o,, where for small ? the defining relations are (see

Figure 3.6):
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o_=a (1 -2;) (a)
o, =a, (L+28) (v) (3.43)
and
o =o, (1+a¥) ()
vhere
(] € 1.

Define P?, Pg, end Pg to be the fundamental components of the outputs
associated with w_, w,, and o,, respectively,
Define ¥ =N § (3.44)

Then

sin® qy(2 + & ) (a)
[rv(2 + & )7

P - sin” mypet (») (3.45)

(mye )

p° o sinfry (2-o)
[r(2-a )]

The FMC will supply an estimate, m‘, of the true input frequency,

where
o =w, (1+VF) (3.46)
and
P° . p°
Y ot o VU (y,A) (3.57)
2P - P, - P

This method of estimation is called "parabolic interpolation.,” In
effect a parabole 1s passed through the three ordinates P?, Pg, and
Pg)and the frequency at which this parabole has its maximum value is

#
@ . The resulting accuracy 1is, by definition



n‘i—:—‘-)-)—i. (3.}‘8)
1+ 3

SUA-0) 3

If no interpolation had been performed, the frequency estimate would

have been w, and the accuracy

- __1‘_}_. (3.49)

1+o(§

;"d}

The ratlo of the accuracy with interpolation to the accuracy with no

interpolation is

P
el (3.50)

Figures 3,7 end 3,3 display Equations 3,48 and 3,50 in graphical form,
The abscissa, =4 s in each of these figures is directly proportional to
the input frequency (Equation 3.,43c). The ordinste of Figure 3.7 1is
the accuracy with which the input frequency is determined as & fraction
of the channel spacing ;. For example, if we choose ¥ = 0,3, we find
that the poorest accuracy will be achieved when & = 0,65, This ac-
curacy will be A* f0.206§ . Thus if ; had been 0,05 (implying

N = 7/} = 6), A" { 0,206 ; 2’0.01 ., Thus the frequency of the in-

put signal would be determined to better than 1%, Without interpolation



-79-

*uotjeTodasjut oFToqeIed Sulsn aTQBUTBLQO AODBINOOB DPIZITBWLION :).°C 9INB T

o'l 8°0 90 0 20 0

\ G0'0

20:=3N=4 \

\ S0

€0

G20



*05°S uotrjzenba Jo j01d ‘Q*€ Lan3T.i

9]
8°0 9'0 0 20 0
(0]
1’0
N T 20
0
/ / i
o)
-0
0
/ // ‘
/{
GO= WZ//
[ — o'l




-81-

it is possible to have an accuracy as poor as g. For the example
above ; = 0,05, so the lnput signal is determined to better than
5%. The ordinate in Figure 3,8 is equal to the ratio of the accuracy
with interpolation to the accuracy without interpolation,

Figures 3,7 2nd 3,8 are based upon calculetions made with
P° alone., In reality the output of any frequency tracker channel will
not be Po, but will be P,, . A discussion of how much improvement in
accuracy interpolation provides in the more realistic case will be
presented at the close of the following section, which describes the
response of the FMC when "noise” is present,

It should be observed in Figure 3,7 that the final accuracy
provided by the interpolation technique is strongly dependent upon the
value of the quantity H;. This parabolic fitting technique would
yield precisely the correct answer (under the assumption that the
fundamental component is the complete output of any channel) if
P°(x‘5‘) were exactly a parabolic function of its argument, The range
over which P° must be parabolic for the solution to be exact in form
extends from -3N§{  Na ¢ 3N§. For smell values of Nf, P is
quite close to parabolic in shape over this range, For larger values
of N? the precision of the pesrebolic approximetion deteriorates and,
therefore, so does the accuracy obtalnsble from this method of inter-
polation, In order to have an interpolation result which provides an
accuracy five times better than the inter-channel spacing factor, § 5
it is necessary to select a value for N? of approximately 0,3, This
leads roughly to the value Po(Ng) = l/ja_ and agrees with our earlier

selection of this parameter,
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Case 2: y(t) = n'(t) + A sin (ot + ¢)

The question of how accurately the frequency of a pure sinu-
s0id can be measured becomes more complex when the signal is obscured
by the presence of noise, Following the nomenclature of detection
theory we shall call y(t) the "stimulus" of the FMC, Each of the
outputs, P, , of the FMC will be called a test "statistic,"” The
detection problem is that of determining whether the "signal,"”

A sin (et + g), is or is not present during a certain finite length
sample of the stimulus, Each of the FMC channels is looking for a sig-
nal close to its own center frequency, w;. If the test statistic 1is

a good one, only the channels close in frequency to @ will produce
sizable outputs, and the channel having the greatest output should be
closest in frequency to w.

Before it is possible to approach this problem analytically,
it 1s necessary to know something of the statistical characteristics
of the noise, n'(t)., (It is assumed that the reader is familisr with
the theory of randog processes and the concepts of correlation func-
tions, spectral densities, stationary processes, etc, Definitions of
the terms used in the following analysis agree with those of Refer-
ence 17, For further background material, see References 17 and 18,)
The problem of characterizing the noise in y(t) is formidable for sev-
eral reasons, A detailed study of all the possible noise sources which
contribute to n'(t) would be an ambitious project, In a missile, the
primary sources of random noise are the winds and gusts through which
the missile flies during its trajectory in the atmosphere, Since

missile parameters and environmental conditions gll change with time)
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it is evident that n'(t) does not have statistical characteristics
vhich are independent of time, Furthermore, different missiles will
have different statistics at n'(t) because their transfer functions
between the input source and the stimulus are significantly different,
Even if an accurate statistical characterization of n'(t) were obtain-
able, the computations involved in its application would be prohibitive,
Therefore, rather than attempt to determine the statisticél character-
istics of n'(t) from the besic underlying random processes, we shall
agsume that certain properties of the noise are known a priori, Be-
fore stating what these properties are it 1s necessary to justify one
simplifying approximation which will be made,

It should be recalled from the previous paragraph that n'(t)
is not statiomary noise (i.e., nolse whose statistical properties are
independent of time). However, in computing the effect of noise on
any particular frequency measuring channel one only considers 2 short
sample of the noise function, specifically a finite length sample whose
duration is equal to the 1nteération time ©; pertinent to the channel
under coneideration, In order for the overall adeptive system to func-
tion properly it is necessary that the system change only slightly
during this finite time interval, Thus, over the length of any single
sample of n'(t) which is used in the FMC it is safe to say that the
statistical properties of the noise do not change, i.e., that it is
stationary. This stationary short sample is now assumed to have come
from a stationary random process with the same statistical character-
istics, We now state the information which we assume to know about

the random noise:
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1. n'(t) is & sample function of a stationary process
2. n'(t) end @ are statistically independent random variables

3. The autocorrelation function R'(tl, t2) is known, where
. 1
R'(t,,t,) = E/n'(t,) n (tz)] (3.51)

= the mean value of n'(tl) n'(ta)
averaged over the ensemble of sample

functions n'(t)

The autocorrelation function is one of the simplest statisti-
cal characterizations of a random signal, For a stationary process,
knowledge of the autocorrelation function implies knowledge only of
the way in which the signel energy is distributed as a function of
frequency. The autocorrelation function will arise naturally in the
mathematical development of the problem and, in order to get numeri-
cal results it will be necessary to assume a mathematical form for it,

Assumption 1 implies that the autocorrelation function is a

function only of the difference between t; and t,, i.e.,

R'(t),t)) = R'(t) - ¢t) (3.52)
Defining T = tl - t2
and t = tl
we have
R(T) = E/m'(t) n'(t +7 )/ (3.53)

which is the fundamental definition of the autocorrelation function

of a stationary process,
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Assumption 2 is a very reeasonable one, It staées that the
phase of the sinusoidal signal is statistically independent of the
noise n'(t)., This assumption is stated explicitly because in the an-
alysis which follows the sinusoidal signal is treated as a determin-
istic signal, i,e., it is completely known, Averages will be taken
over the ensemble of noise signals n'(t) treating ¢ as a known quantity,
This method is possible only if n'(t) and ¢ are statistically
independent,

We must now demonstrate that Pik is a useful test statistic
when the stimulus consists of a discrete frequency sinusold and addi-
tive stationary random noise, To accomplish this goel we shall compute
the expected value and the variance of Py,. We shall show that the
expected value, under reasonable assumptions concerning the input signal-
to-noise ratio in y(t), is approximately equal to P° whenever a dis-
crete frequency 1s present whose frequency is close to the center fre-
quency of the channel, The output of all other channels will be very
much smaller, Furthermore, the variance will be quite small, Thus,
it will be shown, Py, is a suitable statistic for this type of input
signal,

In what follows, P;, is assumed to be & random variable only
through its dependence upon n'(t). In order to make the problem manage-
able it will be necessary to assume, at an early stage of the analysis,
that n'(t) has a Gaussian distribution, Numerical results will then
be computed for an assumed form of the autocorrelation function of

the noise, It 1s convenient to define the following functions:
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8(t) = A sin [Cnﬁmi) t+ ¢+ 2k - 1) (m/mil7 (3.54)
n(t) an'[t + 2k - 1)] (3.55)
By

8ince, for this case,

y(t) = n'(t) + A sin (ot + ¢) (3.56)

it follows by combining Equetioms 3,54, 3.55, and 3.56 that

®4

¥ }:t s Bl - 1’] = n(t) + s(t) (3.57)

Thus, using Equation 3,57 in Equation 3,9, it follows that

2 2N
Pik = [l/(21tN)2_7 j j dxdu cos (x-u)
Sl (3.58)

. [ﬁ(x) + S(x)] [E(u) - S(u)]

and
o 2N 2N 21N

P?k = [1/(2@)&7 J j J J\ dxdudvdz cos (x-u) cos (v-z)
o o ) 0

(3.59)
o [a(x) + 8(x)7 /a(u) + s(u)/ /a(v) + s(v)7 /[alz) + s(z2)]

From Equetion 3.53, it follows that (recalling that the process of

taking an ensemble average commutes with the integral operator):
21N 21N
Eﬁik—7 = [l/(?ﬂN? J ‘y dxdu cos (x-u)

R i (3.60)
. {Eﬁ(x) n(u)] + S(x) S(u)}
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Terms involving the mean value of the noise, E[E(xl7, do not appear in
Equation 3,60 because of the limits of integration which heve been

chosen, i.e,, because

21N
j\ dx cos (x - u) =0 (3.61)

o]

The variance of Pik’ og, is a measure of the spread of the random

variable Py, about its mean value, By definition,

g

Eeg/ 7 - [Ee, )] (3.62)

The variance is computed in a straightforward menner by taking the
ensemble average of both sides of Equation 3,59 and subtracting the
square of Equation 3,60 from both sides of the equality, After much
algebra and repeated use of Equation 3,61 and symmetry properties of
the autocorrelation functions, the following expression for the vari-

ance is obtained:

2 2 2N 21
°§ = J' J‘ f j‘ dxdudvdz cos (x-u) cos (v-z)
= % Tl (3.63)
+ {5/a(x) n(u) n(v) n(z)] + b 8(x) s(v) E/a(w) n(2)]
- B/a(x) n(u)7 B/a(v) n(z)7 |

The expression is particularly formideble because it contains an en-
semble average of the product of four random variables, In general,
knowledge of the noise sutocorrelation function alone is not sufficient

to evaluate expressions of this type, For the case when n(t) is a
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Gauyssian random variable with zero mean, however, the following rela-

tionship holds (see Reference 18, Equation 4,3 - 5):

E[;(x) n{u) n(v) n(zl7 = E[ﬁ(x) n(ul7 E[E(v) n(zl7
+ B/n(x) n(v)/ E/n(u) a(z)/  (3.64)
+ E/n(x) n(z)/ E/n(u) n(v)/

It is possible to analyze the case when n(t) does not have zero mean,
but the algebra involved is considerably more messy, For the remainder

of this analysis it will therefore be assumed that

E/n(t)/ = 0 (3.65)

Assuming thet n(t) is a Gaussian signal and using Equation 3,64 in

Equation 3,63 we find that

2Nmt 2Nm 2Nm 2N«

°12> = [2/(21[1:)“_7 I I I S dxdudvdz cos (x-u) cos (v-:; i
) %

(o] (o] o}

{2/a(x) a(v)] 5/a(w) a(2)7 + 2 S(x) S(v) E/A(u) n(2)7 }

Equations 3,60 and 3,66 are the expressions which result
when a direct calculation is made of the expected value and variance
of Pik' These expressions are still too complicated to yield wuch
information from a qualitative examination, It is convenient now to
define several new variebles in terms of which the significance of
these expressions becomes more apparent, First we define a normalized

autocorrelation function J[)(tl - t2) by the relation

E/n(t,) n(t2)7 = Wy Ot - t,) (3.67)
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where
Wy = B[ 0%(t)] (3.68)
= the average powver in the noise

and, therefore

olo) =1 (3.69)

It should be recaelled that the original noise signal in the
stimulus was defined to be n'(t), ané the function n(t) was defined
by Equation 3.55. By use of Equations 3,53, 3.55 and 3.67 it

follows that
LT = (Lpig) RY(T [wy) (3.70)

Now define the following quantities:

2 2
IB = [fl/(ZﬂN)E7 \f X‘ dxdu sin x sin u_jO(x-u) (3.71)
) )
2 2
I = [fi/(EﬂN)E7 j‘ j dxdu cos x cos u O(x-u) (3.72)
) )

21 21
P= [1/(21!!)?7 [ J.dx sin x S(x_)_72 - [ ydx cos x S(x)]e}
. s (3.73)
= E(P;,) vhen n'(t) = 0

Note that by the definition of P ve imply that P is equal to the
quantity which was called Py, in the preceding section where noise
was not considered (see Equation 3,25).

By using the quantities defined above it is possible to reduce
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Equations 3.60 and 3,66 to the following forms:

E(Pyy) = P+ Wy(I + I.) (3.7%)

2
o - 2{»::(13 + )+ Biy/eenZ (3,0 [ ax o1n x s(x)f” +
0

IC[J dx cos x S(x_)]2>§
)

It should be emphasized that these two expressions are the exact solu-
tion for the expected value and variance of the output of any FMC chan-
nel vhen the stimulus is of the form (see Equation 3.56)¢

y(t) = n'(t) + A sin (ot + ¢)

provided that n'(t) is a stationary Gaussian random variable with zero
mean,

Several special cases will novw be discussed, First, observe
that when no noise is present the variance becomes zero and the ex-
pected value reduces to Equation 3,73 (which is the same as Equation
3.25) as we would expect, For this case the analysis is precisely
the one which was discussed in the previous section which dealt with
the no-noise case,

Next we examine the output when there is no discrete frequency
sinusoild present in the stimulus, For this case application of

Equations 3.7k and 3,795 yilelds

E(Pyy) = W(I, + 1) (3.76)
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op = Wy /2(12 + 12) (3.77)

Thus the expected value and variance of Pik are both proportional to
the average power contained in the noise, The magnitude of the "con-
stant” of proportionality depends upon the form of the noise autocor-
reletion function through Equaetions 3,71 and 3,72. For most cases of
interest it will be a number considersbly smeller than unity,

Finally we consider the case where the stimulus contains
both a discrete frequency sinusoid and additive random noise, For
this case op is a complicated function to estimate due to the form
of its dependence on S(t) (see Equation 3,75). It is possible, how-

ever, to obtain an upper bound for Op in a relatively convenient

form, To this end we define the variable I to be

I=mx(I,I) (3.78)

o

where the definition implies that I equals the larger of the two vari-

ables I, and Ic. Using this definition and Equation 3,75 we find that

op & 2 /WglF J(1 + W 1/F) (3.79)

It follows from Equation 3,74 that
E(Py)) € P(L + 2WyI/F) (3.80)

P can be releted in a direct menner to the average power in
the signal component of the stimulus, The average power in a signal
of the form A sin (wt + ¢) is Just A2/2, But P for this same input
is A2/h (see Equation 3.25) if ® is equal to the center frequency of

the channel under consideration., If the input frequency is not exactly
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at one of the channel center frequencies, the output of the chennel
nearest this frequency will be somewhat less than Aa/h. By selection
of the quantity P°(R§) = l/f; (see page T4) we have insured that,
for the channel closest in frequency to o, the following inequality
holds:

A2/ 2 B 2 A%/ (u/2)

If we now define the input average power by

Wy = AZ/2 (3.81)
we may write
W./2 ¥ B 2 wg/(2V2) (3.82)

It is evident that the poorest ocutput signal to noise ratio will occur

when the right hand equality holds above, 1,e., when

FP=wy/2/2 (3.83)
Finally we define the input signal to noise ratio, D, by

D = W /My (3.84)

If we use Equation 3,83 to define the relation between P and the input

pover level and use Equation 3,84 in expressions 3,79 and 3,30 we find

that
o, & /82 1/p J14 2/2 1/p (3.85)
and
B(P,,) € P(1+ 4/2 1/p) (3.86)

Once the autocorrelation function of the nolse is specified,

Ic and Is can be evaluated by integration, The elgebra, unfortunately,
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becomes extremely involved unless the autocorrelation function has a
gimple form, Numerical methods can slway‘s be used and the functions
evaluated by digital computation if the need arises, The calculetion
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