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Abstract 
 
The coupled dynamics of a nanomechanical resonator and superconducting quantum 

circuits are studied in three experiments, in the context of studying the quantum limit for 

force detection and quantum physics of macroscopic objects.  

 

In the first experiment, the dispersive mechanical resonance shift from the interaction 

with a Cooper-pair box qubit is studied. The measured coupling strength is large enough 

to satisfy one of the conditions required to perform many of the proposed quantum 

nanomechanical measurements. The resonance shift also probes the microwave-driven 

response of the qubit, showing Rabi oscillation and Landau-Zener tunneling, proving the 

coherent dynamics of the qubit.  

 

Second, the parametric excitation of nanomechanical motion is studied via experiments 

with a driven qubit. Degenerate parametric amplification and oscillation are demonstrated, 

with a new observation of nonlinear dissipation. The squeezing of the back-action noise 

from the detection amplifier is also observed, up to 4dB. It is the first demonstration 

using a qubit as an auxiliary system to modify the nanomechanical dynamics, showing a 



 vi

possible route for generation of nanomechanical quantum states. 

 

Finally, back-action cooling of nanomechanical motion has been investigated, which is 

implemented by capacitively coupling a high-Q coplanar waveguide microwave 

resonator to a nanomechanical resonator. The thermal state with 7.5 mechanical quanta 

on average is reached, a result that is ultimately limited due to increased bath heating 

with microwave power. The heating is consistent with a model based on two-level 

systems resonantly coupled to the nanomechanical mode. This additional heating 

suggests future efforts to improve coupling and for reducing two-level system density in 

materials employed to reach the motional ground state via back-action cooling. 
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Chapter 1 
 
Introduction 
 
Mechanical force sensors have been important experimental tools in physics, beginning 

with the torsional pendulums in Cavendish’s experiment on the gravitational force1 and 

Coulomb’s works on the electrostatic force2. Since then, modern day force sensors have 

provided improvements in sensitivity and versatility; among recent achievements are 

measurement of Coulomb forces down to a single electron3 and magnetic forces to a 

single spin4, attainment of atomic mass sensitivity5-7, and sensing gravitational waves8. 

  

Even though these mechanical sensors are macroscopic in size and their dynamics can be 

described well by classical mechanics, their ultimate force sensitivity is limited by the 

position uncertainty given by quantum mechanics — the so-called “standard quantum 

limit” ( ωmxSQL 2/h= ) for a harmonic oscillator9. This is an interesting region where 

classical mechanics meets the uncertainty principle on the macroscopic scale. The 

standard quantum limit means that the limit of detection for measuring a classical force 

with a harmonic oscillator, if all thermal sources of fluctuation are reduced, will be set by 
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the uncertainty principle for position of the harmonic oscillator. This connection between 

two physical regimes was the starting point of my graduate research and I aimed to 

observe signatures of quantum physics at the sub-micron scale, using miniature 

mechanical sensors — nanomechanical resonators. 

 

Recent advances in nanotechnology have enabled the fabrication of tiny mechanical 

resonators, which vibrate fast enough that the quantum energy is comparable to the 

thermal energy at millikelvin temperatures10, 11. In this regime, close to quantum ground 

states, a resonator is expected to show the properties of a quantum harmonic oscillator, 

for example, energy quantization and quantum jumps12 between energy states. The actual 

magnitude of nanomechanical motion near the quantum ground state is very tiny — only 

on the order of femto meters. To detect this minute motion, cryogenic detectors such as 

single-electron transistors13-15, atomic point contacts16, and quantum point contacts17 have 

been developed. It turns out that quantum physics also dictates the condition for an ideal 

measurement and we must consider the quantum back-action of measurement to detect, 

but not destroy, quantum states18. Such observations are known as quantum non-

demolition (QND) measurements. Superconducting quantum circuits, such as Josephson-

junction qubits19-21 and low-loss microwave resonators22 are good candidates for this 
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purpose, since they can generate the nonlinear coupling needed for QND and operate well 

in a cryogenic environment23-25. In this context, I set my experimental goal as obtaining 

measurements of the dynamics of a nanomechanical resonator coupled to a 

superconducting quantum circuit. 

 

In the first two of my experiments, the coupled dynamics of a nanomechanical resonator 

and a superconducting Cooper-pair box qubit are studied. The interaction results in a 

mechanical resonance shift that is dependent on the qubit state. This is used to probe the 

stationary and driven dynamics of the qubit such as Rabi-oscillation and Landau-Zener 

tunneling. The resonance shift, in turn, also affects the dynamics of the nanomechanical 

resonator, and parameteric amplification and oscillation of mechanical motion are 

observed. Due to the phase-sensitive nature of the amplification process, the back-action 

noise from the detection amplifier is reduced in only one phase relative to the qubit 

excitation, this provides a demonstration of noise squeezing. 

 

In the last experiment, a superconducting microwave resonator is employed as the 

detector of nanomechanical motion. The microwave photons also apply a force to the 

nanomechanical resonator, and the phase lag in the back-action force reduces the thermal 
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motion of the mechanical resonator. The observed cooling is from 140 to 7.5 mechanical 

quanta. Heating against the back-action cooling is also identified, and it is consistent with 

a resonant coupling of a hot two-level system bath to the mechanical mode. 

 

The coupled dynamics demonstrated in this work show first steps toward achievement of 

mechanical quantum states. To achieve the goal of generating and controlling mechanical 

quantum states in the future, the quality of the mechanical resonator and the quantum 

circuit elements requires improvements, and different implementations to provide better 

coupling might have to be considered. These efforts could also lead us to reach the 

quantum limit of force sensing, to reveal the physics at the boundary between the 

classical and quantum regimes. 
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Chapter 2 
 
Nanomechanical measurements of 
Cooper-pair box qubit 
 
Preparation and measurement of macroscopic mechanical quantum states is of 

considerable interest. The approach of coupling superconducting qubits to 

nanoelectromechanical systems (NEMS) has received recent theoretical attention23, 26-38. 

In this work, we experimentally demonstrated such a coupled system. This coupling 

results in a dispersive shift of the nanomechanical frequency that is the mechanical 

analogue of the “single-atom index effect”39 in cavity quantum electrodynamics (CQED) 

experiments.  The large magnitude of the dispersive interaction has enabled NEMS-

based spectroscopy of the CPB, and permits observation of Landau-Zener (LZ) 

interference effects.  These efforts constitute the first demonstration of coupling between 

a macroscopic mechanical system and a fully coherent quantum process.i 

 

                                                 
i After this work is published, a similar approach with a phase qubit read-out demonstrated the mechanical 
ground state and the observation of a few number states.11 
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2.1 Theory 

The nanomechanical resonator employed in this work uses the fundamental mode, in-

plane flexural resonance of a suspended silicon nitride nanostructure. This mode can be 

reasonably well-described as a damped harmonic oscillator. Similar to the case for an 

electromagnetic oscillator, a Hamiltonian operator for the nanoresonator can be written in 

terms of creation jâ and annihilation â operators, resulting in )
2
1(ˆ += aaH NRNR

jωh , 

where h is Planck’s constant and the quanta >=< aaN j  in the mode are now 

mechanical quanta.  

 

A split-junction CPB qubit,19 formed by two Josephson tunnel junctions and a 

superconducting Al loop, is coupled to the nanoresonator through capacitance, CNR (Fig. 

3).  The CPB can be described by a simple spin-1/2 Hamiltonian40 

x
J

z
el

CPB
EE

H σσ ˆ
2

ˆ
2

ˆ −= , where zσ̂ and xσ̂ are Pauli matrices in the CPB’s charge basis. 

The first term in CPBĤ  is the electrostatic energy difference 

)
2
1(8 −−+= nnnEE NRcpbCel  between the n and n+1 charge states with the charging 

energy 
Σ

2

2C
eEC =  determined by the CPB island’s total capacitance 

JcpbNR CCCC 2Σ ++= , where Cj is the capacitance of each Josephson junction.  Here  

e
VC

n cpbcpb
cpb 2

=  and  
e
VC

n NRNR
NR 2

=  are supplied through the capacitances cpbC and 
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NRC to an independent gate electrode and the nanoresonator, which are held at potentials 

cpbV and NRV , respectively (Fig. 3b). The second term in CPBĤ  is the Josephson energy of 

the junctions ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= πEE

ο
JJ Φ

Φcos0 , where Φ is the externally applied magnetic flux 

and
e

h
ο 2

Φ =  is the flux quantum.  From the diagonalization of CPBĤ ,19 one finds the 

CPB ground state −  and excited state +  to be separated by the transition energy 

22Δ Jel EEE += . 

 

Displacement x of the nanoresonator results in linear modulation of the capacitance 

between the nanoresonator and CPB, ( ) (0) NR
NR NR

CC x C x
x

∂
≈ −

∂
, which modulates the 

electrostatic energy of the CPB through NRn and EC. This results in the interaction 

Hamiltonian zaaH σλ ˆ)(ˆ
int += jh  where 

d
xE

nλ zpC
NR

h
4−≈  (Eq. 1) 

is the capacitive coupling constant, 
NR

zp ωm
x

2
h

=  is the nanoresonator’s zero-point 

deviation, and nm300~d  is the separation between the CPB and NEMS.  For 

parameters demonstrated in this work, MHz35.0~
2

−
π
λ . 

 

The formal connection to CQED becomes clear when the full system Hamiltonian 
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int
ˆˆˆˆ HHHH CPBNR ++=  is transformed to the energy eigenbasis of the qubit  

   )ˆˆ)((ˆ
2

ˆ
x

J
z

el
zNR E

E
E

E
aaEaaH σσλσω

Δ
−

Δ
++

Δ
+= jj hh  (Eq. 2) 

where zσ̂ and xσ̂ are now Pauli matrices in the CPB’s energy basis. Eq. 2 is similar to a 

Jaynes-Cummings-type Hamiltonian.41  With the qubit and nanoresonator far-detuned 

(i.e., NRωENλ hh −<< Δ ), the dispersive coupling limit is realized and, to lowest 

order, the system undergoes a shift in energy that can be viewed as a CPB-dressed 

correction to the nanoresonator’s frequency23 

( ) ><
−

= z
NR

JNR σ
ωEE

E
π
λ

π
ω ˆ

)(ΔΔ2
Δ

22

22

h

h  (Eq. 3). 

For fixed Ej,  
π
ωNR

2
Δ

 is greatest at CPB charge degeneracy points, where Eel =0.  

Because NRωE h>Δ , 0
2

Δ
<

π
ωNR when the CPB resides in the ground state ( 1ˆ −=>< zσ ) 

and 0
2

Δ
>

π
ωNR when the CPB fully occupies the excited state ( 1ˆ =>< zσ ).  In close 

analogy to the single-atom refractive shift39 that arises in dispersive CQED, this can be 

interpreted as the CPB providing a state-dependent polarizability or quantum 

capacitance42-44 that electrostatically “pulls” the nanoresonator’s frequency.   

 

The spin-1/2 approximation for the CPB Hamiltonian reproduces the main features of 

coupled dynamics, but needs to be corrected when the qubit is biased away from a charge 
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degeneracy point. To model the dispersive frequency shift Δ / (2 )NRω π of the 

nanoresonator over the full range of gate voltages Vcpb used in the experiment, the full 

expressions for the CPB40 and interaction Hamiltonians are employed, given, respectively, 

by 

 ( ) ( )∑
⎭
⎬
⎫

⎩
⎨
⎧ +++−−−=

n

J
NRcpbCCPB nnnn

E
nnnnnEH 11

2
4ˆ 2  (Eq. 4)  

and  

  ( )( ) nnaannnλH
n

NRcpb ⋅+−−−= ∑ jˆˆ2ˆ
int h . 

To account for contributions from charge states other than n and n+1, 11 adjacent charge 

states are included in the calculation. The eigenstates of the uncoupled Hamiltonian 

NRCPB HHH ˆˆˆ +=  are calculated numerically first as a function of a Vcpb and Φ. The 

correction to the energy levels due to intĤ  and hence the dispersive shift of the 

nanoresonator Δ / (2 )NRω π are then calculated using second-order time-independent 

perturbation theory.  It is important to note, that in the vicinity of a charge degeneracy 

point, 75.025.0 ≤≤ CPBn , use of the full CPB Hamiltonian results in less than 5% 

correction to Δ / (2 )NRω π calculated from spin-1/2 model. At degeneracy the correction is 

less than 1%. 
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2.2 Sample fabrication 

The substrate is composed of a 100-nm-thick low-stress SiN layer on top of a Si wafer. 

The Cooper Pair Box (CPB) is patterned using electron-beam lithography and double-

angle evaporation of aluminum45. The thickness of the island and the ground leads are ~ 

60 nm and ~ 20 nm, respectively.  The island is coupled to the ground leads via two 

small (~ 100 x 100 nm2) Al/AlOx/Al Josephson tunnel junctions, and is arranged in a 

DC-SQUID configuration. Dr. Pierre Echternach and R.E. Muller conducted the e-beam 

lithography and the qubit fabrication. 

 

The aluminum layer used to define the nanoresonator, and which ultimately serves as the 

electrode on top of the nanoresonator, is patterned in the same step as the CPB. This layer 

acts as an etch mask for undercutting the nanoresonator. To protect the CPB during 

etching, a layer of PMMA is spun on the sample, and a small window defining the 

nanoresonator is opened using a second e-beam lithography step.  The nanoresonator is 

then undercut in an ECR etcher with Ar/NF3 plasma: The first step is an anisotropic SiN 

etch that defines the resonator beam, and the second is an isotropic etch of the underlying 

Si to undercut the beam. 
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The sample parameters are, 

ωNR/2π = 58 MHz Nanoresonator fundamental in-plane resonance frequency 

K ~ 60 N/m  Nanoresonator effective spring constant given by 

2
NRgeomMK ωα= , where kg109 16−×≈geomM  is the 

estimated geometrical mass and α=0.48 is found by 

assuming that the CPB couples to the average displacement 

of the nanoresonator over the length of the CPB island 

Q = 30,000–60,000 Typical nanoresonator quality factor for the range of 

temperatures and actuation/detection voltages VGNR used 

Ec/h =13–15 GHz Estimated CPB charging energy from spectroscopy (lower 

bound) and LZ measurements (upper bound) 

EJ0/h ~ 13 GHz Estimated CPB maximum Josephson energy from 

spectroscopy 

CNR = 43aF Measured nanoresonator-to-CPB capacitance 

d ~ 300 nm Resonator/CPB spacing 

/ ~NRC x∂ ∂ 40–50 pF/m Derivative of resonator/CPB capacitance estimated from 

finite element simulation 

Ccpb = 17 aF Measured CPB gate capacitance 

35.0~)2/( −πλ  MHz Coupling strength calculated using ΔωNR/(2π) data, 

assuming EJ/h=12 GHz, for V152 −=NRV  
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2.3 Experimental set-up 

2.3.1 Measurement circuit 

The measurement is done on a dilution refrigerator located inside of a RF-shielded room. 

(Fig. 1) Four DC lines are used: Vcpb for biasing the CPB; VNR for controlling the coupling 

between the CPB and nanoresonator; VGNR for controlling the coupling between the 

nanoresonator and detection circuit; and Vflux for biasing a homemade current source to 

energize the solenoid for application of flux Φ to the CPB. Vcpb and Vflux are supplied by a 

DAC card and routed into the shielded room using optical isolators.  VNR and VGNR are 

supplied by batteries located in the shielded room.  Vcpb, VNR, and VGNR are filtered at 

room temperature (RT) at the input to the dilution refrigerator using commercial Pi-filters 

and Cu powder filters.46 From RT to the mixing chamber (MC), these lines are each 

composed of ~ 2 meters of lossy stainless steel coax, with two stages of Cu powder filters 

(at 1 K and MC). The typical total attenuation from RT to the MC is estimated to be about 

-100dB at 10 GHz.   

 

High frequency lines providing radio frequency excitation VRF of the nanoresonator and 

microwave excitation Vμ of the CPB are routed into the shielded room through DC blocks 

and into the dilution refrigerator via commercial high-pass filters and attenuators.  They 
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are attenuated and thermalized at 1 K using cryogenic-compatible attenuators.  At 1K, 

VRF is fed into the coupled port (-20 dB) of a directional coupler for the reflectometry 

measurements. The output port of the directional coupler feeds VRF to the actuation gate 

electrode of the nanoresonator for excitation. And the input port of the directional coupler 

feeds the reflected component Vr through a Miteq AFS-series cryogenic amplifier to the 

room-temperature electronics that compose the phase-lock loop (Fig. 2).  Bias-tees 

anchored to the MC are used to combine Vμ and VRF with Vcpb and VGNR, respectively.  To 

provide additional filtering between the MC and the sample stage, all lines are fed 

through lossy stainless steel coax. 

 

2.3.2 Capacitive detection of mechanical motion 

For this work, capacitive displacement transduction scheme is employed. Radio 

frequency reflectometry is used to measure the nanomechanical frequency shift 

Δ / (2 )NRω π 47.  A DC potential difference NRGNR VVV −=Δ  is applied across the 

capacitor CGNR, coupling the nanoresonator’s motion to the charge on the actuation-

detection electrode.  Upon application of )(ωVRF to the electrode, the response of the 

coupled nanoresonator-electrode system can be modeled as a series RLC circuit with 

impedance47 ./)()( 22
NRNRNRNR RjLZ +−= ωωωω  Here 2 2 2/ ( Δ )NR GNR NR GNRR Kd ω QC V≈  
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and /NR NR NRL QR ω= , where nm100~GNRd is the spacing between the nanoresonator and 

electrode.  For typical values of coupling voltage used in our experiment, ΔV ~ 5–10 V, 

025.0~ ZMRNR >>Ω− , where Z0 =40 Ω is the characteristic impedance of the 

transmission line feeding the actuation-detection electrode. 

 

To overcome the impedance mismatch, we use an LC network to 

transform )( NRNR ωZ closer to Z0.  The LC network is formed by a commercial, copper-

wound coil (LT ≈ 5.6 μH) and the stray capacitance (CT ~ 1.0 pF) of the PC board upon 

which the sample sits. The components are chosen so that 1/ ( )LC T T NRω L C ω= ≈ .  

Thus when the RF drive frequency is tuned into resonance with the nanoresonator and LC 

circuit, LCNR ωωω == , the total impedance seen looking from the transmission line into 

the impedance matching network is given by ( ) / ( )NR T T NRZ ω L C R= , where it is assumed 

for simplicity that the matching network is lossless.  For our parameters, 

Ω102~)( −NRωZ . 

 

 For perfect matching to the transmission line, 0)( ZωZ NR = , the reflection coefficient 

0 0Γ ( ( ) ) / ( ( ) ) 0NR NRZ ω Z Z ω Z= − + = .  A small change in the nanoresonator’s frequency 

Δ / (2 )NRω π  leads to a correction given by ΔΓ Δ /NR NRjQ ω ω≈ .  Thus a shift in the 
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nanomechanical frequency Δ / (2 )NRω π  can be monitored by tracking the shift 

RFr VV ΔΓΔ =  in the reflected component of the RF drive signal.  This is accomplished 

by embedding the nanoresonator in a phase-locked loop (Fig. 2).  Essentially, a 

directional coupler routes the reflected signal to a phase-sensitive detector, the output of 

which is fed into a VCO that supplies )(ωVRF . 
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Figure 1: Schematic of measurement circuit 
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Figure 2: Phase-locked loop circuit 

We use a phase-locked loop to measure the nanoresonator frequency shift 
π
ωNR

2
Δ

. The 

lock-in acts as a phase detector and the low-pass filter controls the voltage-controlled 

oscillator (VCO). The VCO output gets split into two signals: one for exciting the 

nanoresonator (VRF) and the other provides the reference input of the lock-in (REF). 

 

2.4 Results 

2.4.1 Dispersive shift of mechanical resonance 

In our experiments, the sample is cooled to a temperature mK140120 −≈mcT  at which 

the qubit predominantly resides in the ground state (i.e., ETk mcB Δ<< ) and the rate of 
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quasiparticle poisoning in the qubit is minimal.48 We then measure the nanoresonator 

frequency response using a combination of capacitive displacement transduction and RF 

reflectometry47, (Fig. 3b).  Fig. 3c displays the frequency response of the 

nanoresonator’s amplitude (Main) and phase (Inset) at two values of cpbV for fixed Φ and 

V15=NRV (the largest coupling voltage used in the experiment).  Consistent with Eq. 3 

and the CPB residing in the ground state, when cpbV  is adjusted to a charge degeneracy 

point, the nanoresonator experiences a decrease in frequency, the magnitude of which 

Hz1600
2

2

=≈
Δ

J

NR

Eπ
λ

π
ω h  is comparable to

π
κ

2
.  For fixed JE and elE , in agreement with 

Eq. 3, 
π
ωNR

2
Δ is found to exhibit a quadratic dependence on NRV  (bottom inset, Fig. 3c) 

over the full range of NRV  used in the experiment. 
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Figure 3: Sample picture, measurement circuit, and measured dispersive shift of 

mechanical resonance 

(a) SEM micrograph of the device. The nanoresonator is formed from SiN with a thin 

coating (~ 80 nm) of Al for applying the DC voltage VNR.  The CPB is formed from Al 

and located on one side of the nanoresonator at a distance ~ 300 nm. Adjacent to the CPB 

is an Al electrode for applying VCPB. Another Al gate electrode is situated on the opposite 

side of the nanoresonator at a distance of ~ 100 nm for actuating the nanoresonator and 

detecting its response in order to measure πω 2/NRΔ . (b) Measurement circuit for RF 

reflectometry of the electromechanical impedance. The excitation signal capacitively 

drives the nanoresonator to an occupation of 103–104 quanta. The tank circuit formed by 

LT and CT serves to transform the electromechanical impedance for matching to a 

cryogenic amplifier. (c) Frequency response of nanoresonator amplitude (Main) and 

phase (Inset, Top) for CPB biased on and off of charge degeneracy as measured by RF 

reflectometry. (Inset, Bottom) Maximum frequency shift of nanoresonator (black circles) 

for CPB biased on charge degeneracy point as a function of coupling voltage VNR.  The 

solid blue line is a fit to 2
NRVAy ⋅= , where A is proportionality constant. 
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2.4.2 Periodicity in Vcpb and Φ 

Embedding the nanoresonator in a phase-locked loop, we can track 
π
ωNR

2
Δ

 while 

keeping VNR fixed and adiabatically sweeping Vcpb and Φ (Fig. 4a). We find that the 

overall dependence of  
π
ωNR

2
Δ

 on Vcpb and Φ is in excellent qualitative agreement with 

our model (Eq. 3 and Fig. 4b–d). We find that 
π
ωNR

2
Δ

 exhibits the expected 2e-periodic 

dependence on Vcpb, confirmed for 4 periods.  We also observe that the behavior of 

π
ωNR

2
Δ

 on Φ is in good agreement with the expected periodicity of one flux quantum Φο . 

At values of Φ  for which EJ / kB  Tmc  (e.g., trace 2 in Fig. 4c), the CPB excited state 

becomes thermally populated in the vicinity of the charge degeneracy points.  As a result, 

the modulation depth of  
π
ωNR

2
Δ

 is reduced, which can be accounted for by replacing the 

qubit expectation in Eq. 3 with the Boltzmann-weighted average 

)
2
Δ(tanhˆ

mcB
z Tk

Eσ −>=< . 
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Figure 4: Dispersive shift vs. qubit control parameters 

(a) Measured nanoresonator frequency shift 
π
ωNR

2
Δ

 as a function of CPB gate voltage 

VCPB and flux Φ for VNR=7.0 V and Tmc≈ 120 mK. (b) Numerically calculated 
π
ωNR

2
Δ

 as 

a function of VCPB and Φ for Ec/h= 16.4 GHz, EJ0/h=13.2 GHz, and λ/h=1.5 MHz.  The 

numerical model uses the full CPB Hamiltonian (Eq. 4) incorporating n=-5 to n=5 charge 
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states, to calculate the two lowest CPB eigenstates +  and − .  The CPB 

population zσ̂  is then calculated assuming the appropriate Boltzman weighting.  To 

account for low-frequency charge noise, zσ̂  is convolved with a Gaussian of width 

09.0)2( =eσ  in ncpb. (c) Comparison between data and model of selected traces of 

π
ωNR

2
Δ

 vs. Vcpb at constant Φ. (d) Comparison between data and model of 
π
ωNR

2
Δ

 at a 

charge degeneracy 

 

Fig. 5a displays the 2e-to-e transition in periodicity of nanoresonator’s frequency shift 

)2/( πωNRΔ  with respect to Vcpb, taken with flux biased so that EJ ~ EJ0.  At a mixing 

chamber temperature of 120 mK, the periodicity is primarily 2e-periodic with peaks 

spaced by ΔVcpb =18.7 mV, corresponding to a gate capacitance Cg = 17.1 aF.  At 

temperatures of 40 mK and below, the quasiparticle poisoning rates greatly exceed the 

measurement time, and periodicity is primarily e-periodic with peaks spaced by ΔVcpb ~ 

9–10 mV. 

 

Fig. 5b displays the periodicity in applied flux Φ of )2/( πωNRΔ  taken at a charge 

degeneracy point.  The average spacing between the peaks is found to be ΔB ~ 200 μT.  

While there is large uncertainty in the effective area of the split-junction CPB, we can 
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estimate the flux periodicity using the geometric area of the CPB loop A ~ 5 μm2.  This 

yields a flux periodicity of ΔΦ ~ 1 x 10-15
 T-m2 in reasonable agreement with the 

expected periodicity of one flux quantum Φo = 2.07 x 10-15
 T m2.  The background 

increase in NRω during the course of the measurement was not typical of most magnetic 

field sweeps, which were taken over a much smaller range.   

 

To convert the x-axis of Fig. 4a–d into units of Tesla it is necessary to add 80 and 

multiply by 1.3 x 10-4. The magnetic field sweep was applied on top of a static field of ~ 

0.01 T.  For the data taken in Fig. 7, a different current source and larger background 

field were used.  Thus to convert the x-axis of Fig. 7a–d into Tesla it is necessary to 

multiply by 2.7 x 10-3. 
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B 

A 
 

 

Figure 5: Periodicity in CPB gate charge and flux 

(A) 2e-e transition of the response in Vcpb. Data in (A) taken with VNR = 7V and flux bias 

set so that EJ ~ EJ0.  (B) CPB flux periodicity.  Data in (B) taken near a CPB charge 

degeneracy with VNR = 7V and Tmc ~ 120 mK 
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2.4.3 Correction for charge drift 

For a typical “map” measurement, )2/( πωNRΔ  vs. Vcpb vs. Φ, the flux Φ was held 

constant while we swept Vcpb and recorded )2/( πωNRΔ . The flux was then incremented, 

and the process repeated.  For each constant flux trace, we typically averaged for a 

couple of seconds. Since the effective gate charge had a slow drift component, a post-

processing correction method was employed in order to subtract the drift and to average 

multiple maps taken over long periods of time.  Fig. 6a is the uncorrected )2/( πωNRΔ  

vs. Vcpb vs. Φ map for Fig. 4a. In this instance, we chose two charge periods in the map 

and fit )2/( πωNRΔ  vs. Vcpb to two Gaussian peaks for each value of flux Φ. A typical 

trace and fit, taken at Φ =-0.45 (A.U.), is displayed in Fig. 6b.  The fit gives the positions 

of the charge degeneracy points and aligns traces taken at successive values of Φ as well 

as subtracts the offsets due to background fluctuations in )2/( πωNRΔ , typically on the 

order of 10 Hz.  Fig. 4a is the result of only one post-processed map. For the 

spectroscopy maps in Fig. 7a–d and the Landau-Zener map in Fig. 11a, as many as 14 

maps were taken over the course of a day.  The presence of the microwave resonances in 

these maps made it difficult to fit and find the location of the charge degeneracy points. 

Accordingly, it was essential, for each value of Φ, to take one trace with microwaves 
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applied and then a second trace immediately afterward without microwaves applied.  

This allowed us to use the maps without microwaves applied to correct the charge drift of 

the maps with microwaves applied.  For better precision, a second post-processing step 

was used that minimized the variance at each value of Φ between traces of different maps. 
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Figure 6: Correction for CPB charge drift 

(A) Uncorrected data for Fig. 4. A quasiparticle switching event is evident at Φ =-1.3.  

(B) Constant flux cross-section taken at “A”, denoted by vertical black line in (A).  

Black line in (B) is a fit of the cross-section “A” to two Gaussian peaks to determine 

charge-offset and background change from trace-to-trace. 
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2.4.4 Microwave spectroscopy of CPB 

While the CPB state >< zσ̂  is manipulated by irradiating the CPB gate with 

microwaves that are resonant with the qubit transition, spectroscopy is carried out by 

monitoring the mechanical frequency shift 
π

ω
2

NRΔ . With the microwave frequency 
π

ωμ

2
 

held fixed and the microwave amplitude μV adjusted so that 1
2

<<=
e
VC

n μcpb
μ , the CPB 

oscillates between +  and −  with Rabi frequency 
E

EnE JμC
d Δ

4
Ω

h
≈  when  Vg and 

Φ are tuned so that 
π
ω

π
E μ

22
Δ

≈
h

.  Because the nanoresonator response time, 
κ
π2 , is long 

in comparison to the characteristic time scale of the CPB dynamics, measurements of 

π
ωNR

2
Δ

 reflect the average qubit occupation −+ −>=< ρρσ z , where +ρ  and −ρ  are 

found from the steady-state solution to the Bloch equations41 

2
1 2

2 2 2
1 2 2

11
2 1 ( )

d

d

T T
ET T Tμ

ρ ρ
ω

+ −

Ω
= − =

Δ
+ Ω + −

h

 (Eq. 5). 

Here T1 and T2 are the qubit relaxation and dephasing times, respectively.  For nμ, large 

enough that 2
1 2 1d T TΩ >> , the CPB becomes saturated, i.e., 2/1== −+ ρρ , and 

0
2

Δ
→

π
ωNR . For GHz

π
ωμ 205.10
2

−= , hyperbola where 0
2

Δ
→

π
ωNR appear, tracing out 

constant energy contours that are in general agreement with the expected ( Φ,cpbn )-

dependence of the qubit transition EΔ  (Fig. 7e). 
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We can estimate the charging energy Ec  and Josephson energy EJ of the qubit from 

spectroscopy by plotting )2/( πωμ  vs. the displacement from degeneracy Δncpb at which 

resonance occurs (i.e., μωh=ΔE ) for fixed EJ.  Fig. 8 displays )2/( πωμ  vs. Δncpb for 

several values of Φ.  From the fits to hEnE Jcpbc /)8()2/( 22 +Δ=πωμ , we find 

GHz4.7.13/ ±=hEc , GHz8.7.12/ ±=hEc , and GHz2.4.13/ ±=hEc  for  Φ=0.1Φo, 

0.2Φo and 0.35Φo respectively.  From the intercepts of the fits, we find 

GHz5.4.10/ ±=hEJ , GHz9.5.9/ ±=hEJ , and GHz0/ ≈hEJ (large uncertainty) for 

Φ=0.1Φo, 0.2Φo, and 0.35Φo, respectively. The values of maximum Josephson energy EJ0 

inferred from the fits and the Josephson relation are ~ 10–15% smaller than what one 

would expect from the microwave frequency at which resonance occurs for Vcpb and Φ 

biased such that 0JEE =Δ  (Fig. 9a–b, 5.0=cpbn  and Φ=0).  Comparing Fig. 9a and Fig. 

9b, it is apparent that this occurs for microwave frequencies in the range of 

GHz5.135.12)2/( −=πωμ . From these results, our best estimate is GHz13~/0 hEJ . 

 

Fig. 9 also serves to demonstrate the additional resonance features that appear near 

charge degeneracy.  The dashed green lines denote the resonance bands we expect for the 

applied microwave frequency )2/( πωμ , based upon a calculation of ΔE from the full 
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Hamiltonian Eq. 4.  At the lowest microwave frequencies (Fig. 9a–b), the observed 

),( ΦCPBn -dependence of the microwave resonance appears to be consistent with the 

coupling of the CPB island to an incoherent charge fluctuator.49  However, we observed 

no apparent dependence of the additional resonant features on thermal cycling or the 

application of background electric and magnetic fields. Additionally, we find that upon 

increasing )2/( πωμ  (Fig 9c–d), the qualitative agreement between the observed and 

expected ),( ΦCPBn -dependence improves. 
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Figure 7: Dispersive shift from weakly driven qubit  

Nanoresonator frequency shift 
π

ω
2

NRΔ  as a function of Vcpb and Φ when microwaves 

resonant with the CPB ground-excited state splitting are applied. (a) 11.5 GHz, (b) 13.5 

GHz, (c) 17 GHz, (d) 20 GHz. (e) Surface plot of CPB ground-excited state splitting ΔE 

as a function of Vcpb and Φ, with constant energy contours at the microwave frequencies 

highlighted. Data taken with VNR = 10 V and Tmc ≈ 130 mK. 
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Figure 8: Qubit microwave resonance vs. gate charge  

Plot of spectroscopic frequency ωμ/2π vs. the value of Δncpb at which the CPB transition 

energy ΔE= ωμ, for Φ=0.1Φo (squares), Φ=0.2Φo (circles), Φ=0.35Φo (triangles). Data 

is taken with VNR = 10 V, Tmc ~ 140 mK. 
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Figure 9: Qubit microwave resonance for different microwave frequencies  

Measurements of the nanomechanical frequency shift )2/( πωNRΔ  vs. Vcpb and Φ for 
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microwave frequencies ωμ/2π =12.5 GHz (A), 13.5 GHz (B), 18 GHz (C), and 20 GHz 

(D). Data taken at VNR = 10 V and Tmc = 140 mK.  The experimental values of Vcpb and 

Φ have been converted into units of Cooper pairs and the flux quantum Φo, respectively. 

The maximum Josephson EJ0 energy occurs at Φ = 0.  When 0JE=μωh , the resonant 

hyperbola overlap at Φ = 0.  Thus, from (A) and (B) we estimate that EJ0/h ~ 13 GHz.  

The green lines in the plots denote the expected resonance hyperbola determined from the 

qubit transition energy ΔE, which we calculate from the full CPB Hamiltonian Eq. 4 

using GHz0.14/ =hEc  and GHz2.13/0 =hEJ . 

 

Recording the mechanical frequency shift 
π
ωNR

2
Δ

 as a function of the microwave 

frequency 
π
ωμ

2
 (Fig. 10) we can extract the driven qubit linewidth  

2
1

2
2 2

1 1
2

d T
T T

γ
π π

Ω
= +  (Eq. 6). 

 As expected from Ωd and Eq. 6, we find that 
π
γ

2
 increases with increasing Vμ (Inset Fig. 

10). From a fit of 
π
γ

2
 vs. 2

μV  to Eq. 6, we find sec22 nT ≥  at charge degeneracy. 



 36

 

Figure 10: Estimate of qubit linewidth 

(Main) Nanoresonator frequency shift 
π
ωNR

2
Δ

 as a function of 
π

ωμ

2
at the smallest value 

of microwave amplitude Vμ  used in the experiment. The solid blue line is a fit to a 

Lorentzian.  (Inset)  The linewidth of the transition between CPB states +  and −  

plotted as a function of 2
μV .  Error bars are from a fit of each )2/( πωμ -sweep to a 

Lorentzian, and they denote the 68% confidence level.  The solid-line is a fit to Eq. 6, 

demonstrating expected broadening of CPB transition due to increased microwave drive.  

Data is taken with flux biased such that EJ/h ≈12 GHz. 
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2.4.5 Landau-Zener tunneling of CPB with strong 

microwave excitation 

At large microwave amplitude Vμ  ( μn
Cμ

J

Eω
E

h

2

), we demonstrate that we can utilize 

the nanomechanical frequency shift 
π

ω
2

NRΔ  as a probe of quantum coherent interference 

effects in the CPB (Fig. 11).  These effects arise as a result of Landau-Zener (LZ) 

tunneling50 that can occur between −  and +  whenever the CPB is swept through the 

avoided-level crossing at charge degeneracy.   If T2 is longer than the microwave 

modulation period 
μω
π2 , then successive LZ events can interfere, resulting in oscillations 

in the qubit population zσ̂ as a function of Vμ and Vcpb.   

 

By monitoring 
π
ωNR

2
Δ

 while sweeping Vcpb at fixed values of Vμ , we clearly observe 

quantum interference (Fig. 11a).  At the lowest-values of Vμ , LZ tunneling is 

exponentially suppressed,50 and we observe a dependence of 
π
ωNR

2
Δ

 on Vcpb consistent 

with the CPB residing in − .  As Vμ  is increased, we observe that 
π

ω
2

NRΔ oscillates with 

Vμ  and Vcpb, and even changes sign. It becomes maximally positive at values of Vμ  and 

Vcpb where we expect the occupation of  +  to be maximum (the intersections of the 

contours in Fig. 11a).  We observe that the spacing cpbVΔ  in the gate voltage between 



 38

adjacent interference fringes increases linearly with increasing microwave frequency 
π
ωμ

2
 

(Fig. 11b–c) as expected. A fit of cpbnΔ vs. 
π
ωμ

2
 (Fig. 11c) yields GHz115 ±=cE , which 

is in good agreement with the value extracted from spectroscopy.  Figure 11d displays a 

cross-section of 
π
ωNR

2
Δ  vs. Vμ taken at charge degeneracy, demonstrating the expected 

periodic dependence and Lorentzian shape of the interference maxima.  The primary 

maxima in 
π

ω
2

NRΔ  occur at values of Vμ that produce a phase shift of mπ2 , where m is 

an integer, in the CPB’s wave function over one-half cycle of the microwave modulation.  

The resulting periodicity in Vμ  provides an estimate of ~ -44–48 dB of the total 

attenuation at GHz50.6
2

=
π

ωμ  in the CPB gate line, which is in reasonable agreement 

with measurements of the attenuation at room temperature. 

 

The contour lines overlaying the Landau-Zener interferogram in Fig. 11a denote locations 

in ),( μcpb VV -space where the phase of the CPB wavefunction is a multiple of 2π.  These 

contours were generated via the same method used in Sillanpää et.al.50, 

with
2

0

,
1 Δ ( ( )) 2

t

L R cpb S
t

φ dt E n t φ= −∫h .  For a given Vcpb and Vμ, “L” and “R” correspond to 

the phase Lφ  developed while the CPB traverses points to the left of charge degeneracy 

(i.e., Vμ <   -3.66 mV) and the phase Rφ  developed while the CPB traverses points to 
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the right of charge degeneracy (i.e., Vμ >-3.66mV) respectively.  The Stokes phase ϕs, is 

also as defined in Sillanpää et.al.50.  The parameters used to generate the overlay were 

GHz0.14/ =hEc , GHz2.13/0 =hEJ , aF1.17=gC , and GHz5.6)2/( =πωμ . Also, a 

factor of 2.8 was used to convert nμ into Vμ, corresponding to an attenuation of 43.5 dB.  

Transmission measurements of the microwave circuit made at room temperature using a 

network analyzer with a 50 Ω input impedance yield ~ 50–54 dB attenuation. This is in 

reasonable agreement with value extracted from the LZ interferogram, considering that 

the CPB gate presents an effectively open-circuit termination to the microwave line 

during operation. 
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Figure 11: Landau-Zener interfererence with strong qubit excitation 

Landau-Zener interferometry performed using the nanomechanical frequency shift as a 
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probe. (a) Interference fringes plotted as a function of microwave amplitude nμ and CPB 

gate voltage ncpb.  (b) For GHz5.60.4
2

−=
π

ωμ , cross-sections of constant nμ, are 

displayed, chosen to coincide with the intersection of the m=-2 and m=-3 constant phase 

contours.  (c) Linear fit of the spacing cpbnΔ  between adjacent interference fringes at 

intersection of the m=-2 and m=-3 constant phase contours. cpbnΔ  is determined from a 

fit of adjacent peaks (m=-2,-3) and (m=-3,-2) to a double Gaussian. (d)  Nanomechanical 

frequency shift vs. microwave amplitude for GHz5.6
2

=
π

ωμ at Vcpb=-3.89 mV, 

demonstrating the expected periodicity in the interference fringes 

 

For both driven and un-driven CPB cases, it is rather remarkable how well the simple 

dispersive model (Eq. 3) agrees with our observations.  It is not obvious, a priori, that 

the same equations of motion used to model the interaction between an atom and a 

photon should also apply to the interaction between a suspended nanostructure and a 

mesoscopic electronic device, given the latter systems are each comprised of billions of 

atoms.  Despite this agreement, several outstanding issues are noteworthy.  First, we 

observe increased damping of the NEMS upon tuning the CPB to the charge degeneracy 

point.  While it is necessary to take more data to determine the origin of this excess 

energy loss, the fact that it depends on the CPB gate bias Vcpb and increases with VNR 
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suggests that it is mediated by the CPB.  Second, we observe additional resonant features 

near charge degeneracy (Figs. 7 and 9) whose origins are not yet understood.  These 

robust features do not appear to be sensitive to time or background electric field.  Further, 

they also do not demonstrate a clear dependence on μn , suggesting that mechanisms such 

as multi-photon transitions51 or Landau-Zener tunneling50 may be ruled out.  

 

2.5 Discussion 

The coupling strength, λ, which is achieved in this experiment is sufficiently large to 

realize many recent proposals for quantum nanomechanical measurements23, 27, 31-38.  

With our currently-realized value of λ, it should already be possible to generate 

nanomechanical “laser” states by tuning the Rabi frequency of the driven qubit into 

resonance with the nanoresonator (i.e., NRd ω≈Ω ), and stimulating a coherent exchange 

of energy between the nanoresonator and the dressed states of the qubit.35 This resonance 

condition should now be achievable, since we estimate that at charge degeneracy, for the 

range of Vμ explored in the spectroscopy reported here, MHz25010~
2

−
Ω

π
d .  

Furthermore, with only either a threefold increase in the nanomechanical frequency, 

π
ωNR

2
, or a threefold reduction in qubit linewidth,

π
γ

2
, the proposal for side-band-resolved 

cooling of the nanoresonator close to its quantum ground state could be pursued.27  
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The qubit-NEMS coupling strength, λ, can be increased by a factor of 10 or more by 

engineering a smaller electrode gap, d = 85 nm,  and maintaining V15=NRV .  These 

parameters have already been demonstrated with single-electron transistors.15  Such 

significant, yet realistic improvement to the coupling, along with the implementation of 

circuit-QED (cQED) architecture52 to reduce qubit damping and provide independent 

read-out of the qubit, should push these experiments into the strong-dispersive limit, 

( ) γ
ωE

λ

NR

h
h

>
−Δ
2 2

, thereby enabling a variety of advanced quantum measurements. One 

possibility is utilizing the complimentary CPB “Stark shift” 

( ) ( )1ˆ2
)(2 22

22

+><
−ΔΔ

=
Δ N

EE
EE

NR

JStark

ωπ
λ

π h

h

h
, which arises from the dispersive 

interaction, to perform QND measurements of nanomechanical Fock states23. Thus, rather 

than monitoring 
π
ωNR

2
Δ

 to observe the state of the qubit, as done in these experiments, 

one would monitor  
hπ

EStark

2
Δ , either via Ramsey interferometry or direct spectroscopy to 

infer the number state of the nanoresonator.   

 

These realistic prospects for performing a wide array of quantum measurements establish 

the qubit-NEMS resonator system as a new tool with which to explore the quantum 

mechanics in macroscopic systems. 
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Chapter 3 
 
Parametric amplification and back-
action noise squeezing by driven 
Cooper-pair box qubit 
 
Parametric amplifiers have been essential in manipulating the quantum noise of optical53-

57 and microwave electromagnetic fields58-60. At the heart of such experiments, reactive 

media, including optical crystals, atomic clouds, and Josephson junctions, are strongly 

driven so that nonlinearities in the media stimulate processes that can be used for signal 

amplification and vacuum noise squeezing. 

 

Similarly, nonlinearities in micro- and nano-electromechanical systems (MEMS and 

NEMS) have been utilized for parametric amplification of motional signals before 

transduction to the electronic domain61-64, and demonstrating thermal noise squeezing64. 

While several different techniques have been explored for parametric modulation of 

NEMS and MEMS, the most common approach utilizes the shift in mechanical resonance 

frequency that results from the electrostatic nonlinearity of a nearby electrode3, 64. 
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In principle, parametric modulation via this capacitive “pulling” should enable the 

preparation of quantum squeezed states of motion65. However, due to the microscopic 

scale of such systems, geometric capacitances are typically very small.  Thus, to achieve 

enough parametric gain to reach the quantum limit or generate quantum squeezed states, 

large pump amplitudes are required, and those could result in deleterious effects that 

obscure quantum signatures.  For example, assuming the parameters realized in a recent 

experiment66, squeezing the mechanical noise to 10% of the vacuum level would require 

modulating the gate electrode of the nanoresonator with an amplitude of 300 mV. 

Operating with such a large pump amplitude could present technical challenges; for 

example, parasitic coupling to ultra-sensitive measurement electronics such as a single-

electron transistor or charge qubit.   

 

In contrast, the new method shown here utilizes the highly nonlinear charge-voltage 

relationship in a Cooper-pair box (CPB) qubit that results from the Josephson coupling 

across the CPB's superconducting tunnel junctions. When the nanoresonator is 

capacitively coupled to the CPB, this charge-voltage relationship affects the 

nanoresonator’s motion and its resonance shows a CPB-state-dependent shift13. We find 
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the modulation of the qubit gate voltage produces parametric response of the 

nanoresonator that is 3000 times greater than what can be achieved using the geometric 

capacitance alone.  The use of the qubit nonlinearity to parametrically pump the 

nanoresonator also significantly reduces the direct electrostatic drive of the resonator, 

which occurs simultaneously with parametric modulation when pumping through 

geometric capacitance67. This further complicates protocols for engineering non-classical 

states of the mechanics. Also, phase-sensitive detection can be utilized for position 

measurements with sensitivity below the quantum limit for continuous phase-insensitive 

detection68, 69.  Furthermore, recent theoretical studies70, 71 have shown that a driven CPB 

can be used as an auxiliary system with which to generate various nonlinear 

nanomechanical Hamiltonians, opening up the possibility for producing a variety of non-

classical states of nanoresonators. 

 

 

3.1 Parametric excitation of harmonic oscillator: 

amplification and noise squeezing 

When the spring constant of a harmonic oscillator is modulated at twice its resonance 

frequency, i.e., )2cos( 00 tkkkeff ωδ+= , the oscillator amplitude is larger than the case 
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without the parametric modulation (or “pump”). The resulting gain G  is given by64 

(Appendix C), 

2
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2
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⎝

⎛
+

=
ωδω

ϕ
ωδω

ϕ
QQ

G  (Eq. 7) 

where 0ω  is the resonant frequency, ϕ  is the phase of the force on the resonator 

relative to the pump, and a small kδ  is assumed ( 00 /2/ ωδωδ ≈kk ). When 2/πϕ =  

the gain is maximized, and as Q/0ωδω →  the resonator becomes unstable and self-

oscillates. On the other hand, when 0=ϕ , the gain is minimized and approaches a value 

of 1/2 as Q/0ωδω → . When the nanoresonator is driven by a random noise force, this 

deamplification results in noise squeezing64. 

 

The coupling to the CPB induces a frequency shift in the nanoresonator given by Eq. 3. 

This resonance shift NRωΔ  is effectively the change in the nanoresonator’s spring 

constant, effk . When NRωΔ  is modulated via qubit excitation at twice of NRω , such 

that )2cos()(2
),2cos()(

0,
0, tn

n
k

ktn
n NRcpb

cpb

NR

NR

eff
effNRcpb

cpb

NR
NRNR ωδω

ω
δωδωωω

∂
Δ∂

Δ
=

∂
Δ∂

+Δ=Δ  

gives the parametric excitation. 
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3.2 Setup and results 

Fig. 12a shows the schematic of the measurement circuit. Except for the addition of a 

parametric drive, the cryogenic and electronic set-up are identical to the experiment 

described in the previous chapter. Figure 12b is the measured resonance shift 

πω 2/NRf Δ=Δ  when the qubit is in the ground state, plotted as a function of the flux 

Φ  applied to the qubit and the qubit gate voltage GgeG CnqV /2=  ( eq =electron charge). 

In the map, we pick the constant flux section (dashed vertical line in Fig. 12b) where the 

frequency shift at the charge degeneracy is the maximum. The resulting trace of fΔ  vs. 

GV  is shown in Fig. 12c and fits well to the expected dependence given by Eq. 3. This fit 

gives =hEC / 12.5 GHz and =h/λ 3.2 MHz. These values agree with the spectroscopic 

measurements in the previous chapter72. We fix GV  so that fΔ  is half of the value at 

degeneracy (the bias point is denoted by the green cross in Fig. 12(c)). At this bias point, 

the parametric pump modulation is given approximately by ωπδω 2/)(2/ VVf G ⋅∂Δ∂≈ , 

where GVf ∂Δ∂ /)(  is the linear parametric response and ω2V  represents a small 

modulation of qubit gate bias. From the measured dependence of fΔ  on GV , we deduce 

GVf ∂Δ∂ /)( =1.1 kHz/mV by comparing with a numerical calculation.  To compare this 

with the geometric capacitance effect of the qubit gate, we sweep GV  and separately 

measure the resonance shift without coupling to the qubit ( NV =0V). From this we obtain 
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GVf ∂Δ∂ /)( =0.3 Hz/mV, which is approximately a factor of 3000 smaller than the 

parametric response using the CPB. 
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Figure 12: Scanning electron micrograph of the device and the measurement circuit 

diagram 

The sample picture is colored to show different materials — silicon nitride (blue) and 

aluminum (gray). The matched cryogenic amplifier ( Ω= 500Z ) is modeled to have two 

uncorrelated sources of noise, VS for the voltage noise density and IS  for the current 
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noise density. (b) Color map of resonance frequency shift ( )2/( πωNRf Δ=Δ ) vs. CPB 

gate voltage ( GV ) and flux ( Φ ) where 0Φ  is flux quantum. (c) fΔ as a function of gate 

voltage (blue circles), representing the constant-flux cross-section that is indicated in (b) 

by the vertical dashed line. Red line displays a fit of the data to Eq. 3.The green cross is 

the bias point at which parametric response measurements are performed. 

 

3.2.1 Parametric amplification and oscillation 

To obtain parametric amplification, we set GV  and Φ , then turn on the resonator 

excitation )cos( 0 ϕωω +tV  and apply the pump )2cos( 02 tV ωω  to the CPB gate electrode. 

Fig. 13a shows a typical sweep of nanoresonator amplitude vs. ϕ  under these conditions.  

A clear periodicity in ϕ  with period π  is observed in good agreement with Eq. 7. In 

Fig. 13b, ϕ  is set at 2/π  and ω2V  is swept for three different values of resonator 

excitation ωV . For pump amplitudes up to ≅ω2V 0.8 mV, the data fits well to Eq. 7 and 

indicates that the threshold for self-oscillation is 1 mV. Well above this threshold, in Fig. 

13c, we clearly observe regions in the qubit parameter space, centered about maxima in 

GVf ∂Δ∂ /)( , where the nanoresonator becomes unstable and self-oscillates. 
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3.2.2 Nonlinear dissipation 

It is evident from Fig. 13b, that the parametric gain saturates above ω2V = 1mV. Gain 

saturation occurs at lower values as the resonator excitation ωV  is increased, occurring 

at approximately the same mechanical amplitude for each value of ωV . For a pump 

amplitude of ω2V = 1.2mV, we estimate the saturation amplitude to be x = 9pm. This is 

much smaller than the critical amplitude for the elastic Duffing nonlinearity73, which we 

estimate to be 1.4 nm. Higher-order terms in the parametric response )( GVfΔ  are also 

too small to account for the observed saturation. We believe that it can be explained by a 

general model73-75 that incorporates a nonlinear damping force xx &2η  on the 

nanoresonator. Such dissipative effects have been observed in similar parametrically-

driven mechanical resonators by other groups76, and an analogous nonlinear damping is 

known to exist in superconducting microwave resonators77. We use secular perturbation 

theory73 to account for the additional nonlinear damping and derive the nanoresonator's 

amplitude X  in response to a harmonic force )cos( 0tF ω . We find it to satisfy 

X
F

k
QX

k
Q

k
kk

effeffc

c −=
− 20

4
ωη

δ
δδ  (Eq.8) 

where ckδ  is the amplitude of the spring constant modulation at the self-oscillation 

threshold.  
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To fit the data, as shown in Fig. 13b, Eq. 8 is first simplified to CxBAxy ++= /2 and 

then used fit with variables x =(mechanical displacement X  before normalization) and 

ω2Vy = . With the calculated fit parameters, a cubic equation 0)( 2
3 =+−+ BXVCAX ω  

is solved for each ω2V  and this produces the solid curves in Fig. 13b. From the fit, we 

deduce a nonlinear dissipation coefficient skg/m108 29×≅η  for these measurements. 

This is within an order-of-magnitude of an estimate of skg/m101 29×≈η , the value we 

calculate numerically from the measured dependence of nanoresonator damping vs. qubit 

gate voltage GV . The PLL circuit employed in the resonance shift measurement also 

monitors the magnitude simultaneously, giving us information about the nanoresonator’s 

quality factor with respect to the gate charge. Fig. 14 shows the width of the 

nanomechanical resonance ( Q/0ωγ = ) deduced from the measured quality factor. It is 

clear that additional dissipation arises due to coupling to the CPB, which this becomes 

maximal at the degeneracy point. We have not clearly identified the source of this 

additional dissipation. One possible explanation may be the resonance frequency 

fluctuations due to the stochastic process of quasiparticle poisoning. An analogous line 

broadening effect upon atomic transitions from random telegraph-type resonance 

fluctuations has been analyzed elsewhere78. With the CPB biased at 063.0≅gn , a small 

fraction of gate charge is modulated by the nanomechanical motion according to 
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xeVxCn NGg )2/)/(( ∂∂=δ , which results in modulation of γ  and 0ω .  Assuming that 

the equation of motion takes the form, 
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up to second order in x , we can identify higher order terms such as xxxm &)/( ∂∂γ , 

2/)/( 222 xxxm &∂∂ γ , and 2
00 )/(2 xxm ∂∂ωω , and collect them following Lifshitz et. al.73 

Following this approach, the nonlinear dissipation coefficient is then given by, 
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From the measured resonance linewidth vs. gate charge in Fig. 14, we obtain 

1522 105/ −×≈∂∂ sngγ , 14106/ −×−≈∂∂ sngγ . From the resonance shift data, we have  

14
0 101/ −×≈∂∂ sngω  , 19103.3/ −×≈∂∂ mxng . Together these allow us to deduce 

)/(101 29 smkg×≅η . Employing the fluctuation-dissipation theorem, one expects this 

nonlinear dissipation to be accompanied by displacement-dependent terms in the 

nanoresonator’s force noise correlation75. This avenue has not been pursued in the current 

experiment.  
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Figure 13: Mechanical parametric amplification and oscillation by driven qubit  

(a) Parametric gain vs. phase of the resonator excitation. The blue circles are data taken at  

ω2V =0.8 mV and the red line is a fit to Eq. 7. The amplitude is normalized by the 

amplitude when ω2V =0V and is expressed in dB. (b) Parametric gain vs. pump amplitude. 

From top to bottom, the circles correspond to the measured gains with ωV =3.6nV, 6.3nV, 

11nV. The black dashed line is a fit to Eq. 7 with 2/πϕ = . The solid lines over circles 

are the fits to Eq. 8. (c) Map of the parametrically driven resonator amplitude with 
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ωV =0V and ω2V =1.6mV, demonstrating self-oscillation in regions of CPB parameter 

space where the parametric response is maximum 
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Figure 14: Nanomechanical resonance width vs. gate charge 

 

3.2.3 Noise squeezing 

The phase dependence of the amplification process in a degenerate parametric amplifier 

can be utilized to de-amplify one quadrature component of the input signal and reduce, or 

“squeeze”, the noise that accompanies the signal in that quadrature64.  We demonstrate 

this effect using our qubit-based parametric amplifier in degenerate mode to squeeze the 
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back-action noise emanating from the capacitive detection circuit. This excess back-

action is due to input voltage noise of our cryogenic amplifier (noise temperature ~ 30 K). 

With the pump and drive voltage turned off, these voltage fluctuations drive the 

nanoresonator out of equilibrium with the thermal environment at 130 mK to an effective 

temperature about 8K. This value is extracted from the peak height ( BAxS , ) of noise 

spectrum in Fig. 15a. With the pump on, we observe the squeezing effect using an RF 

lock-in to monitor both quadratures of the nanoresonator's motion as a function of the 

reference phase ϕ , Fig. 15b.  De-amplification of each quadrature occurs with the 

expected 2/π  phase difference between quadratures and yields maximum squeezing of 

4 dB. 

 

We start with the parametric pump set to zero, and the total displacement noise spectrum 

BAxADDxx SSS ,, +=  is recorded for each of quadratures (X and Y) of lock-in. The two 

noise spectra show equivalent peak heights and noise floor levels, as expected. We 

choose X quadrature data to plot in Fig. 15a and to estimate ADDxS , . The noise floor has a 

slope due to slight offset of LC matching circuit resonance and mechanical resonance. 

Accordingly, it is fit by a quadratic polynomial to obtain the noise density at the 

mechanical resonance, which is ADDxS ,  (Fig.16). With the parametric pump turned on, 
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the phase of the resonator excitation is swept, while xS  at the mechanical resonance is 

monitored. Following this procedure, ADDxxBAx SSS ,, −=  gives us the back-action noise 

for each phase. Figure 15b shows that the back-action noise from the amplifier is 

squeezed. To provide a detailed fit to this behavior, the nanoresonator biased at 

NGNdc VVV −=  at its resonance is modeled as a resistor (
2
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The impedance matching circuit transforms the impedance as 1:2N , where 

50/ 0 ≅= ZLN TTω  and TTT CL/1=ω . The amplifier is modeled as having two 

uncorrelated noise sources79 (Fig. 12a); the spectral densities of these voltage and current 

noise sources are VS , IS , and an input impedance Ω== 500ZZin  is assumed. In our 

set-up, Ω≅ MRm 8.0  for G =1 and inm ZNR >>2/ . The mechanical displacement is 

proportional to the current through inZ , thus the noise current through inZ  gives the 

displacement noise. The spectral density of noise current through inZ  is, 
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We see the second term does not depend on the mechanical resonator and it is simply an 

additive contribution from the amplifier. The first term, by contrast, increases when mR  

decreases; i.e., the coupling to the amplifier increases. Through this approach we identify 

the amplifier back-action noise as 
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( ) ( ) 22
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, )/)/(()/(/// effNGdcVNGdcmVBAx kxCGNQVSxCVNNRSS ∂∂=∂∂= ω  

and the additive noise as 

( )2
0, )/( xCVNSS NGdcIADDx ∂∂= ω . 

It is evident that only the back-action noise is amplified or squeezed depending on the 

parametric gain G . And also, since only BAxS ,  depends on the mechanical Q , the noise 

floor under the motional peak of the displacement noise spectrum is ADDxS , .  

 

The total displacement noise is,  
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Here we do not include the thermomechanical noise of the nanoresonator since the noise 

temperature of the amplifier (~ 30 K) is much higher than the sample temperature. The 

displacement noise xS  at the nanomechanical resonance 0ωω =  gives the 

measurement force noise, by xefff SGQkS 2)/(= . Thus the portion of force noise due to 

the amplifier is, 
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This is minimized when  
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ADDfBAf SS ,, =  or 2// NRSSR mIVn =≡ , 

and this relation gives the noise matching condition. The minimum force noise is then, 
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where Bk  is the Boltzmann constant and NT  is the minimum noise temperature of the 

amplifier. 

 

From the measured ADDxS ,  and BAxS , , we calculate VS  and IS and get 

1/22/1 pV/Hz360=VS  and 1/22/1 pA/Hz2.2=IS , which are close to what we measured in a 

separate measurement on the cryogenic amplifier, 1/22/1 pV/Hz340=VS  and 

1/22/1 pA/Hz2.2=IS . Also, we extract the force sensitivity 1/2aN/Hz83 with no parametric 

gain. Comparing this with the expected thermomechanical noise force, 

1/2
0 aN/Hz1.5)/(4 =QTkk Beff ω , we see the preamplifier noise is dominant, and the 

parametric amplification indeed improves the force sensitivity, and it also confirms the 

validity of the assumption neglecting the thermomechanical noise. 
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Figure 15: Amplifier back-action noise squeezing  

(a) The noise spectral density of the mechanical displacement with no parametric gain. 

The slope in the background is due to a slight offset of the nanomechanical resonance 

from the LC matching frequency. (b) Back-action noise vs. reference phase. (blue) X-

quadrature of the lock-in. (red) Y-quadrature. Line “A” is the noise level with no 

parametric gain and line “B” is at -4 dB from noise level “A”. 
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Figure 16: Displacement measurement noise floor estimate 

 

3.3 Discusssion 

We have demonstrated parametric amplification of nanomechanical motion using the 

nonlinearity of a driven CPB qubit. The dispersive nanomechanical resonance shift 

provides a parametric pumping mechanism that is significantly more efficient than 

existing techniques for parametric nanomechanical modulation. Our proof-of-principle 

experiment shows that this parametric effect can be used to squeeze nanomechanical 

motion. Integrating a superconducting microwave resonator with this system should 

enable the preparation and observation of quantum squeezed states and superposition 

states of the mechanics. 
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To the best of our knowledge, this qubit-based amplification and squeezing technique is 

the first demonstration of the use of a qubit as an auxiliary system to manipulate the state 

of nanomechanical motion. In this first demonstration we manipulate motion in the 

classical regime. In future experiments, quantum state engineering of the mechanics will 

be possible by replacing the present capacitive read-out circuit with a low-loss 

superconducting microwave resonator (SWR). Through capacitive coupling of each 

element to the nanoresonator, independent manipulation of either the qubit and SWR, or 

simultaneous manipulation of both, could then be used to tailor a specific nanoresonator 

Hamiltonian70. This could enable the production of a large variety of quantum states, 

including vacuum squeezed states and superposition states. 

 

Generating such states will require reducing the thermal occupation number N  of the 

nanomechanical mode to a value that is close to its quantum ground state (i.e., 

0ωh<Tk B ). Attainment of the quantum ground state of a 6 GHz micro-mechanical 

resonator was recently demonstrated using conventional dilution refrigeration11. Also, for 

a nanoresonator similar to what is described in this paper, N =3.8 has been reached using 

dynamical back-action cooling from a SWR66. With a nanoresonator cooled to low 
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occupation numbers, a vacuum squeezed state of the mechanics could be prepared by 

utilizing the qubit squeezing technique demonstrated here. Subsequent operations on the 

qubit applied through a series of microwave pulses could then be used to engineer the 

nanoresonator interaction Hamiltonian 2† )ˆˆ( aag  and generate a superposition of the 

squeezed states70. Implementation of this type of superposition protocol will require 

nanoresonator interaction strength, g , that exceeds both the qubit damping, γ , and 

nanoresonator damping, Γ . For the present sample we estimate ≅g 2 kHz, Γ =1.1 kHz, 

and ≅γ 1 GHz72. Modifications to the geometry of the sample should yield a factor of 10, 

or more, increase in the electrostatic coupling λ . This could yield a coupling strength, 

≅g 200 kHz, which approaches the lower limit of qubit damping rates demonstrated in 

circuit-QED, γ <1 MHz24. 
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Chapter 4 
 
Cooling of a nanomechanical mode 
with a microwave resonator 
 

The ground state of a quantum harmonic oscillator has the lowest possible energy and the 

minimum uncertainty in displacement, or “zero point motion”, with r.m.s. amplitude 

ωmxzp 2/h= . This is one of the signatures of its quantum nature that makes it distinct 

from classical physics. It also provides a useful starting point for generating other 

interesting quantum states80 such as squeezed states, superposition states, and number 

states. A mechanical resonator can be placed in its ground state, in principle, simply by 

lowering its temperature below Bk/ωh . For resonance frequencies in the GHz range, 

conventional dilution refrigeration can provide access to low enough temperatures 

( GHzmK/148/ =Bkh ). A recent demonstration of the cooling of a micro-mechanical 

resonator to the ground state was done in this way11. For lower frequency devices, opto-

mechanical coupling provides a possible option for optical sideband cooling81, 82. By 

coupling the mechanical and optical degrees of freedom to modulate the resonance 

frequency of an optical cavity, and by driving the cavity with light detuned from the 
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cavity resonance, the anti-Stokes scattering of the cavity photon absorbs mechanical 

quanta, which cools the mechanical mode. For different cavity geometries and coupling 

schemes, mechanical occupation factors in the range of 30 to 60 quanta have been 

demonstrated83-85.  

 

In the present work, a coplanar waveguide microwave resonator capacitively coupled to a 

nanomechanical resonator is studied66, 86. This system has the same cooling physics as 

optical back-action cooling, but allows for a more convenient implementation of dilution 

refrigeration. The coupling between the microwave field and the mechanical 

displacement is here enhanced compared to that of previous work66. This is achieved by 

using a higher frequency microwave resonator, reaching 5 times optical damping rate. For 

this system we predict that the mechanical resonator should reach the ground state. 

However, in carrying out our experiments we encountered unexpected heating in addition 

to the optical cooling. This served to keep the mechanical resonator at a minimum 

observable occupation number of 7.5 quanta. 

 

The heating we have observed is consistent with a model of two-level systems resonantly 

coupled to the mechanical mode. This model predicts a 1/2-power law between the bath 
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heating rate and the observed mode occupation number. This effect underscores the need 

for further studies on characterizing and reducing the fluctuations from the ubiquitous 

two-level system bath, to allow attainment of the quantum ground state in 

nanomechanical resonators. 

 

4.1 Theory 

4.1.1 Superconducting coplanar waveguide resonator 

The coplanar waveguide (CPW) is a type of transmission line with two ground planes 

symmetrically placed about a center conductor in a planar geometry87 (Fig. 17a). An 

open-circuit section of CPW acts a half-wave microwave resonator. An equivalent circuit 

for such a resonator can be modeled with a parallel resistance R , capacitance C , and 

inductance L . Their equivalent values can be derived by considering the input 

impedance around the resonance frequency (Fig. 17c)87, 

)/( lZR c α= , )2/( 0 cZC ωπ= , )/(1 2
0 CL ω=  (Eq. 8). 

Here the intrinsic quality factor is RCQ 0int ω= , α  is the attenuation per unit length, 

0ω  is the resonance frequency, cZ  is the characteristic impedance of the transmission 

line, and l  is the resonator length. By using a superconducting metal as the conductor, 

the intrinsic loss can be made very low22, even reaching 6
int 10>Q , making it useful for 
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sensitive detection of the mechanical motion. Coupling to the open-circuit CPW 

resonator with input and output capacitors as shown in Fig 17c, the resonant response 

21S  is measured. The coupling adds dissipation due to the loss to the outside loads, and 

the input/output quality factor due to loading is given by )/( 0
2

/0/ ZCCQ outinoutin ω= 87. The 

total Q is given by outintot QQQQ /1/1/1/1 int ++= . The quality factors give the damping 

rate as Q/0ωκ = . 

 

From the circuit model, the electromagnetic energy stored in the resonator when the 

resonator is driven by a input power unP  at Rω  is, 

22
0 )2/()(

)(
totR

in
RinPU

κωω
κω

+−
=  (Eq. 9). 

This defines the number of photons, )/( 0ωhUnp =  and the output power, outout UP κ= . 

 

4.1.2 Back-action cooling of mechanical motion 

The nanomechanical motion modulates the capacitance of the CPW resonator. This 

couples the microwave field and the nanomechanical displacement, 

)/)(2/(/ 00 xCCxg g ∂∂=∂∂= ωω . Here gC  is the gate capacitance between the 

mechanical resonator and the CPW resonator (Fig. 17b). With the CPW resonator driven 

by a red-detuned tone )( 0ωω <R , the energy in the microwave resonator is modulated 
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with the mechanical motion; this generates a force on the mechanical resonator. Since the 

force has a time-lag corresponding to the ring-down time of the CPW resonator, there is 

net work done by the mechanical resonator, thus additional opto-mechanical damping 

optγ  arises. The effective mode temperature of the mechanical resonator is given 

classically by )/(0 optmmeff TT γγγ += , where 0T  is the initial temperature without 

microwave power.88 

 

This process also can be analyzed with a quantum noise approach, and the cooling can be 

viewed as absorption of the mechanical energy by the CPW resonator via anti-Stokes 

scattering of microwave photons81. In this case, the coupling up-converts red-detuned 

microwave photons by absorbing mechanical energy. Since the rate of this up-conversion 

process is proportional to the density of final states, it is maximized at mR ωωω −= 0 . 

The resulting damping rate is81 
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+
=  (Eq. 10). 

Here zpx  is the zero-point motion of the mechanical resonator, κ  is the CPW 

resonance linewidth, pn  is the mean number of microwave pump photons, and the 

sideband-resolved limit 14/ <<mωκ  is assumed. The total linewidth of the mechanical 
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resonance is then 

optmm γγγ += 0  

where 0mγ  is the intrinsic mechanical resonance linewidth with no microwave back-

action broadening. 

 

From the detailed balance equation, the total number of mechanical quanta is given by 

optm

coptbathm
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nn
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γγ
γ

+

+
=

0

,&
 (Eq. 11) 

where bathmn ,&  is the mechanical mode heating rate from the environment, and 

))4/(21()4/( 2
0

2
mcmc nn ωκωκ ++=  where 0cn  is the occupation number of the CPW 

resonator. The lowest possible mechanical occupation is cn , and ground state cooling of 

the mechanical mode is only possible in the sideband-resolved limit when 14/ <mωκ , 

and also 10 <<cn . In practice, the microwave resonator acts as an additional dissipative 

bath, at a temperature of Bcm kn /ωh , coupled to the mechanical mode with damping rate 

optγ . 
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4.2 Experimental Setup 

4.2.1 Device parameters 

πω 2/m  = 7.2 MHz 

 

Nanomechanical resonance frequency 

effm  ≅ 2 pg  Estimate of the nanomechanical resonator mass deduced 

from the geometry measured with scanning electron 

micrograph and known material density 

zpx  ≅ 24 fm  Zero-point motion of the nanomechanical resonator 

( effmzp mx ω2/h= ) 

πω 2/0  = 11.8 GHz CPW resonator resonance frequency 

πκ 2/  = 500–600 kHz CPW resonator linewidth. Varies with applied microwave 

power 

π2/g  ≅ 180 kHz Coupling x∂∂ /0ω  measured at 300 mK with calibrated 

cryogenic coaxial cables 

 

4.2.2 Cryogenic circuit 

From the room temperature SMA connector for the microwave input, UT-141 CuNi 

coaxial cable is used down to the 4 K stage, where a 10 dB attenuator is located. From the 

4 K stage to the mixing chamber, attenuators are employed as following: 3 dB at the 1 K 

plate, 6 dB at the still, and 11 dB at the cold plate, connected with UT-34 BeCu coaxial 
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cable. The attenuators are wrapped with copper foil and bolted down to ensure good 

thermal contact. The end of the input line is connected to the sample case, and the output 

of the sample case goes into two cryogenic isolators in series, which provides more than 

40 dB of total isolation. A UT-85 niobium coaxial cable is used to connect the isolators to 

the input of the cryogenic HEMT amplifier, and the amplifier output is connected to a 

UT-141 CuNi cable, which goes to the top of the fridge. 

 

4.2.3 Room temperature circuit 

A microwave filter based on the whispering gallery mode of a pair of sapphire cylinders 

is used to filter the phase noise of the microwave source (Appendix E). The measured 

isolation is 23 dB at the CPW resonance frequency. After the cryogenic HEMT amplifier, 

a room temperature low noise amplifier is used as preamplifier before the spectrum 

analyzer. 
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Figure 17: Sample picture and measurement schematic  

(a) Schematic of the microwave coplanar waveguide resonator. A half-wavelength section 

of waveguide is coupled through the input and output capacitances from the tapered ports. 

The substrate has 100nm of low stress silicon nitride on high-resistivity silicon. Sputtered 

niobium is used as the metal layer. At the voltage antinode of the fundamental resonance 

at 11.8 GHz, (dotted circle), a nanoscale suspended beam is connected to the ground 

plane, and capacitively coupled to the center conductor of the microwave resonator. (b) 

Nanomechanical resonator. It is etched and suspended from the substrate using an 

aluminum layer as a mask, which also serves as conducting layer to couple the 
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mechanical mode to the microwave field. The dimensions are, 20 μm x 150 nm x 160 nm 

(LxWxT), where the thickness is composed of 80 nm Al and 80 nm SiN. The 

fundamental resonance is at 7.5 MHz, and the 2nd resonance is at 15.5 MHz. (c) 

Measurement circuit. A microwave tone at the frequency ωp is applied through the 

whispering-gallery-mode sapphire filter. After cold attenuators which attenuate the room 

temperature black-body radiation, the signal propagates through the microwave resonator, 

and is amplified by the cryogenic high electron mobility transistor (HEMT) amplifier. 

Two cryogenic circulators are used to isolate the noise emanating from the 4K amplifier. 

 

4.3 Results 

4.3.1 Thermomechanical noise 

With low microwave power, the upconverted microwave power from Rω  to 0ω  shows 

up as the thermomechanical noise peak, and is measured at different bath temperatures 

(Fig. 18a). For a small mechanical displacement x , substituting xxCCC g )/(0 ∂∂+=  

into the RLC circuit model (Section 4.1.1), and collecting internal voltage terms 

oscillating at mR ωωω +=  yields89, 

><⋅= 22 2)/( xgPP outmech κ  (Eq. 12). 

This gives the calibration of the mechanical occupation number vs. measured area based 
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upon the equipartition theorem, bathBmeff Tkxm
2
1

2
1 22 >=<ω . Due to changes in κ  for 

different temperatures, a linear fit between 2κ⋅mechP  and bath temperature is done, 

giving ]MHz[fW10)1.05.3( 23 ⋅⋅± −  per mechanical quanta at 4101.1 ⋅=pn . Below 40 

mK, increasing scatter is observed in the deduced noise power. This scatter becomes 

much more prominent with the use of a cryogenic bias-tee (Anritsu K250) (Fig. 18b). A 

possible reason for this increased scatter could be the ferromagnetic material inside the 

bias-tee; these kinds of materials show anomalously high heat capacity at low 

temperatures. We discontinued using the bias-tee in subsequent measurements, but this 

complication will need to be investigated more carefully for different set-ups where the 

bias-tee is necessary. 
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Figure 18: Thermomechanical noise power vs. bath temperature 

(a) Measured noise power without bias tee in the circuit. Blue dots correspond to each 
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Lorenzian fit result. Data falls on a line crossing zero (green line), indicating the 

mechanical mode follows the bath temperature and obeys the equipartition theorem. (b) 

noise power with bias tee (red circles). Blue dots are a subset of data in (a), overlaid as 

reference. Below 100 mK, the bias tee creates force noise and drive the nanoresonator, 

resulting large variations in the thermomechanical noise power. 

 

4.3.2 Back-action cooling of mechanical motion 

To avoid the excess scatter, we set the fridge temperature at 50 mK, which is above the 

temperature where the thermomechanical noise begins to diverge. By applying higher 

microwave power, the linewidth broadening of the mechanical noise peak is observed as 

in Fig. 19a, fitting well with Eq. 10. The thermal calibration in shown Fig 18 gives the 

number of mechanical quanta from the measured noise power 2κ⋅mechP . In the limit 

where the CPW resonator has no noise (shot noise, source phase noise, etc.), we simply 

have 2κ⋅∝ mechm Pn . However, in the presence of noise, the fluctuation in the microwave 

field generates a down-converted force by mixing with the pump tone at Rω . A detailed 

calculation based on input-output theory gives the output spectrum from the CPW 

resonator66, 

eff
m

mopt

tot

out
c

tot

out nnS 22 )2/(
441)(

γδ
γγ

κ
κ

κ
κδ

+
++= . 
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Here δ  is the detuning of the measurement frequency from 0ω , cn  is the occupation 

number of the microwave field in the CPW resonator and cmeff nnn 2−= . cn  is 

measured by measuring the total noise power under the CPW resonance peak. To crudely 

calibrate this noise power, we employ the known noise temperature (6.5 K) of the HEMT 

amplifier in concert with the 1.5 dB attenuation between the sample and the amplifier 

(measured separately at 4 K). The measured cn  is plotted in Fig. 19b, showing close to 

1/2-power law behavior. This is consistent with measurements of similar superconducting 

resonators, where phase noise 2/1
00 ~/ −

pnωδω  has been observed90, 91. This excess noise 

is attributed to two-level systems resonantly interacting with the microwave field. The 

measured linewidth also follows the prediction of two-level system theory90, 92, showing 

the saturation of dissipation at high microwave power. 

0/1
κκκ +

+
=

critp

TLS

nn
 (Eq.13). 

 



 78

10
4

10
5

10
6

10
7

10
80.2

0.4

0.6

0.8
1

2

4

np

n c

10
3

10
4

10
5

10
6

10
73

3.5

4

4.5

5

5.5

6
x 10

5

np

κ/
2 π

 (H
z)

ba

 

Figure 19: CPW resonator loss due to two-level systems 

(a) CPW resonator linewidth. Green line is a fit to Eq. 13. (b) The noise power from the 

microwave resonator plotted in number of quanta. Green line is a power-law fit, 

1.0106 33.03 +⋅≅ −
pc nn , showing close to square-root dependence which has been 

observed in similar coplanar resonators. 

 

The lowest mn  we are able to observe is 7.5±0.8. (Fig. 19b) This is significantly higher 

than 2~mn  that is expected from the highest 2≅cn  and Eq. 11. The blue dashed line 

in Fig. 19b, displaying what is expected from the assumption of constant 00, mmbathm nn γ=& , 

where )1/(1 /
0 −= Tk

m
Bmen ωh =144 and 0mγ =28 Hz, shows a large discrepancy with data. 

From this we conclude that there are other sources of heating involved. 
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Figure 20: Back-action cooling of mechanical motion 

(a) Linewidth and (b) mean occupation of nanomechanical resonator vs. number of 

microwave photons in the CPW resonator. (a) Green line is a fit to Eq. 10 (b) Dashed blue 

line is calculated from Eq. 11, assuming constant bathmn ,& . Green line is calculated with 

two-level bath model (described in Fig. 21). 

 

One possible explanation for this excess heating is coupling to a bath of two-level 

fluctuators. As in the case of CPW microwave resonator, the mechanical resonator might 

be coupled to such a bath via the strain field92. In bulk systems, studies on ultrasonic 

attenuation and sound velocity at low temperatures show such effects93-95. As with the 

electromagnetic case (Eq. 13), resonant interaction of two-level systems with the phonon 

field also shows saturation effects in the dissipation94,  
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c

TLSBTLSa

TLS II
Tk

v
MN

Q /1
)2/tanh(1

2

2

+
=

ω
ρ

π h  (Eq.14). 

Here aN  is the density of states of two level systems per unit volume( 31mJ −− ), M  is 

the coupling between two-level system and strain ( )strain(/)energy( ∂∂ ), ρ  is the mass 

density, v :speed of sound, and cI  is the critical acoustic intensity( )2/( 21
232 TTMvρh= ). 

 

According to this picture, two-level systems resonantly coupled with the nanomechanical 

mode mTLS ωω ≅  will lead to heating, which is given as 

critm

ma

TLS

m

m

TLSB
TLSm nnv

MN
Q

Tkn
/12 2

2

, +
≅≅

ω
ρ

πω
ωh

&  (Eq.15) 

in the limit of 1/ <<TLSBTLS Tkωh . The total bath heating rate is then 

TLSmmm nnn ,0 &&& += , 

where 000 mmm nn γ=&  is the background heating rate with no coupling with two-level 

baths. Fig. 21 shows the measured data at 50 mK and 300 mK with a fit to Eq. 15. 
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Figure 21: Heating rate from the two-level bath 

(Blue circle) 50 mK data, (magenta square) 300 mK data. The green line is a fit of 50 mK 

data to the resonant two-level bath model, Eq. 15, yielding 22 2/ vMNa ρπ =0.19, 

critn = 3108.3 −⋅ . The 300 mK data points also match the fit. 

 

The fitted critical occupation number critn  is consistent with an estimate based upon a 

bulk silicon oxide measurement. The critical intensity of Suprasil W at 480 mK and 750 
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MHz93, 23 W/m10−  is scaled to SiN at 50 mK and 7.2 MHzii using the formula of 

relaxation time for one-phonon processes96,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

Tkv
MT

B2
coth

2

3

5

2
1

1
ω

ρπ
ω h

h
 

which is 28 W/m10−≈cI ; thus the critical occupation number is 

310)/(/)TW( −≈⋅⋅≈ mmccrit In ωω h , which agrees with the fit result within an order of 

magnitude. The density of states of the two-level systems, 3148 mJ103 −−⋅=aN iii, means ~ 

20 resonant two-level systems within the bandwidth 2/1 T  at mω . 

 

The same resonant interaction also gives logarithmic dependence in the resonance 

frequency92, 94. The measured 3145 mJ103 −−⋅=aN  is much smaller than the value above 

(Appendix D), but it should be noted that two values can disagree. Since the logarithmic 

dependence comes from the two-level systems with energy bathBTkE ≈ , far from mω  

and not saturable, the two measurements probe different sets of two-level systems that, in 

general, will have different densities of states92. Also, both aN  are many orders of 

                                                 

ii  Assumed ρ (Suprasil)=2200 3kg/m , v (Suprasil)=6000m/s, ρ (SiN)=3000 3kg/m , v (SiN)= 
410 m/s, 2/1

1
1

2
−− ≅ TT  

iii Assumed ≅M 0.4eV94, and μs52 ≅T  which is from 28 W/m10−≈cI  and 2/1
1

1
2

−− ≅ TT  
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magnitude higher than bulk values94. Perhaps this can be attributed to the high surface-

volume ratio of the device, since the surface is believed to have a significantly increased 

density of two-level systems due to the micro-machining process97. 

 

4.4 Discussion 

We have observed back-action cooling of a nanomechanical mode with a CPW 

microwave resonator down to occupation number of 7.5. At small mechanical occupation 

numbers, excess heating is revealed, which shows 1/2-power law behavior vs. mechanical 

occupation number. This is consistent with the model of two-level systems resonantly 

coupled to the mechanical resonator, and can be understood as the saturation of resonant 

two-level systems. The two-level bath model gives the maximum expected bath heating 

rate as 610~  Hz, which is equivalent to mechanical linewidth of about 7 kHz at 50 mK. 

This calls for much stronger back-action, MHz1~optγ , i.e. higher coupling MHz2~g  

to reach the ground state. A new geometry with larger coupling capacitance, for example, 

a planar structure with a small gap, might achieve this goal. Also, our results show that 

the mechanical resonator at ground state should have higher bath heating than is 

measured at higher occupation numbers. This discrepancy calls for more studies on 

reducing the two-level system density. 
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Chapter 5 
 
Summary 
 
Coupled dynamics between a nanomechanical resonator and superconducting quantum 

circuits have been studied in the three experiments of this thesis. The research presented 

is an effort toward realizing quantum states of the macroscopic mechanical systems, in 

the context of studying the quantum limit of force detection, and quantum coherence of 

macroscopic objects. 

 

First, mechanical resonance shifts due to a dispersive interaction with a Cooper-pair box 

have been measured. The coupling strength is large enough to satisfy one of the 

conditions for a host of quantum nanomechanical measurements, such as non-demolition 

measurement of qubits23 and preparation of motional quantum states27, 36, 70. The 

microwave-driven response of the qubit has been measured using the dispersive shift as 

the probe. Rabi oscillations and Landau-Zener tunneling are observed, proving the 

coherence in the qubit dynamics.  
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Second, the dispersive shift has been used to parametrically excite nanomechanical 

motion. A degenerate parametric amplification and oscillation is demonstrated, with an 

observation that nonlinear dissipation which limits the maximum obtainable gain. The 

process also yields squeezing of the back-action noise of the detection amplifier, up to 4 

dB. The efficiency of parametric excitation is 3000 times better than the prevailing 

technique of using geometric capacitance. It also provides the first demonstration of 

using the qubit as an auxiliary system to modify nanomechanical dynamics. With it we 

have elucidated a scheme for generation of nanomechanical quantum states, which will 

become possible with improvements in detection and initial preparation of mechanical 

states. 

 

Third, a high-Q coplanar waveguide resonator has been capacitively coupled to 

nanomechanical motion. This yields a sensitive detection scheme, which allows the 

detection of displacement down to a few mechanical quanta. The back-action from 

microwave photons provides cooling of thermal nanomechanical motion. The thermal 

state with an average of 7.5 quanta is reached. This extremum appears to be limited by 

increased bath heating due to two-level systems resonant with the mechanical motion. 

This observation of additional heating suggests that efforts toward improving coupling 
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and reducing two-level system density will be important to reach the motional ground 

state via back-action cooling. With improvements in coupling and engineering of 

mechanical dissipation, motional ground states could be prepared, starting from thermal 

states. More elaborate quantum state manipulation, with superconducting qubits, could be 

employed, in order to generate and use these “mechanical” quantum states. 

 

The results presented in this thesis show some of the possible routes toward macroscopic 

mechanical quantum states. In future, improvements in the quality of mechanical 

resonators and quantum circuit components are anticipated. Also, stronger coupling 

between these elements will be achieved. These ongoing efforts will help to reveal the 

connection between classical and quantum physics, and possibly could open the path to 

quantum engineering with macroscopic mechanical systems. 
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Appendix A 
 
Nuclear orientation thermometry 
 
Nuclear orientation thermometry works by the anisotropic gamma-ray emission of nuclei. 

The emission probability depends on the polarization of nuclear magnetic moments, 

which is a function of the Boltzmann distribution98, 99. It is a primary thermometry 

because the theory is well established, and it does not need extra calibrations except 

normalization of counting rates at high temperatures.. For emission parallel to the 

magnetic field, the probability for 60Co is, 

∑∑
−=−=

−+=
4

4

4
4

2

2

2
2 )(00333.0)(04333.01)(

mm

mPmQmPmQTW  

where nQ  is geometry parameter normally close to 1 and )(mP  is the thermal 

occupation of the nuclear state, ∑
+

−=

−−
J

Jm

TkTk BmBm ee // / εε , mK0725.6/ =Δ Bm kε  for the 

internal field of 60Co single crystal. This magnetic energy scale limits its useful 

temperature range to between 1–100 mK. 
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Figure A1: Nuclear orientation thermometry 

(a) Angular radiation pattern of 60Co98, (b) Example of gamma ray spectrum taken at 50 

mK 

 

Fig. A1a shows an example of the gamma ray pattern. The detection is done at the angle 

for which the change over temperature is maximum( 0=ϑ ). As shown in Fig. A1b, a 

multichannel analyzer is used to take gamma ray spectrum, and the integrated count 

number between the lower and upper energy limit (black dashed lines) with a subtraction 

of background (green line) is taken. Its ratio over the count at “hot” temperature 

(normally 4 K) gives the calibrated temperature.  
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A RuO2 thermometeriv, which is one of the matched pairs with one that is calibrated 

down to 50 mK, serves as the standard thermometer to 50mK. Other resistance 

thermometers are calibrated against this RuO2 thermometer and used for monitoring 

various points in the dilution refrigerator. Between 18mK and 50mK, the temperature is 

calibrated against a nuclear orientation thermometer. 

                                                 
iv manufactured by Lakeshore cryotronics Inc. 
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Appendix B 
 
Mode shapes and resonance 
frequencies of a doubly-clamped beam 
 
A small vibration of a beam can be described by Euler-Bernoulli equation. For a beam 

with thickness t  ( x -axis), width w  ( y -axis), and length l  ( z -axis), the equation of 

small deflection ),( tzX  in the x -axis is100, 

4

4

z
XEIXS

∂
∂

=&&ρ  

where ρ  is the density, S  is the cross sectional area (= wh ), E  is the Young’s 

modulus, and I  is the moment of inertia about the y -axis (= 12/3wh ). With the 

doubly-clamped boundary condition, 0),0(/),0( ==== lzdzdXlzX , the harmonic 

solution yields mode shapes, 

)}sinh)(sincosh(cos)cosh)(cossinh{(sin)( zzllzzllAzX nnnnnnnnn κκκκκκκκ −−−−−=

where nκ is a root of 1coshcos =ll nn κκ   (e.g., lnκ =4.73, 7.85, 11.00, …) 

and its eigenfrequencies, 

S
EI

nn ρ
κω 2= . 
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Appendix C 
 
Coupled mode analysis of parametric 
amplification 
 
Consider a driven, damped harmonic oscillator, with its spring constant modulated by 

)(tk p . 

)())((0 tFxtkkx
Q

mxm p =+++ &&&
ω  (Eq. C1) 

Following a normal mode approach101, define complex amplitudes64,  

xjxa

xjxa

1
*

*
1

ω

ω
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+=

&

&
 (Eq. C2) 

with )2/1()2/4/11( 0
2

01 QjQjQ +≅+−= ωωω  when 1>>Q . 

From Eqs. C1 and C2, 
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 (Eq. C3) 

Assume harmonic force, )cos()( 00 ϕω += tFtF , and parametric modulation, 

)2sin()( 0tktk p ωΔ= . For a trial solution, a stationary state solution, tjAea 0ω= , is 

assumed, and collecting tje 0ω  gives,  
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 (Eq. C5). 

The parametric gain is, 
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and for a small 00 /2 ωδωkk ≅Δ ,  
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Appendix D 

 
Driven responses of nanomechanical 
resonator 
 
Driven responses of the nanomechanical resonator are measured using the combination of 

a red-detuned internal voltage ))cos(()cos( 0 tVtV mRRR ωωω −=  and a sweeping voltage 

))cos(()cos( 0 tVtV SSS δωω += . The force on the mechanical resonator around mω  is 

given by, 

SpmSR
g nn

x
tVV

x
C

F
∂

∂
−≅+

∂

∂
−= 04))cos((

2
1)( ωδωδ h  

where )/()2/1( 0
2
,, ωhSRSp CVn = . With 4107 ⋅=pn , 90=Sn , =F 1fN, and the 

corresponding mechanical displacement is about 3 nm. 
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Figure D1: Driven response of nanomechanical resonator 

(a) Fractional resonance frequency shift vs. temperature, (b) The linewidth of mechanical 

resonance vs. temperature 

 

In Fig. D1, the fractional change of the resonance frequency shows logarithmic 

dependence on the temperature, and the damping is roughly ~ T. A broad peak around 50 

mK in the damping data is visible, which is not clearly understood yet. For the resonance 

frequency shift data, a linear fit (green line) gives 5103.1))(ln(/)/( −⋅=∂Δ∂ Tmm ωω . 
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Appendix E 
 
Whispering gallery mode sapphire 
filter for microwave phase noise 
reduction 
 
As discussed in Chapter 4, the back-action cooling limit is given by the occupation of the 

CPW resonator, provided there are no other sources of heating. Commercial microwave 

souces (e.g., Agilent E8257) have phase noise which can easily populate the CPW 

resonator more than 10 quanta at high microwave powers needed for the measurement. 

To filter out the phase noise, Rocheleau et. al.66 used a LN2 cooled copper cavity. To 

improve the phase noise rejection and also to facilitate room-temperature operation, we 

developed a whispering gallery mode sapphire filter with a frequency stabilizing circuit. 

Dr. Matt Shaw and Steven Gutierrez designed and fabricated the circuit. 23 dB isolation 

was measured for 7.2 MHz detuning. This was enough to supress the CPW occupation 

due to the phase noise down to 0.1 quanta. 
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Figure E1: Schematic of the filter circuit 

The mode frequency can be modulated by adjusting the gap between the two sapphire 

disks. For drift stabilization, it uses an I/Q mixer to extract the phase component of the 

filtered output, and then does PID feedback to stabilize it at the setpoint value. 
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Figure E2: Transmission through the filter circuit 

The red cross is where the red tone is located and the green cross is at the CPW resonance. 
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