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ABSTRACT

A vacuum high temperature x-ray diffractometer has been
designed and constructed to study metals, sensitive to oxygen and
nitrogen contamination, up to 1200°C. The factors which affect the
accuracy of the diffractometer method and the proper choice of
extrapolation functions are discussad. It is shown that this instrument
can determine lattice parameters with an accuracy of one part in
forty thousand. The thermal expansion of titanium has been in-
vestigated to 650°C and the c/a parameter is found to increase
rapidly above 400°C. This variation of c/a is correlated with other
properties of titanlum to formulate a band model. On the basis of
this model it is shown that the slectrons can give an appreciable
positive contribution to the free energy as the transformation
temperature is approached and it is proposed that this is the main
factor causing the instability of the low temperature modification of

titanium.
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1. INTRODUCTION

Prior to the utilization of high tempaerature x-ray diffraction
techniques, the procedures for determining the high temperature state
of a material consisted of thermal analysis, metallographic exami-
nation after quenching and measurement of electrical, magnetic,
optical, mechanical and thermal properties. These measurements
gave no direct crystallographic information and many times led to
erroneous results. The first application of high temperature x-ray
diffraction was made by Westgrnn(n in 1921. Westgren made the
astounding discovery that a and § iron are igsomorphic and the a —v
transformation is a change from body-centered cubic to face-centered
cubic. Westgrea's high tamperature x-ray diffractioa cumera(z)
coneisted of a wire specimen located along the axis of a cylindrical
water cooled camera. The camera was filled with hydrogen and the
wire specimen was heated by an electric current. The x-ray diffraction
pattern was recorded by a film placed around the camera.

Since Westgren's experiment, the uvae of high termperature x-ray
diffraction has grown to encompass many metallurgical and solid state
problems such as phase equilibria, allotropy, order~disorder
phenomena, kinetics of solid state changes, thermal expansion and
thermal diffuse scattering with its application to nuclear motion and
elastic constants. There have been numerous designs of high tempera-
ture x~ray cameras to study these problems. Basically these cameras

can be classified i{nto five different categories of design ~- the Debye-
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(3-24) the (25)

Scherrer type . Seemann-Bohlin type
(27-29)

. the flat-plate

typcu‘”. the single crystal type , and the éounter-

diffractometer mo(SO-S‘I)_

The first four types of x-ray cameras
usually have used {ilm for a detector which makes detection and
interpretation of transient phases very difficult. Lattice parameters
that continually change during a transformation appear as broad lines
on the film which can erronecusly be interpreted as strain broadening.
The radiation counter technique is not subject to these objections but
there {s the possibility that the radiation counter {s not on a diffraction
peak of a trangient phase and will never detect its existences.

The specimen in a Debye-Scherrer camera is usually in powder
or wire form. If it is a powder, it must have an auxiliary support
such as a quartz tube or fiber which can cause contamination of the
specimen at high temperatures. A wire can be supported outside of the
hot zone of the camers, but this leads to thermal gradients in the wire.
There are other problems associated with temperatures measurement,
orientation, texture and grain size in this type of camera. Usually, to
avoid spottiness of the diffraction patterns, the specimen is required
to rotate and to oscillate vertically.

Many of the disadvantages of the Debye-Scherrer type of camera
are sliminated by the Seemann-Bohlin camera. In cameras of this
design the specimen can be fairly large and supported in the hot zone
of the camera and temperature measurements can be facilitated with
thermocouples attached to the specimen. However, there is the dis-

advantage that a complete x-ray diffraction pattern cannot be obtained
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on a single exposures.

Single crystal cameras have all the deficiencies of the Debye-
Scherrer type camera at high temperatures; however, some studies
require the use of a single crystal.

In recent years the counter-diffractometer has come into
prominence and has been adapted to both high and low temperatures.
This method combines both the advantages of high precision and rapid
detection of transforming phases. The procedure for measuring the
intensity of diffraction peaks has simplified kinetics studies. The first
part of this thesis is concerned with the design and construction of this
type of instrument.

The application of this instrument to measure the thermal ex-~
pansion of titanium is presented next. Prior attemptl(sa' 39 to
measure this property have not been satisfactory due to contamination
of the sample by oxygen and nitrogen at elevated temperatures, The
purpose for determining the thermal expansion cosfficients is to further
und.ritand the allotropic behavior of titanium, for an anomalous

behavior of these coefficients can be interpreted in terms of a change

in the electronic binding.



PART 1

A VACUUM X-RAY DIFFRACTOMETER
FOR HIGH TEMPERATURE STUDIES
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2. DESIGN AND CONSTRUCTION OF HIGH TEMPERATURE
X-RAY DIFFRACTOMETER

Precision x-ray diffraction studies at elevated temperatures are
hampered by three main factors - specimen contamination, thermal
diffuse scattering and excessive grain growth. Matals such as
titanium, sirconium and hafnium cannot be heated in an ordinary
dynamically evacuated vacuum system, in which the pressure is of the
order of )_.0'6 mm, without rapid deterioration of the specimen surface
by oxygen and nitrogen. The specimen also may be heated in a highly
purified gas; however, considerably more power is required because
of convection losses and the subsequent transfer of heat to other parts
of the x-ray camera causes expansion which can reduce the accuracy
of most x~ray cameras. The thermal diffuse scattering of the z-rays
and the decreass of the intensity of diffraction peaks as the specimen
is heated could result in the complete loss of the important back-
reflection peaks in the background. The grain growth at elevated
temperatures prevents the statistical averaging necessary for a powder
x-ray diffraction technique. A single crystal method cannot be used in
many metallurgical investigations because, even if a gingle cryatal
could be obtained, it would become polycrystalline when any transfor-
mation occurred.

With these factors in mind a high temperature, high vacuum x-ray
diffractometer was designed and constructed. Figure 1l shows a general
view of the apparatus. Figure 2 is a schematic view of the instrument

and its associated electronics. For the purpose of discussion it is



UOT}B[[RISUT 1939w 0J0RIJJIP ABI-X ainjeradwal y3iy ayg

"1 @2and1q




installation.

RECORDER — CO:ANTTEING TIMER DIGITAL
PRINTER
COMPUTOR
RATE VOLTAGE
MeTer || SCALER STABILIZER
PULSE X-RAY
HEIGHT POWER
ANALYZER SUPPLY
DIFFRACTOMETE PULSE FURNACE CURRENT
CONTROL AMPLIFIER CONTROL STABILIZER
I SCINTILLATION '
DIFFRACTOMETER DETECTOR, SPECIMEN
| MATOR
l DRIVE PHOTOMULTIPLIER FURNACE NONGEHRD d l
PREAMP
ARGON
STABILIZER
VACUUM POWERB LSTJE'PLY PURIFIER VACUUM
L 500-1500 V.D.C i | conTroL
i CONTROL
Figure 2. Schematic of the high temperature x-ray diffractometer



convenient to discuss separately the vacuum system and its
associated electronics, the diffractometer and its components, the

monochromator, the goniometer and the drive.

2.1 The Vacuum System and Its Associated Electronics

The vacuum system is shown in Figure 3 and ichnmatlcaliy
in Figure 4. The vacuum chamber, which is constructed of 3/8 inch
stainless steel, is six feet in diameter and four feet high. The three
electrode ports are designed so that glass-to-metal seals can be
installed on each port and then bolted to a mating flange located on the
bottom half of the vacuum chamber. The diffractometer sets upon a
ledge inside the chamber so that no misaligning strains will be
transmitted to the {nstrument when the chamber is under at;noupharic
loading.

The pumping system consists of a Kinney K3-47 mechanical pump,
a Consolidated Vacuumn MGH-900 3-stage mercury diffusion pump and a
cold trap. The cold trap is divided into two sections; adjacent to the
diffusion pump is a Freon cocled baifle operated at -25°C and after the
baffle is a liquid nitrogen cold trap with a capacity of 22 liters. Between
the liquid nitrogen cold trap and the vacuum chamber is a Consolidated
Vacuum QSV-8 quarter swing, straight-through valve.

This system, after two days of pumping, attains a pressure of
2 x 10'6 mm of mercury. The vacuum pressure is measured by a
Pirani Gauge for the high pressure region and an Ionization Gauge for
pressures down to 10'7 mm. The circuit for the Ionization Gauge is

basically the one designed by Elmore and Sundl“o).
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Ag stated previously, a pressure of 10"6 mm of air is not low
enough to prevent rapid contamination of a metal like titanium. To
eliminate this problem, all poasible places where air could leak into
the vacuum system are surrounded by highly purified argon. Every
O-ring seal on the high vacuum side of the diffusion pumps is a double
O-ring seal with a space between the O-rings for pumping out and
filling the region with purified argon. All electrodes and water lines
that go into the vacuum chamber first pass through a chamber filled
with purified argon. The regions where argon is required are auto-
matically flushed, filled and maintained at a pressure slightly higher
than one atmosphers. After the initial pump down, the chamber is
flushed several times with argon and, as a last measure, a titanium
wire is heated to ''getter' the remaining oxygen and nitrogen. In this
way, it is possible to obtain a partial pressure of oxygen and nitrogen
several orders of magnitude less than the pressure in the vacuum
chamber. The schematic circuits for the vacuum controls and argon
purifying system are shown in Figures 5 and 6.

The diffusion of mercury through the cold trap into the chamber
can be troublesome in two ways; the possible contamination of the
specimen and corrosion of the metal parts subject to amalgamation.
To reduce the possibility of back diffusion of mercury, a baifle with

indium inserts is placed between the cold trap and vacuum chamber.

2.2 The Diffractomaeter
The diffractometer is shown irom two opposite sides in Figure 7

and a simplified plan view in Figure 8., Referring to Figure 8, the
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Key to Figure 5

81, S2, 83, 85, 87, 59, 811, S14, 816, S18, 521 -- Push Button Switch, NO
S4, 86, 88, 810, 812, 515, S17, 519 -- Push Button Switch, NC

813 -- Stepping Switch, 10 position, 5 banks

S20 -- DPST Toggle 8witch

Bl-.Bl2 -- NE-51 Lamps

Ml' M3 -= A,C. Ammeter 0-25 A

MZ -= A.C., Ammaeter 0-15 A

T 1 -« Variac, 115 V. A.C,; Purifying Furnace
T2 -- Variac, 230 V. A.C,; Diffusion Pump
T 3 -- Variag, 115 V, A, C.; Getter

Pl, P3 --15V.A.C.

P2 «-230V.A.C. 3 Phase

P4 -- Jones Plug

P 5 -- Jones Plug; to Hoist

P 6 -- Cannon Plug; to Diffusion Pump

P 7 -- Cannon Plug; 1 and 2 to Getter, 3 and 4 to Purifying Furnace
P8 -.-230V.A.C., | phase

P9 --115V.A.C.

P10 «+« Cannon Plug; land 2to 115 V.A.C,, 3 and 4to 115 V.A.C,
Pll --115V.D.C.

P12 -- Amphenol Plug; to Argon Purifying Cabinet

Ry 1 - Ry 14 -- Relays
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Key to Figure 6

V1 - V6 -- Hand Operated Valves

VS8l -V ST -« Solenoid Operated Valves, N.C.

PS 1, PS5, PS 6 -~ Pressure Switch, N.O.
PS§ 2 -« Vacuum Switch, N.O.

PS 3 -- Pressure Switch, D.P.D.T.

PS8 4 «« Pressure Switch, 5.P.D.T.

A -« Argon Storage Cylinders
R -- Gas Regulator

- G -+ Pressure Gauge

Bl, B2 -- NE-51 Lamps

Pl -- Amphenol Plug; to Vacuum Control Cabinet
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Figure 7 Front and back views of diffractomete:
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diffractometer operates as follows: the x-ray beam originates at a line
focus General Electric CA-T7 x-ray diffraction tube (1) and is directed
towards a curved gquartz crystal (2), which serves to monochromate
and focus the beam at the slit (3). The monochromatic beam leaving the
slit is wedge-shaped with an angle 12 and a height of just over one
centimeter. The beam is then directed towards the furnace (4) which
contains the material to be investigated. The diffracted x-rays are
picked up by a scintillation detector (5), which rotates about the axis (6)
at twice the angular speed with which the plane of the specimen rotates
about this same axis. This speed ratio is the necessary and sufficient
condition for a Bragg or Brentaro type focusing spectrometer. The
motions that are required by the instrument are produced by the drive (7),
pperating through a 50/1 gear reduction box (8), and then to a set of
worm gears (9). |

The instrument is almost entirely constructed of stainless ateel.
Teflon and glasse are the only two non-metallic materials used in the

() During final

chamber because of their non-degassing properties
assembly, with surgical gloves, &ll traces of oil are removed from the
instrument. The instrument is heated in high vacuum by infrared
heaters as a final precaution againat contaminating vapors.

Ball bearings, sleeve and thrust bearings have to be used in many
of the mechanisms involved in the diffractometer drive. The require-
ment for a very clean atmosphere in the vacuum chamber prohibits the

use of hydrocarbon lubricants. The vacuum system for the diffracto-

meter does not have an oil diffusion pump; therefore any lubrication
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which might be obtained by backstreaming oil vapor is absent. Barium
cannot be used as a lubricant because the instrument must be frequently
exposed to alr.

Under such conditions of non-lubrication, the bearings do not
have any appreciable life. As a typical example, a stainless steel ball
bearing, 26 mm outside diameter, rotating at 100 rpm with a very small
load is completely frozen after about 5000 revolutions. Apparently, as
the oxide coating on the balls and the race is broken, small welds
occur between the halls and the race which leads to a rapid deterioration
of the bearing surfaces. Molybdenum-disuliide was tried as a possible
solid lubricant without success. Possibly the reason for the molybdenum-
disulfide fallure is as the ball rolis in the race it pushes a small amount
of molybdenum-disulfide ahead of it and every so often the ball jumps
over this mound causing indentations in the ball race.

The use of teflon as a lubricant proved to be a satisfactory solution
to this problem. Lubrication by teflon is achieved by continually rubbing
a bearing surface against a solid piece of teflon, thus coating it with a
thin layer of teflon. The procedures used depended upon the type of
bearing. For instance, in ball bearings the steel cage is replaced by a
teflon cage; in sleeve bearings small teflon inserts are placed between
the housing and the shaft. Several different and special deaigns are

used for thrust bearings depending upon the application.

2.3 The Monochromator
The only possibility of coping with the thermal diffuse scattering

problem is to make the diffraction peaks as sharp as possible, have a



very high signal to background ratio, and have a very monochromatic
beam. These factors necessitate the use of a line focusing mono-
chromatcr“z’. There are two possible positions where the mono-
chromator can be located: either between the x-ray tube and the specimen,
as in this instrument, or between the specimen and the detector as
illustrated in Figure 9. The advantage claimed by the propon-ntl“s'“)
of the latter method is elimination of incoherent radiation, {.e.,
fluorescent and Compton scattering by the specimen. These two
objections are unfounded in most x-ray diffraction studies on metals.
Fluorescent scattering can usually be sliminated by choice of the proper
radiation or pulse height discrimination and the Compton scattering is
usually nil since the atomic numbers are high and x-ray photon energies
are low (the order of 10 kev.). Also, this latter method has one large
disadvantage. The prerequisite of a sharp diffraction peak requires a
sharply focused x-ray source. This requires that the focal spot or
projected focal spot on the x-ray tube be very sharp which results in a
large loss of intensity in the x-ray beam. The direct beam mono-
chromatization technique does not have this objection.

The intensity difiracted and focused by a monochroma.tor is
directly proportional to the incident intensity striking it at the correct
Bragg angle. Since the focusing process is caused by diffraction and
not reflection, as in a mirror, the focused image is virtually independent
of the size and position of the source. The dependence of position on

intensity can be derived as follows. Referring to Figure 10, consider

an infinitesimal area on the surface located at Pa' All radiation
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{ Specimen >\’ \
/

Detector

Specimen

Figure 9. Direct and diffracted beam monochromatization.
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emanating from the source 5, of length of 25, and within the angle w
satisfies the conditions for Bragg diffraction. The source S5 is assumed
to emit a uniform intensity in the direction of the crystal and the angle
w is assumed to be the same over the entire crystal. The line joining
the virtual source, 8', with any point of the monochromating crystal
whose surface lies on the focusing circle makes the correct Bragg angle
with the crystallographic planes. The distance from S' tc; Sis x and
the angles a, and w are small. By simple geometrical considerations
the intensity In. striking the crystal at P " and satisfying the Bragg
conditions for diffraction is,

I~ ko [za sin (0 - 3 )-x} (2.1)

where the proportionality constant k represents the intensity of x-rays
per unit area of the source in the direction of the crystal. The line
PQS' must intersect S as x is varied, otherwise Ia = 0. This condition

can be expressed ae

I[xl ggcot;‘z . (2.2)
or for small a
25
[xl skl , (2.3)

Integrating along the surface of the crystal, the total intensity I, which

can be diffracted and focused is

: 3

e |
xzzf ku{ZRlin(O-%) -x} Rda [x] é%—é (2.4)
[+]
0

and
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25
T=l
I=2 [ ko [aa sin(o - 3) -x}Rﬂu fx];i (2.5)
p o
Integrating equations 2.4 and 2.5, and simplifying
28
I= 2kau°(xo-x) ‘xlé -a-;- (2.6)
& 2§
I= “&uam (xo-x) [xl; ;—o- (2.7)

where %, is the distance from 8'to C. If IS' is the intensity when the
source is located at the virtual position S', then equations 2.6 and 2.7

can be simplified to

1=1g, (1-;’5‘;) l11i-§-§- (2.8)
1= 1g, (—T—[)u---) [xl>—§ (2.9)

Figure 11 schematically shows the dependence of intensity on source
position. It can be seen that xnux occurs when x = - %—3 , that is,
when the source just fills the total angular divergence of the beam
behind the source imags.

The monochromator is shown in perspective in Figure 12. It is
designed to be used with six different characteristic radiations --
tungsten L, nickel K, cobalt K, iron K, manganese K and chromium K.
This includes a characteristic wavelength spectrum from 1.48 A to

(45)

2,29 A, The approximate focusing conditions , rather than the exact
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2 : ition.
Figure 11. Dependence of diffracted intensity upon source position
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focusing conditions are used. In this case an optically flat single
cryetal of quartz, with the (10 T 1) plane parallel to the surface, is
bent to 8 radius of 2R, where R is the radius of the focusing circle.
The monochromator in this instrument has R = 25 cm. The (10 T 1)
planes of quarts were chosen bacause of their high reflecting power
and sharp focusing propartiasuﬂ.

The distance firom the slit to the center of the crystal is pro-
portional to the wavelength which is to be focused at the slit. This
distance is adjusted by a screw-driven carriage. The orientation of
the crystal relative to the slit is adjusted by a long micrometer driven
lever arm which rotates the crystal about an axis coincident with the
center of the crystal face. The supports of the crystal block have six
degrees of freedom for final alignment. The x-ray tube mount can
assume six different positions relative to the slit depending upon the
characteristic radiation desired. These positions are determined by
six sats of locating holes on the tube mounting plate. The tube mount
has a translational degree of freedom for final adjustment of the tube
focal line and a rotational degree of freedom to vary the '"take-off-
angle' from the target.

The crystal and its clamping blocks are shown in Figure 13. The
clamping blocks were turned to a 50 ¢ radius on a lathe. The final
profiling of the clamping blocks to a uniform radius was accomplished
by a lapping procedure recommended by J. W. M, DuMond“". The

quarte crystal was cut from a large crystal free from mechanical and

electrical twining. The initial size of the crystal was one inch square
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o

The crystal and clamping blocks.

Figure 13.
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by 1/8 of an inch thick. The orientation of the (10 T 1) planes relative
to the surface was determined to % 0, 01° by using a special goniometer
attachment on a Noralco diffractometer. The orientation error was
corrected and then the crystal was ground to 8 thickness of 0.5 mam and
polished optically flat to about 1/4 of a fringe. The crystal was
clamped in the blocks over 84% of its area. The web in the center of
the front block suppressed any anticlastic curvature in the crystal.
Pressure was brought to bear on the crystal by a neoprene pad and
four compression springs located at the corners of the crystal block.
There are five sources which can cause aberration of the focused
image from the monochromator. These are (1) departure of the crystal
surface {rom the focusing circle as prescribed by the approximate
focusing conditions, (2) penetration of the x-rays into the crystal, (3)
“"erossfire'' which results from radiation striking the crystal at an angle
not perpendicular to & cylinder generator, (4) the mosaic characteristic
of the crystal combined with the Darwin intrinsic width of diffraction
and {5) the natural breadth of the characteristic x-ray line being focused.
The aberration from the last two of these sources are intrinsic and
with a given crystal nothing can be done sxcept to careiully select the
natural quarts from which the crystal is cut. The intrinsic diffraction
width is very small and might lead to an aberration of the order of
0.00l mm at the focus. However, the natural breadth of tungsten La,,

-4 (48)

AA/X = 8.4x10 ., leads to an aberration of 0.021 mm at the

focus.
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The first three sources of aberration are termed geometrical
since they depend on how the crystal is bent. For all intents and
purposes the '"crossfire' aberration is extremely small and can be
neglected. The aberration measured tangentially to the focusing
circle du§ to departure of the crystal surface from the focusing circle

2 (43, 45)

is % a Rcot® » where R is the radius of the focusing circle, a

is the angular divergence of the beam (a = 1°) and 0 is the Bragg angle

for diffraction. This aberration measured normal to the direction of

2

propagation of the x-ray beam is -;’i— a Rcos 0. The aberration measured

normal to the direction of propagation due to the finite depth of

9(4”. where e is the

penetration of x-rays into the crystal is é— esin 2
distance the x-rays travel in the crystal. A typical value for e is the
distance traveled so that the beam intensity is reduced by a factor of
100, i.e., e = 4. 6/}L . M must include both the normal attenuation of
the x-ray beam and extinction. For quartz the normal absorption
coefficient, 4 g for tungsten L radiation is 83.7 cm”!, while the
primary extinction absorption coefficient, Mo for tungaten L.u radiation

diffracted from the (10 T 1) planes of quarts is 989 em™l,

the total attenuation coefficient i{s 1073 cm"l. This value overestimates

Therefore,

the true attenuation coefficient since it neglects the mosaic structure of
the quartz. The sum of these two aberrations for tungsten L, radiation
is 0.028 mm.

There is one compensating factor which tends to improve the
geometrical aberration. The elastic strains in the crystal change the

lattice spacing of the reflecting planes in such a way as to reduce the



aberration due to the depth of penetration. The depth of penetration
aberration is toward a lower Bragg angle. However, the strass in the
crystal changes from a state of compression on the front face of the
crystal to a state of tension on the back face. This leads to a con-
tinually decreasing lattice spacing from the front to back face, which
tends to cause an aberration toward a higher Bragg angle as the x-ray
beam penetrates the crystal.

The geometrical abberation of the crystal is measured by a
method equivalent to the Hartmann test applied to mirrors and lenses.
A fine line of x-rays is directed to several different positions on the
crystal and the center of the diffracted trace from each position is
determined. Where the traces cross to 2 minimum cross-section is
the location of the best focus and the cross-section represents the line
of least confusion. Figure 14 shows the examined regions on the crystal
and their corresponding traces. The aberration is 0.0l16 mm. This is
less than the aberrations which cannot be sliminated, i.e., the aource
and the crystal difiraction. A film placed near the best focus shows a

complete resolution of tungsten qu from tungsten Lal (%\A = 7.5 x 10‘3).

2.4 The Goniometer

The section of the instrument referred to as the goniometer
measures the angular location and intensities of diffraction peaks. It
basically consists of a furnace which contains a specimen and an x-ray
detector. Both the specimen and detector must maintain the correct

angular relationship with the primary beam to insure Bragg or Bretano
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Figure 14. X-ray Hartman tests of the monochromator.
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type focusing. The furnace and the detector are each rotated about

a common axis by two bronze worm gears which have a pitch diameter
of 15 inches. The 2 to 1 angular relationship betwesen the detector and
the specimen is maintained by two antibacklash spur gears which couple
the two driving worms which have a pitch diameter of one inch. One
revolution of the worm corresponds to & 1° rotation of the detector.

The backlash is eliminated by opposing torques of 15 inch-pounds on

the worm gears applied by a constant force coll spring. The success
of this type of instrument necessitates that an axis of rotation be pre-
cisely defined. This is accomplished by two sets of precision angular
contact bearings mounted in the "DB" position. Tolerances were im-
posed on the machining and bearings so that the total composite rotational
error should not exceed 2.4 x 10™> degrees. This corresponds to a
relative error in interplanar spacings of less than one part in 50, 000
for Bragg angles greater than 45°,

The solution to the problem of excessive grain growth at elevated
temperatures is to make the x-ray beam scan over many grains or,
since the grains are assumed to be large, a large surface area. This
is accomplished by the form of the specimen as shown in Figure 16.
Fifteen trapezoidal segments are riveted to a spoked wheel. The out-
side diameter of the wheel is 22.5 centimeters and the thickness of each
segment is approximately 3 millimeters. After riveting, steps are
taken to insure that the front faces of the specimen segments are co-
planar., The rivets and spoked wheel are made of basically the same

material as the specimen or a material that will not appreciably diffuse
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Specimen.

Figure 16.



or vaporize on the specimen. The spokes of the specimen wheel are
inclined to reduce the induced thermal stresses in the spokes. This
annular shaped specimen wheel is then rotated in a toroidal shaped
furnace. A slot is cut in the bottom of the furnace which permits the
x-ray beam to entor and leave. The x-ray beam strikes the specimen
nine centimatsrs from the axis of rotation which means that the x-ray
beam scans over an ares of 55 square centimeters. In this way an
attempt is made to scan a large number of grains, ai required by the
powder method. |

The furnace is designed to heat the specimen to 1200°C by
radiation from an electrically heated alement. A cross-section of the
furnace is shown in Figure 17. The outer shell (1) is a water cooled
nickel plated copper shield. This is to eliminate the possibility of heat
being transferred to the instrument. A 15 micron aluminum foll (2),
which covers the furnace opening for the x-ray beam, serves as a heat
reflector. There are two sets of monel radiation shields (3) between
the heater elements (4) and the water cooled shield. The heater slements
are designed so that no ceramics are exposed to the vacuum system.
This is achieved by winding the heater wire {(5) in a spiral, insulating
the turns from each other by alundum f{ish-epline insulators (6) and
sealing the winding in & welded nickel case (7). The electrical connec-
tions are brought out through glass to metal seals (8). Provision is
made to pump out the region that contains the heater coil, refill it with
argon and then seal it off from the vacuum chamber. Two vaporization

shields (9) are inserted between the specimen (10) and the heater
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elements. These shields are of the same material as the specimen to
prevent the nickel heater case from vaporizing on the specimen. Heat
tranafer to the rotating shaft (l11) by radiation from the furnace or con-
duction along the spokes of the specimen wheel is reduced by a set of
cooling fins (12) which rotate in close proximity to a copper cooling coil.
A platinum-platinum + 10% rhodium thermocouple is located in an
approximate black body position (13). The motor (14) which rotates the
specimen is inclosed in a stainless stesl box filled with inert argon.
The motor is coupled to the specimen by a set of magnets (15). The
uniformity of the temperature within the furnace is not very critical
for as the specimen rotates it av‘eri_,gel;out the temperature variations
in the furnace. The furnace is allowed to go to thermal equilibrium
by maintaining a constant power input.

Due to the use of the monochromator, the diffraction peaks are
relatively low in intensity. Accurate intqnuitf measurements in the
least amount of time require a high detector efficiency and a high peak
to background ratio. The best radiation detector suited for these con-
ditions is a scintillation counter“q' #0; 5”. Ite superiority to the Geiger
and proportional counters with respect to quantum counting efficlency

d(SZ)_ There is the added advantage over .

has been previously discusse
'tha dciger counter of virtual elimination of the counter '"dead time'.
High peak to background ratios and elimination of the /2 contribution
to the diffraction peak can be obtained with the use of a pulse height
discriminator. However, the energies of the x-ray photons used in

x-ray diffraction studies are fairly low (from about 5.5 to 10 kev). In

this low energy range, it is necessary that the electronics be capable of
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producing a signal which is completely isolated from the photo-
multiplier and the amplifier noise.

The detector instrumentation can be described as follows. A
single crystal of Na I(T£) 1.5 czi; square and 0.5 mm thick is
hermetically sealed in a container. The attenuation coefficient for
x-rays is so high for Na I ( 1L~ 990 c:m"1 for tungsten Ln radiation)
that the surface on which x-rays impinge must be extremely clear
. and free from cracks or scratches. To reduce the possibility of
"light trapping' the crystal is cleaved. The crystal is thin to reduce
the cosmic ray background. The x-~ray beam enters the crystal con-
tainer through a 0.005 inch beryllium foil coated with a 1 micren
aluminum reflector on the side adjacent to the crystal. The crystal
is optically coupled to a glass window through which the scintillation
light pulses pass. This window {s then optically coupled to the photo-
multiplier face with Dow Corning silicone stopcock greass. With thias
configuration, most of the light produced by the absorption of an x~ray
photon by the Na I (T.) crystal reaches the photocathode of the photo-
multiplier. The photomultiplier must be carefully selected both for
low noise and high gain. The high gain is necessary to reduce the
"noise-in-signal". A DuMoﬁt K1234 was found to be very successful
with regard to the two previously ménﬂonnd prerequisites. (A Kl234
is a 6292 specially salected for high gain.) The pulses from the photo-
maultiplier are amplified with a gain of 4 by an adjacent preamplifier
and then are sent out of the vacuum chamber by a cathode follower. The

pulses are then amplified and pass through a pulse height discriminator



w40

in a modified Nuclear-Chicago 1810 Radiation Analyzer. The modifi-
cations incorporated in the analyzer were changing the filament heater
supply in the amplifier section to regulated DC and changing the dis-
criminator lwindow ;o that it can be adjusted between 0 and 20 volts.
The pulses that can pass the pulse height discriminator are then sent
to a rate-meter or scaler. -

The performance characteristics of the scinti llation detector were
determined with tungsten La, radiation. The photomultiplier was
operated with 68 volts per stage except that first and second stages
which were operated at 204 and 136 volél per stage, respectively. The
total gain of the preamplifier and amplifier was 2500. The pulse height
distribution curve, made with a 2 volt window, and the integral curve
is shown in Figure 18. This is the first time, to the writer's knowledge,
that the noise from a scinti illation detector was reduced to a low enough
value to show the escape peak for an x-ray photon of this low an energy
without cooling the photomultiplier.

A comparison was made between a scinti llation detector and a
Geiger counter with regard to detection efficiency and peak to back-
ground ratio, when the sample was moderately fluorescing. A sample
of titanium was mounted in a Norelco diffractometes and irradiated
with copper radiation. The region about the (10 T 1) peak of titanium
was scanned with (1) a Geiger counter (argon filled with a halogen quench
and an active length of 10 centimeters), (2) a Geiger counter with a
nickel filter and (3) a scintillation detector. Several scans were made

with the scinti llation detector, each using a different setting of the base



L

700~

4

500 -

(CPS)

400}

300 -

INTENSITY

200~

100 -

Figure 18. The pulse-height distribution of tungsten Lc1l radiation.



wdZ -

level discriminator and a constant value for the upper level
discriminator (16 volts). As the base was moved up, the fluorescent
contribution to the peak and background was reduced. The results are
compiled in Figure 19. It is interesting to note that for equal detection
efficiencies the peak-to-background ratio for the scintillation detector
is 8.6 times better than the Geiger counter or 2.4 times better than
the Geiger counter with the nickel filter. For equal peak-to-
background ratios the detection efficiency of the scintillation counter
is 2 times better than the Geiger counter or 2.8 times better than the

Geiger counter with the nickel filter.

2.5 The Drive

The drive was designed for continuous scanning and step scanning.
When scanning continuously, the detector inoves with a slow constant
anﬁular velocity and sends the x-ray pulses it receives to a rate meter
whose output is connected to a chart reéordcr. This type of scanning
is suitable for tfm approximate location and intensity of diffraction peaks,
but the response time of the rate meter and recorder and the non-
uniform statistics of the counting procedure limit the accuracy. The
most accurate way to locate the center of gravity and intensity of a
diffraction peak, with a given statistical error, is by the step scanning
technique. In this type of scanning, the detector stays at a given
angular position and accumulates a given fixed count. The time required
for the fixed count is recorded digitally by a Berkeley printer working

in conjunction with a Berkeley timer, or the intensity can be recorded
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on a chart recorder using a Norelco Counting-Rate-Computer. The
digital printer has a precision of an order of magnitude greater than
the Counting-Rate-Computer and is preferred. After the data are
recorded the detector moves a small angular increment and the fixed
count process is repeated. The disadvantage with step scanning is that
an enormous amount of time is required to scan between peaks. To
eliminate this problem a difiractometer control circuit was designed to
work in conjunction with the drive so that the detector would step scan
in the region where a diffraction peak is located and then move con-
tinuously until it reaches the next diffraction peak. The drive is shown
in Figure 20 and the schematic for the diffractometer control in Figure
21.

The drive may be briefly described as follows. A reversing
synchronous motor (1) is enclosed in an argon filled stainless steel
box (2) and coupled to a drive shaft (3) by a set of magnets (4). The
motion is transmitted to the gonjometer through a set of spur gears (5)
and a multijaw coupling (6). An electromagnet (7) sealed in an argon
filled box serves :to uncouple the multijaw coupling and disengage the
main drive shaft (8) from the motor drive. When the multijaw coupling
is uncoupled, motion can be transmitted to the main shait in distinct
rotational steps by a geneva whee!l (9). The geneva pin (10) is activated
by a solenoid (11) which is designed so that the coil remains stationary
and the plunger rotates inside of the coil. Another solenoid (12) acts
as a brake on the main shaft to make sure that the geneva wheel is

engaged by the geneva pin when the drive switches over from continuous
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scanning to step scanning. A commutator switch (13) synchronizes the
geneva pin solenoid with the drive shaft (3) so that the geneva pin
engages and retracts at the right position. Another commutator
switch (14) sends out pulses which indicate the angular position of the
goniometer.

The diffractometer control circuit coordinates and controls the
goniometer movements with the data recording processes. The control
panel is programmed for the regions where the detector is to step scan,
the angular increment to be used when step scanning, the high angle
limit at which the detector is to stop and the low angle limit at which
the detector is to reset itself. The regions where step scanning is to
occur can be chosen to any quarter of a degree interval between 0° and
175°, The intervals are predetermined either by calculation or a
continuous scan. Angular increments of 0. 01°, 0.02° and 0.05° can be
chosen for tl;e step increment. Once the control panel is programmed,

the experiment proceeds automatically.



3. EVALUATION OF ERRORS LIMITING THE ACCURACY OF
THE DIFFRACTOMETER

The location of the center of gravity and the subsequent analysis
of diffraction peaks for the accurate determination of lattice parameters
are subject to both statistical and sycstematic errors. The statistical
errors are usually treated by a least squares analysis similar to that
suggested by M. U. Cob.an(s‘”. In order to apply this least squares
method, it is necessary to assume a functional relationship between the
syastematic errors and the Bragg angle. This functional relationship
requires a complete analysis of the x-ray optics. In general, a
diffraction peak recorded by this parafocusing type diffractometer is
asymmetrical, broadened and shifted from its theoretical 20 value.
There are two main classes of broadening -- intrinsic and instrumental.
The intrinsic broadening is associated with the state of the specimen
and the energy distribution of the x-rays. The natural profile of a
diffraction .mlxlmum depends upon the specimen strain and distribution
of crystalline size. Thers is no broadening due to crystalline size as
long as no appreciable fraction of specimen has crystallites with a
mean dimenasion less than 0.2 microns. This type of broadening is

)

approximately -ymmetrical(“ and would not affect the location of the
center of gravity of a diffraction peak. The broadening associated with
nonuniform strain in the specimen is not symmaetrical and can ehift the
center of gravity to higher or lower Bragg angles depending upon the

state of the residual stress. Even if the residual stress is uniform,

the strains associated with the different interplanar spacings will be
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nonuniform due to the variation of the crystallographic elastic
constants.

A characteristic line from an x-ray target is not monoenergetic,
but there is a definite spread of wavelengths. This leads to an angular
spread of the diffraction pesak

AA

A = o)

tan 9, {(3.1)

where the wavelength spread is & A, Therefore, the broadening due to
wavelangth spread rapidly increases as 06— 90°. But again, this
broa&oaing is symmetrical with respect to the center of gravity of the
wavelength spread. If the abeolute values of lattice parameters are
desired, care should be taken to use the wavelength corresponding to
the center of gravity of a cha;'acterlstic line when the locations of the
diffraction peaks are represented by their center of gravity. The center
of gravity of a characteristic line does not necessarily correspond to

(55)

its peak value . For example, the copper Knl line shows a 0.003%

difference between its peak value and its center of gruvlty(sﬁ.

The parafocusing diffractometer has the following sources of
instrumental broadening:

1. The use of a flat sample rather than a curved one concurrent

with the focusing circle.

2., Penetration of the x-rays into the sample.

3. Vertical divergence of the x-ray beam.

4. X-ray source profile.

5. Width of the receiving slit.

6. Misalignments.
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The convolutions (Faltungs) of these functions with the pure diffraction

(57, 58, 59)

profile have been thoroughly investigated with the use of the

superposition thcorem(bo). Only those convolutions that lead to an
asymmetrical broadening, i.e., a displacement of the center of gravity,
are of interest for precision lattice parameter determinations. The
first two factors, the flat plate approximation and the penetration of
x~-rays into the sample, lead to an asymmetrical broadening and a dis-
placement of the center of gravity towards low 0 values. An analysis

(61)

by A. J. C. Wilson shows that this displacement is

2
A 1 t cos ©

L0 = - + sin 20 + (3.2)

6r> LR R [e“4f8C a -]

where ZA is the ililuminated length of the specimen, R is the diffracto-
meter radius, LU is the linear absorption coefficient and t is specimen

thickness. For Ut >>1, only the first term is significant. Since the

divergence of the beam limits the illuminated length of the specimen,
AR%RCICO (3.3)

where a is the beam divergence.

The third factor, the vertical divergence of the beam, also causes
an asymmetrical broadening. For this case, however, the shift of the
center of gravity is towards higher 0 values in the back reflections
region and lower @ values in the front reflection region. An analysis

by J. N. Ea-tabrook(sg) shows that the center of gravity displacement is

AQ = .-41562 cot 20 (3.4)
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where O is the overall vertical divergence angle. The derivation of
the above equation is true when the vertical divergence is limited by
Soller collimating slits. Although a Soller slit is employed in this
instrument, the vertical divergence is mainly limited by the large
ratio of the spectrometer radius to the heights of the specimen, slit
and monochromator. For this instrument the vertical divergence is
limited to approximately 1°,

The fourth factor, the source profile, will not shift the center of
gravity if the source is symmaetrical. I the source is asymmetrical,
there is no shift if the deviation angle 20 is measured {rom the center
of gravity of the source to the center of gravity of the diffraction peak
and the center of gravity of the source passes over the axis of rotation
of the spectrometer. This can be shown by the following analysis.
Consider a diffraction peak £(20) where 20 is measured from the center
of gravity of the x-ray beam about the axis of rotation of the spectro-
meter. The function £(20) is presumed to be continuous and £(20) and
all its derivatives apprcach 0 as 20 —#% oo. If g(£) is the source profile,
then the convolution of the source and the diffraction peak {(20) is

<0
rczoy:[ g(€) £(20 -€)de (3.5)
)

There is the auxiliary condition that

f&g(e)de 0. (3.6)

The center of gravity is
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o
f (29) ¥(20) d(20)

TR = —= (3.7)

0
f F(20Q) d(20)

-0

Substituting equation 2.13 into the above expression,

QO
fp f (20) £(20-€) g(c)ded(20)
-0 ,

-0
T(20) = = o (3.8)
f f £(20-¢) gle)de d(29)
(¢ +]
Expanding £f(20-¢) in a Taylor's series
2
£(20- £) = £(20) + ££'(20) + -g-,—- £120) + ..., . (3.9)
equation 3.8 becomes
@ ]
Y [ emaens f o0 129 450
T 220 - (3.10)
Z f e® gleMde f ——5-52—9— 4(20)
n=0 «Q0 d(ze)®
Integrating by parts, integrals of the form
f (20) -—‘l‘*-‘lL a(20) = 0 - (3.11)
a(ze)®

-0

forn > 2, and
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a@ze”

fb ﬂﬂ’l_ d(20) = 0 . (3.12)
)

forn > 1.

Using equations 3.6, 3.11 and 3.12, equation 3.10 reduces to

a0
(20) £(20) d(29)
F(Z0) = -mm (3.13)
f £(20) d(20)
-0
or
F(20) = 120, (3.14)

which was to be proven.

The fifth factor, the width of the receiving slit, is a symmetrical
convolution and will not shift the center of gravity. However, there is
the possibility that the convolution (Faltung) of a step scanning slit and
the diffraction peak {(20) may cause a shift in the objectively determined
center of gravity. For the purpo:el of discussion, f(2Q) is assumed to be
symmetric with respect to its true center of gravity 200. If the center
of the slit, of width W.. coincides with 200 or is displaced /2 from 200,
where £ is the step increment, then the experimentally determined
center of gravity must coincide with ZOO. Simple geometrical arguments
show that the maximum shift in the center of gravity occurs when the
center of the slit is displaced * p/4 from 20. The order of magnitude of

the maximum displacement can be estimated as follows. Letn = 0
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denote the position of the slit when the center of the slit is displaced

€ from zoo. Positions of the slit corresponding to increasing values

of 20 from aoo are denotaed by increasing positive integers and de-
creasing values of 20 from ZOQ by decreasing integers. The convolution

of the diffraction peak and the slit is a series of steps of intensity In

where,
g L
20°+ E+ nﬂ + -z-—-
In = £(20) d(260) (3.15)
w
20 +E+np - 'z—"
or
In ~x W. ftzoo + £ 4+ np) (3.16)

Expanding in a Taylor's series and neglecting terms of the order of E,z.

equation 3.16 becomes

I= w, [1(290 + np) + ££'(20_ + nﬂ)] (3.17)
The center of gravity of the peak is
%o
Z (?.t)o +np + e)In
ono
20 = (3.18)

%o
R
n
-n
°
Using equation 3.15 and the facte that

f(ZOo +np) = I(ZOO - nf)

and
(20, + np) = -£'(20, - np),
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28,

Figure 22. Convolution of a step scanning slit with a symmetrical
diffraction peak.
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equation 3.18 reduces to

n
©
B) . nr'(20, + np)
A ae |1+ . (3.19)
0
2‘-:(?.00) + Z £(20_ + np)
n=l
- _

where 020 = (20 - 20.). If a triangular peak is assumed, f'(20_+ nf)
is a constant

£(20_ + np) = £(20_) (1 - ﬁ‘r )
[+]

f(zno)
f'(zoo +np) = - GIOE

(+]

For this case,
A0 = E(=—) (3.20)
[+ y
or
1

Typical values which might be assumed are, £ = 0. 05° and n, = 8. For
this case, mw = 0.0014° = 2.4 x 10'5 radians. For diffraction peaks
where 20 > 45°, the maximum error in d spacings this convolution can
cause is less than 1 part in 80, 000.

Since the generation of x-rays is random with respect to time,

the intensities measured by the step scanning procedure are subject to



57

the laws of statistics and the objectively determined center of gravity
of a difirzction'paak is subject to a statistical variation. Since the
total count is fixed at each angular position, the statistica are fixed,
i.e., the standard deviation in N is \/E and the probable error in N

is 67/ ﬁ%. where N is the total number of counts accumulated. The
effect the statistical variation of intensities has on the displacement
of the centerrof gravity of a diffraction peak can be analyzed as follows.
Again consider a diffraction peak f(2Q) with its center of gravity located
at 200. The center of the scanning slit is assumed to coincide with 200
when the slit is in the position denoted by n=0. Positions of the slit
corresponding to' increasing values of 20 from 20° are noted by position
integers and decreasing values by negative integers. The stepping
interval ie f and the slit width is W.. The convolution of the diffraction
peak and the slit is a series of steps of intensity !on as illustrated in

Figure 23,

w!
2°°+ nﬂ + 3

:°n = £(20) 4(20) (3.22)
W
0°+np- T!
:°n ~ W, 20 +nB) : (3.23)

Let the experimentally measured values of intensity be denoted by In‘

)
In = 1 . (l—kn) (3.24)
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28,

Figure 23,
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th

where kn is the error in the n* reading and Ion is the true intenaity.

The center of gravity of the peak is

n

[¢]
Z (20_ +nf) 1_

-n

0= g (3.25)

If the diffraction peak is again assumed to be symmetrical, Inul_n. by

using equation 3.24 and simplifying, equation 3.25 reduces to

n

[ =]
‘5Z " Ian (e =k_,)
20 = 20 - : (3.26)

Now k & is a statistical error in intensity and should bear no relation to
n., If 2k is the maximum error expected in an intensity determination,
then

-2k < kn-k_n < 2k (3.27)
If N counts are accumulated at each angular position, then the standard
deviation of the sum or difference between any two readings is \/2N.
Therefore, the probable value of k -k_ is=. 67/°\/2N. The probable
error in 209, AZG, is
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n
[+]
Z nl®
43
l67 1
A20 = =f 5 (3.28)
12N ) "o
Q
I°+2 1 8

To estimate the order of magnitude of AZD, a triangular diffraction

peak {s again assumed.

n
In = Io (1--5-;-_;-1- (3.29)
For this case
ﬁno .67 no+2
A0 = 2 5 \/E? ATl (3.30)

Typical values which might be assumed are
p=0,05°
B, = 8
N = 6400

“A 0y .7 2307 sadisng. This ia much

For this case, AZ0 = 4.4 x 10
too small to introduce any error in the determination of lattice
parameters.

The last factor which can affect the location of the center of gravity
of a diffraction peak is the diffractometer misalignments. There are
six alignments that can affect the peak shape or peak location. These

are:

1. The setting of the zero position.
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2. The center of gravity of the beam does not pass over the

axis of rotation.

3. The face of the specimen is off the axis of rotation.

4. The face of the specimen, the receiving slit and the

source are not parallel,

5. The centers of the specimen, recelving slit and source

are not in the same horizontal plane.

6. The 2-to-l angular setting between the detector and the

spscimen is incorrect.

The sero setting of the spectrometer can be determined as
accurately as the location of any diffraction peak by scanning over the
primary x-ray beam and determining the location of its center of
gravity. Therefore, this alignment should not introduce any systematic
error. If, however, the zero position is not accurately determined,
this leads to an error of AQ = constant,

If the center of gravity of the beam does not pass over the axis
of rotation, there is again a constant displacement of the locations of
the center of gravities of the diffraction psaks. Simple geometrical
considerations show that this placement in ¢ is equal to the angle between
the line joining the source to the axis of rotation and the trace of the
center of gravity of the x-ray beam. i'he procedure used to minimize
this misalignment is to find the trace to the detector of the line joining
the axis of rotation with the source by independently rotating a vertical
wedge about the axis of rotation. Then adjuat the primary beam so its

center of gravity coincides with this trace. The combination of the zero
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position and the center of gravity not passing over the axis of rotation
errors is AQ = conatant = 7] . (3. 31)
The displacement of a diffraction peak due to the specimen being

(61)

off the axis of rotation has been theoretically and experimentally

inva-tlgated(u). The peak displacement is

AQ = -&- cos © (3.32)

where s is the displacement of the specimen off the axis towards the
source and R is the difiractometer radius.

Due to the fact that the above expression is linear with respect te
s, a vertical rotation of the specimsn with respect to the source does
not displace the center of gravity of a diffraction peak, but only
broadens the psak. The value of s to use in equation 3.32 is obviously
the distance from specimen to the axis of rotation measured at half the
specimen height. A rotation of the receiving slit relative to the source
also does not displace the center of gravity but only broadens the peak.

If the centers of the source, specimen and receiving slit are not
in the same horizontal plane, the vertical divergence error is increased
and must be taken into account by aquatibn 3.4. Care must be tﬁkan’ in
this alignment since the error in 0 goes as the divergence angle squared.

If the plane of the specimen does not make equal angies with the
source and the detector, the center of gravity of the peak is shifted. It
is reported that if the plane of the specimen makes an angle @ + ¥ with
the source and the detector makes an angle of 20 with the source, the

(62)

exprassion



b3

1“")2 sin zo}
312 (3.33)

sin® 9-x°

should replace the first term of equation 3.2 previously derived by
A.J.C. Wilson. The above expression 3.33 is incorrect. First, it
is off by a factor of 1/2 as can be shown by letting v —>0 and next, in
its derivation it neglects the penetration of the x-ray beam into the
sample and the unequal lengths of irradiated specimen on each side of
the axis of rotation. When theses two factors are included, the
fou'owing éxpreuion should be added to Wilson's equation 3.2:

2

20~ 3 (3| cot?e + ¥%cot®e ]:{%)z £us 9

—5— -tan no +-‘¥i-£-9} (3.34)

This equation was derived by following Wilson's analysis and altering

the x-ray path length in the specimen and the limits of integration as the
sample is rotated a small angle, ¥ , from its prescribed angle. The
sample is also assumed to be infinite in thickness ( Mt >>1) and the
irradiated length of the sample is limited by the beam divergence a.

For a 1° beam and ¥ equal to 1°. the above expression could not
introduce an error of more than one part in a half million, for ¢ > 45°,
in a lattice parameter determination.

Differentiating Bragg's law, the relative error in d is
%é- = ~cot @ A0 (3.35)

Combining equations 3.2, 2.3, 3.4, 3.31 and 3.32, equation 3.35, for

Mt >>1, reduces to

ad _o® 2 52
el Iz—cot 0+ -q-g(cot Q-1) -'ifcotﬁw*-ﬁ-coaO cot @ (3.36)
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All of these tarms, except the one corresponding to the vertical
divergence of the x~-ray beam, tend to zero as © —>90°. The vertical
divergence term increases to - —g—:— as 6 — 90°. For this diffracto-
meter, .5 ~ lo. theresfores, the maximum error contribution of thes
vertical divergence is one part in 360, 000 as 0 —> 90°, which can be
neglected. By substituting realistic values for the constants in equation
3.36, it is obvious that the last two terms, which represent misalign-
ment, are the most significant.

There are two other corrections that should be considered. The
deviation angle for a Bragg reflection is measured by the number of
rvevolutions the worm, which drives the main gear, has besn turned
away from the zero position. This angle, as measured by the number
of revolutions of the worm, does not necessarily correspond to the true
angle the detector makes with the primary x-ray beam, due to tooth and
eccentricity errors in the worm gears and eccentricity errors in the
bearings. The usual procedure for calibrating worm gears is very
difficult, but the mathematics involved is relatively simple. A new
method involving a simple experimental procedure but an involved
math§mat1cnl treatment was studied. The solution of the analytical
equations of this new method could be obtained in a closed form. The
procedure, which is discussed in the Appendixcan be used to calibrate
all the errors of a worm gear system, and should be applied after
complete assembly. An interference between the detector and mono-
chromator has made the calibration of the diffractometer worm gears

impossible at the present time.
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The last systematic error which does not extrapoclate out as
0‘—7"90° is the refraction correction. This correction is not simple,
because it depends on shapes of the graine in the material being in-
vestigated; i.e., the correction is a function of the angle the x-ray
beam makes with the grain surface normale at the points of entering
and leaving the grain. For a solid flat sample, as is used in this type
of instrument, with a moderately high absorption coefficient, the
correction is very closely approximated by that of a fiat grain surface
parallel to the crystallographic reflecting planes. This correction
is 80 small (the order of one part in 50, 000 to 100, 000), that it is only

necessary to divide the apparent lattice parameter by the index of

refraction(“’.
a
observed
"corrected E - (3.37)
where
(64)
Nezh 22
® ZTvme W24

N is the number of electrons per cubic centimeter, e and m are the

charge and mass of the electron.
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4. EXTRAPOLATION FUNCTIONS FOR THE DIFFRACTOMETER
METHOD

The angular dependence of the systematic errors, neglecting the
vertical divergence, can be very closely represented by a four

perameter equation, i.e,, equation 3.38,.

9-&1— =Acot20+Bco-zﬁ+Ccot0+Dcot0c0l9 (4.1)

A least squares analysis of the data, using the above equation, would
require the solution of five simultaneous linear equations for a one
paramiter crystal or six simultaneous equations for a two parameter
crystal. The work involved is not necessarily reduced by the use of an
electronic computer because of the similarity of some of the terms in
equation 4.1 in the region where the extrapolation is carried out (¢ > 45%),
In view of this complication, the least squares analyses previously
reported in the literature have used sither the canO or the Nelson-
Riley extrapolation function for lattice parameter determinations. The
justification for the use of these functions is that they closely approxi-
mate the systematic errors in the back-reflection region. (The third
term of equation 4.1 was never considered.) However, the approximate
extrapolation function does not extrapolate to the same value the exact
function does. The error introduced by the approximate function can
be analyzed in the following manner. For the purpose of discussion,

assume a cubic material, therefore

Ha _ Ad
-i--n -a-—-c fo(c) (4.2)
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where £°(0) is the true systematic variation of Ad/d. Assume 4d/d

behaves as -I'C1 11(0), where fl(O) contains no arbitrary constants and

£(0)—£ () —>0 as o—h-fz’—

-

A least squares fit is now made against -KIII(O), where the systamatic

error in a, Aa is determined by io(O). From eguation 4.2
a=a, l:l-fo(al)] (4.3)

where LR is the true lattice paramaeter and 8, is the determined lattice
parameter corresponding to a diffraction peak at 01. The straight line
to be fitted is

a=a [1 + K1£1(0)] (4.4)
where a is the extrapolated value of the lattice parameter correspond-
ing to the extrapolation function fL(O); The normal equations are

n
Z by = Z ao1 * 85K Z £(9,) (4.5)
n n n 2
Z af(0) =a Z £00) +a_ K Z [fl(oi)] (4. 6)

Substituting equation 4.3 into the above equations and solving for a

the following expression is obtained



u&B-

a n n n 1
Z 1-£,(6)) Z {‘z“’l’} 2. z £,(0,) Z{"%“’i’} £,40,)
ol o n [ n

2 2
a). \:‘x"’i’} - Zﬁ“’i’} (4.7)

~ /

Therefore, the relative error ina " introduced by using the approximate

function is

n n n n
Aao Zfo(oi) Z{fl(gi)} 2. Z fo::(oi) Z fl(oi’

(4.8)
io n 2 n 2
n Z[ﬁ“‘i’} ; [Z‘x“ﬂ}
Using equation 4.1 the above equation can be rewritten as
Ha
- 2 = oA +PB+7YC+ 511) (4.9)
Q
where N
n
Zcot 0, {{ (o )}” Zcot 9, £,(9,) Z £,(0,)
Sy = n 2
a z [fltol)} [Z 1,0, )}
n n 2 n n
Zco-z o, z {fl(oi)} . Z cos? 0, £,(0)) Z £,(0,)
p1 N n 2
n £.(0 )} [ £.(0 )}
Z B! Z ' | (4.10)
n n 12 B
Zcot 01 z {fl(oi) - Z cot @ fl(ﬂ ) Z £ (0 )
Tl = n - n
2 2
n ). {fz“’i’} . [Z fl“’s’}
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n n 2 n n
Zcot Oi cos Oi Z [Il(oi)} - Z cot 0i cos °i ‘1‘“9 Z fl(oi]
o, =

1 n

ny {tlwi)}z . [i fltogr

Due to the inverse trigometric behavior of N and the nature of the

/

terms in the sumas, no simple method could be found for summing the
above series for fl(O) equal to either c:cuz Q@ or the Nelson-Riley function.
Teo determine the order of magnitude and nature of the above coefiicients,
it was decided to evaluate them for a specific material and radiation.
Lead was chosen because of its large unit cell and with copper radiation
this material has a larger than usual number of back reflection lines.
This would probably underestimate the usual values of a5, ﬂl. 0.4 1 and
E)l. Table 4.1 summarizes the results for values of a ﬁl, ¥ and 61
for angles greatser than and including the corresponding 20 value. The
results are also shown graphically in Figures 24-27. The order of
magnitude of Ha ol a, can be determined by estimating the valueas of A,

B, C and D in equation 4.1. Referring to equation 3.38, typical values
for this diffractometer might be

A=2x10"°

Belx10"8

” (4.11)
Ca#1x10

D=#1x10""%
The values for B and D would probably be higher for commercially

available diffractometers. Using the above values, Table 4.2 shows
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the maximum relative error in a, when conzo or the Nelson-Riley

function is used instead of the exact function (assuming the equation

4.1 represents the nature of the exact function).

Table 4.2
Aa_/a_x 105

oo

20 co.zg 1/2 co:zﬁ + couzc
sin

159.63 -- .-
138, 07 -1.17 -1.23
134.07 -1.21 -1.28
123.37 -1.41 -1.52
107.93 -1.77 -1.93
99.35 -1.96 -2.12
88.20 -2.21 -2.35
85.43 -2.33 -2.45
77.00 -2.53 -2.62
65.23 -2.95 -2.93
62.13 -3.25 -3.10
52.23 -3.81 -3.43
36.13 -5.64 -4,52
31.27 -7.53 -5.20

These results are shown graphically in Figure 28. Several other

functions and combinations of functions of ¢, such as cotzo. cot @

cos @, cot 0+ cot @ cos 9, (cot © + cos 0)2. etc., wera tried to see

if a better one could be found. Many of these gave approximately the
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same results as the co-ZO and the Nelson-Riley function. However,
none could be found which would appreciably improve the relative exror
in the extrapolated value of a.

A remaining possibility to improve the nature of the extrapolation
function would be to make it a two parameter function rather than a one
parameter function. For this case Ad/d is assumed to behave as

L2+ K, 1,(0) -K, £,(0) (4.12)

Again {,(0) and £3(0) contain no arbitrary constants and

—_— b —_— L
fz(O)—”fs(O) fo(O) 0 as @ 3

The linear regression to be fitted is

a=ag, {1 + KZ £2(0) + K3 fa(O)J (4.13)

The normal equations are
n n n
Z‘i =0y *agy Ky Z 00,0 + gy Ky Z £300p)
n

n n 2 n
) 8500 =80, ) 600) + ap,K, i) {‘z"’i’} *aggKy ) 10150
(4.14)

n n n n
2
Z‘ifswi’ = a5, Zfswx) t e K, Z £5(0,)£5(9) + a5 K, Z [fsws’}

Substituting equation 4.3 into the above equation and solving fcr LYY

the following expression is obtained:
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r n n n N
5 148 =7 ). £,(0,)£,(9) + K ) £o(9)£5(9)
1 - (4. 15)

n n
nY n ) 000 + K Z £3(9)

where

3 z & 2 |2 2
Te Z [fz“‘i’} Z [f3(°i)] '[Z fz“i)‘a“i’:}
n n 2 n n
=) 00 ) [‘3"’1’} - ) £(065(0)) ) £5(9) Rl

n n n 2 n
Ha Z £,(9,)15(6,) Z £,(0,) - Z {fz“’i)} Z £4(9,)

From equation 4.15 it follows that the relative srror in the extrapolated
value of the lattice parameter introduced by using the above linear

regressionis n n n
TZ‘o“i) ~ @ Z £,(9))5(0) + K Z £(0;)4(9))
2 = (4.17)

n n
nf-y) 80+ K) £00)

Assuming equation 4.1 represents the exact nature of the systematic
errors, equation 4.17 can be written as:

Ha
a

°° =ayA +B,B+ ¥,C+ 529 (4.18)

where
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chotz 0;-7 cot? 0, £,(0,) + %Zcotz 9, £3(0,)

nY-7) £;(0) + K ) £5(0)

g

T’chaz 0~ co:zoi £,(0,) + K «':cuz'tii £,(0,)

B, =
af-7) (00 + X D £3(0))
(4.19)
¥ ) cot Qi- i Zcot G)i fz(O‘) + }’(Zcot 01 1'3(01)
Ya.=
2
n¥- “?Z‘z“‘t’ + X Z£3(Oi)

TZcot °i cos 01- 7 ) eot 9l cos 01 fz(oi) + 'F(Zcot Oi cos 0* fs(Gi)

nf - VZfz“‘i’ ”’(Zfsmi’

by =

After careful scrutinization of the behavior of the above co-
sfficlents with judiciously chosen values of fz(O) and £3(0). three
extrapolation functions were found which would yield much better results

than either conzﬂ or the Nelson-Riley function. These are

Fl(O) = -K, cot @ -K3 cotQ cos @ (4.20)

F,(0) = -K,(cot?0 + cos®0) -K,(cot 6 + cot 0 cos 0) (4.21)
2

F3(0) = -Kz cot @ —K3 cot @ (4.22)

Although all three of these are better than the single paramaeter

functions previously discuased, the best one to use is really governed



by the geometry of the diffractometer. By examining the values of a,,
Bye ¥, and 52 listed in Table 4.3 for the above functions, it can be
seen that Fl(e) is best for the long radius and small beam angle
diffractometer (which is the case for this instrument), while F3(0) is
best for the large beam angle diffractometar (a > 29). FZ(O) is a
compromise function which yields good results for both types of
diffractometers and is probably best for the general case. Figures
29-32 show the dependence of the coefficients a5, ﬂz. V2 and 52 on
including all reflections above a certain Bragg angle. Figure 33 shows
the maximum relative error in lattice parameter aaolao assuming

the values in equation 4.11. For comparison the previously determined
values for cos>0 and the Nelson- Riley function are plotted on the

corresponding graphs.
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5. EXPERIMENTAL PROCEDURE AND RESULTS

The performance of the diffractometer and its associated
slectronics were checked by measuring the thermal expansion of
chemically pure silver. The location of the seven highest angle
diffraction peaks, between room temperature and 420°C, were
measured by pre-count step scanning. The results of the experiments
showed that the systematic errors of the diffractometer are so small,
or cancel one another out, that almost any reasonable extrapolation
function can be used for determining lattice parameters.

A typical extrapolation of the five highest angle reflections,
with the sample at 420°C, against the Nelson-Riley function is shown
in Figure 34. The straight line was determined by a least square ﬂi
using Cohen's method. The standard deviation from this line is
0.00015A, which means the probable error is one part in forty thousand.
The lattice parameter at 15, 6°C was determined to be 4. 0853 & . 000LA,

(51) o 99.95% Ag at 18°C gives

The measurement of Owen and Roberts
a lattice parameter of 4, 0854A, which is in excellent agreement with
the results of this experiment. The lattice parameters that are reported
in this thesis have assumed that the wavslength of tungsten Lcl is
1.47635 A, the conversion factor from kx uﬂtn to angstroms is 1. 00202
and all parameters are corrected for refraction.

The results of this experiment on silver can ‘be used to calibrate

the thermocouple by cross-plotting the lattice parameter versus

temperature curve of this investigation with that of previous in-
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(65, 66, 67)  Thq calibration curve is shown in Figure 35.

vestigators
Considering the scatter of the previous investigation data and the
accuracy to which the temperature was measured, the temperature
as determined from this calibration chart is within 5°C of the true
temperature for temperatures less than 500°C. The extrapolation of
the curve to higher temperatures is subject to the objection that the
radiation-conduction heat balance may change at the higher temperatures.
The next experiment was performed on remelted iodide titanium.
The material was obtalned from U.S. Army Ordnance Corps, Water-
town Arsenal Laboratories in the form of hot rolled plates about ¢ mm
thick. Small trapesoids wers cut from these plates and milled on both
sides to about a thickness of 2.5 mm. This insured that at least twice
the depth of contamination, as determined by hardness tests, was
removed. The specimens were then sealed in a quartz tube filled with
helium. Care was taken to insure that the specimens did not touch the
quartz and rested only on auxiliary specimens supports made of
titanlum. A 'getter' was heated inside the tube to capture the remaining
oxygen and aitrogen prior to annealing. The trapizoidal specimens
were annealed 50°C above the a — P transformation temperature for
fifteen minutes and then quickly returned to room temperature. They
were then riveted to a titanium specimen wheel with titanium rivets.
The segments on the front face of the specimen wheel were made co-
planar and normal to the wheel axis by grinding. The cold worked layer,
produced by the grinding, was removed by an acid etch of equal parts

of nitric acid, hydrofluoric acid and glycerin.
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The specimen was then mounted in the diffractometer furnace
and the vacuum aystem and argon purifying system activated. A pre-
liminary lattice parameter measurement was made at room temperature.
After three days of pumping, the titanium ''getter' was heated and the
specimen was then heated to 700°C for two hours as a final anneal. The
room temperature diffraction pattern taken after this anneal showed no
change in lattice parameters and were in good agreement with those

‘68. 69. 70). The complr"on b.'

measured by previous investigators
tween the room temperature parameters of titanium are tabulated in
Table 5.1,

Table 5.1

Investigator a(A) c (A) c/a
Present Investigator (20°C) 2.9496 21 4.6822%1 11,5874
clarx{®® (25°) 2.9504 23 4.6833 %3 1.5873
Greiner and Eilis!®?(25°C) 2.9450+£4 4.6845 57 1.5907

“szanto!7? (25°¢) 2.9506 %5 4.6788 £7 1.5857

Eight of the best difiraction psaks were chosen for step scanning
to shorten the data-taking time at a given temperature. The time
required to complete a single temperature run was two days. The
temperature variation of the lattice parameters was determined to
650°C where unfortunately a power failure during this experiment
resulted in air leaking back through the pumping system and con-

taminating the specimen. However, enough data were taken to show



that the c/a parameter for titanium rapidly increases as the transfor-
mation temperature is approached. The results are summarized in

Table 5.2 and Figure 36,

Table 5.2
Temperature (°c) a(A) c(Aa) cl/a

20 2.9496 % 1 4.6822 2 1.5874
113 2.9526 % 3 4,.6882 %5 1.5878
250 2.9558 = 3 4.6945 2 5 1.5882
383 2.9593 =3 4.7012 % 5 1.5886
501 2.9634 = ¢ 4,.7102 £ 7 1.5894
647 2.9670 %12 4.7314 2 20 1.5941

The coefficients of thermal expansion perpendicular and parallel
to the c-axis between 0 and 400°C are 9.41 x 10°8 /°C and 11.18 x 1078/°¢C
respectively. For a random polycrystalline sample, the mean linear

expansion coefficient is
2a_ ta
a- & a [
or

T # 100 x 10" i

The x-ray thermal expansion coefficients as determined by Spread-

(38) (39) 6

borough and Christian'” "', and Berry and Raynor area = 9.55x 107
Vi = a_ =10.65 x m“’/"c, 2=9.78 x10°® and a, = 11.25x 10“6/°c.

a_ =10.19 x 107%/°C and 3 = 11. 25 x 10”9/, respectively.
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Figure 36. The thermal expansion of titanium.
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PART 11

AN INVESTIGATION OF THE ALLOTROPIC
TRANSFORMATION OF TITANIUM
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6. DISCUSSION

The measurement of the temperature variation of the lattice
parameters of titanium reported in the previous section, along with
other experimental data, can be used to formulate a theory for the
allotropic transformation of titanium. ©Of the sixty-three elements
referred fo as metals, approximately one third have allotropic trans-
formations. In most cases the crystal structure changes, the transfor-
mation temperature and the mechanisms of transformation are well
known; however, the fundamental reasons for the existence of an
allotropic transformation in metals are not well known. There is little
hope, at the present time, that a calculation based on firat principles
could yield any significant results. This is mainly boéauu the difference
in energy between different allotropic formas is the order of one per cent
of the cohesive energy. The only possibility of coping with this i:roblum
is to examine the properties of the metal, formulate a model which can
explain these properties and hopefully predict other properties. The
model for titanium, which will be developed later, was proposed before
construction of the high temperature x-ray diffractometer. According to
this model, it was predicted that the c/a parameter should rapidly in-
crease or decrease as the transformation temperature is approached.
The experimental resuits show that the c/a actually increases.

The factor which determines the stability of one phase in prefer-
ence to another is its free energy. At absolute zero there is no entropy
diminution to the free energy so the crystallographic form with the

lowest internal energy will be stable. For the purpose of discussion,
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(71)

it is convenient to make the adiabatic approximation and consider
the contributions to the free energy of the ion cores and free electrons
separately.

The contribution of the ion cores to the free energy can be treated
by the conventional quantum statistical treatment. In this treatment the
displacement of the cores is assumed to be small so that & Taylor's
expansion of the potential about the equilibrium position results in the

harmonic approximation. The eigen-energies of the ion cores are then

Ena(n-i-%)hv (6.1)

The probability that a given oscillator, in thermal equilibrium, will be
_ -E /kT
in the quantum state n is proportional toc the Boltzmann factor e

The partition function for such an oscillator is

-E /kT
f= Z o O (6.2)
n
or
<hv
KT
f= -——-——E——-—‘ = (6- 3)
-
l-e ° '
The average free energy can then be determined by the equation”z)
Fe-kT/nt (6. 4)
Using equation 6.3
-hy
Fiv)=| 5% + kT Ln(l-e KT ) (6.5)

The free energy for the ion cores is
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F, =ff(v) plv)dv (6.6)

where F(v)dv is the density of vibrational states between v and v + dv.
The integral of /J(v)dv over all possible states is subject to the re-
striction that it be squal to the total number of degrees of freedom for

the system, i.e., for N ions.

f )o(v)dv = 3N (6.7)
0

The value of }o(v) has been treated in a variety of ways ranging from

(73)

the single frequency model of Einstein to the crystal dynamics method

of Born and von Kirmén!™), For the purpose of simplicity, the

following discussion will be limited to the continuum meodel of Dobyc”s).

Under the assumption of this model

p(v)dv = _?3_!_1__ vzdv (6.8)

v
m

where P is the upper frequency limit.
The Debye temperature is defined as
hv
Q= —E—TE (6- 9)

With the use of equations 6.5 and 6.8, the free energy is

Ym 3 Ym -hv
F_= -3 [[ B av + kT[ v? in l-ew)dv (6.10)
Ym 6 ' 0

Using equation 6.9 and letting x = hv/kT, equation 6.10 can be written
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/T
4
F_ = 9Nk -§+ —33- f %* Lnti-e~%)dx (6.11)
0

Integrating by parts, the above equation reduces to

s NT 3
F_ = 3Nk -359 + T In(-e~%Ty . -30-3 c::-l ds (6.12)
0

The integral in the above expreasion is a common one sometimes
referred to as the Debye integral and has been tabulatud”é) for various

values of 9/T. For the case where T << 0 equation 6.12 reduces to

3.1 -0/T «

T 4
Fc::,‘SNkO 30 -Tg' —-o-—) (6.13,

For the case when T >>0, equation 6,12 reduces to

1 17T T "]
Fc’n‘$3Nk°['z~3-T+Tﬂn (T)] (6-1“)

The variation of the free energy of the ions with temperature, with the
Debye assumption, is illustrated in Figure 37. The binding energy at
0°K must be added to the above expression for completeness. It is
evident from the above expressions that if the {ree energy is predominant-
ly governed by the ions, the Debye temperature of the high temperature
phase must be less than the Debye temperature of the low temperature
phase.

The cohesive energy of metals is composed of the electrostatic
attraction between the free electrons and the ion cores, the repulsion
between the ion cores, electron-electron interactions, and the mean

kinetic energy of the free electrons. The properties of electrons outside
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Figure 37. The temperature variation of the free energy of a Debye
solid.



97

of the closed ion cores will ba‘ interpreted on the basis of the band theory
of solids. The development of the band theory based on one electron
wave functions has been discussed in immerous texts and only some of
the assumptions and conclusions will be enumerated. First the inter-
actions between electrons is neglected except that they muset obey the
Pauli exclusion principle. Thermodynamic equilibrium requires that
the electron obey Fermi-Dirac statistics, i.e., the probability that a

quantum state with energy E is occupied is

1
fD(E, L W (6. 15)

e + 1

where Ef is determined by the total number of electrons present. The
wave functions of electrons in a periodic lattice are the Bloch type

Yu X (F) e’k (6.16)

where X (¥)is a function depending in genoral on K and has the same
periodicity as the lattice. In the simpleat case X Kk is a constant and
the wave function is that of a free electron. The eigen-energies are

E gﬁzlilz (6.17)
k m '
If an electron is tightly bound to an atom, X, is zero everywhere in
the unit cell except in the immediate vicinity of the particular atom.
For this case, the dependence of the eigen-energies on k is very small,

Near the bottom of the band this dependence can be represented by a

formula like equation 6.17, but m is replaced by m®™, the effective mass.



-98-

Near the top of the band the energy is given by

ﬁz‘;‘z ‘
EkBA- e (6.18)

For the tight binding approximation m®* is very large. Between these
two extreme cases, is that of the perturbation of nearly free electrons
by a periodic potential. For this case, E is not a continuous function of
k but there are values of k for which there are gaps in energy. The
regions of continuity are between concentric polyhedra in k- space
commonly referred to ae Brillouin zones. The zone boundaries are
entirely determined by the point and space group symmetries of the

crystal lattice. In general, the zone boundaries are given by

B, - K+w|g|2=0 (6.19)
where
§, =8, 5 +8, 5, + g, b, (6.20)

—

and 31' -1;2 and ’l:\3 are the reciprocil lattice vectors. If any of the space
or point group symrnetries of the crystal lattice make the structure
factor Sg equal to sero, then the corresponding energy discontinuity
disappears at the zone boundary given by equation 6.10. The structure

factor 170

2uig. . s,
S e)a 2 F (6.21)
g
t
where _;t is the location of the t'® atom in the unit cell. Some of the
general rules which govern Brillouin zones are as follows. All zones

have equal volume in l?—lpace. This is due to the fact that a translation

k—k + Eb maps all zones into the first zone and a translation of this



type leaves the Bloch typs wave function unaltered. It is theréiou
possible to neglect all zones except the firet and regard the energy as
a muitivalued function of k. Each 20ne contains 2N states where N is
the number of celle in the crystal lattice. If a reduced zone scheme ia
used it must be emphasized that there are not necessarily ZN states
between energy discontinuities because the structure factor can eliminate
some of the energy discontinuities across Brillouin planes. Thus there
might be considerably more or less than ZN states between energy dis-
continuities depending on the sapace group symmetry of the crystal lattice.
For titanium, which is close-packed hexagonal, Sg = 0 for 8+ Zgz = 3n
and 83 odd, where n is an intéger. Neighboring zones may have over-
lapping energy levels. Within a zone, the surface which is formaed by
all the filled states up to Ed:’max is called the Fermi surface. In most
metals, sxcluding the monovalent ones, the Fermi surface is not a
‘single surface but consists of portions of suriaces belonéing to different
Brillouin zones. The only restriction on these surfaces is that the
Fermi enorgy.be the same. The thermal, electrical and magnetic
properties of the free electrons in a metal depend only on those states
which are very close to the Fermi energy. In a multi-surface metal,
although the Fermi energy is the same, the contributions to the above
mentioned properties from the various surfaces can be quite different.

The contribution of the electrons to the free energy for the case
of one unfilled band can be evaluated with the following formula

- 1 dUe
Fe = Ue°T ![ 3 47 (6.22)

where Ue is the internal energy per unit volumae. Ue can be expressed
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in terms of the density of states for one direction of spin“n. N(E).
o
5
U, =2 f EN(EME + § (vkT)® N(EJ) (6.23)
0

where E£° is the Fermi energy at absolute zero. Substituting the above

expression into equation 6.22, the free energy per unit volume is

F_ s 20°- % (wk)? N(ED) T2 (6.24)
where
Q
By
U° = f EN(E)dE (6.25)
0

The second term in equation 6.24, which represents the temperature
variation of the free energy due to the electrons, i3 so small (the order

8 ov/ntm-n/ol(z) that it can have no effect on determining the -

of 107
stability of one phase in preference to another.

There is a possibility that an electron configuration which changes
with temperature can cause the instability of a phase. This can occur
by changing the overlaps between different bands or thermally exciting
electrons to an empty band. Since it is believed that the model for
titanium fits the case for thermﬂ excitation, as will be justified later,
only this latter case will be discussed.

'fb.o band structure of titanium is presumed to consist of three
overlapping Fermi surfaces. Each of the three bands associated with
these surfaces are assumed to be almost completely filled. One of these

bands is very narrow with a high density of states at E? . It is this band

that mainly contributes to the large cohesive energy (112 K cal/mole) of
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titanilum. The second band is not as narrow and also does not con-
tribute as much to the density of states at Efo as the first band. These
bands are usually referred to as 3d-bands. The other band is a

normal band referred to as a 4s-band. A schematic representation of
this band structure is shown in Figure 38, A band structure like this
would account for (1) the very high cohesive energy, which is the higheat
in the first transition urion”s) (2) the high resistivity, which is.
thirty-three times greater than that of copper and higher than any of the
elements in the first transition series, (3) the paramagnetic suscepti-
bility, and (4) high electronic specific heat””. In addition to these
bands, another band is hypothesized which has an energy gap associated
with a direction in :*npace.

The expsrimental avidcncle for the existence of an energy gap is
deduced from the temperature variations of the c/a lattice paramaeter,
the magnetic susceptibility and the electrical resistance. As shown in
the preceding section,the c/a parameter for titanium rapidly increases
as the transformation temperature is approached. This phchomnnon has

a very simple explanation based on an interpretation by Jonec‘ao, and

extended by Goodcnough(sl,

. Jones and Goodenough have shown that in
a non-cubically symmetrical lattice when the Fermi surface overlaps an
energy zone in a particular direction in _;-spaco, the electrons in the
overlapped region exert a force which expands the real lattice in the
same direction as the overlap, resulting in an anisotopic strain.
Evidently, for titanium, electrons are being thermally excited across

the (002) Brillouin plane causing a rapid increase in the c/a parameter

as the population of the upper zone becomes appreciables.
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The temperature variation of the magnetic susceptibility of
titanium ae determined by Squire and K;ufman(ss) is shown in Figure
39. This behavior is similar to that of antiferromagnetic materials.
However, no evidence has been found to show that titanium is anti-
ferromagnetic. An alternate explanation, based on a single or multiple
overlapped band model, would be that the density of states at the Fermi
energy rapidly increased with increasing temperature. This is ex-
tremely unlikely and must be ruled out when the order of magnitude the
paramagnetic susceptibility increases over its low temperaturs value ls
considered. However, if an energy gap is postulated, then the suscepti-
bility would be the sum of the susceptibilities from the two bands. The
contribution from the lower band would essentially remain constant, or
slightly decrease with increasing temperature. The contribution of the
upper band to the susceptibility would incrsase with temperature as the
population of this band increased. Since the electrons in the upper band
are probably not degenerate, their contribution to the susceptibility
would be quite large. The uncertainty of the correlation and exchange
of the electrons in the upper band make any calculation from the
susceptibility data difficult.

The temperature variation of the electrical resistance as deter-
mined by W;mm:“sn is shown in Figure 40. The temperature variation
of the electrical resistance with temperature is expected to be
llncnr(84' 85) for T > 0 as long as there are not any changes in the band
structure. If there is any departure from linearity, it should be in the

opposite sense than shown in Figure 40, due to the creation of vacancies
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Figure 39. The temperature variation of the magnetic susceptibility
of titanium (after Squire and Kaufman).
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Figure 40. The temperature variation of the electrical resistance of
titanium (after Wyatt),
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as the temperature is increased. This apparent increase in conductivity
is attributed to the increase in number of conducting states as electrons
are thermally excited into the upper band.

The calculation of the free energy for this model is complicated.
An estimate can be made with the following assumptions; (I) the free
energy of the lower bands can be represented by equation of the type
6.24. (2) The Fermi energy is below the upper band and above the
lower bands in the temperature region of interest so the electrons ex-
cited into the upper band can be approximated by Maxwell-Boltzmann
statistics. (3) The number of electrons per unit volume excited to the
upper band, referred to as n,, is much greater than the number of
vacant states in the lower bands at absolute zero. (4) The change in
cohesive energy by removing an electron from a surface in the lower
bands, where i refers to the surface, is denoted by V} and is assumed
to be independent of the number of electrons excited to the upper band.

With these assumptions, the internal energy per unit volume is

U, = Z{w;’%% (wkT)% N, (E?)] +n, [Eg + % kT} + Zn} v; (6.26)
i i

where Jﬂ:g is the gap energy and n; is the number of electrons excited

to the upper band from the ith surface.
The free energy of this band model for titanium can be expressed
in terms of the thermodynamic potential, \V , of the system.

d{)
F°=U'+ T(a—T—

(6.27)
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The thermodynamic potential of a Fermi gas il(aﬁ)

|
-

 (E.-E_)/kT
Nz kT Ziu {1 sy 7 B 1 (6.28)
n
or

(E.-E)/kT
O = kT szni(m ﬂn[l+e f }dE
1

{ (Ef-E)/k‘r}
l1+e dE (6.29)

+2| N(E) In

where NI(E) represents the density of states in the lower bands and

N,

Using the above expression for {} and equation 6.28, equation 6.27

(E) the density of states in the upper band for one direction of spin.

can be simplified to

Lo
Fy = (o +¥ni) E- (. +>i:nj v, (6.30)

If Ef > E for the lower bands and .'5‘..f < E for the upper band, -oquation

6.29 can be simplified to

(E;-E) (Eg-E)/kT
O~ -kT |2 ;ﬁli(m o dE + ZfNj(E) . dE | (6.31)
or
ILQ:-EIZni-#ZZ U, - akT (6.32)
i i

Substituting the above expression into equation 6.30, the free energy

per unit volume is
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. i i
F o~ 2 Z Uy + ny(E-kT) + 1 a; V] (6.33)

1
For titanium it is assumed that V; for an electron removed from the
d-bands to the upper band is positive, while for the s-band V; is
nearly sero.
The number of electrons excited to the upper band and the Fermi
energy can be estimated by equating the number of electronsg in the
lower bands at T = 0 to the number of electrons distributed between the

upper and lower bande at T # 0. That is

NK(E)dE Nj(E)dE
i iJe I 4 o E-BBT o
Since the number excited to the upper band is small, the denominator in
the above integrals will be nearly unity in the lower bands and very large
in the upper band. If E is taken to be zero ét the top of the lower bands,

the above equation reduces to

0 0
-E./kT
Z [- f N(EME +e | f Ni(E)oE/kT dE‘I

i -E: - J

Ef/k'l'

o |
-e f Ny(E) o~ E/KT

dE (6. 35)
E
g
where -Eg is the Fermi energy at T = 0. The integral on the left is the
number of unfilled states in the lower bands at absolute zero and is

assumed to be small compared to the other integrals in the temperature
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region of interest. Neglecting terms in which this integral appears in

powers higher than the first, the above can be solved for E, in terms

of the density of states.

—— 0 —
Z [ N, (E) oE/ET 4
i -

©

[ N,(E) o E/kT 45

1

Eg
L ]
0
Z[ N,(E) dE
-E°
1y g g
3 1] 7% 7%
{Z[ N, (E) oE/deEJ [[ N(E) e'E/deE}
f ~o E

. (6.36)

The number of elactrons “j' excited into the upper band is

% N(E) dE
nj’?-f ~teer o)
£ +1

or

E./kT ® ,
~2e & f N{(E) o E/XT 4p (6. 38)

Using equation 6.36, the above expression becomes
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0 1/2r oo 1/2
E/kT ~-E/kT
nj = Z[Z j Ni(E’ e dE} {J Nj(E) e dE
i -0 g
0
" Z £ N,(E) dE ' (6.39)
o
B
The number of electrons excited f{rom the ith surface to the upper band,
i o
n, is -E
j ; [ J ¢ N(E)aE
n; =2 N,(E)dE - 2 (6.40)
i J i E-ETRT
-C0 -0 e
or
0 0
-E./kT
aj=ze [ N (E) e =/%T 4 - 2 f N, (EME (6.41)
J o
- --Ef
Using equation 6.36, the above expression becomes
“ co —1/2
f N(E) o BT 4p
0 :
E
n; =2 [ N(E) o5/%Tag &
- ) f N(E) &% ap
_ i -é0 _
B 0 i ]
: J, Ni(E, dE 1/2
-E?
X |1+ s 12/ 0 \1’/2
| j N,(E) o -E/KT (Z [ N,(E) oE /KTy |
\ - /
1 Eg i -0 |
0
-2 f N, (E)dE (6. 42)
-£°

£
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Knowledge of the density of states in each of the bands is required for
further calculations,

An estimate of Ef, ny and n; can be made by judiciously choosing
values for the density of states to evaluate the preceding integrals. The
density of states in the upper band, Nj(E) can be assumed to be a
function solely of E-Eg. If

E-E

Ea _ETI. (6.43)

the integral

- -E_/kT
jf N(E) ¢ B/ X Tqg = kT o 8 fwj(g.kr) e Far  (6.44)

E
4

or

<E_/kT

(» o]
[ ij).‘E“‘Td'ru 8 G,(kT) (6. 45)
E

3
§

It ie difficult to estimate the Nl(E) but noting that the main contribution
to the integrals involving N;(E) occur at small values of E and

Ni(E)v’O as E —0, only a small error will be made by assuming

N,(E) = wiN(E?) E <--x:§ (6. 46)
and
w, N(E?)
N(E) 2 « ———— E -E? <E<0 (6.47)
Ep

where w, is the weighting value of each Fermi surface. Substituting the
above expressions into equation 6.38, 6.41 and 6.36 and simplifying,

the values for “j' n; and Ef reduce to
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(E~E_)/kT
ny = 2 Gy(kT) e ¥ | (6. 48)
-E./kT E® E,/kT
n;-ZWiN(E?)kTo ' [1-2-[‘%0 2 } (6. 49)
and
o o o E /kT =t
£ Q lfmmf T | ES [N(Ef)kr e & | .
Ber -tk e ey |t | o M}

The free energy per unit volume i{s obtained by substituting the above
expressions into equation 6.33.

An order of magnitude calculation can be made by either deter-
mining or estimating some of the preceding parameters. The value of
Ef, which is about half the gap energy (there is 2 temperature variation
of Ef which is difficult to determine without knowing something about
the density of states) can be determined from the previously mentioned
apparent increase in conductivity. If the apparent increase in con-

ductivity is denoted by A0, then

A Oan (6.51)

or
i
AO‘oCan  (6.52)
" ,
Using equation 6.49
-Ef
In Ao = = In A(T) (6.53)

The second term in the above equation is assumed to vary slowly with
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temperature so that a plot of /Qn!.\.ﬁ‘ vs. -%— should be a atraight line.
Table 6.1 shows a resumé of the results using Wyatt'-(s” data. R
and Q' are the resistance and conductivity if a linear law is assumed

with a linear temperaturs coefficient of resistance of 4.95 x 10"3 ohm/°C.

Table 6.1
Temperature °k R R' g iyt AT
419.9 1.600 1.600 0.6250 0.6250 0
543.2 2.106 2.211 0.4748 0.4523 .023
768.2 2.828 3.32%3 0.3536 0.3008 .053
1001.5 3.328 4.480 0.3005 0.2232 077
1151.0 3.453 5.221 0.2896 0.1915 . 098

Aplotof [nAC ve. - is shown in Figure 41. The reduced data
from Greiner and En“(éﬁ) is a.l;ﬁ shown in the same figure. The
titanium sample of Greiner and Ellis had more impurities than Wyatt's.
From Wyatt's data E; = 0.13 ev which would be about half the gap energy.
The linearity of these curves is why the model for titanium, which
explains the eslectron configuration that changes with temperature, was
chosen to be that of thermal excitation,
The density of states, N(E?) can be determined by specific heat
measurements at low temperatures, i.e.,
C= ¥T . (6.54)

where

¥ = 2/3 (nk)? N(E) (6.55)

N(E;’) has the value of 0. 755 levels/atom/ev for titanium as determined
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GREINER and ELLIS

Figure 41,
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by Wolcott”ﬁ.
An estimate of E? can be made by noting the temperature at
which the resistance vs. temperature curve departs from linearity

(about 420°K). From equation 6.49, the upper band occupation starts

when

°
e—Ef/kT ] Ef

Solving the above equation, with T = 420°K and E; = 0.13 ov, the value
for E 1a 2 x 1072 ev,

The values of the other parameters will be assumed to be

W, = 0.6 V} = %% K cal/electron

wz ® 0.3 Vf = %% K cal/electron
3

w3 = 0,1} V.j = 0

where No is Avogadro's number. Table 6.2 summarizes the free
energy variation of the electrons with temperature using the above
mentioned values. If ¢ = 360° is taken for tltanium“”, the net
contribution of both the ions and electrons is illustrated in Figure 42.

In the preceding analysis, the Fermi energy has been assumed
to be between the bands. However, it is evident from equations 6.36
and 6.50 that the Fermi energy is a function of temperature and,
depending upon the nature of Gj(kT). can move into the upper band. For

this case, the distribution of electrons between the upper and lower
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Figure 42,

The temperature variation of the free energy.
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Table 6.2
Temp. °K ny x 10"%% n} x 1755 njz = 10°%F nj3 x 15754 Fa(cnllcmal
400 C 0 0 0 0
600 0.027 0.016 0.008 0.003 17
800 0.081 0. 049 0.024 0.008 50
1000 0.154 0. 091 0.046 0.015 94
1200 0.242 0.145 0.073 0.024 148
1600 0.448 0.269 0.134 0. 045 266
2000 0. 682 0.409 0.205 0. 068 397

Eandl. equation 6.35, must be corrected. It is evident that the left
side of equation 6.35 is unchanged} however the right side, which

represents the number of electrons in the upper band, is

g +1
8

. f
or,
N.(%,kT)
a. s kT i sicachinbec N (6.57)
j ) o8
0 —_— + 1
£
where,

t= _k_'l‘j and L= e (6.58)

If }'12f < Eg’ then # is small and the analysis is as before. However, if
Ei > Eg then 2 is large and there is a much larger contribution to the
integral for small values of ¥ . Therefore, if the Fermi energy exceeds
the gap energy, the positive contribution to the free energy would be

even greater than that shown in Figure 42.
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If the upper band is considered to be normal, l.e.,

= E +"‘z|_‘:lz (6.59)

EJs m

where rn'i is the effactive mass, then

Zw(Zmi)s', 2
3

NJ(E) =

(E-Eg)uz (6. 60)

Using the above relation, assuming that the mj is one slectron mass
and the previously mentioned values for the other parameters, equation
6.35 can be solved for the temperature when Ef--E g This temperature
is 880 °K which is 275°C below the transformation temperatures of
titanium. |

Although the results are very approximate, it is clear from the
above that the contribution of the electrons to the free energy as the
temperature increases is positive. It is believed that this positive
variation of the free energy added to the negative variation of the lattice
ions causes the instability of the lattice and hence an allotropic transfor-
mation. The high temperature modification should have a band structure
that drastically reduces the positive variation to the {ree energy due to
the electrons. This is accomplished by reducing n;, which means

increasing Eg.
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7. CONCLUSIONS

The design and construction of a vacuum high temperature x-ray
diffractometer has made possible the investigation of the thermal ex-
pansion of titanium. Between 0° and 400°C, the mean coefficients of
thermal expansion perpendicular and parallel to the c -axis are
9.41 x 10°/°C and 11.18 x 10°4/°C, respectively. For s random
polycrystalline sample, the mesan linear expansion coeificient is 10.0 x
10'6/°C. Above 400°C the c/a parameter rapidly increases as the
transformation temperature is approached, which supports l’precon-
ceived idea about the band structure of titanium. This band model has
assumed that the electrons at the top of the band at 0°K are on over-
lapping Fermi surfaces (at least thres) and there is a small number of
unfilled states available to the electrons (approximately 5 x 1019/ cms)
below an energy gap associated with the c-direction in —l:-spa.ce.
Calculations using this model show that the electrons can give an
appreciable positive contribution to the free energy as the transformation
temperature is approached which can result in an inetability in the low
temperatura crystal structure.

Although the analysis is confined to titanium, the ideas forrulated
about allotropic transformations can probably be extended to other

metals such as sirconlum, hafnfum, uranium and iron.
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APPENDIX
WORM GEAR CALIBRATION

The experimental procedure for worm gear calibration requires
the use of two worm gears - one of which can be a durnmy gear. The
gears rotate about two axes which are almost coincident. As both gears
rotate in the same direction, the relative angular motion between the
gears depends upon the difference of the sum of the cumulative errors in
each gear. This relative rotation can be measured very accurately Bv
the changing fringe pattern between optical flats attached to'usch gear
or by a comparison autocollimator and a mirror attached to each gear.
The optical flats technique is probably a bit too sensitive, and a
relative rotation about an axis other than the one being investigated
would make the fringe pattern very complicated. On the other hand,
comparison autocollimators can be obtained which will measure relative
rotation about a given axis with an accuracy of 0.1 of a second of arc. |
After measuring the relative rotation of the two gears, one gear s
rotated with respect to the other gear a fixed amount, and the experiment
repeated. The analysis of the experimental results follows.

Consider two worm wheels with n teeth in each gear. A worm is
engaged in each gear capable of going exactly one revolution, which
causes the worm gear to rotate an angle of 2n/n plus a correction. Let
lfl be the angular correction to be added to 27/n when Gear 1 rotates
from tooth 1 to tooth 2; 1§2 the correction when Gear 1 rotates from
tooth 2 to tooth 3, etc. The notation é fl corresponds to the er¥or in

Gear 2 when Gear 2 rotates from tooth { to tooth i+l. When the worm
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has gone through n revolutions, the worm gear must be back to its

original position. Therefore

a n
2151‘2251'0 (A.1)
i=1 ixl

After j' revolutions of the worm, the rotation of the worm wheels are

9, J._+Zlg (A.2)
i=1

.j_+zlg | (A.3)
{=1

The quantity that is measured is the relative cumulative error oy

o,}Zj 0 - 2°j (A.4)
or,
j 1 2
075’2“1‘ gi) | (4.5)
i=]
Now iy
le _2 1 .2 1 2
625, o 2] [t - o, ] -
Using equation A.4, equation A, 6 becomes
lgj - zgj ®olj = oljel Jj 2 n-l (A.7)

If Gear 2 is rotated in the direction of decreasing j by k revolutions of

its worm, while leaving Gear | stationary and the above procedure
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repeated, the following expressions are obtained:

J
lo, - 328, 3 1y,
i=l

3T %
and
IEJ .2§j+k=k7j "kv.,,,! j 2n-l (A.8)

There are 2n unknowns. In equation A.7 and A.8, j cannot be
equal to n, since this is th§ same position as the starting point. There-
fore, there are 2(n.l1) linear equations from equations A.7 and A.8, and
two linear equations from equation 4.1, giving a total of Zn simultaneous
linear equations to be solved. The equations are rewritten as

n
Zl§1”°
i=1

> 2

1 2
g’ - §j = 0}‘7 j(l" ‘Sjn) - O’qj"l (1’611)

1 2
gj o §j+k = k’)?j(l“ Sjn, o knj-l (1"’éj1)
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In the above equations Sjn is the Kronecker delta, If k is chosen equal
to 1, the above set of simultaneous linear equations can be solved by

deduction. The solutions are

n-1
1 1
By=olly =850) = y7yq =80 - 3 Z (11 =174
i=1
n-1
2 1
By= 7y =10y 0=085) - 5 Z (1 =17 (A.9)
i=}l

There are various alternatives that can be madc on the experi-
mental procedure which are essentially subject to the same analysis.
For instance, just one mirror can be attached to the dumamy worm gear
which is driven by a worm attached to the main worm gear and rotated
in a direction opposite to that of the main worm gear. Then the 7/j are
measured relative to a stationary mirror with a comparison auto-
collimator. The same equations A.9 apply, but the values of j increase
in opposite directions on the two gears.

Another procedure i{s to use three mirrors and two comparison
autocollimators as shown in Figure 43. First, Mirror 2 is adjusted
approximately parallel to Mirror 1. The angle read on the comparison
autocollimator No. 1 is taken as its zero position. Then the main worm
gear is rotated through an angle of a, = %1_1_ + gl. Mirror 3 is then
adjusted approximately parallel to Mirror 1. The angle read on the
comparison autocollimator No. 2 is taken as its zero position. Mirrors
2 and 3 are not moved again. The dummy gear is then rotated opposite

to the direction of rotation of the main worm gear until the angle between
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Figure 43.
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Mirrors 1 and 2 correspond to the zero position of autocollimator No.
1. The main worm gear is again rotated through an angle a, = %’- + E’z.
The value 7, is read on autocollimator No. 2 as the angle of deviation
from its zero position. The procedure is repeated again and again
until the main worm gear goes through a complete revolution.

The value of any % j is

’)75 snj -9 (A.10)

or

IN
[

IN
-]

7;= £5- 8 2 (A.11)

The equation A.ll and the equation
n
RAL
ns=]

represent n simultaneous linear equations. The solutions to these

equations are

n
1
fj'ylj';j}:z?j j¢l

P?
j=2

(A.12)

Bl

Ela-





