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Abstract

There are fundamental problems in the application of structural identification procedures to
damage detection which still need to be resolved. The present study investigates the underlying
issues and then provides a number of techniques which solve a series of unresolved problems. The
techniques developed range from extensions and refinements of previous methods to the adaptation

of novel homotopy methods.

The results from simulated data show that ill-conditioning, non-uniqueness and temporal syn-
chronization of the data are the most serious problems encountered. Criteria to resolve these are
then put forth. From the experimental studies, however, it becomes evident that modeling error
is the most serious issue. The experimental results show, nonetheless, that even with large model

errors, it is possible to localize the area of damage to within a sub-structure.

The techniques are then applied to data obtained from a ten-story steel frame building. Previous
studies on such structures have indicated large changes in the natural frequencies, especially during
the San Fernando earthquake of February 9, 1971. The present study shows how changes in the
natural frequencies and in the modeshapes are related to the degradation of the inter-story stiffness
along the height of the building. Low amplitude forced vibration and ambient vibration test data
yield one set of results: at these levels of motion the structure seems to retain much of its original
uniform stiffness. This is true even after strong motion, leading to the notion that the building “has
healed” with time. It is clear from the studies how this apparent stiffness is lost immediately once
the strong motion of even moderate earthquakes has begun and it is thought that this is due to a
combinations of effects. Results show that for the 1971 San Fernando earthquake, stiffness losses in
the order of 50% occurred in the middle stories towards the end of the strong motion part of the

selsmic motion.
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Chapter 1 : Introduction

The decision of whether a damaged structure should be repaired can have considerable economic
repercussions for the owner. Moral issues, aside from purely economic, arise in the case of structures
normally inhabited by humans. It may not be clear whether these structures will be able to withstand
their future loads. Therefore, engineers should attempt to precisely evaluate the amount of damage
incurred by the structure before making any far-reaching decisions. In the absence of precise data,
poor decisions may be made. The importance of reliable system identification/damage detection
techniques is that they can help produce a more accurate assessment of the damage state of a

structure.

The field of damage detection in structures has been approached from various view points.
Among these, the most notable ones are those which emphasize (1) visual signs of “damage” (cracks,
pulled bars, etc.); (2) ultrasound techniques; and (3) vibration monitoring. The conveniences and
disadvantages of each method are numerous and, in principle, all of them should be employed for

the stated purpose. Visual inspections, however, are often the only or most common practice.

This study uses the third approach, that is, vibration monitoring. Vibration monitoring
aims at determining the state of a structure by studying its dynamic behavior. Due to the
difficulty of determining the ultimate strengih of a sub-structure, damage detection techniques have
emphasized the less complex problem of determining the loss of elastic stiffness within the structure.
This approach has limitations but can be useful when the damage/stiffness-loss relationship can
be justified. Empirical observations and analytical studies [1.1,1.2] often indicate that such a

relationship is justified.

A number of researchers have pursued damage detection by vibration monitoring but there are
still fundamental issues which need to be resolved. In this study, the goal is to define the fundamental
problems when trying to determine the changes in the elastic stiffness of members within a structure.
The next section describes some of the approaches taken by other researchers, and in the last section

of this chapter an outline of this study is given.
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Section 1.1 - Prior Work in Structural Identification

Dynamic models of complex structures are usually tested or validated based on a subjective
evaluation of the predicted and measured natural frequencies and normal mode shapes. System
identification provides a more sophisticated approach for validation and, to this end, much research
effort has been expended on this topic in almost all fields of engineering. This section describes
those procedures which researchers have developed to obtain better knowledge of the physical (mass,

stiffness, damping) properties of dynamical systems.

Structural identification methods can be characterized according to whether they are: (a)
“batch” or sequential, with complete (all degrees of freedom) or incomplete data; (b) time, frequency,
or modal based; (c) input-error, output-error, equation-error, or instrumental variable; (d) global
(full, banded, or reduced) or local; (e) statistical (classical or Bayesian) or deterministic; (f) direct
or iterative. Consideration is given only to linear elastic dynamic systems in most structural

identification research.

Batch methods employ all information at once while sequential methods continuously update
the structural parameter estimates as more information is accrued. By and large, most researchers
in this field employ batch methods although sequential methods may be more convenient for on-line
situations or with methods which stress filtering techniques such as those presented by Mottershead

and Foster [1.3-1.4].

The time and frequency domain approaches make use of the response and excitation data
directly from the observed time records and from the FFT-based Fourier spectra, respectively.
Previous conditioning (including filtering, integration, etc.) may be performed on the signals.
Udwadia and Shah [1.7], Kaya and McNiven [1.5], Dimsdale [1.6], Agbabian et al. [1.8-1.9], Matzen
[1.10], Banks et al. [1.11], and Beck and Beck [1.12] have employed time domain approaches while
Cottin et al. [1.13-1.15], Fritzen [1.16], Hoff [1.17,1.18], and Mottershead and Foster [1.3,1.4,1.19]
have used the frequency domain in the way of Fourier spectra or frequency response functions
(“FRFs”). Modal domain methods, on the other hand, make use of previously determined modal
parameters. Any of the large number of modal parameter estimation techniques, not all of these
being systematic “identification” techniques, may be used for this purpose although few of these
estimate the modal effective participation factors as in Beck [1.82]. Modal based techniques have
been much more widely used in structural identification perhaps due to the widespread availability
of structural modal data. Perhaps the first attempt to make use of this data is that of Kanai [1.20],
followed later by Berg [1.21], Nielsen [1.22], Rodden [1.23], Hall et al. [1.24], Berman and Flannelly
[1.25], and Ross [1.33]. A list of later authors includes Berman and Fuh [1.28,1.29], Caesar [1.30],
Wei [1.31,1.32], Collins et al. [1.34], Thoren [1.35], Schiff et al. [1.36], Udwadia et al. [1.37], Vandiver
[1.38], Wojnarowski et al. [1.39], Caravani et al. [1.40], Garba and Wada [1.41], Baruch [1.42-1.45],
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Chen et al. [1.46-1.49], Coppolino and Rubin [1.50,1.51], Heylen [1.52], Natke et al. [1.53-1.55],
Lallement and Zhang [1.56-1.59], Zak [1.60], Kabe [1.61], Stubbs and Osegueda [1.62-1.64], Fritzen
[1.16], Hanagud et al. [1.65], Thomas et al. [1.66], Beliveau [1.67], Flanigan [1.68,1.69], Gray and
Starke [1.70,1.71], Ojalvo et al. [1.80,1.81], Kammer [1.72], Eiber [1.73], Inman [1.74], Waller and
Schmidt [1.75], and Wagqfi [1.76]. Much of this research was done with a focus on structural health

monitoring.

Output-error approaches consider errors between the observed and predicted output quantities
such as accelerations, displacements, stresses, etc. Accelerations are the most common quantities.
Displacements are not used as often although recent progress in the field [1.77] might change this
trend. The predicted output quantities are calculated according to the model in hand and if these
correspond “identically” to the observed quantities, then no (output) error exists. Equation-error
methods, however, correspond to the cases where errors arise in the governing equations once all
the kinetic and kinematic quantities are replaced by the observed quantities. In either case, a least-
squares approach can then be taken to incorporate these error vectors into a single scalar “error
functional”. Input-error methods are generally equivalent to equation-error approaches since for
linearly elastic systems the forcing function, i.e., input to the system, is placed alone on one side
of the governing equation. The aim of these error approaches is to minimize a measure of the
error. Since the output quantities in dynamical systems are almost never linear with respect to
the parameters of interest, the output-error minimization procedure is generally iterative. When
noisy data is employed, or when there is model error in the identification procedure, minimizing
the output error does not necessarily lead to a minimization of the equation error. Equation-
error approaches often allow the error to be linear in the unknown parameters, leading to direct
methods of solution. When employed in a least-squares context, however, equation-error methods
are known to suffer from “inherent, noise-induced asymptotic bias in the parameter estimates” [1.4]
As mentioned by Mottershead and Foster, “this arises because the EE [equation error] model is not
a ‘regression model’, as required for linear least-squares analysis, but a ‘structural model” 7 [1.80].
The Instrumental Variable technique described by these authors is a modification of the equation

error approach whose objective is to minimize the bias.

Global methods are those that modify most of the components of the mass, damping, or stiffness
matrices. The matrix modifications or “updates” are generally not intuitive to an engineer since a
very large number (or even all) elements in the matrices are allowed to be modified. The modification
of global matrices, however, can often be accomplished in a direct manner. Parametric methods,
on the other hand, are those in which the governing equations depend directly on the values of
a pre-determined number of structural/FEM (design) parameters. Kaya and McNiven [1.5] and
Dimsdale [1.6], for example, have studied the influence of effective beam lengths and joint stiffnesses
on the response of a frame structure and identified those values which offer best match of the model

prediction with experimental data. The structure, in general, can be decomposed into local structural
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regions (also called modules or sub-structures). In the mathematical representation, each of the sub-
structure stiffnesses can be modified easily by just scaling the original sub-structure stiffness with
a “stiffness coefficient or parameter” as proposed by Natke and Schulze [1.53], Lallement et al.
[1.56], Beck and Beck [1.12]. There are some discrepancies in views expressed in the literature as to
the usefulness of global methods. The view taken in this study belongs to the parametrist group.
Authors supporting the parametrist approach claim that modifying all coefficients of the different
matrices as done by the global approach is highly undesirable (Kabe[1.61]) since, in general, no clear
intepretation of the state of the structure can be deduced from the resulting matrix coefficients.
Furthermore, in general, there are an infinite number of possible values which the matrix coefficients
can take that yield the same observed data. Often, the solution which yields the least deviation
from the original values is chosen. From a damage detection point of view, this choice does not seem
particularly useful. The global approach, however, is closer to predicting exactly the observed data
and to not violating the governing equations. On the other hand, the response predicted by the
optimized global model at the other degrees of freedom of the structure will be, in general, incorrect.
The optimal parameter model will not predict the observed response so closely as the global model
will. But it is generally the case that the parameter model will predict the response at the other
degrees of freedom more closely than the global model. In addition, the parameter model allows the
user to monitor through time the estimation of mechanical quantities with clear meaning in order

to ascertain the good health of the structure.

Statistical (stochastic) approaches consider the probabilistic aspects of the output or equation
errors. Classical statistics are based on well-known, maximum likelihood estimation techniques.
Application of classical statistics has been implemented by Friswell [1.78], Stubbs and Osegueda
[1.62-1.64], Thomas et al. [1.66], Agbabian et al. [1.8-1.10], Mottershead and Foster [1.3-1.4,1.21].
Bayesian statistical approaches differ from classical in that they associate a probability distribution
with each parameter. A prior probability distribution for the parameter and the data obtained
from experiments are combined to yield a posterior probability distribution. Bayesian probability
distributions convey the plausibility of each parameter taking a certain value. Prior distributions
are important in Bayesian statistics since the user can then emphasize prior information based on
previous experience or on theoretical grounds. The prior distributions are clearly reflected in the
posterior distribution when there is little data available. Although the underlying interpretation
is different, classical and Bayesian statistics may give similar results when the prior distribution
is assumed to be local and non-informative. Collins et al. [1.34] have employed the Bayesian
formulation with different prior distributions. Beck [1.79] has recently formulated the general
Bayesian structural identification problem. Deterministic approaches, on the other hand, aim to
obtain the parameters which yield a solution without explicit consideration of the uncertainty in
the observed data. The usual least-square methods fall in this category. In general, most successful

deterministic techniques can be given a statistical interpretation.
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Methods can be either direct or iterative. Direct methods estimate the optimal parameters in a
fixed number of calculations and thus are typically many times more computationally-efficient than
iterative methods where the number of calculations is not known beforehand. Direct methods are
usually found in global equation-error formulations which assume that the whole state vector and
its derivative are known. Under these circumstances, a least-squares formulation for equation error
leads to a set of linear simultaneous equations; the solution method for these does not require an
iterative method. Many authors reduce or condense a large system of equations to a smaller one
whose order is equal to the number of observed degrees of freedom. In this way, the assumption
stated above, that the whole state vector and its derivative are known, is satisfied. Iterative solutions
are usually found in output-error formulations since the output quantities are almost always non-
linear functions of parameters or matrix coefficients. Iterations are also required in equation-error
formulations when the number of observed degrees of freedom is less than the number of total degrees
of freedom. Iterative methods often require optimization techniques of which the Gauss-Newton is

the most frequently employed.

Section 1.2 - Qutline of this Work

A family of methodologies is presented in this study to confront the problems in structural

identification which are described in detail in later chapters.

An identification methodology consists of the following components: (1) a structural model
with associated structural parameters; (2) a parameter estimation procedure; (3) a data processing
and reduction procedure; (4) a reliability/model appraisal procedure. Unfortunately, the most
appropriate choice for each component cannot be made independently of the rest of the components.

A full description of the methodology requires a thorough explanation of their interaction.

Chapter 2 presents a description of parametric models and, in particular, the fundamental

mechanical model on which this study is based.

The various methods employed for parameter estimation are described in Chapter 3. More than
one technique is considered since some combinations of model and parameter-estimation-methods
vield more efficient computational algorithms, while others might provide more information to the
engineer. Both the nature of the structural parameters to be identified and the available data
determine which model/technique combination is to be preferred. Factors influencing the efficiency

are taken into account.

Chapters 4, 5, and 6 apply the methodologies developed in earlier chapters to different kinds
of data. Chapter 4 uses simulated data to test each methodology under controlled conditions.

The error characteristics of each methodology are also discussed. Chapter 5 discusses the results
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obtained from a specific experimental set up. This set up addresses the issue of employing real
data instead of artificial data in an effort to validate the methodologies. Stiffnesses and modal
dampings are evaluated and compared to those obtained by other existing methods. Chapter 6
applies one of the methodologies to Building 180 on the campus of the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, California. The data available for JPL Building 180
makes it possible to determine a stiffness distribution prior to, during and after the February 9,
1971, San Fernando earthquake. This structure, and many others, present significantly different
dynamic behavior during strong motion than in ambient vibration, man-excited and other kinds
of low-amplitude tests. Natural frequencies during the San Fernando earthquake, for example, are
reduced by factors of around 30% and tentative explanations have been given by various researchers.
An attempt is made in Chapter 6 to determine the stiffness distribution during the strong motion.
Some of the estimates may not be reliable since not enough information is available to identify a

unique distribution.

The reliability of the estimates is a topic not frequently treated but it must be addressed before
attempting to use them for damage detection. A general discussion of this topic is provided in the
first part of Chapter 7 which is based on the results presented in the previous chapters. This study

closes with several conclusions in the second part of the chapter.
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Chapter 2 : Models

Section 2.1 - Classification of Models

Models in structural identification can be classified as being parametric or non-parametric. Mass
density, modulus of elasticity, and frequency of vibration are examples of mechanical parameters.
Parameter values, which are constant in time, are usually assigned by an engineer prior to calculating
the predicted behavior of the mechanical system. Non-parametric models, on the other hand, are
characterized by being represented by just a function of time or frequency. Examples are the use of
an impulse response function or transfer function to characterize a linear system. They also provide
a characterization of the system which is constant in time. In general, these models are not so
informative and they serve simply to relate the input and output in a mathematical form without

gaining much insight into the mechanics.

The structural identification field has shifted emphasis from non-parametric to more complex
mechanical parametric models since better understanding of the mechanics of systems is available
and because of the availability of faster computing devices. With the added model structure comes
the ability to understand the interaction between the different response quantities as well as the
influence of the different mechanical parameters on the response. Interpretation of the mechanical
parameters along with the values of the different response quantities provide an understanding
of the state of the structure. The new complexity in the models induces more difficult parameter
estimation and structural identification: models are not identifiable, parameter values should remain
in mechanically-meaningful ranges, parameter values should be unique, etc. These problems are
unavoidable and must be dealt with before anyone can assert that the correct parameter set

accompanying the model and, thus the state of the structure, has been determined.

Section 2.1.1 - Modal Models

The mechanical parametric identification field concentrates on identifying mainly two types
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of parameters: (1) modal parameters and (2) physical or structural parameters. The modal
identification field has been an active area of research for the last decade or two and may be the most
appropriate technique to be used in structural control. The physical parameter identification field
has been developed more recently. This field is more complex than the modal field since the number
of parameters considered is generally much larger and their extraction from vibratory systems is
not as straightforward, particularly because of problems with non-uniqueness and numerical ill-

conditioning.

Section 2.1.2 - Physical Parametric Models

Physical parametric models encompass a large set of models. The majority of the models
considered in the past are linear but, more recently, much more emphasis has been put on non-
linear models. Even though linear models give mathematical relations which are linear with respect
to the state variables, they give highly non-linear functions for the determination of the physical
parameters from the kinematic quantities or from the modal parameters. This non-linearity increases

the complexities in the parameter estimation process.

Ultimate strength is perhaps the most appropriate parameter to be able to assess the health of
a structure. As mentioned earlier, ultimate strength identification is very difficult and in practice
it is replaced by elastic stiffness identification. Side benefits of elastic stiffness identification include
the straightforward calculation of the modal quantities associated with the physical model (these
are an approximation, too, and so they are most probably different from those estimated directly
from response data with a modal identification algorithm). Internal forces arising during motion

can also be easily estimated using the updated model.

Linear physical models are often derived from Finite Element (“FE”) modeling. As is well
known, FE modeling is based on simple formulas which describe the kinematics of a structure with
infinite number of degrees of freedom by local interpolation. Under FE modeling, a finite-dimensional
subspace of the infinite-dimensional degree-of-freedom space is used. Coarse discretization of the
structure is associated with a small dimensional subspace while fine discretization is associated with
a large subset of degrees of freedom. The members of this subset are the so-called generalized
degrees of freedom and correspond to certain types of motions at specified points in the structure.
The function of the interpolation is to enslave, by some mathematical relation, the motion of what
used to be a degree of freedom of the structure to the motion of the generalized degrees of freedom.
It is also well known that, in general, the fewer degrees of freedom in the discrete model, the
cruder the interpolation and thus the worse the kinematic description. Standard FE texts provide
detailed descriptions of the many other aspects of FE modeling which affect the kinematic response

prediction.
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Assuming linear materials and small strains and deformations and neglecting damping, the FE

method leads to the equations of motion

Mii(t) + Ku(t) = f(t) (2.1.1)

where M and K are the mass and stiffness matrices, u(t) are the generalized displacements, dots
denote time derivatives, and f(t) is the corresponding forcing vector. Certain features are apparent
from the foregoing. One feature, which is a cause of some controversy in structural identification, is
the fact that because of the local nature of the interpolation, the nominal symmetric mass matrix
M and stiffness matrix K are guaranteed to have zero components outside a certain bandwidth.
Depending on the type of interpolation used, there might even be zero matrix components within the
band. The structure imposed by FE modeling in the description of the stiffness and mass matrices
defines what is commonly called the “topology of the member connectivities”. Some authors try
to match observed system behavior by employing identification algorithms which vary the out-
of-band components. They also constrain the matrices to remain symmetric. By allowing these
components to be non-zero, an interaction or coupling is created between two generalized degrees
of freedom disregarding the fact that these two degrees of freedom may be geometrically far apart
in the structure. This coupling contradicts directly the local nature of the interpolation intrinsic to

FE modeling and thus the FE topology is thereby violated.

Non-FE models are also often considered in structural identification, especially in earthquake
and offshore engineering. These models yield dynamical systems with the same structure as in Eq.
(2.1.1) . Very often the model used is able to capture the essential mechanical behavior of the
structure that is analyzed. An example of this is the use of the shear building model (chain model)
in earthquake engineering to study the dynamical behavior of medium size buildings under seismic
excitation. This model corresponds to masses that are sequentially linked by springs and dash pots
with one of the end masses rigidly attached to a stationary base. The arrangement of the masses
leads to a tri-diagonal stiffness matrix. A numerically equivalent model may be formally derived from
FE modeling but perhaps at the cost of analysis time and increased number of degrees of freedom.
Shear-wall models are other examples of engineering-based elements. No matter what model is
used, there are nearly always zero matrix components outside a certain bandwidth. The non-FE
formulation, because of its ad-hoc nature, does not formally state that the zero components of the
stiffness matrix should remain zero throughout the identification process. Thus, no preservation of
the original matrix topology is necessary, in contrast to FE models. The flexibility of being able to
modify any component of the stiffness and/or mass matrix has computational advantages exploited
by some researchers; yet, it has drawbacks that should not be overlooked. One of the drawbacks
has to do with the interpretation of the changes in the modified matrices: in general it may not be

obvious why two previously unrelated degrees of freedom are now linked and what this means in
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terms of damage. These new links can easily obscure the localization and quantification of damage.

Good modeling also implies paying careful attention when defining the boundary conditions,
damping mechanisms, numerical algorithms, etc. Loss of accuracy in the parameter estimates can
occur since the parameter estimation process relies so strongly on the calculated modal parameters

or kinematic response.

Section 2.2 - A Class of Mechanical Models

The damage detection methodology developed herein depends intrinsically on the structure of

the parametrized mechanical model. In this section, the class of models is described.

It is assumed that the structures that are studied are excited by low-amplitude forces so that
the behavior is well modeled as linear elastic. In this case, the governing equations derived for a

linear visco-elastic model are:

Mit) + Cu(t) + Ku(t) = f(t) (2.2.1)

where C' is the damping matrix (classical normal modes are assumed). The number of degrees of
freedom (“DOF”) s Ny .

Damage occurring in a particular member of a structure with a large amount of redundancy is
likely to have little effect on the response at any of the monitored degrees of freedom. If vibrational
response is used to detect damage through identification of changes in the stiffness parameters of the
members themselves, the approach will be rendered ineffective by the ill-conditioned nature of the
inverse problem due to the lack of sensitivity and large number of parameters. If the structure can
be adequately partitioned into sub-structures (or modules, super-elements, etc.), as proposed here,
then damage can be detected and located only to within a sub-structure, but this should reduce the
ill-conditioning. With fewer parameters than one for each member in the structure, the problem of

trade-off between the different stiffnesses, which accentuates the lack of sensitivity, is reduced.

Section 2.2.1 - Structural Model

Damage is modeled as producing a reduction in the module stiffness. Thus, if the initial stiffness
matrix corresponding to an undamaged sub-structure ¢ is K; , then the matrix corresponding to

the damaged module, K, is given by

K8 = 0;K; (2.2.2)
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where 0 < 6; < 1. The parameter #; is called the “stiffness factor”™ for sub-structure i . The

global stiffness matrix K is then written as

Nl
K = Y 0K, (2.2.3)
i=1

where K; now denotes the contribution of sub-structure i to the global stiffness matrix, and N, ,
the number of parameters 6; , equals the number of sub-structures chosen for the structure. If the
K; are correct or calibrated through system identification, then the parameter §; is unity. When
damage occurs in module i, #; decreases. The choice of N, involves a compromise between the
desire for high spatial resolution in localizing any damage and the need to avoid ill-conditioning or
non-uniqueness in the identification of the parameters f; . In general, a more dense distribution of
sensors on the structure allows a larger value of N, . Stiffness factors, because of the linear character
shown in Eq. (2.2.3), can only roughly estimate structural changes associated with parameters which
enter with various orders of non-linearity in the expressions for the stiffness matrices. An example
of this would be the determination of the length of a beam given information about its response
to some excitation. Since the dependence of the matrix coefficients on the length is either inverse,
inverse quadratic, or inverse cubic, there is no possible way to substitute these by introducing linear
parameters #; and maintain the proper ratios. Had the matrix coefficients depended on the length in
a inverse cubic manner, only, say, then it would be possible to choose one parameter #; to represent
such dependency. There are, currently, versions of some of the programs mentioned in later sections
which allow for the determination of these kinds of parameters but no thorough examination has
been done to date. It should be emphasized that the introduction of the factors 6; into the linear
elastic model ( Eq. (2.2.3)) does not change the structural “topology” or connectivity specified
by the model, i.e., if there is initially no stiffness linking two degrees of freedom, the corresponding

stiffness is zero and the factor #; preserves this condition.

The structure of the matrices R; is generally defined by a finite element model although any
other model, empirical or analytic, can be employed. Models such as the chain (or “shear building”)
model may be appropriate for specific engineering applications. It should also be mentioned that
the K; need not correspond to relatively large modules. For example, if it is deemed necessary, I;

may be associated with the axial stiffness of only one column in a large structure.

To improve the nominal model of the structure, an extension of the idea of a stiffness factor

can be applied to the other dynamic matrices, i.e.,

Ny
o= Tk (2:24)
i=1
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and
Np
C =Y mGi (2.2.5)
i=1

where M,v; and M; are the global mass matrix, the mass factor and the sub-structure mass
matrix, respectively. Similarly, C,u; and C; are the global damping matrix, the damping factor
(different from the damping ratio), and the module damping matrix, respectively. The matrices
M; can be estimated with an appropriate choice of inertial model and from data obtained from
structural drawings. In most cases, the M; are fairly well determined. In the case of the sub-
structure damping matrices C; , the mathematical structure can be based on Rayleigh damping at

the module level, i.e.,

C; = oi M; + ,Bi.K,' (2.2.6)

and so

2

C = - pilai M; + 3 K;) (2.2:7)

i=1

although this formulation does not, in general, yield classical modes. With an appropriate choice of

a;, B; and p; , namely,

a; = ayi
Bi = Bo; (2.2.8)
i =1

the global damping matrix takes the global Rayleigh damping form:

C = aM + 8K (2.2.9)

where @ and 3 are the global Rayleigh damping factors to be determined. In this case, classical
modes are ensured. The “general” damping matrix given by Eq. (2.2.7) can be used when non-

classical modes are desired in the class of models employed.

Damping models other than generalized Rayleigh damping are also used. Modal damping,
introduced via damping ratios in the modal equations to independently control the damping in each
of the modes, is employed in most cases presented in later sections. Modal damping is appropriate
to use since the structural response is computed via the modal equations rather than by direct
integration of the equations of motion Eq. (2.2.1). It is also noted that the sub-structuring for
the inertia and stiffness terms need not be the same, i.e., the M; need not be associated with the
same sub-structure to which K; belongs, unless Rayleigh-like damping is employed. With modal
damping, the sub-structuring of the mass matrix is independent from the sub-structuring of the

stiffness matrix.
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Section 2.2.2 - Reduced Models

Models where the number of degrees of freedom has been reduced would normally present better
conditioned identification. From this point of view, it is therefore convenient to use Guyan reduction
or some other reduction method. Any convenience is lost, however, whenever the linearity of the
equations in the parameters 8; is lost. In order not to lose this linearity, it is imperative to eliminate
degrees of freedom internal to only one sub-structure. Whenever degrees of freedom are “tied” to two
or more modules, it is not possible, in general, to end with a system of stiffnesses linear in 6; . The
chain model, often employed in structural engineering, is a good example of a reduced model which
can preserve the translational inter-story stiffness distribution of a more complex structural model.
Fewer number of degrees of freedom, however, does not always improve parameter identification

since it usually worsens the model.

Section 2.2.3 - Numerical Algorithms

The modal parameters employed by the estimation algorithms described in later sections are
calculated by standard methods [2.1]. The solution of the eigenvalue problem associated with the
equations of motion (2.2.1) is carried out by EISPACK routines BANDR, BISECT and BANDV
[2.2]. Since these routines are designed to be used with banded, symmetric matrices and the inverse
of the mass matrix is involved in the calculation, it is preferable to use the lumped mass matrices
associated with the problem since use of the consistent mass matrix yields, in general, full inverse

matrices.

The time histories of displacement, velocity and acceleration are obtained by integrating the
matrix equations of motion. The integration of Eq. (2.2.1) , because of their linear character, is
performed in either of two ways: (1) direct integration of the full set of equations, or (2) conversion

of the full set of equations to the modal domain.

Direct integration is employed when the frequency content is expected to be relatively high
such as in wave propagation problems. The Trapezoidal method, equivalent to Newmark’s method
with vy =5 and 3 = % . 18 unconditionally stable. The Central Differences method (Newmark’s

with 4 = 5 and 3 = 0) is conditionally stable [2.3] and, thus, care must be taken to avoid the

(K] SR

growth of instabilities. For example, because of the unconstrained nature of the iterative parameter-
determination algorithms (these may require the evaluation of responses at large values of 4 ), a
very conservative time-step value must be used with central differences. Another reason why the

direct approach may be used is to formulate the damping matrix in the general non-classical form.

The alternative approach, more often used in this study, is to convert the matrix equations

of motion to modal equations and then to integrate each of the resulting single degree of freedom
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(“SDOF7”) equations. For structural vibrations, modal superposition is often more useful since the
dominant modes are usually the first 10-to-20. The burden of calculating the modal parameter
values is offset by the few simple integrations of the modal SDOF equations. If non-classical modes
are desired, they can also be integrated in the modal domain but in this case the integration must

be carried out in the first order form. Non-classical modes are not treated in this study.

The solution of the modal equations is calculated using the Nigam-Jennings algorithm [2.4].
This algorithm is very efficient for determining all three quantities (displacements, velocities and
accelerations) for each time step, requiring only 8 operations per step. The algorithm, furthermore,
is unconditionally stable. This algorithm is based on the analytic Duhamel’s integral solution applied
to the case where the excitation is linearly interpolated between two consecutive time steps. Beck
and Dowling’s approach [2.5] can also be implemented since, for the most part, only one of the three
kinematic quantities is needed; this algorithm requires only 3 operations per time step to give the

same acceleration values as the Nigam-Jennings algorithm.

If multiple inputs are present, they are handled with the aid of the pseudo-static displacement

concept [2.6]. This concept divides the kinematic quantity vectors into two components:

u(t) = s(t) + d(t) (2.2.10)

where s(t) is the “pseudo-static” component and d(t) is the dynamic component. The idea is that
the pseudo-static part is the “response” of the structure ignoring all inertial effects and damping.
The dynamic part d(¢) is simply the difference between the total response and the pseudo-static
response and incorporates the dynamics of the motion, i.e., it can be decomposed into a modal

superposition taking into consideration inertial and damping effects.

Substituting the vector wu(f) into the matrix equations of motion and also considering the

partition of the vector wu(t) into prescribed u”(t) and free u/(t) motions,

u(t) = {:ig:i } , (2.2.11)

leads to the partitioned matrix equation

M (5 () + Jf(t)) +ol! (s'f(t) + d'f(t)) + KM (sf (t) + df (1))

= fI(t) - MIPiP(t) — CTPuP () — K7PuP(t). (2.2.12)

The mathematical equality

K11sf(t) = —=KIPuP (1) (2.2.13)
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is the basis of the pseudo-static technique which leads, in turn, to the following equalities:

o/ (t) = =K T kI (1)
(1) = —KJI T K IPap(1) (2.2.14)
§(t) = —K/ T K IRaR(1).

Rearranging Eq. (2.2.12) and making use of the above relations gives
MU E )+ d (1) + K d (1)
= f(t) + (M KT RIP — MRy (2)
+(C-'” Kff_lK.fP = Cf‘“)ﬁp(t)

HEH KR Z KIvYer (1), (2.2.15)

Since

(KIRITIRIP — kIPy =0, (2:2.16)

the last term in Eq. (2.2.15), drops out. Furthermore, making the assumption that

(CH KT RIP — 0IP) % 0 (2.2.17)
then
MU E )+ d (1) + K d () = L (t) + (MPT KT RIP — MIPYaP(1). (2.2.18)
or
MU A )+ d () + KM d (1) = (1) (2.2.19)
where
1) = f1(t) + (MII KT R I — MIPyap (1), (2.2.20)

The dynamic motion df(t) is then calculated using the methods described at the beginning
of this section. Both quantities s/(t) and d/(t) are functions of the stiffness matrix and thus of
the parameters f; . What the pseudo-static approximation implies is that the forces arising from
the pseudo-static damping are much smaller than the forces arising from the pseudo-static inertia

effects of the pseudo-static contribution. For most problems treated here, this has been the case.
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Chapter 3 : Parameter Estimation

Section 3.1 - Formulation

The Sub-structure-Identification (“SUB-ID”) problem consists of determining all unknown
mechanical parameters in the model of the structure. In most damage detection cases, it reduces to
the following simplified problem: Given some knowledge of the response of a structure, determine

the set of stiffness factors #; belonging to the model

N,
K=Y 60K; (3.1.1)
i=1

which provide the “best” fit to the observed data. In the last equation, recall that K is the global
stiffness matrix of the mechanical system, K; are the module or sub-struciure stiffness matrices;
and N, indicates the number of substructures present in the system. The motion of the system
and the stiffness matrix are related via the equations of motion, Eq. (2.2.1), where the motion is
represented by the displacement vector u(t). The number of degrees of freedom in this discrete

model, Ny, is generally larger than the number of substructures present, N, .

The eigenvalue problem associated with Eq. (3.1.2) provides for an alternate approach when

trying to determine the coefficients #; . The modal equations are given by

Ny
(O 6:Ki)¢ =wiMe" (3.1.2)
i=1

where w? and ¢ are an eigenvalue-eigenvector pair of the system; r takes values in {1,..., N}

where N,, is the number of modes associated with the discrete mechanical system ( N,, = Ng ).

To determine the values of the #;, observations of the motion of the system are made.
The location, duration, frequency-content and many other characteristics of the observed signals
determine the quality of the identified modal parameters. The practical aspects are discussed

elsewhere in this study. In this section, attention is focused on the analytical aspects of the parameter



- 93 -
determination problem.

Four important approaches are considered here. The first approach, the Method of Successive
Substitutions, corresponds to a new application of the Contraction Mapping Principle to the non-
linear € estimation problem. The goal of this method is to create a mathematical operator which,
when applied iteratively to each of the new estimates, eventually yields the unique “fixed-point”
solution. The second approach is an application of the well known generalized non-linear least-
squares method. The aim in this approach is to minimize the “output error” between the observations
of the system and the values predicted by the model. The problem reduces to a minimization
problem. The value of the parameters which minimizes the error quantity is called the “optimal”
solution. Well known minimization algorithms are available for this purpose. A third approach is
a probabilistic approach based on Bayes Theorem. The Bayesian approach associates a probability
with each parameter value that the model can take. The probability value is related to an error or
difference between the observed data and the data predicted by the model. The “most probable”
solution is that associated with the smallest error subject to constraints placed by the system model.
This solution is often very close to the “optimal” solution derived using the generalized least-squares
approach. The Bayesian approach is more informative, however, since it emphasizes the whole
probability distribution rather than just the most probable value. The fourth method is a new
application of the homotopy method. This method “propagates” an easily-determined @ solution
to the characteristic equation associated with a simple mechanical model to a solution of the same
equation associated with the mechanical system model to be identified. The method stipulates the
use of Ny ! different initial conditions thus yielding N, ! different # solutions to the characteristic
equation of the mechanical system of interest. Since only the natural frequencies are guaranteed to

be satisfied, further selection is needed to reduce the number of acceptable solutions.

All of these methods, when applied to the same real data, may yield different results. The
reason for this is that real structural behavior is complex and is not always modeled exactly and
also because each method emphasizes different parts of the real data in different ways. Uniqueness
of parameters is also an important consideration which is addressed differently by each method and
which is of considerable importance when trying to find a set of parameters by which the state of

the structure is inferred.

Section 3.2 - Method of Successive Substitutions

This approach is based on the well-documented contraction theorem for (non-linear) operators
[3.1]. The vector space RV» to which the vector # belongs is a Banach space and ©° is defined
as the closed subset of RV» of interest. The operator F is a contraction operator in ©° if

36 € [0,1) : ||F(u) — F(v)|| < é|lu—v|| Yu,v € ©°. The contraction theorem states that for
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the closed subset ©° and a contraction F :@©° — ©°, F has a unique fixed point §* = F(6") .
Moreover, if #° € ©° and #"*+! = F(6™) for n >0, then

107 — 6%]| < 6°(1 = &)~ l6" — 6. (3.2.1)
The theorem also states that
* hm n /0 P,
8 = Sl F2(8°) (3.2.2)

where F"()= F(F"~1(8)), n >0 with F°(0)=6".

The idea underlying the method consists of using an operator F(#) to map an estimate of
the solution vector #* , for example, 6", to another value 6"*! which is closer to 6* . The
#n+1 is substituted back and F operates on it to produce yet another iterate. #* is the expected

converging value of the sequence starting at the initial point 6% .

Various contraction-like mappings can be constructed from the equations of motion. The
following sections describe one of the more natural ones. Whether the subset ©° is large enough
so that it comprises the physically acceptable domain 0 < #; <1 is not known and is a function of
the structure of the operator F . If, indeed, it happens that ©° is large enough, then uniqueness of
the parameter estimates 6* is guaranteed by the contraction theorem. If the subset ©°¢ is smaller,
then uniqueness is guaranteed only locally in 0 < 6; < 1. The “design” of the best possible operator

will thus have significant repercussions.

In the following, it is assumed that the number of observed partial eigenpairs (w?,4%) is
Nmo . The eigenpairs are identified by some external modal-extraction procedure. Although the
procedure employed here [3.3] also provides estimates for the participation factors for each input,
this information has not been integrated into the formulation of the operator F . This information
sometimes is non-redundant and can be used to distinguish between two possible models for which

all other modal data is identical.

To approach the new formulation, consider Eq. (3.1.3). For the r** eigenquantity, a compound

eigenvector ¢7(#) is formed by

[ % |
¢4”‘{¢am} (3i2:3)

where &g is a subvector of the full system eigenvector 9% with N,g components determined from
observations to within a constant kg , and é"@(ﬂ) corresponds to the subvector of the analytically
found eigenvector ¢f(#) determined from the current estimate for ¢ . The full eigenvector derived
from the model ¢g(f#) satisfies orthonormality with respect to the mass matrix but the new
compound vector ¢7(#) does not, in general, satisfy orthogonality. The constant k; is chosen

so that the vector’s magnitude (with respect to the mass matrix norm) is unity:
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lot(®)lar =1 Vre{l,...,Nmo} (3.2.4)
where ||z|[sr = 2T Mz .

The equations of motion Eq. (3.1.3) for the #** mode can be re-written in the following way:

K™(8) 6= M"(6) (3.2.5)
where
K"(8) = |k, ¢L(8), K, 6L(0),..., Ky, ¢(0) (3.2.6)
and
M"(6) = w2MeL(d). (3.2.7)

When N,,, modes are observed, the set of equations to be satisfied by the vector # is

K*(0) 6= M"(6) (3.2.8)

where

K'(0)
K6
K*(6) = ( )

(3.2.9)
I—{N'"(B)
and, likewise,
M(0)
- M?2(8)
M=(8) = . : (3.2.10)
MNme ()
To solve for the vector 6 , and since in general NyN,,, > N, , a square system of equations

can be constructed:

S(6) 6= K*(6)T M*(9) (3.2.11)

where S(f) is asquare N, x N, matrix
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5(0) = K*(6)T K*(0) . (3.2.12)

If S(f) ™' exists, then an operator F/(#) can be constructed by

FI(0)=5(6) ~' K*(0)T M*(0) (3.2.13)

which satisfies

0 = F/(0). (3.2.14)

For this, the matrix S(f) must be non-singular. A check on the singularity of the matrix S
can be done by calculating the associated ‘condition number’ [3.4]. A number of different condition
numbers can be defined for a given matrix. The one used here is the one calculated by LINPACK’s
DGECO [3.5] routine. Here, the condition number s represents the ratio between the minimum
and the maximum eigenvalue of the matrix (the eigenvalues are guaranteed to be real since S is
symmetric). A condition number k& = 0 indicates that there are one or more zero eigenvalues and

thus the matrix is singular. Furthermore, if the condition number & is such that computationally
1+k=1,

because of round-off error, then the solvability of the system of equations Eq. (3.2.11) is not

guaranteed. The system is then termed “ill-conditioned.”

In the exceptional yet important case where all the components of the modeshape vectors are

known the equations simplify considerably to

5 =K< R* (3.2.15)

where the square matrix K* is no longer a function of 6 , and so neither is the square matrix S .
The @ vector is readily solved if the matrix S is non-singular. From a practical point of view, and
restricted to simple frame structures, the number of observed modes N,,, and observed degrees of
freedom N,y equal to 2 or 3 are enough for good conditioning of the matrix S, when N, is in

the range 3 to 6.

Section 3.3 - Generalized Least-Squares Approach

Least-squares errors are described in this section, and the procedures employed to find the

minimum error configuration are also briefly mentioned.
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In general, an error functional J(f, us,f) > 0 can be defined in terms of the various quantities,
the observed system input f(t), the observed kinematic response us(t) of the system S, and
the class of linear mechanical models involving parameters # (including mass, damping, stiffness
components, etc.). The functional J is known in the literature in various ways [3.2,3.3,3.6]: “cost
function”, “error index”, “loss functional”, “measure-of-fit”, “mean-square error”, “performance

index”, “objective function”, and other. Here it will be referred to as “error index J .”

Section 3.3.1 - Output Error

A definition of the magnitude J of the output error is given by

T
ar= [ llas(t) - s, (33.1)

involving the difference between the observed iig(f) and associated model iy(t) responses.
Displacements, velocities or accelerations, or combinations thereof, can be employed for this purpose.
When the error functional Jp(f,us,#) is minimized, the model’s response time histories will come
closest to those observed, in a least-squares sense. The values of the parameters § which minimize
Jr are used as the best estimates and the corresponding model is referred to as the optimal model.
It is conceivable that there can be models which yield the same error index with real data and yet do
not provide a good physical representation of the system. In order to determine the accuracy of the
model, it should be tested with more extensive test data. A correct model must perform well with
all data sets and also produce a consistent set of parameter estimates. In earthquake engineering,
however, the data available are often scarce. This problem cannot be remedied unless an adequate
model is employed: this model is calibrated at the outset and damaged-state data will modify the
values of the parameters indicating the appropriate amount of stiffness loss at the correct locations.
Had an incorrect model been utilized, both the prior and posterior stiffness distributions would bear

little relation to the actual stifTness distributions.

The output error approach with diagonal weight matrices W inherently emphasizes the
matching of natural frequencies since, if these were incorrectly determined in the mathematical
model, then the response quantities wug(f) would be out of phase with respect to the observed
response ug(t) . When out of phase, the functional Jp increases in amplitude significantly. When
the frequencies are correct and the responses are in phase then the error is greatly reduced. Errors in
the modeshapes also increase the error functional but it is less sensitive, generally speaking, than to
the natural frequencies. An obvious exception is the situation when a modeshape component derived
from the model is negative in value compared to the value it takes in reality. This is equivalent to a
constant m phase offset, producing the largest error increase possible for changes in phase. It must

be noted that, in general, modeshape vectors are not as sensitive to variations in the parameters 6;
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in the sense described above, as frequencies are.

The actual numerical calculations weighed all degrees of freedom equally. The repercussions of
weighing one degree-of-freedom response more than another are that it will produce better estimates
for the associated modeshape component and for the modal frequencies participating most actively
at that degree of freedom. If, for example, a particular mode k has a node at degree of freedom j
and only this degree of freedom has a non-zero weight, then the parameter estimates will retain the
node at that degree of freedom but the associated natural frequency can take an arbitrary value.
If, on the other hand, only one mode participates at this degree of freedom, then the associated
modal frequency will be the most accurately estimated frequency of all modes excited by the forcing

function.

Section 3.3.2 - Modal Output Error

In this study, an ad hoc extension of the previous definition of output error is formulated in
order to incorporate modal data directly into the error minimization process. System modal data

may be obtained from existing modal identification algorithms [3.11,3.19].

The modal error functional i1s defined here as

o —wor)’ , plldk = GBI’
= [W,f (u) +wrifs —Pell (3.32)
r=1 wsir +wer lle5 + o5l

h

where w, is the r'" modal natural frequency, ¢" is a Euclidean-normalized sub-vector of the
q ¥

rth  eigenvector ¢ whose indices correspond to the observed degrees of freedom, the weighting
coefficients W/ and W! are non-negative, and N,,, is the number of observed (or measured)
modes. In this way, Jjpr = 0 only when the model agrees exactly with the observed system data,

and Jpr > 0 for all other cases.

The forcing function does not directly participate in the error as defined by Eq. (3.3.2). Many
modal extraction algorithms, including the one employed here, MODE-ID [3.3,3.19], make use of
the knowledge of the function f(¢) to extract the natural frequencies and (partial) modeshapes
associated with the system. Another modal property not often calculated by modal extraction
algorithms (although MODE-ID does) is the effective participation factor. In this study, the
participation factors have not been included. It was felt, at the outset, that their inclusion was not
warranted since the participation factors tend to vary very slowly as functions of the #; , thereby not
providing much extra information. After encountering non-uniqueness and ill-conditioning problems,
however, it is now felt that they may provide the extra information needed to resolve some of the

above-mentioned problems.

Different weights are established for each mode. In most test cases, a weight value W/ is

assigned to all frequencies and another weight WY to all eigenvectors. Although a clear path does
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not exist between the natural weighting of the ouiput error time approach and the weights for the
modal approach, there are several possibilities that can be considered. The first one makes use of the
relative sensitivity of each of the modal parameters on the output error functional as determined in
some recent modal identification algorithms [3.12]. This approach emphasizes the trustworthiness
of the modal data in terms of its presence in the response signals from which the modal properties
are estimated. Another possibility is to use the relative heights of the transfer function as weights.
The latter approach is easily used in single-input, multiple-output systems since only one transfer
function exists for each output degree of freedom. Different weight possibilities influence not only
the convergence rates of the minimization process, but also the optimal. For these reasons, weights

should be employed consistently in pre- and post-damage tests.

Section 3.3.3 - Minimization Problem

Three techniques are frequently used for the determination of the parameter estimates
corresponding to the state of least error as given by the minimum of J . All of the techniques
are gradient based, i.e., they only make use of the gradient of the error functional. No techniques
employed here make use of the Hessian matrix which corresponds to second derivatives of the
functional .J with respect to the independent variables #; . Masri and Werner [3.7] have studied

various other techniques with applications to structural dynamic problems.

The first and second techniques (Polak-Ribiere and Fletcher-Reeves) belong to the conjugate
family of minimization techniques. Their aim is to construct an approximation to the Hessian matrix
by making use of gradient vectors only. It has been shown [3.8] that in the case of quadratic functions,
conjugate techniques need only N, iterations to converge to the exact minimum, where N, is the
dimension of the space. For most tests, the first iteration corresponds to a minimization along the
direction of steepest descents, just previously mentioned. In this study, the Polak-Ribiere has been
employed most frequently since the convergence rate is usually better than the corresponding one
for the Fletcher-Reeves technique. These two techniques are more efficient than the better known
steepest descent technique since they make use of the curvature of the topology by way of the

estimate of the Hessian matrix.

The third technique, Variable Metric, also tries to approximate the Hessian matrix from gradient
evaluations. This technique is perhaps the fastest technique of all the ones tested (although it
actually depends on the type of function that is used for the minimization) but the algorithm
employed here is unstable and can fail when the gradient evaluations yield the same gradient vector
in multiple consecutive iterations. This technique also performs better than the steepest descent

method because of the use of Hessian matrix estimates.

The convergence criterion used in the minimization procedure is met when relative changes in
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the error index J across sequential iterations is less than a prescribed ratio €, i.e., when

Ji— Jipa
1(Ji + Jig1)

™

(3.3.3)

Typically, € = 10~* in the calculations performed in this study. No relative change in the parameter
estimates is used as part of the convergence criterion although the latter is often employed by other

optimization algorithms.

Gaussian methods based on evaluations of the Hessian matrix and variations of it have not been
used in this work. It was felt at the outset of this research that these methods are not the most
efficient for large numbers of independent variables 6; . In the course of this study, it has been
learned that the number of independent variables cannot, in general, be so large. Implementations

of Gaussian techniques may therefore prove to be useful in further studies.

The gradients needed for the minimization method are calculated in either of two ways: (1)
by means of a finite difference technique or (2) by means of an analytical expression. The finite
difference scheme used, although not as precise as the analytical scheme, has shown to be robust in
the presence of noise. It must be noted that noise may alter the local topology of the J functional
hyper-surface and so local minima may be induced. Finite difference, because of their coarser nature,
sample the hyper-surface at farther points and so they are less sensitive to local variations of the
surface. The finite difference scheme employed here approximates the gradient by fitting a quadratic
function over three points, the center one corresponding to the point where the gradient is evaluated.

In this case, for each coordinate i,

g = g + AG,‘OQ + (:’39.')203 (334)
and so the gradient g—;’ is approximated by
aJ _
8_9.' =~ as + 2A0;a3 (335)

where the coefficients a, , and a3 are found by solving the three simultaneous equations

J(0; + Ab;) = a1 + Ab;as + (Ab;)*az
J(0;) = ey
J(8; — A8;) = a) — Ab;as + (Af;)%as. (3.3.6)

The gradient is given by
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aJ

6_8' QAG — (J(0; + AG;) — J(0; — AG;)). (3.3.7)

The analytically evaluated gradient as derived by Beck [3.13], and tailored here to the pseudo-
static displacement method, can be formulated for the full-matrix or modal-superposition integration
approaches. Other algorithms have been developed, like those surveyed by Baldwin and Hutton
[3.14]. One of these, the first one discussed by Fox and Kapoor [3.15], has the same basis as the one

presented here.

The gradient of the functional J , where J is given by Eq. (3.3.1), can be written as

— = 2 [— We ] (3.3.8)
where
dé de
0, ~ o6
du
TB_B (3.3.9)

where T is a simple transformation matrix that extracts the observed degree-of-freedom components
from the full vector. The motions u = u(@) are partitioned according to the boundary conditions
as in Eq. (2.2.11). Since there are prescribed motions u”(f) at boundaries of the structure, these

do not vary with respect to any parametrization of the stiffness matrix and so

a6; 0

Introducing the pseudo-static decomposition leads to

ot
u _ { & } ' (3.3.10)

du! 8s!  ad’l

T —aa (3.3.11)

where
9! _ a(-K/ 'K id I
30; a0,

aK’II! —19K/
= Ip e | P
- [ a0, i a0, ]“

] " = cIp
—[1\-'” ‘—-aga KT KIP 4 K1 16:;9 ]uP

== [KIT KPRV TR 4 KT TR (3.3.12)
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Also, for modal decomposition d’(t) = Zf___"‘l er(t;0)0"(0) where . = ¢.(t;0) are the modal

coordinates and ¢"(#) the corresponding modeshape, then

N

ad! =y a¢,¢,( o) + racﬁ’(ﬂ) ‘ (3.3.13)
r=1

85 a8;

The %l are calculated using the modal matrix equations of motion

—wIMITem + K¢ =0 (3.3.14)

by taking derivatives with respect to 6; :

Qp \i15gr _ o2pg11 080 L ORI o gs 89T
S M1 — M +2 Mi o+ K =0, (3.3.15)
Rearranging,
By K 6" + (—wiM! + KI) ¥ =0 (3.3.16)
90; 90; r 96; >

Pre-multiplying the previous relation by ¢*(6)7 and taking advantage of the orthogonality of

the eigenvectors with respect to the mass and stiffness matrices leads to

(‘aifa,, + ¢=(a)TK!f¢f(9)) + (@i =)ot (0)" MY =0 (33.17)

9¢"(0)
39,' 693

where é,, is the Kronecker delta function. There are two distinct possibilities: s =r and s #r.

For s =r the term w, —w, vanishes and so

2
Ow;

— ar(\T 5SS ar
55 = 9O K8 0) (3.3.18)

For s#»

(6@ K67 (@) + (@2 — w20 w1280 _ g, (33.19)

Allowing %—‘-ﬂ to be expanded in a series whose terms are the orthonormal vectors ¢(f) ,

‘%’rw) chw(e (3.3.20)

and introducing this into Eq. (3.3.19) leads to
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o*(O)T K ¢7(0) + (w? —w?)eris =0 (3.3.21)

and if w? # w? (valid for most civil engineering structures with or without foundation compliance)

Cris = (wg iw?) o*(0)" K7 o7 (0). (3.3.22)
Then
5¢’(9) il Py
g( 3 ) (¢ K ¢ (9) #(6) (3.3.23)

To calculate %‘%{- the SDOF equation associated with the mode is integrated:

Br + (2wrkr )r + wler = ¢7(0)" £, (3:3.24)

where f*(t) 1s given by Eq. (2.2.20), 1.e.,
£t = £ + (M7 RIS - M) e (1),

Taking derivatives with respect to 8; gives

%‘ aur . a‘rr airg ‘26",‘?1- e 6¢'(6) '1"8)“l =

or, rearranging,

6;9,. a‘;r) ) gaﬂpr _ aér(g)
ae; (2& = T a0; —

.2
Fre@r s fg (s

The last equation is integrated using the same methods as the usual modal equations (in this case

with the Nigam-Jennings algorithm) to give the time history for 3%:'-

Using the quantities %‘% and a%;(a) , the quantity %‘9{- in Eq. (3.3.13) can be constructed.
Substituting back into equations Eq. (3.3.11), Eq. (3.3.9) and Eq. (3.3.8) provides a means to

evaluate the gradient of the output error functional J .

Eq. (3.3.20) expresses the derivative of a modeshape as a series with the same modeshapes
as the basis. The number of terms N,, can be truncated in order to avoid the calculation of
large number of eigenvalue quantities. The variation of the modeshapes is slow with respect to the
variables @; and thus the contributions of higher modes should not be necessary to obtain a good
approximation to the derivative. Number of terms of the order of 5 to 10 are adequate for typical
civil engineering structures where the modes are well separated . For space structures, the modes

are frequently closer together and so larger numbers of terms may be needed.
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Section 3.3.4 - Uniqueness via Minimization

The minimization of the functional J will produce some “optimal” parameter vector @ .
However, in this study it is imperative to know whether this optimal value corresponds to the overall
global best fit. It is possible that the minimization algorithm has converged to a local minimum
and not the global minimum implying that some damage pattern is identified but it is not the most
likely one. What could be done with the generalized least squares method is to set the initial value
8° to significantly different values and run the minimization code repeatedly [3.9]. Unfortunately,
reaching the same solution in all runs does not guarantee uniqueness of the parameter vector since
not all the @ space has been sampled. Equally misleading is the fact that solutions obtained by
reaching a local minimum do not indicate a lack of uniqueness, no matter how close the value at
the local minimum is to that at a known global minimum unless exactly the same value for J is
obtained for more than one value of the parameter vector. The problem is compounded since it can

never be asserted that the global minimum is known.

If the function taken for the minimization process was convex then it is guaranteed within the
region of interest that a local minimum is the global minimum [3.10]. The output error method
yields a function in # which is not convex; so, for any finite domain of interest, it is generally true
that there are both local and global minima. The global minima may occur either within the domain
or at the boundaries of it. It is because of these facts that the generalized least squares approach is

not considered to be a reliable method to test uniqueness of parameters.

Section 3.4 - Bayesian Model Identification

In this study, the approach formulated by Beck [3.16] based on Bayes Theorem [3.17] is described
as applied to the # parameter model. This is done in order to find the probability for each #;
parameter value based on the available data and the chosen class of models. Probability is used
here in the Bayesian sense that p(alb) is a measure of the plausibility of proposition a given the
information in proposition b . Evaluating the probability of all models within a class of models yields
a probability density function from which it is possible to extract important statistical information.
The class of models allowed here is restricted to a particular mathematical form of the class of models
given by Eq. (3.1.1) and Eq. (3.1.2), leaving the parameter values undetermined. The particular
mathematical form can be based on FE modeling as described in Section 2.1.2; the probability

density function is then evaluated for all possible values of the parameters 0; .

From the probability axioms:

P01y, = HENEC) (3.41)
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where
Sy, = {55’ eRV :n=1,2,..., N} (3.4.2)

is a set of measurements, e.g., N; samples of the response or output of a system. The prior
distribution p(f ) is based on the engineer’s intuition regarding the relative plausibilities of the
different models in the class, that is, of different values of 6 . This allows engineering judgment to
be introduced naturally into the formulation. Moreover, it is possible to allow the data to “speak
for itself” by assuming that p(f) is a locally non-informative prior distribution, i.e., it is assumed

that p(f) = k is constant over ©° , the finite subset of ®™» of interest, then

k p(Sw,10)
0|Sy,) = ————. 3.4.3
Because the probability of the data p(Sn,) is also independent of @ ,
p(0|Sx,) = k p(Sn,|0) (3.4.4)
where k = # . In order to calculate p(6|Sy,), the probability function p(Sn,|0) must be

defined and evaluated.

The model-predicted values ﬁl;” = (ty; f,0) € RV¢(n = 1,2,...,N;) are given by a
deterministic model with parameter vector # € ®¥» and correspond to the observed values {ﬂ(s")} .
For a given @, the prediction error (or output error) ¢(")(#) is the difference between the system

and model response:

&™) = &l - a{™. (34.5)

An important step in this Bayesian approach is to define a probability model for the prediction errors.
Here the prediction errors é")(f) are modeled as Gaussian discrete white noise with covariance
matrix £ . The prediction errors represent both model and measurement errors. The mean value
is assumed to be zero but the covariance is unknown and is determined from the data. Because of

this, ¥ is here included as part of the unknown model parameters.

Letting g(é,£) be a Gaussian probability model for the prediction error e where the most

probable value of ¢ is zero, then the probability of getting the system response ﬁg') given the

)

deterministic model ﬁg" and the prediction error model g(&,X) is:

p(a"0,£) = ¢(¢™(0),£) (3.4.6)

Given 6 and any T, the most probable value of @y is clearly @} .

As implied by Eq. (3.4.2), the probability of obtaining the set Sy, given the probability model

is
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p(Sn,10,Z) = p(a’, 4, ..., 450, T) (3.4.7)
or
N,
p(Sn 10, %) = [ p(al”l6, ) (3.4.8)
n=1

since it is assumed that the &™) are temporally independent. It is also assumed that the components
éf:)(ﬂ), {m = 1,2,...,Ny4} corresponding to different observed degrees of freedom are spatially

independent, so the covariance matrix ¥ is diagonal, T = diag(ey,09,...,0n,,) -

Letting ¢ denote the vector of diagonal elements of X | then the probability model takes the

form
g(é,o) = g(é1,é2,...,6N,,,01,02,...,0N,,) (3.4.9)
= : erp(—ihi(-—m)z) (3.4.10)
(Qﬁ)ﬁgidldg...aNnd 2 = o
and so
N,
p(Sn10,0) =[] p(ud”|6, o) (3.4.11)
n=1
Ny
= ] 9(é™.2) (3.4.12)
n=1

1 . & Bag f300N "
) ] ezp | =3 E Z ( ) . (3.4.13)
od

- Nog
|:(27I') 2 0102...0N n=1m=1 Tm

From Eq. (3.4.4), the “plausibility of (#,¢)” given the data Sy, is given by

Noa é(“)

Ny N, 2
k 1 m
p(6,0|Sn,) = 5 exp (- vy (34.14)
- [(27:)—3‘ e aml 2 r; mz'.:l (a"‘ )

where (f,0) € (O° x £°), E° representing the set of permissible values for the parameter vector

s

For identification purposes, the single most important piece of information to be determined is

the most probable model given the data. The most probable value corresponds to the model which



- B

maximizes the probability density function in Eq. (3.4.14), i.e., the most probable model is the one

which gives the model response closest to the observed data given the prior probabilistic information.

Let (é,&) be the most probable values of the parameters based on the data Su, , 1.e.,

Mazx
(8,0) € (O° x X¢)

These values can be found by maximizing the function p(8,¢|Sy,) , or equivalently, maximizing the

p(0,6|Sn,) = p(8,0|SN,)- (3.4.15)

function
k Nog 1 N: Noa é(n) 2
In p(6,c|Sx,) = Niln B N,:L:: B & — P> m; (am ) . (3.4.16)
For fixed 6, maximizing I[n p(8,c|Sy,) with respect to o requires
a
0= ?Iﬂ p(8,e|Sw,)
m
Ny
N, 1 2 Ty 2
=-—-2Y -5 ERG) (3.4.17)
1y n=1 m
thus
§
~2 — =(n)
am(g) - "Vt s [em (0)]
1S5 [om) (]2
«(mn «(n
=<3 [us‘m - ua‘mJ (3.4.18)
ok n=1
Vm =1,2,..., N,y . This shows how the most probable variances, for a given # , depend on the

choice of model parameters #; . The solution @,,(#) = cc to Eq. (3.4.17) can be ruled out since

it gives all models zero probability on the data.

Introducing the optimal variance into Eq. (3.4.14) yields

od ’\I'
In p(6,6(0)|Sx,) = Niin — N Y In 6, (60) - % (3.4.19)
m=1

.
(27{')Nadlz
Thus, the most probable @, 6, is obtained by minimizing the functional J, , given by

Noa
Tp(0)=2) " In om(6)

m=1

Nod
=Y Inék(0)
m=1
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Nog 1 Ny 2
=3 |15 (ag-a) ] | (5.420)
m=] n=1

The minimization of the function J,(#) can be performed by any of the standard optimization
procedures discussed in the Least-Squares section. As a matter of fact, if the variances o2, are
all assumed to be equal and the optimal value for it is found following a similar procedure to the
one shown above, then the resulting functional J,(f) takes the same mathematical form as the
least-squares “output error functional”. The “most probable” model would then correspond to the
“optimal model” in the least-squares sense. If the variances are allowed to be different for each

response location, then the results of the two methods are, in general, different.

For damage detection, on the other hand, what is important is to know if there is considerable
probability of the existence of failed members within a structure. The probability distribution
p(6,0(6)|Sn,) can be reduced to marginal probability distributions for each 6; . By updating the
marginal distributions in time using new test data, it may be possible to detect stiffness degradation

in each sub-structure.

A characteristic of the joint probability density, however, is the presence of large “spikes” which
correspond to the points in ©° where the probability is (locally) highest. In reference to Eq (3.4.19),

any smooth surface
1

TTn, &m(6)

with local maxima will be largely distorted since the N; exponent in Eq. (3.4.14) is usually very

(3.4.21)

large. To be able to obtain a good estimate of the marginal probability distribution it is necessary
to know exactly where the local and global maxima are located. The width of the spikes can be
so small that no practical discretization of the ©° domain can guarantee high accuracy numerical
integration over the maxima to obtain a good estimate of the marginal probability distribution.
From the above discussion, it is then clear that the marginal probability distribution should not be
used for this purpose. Instead, however, use is made of the pseudo-marginal distribution, defined as

the marginal probability projection of the “pseudo-probability” represented by Eq. (3.4.21) :

o L= | Ck Cm 1
p(0;,S n,) = k,‘] / f —— df;dfy ...d0o,, 3.4.22)
S o b T h TR em@ (

with i # j,k,...,m . The constant k; is a normalizing factor such that the integral of the pseudo-
marginal probability in [0,¢;] is 1. This new quantity is much smoother than the true marginal
distribution and may allow for a better monitoring of stiffness degradation through numerical

integration.

Bayesian methods, as proposed here, require evaluation of J, usually at a large number of

6 values. Consequently, their practical use might be limited to problems where the number of 6
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parameters is not large. An application of this method to the 2 DOF chain model will be discussed

in Chapter 4.

Section 3.5 - Homotopy-based Parameter Estimation

Chu [3.18] has presented an approach which determines the values of the components of a
diagonal matrix which, when added to a Jacobi matrix, yields a system whose eigenvalues match
exactly a predetermined set. The approach is based on the homotopy technique which is extended
here to the problem of determining the #; values which define a structural model so as to match a

set of observed natural frequencies.

The extension of Chu's homotopy method also assumes that a solution for the values of the 4;
is propagated from an initial time 79 = 0 to the final time 7, = 1. This new parameter, “time
77, 1s not associated with the time history of the physical process; it is merely a dimensionless
history parameter describing the homotopy process as in the following. The present formulation
assumes that the number of unknown parameters 6; is equal to the number of predetermined

natural frequencies. Extensions of this case to more general cases will be a topic for future research.

At “homotopy time” 7 the values @} satisfy the characteristic equations g¢f(6,wx) = 0
associated with a simplified mechanical structure and with the observed natural frequencies. In

vector form, the equations to be satisfied are

g1 (0%,w1) 0
q2(0° ,w2) 0

Q(6°,w) = , ={ 3. (3.5.1)
., (0°,wn,.,) 0

Proper construction of the simplified structure provides ready determination of the roots 67 .

At “time” 77 , the values of the 67 must satisfy the characteristic polynomials Q~ associated
with the structural model to be identified and with the observed natural frequencies, as described
in the previous equations. The determination of the coefficients 7 is no longer a trivial problem
since the underlying predetermined mathematical model is much more complex, in general, than the
simplified model used for time 5. A homotopy function h(f,w;t) can then be constructed such

that at time 7y it takes the form of Q*(f,w) and at time 7; it takes the form of Q*(f,w):

h(B,w; ) = (1 - 7)Q'(0,w) + 7Q(0,w). (3.5.2)

In Chu’s work, the functions @Q° and @Q* are not exactly the characteristic polynomials but
polynomials associated with the characteristic equations such that, when they are set to zero, the

characteristic equations are satisfied identically. The specific form of @* taken by Chu was tailored
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to the efficient computational solution of the components of a diagonal matrix which was then
added to a Jacobi matrix. The formulation presented here, although perhaps not as computationally
efficient as Chu’s, is directed to deal with stiffness matrices of arbitrary “topology”. The homotopy
function employed here, h”™ | is different from the one presented by Chu in that it represents the

characteristic polynomials of a {ime 7 — varying mechanical system:

g7 (0,w1;7)
q3(0,wa; 7)
hT(0,w;T) = Ewe (3.5.3)
N, (0. wN,..iT)
where
qr(0,wi; T) = det[K*(0) + TK?(0) — wiM] (3.5.4)
and, assuming M is diagonal,
K*(0) = diag(kj,01, k3001, ..., ki On,,) (3.5.5)
and
K%(8) = K(0) — K*(6). (3.5.6)

Representative examples of these will be given in later sections. In this way, the characteristic
polynomial at 7y is readily determined (since the diagonal matrix K*® has only one #; in each of

its components) and the characteristic polynomial at 7; corresponds to Q~ .

The homotopy function h(#,w;7) is nevertheless required to be zero for all times 7. Those
paths which connect each of the initial roots #; of the initial characteristic equation with the roots
07 of the target structure characteristic equation Q™ are called homotopy paths and are defined

by the following equations:

h(6,w;7) =10 V7 € [r0, 4] (3.5.7)
which imply
dh
— =10 L
£ (3.5.8)

where

dh _ 9h _ 0h db;

dr = o7 o; dr’
The latter equality can then be used to formulate an initial value problem for the trajectories for

the 8; :

(35.9)

b, __0h™oh

dr ~ 08; or SR
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with initial values 6; o = #] which are the roots of the characteristic polynomial associated with the
simplified structure. After integrating % in the interval [rp, 74], the values of the 6; approach
the values 6] . Integration must be carried in the complex domain since as time 7 progresses,
the roots of the transient characteristic polynomials are not necessarily real. Neither are the final
values 6] required by this method to be real, since the only requirement is that they satisfy the
characteristic equations at time 7; . Complex quantities are then possible solutions (and they may

or may not be associated with structural damping) but only the real solutions are of interest here.

No theorems have been developed which guarantee the good behavior of the integration (of
equations Eq. (3.5.10) ) as there are for Chu’s case. In all integrations carried out up to the
present moment, however, no signs of ill-conditioned problems arise; these are not expected because

of the physical nature of Eq. (3.5.4).

In the numerical procedures, both Euler’s and Runge-Kutta’s schemes have been employed to
solve Eq. (3.5.10) numerically. Some care must be taken, especially for those homotopy paths where
the variables 6; change their character, from purely real to complex. Because of the inaccuracy of
both Euler’s method and the finite precision of the computer, the solutions turn out to be inexact;
but, if the time step A7 is small, these paths should be close to the true homotopy paths. To
track the homotopy paths accurately, especially near these real-to-complex transition points, it is
necessary to take the homotopy estimates at T and then to optimize locally similar to the SUB-ID-
Modal approach. No problems arise since the initial estimates for the optimization algorithms are

bound to predict accurately the natural frequency values.

Extensions to cases where the number of degrees of freedom exceed the number of parameters
(as long as the latter equal the number of observed natural frequencies) is a future topic to be
studied. Although not as prohibitive as the probabilistic approach with numerical integration, this
method seems to require the evaluation of an excessive ( Ng! ) number of homotopy paths in order
to find all possible solutions. Experience with the implementation presented here indicates that for
paths that start at real # values, if these enter the complex domain along the homotopy path, then
they remain complex. Complex solutions also come in complex conjugate pairs. So, on some related
basis, it may be possible to discard some homotopy paths assuming that only the real solutions for ¢
are required. There are cases, however, where some of the parameters #; have multiple roots at 7 .
Then, the values for #;(my) are complex but during the trajectory may eventually become purely
real. Also, there is the issue of whether parameters #(7;) being slightly imaginary (relative to the
real component) qualify since, presumably, small perturbations to the mass or stiffness matrices
may then bring the slightly imaginary roots #; to the real line. Matrix perturbations should be
considered since often the model may not allow for the exact mass or stiffness distributions. These

and other related questions are deferred to a later study.
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Chapter 4 : Simulated Data

The results of a large number of numerical experiments are presented in this chapter. These
tests with simulated data were chosen as a testing procedure for various reasons: (1) all independent
variables can be controlled and thus varied independently; (2) there is such a concept of “correct
model” to judge the accuracy of the procedures, since a model is employed to generate the “observed”
response of the structure, i.e., model error can be eliminated; (3) numerical tests are economical to
perform. It is understood, on the other hand, that numerical tests cannot conclusively validate any
method which is meant to be used ultimately with real data; but they can serve as a useful first

check on proposed methods.

The aim of these experiments is to test the properties of the different parameter estimation
algorithms under different conditions and to foresee any potential problems that may be encountered
when treating real data. Among the properties of interest are: (1) robustness: this property deals
with the stability of the parameter estimates when the conditions are not optimum, e.g., in the
presence of noise; (2) uniqueness: the parameter estimates may not be unique and this fact may
not show up in the results of each algorithm; (3) detection of stiffness loss: although the stiffness
parameter estimates may not be “readily intuitive” | the algorithm should be able to detect localized
changes in the stiffness. For damage detection purposes, this is the most important feature; (4)
determination of interplay between the properties of the mechanical system and ill-conditioning in

the numerics leading to erroneous parameter estimation.

Because of the large volume of numerical tests and results, data is presented in the following

way:

1. All parameter estimation algorithms are employed to generate estimates for the structural
identification problem of a 2 degree-of-freedom chain system. Analytical expressions are
available that characterize this model exactly. This system is particularly attractive since
it presents many “difficult” features present in much larger problems. This system is also

attractive since it is not computationally demanding and thus all algorithms can be employed.

2. A reduced number of algorithms is used for larger problems since only those which are more

computationally efficient are examined. The types of structures which are used as systems
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are: 10 degree-of-freedom chain models, and 20 degree-of-freedom beams. These systems are
considered to present representative problems associated with real engineering systems. Testing
these structures under all conditions is an enormous task especially since the larger systems
require very large computation times. The tests performed on the structures are enough to
convey an idea of what the problem areas are in the identification of structural parameters. One

section is devoted to each of the major problem areas and illustrative examples are provided.

In the following set of simulations, the mass matrix is assumed to be known and thus is kept
constant throughout the identification process. The assumption that the mass is known is made in
order to improve the uniqueness and convergence rate for the solutions. In practice, good knowledge
of the mass distribution is available for most structures from the structural drawings. For offshore
structures, however, the estimation of mass factors may be necessary since these structures present
time-varying mass distribution histories through fluid-structure interaction. Other conditions under

which the simulations are performed are described at the beginning of each of the sections below.

Characteristic of this study is that for each simulation, only one sample set of excitation-response
signals is employed to determine the values of the different parameters. A reason for doing this is,
in part, because of the orientation of this research to earthquake engineering applications. In the
earthquake problem, researchers are often restricted to excitation-response signals from only one
earthquake. Data for other structures, e.g., offshore and space structures, is more abundant since, in
general, there are more available resources. For the methodologies presented in this study, additional

data can always be easily incorporated into the parameter estimation procedure.

Section 4.1 - Chain Model Simulations

The chain model (or “shear building”) is a useful tool in earthquake engineering since framed
and other structures present natural frequencies which vary in similar proportions to the natural
frequencies associated with a uniform chain model. Fig. (4.1ab) shows two typical structures which

are modeled with the chain system in Fig. (4.1c).

The degrees of freedom of the prototype model of Fig. (4.1c) are numbered starting from next
to the base to the topmost degree of freedom, or “roof.” The stiffness matrix associated with the
mechanical model is tri-diagonal while the mass matrix is diagonal. The dynamic response of the
structure to both base “earthquake-like” loading or roof “shaker-like” loading is calculated using the
modal approach mentioned in Section 2.2.3. All characteristics describing the tests are presented at

the beginning of each section below.

A property of the chain model is that it is able to match arbitrary response histories generated

by many other linear models. Although the match is fairly good for a specific excitation, it may
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not be true that the identified model will produce good matches for other excitations. Likewise, the
stiffness values obtained from a specific dynamic structure identification run may be significantly
different from another one using sfatic test results, the latter being the easiest to interpret. In
order for the chain system to be a good overall and reliable structural building model, the building
structure should have columns of high axial stiffness and beams of high bending stiffness. Under
these circumstances, a frame structure’s interstory stiffness is reasonably approximated by a chain

model’s, both statically and dynamically.

Section 4.1.1 - Simulation with a 2-DOF Chain System

The two-degree-of-freedom chain system is used here to determine the characteristics of each of
the methods mentioned in the previous chapter. The chain system has many properties which are

also present in large systems and which make the identification of the system difficult.

The goal of each of the methods is to determine the stiffness distribution over the “height”
of the structure. The data falls in two categories: modal parameters and response time histories.
Modal data consists of the modal frequencies, modeshapes and participation factors. Response data
consists of the type of quantities measured and the locations where these are measured. There are

six data sets from which stiffness estimates are determined in this section:
( A) Fundamental mode, 1st degree of freedom measured.
( B) Fundamental mode, 2nd degree of freedom measured.
( C) Fundamental mode, both degrees of freedom measured.
( D) Two modes, Ist degree of freedom measured.
( E) Two modes, 2nd degree of freedom measured.
( F) Two modes, both degrees of freedom measured.

The success of each method depends mainly on the data available. Uniqueness also depends on
the data employed. Results from Udwadia et al. [4.1] predict that when all modes are excited and
measurements have been performed at the first floor (as in sets D and F), then uniqueness can be
guaranteed. Udwadia et al. have also shown that for set E, non-unique parameter estimates are to

be expected.

Section 4.1.1.1 - Characteristics of the Two-Degree-of-Freedom Chain System

The modal equations of motion for the linear system shown in Fig. (4.2) are
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(01ky + O2k2)  —O2k2] . o [my 01 .,
[ —Oaks Bako o' =w; 0 ma ¢ (4.1.1)

for the r** mode of vibration, r = 1,2. k; is the nominal stiffness between the ground and
the first mass (or first story stifflness) and ks is the nominal stiffness between the first and second
masses (second story). The #; and #» are the stiffness factors which modify the nominal values
to adjust to system observations. The w? = constant curves in the # plane can be easily found

by expanding the expression for the determinant and rearranging:

[01k) — wi(my + my)] [O2ks —wimy] =wim], r=1,2. (4.1.2)

Solving these equations for the eigenvalue w? yields the following relations:

2] 2
2 _ @yky | Baka | f2ks | —48,02k ks 81ky | 82kz , 82kz
2“'1 - m + my + mg mymg + my 7k my & mg
i3 (4.1.3)

2
2 8k O2ka | Bako _—48,82k ks 81k, Baka , Baka )"
w5 = mi ¥ m, E < ma : 4 myma i my ¥ my L mga

Assuming that an initial “undamaged” system at # = (1,1) has been weakened and now has
stiffness parameters 6 = (0.5,0.5) , it is possible to calculate readily the two frequencies associated
with this weakened state. In the example treated here, my = ms = ky = ks = 1. The dynamic

characteristics of the 2 degree-of-freedom chain system are given by

wi? =358 ~ 0191 (4.14)

ws? =385~ 1309 -
The type of problems that this study addresses are those whose goal is to find the values ;
given the time histories of the excitations and responses, or the modal data. Using Eq. (4.1.2) above

and matching the data in Eq. (4.1.4) produces two sets of curves shown in Fig. (4.3). The two

sets of curves are described by

(61— 207°) (02 —wi") =wi’

(02— 27") (2 = u3") =" am

The first of Eq. (4.1.5) corresponds to loci of # values denoted “Curve 17 while the
second expression corresponds to “Curve 2.” The particular geometries exhibited by these curves
demonstrate that certain problems related to uniqueness can easily arise even from simple low-
degree-of-freedom systems. In the last figure, it can be clearly seen that there are two vector points
8' = (0.5,0.5) and 6% = (1.0,0.25) such that both conditions w? = 0.191 and wj} = 1.309

are simultaneously satisfied. The interpretation of the Curve la in the same figure is that all
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the corresponding #; values have a fundamental mode whose frequency equals wj . Curve 1b
corresponds to the values of § whose second modal frequency equals w} . Curves 2a and 2b have
similar interpretation, i.e., curve 2a corresponds to values of #; such that the fundamental mode
has an associated frequency w3 . Curve 2b corresponds to the second mode. It is noticed that
Curves la and 1b do not overlap; these curves actually asymptotically approach 6; = 2w;? and
fs = w{z as 0y —F o0 and 0; —T oo, respectively. Likewise, there is an asymptote at 6; = 2u22
and @, = w3® for Curves 2a and 2b as 03 —F oo and 6; — oo . The only two curves that can
intersect are Curves la and 2b. Choosing the natural frequencies in an arbitrary fashion allows the
number of possible solution vectors f to be two, one or zero. The number of solutions depends on
whether the curves associated with each of these frequencies can intersect or at least make contact

with each other.

The two points #' and #7 are both at the intersection of Curves la and 2b, i.e., points where
wi =0.191 and w? = 1.309, respectively. Whether the two models given by these # values actually
predict the same acceleration time histories or not depends on which degrees of freedom are observed.
Besides having the same frequencies, these two models have the same top degree-of-freedom effective
participation factors, which implies that the two time histories at this degree of freedom are equal
[4.2]. If the response is recorded at the top degree of freedom only, there is no possible way to
distinguish which of the two #° solutions is the correct one. In this case, additional information
coming from the first degree of freedom clears all ambiguity since the effective participation factors
there are distinct for the two models. Thus, for any base excitation, the response at the first degree
of freedom is different for the two models. Comparison of acceleration signals is shown in Fig. (4.4)
for a broad band excitation, showing that the response for the two 6; solutions is indistinguishable

at the top degree of freedom (Fig. (4.4a) ).

Local uniqueness can be enforced whenever the gradients to the w = constant curves do not
both lie in parallel. This is the case for the solution points #' and 6% . Numerically, it may be
difficult to reach the true minimum with an optimization algorithm since the two nearly tangent

curves induce a very flat local topology.

Section 4.1.1.2 - Method of Successive Substitutions

The “SUB-ID-SS” algorithm of successive substitutions is applied to the 2-DOF Chain problem.
The chain system is undamaged originally at #° = (1,1) and then is weakened to 6* = (0.5,0.5) .
The method uses only natural frequencies and modeshapes. When the number of observed degrees of
freedom is one, the method uses, essentially, only frequency data. In this case, the only component of
the observed modeshape vector does not contribute any information since this vector is normalized

prior to any comparison.
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The operator F(#) for this model will map a point in the (6;,0,) space to another point in
the same space. The particular form of the operator depends on what information is available. For
the chain system of Fig. 4.2, assuming that the mass distribution is known and that the two modal
frequencies correspond to the system @ = (0.5,0.5), the contraction-like operator F about the
point #° is given by very large expressions (not shown here) obtained with WRI's Mathematica
[4.3] computer program. Even for the simplest model, the analytical aspects of the operator F' are

not easily derivable, namely, to prove that F(f) is a contraction in ©° if for 6 € [0,1) .
IF(8%) — F@*)|| < 6llo* — 0°,  ¥o*,0" € ©F,

so the convergence aspects of the sequence are studied a posteriori. The region of interest ©°¢ in
this case would be 0 < #; < 1, nominally, or perhaps 0 < 6; < 1.5 to accommodate for large

model errors.

Table (4.1) presents the solutions for various combinations of modal information versus degree-
of-freedom information. The estimates should converge to the correct value of 6* = (0.5,0.5) since

this is the “damaged” configuration.

Since the form of the operator F(f) is the same when only modal frequency is used, Sets A
and B in Table (4.1) yield the same results: convergence is achieved in one iteration to # values
which yield a fundamental frequency equal to the one at §* = (0.5,0.5) . There is no uniqueness as
can be seen since all three converged values are different and yet the convergence criteria is strictly
enforced. In fact, any point on curve la of Fig. (4.3) would be equally useful. Had the effective
participation factors been incorporated into the formulation of the operator F(8), a distinction
between sets A and B would be evident (since these factors are different at each of the two degrees

of freedom).

Set C presents the case where both components of the fundamental modeshape vector are
known. This case, as well as case F, below, corresponds to full knowledge of the eigenvector and
thus a linear system of equations is constructed. From this, the resulting #* = (0.5,0.5) is obtained
along with a condition number for matrix S indicating that the first eigenvector contains enough

information to guarantee uniqueness.

Sets D and E show that if two modes are measured at only one of the two degrees of freedom,
either of two possible solutions is obtained. These two solutions, #! = (0.5,0.5) and 6% = (1,0.25)
correspond to # values for which both frequencies are the same. Disregarding Fig. (4.3) (which
clearly indicates that there are only two solutions) or any other theoretical information, it is
impossible to guarantee that there are only two solutions. There seems to be local uniqueness

around the converged values since the condition numbers corresponding to the sets are non-zero.

Set F presents the same results as Set C: the point 8 = (0.5,0.5) is uniquely determined since

matrix for the set of linear equations is independent of # . With more than one complete modeshape
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vector, the rank of the new matrix can only increase and thus if set C yields the correct result, set
F also yields the same result. In the presence of noise, parameter estimates may not be exact, so

with less ill-conditioning it is expected that set F would provide better results than set C.
Section 4.1.1.3 - Generalized Least-Squares, Qutput Error, Modal Domain

The “SUB-ID-Modal” code only uses frequency and modeshape modal data. Table (4.2) presents
the comparison among the various test sets. The modal data comprising the natural frequencies and
modeshape vectors (and disregarding the damping and participation factors) are obtained from the
modal superposition program. The Fletcher-Reeves minimization technique with finite difference
gradient evaluations was employed for the modal domain. The error index referred to in this section

corresponds to Jys defined in Eq. (3.3.2.)

As in the method of successive substitutions, sets A and B share the same results since the known
modeshape vector can only be known up to a constant. Since sets A and B assume knowledge of
only one modeshape component, its absolute magnitude is meaningless. This same circumstance is
also present in sets D and E. Thus, only modal frequency data is available in these four cases. The

full modeshape does provide additional information in sets C and F.

Matching only one frequency can be easily done in practice. Sets A and B show that convergence
is achieved to # values for which the fundamental frequency equals that for # = (0.5,0.5) . The
resulting parameter estimates, however, are incorrect. There are no unique values of @ as solutions
to this dataset. As before, any point on Curve la in Fig. (4.3) is consistent with assumed modal

data.

Set C which contains knowledge of all modeshape components shows convergence to the exact
8% although the number of iterates needed is large. Sets D and E contain more modal frequency
information but converge to two # values: 6% = (0.5,0.5) and 6* = (1.0,0.25) . As mentioned in

other sections, these two values @ share the same frequencies.

Finally, set F makes use of all frequency and modeshape information to converge to the exact

#* = (0.5,0.5) in about the same number of iterations as for the other sets, a number which is large.
Section 4.1.1.4 - Generalized Least-Squares, Output Error, Time Domain

The 2-DOF chain system is considered again but here it is excited by a broad band excitation at
the base. Fig. (4.4c) and Fig. (4.4d) show the Fourier amplitude of the response at the top degree
of freedom and the Fourier amplitude of the excitation. The responses decay to small amplitudes
towards the end of the signals. The empirical (i.e., numerically calculated) transfer function between

the base motion and that at the top degree of freedom is shown in Fig. (4.2b).
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Table (4.3) shows the results for the time-domain output error approach implemented in the
“SUB-ID-Time” algorithm. The Polak-Ribiere minimization technique with analytical gradient
evaluations was employed to arrive at the results. The error index referred to here corresponds

to Jr defined in Eq. (3.3.1.)

Set A values converge to the exact results for all initial values of 6 tested. Set B does not
converge to the exact results although it converges to values which match the fundamental mode up
to four significant figures. It must be recalled that Curve la in Fig. (4.3) is a locus of 0 values
which have the same fundamental frequency. If in addition to this, the participation factor is a
slowly varying function of # along this curve then it is conceivable that there is accentuated ill-
conditioning along this locus. Ill-conditioning almost always causes spurious premature convergence
of the optimization procedure. The objective function Jr(f;,82) is contour plotted in Fig. (4.5.)
The ill-conditioning in the plot is the so-called “banana-shaped” valley which follows curve la in
Fig. (4.3) and whose valley floor is nearly flat. All other sets contain information in excess of the
information present in Set A. This allows SUB-ID-Time to reach the correct, unique solution without

any further complications.

Section 4.1.1.5 - Bayesian Approach

The application of the Bayesian approach to the SUB-ID problem is very convenient because
it assigns a probability value to each value of #. This probability distribution function is far
more informative than just the most probable value, which is effectively what SUB-ID-Time and

SUB-ID-Modal produce.

Fig. (4.6) shows six plots (Sets A-F) derived from the “SUB-ID-Prob” algorithm in which
different amount of modal and response information are considered. Each plot is a plot of the
probability of # as a function of @ itself and on an actual set of data. These data are the same
as those used for the study of other identification methodologies, namely, a 1024 point (204.8 sec),
broad-band, earthquake-like amplitude acceleration at the base. In the absence of noise and model
error, the prediction error variances of Eq. (3.4.18) would be zero, causing an unrealistic spiked
function to appear. Since this is not typical of real processes, 10% r.m.s. noise in the form of

Gaussian-white noise is added to the system signals.

Sets A-C correspond to knowledge of the fundamental frequency while sets D-F correspond to
knowledge of the two modal frequencies. Set A makes use of the response at the first degree of
freedom of the 2-DOF chain system. It identifies the most probable value of 0 = (0.5,0.5) and
gives little or no probability of occurrence to most other values. Set B makes use of the response
signal at the top degree of freedom . It is seen in Fig. (4.6b) that the pseudo-probability is non-zero

for values of # where w? = @jx = 0.191 and it reaches two peaks: one at # = (0.5,0.5) and the
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other at # = (1,0.25) (the other peaks being caused by the discretization of the plot surface but
actually form a continuous ridge from one peak to the other). The locus of points lying at the crest

of the wi = &}* ridge form the inverse of a “banana” valley.

Sets C (first mode, both responses), D (two modes, first DOF response), and F (both modes,
both responses), present no identification problems. Set C, however, still shows traces of the locus
of constant fundamental frequency due to the dominant contribution of the fundamental mode in
the top-degree-of-freedom response. Set E (two modes, response at the top degree of freedom ),
again presents similar behavior as in set B, although the peaks at 6 = (0.5,0.5) and 6 = (1,0.25)
are more pronounced. The addition of the second mode in set E eliminates the intermediate points.
The probability value at the two peaks are equal, meaning that based on the given data alone (two
modes and the top response) the two models are equally probable. This is expected since the model

response is the same at the two values of 6 .

Set F, although it emphasizes the correct #* = (0.5,0.5) solution, presents a small local
maximum at the other critical 6, i.e., 6% = (1,0.25) . Optimization algorithms may, if started
very close to # = (1,0.25) , converge “inadequately” to this second possibility. In the latter case,

choosing a different starting condition would, most probably, converge to the global maximum.

For damage detection purposes, the pseudo-marginal distributions would definitely be
dominated by the peak at # = (0.5,0.5) and, if existent, at 6 = (1,0.25) . Fig. (4.7gh) shows
marginal distributions for #; and 6, for Set B corresponding to the complete set. The “complete”
case employs probability values evaluated at the grid 8; = (n — 1)Af; for n = 1,2,...,20 with
Af; = 0.05. The marginal distributions are constructed by integrating out the other #; . This
process is a special projection of the higher-dimensional plot to one dimension. #; peaks at around
0.45 and then it decays slowly away from this value. This indicates that it is very plausible that
the structure has weakened. Looking at the marginal distribution for 6, it is clear that it has
also “failed” since the most probable value occurs at #> =~ 0.25 . In either case, stiffness loss is

conclusive.

If the distributions are highly dominated by the values at the true peaks # = (0.5,0.5) and
# = (1,0.35) , it may be more convenient to search for the most probable values and not have to
exhaustively search through all the © space. Procedures to do this have been implemented as in
the least-squares method but it is known that not all peaks are guaranteed to be found. If the most
probable values are found, however, then local distributions can be calculated for each peak. The
pseudo-marginal distributions corresponding to the two peaks of the 2-DOF chain model are shown
in Fig. (4.7Tabed.) In the last figures, “P1” denotes marginals derived from probability data in the
neighborhood of # = (0.5,0.5) and “P2”, likewise, from the neighborhood of # = (1,0.25) . The
“P14-P2”7 case employs both neighborhoods. These distributions are referred to as “partial” since

they ignore # values not close to the peaks. The addition of all partial marginal distributions is



= B3 =

also shown in Fig. (4.7e) and Fig. (4.7f) . Comparison between partial and actual distributions
shows that the most probable values of #; and @, are well represented in the partial marginals
and somewhat more blurred in the actual marginals, as is expected. From the P1+P2 marginals it
can be inferred that the plausibility of damage is high, although the marginal for 6, shows slight
probability that it is not damaged.

Section 4.1.1.6 - Homotopy Method

The homotopy algorithm (“SUB-ID-H”) is applied to the previously described 2-DOF chain
system. The weakened 6 = (0.5,0.5) configuration is considered. The method uses only the
natural frequencies but any predictions can then be ratified by comparing the model’s response with

any other available information.

The particular form of the system of ordinary differential equations depends on the choice of
the characteristic polynomial associated with the “simplified structure.” In this case, the stiffness
matrix A* takes the form:

218 0] (4.1.6)

BAEr= [0 02k2

while the stiffness matrix at 7, , K“, is just the difference between K(6) and K*(f). The

resulting transient stiffness matrix corresponding to homotopy time 7 is then

(4.1.7)

K™(0,7) = [Hlkl +Tr0k2 - rﬂng]

—7l2k2 62k2
From this expression it can be verified that at 75 = 0 the stiffness matrix corresponds to K*(0) , a
simple structure with each mass attached to a base by a single spring, and at 7; = 1 the stiffness
matrix corresponds to the two degree-of-freedom chain system under study. Assuming, as before,

that ml =m2 = k1 = &2 =1, the transient characteristic polynomial for mode 1 is

g (01,00,wi;7) = (81 + 702 — w]) (82 — w?) — 7263, (4.1.8)

The construction of the homotopy function h(f,w;r) is now straight forward:

(0y + 70y — w?)(6y — w?) — 7262 } (4.1.9)

lsrl= { (01 + 70y — w2)(02 — w3) — 7263
It 1s clearly seen from the last equation that the homotopy function’s dependence on the parameter
T is quadratic, significantly different from Chu’s formulation [4.6]. The set of ordinary differential
equations for the vector % associated with the 2 DOF chain model (see Eq. (3.5.9),) as determined

by Mathematica [4.3], takes the form

do, ( (—w3 — withy + 270, — 2r%0,) (— (wi62) + 6,7 — 2t0,7)
dr — U —(wl0) + w20y + w20w20s — withs + withs + 2205 — AIT07
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(w;" +w;"‘r — 0y — 2780, + 21’292) (— (w%ag) + 322 —_ 21’922)
e (uf&l) +w§01 —+ uffﬂz — w§02 —_— waBQ + nggg -l" 2&1%1’202 — 2&.?22‘.?202

}

ady _ { (w3 — 65) (= (wib2) + 62% — 276,%) B
dr — ' — (i) + w30 + wils — w3l — wiThy + wWiThs + 2i T2 — w2120,

(—wi +6s) (= (w36:) + 62" — 276,°)
—(wi01) + w30) + wifs — wiby — wWiThs + wWiThs + 2wI T2, — 202720,

}. (4.1.10)

The integration of the above equations with two starting initial conditions (associated with the
roots @ of the simplified structure) yield two homotopy paths in the (6,,62,7) space. Such paths
are shown in Fig. (4.8) where it can be seen that the initial roots are connected to the roots of
the characteristic polynomial of the chain system, 6' = (0.5,0.5) and 6 = (1,0.25) . Whether the
two roots satisfy the observed mode-shapes and/or participation factors can be verified by direct

substitution into the model and calculation of these quantities.

As has already been discussed, 8! is a solution for all sets (A-F) while the other (non-unique)
solution, #2 | is only a solution for sets B and E even if the participation factors are taken into

account.

Section 4.1.1.7 - Summary for the 2-DOF Chain System

The method of successive substitutions and the modal output error method rely on the data
in similar ways and their predictions are similar. Neither makes use of the participation factor
information so they do not perform well when only one degree of freedom is monitored, converging
to any value @ which shares the same natural frequency. The time output error approach makes
use of the participation factor in an implicit manner (since the latter is needed to calculate the
response of the model) and so it is not as sensitive to ill-conditioning as the previous two methods,
but neither of the three address the non-uniqueness issue, formally. The Bayesian approach gives
the most information. The joint probability distribution has been projected onto a two-dimensional
plot of #; versus pseudo-probability, for all sub-structures present. From this plot, it is easy to
determine the state of the system. Non-uniqueness can also be identified as long as a relatively fine
grid is used. The finer the grid, the more computing time needed; the fine grid used here made the
Bayes method the most computationally demanding method. The homotopy method is restrictive in
that there should be as many observed natural frequencies as there are parameters #; . The method

does, however, identify exactly all non-unique solutions.

Section 4.1.2 - Simulation with a 10-DOF Chain Model

The time output-error approach is the primary tool used in the following identification runs. The

modal output error does not take full advantage of the data (i.e., no use of effective participation
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factors) nor does the method of successive substitutions; the latter has also proven to be non-
convergent in certain situations. The probabilistic approach is the most informative but requires
excessive computational times when the number of structural parameters becomes larger. The
homotopy method appears to have considerable potential but further study is needed to examine
potential shortcomings of the technique (such as the considerable amount of computational effort
required). Although uniqueness is still an area which is not fully resolved by the output-error
approaches, they do provide a compromise between computational efficiency and reliability. Program
SUB-ID-Time has been employed to calculate the stiffness parameter estimates for the 10-DOF chain
system under different circumstances. The Polak-Ribiere minimization technique with analytical
gradient evaluation was employed in all SUB-ID-Time tests, except in those where noise was added.
In these, the gradient evaluations were performed using the finite differences scheme previously

mentioned.

The conditions for most tests are nearly constant with only one or two variables changing in
each test. The “standard conditions” are the following: the excitation is placed either at the base as
a prescribed base acceleration (“base excitation™) or at the top degree of freedom of the structure
as a force (“roof excitation”). Accelerations are monitored at all ten degrees of freedom of the
system. Possible errors in real signals such as noise, lack of synchronization or miscalibration are
present in the “standard” simulated signals. The excitation signal shown in Fig. (4.9) is applied
in most numerical tests both at the base and at the top degree of freedom . The signals consist of
of 1024 time points with A¢ = 0.02 sec. yielding a 20.48 second duration signal, approximately
10 times the fundamental period. The signal is Gaussian distributed in time multiplied by a time
envelope decaying to zero amplitude at 10.24 sec. The excitation is broad-band in the frequency
domain with a Nyquist frequency of 25 Hz, nearly twice the largest natural frequency of the system
( fio & 10Hz ). Damage is represented by a stiffness degradation of approximately 27% in the
second and third interstory levels, and 11% in the fourth level. This pattern is chosen to model
the complete flexural stiffness degradation of four columns in level 2, four columns in level 3 and
one column in level 4 in a typical ten-story, ten-bay building structure. In this way, the stiffness
at the damaged stories reduces to approximately 7/11, 7/11 and 10/11 of the nominal interstory
stiffness, respectively. The structural characteristics typical of the 10 degree-of-freedom chain system
under consideration are shown in Table (4.4). The effects of the “damage” (or weakening of some
members) on the structural and modal parameters are also shown in the same table. The effects of
the weakening on the response signals are shown in Fig. (4.10) which shows the response of the
undamaged and damaged system to the excitation. The qualitative nature of the responses does not

clearly indicate the considerable loss of stiffness in the second, third, and fourth inter-story levels.

Section 4.1.2.1 - Frequency Content of the Excitation
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The effects of bandwidth of the excitation are shown by examining both frequency content and

excitation location.

Procedure and Results: Two frequency bands are chosen in order to observe the influence of
frequency content on the parameter estimates. The “low” frequency signal contains frequencies in
the range 0 to 2 Hz. From the transfer function plots presented in Fig. (4.11), it can be seen that
only the first mode can be significantly excited. The “high” frequency signal contains frequencies in
the range 0 to 25 Hz as shown previously in Fig. (4.9). The identification results for both the roof
and the base-excitation cases are shown in Table (4.5). The manner in which each excitation case
participates in the response can be clearly seen in the transfer function plots in Fig. (4.11). These
plots show that roof excitation excites practically all modes of vibration while base excitation excites
primarily the first three or four modes (for the case of a uniform chain model). If the structure was
moderately damped and was to be excited with a sinusoidal signal with a constant frequency equal
to that of a natural mode of the system, then that frequency will be dominant in the response.
For reasons similar to those discussed in the two-degree-of-freedom case, generally there are large
number of @ vectors which have this same natural frequency in common. All of these models having
the same natural frequency are referred to as “similar models.” Since the participation factor does
not vary rapidly with variations in #; (for moderate ranges of the latter), then the response of any
similar model can be similar to the original model. The output error approach can rapidly find a
similar model. To try to find the point of lowest output error corresponds to moving tangentially
along a flat banana valley. This flat banana valley now corresponds to the locus of points in ten-
dimensional @ space, all points sharing this same natural frequency. In the base excitation case,
the system “filters” the excitation signal and produces a nearly monochromatic response with the
dominant frequency equal to the fundamental frequency of the structure, then, as argued above, a
large number of other models can produce nearly the same response. The optimization algorithm
then tends to prematurely converge to one of these models which give a small output error. In the
roof case, however, there are more modes participating in the response and convergence is better
behaved. For each modal frequency alone there is a flat banana valley, but for the joint problem with
multiple frequencies in the output, there is a “superposition” of flat banana valleys. Most of these
banana valleys have the same characteristics in that they concave out from the origin, although not
all of these higher dimensional banana valleys coincide exactly. Also, higher modes may also present
convex curves such as Curve 2b in Fig. (4.3.) The end result of this superposition is that the joint
banana valley is now defined along a locus different from the individual banana valleys corresponding
to the individual modes. The level of flatness decreases with the amount of separation among the
different individual banana valleys. If the flatness of the joint banana valley has been removed,
then the optimization algorithm converges at a much faster rate than before and without premature
convergence. There may be situations where if there are four modes participating simultaneously

in the response, the optimization algorithm may converge matching three frequencies correctly but
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not the fourth, hence, yielding significant parameter errors and output error. These cases have not

occurred in the actual tests, even in those cases where large departures are common.

The parameter matches in Table (4.5) are very good in all cases. The low values of the
error index indicate almost perfect fit to the target signals. The worst parameter identification
case corresponds to the low-frequency base-excitation signal (within 1.2% from the exact) while
the other cases are nearly exact. As expected, the smaller the high frequency content in the output
signal, the lower the resolution and, thus, the slower the rate of convergence with possible premature

convergence.
Section 4.1.2.2 - Duration of the Excitation

The effect of duration of the excitation on the accuracy of the stiffness estimates is examined

in the absence of noise.

Procedure and Results: Standard test conditions apply. The duration of the excitation seems
not to corrupt the results for all recording times greater than 0.7 of the fundamental period. In the
absence of noise, the stiffness estimates agreed with the exact values to within 0.001 for durations

as small as a quarter of a fundamental period.

Section 4.1.2.3 - Selection of Monitored Degrees of Freedom

The effects of monitoring different degrees of freedom on the parameter estimates are studied

here.

Procedure and Results: Standard test conditions apply. Three sets of signals are considered.
In set 1, all degrees of freedom are monitored; in set 2, only the top degree of freedom is monitored;

and in set 3, only the first degree of freedom is monitored.

Table (4.6) shows the results for the roof and base-excitation cases. Here, the results for sets
1 and 3 are accurate while for set 2 the results are poor. The results for set 1 are almost exact,
the results for set 2 deviate considerable from the exact while, for set 3, the results are completely
different from the exact. The poor results are expected in both situations because of non-uniqueness
conditions. Udwadia and Sharma [4.1] have presented a discussion on output configurations for a
chain system from which unique stiffness parameter values can be obtained in the base-excitation
case. Udwadia et al. have also extended the study to the roof-excitation case [4.4] where he finds
similar conditions. The output configurations that produced the poor results are the input-output
configurations that lead to non-unique stiffness determinations. In the other situations, however,
uniqueness is only guaranteed as long as “clean” information from all modes is present in the output

signals as in this noise-free case. In the presence of noise, uniqueness is no longer guaranteed, but
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the more higher-mode information there is, the better accuracy that can be expected.

Deviations from the exact distribution, however, do not necessarily imply a bad match in the
response signals. For the roof-excited, set 3 case, for example, the match at the first degree of
freedom is nearly perfect as can be seen in Fig. (4.12). In this case the algorithm has converged to
another solution equivalent to the exact one as far as the observed input and output are concerned.
This case seems to be analogous to that already discussed in Section 4.1.1.3 and in Fig. (4.3b) for
the 2-DOF chain model.

Section 4.1.2.4 - Response Quantity to Monitor

The effects of using either measured response displacements or accelerations are examined.

Procedure and Results: Standard test conditions apply except that both accelerations and

displacements are employed in the identification.

Table (4.7) shows the identified stiffness distribution for the base and roof-excitation cases.
It is seen that the values corresponding to displacement signals differ only slightly from the exact
distribution, with a maximum of 4%. The estimates corresponding to the acceleration signals, in

comparison, are essentially perfect.

The frequency content of the displacement signals involves only the lower frequencies. The
higher-frequency content inherent in the acceleration signals leads to faster convergence rates in
the parameter estimates while integration of the displacement signals reduces the high frequency
content, thereby losing valuable system information. As previously discussed, the lack of higher
mode information in the displacement signals leads to the creation of the shallow “banana valleys”
for the functional J¢(#) , which greatly retards convergence to the minimum of Jp . The increase
in the slope of the valley floor resulting from higher mode information allows the minimization

techniques to reach the minimum with less difficulty.

Displacements might prove to be useful in cases where the acceleration signals contain very
low amplitudes in the low frequency domain. In these cases, both displacement and acceleration
signals could be used simultaneously. However, as a practical matter, it is usually easier to measure
structural accelerations in the field using inertial devices than to measure displacements relative to

some reference system.

Section 4.1.2.5 - Noise in the Excitation and Response Signals

Unrealistically high levels of noise are added to the system signals to produce “noisy signals”

to test the robustness of the method.
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Procedure and Results: Standard test conditions apply. Noise in the form of a Gaussian white-
noise signal is added to both the input and the output of the system. The noise signals added to
the input have an r.m.s. (root-mean-square) value equal to a specified fraction of the r.m.s. value
of the input signal. Similarly, the noise signals added to the output have an r.m.s. value equal to a
specified fraction of the r.m.s. value of the response signal corresponding to the topmost degree of
freedom. An illustration of the construction of one of these noisy signals is presented 1n Fig. (4.13).
The first level of noise considered corresponds to the case where the r.m.s. noise ratio is 50%. The
second level of noise corresponds an ezireme case of adding 100% noise. It is important to note that
since the r.m.s. for the signal at the topmost degree of freedom is normally the largest, the ratios
between the r.ms. of the noise and the r.m.s. of the signals from the lower levels of the system are

larger than the prescribed ratio.

Table (4.8) shows the results for the noise-free case and for the 50% and 100% noise-added
cases. For the 50% noise case, the results remain considerably close to the exact distribution, within
13% for base excitation and within 5% for roof excitation. For the 100% noise case, even though the
stiffness values vary considerably, they remain within 46% of the exact values for the base-excitation

case and within 9% for roof excitation.

Section 4.1.2.6 - Type of Damage Present in the Structure

The sensitivity of the algorithm to different stiffness degradation distributions is examined.

Procedure and Results: Standard test conditions apply. The sensitivity of the results to the
“damage” pattern in the structure is considered. The first pattern consists of a reduction of interstory
stiffness at the 2nd, 3rd. and 4th interstory levels. The second pattern consists of a similar stiffness
reduction at the 9th, 8th, and Tth levels. The third pattern is a combination of the two former
patterns. The fourth pattern is characterized by an extreme reduction in the stiffness factor in the
4th and Tth interstory stiffnesses. Table (4.9) shows that the estimates in all four cases are in
excellent agreement with the exact values, suggesting that the algorithm works well regardless of

the “damage” distribution in this noise-free case.

Section 4.1.2.7 - Signal Synchronization

The aim in this section is to determine whether time shifts from lack of synchronization among
the signals induces significant errors in the parameter estimates, since such time shifts are known to

produce substantial errors in the identification of the higher modes [4.5].

Procedure and Results: The standard test conditions are assumed. With 11 available signals, it
is possible to construct a large number of time shift combination among the signals. It is expected

that the largest errors occur when the shift takes place between the excitation signal and all the
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response signals. Two time shifts between the input and the output of 2A¢ = 0.04 and 4At¢ = 0.08
sec. were considered. Table (4.10) shows the estimates from program SUB-ID-Time. Results show
excessively high sensitivity to these shifts, both in the roof and in the base excitation cases. This
sensitivity is expected to be due to the active participation of the higher modes since their periods

are of the same order as the shifts.
Section 4.1.2.8 - Miscalibration of the Signals

The effects of accelerometer miscalibration in the parameter estimates are studied in this section.

Procedure and Results: Standard test conditions are given. It is assumed here, a priori, that
the excitation signals are not calibrated adequately. Three “miscalibration levels” are considered:
0%, 5%, and 10% increases in the excitation signal. Since the excitation is larger than the one used
for the reference system, the predicted response calculated by any dynamic algorithm is larger
than expected. Tt is then expected that the damping ratios increase in order to decrease the
response amplitudes to levels comparable with those corresponding to the “system” signals. It
is not clear, however, whether the 6 value estimates are influenced significantly. Any change in
the & parameters should always be consistent with the natural frequencies since discrepancies in
the latter cause the largest contributions to the error. Table (4.11) shows the estimates derived
from program SUB-ID-Time. It is seen in this table that the values are quite accurate. As a rule of
thumb, the f# estimates incur percentage error levels lower than those in the calibration. Based on
these results, it is expected that miscalibration does not generate much more error even when only

a few of the degrees of freedom are measured.

Section 4.1.2.9 - Summary for the 10-DOF Chain System

Ignoring any shortcomings in terms of lack of uniqueness, the time-based output error method
presents good characteristics. The method was sensitive to ill-conditioning when very few modes
participated in the response. Low frequency breadth in the input, location of the excitation,
monitoring of displacements rather than accelerations, sampling and duration of the signals, choice
of degrees of freedom to monitor, and noise, are some of the effects studied here which have an effect
in the participation of more than a few modes. The first two effects mentioned above affect the

results the strongest.

For normal experimental setups, special attention should be placed on signal synchronization.
This seemed to have a very strong effect on the results since lack of synchronization can cause
the model higher modes to be out of phase with respect to observed data, thereby corrupting the

estimates of their modal parameters.
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Section 4.2 - Beam-Column Model Simulations

The chain model studied in the previous sections is a discrete version of the shear beam. In
this section, a bending beam is modeled to examine whether any significant differences appear in

the parameter estimation process for this type of element.

Bending beams present very different mechanical characteristics from the chain system studied
in the last sections, which appear to make the beam identification problem far more difficult to solve.
The difficulty stems from the excessive ill-conditioning present when relatively few modes contribute
to the response used to determine the structural stiffness parameter values. Results suggest that
in the bending beam case, a small neighborhood around a set of modal parameters is “mapped”
to a much larger range of stiffness parameter values. In the chain system case, larger variations in
the modal properties are needed to differentiate one set of stiffness parameters from another. The
results that follow, although not conclusive, give the impression that there may be identifiability
problems where one set of modal parameters may be mapped to two or more stiffness parameter

vectors.

The comparisons presented in this section are restricted to four areas: (1) location of the
excitation, (2) frequency content of the excitation, (3) selection of the monitored degrees of freedom,
and (4) the effect of noise in the determination of the values of the structural parameters. In most
simulation tests below, only the translational degrees of freedom are used since the rotational degrees

of freedom are difficult to measure in real-life situations.

All beam models treated here have one end fixed so as to simulate the cantilever condition;
the degrees of freedom at each node consist of a transverse displacement and of a rotation. The
cantilever beam is divided into 10 elements giving a total of 20 degrees of freedom. Fig. (4.14)
shows a schematic of this beam indicating how the “sub-structures” or modules are associated with
the degrees of freedom. The “standard test conditions” are similar to those for the chain system:
accelerations are monitored at all 10 transverse degree of freedom of the system. No noise, lack
of synchronization or miscalibration is present in the signals. The excitation signal shown in Fig.
(4.9) is applied in numerical tests both at the base and at the top degree of freedom except that in
the present tests the time step has been reduced. The signals consist of of 1024 time points with
At = 0.002 sec. giving a 2.048 second duration, of the same order of the fundamental period. The
signal is Gaussian distributed in time with an envelope decaying to zero amplitude at 1.024 sec. The
excitation is broad-band in the frequency domain with a Nyquist frequency of 250 Hz, nearly twice
the largest natural frequency of the system ( fig & 130H 2 ). Damage is represented by a stiffness
degradation of approximately 27% in the second and third inter-story levels, and 11% in the fourth
level as in the chain case. The effects of the “damage” (or weakening of some members) on the modal

parameters are also shown in Table (4.12). The effects of the weakening on the response signals are
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shown in Fig. (4.15) which shows the response of the undamaged and damaged system to the
excitation. Table (4.4) and Table (4.12) illustrate that the ratio of the higher mode frequencies
with respect to the fundamental mode frequency is very different between the chain and beam model
cases. The natural frequency band in the beam case is significantly wider than in the chain model

case. The wider the band is, in practice, the more difficult it is to excite the higher modes.

The code SUB-ID-Time is used in all of the tests to determine the stiffness distributions and
damping ratios from the simulated signals. It is found, in general, that the results associated with
roof excitation are closer to the exact values than those associated with base excitation. In the same
way as for the chain model, the roof loading excites more strongly the higher modes, thereby giving
more information about the dynamics than base motion, which excites mainly the first modes of

vibration. This is illustrated by the corresponding transfer functions given in Fig. (4.16).

Section 4.2.1 - Frequency Content of the Excitation

Observations are made to determine whether the parameters are estimated accurately with few

modes present in the response signals.

Procedure and Results: The standard test conditions are assumed except that the excitation
frequency bandwidth is between 0 Hz and 7 Hz in one test and between 0 Hz and 250 Hz in another
test. The number of modes excited is 2 in the 0 - 7 Hz case and approximately 15 in the 0 - 250 Hz

case. Table (4.13) shows the results for the two cases for the two locations.

The results indicate that the estimates are highly unreliable when only few modes are excited.
The measures of fit, however, are quite good, which seems to imply that the match of the properties
of the first few modes was good. Table (4.13b) shows that, indeed, the modal properties match
quite well (within 1.7%). It is believed that numerical ill-conditioning or a local minimum was
the reason why the optimization algorithm converged (prematurely) to inaccurate results. Non-
uniqueness in this case would have given an optimal error index of zero, since there is no noise in
the signals. There is also the possibility that the algorithm may have stopped prematurely before

getting to the non-unique solution.

Section 4.2.2 - Selection of Monitored Degrees of Freedom
The aim of this section is to determine whether the parameter estimates are affected if different
degrees of freedom are monitored.

Procedure and Results: Standard test conditions apply although different degrees of freedom

are monitored in each of the four tests. Set 1 consisted of measuring all 20 degrees of freedom in
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the model, Set 2 consisted of all 10 transverse degrees of freedom, Set 3 consisted of only the first

transverse degree of freedom, and Set 4 consisted of only the tenth transverse degree of freedom.

Table (4.14) shows that the output error index is almost zero in all cases, indicating excellent
matching of the system time histories by the models. The fact, however, that there are various
stifiness distributions which render almost identical time histories shows that either numerical ill-
conditioning or non-uniqueness is definitely present. For non-uniqueness, the optimal error index
must be zero and Tab 4.14 suggests that this does not occur. However, there is still the possibility
that the algorithm converged prematurely, or that it converged to a local minimum, so it is not
possible to rule out the existence of a non-unique solution. Non-unique parameter estimates were
found in the chain model case when certain degrees of freedom were monitored. The same pattern
of tests is assumed here as in the chain system, although no theoretical study like that of Udwadia
and Sharma has been done for the beam model which would tell when non-uniqueness is to be
expected. Numerical ill-conditioning, where different stiffness distributions yield almost but not
eractly identical modal parameters (producing almost the same response), may also be the reason
why the algorithm converged to the wrong set of values. Table (4.14b) shows how close the modal
parameters are for the different stiffness distributions. The active participation of only a few of the
15 modes, as shown in Fig. (4.16), may be the reason why differences between the system and model
only arise in the higher modes. The error in the fundamental frequency is most likely due to the

short duration of the signals compared to the fundamental period.

Section 4.2.3 - Noise in the Excitation and Response Signals

An idea of the extent of deterioration in the parameter estimates introduced by measurement

noise is determined here.

Procedure and Results: Standard test conditions apply except that noise in the form of a
Gaussian white-noise signal is added to both the input and the output of the system. The noise
signals added to the input have r.m.s. (root-mean-square) values equal to a specified fraction, e.g.,
5 %, of the r.m.s. value of the input, and likewise for the response signals. Table (4.15) shows
results corresponding to 0 and 10% r.m.s. ratios. From the table it is evident that the introduction
of the noisy signals deteriorates the parameter estimates to greater extent than in the chain system
results. Part of the reason for this is that in the chain case all degrees of freedom are measured

while in the beam case only the translational degrees of freedom are considered.

The roof excitation case presents worse estimates than the base excitation, a fact that contradicts
the expectation that the roof case excites more higher modes thus making more information available
for the stiffness parameter estimation. The chain case was consistent with this expectation. A

possible explanation is that more modes are active in the roof excitation case and thus more
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conditions must be satisfied. If these conditions are incorrect, as here where noise is added to
the signals, then the SUB-ID-Time algorithm is more likely to have to change the parameter values
to be able to accomodate to the incorrect modal conditions. In the beam case, not all degrees of
freedom are monitored, while in the chain case all degrees of freedom are measured. The incorrect
conditions are more likely to be satisfied in the beam case since there is more flexibility in the
stiffness parameter estimation because of the fact that not all degrees of freedom are constrained to

take prescribed motions.

Section 4.2.4 - Summary of the 20-DOF Beam-Column System

The results shown in this section are analogous to those presented for the 10-DOF chain system
although in the 20-DOF beam-column case, however, the modal frequencies are very separated. This
separation induces much more ill-conditioning in the results since it is very difficult to retrieve the
smaller higher-mode participation from the measured signals. It is expected that in real situations,
however, modes are much closer together thus providing much more information from which to

extract more modal data.
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Data Stiffness Parameters Modes DOFs Error Index Eval.
Set Starting Value Converged Value

6 2 6 )
A&LB

1 1 0.531 0.435 1 - 6.4-10-17 2

2 1 0.783  0.282 1 - 1.0-1071 2

2 0.5 1.183 0.237 1 - 14.10°1¢ 2
C

1 1 0.5 0.5 | 1,2 1410717 2
D&E

i 1 0.5 0.5 1.2 - 94.10"° 190

2.5 1 1 0.25 12 - 9.4-10"% 229

25 0.5 1 0.25 1,2 - 9.9-10"° 185
F

1 1 0.5 0.5 1.2 1,2 4.0-10"17 2

Table 4.1: SUB-ID-SS results for the 2-DOF chain model, using only modal frequencies and
modeshape components at the measured degree(s) of freedom.

Data Stifflness Parameters Modes DOFs Error Index Eval.
Set Starting Value Converged Value

6, 92 & 6
A&LB

1 1 0491 0526 1 - 6.2-10- 132

25 1 2343 0210 1 - 4.0-10730 175

25 0.5 2.483 0.208 1 - 4.0-10"3° 174
C

1 1 0.5 0.5 1 1,2 1.1-1071 209
D& E

1 1

25 1 0.5 0.5 1,2 - 1.6-10-1 186

2.5 0.5 1 0.25 1,2 - 8.7 1632 141
F

1 1 0.5 0.5 1,2 1,2 5.1-10~1! 136

Table 4.2: SUB-ID-Modal results for the 2-DOF chain model, using only modal frequencies
and modeshape components at the measured degree(s) of freedom.
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Data Stiffness Parameters Modes DOFs Error Index Eval.
Set Starting Value Converged Value
[ (3 0, b2
A
1 1 0.5 0.5 1 1 1.9-10°7 274
2 1 0.5 0.5 1 1 1.1-10® 665
2 0.5 0.5 0.5 1 1 2.5-10"7 482
1 0.25 0.5 0.5 1 1 6.0-10" 537
B
1 1 0498  0.506 1 2 7.5-10~¢ 612
2 1 1.014 0.249 1 2 9.5-10"° 393
2 0.5 1.054 0.245 1 2 1.3-10* 56
1 0.25 1 0.25 1 2 1.6-1018 53
C
1 1 0.5 0.5 1 1.2 2.0-10"8 316
2 1 0.5 0.5 1 1,2 34-10"% 606
2 0.5 0.5 0.5 1 1,2 1.6-10°7 647
1 0.25 0.5 0.5 1 1,2 14-10°7 532
D
1 0.5 0.5 1,2 1 2.1-10-19 703
2 1 0.5 0.5 1,4 1 2.1-10"1 677
2 0.5 0.5 0.5 1,2 1 1510716 608
E
1 1 0.5 0.5 1,2 2 2.7:10712 390
2 0.5 1 0.25 1,2 2 1.5-10~16 833
F
1 1 0.5 0.5 1,2 1,2 1.7-10-18 596
2 0.5 0.5 1,2 1,2 1.7-1018 653
2 0.5 0.5 0.5 1,2 1,2 1.7-10°28 595
1 0.25 0.5 0.5 1,2 1, 2 1.7-10"18 760

Table 4.3: SUB-ID-Time results for the 2-DOF chain model subjected to broad band excitation.




Stiffness Parameters
9, 6 85 05 b b6 07 fs fs b BT

Undam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -
Dam 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 27.3%

Modal Natural Frequencies (Hz)

f fa I3 fa fs fs Iz Iz fa fro ‘t‘){f}:

Undam 1.005 2.991 4911 6.721 8.381 9.854 11.11 12.11 1285 13.29 -
Dam 0939 2917 4.824 6.503 8.092 9.509 1054 11.41 1244 13.18 6.6%

Table 4.4: Modal frequency comparison between the damaged and the undamaged Chain System
configurations. The damping used to create the response signals for the damaged structure is 5% of
critical.

Stiffness Parameters
Maz 8 E
91 g, 63 94 05 66 07 66 09 910 Ert'f)r Ind:;o:’-p

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof
2Hz 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 1.0:307%
25Hz 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 9.7 -30~°

Base
2Hz 1.002 0.724 0.733 0.898 1.003 1.009 0.996 0.996 1.000 1.000 1.2% 5.7-10F
25Hz 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0-10°°

Table 4.5: SUB-ID-Time results for different frequency content in the excitation signals. Ill-
conditioning is introduced when only few modes are excited and induces the numerical scheme to

converge prematurely.
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Stiffness Parameters
6 62 6s 65 65 85 6 65 B O Mz | Error

Error

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof

All  1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.T-A0""
Ist 0.098 0.738 0.740 0.885 0.918 1.049 1.066 0.984 1.000 1.000 90.2% n/a
Roof 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.0-10"°

Base

All  1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 40-10-%
1st  1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 94-10"°
Roof 0.900 0.864 0.764 0.863 0.888 0.888 0.941 1.03 1.21 110 21% n/a

Table 4.6: The placement of the sensors in a structure is important since there are sensor
distributions which prevent the unique determination of the stiffness parameter estimates. The
basement excited-roof monitored case, above, shows stiffness parameters with large deviation from
the “exact” stiffness distribution yet produces identically the same response.

Stiffness Parameters

6, 8 03 04 s s 67 s fa b10 gr‘:'ira In%:;o.rly

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof
Displ 0.961 0.731 0.751 0.927 0.977 0.971 1.00 1.04 1.03 0.970 4% n/a
Accel 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7 - 10"

Base
Displ 0.974 0.738 0.732 0.916 0.978 1.01 0.997 0.988 1.04 0.990 4% n/a
Accel 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0-10-%

Table 4.7: SUB-ID-Time results when monitoring displacements and accelerations. The accel-
eration signals contain higher frequency information that prevent the premature convergence of the
minimization algorithm thus arriving at the correct results.
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Stifiness Parameters
[/ 1 92 33 94 [ 5 96 67 93 69 910 gria;ra I nfé:;o.rfr

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7-107%
50% 0.985 0.722 0.747 0.922 0.982 0961 1.02 1.05 1.03 0.972 5% n/a
100% 0.959 0.747 0.727 0960 1.01 0.945 1.01 1.08 1.05 0.918 82% n/a

Base

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0-10"°
50% 0.874 0.669 0.771 0970 1.02 0.977 1.03 1.05 106 1.01 126% n/a
100% 0.643 0.738 0.938 0.889 1.07 0975 0.991 1.23 1.15 1.06 45.7% n/a

Table 4.8: SUB-ID-Time results for different noise-to-signal levels. The stiffness parameter
estimates distort slowly as the noise levels are increased.

Stifilness Parameters
5 04 O3 04 s s 6 Os Oq 010 ]gﬂ:;f Irf’l:;?l;

Exact

Pat 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -
Pat 2 1.000 1.000 1.000 1.000 1.000 1.000 0.909 0.727 0.727 1.000 - -
Pat 3 1.000 0.727 0.727 0.909 1.000 1.000 0.909 0.727 0.727 1.000 - -
Pat 4 1.000 1.000 1.000 0.200 1.000 1.000 0.200 1.000 1.000 1.000 - -

Roof

Pat 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7-10-%
Pat 2 0.999 1.001 1.000 0.999 0.999 1.001 0.908 0.727 0.727 1.000 0.1% 7.7-10"7
Pat 3 0.999 0.727 0.727 0.909 1.000 1.000 0.910 0.727 0.727 1.000 0.1% 2.0-10~°
Pat 4 1.000 1.000 1.000 0.200 1.000 1.000 0.200 1.000 1.000 1.000 0% 1.5-10-7

Table 4.9: SUB-ID-Time results show essentially no errors in the stiffness parameter estimates
for different damage patterns. Approximately 5 of the 10 fundamental modes participate in the
response monitored at the 10 degrees of freedom.
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Stiffness Parameters
6 62 63 6. 65 6 67 b6z b b FIS  rderor

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof
0.0 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% L2 0 1
0.04 1.126 0.693 0.758 0.933 1.003 1.022 0.958 0.924 0.868 0.580 42% 0.84
0.08 1.125 0.819 0.683 0.758 1.014 1.033 0.915 0.828 0.644 0.341 66% 1.02

Base
0.0 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0-10°°

0.04 0.694 0.641 0.787 1.049 1.043 1.095 1.132 1.082 0.980 0.762 31%  0.146
0.08 0.476 2.375 0.561 1.418 1.026 1.095 1.287 0.838 0.942 1.087 227% 0.339

Table 4.10: Results from SUB-ID-Time for the 10-DOF chain system corresponding to lack
of synchronization. Time shifts between the excitation and response signals produce very large
deviations in the stiffness parameter estimates.

Stiffness Parameters
0, b 03 04 o5 b5 6+ ts b 610 IAEfr':'f:ra Irf!:;o.r]-r

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - =

Roof

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7 1073
5% 0.999 0.729 0.731 0912 0.998 0.987 0.993 1.010 1.007 1.003 1.3% 1.1-10"°
10 % 1.004 0.726 0.735 0.899 1.008 0.974 0.993 1.001 1.030 0.990 3.0% 4.8-10"2

Base

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0-1075
5% 0.971 0.717 0.737 0.923 1.027 1.008 1.012 1.004 1.006 0.977 2.9% 9.7-107%
10 % 0.944 0.711 0.747 0.935 1.046 1.016 1.013 1.017 1.007 0.968 5.6% 3.8-10"*

Table 4.11: SUB-ID-Time results show relatively low sensitivity of the stiffness parameters to

different miscalibration levels.




Stiffness Parameters
61 0, A5 04 fs O 6 05 8y ()

Undam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Dam 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000

First 10 Modal Natural Frequencies (Hz)
hi f2 fa fa fs fe fz fs Je Jio

Undam 0.964 5.96 16.5 31.8 51.6 75.6 103 133 161 183
Dam  0.891  5.88 16.0 30.7 49.9 72.9 99.4 128 153 177

Table 4.12: Modal frequency comparison for the Bending Beam undamaged and damaged con-
figurations (the comparison is limited to only the first 10 modes). The damping ratio used to create
the damaged structure response signals is 5% of critical in the first 10 modes (only 10 modes are

included in the computed response).
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6, b 03 s

Stiffness Parameters

b

O

bz

03

fa

910 Maz 8

Error

Error Index Jr
Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -
Roof
7THz 0.858 0.777 0.820 0.932 1.033 1.075 1.055 1.004 0.964 0.950 14.2% 1.3-10"2
250Hz1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 3.1-10~%
Base
7Hz 0.946 0.763 0.756 0.865 0.981 1.045 1.052 1.029 1.008 1.001 54% 9.4-10~*
250Hz1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7-10"!!

Table 4.13a: SUB-ID-Time results for the 20-DOF beam with different frequency bandwidths.
The 7-Hz excitation can, at best, excite two modes while the 250-Hz case can excite 15 modes of

the possible 20 modes.

First 10 Modal Natural Frequencies (Hz)

fi fa fa fa fs fe fr fs fo fe BN
Exact 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177
Roof
THz 0.891 5.88 16.0 30.8 50.1 733 99.9 128 155 180 1.7%
250Hz 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 17T 0.0%
Base
THz 0.891 5.88 16.0 30.8 50.1 73.2 99.8 128 154 178 0.4%
250Hz 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 174 1.7%

Table 4.13b: SUB-ID-Time natural frequency results for the beam problem with different

frequency bandwidth excitations.




Stiffness Parameters
8, 92 93 0.1 95 96 6 98 09 810 %fr‘:ira InEJ::.'OET

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - =

Roof

Set 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0%  5.6-10"12
Set 2 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0%  3.1-10"°
Set 3 1.033 0.690 0.788 0.993 1.033 1.013 0.943 0.917 0.979 0.985 84% 16-103
Set 4 0.973 0.708 0.754 0.949 1.025 1.004 0.986 0.984 0.994 0994 4.4% 16-107°
Base

Set 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 6.0-10-1°
Set 2 1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7-10"%!
Set 3 0.984 0.743 0.723 0.897 1.015 1.039 1.036 1.000 0.973 0.964 3.9% 3.3-10~*
Set 4 0.904 0.753 0.797 0.901 1.037 1.031 1.077 0.975 0.967 0.932 9.9% 7.9-10*

Table 4.14a: SUB-ID-Time @ results for the 20-DOF beam model for various monitoring
patterns. Excitation monitored at fewer than all 20 degrees of freedom may be nearly matched by
more than one stiffness parameter set.

First 10 Modal Natural Frequencies (Hz)
h fa fs fa fs fe Iz fs fa fro i

Exact 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177

Roof

Set1 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0%
Set 2 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0%
Set 3 0.899 5.89 16.0 30.7 49.9 72.9 99.4 128 153 177 0.9%
Set4 0.891 5.88 160 30.7 499 729 994 128 153 177 0.0%

Set 1 0.891 5.88 16.0  30.7 49.9 729 99.4 128 153 177 0.0%
Set 2 0.891 5.88 16.0 30.7 49.9 729 99.4 128 153 174 1.7%
Set 3 0.891 5.88 16.0 30.7 49.9 729 994 128 153 174 0.0%
Set 4 0.891 5.88 16.0 30.7 499 729 994 128 153 179 1.1%

Table 4.14b: Natural frequencies associated with the ¢ distributions shown in Table (4.14a.)
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Stiffness Parameters

¢ E
75 b, f3 04 tis s 0+ fs fs bo B! L.

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - =

Roof
0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 3.1-10-°
10% 1.001 0.715 0.759 0.890 0.913 1.118 1.021 0.961 1.006 0.995 11.8% 4.4-10-3

Base
0% 1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7-10~1!
10% 0.985 0.762 0.685 0.914 1.082 0.939 0.992 1.077 0.969 0.983 8.2% 9.9-10~3

Table 4.15: Noise added to the input and output signals of the bending beam system produce
relatively large deviations in the estimated stiffness parameters from the exact. These deviations
are caused by the loss of information from the higher frequency modes since their contribution to
the response is small compared to the amplitude of the added noise.
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Figure 4.1: (a) Offshore structures and (b) civil buildings can be adequately modeled by the chain model
(¢) with the appropriate mass and stiffness distributions.



ml

_>L32

02 k2

K1

12 T T T T
1oL =
sl !
=
@]
- 6 p— p—
1+
(&
o
(Ve
o al |
e.
=
Z
2] -
0 | L L !
0.1 0.2 0.3 0.2 0.5
(b) Frequency

Figure 4.2: A simple 2-DOF chain model (a) and the corresponding transfer function (b) between
its base and top-degree-of-freedom responses with § = (0.5, 0.5).
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Figure 4.3: Curves 1a and 1b correspond to the # values for which w? = w? 22 0.191. Curves 2a
and 2b correspond to w? = w? & 1.309. There are two models, #! = (0.5,0.5) and #° = (1.0,0.25)
which share both frequencies. (Only first quadrant is relevant for “physical” models.)
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Figure 4.4: (a) Second DOF and (b) first DOF acceleration responses of the “damaged” 2-DOF
chain model. The two responses in each diagram correspond to the two possible stiffness distributions
sharing the same frequencies. The spectra of the excitation at the base is shown in (c) while the
spectra of the response at the second DOF is shown in (d).
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Figure 4.5: Contours for Jr corresponding to base excitation and monitoring of the top-DOF
response. The contours indicate the so-called “banana valley” which very often, because of its
relative flatness, induces spurious premature convergence of the minimization algorithm.
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I'igure 4.6: Joint pseudo-probability plots d
Fach set comprises different modal and/or degree-of-freedom information (see text). (Because of the plotting

algorithm, (b) and (e) visually appear to have multiple peaks when in reality there are only two peaks at

(0.5,0.5) and 0% = (1.0,0.25) joined by a smooth crest.)
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Figure 4.7: Marginal pseudo-probability distributions obtained from set B (Fig.
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P .
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(4.6.b)).

Marginal distributions (g) and (h) correspond to the discrete version of Eq. 3.4.1. Distributions
(c) and (d) are analogous versions but are constructed from pseudo-probability distributions local

to the peaks 6?

(0.5,0.5) and 6% = (1.0,0.25) as shown in Fig. 4.6. In this case, the marginal

pseudo-probability distributions in (e) and (f) are the addition of the contributions from around 6,
referred to as P1, Figs. (a) and (b), and from the neighborhood of #2, P2, in Figs. (c) and (d).
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Figure 4.9: Excitation signal used in the numerical tests. When used at the base, it is interpreted
as acceleration. When used at any story. it is interpreted as a force. (a) Time history, (b) Frequency
spectrum.
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Figure 4.10: Acceleration time histories corresponding to a chain model of a ten-story, ten-bay building
subject to base excitation. Set (a) corresponds to an undamaged structure, and (b) to the damage pattern
presented in Table 4.4. Signals range from the lowest signal, corresponding to the base acceleration, to the

top-most signal, corresponding to the roof acceleration.
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Figure 4.11: Transfer function for chain model with roof and base excitation. Spectra (a) corresponds
to roof excitation, monitoring the first DOF; (b) roof excitation, roof monitoring; (¢) base excitation, first
DOF monitoring; (d) base excitation, roof monitoring.
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Figure 4.12: Matching of the system response by a model response can be quite accurate as
seen in the error signal above. The situation corresponds to the roof excited. first DOF-monitored
case of Fig. 4.11. This accuracy, however, does not always imply a correct stiffness distribution, as
Table 4.6 demonstrates.
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Figure 4.13: This diagram shows the method emploved to construct the “noisy” signals. Noise
in the form of a Gaussian white-noise signal was added to all input and output signals. The size of
a noise signal was characterized by its r.m.s. value. This r.m.s. value was predefined as a fraction
of the rrm.s. value of the base acceleration (for input signals) or of the r.m.s. value of the roof
acceleration (for output signals).
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Figure 4.14: 20-DOF beam model employed in the simulations.
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Figure 4.15: Acceleration time histories corresponding to a beam model of a ten-story building subject
to base excitation. Set (a) corresponds to an undamaged structure, and (b) to the damage pattern presented
in Table 4.4. Signals range from the lowest signal, corresponding to the base acceleration, to the top-most
signal, corresponding to the roof acceleration.
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to roof excitation, monitoring the first DOF; (b) roof excitation, roof monitoring; (c) base excitation, first
DOF monitoring; (d) base excitation, roof monitoring,
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Chapter 5 : Data from a Model Structure

In this section, the structural identification algorithms are applied to experimental data in order
to examine their damage detection capabilities. Experimental data from a model structure are useful
since model error is involved, which is always present in all applications to real structural data, and

yvet damage can still be easily introduced.

The “3-story” frame structure depicted in Fig. (5.1a) is shaken in its undamaged state and
responses are recorded at each of the “floors” (the “undamaged” state refers to the structure just
after assemblage). From these, it is possible to calibrate the # models so that these fit the observed
data. The frame is then shaken in its damaged state, where a specified structural member is replaced
by a weaker member. Based on the analytical model and on this new data, the aim is to detect any

changes in the parameters representing stiffness degradation.

Section 5.1 - Experimental Setup and Procedures

A 6061-T6 aluminum skeleton is assembled as shown in Fig. (5.1a). The beam-column elements
are connected by aluminum elbows. Each elbow end and each beam-column element end is drilled
four times. Each hole is placed at the vertex of a square fitting inside the ends. The spacing
between the holes allowed the screws and nuts to be fastened very securely without interference.
The thickness of all aluminum parts is 3.175 mm (1/8 in) and the width is 25.4 mm (1 in). The length
of the beam-column elements is 254.0 mm (10 in). Damage is simulated by replacing member M3
by a vinyl member (of unknown viscous properties) thereby changing the elastic modulus by several
orders of magnitude. The skeleton lower elbows are bolted to a 25.4 mm (1 in) thick aluminum plate
which is itself securely clamped to a laboratory table. The width and length of the plate is 200.0

mm by 400.0 mm, respectively. The elbows on the top corners are used to attach accelerometers.

A hammer with a transducer at the tip is used in the experiments to excite the frame structure.
These experiments are referred to as Hammer-Impulse Experiments (“HIE”). The output from the

hammer is connected to an amplifier which itself is connected to the data acquisition system.
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Endevco Model 2226C piezoelectric accelerometers are placed on different parts of the frame.
A dual-surface adhesive tape is used to attach these accelerometers to the structure. The output
cables of the accelerometers are connected to Endevco 2713B amplifiers. The output of the amplifiers
is connected to an RC Electronics analog-to-digital data acquisition card inside a Compaq 8086
portable computer. The triggering and scope capabilities were provided by the accompanying
Computerscope ISC-16 program. The computer files are transfered to a VAX/VMS computer and

the signal processing and reduction are performed using the SIG [5.2] computer program.

In the experiments, an impulse is imparted to the frame at approximately 1.5 inches above the
second “floor” level by means of a hammer pulse. The pulse is captured by the hammer transducer
and transmitted to the RC Electronics input box and then stored in the Compaq computer. One
hammer pulse and two acceleration response signals are recorded on each run. The sampling is
performed every 2.0-10™* seconds. The two accelerometers measure the horizontal motion and are

attached to the structure in the following way:

Run Channel 1 Channel 2
1 Above “2nd Floor” Below “lst Floor”
2 Above “2nd Floor” Above “1st Floor”
3 Above “2nd Floor” Below “2nd Floor”
4 Above “2nd Floor” Above “2nd Floor”
5 Above “2nd Floor” “3rd Floor”

Program SIG is used to reduce the data in the following way: Channel 1 remains fixed as the
“reference” channel to verify that all excitations are consistent.  Fig. (5.4a) and Fig. (5.4b)
show the hammer pulses and the accelerations for Channel 1, respectively, corresponding to runs 1-5
as monitored in the “undamaged” test. The transfer function between the hammer pulse and the
motion at Channel 1 is calculated to determine whether the structure suffers any changes between
the impact tests. The transfer function between the hammer pulse and the Channel 2 output is also
calculated for each of runs 1-5 and, in this way, the impulse response functions are obtained. All
transfer functions are then convolved by a “typical” hammer pulse (with the same characteristics as
those shown in Fig. (5.2a)) to obtain the response at each level due to the specified Run-2 pulse.
In this way, the transfer functions address the fact that no two hammer pulses between different
runs are identically equal. This procedure is necessary because only 2 accelerometer channels are
available or trustworthy. The response signals for runs 1 and 2 are averaged to provide a signal
corresponding to the model node at the “Ist Floor” level. The same is done for signals 3 and 4 for
the node at the “2nd Floor” level. All signals are then filtered with a low-pass bell filter with cosine
decay between 90 and 100 Hz thereby removing all noise as well as any very high mode information.

The resulting signals are then decimated eight-fold so that the time step increases to 1.6 - 1073
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seconds. The associated Nyquist frequency is now close to 310 Hz. The whole procedure is done

twice: once for the “undamaged” setup and a second time for the “damaged” situation.

Section 5.2 - SUB-ID Results

Section 5.2.1 - Preliminary Simulation Results

To investigate the effects of model error and possible non-uniqueness in the parameter estimation
for the actual experimental set-up, a set of numerical experiments was first carried out. These
experiments were chosen to mimic the actual set-up so they would give insight into what results

should be expected from the experimentally acquired data.
The procedure using the simulated data is the same as that used with the actual data:
(1) Create a computationally-efficient model.
(2) Determine the level of accuracy of the model. If the accuracy is poor, create another model.

(3) For the level of accuracy in the computational model, determine the maximum number of

parameters #; allowed.
(4) “Calibrate” the parameter values for the undamaged configuration.
(5) Run the identification codes employing the damaged data and localize the damage.

(6) In the damage areas, discretize the model further in such a way that more parameters #; can
be assigned to previous members of the damaged module. Repeat steps 4-6 until all stiffness
factors in the damaged estimates are lower or equal to the undamaged estimates, since the

damage corresponds to a loss of stiffness.

A frame model with 148 degrees of freedom is used to mimic the true structure for the numerical
experiments and is referred to as the “complex system model” within this section. The elbows, the
change of moments of inertia along the length of the beam-column elements, and the boundary
conditions are taken into account. As is necessarily done in practical situations, two simpler, more
computationally-efficient models are employed for identification purposes: a 3-DOF chain model
and an 18-DOF frame model. Fig. (5.1) and Fig. (5.3) show details in the development of the
complex and simple models. The simpler models have different dynamic characteristics than the
more complex model yet it is believed that the essential interstory stiffness properties are similar.
Thus, just as in the actual experiment, the models are only an approximation to the true system.

The complex model is used to generate “undamaged” and “damaged” state data in the same way
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as discussed in the Chapter 4. Table (5.1) shows the modal parameter values obtained from the

148-DOF system model in the various states.

The 148-DOF model was constructed based on the nominal geometric and material properties of
the real structure. The damage, however, is simulated by arbitrarily reducing the stiffness values of
specific members within the complex structure. Damage pattern D1 corresponds to a 50% reduction
of stiffness in member M1 and damage pattern D2 corresponds to a 80% reduction in member M3.

Both of these members are indicated in Fig. (5.1).

The “system” or reference signals for the 1st and 2nd floors are constructed in the same manner
as in the experimental procedure: the transverse acceleration at the 3-DOF chain and 18-DOF model
node location is taken to be the average of the acceleration signals of the complex model measured
inmediately below and above this node. The signals are constructed in this way since the physical
structure cannot be monitored exactly at the nodes of the simpler models. The accelerations, though,
can be monitored slightly below and slightly above the joints where no bolts and nuts interfere with
the placement of the transducers. The accelerations at the 3rd floor of the real structure are measured
directly since there is, in practice, no interference and so, in the simulations these correspond exactly

to the model node.

The complex 148-DOF and the simpler 18-DOF frame and 3-DOF chain models produce
different responses at the monitored degrees of freedom. Fig. (5.4) shows the transfer functions
of both the complex system and the nominal simple models for the undamaged configuration. (The
nominal models corresponded to uniform stiffness distributions whose first modal frequency matched
the observed value.) Damping 5% of critical is used in the actual simulations to reduce the duration
of the latter but low damping (2% of critical) was used in Fig. (5.4) in order to illustrate how
the higher modes participate in the response. The similarities between the two transfer functions
appear in only the first three modes; the higher mode information is significantly different. It is well
known, however, that once a “coarse” model is used, inaccurate solutions at all frequency ranges are
expected, especially in the higher modes. Since it is conjectured that the simpler model still possesses
the essential interstory properties of the complex system model, the simpler model is accepted as
a viable model for the system as long as no attempt is done to predict modal properties of modes
beyond the first three, which correspond to the important horizontal translational modes. This
problem of choosing a reasonable model to approximate the actual system is a particularly delicate
one in real situations. The model should be able to capture the essential features of the dynamics

of the system, and its parameters should be physically interpretable.

Only ill-conditioning and non-uniqueness are considered in the simulations, so given that only
three modes are trustworthy, what distribution of stiffness factors #; is optimum ? From a geometric
point of view, since each modal quantity is constant on a hypersurface in the parameter space, to

pin down one such # vector requires, at least, as many intersecting surfaces as the dimension of
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the space. With N, linearly independent normal vectors to the hypersurfaces, it is theoretically
possible to guarantee local uniqueness of an N, -dimensional vector # . If some of these normal
vectors are nearly parallel, however, then there is a direction perpendicular to these normal vectors
along which the modal properties vary very slowly, i.e., ill-conditioning is present. The number
of modal quantities for the problem at hand is 12 (3 modes and 4 modal quantities per mode).
With this information, it is expected that a vector with 12 different #; values can be resolved.
But since the modeshapes change very slightly with changing values of #; , it is probably more
realistic to assume that there are no more than 3 independent modal quantities (3 modes and only
one frequency for each mode). Thus, a model with 3 parameters 6; ought to be identified without
incurring ill-conditioning problems. The above uniqueness condition refers to a local property and
not necessarily a global one. The SUB-ID-H homotopy algorithm can resolve global uniqueness
results but it is only applied to the 3-DOF chain model where the number of possible stiffness
combinations (3!) is small. For the 18-DOF simple frame model, the maximum number of possible
stiffness combinations is 18!, which is excessive for the computing facilities available. SUB-ID-SS is
also used with the 3-DOF model since the number of measured eigenvector components equals the
number of degrees of freedom ensuring, most likely, a convergent solution. For the 18-DOF model,
reliance is placed solely on the SUB-ID-Modal and SUB-ID-Time algorithms.

In the tests described below, SUB-ID-Modal weighted errors in the modal frequencies by 2/3
and errors in the modeshapes by 1/3 as given by Eq. (3.3.2) in Chapter 3. This scheme emphasizes
the modeshape vectors significantly more than the natural weighting implied in the output error
approach of program SUB-ID-Time. The minimization technique employed in SUB-ID-Modal is
Fletcher-Reeves with finite difference gradient evaluation. SUB-ID-Time employed even weight on
all monitored degrees of freedom. Stiffness parameters as well as damping ratios are estimated for
3 modes. The number of points in the time histories is 1024 and the time step is 2 - 1073 sec.
producing signals 2.048 sec. in duration. The minimization technique used is also Fletcher-Reeves
with analytical gradient evaluation in SUB-ID-Time. Convergence for both algorithms corresponds

to relative error index changes of less than € = 10™* across major conjugate gradient iterations.
Section 5.2.1.1 - 3-DOF Chain Model of System

The 3-DOF chain model depicted in Fig. (5.3) provides a relatively simple representation of the
frame structure, but to find all possible stiffness combinations which match the observed properties
may be a difficult task. Fig. (5.6abc) show surfaces in # space for constant natural frequency
values associated with a uniform 3-DOF chain system. From these figures, it can be appreciated
that to find all the points @ which have the three natural frequencies in common is a non-trivial
problem. Table (5.3) shows the results provided by the SUB-ID-H algorithm applied to the 3-

DOF chain model. As described earlier, the homotopy method is able to determine all non-unique
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solutions to this problem. In the results, all stiffness distributions (real and complex) match the
modal frequencies, exactly. Whether the modeshapes associated with each stiffness distribution also
matches the modeshapes of the 148-DOF frame model or not can be succinctly evaluated by applying
an error norm similar to the one used by SUB-ID-Time. The error index for such norm is presented
in the last columns of Table (5.3). This norm resolves which of the distributions is the most likely
one. There is some indication that there is damage in the lower module in the D1 case and there is
damage in the middle module in the D2 when looking at all results. But when attention is focused
on the most likely values, #5 distribution in the undamaged case, #3 in D1, and #6 in the D2 case,
then the numbers do not make much sense since some of the stiffnesses increase dramatically, in

going from the undamaged to the damaged state.

SUB-ID-H also predicts # estimates with imaginary components, but in this study only the real
solutions give valid chain models. Complex distributions are understood to be purely mathematical
in nature (a solution to a polynomial system) but may, nevertheless, imply some physical state.
For example, the class of models may not be able to match the prescribed modal frequencies with
real scalars in the expected region of the # space even though these frequencies correspond to the
modes of the actual system. A reason for this is that the model might not be accurate enough, as
is the case when the mass distribution is not well known, for example. In these cases it is expected,
nevertheless, that each complex #; is dominated by the real component. Distributions #3 and
#5 for the D2 damage case in Table (5.3) are dominated by such component, which is close to
the solusion identified by SUB-ID-Time in Table (5.4), but the latter solution gives a second mode
frequency of 28.33 Hz, 4% less than the actual frequency of 29.47 Hz in Table (5.1). This suggests
that the 3-DOF chain model is not capable, indeed, of matching the damaged system frequencies
with a real solution in the neighborhood of the undamaged stiffness distribution. Incidentally, the
#3 distributions predicted by SUB-ID-H in all three cases - undamaged, D1, and D2 - come closest to
those predicted by SUB-ID-Time even though these do not minimize the functional Jjs associated

with SUB-ID-Modal, as seen in Table (5.3).

SUB-ID-Time results are shown in Table (5.4) where it is clear that the solutions match closely
just one of the many solutions given by SUB-ID-H. That SUB-ID-Time’s result match one set of the
SUB-ID-H results is reasonable since SUB-ID-Time is very sensitive to the natural frequencies and
so it is very likely to arrive at some stiffness distribution which shares the three observed natural
frequencies. Table (5.2) presents the results from SUB-ID-Modal for the same model. In general,
the stiffness distributions are more consistent than those predicted by the homotopy method and are
useful to determine the location of the error. This indicates that the chain model, after all, is viable
candidate for the detection of damage in the more complex 148-DOF system. The frequencies are, in
general, not matched well in the SUB-ID-Modal results. The reason for this is that SUB-ID-Modal
places more weighting on minimizing the Euclidean error between the observed and model partial

modeshape vectors.
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Lastly, the results from SUB-ID-SS shown in Table (5.5) indicate clearly the location of damage
for both the D1 and the D2 patterns. The values come close to those previously estimated by SUB-
ID-Modal, even though the method of successive substitutions has a different implied weighting of

the frequencies and modeshape vectors.
Section 5.2.1.2 - 18-DOF Frame Model of System

Although the SUB-ID algorithms using the 3-DOF chain model of the 148-DOF system do
suggest the correct location of the damage, the model error created by this highly simplified model
of the system prevents correct estimation of the degree of damage. For example, both SUB-ID-Time
and SUB-ID-Modal show a stiffness loss in the first story of 10% for damage case D1, but the 50%
decrease in stiffness in “damaged” member M1 should produce closer to a 25% decrease in the overall

stiffness of module S1.

To reduce the model error, a better model of the 148-DOF system is studied using the 18-DOF
frame model. Because of its detail, it might be possible to both (1) localize the damage more closely,
and (2) predict the degree of damage better. In this model, there are many more ways to define
the sub-structures associated with the #; than in the 3-DOF chain model. Fig. (5.5) depicts the
different sub-structuring schemes used by the programs SUB-ID-Modal and SUB-ID-Time with this
18-DOF frame model. Sub-structure SS3 is the initial, most obvious discretization choice from
which any damage pattern should become evident. SS] corresponds to a sub-structuring with
4 independent #; , one of them corresponding to member M7; SS3 , likewise, has 4 independent
parameters with one corresponding to member M8. SS; corresponds to the case where there are six
independent parameters, three for each of the beams and the other three for each pair of columns,

both at each of the three interstory levels.

Table (5.6) shows the results obtained from the SUB-ID-Modal program while the results in
Table (5.7) correspond to SUB-ID-Time. In each table, the first three 8; correspond to the column
parameter stiffnesses while the second three 6; correspond to the beam stiffnesses. The estimated
values as shown in the tables indicate discrepancies in the identifications. For the undamaged cases,
values larger than unity were found for some of the #; . These values were not expected at first
since the 18-DOF model response ought to be a very good approximation to the 148-DOF system.
This characteristic, plus the fact that the error indices are not close to zero, indicate that there is
still significant model error, especially since no other type of corruption of the data exists. A closer
look at the reference 148-DOF system indicates that the the “joints” are fairly stiff and that indeed
one must expect values for the #; larger than unity. That the stiffnesses are not evenly distributed
in the undamaged case in the absence of noise is a result that is not well understood, since both
the 148-DOF system and the nominal 18-DOF model (with all #; ’s unity) are mathematically

constructed with the same stiffness distribution in each sub-structure. The best answer to the
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question of non-uniformity in the stiffness may lie in considering the boundary conditions on the
lowest sub-structure. The complex model has been created without rigid rotational attachments.
Only the horizontal and vertical displacements have been constrained in an effort to simulate the
bolt connections present in the experimental case. Some of the modal properties of the 148-DOF
system (not shown here) indicate that indeed the rotational degrees of freedom are not fixed and that
they rotate very slightly. The rigidity present in the simple system model prevents the rotations of
the joints and thus it is expected that the identified stiffness of the sub-structure inmediately above
decreases to accomodate this effect. The larger-than-one value for #; is attributed to the large

stiffness introduced by the beam. This will be seen more clearly in the following discussion.

The coarse discretization of the structure into only three modules (sub-structuring SSs ), as
shown in Fig. (5.5), can be seen as one in which two modules (vertical members and horizontal
members) had their corresponding #; “slaves” to each other. The prediction of damage for damage
cases D1 and D2 based on this sub-structuring is relatively accurate since the damage patterns
are well identified in the results from Table (5.6) and Table (5.7). Damage pattern D1 shows as
a reduction of approximately 25% in the overall stiffness of module S1, which is roughly what is
expected since member M1’s stiffness is reduced by 50%. This is seen in both the SUB-ID-Modal and
SUB-ID-Time results, although the values themselves are different. This reduction also incorrectly
reduces the stiffness of member M7 since it is part of module S1. Unless member M7 remains
relatively stiff, axially and in bending, it is expected that the other modules take the loads that
member M7 sheds because of the reduced stiffness. Thus, it would normally be the case that the
adjacent modules slightly increase their overall stiffness factors #; . Less than 2% deviation from
the undamaged case is shown for either quantity ( 62 or 03 ) for the SUB-ID-Modal results and 5%
for SUB-ID-Time in damage pattern DI1.

Pattern D2, however, shows a reduction of 50% for the SUB-ID-Modal case as opposed to the
expected overall 40% reduction from the 80% reduction in member M3. Because of this reduced
stiffness, it is expected that an increase should appear in the stiffness of the adjacent sub-structures
(51 or S3). The increase of almost 30% in #3 shows how much sub-structure S3 had to be altered
to compensate for the 50% decrease in sub-structure S2’s overall stiffness. Sub-structure S1, on the
other hand, decreased slightly. SUB-ID-Time results for damage D2 are similar to those of SUB-ID-
Modal although the decrease of stiffness in sub-structure S2 is larger, close to 55%. Parameter @3
also increased by about 40% and #; also decreased slightly. The larger decrease in the @, stiffness
than the actual amount can only be attributable to incorrect modeling. In this case, modeling
not only includes the details about the joints and the changing values of the moments of inertia
throughout the system which are not present in the simpler model, but also the fact that the sub-
structuring of the system into only three modules is constraining both column and beam members in
each module to be scaled with only one #; parameter. The modal properties are not well matched,

which is a strong sign of incorrect modeling, although keeping Table (5.1) in mind, the results seem
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to be much better in Table (5.7) than in Table (5.6). The increase in the stiffness parameter @3
is also another sign which calls for better modeling and in this case, with the results available, it
almost implies that sub-structure S2 should be further discretized into smaller sub-structures. The
number of # parameters would increase in this case and so there may not be enough independent

modal quantities to prevent ill-conditioning and /or non-uniqueness.

It is possible to discretize the structure using a finer discretization around the areas where
damage is suspected. For example, for damage pattern D1, which is associated with the weakening
of member M1, sub-structure S1 can be split into two sub-modules, a new S1 and S4. This new
arrangement of sub-structures corresponds to sub-structuring SS] in Fig. (5.5). The region
to which the old #; was associated has now two #; ’s, namely, the new #, and ;. The
stiffness distributions for four-parameter sub-structuring present good convergent characteristics and
interesting results. Table (5.6) shows the results corresponding to the four-parameter discretization
derived from SUB-ID-Modal using sub-structuring SSJ . Slight damage in module S1 can be seen
from these results but not enough to agree intuitively with the 25% reduction expected from the
50% reduction in member M1’s stiffness. The same table shows that the adjacent modules to the

“damaged” module also undergo slight changes in their parameter values when the damage is added.

Sub-structuring the system in the form SS3 , as depicted in Fig. (5.5), allows the determination
of four parameters with a model emphasizing potential damage in module S2. The old S2 is now
split into a new S2 and the new S4. Table (5.6) also shows the results for this case. A 46% stiffness
reduction can be seen in sub-structure S2 but increase is seen in S1 (3%) and in S4 (15%). Also,

the stiffness increase in S4 may account for the slight decrease in stiffness in module S3.

Refining the model further results in one with six #; : the first three correspond to each of
the three pairs of vertical members and the second three #; correspond to each of the horizontal
members (increasing order of the #; with increasing height). This refined model corresponds to
sub-structuring SSs in Fig. (5.5). Unfortunately, numerical tests have shown that six parameters
are too many for the amount of modal information that is used (first three modes) in program
SUB-ID-Modal. Minimizations performed on this basis have yielded non-unique sets of parameters
(not shown here). This may come as a surprise since there are 12 pieces of information ( 4 modal
parameters per mode and 3 modes). In the SUB-ID-Time case, the implicit introduction of the
participation factors has added one more modal parameter per mode yielding a total of 15 modal
quantities. In Table (5.7), it can be seen that the estimates for the columns agree closely with the
estimates in the four-parameter case given by SUB-ID-Modal in Table (5.6). The beam stiflness
parameter estimates take on values much larger than those for the columns, but this happens to be
reasonable. By looking at the structure more carefully, it can be seen that the beams are indeed
stiffer: one elbow element is connected to the end of each column while two elbows are connected

at the end of each beam. The error indices are of lower order in the six theta case compared to the
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three theta case indicating that the additional freedom in the sub-structuring allows better matching

of the responses. The match can be seen in Fig. (5.7).

Using sub-structuring SSs, the damage has also been adequately identified in both cases,
with damage (stiffness loss) in member M1 of the order of 27% and damage in member M3 of the
order of 48%. These results make more sense than those from using SUB-ID-Modal. The modal
frequencies, as expected, are better approximated with SUB-ID-Time since this algorithm is highly
sensitive to them. From these results, however, it seems that member M8 has too low of a value
in the undamaged state and member M9 has too large of a value. Once damage has been inflicted,
their values change considerably. To understand this, it is noted that the accuracy of the parameter
values depend on the sensitivity of the results on the particular parameter of interest. For this
frame structure, the dynamics are not sensitive to changes in the bending stiffness as long as the
beam bending stiffnesses are high. Conversely, slight changes in the dynamics may induce large
changes in these “insensitive” parameters. If the model is incorrect, the dynamics will be different
and thus the “insensitive” parameter values will have to incur large changes in order to match the
observed data appropriately. An overall evaluation of the results suggests that the model with 6
parameters is the most reliable and the one with least error. Incidentally, the discrepancies between
the Modal and Time versions of SUB-ID tend to decrease as SUB-ID-Modal places more emphasis
on the natural frequencies and less on the modeshapes. Table (5.8) shows various results for the
SS3 sub-structuring, D1-damage case from where it can be seen that, indeed, the SUB-ID-Modal

results approach those estimated by SUB-ID-Time.

Section 5.2.2 - Experimental Results

In this section, results are presented for the identification runs with various sub-structuring
based on the actual test data from the three-story experimental model. Much similarity is present
between experimental results and simulation results. The undamaged structure results are similar

for both types of tests. The damaged structure is similar to case D2 in the simulated data tests.

Table (5.9) shows the modal parameter estimates associated with the real structure obtained
with program MODE-ID [5.1], which can be viewed as the best estimates of the test structure modal
properties since, apart from the assumption of linearity and classical normal modes, no structural

model is assumed.

Section 5.2.2.1 - 3-DOF Chain Model of Test Structure

Results from the 3-DOF chain model resemble those from the simulations. Indeed, the results
shown in Table (5.10), Table (5.11), and Table (5.12), and Table (5.13) for the homotopy, modal,

time, and successive substitution approaches, respectively, demonstrate the disadvantages of using
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such simplistic 3-DOF model. Some idea of damage can be inferred from the results but the results
are not all consistent. This is attributed to the 3-DOF chain not being a good model for the real

structure, reflecting the same type of problems that showed up in the simulated data tests.
Section 5.2.2.2 - 18-DOF Frame Model of Test Structure

The next model to be considered is the 18-DOF frame model with SS 3 sub-structuring.
The damaged-structure results clearly indicate the point of failure in the frame structure, namely,
somewhere in sub-structure S2. These results are shown in Table (5.14) and Table (5.15) for SUB-
ID-Modal and SUB-ID-Time, respectively. The damage location agrees entirely with the location
where the aluminum member was substituted with the vinyl-plastic member, i.e., member M3. The
stiffness for sub-structures S1 and S3 ( Fig. (5.5)) have increased and it is believed that this is due to
modeling error. By decreasing the stiffness for sub-structure S2 by such a large amount (more than
75% decrease), the stiffness of the horizontal member belonging to sub-structure S2 is also reduced
by the same amount. In reality this member did not suffer any damage so its stiffness reduction
affects the behavior of the sub-structure above it, module S3. The latter must therefore increase
its stiffness to account for the overall reduction of the former. A similar argument can perhaps be

applied to sub-structure S1.

A finer sub-structuring, as done in the previous section, leads to the other results shown in
Table (5.14) and Table (5.15). These results are based on sub-structuring models SS § and SS¢ ,
respectively. By breaking up the middle module as shown in Fig. (5.5) into two other modules,
the number of coefficients #; has increased to 4 but this amount of modal information was not
enough to uniquely estimate the stiffness distribution. Table (5.14) indicates that, indeed, the
middle horizontal member is stiffer as shown in previous sections. The results are very satisfactory
since it is now seen that the introduction of the weak member has only affected substantially the
estimate corresponding to that specific sub-structure. All other sub-structures have remained close
to their previous estimated values which is consistent with the actual damage induced. The stiffness
parameters associated with sub-structures S1 and S3 of Table (5.14) are average stiffnesses for the
sub-structures. The fact that they are closer to the stiffnesses of the vertical members than to the
stiffnesses of the horizontal member is attributed to the higher sensitivity of the translation motion
to the interstory stiffness provided by these vertical members. The horizontal members can have
an effect on the horizontal motion but only if their stifiness decreases to the point where the two
sets of vertical columns become nearly independent. The motion then changes from shear-type to
bending-type. For the stiffness distribution in the test structure, the vertical elements affect the

horizontal motion more and, so, the shear-type behavior is dominant.

The large stiffness reduction for sub-structure S2 is unexpected. One would normally expect

that if one of the two vertical members lost all horizontal stiffness then the overall reduction would



- 102 -

correspond to 50% and not to 75%. Something similar is seen in the previous section where the
simulated damage in module S2 is a reduction of 80% in one of the two vertical members. A reduction
of 80% in one member should correspond roughly to a 40% reduction for the module, but reductions

of nearly 55% are present in that simulated case.

An attempt to calculate six parameters with SUB-ID-Modal, one for each pair of vertical
members and one for each horizontal member, leads to non-unique parameter distributions. These
results for sub-structuring SS ¢ in Fig. (5.5) are not shown here because of their unreliability. The
time domain program SUB-ID-Time, on the other hand, did determine the set of six parameters
reliably and these are presented in Table (5.15). From this table and from Fig. (5.8), it is seen that
the match this model allows is relatively better than the matches of the models with less parameter
freedom. The parameter estimates are the common result of two different numerical minimizations
starting with different initial estimates. Uniqueness, as explained later in this study, cannot be
asserted but this solution seems physically reasonable. The stiffness distribution is quite uniform
except for the fact that it is somewhat lower in sub-structure S1. It is argued here, as it was done
in the previous section, that this may be caused by the rigidity imposed by the 18-DOF model on

the joints at the base.

Section 5.3 - Summary

Model error is studied in a structure where damage can be easily introduced. Preliminary
simulated results agreed fairly well with the actual experiment results. Both indicated that the
better the model, the more accurate the predictions of damage. From the results it became clear
that modeling involved two aspects: (1) modeling in the traditional sense: the analytical model
should contain enough degrees of freedom and the correct geometric and material properties to
enable a good representation of the system. In the case of the 3-DOF chain model, the results were
very difficult to assess since they were inconsistent according to the parameter estimation procedure
used. The 18-DOF frame model enabled the SUB-ID-Time procedure to define the location and
seriousness of damage within the frame structure. (2) The second aspect of modeling is related
to the fact that the choice of sub-structuring can hinder the estimation procedures from reaching
reliable results. It is clear that the choice of sub-structuring should be such that the damaged
member(s) should eventually be represented by at least one sub-structure. For the 18-DOF frame
model, this was done by first performing a crude identification. Sub-structures that incurred loss
of stiffness were discretized further and sub-structures that incurred gains of stiffness were kept
constant. The latter gains are generally considered to be due to the mismodeling of the damaged

sub-structures.

Results also show that even very crude models, such as the 3-DOF chain model for the
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experimental frame, can give some idea about the location of damage. The extent of damage,

however, cannot be clearly determined in these cases.
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Natural Frequencies Eigenvectors
Damping Ratios
fi f2 f3 é1 é2 ¢3
& 3 €3
Undamaged:
9.873 30.37 4862 0359 -0.949 1.421
5.0 5.0 5.0 0.776  -0.452 -1.523
1.000 1.000 1.000
Damaged D1:
9468 29.20 4767 0399 -0.978 1.229
5.0 5.0 5.0 0793 -0.379 -1.470
1.000 1.000 1.000
Damaged D2:
9.181 2947 4276 0.328 -1.143 0.842
5.0 5.0 5.0 0.815 -0.346 -1.094
1.000  1.000  1.000

Table 5.1: Exact parameters for the first three modes corresponding to the complex 148-DOF

frame model. (Frequencies in Hz, damping ratios in % of critical.)

Stiffness Parameters

Natural Frequencies

Damping Ratios

Eigenvectors

6y b2 b3 fi fa fs 1 2 3 T s
Undamaged:
1.669 2.078 1.695 11.88 32.22 46.83 0.508 -0.937 1.44 14-10-3
0.819 -0.332 -1.82
1.00 1.00 1.00
Damage D1:
1.501 2.007 1.618 1141 31.25 4578 0.529 -0.930 142 14.1073
0.8256 -0.313 -1.82
1.00 1.00 1.00
Damage D2:
1.709 1.327 1.579 11.03 30.63 4141 0418 -1.23 0932 1.1-10"2
0.832 -0.292 -1.36
1.00 1.00 1.00

Table 5.2: SUB-ID-Modal Results for the 3-DOF chain model associated with the modal prop-
erties of the complex 148-DOF system model. (Frequencies in Hz.)
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Stiffness Parameters Natural Frequencies Error Error
‘N s 03 fi fa f3 Index Jjs Index Jp

Undamaged:

1 4.78+13.38 2.24-11.70  0.236+i0.01

2 4.78-13.38  2.24+i11.70 0.236-10.01

3 0.946 2.56 1.60 9.873 30.37 48.62 5.9 -10~2 1.9
4 6.18 0.605 1.04 9.873 30.37 48.62 8.8 -10~2 2.6
5 1.10 1.40 2.54 9.873 30.37 48.62 3.0 -10~? 202
6 1.85 0.761 2.76 9.873 30.37 48.62 5.1 -10~2 23
Damage D1:

1 4.54+13.14 2.14-11.57  0.216410.01

2 4.54-13.14  2.14+4i1.57 0.216-10.01

3 0.860 2.52 1.46 9.468 29.20 47.67 3.0 -10~3 1.9
4 5.97 0.553 0.961 9.468 29.20 47.67 4.6 -10~2 2.6
5 1.01 1.27 247 9.468 29.20 47.67 1.5 1072 22
6 1:72 0.695 2.66 9.468 29.20 47.67 2.5 -10~? 24
Damage D2:

1 3.92+i13.11 1.84-i11.56  0.203+i0.01

2 3.92-13.11  1.84+i11.56 0.203410.01

3 0.851-10.041 1.63+i0.367 1.70-10.297

4 4.70 0.525 0.994 9.181 29.47 42.76 5.1 -10~3 24
5 0.851-10.041 1.63+i0.367 1.70-i0.297

6 1.89 0.610 2.12 9.181 29.47 42.76 1.5 1073 2.1

complex 148-DOF system model. (Frequencies in Hz.)

Table 5.3: SUB-ID-H Results for the 3-DOF chain model based on the modal properties of the
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Stiffness Parameters Natural Frequencies Eigenvectors
Damping Ratios
61 02 03 h fa f3 61 62 é3 ;,,‘3:;‘_’;',.
&1 &2 §3
Undamaged :
0.952 2.552 1.608 9.89 3040 48.58 0.688 -0.775 1.67 7.4-10"2
4.29 3.08 5.40 0.868 -0.250 -2.19
1.00 1.00 1.00
Damage D1 :
0.863 2478 1.517 9.474 29.52 47.60 0.701 -0.760 1.72 s |
4.33 3.91 5.09 0.871 -0.249 -2.25
1.00 1.00 1.00
Damage D2 :
0.866 1.732 1.519 9.216 28.33 42.76 0.647 -0.957 1.04 1.4-.1071
3.76 10.3 4.82 0.878 -0.149 -1.62

1.00 1.00 1.00

Table 5.4: SUB-ID-Time results for the 3-DOF chain model employing the acceleration
sponses of the 148-DOF system. (Frequencies in Hz, damping ratios in % of critical.)

re-

Stiffness Parameters Natural Frequencies Eigenvectors
Damping Ratios
61 82 b3 fi fa o1 62 03
Undamaged:
1.880 2.123  1.737 12.38  33.06 47.58 0.482 -0.938 1.52
0.808 -0.368 -1.84
1.00 1.00 1.00
Damage D1:
1.590  2.096  1.669 11.70 31.88 46.72 0.523 -0.923 1.46
0.821 -0.325 -1.85
1.00 1.00 1.00
Damage D2:
1.793 1.345 1.622 11.21  31.14 4190 0403 -1.24 0.933
0.832 -0.300 -1.35
1.00 1.00 1.00

Table 5.5: SUB-ID-SS Results for the 3-DOF chain model associated with the modal properties

of the complex 148-DOF system model. (Frequencies in Hz.)
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Stiffness Parameters Natural Frequencies Eigenvectors

6, to O3 fi fa f3 é1 é2 #3 g -
A4 05 Os

a) Sub-structuring SS 3

Undamaged:
1.239 1.235 1.484 9.222 2962 49.19 0.349 -1.05 152 6.3-10"*
0.774 -0.500 -1.65
1.00 1.00 1.00
Damage DI:
0.980 1.256 1.498 8.608 28.53 48.22 0.391 -1.07 133 6.5-107°
0.786 -0.416 -1.58
1.00 1.00 1.00
Damage D2:
1.221 0.603 1.919 8.098 27.82 44.01 0.270 -142 0.988 3.7-107°

0.787 -0.472 -1.30
1.00 1.00 1.00

b) Sub-structuring SS ]

Undamaged:
1.101 1.279 1.574 8.745 29.42 47.38 0.379 -1.06 137 53-107*
0.931 0.800 -0.436 -1.58
1.00 1.00 1.00
Damage D1:
0.965 1.267 1.486 8.717 28.47 4823 0.393 -1.07 133 22-10°*
1.077 0.797 -0.416 -1.59

1.00 1.00 1.00

¢) Sub-structuring SS §

Undamaged:
1.096 1.197 1.530 9.247 30.71 4852 0409 -1.03 137 3.1-107°
2.272 0.825 -0.402 -1.58
1.00  1.00 1.00
Damage D2:
1.124 0.651 1.462 8.709 29.76 42.66 0.355 -1.28 0953 3.3-10~*

2.604 0.850 -0.347 -1.281
1.00 1.00 1.00

Table 5.6: SUB-ID-Modal Results for the simple 18-DOF frame model associated with the
modal properties of the complex 148-DOF system. (Frequencies in Hz).
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Stiffness Parameters Natural Frequencies Eigenvectors
Damping Ratios
01 62 b3 fi fa I3 1 02 ¢3 TG
b4 b5 fs & &2 €a
a) Sub-structuring SS 3
Undamaged :
1.690 1.055 1.402 9.711 3048 48.74 0.273 -1.02 1.84 3.5-1072
432 579 431 0.734 -0.647 -1.70
1.00 1.00 1.00
Damage D1 :
1414 1101 1.329 9.334 2928 47.78 0.306 -1.02 1.75 4.2-1072
432 6.80 4.25 0.748 -0.591 -1.72
1.00 1.00 1.00
Damage D2 :
1.618 0477 2.029 8.142 2931 4288 0.199 -142 111 1.2-10°1
149  6.08 407 0.771 -0.615 -1.27
1.00 1.00 1.00
b) Sub-structuring SS ¢
Undamaged :
1.268 1.101 1.383 9.883 3040 4862 0.333 -1.13 136 9.7-1073
2.070 1326 2.181 405 425 464 0.768 -0.493 -1.56
1.00 1.00 1.00
Damage D1 :
0.937 1.150 1.409 9478 2925 4767 0407 -1.11 120 99-1073
1.880 1.725 1.839 405 415 461 0.802 -0.373 -1.55
1.00 1.00 1.00
Damage D2 :
1.147 0.631 1.496 9.210 2950 4277 0310 -1.37 0942 16-1072
2.144 1.741 1.595 3.95 4.11 429 0814 -0.402 -128
1.00 1.00 1.00

Table 5.7: SUB-ID-Time results for the 18-DOF frame model given the averaged joint acceler-

ations of the 148-DOF system. (Frequencies in Hz, damping ratios in % of critical.)




=10 =

w/ wm Stiffness Parameters Natural Frequencies
6, 62 b3 fi f2 I3

SUB-ID-Modal:

2/3 1/3 0.980 1.256  1.498 8.608 28.53  48.22
9/10 1/10 1.130 1.110 1.540 8.830 28.91 47.96
99/100 1/100 1.309 1.062 1.453 9.113  29.23  47.72
SUB-ID-Time:

1414 1.101 1.329 9334 2928 47.77

Table 5.8: SUB-ID-Modal results with different weights come close to those obtained from
SUB-ID-Time if the error norm emphasizes the natural frequencies (with W/ ) much more than
the modeshape vectors (with W™ ). (Frequencies in Hz.)

Natural Frequencies Eigenvectors

Damping Ratios

f f2 fa o ¢2 é3 ek
3 3 &3

Undamaged:
8.986 28.63 48.00 0.308 -0.719 130 5.2-1072
0.83 046 045 0.610 -0.291 -1.21
1.00 1.00 1.00
Damaged (D2-type):
7.601 27.04 38.06 0.236 -1.358 0595 7.4-10"2
1.49 083 1.01 0.769 -0.242 -1.023
1.000 1.000 1.000

Table 5.9: MODE-ID Results obtained from the hammer test impulse-acceleration time histories
for the three-story experimental model. (Frequencies in Hz.)
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Stiflness Parameters Natural Frequencies Error Error
0, B9 03 f b fa Index Jps Index Jr
Undamaged:
1 454 +13.05 2.15-11.53 0.193 + i0.01
2 4.54-13.05 2.15 4+ i1.53 0.193 - i0.01
3 0.755 2.63 1.40 8.986 28.63 48.00 1.6-10-? 2.0-10"!
4 6.147 0.488 0.930 8.986 28.63 48.00 1.2-10! 1.4
5 0.865 1.29 251 8.986 28.63 48.00 6.7-10"2 87-10"!
6 1.74 0.585 2.73 8.986 28.63 48.00 1.1-107! 0.7 1072
Damaged (D2-type):
1 3.17 + i12.63 1.50 - i1.32 0.136 + i0.004
2 3.17-12.63 1.50 + 11.32 0.136 - 10.004
3 0.547 + 10.031.38 - 10.436 1.36 + 10.363
4 3.81 0.345 0.852 7.60 27.04 38.06 2.0-107! 1.9
5 0.547 - 10.03 1.38 + 10.4361.36 - 10.363
6 1.74 0.375 1.71 760 27.04 38.06 3.3-107* 28-107!

Table 5.10: SUB-ID-H (homotopy) results for the 3-DOF chain model given the modal properties

of the real structure.

Stiffiness Parameters Natural Frequencies Eigenvectors Error
Damping Ratios Index Jyy
6, 6 b3 h fa f3 é1 &2 3
Undamaged:
1477 2.148 1.492 1141 30.57 46.11 0.536 -0.852 1.77 3.8-1073
0.810 -0.362 -2.10
1.00 1.00 1.00
Damaged (D2-type):
1.484 0.890 1.375 9.696 27.82 36.92 0361 -1.55 0.651 1.2.10°3
0.851 -0.224 -1.16
1.00 1.00  1.00

Table 5.11: SUB-ID-Modal Results for the 3-DOF chain model associated with the modal results

obtained by MODE-ID from the time histories of the real structure. (Frequencies in Hz.)
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Stiffness Parameters Natural Frequencies Eigenvectors Error
Damping Ratios Index Jr
6 62 b3 h f2 f3 é1 @2 3
& $2 €3
Undamaged:
0.754 2.645 1.390 8.979 28.53 48.03 0.730 -0.699 2.10 1.9-107!

3.84 0.00 082 0.874 -0.274 -2.61
1.00 1.00 1.00
Damaged (D2-type):
1.700 0371 1.702 7.548 29.77 37.92 0.181 -459 0.148 2.3-107?
1.55 3.58 5.12 0927 -0.084 -0.838
1.00 1.00 1.00

Table 5.12: SUB-ID-Time results for the 3-DOF chain model obtained employing the time
histories corresponding to the hammer-impulse tests. (Frequencies in Hz, damping ratios in % of

critical.)
Stifiness Parameters Natural Frequencies Eigenvectors
Damping Ratios
6 6> f3 h fa fa 01 ¢2 ¢3
Undamaged:
1.921  2.144  1.506 1239 31.74 46.81 0461 -0.857 2.03

0778 -0.456 -2.17
1.00 1.00 1.00
Damaged (D2-type):
1.482 0.891 1.376 9.763 2795 3748 0375 -1.55 0.634
0.854 -0.199 -1.16
1.00 1.00 1.00

Table 5.13: SUB-ID-SS Results for the 3-DOF chain model associated with the modal results
obtained by MODE-ID from the time histories of the real structure. (Frequencies in Hz.)
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Stiffness Parameters Natural Frequencies Eigenvectors Error
6] 02 03 Index Jju
04 b5 b5 fi fo fa o1 02 3

a) Sub-structuring SS 3
Undamaged:
0.964 1451 1.306 8.708 28.27 4826 0404 -0974 160 24-10°*
0.793 -0.452 -1.75
1.00 1.00 1.00
Damaged (D2-type):
1.139 0.321 2.343 6.969 25.84 3897 0213 -1.82 0.729 14-10°3
0.810 -0.453 -1.13
1.00 1.00 1.00

b) Sub-structuring SS 3§
Undamaged:
0.995 1.322 1.317 8.945 29.17 47.67 0417 -0951 161 2.1-.10°*
2.042 0.811 -0.436 -1.75
1.00 1.00 1.00
Damaged (D2-type):
0.995 0.406 1.332 7.683 27.03 38.05 0.311 -1.59 0.688 5.2-10~*
1.987 0.864 -0.293 -1.119
1.00 1.00 1.00

Table 5.14: SUB-ID-Modal results for the 18-DOf frame model based on the modal parameter
values estimated by MODE-ID for the real structure. (Frequencies in Hz.)
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Stifiness Parameters Natural Frequencies Eigenvectors Error
Damping Ratios Index Jr
6, b b3 h f2 I3 o 62 b3
b4 fs bs L3 3 13
a) Sub-structuring SS 3
Undamaged:
1.149 1.273 1.308 9.018 28.62 48.00 0.358 -0.995 1.67 7.8-10"?
083 047 049 0.772 -0.512 -1.74
1.00 1.00 1.00
Damaged (D2-type):
1.342 0.252 2.681 6.773 26.95 38.03 0.168 -1.968 0.702 1.7-10"!
11.7 0.81 046 0.820 -0.519 -1.07
1.00 1.00 1.00
b) Sub-structuring SS ¢
Undamaged:
1.194 1.243 1.326 8.983 28.63 47.99 0.349 -0998 168 7.0-10"?
1.124 1.203 1.283 117 036 043 0.768 -0.525 -1.73
1.00 1.00 1.00
Damaged (D2-type):
1.085 0315 1.587 7.561 26.99 38.03 0.231 -1.98 0.579 1.1-107!
1.650 1.064 1.740 155 036 0.51 0.846 -0.348 -1.05
1.00 1.00 1.00

Table 5.15: SUB-ID-Time results for the 18-DOF frame model obtained employing the time
histories corresponding to the hammer-impulse tests. (Frequencies in Hz, damping ratios in % of

critical.)
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Figure 5.1: Two models of the test structure (a) are shown. Fig.

(b) shows the one-node

joint used in the simple 18-DOF frame model. Fig. (c) shows the same joint modeled by several
elements, each having different properties. “Damage” consists of replacing either member M1 or M3
by another member with much lower stifiness.
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Figt_xre 5.2: (a) Forcing function at the second level as applied in the various test runs. (b) For
each excitation signal, the corresponding reference response signal at second floor is shown.
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Figure 5.5: Different sub-structuring schemes employed with the 18-DOF frame model.
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Figure 5.7: (a) Empirical transfer functions for the undamaged 148-DOF system and the two
approximating 18-DOF frame and 3-DOF chain models. The 6 parameters for each model are given
in Table (5.4) for the 3-DOF model and in Table (5.7b) for the 18-DOF model. (b) Match of the
same responses of (a) in the time domain.
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Chapter 6 : Data from a Real Building

The East-West (“E-W”) motion of Building 180 on the JPL campus is studied with the foregoing
methods in order to investigate what changes occurred in the structure during the strong earthquakes
it has experienced. Previous studies [6.4,6.6,6.8] have shown that substantial changes in the values
of the periods of vibration have occurred, especially during the 1971 San Fernando earthquake. No
visual signs of damages were detected in the structure during inspections following this earthquake,
except for some minor cracking of non-structural elements. To explain the lengthening of the periods,
some researchers [6.5] have proposed that the structure weakened during large amplitude motions
of the earthquake because of cracking of the concrete that encases the steel columns. The cracking
introduces non-linear behavior, and indeed, some evidence of such behavior is present in the San
Fernando earthquake records [6.6,6.8]. The overall behavior, however, seems to be represented quite
well by a linear elastic model. In this study, a simple linear chain system is employed to model the
structure and the SUB-ID programs are used to determine the corresponding stiffness distributions.
Use is made of the San Fernando earthquake records and of other data, including some dynamic
tests and the response of the building to other earthquakes. The identified stiffness distributions

can offer insight into the location of stiffness loss induced by the earthquakes.

JPL Building 180 is a 10-story, symmetric steel-frame structure, approximately 67.0 meters (220
feet) long, 12.2 meters (40 feet) wide and 44.5 meters (146 feet) high (from the base of the foundation
to the roof) located on the grounds of the Jet Propulsion Laboratory in Pasadena, California. Fig.
(6.1) shows a schematic of JPL Building 180. The foundation of the structure is a continuous strip
footing running longitudinally on both sides of the building. A shear wall was designed for the
sub-basement and basement levels thus increasing significantly the stiffness relative to the upper
stories. The latter all have an identical design except for the roof. The structure distributes the load
in the longitudinal (East-West) direction with a eleven-bay frame consisting of steel trussed girders
and steel columns. In the transverse (North-South) direction, the load is distributed by welded steel
spandrel trusses and by steel columns. The steel columns are partially encased in concrete. The soil
at the basement level consisted of very dense well-graded sandy gravel. From a typical test boring
[6.4], the dry density is 1,850-1,990 kg/m ® (115-124 lbs./cf), moisture content is 7.6-8.7%, and the
shear strength is 82-221 kPa (1.7-4.6 kips/sf), for the upper 4 meters (12 feet) of soil. With depth,
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the density decreases slightly, the moisture varies considerably, and the shear strength doubles, down
to a depth of approximately 20 meters (60 feet). The symmetry of the building has justified the use
of two-dimensional models in the various analyses, even though the surrounding soil slopes down
by about one story in the north-south direction. It has been assumed that the added soil stiffness
acting on the north wall produces a rather small torsional component, thereby not affecting the

plane motion of the structure.

Section 6.1 - Available Data for Building 180

Section 6.1.1 - Nielsen’s Tests of 1963-1964

Nielsen’s tests [6.1] consisted of both “man-excited” and steady-state resonance tests using an
eccentric-mass harmonic shaker. The tests were carried out during various stages in the construction
of JPL Building 180 and thus the effects of the addition of the different structural and non-structural

components are visible in both the modal frequency and modeshape data.

Nielsen determined a total of four normal modes in the E-W direction from the steady-state
resonance runs of his Test No. 14. The building stage corresponded to that before the final finishing
touches prior to occupancy, i.e., no plaster on inner side of columns, no finished floors, no partitions,
curtain walls and windows. For the E-W translational modes, the natural frequencies were f; = 1.01
Hz, f» = 3.00 Hz, fz = 5.07 Hz, and f; = 7.50 Hz. The modeshapes for the first three
experimentally determined modes are shown in Fig. (6.2) where the motion at the ground and
basement floors is assumed zero. Most of the modes were excited at various force levels but it was
found that the modeshapes remained nearly constant at all levels tested. The frequencies, however,
did demonstrate slight non-linear effects: as the force increased, the modal frequency decreased

slightly as shown in Fig. (6.3ab).

The data from Nielsen’s tests No. 14, 16 and 18 are shown in Table (6.1) along with many
other tests and analyses results. Test No. 16 corresponds to a similar stage in the construction
as No. 14 except that fire-proofing material was sprayed on all girders and trusses. Test No. 18,
however, was performed after all windows, partitions, and curtain walls were put in place, and a

wire mesh and plaster were used to cover the inner side of all columns.

Section 6.1.2 - 1970 Lytle Creek Earthquake Records

Earthquake records from the My = 5.4 Lytle Creeck earthquake of September 12, 1970, were

studied [6.11]. The corrected signals comprised a little more than 20 sec. of motion both at the
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base and at the roof of JPL Building 180 (the mitial part of the signals seems not to have been
recorded). The maximum acceleration in the E-W direction at the base is 14.5 em/s/s at 2.22 sec.
and 25.25 cm/s/s at the roof at 3.24 sec. Fig. (6.4) shows the base acceleration and its spectrum
while Fig. (6.5) shows the roof acceleration and the empirical transfer function between the base
and roof signals. The Fourier spectrum plotted in Fig. (6.4) shows that the dominant frequencies
at the base are in the 0-12 Hz range. The maximum 10.5 cm/sec peak is located at around 2 Hz.
The peaks corresponding to the first two modes can be located easily at about 1 Hz and 3 Hz in
Fig. (6.5a).

Section 6.1.3 - 1971 San Fernando Earthquake Records

Strong-motion records from the AMp = 6.4 1971 San Fernando earthquake corresponding to
accelerations monitored at the base and roof of Building 180 on February 9, 1971, were also studied
[6.12]. The processing yielded slightly more than 97-second-duration signals with a time step of 0.02
seconds. The processed records show a maximum acceleration of 207.8 cm/s/s at 5.1 sec. in the
E-W (longitudinal) direction at the basement and about 374.8 cm/s/s at 5.34 sec. at the roof in
this direction. The Fourier spectrum plotted in Fig. (6.6) shows that the dominant frequencies are
also in the 0-12 Hz range. The maximum 130 cm/sec peak is located at around 3 Hz. The transfer
function between the roof response record and the base record shows a large amount of jaggedness
as shown in Fig. (6.7). The smoother modal peaks, however, are found at 0.8, and 2.5 Hz, implying

a substantial drop in the stiffness compared to what was observed for the Lytle Creek earthquake.

Section 6.1.4 - Teledyne’s Tests of November, 1971

Measurements using Teledyne's “Ambient Vibration Survey” system [6.2] were made in the
E-W direction on every floor at the west end of the building in November 1971 by Teledyne Geotech
engineering firm. For the E-\V translational modes, the measured natural frequencies were f; = 0.95
Hz, f» = 3.00 Hz, f3 = 498 Hz, and f3; = 7.50 Hz, all of these differing somewhat from the
earlier values of Nielsen, especially those determined after occupancy. Fig. (6.8) presents the
modeshapes for the first three modes of vibration. These modeshapes seem to agree well with those

of Nielsen ( Fig. (6.2) ).

Section 6.1.5 - Nielsen’s Tests of February, 1972

In February, 1972, man-excitation tests were conducted jointly by Teledyne Geotech and Nielsen
[6.2]. The first two modal frequencies were determined at the 6th floor level: f; = 1.0 Hz and
fo = 3.3 Hz. These frequencies differed from the results obtained by Teledyne Geotech three
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months earlier, the frequency now increasing approximately 5% in the first mode and 10% in the

second translational mode.

Section 6.2 - Previous Dynamic Analyses of Building 180

Section 6.2.1 - Nielsen’s Analysis of 1964

Nielsen [6.1] derived the equations necessary to determine the stiffness and damping matrix
components from the experimentally determined modal properties. His method is equivalent to an
equation-error method applied to the modal equations of motion similar to that implemented by
SUB-ID-SS. In determining the structural parameters, Nielsen considered two scenarios: (1) simply-
coupled systems (chain-type system), and (2) close-coupled systems (chain-type with floor-to-base
attachments). A least-squares solution to the set of simultaneous equations was employed whenever

more modes than necessary were available.

From his measured data, and assuming that the girders in the E-W direction were sufficiently
rigid to make the effect of joint rotation negligible, Nielsen determined the stiffness matrix
components corresponding to the close-coupled system. The determined components are shown
in Table (6.2) where it is evident that they come close to being those of a uniform chain model.
The errors found by Nielsen substituting into the modal equations are reasonably small indicating
that the close-coupled model is a good model. Nielsen argued that the small differences between
the close-coupled stiffness values and the ones corresponding to the simple chain model could stem
from inaccuracies in the data. The frequencies and modeshapes derived from the identified model
compared closely to the experimental values as shown in Table (6.1) and Fig. (6.2) , but they did

not compare well for the fourth mode not shown.

Damping values were independently determined by Nielsen from the acceleration response at

resonance. Table (6.1) also shows his damping estimates for the first three modes.

Section 6.2.2 - Brandow and Johnston Associates Analysis of 1971

Brandow and Johnston’s report [6.3] describes an attempt to visually match the dynamic
response of a structural model to the actual behavior incurred by Building 180 during the strong
motion part of the San Fernando earthquake. The match, however, was not good in comparison to

others such as the one performed by Wood, described in the next section.

Section 6.2.3 - Wood’s Analysis of October, 1972
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In Wood’s studies [6.4,6.5], a structural model was corrected by trying to match its response to
the San Fernando earthquake response of Building 180. The model was then employed to estimate
the level of the seismic inter-story forces experienced by the building during the strong motion part
of the earthquake. The report suggests that some of the structural columns nearly reached their

yield level.

Wood employed a “reduced” model for the E-W direction analyses: the two-dimensional, eleven-
bay, longitudinal structure elevation was modeled as a one-bay frame structure. Furthermore,
he assumed that the stiffness is homogeneous over the height of the building. Modeling of the
longitudinal girders was approximated in three different ways: (1) a trussed girder, (2) a rigid girder,
and (3) an equivalent girder, but the trussed girder was selected as the best model. Wood further
synthesized two different models for the columns, each for a different behavior regime. The “full
composite” model corresponded to low-amplitude response of the structure in the linear range. In
this range, it was assumed that the motion of the structure would not cause the concrete encasing the
columns to open at the cracks. On the other hand, the “partial-composite” strong-motion model
assumed no contribution to the stiffness from the column concrete wherever it underwent tensile
strain. The models roughly approximated the observed structural response so in order to obtain
a better match, Wood resorted to directly changing the modal frequencies of the chosen “reduced”
model and not the properties of the structural model themselves, so that any implications that
the new modal frequencies might have on the structural inter-story stiffness properties were not
addressed. Wood’s trial-and-error modification of the modal frequencies was done in such a way
that better visual matching between the recorded responses and those calculated for the models was
achieved. The damping ratios were also adjusted by matching the observed Fourier amplitudes of
the roof accelerations. Table (6.1) shows how Wood’s models compare with other predictions and

Fig. (6.8) presents Wood’s modeshapes in comparison to Teledyne’s experimental data.

Section 6.2.4 - McVerry and Beck’s Analysis of 1983

McVerry and Beck’s analysis [6.8] is an extension of the modal studies performed individually
by both Beck [6.9] and McVerry [6.10] in 1978 and 1979, respectively, in which Building 180’s modal
parameters were estimated from the response to the San Fernando earthquake. Their methods
seem to present better parameter estimates than competing modal identification methods (see, for
example, [6.6,6.7]). The results of their more recent study showed a previously undetected time shift
of 0.08 seconds between the San Fernando earthquake base and roof signals. Taking this time shift
into account, the methods developed by both authors were able to extract more reasonable modal

parameters estimates, particularly for the higher modes.

Time-invariant parameter estimates were determined and the corresponding model provided a
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good overall fit to the measured roof response, their error index Jr being approximately 4.8- 16=%,
These estimates, also shown in Table (6.1), correspond mainly to the estimates for the strongest
motion part (5-30 sec.), since output-error approaches weigh the absolute error difference and not
the relative error. The corresponding response match from their MODE-ID algorithm is shown in
Fig. (6.7).

Table (6.10) shows modal estimates which were computed for different time windows by
McVerry and Beck, a procedure which provides some idea of the time-varying behavior produced by
any non-linear response of the structure. The fact that their two methods yield natural frequencies
which started from values close to those measured in previous vibration tests and then decrease
by approximately 20% implies that the structure lost substantial stiffness during the strong motion
part of the San Fernando earthquake. The good overall match of a linear model with the observed
behavior implies that changes in the dynamic properties of the structure occurred primarily during
early parts of the earthquake before the long strong-motion segment. Some lack of overall matching
may also occur since the methods did not allow for non-classical modes. Non-classical modes may
be needed but the authors found that the classical-modes model fitted the response data accurately,

particularly for the smaller time-windows studied.

The initial values of the fundamental frequency for the E-W direction corresponded closely to
values estimated from previous tests, approximately 0.98 Hz, but then decreased to a minimum of
0.78 Hz during the largest amplitude response segment, implying a decrease of 37% in the modal
stiffness. The value towards the end of the response was found to be approximately 0.81 Hz. The
second E-W mode frequencies decreased by approximately 26 % from 3.23 Hz (0-10 sec. segment)
to 2.38 Hz (10-20 sec. segment) to 2.56 Hz (30-40 sec. segment), the maximum decrease being 46%.
The damping ratios were also found to vary in time. The damping estimates were compared with

their previous results [6.9,6.10] using the unsynchronized records and were found to be more reliable.

Section 6.2.5 - Teledyne’s Analysis of November, 1971

Teledyne’s analysis [6.2] of their own ambient vibration E-W translational modal data was
restricted to the determination of the damping ratios from the power spectra plots and to cross
spectra among different records. Damping was determined using the half-power point method and
the results, along with the natural frequencies, are shown in Table (6.1). A limited comparison with

Nielsen’s 1964 data was also present in their report.

Section 6.3 - SUB-ID Results for Building 180
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The programs described in earlier chapters, SUB-ID-Modal, SUB-ID-SS (successive
substitutions) and SUB-ID-Time are used here to study the loss of stiffness in Building 180. SUB-ID-
Modal and SUB-ID-SS are used with Nielsen’s data to estimate the stiffness distribution before the
earthquakes. SUB-ID-Time is then used with the Lytle Creek and San Fernando earthquake records
to try to estimate the stiffness distribution during various time segments of the response. Finally,
SUB-ID-Modal and SUB-ID-SS are used again with Teledyne’s data in order to estimate the stiffness
distribution shortly after the occurrence of the San Fernando earthquake. In all circumstances, a 10-
degree-of-freedom chain model is employed. When the information is abundant, as for Nielsen’s and
Teledyne’s data, a determination of all ten interstory stiffnesses is performed. For the time history
strong motion data, however, non-uniqueness considerations restrict the number of parameters to

be determined.

Section 6.3.1 - Results from Nielsen’s Data

Nielsen’s data consists of modal frequencies and modeshapes corresponding to his test No. 14,
prior to the occupancy of the building. The model employed here is a 10-story chain system and the
data available is the modeshape components for the upper eight of the ten floors. Table (6.5) and
Table (6.6) show the results obtained by SUB-ID-Modal weighing the natural frequencies by 9/10
and the modeshapes by 1/10, and by SUB-ID-SS, respectively.

In Table (6.5), two models with their associated stiffness distributions are shown: model N-1
corresponds to Nielsen’s original mass distribution (417,680 kg. (920 kips) for each floor and 744,560
kg. (1640 kips) for the roof mass), and model N-Opt. corresponds to an identical mass distribution
except with an estimated top mass value of 718,407 kg. This mass estimate is close to Nielsen’s
value. The results in Table (6.5) and Table (6.6) show stiffness distributions fairly uniform, except
for the first two inter-story stiffnesses which are higher than the rest (Table (6.5)). The agreement of
the model predictions with the observed modal frequencies and modeshapes is good and the upper
story stiffness components match well those estimated by Nielsen, as seen by comparing Table

(6.3) with Table (6.2).

Table (6.4) shows the corresponding stiffness matrix for the SUB-ID-SS program. The stiffness
distributions are somewhat different from the ones obtained with SUB-ID-Modal even though the
modal data employed is the same. The reason for this is perhaps due to the existence of model
error and the different implicit weighting of both algorithms. In the SUB-ID-SS case, in order to
avoid non-convergence of the method, the first two degrees of freedom had to remain fixed. Since
no mass optimizations can be performed by SUB-ID-SS, the roof mass estimated by SUB-1D-Modal
was employed, in the model N-Opt.
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Section 6.3.2 - Results from the 1970 Lytle Creek Records

Unfortunately, as has been documented in Section 4.1.2.3, the chain model excited at the
ground level and monitored at the topmost degree of freedom does not provide a unique stiffness
parameter distribution when all inter-story stiffnesses are to be determined. By reducing the number
of parameters, however, the uniqueness properties of the problem improve. Three parameters (the
first corresponding to the third and fourth inter-story stiffnesses, the second corresponding to the
fifth through seventh stiffnesses, and the third corresponding to the last three stiffnesses) were chosen
in order to investigate more closely the behavior of the structure. Thus, the analyses described in
this and in the next section should be taken to be indicative of possible “stiffness-loss” patterns
over large regions. In general, it is seen that the error indices are only slightly larger than the ones
achieved with the more general modal methods of Beck and McVerry, which provide the best match
whenever linearity and classical modes are valid assumptions since no structural model is employed.
The relative proximity of SUB-ID’s error indices to the latter gives confidence that an adequate

structural model has been employed.

The SUB-ID-Time results from the Lytle Creek records presented in Table (6.1) and Table
(6.7) indicate that there is some stiffness loss at various locations in the structure. (The model
employs the optimized mass estimates derived from Teledyne’s data, described later in this chapter.)
The 63 = 04 stiffness starts around 9 to 10-103Nm~! and drops to 7-103Nm~! . Unexpectedly,
f5 = s = 07 has the opposite behavior: it starts low and then increases towards the end of the
records. The last set, 85 = fg = 8, , starts high at 10 Nm™! , dips and then increases to a greater
value, 1.2-10° Nm™! . These patterns of behavior seem to indicate that the structure is undergoing
significant non-linear behavior despite the fact that the earthquake produces only modest shaking
(2.5 %g at the roof ). From the records (Fig. (6.4) and Fig. (6.5)), however, one can see that the high
accelerations are not concentrated in one time segment, unlike some other strong motion records.
The frequency values estimated for the time windows shown in Table (6.8), including those estimated
by MODE-ID, give little evidence of the slight stiffness degradation predicted by the SUB-ID-Time
algorithm. The error index Jr in Table (6.7) is quite large in the initial segment 0-2.56 sec. The
error is probably due to the assumption that the initial conditions are always zero displacement
and velocity when in fact some information at the beginning of the strong motion records was not
recorded. As is expected, the effects of the missing data decays in time and so the error index is
shown to improve for the latter time windows even in the light of higher accelerations occurring
in the 4-6 sec. time segment. Fig. (6.4) shows how the accelerations start off at relatively large
values while Fig. (6.5) shows the acceleration match produced by both SUB-ID-Time and the more
flexible MODE-1D program.

The base acceleration spectrum is fairly broad-band, inducing many modes to participate in

the response, but the models employed only considered three modes to be trustworthy. The higher
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modes and the measurement noise tend to deteriorate the match. The plot in Fig. (6.5a) shows
a fairly jagged empirical transfer function along with the two predictions implied by the identified
models; it is evident from this match that at least the first two modes have been correctly extracted,

the third mode not being easily identified visually.

Section 6.3.3 - Results from the 1971 San Fernando Records

The response match shown in Fig. (6.7) is for an optimal three-parameter model of the type
described in the last section. It compares well to the match of McVerry and Beck, also shown in
Fig. (6.7). The three-parameter model yields an error index ( Jr = 7.8 - 1072 ) somewhat larger
than for the ten-parameter model example case referred to in Table (6.1) ( Jr =6.4-10"2 ) when
the wide 0-41 sec. segment is employed. The increase in the error index is large enough to create
some concern about the adequacy of the three-parameter model although the visual match in the

acceleration signals match is still good as can be seen in Fig. (6.7).

In Table (6.9), when employing this three-parameter model for different time windows, this index
is seen to remain relatively low. The high error index values, the drop in the natural frequencies
(Table (6.10)), and the larger damping values in the first two modes at the beginning of the strong
motion records may indicate that the structure underwent some non-linear stiffness-loss behavior.
Indeed, in the different time segments, it is possible to see substantial variations in the stories’
stiffness values compared to the earlier values derived from Lytle Creek’s earthquake data. When
comparing the first two windows’ results, the estimated stiffness parameters seem to indicate the
existence of a mild 10% overall loss of stiffness in the middle stories and a large stiffness loss in the
higher floors. Towards the end of the records, it is possible to see nearly 50% stiffness loss in the
middle stories and slight recovery in the higher stories. The stiffness loss is probably due to the
cracking in the concrete encasing as suggested by Wood although in his model the cracking could
not account for more than 3% drop in any of the modal frequency values. McVerry and Beck’s
results show also the drop in the natural frequency values, although in their case the drop was
more accentuated: from 0.98 Hz. to 0.80 Hz. as seen in Table (6.10). The latest version of Beck’s
MODE-ID algorithm was employed, this time with a slightly different synchronizing time shift (
3 At instead of 4At) and with the uncorrected version of the earthquake records. The modal
values predicted differed slightly from those previously calculated by McVerry and Beck, this time
corresponding rather closely with those predicted by SUB-ID-Time (Table (6.10)).

The error index decreases considerably in the 10-20 sec. and 20-41 sec. time segments. These
time segments are characterized by the large presence of the first mode relative to the second and to
the third, and so by matching just this first mode, the error index is reduced greatly. The stiffness

and damping values do not vary as much in these segments, implying that the concrete encasings,
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if cracked, remained completely cracked throughout the high amplitude first mode response and did

not bond again even during the small amplitude motion towards the end of the response.

Section 6.3.4 - Results from Teledyne’s Data

When employing Teledyne’s data, use is made of the mass distribution predicted by Wood for
his own analytical model [6.4] since Nielsen’s mass estimates are valid for an unoccupied stage in
the construction of the building. Wood’s mass model W-1 corresponds to floor masses of 576,580
kg. (1270 kips) and a roof mass of 688,718 kg. (1517 kips), all values obtained by Wood from
the structural drawings. As expected, Wood’s floor mass values are larger (by approximately 38%)
than those predicted by Nielsen for the unoccupied structure, but Wood’s roof mass is unexpectedly
8% lower than Nielsen’s prediction. Table (6.11) presents the results for the original W-1 model
and also, since the lower roof mass value is questionable, for a second W-Opt. roof-mass optimized
model. Results show that the latter model estimated a roof mass of 1,176,220 kg., 104% larger than
the typical floor mass (576,580 kg.), a value which is significantly different from the one employed
by both Nielsen (744,560 kg.) and by Wood (688,718 kg.). The error indices for Teledyne’s data and
Wood’s mass model are remarkably worse than those obtained from Nielsen’s data. The optimized
model W-Opt., however, improves the match considerably, i.e., it reduces the error index from
9.8-10"* to 4.9-10"*. The worsening in the match from Nielsen’s results to the present results
may be attributed to the quality of the data itself. The accuracy of the modeshape from the ambient
vibration tests is probably not as good as those estimated by Nielsen during his tests with a building

shaker.

SUB-ID-SS results are shown in Table (6.12), the trends being the same as from SUB-1D-Modal.
From the data one can see that the #s and 0y stiffness ratios decrease considerably, except in the
W-Opt. case in Table (6.11), where 05 increases significantly. This value is rather questionable.
The accuracy of the stiffness distributions is also difficult to assess since the reults may be influenced
by the mass distribution which is not well known. By comparing the results in Table (6.5) and
Table (6.6) with those in Table (6.11) and Table (6.12) it is seen, however, that a pattern exists in
all models and that it corresponds to a decreased 9th inter-story stiffness following the San Fernando

earthquake.

Section 6.4 - Discussion

The estimation of the mass distribution proposed by Nielsen seems to contradict the one
proposed by Wood. Both mass distributions correspond to different stages in the building

construction and it is because of this that it is not possible to select one of the two for all the
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numerical tests performed by the SUB-ID programs. The typical floor masses were substantially
higher in Wood’s model, which agrees with the fact that Wood’s model corresponds to the occupied
building stage. The mass at the roof, however, differs significantly and it seems unlikely that it
should decrease in value after occupancy, as predicted by Wood. The optimal values for the roof
mass, as estimated by SUB-ID-Modal, agree well with Nielsen’s own estimates but disagree greatly
from the values estimated by Wood. The large increase in the roof mass for the occupied stage could
only be attributed to the mass of non-structural components such as the elevator machinery and
perhaps other mass neglected from inclusion in the structural drawings. Although the optimized
roof mass values are assumed more correct and thus employed for all final analyses, they do not

always provide optimal error measures J , as can be seen in Table (6.7) and Table (6.9).

The natural frequencies estimated by McVerry and Beck and with the SUB-ID programs indicate
that the structure softened during the first few seconds in the strong motion part and regained some
of its stiffness towards the end of the San Fernando earthquake. McVerry and Beck’s results show
substantial decreases in the natural frequencies which imply even higher decreases in the modal
stiffnesses. In the eventuality that there was damage localized at some interstory level, it is assumed
here that it would have to appear ever so slightly when comparing results from Teledyne’s data to
results from Nielsen’s data. “Damage” such as the cracking in the concrete that encases the steel
columns, is less likely to be detected from small amplitude steady-state, man-excited, or ambient
vibration tests. Table (6.13) and Table (6.14) show the ratio of Teledyne’s estimates to Nielsen’s
estimates as determined by the SUB-ID-Modal and SUB-1D-SS programs, respectively. The ratios
suggest that the structure was generally much stiffer in November 1971 than in the construction year
1963-1964. A reason for this might be that Nielsen’s data corresponds to a stage in the construction
of the building where many non-structural and perhaps some structural components were missing.
Nevertheless, since the ratios depend on the stiffness estimates and the latter depend on the mass
estimates, all of which are not completely trustworthy, the absolute value of the ratios may not be
trustworthy as well, but the relative stiffness values along the height of the building are more likely
to be so. One can observe from Table (6.13) and Table (6.14), and perhaps more clearly from Fig.
(6.9), that the stiffness ratios are relatively low in the lower story and at the ninth story level. If
any “damage” did occur during the San Fernando earthquake, it is most likely that it took place in
the lower stories. The reduction at the ninth floor level is not intuitive, however, and also in light
of the SUB-ID-Time results of Table (6.10) where the largest stiffness loss occurred in the middle

floors.

Damage of the type proposed by Wood, i.e., cracking of the concrete encasing, would explain
how the stiffness of the columns would decrease in the strong motion segment of the earthquake and
immediately recover to the initial stiffness when the motions become small again. This is consistent
with the behavior observed by McVerry and Beck and also here, except that it is unlikely that

there was nearly 50% loss of stiffness from the cracking in the tensile region of the concrete encasing.
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Also, this hypothesis would predict that all the modal frequencies would return to the original values
after the motion stopped, but the results obtained by McVerry and Beck and with SUB-ID-Time,
shown in Table (6.10), indicate that there is no clear tendency for the structure to stiffen to the
same level that it had prior to the beginning of the earthquake. The initial stiffness values are
already considerably lower than the results from the Lytle Creek earthquake, which occurred five
months prior to the San Fernando earthquake. Observing the excitation and response of Building
180 towards the beginning of the San Fernando records indicates that an acceleration of 62 cm/s/s
takes place at 2.28 sec., the latter acceleration being nearly three times larger than any acceleration
suffered by the building during the Lytle Creek earthquake. This increase of amplitudes can account

for the increased softening suffered by the structure.

Teledyne’s results of November, 1971, show that the structure regained much of its stiffness,
as evidenced in Table (6.1). Teledyne and Nielsen’s data of February, 1972, show recovery to levels
slightly lower than those corresponding to Nielsen’s Test No. 18. This confirms that the decrease
in the stiffness values during the San Fernando earthquake was temporary and that “the structure

healed with time.”
All of this information leads to several speculations:

(1) There was a reduction in stiffness in the structural members, such as cracking of the concrete

encasing during the prior, albeit weaker, Lytle Creek 1970 earthquake.

(2) There may be effects such as a partial loss of stiffness in non-structural components and
their connections to the structural system. The non-structural components stiffened the structure
initially (as seen in Nielsen’s Test No. 18 results) but may have loosened up during the large

amplitude excitation of the San Fernando earthquake.

(3) There is a possible reduction in the stiffnesses of the basement and first stories which may
be partly due to the loss of contact between the structure and the surrounding soil, particularly at

the first story where normally only the north side is in contact with the soil.

Since it is unlikely that the cracking in the concrete encasing can account for nearly 50% stiffness
loss, it 1s probable that all three effects participated together. The large stiffness reductions, however,
cause some concern about the adequacy of the original building structure to withstand a similar or
larger earthquake without incurring excessive damage. Strengthening of the structure has been done

subsequent to the tests enhancing, in this way, the resistance of the structure to future earthquakes.
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JPL Building 180
Modal Frequency (Hz) Modal Damping (% critical)

Data Set Study h fa I3 & &2 &3
Nielsen’s 1964 Test No. 14 Data (steady-state)
Nielsen (experimental) 1.01 3.00 5.07 0.55 0.85 2.00
Nielsen (close-coupled) 0.99 3.02 5.12
SUB-ID-SS (Opt. mass) 1.04 3.07 5.04
SUB-ID-Modal (Opt. mass) 1.01 3.00 5.07
Nielsen's 1964 Test No. 16 Data (steady-state)
Nielsen 1.04 295 n/a
Nielsen’s 1964 Test No. 18 Data (man-excited)
Nielsen 1.10 340 n/a
Lytle Creek 1970 Eq. E-W comp.
SUB-ID-Time (3p: 0-20 sec) 0.993 3.00 5.02 40 53 79
SUB-ID-Time (10p: 0-20 sec) 0.983 3.04 5.20 41 47 T4
MODE-ID (0-20 sec) 0.979 3.06 5.20 44 54 69
San Fernando 1971 Eq. E-W comp.
Brand. & Johnst. (model 1) 0.94 263 4.35
Brand. & Johnst. (model 2) 0.81 222 357
Wood (partial compos.) 0.83 239 3.89 5.0 5.0 5.0
Wood (modified) 0.78 238 3.84 40 6.0 6.0
McVerry-Beck (0-41 sec) 0.784 242 3.92 36 74 12
SUB-ID-Time (3p: 0-41 sec) 0.783 232 3.77 39 171 10
SUB-ID-Time (10p: 0-41 sec) 0.781 236 3.73 39 6.9 11
MODE-ID (0-41 sec) 0.781 2.37 3.60 36 6.9 16
Teledyne’s 1971 Data (ambient vibrations)
Teledyne (experimental) 0.95 3.00 4.98 1.1 0.1 0.2
Wood (full compos.) 0.92 277 4.70
SUB-ID-SS (Opt. mass) 0.86 246 4.39
SUB-ID-Modal (Opt. mass) 097 299 4.98
Teledyne & Nielsen’s 1972 Data (man-excited)
Teledyne & Nielsen 1.00 3.33 n/a

Table 6.1: Comparison of modal frequency and damping values for JPL Building 180 in the
E-W direction, as estimated by various methods and at different points in time.
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rn/a nfa 7
nfa nja nja
nfa 13.11 -6.10
—-6.10 12.67 -6.31
—6.31 1229 —6.12 P
A= —6.12 1250 —6.85 X I
—6.85 13.12 -5.91
-5.91 10.83 -5.33
-5.33 10.68 -—5.09
L -5.00 5.07J

Table 6.2: Stiffness components estimated by Nielsen from the modal frequencies and mode-
shapes corresponding to his Test No. 14 for the close-coupled model of JPL Building 180, E-W
direction. (Rows corresponding to stories from the basement to the ninth.)

- 9852 —53.12 -
—5312 5341 —8.01
—801 1307 —5.06
_506 11.67 —6.61
. —6.61 1278 —6.18 X
= —6.18 1259 —6.42 il
—642 1191 —549
—5.49 1102 —5.53
—553 1047 —4.94
i _494 494 |

Table 6.3: Stiffness components for a ten parameter chain model estimated by SUB-ID-Modal
from the modal frequencies and mode-shapes corresponding to Nielsen’s Test No. 14 for JPL Building
180, E-W direction. (Rows corresponding to stories from the basement to the ninth with the N-Opt.

mass model.)

‘n/a nja ]
nfa nfa njfa
nfa 1343 —6.38
—-6.38 12.10 —6.59
. —659 1230 —5.71 T
= —571 1170 —5.99 w107
—5.99 1182 -5.83
—5.83 1140 -5.56
556 10.34 —4.78
! —478 478 |

Table 6.4: Stiffness components estimated by SUB-ID-SS from the modal frequencies and mode-

shapes corresponding to Nielsen’s Test No. 14 for a eight parameter chain model of JPL Building
180, E-W direction. (Rows corresponding to stories from the basement to the ninth using the N-Opt.
mass model.)
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JPL Building 180, E-W Direction (Nielsen’s 1964 Data)
Inter-story Stiffness Values
6, 6, 63 05 65 65 6 6s 6 6y it

IndezJyy
Model (All stiffness values x103Nm~1)
N-1 59.39 50.97 9.419 4.953 6.736 6.214 6.416 5.611 5.623 5.044 4.66 -10°
N-Opt 53.12 4540 8.006 5.060 6.607 6.177 6.416 5.492 5.529 4.940 426 -107%

Table 6.5: SUB-ID-Modal Parameter estimates corresponding to two models using 9/10 fre-
quency and 1/10 mode-shape weights in J . The data used is Nielsen’s Test 14 with mode-shape
components for the top eight floors. The optimized model predicts a roof mass 1.72 times larger
than the typical floor mass.

JPL Building 180, E-W Direction (Nielsen’s 1964 Data)
Inter-story Stiffness Values

6, 62 3 04 05 fs 6+ fs fs 610
Model (All stiffness values x103Nm~1)
N-1 fo%a) o0 7.042 6.386 6.602 5.723 6.010 5.940 5.748 5.030
N-Opt. o0 frs) 7.045 6.383 6.586 5.713 5.986 5.832 5.563 4.776

Table 6.6: SUB-ID-SS parameter estimates corresponding to the two models appropriate for
Nielsen’s data. The first model assumes the original mass distribution while the second uses the
SUB-ID-Modal optimized mass estimate. For the method to converge, the basement and ground
levels were restrained from moving.

JPL Building 180, E-W Direction (1970 Lytle Creek Earthquake)
Inter-story Stiffness Values

6p 6. 63 65 6 65 O: 65 By 6o o ok
Model (All stiffness values x10°Nm~1!)
W-Opt (3p)
(0-2.6 sec) 61.7 61.7 897 897 668 6.68 6.68 104 104 104 15-10-2
(2.6-5.1 sec) 61.7 61.7 9.82 982 T7.14 7.14 7.14 8.86 B.86 8.86 5.1-107?
(5.1-10 sec) 61.7 61.7 7.14 7.14 992 992 992 963 963 9.63 46-10"2
(10-20 sec) 61.7 61.7 698 698 9.84 984 984 122 122 122 3.2.107*

Table 6.7: SUB-ID-Time three-parameter stifiness estimates obtained from the 1970 Lytle Creek
earthquake records. The W-Opt. model corresponds to the mass distribution which optimized
Wood’s model with Teledyne’s post-earthquake data. The basement and first floor stiffnesses were
fixed at previously estimated value of 61.7-103Nm~!,
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JPL Building 180, E-W Direction (1970 Lytle Creek Earthquake)
Modal Frequency (Hz)Modal Damping (% critical)

Study Time Window fl fg f3 &1 & &3
SUB-ID-Time (3p, W-Opt.)
(0-2.6 sec) 0.951 3.08 4.94 4.1 3.7 6.5
(2.6-5.1 sec) 0.973 3.03 4.88 6.7 4.3 29
(5.1-10 sec) 0.987 297 4.99 2.8 6.7 8.2
(10-20 sec) 0.983 3.04 5.19 3.1 5.2 48
MODE-ID (3 modes)
(0-2.6 sec) 0.991 3.08 5.07 4.9 4.1 9.1
(2.6-5.1 sec) 0.958 3.03 4.89 6.0 5.1 -0.2 (7)
(5.1-10 sec) 0.965 3.05 5.20 3.1 6.0 6.9
(10-20 sec) 1.01 320 547 3.4 9.6 4.9

Table 6.8: Comparison of time-windowed modal frequency and damping values.

JPL Building 180, E-W Direction (1971 San Fernando Earthquake)
Inter-story Stiffness Values

6 6> O3 65 05 bs 6 Os b f10 s b

Model (All stiffness values x103Nm™!)

W-Opt (3p)

(0-2.6 sec) 61.7 61.7 6.16 6.16 8.69 869 B8.69 9.76 9.76 9.76 8.9-10-2
(2.6-5.1 sec) 61.7 61.7 6.21 6.21 8.06 8.06 8.06 7.20 7.20 7.20 2.2.10"2
(5.1-10 sec) 61.7 61.7 6.04 6.04 5.05 5.05 505 595 595 595 62102
(10-20 sec) 61.7 61.7 5.76 5.76 5.02 5.02 5.02 5.19 5.19 5.19 43-10"3
(20-31 sec) 61.7 61.7 5.71 571 464 464 464 692 692 6.92 1.0:10-"
(31-41 sec) 61.7 61.7 6.00 6.00 472 472 472 7.19 7.19 7.19 22.1073

Table 6.9: SUB-ID-Time three-parameter stiffness estimates obtained from the San Fernando
earthquake base and roof records. The W-Opt. model corresponds to the mass distribution which
optimized Wood's model with Teledvne's post-earthquake data. The basement and first floor stiff-
nesses were constrained to the previously estimated value of 61.7-10°Nm~! .
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JPL Building 180 (1971 San Fernando Earthquake)

Modal Frequency (Hz) Modal Damping (% critical)
Study Time Window h f2 fa &1 & &3
McVerry-Beck (2 modes)
(0-2.5 sec) 098 32 nfa n/a n/a n/a
(0-5 sec) 084 26 n/a 33 29 nfa
(5-10 sec) 080 23 n/a 47 74 nfa
(10-20 sec) 0.78 24 n/a 34 45 n/a
(20-30 sec) 081 26 nfa 41 52 nfa
SUB-ID-Time (3p, W-Opt.)
(0-2.6 sec) 0.927 295 5.00 092 4.4 9.9
(2.6-5.1 sec) 0.900 2.71 4.65 41 59 1.3
(5.1-10 sec) 0.802 248 4.06 4.7 59 99
(10-20 sec) 0.787 2.38 3.94 34 6.0 11
(20-31 sec) 0.785 2.38 3.97 34 68 10
(31-41 sec) 0.799 241 4.03 3.6 11 12
MODE-ID (3 modes)
(0-2.6 sec) 0.935 2.94 4.86 45 71 26
(2.6-5.1 sec) 0.858 2.68 4.58 23 92 94
(5.1-10 sec) 0.782 243 4.05 39 68 11
(10-20 sec) 0.784 238 4.20 32 50 1
(20-31 sec) 0.788 248 4.28 38 63 62
(31-41 sec) 0.818 257 4.39 50 62 55

Table 6.10: Comparison of time-windowed modal frequency and damping values.

JPL Building 180, E-W Direction (Teledyne’s 1971 Data)
Inter-story Stiffness Values

0, [ 3 04 05 e 07 s flo 010 ;,,Ed:;'}'u
Model (All stiffness values x103Nm~1!)
W-1(10p) 138 124 894 7.52 898 955 7.57 6.95 550 6.48 9.8 -10~4
W-Opt(10p) 13.8 124 857 6.95 922 937 6.80 11.0 7.17 9.18 49 .10

Table 6.11: SUB-ID-Modal parameter estimates corresponding to different models for 9/10
frequency and 1/10 mode-shape weights. Only the first three modes in Teledyne’s data were used
with the corresponding natural frequencies and mode-shape components for the top eight floors.
The optimized model predicts a roof mass 2.04 times larger than the typical floor mass.
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JPL Building 180, E-W Direction (Teledyne’s 1971 Data)
Inter-story Stiffness Values

61 23 b3 b4 fs be b7 fs bs 610
Model (All stiffness values x103Nm~1)
W-1 228 424 279 377 612 604 616 389 307 454
W-Opt 339 618 3.1 524 856 836 849 5.14 5.01 8.66

Table 6.12: SUB-ID-SS parameter estimates corresponding to Teledyne’s modal data (only three
modes were employed). The first model assumes the original mass distribution while the second uses
the SUB-ID-Modal optimized mass estimate.

JPL Building 180, E-W Direction (SUB-ID-Modal)
Inter-story Stiffness Ratios
0, fa 03 04 05 s 6 s o 610

Model

W/N -1 0.232 0.243 0949 1.52 1.33 1.54 1.18 1.24 0.979 1.28
W/N -Opt 0.259 0.273 1.07 1.37 1.39 1.52 1.06 1.72 1.31 1.86

Table 6.13: Ratios of stiffnesses for each interstory level from results estimated by SUB-ID-
Modal. The numerator corresponds to the stiffness level calculated after the San Fernando earth-
quake from Teledyne’s data and the denominator corresponds to the stifinesses derived from Nielsen’s

data prior to the earthquake.

JPL Building 180, E-W Direction (SUB-ID-SS)
Inter-story Stiffness Ratios
6 - b3 B s fs 6; fs s 610

Model

W/N -1 n/a n/a 0.757 0.893 0.986 1.08 1.04 0.663 0.534 0.903
W/N -Opt n/a n/a 1.04 1.23 1.37 1.49 1.44 0.893 0901 1813

Table 6.14: Ratios of stiffnesses for each interstory level from results estimated by SUB-ID-
SS. The numerator corresponds to the stifiness level calculated after the San Fernando earthquake
from Teledyne's data and the denominator corresponds to the stiffnesses derived from Nielsen’s data
prior to the earthquake. The lowest two stories were fixed when using Nielsen’s data in order for

the algorithm to converge.
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Figure 6.1: Schematic drawings of JPL Building 180 (taken from Nielsen [6.1]).
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Figure 6.4: (a) Amplitude spectrum and (b) time history of the 1970 Lytle Creek earthquake
accelerations at the base of JPL Building 180 (E-W direction).
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JPL Building 180 (Lytle Creek earthquake)
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Figure 6.5: (a) Empirical transfer function between the 1970 Lytle Creek earthquake base
motion and the roof response for JPL Building 180 (E-W direction), and for the MODE-ID and
SUB-ID-Time predicted models; (b) match in the time domain.
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JPL Building 180 (San Fernando earthquake)
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Figure 6.9: Stiffness distribution after calibration with prior-to-earthquake data as determined
by the various techniques/models (Tables 6.13 and 6.14). The curve at the ‘4’ ratio level represents
the addition of all calibrated curves. This curve conveys an idea of the average stifiness distribution.
The stiffness at the ninth floor level dips but it does not go much below the value determined from
Nielsen’s data, before the addition of the non-structural elements.
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Chapter 7 : Discussion and Conclusions

Section 7.1 - Problems in Structural Identification

Both small and large structures present characteristics or “problems” which prevent the precise

identification of a structural model. Problems in identification fall primarily into three areas:

(1) Experimentally-based problems: These problems relate to variations in the values of
the signals attributable to errors in the measurements. Among these, three stand out as the
most important: (la) measurement noise, (1b) calibration error, and (1c) synchronization error.
Measurement noise can induce ill-conditioning since modal information (such as that coming from
higher modes) may not be recovered from the response signals, thus reducing the number of
independent data significantly. Noise should virtually disappear when modern instrumentation is
used. Calibration errors are the worst type of problems since they are almost impossible to detect
from the records alone, although the instruments can be periodically re-calibrated. Changes in the
amplitudes of the recorded signals influence all modes of vibration and can, in particular, alter the
estimated modeshape values. Lack of synchronization among the signals alter the estimates more
than any other error but with proper use of correlation procedures, these problems can be avoided

almost entirely.

(2) Model-data interaction problems: These are problems in which both the amount of data
available and the model chosen determine whether the estimates are reliable. The data is assumed
to be clean data, i.e., data effectively free from experimental problems. Model-data interaction
problems include two most important problems: (2a) ill-conditioning in the optimization process,
and (2b) non-uniqueness in the parameter estimates. Ill-conditioning is present whenever the model
response is not sensitive to the individual model parameters. A characteristic of ill-conditioning is
the very slow convergence of the optimization procedure to a minimum. Often, the optimization
algorithm prematurely converges to parameter estimates which predict modal parameters or time-
histories close to those observed. To remedy this, more information should be obtained from the

structural response. For most applications, it is also important to know whether there is uniqueness
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in the parameter estimation. For example, is there a unique parameter vector producing the global
minimum of the error index J in the output-error approach 7 Uniqueness requires a sufficiently
parsimonious model relative to the amount and nature of the data available. The simplified structural
model used in this work, involving the addition of sub-structure stiffness matrices scaled with stiffness
factors, would benefit from the development of sufficient conditions for uniqueness, but this has

proved to be a very challenging task.

(3) Model-based problems: These problems are related to choosing a model which can predict
the observed behavior. Modeling from the point of view of this study includes both the discretization
of the structure in terms of a finite number of degrees of freedom and also discretization of the
structure in terms of sub-structures. The choice of the appropriate model is a difficult problem since
there is generally a trade-off between the desired precision in resolving the stiffness distribution and
the amount of computation time needed for the estimation algorithms to converge to a solution.
Choosing a model with a small number of degrees of freedom which is not able to represent closely
the observed response leads inevitably to parameter estimates which do not have direct physical
interpretation and may give misleading conclusions. Refining the model usunally requires increasing
the number of degrees of freedom in the structure or rearranging the sub-structuring of the structure.
Increasing the number of degrees of freedom by itself increases the computational time needed to
calculate either the modal parameters or the response time histories. There is a remote possibility
that overall optimization computational time may be reduced when the number of degrees of freedom
is increased. It is possible, in other words, that the improved model and the data allow a faster
convergence to a physically-acceptable solution. On the other hand, increasing the number of degrees
of freedom in the model may not necessarily improve the model. The choice of sub-structures also
affects the modeling since it does not allow the independent identification of the stiffness factors
associated with each member in the structure. However, if a stiffness factor is assigned to each
member, it is most likely that the estimation problem will suffer from excessive ill-conditioning or
non-uniqueness. Non-uniqueness can be handled appropriately by the homotopy method but only

for structures with a small number of degrees of freedom, at present.

When the modeling is incorrect, it is extremely difficult to determine whether the parameter
estimates are in a close neighborhood of the “best” physical set of values. It is, indeed, difficult
to determine if there is such a thing as a “best” set of values. Good linear structural models are
those in which the parameter estimates yield error fits as good as the ones provided by modal
parameter estimation algorithms, provided the latter are also accurate. Modal models generally
provide the best fit that any linear model is capable of giving and should be considered as an
important complementary tool in linear structural identification. Generally, if a modal identification
algorithm can match the observed data very accurately, the structural identification algorithm should
be able to do so too, if the model is appropriately chosen. Errors in the response match which are

much larger than those for the modal identification suggest significant structural model error. If the
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identified modal model does not perform adequately, then the assumptions made in its development
should be reconsidered, e.g., are classical modes acceptable?, viscous damping?, linearity?, etc. Even
in the case where the structural identification match is as good as the modal identification match,

there can still be model error.

In the case where estimated parameter values are not physically reasonable, these can be
constrained in the algorithm procedure by utilizing additional prior knowledge. For damage detection
purposes, these types of constraints may not be conducive to an appropriate identification procedure.
Constraining parameters influences the estimation of the other parameters since there is generally a
trade-off among the parameters in order to retain similar modal properties. For example, to keep a
certain modal frequency fixed, one can increase the value of one stiffness parameter while decreasing
the values of others. From this example, it is conceivable that contraints on some parameters in the

presence of model error may preclude the others from arriving at “damage level” values.

Full confidence in a model is gained only when the optimal set of parameters is unique, produces
nearly perfect agreement with the abundant (if possible) observed data, and the parameter values
agree with one’s physical intuition. There are models, e.g., a chain model, which can accurately
match the recorded response of a structure, e.g., a framed structure, and yield physically acceptable
parameter estimates, but these estimates may provide the wrong information to the engineer. For
example, they might imply a mass or stiffness distribution which is, in reality, incorrect. In general,
and especially when suspect parameter estimates are obtained, the identification procedure should be
repeated with each subset of observed data, separately and in groups. Correct models are more likely
to give consistent results for each subset of data while incorrect models are more likely to predict
different parameter estimates. The data should include as varied testing conditions as possible
in order to make sure many modes of vibration are excited. The model can be used with more

confidence if the estimates are consistent in all possible tests.

Section 7.2 - Rules of Thumb

Experience dictates the following steps should be taken for efficient damage detection of

structures:
A) Prior to the use of real data:

(1) Choose two FE (or other) models: the first one should be a detailed model whose behavior
is to be much closer to that of the real structure than that of the second model. The latter should
also be discretized sufficiently well to allow for a representative behavior of the undamaged state of
structure (if available) but its main characteristic is that it is computationally efficient for repeated

evaluation in an output-error type code or for use with a homotopy technique. It is then important to
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determine the maximum number of trustworthy modes that can be expected from the simple model
(by comparison with the modal parameters derived from the complex model). Establish, if possible,
a model for which the number of parameters is no more than the number of modes available, unless

practically all modeshape information is available.

(2) “Calibrate” the simpler computational model with the simulated data employing the
equivalent of SUB-ID-Time, SUB-ID-Modal and /or SUB-ID-SS.

(3) Study the ill-conditioning of the problem by performing a check of either the gradient
of the J error index for the output-error approaches or the condition number for the successive
substitutions algorithm. Add some noise to the simulated data, if the real data is expected to be
highly contaminated. Add more modes (by refining the computational model first) or add/reallocate

the sensors to reduce any ill-conditioning.

(3) Study non-uniqueness by using the equivalent of SUB-ID-SS, if possible. Otherwise, use
SUB-ID-Homotopy if enough computational power is available. Otherwise, start the minimization
runs from as many different points as the number of existing sub-structures. In each of the latter
runs, start the minimization close to each of the axes, respectively, near the expected observed
fundamental frequency. Increasing the number of modes or adding/reallocating the sensors, as

mentioned above, should help remove non-uniqueness.
B) Using the real data:
(1) Determine which of the two, time-domain data or modal data, is to be used, or trusted.

(2) If in the time domain, (2a) synchronize the records and (2b) filter the data with a low-pass
filter at a frequency above the one corresponding to the last trustworthy mode. Use other filters
only if the causes of the noise or interference are well known. (2¢) Employ data in the signals until
the amplitude of the response decays significantly relative to the data in the large-motion segment

(unless the expected values of the estimates are known).

(3) If in the modal domain, determine what weighting should be used according to the amount

of data and according to the ultimate use of the data (other than damage detection?).

(4) Perform time-window analyses to check if the structure has undergone considerable non-

linear behavior.

(5) Once some damage pattern has been established for a given structure from the available data,
refine the model by sub-structuring the potentially damaged region(s). An increase in the number
of parameters 0; , needed for the refinement, should be prevented in order to avoid ill-conditioning
and /or non-uniqueness. This can be accomplished by keeping, in the next optimization, the “stable”

and “unstable” @; (those #; which did not change much or increased in the prior optimization,



respectively) fixed at the nominal values.

Section 7.3 - Future Research

For each of the methodologies presented in this study, a number of additions can improve upon

what has been done here:

Additions to SUB-ID-Time - (1) Determine a method for finding, or at least bounding, all
non-unique solutions within the parameter space. (2) Some attempts have been made to remove
the banana valley in situations where ill-conditioning exists. This has been done by mathematically
remapping the local topology to one in which the shallow valley is straightened out and made
parallel to the transformed axes. In this way, the local topology has been converted to one where
the convergence to the local minimum is attained efficiently by most optimization algorithms. (3)
A formal measure of the flatness of the banana valleys by means of an evaluation of the gradient of

J along the valley direction. In this way, ill-conditioning can be determined more precisely.

Additions to SUB-ID-Modal - (1) Introduce the participation factors into the formulation in the
case where the modal identification program provides such information, as is the case for program

MODE-ID.

Additions to SUB-ID-SS - (1) Recast the function f(#) to prevent the repeated divergence

which occurs in the current version whenever the modeshape information is incomplete.

Additions to SUB-ID-Homotopy - (1) Determine, early into the homotopy path, whether the
end values will turn out complex (with large imaginary components). If so, then discard solution
immediately. Solutions such that the imaginary component is small should be studied more closely
since these might indicate that the current model is somewhat close to the system, and it might be
reliable enough to detect damage zones. (2) Determine whether the algorithm can be partitioned

adequately for implementation in a massively parallel computer (most likely so!).

Section 7.4 - Conclusions

Models with few parameters which possess a clear mechanical interpretation have allowed for
more informative damage detection procedures than other more ad hoc approaches (such as those in
which all components of the stiffness matrix are independently estimated). In the former, it is very
likely that a configuration which provides unique parameter estimates can be found. In particular,
the addition of the homotopy technique gives a novel method to completely determine all non-unique

parameter distributions for the general structural identification problem.
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Although methods such as the ones described above are computationally intensive, they can be
implemented for use with simple structural models on small computers allowing for the continuous
health monitoring of important structural systems. More efficient methods, however, should be
developed to make the analysis of large, more complex models feasible. Before long, nevertheless,
commercially available computational power will allow the use of the present set of algorithms for

such cases.

In summary, experimental errors should be minimized, especially synchronization errors. Model-
data interaction problems can be analyzed prior to using data from the experimental or real
structure by studying simulated data where the exact parameter values are known. Yet it is clear
from the foregoing how difficult it is to determine a model which is (a) computationally efficient,
sufficiently refined to allow for (b) good response prediction and (c) damage detection without (d)
non-uniqueness or ill-conditioning. Problems arising at this stage, such as non-uniqueness or ill-
conditioning, may be resolved with the addition of more data or different placement of the sensors.

In this way, better designs for the experimental set-up can be achieved.

Special attention must be paid to the modeling process so that the resulting model can be
identifiable. Without a good identifiable model, the parameter estimates may be misleading. In
limiting situations where a very simple model is used, however, the estimates may still provide
enough information leading to the detection of general areas of damage. The results presented in

this study are very encouraging although some efficiency-related difficulties remain.



