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Abstract 
There are fundamental problems in the application of struct ural identification procedures to 

damage detect ion which still need to be resolved. The present study investigates the underlying 

issues and then provides a number of techniques wh ich solve a series of unresolved problems. The 

techniques developed range from extensions and refinements of previous methods to t he adaptation 

of novel homotopy methods. 

T he results from simulated data show that ill-conditioning, non-uniqueness and temporal syn­

chronization of the data a re the most serious problems encountered . Criteria to resolve these a re 

then put forth. From the experimental studies, however I it becomes evident that modeli ng error 

is t he most serious issue. The experimental results show, nonetheless, that even wi t h large model 

erro rs , it is possible to localize the area of damage to with in a sub-structure. 

T he tech niques are then applied to data obtained from a ten-story steel frame building. P revious 

stud ies on such structures have indicated large changes in the natural frequencies, especially during 

the San Fernando earthquake of February 9, 1971. The present study shows how changes in the 

nat ura l frequencies a nd in the modeshapes are related to the degradation of the inter-story stiffness 

along the height of the building. Low amplitude forced vibration and ambient vibration test data 

yield one set of resul ts: at these levels of motion the structure seems to retain much of its original 

uniform stiffness. This is true e ven after strong motion , leading to t he notion that t he building "has 

healed" with time. It is clear from the studies how this apparent stiffness is lost imlnediately once 

the strong motion of even moderate earthquakes has begun and it is thought t hat this is due to a 

combinations of effects. Results show that for the 1971 San Fernando earthquake, stiffness losses in 

the order of 50% occurred in the middle s tories towards t he end of the strong motion part of the 

seismic motion. 
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Chapter 1 Introduction 

The decision of whether a damaged structure should be repaired can have considerable economic 

repercussions for the owner. Moral issues, aside from purely economic , arise in the case of structures 

normally inhabited by humans . It may not be clear whether these structures will be able to withstand 

their future loads. Therefore, engineers should attempt to precisely evaluate the amount of damage 

incurred by the structure before making any far-reaching decisions. In t he absence of precise data, 

poor decisions may be made. The importance of reliable system identification/damage detection 

techniques is that they can help produce a more accurate assessment of the damage state of a 

structure. 

The field of damage detection in structures has been approached from various view points. 

Among these, the most notable ones are those which emphasize (1) visual signs of "damage)) (cracks , 

pulled bars , etc.); (2) ultrasound techniques; and (3) vibration monitoring. The conveniences and 

disadvantages of each method are numerous and , in principle, all of them should be employed for 

the stated purpose. Visual inspections, however, are often the only or most common practice. 

This study uses the th ird approach , that is , vibration monitoring. Vibration monitoring 

aims at determining the state of a structure by studying its dynamic behavior. Due to the 

difficulty of determining the ,,/timate strength of a sub-structure, damage detection techniques have 

emphasized the less complex problem of determining the loss of elastic stiffness within the structure. 

This approach has limitations but can be useful when the damage/stiffness- loss relationship can 

be justified. Empirical observations and analytical studies (1.1,1.2) often indicate that such a 

relationship is justified. 

A number of researchers have pursued damage detection by vibration mon itoring but there are 

still fundamental issues which need to be resolved. In this study, the goal is to define the fundamenl.al 

problems when trying to determine the changes in the elastic stiffness of members within a structure. 

The next section describes some of the approaches taken by other researchers, and in the last section 

of t his chapter an outline of this study is given. 
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Section 1.1 - Prior Work in Structural Identification 

Dynamic models of complex structures are usually tested or validated based on a subjective 

evaluation of the predicted and measured natural frequencies and normal mode shapes. System 

identification provides a more sophisticated approach for validation and, to this en d, much research 

effort has been expended on this topic in almost aU fields of engineering. This section describes 

those procedures which researchers have developed to obtain better knowledge of the physical (mass , 

stiffness, damping) properties of dynamical systems. 

St.ructural identification methods can be characterized according to whether they are: (a) 

"batch" or sequential, with complete (all degrees of freedom) or incomplete data; (b) time, frequency, 

or modal based; (e) input-error, output-error, equation-error, or instrument.al variable; (d) global 

(full , banded , or reduced) or local; (e) statistical (classical or Bayesian) or deterministic; (f) direct 

or itera tive. Consideration is given only to linear elastic dynamic systems in most stru ctural 

identificat ion research. 

Batch methods employ all information at once while sequential methods continuously update 

the structural parameter estimates as more information is accrued. By and large, most researchers 

in this field employ batch methods although sequential methods may be more convenient for on-line 

situations or with methods which stress filtering techniques such as those presented by Mottershead 

and Foster [1.3-1.4). 

The time and freq uency domain approaches make use of the response and excitation data 

directly from the observed time records and from the FFT-based Fourier spectra) respectively. 

Previous conditioning (including filtering, integration , etc.) may be performed on the signals. 

Udwadia and Shah [1.7), Kaya and McN iven [1.5), Dimsdale [1.6), Agbabian et a1. [1.8-1.9) , Matzen 

[1.10), Banks et a1. [1.11), and Beck and Beck [1.12) have employed time domain approaches while 

Cot.tin et a1. [1. 13-1.15)' Fritzen [1.16), Hoff [\.17,1. 18), and Mottershead and Foster [\.3,1.4 ,1.19) 

have used the frequency domain in the way of Fourier spectra or frequency response functions 

("FRFs"). Modal domain methods , on the ot.her hand, make use of previously determined modal 

parameters. Any of the large number of modal parameter estimation techniques, not all of these 

being systematic "identification" techniques, may be used for this purpose although few of these 

estimate the modal effective participation factors as in Beck [1.82J. Modal based techniques have 

been much more widely used in structural identification perhaps due to the widespread availability 

of structural modal data. Perhaps the first attempt to make use of this data is that of Kanai [1.20] , 

followed later by Berg [1.21), Nielsen [1.22), Rodden [1.23), Hall et a1. [1.24), Berman and Flannelly 

[1.25), and Ross [\.33]. A list of later authors includes Berman and Fuh [1.28 ,\'29), Caesar [\.30), 

Wei [1.3 1,1.32)' Collins et a1. [\.34), Thoren [1.35), Schiff et a1. [\.36), Udwadia et a1. [1.37), Vandiver 

[1.38), Wojnarowski et a\. [1.39), Caravani et a \. [1.40), Garba and Wada [\,41), Baruch [1.42- 1.45), 
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Chen et a1. [1.46- 1.49], Coppolino and Rubin [1.50, 1.51]' Heylen [1.52]' Natke et al. [1.53-1.55]' 

La llement and Zhang [1.56-1.59], Zak [1.60], Kabe [1.61], Stubbs and Osegueda [1.62-1.64]' Fritzen 

[1.1 6], Hanagud et al. [1.65]' Thomas et al. [1.66], Beliveau [1.67], Flanigan [1.68 ,1.69], Gray and 

Starke [1.70 ,1.71]' Ojalvo et al. [1.80, 1.81), Kammer [1.72] , Eiber [1.73], Inman [1.74], Waller and 

Schmidt [1.75], and Waqfi [1.76]. Much of this research was done with a focus on structural health 

monitoring. 

Output-error approaches consider errors between the observed and predicted output qu antities 

such as accelerat ions , displacements, s tresses, etc . Accelerations are th e most common quantities. 

Displacements are not used as often a lthough recent progress in the field [1.77] might change t his 

trend . The predicted outpu t quantities are calculated according to the model in hand and if these 

correspond "identically" to the observed quantities, then no (output) error exists . Equation-error 

methods , however, correspond to the cases where errors arise in the governing equations once all 

the kinetic and kinematic quantit ies are replaced by the observed quantities. In either case, a least­

squa res approach can then be taken to incorporate these error vectors into a single scalar "error 

functional". Input-error methods are generally equivaJent to equation-error approaches since for 

linearly elast ic systems the forcing fun ction, Le ., input to the system , is placed alone on one side 

o f the governing equation . The aim of these error approaches is to minimize a measure of the 

error. Since the output quantities in dynamical systems are almost never linear with respect to 

the parameters of interest, the output-error minimizat ion procedure is generally iterative. \"'hen 

no isy data is employed, or when there is model error in the identificat ion procedure, mllUmlzlI1g 

the output error does not necessarily lead to a minimization of the equation error. Equation­

error approaches often allow the error to be linear in the unknown parameters, leading to dired 

methods of solution. \Vhen employed in a least-squares context, however, equation-error methods 

are known to suffer from "inherent, noise-induced asymptotic bias in the parameter estimates" [1 A} 

As me ntioned by Mottershead an d Foster , "this arises because the EE [equation error] model is not 

a 'regression model', as required for linear least-squares analysis , but a 'stru ctural model' " [1.80]. 

The Jnst,rumental Variable technique described by these au thors is a modifi cation of the equation 

error approach whose objective is to minimize the bias. 

Global methods are those that modify most of the components of the mass, damping , or stiffness 

matrices. The matrix modifications or "updates" are generally not intuitive to an engineer since a 

very large number (or even all ) elements in the matrices are allowed to be modified . The modification 

of global matrices, however, can often be accomplished in a direct manner. Parametric methods ) 

on the other hand, are those in which the governing equations depend directly on the values of 

a pre-determined number of stru ctural/FEM (design) parameters. Kaya and McN iven [1.5] and 

Dimsdale [1 .6], for example, have studied the influence of effective beam lengths and joint stiffnesses 

on t. he response of a. frame structure and identified those values whi ch offer best match of the model 

prediction with experimental data. The structure) in general ) can be decomposed into local structural 
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regions (also called modules or sub-structures). In the mathematical representation, each of the sub­

structure stiffnesses can be modified easily by just scaling the original sub-structure stiffness with 

a "stiffness coefficient or parameter" as proposed by Natke and Schulze [1.53], Lallement et al. 

[1.56], Beck and Beck [1.12]. There are some discrepancies in views expressed in the literature as to 

the usefulness of global methods. The view taken in this study belongs to the parametrist group. 

Authors supporting the parametrist approach claim that modifying all coefficients of the different 

matrices as done by the global approach is highly undesirable (Kabe[1.61]) since, in general, no clear 

intepretation of the state of the str ucture can be deduced from the resu lting matrix coefficients. 

Furthermore, in general, there are an infinite number of possible values which the matrix coefficients 

can take that yield the same observed data. Often , the solu tion which yields the least deviation 

from the original values is chosen. From a damage detection point of view, this choice does not seem 

particularly useful. The global approach , however , is closer to predicting exactly the observed data 

and to not violating the governing equations. On the other hand , the response predicted by the 

optimized global model at the other degrees of freedom of the structure will be, in general, incorrect. 

The optimal parameter model will not predict the observed response so closely as the global model 

wil l. But it is generally the case that the parameter model will predict the response at the other 

degrees of freedom more closely than the global model. In addition, the parameter model allows the 

user to monitor through time the estimation of mechanical quantities with clear meaning in order 

to ac;certa in the good health of the structure. 

Statistical (stochastic) approaches consider the probabilistic aspects of the output or equation 

errors. Classical statistics are based on weB-known , maximum likelihood estimation techniques. 

Application of classical statistics has been implemented by Friswell [1.78], Stubbs and Osegueda 

[1.62-1.64]' Thomas et al. [1.66], Agbabian et al. [1.8-1.10]' Mottershead and Foster [1.3-1.4 ,1.21] . 

Bayesian statistical approaches differ from classical in that they associate a probability distribution 

with each parameter. A prior probability distribution for the parameter and the data obtained 

from experiments are combined to yield a posterior probability distribution. Bayesian probabi lity 

distributions convey the plausib ility of each parameter taking a certain value. Prior distributions 

are important in Bayesian statistics since the user can then emphasize prior information based on 

previous experience or on theoretical grounds. The prior distributions are clearly reflected in the 

posterior distribution when there is little data available. Although the underlying interpretation 

is different, classical and Bayesian statist ics may give similar results when the prior dis tribution 

is assumed to be local and non-informative. Collins et al. [1.34] have employed the Bayesian 

formulation with different prior distributions. Beck [1.79] has recently formulated the general 

Bayesian structural identification problem. Deterministic approaches, on the other hand , aim to 

obtain the parameters which yield a solution without explicit consideration of the uncertainty in 

the observed data. The usual least-square methods rail in this category. In general, most successful 

deterministic techniques can be given a statistical interpretation. 
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Methods can be either direct or iterative. Direct methods estimate the optimal parameters in a 

fixed number of calculations and thus are typically many times more computationally-efficient than 

iterative methods where the number of calculations is not known beforehand. Direct methods are 

usually found in global equation-error formulations which assume that the whole state vector and 

its derivative are known. Under these circumstances, a least-squares formulation for equation error 

leads to a set of linear simultaneous equations; t.he solution method for these does not require an 

iterative method. Many authors reduce or condense a large system of equations to a smaller one 

whose order is equal to the number of observed degrees of freedom. In this way, the assumption 

stated above, that the whole state vector and its derivative are known , is satisfied. Iterative solutions 

are usually found in output-error formulations since the output quantities are almost always non­

linear functions of parameters or matrix coefficients. Iterations are also required in equation-error 

formulations when the number of observed degrees of freedom is less than the number of total degrees 

of freedom. Iterative methods often require optimization techniques of which the Gauss- 'e wton is 

the most frequently employed. 

Section 1_ 2 - Outline of this Work 

A family of methodologies is presented in this study to confront the problems in structural 

identification which are described in detail in later chapters. 

An identification methodology consists of the following components: ( 1) a structural model 

with associated stru ctu ral parameters; (2) a parameter estimation procedure; (3) a data processing 

and reduction procedure; (4) a reliabi lity/model appraisal procedure . Unfortunately, the most 

appropri ate choice for each component cannot be made independently of the rest of the cOIl"lponents. 

A full desc ription of the methodology requires a thorough explanation of their interaction. 

Chapter 2 presents a description of parametric models and , in particular, the fundamental 

mechanical model on which this study is based. 

The various methods employed for parameter est imation are described in Chapter 3. i\'lore than 

one technique is considered since some combinations of model and parameter-est imation-methods 

yield more efficient computational algorithms , while others might provide more information to the 

engmeer. Both the nature of the structural parameters to be ident ified and the available data 

determine which model/technique combination is to be preferred . Factors influencing the efficiency 

are Laken into account. 

Chapters 4, 5, and 6 apply the methodologies developed in earlier chapters to different kinds 

of data. Chapter 4 uses simnlated data to test each methodology under controlled conditions. 

The error characteristics of each methodology are also discussed. Chapter 5 discusses the results 
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obtained from a specific experimental set up. This set up addresses the issue of employing real 

data instead of artificial dat.a in an effort to validate the methodologies. Stiffnesses and modal 

dampings are evaluated and compared to those obtained by other existing 111ethods. Chapter 6 

applies one of the methodologies to Building 180 on t he campus of the Jet Propulsion Laboratory, 

California Institute of Technology, Pasadena, Californ ia_ The data available for J PL Building 180 

makes it possible to determine a stiffness distribution prior to, during and after the February 9, 

1971, San Fernando earthquake. This structure, and many others, present significantly different 

dynamic behavior during strong motion than in ambient vibration , man-excited and other kinds 

of low-amplitude tests. Natural frequenc ies during the San Fernando earthquake, for examp le, are 

reduced by factors o f around 30% and tentative explana.tions have been given by various resea.rchers. 

An attempt is made in Chapter 6 to determine the stiffness distribution during the strong motion. 

Some of the estimates may not be reliable since not enough information is available to identify a 

unique distribution. 

The reli ability o f the est irnates is a topic not frequently treated but it must be addressed before 

attempting to use them for damage detection. A general discussion of this topic is provided in the 

first part of Chapter 7 which is based on the results presented in the previous chapters_ This study 

closes with several conclusions in the second part of the chapter. 
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Chapter 2 Models 

Section 2.1 - Classification of Models 

Models in structural identification can be classified as being parametric or non-parametri c. J\ll ass 

density, modu lus of elasticity, and frequency of vibration a re examples of mechanical pa rameters. 

Pa rameter values, which are constant in time, are usually ass igned by an engineer prior to calculating 

the predicted behavior of the mechanical system. on-parametric models , on the other hand , are 

ch aracterized by being represented by just a function of time or frequency. Examples are the use of 

an impulse response fun ction or transfer function to characterize a linear system. They also provide 

a character ization of the system which is constant. in time. In general l these models are not. so 

informative and they serve simply to relate the input and output in a mathemat ical form without 

gaining much insight into the mechanics. 

The stru ct ural identification fi eld has shifted emphasis from non-parametric to more complex 

mechanical parametric models since better unde rstanding of the mechanics of systems is available 

and because of th e availability of fas ter comput ing devices. vVith the added model structu re comes 

the abilit,y to understand the in te raction between the different response quanti t ies as well as the 

influence of the d ifferent mechanical parameters on t he response. Interpretation of the mechanical 

para meters along wi t h the values of the different response quantities provide an understanding 

of t he stat.e of th e structure. The new complexity in t he models indu ces more diffi cul t parameter 

estimat ion an d structural identification: models are not identifiable , parameter values should remain 

in mechanically-meaningful ranges, parameter values should be unique, etc. These problems are 

unavoidable and must be dealt with before anyone can assert that the correct parameter set 

accompanying t he model and , thus the state of t he structure, has been determined . 

Section 2.1.1 - Modal Models 

The mechanical parametric identification field concentrates on identifying mainly two types 
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of parameters: (1) modal parameters and (2) physical or structural parameters. The modal 

identification fi eld has been an active area of research for the last decade or two and may be the most 

appropriate technique to be used in structu ral control. The physical pa rameter identification field 

has been developed more recentl y_ This fi eld is more complex than the modal field s ince the number 

of parameters cons idered is generally much larger and their extract ion from vibratory systems is 

not as straightforward , particularly because of problems wi th non-uniqueness and numerical ill­

conditioning. 

Section 2.1.2 - Physical Parametric Models 

Physical parametric models encompass a. large set of models. The majori ty of t he models 

considered in t he past are linear but, more recently, much more emphasis has been put on non­

linear models. Even though li near models give mathematical relations which a re linear with respect 

to the state variables, they give highly non-linear functions for the determination of the physical 

parameters from t he kinematic quantities or from the modal parameters. This non- linearity increases 

the complexities in t he parameter estimation process. 

Ultimate strengt.h is perhaps the most appropriate parameter to be able to assess the health of 

a structure. As mentioned earlier , ul t imate strength identification is very diffi cul t and in practice 

it is replaced by elastic stiffness identification. Side benefits of elastic stiffness identifi cation include 

the s traightforward calculat ion of the modal quantities associated with the physica l model (these 

are an approximation , too, and so they a re most probably different from t hose est imated directly 

from response data with a modal ident ification algori thm). In tern al forces a rising during motion 

can a lso be easily estimated using the updated model. 

Linear physical models are often derived from Finite Element ( "FE" ) modeling. As is well 

known , FE modeling is based on simple formulas which describe t he kinematics of a structure with 

infinite number of degrees of freedom by local interpolat ion. Under FE modeling , a finite-dimensional 

subspace of the infinite-dimensional degree-of-freedom space is used. Coarse discretization of t he 

structu re is associated with a small dimensional subspace while fin e discretizat ion is associated wi t h 

a la rge subset of degrees of freedom. The members of this subset a re the so-called generalized 

degrees of freedom and correspond to certain types of motions at specified points in the structure. 

The fun ction of the interpolation is to enslave, by some mathematical relation, the motion of what 

used to be a degree of freedom of the structure to the motion of the generalized degrees of freedom. 

It is also well known t hat , in general , the fewer degrees of freedom in t he discrete model , the 

cr uder t he interpolat ion and thus the worse the kinematic description. Standard FE texts provide 

detailed descrip tions of t he many other aspects of FE modeling which affect the kinematic response 

prediction. 
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Assuming linear materials and small strains and deformations and neglecting damping, the FE 

method leads to the equations of motion 

Mii(t) + I<u(t) = / (t ) (2.1.1) 

where M and I< are t he mass and stiffness matrices, u(t) are the generalized displacements, dots 

denote t ime derivatives, and f ( t) is the corresponding forcing vector. Certain features are apparent 

from the foregoing. One feature, which is a cause of some controversy in structural identification, is 

the fact that because of the local nature of the interpolation , the nominal symmetric mass matri.., 

M and stiffness matrix I< are guaranteed to have zero components outside a certain bandwidth. 

Depending on the type of interpolation used, there might even be zero matrix components within the 

band. The structure imposed by FE modeling in the description of the stiffness and mass matrices 

defines what is commonly called the "topology of t he member connectivities". Some authors t ry 

to match observed system behavior by employing identification algorithms which vary the out­

of-band components. They also constrain t he matrices to remain symmetric. By allowing these 

components to be non-zero, an interaction or coupling is created between two generalized degrees 

of freedom disregarding the fact that these two degrees of freedom may be geometrically far apart 

in the structure. This coupling contradicts directly the local na t ure of the interpolation intrinsic to 

FE modeli ng and thus the FE topology is thereby violated. 

Non-FE models are also often considered in structural identification, especially in earthquake 

and offshore engineering. These models yield dynamical systems with the same structure as in Eq. 

(2.1. 1) Very often the model used is able to capture the essential mechanical behavior of t he 

structure that is analyzed. An example of this is the use of the shea r building model (chain model) 

in earthquake engineer ing to study t he dynamical behavior of medium size buildings under seismic 

excitation. This model corresponds to masses that are sequentially linked by springs and dash pots 

with one of t he end masses rigidly attached to a stationary base. The arrangement of the masses 

leads to a tr i-diagona l stifrness matri..x. A numerically equivalent model may be formally derived from 

FE modeling but perhaps at the cost of analysis time and increased number of degrees of freedom. 

Shear-wall models are other examples of engi neering-based elements. No matter what model is 

used, there are nearly always zero matrix components outside a certain bandwidth. The non-FE 

formulation, because of its ad-hoc nature, does not formally state t hat the zero components of the 

stiffness matri..x should remain zero throughout the identification process. Thus, no preservation of 

the original matrix topology is necessary, in contrast to FE models. The flexibility of being able to 

modify a ny component of the stiffness and/or mass matrix has computational advantages exploited 

by some researchers; yet, it has drawbacks that shou ld not be overlooked. One of the drawbacks 

has to do with the interpretation of the changes in the mod ifi ed matrices: in general it may not be 

obv ious why two previously unrelated degrees of freedom are now linked and what this means in 
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term., of damage. These new links can easily obscure the localization and quantification of damage. 

Good modeling also implies paying carefu l attention when defining the boundary cond itions, 

damping mechanisms, numerical algorithms, etc. Loss of accuracy in the parameter estimates can 

occu r since the parameter estimation process relies so strongly on the calculated modal parameters 

or kinematic response. 

Section 2 _ 2 - A Class of Mechanical Models 

T he damage detection methodology developed herein depends intrinsically on the structure of 

the parametrized mechanical model. In this section , the class of models is described. 

It is assumed that the structures that are studied are excited by low-amplitude forces so that 

the behavior is well modeled as linear elastic. In this case, the governing equations derived for a 

linear visco-elastic model are: 

Mu(t) + Cu(t) + [(u(l) = I tt) (2.2.1) 

where C is the damp ing matrix (classical normal modes are assumed). T he number of degrees of 

freedom ("DOF") is Nd . 

Damage occurring in a particular member of a structure with a large amount of redun dancy is 

likely to have little effect on the response at any of the monitored degrees of freedom. If vibrational 

response is lIsed to detect damage through identification of changes in the stiffness parameters of the 

members themselves, the approach will be rendered ineffective by the ill-conditioned nature of the 

inverse problem due to the lack of sensitivity and large number of parameters. If the structure can 

be adequately partitioned into sub-structures (or modules, super-elements, etc.), as proposed here, 

then damage can be detected and located on ly to within a sub-structure, but this should reduce the 

ill-condit.ioning. \<\lith fewer parameters than one for each member in the structure, the problem of 

t rade-off bet,ween t.he different stiffnesses J which accentuat.es t he lack of sensitivity, is reduced. 

Section 2.2.1 - Structural Model 

Damage is modeled as producing a reduction in the module stiffness. Thus, if the ini tial stiffness 

matrix corresponding to an undamaged sub-structure i is J(i , then the matrix corresponding to 

the damaged module, [\"id 
1 is given by 

Kt = OiKi (2.2.2) 
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where 0 :s OJ S 1. The parameter OJ is called the "stiffness factor " for sub-structure i. The 

global stiffness matrix J( is then written as 

N, 

K LO,K" (2.2.3) 
;= 1 

where 1(j now denotes the contribution of suh-structure i to the global stiffness matrix , and Np , 

the number of parameters OJ , equals the number of sub-structures cllOsen for the structure. If the 

f(j are correct or calibrated through system identification, then the parameter ()j is unity. \"' hen 

damage occurs in module i , OJ decreases. The choice of Np involves a compromise between the 

desire for high spatial resolution in localizing any damage and the need to avoid ill-conditioning or 

non-uniqueness in t he identification of the parameters OJ _ In general , a more dense distribution of 

sensors on the structure allows a larger value of Np . Stiffness factors , because of the linear character 

shown in Eq. (2.2.3), can on ly roughly estimate structural changes associated with parameters which 

enter with various orders of non-linearity in the expressions for the stiffness matrices. An example 

of this would be the det.ermination of t he length of a beam given information about its response 

to some excitation. Since the dependence of the matrix coeffi cients on the length is either inverse, 

inverse quadratic, or inverse cubic, there is no possible way to substitute these by introducing linear 

parameters OJ and maintain t he proper ratios. Had the matrix coefficients depended on the length in 

a inverse cubic manner I only, say, then it would be possible to choose one parameter Oi to represent 

such dependency. There are, currently, vers ions of some of the programs mentioned in later sections 

which allow for the determination of these kinds of parameters but no thorough examin ation bas 

been done to date. It should be emphasized that the in troduction of the factors OJ into the linear 

elastic model (Eq. (2.2.3)) does not change the structural "topology" or connectivity specified 

by the model, i.e. , if t here is initially no stiffness linking two degrees of freedom) the corresponding 

stiffness is zero and the factor OJ preserves this condition. 

The structure of the matrices f(, is generally defined by a finite element model allhough any 

other model, empirical or analyt ic, can be employed. Models such as the chain (or "shear building") 

model may be appropriate for specific engineering applications. It shou ld also be mentioned that 

t he f(i Ileed not correspond to relatively large modules. For example, if it is deemed necessary, J{j 

may be associated with the axial st iffness of only one column in a large structure. 

To improve the nominal mod el of the structure, an extension of the idea of a stiffness factor 

can be app lied to the other dynamic matrices , i.e. , 

M (2.2.4) 
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and 
N. 

C = LI';C; (2.25) 
;=1 

where M,/i and /VIi are the global mass matrix , the mass factor and the sub-structure mass 

matrix , respect.ively_ Similarly, C, J-l j and Ci are the global damping matrix, t he damping factor 

(different from t he damping ratio) , and the module damping matrix, respectively. The matr ices 

Mi can be estimated with an appropriate choice of inertial model and from data obtained from 

structural drawings. In most cases, the Ali are fairly well determined. In t he case of t he sub­

structure d amping matrices Cj , the mathematical structure can be based on Rayleigh damping at 

t he module level, i.e., 

C; = O'j Aifi + f3d<j (2.2.6) 

and so 
N, 

C = L 1';(o;M; + f3;J{;) (2 2.7) 
i =1 

although this formulation does not, in general , yie ld classical modes. \,Vith an appropriate choice of 

ai, Pi and J-l i , namely, 

O'i = (:i,i 
(3; = ~O; 
1'; = I 

the global damping matrix takes t he global Rayleigh damping form: 

C = aM + ~]{ 

(2.2 .8) 

(2.2 .9) 

where a and ~ are the global Rayleigh damping fadors to be determined . In t his case, classical 

modes are ensured . T he "genera)" damping matrix given by Eq . (2.2.7) can be used when non­

classica l modes are desired in t he class of models employed. 

Damping models other than generalized Rayleigh damping are also used. Modal damping, 

in t roduced via damping ratios in t he modal equations to independently control the damping in each 

of the modes, is employed in most cases presented in later sections. Modal dampi ng is appropriate 

to use since the structural response is compu ted via t he modal equations rather than by direct 

integration of t he equat ions of motion Eq . (2.2.1). It is also noted that t he sub-str uctur ing for 

the inert ia a nd stiffness term~ need not be the same, i.e. , t he M j need not be associated with the 

same sub-stru cture to which ]{j belongs, unless Rayleigh- like damping is employed _ vVith modal 

damping, t he sub-structur ing of the mass matrix is independent from t he sub-structuring of the 

stiffness matrix_ 
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Section 2.2.2 - Reduced Models 

Models where t he number of degrees of freedom has been reduced would normally present better 

condi t ioned identifi cation. From this point of view, it is therefore convenient to use Guyan reduction 

or some other reduction method. Any convenience is lost , however , whenever t he linearity of t he 

equat ions in the parameters OJ is lost. In order not to lose this lineari ty, it is imperative to eliminate 

degrees of freedom internal to only one sub-structure. ,"Vhenever degrees of freedom are "tied" to two 

or more modules, it is not possi ble, in general, to end with a system of stiffness€s linear in OJ. The 

chai n mod el, often employed in structural engineering, is a good example of a reduced model which 

can preserve the translat.iona l in t.e r-story stiffness distribution of a more complex structural model. 

Fewer number of degrees of freedom, however , does not always improve parameter identification 

since it usually worsens the model. 

Section 2.2.3 - Numerical Algorithms 

The modal parameters employed by the estimation algorithms described in later sections are 

calculated by standard methods [2.1J. The solution of the eigenvalue problem associated with t he 

equations of motion (2.2. 1) is carried out by EISPACK routines BA DR, BISECT and BANDV 

(2.2J . Since t hese routines are designed to be used with banded, symmetric matrices and the inverse 

of the mass matrix is involved in the calculat ion , it is preferable to use the lumped mass matrices 

assoc iated with t he problem si nce use of the consistent mass matrix yields, in general , full inverse 

matrices. 

The time histories of displacement , velocity and accelerat ion are obtained by integrat ing the 

matrix equ ations of motioll. The integration of Eq. (2.2.1 ) , because of their lin ea r cha racter, is 

performed in either of t.wo ways: (J) direct integration of the full set of equations, or (2) conversion 

of the full set of equations to the modal domain. 

Direct integration is emp loyed when the frequency content is expected to be relatively high 

such as in wave propagat.ion problems. The Trapezoidal method , equivalent to Newmark 's method 

with 'Y = ~ a nd f3 = ~ , is unconditionally stable. The Cent ral Differences method (Newmark 's 

with "y = ~ and f3 = 0 ) is conditionally stable [2.3] and , thus, care must be taken to avoid the 

growth of instabilities. For example, because of the unconst rained nature of the iterative parameter­

determination algorithms (these may requi re th e evalu at ion of responses at large values of ()) , a 

very conservative time-step value must be used with central differences. Another reason why the 

direct approach may be used is to formulate the damping matrix in the general non-classical form. 

The al tern ative approach, more often used in this study, is to convert the matri.x equations 

of motion to moda l equations and then to integrate each of the resu lting si ngle degree of freedom 
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("SDOF") equations. For structural vibrations , modal superposition is often more useful sin ce the 

dominant modes are usually the first 10-t0-20. The burden of calculating the modal parameter 

values is offset by the few simple integrations of the modal SDOF equations . If non-classical mod es 

are desired, they can also be integrated in the modal domain but in this case the integration must 

be carried out in the first order form. Non-classical modes are not treated in this study. 

The solution of the modal equations is calculated using t he Nigam-Jennings algorithm [2.4]. 

This algorithm is very efficient for determining all three quantities (displacements, velocities and 

accelerations) for each time step , requiring only 8 operations per step. The algorithm} furthermore, 

is unconditionally stable . This algorithm is based on the analytic Duhamel's integral solution applied 

to the case where the excitation is linearly interpolated between two consecutive time steps. Beck 

and Dowling 's approach [2.5] can also be implemented s ince, for the most part, only one of the three 

kin ematic quantities is needed; this algorithm requires only 3 operations per time step to give the 

same acceleration values as t.he Nigam-J ennings algorithm . 

If multiple inputs are present, they are handled with the aid of the pseudo-static displacement 

concept [2.6]. This con cept divides the kinematic quantity vectors into two components: 

u(t) = s(t) + d(t) (2.2. 10) 

where 5(1) is the "pseudo-static" component and d(t) is the dynamic component. The idea is that 

the pseudo-static part is the '·response" of the structure ignoring all inertial effects and damping . 

The dynamic part d(t) is simply the difference between the total response and the pseudo-static 

response and incorporates the dynamics of the motion, i.e. , it can be decomposed into a modal 

superposition taking into consideration inertial and damping effects. 

Substituting the vector u(t) into the matri.x equations of motion and also considering the 

pa.rtition of the vector u(t ) into prescribed uP(t) and fr ee uf (t ) motions, 

{ 
uP(t) } 

u(t) = uf (t) , 

leads t.o t he partitioned matrix equation 

Mff (Sf(t) + (if (t )) +Cff ( sf(t)+ df (t) ) +1(ff (sf(t) + df(t)) 

= I f (t) - MfPuP(t) - Cf PilP(t) - f(fpuP(t). 

The mathematical equality 

(2.2. 11 ) 

(22.12) 

(2.2. 13) 
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is the basis of the pseudo-static technique which leads , in turn , to the following equalities: 

sl(t) = -KlrlJ(lpuP(t) 
sl(t) = _J(,,-IJ(IPuP(t) 

sl(t) = _ ]{Ir l J(IPtiP(t). 

Rearranging Eq. (2.2.12) and making use of the above relations gives 

= fl(t ) + (M" gIrl glp - Mlp)tiP(t) 

Since 

(1<" f( l r l KIp - glp) = 0, 

the last term in Eq. (2.2. 15) , drops out. Furt hermore, making t he assumption t hat 

then 

or 

where 

ret ) = fl(t) + (M" gIrl KIp - Mlp)tiP(t). 

(2.2. 14) 

(2.2. 15) 

(2.216) 

(2.2.17) 

(2.2.1 8) 

(2.2.19) 

(2.2.20) 

The dynamic motion df (t) is then calculated using the methods described at the beginning 

of this section. Both quantities sl (t) and df (t) are functions of the stiffness matri..x. and thus of 

the paramet.ers OJ. vVhat the pseudo-static approximation implies is that the for ces arising from 

the pseudo-stat.ic damping are much smaller than the forces arising from the pseudo-static inertia 

effects of the pseudo-static contribution. For most problems t.reated here, t.his has been the case . 
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Chapter 3 Parameter Estimation 

Section 3_1 - Formulation 

The Sub-structure- rd entification ("SUB- ID") problem consists of determining all unknown 

mechanica l parameters in the model of the structure. In most damage detection cases, it reduces to 

the followi ng si mplified problem: Given some knowledge of t he response of a structure, det.ermine 

the set of 51 iffness factors 0, belonging to the model 

N, 

I{ = I:0J<i (3 11 ) 
i = 1 

which provide the "best" fit to the observed data. In t he last equation , recall t hat J( is the global 

stiffness matrix of the mechanical system, J(i are the module or sub-structure stiffness matrices ; 

and Np indicates t he number of substructures present in the system. The motion of the system 

and the stiffness matrix are related via t he equations of motion , Eq. (2.2 .1), where the motion is 

represented by the displacement vector u(t). T he number of degrees of fr eedom in t his discrete 

model, Nd , is genera lly la rger than t he number of substructures present , Np . 

The eigenval ue problem associated with Eq. (3. 1.2) provides for an alternate approach when 

trying to determine the coefficients Oi . The modal equations are given by 

N, 

(LO,[{,)¢' = w~M¢' (3. 1.2) 
i=l 

where w; and t/Jr are an eigenval ue-eigenvector pair of the system; l' takes values in {I, ... , Nm} 

where Nm is t he number of modes associated with the discrete mechanical system ( Nm == Nd ). 

To determine the values of the Oi, observat ions of the mot ion of t he system are made. 

The location, duration , frequen cy-content and many other characterist ics of the observed signals 

determ ine the qua li ty of the identified moda l parameters. The practical aspects are discussed 

elsewhere in this study. In this section, attention is focused on the analyt ical aspects of t he parameter 
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determin ation problem. 

Four imp ortant approaches are considered here. The first approach , the Method of Successive 

Substitutions, corresponds to a new application of the Contraction Mapping Principle to the non­

linea r () est imation problem. The goal of this method is to create a mathematical operator which , 

when applied iteratively to each of the new estimates, event ually yields t he unique "fix ed-point" 

sol ution. The second approach is an application of the well known generalized non-linear least­

squares method. The aim in this approach is to minimize t he "output error" between the observations 

of t.he system and the values predicted by the model. The problem reduces to a minimization 

problem. The value of the parameters which minimizes the error quantity is called t he "optimal" 

solu t ion . "Veil known minimization algorithms are available for this purpose. A third approach is 

a probabilis t ic approach based on Bayes Theorem. The Bayesian approach associates a probabili ty 

wi th each pa rameter va lue t hat t he model can take. The probability value is related to an error or 

difference between the observed data and t he data predicted by t he model. The "most probable" 

solution is tha t associated with the smallest error subject to constraints placed by the system model. 

This solu tion is often very close to t he "optimal" solution derived using the generalized least-squares 

approach . The Bayesian approach is more informat ive, however , s in ce it emphasizes the whole 

probability distribution rather than jus t the most probable value. The four t h method is a new 

application of the homotopy method. This method "propagates" an easily-determined () solution 

to t he characteristic equation associated wit.h a simple mechanical model to a sol ution of the same 

equat ion associated with the mechanical system model to be ident ified. The method st. ipul ates the 

use of Nd ! different initial cond itions thus yielding Nd ! different () solutions to t he characteristic 

equat.ion of t he mechanica l system of in terest. Since only the natural frequencies are guaranteed t o 

be satis fi ed , furth er selection is needed to reduce the number of accept.able solutions. 

All of these methods , when applied to the same real data, may yield different results . The 

reason for this is t,hat real structura l behavior is complex and is not always modeled exactly and 

a lso because each method emphasizes different parts of the real data in different ways. Uniqueness 

of parameters is also an important considerat ion which is add ressed different ly by each method an d 

\, .. ·hich is of considerable importance when t rying to find a set of parameters by which the state of 

the structure is inferred. 

Section 3.2 - Method of Successive Substitutions 

This approach is based on the well-document.ed contraction theorem for (non-linear) operators 

[3. 1]. The vector s pace a~Np to which t he vector () belongs is a Banach space a nd ec is defin ed 

as the closed subset of ~Np of inlerest. The operator F is a contraction operator in e c if 

36 E [0, 1): IIF(u) - F( v)11 ::; 611u - vII '1u, vE e '. The contraction t heorem states tha t for 
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the closed subset e' and a contraction F: e' ~ e' , F has a unique fixed point O' = F(O") . 

Moreover, if 00 E e' and on+! = F(O") for n 2: 0 ,then 

110" - 0"11:5 6"(1 - WIIIOI - 00 11. (3.2 .1) 

The t heorem also states that 

0" = lim F"(OO) (3.2.2) 
n~oo 

where F"(O) == F(F"-I(O)) , n 2: 0 with FO(O) = 0° . 

The idea underlying the method consists of using an operator F(O) to map an estimate of 

the solution vector ()"' I for example, (J" 1 to another value 0"+1 which is closer to 0·. The 

on+l is s ubstitu ted back and F operates on it to produce yet another iterate. (J ~ is the expected 

converging value of t he sequence starting at the initial point 0° . 

Various contraction-like mappings can be constructed from the equations of motion. The 

following sect.ions describe one of the more natural ones. vVhether the subset ec is large enough 

so that it comprises the physically acceptable domain 0 ~ Bi :::; 1 is not known and is a function of 

the stru ctu re of t he operator F. If, indeed, it happens t hat ec is large enough , then uniqueness of 

the parameter estimates 8 ~ is guaranteed by the contraction theorem. If the subset ec is smaller, 

then uniqueness is guaranteed only locally in 0::; OJ ~ 1 . The "design" of the best possible operator 

will thus have significant repercllssions. 

In the following , it is assumed that the number of observed partial eigenpairs (w; I ~s) is 

Nm o . T he eigenpairs are identified by some external modal-extraction procedure. Although t he 

procedure employed here [3.3) also provides estimates for the participation factors for each input , 

t his information has not been integrated into the formulation of the operator F. This information 

sometimes is non-redundant and can be used to distinguish between two possible models for which 

all other modal data is ident.ical. 

To approach the new formulat.ion , consider Eq. (3.1.3). For the rth eigenquantity, a compound 

eigenvector 4>;(0) is formed by 

(3.2.3) 

where ~s is a subvector of the full syst.em eigenvector rPs wit.h N od components determined from 

observations to within a constant k¢, and ~e(8) corresponds to t he subvector of the analytically 

found eigenvector ,pe(O) determined from the current estimate for (). The full eigenvector derived 

from the model <pe(O) satisfies orthonormality with respect to t he mass matrix but the new 

compound vector <p~(O) does not , in general , satisfy orthogonality. The constant k~ is chosen 

so that the vector 's magnitude (with respect to the mass matrix norm) is unity: 
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(3.2.4) 

where IlxliM '" x T M x . 

The equations of motion Eq. (3.1.3) for the rt" mode can be re-w ri tten in the following way: 

j('(0) 0 = M'(O) (3.2.5) 

where 

(3.2.6) 

and 

(3.2.7) 

\Vhen Nmo modes are observed , the set of equations to be satisfied by the vector () 15 

/("(0) 0 = M"(O) (3.2.8) 

where 

-[ ~t: i:l 1 j("(0) 

kNm:.(O) 

(3 .2.9) 

and , likewise , 

M"(O) 
[ 

Mi(O) 1 A12(O) 

ijNm·(O) 

(32.10) 

To solve for the vector 0, and since in general NdNrno > Np 1 a square system of equations 

can be constr ucted: 

5(0) 0 = k"(of A1 "(0) (3.2.11) 

where 5(0) is a squa re Np x Np matrix 
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5(0) '= [<'(of R" (o) . (3.2.12) 

If 5(0) -I exis ts , then an operator Ff (0) can be cons tructed by 

Ff(O) = 5(0) - I k " (O)T Af" (O) (3.2. 13) 

whi ch satisfi es 

0 = Ff(O ). (3 .2 .14) 

For this , the matrix Sun must be non-singular. A check on the singularity of the rnatrix 5 

can be don e by calculat ing the associated 'cond ition number} [3.4]. A nu mber of d ifferent condition 

numbers can be defin ed for a given matri.'{. The one used here is t he one calc ulated by LT NPA CJ( 's 

DGECO [3.5] routine. Here, t he condition number Ii represents the ratio between t he minimum 

and the maximum eigenvalue of the matrix ( the eigenvalues are guaranteed to be real since S is 

symmetric). A condition number Ii = 0 indicates that there are one o r rnore zero eigenva lues and 

thus t he matrix is singula r. Furthermore, if the condition number Ii is such t hat computationally 

1 + ~ '= 1, 

because of round-off e rror, then the solvabi lity of the system of equations Eq. (3.2. 11) IS not 

guaranteed. The sys tem is then termed "ill-conditioned." 

In the exceptional yet important case where all the components of the modeshape vectors are 

known the equations simplify considerab ly to 

(3.2 .15) 

where the squ are mat rix J~' - is no longer a fun ction of () , and so neither is the sq uare matr ix S 

T he () vect.o r is read ily solved if the matr ix S is non-singular . From a practical point of view, an d 

restricted to simple frame structures, the number of observed modes N m o and observed degrees of 

freedom Nod equal to 2 or 3 are enough for good conditioning of the matrix S, when Np is in 

the range 3 to 6. 

Section 3.3 - Generalized Least-Squares Approach 

Least-squa res errors are described in t his section , and the procedures employed to find the 

minimum error configu ration are also briefly mentioned. 
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In general , an error functional J(f , us, 0) ~ 0 can be defined in terms of the various quantities , 

the observed system input / (t) , the observed kinematic response us(t) of the system S, and 

t he class of linear mechanical models involving parameters 8 (including mass, damping, stiffness 

components, etc.). The fun ctional J is known in the li terature in various ways [3.2,3.3 ,3.6]: "cost 

function", "error index" I "loss fun ctional", "measure-or-fit", "mean-square error" , "performance 

index", "objective function" , and other . Here it will be referred to as ('error index J " 

Section 3.3.1 - Output Error 

A definition of the magnitude J of the output error is given by 

(3.3. 1) 

involving the difference between the observed fts(t) and associated model U9(t) responses. 

Displacements, velocities or accelerations, or combin at ions thereof, can be employed for this purpose. 

"Vhen t he error functional JT(f, Us, 0) is minimized, the model's response time histories wi ll come 

closest to those observed, in a least-squares sense. The values of the paramet.ers 0 which minimize 

JT are used as the best estimates and the corresponding model is referred to as the optimal model. 

It is conceivab le that there can be models which yield the same error index with real data and yet do 

not provide a good physical representation of the system. In order to determine the accuracy of the 

model, it should be tested with more extensive test da ta. A correct model must perform well with 

all data sets and also produce a consistent set of parameter estimates. In earthquake engineeri ng, 

however , the data avai lable are often scarce. T his problem cannot be remedied unless an adequate 

model is employed: this model is calibrated at the outset and damaged-state data will modify the 

values of t he parameters indicating the appropriate amount of stiffness loss at t he correcl locations. 

Had an incorrect model been ut ilized , both t he prior and posterior stiffness dist ributions would bear 

little relation to t he actual stiffness distributions. 

The outpu t error approach with diagonal weight matrices W inherently em phasizes the 

matching of nat.ural frequencies since, if t hese were incorrectly determined in the mathematical 

model, then t,he response qu antities tl9(t) would be out of phase with respect to the observed 

response us(t) . When out of phase , the fun ctional Jr increases in ampli tude signifi cantly. When 

the frequencies are correct and the responses are in phase then the error is greatly reduced. Errors in 

the modeshapes also increase the error funct ional but it is less sensitive, generally speaking, tha n to 

the nat.ural frequencies. An obv ious exception is the situation when a modeshape component derived 

from th e model is negative in value compared to the value it takes in reality. This is equi valent to a 

consta nt iT phase offset, producing the largest error increase possible for changes in phase. It must 

be not.ed that , in general , modeshape vectors are not as sensitive to variations in the parameters OJ 
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in the sense described above, as frequencies a re. 

The actual numerical calcu lations weighed all degrees of freedom equally. The repercussions of 

weighing one degree-or-freedom response more than another are that it will produce better estimates 

for the associated modeshape component and for the modal frequencies participating most actively 

at that degree of freedom. If, for example , a particular mode k has a node at degree of freedom j 

and only this degree of freedom has a non-zero weight, then the parameter estimates will retain the 

node at that degree of freedom but t he associated nat ural frequency can take an arbitrary value. 

If, on the other hand , only one mode participates at this degree of freedom , then the associated 

modal frequency will be the most accurately est imated frequency of a ll modes excited by the forcing 

function. 

Section 3.3.2 - Modal Output Error 

In this study, an ad hoc extension of the previous definition of output error is formulated in 

order to incorporate modal da.ta directly into the error minimization process. System modal data 

may be obt.a ined from existing modal identification algorithms [3.11 ,3.19]. 

The moda l error fun ctional is defined here as 

JM = I: [WI (ws" _ we,,)' + w:"~s -~ell: ] 
,=1 wS,' + we" II¢:, + ¢>eW 

(3.32) 

where Wr is the r'h modal natural frequency, ¢r is a Euclidean-normalized sub-vector of the 

l ,th eigenvector ¢r whose indices correspond to t he observed degrees of freedom, the weighting 

coefficients l'vl and IV: are non-negative, and NrnQ is the number of observed (or measured) 

modes. In t his way, JM = 0 only when the model agrees exactly with the observed system data, 

a nd J At ~ 0 for all other cases. 

The forci ng fun ction does not directly participate in t he error as defined by Eq. (3.3.2). Many 

modal extraction algori thms, including t he one employed here, MODE-ID [3.3,3. 19]' make use of 

t he knowledge of the funct,ion 1(1) to extract the natural frequencies and (partial ) modeshapes 

associated with t he systelll. Another modal property not often calcul ated by modal extract ion 

a lgori thms (alt hough ~IODE-ID does) is t he effective participation factor. In this study, the 

participation factors have not been included. It was felt , at the outset, that t heir inclusion was not 

wa rranted since the par ticipation factors tend to vary very slowly as fun ctions of the fh I t hereby not 

providing much extra information. After encountering non-uniqueness and ill-conditioning problems, 

however, it is now felt t.hat t hey Illay provide t he extra information needed to resolve some of the 

above-mentioned problems. 

Different weights are establis hed for each mode. In most test cases, a weight value Wi is 

ass igned to all frequencies and anot.her weight \V V to all eigenvectors. Although a clear path does 
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not exist between the natural weighting of the 0 utput error time approach and t he weights for the 

modal approach, there are several possibilit ies that can be considered . T he first one makes use of the 

relative sensitivi ty of each of the modal paramete rs on the output error fun ctional as determined in 

some recent modal identification algorithms [3. 121 . This approach emphasizes the t rustworthiness 

of t he modal data in terms of its presence in the response signals from which t he modal properties 

are estimated. Another possibili ty is to use the relative heights of the t ransfer func t ion as weights. 

The lalter approach is easily used in single-input, multiple-output systems since only one t ransfer 

fun ction exists for each out.put degree of freedom. Different weight possibilit ies influence not only 

t he convergence rates of the minimization process , but also the optimal. For these reasons, weights 

shou ld be employed consistently in pre- and post-damage tests. 

Section 3.3.3 - Minimization Problem 

Three techniques are frequently used for t he determination of the parameter estimates 

corresponding to the state of least error as given by t he minimum of J. All of t he techniques 

are grad ie nt based, i.e., they only make use of the gradient of the error fun ctional. No techniques 

employed here make use of the Hessian matrix which corresponds to second deri vat ives of the 

functional J with respect to the independent variables 0; . Masri and \Verner [3.7] have studied 

various other techniques with applications to structural dynamic prob lems. 

The first a nd second techniques (Pola k-Ribiere and Fletcher-Reeves) belong to the conjugate 

family of minim ization tech niques. Their aim is to construct an approximation to the Hessian matrix 

by making use of gradient vecl.ors only. It has been shown [3.8] th at in the case of quadratic fun ctions, 

conjugate tech ni ques need only Ns iterat ions to converge to the exact minimu m, where Ns is the 

dimension of t he space. For most tests, the fir st iteration corresponds to a minimi zation along the 

direction of st.eepest descents , just previously me ntioned. In t his study, t he Polak-Ribiere has been 

employed most frequent.ly s ince the convergence rate is usually bet ter t han the correspond ing one 

for the F let cher-Reeves technique. These two techniques are more effi cient than the bet.ter known 

steepest descent technique since t hey make use of the curvature of the topology by way of the 

estimate of the Hessia.n mat rix . 

T he t hird technique, Vari able Metric, also t ries to approx imate the Hessian matrix from gradient 

evaluations. This technique is perhaps the fastest technique of a ll t he ones tested (although it 

actually depends on t he type of fun ction that is used for the minimization) but the algorithm 

employed here is unstable and ca.n fai l when t he gradient evaluations yield the sa.me gradient vector 

in multiple consecutive iterations . This technique also performs better than t he steepest descent 

method beca.use of the use of Hessian mat rix esti mates. 

The convergence cri ter ion used in the minimization proced ure is met when relative changes in 
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t he error index J across sequential iterations is less t han a prescribed rat io {, i.e., when 

Ji - J i+1 

!(J. +J' +l) 
< <. (3.3.3) 

Typicall y, {= 10-4 in the calculations performed in t his study. 0 relat.ive change in t he parameter 

estimates is used as part of the convergence criterion although the latter is often employed by other 

optimization algorithms. 

Gaussian methods based on evaluat ions of t he Hessian matrix and variat ions of it have not. been 

used in this work. It was felt at the outset of this research that these methods are not t he most 

effi cient for large numbers of independent variables (Jj. In the course of t his study, it has been 

learned t hat the number of independent variables cannot, in general , be so la rge. Implementations 

of Gaussian techniques may therefore prove to be useful in fur t her studies. 

The gradients needed for t he minimization method are calculated in either of two ways: ( 1) 

by means of a fin ite difference techn ique or (2) by mea ns of an analytical expression. T he fini te 

difference scheme used, alt hough not as precise as t he analytical scheme , has shown to be robust in 

the presence of noise. It must be noted that noise may alter the local topology of the J functional 

hyper-surface and so local min ima may be induced. Finite difference, because of their coarser nature, 

sample the hyper-surface at farther points and so they are less sensitive to local variations of the 

surface. The fini t.e difference scheme employed here approximates the gradient by fitt ing a quadratic 

fun ction over three points , the center one corres pond ing to the point where the gradient is evaluated. 

In t his case, for each coordi nate J. , 

and so the gradient. ..f!..:L is approximated by aB, 

where the coefficients O":? ,and 03 are found by solving the t hree simu ltaneous equations 

J(O;) = "" 

T he gradient is given by 

(334) 

(3.3.5) 

(3.3.6) 
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aJ I 
- "" - (J(o· + D.O ·) - J(o · - D.O·)) aOi 2ilOj , , , ,. (3.3.7) 

The analytically eval uated gradient as derived by Beck [3. 13], and tailored here to the pseudo­

static displace ment method, can be formulated for the full-matrix or modal-superposition integration 

app roaches. Other algorithms have been developed, like those surveyed by Baldwin and Hutton 

[3. 14J. One of these, the first one discussed by Fox and Kapoor [3. 15]' has t he same basis as the one 

presented here. 

The grad ient of the functional J, where J is given by Eq. (3.3. 1), can be written as 

where 

aJ rT 
[ at T ] 

aD, = 2 Jo aD, w t dt 

at =T~ 
aD, ao, 

=T~ 
aD, 

(3.3.8) 

(3.39) 

where T is a simple transformation matrix that extracts the observed degree-or-freedom components 

from the filII vector. The motions u = u(O) are partitioned according to the boundary conditions 

as in Eq. (2.2. 11 ). Since there are prescribed motions uP(t) at boundaries of the structure, these 

do not vary with respect to any parametrization of the stiffness matrix and so 

_ - 8e, au { 8u
1 

} 

ao, - 0 . 

Introd ucing the pseudo-static decomposition leads to 

whe re 

aul asl adl 
-=-+­ao, ao, ao, 

asl a(-KIr'KIP) 
ao, = ao, uP 

__ [aKIr ' I'lp 1·,,-laKIP] P 
- ao, \ + \ ao, U 

__ [1-,,-1 aK" 1,,,-1 u/p /, ,,-1 aK/p ] P 
- \ aD, \ ,,+ \ ao, u 

(3.3. 10) 

(3.3.11 ) 

(3.3. 12) 
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Also , for modal decomposition dl(t) = L~=-l ",,(/;0)""(0) where "', = ",,(t ;O) are t he modal 

coordinates and ""(0) the corresponding modeshape, then 

adl = ~ [a"" "" (0) a",'(o)]. ao· L..J ao 'f' + "', ao 
I r=l I I 

The a¢"( (J) are calculated usi ng the modal matrix equations of motion ae , 

by taking derivatives with respect to (h : 

Rearranging, 

(3.3. 13) 

(3.3. 14) 

(3.3.15) 

(3316) 

Pre-mul tiplying the previous relation by ""(Ol and taking advantage of th e ort hogonality of 

the e igenvectors with respect to the mass and stiffness matrices leads to 

(3.3.17) 

where 6,r is the Kronecker delta function. There are two distinct possibili t ies: s = rand s:f l' . 

For s = '" the term w, - Wr va nishes and so 

~~; = ""(Ol K{I ""(0). (3.3.18) 

f or s", ,. 

(33 19) 

Allowing 8IV(8) to be expanded in a series whose terms are the orthonormal vectors ¢i(O) I ae, 

(3.320) 

and introducing this into Eq. (3.3. 19) leads to 
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(3321) 

and if w; :f:. w; (valid for most civil eng ineering structures with or without foundation compliance) 

C, ; " = ( , 1 ,) ""(O? K!! ""(0) . 
wr - w, 

Then 

iJq,'(O) = t ( , 1 ,) (¢l(0( K!! ""(0») ¢l(0). 
801 j ;::l Wr - wi 

To calculate £:e.r. the SDOF equation associated wi th the mode is integrated: a. , 

where /" (t ) is given by Eq . (2.2.20), i.e., 

Taking derivat ives with respect to Bi gives 

Of , rearrangmg, 

Oy" ( rye o,p, ) ,O<p, _ O""(O? f" .I.'(O)T O/" _ rye OW, . _ OW; 
00; + .... ,w, 00; + w, 00; - ao; + 'I' ao; .... ' ao; <p, ao; <p,. 

(3.3.22) 

(3.3.23) 

(3.3.24) 

(3325) 

(3.326) 

The last eq uation is integrated lIsi ng the same methods as the usual modal equations ( in this case 

wi th the Nigam-Jennings algori thm) to give the time history for ~. 

U · tl ' t ' Il!fr. d a.'(.) th t ' ad' · E (33 13) b t d sing 1e qu antI les a.: an --ae;- , e quan Ity a.-: In ' q. . . can e cons ru cte . 

Su bsti tut ing back into equations Eq. (3.3 .11), Eq . (3.3.9) and Eq. (3.3.8) provides a means to 

evaluate the grad ient of the output error functional J . 

Eq. (3.3 .20) expresses the derivat ive of a modeshape as a series with t he same modeshapes 

as the basis. The number of terms Nm can be truncated in order to avo id the calculation of 

large number of eigenvalue quantities. The variat ion of the modeshapes is slow with respect to the 

variables OJ an d thus the contributions of higher modes should not be necessary to obtain a good 

approximation to the derivat ive. Number of terms of the order of 5 to 10 are adequate for typical 

civil eng ineering stru ctures where the modes are well separated. For space s tructures J the modes 

are frequently closer togeth er and so larger numbers of terms may be needed . 
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Section 3.3.4 - Uniqueness via Minimization 

The minimization of the fun ctional J will prod uce some "optimal" parameter vector (). 

However, in this study it is imperat ive to know whether this optimal value corresponds to the overall 

global best fit . It is possible that the minimization algorithm has converged to a local min imum 

and not the global min imum implying that some damage pattern is identified but it is not the most 

likely one. \Vh at could be done with the generali zed least squares method is to set the initial value 

0° to signifi cantly different values and run t he minimization code repeatedly [3.9]. Unfortunately, 

reaching the same solut.ion in all runs does not guarantee uniqueness of the parameter vector sin ce 

not all the 0 space has been sampled . Equally misleading is the fact that solu t ions obtained by 

reaching a local minimum do not indicate a lack of uniqueness , no matter how close the va lu e at 

th e local minimum is to th.at at a. known global minimum unless exactly the same value for J IS 

obtained for more than one value of the parameter vector. The problem is compounded since it can 

never be asserted that the global mini mum is known . 

If the function ta ken for t.he minimization process was convex then it is guaranteed within the 

region of interest that a loca l minimum is the global minimum [3.10]. The output error method 

yie lds a fun ction in 0 which is not convex; so, for any finite domain of interest, it is generally true 

that there are both local and global minima. The global minima may occur e ither within the domain 

or at the boundaries of it . It is becau se o f these facts that the generalized least squares approach is 

not considered to be a re li able method to test uniqueness of parameters. 

Section 3.4 - Bayesian Model Identification 

In th is st udy, t he approach formul ated by Beck [3 .16] based on Bayes Theorem [3. 17] is described 

as applied to the 0 parameter model. This is done in order to find t he probabi li ty for each 0; 

parameter value based on the 3\'ailable data and the chosen class of models. Probability is used 

here in the Bayesian sense that p(alb) is a measure of t he plausibility of proposition a given t he 

information in propos it ion b . Evaluating t he probabili ty of a ll models within a class of models yields 

a probability density fun ction from which it is possible to extract important statistical information. 

The class of models allowed here is restri cted to a pa rticular mathematical form of the class of models 

given by Eq. (3.1. 1) and Eq. (3.1.2) , leaving the parameter values undetermined. The particular 

mathematical form can be based on FE modeling as described in Section 2.1.2; t he probability 

dens ity function is then evaluated for all possible values of the parameters OJ . 

From the probabi li ty axioms: 

(OIS ,) = p(SN,IO)p(O) 
p f" p(SN,) (3.4. 1) 
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where 

SN. = (ii~n ) E !liN., : n = 1, 2, ... , N,) (3.4.2) 

is a set of measurements, e.g ., Nt samples of the response or output of a system. T he prior 

dist ribution p(O) is based on t he engineer 's intuition regarding t he relative plausibi li ties of the 

different models in the class, that is , of different values of 8 . This allows engineering judgment to 

be introduced natu rally into the formul at ion. Moreover, it is possible to allow the data to "speak 

for ilselr' by assuming that p(O) is a locally non-informative prior distribution , i.e., it is assumed 

that p(O) = k is constant over e e I the finite subset of ~N, of interest, then 

(DIS ) = k p(SN.IO) 
p N . (5)' p N. 

(3.4.3) 

Because the probability of the data p(SN,) is a lso independent of 0, 

(3.4.4) 

where k = p(L.). In order to calculate p(OISN.) , the probabili ty fun ction p(SN. IO) must be 

defin ed and evaluated . 

The model-predicted values tiin
) ;: ii(t»;/,O) E ~~N·'(n = 1, 2, ... , N.) are gIven by a 

determ inistic model with parameter vector () E ~N,. and correspond to the observed values {u~n) } . 

For a g iven 0 , the prediction error (or output error) e(n)(o) is the difference between the system 

and model response: 

-(n)(o) _ _ en ) _en) 
e - Us - Us . (3.4 .5) 

An important step in this Bayesian approach is to define a probability model for the predict ion errors. 

Here the predi ct ion errors e(n)(o) are modeled as Gaussian discrete whiLe noise with covariance 

matrix E . The prediction errors represent both model and measurement errors. The mean value 

is assumed to be zero but the covariance is unknown and is determined from the data. Because of 

this, E is here included as part of the unknow n model parameters . 

Let ting g(e, E) be a Gaussian probability model for the prediction error e where the most 

probable value of e is zero , then t he probability of getting the system response ti~n) given the 

determinis tic model 1:i~n) and the pred ict ion error model g(e , E) is: 

(3.4 .6) 

Given B and any E , the most probable valu e of u~n) is clearly ii~n ). 

As implied by Eq . (3.4.2) , the probability of obtaining the set SN. given the probabi li ty model 

IS 
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(S I"~) (_( 1) _(2) _(N')I" ~) P N , I7 , L.. = pUS ,US " ", US 17 , "-' (3.4.7) 

or 

N , 

p(SN,IO ,E) = II p(ii~n) IO, E) (3.4.8) 
n=1 

since it is assumed that t.he e(n) are temporally independent . It is also assumed that the components 

e~)(B), {m = 1,2, .. _ 1 NQd } corresponding to different observed degrees of freedom are spat ially 

independent , so the covariance matri.x E is diagonal, E = diag(Ul 1 (72 . .. . , UNo .. ) . 

Letting (f denote the vector of diagonal elements of E , then the probability model takes the 

form 

(3.4.9) 

(3.4. 10) 

and so 

N, 

p(SN, IO, (f) = II p(u~n)IO , (f) (3.411 ) 
0=1 

N, 
II g(,,(n),(f) (3.4.12) 
n= 1 

[

IN, N., ( ,,~» ),] 
exp --~~ - . 2 (fm 

n =l m =l 

(3.4.13) 

From Eq. (3.4.4) , the "plausibility of (0, (f) " given the data SN, is given by 

[ 
k ] N, [I N, N., ( ,,(n») 2] 

pte , (fIS",,) = ( )!:'...L oN., exp -"2 ~ ~ (f: 
2/r:l m= l am n=1 m=l 

(3.414) 

where (O ,u) E ( 8 C x Ee), EC representing the set of permissible values for the parameter vector 

(f. 

For identi fi cat ion purposes, the single most important piece o f information to be determined is 

t he most probable model given the data. The most probable value corresponds to the model which 
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maxirnizes the probability density function in Eq. (3.4.14), i.e ., the most probable model is the one 

which gives the model response closest to the observed data given the prior probabilistic information. 

Let (9 ,17) be the most probable values of the parameters based on the data SN, I i.e. , 

- Ma:1; 
p(O, "ISN,) = (0,17) E (8' x Ee) p(O,UISN,). (3.4.15) 

These values can be found by ma.ximizing the function p(O,UISN,) ,or equivalently, ma.ximizing the 

function 

k 
In prO, UISN,) = N, ln N 

(2"')~ 
(3.4. 16) 

For fixed (J I maximizing In p{O,UISN,) with respect to (j requires 

[) 
O= -[) Inp(O, uISN,) 

17m 

= - Nt - ~ t-
Um 2 

n=l 

(3.4.17) 

thus 

I
N , , 

2: [_(n) _(n ) ]--- u-u - lV, S ,m 8,m 
n=l 

(3.4.18) 

'tim. = 1,2, ... , Nod. This shows how the most probable variances, for a given 0 ) depend 011 the 

choice of model parameters 0; . The solution "m(O) = 00 to Eq. (3.4.17) can be ruled out since 

it gives all models zero probability on the data. 

Introd ucing t.he optimal var iance into Eq. (3.4. 14) yields 

In p(O , ,,(O)ISN,) = N,ln ( ): t' - N, ~ In "",(0) _ Nod
N

,. 2il' ,,01 - L 2 
m=l 

(3.4.19) 

Thus , the most probable 0 , Ii , is obtained by minimizing t he functional Jp , given by 

N., 
Jp(O) == 22: In "",(0) 

m = l 

N., 
2: In ,,~(O) 
m=l 
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N •• 

=2:: In [_1 ~ (_ (n) __ ( n) ) ,] 
Nt L- US,m US ,m 

n=l 

(3.4.20) 
rn=1 

The minimization of the function Jp(O) can be performed by any of the standard optimization 

procedures discussed in the Least-Squares section. As a matter of fact, if the variances O'~ are 

all assumed to be equal and the optimal value for it is found following a similar procedure to the 

one shown above, then the resu lting functional Jp (8) takes the same mathematical form as the 

least-squares "output error functional". The "most probable" model would then correspond to the 

"optimal model" in the least-squares sense. If the variances are allowed to be different for each 

response location, then the results of the two methods are, in general, different. 

For damage detection, on the other hand, what is important is to know if there is considerable 

probability of the existence of failed members within a structure. The probability distribution 

p(O,u(O)IS,v,) can be reduced to marginal probability distributions for each 0, By updating the 

marginal distributions in time using new test data, it may be possible to detect stiffness degradation 

in each sub-structure. 

A characterist.ic o f the joint probability density, however, is the presence of large "spikes" which 

correspond to the points in e' where the probability is (locally) highest. In reference to Eq (3.4.19) , 

any moot.h surface 

rrN., - (0) 
m=l U rn 

(3.42 1 ) 

with loca l maxima will be largely distorted since the N, exponent in Eq. (3.4. 14) is usually very 

large. To be able to obtain a good est imate of the marginal probability distribution it is necessary 

to know exactly where the local and global maxima are located. The width of the spikes can be 

so sma ll that no practical discretization of the ac domain can guarantee high accuracy numerical 

integration over the maxima t.o obtain a good estimate of the marginal probability distribution. 

From the above discussion , it is t.hen clear that the marginal probability distribution should not be 

used for this purpose. Instead , however , use is made of the pseudo-marginal distribution , defined as 

the marginal probability projection of the "pseudo-probability" represented by Eq. (3.4 .21) : 

p(O"S N, ) :. ;." ;." ;.'m 1 k, ... -:rr'-'I\:;-'.,--- (O-) d8j d8k ... dO .. 
o 0 0 m::l (1rn 

(3.4.22) 

with i '# j, k, .. . 1 111, . The constant ki is a normalizing factor such that the integral of the pseudo­

rnarginal probability in [0 , cd is 1. This new quantity is much smoother than the true marginal 

distribution and may allow for a better monitoring of stiffness degradation through numerical 

integration. 

Bayesian methods, as proposed here, require evaluation of Jp usually at a large number of 

o values . Consequently, their practical use might be limited to problems where t he number of 8 
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parameters is not large. An application of this method to the 2 DOF chain model will be discussed 

in Chapter 4. 

Section 3.5 - Homotopy-based Parameter Estimation 

Chu [3. 18J has presented an approach which determines the values of the components of a 

diagonal matrix which , when added to a J acobi matrix, yields a system whose eigenvalues match 

exactly a predetermined set. The approach is based on the homotopy technique which is extended 

here to t he problem of determining the OJ values which define a stru ctural model so as to match a 

set of observed natural frequencies. 

The extension of Chu 's homotopy method a lso assumes that a solution for t he values of the ()i 

is propagated from an initial time TO = 0 to the final time T j = 1 . This new parameter , "time 

T !J, is not associated with the time history of t he physical process; it is merely a dimensionless 

history parameter describing t he homotopy process as in the following. The present formulation 

assumes that the number of unknown parameters OJ is equal to the number of predetermined 

natural frequencies. Extensions of this case to more general cases will be a topic for future research. 

At "homotopy time" TO the values 0; satisfy the characterist ic equations qk(O ,w,d = 0 

associated with a simplified mechanical stru cture and with the observed natural frequencies. In 

vector form , the equations to be satisfied are 

1 
ql(O' ,wd ) 1°) q~(O',w,) ° 

Q'(O',w) == - =. 

qiv ... JO',WNmJ 0 

(3.5.1) 

Proper cons truction of the simplified structure provides ready determination of the roots Of . 

At "time" TJ , t he values of the 0; mllst satisfy the characteristic polynomials Q'" associated 

with the st.ructural model to be identified and with the observed natural frequencies , as described 

in the previolls equations. The determination of the coefficients 0; is no longer a trivial problem 

since the underlying predetermined mathematical model is much more complex, in general, than the 

simplified model used for time TO. A homotopy function h(O ,w; t) can then be constructed such 

t hat a t time TO it takes the form of Q'(O,w) and at time Tf it takes tbe form of Q" (O,w) : 

h(O,w; T) == (1 - T)Q'(O,w) + TQ" (O ,W). (3.5.2) 

In Chu 's work , the functions Q' and Q" are not exactly the characteristic polynomials but 

polynomials associated with the characteristic equations such tha t, when they are set to zero, the 

characteristic eq uations are satisfied id ent ically. The specific form of Q' taken by Chu was tailored 
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to the efficient computational solution of the components of a diagonal matrix which was then 

added to a Jacobi matrix. The formulation presented here, although perhaps not as computationally 

efficient as Chu's, is directed to deal with stiffness matrices of arbitrary "topology". The homotopy 

function employed here, hT I is different from the one presented by Chu in that it represents the 

characteristic polynomials of a lime T - varying mechanical system: 

where 

and , assuming A1 is diagonal , 

and 

I 
qf(O ,w,; T) ) 
q2(0 ,W2; T) 

hT(O W' T) = 
" -

qT (0 W . T) N ... o I N,..o I 

K a(o) = K(O) - 1<'(0). 

(353) 

(35.4) 

(3.5.5) 

(35.6) 

Representative examples of these will he given in later sections. In this way, the characteristic 

polynomial at TO is readily determined (si nce the diagonal matrix Ie has on ly one OJ in each of 

its components) and the characteristic polynomial at Tj corresponds to Q" 

The homotopy fun ction h(8,w; T) is nevertheless required to be zero for all times T. Those 

paths , ... ·hich connect each of the initial roots OJ of the initial characteristic equation with the roots 

0; of the target st.ructure characteristic equation Q. are called homotopy paths and are defined 

by the following equations: 

which imply 

where 

h(O ,w; T) = 0 

dh = 0 
dT 

dh oh oh dO; 
dT = aT + 08; dT . 

(3.5.7) 

(3.5.8) 

(3.59) 

The latter equality can then be used to formulate an initial value problem for the trajectories for 

the 0; : 

dO; oh -1 {)h 
- =--
dT 00; aT 

(35.10) 
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with initial values 8i ,o = 8: which are the roots of the characteristic polynomial associated with the 

simplified structure. After in tegrating % in the interval (TO! If] I the values of the 0i approach 

the values (Ji _ Integration must be carried in the complex domain since as time T progresses, 

the roots of t he transient characteristic polynomi als are not necessarily rea l. Neither are the fin al 

values 0i required by this method to be real , since the only requirement is that they satisfy the 

characteristic equations at time If Complex quantities are then possible solutions (a nd th ey may 

or may not be associated wi t h structural damping) but only t he real solutions are of interest here. 

No theorems have been developed which guarantee the good behavior of the integration (of 

equations Eq. (3.5.10) ) as t here are for ehu's case. In all integrations carried out up to t he 

present moment , however , no signs of ill-conditioned prob lems arise; these are not expected because 

of the physi cal nature of Eq. (3.5.4). 

In the numerical procedures, bot h Eu ler 's and Runge-Kutta 's schemes have been employed to 

solve Eq. (3.5.10) numerica lly. Some care must be taken, especially for those homotopy pat hs where 

the variables OJ change their character , from purely real to complex. Because of the inaccuracy of 

both Euler 's method and the finite prec ision of t he computer , the solutions turn out to be inexact; 

but, if the time step ~ T is small , these paths should be close to the true homotopy paths. To 

track the homotopy paths accurately, especially near t hese real-to-complex transition points , it is 

necessa ry to t.ake the homotopy estimates at T and then to optimize locally similar to the SUB- ID­

Moda l approach . No problems arise since the initial estimates for the optimization algorithms are 

bound to predict accurate ly the natural frequency values. 

Exte nsions to cases " .. ·here the number of degrees of fr eedom exceed the number of pa rameters 

(as long as the latter eq ual the number of observed natural frequencies) is a future topic t.o be 

st udied. Although no t as prohibi t ive as the probabilistic approach wi th numerical integration , this 

method seems to requi re the evaluation of an excessive ( Nd! ) number of homotopy paths in order 

to fi nd all possible solutions. Experience with the implementation presented here indicates that fo r 

paths t hat start at real 0 values , if these enter the complex domain along the homotopy path , then 

t hey remain complex. Complex solutions also come in complex conjugate pairs . So, on some rela ted 

basis, it may be possib le to d iscard some homotopy paths assuming that only the rea l solutions for 0 

are requ ired. There are caoses, however 1 where some of the parameters 8i have multiple roots at TO . 

Then , the va lues for Bi ( TO) are complex but during t he trajectory may eventually become purely 

real. Also, there is t he issue of whether parameters 8( TJ) being slightly imagin ary (relative to the 

real component) qualify since, presumably, small perturbations to t he mass or stiffness mat rices 

may then bring the s lightly imaginary roots Bj to the real line. Matrix perturbat ions should be 

cons idered since often the model may not allow fo r the exa.ct mass or stiffness distributions. These 

and other related questions are deferred to a later study. 
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Chapter 4 Simulated Data 

The results of a large number of numerical experiments are presented in this chapter. These 

tests with simu lated data were chosen as a testing procedure for various reasons: (1) all independent 

variables can be controlled and thus varied independently; (2) there is such a concept of "correct 

model" tojudge the accuracy of the procedures, since a model is employed to generate the "observed" 

response of t.he structure, i.e., model error can be eli minated ; (3) numerical tests are economical to 

perform. Il is understood, on t.he other hand , that numerical tests cannot. conclusively validate any 

method whi ch is meant to be used ultimately with real data; but they can serve as a useful first 

check on proposed methods. 

The aim of these exper iments is to test the properties of the different parameter estimation 

algorithms under different conditions and to foresee any potential problems that may be encountered 

when treating real data. Among t he properties of interest are: (1) robustness: this property deals 

with the stability of the parameter estimates when the condi t ions are not optimum, e.g., in the 

presence of noise; (2) uniqueness: the parameter estimates may not be unique and this fact may 

not show up in t he resu lts of each algorithm; (3) detection of stiffness loss: although the stiffness 

parameter esti mates lllay not be "readi ly intuitive", the algorithm should be able to detect localized 

changes in the stiffness. For damage detection purposes, this is the most important feature; (4) 

determination of interplay between the properties of t he mechanical system and ill-conditioning in 

the numerics leading to erroneous parameter estimation. 

Because of the large volume of numerical tests and resu lts, data is presented III the follow ing 

way: 

1. All parameter estimation algor ithms are employed to generate estimates for t he structural 

identiflcation problem of a 2 degree-of-freedom chain system. Analytical expressions are 

available that cha racterize this model exactly. This system is particularly attractive since 

it presents many "difficul t" features present in much larger problems. This system is also 

attractive since it is not computationally demanding and thus all algorithms can be employed. 

2. A reduced numbe r of algorithms is used for larger problems since only those which are more 

comp utationally effi cient are examined . The types of structures which are used as systems 
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are: 10 degree-or-freedom chain models, and 20 degree-or-freedom beams. These systems arc 

considered to present representative problems associated with real engineering systems. Testing 

t hese structures under all conditions is an enormous task especially since the larger systems 

req uire very large computation times. The tests performed on the structures are enough to 

convey an idea of what the problem areas are in the identification of structu ral parameters. One 

section is devoted t,Q each of the major problem areas and illustrative examples are provided. 

In the following set of simulat.ions, t he mass matrix is assumed to be known and thus is kept 

constant throughout the identification process. The assumption that the mass is known is made in 

order to improve the uniqueness and convergence rate for the solutions. In practice, good knowledge 

of the mass distribut.ion is available for most structures from the structural drawings. For offshore 

structures, however, the est imation of mass factors may be necessary s in ce t hese structures present 

t ime-varying mass dist. ribut ion histories through fluid-structure interaction. Other conditions under 

which the simulations are performed are described at the beginning of each of the sections below. 

Characteristic of this study is that for each simulation, only one sample set of excitation-response 

signals is employed to determine the values of the different parameters. A reason for doing t his is, 

in part, because of the orientation of this research to ear thqu ake engineering applications. In the 

ea rt,hquake problem, researchers are often restricted to excitation-response signals from only one 

earthquake. Data for other stru ctures, e.g., offshore and space st.ructures, is more abundant s ince, in 

gene ral, there are more avai lable resources. For the methodologies presented in this study, addit ional 

data can always be easily incorporated into the parameter est imation procedure. 

Section 4.1 - Chain Model Simulations 

The chain model (or ttshear building" ) is a useful tool in earthquake engineering since framed 

and other structures present natural frequencies which vary in similar proportions to the natural 

frequencies associated with a uniform chain model. Fig. (4. 1ab) shows two typical structures which 

are modeled with t,he chain system in Fig. (4.1c). 

The degrees of freedom of the prototype model of Fig. (4. 1c) are numbered starting from next 

to the base to the topmost degree of freedom, or ttroof." The stiffness matrix associated with the 

mechanical model is t ri-diagonal while the mass matrix is diagona.1. The dynamic response of t he 

structure to both base "earthquake-like" loading or roof "shaker-like" loading is calculated using the 

modal approach mentioned in Section 2.2.3. All characteristics describing t he tests are presented at 

the beginning of each section below. 

A property of the chain model is t hat it is able to match a.rbitrary response histories generated 

by many other linear models. Although the match is fairly good for a specific excitation, it may 
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not be l.Tue that the identified model will produce good matches for other excitations. Likewise, the 

st iffness values obtained from a specific dynamic structure identification run may be significantly 

different from another one using siatic test results, the latter being t he easiest to interpret. In 

order for the chain system to be a good overall and reliable structural building model, the building 

structure should have columns of high axial stiffness and beams of high bending stiffness. Under 

these ci rcumstances, a frame structure's inters tory stiffness is reasonably approximated by a chain 

model's, both statically and dynamically. 

Section 4.1.1 - Simulation with a 2-DOF Chain System 

The two-degree-of-freedom chain system is used here to determine th e characteristics of each of 

t he methods mentioned in the previous chapter. The chain system has many properties which are 

also present in Ia.rge systems and which make the identification of the system difficult. 

The goal o f each of the methods is to deter mine the stiffness distribution over the "height" 

of the st.ructure. The data falls in two categories: modal parameters and response time histories. 

Modal data consists o f the modal frequenc ies, modeshapes and participation factors . Response data 

consists of the type of quantit ies measured and the locations where these are measured. There are 

six data sets from which stiffness estimates are determined in this section: 

( A) Fundamental mode, 1st degree of freedom measured. 

( B) Funda menta l mode , 2nd degree of freedom measured. 

C) Fundamental mode , both degrees of freedom measured. 

D) Two modes, 1st degree of freedom measured. 

E) Two modes, 2nd degree of fr eedom measured. 

F) Two modes, both degrees of freedom measured. 

The success of each method depends mainly on the data available. Uniqueness also depends on 

the data employed. Results from Udwad ia et al. [4.l} predict that when all modes are excited and 

measurements have been performed at the first Hoor (as in sets D and F), then uniqueness can be 

guaranteed. dwad i30 el a!. have also show n t hat for set E, non-un ique parameter estimates are to 

be expect.ed. 

Section 4.1.1.1 Characteristics of the Two-Degree-of-Freedom Chain System 

The modal equations of motion for the linear system shown in Fig. (4.2) are 
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- O, k,] q,r _ w' [m. O,k, - r 0 
0] q,r m, (4. 1.1) 

for the rlh mode of vibration, J" = 1,2. kl is the nominal sti ffn ess between the ground and 

the first mass (or first story stiffness) and k2 is the nominal stiffness between the first and second 

masses (second story). The 01 and (}2 are the st iffness factors which modify the nominal values 

to adjust to system observations. The w; = constant curves in the 0 plane can be easily found 

by expanding the expression for the determi nant and rearranging: 

r = 1,2. ( 4.1.2) 

Solving these equat ions for the eigenvalue w; yields the following relations: 

( 4.1.3) 

Assuming that an initial "undamaged" system at 8 = ( 1, 1) has been weakened and now has 

st iffness parameters 0 == (0.5,0.5) , it is possible to calculate readily the two frequencies associated 

with this weakened state. In the example treated here, 1111 = nl2 = kl = k2 = 1 . The dynamic 

characteristics of the 2 degree-of-freedom chain system are g iven by 

wi' = 3-.;8 "" 0. 191 

wi' = 3+/' "" 1.309 . 
(4.1.4) 

The type of problems that this study addresses are t hose whose goal is to find the values 0, 

given the t ime histories of the exci tations and responses, or the modal da.ta. Using Eq. (4.1.2) above 

and mat.ching the data in Eq . (4.1.4) produces two sets of curves show n in Fig. (4.3). The two 

sets of curves are described by 

(4.1.5) 

T he first of Eq. (4. 1.5) corresponds to loci of 0 values denoted "C urve I" while the 

second expression corresponds to "Curve 2." The particular geometries exhibited by these curves 

demonstrate that certain problems related to uniqueness can easily arise even from s imple low­

degree-of-freedom systems. 1n the last figure , it can be clearly seen that there are two vector points 

O' = (0.5,0.5) and 0' = (1.0 ,0.25) such that both conditions wi = 0. 191 and w~ = 1.309 

are simultaneously sal isfied. The interpretation of the Curve 1a in the same figure is that all 
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the corresponding OJ values have a fundamenta l mode whose frequency equals wi . Curve Ib 

corresponds to the values of () whose second modal frequency equals wi . Curves 2a and 2b have 

similar interpretation, i.e., curve 2a corresponds to values of (Jj such that the fund amental mode 

has an associated frequency wi. Curve 2b corresponds to the second mode. H is noticed t hat 

Curves 1a and Ib do not overlap; these curves actually asymptotically approach (h = 2wi2 and 

O2 = wi 2 as O2 ---o.~ 00 and 01 ---..~ 00, respectively. Likewise, there is an asymptote at 01 = 2w;2 

and ()2 = wi 2 for Cu rves 2a and 2b as ()2 -+ ~ 00 and 01 -+ ~ 00 . The only two curves t hat can 

intersect are Curves 1a and 2b . Choos ing the natural freq uencies in an arbitrary fashi on allows t he 

number of possi hie solution vectors () to be two , one or zero. The numb er of solutions depends on 

whether the curves associated with each of these frequencies can intersect or at least make contact 

wi th each other . 

The two points 0 1 and 02 are both at the intersection of C urves 1a and 2b , i.e., points where 

wr = 0.191 and w~ = 1.309, respectively. \'\' hether the t wo models given by these () values actually 

predict t he same acceleration time histories or not depends on which degrees of freedom are observed. 

Besides having the same frequencies, t hese two models have the same top degree-of-freedom effective 

participation factors, whi ch implies that t he two t ime histories at t his degree of freedom are equal 

[4.2]. If the response is recorded at t he top degree of freedom only, there is no possi ble way to 

distinguish which of the two Oi solutions is the correct one. In this case , additional information 

coming from the first degree of freedom clears all ambiguity s ince the effective part icipation factors 

there are distinct for the two models. Thus, for a ny base excitation , the response at the first degree 

of fr eedom is different for t he two models. Comparison of acceleration signals is shown in Fig. (4 .4) 

for a broad ban d excitat ion , showing t hat the response for the two (}i solutions is indistinguishable 

at the top degree of freedom (Fig. (4.4a) ). 

Local uniqueness can he enforced whenever t he gradients to the w = constant cu rves do not 

both lie in pa rallel. T his is t he case for the solution points 0' and 02 . Numerically, it may be 

difficul t t.o reach t.he true min imum wi th an optimization algorithm since the two nearly tangent 

curves induce a very flat local topology. 

Section 4.1.1.2 - Method of Successive Substitutions 

The "S U 8-ID-SS" algori thm of successive substi tutions is applied t o t he 2-DOF Chain problem. 

The cha in system is undamaged or iginally at 0° = (I, I ) a nd then is weakened to 0- = (0.5 ,0.5) . 

The method uses only natural frequencies and modeshapes. vVhen the number of observed degrees of 

freedom is one, t,he method uses , essentially, only frequency data. In this case, the only component of 

the observed modeshape vector does not contribute any information since t his vector is normalized 

prior to any comparison. 
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The operator F(O) for this model will map a point in the (0" O2 ) space to another point in 

the same space. The particula r form of the operator depends on what information is available. For 

the chain system of Fig. 4.2 , assuming that the mass distribution is known and that the two modal 

frequencies correspond to the system () = (0.5.0.5) I the contraction-like operator F about the 

point 0° is given by very large expressions (not shown here) obtained with WRl's Mathematica 

[4.3] computer program. Even for the simplest model, the analytical aspects of t he operator Fare 

not easily derivable, namely, to prove that F(O) is a contraction in e' if for 8 E [0,1) , 

IIF(O") - F(O")II ~ 8110" - 0"11 , 

so the convergence aspects of the sequence are studied a posteriori. The region of interest ec in 

this case would be 0 ~ Oi ~ 1 , nominally, or perhaps 0 :$ (}i ~ 1.5 to accommodate for large 

model errors. 

Table (4 1) presents the solutions [or various combinations of modal information versus degree­

of-freedom information. The estimates should converge to the correct value of 0* = (0.5,0.5) since 

this is the ':damaged" configu ration. 

Since the form of the operator F(O) is the same when only modal frequency is used , Sets A 

and 8 in Ta.ble (4. 1) yield t.he same resu lts: convergence is achieved in one iteration to 0 values 

which yield a fundament.a l frequency equal to the one at 0" = (0.5,0.5) . There is no uniqueness as 

can be seen since all three converged values are different and yet the convergence criteria is strictly 

enforced. In fact, any point on curve la of Fig. (4.3) would be equally useful. Had the effective 

participation factors been incorporated into the formulat ion of the operator F(O) I a distinction 

between sets A and B wou ld be evident (since these facto rs are different at each of the two degrees 

of freedom). 

Set C presents the case where both components of the fundamental modeshape vector are 

known. Th is case, as well as case F, below, corresponds to full knowledge of the eigenvector and 

thus a linear system of equations is constructed. From this , the resu lting 0'" = (0.5, 0.5) is obtained 

along wit.h a condition number for matrix S indicating that the first eigenvector contains enough 

information to guarantee uniqueness. 

Sels D and E show that if t\\"o modes are measured at only one of the two degrees of freedom , 

either of two possible solutions is obtained. These two solutions, 0' = (0.5,0.5) and 02 = (1,0.25) 

correspond to 0 values for which both frequencies are the same. Disregarding Fig. (4.3) (which 

clearly indicates that there are only two solutions) or any other theoretical information, it is 

impossible to guarantee that there are only two solutions. There seems to be local uniqueness 

around the converged values since the condition numbers corresponding to the sets are nOll-zero. 

Set F presents the same results as Set C: the point O' = (0.5,0.5) is uniquely determined since 

matrix for the set of li nea r equations is independent of 0 . \O\'ith more than one complete modeshape 
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vector, the Tank of the new matrix can only increase and thus if set C yields the correct result , set 

F also yields the same resu lt. In the presence of noise, parameter estimates may not be exact, so 

with less ill-conditioning it is expeded that set F would provide better resu lts than set C . 

Section 4.1.1.3 - Generalized Least-Squares, Output Error, Modal Domain 

The "SUB-lD-Modal" code only uses frequency and modeshape modal data. Table (4.2) presents 

the comparison among the various test sets. The modal data comprising the natural frequencies and 

modeshape vectors (and disregarding the damping and participation factors) are obtained from the 

modal superposition program. The Fletcher-Reeves minimization technique with finite difference 

gradient evaluations was employed for the modal domain . The error index referred to in this section 

corresponds to JM defined in Eq. (3.3.2.) 

As in the method of successive substitut. ions, sets A and B share the same resu lts since the known 

modeshape vector can on ly be known up to a constant. Since sets A and B assume knowledge of 

only one modeshape component, its absolute magnitude is meaningless. This same circumstance is 

also present in sets 0 and E. Thus, on ly modal frequency data is available in these four cases. The 

fullmodeshape does provide additional information in sets C and F. 

Matching on ly one frequency can be easi ly done in practice. Sets A and B show that convergence 

is achieved to 0 values for whi ch the fundamental freque ncy equals that for 0 = (0.5,0.5) . The 

resulting parameter estimates, however, are incorrect. There are no unique values of (J as solutions 

to this dataset. As before, any point on Curve la in Fig. (4 .3) is consistent with assumed modal 

data. 

Set C which contains knowledge of all modeshape components shows convergence to the exact 

fr although the number of iterates needed is large. Sets D and E contain more modal frequency 

information but converge to tWO 0 values: O' = (0.5,0.5) and O' = ( 1.0,0.25) . As mentioned in 

other sections, these two values (} share the same frequencies. 

Fin ally, set F makes use of all frequency and modeshape information to converge to the exact 

O' = (0.5,0.5) in about th e same number of iterations as for t he other sets, a number which is large . 

Section 4.1.1.4 - Generalized Least-Squares, Output Error, Time Domain 

The 2-DOF chain system is considered again but here it is excited by a broad band excitation at 

the base. Fig. (4.4 c) and Fig. (4.4d) show the Fourier amplitude of the response at the top degree 

of freedom and the Fourier amplitude of the excitation. The responses decay to small amplitudes 

tm"'ards the end of the s igna ls. The empirical (i.e . , numerically calculated) transfer function between 

t he base mot. ion and that at the top degree offreedom is shown in Fig. (4.2b). 
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Table (4 .3) shows t he results for th e t ime-domain out put error approach implemented in t he 

"SUB-ID-Time" algori thm . The Polak-Ribiere minimization technique with analyt ical gradient 

evaluations was employed t.o arrive at the results . The error index referred to here corres ponds 

to 1r defined in Eq . (3.3.1. ) 

Set A values converge to the exact results for all ini tial values of B tested. Set B does not 

converge to the exact results although it converges to values which match the fundamental mode up 

to four signifi cant figur es. It must be recalled that Curve la in Fig. (4.3) is a locus of 8 values 

which have the same fundamental frequency. If in addition to this, t he participation factor is a 

slowly varying fun ction of () along this curve then it is con ceivable that there is accentuated ill­

conditioning along this locus . III-condi tioning almost always causes spurious premature convergence 

of the optimization procedure. The objective fun ction 1r(Oj , 82 ) is contour plotted in Fig. (4.5.) 

The ill-condi tioning in the plo t is th e so-called "banana-shaped" valley which follows curve 1a in 

Fig. (4 .3) and whose valley noor is nearly flat . All other sets contain information in excess of the 

information present in Set A. This allows SUB-IO-T ime to reach the correct , unique solution without 

any fur ther complications. 

Section 4.l.l.5 - Bayesian Approach 

The application of t he Bayesian approach to the SUB-ID problem is very convenient because 

it assigns a probabili ty value to each value of O . This probability distribu tion fun ction is far 

more informative than just the most probable value, which is effect ively what SUB-ID-Time and 

SUB-ID-Modal produ ce. 

Fig. (4.6) shows six plots (Sets A-F) derived from the "SUB-ID-Prob" a lgori t hm in which 

different amount o f modal and response information are considered. Each plot is a plot o f the 

probabili ty of 0 as a function of 0 itself and on an actu al set of data. These data are the same 

as those used for the study of ot her ident ificat ion methodologies, namely, a 1024 point (204.8 sec) , 

broad-band , earthquake-like amplitude accelerat ion at the base. Tn the absence o f noise an d model 

error, the prediction error vari ances of Eq . (3.4 .18) would be zero, caus ing an unrealistic spiked 

fun ction to appear. Since this is not typical of real processes , 10% T.m.s. noise in the form of 

Gaussian-whi te noise is added to tbe system signals . 

Sets A-C correspond to knowledge of the fundamental frequency while sets D-F correspond to 

knowledge of the two modal frequencies. Set A makes use of the response at the first degree of 

freedom of t he 2-DOF chai n system. It identi fies the most probable value of iI = (0 .5 , 0.5) and 

gives little or no probabili ty of occ urrence to most other values. Set B makes use of the response 

signal at t he top degree of fr eedom . It is seen in Fig. (4.6b) that t he pseudo-probabili ty is non-zero 

for va lues of 8 where W[ = wi- = 0. 191 and it reaches two peaks: one a t 8 = (0.5, 0.5) and the 
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other at 0 = (1,0.25) (the other peaks being caused by the discretization of the plot surface but 

actually form a continuous ridge from one peak to the other) . The locus of points lying at. the crest 

of the wf = wr* ridge form the inverse of a "banana" valley. 

Sets C (first mode, both responses) , D (two modes, firs t DOF response), and F (both modes, 

both responses) , present no identificat ion problems. Set C, however, still shows traces of the locus 

of constant fundamental frequency due to the dominant contribution of the fundamental mode in 

the top-degree-of-freedom response. Set E (two modes, response at the top degree of freedom ) , 

again presents s imila r behavior as in set B, although the peaks at 0 = (0.5,0.5) and 0 = (1,0. 25) 

are more pronounced. The addition of the second mode in set E eliminates the intermediate points. 

The probabil ity value at the two peaks are equal, meaning that based a ll the given data alone (two 

modes and the top response) the two models are eq ually probable. This is expected since the model 

response is t.he same at the two values of 0 . 

Set F 1 although it emphasizes the correct 0"' = (0.5,0.5) solution , presents a small local 

ma.ximum at the other critical 0, i.e., O· = ( 1,0.25). Optimization algorithms may, if started 

very close to () = ( 1, 0.25) , converge "inadequately" to this second possibility. Tn the latter case, 

choosing a different starting condition would, most probably, converge to the global ma.ximum. 

For damage detection purposes , the pseudo-marginal distributions would defin ite ly be 

dominated by the peak at 0 = (0.5,0.5) and , if existent, at 0 = (1, 0.25). Fig. (4.7gh ) sholVs 

marginal distributions for 0 1 and O2 for Set 8 corresponding to the complete set. The "complete" 

case employs probability values evaluated at the grid 0, = (71 - I)~O, for" = 1,2, ... , 20 with 

~O; = 0.05. The marginal distr ibutions are constructed by integrating out the other 0;. This 

process is a special projection o f the higher-dimensional plot to one dimension. (}t peaks at around 

0.45 and then it dec.ays slowly away from this value. This indicates that it is very plausible that 

the structure has weakened. Looking at the marginal distribution for O2 it is clear that it has 

also "failed" since the most probable value occu rs at (}2 ;:::::: 0.25. In either case, stiffness loss is 

conclusive. 

If t he distributions are highly dominated by the values at the true peaks 0 = (0.5,0.5) and 

0= ( 1, 0.35) , it may be more convenient to search for the most probable values and not have to 

exhaustively search through all the e space. Procedures to do th is have been implemented as in 

the least-squares method but it is known that not all peaks are guaranteed to be found. If the most 

probable values are found, however, then local distri but.ions can be calculat.ed for each peak. The 

pseudo-marginal dist.ributions corresponding to the two peaks of the 2-00F chain model are shown 

in Fig. (4. 7abcd.) In the last. fi gures, '· PI" denotes marginals derived from probability data in t he 

neighborhood of 0 = (0.5,0.5) and "P2", likewise, from t he neighborhood of 0 = (1,0.25) . The 

"Pl+P2" case employs bot.h neighborhoods. These distributions are referred to as 'Ipartial" since 

they ignore () values not close to the peaks. The addition of aU part.ial marginal distributions is 
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also shown in Fig. (4.7e) and Fig. (4.7f) . Comparison between partial and actual distributions 

shows that the most probable values of 91 and 82 are well represented in the partial marginals 

and somewhat more blurred in the actual marginals, as is expected. From t. he Pl+P2 marginals it. 

can be inferred t hat t he plausibility of damage is high, although the marginal for 0, shows slight 

probability that it is not damaged. 

Section 4.1.1.6 - Homotopy Method 

The homotopy a lgorithm ("SUB-ID- H") is applied to the previously described 2-DOF chain 

system. T he weakened 0- = (0.5,0.5) configuration is considered. The method uses only the 

natural frequencies but any predictions can then be ratifi ed by comparing the model's response with 

any other available information. 

The particular form of the system of ordinary differential equations depends on the choice of 

the characteristic polynomial associated with the "simplified structure." In this case, the st iffness 

matrix 1\" takes the form: 

f('(O)_[O,kl 0 ] 
- 0 O,k2 (4. 1.6) 

while the stiffness matrix at ' f, R,,' Il, is just the difference between [«(0) and 1<'(0). The 

resll lt,ing transient stiffness matrix corresponding 10 homotopy time T is then 

I n(o )_ [0,kl +TOk2 
\ , T - n k2 - TU 2 . 

- TO,k2] 
O,k2 . (4. 1.7) 

From this expression it ca n be verified that at TO = 0 the stiffness matrix corresponds to [( 1(0), a 

simple st ructu re with each mass attached to a base by a single spring, and at TJ = 1 the sti ffness 

mat rix corresponds to the two degree-of-freedom chain system under study. Assuming , as before, 

that m 1 = m2 = k 1 = k2 = 1 , the transient characteristic polynomial for mode i is 

qT(O"O"Wi;T) = (0, + TO, -wl)(o, -wl) - T'O~. (4.1.8) 

The constru ction of the homotopy Cunction h(O,w; T) is now straight forward: 

hen . ) _ { (o , + TO, -wf)(O, -wf) - T'O~} 
v,W, T - (0 ° ')(0 ') 'n" 1 + T 2 - Wi 2 - W2 - T~ u2 

( 4.1.9) 

It is clea rly seen from the last equation that the homotopy fun ction 's dependence on the parameter 

T is quadratic, significant.ly different from Chu's formulation [4.6]. The set of ord ina ry differential 

equations for the vector ~~ a5sociated with the 2 DOF chain model (see Eq. (3.5.9),) as determined 

by M athematica [4.3]' takes the form 

dO, = { ( -w~ - W~ TO, + 2TO, - 2T'O,) (- (wiO,) + 0,' - 2tO,') 
dT - (Wr81) + W~Ol + W~02W~0'1 - WfT02 + w~ T8'1 + 2wfT202 - 2w?T282 
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(wi + wir - 0, - 2rO, + 2r'O,) (- (wiO,) + 0,' - 2rO,') 

dO, (w~ - 0,) (- (wiO,) + 0,' - 2rO, ') 
-;r;: = {- - (WfOl) + wiOl + Wr02 - W~02 - wfT02 + wiT02 + 2WfT202 - 2W~T202 

(-wi + 0,) (- (w~O,) + 0,' - 2rO,') } 
(4.1.10) 

The integrat ion of the above equations with two starting initial conditions (associated with the 

roots 0: of the simplified structure) yield two homotopy paths in the (OI,O"r) space. Such paths 

are shown in Fig. (4.8) where it can be seen that the init ial roots are connected to t he roots of 

the characteristic polynomia l of the chain system, 0' = (0.5,0.5) and 0' = ( 1, 0.25) . W hether the 

two roots satisfy the observed mode-shapes and/or participation factors can be ver ified by di rect 

substitution into the model and calcu lation of these quantities. 

As has already been discussed , 01 is a solu tion for all sets (A-F) while the other (non-unique) 

solution, (J2, is on ly a solution for sets Band E even if the participation factors a re taken into 

account. 

Section 4.1.1.7 - Summary for the 2-DOF Chain System 

The method of successive substitutions and t he modal output error method re ly on the data 

III similar ways and t heir predictions are similar. Neither makes use of the participation factor 

information so they do not perform well when only one degree of freedom is monitored , converging 

to any value () which shares the same natural frequency. The time output error approach makes 

use of the pa rticipation fa ctor in an implicit manner (s ince the latter is needed to caJculate the 

response of t he model) and so it is not as sensitive to ill-conditioning as t he previous two methods, 

but neither of the three address the non-uniqueness issue, formally. The Bayesian approach gives 

t he most information. The joint probability dist ribut ion has been projected onto a two-dimensional 

plot of (}i versus pseudo-probability, for a ll sub-structures present. From t his plot , it is easy to 

determ ine the state of the system . Non-uniqueness can also be identified as long as a relatively fine 

grid is used. T he fin er the grid , the more computing time needed; the fine gr id used here made the 

Bayes method t he most computationally demanding method. The homotopy method is restrictive in 

that there should be as many observed natural frequ encies as t here are parameters 0, . The method 

does, however, identi fy exact.ly a ll non-unique sol utions. 

Section 4.1.2 - Simulation with a lO-DOF Chain Model 

The t ime outpu t-error approach is the primary tool used in the following identification runs. The 

modal out.pu t error does not take full advantage of the data (i.e., no use of effect ive participat ion 
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factors) nor does the method of successive substitutions; the latter has also proven to be 110n­

convergent in certain situations. The probabilistic approach is the most informative but requires 

excessive computational times when the number of structural parameters becomes larger . The 

homotopy method appears to have considerable potential but furth er study is needed to examine 

potential shortcomings of the technique (such as the considerable amount of computational effort 

required). Although uniqueness is still an area which is not fully resolved by the output-error 

approaches I they do provide a compromise between computational efficiency and reliability. Program 

SUB-I D-Time has been employed to calculate the stiffness parameter estimates for the IO-DOF chain 

system under different ci rcumstances. The Pol ak-Ribiere minimization technique with analytical 

gradient evaluation was employed in all SUB-ID-Time tests, except in those where noise was added. 

In these, the gradient evaluations were performed using the finite differences scheme previously 

mentioned. 

The conditions for most tests are nearly constant with only one or two variables changing in 

each test . The "standard conditions" are t he following: the excitation is placed either at t he base as 

a prescribed base acceleration (Ubase excitation") or at the top degree of freedom of the structure 

as a for ce ( "roof excitation"). Accelerations are monitored at all ten degrees of freedom of the 

system. Possible errors in real signals such as noise , lack of synchronization or miscalibration are 

present in t,he "standardll simulated signals. The excitation signal shown in Fig. (4.9) is applied 

in most numerica l tests both at the base and at the top degree of freedom The signals consist of 

of 1024 time points with 6.t = 0.02 sec. yielding a 20.48 second duration signal, approximately 

10 t imes the fundamental period. The signa l is Gaussian distributed in time multiplied by a time 

envelope decaying to zero amplitude at 10.24 sec. The excitation is broad-band in the frequency 

domain with a Nyquist frequency of 25 Hz , nearly twice the largest natural frequency of the system 

( flO '" IOH: ). Damage is represented by a stiffness degradation of approximately 27% in the 

second and third interstory levels , and 11% in the fourth level. This pattern is chosen to model 

the complete fl exura l stiffness degradation of four columns in level 2, four columns in level 3 and 

one column ill level 4 in a typical tell-story, ten-bay building structure. In this way, the stiffness 

at the damaged stories red uces to approximately 7/1 1, 7/ 11 and 10/ II of the nominal interstory 

stiffness, respectively. The structural characteristics typical of the 10 degree-of-freedom chain system 

under consideration a re shown in Table (4.4). The effects of the "damage" (or weakening of some 

members) on the structural and modal parameters are also shown in the same table. The effects of 

the wea kening on the response signals are shm'lm in Fig. (4.10) which shows the response of t he 

undamaged and damaged system to the excitation . The qualitative nature of the responses does not 

clearly indicate the considerable loss of stiffness in the second, third, and fourth inter-story levels. 

Section 4.1.2.1 - Frequency Content of the Excitation 
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The effects of bandwidth of the excitation are shown by examining both frequency content and 

excitation location. 

Procedure and Results: Two frequency bands are chosen in order to observe the influence of 

freque ncy cont.ent on the parameter estimates. T he "low" frequency signal contains frequencies in 

the range 0 to 2 Hz. From the transfer fun ction plots presented ill Fig. (4. 11) . it can be seen t hat 

on ly the first mode can be s ignificantly excited. The "high" frequency signal contains frequencies in 

the range 0 to 25 Hz as shown previously in Fig. (4.9). The identification resu lts for both t he roof 

and t he base-excitation cases a re shown in Table (4.5). T he manner in which each excitation case 

participates in the response can be clearly seen in t he transfer fun ction plots in Fig. (4.11). These 

plots show that roof excitation excites practically all modes of vibrat ion while base excitation excites 

primarily the first three or four modes (for the case of a uniform chain model). If t he structure was 

moderately damped and was to be excited with a sinusoidal signal with a constant frequency equal 

to that of a natural mode of the system , then that frequency will be dominant. in the response. 

For reasons simil ar to those discussed in the two-degree-of-fr eedom case, generally there are large 

number of () vectors which have t his same natural fr equency in common . All of t hese models having 

t he same natural frequency are referred to as "similar models." Since the participation factor does 

not vary ra pidly with variations in OJ (for moderate ranges of the latter), then the response of any 

simi lar model can be similar to the original model. The output error approach can rapidly find a 

simil ar rnodel. To try to find t. he poi nt of lowest output error corresponds to moving tangentially 

a long a nat banana valley. This fl at banana valley now corresponds to t he locus of points in ten­

dimensional () space, all points shar ing t his same natural frequency. In t he base excitation case, 

the system "filters" the excit ation signal and produces a nearly monochromatic response with the 

dominant frequency equa l to t he fundamental fr equency of the stru cture, t.hen , as argued above, a 

large number of other models ca n produce nearly the same response. The optimization a lgorithm 

then tends to premat.urely converge to one of t hese models which give a small output error . In the 

roof case, however , there are more modes participating in t he response and convergence is better 

behaved . For each modal frequency alone there is a fl at banana valley, but for the joint problem with 

multiple frequencies in the output, t here is a "superposition" of flat banana valleys. J\!lost of these 

ba nana valleys have t he same cha racter ist ics in that they concave out from the origin , although not 

all of t.hese higher dimensional banan a valleys coincide exactly. Also, higher modes may also present 

convex curves such as Curve 2b in Fig. (4.3. ) The end result of t.his superposition is that t he j oint 

banana valley is now defined along a locus different from the individ ual banana valleys corresponding 

to the in divi du a.l modes. T he level of flatn ess decreases with the amount of separation among t he 

different indi vidual banana va lleys. If the flatness of t he joint banana valley has been removed, 

then t. he optimization algori t hm con verges at a much fast.er rate t han before and without prem,ature 

convergence. There may be situations where if there are four modes participating s imultaneously 

in the response , the optimizat ion algorithm may converge matching t hree fr equencies correctly but 
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not t he fourth , hence, yielding significant parameter erro rs and output error. These cases have not 

occurred in the actual tests, even in t hose cases where large departures are commoll. 

The parameter matches in Table (4.5) are very good in all cases. The low values of the 

error index indicate almost perfect fit to the target signals . The worst parameter identification 

case corresponds to the low-frequency base-excitation signal (within 1.2% from the exact) whi le 

the other cases are nearly exact. As expected , the smaller t he high frequency content in the output 

signal, the lower the resolu tion and , thus , the s lower the rate of convergence with possible premature 

convergence. 

Section 4.1.2.2 - Durat ion of the Excitation 

The effect of duration of the excitation on the accuracy of the stiffness estimates is examined 

in the a bsence of noise. 

Procedure and Resul ts: Standard test conditions apply. The duration of the excitation seems 

not to corrupt the results fo r a ll recording t imes greater than 0.7 of the fundamental period. In the 

absence of noise, t he stiffness estimates agreed wi th the exact values to within 0.001 for durat ions 

as small as a quarter of a fund amental period . 

Section 4.1.2.3 - Selection of Monitored Degrees of Freedom 

The effects of moni toring different degrees of freedom on the parameter es timates are studied 

here. 

Procedure and Results: Standard tes t conditions apply. Three sets of signals are considered. 

In set 1, all degrees of freedom are monitored ; in set 2, only the top degree of freedom is monitored ; 

and in set 3, on ly the first degree of freedom is monitored. 

Tabl e (4.6) shows t,he results for the roof and base-excit ation cases. Here, the results for sets 

1 and 3 are accurate while for set 2 the results are poor. The results for set 1 are almost exact , 

t he results for set 2 deviat.e cons iderable from t. he exact while, for set 3, the results are completely 

different from t.he exact. The poor results are expected in bot h situations because of non-uniqueness 

conditions. Udwadia and Sharma [4.1] have presented a discussion on output configurations for a 

chain syste m from which unique stiffness parameter values can be obtained in the base-excitation 

case . Udwadia et al. have also extended the study to the roof-excitat ion case [4 .4] where he finds 

similar condit.ions. The out.put configurations that produced the poor results are the input-output 

configurations that. lead to non-unique stiffness deter minations. In the other situat ions , however, 

uniqueness is only gua ranteed as long as "clean" information from all modes is present in the output 

s ignals as in this noise-free case . In the presence of noise, uniqueness is no longer guaranteed , but 
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the more higher-mode information there is , the better accuracy that can be expected. 

Deviations from the exact distribution, however, do not necessarily imply a bad match in the 

response signals. For the roof-ex cited, set 3 case, for example, the match at the first degree of 

freedom is nearly pe rfect as can be seen in Fig . (4. 12). In this case the algorithm has converged to 

another solu tion equivalent to the exact one as far as t he observed input and output are concerned. 

This case seems to be analogous to that already discussed in Section 4.1.1.3 and in Fig. (4.3b) for 

the 2-001" chain model. 

Section 4.1.2.4 - Response Quantity to Monitor 

The effects of using either measured response displacements or accelerations are examined. 

Procedu re and Results: Standard test conditions apply except that both acce lerations and 

displacement.s are employed in the identification. 

Table (4. 7) shows the identified stiffness distribution for the base and roof-excitation cases. 

It is seen that the values corresponding to displacement signals differ only slightly from t he exact 

d istribution, with a maximum of 4%. The esti mates corresponding to t he accelera tion signals, in 

comparison , are essent.ially perfect. 

The frequency content of t he displacernent signals involves only t he lower frequencies. The 

higher-frequency content inherent in the accelerat ion s ignals leads to faster convergence rates in 

the pa rameter est imates while integrat ion of the disp lacement signals reduces the high frequency 

content, thereby losing valuable system information. As previously discussed, th e lack of higher 

mode information in t he displacement s ignals leads to t he creation of the shallow "banana valleys" 

for the fun ctional JT(O) , whi ch greatly retards convergence to the minimum of JT . The in crease 

in the slope of the valley floor resulting from higher mode information allows t he minimization 

techniques to reach the min imulll with less difficulty. 

Displacements might prove to be useful in cases where the accelerat.ion signals contain very 

low amplitudes in the low frequency domain . In t hese cases, both displacement and acceleration 

signals could be lIsed s imul taneously. However, as a practical matter, it is usually easier to Illeasure 

stru ct u ral accelerat ions in t he fi eld using inert ial devices than to measure displacements relative to 

some reference system. 

Section 4.1.2.5 - Noise in the Excitation and Response Signals 

nrealistically high levels of noise are added to the system signals to produce "noisy signals" 

to test t he robustness of t he method. 
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Procedure and Results : Standard test conditions apply. oise in the form of a Gaussian white­

noise signal is added to both the input an d the output of t he system. The noise signals added to 

the input have an r.m.s. (rool-mean-square) value equal to a specified fraction of the r.m.s. value 

of the input signal. Similarly, the noise signals added to t he output have an r.m.s. value equ al to a 

specified fraction of t he r .m.s. value of the response signal corresponding to the topmost degree of 

freedom. An illustration of the construction of o ne of these noisy signals is presented in Fig. (4.13). 

The first level of noise considered corresponds to the case where the r.m .s. noise ratio is 50%. The 

second level of noise corresponds an ext re m e case of adding 100% noise. It is important to note that 

since t he r .m.s. for the signal at the topmost degree of freedom is normally t he largest} t he ratios 

between the r .ms. of the noise and the r .m.s. of the signals from the lower levels of the system are 

larger than the prescribed ratio. 

Table (4.8) shows the results for t he noise-free case and for t he 50% and 100% noise-added 

ca.'Ses. For the 50% noise ca.'Se, the resu lts remain considerably close to the exact distribut ion , within 

13% for base excitat ion and within 5% for roof excitation . For t he 100% noise case , even t hough the 

stiffness values va ry considerably, t hey remain within 46% of the exact values for the base-excitation 

case and within 9% for roof excitation. 

Section 4.1.2.6 - Type of Damage Present in the Structure 

The sensitivity of t he a lgorithm to different stiffness degradation dis t ributions is examined . 

Procedure a nd Resul ts: Standa rd test cond itions apply. The sensitivity of the results to the 

"damage" pattern in the strllcture is considered. The first pattern consists of a reduction of interstory 

stiffness at the 2nd, 3rd, and 4th interstory levels. The second pattern consists of a similar stiffness 

red uction at the 9th, 8th , and 7th levels. The third pattern is a combinat ion of the two former 

patterns. The fourth pat tern is cha racl..erized by an extreme red uction in the stiffness factor in the 

4th and 7th interstory sti ffn esses. Table (4. 9) shows t hat the estimates in all four cases are in 

excellent agreement with t he exact values, suggesting that t he algorithm works well regardless of 

the "da mage" distribution in t his noise-free case. 

Section 4.1.2.7 - Signal Synchronization 

The ai m in this section is to determine whether t ime shifts from lack of synchronization among 

the s ignals induces significant errors in the parameter estimates, since such time sh ifts are known to 

prod uce substantial errors in the identification of the higher modes [4.5J. 

Procedure a nd Results: The standard test conditions are assumed. "\li t h 11 available s ignals, it 

is possible to cons truct a large number of t ime shift comb ination among t he signals. It is expected 

that t he largest errors occur whell the shi ft takes place between the excitat ion signal and all t he 
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response signals. Two time shifts between the input and the output of 2~t = 0.04 and 4~t = 0.08 

sec. were considered. Table (4. 10) shows the estimates from program SUB-ID-Time. Results show 

excessively high sensitivity to these shifts, both in the roof and in the base excitation cases. This 

sensitivity is expected to be due to the active participation of the higher modes since their periods 

are of the same order as the shifts. 

Section 4.1.2.8 - Miscalibration of the Signals 

The effects of accelerometer miscal ibration in the parameter estimates are studied in this section. 

Procedure and Results: Standard test conditions are given. It is assumed here, a priori, t hat 

the excitation signals are not calibrated adequately. Three "miscalibration levels" are considered: 

0%,5%, and 10% in creases in t he excitation signal. Since t he excitation is larger than the one used 

for the reference system, the pred icted response calculated by a ny dynamic algor ithm is larger 

than expected. It is then expected that the damping ra t ios increase in order to decrease the 

response amplitudes to levels comparable wit.h those corresponding to the "system" signals. It 

is not clear , however, whether the (J value esti mates are influenced sign ificantly. A ny change III 

the (J parameters should always be consistent with the natural frequencies since discrepancies m 

the latter cause the largest contributions to the error . Table (4.11) shows the estimates derived 

from program SUB-rD-Time. It is seen in t his table that the values are quite accu rate. As a rule of 

thumb , the (J estimates in cur percentage error levels lower than those in the calibration. Based on 

these results, it is expected that miscalibration does not generate much more error even when only 

a few of the degrees of freedom are measured. 

Section 4.1.2.9 - Summary for the lO-DOF Chain System 

Ignoring any shortcomings in terms of lack of uniqueness, the time-based output error ITlethod 

presents good characteristics. The method was sensitive to ill-conditioning when very few modes 

pa rticipated in the response. Low frequency breadth in t he input, location of the excitation, 

monitoring of displacements rather t han accelerations , sampling and duration of t he signa ls , choice 

of degrees of freedom to monitor, and noise, are some of the effects studied here which have an effect 

in the participation of more t han a few modes. The first two effects mentioned above affect the 

results the strongest. 

For normal experimental setups, special attention should be placed on signal synchronization. 

This seemed t.o have a very strong effect. 011 the resul ts since lack of synchronization can cause 

the model higher modes to be out of phase with res pect to observed data, thereby corrupting the 

estimates of their modal parameters. 
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Section 4.2 - Beam-Column Model Simulations 

The chain model s tudied in t,he previous sections is a discrete version of the shear beam . In 

t his section , a bend ing beam is modeled to examine whether a ny s ignificant differences appear in 

t he parameter estimation process for this type of eleme nt. 

Bending beams present very different mecha nical characterist ics from t he chain system studied 

in the last sect ions, whi ch appear to make the beam identificat ion problem far morc diffi cul t to solve. 

The difficul ty stems from the excessive ill-condit. ioning present when relat ively few modes contribu te 

to t he response used to determine t he struct ural stiffness parameter va lues. Res ults suggest that 

in t he bend ing beam case, a small neighborhood arou nd a set of modal parameters is "mapped'l 

to a much larger ra nge of stiffness parameter values. In t he chain sys tem case, la rger variations in 

t he moda l proper t ies are needed to d ifferentiate one set of stiffness parameters from another . The 

resul ts th at follow, a lthough not conclusive , give t he impression that there may be ident ifiability 

problems where one set of moda l parameters may be mapped to two or more stiffness parameter 

vectors. 

T he comparisons presented in t his section are restricted to four a reas: (1) location of t he 

excitat ion , (2) frequency content of t he excitation, (3) selection of t.he monitored degrees of freedom, 

and (4) the effect. of noise in t he determ in at. ion of t he values of t.he s tru ct.ura l parameters. In most 

si mul at ion tests below, on ly t he ira ll s la"iolla / degrees of freedom are used since t.he ro tational degrees 

of freedom are d ifficul t to measure in real-life situations. 

All beam models t reated here have one end fi xed so as to simu late the canti lever condi tion; 

t he degrees of freedom at each node consist of a t ransverse d ispl acement and of a rot a t.ion. The 

ca ntile ver beam is divided into 10 elements giving a total of 20 degrees of freedom. Fig. (4.14) 

shows a sche matic of th is bea m indicating how the "sub-st ructures'l or modules a re associated with 

t he degrees of freedoll'l. T he "sta ndard test condit ions" are simi la r to t hose fo r the chai n system: 

accelerations are monitored at all 10 t ransverse degree of freedom of the system. No noise, lack 

of synchronization o r miscalibrat ion is present in t he signa ls. The excit ation s ignal shown in Fig. 

(4.9) is applied in numerical test.s both at the base and at t he top degree of freedom except t hat in 

t he present t.ests the t ime ste p has been red uced . The signals consist of of 1024 t ime points wi th 

c.t = 0.002 sec. giving a 2.048 second d uration, of t he same order of t he fundamental period . T he 

signal is Gaussian dist ributed in t ime with an em·elope decaying to zero ampli tude at 1.024 sec. T he 

excitat ion is broad- ban d in t he frequency domai n wi t h a Nyquist frequency of 250 Hz, nearly twice 

the largest natura l freq uency of t he system ( f lO '" 130IJ z). Damage is represented by a stiffness 

degradation of approx imately 27% in the second and th ird inter-story levels , and 11 % in the fourth 

level as in t he chain casco T he effects of t he "damage" (or weakening of some members) on t he nwdal 

parameters are also shown in Tab le (4. 12). The effects of t he weakeni ng on t he response signals are 
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shown in Fig. (4.15) which shows the response of the undamaged and damaged system to the 

excitation. Table (4.4) and Table (4.12) illustrate that the ratio of the higher mode frequencies 

with respect to the fundamental mode frequency is very different between the chain and beam model 

cases. The natural frequency band in the beam case is significantly wider than in the chain rnodel 

case. The wider the band is , in practice, the more difficu lt it is to excite the higher modes. 

The code SUB-JD-Time is used in all of the tests to determine the stiffness distributions and 

damping ratios from the simu lated signals. It is found, in general, that the results associated with 

roof excitation are closer to the exact values than those associated with base excitat ion. In the same 

way as for the chain model, the roof loading excites more strongly the higher modes, thereby giving 

more information about the dynamics than base motion, which excites mainly the first modes of 

vibration. This is ill ustrated by the corresponding transfer functions given in Fig. (4.16). 

Section 4.2.1 - Frequency Content of the Excitation 

Observations are made to determine whether the parameters are estimated accurately with few 

modes present in the response signals. 

Procedure and Results: The standard test conditions are assumed except that the excitation 

frequency bandwidth is between 0 Hz and 7 Hz in one test and between 0 Hz and 250 Hz in another 

test. The number of modes excit.ed is 2 in the 0 - 7 li z case and approximately 15 in the 0 - 250 Hz 

case. Table (4.13) shows the results for the two cases for t he two locations . 

The results indicate that the estimates are highly unreliable when only few modes are excited. 

The measures of fit, however, are quite good, which seems to imply that t he match of the properties 

of the first few modes was good. Table (4.13b) shows that, in deed, t he modal properties match 

quite well (within 1.7%). It, is believed that numerical ill-conditioning or a local minimum was 

the reason why the optimization algorithm converged (premat.urely) t.o inaccurat.e results. Non­

un iqueness in this case would have given an optimal error index of zero, since there is no noise in 

t he signals. There is also the possibility that the algorithm may have stopped prematurely before 

getting to t he non-unique solu tion. 

Section 4.2 .2 - Selection of Monitored Degrees of Freedom 

The aim of t.his section is to determine whether the parameter estimates are affected if different 

degrees of freedom are monitored. 

Procedure and Result.s: Standard test conditions apply although different degrees of freedom 

are mon itored in each of the fOllr tests. Set 1 consisted of measuring all 20 degrees of freedom in 
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the model, Set 2 consisted of all 10 tmllsveTse degrees of freedom, Set 3 consisted of only the first 

transverse degree of freedom , and Set 4 consisted of only the tenth transverse degree of freedom. 

Table (4. 14 ) shows that the output error index is almost zero in all cases, indicating excellent 

matching of the system time histor ies by the models. The fact, however , that there are various 

stiffness distributions which render almost identical time histories shows that either numerical iIl­

cond itioning or non-uniqueness is definitely present. For non-uniqueness, the optimal error index 

must be zero and Tab 4.14 suggests that this does not occuc. However, there is still the possibility 

that the algorithm converged prematurely, or that it converged to a local minimum, so it is not 

possible to rule out the existence of a non-unique solution. Non-unique parameter estimates were 

found in the chain model case when certain degrees of freedom were monitored. The same pattern 

of tests is assumed here as in the chain system, although no theoretical study like that of Udwadia 

and Sharma has been done for the beam model which would tell when non-uniqueness is to be 

expected. Numerical ill-conditioning, where different stiffness distributions yield almost but not 

exactly identical modal parameters (prod ucing almost the same response), may also be the reason 

\vhy the a lgorithm converged to the wrong set of values. Table (4. 14b) shows how close the modal 

parameters are for the diffe rent. stiffness distributions. The active participation of only a few of the 

15 mod es, as shown in Fig. (4. 16)' may be the reason why differences between the system and model 

only arise in the higher modes. The error in the fundamental frequ ency is most likely due to the 

short duration of the signals compared to t he fundamental period. 

Section 4.2.3 - Noise in the Excitation and Response Signals 

An idea of the extent of deterioration in the paramet.er estimat.es introduced by measurement 

noise is determined here. 

Proced ure and Result.s: Standard tes t conditions apply except that nOIse in the form of a 

Gaussian white-noise signal is added to both the input and the output of the system. The noise 

signals added to t he input have r .m.s. (roo t-mean-square) va lues equal to a spec ified fraction , e.g. , 

5 %, of the r .m.s. value of the input, and likewise for the res ponse signals. Table (4.15) shows 

resu lts corresponding to 0 and 10% r.m.s. rat ios. From the table it is evident that the introduction 

of the noisy signals deteriorates the parameter estimates to greater extent than in the chain system 

resu lts. Part of the reason for this is t hat in th e chain case all degrees of freedom are measured 

while in the beam case only the translational degrees of freedom are considered . 

The roof excitation case presents worse estimates than the base excitation , a fact t hat contradicts 

the expectation that the roof case excites more higher modes thus making more information available 

for the stiffness parameter estimation. The chain case was consistent with this ex pectation. A 

possible ex planation is that more modes are active in the roof excitation case and thus more 
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conditions must be satisfied. If these conditions are incorrect , as here where nOise is added to 

the signals, then the SUB-ID-Time algori thm is more likely to have to change the parameter values 

to be able to accomodate to the in correct modal conditions. In the beam case, not all degrees of 

freedom are monitored) whi le in the chain case all degrees of freedom are measured. The incorrect 

conditions are more likely to be satisfied in the beam case since there is more flexibility in the 

stiffness parameter estimation because of the fact that not all degrees of freedom are constrained to 

take prescribed motions. 

Section 4.2.4 - Summary of the 20-DOF Beam-Column System 

The results shown in this section are analogous to those presented for the lO-DOF chain system 

although in the 20-DOF beam-column case , howe ver, the modaJ frequen cies are very separated. This 

separation indu ces much more ill-conditioning in the results since it is very difficu lt to retrieve the 

smaller higher-mode participation from the measured signals . It is expected that in real situations, 

however! modes are mu ch closer together thus providing much more information from which to 

extract more modal data. 
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Data Stiffness Parameters Modes DOFs Error Index Eva/. 
Set Starting Value Converged Value 

01 02 01 02 

A&B 

1 1 0.531 0.435 1 - 6.4.10- 17 2 
2 1 0.783 0.282 1 - 1.0 . 10- 16 2 
2 0.5 1.183 0.237 1 - 1.4 . 10- 16 2 

C 
1 1 0.5 0.5 1 1, 2 1.4 .10- 17 2 

D&E 
1 1 0.5 0.5 1,2 - 9.4 . 10-9 190 
2.5 1 1 0.25 1,2 - 9.4 . 10-9 229 
2.5 0.5 1 0.25 1,2 - 9.9· 10-9 185 

F 
1 1 0.5 0.5 1,2 1,2 4.0 . 10- 17 2 

Table 4.1: SUB-ID-SS results for the 2-DOF chain model, using only modal frequencies and 
modeshape components at the measured degree(s) of freedom. 

Data Stiffness Parameters Modes DOFs Error Index Eva/. 
Set Starting Value Converged Value 

01 02 01 02 

A&B 

1 1 0.491 0.526 1 - 6.2. 10- 24 132 
2.5 1 2.343 0.210 1 - 4.0. 10-3 0 175 
2.5 0.5 2.483 0.208 1 - 4.0.10- 3 0 174 

C 
1 1 0.5 0.5 1 1, 2 1.1 .10- 11 209 

D&E 
1 J 

2.5 1 0.5 0.5 1,2 - 1.6.10- 11 186 
2.5 0.5 I 0.25 1,2 - 6.7.10- 12 141 

F 

1 1 0.5 0.5 1,2 1, 2 5.1.10- 11 136 

Table 4.2: SUil-ID-Modal results for the 2-DOF chain model , using on ly modal frequenci es 

and modeshape components at the measured degree(s) of freedom . 
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Data Stiffness Parameters Modes DOFs Error Index Eva!. 

Set Starting Value Converged Value 

01 8, 81 8, 

A 
1 1 0.5 0.5 1 1 1.9. 10- 7 274 

2 1 0.5 0.5 1 1 J.l . 10- " 665 
2 0.5 0.5 0.5 1 1 2.5. 10- 7 482 
1 0.25 0.5 0.5 1 1 6.0 . 10- 11 537 

B 
1 1 0.498 0.506 1 2 7.5 · 10- " 612 
2 1 1.014 0.249 1 2 9.5· 10- " 393 
2 0.5 1.054 0.245 1 2 1.3 . 10-' 56 
1 0.25 1 0.25 1 2 1.6 . 10- 1" 53 

C 
1 1 0.5 0.5 1 1, 2 2.0 · 10- " 316 
2 1 0.5 0.5 1 1, 2 3.4 . 10-" 606 
2 0.5 0.5 0.5 1 I , 2 1.6.10- 7 647 
1 0.25 0.5 0.5 1 1, 2 1.4 . 10-7 532 

D 

1 1 0.5 0.5 I , 2 1 2.1.10- 1" 703 
2 1 0.5 0.5 1, 2 1 2.1 . 10- 1" 677 
2 0.5 0.5 0.5 1, 2 1 1.5 . 10- 1" 608 

E 
1 1 0.5 0.5 1, 2 2 2.7 . 10- 12 390 
2 0.5 I 0.25 1, 2 2 1.5 . 10- 1" 833 

F 

1 1 0.5 0.5 1, 2 1, 2 1.7 . 10- 1" 596 
2 1 0.5 0.5 1. 2 1, 2 1.7 . 10- 1" 653 
2 0.5 0.5 0.5 1, 2 1, 2 1.7 . 10- 16 595 
1 0.25 0.5 0.5 1, 2 1, 2 1.7 . 10- 16 760 

Table 4.3: SUB-ID-Time results for the 2-DOF chain model subjected to broad band excitat ion. 
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Stiffness Parameters 

81 8, 83 8. 8. 8s 87 8. 09 810 Mar 
DiJ 

U ndam 1.000 1.000 1.000 1.000 1.000 LOOO LOOO 1.000 LOOO LOOO -
Dam LOOO 0.727 0.727 0.909 LOOO LOOO LOOO 1.000 1.000 LOOO 27.3% 

~Iodal Natural Frequencies (Hz) 

h h h f . f . fs f, Is f . f lO Ma :z: 
Dif 

Undam 1.005 2.991 4.911 6.72 1 8.381 9.854 IJ.JI 12 .11 12.85 13.29 -

Dam 0.939 2.917 4.824 6.503 8.092 9.509 10.54 IL41 12.44 13.18 6.6% 

Table 4.4 : ~I odal frequency comparison between the damaged and the undamaged Chain System 
configurations. The damping used to create the response signals for the damaged structure is 5% of 

crit ical. 

Stiffness Parameters 

81 O2 83 O. 0, Os 07 8. O. 010 M a::- e E rr o r 
Err or I ndex JT 

Exact LOOO 0.727 0.727 0.909 LOOO LOOO LO OO LOOO LOOO 1.000 

Roof 
2H z 1.000 0.727 0.727 0.909 1.000 LOOO LOOO 1.000 LOOO LOOO 0% LO·IO- 1O 

25Hz L OOO 0.727 0.727 0.909 1.000 1.000 1.000 LOOO 1.000 1.000 0% 2.7·10- ' 

Base 

2Hz L002 0.724 0.733 0.898 1.003 1.009 0.996 0.996 1.000 1.000 L2% 5.7·IO- s 

25Hz LOOO 0.727 0.727 0.909 1.000 LOOO LOOO LOOO LOOO 1.000 0% 4.0. IO- s 

Table 4.5: SUB-ID-Time results for different frequency cODtent in the excitation signals. IlI-
conditioning is introduced when only few modes are excited and induces the numerical scheme to 

converge prematurely_ 
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Stiffness Parameters 

81 82 83 8. 8s 86 87 8. 89 810 Mo% 6 Error 
Error lnder JT 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Roof 
All 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7 ·lO-s 
1st 0.098 0.738 0.740 0.885 0.918 1.049 1.066 0.984 1.000 1.000 90.2% n/a 
Roof 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.0. lO-9 

Base 

All 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0. lO-6 
1st 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 9.4 . lO- 9 

Roof 0.900 0.86'1 0.764 0.863 0.888 0.888 0.941 1.03 1.21 1.1 0 21 % n/a 

Table 4.6: The placement of the sensors in a st.ructure is important since there are sensor 

distributions which prevent the unique determination of the stiffness parameter estimates. The 
basement excited-roof monitored case, above, shows stiffness parameters with large deviation from 

the I'exact'! stiffness distribution yet produces identically the same response. 

Stiffness Parameters 

81 82 83 8. 8s 86 87 8. 89 810 Mar 8 Err or 
E r,. or I ndu: JT 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Roof 
Displ 0.96 1 0.731 0.751 0.927 0.977 0.971 1.00 1.04 1.03 0.970 4% n/ a 
Accel 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7· lO-s 

Base 

Displ 0.974 0.738 0.732 0.916 0.978 1.01 0.997 0.988 1.04 0.990 4% n/a 
Accel 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0. lO- 6 

Table 4.7: SUB-ID-Time results when monitoring displacements and accelerations. The accel-

eration signals contain higher fr equency information that prevent the premature convergence of the 

minimization algorithm thus arriving at the correct resul ts. 



- 69 -

Stiffness Parameters 

8, 8, 83 O. 05 8. 87 8. 89 010 Ma: 8 Error 
Error indez; JT 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Roof 

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7.10- 5 

50% 0.985 0.722 0.747 0.922 0.982 0.961 1.02 1.05 1.03 0.972 5% n/a 

100% 0.959 0.747 0.727 0.960 1.01 0.945 1.01 1.08 1.05 0.918 8.2% n/a 

Base 

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0·10- · 

50'10 0.874 0.669 0.771 0.970 1.02 0.977 1.03 1.05 1.06 1.01 12.6% n/a 

100% 0.643 0.73 0.938 0.889 1.07 0.975 0.991 1.23 1.15 1.06 45.7% n/a 

Table 4.8: SUB-ID-Time results for different noise-to-signal levels. The stiffness parameter 

estimates distort slowly as the noise levels are increased . 

Stiffness Parameters 

0, 0, 03 O. 85 O. 07 8. 09 010 Mlu: 8 Error 
Err or /nde%'Jr 

Exact 

Pat 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Pat 2 1.000 1.000 1.000 1.000 1.000 1.000 0.909 0.727 0.727 1.000 

Pat 3 1.000 0.727 0.727 0.909 1.000 1.000 0.909 0.727 0.727 1.000 

Pat 4 1.000 1.000 1.000 0.200 1.000 1.000 0.200 1.000 1.000 1.000 

Roof 

Pat 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7.10- 5 

Pat 2 0.999 1.001 1.000 0.999 0.999 1.001 0.908 0.727 0.727 1.000 0.1% 7.7.10- 7 

Pat 3 0.999 0.727 0.727 0.909 1.000 1.000 0.910 0.727 0.727 1.000 0.1% 2.0 .10- 7 

Pat 4 1.000 1.000 1.000 0.200 1.000 1.000 0.200 1.000 1.000 1.000 0% 1.5.10- 7 

Table 4.9: SUB-ID-Time results show essentially no errors in the stiffness parameter estimates 

for different damage patterns . Approximately 5 of the 10 fundamental modes participate in the 

response monitored at the 10 degrees of freedom . 
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Stiffness Parameters 

01 O2 03 0, O. 0" 07 0. 09 010 Ma.r 8 Error 
Error /ndu: ) T 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Roof 

0.0 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7·10-' 

0.04 1.126 0.693 0.758 0.933 1.003 1.022 0.958 0.924 0.868 0.580 42% 0.84 

0.08 1.125 0.819 0.683 0.758 1.014 1.033 0.915 0.828 0.644 0.341 66% 1.02 

Base 
0.0 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0·10- " 

0.04 0.694 0.641 0.787 1.049 1.043 1.095 1.132 1.082 0.980 0.762 31% 0. 146 

0.08 0.476 2.375 0.561 1.41 8 1.026 1.095 1.287 0.838 0.942 1.087 227% 0.339 

Table 4.10: Results from SUB-JD-Time for the 1O-DOF chain system corresponding to lack 

of synchronization. Time shifts between the excitation and response signals produce very large 

deviations in the stiffness parameter estimates . 

Stiffness Parameters 

01 O2 03 0, O. O. 0, 0. O. 010 Mor 8 E rr or 
Err or Indez Jr 

Exact 1.000 0. 727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

Roof 

0'70 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 2.7 .10- 5 

5 % 0.999 0.729 0.731 0.912 0.998 0.987 0.993 1.010 1.007 1.003 1.3% 1.1 . 10- 2 

10 '70 1.004 0.726 0.735 0.899 1.008 0.974 0.993 1.001 1.030 0.990 3.0% 4.8.10- 2 

Base 

0 % 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 4.0· 10- " 

5 '7< 0.971 0.il7 0.737 0.923 1.027 1.008 1.012 1.004 1.006 0.977 2.9% 9.7· 10-3 

10 % 0.944 0.711 0.747 0.935 1.046 1.016 1.01 3 1.017 1.007 0.968 5.6% 3.8. 10- 2 

Table 4.11 : SUB-ID-Time results show relatively low sensit ivity of the st iffness parameters to 

different miscalibration levels. 
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Stiffness Parameters 
0, 0, B3 O. B5 O. B7 B. B. BIO 

Undam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Dam 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 

First 10 Modal Natu ral Frequencies (Hz) 

I , 12 h I . Is Is h Is I . 110 

Undam 0.964 5.96 16.5 31.8 51.6 75 .6 103 133 161 183 

Dam 0.891 5.88 16.0 30.7 49 .9 72 .9 99.4 128 153 177 

Table 4.12: Modal frequency comparison for the Bending Beam undamaged and damaged con-

figurations (the comparison is limited to only the first 10 modes). The damping ratio used to create 

the damaged structure response signals is 5% of critical in the first 10 modes (only 10 modes are 

included in the computed response). 
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Stiffness Parameters 

0, O2 03 0, Os O. 0, O. 09 0'0 
M,,% 8 Error 
Error Inder JT 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof 

7H z 0.858 0.777 0.820 0.932 1.033 1.075 1.055 1.004 0.964 0.950 14.2% 1.3 . 10- 2 

250Hz 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 3.1 .10- 9 

Base 
7Hz 0.946 0.763 0.756 0.865 0.981 1.045 1.052 1.029 1.008 1.001 5.4% 9.4 . 10-' 

250Hz 1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7.10- 11 

Table 4.13a: SUB-ID-Time results for the 20-DOF beam with different frequency bandwidths. 

The 7-Hz excitation can, at best , excit.e two modes while the 250-Hz case can excite 15 modes of 

the possi ble 20 modes. 

First 10 Modal Natural Frequencies (Hz) 

J. h h f. fs f. f, Is f9 flO Mar! 
Error 

Exact 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 

Roof 

7Hz 0.89 1 5.88 16.0 308 50.1 73.3 99.9 128 155 180 1.7% 

250Hz 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0% 

Base 

7H z 0.891 5.88 16.0 30.8 50.1 73.2 99.8 128 154 178 0.4% 

250Hz 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 174 1.7% 

Table 4.13b: SUB-ID-Time natural frequency results for the beam problem with different 

frequency bandwidth excitations. 
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Stiffness Parameters 

0, O2 03 04 O. 06 07 O. O. 810 Mo~ (J Err or 
E rr or [nde: JT 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof 

Set 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0'70 5.6.10- 12 

Set 2 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 3.1 ·10- · 

Set 3 1.033 0.690 0.788 0.993 1.033 1.013 0.943 0.9 17 0.979 0.985 8.4% 1.6· 10-' 

Set 4 0.973 0.708 0.754 0.949 1.025 1.004 0.986 0.984 0.994 0.994 4.4% 1.6· 10-' 

Base 
Set 1 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 6.0· 10- 10 

Set 2 1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7· 10- 11 

Set 3 0.984 0.743 0.723 0.897 1.015 1.039 1.036 1.000 0.973 0.964 3.9% 3.3· 10-' 

Set 4 0.904 0.753 0.797 0.901 1.037 1.031 1.077 0.975 0.967 0.932 9.9% 7.9 . 10- 4 

Table 4.14a: SUB-ID-Time 0 results for the 20-DOF beam model for various monitoring 
patterns. Excitation monitored at fewer than all 20 degrees of freedom may be nearly matched by 

more than one stiffness parameter set. 

First 10 Modal Natural Frequencies (Hz) 
j, h 13 I, I . 16 f, I. fg j,o MozJ 

Err or 

Exact 0.891 5.88 160 30.7 49.9 72.9 99.4 128 153 177 

Roof 
Set 1 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0% 

Set 2 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0% 

Set 3 0.899 5.89 16.0 30.7 49 .9 72.9 99.4 128 153 177 0.9'70 

Set 4 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0% 

Base 
Set 1 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 177 0.0% 
Set 2 0.891 5.88 16.0 30.7 49.9 72.9 99.4 128 153 174 1.7% 
Set 3 0.89 1 5.88 16.0 30. 7 49.9 72 .9 99.4 128 153 174 0.0% 
Set 4 0.891 5.88 16.0 30.7 49.9 72 .9 99.4 128 153 179 1.1'70 

Table 4.14b: Natural frequenci es associated with the 8 distributions shown in Table (4.14a .) 
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Stiffness Paramete rs 

B, O2 B3 B. B, BG B, B. B_ BIO Mar 8 Error 
Erro r Inde~ Jr 

Exact 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 - -

Roof 

0% 1.000 0.727 0.727 0.909 1.000 1.000 1.000 1.000 1.000 1.000 0% 3.1 . 10--

10% 1.001 0.71 5 0.759 0.890 0.913 1.118 1.021 0.961 1.006 0.995 11 .8% 4.4 . 10-3 

Base 

0% 1.000 0.727 0.726 0.910 1.000 1.000 0.999 1.000 1.000 1.000 0.1% 7.7 . 10- 11 

10% 0.985 0.762 0.685 0.9 14 1.082 0.939 0.992 1.077 0.969 0.983 8.2% 9.9.10- 3 

Table 4.15: Noise added to the input and output signals of the bending beam system produce 
relatively large deviations in the estimated stiffness parameters from the exact. These deviations 

are caused by the loss of information from the higher frequency modes since their contribution to 

the response is small compared to the amplitude of the added noise. 
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response. The contours indicate the so-called "banana valley" which very often, because of its 
relative flatness , induces spurious premature convergence of the minimization algorithm . 
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Figure 4.i: Marginal pseudo-probability distributions obtained from set B (Fig. (4.6.bll· 
Marginal distributions (g) and (h) correspond to the discrete version of Eq. 3.4.1. Distributions 
(c) and (d) are analogous versions but are constructed from pseudo-probability distributions local 
to the peaks 0' = (0.5.0.5) and 02 = (1.0.0.25) as shown in Fig. 4.6. In this case, the marginal 
pseudo-probability distributions in (e) and (f) are the addition of the contributions from around 0'. 
referred to as PI , Figs. (a) and (b), and from the neighborhood of 02

, P2 , in Figs. (cJ and (d ). 
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Figure 4.12: Matching of the system response by a model response can be quite accurate as 
seen in the error signal above. The situation corresponds to t he roof excited , first DOF-monitored 
case of Fig. 4.11. This accuracy, however, does not always imply a correct stiffness distribution. as 
Table 4.6 demonst rates. 
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Figure 4.13: This diagram shows the method employed to construct the "noisy" signals . Noise 
in the form of a Gaussian whi te-noise signal was added to all input and output signals. The size of 
a noise signal was characterized by its r.m .s. value. This r.m.s. value was predefined as a fraction 
of the r .m.s. value of the base acceleration (for input signals) or of the r.m.s. value of the roof 
acceleration (for output signals ). 
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Figure 4 .1 5: Accelerat ion tirne histories corresponding to a beam mod el of a ten-story building subject 
1.0 base exc itation . Sot (a) corresponds to an und amaged strudure, and (b) 1,0 the damage pattern prese nted 
in Table 4.4. Signals range from th e lowest signal , correspond ing to the base accelerat.ion, to the top-most 
s ig nal, corresponding to the roof acceleration. 
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Chapter 5 Data from a Model Structure 

In this section, the structural identification algorithms are applied to experimental data in order 

to exami ne their damage detection capabilities. Experimental data from a model structure are useful 

since model error is involved , which is always present in all applications to real structural data, and 

yet damage can still be easily introduced. 

The "3-story" frame struct ure depicted in Fig. (5 .1a) is shaken in its und amaged state and 

responses are record ed at each of the "floors" (the "undamaged" state refers to the structure just 

after assemb lage). From these, it is possible to calibrate the B models so that these fit the observed 

data. The frame is then shaken in its damaged sLate, where a specified structural member is replaced 

by a weaker member. Based 0 11 the analyt ical model and on this new data, the aim is to detect any 

changes in the parameters representing stiffness degradation. 

Section 5.1 - Experimental Setup and Procedures 

A 6061-T6 al uminum skeleton is assemb led as shown in Fig. (5. la). The beam-column elements 

are connected by aluminum elbows. Ea.ch elbow end and ea.ch beam-column element end is drilled 

four times. Each hole is placed at the vertex of a square fitting inside the ends. The spacing 

between the holes allowed the screws and nuts to be fastened very securely without interference. 

The thickness of all aluminum parts is 3. 175 mm (1/8 in) and the width is 25.4 mm (I in). The length 

of the beam-column elements is 254.0 mm (10 in). Damage is simulated by replacing member M3 

by a viny l member (of unknown viscous prope rties) thereby changing the elastic modulus by several 

orders of magnitude. The skeleton lower elbows are bolted to a 25.4 mm ( I in) thick aluminum plate 

which is itself securely clamped to a laboratory table. The width and length of the plate is 200.0 

mm by 400.0 mm, respectively. The elbows on the top corners are used to attach accelerometers. 

A hammer with a transducer at the tip is used in the experiments to excite the fra me structure . 

These experiments are referred to as Hammer- Impu lse Experiments ("HIE"). The output from the 

hammer is connected to an amplifier which itself is connected to the data acquisition system. 
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Endevco Model 2226C piezoelectric accelerometers are placed on different parts of t he frame. 

A dual-surface adhesive tape is used to attach t hese accelerometers to the structure. The output 

cables of the accelerometers are connected to Endevco 2713B amplifiers. The output of the amplifiers 

is connected to an RC Electronics analog-to-digital data acquisition card inside a Compaq 8086 

portable compu ter. The triggering and scope capabili t ies were provided by the accompanying 

Compu terscope ISC-16 progra m. The computer files a re transfered to a VAX / VMS computer and 

t he signal processi ng and reduction are performed using the S IC [5. 2J computer program. 

In the experiments, an impulse is imparted to t he frame at approximately 1.5 in ches above the 

second "fl oor" level by means of a hammer pulse. The pulse is captured by the hammer transducer 

and t ransmitted to the RC Electron ics input box and then stored in the Compaq comp uter. One 

hammer pulse and two acceleration response signals are recorded on each run . T he sampling is 

performed every 2.0· 10-4 seconds. The two accelerometers measure the horizontal motion and are 

attached to t he structure in t he fo llow ing way: 

Run 

2 

3 

4 

5 

Channell 

Above "2nd Floor" 

A hove "2nd Floor" 

A bove "2nd Floor" 

A bove "2nd Floor" 

Above "2nd Floor" 

C hannel 2 

Below "1st Floor" 

Above "1st Floor" 

Below ((2nd Floor" 

Above "2 nd Floor" 

'(3rd Floor" 

Program SIG is used to redu ce the data in the following way: Channel 1 remains fixed as t he 

"reference" channel t.o verify t hat all excitations are consistent . Fig. (5.4 a) and Fig. (5.4b) 

show t he hammer pulses and the accelerat ions for Channel l , respectively, corresponding to runs 1-5 

as monitored in t he "u ndamaged" test. The transfer fun ction between the hammer pulse and the 

motion at Chan nel 1 is calcul ated to determine whether the structu re suffers any changes between 

the impa.ct tests. The transfer function between the hammer pulse and the Channel 2 output is also 

calcu lated for each of runs 1-5 and , in this way, the impu lse response fun ctions are obta ined. All 

transfer fun ctions a re t he n convolved by a "ty pical" hammer pulse (with t he same characteristics as 

those show n in Fig. (5.2a)) to obtain the response at each level due to t he specified Run-2 pu lse . 

In this wa)\ the transfer functions address the fact that no two hammer pu lses between different 

runs are identically equal. This procedure is necessary because on ly 2 accelerometer channels are 

available or trustworthy. T he response signals for runs 1 and 2 are averaged to provide a signal 

correspondin g to th e model node at the I/ l st Floor" leveL The same is done for signals 3 and 4 for 

the node at the "2nd Floor" level. All signal~ are then filtered with a low-pass bell filter with cosine 

decay bet.ween 90 and 100 li z t hereby removing all noise as well as any very high mode information. 

The resulting s ignals are t hen decimated eight-fold so t hat the time step increases to 1.6· 10-3 
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seconds. The associated Nyquist frequency is now close t o 310 Hz. The whole procedure is done 

twice: once for the "undamaged" setup and a second time for the "damaged" situa tion. 

Section 5.2 - SUB-ID Results 

Section 5.2 .1 - Preliminary Simulation Results 

To investigate the effects of model error a nd possible non-uniqueness in the parameter est.imation 

for the actual experimental set-up , a set of numerical experiments was first carried out. These 

experiments were chosen to mimic the actual set-up so they would give insight into what resul ts 

should be expected from the experimentally acquired data. 

The procedure using the s imula ted data is t he same as that used with the actual data: 

(1 ) C reate a computationally-efficient model. 

(2) Dete rm ine the level of accuracy of the model. If the accuracy is poor, create another model. 

(3 ) For the level of accuracy in the computational model, determine the maximum number of 

pararneters OJ allowed. 

(4 ) "Calibrate" the parameter values for the undamaged configuration. 

(5) Run t.he identifi cation codes employing the da maged data and localize the damage. 

(6) In t he damage areas, discretize the model furth er in such a. way that more pa ra meters OJ can 

be ass igned to prC\" ious members of the da maged module. Repeat sleps 4-6 until all st iffness 

factors in the da maged es timates are lower o r equ al to t he undamaged estima tes, since the 

damage corresponds to a loss of st iffness. 

A frame model with 148 degrees of freedom is used to mimic the true structure for the numerical 

experiments and is referred to as the "complex system model" wi t hin this section . The elbows, the 

change of moments of inertia along the lengt h of the beam-column elements, and t he boundary 

conditions a re taken into account. As is necessarily done in practical situations, two simpler , more 

computationally-effi cient models a re employed for ident ificat ion purposes: a 3-DOF chain model 

and a n IS-DOF fra me model. Fig. (5. 1) and Fig. (5 .3) show details in the development of t he 

complex and s imple models. The simpler models have different dynamic characteristics than t he 

more complex model yet it is believed th at the essential intersto ry stiffness properties are similar. 

Thus, just as in the actual experin1ent, the models a re only an approximation to t he true sys tem . 

The complex model is used to generate "undamaged" a nd "damaged" state data in the same way 
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as discussed in t he Chapter 4. Table (5. 1) shows the modal parameter values obtained from the 

148-DOF system mode l in the various states. 

The 148--DOF model was const ru cted based on the nominal geometric and material properties of 

the real structure. The damage, however, is simulated by arbitrarily reducing the stiffness values of 

specific members within the complex structure . Damage pattern Dl corresponds to a 50% reduction 

of stiffness in member t\J 1 and damage pattern D2 corresponds to a 80% reduction in member M3. 

Both of t hese members are indicated in Fig . (5.1). 

The "system" or reference s ignals for the 1st and 2nd floors are constructed in the same manner 

as in t he experimental proced ure: the transverse accelera tion at the 3-DOF ch.ain and 18-DOF model 

node location is taken to be the average of the acceleration signals of the complex model measured 

inmediately below and above this node. The signals are constructed in this way since the physical 

st ru cture cannot be monitored exactly at the nodes of the simpler models. The accelerations, though, 

can be monitored slightly below a nd slightly above the joints where no bolts and nuts interfere wi th 

t he placement of the transducers. The accelerations at t he 3rd fl oor of the real structure are measured 

directly s ince t.here is, in practice, no interference and so, in the simulations t hese correspond exactly 

to the model node. 

The comp lex 148- DOF and t he simpler IS- DOF frame and 3-DOF chain models produce 

different responses at t he monito red degrees of freedom. Fig. (5.4) shows the transfer fun ctions 

of both the complex system and the nominal simple models for the undamaged configuration. (The 

nominal models corresponded to uniform stiffness distributions whose first modal frequency matched 

the observed value .) Damping 5% of critica l is used in the actual simulations to reduce the duration 

of the latter but low damping (2% of criti ca l) was used in Fig. (5.4) in order to illust rate how 

t he higher modes participate in t he response. The similari t ies between the two transfer fun ctions 

appear in on ly t he first t.hree modes; the higher mode information is significantly different. It is well 

known , howeve r, t hat once a "coarse" model is used , inaccurate solutions a t a ll frequency ra nges a re 

expected , especia lly in the higher modes. Since it is conjectured that t he simpler model still possesses 

the essent ial interstory properties of the complex system model, the si mpler model is accepted as 

a viab le model for the system as long as no attempt is done to pred ict modal proper ties of modes 

beyond the first three, which correspond to the important horizontal translational modes. This 

problem of choosing a reasonable model to approxima te t he actual system is a particul arly delicate 

one in real situations. The model should be able to ca pture t he essential features of t he dynamics 

of t.h e system, and it s paramet.ers shou ld be physically interpretable. 

Only ill-cond it ioning and non-uniqueness a re considered in the simulations, so given t ha t only 

th ree modes a re tr ustworthy, what distribution of stiffness factors OJ is optimum? From a geometric 

point of view, since each modal quantity is constant on a hypersurface in the parameter space, to 

pi n down one such 0 vector requires, at least , as many intersecting surfaces as the dimension of 
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t he space. "Vith Np linearly independent normal vectors to the hypersurfaces , it is theoretically 

possible to guarantee local uniqueness of an Np -dimensional vector O. If some of these normal 

vectors are nearly parallel, however I then there is a direction perpendicular to these normal vectors 

along which the modal properties vary very slowly. i.e., ill-conditioning is present. The number 

of modal quantities for the problem at hand is 12 (3 modes and 4 modal quantities per mode). 

With this information, it is expected that a vector with 12 different OJ values can be resolved. 

But since the modeshapes change very slightly with changing values of Oi , it is probably more 

realistic to assume that there are no more than 3 independent modal quanti t ies (3 modes and on ly 

one frequency for each mode). Thus , a model with 3 parameters OJ, ought to be ident ified without 

incurring ill-conditioning problems. The above uniqueness cond ition refers to a local property and 

not necessarily a global one. The SUB-ID-H homotopy algorithm can resolve global uniqueness 

results but it is only applied to the 3-DOF chain model where the number of possible stiffness 

combinations (3!) is sma ll . For t. he IS- DOF sim ple frame model, the maximum number of possible 

stiffness combinations is 18!, \,,·hich is excessive for the computing facilit ies available. SUB-ID-SS is 

also used with t he 3-DOF model si nce the number of measured eigenvector components equals the 

number of degrees of freedom ensuring, most likely, a convergent solut.ion. For the 18-DOF model, 

reliance is placed solely on the SUB-ID-~[odal and SUB-ID-Time algorithms. 

In t he tests described below, S U B-ID-Modal weighted errors in the modal frequencies by 2/3 

and errors in the modeshapes by 1/3 as given by Eq. (3.3.2) in Chapter 3. This scheme emphasizes 

the modeshape vectors significantly more t.han the natural weighting implied in the output error 

approach of program SUB-ID-Time. The minimization technique employed in SUB-ID-Modal is 

Fletcher-Reeves with finite difference gradient evaluat ion. SUB-lD-Time employed even weight on 

all monitored degrees of freedom. Stiffness parameters as well as damping ratios are estimated for 

3 modes. The number of points in t he time histories is 1024 and t he time step is 2· 10-3 sec. 

producing signals 2.048 sec. in duration. The minimization technique used is also Fletcher-Reeves 

with analytical gradient eval uation in SUB-ID-Tillle. Convergence for both algorithms corresponds 

to relat ive error index changes of less than {= 10-4 across major conjugate gradient iterations. 

Section 5.2 .1.1 - 3-DOF Chain Model of System 

The 3-DOF chain model depi cted in Fig. (5.3) provides a relatively simple representation of the 

frame structure , but to find all possible stiffness combinations which match the observed properties 

may be a difficult task. Fig. (5.6abc) show surfaces in 0 space for constant natural freq uency 

values associated wit. h a uniform 3-DOF chain system. From these fi gures, it can be appreciated 

t hat t.o find all the points 0 which have t.he three natural frequencies in common is a non-trivial 

problem. Table (5.3) shows the results provided by the SUB-lD-I'1 algorithm applied to t he 3-

DOF chain model. As described earlier, the homotopy method is able to determine all non-unique 



- 96 -

solu tions to this problem. In the results, all stiffness distributions (real and comp lex) match the 

modal frequencies , exact ly. vVhether the modeshapes associated with each stiffness distribution also 

matches the modeshapes of the 14S-DOF frame model or not can be succinctly evaluated by applying 

an error norm similar to the one used by S UB-ID-Time. T he error index for such norm is presented 

in the last columns of Table (5.3). This norm resolves which of the distributions is the most likely 

one. There is some indication that there is damage in the lower module in the Dl case and there is 

damage in the middle module in the D2 when looking at all results. But when attention is focused 

on the most likely values, #5 distribution in the undamaged case, #3 in DI , and #6 in the D2 case, 

then the numbers do not make much sense since some of the stiffnesses increase dramatically, ill 

going from the und amaged to the damaged state. 

SUB-ID- H also predicts 0 estimates with imaginary components, but in this study only the real 

solutions give valid chain models. Comp lex distributions are understood to be purely mathematical 

in nature (a solution to a polynomial system) but may, nevertheless, imply some physical state. 

For example, the class of models may not be able to match the prescribed modal frequencies with 

real scalars in the expected region of the 0 space even though these frequencies correspond to the 

modes of the actual system. A reason for this is that the model might not be accurate enough , as 

is the case when the ma5S dist.ribution is not well known, for example. In these cases it is expected , 

nevertheless, that each complex OJ, is dominated by t he real component . Distributions #3 and 

#5 for the D2 damage case in Table (5.3) are dominated by such component, which is close to 

the solt"ion identified by SUB-ID-Time in Table (5.4), but the latter solution gives a second mode 

frequency of 28.33 Fl z, 4% less than the actual frequency of 29.47 Hz in Table (5. 1) . This suggests 

that the 3-DOF chai n model is not capable, in deed, of matching the damaged system frequencies 

with a real solution in the neighborhood of the undamaged stiffness distribution. Incidentally, the 

#3 distribu tions predicted by SUB-lD-H in all three cases - undamaged , DI , and D2 - come closest to 

those predicted by SUB-IO-Time even though these do not min imize the functional JM associated 

with S B-lD-Modal, as seen in Table (5.3). 

SUB-TD-Time results are shown in Table (5.4) where it is clear that the solutions match closely 

just one of t he many solutions given by SUB-ID-H. That SUB-lD-Time's result match one set of the 

SUB-ID-H results is reasonab le since SUB-ID-Time is very sensitive to the natural frequencies and 

so it is very likely t.o arrive at. some st iffness distribution which shares the three observed natural 

frequencies. Table (5.2) presents the results from SUB-ID-Modal for the same model. In general , 

the st iffness distributions are more consistent than those predicted by the homotopy method an d are 

usefu l to determine the location of the error. This indicates that the chain model , after all , is viable 

candidate for the detection o f damage in the more comp lex 148-DOF system. The frequencies are, in 

general, not matched well in the SUB-ID-Modal results. The reason for th is is that SUB-lD-Modal 

places more weighting on minimizing the Euclidean error between the observed and model partial 

modeshape vectors. 
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Lastly, the results from SUB-ID-SS shown in Table (5.5) indicate clearly the location of damage 

for both the DI and the D2 patterns. The values come close to those previously estimated by SUB­

ID-Modal, even though the method of successive substitutions has a different implied weighting of 

the frequencies and modeshape vectors . 

Section 5.2.1.2 - 18-DOF Frame Model of System 

Although the SUB-ID algorithms using the 3-DOF chain model of the 148-DOF system do 

suggest the correct location of the damage, the model error created by this highly simplified model 

of the system prevents correct estimation of the degree of damage. For example, both SUB-ID-Time 

and SUB-ID-Modal show a stiffness loss in the first story of 10% for damage case DI , but the 50% 

decrease in stiffness in ':damaged" member 11 should produce closer to a 25% decrease in the overall 

stiffness of rnodule 51 . 

To reduce the model error , a better model of the 148-DOF system is studied using t he IS-DOF 

frame model. Because of its detail , it might be possible to both (I) localize the damage more closely, 

and (2) pred ict the degree of damage better. In this model , there are many more ways to define 

the sub-structures associated with the e; than in t he 3-DOF chain model. Fig . (5.5) depicts the 

different sub-structuring schemes used by t he programs SUB-ID-M odal and SUB-ID-Time with this 

IS-DOF frame model. Sub-stru cture SSJ is th e init.ial , Illost obvious discretization choice from 

which any damage pattern shou ld become evident. SSJ corresponds to a sub-structuring with 

4 independe nt OJ , one of them corresponding to member M7 ; SS~, likewise, has 4 independent 

parameters with one corresponding to member ~18 . SS6 corresponds to the case where there are six 

independent parameters, three for each of the beams and the other three for each pair of columns, 

both at each of the three interstory levels. 

Table (5.6) shows the results obtained from the SUB-ID-Modal program while the resu lts in 

Table (5.7) correspond to SUB-ID-Time. In each table, the first three e; correspond to the column 

parameter stiffnesses while the second three OJ correspond to the beam stiffnesses. The estimated 

values as shown in th e tables indicate discrepancies in the id entifications . For the undamaged cases, 

values larger than unity were fOllnd for some of the OJ. These values were not expected aL first 

since the 18-DOF model response ought to be a very good approximation to the 148-DOF system. 

This characterisLic, plus the fact that the error indices are not close to zero, indicate that there is 

sti ll signifi ca nt model error, especially since no other type of corruption of the data exists . A closer 

look at the reference 148-DOF system indicates that the the "joints" are fairly stiff and that indeed 

one must expect values for the OJ larger than unity. That the stiffnesses are not evenly distributed 

in the undamaged case in the absence of noise is a result that is not well understood , since both 

the 148-DOF system and the nominal IS-DOF model (with all ei 's unity) are mathematically 

consLru cted wi th the same stiffness distribution in each sub-structure. The best answer to the 
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question of non-uniformity in the stiffness may lie in considering the boundary conditions on the 

lowest sub-structure. The complex model has been created wit.hout rigid rotat.ional at.tachments. 

Only the horizontal and vertical displacements have been constrained in an effort. to simulate the 

bolt connections present in the experimental case. Some of the modal properties of the 14S-00F 

system (not shown here) indicate that indeed the rotational degrees of freedom are not fixed and that 

they rotate very slightly. The rigidity present in t.he simple system model prevents the rotat.ions of 

the joints and thus it is expected that the identified stiffness of the sub-structure inmediately above 

decreases to accomodate this effect. The larger-thall-one value for 01 is attributed to the large 

stiffness introduced by the bea m. This wi ll be seen morc clearly in the following discussion . 

The coarse discretization of the st.ructure into only three modules (sub-structuring SS3), as 

shown in Fig. (5.5), can be seen as one in which two mod ules (vertical mernbe rs and horizontal 

members) had their corresponding 0. '(slaves" to each other. The prediction of damage for damage 

cases 01 and 02 based on this sub-structuring is relatively accurate since the damage patterns 

are well identified in the results from Table (5.6) and Table (5.7). Oamage pattern 01 shows as 

a red uction of approximately 25% in the overall stiffness of module SI, which is roughly what is 

expected since member MI 's stiffness is reduced by 50%. This is seen in both the SUB-ID-Modal and 

SUB- IO-Time resu lts, although the values themselves are different. This red uction also incorrectly 

reduces the stiffness of member M7 since it is part of modu le 51. Unless member M7 remains 

relatively stiff, axially and in bending, it is expected that the other modules take the loads that 

member M7 sheds because of the red uced st ifrn ess. Thus, it would normally be the case that the 

adjacent modules slight Iy increase their overall stifrness factors (};. Less than 2% deviation from 

the undamaged case is shown for either quantity (0, or 03 ) for the SUB-IO-Moda l resu lts and 5% 

for SUB-ID-Time in damage pattern 01. 

Pattern 02, however , shows a reduction of 50% for the SUB-IO-Modal case as opposed to the 

expected overall 40% reduction from t he 80% reduction in member ~13 . Because of this reduced 

stifrness, it is expected that an increase should appear in the stiffness of the adjacent sub-structures 

(Sl or S3). The in crease of almost 30% in 03 shows how much sub-structure S3 had to be altered 

to compensate for the 50% decrease in sub-structure 52's overall stiffness. Sub-structure 51, on the 

other hand , decreased slightly. S B-ID-Time resu lls for damage 02 are similar to lhose ofSUB-ID­

Modal although the decrease of stiffness in sub-structure 52 is larger, close to 55%. Parameter 03 

also in creased by about 40% and 0, also decreased slightly. The larger decrease in the O2 stiffness 

than the actual amount can only be attributable to incorrect modeling. In this case, modeling 

not only includes the details about the joints and the changing values o f the moments of inertia 

throughout the system which are not present in the simpler model, but also the fact that the sub­

strll ctll ring of the system into only t.hree modules is constraining both column and beam mernbers in 

each module to be scaled with only one OJ parameter. The modal properties are not well matched , 

which is a strong sign of in correct modeling, although keeping Table (5.1) in mind , the resu lts seem 
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to be much better in Table (5.7) t han in Table (5 .6). The increase in t he stiffness parameter 03 

is also a nother sign which calls for bett.er modeling and in this case, with the results available, it 

almost implies that sub-structure 52 should be furth er discretized into smaller sub-structures. The 

number of 0 parameters would increase in this case and so there may not be enough independent 

modal quantities to prevent ill-condi tion ing and/or non-uniqueness. 

It is possible to discretize the structure using a finer discretization around the areas where 

damage is suspected. For example, for damage pattern 01 , which is associated with the weakening 

of member M 1, sub-structure 5 1 can be spli t into two sub-modules, a new S1 and 54 . This new 

arrangement of sub-structu res corresponds to sub-structuring SSJ In Fig. (5.5). T he region 

to which the old 91 was associated has now two 0; 's, namely, the new 9} and 94 . The 

stiffn ess distributions for four-parameter sub-structuring present good convergent characteristics and 

interesting results. Table (5.6) shows the resu lts corresponding to the fou r-pararneter discretization 

derived from SUB-TO-Modal using sub-st ruct uring SSJ . Slight damage in module 51 can be seen 

from these results but not enough to agree intuitively with the 25% reduction expected (rom the 

50% reduction in member fl. l l 's stifrness. The same table shows that the adjacent modules to the 

"damaged" mod ule also undergo slight changes in their parameter values when the damage is added. 

Sub-structuring the system in the form 55: , as depicted in Fig. (5.5), allows the determination 

of four pa ramete rs wi th a model emphasizing potential damage in module S2. The old S2 is now 

split into a new 52 and the new 54 . Tab le (5.6) also shows the results for this case. A 46% stiffness 

reduction ca n be seen in sub-st ructure 52 bu t increase is seen in 51 (3%) and in 54 (15%). Also, 

the sti ffn ess in crease in 54 may accou nt for the slight decrease in stiffness in module 53. 

Refinin g the model further results in one wi t h six 9;: the first t hree correspond to each of 

the t hree pairs of vertical members and t he second t hree OJ correspond to each of the horizont.al 

members (increasing order of the 9j with in creasing height). This refined model corresponds to 

sub-structu ring SS6 in Fig. (5.5). Unfortunately, numerical tests have shown that s ix parameters 

are too many for the amou nt of modal information t hat is used (first three modes) in program 

SUB-fO-Modal. Minimizations performed on t his basis have yielded non-unique sets of parameters 

(not s howll here). This may come as a su rprise sin ce there are 12 pieces of information ( 4 modal 

parameters per mode and 3 modes). In the 5 B- fO-Time case, t he implici t introdu ction of the 

participation factors has added one more modal parameter per mode yielding a total of 15 modal 

quantities. In Table (5.7) , it can be seen that the estimates for the columns agree closely with the 

estimates in th e four-parameter case given by SUB-ID-Modal in Table (5.6). The beam sti ffn ess 

parameter estimates take on values much larger than those for the columns, but this happens to be 

reasonable. By look ing at the stru ctu re more carerully, it can be seen that the beams are indeed 

st iffer: one elbow element is connected to the end of each colu mn while two elbows are connected 

at the end of each beam. The error indices a re of lower order in the six theta case compared La the 
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three theta case indicating t,hat the additional fr eedom in the sub-structuring allows better matching 

of t he responses. The match can be seen in Fig. (5.7). 

Using sub-structuring SSs! the damage has also been adequately identified in both cases, 

with damage (stiffness loss) in member M 1 of the order of 27% and damage in member M3 of the 

order of 48%. These results make more sense than those from using SUB-ID-Modal. The modal 

frequenci es, as expected, are better approximated with SUB-ID-Time since this algorithm is highly 

sensitive to them. From these results, however , it seems that member M8 has too low of a value 

in the undamaged state and member M9 has too large of a value . Once damage has been infl icted, 

their values change considerably. To understand this , it is noted that the accuracy of the parameter 

values depend on t he sensitivity of the results on the particu lar parameter of interest. For this 

frame structure, the dynamics are not sensitive to changes in the bending stiffness as long as the 

beam bending stiffnesses are high . Conversely, slight. changes in the dynamics may induce large 

changes in these '-insensitive" parameters. If the model is incorrect, the dynamics will be different 

and thus the "i nsensitive" parameter values will have to incur large changes in order to match the 

observed data appropriately. An overall evaluation of the results suggests that t he model with 6 

parameters is the most reliable and the one with least error. Incidentally, the discrepancies between 

the Modal and Time versions of SUB- ID t end to decrease as SUB-ID-Modal places more emphasis 

on the natural frequencies and less on the mod eshapes. Table (5.8) shows various results for the 

SS3 sub-structuring, Dl-damage ca'ie from where it can be seen that, indeed , the SUB-ID-Ivlodal 

results approach those estimated by SUB-TD-Time. 

Section 5.2.2 - Experimental Resul ts 

In this section, results are presented for the identification runs with various sub-structuring 

based on the actual test data from the three-story experimental model. 1\11 uch similarity is present 

between experiment,al results and simulation results. The undamaged structure results are similar 

for both types of test.s. The damaged structure is similar to case D2 in the si mulated data tests . 

Table (5.9) shows the modal parameter estimates associated with the real structure obtained 

with program MODE-ID [5.1]' which can be viewed as the best estimates of the test structure modal 

properties since, apart from the assumption of linea rity and classical normal modes, no structural 

model is ass umed. 

Section 5.2.2.1 - 3-DOF Chain Model of Test Structure 

Results from the 3-DOF chain model resemb le those from t he simulations. Indeed , the results 

shown in Table (5. 10) , Table (5.11), and Table (5.12), and Table (5. 13) for the homotopy, modal , 

t ime, and sllccessive substitution approaches, respectively, demonstrate the disadvantages of using 
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such simplistic 3-DOF model. Some idea of damage can be inferred from the results but the resu lts 

are not all consistent . This is attributed to the 3-DOF chain not being a good model for the real 

structure, reAecting the same type of problems that showed up in the simulated data tests. 

Section 5.2.2.2 - 18-DOF Frame Model of Test Structure 

The next model to be considered is the IS-OOF frame model with 553 sub-structuring . 

T he da maged-structure resu lts clearly in dicate the point of failu re in the frame structure, namely, 

somewhere in sub-structu re S2. These resu lts are shown in Table (5. 14) and Table (5.15) for SUB­

ID-Modal and SUB-ID-Time, respectively. The damage location agrees entirely with the location 

where the aluminum member was substituted with the vinyl-plastic member , i.e., member M3 . The 

stiffness for sub-str uctures SI and S3 { Fig. (5.5)) have increased and it is believed t hat this is due to 

modeling error . By decreasing the stiffness for sub-structure 52 by such a large amount (more than 

75% decrease), the stiffness of t he horizontal member belonging to sub-structure 52 is also red uced 

by t he same amount . In reali ty t his member did not suffer any damage so its stiffness reduction 

affects the behavior of the sub-structu re above it , module 53. The latter must therefore increase 

its stiffness to account for the overa ll red uction of the former. A simi lar argument can perhaps be 

applied to sub-structure 51. 

A fin er sub-stru cturi ng , as done in the previous section , leads to t he o ther results shown in 

Table (5. 14) and Table (5. 15). These resul ts are based on sub-structuring models S5 ~ and 55 6, 

respectively. By breaking up the midd le module as shown in Fig. (5.5) into two other modules, 

the number of coefficients OJ has increased to 4 but this amount of modal information was not 

enough to uniquely estimate the stiffness distribution. Table (5. 14) indicates t hat, indeed , the 

middle horizontal member is stiffer as shown in prev ious sections. The results are very satisfactory 

sin ce it is now seen that the introduction of the weak member has only affected substantially the 

estill'late correspond ing to that specifi c sub-structure. All other sub-structures have remained close 

to thei r previous estimated values which is consistent with t he actual damage induced . The stiffness 

para meters associated with sub-structures SI and 53 of Table (5.14) a re average stiffnesses for the 

sub-structures. T he fact t hat they are closer to the st iffnesses of t he vertical members than to the 

st iffn esses of t he horizontal member is att ributed to t he higher sensitivi ty of t he t ranslation motion 

to t he jnters tory stiffness provided by these vert ical members. The horizontal members can have 

an effect on t he horizontal motion but only if their stiffness decreases to the point where t he two 

sets of vertica l columns become nearly independent. The motion t hen cha nges from shear-type to 

bending-type. For t he sti ffness distribution in t he test structure, the vertical elements affect the 

horizontal motion ma rc and , so, the shear-type behavior is dominant. 

The large stiffness reduction for sub-structure 52 is unexpected . One wou ld normally expect 

that if one of the two ve rtical members lost a ll horizontal st iffn ess then the overall reduction would 
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correspon d to 50% and not to 75%. Something similar IS seen in the previous section where the 

simu lated damage in module S2 is a reduction of 80% in one of the two vertical members. A red uction 

of 80% in one member should correspond roughly to a 40% red uction for the module, but reductions 

of near ly 55% are present in that simu lated case . 

An attempt to calculate six parameters with SUB-ID-Modal, one fo r each pair of vertical 

members and one fo r each horizontal member , leads to non- unique parameter distributions. These 

resul ts for sub-structuring S5 6 in Fig. (5.5) are not shown here because of their unreliability. The 

time domain program S UB-IO-Time , on the other hand, did determine the set of six parameters 

reliably and these are presented in Table (5.15). From this t able and from Fig . (5.8), it is seen that 

the match this model allows is relatively better t han the matches of the models with less parameter 

freedom. The parameter estimates are the common result of two different numerical minimizations 

starting with different initial est imates. Uniqueness, as explained later in this study, cannot be 

asserted but t his solution seems physically reasonable. The stiffness distribution is quite uniform 

except fo r the fact. that it is somewhat lower in sub-stru cture S1. It is argued here , as it was done 

in t he prev ious section, that this may be caused by the rigidi ty imposed by the 18- 00F model on 

the joints at t he base. 

Section 5.3 - Summary 

Model error is studied in a structure where damage can be easi ly introduced. Preliminary 

simul ated results agreed fairly well wit.h t.he actual experiment results. Both indicated that the 

better the model, the more accu rate t.he pred ictions of damage. From t he results it became clear 

that modeling involved two aspects: ( 1) modeling in the t raditional sense: the analytical model 

should contain enough degrees of freedom and the correct geometric and material properties to 

en able a good representat.ion of the system. In t he case of t he 3- DOF chain model, the results were 

very difficult to assess since they were inconsistent according to the parameter estimation procedure 

used. The 18-00F frame model enabled the SUB-TO-Time procedure to define t he location and 

seriousness of damage wit.hin the frame st ru cture. (2) The second aspect of modeling is related 

to the fact t.hat the choice of sub-structuring ca n hinder the estimation procedu res from reaching 

reliab le results. It is clear that the choice of sub-structuri ng shou ld be such that t.he damaged 

member(s) should eventually be represented by at least one sub-structure. For the 18-DOF fr ame 

model, t his was done by first performing a crude identification. Sub-structures that incurred loss 

of stiffness were discretized furt.her and sub-structures t hat incurred gains of s tiffness were kept 

constant. The latter gains are generally considered to be due to t he mismodel ing of the damaged 

su b-structures. 

Resulls also show that even very crude models , such as the 3-DOF chain model for t he 
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ex periment.al frame, can gIve some idea about. the location of damage. The extent of damage , 

however , can not. be clearly determined in t hese cases. 
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Natural Frequencies Eigenvectors 
Damping Rat ios 

h fz h 4>1 4>, 4>3 
~I ~ , ~3 

Undamaged: 

9.873 30.37 48.62 0.359 -0.949 1.421 
5.0 5.0 5.0 0.776 -0.452 -1.523 

1.000 1.000 1.000 
Damaged DI: 

9.468 29.20 47.67 0.399 -0 .978 1.229 
5.0 5.0 5.0 0.793 -0.379 -1.470 

1.000 1.000 1.000 
Damaged D2: 

9.181 29.47 42.76 0.328 -1.143 0.842 
5.0 5.0 5.0 0.815 -0.346 -1.094 

1.000 1.000 1.000 

Table 5.1: Exact parameters for the first three modes corresponding to the complex 148-DOF 
frame model. (Frequencies in Hz, damping ratios in % of critical.) 

Stiffness Parameters Natural Frequencies Eigenvectors 

Damping Rat ios 
01 0, 03 I I fz h 4>1 4>, 4>3 Error 

Inder J M 

Undamaged: 
1.669 2.078 1.695 11.88 32.22 46.83 0.508 -0.937 1.44 1.4 . 10- 3 

0.819 -0 .332 -1.82 
1.00 1.00 1.00 

Damage DI: 

1.501 2.007 1.618 11.41 31.25 45 .78 0.529 -0.930 1.42 1.4.10- 3 

0.825 -0 .3 13 -1.82 

1.00 1.00 1.00 
Damage D2: 

1.709 1.327 1.579 11.03 30.63 41.41 0.418 -1.23 0.932 1.1 . 10-3 

0.832 -0.292 -1.36 

1.00 1.00 1.00 

Table 5.2: SUB-ID-Modal Results for the 3-DOF chain model associated wi th the modal prop-
erties of the complex 148-DOF system model. (Frequencies in Hz.) 
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Stiffness Parameters Natural Frequencies Error Error 

0, 0, 03 I, h h Index hI Index h 

Undamaged: 

I 4.78+i3.38 2.24-i1.70 0.236+iO.01 
2 4.78-i3.38 2.24+i1.70 0.236-iO.01 
3 0.946 2.56 1.60 9.873 30.37 48 .62 5.9 .10- 2 1.9 
4 6.18 0.605 1.04 9.873 30.37 48.62 8.8 .10- 2 2.6 
5 1.10 1.40 2.54 9.873 30.37 48 .62 3.0 ·10- ' 2.2 
6 1.85 0.761 2.76 9.873 30.37 48.62 5. 1 .10- 2 2.3 
Damage DI : 

I 4.54+i3.14 2.l4-i1.57 0.216+iO.01 
2 4.54-i3.14 2.14+i1.57 0.216-iO.01 
3 0.860 2.52 1.46 9.468 29.20 47 .67 3.0 .10- 3 1.9 
4 5.97 0.553 0.961 9.468 29.20 47.67 4.6 .10- 2 2.6 
5 1.01 1.27 2.47 9.468 29.20 47.67 1.5 .10- 2 2.2 
6 1.72 0.695 2.66 9.468 29.20 47.67 2.5 .10- 2 2.4 
Damage D2: 

I 3.92+i3. 11 1.84-i1.56 0.203+iO.01 
2 3.92-i3.l1 1.84+i 1.56 0.203-iO.01 
3 0.851-iO.041 1.63+iO.367 1.70-iO .297 
4 4.70 0.525 0.994 9.181 29.47 42.76 5.1 .10- 3 2.4 
5 0.851-iO.041 1.63+iO.367 1.70-iO.297 

6 1.89 0.610 2.12 9.181 29.47 42.76 1.5 .10- 3 2.1 

Table 5.3: SUB-ID-H Results for the 3-DOF chain model based on the modal properties of the 

complex 148-DOF system model. (Frequencies in Hz.) 
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Stiffness Parameters Natural Frequencies Eigenvectors 

Damping Ratios 
0, 0, 03 fI h h 4>, 4>2 4>3 Error 

IndezJT 

~ , ~, 6 

Undamaged: 
0.952 2.552 1.608 9.89 30.40 48 .58 0.688 -0 .775 1.67 7.4.10-2 

4.29 3.08 5.40 0.868 -0 .250 -2.19 

1.00 1.00 1.00 
Damage D1 : 

0.863 2.478 1.517 9.474 29.52 47.60 0.701 -0 .760 1.72 7.2.10-2 

4.33 3.91 5.09 0.871 -0 .249 -2.25 

1.00 1.00 1.00 
Damage D2 : 

0.866 1.732 1.519 9.216 28.33 42.76 0.647 -0.957 1.04 1.4· 10-' 
3.76 10.3 4.82 0.878 -0. 149 -1.62 

1.00 1.00 1.00 

Table 5.4: SUB-ID-Time results for the 3-DOF chain model employing the acceleration re-

sponses of the 148-DOF system. (Frequencies in Hz , damping ratios in % of critical. ) 

Stiffness Parameters Natural Frequencies Eigenvectors 

Damping Ratios 
0, O2 03 fI h h 4>, 4>2 4>3 

Undamaged: 
1.880 2.123 1.737 12.38 33.06 47.58 0.482 -0.938 1.52 

0.808 -0.368 -1.84 

1.00 1.00 1.00 
Damage DI: 

1.590 2.096 1.669 11.70 31.88 46.72 0.523 -0 .923 1.46 
0.821 -0.325 -1.85 
1.00 1.00 1.00 

Damage D2: 

1.793 1.345 1.622 11.21 31.14 41.90 0.403 -1.24 0.933 
0.832 -0.300 -1.35 
1.00 1.00 1.00 

Table 5.5: SUB-ID-SS Results for the 3-DOF chain model associated with the modal properties 

of the complex 148-DOF system model. (Frequencies in Hz.) 
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Stiffness Parameters Natural Frequencies Eigenvectors 

0, 82 83 t. h h 4>, 4>2 4>3 Error 
Jndez J., 

8, 8. 86 

a) Sub-structuring SS 3 

Undamaged: 
1.239 1.235 1.484 9.222 29.62 49.19 0.349 -1.05 1.52 6.3·10- ' 

0.774 -0 .500 -1.65 

1.00 1.00 1.00 
Damage DI: 

0.980 1.256 1.498 8.608 28.53 48.22 0.391 -1.07 1.33 6.5·10- ' 

0.786 -0.416 -1.58 

1.00 1.00 1.00 
Damage D2: 

1.221 0.603 1.919 8.098 27.82 44.01 0.270 -1.42 0.988 3.7.10-3 

0.787 -0.472 -1.30 

1.00 1.00 1.00 

b) Sub-structu ring SS ~ 
Undamaged: 

1.101 1.279 1.574 8.745 29.42 47.38 0.379 -1.06 1.37 5.3·10-' 

0.931 0.800 -0.436 -1.58 

1.00 1.00 1.00 

Damage DI : 
0.965 1.267 1.486 8.717 28.47 48 .23 0.393 -1.07 1.33 2.2·10-' 

1.077 0.797 -0.41 6 -1.59 

1.00 1.00 1.00 

c) Sub-structuring SS ~ 
Undamaged: 

1.096 1.197 1.530 9.24 7 30.71 48.52 0.409 -1.03 1.37 3.1 . 10-4 

2.272 0.825 -0.402 -1.58 

1.00 1.00 1.00 
Damage D2: 

1.124 0.651 1.462 8.709 29.76 42.66 0.355 -1.28 0.953 3.3· 10-' 

2.604 0.850 -0.34. -1.281 

1.00 1.00 1.00 

Table 5.6: SUB-ID-~Iodal Results for the simple 18-DOF frame model associated with the 

modal properties of the complex 148-DOF system. (Frequencies in Hz). 
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Stiffness Parameters Natural Frequencies Eigenvectors 

Damping Ratios 

0, O2 03 J, h h <P, <1>2 <1>3 
Error 

lndez: JT 

O. 85 86 ~, ~2 ~3 

a) Sub-structuring SS 3 

Undamaged: 

1.690 1.055 1.402 9.711 30.48 48.74 0.273 -1.02 1.84 3.5· 10-2 

4.32 5.79 4.31 0.734 -0 .647 -1.70 

1.00 1.00 1.00 

Damage DI : 

1.414 1.101 1.329 9.334 29.28 47.78 0.306 -1.02 1.75 4.2. 10- 2 

4.32 6.80 4.25 0.748 -0.591 -1.72 

1.00 1.00 1.00 
Damage D2 : 

1.618 0.477 2.029 8.142 29.31 42.88 0.199 -1.42 1.11 1.2.10- 1 

14.9 6.08 4.07 0.771 -0.615 -1.27 

1.00 1.00 1.00 

b) Sub-structuring SS 6 

Undamaged: 

1.268 1.101 1.383 9.883 30.40 48.62 0.333 -1.13 1.36 9.7. 10-3 

2.070 1.326 2.181 4.05 4.25 4.64 0.768 -0.493 -1.56 

1.00 1.00 1.00 

Damage Dl : 

0.937 1.150 1.409 9.478 29.25 47 .67 0.407 -1.11 1.20 9.9.10-3 

1.880 1.725 1.839 4.05 4.15 4.61 0.802 -0.373 -1.55 

1.00 1.00 1.00 

Damage D2 : 
1.147 0.631 1.496 9.210 29.50 42.77 0.310 -1.37 0.942 1.6· 10- 2 

2.144 1.741 1.595 3.95 4.11 4.29 0.814 -0.402 -1.28 

1.00 1.00 1.00 

Table 5.7: SUB-I D-Time results for the 18-DOF frame model given the averaged joint acceler-

ations of the 14&-DOF system. (Freq uencies in Hz, damping ratios in % of crit ical.) 
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WI wm Stiffness Parameters Natural Frequencies 

81 8, 83 II h h 

SUB-ID-Modal : 

2/ 3 1/3 0.980 1.256 1.498 8.608 28.53 48.22 

9/ 10 1/ 10 1.130 1.11 0 1.540 8.830 28.91 47.96 

99/100 1/100 1.309 1.062 1.453 9.113 29.23 47.72 

SUB-ID-Time: 

1.414 1.101 1.329 9.334 29.28 47.77 

Table 5.8: SUB-ID-Modal results with different weights come close to those obtained from 

SUB-ID-Time if the error norm emphasizes the natural frequencies (with WI) much more than 

the modeshape vectors (with W'" ) . (Frequencies in Hz .) 

Natural Frequencies Eigenvectors 

Damping Ratios 

!J h h ¢1 ¢, ¢3 Err or 
Inder I T 

~ I 6 ~3 

Undamaged: 

8.986 28.63 48.00 0.308 -0.719 1.30 5.2· 10-' 

0.83 0.46 0.45 0.610 -0 .291 -1.21 

1.00 1.00 1.00 
Damaged (D2-type): 

7.601 27.04 38.06 0.236 -1.358 0.59.1 7.4 .10- 2 

1.49 0.83 1.01 0.769 -0.242 -1.023 

1.000 1.000 1.000 

Table 5.9: MODE-ID Results obtained from the hammer test impulse-acceleration time histories 

for the three-story experimental model. (Frequencies in Hz .) 
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Stiffness Parameters Natural Frequencies Error Error 

81 82 83 h h fa Index J" Index h 

Undamaged: 
1 4.54 + i3.05 2.15 - i1.53 0.193 + iO .Ol 
2 4.54 - i3.05 2.15 + i1.53 0.193 - iO.Ol 
3 0.755 2.63 1.40 8.986 28.63 48.00 1.6 . 10- 2 2.0· 10- 1 

4 6. 147 0.488 0.930 8.986 28.63 48.00 1.2. 10- 1 1.4 
5 0.865 1.29 2.51 8.986 28.63 48.00 6. 7 .10- 2 8.7.10- 1 

6 1.74 0.585 2.73 8.986 28.63 48.00 1.1 . 10- 1 9.7. 10- 1 

Damaged (D2-type): 
1 3.17 + i2 .63 1.50 - i1.32 0.1 36 + iO.004 
2 3.17 - i2.63 1.50 + i1.32 0.136 - iO.004 
3 0.547 + iO.031.38 - i0.436 1.36 + iO.363 
4 3.81 0.345 0.852 7.60 27.04 38.06 2.0.10- 1 1.9 
5 0.547 - iO.03 1.38 + i0.4361.36 - iO.363 
6 1.74 0.375 1.71 7.60 27.04 38.06 3.3.10- 2 2.8.10- 1 

Table 5.1 0: SUB-ID-H (homotopy) results for the 3-DOF chain model given the modal properties 
of the real structure. 

Stiffness Parameters Natural Frequencies Eigenvectors Error 

Damping Rat ios Index hf 
81 82 83 I I h fa 4>1 4>2 4>3 

Undamaged: 
1.477 2.148 1.492 11.41 30.57 46.11 0.536 -0.852 1.77 3.8.10-3 

0.810 -0.362 -2.10 

1.00 1.00 1.00 
Damaged (D2-type): 

1.484 0.890 1.375 9.696 27.82 36.92 0.361 -1.55 0.651 1.2 . 10- 3 

0.851 -0.224 -1.16 

1.00 1.00 1.00 

Table 5.11: SUB-ID-Modal Results for the 3-DOF chain model associated with the modal results 

obtained by MODE-ID from the time histories of the real structure. ( Freq uen cies in Hz.) 
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Stiffness Parameters Natural Frequencies Eigenvectors Error 

Damping Ratios Index JT 
01 0, 03 h h fa 4>1 4>, 4>3 

~1 ~, ~3 

Undamaged: 
0.754 2.645 1.390 8.979 28.53 48.03 0.730 -0.699 2.10 1.9.10- 1 

3.84 0.00 0.82 0.874 -0.274 -2.61 
1.00 1.00 1.00 

Damaged (D2-type): 
1.700 0.371 1.702 7.548 29.77 37.92 0.181 -4 .59 0.148 2.3.10- 1 

1.55 3.58 5.12 0.927 -0 .084 -0.838 
1.00 1.00 1.00 

Table 5.12: SUB-ID-Time results for the 3-DOF chain model obtained employing the time 
histories corresponding to the hammer-impulse tests. (Frequencies in Hz, damping ratios in % of 

critical.) 

Stiffness Parameters N atucal Frequencies Eigenvectors 

Damping Ratios 
01 0, 03 h j, fa 4>1 4>, 4>3 

Undamaged: 

1.921 2.144 1.506 12.39 31.74 46.81 0.461 -0.857 2.03 
0.778 -0.456 -2 .17 
1.00 1.00 1.00 

Damaged (D2-type): 
1.482 0.891 1.376 9.763 27.95 37.48 0.375 -1.55 0.634 

0.854 -0.199 -1.1 6 

1.00 1.00 1.00 

Table 5.13: SUB-ID-SS Results for the 3-DOF chain model associated with the modal results 

obtained by ~IODE-ID from the time histories of the real structure. (Frequencies in Hz .) 
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Stiffness Parameters Natural Frequencies Eigenvectors Error 
0, O2 03 Index JM 
0, O. O. f, h h 4>, (P, 4>3 

a) Sub-structuring SS 3 

Undamaged: 

0.964 1.451 1.306 S.70S 2S.27 4S.26 0.404 -0.974 1.60 2.4 . 10-' 

0.793 -0.452 -1.75 

1.00 1.00 1.00 
Damaged (D2-type): 

1.139 0.321 2.343 6.969 25.84 38.97 0.213 -1.82 0.729 1.4 .10- 3 

0.810 -0.453 -1.13 

1.00 1.00 1.00 

b) Sub-structuring 5S ~ 
Undamaged: 

0.995 1.322 1.317 8.945 29.17 47.67 0.417 -0.951 1.61 2.1 . 10-' 

2.042 0.811 -0.436 -1.75 

1.00 1.00 1.00 
Damaged (D2-type): 

0.995 0.406 1.332 7.683 27.03 38.05 0.311 -1.59 0.688 5.2·10-' 

1.987 0.864 -0.293 -1.119 

1.00 1.00 1.00 

Table 5.14: SUB-ID-~Iodal results for the 18-DOf frame model based on the modal parameter 
values estimated by ~!ODE-ID for the real structure. (Frequencies in Hz. ) 
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Stiffness Parameters Natural Frequencies Eigenvectors Error 

Damping Ratios Index Jr 
81 0, 83 !l h fa 

- 4>, 4>3 "'1 

8. 85 8. ~ 1 ~ , ~3 

a) Sub-structuring SS 3 
Undamaged : 

1.149 1.273 1.308 9.018 28.62 48 .00 0.358 -0 .995 1.67 7.8·10- ' 

0.83 0.47 0.49 0.772 -0 .5 12 -1.74 

1.00 1.00 1.00 
Damaged (D2-type): 

1.342 0.252 2.681 6.773 26 .95 38.03 0.168 -1.968 0.702 1.7 .10- 1 

11.7 0.81 0.46 0.820 -0.519 -1.07 
1.00 1.00 1.00 

b) Sub-structuring SS • 
Undamaged: 

1.194 1.243 1.326 8.983 28.63 47 .99 0.349 -0.998 1.68 7.0· 10-' 

1.124 1.203 1.283 1.17 0.36 0.43 0.768 -0.525 -1.73 
1.00 1.00 1.00 

Damaged (D2-type): 
1.085 0.315 1.587 7.561 26.99 38.03 0.231 -1.98 0.579 J.l . 10- 1 

1.650 1.064 1.740 1.55 0.36 0.51 0.846 -0.348 -1.05 

1.00 1.00 1.00 

Table 5.15: SU B-ID-Time results for the IS- DOF frame model obtained employing the time 
histories corresponding to the hammer-impulse tests. (Frequencies in Hz, damping ratios in % of 
critical.) 
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Figure 5.1: Two models of the tes t st ructure (a) are shown. Fig. (b) shows the one-node 
joint used in the simple 18-DOF frame model. Fig. (c) shows the same joint modeled by several 
elements, each having different properties. IIDarnage" consists of replacing either member Ml or M3 
by another member with much lower stiffness . 
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Figure 5_2: (a) Forcing function at the second level as applied in the various test runs _ (b) For 
each excitation signal , the corresponding reference response signal at second floor is shown . 
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Figure 5.3: 3-DOF chain model corresponding to the test structure of Fig. 5.1a. 
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Figure 5.4: Transfer functions between the excitation at the second floor level and the acceler­
ation response at the second Aoor level for the three different models. 
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Figure 5.5: Different sub-structuring schemes employed with the IS-DOF frame model. 
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Figure 5.7: (a) Empirical transfer functions for the undamaged 148-DOF system and the two 
approximating 18-DOF frame and 3-DOF chain models. The 0 parameters for each model are given 
in Table (5.4) for t he 3-DOF model and in Table (5. 7b) for the 18-DOF model. (b) Match of the 
same responses of (a) in the time domain. 
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Figure 5.8: Empirical transfer functions for the real experimental frame and calculated from 
the identified 3-00F and IS-OOF models. The SUB-ID-Time fit to the measured response is shown 
in (b). 
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Chapter 6 Data from a Real Building 

The East-West (uB-W" ) motion of Building 180 on the JPL campus is studied with the foregoing 

methods in o rder to investigate what changes occu rred in the structure during th e strong earthquakes 

it has experienced. Previous studies (6.4 ,6.6,6.8J have shown that substantial changes in the valu es 

o f the pe riods of vibration have occurred, espec ially during the 197 1 San Fernando earthquake. No 

visual s igns of damages were detected ill the structure during inspections following this earthquake , 

except for some minor cracking of non-s tructural elements. To explain the lengthening of the periods , 

some researchers (6.5] ha\'c proposed that the structure weakened during large amplitude motions 

of the earthquake because of cracking of the concrete that. encases the steel columns . The cracking 

introduces non-linear behavior. and indeed, some evidence of such behavior is present in the San 

Fernando earthquake records [6.6,6.8]. The overall behavior, however , seems to be represented quite 

well by a linear e lastic model. In this study, a simple linear chaill ~ys t.e lll is employed to model the 

structure and the suo-In programs are used to determine the corresponding stiffness distributions. 

Use is made of the San Fernando earthquake records and of other data, including some dynamic 

tests and the res ponse of the building to other earthquakes. The identified stiffness distributions 

can offer insight into the location of stiffness loss induced by the earthquakes . 

J PL Building 180 is a lO-story, symmet ric steel-frame structu re, approximately 67.0 meters (220 

feet) long, 12.2 meters (40 feet) wide and 44 .5 meters (146 feet) high (from the base of the foundati on 

to the roof) located on the grounds of the Jet Propulsion Laboratory in Pasadena, California. Fig. 

(6.1) shows a schematic of J PL Building 180. The foundation o f the structure is a continuous strip 

footing running longitudinally on both sides of the building . A shear wall was designed for the 

sub-ba.,ement and basement levels th us increasing significa ntly the stiffness relative to the upper 

stories. The latter all ha.ve an iden tica l design except for the roof. The structure distributes the load 

in the longitudinal (East-\Vest) direction with a e leven-bay frame consisting of steel trussed girders 

and steel columns. In the transverse (:'<orth-South) direction, the load is distributed by welded steel 

spandrel trusses and by steel columns. The steel columns are partially encased in concrete . The soil 

at the basement level consisted o f very dense well-graded sandy gravel. From a typical test boring 

[6.4], the dry dens ity is 1,850- 1,990 kg/m 3 ( 115-124 Ibs.jcf) , moisture content is 7.6-8 .7%, and the 

shear strength is 82-221 k Pa (1. 7-4.6 kips/sf ), fo r the upper 4 meters ( 12 feet) of soil. With depth , 
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the density decreases slightly, the moisture varies considerably, and the shear strength doubles , down 

lo a depth of approximately 20 meters (60 feet). The symmetry of the building has justified the use 

of two-d in1ensional models in the various analyses , even though the surrounding soi l slopes down 

by about one story in the north-south direction. It has been assumed that the added soil stiffness 

acting on the north wall produ ces a rather small torsional component, thereby not affecting the 

plane motion of the structure. 

Section 6.1 - Available Data for Building 180 

Section 6.1.1 - iielsen's Tests of 1963-1964 

Nielsen's tests [6. 1] consisted of both "man-excited" and steady-state resonance tests using an 

eccentric-mass harmonic shaker. The tests were car ried out during various stages in the construction 

of J PL Building 180 and thus the effects of the addition of the different structural and non-structu ral 

components are visible in both the modal frequency and modeshape data. 

Nielsen determined a total of four normal modes in the E-VV direction from the steady-state 

resonance runs of his Test No. 14. The building stage corresponded to that before the final finish ing 

touches prior to occupancy, i.e., no plaster on inner side of colunms, no finished Hoors, no partitions, 

cu rtain walls and windows. For the E-\V translational modes, the natural frequencies were It = 1.01 

Hz , h = 3.00 Hz , fa = 5.07 liz , and I. = 7.50 Hz . The modeshapes for the first three 

experimentally determined modes are shown in Fig . (6.2) where the motion at the ground and 

basement Hoors is assumed zero. Most of the modes were excited at various force levels but. it was 

found that the Illodes hapes remained nearly constant at all levels tested. The frequencies, however, 

did demonst rate slight non- linear effects: as the force increased, the modal frequency decreased 

slightly as shown in Fig. (6.3ab). 

The dat.a from Nielsen's tesls No. 14, 16 and 18 are shown in Table (6.1) along with many 

other tests and analyses resu lts . Test No. 16 corresponds to a similar stage in the construction 

as No. 14 except that fire-proofing material was sprayed on all girders and trusses. Test No. 18 , 

however, was performed after all windows , partitions , and curtain walls were put in place, and a 

wire mesh and plaster were used (0 cover t.he inner side o f all columns. 

Section 6.1.2 - 1970 Lytle Creek Ear thquake Records 

Earthqu ake records from the AfL = 5.4 Lytle Creek earthquake of September 12, 1970, were 

studied [6.1 i) . The corrected signals comp rised a little more than 20 sec. of motion both at the 
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base and at t he roof of J PL Building 180 (the ini tial part of the signals seems not to have been 

recorded). The maximum acceleration in the E-W direction at the base is 14 .5 cm/s/s at 2.22 sec. 

and 25.25 cm/s/s at the roof at 3.24 sec. Fig. (6.4) shows the base acceleration and its spectrum 

while Fig. (6.5) shows the roof acceleration and the empirical transfer function between the base 

and roof signals. The Fourier spectrum plotted in Fig. (6 .4) shows that the dorninant frequencies 

at the base are in the 0- 12 Hz range. The maximum 10.5 cm/sec peak is located at around 2 Hz. 

The peaks corresponding to t he first t wo modes can be located easily at about 1 Hz and 3 Hz in 

Fig. (6.5a). 

Section 6.1.3 - 1971 San Fernando Earthquake Records 

Strong-motion records from the ML = 6.4 1971 San Fernando earthquake corresponding to 

accelerat ions monitored at the base and roof of Building 180 on February 9, 197 1, were also studied 

[6.12). The processing yielded slighUy more than 97-second-duration signals with a time step of 0.02 

seconds. The processed records show a maximum acceleration of 207.8 em/sis at 5.1 sec. in the 

E-W (longitudinal) direction at t he basement and about 374 .8 cm/s/s at 5.34 sec. at the roof in 

this direction. The Fourier spectrum plotted in Fig. (6.6) shows that the dominant frequencies are 

also in the 0-12 Hz range. The maximu m 130 cm/sec peak is located at around 3 Hz. The t ransfer 

fun ction between the roof response record and the base record shows a large amount of jaggedness 

as shown in Fig . (6. 7) . The smoother mod al peaks , however, are found at 0.8 , and 2.5 Hz , implying 

a substantial drop in the stiffness compared to wh at was observed for the Lyt le Creek earthquake. 

Section 6.1.4 - Teledyne's Tests of November, 1971 

Measurements using Te ledyne's "Ambient Vibration Survey" system [6 .2] were made in the 

E-W direct.ion on every Roor at t.he west end of t he buil ding in November 1971 by Teledyne Geotech 

engineering firm . For the E-\V translational modes, the measured natural frequencies were it = 0.95 

li z, h = 3.00 li z, h = 4.98 li z, and I. = 7.50 li z, all of t hese differing somewhat from the 

earlier values of ielsen, especia lly t hose determined after occupancy. Fig . (6.8) presents t he 

modeshapes for the first three modes of vibration. These modeshapes seem to a.gree well with those 

of Nielsen ( Fig. (6 .2) ). 

Section 6.1.5 - Nielsen's Tests of February, 1972 

In Feb ru ary, 1972 , man-excitation tests were conducted jointly by Teledyne Geotech and Nielsen 

[6.2). The fi rst two modal frequencies were determined at the 6th floor level: 1. = 1.0 Hz and 

h = 3.3 Hz . These frequencies differed from the results obtained by Teledyne Geotech three 
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months earlier, the frequency now increasing approximately 5% in the first mode and 10% in the 

second translational mode. 

Section 6_2 - Previous Dynamic Analyses of Building 180 

Section 6.2.1 - ielsen's Analysis of 1964 

'ielsen [6 .1] derived the equations necessary to determine the stiffness and damping matrix 

components from the experimentally determined modal properties. His method is equivalent to an 

equation-error method applied to the modal equations of motion similar to that implemented by 

SUB- ID-S5. In deterrnining the structural parameters, Nielsen considered two scenarios: (1) simply­

coupled syst.ems (chain-t.ype system), and (2) close-coupled systems (chain-type with fl oor-to-base 

attachments). A least-squares solution to the set of simullaneous equations was employed whenever 

more modes than necessa ry were ava ilable. 

From his measured data, and assuming that the girders in the E-VV direction were sufficiently 

rigid to make the effect of joint rotation negligible, ielsen determined the stiffness matrix 

components corresponding to the close-coupled system. The determined components are shown 

in Tab le (6.2) where it is evident that they come close to being those of a uniform chain model. 

The errors found by Nielsen substituting into the modal equations are reasonably small indicating 

that the close-coupled model is a good model. Nielsen argued that the small differences between 

the close-coupled st iffness \'alues and the ones corresponding to the simple chain model could stem 

from inaccurac ies in the data, The frequencies and Illodeshapes derived from the identified model 

compared closely to the experimental values as shown in Table (6.1) and Fig. (6.2) , but they did 

not compare well for the fourt,h mode not shown, 

Damping values were independently determined by Nielsen from the acceleration response at 

resonance. Table (6.1) a lso shows his damping estimates for the first three modes. 

Section 6.2.2 - Brandow ancl Johnston Associates Analysis of 1971 

Brandow and Johnston's report [6.3] describes an attempt to visually match the dynamic 

response of a structural model to the actual behavior incurred by Building 180 during the strong 

motion part of the San Fernando earthquake. The match, howeve,r, was not good in comparison to 

others sllch as the one performed by \IVood, described in the next section. 

Section 6.2.3 - Wood 's Analysis of October, 1972 
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In \oVood 's studies [6.4,6.5]' a structural model was corrected by trying to match its response to 

the San Fernando earthquake response of Building 180 . The model was then employed to estimate 

the level of the seismic inter-story forces experie nced by the building during the strong motion part 

of the ea rthquake. The report suggests that some of the structural columns nearly reached their 

yield level. 

\oVood employed a "redu ced" model for the E-"V direction analyses: the two-dimensional , eleven­

bay, longitudinal structure e levation was modeled as a one-bay frame structure. Furthermore, 

he assumed that the stiffness is homogeneous over the height of the build in g. Modeli ng of the 

longitudinal girders was approximated in three different ways : (1) a t russed girder , (2) a rigid girder, 

and (3) an equivalent girder , but the t russed gird er was selected as the best mod el. Wood further 

synthesized two different models [or the columns, each for a different behavior regime. The "full 

composite" model correspond ed to low-amplitude response of the structure in the linear range. In 

this range, it was assumed that the motion of the structure would not cause the concrete encasing the 

columns to open at the cracks . On the olher hand, the "partial-composite" strong-motion model 

assurned no contribution to the stiffness from the column concrete wherever it underwent tensile 

strain. The models roughly ap proximated the observed structural response so in o rder to obtain 

a better match, VVood resorted to directl!J changing the modal frequencies of the chosen ured uced" 

model and not the properties of the structural model themselves, so that any implications that 

the new modal frequencies might have on the structural inter-story stiffness properties were not 

add ressed. \ Vood's t.riaJ-and-error mod ification of the modal frequencies was done in such a way 

that bette r vis ual matching bet.ween the recorded responses and those calculated for th e models was 

achieved. The damping ratios were also adjusted by matching the observed Fourier amplitudes of 

the roof accelerations . Table (6. 1) shows how \\'ood's models compare with other predi ct ions and 

Fig. (6.8) presents Wood's modeshapes in compa rison to Teledyne's experimental data. 

Section 6.2.4 - McVerry and Beck 's Analysis of 1983 

McVe rry and Beck's analysis [6.8] is an extension of the modal studies perfo rmed individually 

by both Beck [6.9] and ~ l c Verry [6.10] in 1978 and 1979, respectively, in which Building 180's modal 

pa.rame ters were estimated from the res ponse to the Sa n Fernando eart hquake. Their methods 

seem to present better paramet.er estimates than competing modal identification methods (see, for 

example, [6.6 ,6.7]). The resulls of their more recent s tudy showed a pre viously undetected time shift 

of 0.08 seconds between the San Fernando earthquake base and roof signals. Taking this time shift 

into accou nt. , the methods developed by both authors were able to extract more reasonable l110dal 

parameters estimates, particularly for the higher modes. 

Tirne-invariant parameter esti mates were determined and the corresponding model provided a 
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good overall fit to the measured roof response, their error index JT being approximately 4.8 . 10- 2
. 

These estimates, also shown in Table (6.1), correspond mainly to the estimates for the strongest 

motion part (5-30 sec.), s ince output-error approaches weigh the absolute error difference and not 

the relative error. The corresponding response match from their MODE-ID algori thm is shown in 

Fig. (6.7). 

Table (6.10) shows modal estimates which were computed for different time windows by 

McVerry and Beck, a procedure which provides some idea of the time-varying behavior produced by 

any non-linear response of the structure. The fact that their two methods yield natural frequencies 

which started from values close to those measured in previous vibration tests and then decrease 

by approximately 20% implies that the structure lost substantial stiffness during the strong motion 

part of the San Fernando ea rthquake. The good overall match of a linear model with the observed 

behavior implies that changes in the dynamic properties of the structure occurred primarily during 

early parts of the earthquake before the long strong-motion segment. Some lack of overall matching 

may also occur since the methods did not allow for non-classical modes. Non-classical modes may 

be needed but the authors found that the classical-modes model fitted the response data accurately, 

particularly for the smaller t ime-windows stud ied. 

The init.ial values of the fundamental frequency for the E-vV direction corresponded closely to 

values estimated from previous tests, approximately 0.98 Hz , but then decreased to a minimum of 

0.78 Hz during the largest amplitude response segment, implying a decrease of 37% in the modal 

stiffness. The value towards the end of the response was found to be approximately 0.81 Hz. The 

second E-W mode frequencies decreased by approximately 26 % from 3.23 Hz (0-10 sec. segment) 

to 2.38 Hz (10-20 sec. segment) to 2.56 Hz (30-40 sec. segment) , the maximum decrease being 46%. 

The damping ratios we re also found to vary in time. T he damping estimates were compared with 

their previous resu Its [6.9,6. 10J using the unsynchronized records and were found to be more reli able. 

Section 6.2.5 - Teledyne's Analysis of November, 1971 

Teledyne's analysis [6.2} of thei r own ambient vibration E-\V translational modal data was 

restricted to the determination of the damp ing ratios from the power spectra plots and to cross 

spectra among different records. Damp ing was determined using the half-power point method and 

the results , along with the natural frequencies, are shown in Table (6.1). A limited comparison with 

Nielsen 's 1964 data was also present in their report. 

Section 6.3 - SUB-ID Results for Building 180 
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The programs described III earlier chapters, SUB-ID-Modal , SUB-ID-SS (successive 

substitutions) and SU B-1 0-Time are used here to study the loss of stiffness in Building 180. SU B-ID­

Modal and SUB-ID-SS are used with Nielsen's data to estimate the stiffness distribution before the 

earthquakes. SUB-ID-Time is then used with the Lytle Creek and San Fernando earthquake records 

to try to est imate the stiffness distribution during various t ime segments of the response. Finally, 

SUB-ID-Modal and SUB-ID-SS are used again with Teledyne's data in order to estimate the stiffness 

distribution shortly after the occurrence of the San Fernando earthquake. In all circumstances, a 10-

degree-or-freedom chain model is employed. vVhen the information is abundant, as for Nielsen's and 

Teledyne's data, a determination of all ten interstory stiffnesses is performed. For the time history 

strong motion data, however I non-uniqueness considerations restrict the number o f parameters to 

be determined. 

Section 6.3.1 - Results from Nielsen's Data 

Nielsen's data consists of modal frequencies and modeshapes corresponding to his test No. 14, 

prior to the occupancy of the building. The model employed here is a 100story chain system and the 

data available is th e modeshape components for the upper eight of the ten floors . Table (6.5) and 

Table (6.6) show the results obtained by SUB-ID-Modal weighing the natural frequencies by 9/10 

and the modeshapes by 1/10, and by SUB-ID-SS, respectively. 

In Table (6.5), two models with their associated stiffness distributions are shown: model N-I 

corresponds to Nielsen's original mass distribution (4 17,680 kg. (920 kips) for each floor and 744 ,560 

kg. (1640 kips) for the roof mass), and model N-Opt. corresponds to an identical mass distribution 

except with an estimated top lllasS value of 718 ,407 kg. This mass estimate is close to Nielsen's 

value. The results in Table (6.5) and Table (6.6) show stiffness distributions fairly uniform , except 

for the first two inter-story stiffnesses which are higher than the rest (Table (6. 5)). The agreement of 

the Illodel predictions wit h t he observed modal frequencies and modeshapes is good and the upper 

story stiffness componcnts match well those estimated by ielsen , as seen by comparing Table 

(6.3) with Table (6.2). 

Table (6.4) shows the corresponding st iffness matrix for the SUB-ID-SS program. The stiffness 

distributions are somewhat different from the ones obtained with SUB-ID-Modal even though the 

modal data em ployed is the same. The reason for this is perhaps due to the existence of model 

error and the different impl icit weightin g of both algorithms. In the SUB-ID-SS case, in order to 

avoid non-convergence of the method, the firs t two degrees of freedom had to remain fixed. Since 

no mass optimizations can be performed by SUB-ID-SS, t he roof mass estimated by SUB-ID-Modal 

was employed, in the model N-Opt. 
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Section 6.3.2 - Results from the 1970 Lytle Creek Records 

Unfortun ate ly, as has been documented in Section 4.1.2.3, th e chain model excited at the 

ground level and moni tored at the topmost degree of freedom does not provide a unique st iffness 

parameter distribution when all inter-story stiffnesses are to be determined. By reducing the number 

of parameters , however I the uniqueness properties of the problem improve. Three par ameters (the 

first corresponding to the third and fourth inter-story sLifrnesses, the second corresponding to the 

fifth through seventh st iffnesses, and the third corresponding to the last three stiffnesses) were chosen 

in order to investigate more closely the behav ior of the structure. Thus, the analyses described in 

this and in the next section should be taken to be indica.tive o f possible "stiffness-loss" patterns 

over large regions. In general, it is seen that the error indices are on ly slightly larger than the ones 

achieved with the more general modal methods o f Beck and McVerry, which provide the best match 

whenever linea rity and classical modes are vaJ id assumptions since no structural model is employed. 

The relat ive proximity of SUB-ID's error indices to the latter gives confidence that an adequate 

stru ct ural model has been emp loyed. 

The SUB-ID-Time resu lts from the Lytle Creek records presented in Table (6. 1) and Table 

(6.7) indicate that there is some stiffness loss at va rious locations in the structure. (The model 

employs the optimized mass est imates derived from Teledyne's data, described later in this ch apter.) 

The 03 = 0, stiffness starts around 9 to 10.108 N m- 1 and drops to 7 . 108 N m- 1 . Unexpectedly, 

05 = 06 = 07 has the opposite behavior: it starts low and then increases towards the end of the 

records. The last set, 08 = 09 = 010 , starts high at 109 N m- 1 , dips and then increases to a greater 

value, 1.2 . 109 N m- 1 . These pat.terns o f behavior seem to ind icate that the structure is undergoing 

significant non-linear be havior despite the fact that the earthquake produces only modest shaking 

(2.5 %g at the roof). From the records (Fig. (6.4) and Fig. (6.5)), however , one can see th at the high 

accelerations are not concentrated in one time segment, unlike some other strong motion records. 

The frequency values est imated for the time windows shown in Table (6.8), including those estimated 

by MODE-ID , give li ttle ev idence of the slight stiffness degradation pred icted by the SU B-ID-Time 

algori thm. The error index Jr in Table (6.7) is quite large in the initial segment 0-2.56 sec. The 

error is probably due to the assumption that the in itial conditions are always zero disp lacement 

and velocity when in fact some information at the beginning of the strong motion records was noL 

recorded. As is expected, the effects of the missing data decays in time and so the error index is 

shown to improve for the latler time windows even in the light of higher accelerations occurrin g 

in the 4-6 sec. time segment. Fig. (6.4) shows how the accelerations start off at relatively large 

values while Fig. (6.5) shows the accelerat ion match produced by both SUB-ID-Time and the more 

flexib le MOD E-ID program. 

The base acceleration spectru m is fairly broad-band , inducing many modes to participate in 

the response , but the models employed on ly cons idered three modes to be trustworthy. The higher 
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modes and the measurement noise tend to deteriorate the match. The plot in Fig. (6.5a) shows 

a fairly jagged empirical transfer function along with t he two predictions implied by the identified 

models; it is evident [roll1 this match that at least the first two modes have been correctly extracted , 

the third mode not being easily identified visually. 

Section 6.3.3 - Results from the 1971 San Fernando Records 

The response match shown in Fig. (6.7) is for an optimal three-parameter model of the type 

described in the last section. It compares well to the match of McVerry and Beck, also shown in 

Fig. (6.7). The three-parameter model yields an error index ( JT = 7.8· 10-2 ) somewhat larger 

than for the ten-parameter model example case referred to in Table (6.1) (JT = 6.4 .10- 2 ) when 

the wide 0-41 sec . segment is employed. The increase in the error index is large enough to create 

some concern about the adequacy of the three-parameter model although the visual match in the 

acceleration signals match is sti ll good as can be seen in Fig. (6.7). 

In Table (6 .9), when employing this three-parameter model for different time windows, this index 

is seen to remain relatively low . The high error index values, the drop in the natural frequencies 

(Table (6. 10»). and the larger damping values in the first two modes at the beginning of the strong 

motion records may indicate that the structure underwent some non-linear stiffness-loss behavior. 

Indeed, in the different ti me segments, it is possible to see substantial variations in the stories' 

st.iffness values compared to the earlier values derived from Lytle Creek's earthquake data. ,"Vhen 

comparing the first two windows' results , the estimated stiffness parameters seem to indicate the 

existence of a mild 10% overall loss of stiffness in the middle stories and a large stiffness loss in the 

higher floors. Towards the end of the records, it is possible to see nearly 50% stiffness loss in the 

middle stories and slight recovery in the higher stories. The stiffness loss is probably due to the 

cracking in the concrete encasing as suggested by Wood a lthough in his model t he cracking could 

not account for more than 3% drop in any of the modal frequency values. McVerry and Beck's 

results show also t.he drop in the natural frequency values , although in their case the drop was 

more accentuated: from 0.98 Hz. to 0.80 Hz. as seen in Table (6.10). The latest version of Beck's 

l\lODE-ID algorithm was employed , this ti me with a slightly different synchronizing time shift ( 

3 Llt instead of 4.6.t) and with the uncorrected version of the earthquake records. The modal 

values predicted differed s lightly from those previously calculated by McVerry and Beck , this time 

corresponding rather closely with those predicted by SUB-lD-Time (Table (6. 10». 

The error index decreases considerably in the 10-20 sec. and 20-41 sec. time segments. These 

time segments are characterized by the large presence of the first mode relat ive to the second and to 

the third, and so by matching just t his first mode, the error index is reduced greatly. The stiffness 

and damping values do not vary as much in these segments, implying that the concrete encasings , 
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if cracked , remained completely cracked t hroughout the high amplitude first mode response and did 

not bond again even during the slllall amplitude motion towards the end of the response. 

Section 6.3.4 - Results from Teledyne's Data 

When employing Teledyne's data, use is made of t he mass distribution predicted by Wood for 

his own analytical model {6.4] since Nielsen's mass estimates are valid for an unoccupied stage in 

the construction of the building. Wood 's mass model W-I corresponds to fl oor masses of 576,580 

kg. (1270 kips) and a roof mass of 688 ,718 kg. (1517 kips), all values obtained by Wood from 

the structural drawings. As expected, Wood's floor mass values are larger (by approximately 38%) 

t han those predicted by Nielsen for the unoccupied structure, but Wood 's roof mass is unexpected ly 

8% lower than Nielsen 's prediction. Table (6.11) presents the resu lts for the original W-I model 

and also, since the lower roof mass value is quest ionable, for a second "V-Opt. roof-mass optimized 

model. Results show that the laLter model estimated a roof mass of 1,176,220 kg., 104% larger than 

the typical fl oor mass (576,580 kg.)' a value which is significantly different from t he one employed 

by both Nielsen (744,560 kg.) and by Wood (688, 71 8 kg.). The error indices for Teledyne 's data and 

Wood's mass model are rema rkably worse than those obtained from Nielsen's data. The optimized 

model \>V-Opt. , however, improves the match considerably, i.e., it reduces the error index from 

9.8.10- 4 to 4.9.10- 4 . The worsening in the match from Nielsen 's results to the present results 

may be attributed to the quality of the data itself. The accuracy of the modeshape from the ambient 

vibration tests is probably not as good as those estimated by Nielsen during his tests with a building 

shaker. 

SUB-ID-SS results are shown in Table (6.12) , the tren ds being the same as from SUB-ID-Modal . 

From the data one can see that the 08 and 09 stiffness rat ios decrease considerably, except in the 

W-Opt. case in Table (6.11) , where O. increases significantly. This valu e is rather questionable. 

The accuracy of the st iffness distributions is also difficult to assess since the reults may be influenced 

by the mass distribution which is not well known. By comparing the results in Table (6.5) and 

Table (6.6) wi t h those in Table (6. 11 ) and Table (6. 12) it is seen , however, that a pattern exists in 

all models and that it corresponds to a decreased 9th inter-story stiffness following the San Fernando 

ea rthquake. 

Section 6.4 - Discussion 

The est imation o f the mass distribution proposed by Nielsen seems to contradict the one 

proposed by Wood. Both mass distributions correspond to different stages in the building 

construction and it is because o f this that it is not possible to select one o f the two for all the 
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numerical tests performed by the SUB-1D programs. The typical floor masses were substantially 

higher in Wood's model, which agrees with the fact that vVood's model corresponds to the occupied 

bui lding stage. T he mass at the roof, however , differs significantly and it seems unlikely t hat it 

should decrease in value after occupancy, as predicted by Wood . The optimal values for the roof 

mass, as estimated by SUB-ID-Modal, agree well with Nielsen 's own estimates but disagree greatly 

from the values est imated by Wood. The large increase in the roof mass for the occupied stage could 

only be attributed to the mass o f non-structu ral components such as the elevator machinery and 

perhaps other mass neglected from inclusion in the structural drawings. Although the optimized 

roof mass values are assumed more correct and thus employed for all final analyses , they do not 

always provide optima l erro r measu res J , as call be seen in Table (6. 7) and Table (6.9). 

The natural frequencies est imated by McVerry and Beck and with the SUB-ID programs indicate 

that the structure softened during the first few seconds in the strong motion part and regained some 

of its stiffness towards the end of the San Fernando earthquake. McVerry and Beck's results show 

substantial decreases in the natural frequencies which imply even higher decreases in the modal 

stiffnesses. In the event.uality that t. here was damage localized at some interstory level, it is assumed 

here that it wou ld have to appear ever so slightly when comparing results from Teledyne's data to 

resu lts from Nielsen's data. t: Damage" such as the cracking in the concrete that encases the steel 

columns, is less likely to be detected from small amplitude steady-state, man-excited, or ambient 

vibrat ion tests. Table (6. 13) and Table (6. 14) show the ratio of Teledyne's est imates to Nielsen's 

est imates as determined by the S UB-ID--Modal and S UB-ID-SS programs , respectively. The ratios 

suggest that the str ucture was generally mu ch stiffer in November 1971 than in the construct ion year 

1963-1 964. A reason for this might be thaL Nielsen 's data corresponds to a stage in the construction 

of the building where many non-structural and perhaps some structural components were missing. 

Nevertheless, since the ratios depe nd on the stiffness est imates and the latter depend on the mass 

estimates, all of which are not comp letely trustworthy, the absolute value of the ratios may not be 

trustworthy as well , but the re la/ive stiffness values along the height of the building a re more likely 

to be so. One can observe from Table (6. 13) and Table (6. 14), and perhaps more clearly from Fig . 

(6.9), that the stiffness ratios are relatively low in the lower s tory and at the ninth story level. If 

any "damage" did occur during the San Fernando earthquake, it is most likely that it took place in 

the lower stories. The reduction at the ninth floor level is not intui tive, however, and also in light 

ofthe SUB-ID-Time results of Table (6.10) where the largest stiffn ess loss occurred in the middle 

fl oors . 

Damage of the type proposed by \,Vood , i.e., cracking of the concrete encasing, wou ld explai.n 

how the st iffness of the columns wou ld decrease in the strong motion segment of the earthqu ake and 

immed iately recover to the initial stiffness when the motions become small again . This is consistent 

with the behavior observed by ~lc Verry and Beck and also here, except that it is unlikely that 

there was nearly 50% loss o f stiffness from the cracking in the tensile region of the concrete encasing. 
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Also, this hypothesis would predict that all the modal frequencies would return to the original values 

after the motion stopped , but the results obtained by McVerry and Beck and with SUB-lD-Time, 

shown in Table (6. 10), indicate that there is no clear tendency for the structure to stiffen to the 

same level that it had prior to the beginning of the earthquake. The initial stiffness values are 

al ready considerably lower than the resu lts from the Lytle Creek earthquake, which occurred five 

months prior to the San Fernan do earthquake. Observing the excitation and response of Building 

180 towards the beginning of the San Fernando records indicates that an acceleration of 62 cm/s/s 

takes place at 2.28 sec., the latter accelerat ion being nearly three times larger than any acceleration 

suffered by the bui lding during the Lytle Creek earthquake. This increase of amplitudes can account 

for the increased softening suffered by the structure. 

Teledyne's results o f November, 1971 , show that the structure regained much of its stiffness , 

as evidenced in Table (6. 1). Teledyne and ielsen's data of February, 1972, show recovery to levels 

slightly lower than those corresponding to Nielsen's Test No. 18. This confirms that the decrease 

in the stiffness values during the San Fernando earthquake was temporary and that "the structure 

healed wi th time." 

All of this information leads to several speculations: 

(1) There was a redu ction in sti ffn ess in the structural members, such as cracking of the concrete 

encasi ng during the prior, albeit weaker, Lytle Creek 1970 earthquake. 

(2) There may be effects such as a partial loss of stiffness in non-structu ral components and 

their connections to the structura l system. The non-structural components stiffened the structure 

initially (as seen in Nielsen's Test No. 18 results) but may have loosened up du ring the large 

amplitude excitation of the San Fern ando earthquake. 

(3) There is a possible red uction in the stiffnesses of the basement and first stories which may 

be partly due to the loss of contact between the str ucture and the surrounding soi l, particularly at 

the first story wh ere normally only the north side is in contact with the soil. 

Sin ce it is unlikely that the cracking in the concrete encasing can account for nearly 50% stiffness 

loss , it is probable that all three effects participated together. The large stiffness reductions, however, 

cause some concern about the adequacy of the original building structure to withstand a similar or 

larger earthquake without incu rring excessive damage. Strengthening of the structure has been done 

subsequent to the tests en hancing, in this way, the resistance of the structure to fu ture earthquakes. 
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J PL Building 180 
Modal Frequency (Hz) Modal Damping (% critical) 

Data Set Study I, h fg ~, ~2 ~3 

Nielsen's 1964 Test No. 14 Data (steady-state) 

Nielsen (experimental) 1.01 3.00 5.07 0.55 0.85 2.00 
ielsen (close-coupled) 0.99 3.02 5.12 

SUB-ID-SS (Opt. mass) 1.04 3.07 5.04 
SUB-ID-Modal (Opt. mass) 1.01 3.00 5.07 

Nielsen 's 1964 Test No. 16 Data (steady-state) 
Nielsen 1.04 2.95 nla 

Nielsen 's 1964 Test No. 18 Data (man-excited) 
Tielsen 1.10 3.40 nla 

Lytle Creek 1970 Eq. E-W camp. 
SUB-ID-Time (3p: 0-20 sec) 0.993 3.00 5.02 4.0 5.3 7.9 

SUB-ID-Time ( l Op: 0-20 sec) 0.983 3.04 5.20 4.1 4.7 7.4 
MODE-ID (0-20 sec) 0.979 3.05 5.20 4.4 5.4 6.9 

San Fernando 1971 Eq. E-W camp. 

Brand. & Johnst. (model 1) 0.94 2.63 4.35 
Brand. & J ohnst. (model 2) 0.81 2.22 3.57 
Wood (partial compos.) 0.83 2.39 3.89 5.0 5.0 5.0 
Wood (modified) 0.78 2.38 3.84 4.0 6.0 6.0 
McVerry-Beck (0-41 sec) 0.784 2.42 3.92 3.6 7.4 12 
SUB-ID-Time (3p: 0-41 sec) 0.783 2.32 3.77 3.9 7.1 10 
SUB-ID-Time (lOp: 0-41 sec) 0.781 2.36 3.73 3.9 6.9 11 
MODE-ID (0-41 sec) 0.781 2.37 3.60 3.6 6.9 16 

Teledyne's 1971 Data (ambient vibrations) 
Teledyne (experimental) 0.95 3.00 4.98 1.1 0.1 0.2 

Wood (full compos.) 0.92 2.77 4.70 
SUB-ID-SS (Opt. mass) 0.86 2.46 4.39 
SUB-ID-Modal (Opt. mass) 0.97 2.99 4.98 

Teledyne & Nielsen 's 1972 Data (man-excited) 

Teledyne & Nielsen 1.00 3.33 nla 

Table 6. 1: Comparison of modal frequency and damping values for JPL Building 180 in the 

Fr ' ·V direction l as estimated by various methods and at different points in time. 
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nla nla 
nla nla 

nla 
nla 

13.11 
-6.10 

-6.10 
12.67 
-6.31 

-6.31 
12.29 
-6.12 

- 136 -

-6.12 
12.50 
- 6.85 

-6.85 
13.12 
- 5.91 

-5.91 
10.83 
-5.33 

-5.33 
10.68 
- 5.09 

-5.09 
5.07 

Table 6.2: Stiffness components estimated by Nielsen from the modal frequencies and mode­

shapes corresponding to his Test No. 14 for the close-coupled model of JPL Building 180 , E-W 

direction . (Rows corresponding to stories from the basement to the ninth .) 

f{ = 

98.52 
-53.12 

-53.12 
53.41 
- 8.0 1 

- 8.01 
13.07 
- 5.06 

- 5.06 
11.67 
- 6.61 

- 6.61 
12.78 
-6.18 

-6.18 
12.59 
- 6.42 

- 6.42 
11.91 
-5.49 

- 5.49 
11.02 
- 5.53 

-5.53 
10.47 
-4.94 

-4.94 
4.94 

x10"Nm 1 

Table 6.3: Stiffness components for a ten parameter chain model estimated by SUB-ID-Modal 

from the modal frequencies and mode-shapes corresponding to Nielsen's Test No. 14 for JPL Building 

180, E-W direction. (Rows corresponding to stories from the basement to the ninth with the N-Opt. 

mass model. ) 

J( = 

nla nla 
nla nla 

nla 
nla 

13.43 
-6.38 

- 6.38 
12 .10 
-6.59 

-6.59 
12.30 
- 5.71 

-5.71 
11.70 
-5.99 

-5.99 
11.82 -5.83 
-5.83 11.40 

-5.56 
- 5.56 
10.34 
-4.78 

-4.78 
4.78 

Table 6.4: Stiffness components estimated by SUB-ID-SS from the modal frequencies and mode­

shapes corresponding to Nielsen 's Test No. 14 for a eight parameter chain model of JPL Building 

180 , E-W direct ion. (Rows corresponding to stories from the basement to the ninth using the N-Opt . 

mass model.) 
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JPL Building 180, E-W Direction (Nielsen's 1964 Data) 

Inter-story Stiffness Values 

01 0, 03 0, O. 06 07 O. 09 OlD Error 
IndezJM 

Model (All stiffness values xl0'Nm- 1 ) 

N-l 59.39 50.97 9.419 4.953 6.736 6.214 6.416 5.611 5.623 5.044 4.66 ·10-' 

N-Opt 53.12 45.40 8.006 5.060 6.607 6.177 6.416 5.492 5.529 4.940 4.26 ·10-' 

Table 6.5: SUB-ID-Modal Parameter estimates corresponding to two models using 9/10 fre-

quency and 1/ 10 mode-shape weights in J . The data used is Nielsen's Test 14 with mode-shape 

components for the top eight floors . The optimized model predicts a roof mass 1.72 t imes larger 
than the typical floor mass. 

JPL Building 180, E-W Direction (Nielsen's 1964 Data) 
Inter-story Stiffness Values 

01 8, 83 8, 8. 86 87 8. 89 010 

Model (All stiffness values xl0"Nm- 1 ) 

N-l 00 00 7.042 6.386 6.602 5.723 6.010 5.940 5.748 5.030 
N-Opt. 00 00 7.045 6.383 6.586 5.713 5.986 5.832 5.563 4.776 

Table 6.6: SUB-ID-SS parameter estimates corresponding to the two models appropriate for 
Nielsen's data. The first model assumes the original mass distribution while the second uses the 

SUB-ID-Modal optimized mass estimate. For the method to converge, the basement and ground 

levels were restrained from moving. 

J PL Building 180, E-W Direction (1970 Lytle Creek Earthquake) 

Inter-story Stiffness Values 

01 O2 03 0, O. 06 0, O. 09 8lD Error 
lndez J 

Model (All stiffness values xl0·Nm- 1 ) 

W-Opt (3p) 

(0-2.66ec) 61.7 61.7 8.97 8.97 6.68 6.68 6.68 10.4 10.4 10.4 15 .10- 2 

(2.6-5.1 sec) 61.7 61.7 9.82 9.82 7.14 7.14 7.14 8.86 8.86 8.86 5.1 . 10-2 

(5.1-10 sec) 61.7 61.7 7.14 7.14 9.92 9.92 9.92 9.63 9.63 9.63 4.6·10-' 

(10-20 sec) 61.7 61.7 6.98 6.98 9.84 9.84 9.84 12.2 12.2 12.2 3.2·10-' 

Table 6.7: SUB-ID-Time three-parameter stiffness estimates obtained from the 1970 Lytle Creek 

earthquake records . The \V-Opt. model corresponds to the mass distribution which optimized 

Wood's model with Teledyne's post-earthquake data. The basement and first floor stiffnesses were 

fixed at previously estimated value of 61.7 · 10·Nm - 1 . 
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JPL Building 180, E-W Direction (1970 Lytle Creek Earthquake) 

Modal Frequency (Hz) Modal Damping (% critical) 
Study Time Window h j, fa {I {, {3 

SUB-ID-Time (3p , W-Opt.) 

(0-2.6 sec) 0.951 3.08 4.94 4.1 3.7 6.5 

(2.6-5.1 sec) 0.973 3.03 4.88 6.7 4.3 2.9 

(5.1-10 sec) 0.987 2.97 4.99 2.8 6.7 8.2 

(10-20 sec) 0.983 3.04 5.19 3.1 5.2 4.8 

MODE-ID (3 modes) 

(0-2.6 sec) 0.991 3.08 5.07 4.9 4.1 9.1 

(2.6-5.1 sec) 0.958 3.03 4.89 6.0 5.1 -0.2 (?) 

(5. 1-10 sec) 0.965 3.05 5.20 3.1 6.0 6.9 

(10-20 sec) l.01 3.20 5.47 3.4 9.6 4.9 

Table 6.8 : Comparison of time-windowed modal frequency and damping values. 

JPL Building 180, E-W Direction (1971 San Fernando Earthquake) 

Inter-story Stiffness Values 

0, 0, 03 0, O. Os 07 O. 09 010 Error 
Inder J 

Model (All stiffness values xI0'Nm- 1 ) 

\V-Opt (3p) 

(0-2 .6 sec) 61.7 61.7 6.16 6.16 8.69 8.69 8.69 9.76 9.76 9.76 8.9· 10-' 

(2.6-5.1 sec) 61.7 61.7 6.21 6.2 1 8.06 8.06 8.06 7.20 7.20 7.20 2.2.10- 2 

(5.1-10 sec) 61.7 61.7 6.04 6.04 5.05 5.05 5.05 5.95 5.95 5.95 6.2.10- 2 

(10-20 sec) 61.7 61.7 5.76 5.76 5.02 5.02 5.02 5.19 5.19 5.19 4.3 . 10-3 

(20-31 sec) 61.7 61.7 5.71 5.71 4.64 4.64 4.64 6.92 6.92 6.92 1.0 . 10-3 

(31-41 sec) 61.7 61.7 6.00 6.00 4.72 4.72 4.72 7.1 9 7.19 7.19 2.2. 10-3 

Table 6.9: SUB-ID-Time three-parameter stiffness estimates obtained fTom the San Fernando 

earthquake base and roof records . The \V-Opt. model corresponds to the mass distribution which 

optimized Wood 's model with Teledyne's post-earthquake data . The basement and first floor stiff-

nesses were constrained to the previously estimated value of 61.7· I08Nm- 1 . 
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JPL Building 180 (1971 San Fernando Earthquake) 
Modal Frequency (Hz) Modal Damping (% critical) 

Study Time Window " h h (1 {, (3 

McVerry-Beck (2 modes) 
(0-2.5 sec) 0.98 3.2 nla nla nla nla 
(0-5 sec ) 0.84 2.6 nl a 3.3 2.9 nla 
(5-10 sec) 0.80 2.3 nla 4.7 7.4 nla 
(10-20 sec) 0.78 2.4 nla 3.4 4.5 n/a 
(20-30 sec) 0.81 2.6 n/a 4.1 5.2 n/a 

SUB-ID-Time (3p, W-Opt .) 
(0-2.6 sec) 0.927 2.95 5.00 0.92 4.4 9.9 
(2.6-5. 1 sec) 0.900 2.71 4.65 4.1 5.9 7.3 
(5.1-10 sec) 0.802 2.48 4.06 4.7 5.9 9.9 
(10-20 sec) 0.787 2.38 3.94 3.4 6.0 11 

(20-31 sec) 0.785 2.38 3.97 3.4 6.8 10 

(3 1-41 sec) 0.799 2.41 4.03 3.6 11 12 

MODE-ID (3 modes) 
(0-2.6 sec) 0.935 2.94 4.86 4.5 7.1 26 
(2.6-5. 1 sec) 0.858 2.68 4.58 2.3 9.2 9.4 

(5 .1 -10 sec) 0.782 2.43 4.05 3.9 6.8 II 
(10-20 sec) 0.784 2.38 4.20 3.2 5.0 11 

(20-31 sec) 0.788 2.48 4.28 3.8 6.3 6.2 
(3 1-41 sec) 0.818 2.57 4.39 5.0 6.2 5.5 

Table 6.10: Comparison of time-windowed modal frequency and damping values. 

JPL Building 180. E-W Direction (Teledyne's 1971 Data) 

Inter-story Stiffness Values 
01 0, 03 0, O. 06 Oi Os 09 010 Err or 

indez JM 

Model (All stiffness values xlOsNm- 1 ) 

W-I(lOp) 13.8 12.4 8.94 7.52 8.98 9.55 7.57 6.95 5.50 6.48 9.8 ·10- ' 

W-Opt(10p) 13.8 12.4 8.57 6.95 9.22 9.37 6.80 11.0 7.17 9.18 4.9 ·10- ' 

Table 6.11: SUB-ID-Modal parameter estimates corresponding to different models for 9/ 10 

frequency and 1/10 mode-shape weights. Only the first th ree modes in Teledyne's data were used 
with the corresponding natural frequencies and mode-shape components for the top eight floors . 

The optimized model predicts a roof mass 2.04 times larger than the typical noor mass. 
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JPL Building 180, E-W Direction (Teledyne's 1971 Data) 

Inter-story Stiffness Values 

B, B, B3 B. Bs B. B7 B. B. BIO 

Model (All stiffness values x 1Q8Nm-' ) 

W-1 22.8 42 .4 2.79 3.77 6.12 6.04 6.16 3.89 3.07 4.54 

W-Opt 33.9 61.8 3.91 5.24 8.56 8.36 8.49 5.14 5.01 8.66 

Table 6.12: SUB-ID-SS parameter estimates corresponding to Teledyne's modal data (only three 

modes were employed). The first model assumes the original mass distribution while the second uses 

the SUB-ID-Modal optimized mass estimate. 

JPL Building 180, E-W Direction (SU B-ID-Modal) 

Inter-story Stiffness Ratios 

0, B, B3 B. Bs Bs B7 B. B. B,o 

Model 

WIN -1 0.232 0.243 0.949 1.52 1.33 1.54 1.18 1.24 0.979 1.28 

W IN -Opt 0.259 0.273 1.07 1.37 1.39 1.52 1.06 1.72 1.31 1.86 

Table 6. 13: Ratios of stiffnesses for each interstory level from results estimated by SUB-ID-

Modal. The numerator corresponds to the stiffness level calculated after the San Fernando earth-

quake from Teledyne's data and the denominator corresponds to the stiffnesses derived from Nielsen's 

data prior to the earthquake. 

J PL Building 180, E-W Direction (SU B-ID-SS) 

Inter-story Stiffness Ratios 
B, B, B3 B. Bs Bs B7 B. B. B,o 

Model 

WI ' -1 nla nla 0.757 0.893 0.986 1.08 1.04 0.663 0.534 0.903 

W IN -Opt nla nla l.04 1.23 1.37 1.49 1.44 0.893 0.901 l.813 

Table 6.14: Ratios of stiffnesses for each interstory level from resul ts estimated by SUB-ID-

SS The numerator corresponds to the stiffness level calculated after the San Fernando earthquake 

from Teledyne'S data and the denominator corresponds to the stiffnesses derived from Nielsen 's data 

prior to the earthquake. The lowest two stories were fixed when using Nielsen 's data in order for 

t he algori thm to converge. 
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Figure 6. 1: Schematic drawings of JPL Ollilding 180 (taken from Nielsen [6 .1]) . 
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Figure 6.2: Modeshapes correspond ing to the first three modes of JPL Building 180 determined 
from Nielse n's experimental data and various identified models (E-W direct ion) . 
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JPL Building 180 (Lytle Creek earthquake) 
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Figure 6.4: (a) Ampli tude spectrum and (b) time history of the 1970 Lytle Creek earthquake 
accelerations at the base of JPL Building 180 (E-W direction). 
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JPL Building 180 (Lytle Creek earthquake) 
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Figure 6.5: (a) Empirical transfer function between the 1970 Lytle Creek earthquake base 
motion and the roof response for JPL Building 180 (E-W direction), and for the ~ I ODE-ID and 
SUB-ID-Time predicted models; (b) match in the time domain. 
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JPL Building 180 (San Fernando earthquake) 
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JPL Building 180 (San Fernando earthquake) 
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by the various techniques/models (Tables 6.13 and 6.14). The curve at the '4' ratio level represents 
the addition of all calibrated cu rves. This curve conveys an idea of the average stiffness distribution. 
The stiffness at the ninth floor level dips but it does not go much below the value determined from 
Nielsen's data, before the addition of the non-structural elements. 
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Chapter 7 Discussion and Conclusions 

Section 7.1 - Problems III Structural Identification 

Both srnall and large structures present characteristics or "problems" which prevent the precise 

identification of a structural model. Problems in identification faU primarily into t hree areas: 

(1) Experimentally-based problems: These problems relate to variations in the values of 

the signals attributable to er rors in the measurements. Among these, three stand out as the 

most important: (la) measurement noise, (lb) calibration erroc, and ( le) synchronization error. 

Measurement noise can induce ill-conditioning since modal information (such as that coming from 

higher modes) Illay not be recovered from the response signals, thus reducing the number of 

independent data significantly. Noise should virtually disappear when modern instrumentation is 

used. Calibration errors are the worst type of problems since they are almost impossible to detect 

from the records alone, although the instruments can be periodically re-calibrated. Changes in the 

amplitudes of the recorded signals innuence all modes of vibration and can, in particular , alter t he 

estimated modeshape values. Lack of synchron ization among the signals alter the estimates more 

than any other error but wit.h proper use of correlation procedures , these problems can be avoided 

almost entirely. 

(2) Model-data interaction problems: These are problems in which both the amount of data 

available and the model chosen determ ine whether the estimates are reliable. The data is assumed 

to be clean data, i.e., data effective ly free from experimental problems. ~Ilodel-data interaction 

problems include two most important problems: (2a) ill-conditioning in the optimization process , 

and (2b) non-uniqueness in the parameter estimates. III-conditioning is present whenever the model 

response is not sensitive to the individual model parameters. A characteristic of ill-conditioning is 

the very slow convergence of the optimization procedure to a minimum. Often, the optimization 

algor it hm prematurely converges to parameter estimates which predict modal pa rameters or time­

histories close to those observed. To remedy this, more information should be obtained from tbe 

structural response. For most applications, it is also important to know whether t here is uniqueness 
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in the parameter estimation . For exam ple, is there a unique parameter vecto r producing the global 

minimum of the error index J in the output-error approach ? Uniqueness requires a sufficiently 

parsimonious model relative to the a mount and nature of the data available. The simplified structural 

model used in this work , involving the add ition ofsub-strudure stiffness matrices scaled with stiffness 

factors , would benefit from the development of sufficient conditions for uniqueness, but this has 

proved to be a very challenging task. 

(3) Model-based problems: These problems are related to choosing a model which can predict 

the observed behavior. Modeling from the point of view of this study includes both the discretization 

of the structure in terms of a finite number of degrees of freedom and also discretization of the 

structure in terms of sub-structures. The choice of the appropriate model is a difficult problem since 

there is generally a trade-off between the desired precision in resolving the stiffness distribution and 

the amount of computat ion time needed for the estimation algorithms to converge to a solu t ion. 

C hoosing a model with a small number of degrees of freedom which is not able to represent closely 

the observed response leads inevitably to parameter est imates which do not have direct physical 

interpretation and may give misleading conclusions . Refi ning the model usually requires increasing 

the number of degrees of freedom in the structure or rearranging the sub-structuring of the structure. 

Increasing the number of degrees of freedom by itself increases the computational time needed to 

calculate either the moda l parameters or the response t ime histories. There is a remote possibility 

that overall optim izat ion computat ional time may be red uced when the number of degrees of freedom 

is increased . It is possible, in other words, t hat the improved model and the data a llow a faster 

convergence to a physically-acceptable solution. On the other hand , increasing the number of degrees 

of freedom in the model may not necessarily improve the model. The choice of sub-structures a lso 

affects the modeling since it does not allow the independent identification of the stiffness factors 

associated with each member in the structure. However , if a stiffness factor is assigned to each 

member, it is most likely that the es timation problem will suffer from excessive ill-conditioning or 

non-uniqueness. Non-uniqueness can be handled approp riately by the homotopy method but only 

for structures with a small number of degrees of freedom, at present . 

\Vhen the modeling is incorrect , it is extremely difficult to determine whether t he parameter 

estimates are in a close neighborhood of the "best" physical set of values. It is , indeed, difficult 

to determine if there is such a thing as a "best" set of values. Good linear structural models are 

those in which the paramet.er est imates yield erro r fits as good as the ones provided by m oda l 

parameter est imation algorithms, provided the latter are also accurate. Modal models generally 

provide the best fit that any linear model is capable of giving and should be cons idered as an 

important complementary tool in linear structural identification. Genera lly, if a modal identification 

algorithm can match the observed data very accurately, the struct ural identifi cation algor ithm should 

be able to do so too, if t he model is appropria.tely chosen. Errors in the response match which a re 

much larger t han t hose for the modal identification suggest significant structural model error. If the 
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identified modal model does not perform adequately, then the assumptions made in its development 

shou ld be reconsidered , e.g., are classical modes acceptable? , viscous damping?, linearity? , etc. Even 

in the case where t he st ructural identifi cation match is as good as the modal identification match , 

there can still be model error . 

In the case where estimated parameter values are not physically reasonable, these can be 

constrained in the algorith m proced ure by utilizing additional prior knowledge. For damage detection 

purposes, t hese types of constraints may not be conducive to an appropriate ident ifi cation procedure. 

Constraining parameters infl uences t he estimation of t he other parameters since there is generally a 

tracie-off among the paramet.ers in order to retain simil ar modal properties . For example, to keep a 

certain modal frequency fixed , one can increase the value of one stiffness parameter while decreasing 

the values of others. From this example, it is conceivable that contraints on some parameters in the 

presence of model error may preclude the others from arriving at "damage level" values. 

Fu ll confidence in a model is gained only when the optimal set of parameters is unique, produces 

nearly perfect agreement with the abu ndant (if possible) observed data, and the parameter values 

agree wi th one's physical intuition. There are models, e.g., a chain model , wh ich can accurately 

match the recorded response of a structure, e.g., a framed structure, and yie ld physically acceptable 

parameter estimates, but these estimates may provide the wrong information to t he engineer. For 

examp le, t hey might imply a mass or stiffness dist ribution whi ch is, in real ity, incorrect. In general, 

and especially when suspect para meter est imates are obtai ned , the identification procedu re should be 

repeated with each $'ubset of observed data , separately and in groups. Correct models a re more likely 

to give consistent results for each subset of data while incorrect models a re more likely to predict 

different parameter estimates. The data should include as varied testing conditions as possible 

in order to make su re many modes of vibration are excited . The model can be used with more 

confidence if the estimates are consistent in all possible tests. 

Section 7.2 - Rules of Thumb 

Experience d ictates t he following steps should be taken for efficient damage detect ion of 

st ructures: 

A) P rior to the use of real data: 

(1) Choose two FE (or other) models: the first one should be a detai led model whose behavior 

is to be much closer to that of the rea l structure than that of the second model. T he latter should 

also be discretized sufficiently well to allow for a representative behavior of the undamaged state of 

structu re (if available) but its main characteristic is that it is computationally effi cient for repeated 

evaluation in an output·er ror type code or for use wi th a homotopy technique. It is then important to 
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determine the maximum number of trustworthy modes that can be expected from the simple model 

(by comparison wi th the modal parameters derived from the complex model). Establish , if possible, 

a model for which the number of parameters is no morc than the number of modes available , unless 

practicaJly all modeshape information is available. 

(2) "Calibrate" the simpler computational model with the simulated data employing the 

equivalent of SUB-lD-Ti me, SUB-lD-Modai and/or SUB-ID-SS. 

(3) Study the ill-conditioning of the problem by performing a check of either the gradient 

of the J error index for the outp ut-error approaches or the cond ition number for the successive 

substitutions algorithm. Add some noise to the simu lated data, if the real data is expected to be 

highly contaminated. Add more modes (by refi ning the computational model first) or add/reallocate 

the sensors to red uce any ill-condition ing. 

(3) Study non-uniqueness by using the equivalent of SUB-ID-SS, if possible. Otherwise , use 

SUD-ID-Homotopy if enough computational power is available. Otherwise, start the minimization 

runs from as many different points as the number of exist ing sub-structures. In each of the latter 

runs, start the minimization close to each of the a.xes, respectively, near the expect.ed observed 

fundamental frequency. In creasing the nUlllber of modes or adding/reallocating the sensors, as 

mentioned above, should help remove non-uniqueness. 

B) Using the real data: 

(1) Determine which of the two , time-domain data or modal data, is to be used , or trusted. 

(2) If in the time domain, (2a) synchronize the records and (2b) filter the data with a low-pass 

filter a.t a. frequency above the one correspondi ng to the last trustworthy mode . Use other filters 

only if the causes of t he noise or interference a re well known. (2c) Employ data in the signals until 

the ampli t ude of t he response decays significantly relative to the data in t he large-motion segment 

(unless the expected values of the estimates are known). 

(3) If in the modal domain, determine what weighting shou ld be used according to the amount 

of data and according to the ultimate lise of the data (other than damage detection?). 

(4) Perform time-window ana lyses to check if the stru cture has undergone considerable non­

linear behavior. 

(5) Once some damage pattern has been established for a given structu re from t he available data, 

refine the model by sllb-stru cturing t he potentially damaged region(s). An in crease in the numb er 

of parameters OJ , needed for the refi nement, shou ld be prevented in order to avoid iU-conditioning 

and/or non-uniqueness. This can be accomplished by keeping, in the next optimization, the "stable" 

and "unstable" 0i (those OJ which did not change much or in creased in the prior optimization, 
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respectively) fixed at t he nominal values. 

Section 7.3 - Future Research 

For each of the methodologies presented in this study, a number of additions can improve upon 

what has been done here: 

Additions to SUB-ID-Time - ( I) Determine a method for finding , or at least bounding, all 

non-unique solu tions within the para meter space . (2) Some attempts have been made to remove 

the banana valley in situations whe re ill-conditioning exists. T his has been done by mat hematically 

remapping the local topology to one in which the shallow valley is straightened out and made 

pa rallel to the transformed axes. In this way, the local topology has been converted to one where 

the convergence to the local minimum is attained efficient ly by most optimization algorithms. (3) 

A formal measure of the flatn ess of the banana valleys by means of an eval uation of the gradient of 

J along the valley direction. In this way, ill-conditioning can be determined more precisely. 

Additions to SUB- ID-~ Ioda l- ( I) Introd uce t he participation factors into the formulation in the 

case where the modal identification program provides such information, as is the case for program 

MODE-ID. 

Addi t ions to SUB-ID-SS - ( I ) Recast t he fun ction 1 (0) to prevent t he repeated divergence 

which occurs in the current vers ion whenever the modeshape information is in complete. 

Additions to SUB-ID-Hol11otopy - (I) Determine, early into the homotopy path , whether t he 

end values will turn out complex (with large imaginary components). 1f so, t hen discard solution 

immediately. Solu tions such that t he imaginary component is small should be studied more closely 

since these might indi cate that the current model is somewhat close to the system, and it might be 

reliab le enough to detect damage zones. (2) Determine wh ether the a lgori thm can be par titioned 

adequately for irnplementat.ion in a massively parallel computer (most likely so!). 

Section 7.4 - Conclusions 

~tode ls with few parameters which possess a clear mechanical interpretat.ion have a llowed for 

more informative damage detection proced ures than other more ad hoc app roa.ches (such as those in 

which all component.s of the stiffness matri..x are independently est. imated) . In t he former , it is very 

likely that a configu ration wh ich provides unique parameter estimates can be found . In particular , 

t he addition of t he homotopy techn ique gives a novel method to completely determine all non-unique 

pa rameter distributions fo r the general structural ident ifi cat ion problem . 
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Although methods such as the ones described above are computationally intensive, they can be 

implemented for use with simple structural models on small computers allowing for the continuous 

heal t h monitoring of important structural systems. More efficient methods, however, should be 

developed to make the analysis of large, more complex models feasible . Before long , nevertheless , 

commercially available computational power will allow the use of the present set of algorithms for 

such cases. 

In summary, experime nta l errors should be minimized, especially syn chronizat ion errors . Model­

data interaction problems can be a nalyzed prior to using data from the experimental or real 

structure by studying simulated data where the exact parameter values are known . Yet it is clear 

from the foregoing how difficult it is to determine a model wh ich is (a) computationally efficient, 

sufficient ly refin ed to allow for (b) good response pred iction and (c) damage detection without (d) 

non-uniqueness or ill-conditioning. Problems arising at this stage, such as non-uniqueness or iII­

conditioning, may be resolved with the addition of more data or different placement of the sensors. 

In this way, beLter designs for the experimental set-up can be achieved. 

Special attention must be paid to the modeling process so that the resulting model can be 

identifiable. \¥ithou t a good identifiable model, t.he parameter estimates may be misleading. In 

limiting situations where a very simple model is used , however, the es timat.es may still provide 

enough informat.ion lead ing to the detection of general a reas of damage. The results presented in 

this st.udy are very encouraging although some effi ciency-related difficul t ies remain . 


