
A Framework for Adaptive Routing in
Multicomputer Networks

Thesis by

John Y. Ngai

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1989

(Submitted May 17, 1989)

Copyright© John Y. Ngai, 1989
All Rights Reserved

11

111

Acknowledgments

During the years that I stayed as a student at Caltech, numerous people either taught

me or helped me along the way. A detailed list of everyone is simply much too long

to be included here; however, a number of individuals definitely stand out and deserve

special mention. First, I would like to express my deepest thanks to my thesis adviser,

Chuck Seitz, for his support and encouragement during all these years. This thesis

simply would not have been possible without his guidance and inspiration. I thank all

the members of my reading committee: K. Mani Chandy, Joel Franklin, Alain Martin,

Edward Posner and Chuck Seitz for their helpful suggestions and constructive criticisms.

I would like to express special thanks to Arlene DesJ ardins, who has made this

department a pleasant place in which to study and to do research. She has always

been responsive to my requests for help, and made sure that things were always there

when I needed them. Special thanks also goes to Dian De Sha, who spent weeks sieving

through my idiosyncratic and sometimes baroque English, and made numerous sugges

tions that greatly improved the readability of the final manuscript. Any remaining bugs

are obviously my sole responsibility.

Wen-King Su, Jakov Seizovic, Don Speck, Michael Lichter, and Joe Beckenbach all

deserve special thanks for providing an excellent computing environment for me to carry

out my work. They have put up with my numerous questions and demands along the

way, and have never hesitated to help whenever I asked.

I like to thank Nancy Zachariasen, Angela Blackwell, and Cindy Ferrini for their

help in locating reference books and research materials, and I am grateful to Bill Athas,

Charles Flaig, Craig Steele, and Wen-King Su for their helpful discussions. The friend

ship of Marcel van der Goot, Tony Lee, Drazen Borkovic, Nanette Boden, and many

others that has made Caltech an enjoyable place to be is also appreciated.

Finally, deep thanks go to my parents, who brought me up in a warm and happy

family, for their love which is beyond words, and for their resolute determination to

provide me with the best opportunity in education. I also owe special thanks to my

brother, Peter Ngai, for his constant encouragement. Above all, I thank God for His

infinite grace and love.

lV

The research described in this thesis was sponsored in part by the Defense Advanced

Research Projects Agency, DARPA Order number 6202, and monitored by the Office of

Naval Research under contract number N00014-87-K-0745; and in part by grants from

Intel Scientific Computers and Ametek Computer Research Division.

V

Abstract

Message-passing concurrent computers, also known as multicomputers, such as the Cal

tech Cosmic Cube [47] and its commercial descendents, consist of many computing nodes

that interact with each other by sending and receiving messages over communication

channels between the nodes. The communication networks of the second-generation

machines, such as the Symult Series 2010 and the Intel iPSC2 [2], employ an oblivious

wormhole-routing technique that guarantees deadlock freedom. The network perfor

mance of this highly evolved oblivious technique has reached a limit of being capable

of delivering, under random traffic, a stable maximum sustained throughput of~ 45 to

50% of the limit set by the network bisection bandwidth, while maintaining acceptable

network latency. This thesis examines the possibility of performing adaptive routing

as an approach to further improving upon the performance and reliability of these net

works. In an adaptive multipath routing scheme, message trajectories are no longer

deterministic, but are continuously perturbed by local message loading. Message pack

ets will tend to follow their shortest-distance routes to destinations in normal traffic

loading, but can be detoured to longer but less-loaded routes as local congestion occurs.

A simple adaptive cut-through packet-switching framework is described, and a num

ber of fundamental issues concerning the theoretical feasibility of the adaptive approach

are studied. Freedom of communication deadlock is achieved by following a coherent

channel protocol and by applying voluntary misrouting as needed. Packet deliveries are

assured by resolving channel-access conflicts according to a priority assignment. Fair

ness of network access is assured either by sending round-trip packets or by having each

node follow a local injection-synchronization protocol.

The performance behavior of the proposed adaptive cut-through framework is stud

ied with stochastic modeling and analysis, as well as through extensive simulation exper

iments for the 2D and 3D rectilinear networks. Theoretical bounds on various average

network-performance metrics are derived for these rectilinear networks. These bounds

provide a standard frame of reference for interpreting the performance results.

Vl

In addition to the potential gam m network performance, the adaptive approach

offers the potential for exploiting the inherent path redundancy found in richly connected

networks in order to perform fault-tolerant routing. Two convexity-related notions are

introduced to characterize the conditions under which our adaptive routing formulation

is adequate to provide fault-tolerant routing, with minimal change in routing hardware.

The effectiveness of these notions is studied through extensive simulations. The 2D

octagonal-mesh network is suggested; this displays excellent fault-tolerant potential

under the adaptive routing framework. Both performance and reliability behaviors of

the octagonal mesh are studied in detail.

A number of implementation issues are examined. Encoding schemes for packet

headers that admit simple incremental updates while providing all necessary routing

information in the first flit of a relatively narrow flit width are developed. A pipelined

control structure that allows a packet to cut through an intermediate node with a

minimum delay of two cycles is described. A distributed clocking scheme is developed

that eliminates the problem of global clock-signal distribution. Under this clocking

scheme, the adaptive routers can be tessellated to form a network of arbitrary size.

Vll

Contents

List of Figures X

1 Introduction 1

1.1 Multicomputer Networks . 2

1.2 Cut ... Through Switching 5

1.3 Adaptive Multipath Routing 7

1.4 Overview of Thesis 10

2 Feasibility 13

2.1 An Adaptive Cut-Through Model . 14

2.2 Communication Deadlock Freedom 18

2.2.1 The Coherent Channel Protocol 19

2.2.2 Properties of the Coherent Protocol 21

2.2.3 Deadlock Freedom 24

2.3 Potential Lack of Progress 27

2.4 Packet-Delivery Guarantees 32

2.4.1 Buffering Discipline and Requirement 33

2.4.2 Static Environment . 36

2.4.3 Dynamic Environment 38

2.5 Packet-Injection Guarantees . 41

2.5.1 Packet-Injection Mechanism . 42

2.5.2 Token-Recirculation Scheme . 43

2.5.3 Injection-Synchronization Protocol 45

2.6 Summary .. 51

CONTENTS Vlll

3 Performance 53

3.1 The Performance Metrics 54

3.1.1 The Principal Performance Metrics . 54

3.1.2 Bounds on Network Performances 57

3.2 Adaptive Cut-Through Switching Decision . 59

3.3 Stochastic Modeling and Analysis . 63

3.3.1 The Assignment Statistics 65

3.3.2 Stochastic Equilibrium . 67

3.4 The Simulation Experiments 73

3.4.1 The Assumptions . 74

3.4.2 The Experiments 77

3.5 The Simulation Results 81

3.5.1 Single-Packet Messages 82

3.5.2 Variable-Length Multipacket Messages 89

3.5.3 Reactive Message Traffic 101

3.5.4 Congestion-Controlled Message Traffic 113

3.5.5 Fast Fourier Transform Traffic 122

3.6 Summary 126

4 Reliability 128

4.1 Routing in Faulty Networks 129

4.1.1 The Fault-Tolerant Routing Problem . 130

4.1.2 A Simple Fault Model ... 132

4.2 Systematic Fault-Tolerant Routing 133

4.2.1 The Convex Subset 134

4.2.2 The Communication Kernel 136

4.3 Computational Considerations 138

4.3.1 Computational Complexity 139

4.3.2 Approximating Heuristics 140

4.4 Simulation Experiments and Results 142

4.5 The Octagonal Mesh Network 151

4.5.1 The Routing Relation 151

CONTENTS

4.6

4.5.2 Reliability Assessment ..

4.5.3 Performance Assessment .

Summary

5 Realization

5 .1 Congestion Control .

5.2 Header Encoding . .

5.2.1 Rectilinear Mesh

5.2.2 Octagonal Mesh

5.3 Storage Management ..

5.3.1 Bounded-Length Message Packets

5.3.2 Bounded-Length Packet Storage

5 .4 Adaptive Control

5.4.1 A Pipelined Control Scheme .

5.4.2 The Decision Logic Structures

5.4.3 A Speedup Opportunity

5.5 Distributed Clocking

5.6

5.5.1 The Synchronization Protocol .

5.5.2 Circuit Derivation

Summary

6 Conclusions

Bibliography

lX

153

160

167

168

169

171

172

176

179

181

182

185

185

189

192

194

196

197

201

203

210

List of Figures

1.1 Programmer's Model of a Multicomputer

1.2 Store-and-Forward versus Cut-Through Routing

1.3 A Simple Adaptive Routing Example

2.1 Structure of a Node

2.2 A Variety of Deadlock Prevention Techniques

2.3 A Two-Phase Signaling Realization of the Coherent Protocol

2.4 Deadlock-Free Routing under the No-Blocking Convention .

2.5 Livelock due to Bad Routing Assignments ..

2.6 Livelock due to Lack of Routing Assignments

2.7 Inability to Inject Packets

2.8 Accounting of All Possible Cases of Buffer Allocation .

2.9 Inside the Message Interface

3 .1 An Assignment Decision Having a Preferred Direction

3.2 Sequential Assignment Probabilities for a 2D Torus .

3.3 Sequential Assignment Probabilities for a 3D Torus .

3.4 Network Latency versus Applied Load: 2D Torus

3.5 Network Latency versus Applied Load: 3D Torus

X

2

6

9

17

19

21

26

28

29

30

35

42

62

67

67

71

71

3.6 Erlangian Distribution: Mean= 96 and Standard Deviation= 32 . 76

3.7 Single-Packet Message Latency of 2D Torus 85

3.8 Single-Packet Message Latency of 3D Torus 85

3.9 Single-Packet Message Latency of 2D Mesh 86

3.10 Single-Packet Message Latency of 3D Mesh 86

3.11 Single-Packet Message Throughput for 2D Networks 87

3.12 Single-Packet Message Throughput for 3D Networks 87

LIST OF FIGURES x1

3.13 Single-Packet Message Source-Queueing Time for 2D Networks 88

3.14 Single-Packet Message Source-Queueing Time for 3D Networks 88

3.15 Variable-Length Message Latency for 2D Mesh 94

3.16 Variable-Length Message Latency for 3D Mesh 94

3.17 Variable-Length Message Latency for 2D Torus 95

3.18 Variable-Length Message Latency for 3D Torus 95

3.19 Variable-Length Message Throughput for 2D Networks . 96

3.20 Variable-Length Message Throughput for 3D Networks . 96

3.21 Average Adaptive-Router Queue Population for 2D Networks 97

3.22 Average Adaptive-Router Queue Population for 3D Networks 97

3.23 Variable-Length Message Source-Queueing Time for 2D Networks . 98

3.24 Variable-Length Message Source-Queueing Time for 3D Networks . 98

3.25 Average Reassembling/Resequencing Buffer Population for 2D Mesh 99

3.26 Average Reassembling/Resequencing Buffer Population for 3D Mesh 99

3.27 Average Reassembling/Resequencing Buffer Population for 2D Torus 100

3.28 Average Reassembling/Resequencing Buffer Population for 3D Torus 100

3.29 State Transition Rate Diagram for Asymptotic Utilization Analysis . 105

3.30 Oblivious Network Throughput under Reactive Traffic for 2D Mesh . 107

3.31 Adaptive Network Throughput under Reactive Traffic for 2D Mesh . 107

3.32 Oblivious Network Throughput under Reactive Traffic for 3D Mesh. 108

3.33 Adaptive Network Throughput under Reactive Traffic for 3D Mesh . 108

3.34 Adaptive Network Throughput under Reactive Traffic for 2D Torus. 109

3.35 Adaptive Network Throughput under Reactive Traffic for 2D Torus. 109

3.36 Oblivious Processor Utilization under Reactive Traffic for 2D Mesh 110

3.37 Adaptive Processor Utilization under Reactive Traffic for 2D Mesh 110

3.38 Oblivious Processor Utilization under Reactive Traffic for 3D Mesh 111

3.39 Adaptive Processor Utilization under Reactive Traffic for 3D Mesh 111

3.40 Adaptive Processor Utilization under Reactive Traffic for 2D Torus . 112

3.41 Adaptive Processor Utilization under Reactive Traffic for 3D Torus . 112

3.42 Throughput Comparison for Single-Packet Messages in 2D Mesh 116

3.43 Throughput Comparison for Single-Packet Messages in 3D Mesh 116

3.44 Throughput Comparison for Multipacket Messages in 2D Mesh . 117

LIST OF FIGURES

3.45 Throughput Comparison for Multipacket Messages in 3D Mesh

3.46 Latency Comparison for Single-Packet Messages in 2D Mesh ..

3.47 Comparison of the Standard Deviations of the Latencies for Single-Packet

Messages in 2D Mesh

3.48 Latency Comparison for Single-Packet Messages in 3D Mesh.

3.49 Comparison of the Standard Deviations of the Latencies for Single-Packet

Messages in 3D Mesh .

3.50 Latency Comparison for Multipacket Messages in 2D Mesh

3.51 Comparison of the Standard Deviations of the Latencies for Multipacket

Messages in 2D Mesh .

3.52 Latency Comparison for Multipacket Messages in 3D Mesh

3.53 Comparison cf the Standard Deviations of the Latencies for tv1ultipacket

Messages in 3D Mesh .

3.54 The Data Dependency Graph of Fast Fourier Transform ..

3.55 Computation Rate per Node - Delivered versus Available.

4.1 A Convex Survived Set in a 2D Mesh Network ..

4.2 A Convex Survived Subset in a 2D Mesh Network .

4.3 An Example Communication Kernel in the 2D Mesh

4.4 Binary-10-Cube with Node Faults ..

4.5 Binary-10-Cube with Channel Faults

4.6 4-Ary-5-Mesh with Node Faults ..

4.7 4-Ary-5-Mesh with Channel Faults

4.8 32 x 32 Rectilinear Mesh with Node Faults

4.9 32 x 32 Rectilinear Mesh with Channel Faults

4.10 A Comparison of Yield with Node Faults

4.11 A Comparison of Yield with Channel Faults

4.12 A Typical Kernel for the 2D Mesh Network

4.13 The Octagonal Mesh Network

4.14 A Worst Possible Route in the Octagonal Mesh

4.15 16 x 16 Octagonal Mesh with Node Faults

4.16 16 x 16 Octagonal Mesh with Channel Faults

Xll

117

118

118

119

119

120

120

121

121

123

125

135

137

139

146

146

147

147

148

148

149

149

150

150

153

156

156

LIST OF FIGURES

4.17 32 x 32 Octagonal Mesh with Node Faults

4.18 32 x 32 Octagonal Mesh with Channel Faults

4.19 Another Comparison of Yield with Node Faults

4.20 Another Comparison of Yield with Channel Faults

4.21 A Kernel Configuration Induced by Isolated Faults

4.22 A Kernel Configuration Induced by a Cluster of Faults

4.23 Reclaimed Convex Network B - 235 Nodes and 891 Channels

4.24 Reclaimed Convex Network C - 199 Nodes and 836 Channels

4.25 Normalized Throughput for Single-packet Message

4.26 Average Latency for Single-packet Message

4.27 Normalized Throughput for Variable-length Message

4.28 A.verage Latency for Variable-length :Message

5.1 Decrement-by-One Operations Under the {0, 1, M} Alphabet

Xlll

157

157

158

158

159

159

164

164

165

165

166

166

...... 173

5.2 Update Automaton for the Sign-and-Magnitude Encoding Using {0, 1, M}174

5.3 Decrement-by-One Operations Under the {0, 1, Z} Alphabet . 175

5.4 A Five-Bits Packet-Encoding Layout for a 3D Rectilinear Mesh 176

5.5 Diagonal Channel Encoding: Signs of A(X + Y) and A(X - Y) . 178

5.6 Diagonal Channel Encoding: Signs of AX,AY, and JAXJ-JAYJ 178

5.7 Decrementing the Radix-4 Representations 180

5.8 A Possible Conceptual Layout of the Adaptive Router 187

5.9 A Conceptual Pipelined Control Scheme for the Adaptive Router 188

5.10 Maximum Matching Probabilities for a 2D Network 190

5.11 Maximal Matching Probabilities for a 2D Network . 190

5.12 Maximum Matching Probabilities for a 3D Network 190

5.13 Maximal Matching Probabilities for a 3D Network . 190

5.14 A Bilateral Iterative Decision-Network for Profitable Assignments. 191

5.15 Simulated Average Coherent Cycle Delay for a 16 x 16 Mesh 193

5.16 Clock Synchronization Circuit 200

1

Chapter 1

Introduction

The advances in VLSI technology allow us to build large-scale computing structures con

sisting of many processing elements that operate concurrently. Among these, message

passing concurrent computers, also known as multicomputers, such as the Caltech Cos

mic Cube [47] and its commercial descendents [2] consist of many computing nodes that

interact with each other by sending and receiving messages over communication channels

between the nodes (see Figure 1.1). The communication networks of the medium-grain

second-generation machines, such as the Symult Series 2010 and the Intel iPSC/2, em

ploy an oblivious wormhole routing technique that guarantees communication-deadlock

freedom. For fine-grain message-passing concurrent machines, such as the Caltech Mo

saic [32], it has become progressively more difficult to achieve the desired network per

formance necessary to support fine-grain concurrent computations (3]. In particular, the

bisection-bandwidth capacity of physically realizable communication networks grows at

a rate that is slower than the expected message traffic, which is likely to be at least

linear in the total number of computing nodes [13].

To improve the overall performance of these machines, it is necessary to improve the

performance of both the computing nodes and the underlying communication networks.

Continuing advances in instruction-interpreting processors (3,13,32] promise to deliver

more raw power to the individual computing nodes in these machines. On the other

hand, the network performance of this highly evolved oblivious technique has reached

the limit of delivering, under random traffic, a stable maximum sustained throughput

of~ 45 to 50% of the limit set by the network-bisection bandwidth while maintaining

acceptable network latency. Further improvements on these networks will require an

CHAPTER 1. INTRODUCTION

COMMUNICATION NETWORK

C1 C2 C3 CN

~------) y
N nominally identical processing "nodes"

Figure 1.1: Programmer's Model of a Multicomputer

2

)

adaptive utilization of available network bandwidth to help diffuse local congestion. In

an adaptive multipath routing scheme, message trajectories are no longer unique and

deterministic, but are continuously perturbed by local message loading. Message packets

will tend to follow their own shortest-distance routes to destinations in normal traffic

loading, but can be detoured to other longer but less-loaded routes as local congestion

occurs. Furthermore, an adaptive routing scheme can potentially support a hot-spot

throughput that is equal to the total communication bandwidth of the generating node

rather than to the bandwidth of a single communication channel [13], as it is in the case

of an oblivious scheme.

In addition to the potential gain in network performance, an adaptive multipath

routing scheme also opens up the possibility of enhancing the reliability of these large

scale networks by performing fault-tolerant routing. In particular, we observe that the

communication networks that are popular among existing multicomputers are already

very richly connected. An adaptive multipath routing scheme has the potential for

taking advantage of the inherent path redundancy in these richly-connected networks;

this is otherwise impossible to exploit under the oblivious restriction.

1.1 Multicomputer Networks

While the specific details of multicomputer communication networks differ depending on

the connection topologies and the adopted routing schemes, it is still possible to discern

CHAPTER 1. INTRODUCTION 3

a number of common operating characteristics among the high-performance members.

In this section, we shall review these general operating characteristics for multicomputer

networks, and shall compare them with those found in the more familiar geographically

distributed networks. To start, we observe that one of the common characteristics

shared among multicomputers in general, and the fine-grain machines in particular, is

that the hardware resource per node is rather limited. For example, given the current

VLSI technology as the implementation medium, we can generally expect the average

medium-grain machines to have megabytes of main memory, whereas the corresponding

average in a fine-grain machine is likely to remain at about a few tens of kilobytes. An

immediate consequence of having such small memory capability per node is that the

amount of internal message buffer that each node can afford to devote to supporting

routing will be very limited.

These characteristics are in contrast to those found in loosely-coupled networks, such

as the ARPANET [39]. For example, in these loosely-coupled networks, message buffer

ing space per node is usually much more abundant. In light of the continuing decline in

storage cost, any shortage experienced at a node of these networks should be considered

as an underdesign. Communication deadlock in such networks is practically nonexistent;

hence, deadlock detection and recovery schemes can be used to handle the remaining

rare occasions without compromising the performance of these networks. Such schemes

can hardly be justified in tightly-coupled multicomputer networks intended to support

massively concurrent computations, and the issue of guaranteeing deadlock freedom

must lie at the heart of any practical routing scheme proposed for such networks.

Another common characteristic generally shared among multicomputer networks de

signed to support massive concurrency is that, for performance reasons, these networks

are all physically very tightly coupled, where the multicomputer nodes are physically

clustered together in the same spatial locale. As a result, when driven properly, the

signal-propagation delay across a communication channel need not be any slower than

the on-chip circuit delay. This small signal-propagation delay creates an opportunity

that is absent in the loosely-coupled networks. Specifically, it affords the possibility of

a cycle-by-cycle flow-control mechanism, which has been employed successfully in the

oblivious wormhole routing implementations [11,14]. In fact, it allows us to regulate

the incoming and outgoing message traffic rate on the same cycle-by-cycle basis. As we

CHAPTER 1. INTRODUCTION 4

shall see, this makes it possible to implement a misrouting discipline that underscores

our freedom from communication-deadlock result. Implementing a similar scheme in a

loosely-coupled network would be prohibitively inefficient, if not technologically infea

sible.

In much the same way, the multicomputer networks, unlike geographically dis

tributed networks, are usually installed in well-protected environments; hence, the signal

transmission error rate across a channel is extremely small and generally negligible. In

fact, there is no reason to expect the transmission error rate to be any worse than that

of a memory fetch inside a processor system. This is in contrast to the loosely-coupled

store-and-forward routing networks that cover wide geographical areas, and where the

communication links could be subjected to adverse external environmental conditions.

The extremely lo\v transmission error rate attained in the tightly-coupled n111ltico111-

puter networks creates the opportunity to allow us to employ more aggressive routing

techniques, such as virtual cut-through switching [25] to enhance the performance of

these networks, and to reduce the requirements for internal buffering. An overall end

to- end error-detection and -correction scheme would be sufficient to handle the few rare

error occurrences in these networks, and would eliminate the need for the point-to-point

error detection and correction that necessitates the store-and-forward mode of message

routing. Cut-through switching will be discussed in greater detail in the next section.

Perhaps the main impact of being so physically tightly-coupled is that the multi

computer networks operate typically at two orders of magnitude faster than the local

area networks, such as the Ethernet, or the geographically distributed networks, such as

those based on Tl lines. For example, the Ethernet runs at 10 Mb/sand the Tl carrier

runs at 1.544 Mb/s, whereas under the current routing chip technology, the multicom

puter channel speed is approaching 1 Gb/s [2,14]. The immediate result of having such

fast channels is that we typically have only lO's of nanoseconds to make the routing de

cisions in cut-through switching, rather than having microseconds or even milliseconds

as it is in the case of the slower networks. At such high switching speed, the amount

of information that a routing algorithm can afford to examine during decision making

is severely constrained. In any case, the routing protocols employed in multicomputer

networks must remain very simple.

Yet another common characteristic generally shared among multicomputer networks

CHAPTER 1. INTRODUCTION 5

is that these networks almost always employ very regular network topologies for their

connections. One immediate advantage of using regular connection topologies is that

they usually allow one to define simple algorithmic routing procedures that eliminate

the requirements to store and to consult routing tables. This is desirable in light of the

very limited available resource at each node, and is also absolutely essential in these high

speed multicomputer networks where the routing function must be implemented directly

in hardware. Another advantage of using regular topologies is that they also suggest

systematic layouts, and this is convenient for configuring arbitrarily extensible systems.

The elimination of routing tables, however, raises the new issue of how to perform

fault-tolerant message routing when some of the nodes and channels are broken, thus

destroying the regularity of the original network connection topology.

1.2 Cut-Through Switching

It is clear that in order for any routing scheme to compete favorably with the existing

highly evolved oblivious scheme, it must employ a switching technique akin to vir

tual cut-through. The main advantage of cut-through switching or its blocking variant

known as wormhole routing [11], which is used in the existing oblivious routers, is the

very low message latency attained under light-traffic conditions. In cut-through rout

ing, packets are forwarded to their next intermediate nodes along the route as soon as

sufficient header information has arrived to allow its outgoing channel to be selected.

This is different from the conventional store-and-forward networks, where entire packets

must be received before being forwarded. Figure 1.2 depicts a graphic comparison of

the total packet latencies of the two approaches: In store-and-forward routing, the total

latency is the product of the length of the packet and the number of hops the packet has

to travel. In cut-through routing, the total latency becomes instead the sum of the two

quantities. For almost any reasonable message length, this will result in a substantial

reduction of the total message latency. Not only is the latency reduced substantially

for messages that traverse more than one channel; for messages with lengths that are

long compared to the message distances, it also becomes relatively insensitive to the

distance. This insensitivity in message distances reduces the importance of message lo

cality in concurrent computations. It allows nonlocal communication to be used without

CHAPTER 1. INTRODUCTION

SOURCE

NODE A

NODE B

DESTINATIO

I<

SOURCE NODE A

• • Packet with 8

TIME

PACKEf LATENCY

STORE-AND-FORWARD ROUTING

data

NODE B DESTINATION

• • flits Header Flit

Ill

SOURCE

NODE A

NODE B

DESTINATIO

r(PACKEf>I
LATENC

CUT -THROUGH ROUTING

Figure 1.2: Store-and-Forward versus Cut-Through Routing

6

TIME

incurring much degradation in message latency in an environment that operates under

moderate traffic density [13].

We distinguish between wormhole routing, which is employed in the oblivious routers

used in such existing second-generation multicomputers as the Symult Series 2010 and

the Intel iPSC/2, and the cut-through routing technique, which is adopted in this thesis.

These two techniques have been motivated by different conceptual models. In wormhole

routing, the head of a packet will be immediately forwarded along its route whenever

there is no conflict in channel access, or when the channel becomes idle. When a channel

access conflict occurs, the packet is blocked behind the busy channel, waiting for it to

become available. The body of the packet occupies the channels along its route, whereas

the tail of the packet releases these occupied channels as it makes its way toward the

destination. In cut-through routing, packets behave exactly as they do in the wormhole

technique, as long as no channel-access conflict occurs. When the requested channels are

busy, however, the entire packet will be stored in the intermediate node at the collision

spot. Because of the requirement to store packets at intermediate nodes, long messages

CHAPTER 1. INTRODUCTION 7

must be partitioned into shorter packets for transmission.

The cut-through routing technique can be considered as a hybrid between circuit

switching and store-and-forward switching. In particular, under relatively light traffic

density, channel-access conflicts will be rare, and, therefore, the network will operate

predominantly in circuit-switching mode. As the traffic density increases, collisions will

become increasingly common, until heavy traffic density causes the network to operate

predominantly in the store-and-forward switching mode. The operation of wormhole

routing, on the other hand, can be considered as an improvement over conventional

circuit switching in that both the circuit setup and the circuit release operations oc

cur concurrently with the actual transfer of message data. Because wormhole routing

is primarily a circuit-switching technique, the only reason to partition long messages

into shorter packets for transmission is to achieve stronger fairness in channel usage.

Furthermore, message arrival order between each source-destination pair is always au

tomatically preserved.

1.3 Adaptive Multipath Routing

In order to establish the background for the presentation of the adaptive routing frame

work in the next chapter, in this section, we introduce informally the basic ideas and

considerations behind the adaptive multipath routing approach studied in this thesis.

We shall illustrate the ideas using a 3D rectilinear mesh network. These considerations

are also directly applicable to other regular communication structures.

A routing algorithm is oblivious [8,12] if the route followed by a message is prede

termined by its source-destination pair. For rectilinear meshes, under the consumption

assumption, i.e., any message arriving at its destination will be consumed, a very sim

ple oblivious scheme that guarantees communication-deadlock freedom is to route the

messages in dimension order. For example, on a 3D mesh, a possible scheme is al

ways to route first along the X-dimension, reducing t::.X to zero, and then along the

Y-dimension, reducing t::.Y to zero, and finally along the Z-dimension, reducing t::.Z to

zero [14]. To see that this scheme is indeed deadlock-free, observe that because of the

dimension ordering, a message waiting for a busy +z direction channel must be destined

to a node that lies along a Z-axis having the same X- and Y-coordinates, and with a

CHAPTER 1. INTRODUCTION 8

Z-coordinate that is larger than the Z-coordinate at the place where blocking occurs.

Furthermore, neither this message nor the one blocking it and so forth, will request

any channel other than the + Z direction channels. This reduces the dependencies into

a linear list. Given the consumption assumption, we can guarantee that any message

routed along the Z-dimension will eventually be delivered. The same argument can

now be applied to the messages blocked along Y-dimension channels. They must be

blocked either by packets destined to nodes along the same Y-axis, or by packets that

are waiting for the Z-dimension channels. In both cases, the blocking will eventually be

released. Therefore, all messages routed along the Y-dimension channels will eventually

be delivered. A similar argument applied to X-dimension channels establishes delivery

for all messages in the network.

On the other hand, ·we observe that on the 3D mesh, if we want to forward a mes-

sage to a node that is AX hops away along the X-dimension, AY hops away along

the Y-dimension, and AZ hops away along the Z-dimension, then there are a total of

(AX+AY+AZ) 1 d"lr h d" . . . h . d . . t.X!t.Y!t.Z!. 111erent s ortest- istance routes Jommg t e message to its estmat1on.

At places where more than one dimension has a nonzero delta quantity, sending the mes

sage out along either one of these dimensions toward its destination may be considered

equally profitable, in that each will bring the message one hop closer to its destination.

Indeed, depending on a message's current location relative to its destination, it may be

profitably routed out in one of a total of 33 -1 = 26 different possible output-channel

combinations. An adaptive control can take advantage of the extra flexibility that some

messages have of being able to route profitably in more than one direction. This is dif

ferent from the oblivious routing strategy, where the entire message route is determined

solely by its source and destination nodes.

For example, consider the situation depicted in Figure 1.3, where we have a node with

two incoming messages and two messages that are cutting through the node. The two

incoming messages request, respectively, the output channels +Y or +z, and -Y or -Z.

If we follow the oblivious deadlock-free strategy of always routing along the Y dimension

before the Z dimension, then both messages will be blocked in front of the Y-dimension

channels. Under an adaptive control, both messages can immediately cut through the Z

dimension channels. However, this same example also exposes a serious communication

deadlock problem in multipath routing that demands a solution. In particular, since the

CHAPTER 1. INTRODUCTION 9

Oblivious Routing i /' + y Adaptive Routing

~+x

Figure 1.3: A Simple Adaptive Routing Example

two incoming messages are forwarded across the Z-dimension channels before they have

finished traversing their Y-dimension channels, we are no longer following the dimension

order routing restriction. This can create cyclic dependencies among the messages and

cause communication deadlock. For example, in wormhole routing, deadlock can now

occur when a message becomes a member of a set of messages blocked in a cycle where

each is unable to proceed until the next one releases its occupied channel.

Methods to prevent communication deadlock have been intensively researched and

many schemes exist; of these, the methods of structured buffer pools [37] and virtual

channels [12] are representative. In essence, all of these methods approach the problem

by remapping any dependency that is potentially cyclic into a corresponding acyclic

dependency structure. However, these methods require either a buffer size per node

that grows with the diameter of the network, or a large number of virtual channels

per node in order to allow multipath routing. In this thesis, we adopt a different

and very simple technique that is independent of network size and topology, by using

misrouting. Misrouting was first suggested in [8] in a different context for networks that

employ data-exchange operations. In our approach, a misrouting discipline is adopted to

eliminate communication deadlock. It allows us to follow a no-blocking convention that

CHAPTER 1. INTRODUCTION 10

is equivalent to breaking the potentially cyclic dependencies into disjoint paths of unit

length. However, this elimination of communication deadlock is obtained with a cost.

In allowing misrouting, we have created the burden to demonstrate network progress

in the form of assuring message delivery. This and other progress-related issues will be

examined in detail in Chapter 2.

A fundamental characteristic of our adaptive routing control is that it forwards

any message passing through the node according to a decision policy based entirely on

locally available information. In particular, we depend on the ability of the adaptive

multipath routing control to direct messages along many alternate routes in order to

smooth out any temporary congestion and disperse the local traffic hot spots. The more

numerous the number of alternate routes a message can follow, the more effective this

multipath strategy will be. Adaptation occurs entirely at the local level where messages

are forwarded through one of their profitable channels depending on the specific traffic

engagement at the time of decision.

1.4 Overview of Thesis

We now give a very brief overview of this thesis. In Chapter 2, we present the adaptive

cut-through packet switching framework adopted in this thesis. This framework provides

the context for the discussion of several fundamental issues concerning the theoretical

feasibility of our adaptive routing approach. In particular, the discussion focuses on the

issues of assuring freedom from communication deadlock, assuring progress inside the

network, i.e., the eventual delivery of every message packet in transit in the network;

and assuring fairness in network access, i.e., the eventual injection of any queued packet

into the network. Communication deadlock is rendered a non-issue by the adoption of

a misrouting discipline. Packet delivery is guaranteed by choosing a suitable priority

assignment for each packet. Packet injection is guaranteed by introducing a cooperative

injection protocol between neighboring nodes. The successful resolution of these issues

is important for any message communication network supporting reliable concurrent

computation.

In Chapter 3, we study the performance of the proposed adaptive cut-through rout

ing scheme from stochastic modeling and analysis, as well as through extensive simu-

CHAPTER 1. INTRODUCTION 11

lation experiments. In particular, our study focuses on the two-dimensional and three

dimensional rectilinear meshes and tori. These low-dimensional rectilinear networks

represent connection topologies that are realistically implementable, are regular, and

provide simple algorithmic routing procedures that enable direct hardware realization

of the routing control. We extend the packet-injection-assurance protocol described in

Chapter 2 to provide more spontaneous congestion control for the adaptive schemes.

We study the effectiveness of this congestion-control protocol and confirm it through

simulations. In this chapter, we also present theoretical bounds on the various average

network performance metrics for random traffic over these networks. These bounds

provide a standard frame of reference to interpret the performance results.

In Chapter 4, we investigate the potential network reliability enchancement offered

by the adaptive approach through exploiting the inherent path redundancy in the richly

connected networks to perform fault-tolerant routing. The main focus of the study is

how to accommodate the increasing irregularity in a network with faults, because ir

regularity renders algorithmic routing difficult and complicated. We introduce two

convexity-related notions that characterize the conditions under which our adaptive

routing formulation is adequate for providing fault-tolerant routing in the survived net

works, and with little change in the original hardware. We study the effectiveness of

these notions through extensive simulations. Based on the simulation results, we sug

gest the 2D octagonally-connected mesh network, which displays excellent fault-tolerant

potential under the adaptive routing framework. We study both the performance and

the reliability behaviors of the octagonal mesh.

In Chapter 5, we examine several major implementation issues. In particular, wear

gue for the use of the congestion-control protocol studied in Chapter 3 as a much simpler

practical alternative to the use of packet priorities in enhancing network progress. We

describe a number of header encoding schemes for these rectilinear and octagonal meshes

that admit simple incremental update while providing all necessary routing information

in the first flit with a relatively narrow flit width; a possible buffer organization capable

of storing variable-length packets; and a pipelined organization for implementing the

adaptive routing control. We suggest an iterative network realization of the assignment

decision process, and describe a simple distributed clocking scheme that eliminates the

problem of global clock signal distribution. Under this clocking scheme, the adaptive

CHAPTER 1. INTRODUCTION 12

routers can be tessellated to form a network of arbitrary size.

In Chapter 6, we conclude this thesis with the discussion of a number of issues and

open problems that have been suggested during the course of this investigation.

13

Chapter 2

Feasibility

If there is any advantage to be gained by making adaptive routing decisions rather

than oblivious ones, it must come from the flexibility to exploit alternative routes.

Such flexibility must be introduced in ways that still guarantee freedom from deadlock.

The concept of virtual channels [12] provides a way to develop deadlock-free routing

algorithms in arbitrary direct networks that employ the wormhole routing style. While

it is possible in certain special cases to allow for multiple alternative routes using virtual

channels, the task becomes progressively more difficult in more complex routing schemes

and network topologies. The concept of a structured buffer pool [37] developed for

store-and-forward computer communication networks provides a general approach for

introducing alternate deadlock-free routes into an arbitrary packet switching network.

However, these schemes in general require a buffer pool that grows with the network

size, and hence are not feasible in fine-grain multicomputer communication networks,

where resources at the node level are finite and scarce, and the network is arbitrarily

extensible.

In this thesis, we consider networks that employ a coherent transfer [42] protocol,

rather than the block until clear then forward mechanism used in wormhole [11] routing

or the packet acknowledge mechanism used in store-and-forward [6] routing, as the basic

node-to-node data transfer protocol. By enforcing the rule that all communicating par

ties agree to maintain the local invariance of always being able to accept another round

of requests from neighbors through preemption of the requested resources if necessary,

the coherent transfer model avoids the necessity of having to block, i.e., hold a packet

and wait until the requested resource becomes available and has been acknowledged.

CHAPTER 2. FEASIBILITY 14

Data transfer is guaranteed locally between every pair of adjacent nodes that act as

partners in the data transfer operations. Adopting voluntary misrouting as a strategy

to overcome the constraint of fixed finite local resources, however, creates the need to

demonstrate message delivery and network progress.

In section 2.1 of this chapter, we present a simple model for the discussion of adap

tive routing schemes that allows us to examine in detail a number of feasibility issues

fundamental to any message communication network supporting reliable concurrent

computations. In particular, in section 2.2, we consider the issue of assuring communi

cation deadlock freedom in spite of the introduction of arbitrary adaptive routes. The

notion of a coherent data transfer protocol is introduced that allows for the adoption of

voluntary misrouting. In section 2.3, we examine additional issues concerning network

progress, setting the stage for the development foliowed in sections 2.4 and 2.5, where

we discuss methods to assure packet delivery and network access in detail. Finally, in

section 2.6, we comment on a few remaining issues and summarize the chapter.

2.1 An Adaptive Cut-Through Model

In this section, we describe a simple model for the discussion of adaptive routing schemes

in multicomputer networks. The model includes just enough structure to provide a

context for the discussion of a number of fundamental issues in distributed systems.

The following definitions develop the notation that will be used throughout the entire

thesis.

Definition 2.1 A multicomputer network, M, is a connected undirected graph, M =
G(N,C). The vertices of the graph, N, represent the set of computing nodes. The

edges of the graph, C, represent the set of bidirectional communication channels.

Definition 2.2 Let ni E N be a node of M. The set, Ci ~ C, is the set of bidirec

tional channels connecting ni to its neighbors in M. However, for the convenience of

presentation, we shall occasionally distinguish between the input and output directions

of a communication channel; in such case, it will be referred to specifically as either an

input or an output channel.

Definition 2.3 The width, W, of a channel is the number of data wires across the

channel. A flit, or flow control unit, is the W parallel bits of information transferred in

CHAPTER 2. FEASIBILITY 15

a single cycle. The flit provides a natural unit for measuring the length of a packet.

Definition 2.4 Let .M : N x N f---t I denote a metric function from the set of ordered

pairs of nodes to the set of nonnegative integers, such that .M (ni, ni) = 0 if and only if

i = j, and such that .M(ni,nk) ~ .M(ni,ni) + .M(nj,nk)- An example of such a metric

is the graph-theoretic distance function between any pair of nodes.

Definition 2.5 Given a metric function .M, a channel Cj E Ci that connects node ni

to node ni is profitable with respect to node nk if and only if .M(ni, nk) > .M(nj, nk)

In other words, forwarding a packet across a profitable channel will always reduce the

packet's distance from its destination.

Definition 2.6 For each node ni E N, the routing relation; ~' is the set of ordered

pairs (nk, Cj), where nk -f- ni is a node and Cj E Ci is a profitable channel from ni with

respect to nk. For convenience, we shall also use the notation Rik to denote for each

possible destination node, nk E N, its corresponding profitable channel set, from ni.

Definition 2. 7 The actual path a packet traverses while in transit in the communi

cation network is referred to as the trajectory of the packet. Packet trajectories are

identical to the packet routes in oblivious routing schemes but are nondeterministic in

our adaptive formulation.

We assume the following:

• Long messages are broken into packets that are the logical data entities transferred

across the network.

• Packets are of fixed length; i.e., packet length = L, where L is a network-wide

constant.

• Complete destination information is included in the header flit of length one in

each packet.

• Message packets are forwarded in virtual cut-through style; i.e., packets can im

mediately be forwarded once sufficient routing information has arrived to permit

the corresponding routing decisions.

CHAPTER 2. FEASIBILITY 16

• Once a packet has started transmission across a channel, it cannot be interrupted

until the transmission of the entire packet has completed.

• A message packet arriving at its destination is consumed. This is commonly known

as the consumption assumption.

• A node can generate messages destined to any other node in the network.

• Nodes can produce packets at any rate subject to the constraint of available buffer

space in the network, and packets are source queued.

• Each node in the network has complete knowledge of its own routing relation.

Figure 2.1 presents our view of the structure of a node in a multicomputer network.

Conceptually, a node can be partitioned into a computation subsystem, a communi-

cation subsystem, and a message interface. The computation subsystem consists of

conventional processor and memory modules, whose internal structures do not concern

us. For our purpose, the computation subsystem serves as the producer and consumer

of the messages routed by the communication subsystem of the node. The message in

terface consists of dedicated hardware that handles the overhead in sending, receiving,

and reassembling message packets. Internally, the communication subsystem consists

of an adaptive control and a small number of message-packet buffers. Routing decisions

are made by the adaptive control, based entirely on locally available information.

Complete knowledge of routing relations can be realized either by storing routing

tables at each node, or by having a well-defined procedure to generate elements of the

routing relations on the fly. Such procedures are particularly simple in highly regular

network topologies such as the k-ary-n-cubes. The bidirectional channel assumption is

different from the unidirectional channel assumption adopted in [11]. Having bidirec

tional channels allows the network to exploit locality in general message communication

patterns. Another important property of the bidirectional channel assumption is that it

assures an identical number of input and output communication channels in each node,

irrespective of the underlying network topology. The fixed packet-length assumption is

not essential, and can be replaced by a bounded packet-length assumption, i.e., packet

length :::; L, without invalidating any of our major results. It is adopted solely to sim

plify our subsequent exposition. Furthermore, engineering considerations also favor the

CHAPTER 2. FEASIBILITY

Processor

Memory

Router

~ 0
V ~

~

Receiving Injection

Message
Interface

Figure 2.1: Structure of a Node

17

-I
0

:;o
0
C
,-;-
(D ,

CHAPTER 2. FEASIBILITY 18

fixed-length assumption over the bounded-length assumption, since the former is likely

to admit much simpler hardware implementations.

2.2 Communication Deadlock Freedom

As it was mentioned at the beginning of the chapter, the ability to assure freedom

from communication deadlock is essential to any practical routing schemes proposed for

multicomputer networks. In this section, we shall examine the issue of communication

deadlock in detail and demonstrate how voluntary misrouting can be applied to assure

deadlock freedom.

Communication deadlock is caused generically by the existence of cyclic dependen

cies among communication resources along the message routes. Methods to prevent

communication deadlock have been intensively researched [19,59], and many schemes

exist; of these, the methods of structured-buffer pools [37] and virtual channels [12] are

representative (see Figure 2.2). In essence, all of these methods approach the problem

by remapping any dependency that is potentially cyclic into a corresponding acyclic

dependency structure. These methods employ restructuring techniques that require in

formation of a global, albeit static, character. The length from a source to a sink in

these acyclic dependency structures is typically much longer than one. Depending on

the size of the network and, hence, the length of these dependency chains, in general,

one cannot put a fixed bound on the duration of the request-acknowledge transfer cycle

across a channel, even though it is guaranteed to be finite.

In contrast, the simple technique of performing voluntary misrouting was suggested

in [8] for synchronous networks that employ data exchange operations. Voluntary mis

routing utilizes only local information, and is independent of network size and topology.

It prevents deadlock by breaking the potentially cyclic communication dependencies into

disjoint paths of unit length. In fact, a similar notion lies behind the packet exchange

model described in the author's earlier report [41], where the cyclic dependencies are

broken and replaced by local cycles of length two. Voluntary misrouting can be ap

plied to assure deadlock freedom in cut-through switching networks, provided the input

and output data rates across the channels at each node are tightly matched. A simple

way is to have all bidirectional channels of the same node operate coherently under the

CHAPTER 2. FEASIBILITY

CYCLIC DEPENDENCY

BASIC EXCHANGE COHERENT PROTOCOL

Figure 2.2: A Variety of Deadlock Prevention Techniques

data-transfer protocol described in the next subsection.

2.2.1 The Coherent Channel Protocol

19

We now describe the coherent channel data-exchange protocol in detail. It is used to

match the transfer rates across all channels of the same node. The protocol employs

four control signals per channel, two from each of the communicating partners, and is

completely symmetric between the partners. The signaling events for a channel c E C

are defined as follows:

• R~ - Qutput event to the communicating partner indicating that this node is

Ready to accept another input flit from its partner. It also serves as an acknowl

edgment to its partner for the successful completion of the previous transfer cycle.

• Rf - input event from the communicating partner indicating that the partner is

Ready to accept another output flit from this node. It is also an acknowledgment

from the partner for the successful completion of the previous transfer cycle.

• V0c - Qutput event to the communicating partner indicating that the data flit

values currently held at the output channel of this node are Yalid and its partner

CHAPTER 2. FEASIBILITY 20

should latch in the held values.

• V/ - input event from the communicating partner indicating that the data fl.it

values currently asserted at the input channel of this node are Valid and the node

should latch in the held values.

Since the coherent channel protocol is used to match the transfer data rates across all

channels of a node, it is natural to generate the same handshaking output control signals

Ri, and V
0
c for all the output channels of the same node. In other words, for node nk,

we have:

We now proceed to define our handshaking protocol across channels of a node, nk E N,

in a CSP-like notation [33]:

*[Ro, [Ve Eck, Rt]; apply out data; ½,, [Ve Eck, V/]; latch in data l

where R0 and V0 denote, respectively, the unique outgoing Ready and data Valid sig

naling event to all neighbors. Briefly, the protocol works as follows: The pair of R0 ,

Rf events is used to synchronize the communicating nodes across the channel into the

common state of being ready to accept another round of data exchange with its partner.

Similarly, the V0 , V/ pair of events serves to synchronize the nodes into the common

state of being able to latch in a valid input data flit from its partner. The handshaking

events R0 , Rf interlock with the events V0 , V/ to guarantee the stability and strict alter

nation of each other. This strict alternation of input and output events suffices to match

the transfer rates of opposite directions across a channel. On the other hand, matching

of output data rates across all channels of the same node is immediate, since they all

share the same output control signals, R0 and V0 • In contrast, matching of input data

rates across all channels of the same node is enforced through the synchronized wait for

the Rf and V/ signaling events from every neighbor of the node. These notions will be

formalized explicitly in the next subsection. The initial state of a channel after network

startup has both directions of the channel ready to accept a new data flit. Notice that the

operation of the exchange protocol with this defined initial state proceeds in a demand

driven fashion that is different from the usual supply-driven request-acknowledge cycle.

CHAPTER 2. FEASIBILITY 21

Output Channel Data

Request for Ou put R. R.
I

Output Data Va id C
Input Acknownle ge

0 C 0

Request for lnp ut

v.
I

v.
I

Input Channel Data

Figure 2.3: A Two-Phase Signaling Realization of the Coherent Protocol

Figure 2.3 shows a possible conceptual realization of the exchange protocol under the

two-phase signaling convention popular for off-chip communication [48].

Observe that under cut-through switching, a packet can span many different chan

nels. An outgoing channel occupied by a packet may not be able to assert V0 until

after valid data has been asserted by the corresponding incoming channel occupied by

the packet; this induces matching of data rates across the two occupied channels. The

notion of coherency introduced here is a natural way to accommodate such potential de

pendencies among the various channels of a node under cut-through switching. Another

notion that arises naturally is that of a null flit. The coherent protocol defined above

enforces an equal transfer rate along opposite directions across each physical channel at

all times. To effect a transfer of data in one direction of a channel while the opposite

direction is idle, the receiving partner is required to transmit a null fl.it in order to satisfy

the convention dictated by the exchange protocol.

2.2.2 Properties of the Coherent Protocol

The coherent protocol exhibits a number of interesting and useful logical properties

that we shall now investigate. These properties will be exploited later to establish our

CHAPTER 2. FEASIBILITY 22

fundamental results on packet deliveries and injection fairness.

Let N(Rf), N(R0), N(V/), and N(V0) denote, respectively, the total number of

occurred R'f, R0 , V/, and V0 events across a channel c E Ck since initialization. The

following invariant conditions are satisfied by a bidirectional channel that follows the

coherent protocol under the defined initial conditions:

(Il)
(12)
(13)

0 < N(R0) - N(V/)
O < N(Rf) - N(V0)

O < N(Rf) - N(V/)
(14) 0 < N(Ro) - N(Vo)

< 1
< 1
< 1
< 1

The first two inequalities simply express causality conditions implied by our demand

driven protocol: A node transfers valid data to an output channel only after the receiving

partner has indicated its readiness to accept. The last two inequalities express condi

tions that are direct results of the strict alternation of ready and data-valid events and

the specified initial state. In essence, it requires the communicating nodes to send their

data out, i.e., increment N(V0) and N(V/), respectively, only after the nodes themselves

have indicated their willingness to accept new data from their respective partners. To

gether, these conditions result in a cycle-by-cycle exchange of data flits between the

communicating nodes connected by the channel. Subtracting the two pairs of invari

ant conditions from one another, we obtain the following pair of invariant conditions,

\:/c Eck, of a node nk:

(I5) 0 <
(I6) 0 <

IN(Rf) - N(Ro)I
IN(V/) - N(Vo)I

< 1
< 1

The tight matching of the data transfer rates of the opposite directions of a channel

has been made explicit by these two invariant conditions. The strategy is to equalize

the number of data-flit transfer operations back and forth along the channel to within a

difference of at most one at all times. This is equivalent to restricting the communicating

partners to within a syn chronic distance of one from each other in the Petri Net theoretic

sense [45]. Similarly, according to our initial set of invariants, we have for different

channels of the same node nk:

(I2) 0 < N(Rf) - N(Vo) < 1 \:/c E Ck
⇒ (17) 0 < IN(R?) - N(R?)I < 1 \:/c1, c2 E Ck
(Il) 0 < N(Ro) - N(V/) < 1 \:/c E Ck
⇒ (18) 0 < IN(V/1

) - N(V/2)1 < 1 \:/c1,c2 E Ck

CHAPTER 2. FEASIBILITY 23

In other words, we are assured that the data rates across different channels of the same

node are matched to each other at all times.

Observe that according to the protocol, each node inside the network carries out the

required handshaking with its nearest neighbors locally without any global knowledge of

the states of nodes farther away. In fact, nodes that are of distance d apart in the network

are of synchronic distance f d/21 from each other; i.e., they may have their respective

total number of cycle completions differ by as much as f d/21. To see this, let node no be

the source, and consider a path of length d joining nodes nk, k = I, 2, ... , d-I, d, which

are, respectively, distance i away from no. According to the invariant condition (17), we

have O ~ IN(R;1) - N(R?)I ~ I, Vc1, c2 E Ck of the same node nk. Therefore, nodes

nk-l and nk+l, which are both neighbors of nk, can have their number of completed

cycles differ by at most 1. Applying this fact to nodes no, n2, n4, ... makes it dear

that the cumulative difference between no and nd can be as much as and no more than

f d/21. Global synchrony does not exist and there is no global synchronization signal to

be distributed over the entire network. As a result, a network following the protocol is

potentially infinite in size, or, realistically, arbitrarily extensible.

While there is no global synchrony of events nor any unique global clock over the

entire network, the local synchrony enforced by the coherent protocol allows one to

define a set of local clocks that are compatible with each other. More precisely, we

define the value of a discrete local clock Tk of a network node nk E N as the total

number of R0 signaling events occurred after initialization of the node. Intuitively, each

R0 event signals both the completion of the previous transfer cycle and the beginning

of the next cycle, when new decisions have to be made within each node to determine

if data are to be forwarded to neighboring nodes or to be buffered internally. Hence,

one is justified in regarding the R0 events as defining local clock cycles with each clock

cycle corresponding to a routing epoch.

Let each message packet, Pm, traveling inside the network, keep count, Am, of the

total number of R0 events that Pm has observed since its injection. Two local clocks,

Ti and Tk, of nodes nj, nk EN, respectively, are compatible if a packet, Pm, traveling

in the network starting from node nj at local time Tj = TJ with count Am = A:n, and

ending at node nk at local time Tk = Tk with count Am = A;,,, will find, upon its arrival

CHAPTER 2. FEASIBILITY 24

at nk, an agreement:

Tke - Tl! = Ae - As
J m m

To see that the defined set of local clocks is indeed compatible, observe that we only

have to establish its validity when our packet, Pm, is being forwarded to the next node

along its trajectory during a protocol cycle; otherwise, the count recorded by the packet

simply tracks the local time of its resident node. During the actual transfer of Pm from

one node to another, the sender signals the beginning of the transfer with a V0 event, thus

incrementing N(V0). The coherency constraints dictate that N(R0) = N(Rf), \/c EC

at the sender side at this point; hence, the sender and all its neighbors must have

identical clock values. When the receiver signals the completion of transfer with its

own R 0 event, Pm is already at the receiver side. Therefore, both the receiver's local

clock value and the count recorded by Pm are incremented, preserving the agreement

between packet count and the local clock value. Compatibility of local clocks follows by

induction.

As a result of the compatibility of the defined set of local clocks, the recorded count

values are not only consistent with the local clocks, but also consistent with each other.

Specifically, let AA = Am - An be the difference in the recorded count values of packets

Pm and Pn upon a rendezvous: The value ..6.A will remain identical upon all future

rendezvous of the same packets Pm and Pn• In other words, we are justified in defining

the value Am as being the age of the packet Pm· The existence of a well-defined age

for packets in a coherent network allows us to define meaningful dynamic priorities that

are essential in establishing packet-delivery guarantees. Furthermore, the basic protocol

cycle provides a natural partition of continuous physical time into a sequence of discrete

epochs upon which local routing decisions are made.

2.2.3 Deadlock Freedom

In the previous subsections, we have described the coherent data-transfer protocol for

the physical channel, and examined its various properties in detail. In this subsection,

we establish deadlock freedom assurance for coherent networks that apply voluntary

misrouting as the means to prevent buffer overflow. To proceed, observe that routing

under the cut-through switching model imposes the following integrity constraints:

CHAPTER 2. FEASIBILITY 25

1. Packets must always be forwarded to neighbors with their header flits transmitted

first. In particular, voluntary misrouting of any internally buffered packet must

start from the header flit of the selected packet.

2. Once the flit stream of a packet has been assigned a particular outgoing channel,

the assignment must be maintained for the remaining cycles until the entire packet

has been transmitted.

These constraints exist because all of the necessary routing information of a packet is

encapsulated in the packet header. Interrupting a packet flit stream mid-transfer would

render the latter part of the packet undeliverable. For a communication network that

follows the coherent protocol, assurance of freedom from communication deadlock glob-

ally over the network is equivalent to assurance of progressive protocol execution locally

at each node. The notion of progressive protocol execution can be quantified in terms

of the total number of completed protocol cycles. In other words, assurance of commu

nication deadlock freedom is translated into assurance of eventual increase in the total

number of completed cycles over every node of the network. In particular, it is sufficient

to show that each node can independently complete each transfer cycle and initiate a

new one, without violating the stated constraints. To see this, take any snapshot of the

network and observe that nodes having the minimum number of completed cycles will

eventually increase their numbers, and, hence, the global minimum, provided the above

constraints can always be satisfied. This in turn implies that the number of completed

cycles in every node must also eventually increase. We now show that as long as we have

an equal number of input and output channels per node, a condition that is satisfied

readily by our bidirectional channel assumption, we can always satisfy the stated logical

requirements, and, hence, assure freedom from communication deadlock.

Theorem 2.1 Let M denote a coherent multicomputer network where each node has

an equal number of input and output channels. If M employs voluntary misrouting to

prevent potential buffer overflow, then it is free from deadlock.

Proof. We need to show that buffer overflow can always be prevented by misrouting

without violating the cut-through switching integrity constraints. We proceed with a

counting argument: Let d denote the number of channels at a node. During a protocol

CHAPTER 2. FEASIBILITY 26

I!
Figure 2.4: Deadlock-Free Routing under the No-Blocking Convention

cycle, there may be as many as n* ::; d new data flits arriving at the input channels. A

fraction of these, 0::; n1 :S n*, are new header flits; the remaining n*-n' are payload flits

of arriving packets. Of these pay load flits, a fraction of them, 0 ::; n" :S n * -n', belong to

packets that have already been assigned output channels, and the remaining n*-n1-n11

flits belong to waiting packets that are buffered inside the node. Therefore, the node

has at least a total of n'+(n*-n'-n") header flits that are eligible for immediate routing.

Hence, in the following cycle, a node can find at least n'+(n*-n'-n")+n" = n* flits that

can be transmitted or misrouted without violating the cut-through switching integrity

constraints. This assures that no buffer overflow will occur. The node can always

complete its protocol cycle and initiate the next protocol cycle; hence, the network is

free from deadlock. ■

Since the validity of the above proof does not depend on a node's storage capacity,

deadlock freedom is established independent of the amount of available buffer space.

The simple criterion of having an equal number of input and output channels is sufficient

to assure deadlock freedom for a coherent network. Figure 2.4 depicts a possible scenario

when there is no internal storage for a node with four channels. Any packet that arrives

is immediately shuttled away through one of the output channels. In practice, additional

CHAPTER 2. FEASIBILITY 27

buffers are needed in order to inject packets into the network, and to improve the network

performance. The reader may have noticed from the above proof that although deadlock

freedom is guaranteed as long as the number of input channels is equal to the number

of output channels, there is some real danger of an inability to deliver packets. This

fact will be discussed in much greater detail in the following section.

2.3 Potential Lack of Progress

The coherent exchange model eliminates the possibility of deadlock in the adaptive cut

through switching formulation by guaranteeing the transfer of data flits at the node-to

node level. Packet transfer at the source-to-destination level, however, is not immediate.

In particular, a network can run into a livelock. Consider the sequence of routing

scenarios depicted in Figure 2.5 for a bidirectional ring consisting of eight nodes and

eight packets. Eack of the packets consists of four data flits that span multiple channels

and internal buffers. Suppose the nodes employ the following simple, deterministic,

packet-to-channel assignment rule: Whenever two incoming packets both request the

same outgoing channel, the packet from the clockwise neighbor always wins. Given

that, initially, nodes A, C, E, and G each receive two packets destined to nodes that

are, respectively, distance two from them in the clockwise direction, then after four

routing cycles, the packets are all back to where they started! In other words, the

network enters a livelock cycle. This example illustrates how packets can be forever

denied delivery to their destinations even in the absence of communication deadlock.

Channel-access competitions are, however, not the only type of conflict that can lead

to livelock. Consider the situations depicted in Figure 2.6 for the same bidirectional

ring network. The traffic patterns are coincidental in such a way that none of the

packets will ever have a chance to select its own output channel; rather, at every node,

each packet must be forwarded along the only remaining channel, in compliance with

the voluntary misrouting discipline, in order to avoid deadlock. It is clear that no

matter what assignment strategy one chooses, it is impossible to break this kind of

livelock without adding extra buffers per node. In other words, additional measures

and resources have to be introduced in order to assure progress, i.e., delivery of packets,

in the network.

CHAPTER 2. FEASIBILITY 28

i
2 3

1 4

Figure 2.5: Livelock due to Bad Routing Assignments

CHAPTER 2. FEASIBILITY 29

4 1

3 2

Figure 2.6: Livelock due to Lack of Routing Assignments

CHAPTER 2. FEASIBILITY 30

Figure 2.7: Inability to Inject Packets

We distinguish between several different types of progress guarantees that should

be present in a multicomputer communication network. First, every individual packet

in transit across the communication network should be guaranteed delivery within a

bounded finite period. A weaker form guarantees that some packets in transit across

the network will be delivered within a bounded finite period. In this weaker form, we

are assured of some global progress inside the network, but can make no corresponding

statement about each and every packet.

The second type of progress guarantee concerns the initial injection of packets into

the communication network. Consider the pathological situation depicted in Figure 2.7,

where a node situated at the cross point of continuous heavy traffic can be prevented

from sending packets into the network for an unbounded amount of time. This happens

because a node has only bounded finite capacity and the coherent protocol dictates a

strict balance of incoming and outgoing traffic across the channels of a node. Ideally,

every node that has a packet queued for entry into the network should be guaranteed

access into the network within a bounded finite period.

There are a number of other related considerations besides these two types of

progress guarantees. Depending on the intended programming model and semantics to

CHAPTER 2. FEASIBILITY 31

be supported by the multicomputer network, it may be necessary to guarantee preser

vation of message order between any pair of communicating nodes [47]. Usually, this

requirement is satisfied at a higher level of abstraction than we have discussed here.

For example, one simple way to enforce message order preservation is through the use

of acknowledgments. A sender will not send out another message until the arrival of

its previously sent message has been acknowledged. Another standard way is to store

within every receiving node, a message arrival count for each potential sending node.

The arrival counts allow the nodes to determine the sequence number of the next arrival

message in correct order. Unfortunately, these schemes suffer such obvious drawbacks

as longer message latencies due to the wait for acknowledgments, or extravagant use

of memory due to the storage of arrival counts. In this respect, actor languages [1]

that do not assume message order preservation in their basic language semantics, ap-

pear to be ideal candidates for being supported in networks implementing the adaptive

formulation.

Another closely related issue concerns the transmission of multipacket messages.

In an adaptive routing scheme, the different packets of a multipacket message may be

forwarded along different routes and will not necessarily arrive at the destination node

at the same time. If a message can only be consumed at the destination node after

the whole message has been received, then reassembly deadlock can arise, where packets

of different messages fill up all the available buffering space of a node and prevent

any of the partially delivered messages from being reassembled [56]. Here, we shall

assume that message reassembly is accomplished in the node memory by the message

interface hardware. The node memory is normally much larger than the relatively

small number of buffers available inside the router; hence, reassembly deadlock is very

unlikely. In any case, its effective resolution requires coordination across higher levels

of abstraction. In the following sections, we shall focus on describing basic schemes for

assuring individual packet injection and delivery in networks that employ the adaptive

cut-through switching formulation.

CHAPTER 2. FEASIBILITY 32

2.4 Packet-Delivery Guarantees

The preceding discussion establishes the need to assure packet injection and delivery.

In this section, we address the problem of devising general schemes for assuring indi

vidual packet delivery. General schemes for assuring individual packet injection will be

discussed in the next section.

In general, given a fixed network topology and the set of routing relations in each

node of the network, there could conceivably be a number of different ways to assure

eventual packet delivery. For example, one may approach the problem by picking a

packet-to-channel assignment scheme that exploits the underlying network topology

in assuring packet delivery. For instance, in our previous ring network, by agreeing

only to send packets out in the clockwise direction on a first-in-first-out basis, which

is a restricted form of packet-to-channel assignment, we can actually assure individual

packet delivery. It is interesting to note that this technique can be generalized: Observe

that our networks, which have equal numbers of input and output channels per node,

guarantee the existence of an Eulerian circuit. By routing packets along this circuit,

one can indeed guarantee delivery of every individual packet. However, this solution

is clearly unacceptable because it is oblivious, and does not take advantage of the rich

connectivity inherent in these networks. In any case, ad hoc schemes are extremely

difficult to devise and analyze when one considers more complicated topologies.

The example in Figure 2.5 of the previous section demonstrated that livelock cycles

in cut-through switching can result from bad choices of routing assignments. On the

other hand, the example in Figure 2.6 shows that certain other livelock cycles exist

that are impossible to break regardless of the assignment strategy utilized. Packets

are trapped in these cycles precisely because they never have the chance to apply and

then follow the chosen assignment strategy. To assure eventual packet delivery, we shall

isolate these two possibilities and address each separately. In particular, we shall provide

a sufficient number of buffers at each node so that the adaptive control will always be

able to guarantee that at least one packet can stay behind and avoid being misrouted,

if so determined by the assignment strategy. By having a sufficient number of buffers,

competition for access to profitable channels is then transformed into a competition for

the right to stay behind and wait until the winner's profitable channel becomes available,

CHAPTER 2. FEASIBILITY 33

at which time it will be forwarded. This way, winners that have been chosen by the

assignment algorithm will have the chance to follow the actual paths determined by the

routing relations. In other words, assurance of packet delivery will then be reduced to

that of picking consistent winners across the network.

In subsection 2.4.1, we describe a simple but realistic buffer structure, and derive

the minimum required number of buffers under the assumed buffer-allocation discipline,

thus demonstrating the existence of such a solution using a bounded number of buffers.

In order to guide the choice of consistent winners, in subsections 2.4.2 and 2.4.3 we

present the simple idea of a packet priority scheme as a general method for generating

assignments that assure individual packet delivery.

2.4.1 Buffering Discipline and Requirement

In order to discuss the buffer storage requirements, it is necessary to state the assump

tions regarding the buffer structures and allocation schemes that are employed. In

general, the assumptions will depend on the implementation medium, and will directly

affect the derived results. The assumptions listed below represent a reasonable compro

mise between organization simplicity and utilization efficiency. The main objective is

to demonstrate the existence of a solution, that will avoid livelock cycles, and that uses

only a bounded number of internal buffers. We assume the following:

1. Storage is divided into buffers of equal size; each is capable of holding an entire

message packet.

2. Each buffer has exactly one input and one output port; this permits simultaneous

reading and writing. A good example is a FIFO queue of length L.

3. Except as stated below, a buffer can be occupied by only one packet at a time.

Oftentimes a packet may not fill its entire buffer, as in the case of a partial cut

through. Such a packet occupies both the input and output ports to the buffer.

4. A buffer can be used temporarily to store two packets at a time if, and only if,

one of them is leaving through the output port connected to an output channel,

and the other is entering through the input port connected to an input channel.

CHAPTER 2. FEASIBILITY 34

Recall that under the cut-through switching model, when a packet arrives at an

intermediate node, it is possible that all of its profitable outgoing channels are busy.

With the presence of empty internal buffers, the incoming packet can be temporarily

stored and then forwarded as soon as the first profitable outgoing channel is available.

However, under heavy continuous incoming packet traffic, a node may be forced to

misroute some of its buffered packets in order to prevent buffer overflow. Our objective

is to show that by providing sufficient buffers, it is possible to allow any buffered packet

which is chosen by the assignment algorithm, to stay and avoid being misrouted. To

derive the required number, let b and d denote, respectively, the number of buffers and

channels, i.e., the degree, at each node. First, we observe that given the above buffering

discipline, we must have b ~ d. To see this, assume that L » d, and consider the

following sequence of events at a node with all buffers initially err1pty: At cycle i == 0, a

packet, Po, arrives and is forwarded to its requested output channel, c* at cycle t = l.
Then, at cycles t = L-d up to t = L-2, a total of d-1 packets, ~. i = 1, ... , d-1,

arrive one after another in these d-1 consecutive cycles, all requesting the same output

channel c*. Finally, at cycle t = L + 2, another packet, Pd, arrives, requesting the same

channel c*. The worst case happens when the assignment algorithm always favors the

latest-arriving packet by requiring it to stay and avoid misrouting, while having each

packet occupy a distinct buffer. Given the above arrival sequence, at cycle t = L+l,

packet Pd-I will be forwarded through c*, which now becomes idle. As a result, each

packet from P1 up to Pd would have to be temporarily stored as it arrives. Since each

packet must be allocated to a distinct buffer, we must have b ~ d. We now show that

having b = d buffers is also sufficient.

Theorem 2.2 Let M be a coherent network where each node has b packet buffers inside

the router operating under the stated assumptions. Then b = d buffers per router is

necessary and sufficient to always allow at least one packet, chosen arbitrarily by the

assignment algorithm at each node, to escape misrouting.

Proof. Necessity follows immediately from the preceding discussion. We proceed

to establish sufficiency through a counting argument. Observe that a node is required

to consider misrouting of packets in the next cycle only when there are new packets

arriving at the current cycle. Figure 2.8 depicts an accounting of all possible cases of

CHAPTER 2. FEASIBILITY 35

n1 Direct Cut-Through

n2

n3 Header

n4 I I I
Empty

n5
Leaving

n6
--, n;

Figure 2.8: Accounting of All Possible Cases of Buffer Allocation

buffer allocation at the beginning of any such routing cycle. Let n1 up to n1 denote,

respectively, the number of packets or buffers in each case; and no denote the number

of newly arrived packets. Then, for inputs, we have no+n1+n3+n6+n1::; d; for outputs,

we have n1 +n5+n6+n1 ::; d. To simplify the counting argument, let us assume for the

moment that no = 1. Let P* denote the privileged packet chosen by the assignment

algorithm to stay behind and avoid misrouting in the following cycle. P* must be either

the newly arrived packet or an already buffered packet. If P* is a buffered packet, then

the newly arrived packet either finds an idle output channel to directly cut through

the node; or else we must have n1 +ns+n6+n1 = d ⇒ n5 ~ no+n3, which, in turn,

implies that there will always be an available buffer ready to accept it. On the other

hand, if P* is the newly arriving packet, then either n4 + n5 > 0, and, hence, there

is a buffer ready to accept it; or else we must have n2+n3+n6+n1 = b = d. This,

together with the above inequality on inputs, ⇒ n2 ~ no+n1 ⇒ n2 > 0. Furthermore,

no > 0 ⇒ n1 +n6+n1 < d. In other words, the packet will be able to find at least

one buffer with a full idle packet as well as an idle output channel to misroute this

idle packet and thus make room for itself. This establishes the validity for single-packet

arrivals. Finally, repeated applications of the above argument then establish the validity

CHAPTER 2. FEASIBILITY 36

for multiple-packet arrivals, and, hence, the sufficiency condition. ■

As demonstrated clearly from the above proof, the trick in allowing the escape from mis

routing for any arbitrarily chosen packet is to provide at least a critical, minimum num

ber of buffers that is sufficient to assure either that empty buffers still exist, or that all

buffers have been occupied, and, hence, there is some other packet that can be misrouted

instead. The particular minimum number required depends on the adopted buffering

structure and discipline, and adding more buffers per node will allow the assignment

algorithm to operate with more flexibility and perform better. Having established the

buffering requirements, in the following subsections we proceed to demonstrate how to

resolve channel-access conflicts and pick consistent winners.

2.4.2 Static Environment

We start with a static finite system where no new packet may be injected into the net

work until all present packets have been delivered to their respective destinations. In

this case, there are only a finite number of packets inside the network. These packets

compete among themselves if necessary to gain access to node buffers and communi

cation channels that will bring them closer to their respective destinations. To each

packet, we now assign a fixed priority chosen from a linear order such that no two

packets have the same priority. For example, if no two packets inside the network are

generated from the same source node, then the source node address of each packet can

be used as the priority of that packet, assuming that the node addresses form a linear

order. In other words, we have:

(2.1)

where Pis the priority of a packet and Nits source node address. Resolution of channel

access conflicts are now based on the priorities of the competing packets, so that the

highest priority packet among the competitors is always the winner. We now show that

this is sufficient to guarantee eventual delivery of every single packet inside the network.

Lenrma 2.3 A packet-to-channel assignment strategy that observes the packet-priority

ordering defined in equation 2.1 guarantees eventual delivery of all the packets inside a

static finite system.

CHAPTER 2. FEASIBILITY 37

Proof. During any routing cycle, the packet with the highest priority will always win

in its competition; hence, it will eventually reach its destination and be removed from

the network, thus reducing the total number of packets. Upon delivery, the packet with

the next highest priority then takes its place and the above argument is applied again.

Since we have only a finite number of packets inside the network, we are guaranteed

that eventually all the packets will be delivered. ■

The fixed-priority ordering defined in equation 2.1 assumes that each node has in

jected at most one packet into the network in our static environment. This is unnec

essarily restrictive, and we present a different priority-assignment scheme that removes

this restriction. This alternate scheme is also interesting in its own right in that it allows

us to look at the routing actions from a different point of view, one that leads to the

weaker form oi a giobal network progress guarantee for a dynamic environment.

The process of forwarding a packet toward its destination can be viewed as a sequence

of actions performed to reduce the packet's distance from destination, provided that the

set R, = { .f4} of routing relations is defined in terms of an underlying metric of the

network. In which case, as the result of a channel-access conflict, the winner will be

routed along a profitable channel, hence decreasing its distance from the destination.

The losers, depending on whether they are routed away along the remaining unprofitable

channels, may or may not increase their distance from destination. Ideally, one would

prefer a strict monotonic decrease of distance to destination for each packet inside the

network. As this is impossible under our adaptive model, the alternative is to ensure

monotonic decrease over a sequence of exchanges involving a multiple number of packets.

This can be achieved by giving higher priority to packets with shorter distances from

destination over those with longer distances. In other words, we are motivated to define

the distance-priority ordering as follows:

(2.2)

where Dis a packet's distance from destination. We now show that this alternate form

also guarantees eventual individual packet delivery in a static environment.

LeJilllla 2.4 A packet-to-channel assignment strategy that observes the priority order

ing defined in equation 2.2, together with the set, R,, of metric-based routing relations,

guarantees eventual delivery of each individual packet inside a static finite network.

CHAPTER 2. FEASIBILITY 38

Proof. At the beginning of a routing cycle, let D > 0 be the minimum packet

distance from destination. During this cycle, a packet with distance D competes with

other packets for channels leading to its destination. If it wins the competition, it will be

forwarded along a profitable channel within L cycles. It it loses, it must be to another

packet also distance D away from its destination, according to the defined priority. In

both cases, the minimum distance is reduced to < D within L cycles. Therefore, D

will eventually be reduced to zero, in which case a successful packet delivery occurs and

the above argument can be applied again to assure repeated deliveries. This establishes

livelock freedom. ■

In some networks, such as the k-ary-n-cubes or meshes, the address of the destination

node of a packet is completely specified by the relative distances the packet has to travel

in each dimension. Hence, the relative distance from destination in such networks can

be used to determine both the destination node and the packet priority according to

our last priority-assignment scheme.

It is interesting to note in the above proof that if we relax the restriction of a

static message environment and allow new packets to be continuously injected into our

network, the conclusion of the occurrence of packet deliveries remains valid and allows

us to establish livelock freedom in our network. In other words, the packet-priority

ordering defined in equation 2.2 alone suffices to guarantee global progress in a message

network operating under a dynamic environment. However, no corresponding statement

can be made concerning each individual packet.

2.4.3 Dynamic Environment

The above lemmas give us almost what we want. However, in a dynamic environment

where new packets are continuously generated, it is necessary to modify the above

priority schemes so that the arguments employed in the proofs of the above lemmas

remain valid. As an example, in order to extend the fixed-priority ordering defined in

equation 2.1, we need to:

• Assign a unique packet priority to every packet currently m transit inside the

network.

CHAPTER 2. FEASIBILITY 39

• Once a packet has been assigned a particular priority, the message system can

only assign higher priorities to at most a bounded finite number of packets during

the lifetime of this packet.

The first condition maintains the linear ordering for the priorities among all poten

tial competitors and can be satisfied simply by having the priority values chosen from

members of a linear order of infinite cardinality. The second condition replaces the

finiteness property of its static counterpart. In particular, an extension, P = (B, N), of

the fixed-priority ordering can be defined as follows:

where B is a packet's birthdate. Similarly, to extend the distance-priority ordering

described in the preceding discussion, ,ve observe that it has the defect of allowing newly

injected packets that have shorter distances from destinations to defeat older packets

that have longer distances from destinations. It is not hard to imagine a pathetic case

where a packet is defeated indefinitely in channel-access competitions by a steady stream

of newly injected packets. This situation can be rectified by assigning lower priorities

to the younger packets as follows:

where A is a packet's age, i.e., the number of routing cycles that have elapsed since the

injection of the packet. The age component of this new priority ordering is equivalent

to the birthdate component defined in equation 2.3, since all the packets of a network

age together. In fact, replacing the birthdates in equation 2.3 with ages will result in

a priority ordering identical to the original. We now prove that the priority orderings

defined in equations 2.3 and 2.4 guarantee eventual delivery of every individual packet

in a dynamic operating environment.

Theorem 2.5 Any packet-to-channel assignment scheme that observes the priority

assignment ordering, as defined in either equation 2.3 or 2.4, during channel-access

competitions, guarantees eventual delivery of every individual packet inside a finite

network.

Proof. During any routing cycle, let P denote the set of packets currently in transit

inside the network, and let S = {Pi E PjAi ~ A; Vp; EM} denote the set of oldest-age

CHAPTER 2. FEASIBILITY 40

packets. We observe that the packets in S form a static population that satisfies the

premises of either Lemma 2.3 or Lemma 2.4; hence, every packet in S will eventually

be delivered. As ISi is reduced to 0, packets of the next-oldest age group then become

members of S, and the above argument is applied again. With either of the priority

orderings defined over a finite network, each packet injected can only have a bounded

finite number of packets that are older; therefore, we are guaranteed that every individ

ual packet will be delivered eventually. ■

The above theorem provides us with well-defined packet-priority schemes that can be

employed to assure eventual delivery of every individual packet, and, hence, establishes

lockout freeness in our adaptive networks. There is, however, a practical issue that

needs to be settled: In a continuously operating message system, we would like to put

an upper bound on the maximum age of any packet ever routed in the network. This

is necessary in order to allow for a bounded finite implementation of packet priorities.

We now show that such a bound exists as long as packets arriving at their destinations

are consumed.

Theorem 2.6 Letting M be a finite multicomputer network that satisfies the consump

tion assumption and observes the priority orderings defined above, every packet ever

routed in the network will then be delivered within a bounded finite period.

Proof. We observe that at the time of injection of each packet inside the network,

there can be at most a bounded finite number of older packets already there. Since

the highest-priority packet in the finite network will always be delivered within at most

DL cycles, where Dis the length of the longest route defined under R, therefore, every

injected packet is guaranteed delivery within a bounded finite period. ■

The above theorems assure us that every packet sent will be delivered within bounded

time to its destination under the consumption assumption. There remains, however, the

problem of injecting a packet into the routing network in the first place. Notice that

for a node located inside a region of heavy network traffic (see Figure 2.7), new packets

generated by it have to compete for channel access with packets already in the network.

An immediate, naive response would be to simply treat a newly generated packet just

like any other packet and have it compete for channel access according to the assigned

CHAPTER 2. FEASIBILITY 41

priority. In the next section, we shall see that the problem is actually deeper than it

appears.

2.5 Packet-Injection Guarantees

One major resource limitation that reveals itself when the node grain size shrinks is that

of limited buffering capability per node. In addition to requiring a steady-state dynamic

equilibrium between incoming and outgoing packets, each node also becomes less toler

ant of transient fluctuations. In a deterministic blocking scheme, transient fluctuation

of message traffic is handled by blocking until the required buffers are released; in our

adaptive scheme, this is handled by maintaining a strict balance between incoming and

outgoing packets. This is possible only because we are willing to route packets away

from their respective destinations if necessary. However, when new packets are injected

into the network from a node, this delicate balance is violated locally. The opposite

happens when a packet arrives at its destination and is consumed. This violation stems

from the unavoidable decoupling of message generation and message consumption in

both temporal and spatial dimensions. As message packets are generated at each node

and injected into the network, the input/output dynamic balance is violated locally.

Consider the situation at the message interface of a node n E N that has b internal

message-packet buffers. Suppose this node is located in the middle of heavy network

traffic, so that its input and output channels are continuously busy for a long period.

Any message packets generated from the node have to be queued up in extra internal

buffers, and compete with the passing message traffic for access to the output channels.

The packet-priority schemes assure that once the queued-up packets have gained access

to the network, they will be delivered to their destinations. However, the worst case

happens when passing message traffic remains heavy for a prolonged period, and the

node runs out of internal buffers after it has injected b packets into the network. Fur

ther injection of message packets would then have to wait for internal buffers to free up.

Conservation of packets requires that the internal packet buffers remain filled unless:

1. The node receives some input message packets destined to itself, whereby it con

sumes them and frees up their corresponding buffer spaces.

CHAPTER 2. FEASIBILITY

Receiving Buffer
====

Cut-Through Buffer

Injection

From Processor /Memory

To Processor /Memory

Figure 2.9: Inside the Message Interface

42

From Input Ch nnel

Destination
Check Logic

To Output Channel

2. Some input channels become idle for a number of cycles, i.e., receive null flits over

those cycles; as a result, the node may free up some of its internal buffer spaces.

In the following subsections, we shall describe two different approaches to assure message

injections at every node; each of these will result in guaranteeing the eventual occurrence

of one of the above two conditions. But, first, we need to describe in greater detail the

possible injection mechanism implemented at the message interface under our adaptive

cut-through switching formulation.

2.5.1 Packet-Injection Mechanism

Recall that, in our model, the message interface of a node is the piece of hardware

that couples the node's communication subsystem with its computation subsystem.

In essence, it is responsible for the checking of destinations of arriving packets, the

reassembly ofmultipacket messages, and the control of packet injection into the adhering

communication network. Figure 2.9 depicts a possible conceptual realization of the

injection mechanism within the message interface. Its operation is similar to the register

insertion ring interface described in [31]. It uses two FIFO buffers that can be connected

to the output channel toward the network via a switch. Whenever the node has a packet

CHAPTER 2. FEASIBILITY 43

to transmit, it loads the packet into the injection buffer as soon as the buffer becomes

empty. When message traffic arrives from the network input channel, it passes through

the destination check logic, which redirects any traffic destined to this node into the

node memory. Any remaining passing traffic is loaded into the cut-through buffer, which

is normally connected to the output channel. Whenever the cut-through buffer becomes

empty, the control logic checks to see if there is an output packet waiting for injection. In

such case, the switch is toggled so that the output channel is connected to the injection

buffer and the injection proceeds. As the output packet is being forwarded, any passing

traffic is loaded into the cut-through buffer. The switch connection is flipped back

to the cut-through buffer after injection has finished, and the process repeats. More

sophisticated versions of this injection mechanism will use several cut-through buffers

in a round-robin fiu;:hion; injection of packets can proceed as long as there remains at

least one empty cut-through buffer at the initiation of injection.

The main interesting property of the message interface for our current discussion is

that it provides a mechanism for capturing and accumulating interpacket gaps, which

need not be contiguous, as empty spaces inside the cut-through buffers. When enough

space has been collected - i.e., the entire packet length, and, hence, an entire empty

buffer - another new packet can be injected into the network. With this mechanism,

the question of assuring eventual packet injection is transformed into that of assuring

arrival of enough interpacket gaps whenever a node has a packet queued for injection.

2.5.2 Token-Recirculation Scheme

In this subsection, we describe a method whereby a node can guarantee the emptying of

its cut-through buffers inside its message interface by consuming input packets destined

to it. In general, a node cannot depend on the other nodes to send message packets to

it since it may not be the destination of messages generated by any other node in the

network. When a node sends a packet to a different node in the network, it has the

effect of migrating a hole from the source node's internal buffer to the destination node's

internal buffer. In our scheme, we require that the destination node return this hole

back to its owner by sending a round-trip packet back to the source node. In essence,

the internal empty cut-through packet buffers represent reusable tokens that recirculate

between the senders and receivers of messages.

CHAPTER 2. FEASIBILITY 44

Specifically, let bi be the total number of internal packet buffers in the communi

cation domain inside the message interface of a node ni E N, and let O < hi ::::; bi

be a threshold that determines the condition under which to trigger the recirculation

mechanism. All packets injected into the network are tagged with either a one-way or

a round-trip token. The packet-injection scheme works as follows: Whenever a node is

about to inject a packet, it checks its current stock of empty cut-through buffers. If

the number is above the specified threshold, the packet to be injected is tagged with

a one-way token, otherwise, it is tagged with a round-trip token. At the destination,

where the packet is consumed, the carried token determines the receiver's action. The

receiver simply consumes the packet if is a one-way token or if it owns the received

round-trip token. On the other hand, if the token is a round-trip token belonging to

some node other than the receiver, the receiving node is obliged to return it to its owner

by sending a reply packet that carries this round-trip token back to its owner. In this

way, the token is recirculated back to its owner by the reply packet, which then con

sumes the reply packet. This assures the eventual occurrence of packets destined to a

node if that node has a packet awaiting injection due to the absence of empty internal

buffers. It is straightforward to see that this suffices to guarantee eventual injection

for each pending packet. Observe that the validity of our packet-injection guarantee

depends on our ability to guarantee eventual deliveries for every injected packet in our

network.

The above token-recirculation scheme allows us to assure eventual packet injection

at each pending node of the network. However, the scheme suffers from the inherent

inefficiency of having to route reply packets in order to return the empty buffers (round

trip tokens) back to their owners. The threshold h specifies the precise condition that

triggers this recirculation mechanism. When network traffic is relatively moderate, re

circulation tends to be isolated and temporary. As traffic density continues to increase,

the population of round-trip packets that carry no useful information also increases.

Conceivably, it appears more efficient for a pending node to begin seeking available

empty buffers in its own vicinity. Furthermore, large-scale token recirculation com

mences at precisely that moment when network bandwidth is insufficient. In summary,

the token-recirculation scheme leaves much to be desired.

CHAPTER 2. FEASIBILITY 45

2.5.3 Injection-Synchronization Protocol

The token-recirculation scheme described in the previous section employs a passive

mechanism whereby each individual node defensively maintains its own ability to inject

packets into the network. This is achieved by demanding that packets originating from

a busy node be returned to the sender so as to release occupied buffers in the message

interface and render the node ready for further packet injections. In contrast, our second

approach employs a distributed mechanism whereby each node actively defends its own

right to inject packets. The same idea is, in fact, involved in the description of the

coherent channel protocol that provides the physical basis of an arbitrarily extensible

synchronized network. In particular, when all its buffers are full, the message interface

of a node has to wait and collect enough idle time, such as interpacket gaps, from the

input channel before it can inject another packet. Our scheme is then a distributed

mechanism that guarantees the eventual occurrence of such idle interpacket gaps.

Ideally, whenever a node has a packet queued for injection, it should be allowed to do

so. We shall adopt the point of view that a node that has no packet to inject, or is in the

process of injecting a real packet, is regarded as if it has a null packet ready for injection.

Thus, by this convention, during every routing cycle, each node has either a null or a

real packet ready to inject. Our scheme is to introduce local synchronization between

each node and its neighboring nodes such that the total number of packets injected by

a node after each routing cycle cannot differ by more than K, a fixed, positive constant,

from those of its neighbors. The null packet convention is required to prevent quiescent

nodes that do not have any packet to inject from blocking injections in the active nodes,

and vice versa.

We now describe the injection-synchronization protocol in a general conceptual

framework. For our protocol, we assume that each node explicitly maintains records of

the total number of packet injections made by each of its neighbors, measured relative

to that of its own. For simplicity, the information required to update these records

in each node is assumed to be conveyed by separate direct links between the message

interfaces among neighbors during each routing cycle and constitutes an integral part of

the network's physical connections. The information exchanged with a node's neighbors

during each routing cycle is the total number of packet injections by the node, a O or 1,

CHAPTER 2. FEASIBILITY 46

during the current cycle. Records for neighbors' injections are maintained in the form of

relative differences, because the absolute value in the number of total packet injections

in a continuously operating environment can grow without bound. We now describe the

protocol in detail:

0. Immediately after system initialization, each node's records of the relative differ

ences of packet injections for each of its neighbors is initialized to 0.

1. At the beginning of a cycle, each message interface examines the recorded relative

differences in the total number of packet injections of each of its neighbors, and

computes their minimum. A node is permitted to inject its queued packet only

if the computed minimum is greater than -K, i.e., if the node is less than K

packet injections ahead of its minimum neighbor. Recall that by convention a

node always has a packet queued up for injection.

2. If a node is not permitted to inject its queued packet, its message interface just

performs its other normal functions and then goes to step 3. If a node is permitted

to inject, it examines its next queued packet. Null packets are always injected by

convention, whereas real packets are injected only if the injection mechanism de

scribed previously finds at least one empty buffer available to absorb the injection

transient.

3. Each node computes its own number of packet injections during the current cy

cle according to the results obtained from step 2, where null packet injections

are counted as real injections. This number is then distributed to the message

interfaces of its neighboring nodes.

4. At the end of the cycle, each node updates the corresponding record of each of

its neighbors by adding the corresponding numbers received from the respective

neighbors and subtracting from them the number it computed in step 3. Each

node is now ready for the next cycle starting again at step 1.

We now show that following the above stated sequence of actions guarantees that after

each routing cycle, the difference in the total number of packet injections between

neighboring nodes will be at most K.

CHAPTER 2. FEASIBILITY 47

Lemma 2. 7 The injection-synchronization protocol described above guarantees that

after each routing cycle the difference in the total number of packet injections between

neighboring nodes will be at most K > 0.

Proof. Let c denote the number of routing cycles that have elapsed since initialization.

The proof is by induction on c. After c = 0, i.e., immediately after initialization, the

differences are exactly 0 in every node, hence, the statement of the lemma is valid. We

now assume that the statement is valid after c = m, i.e., the magnitude of the differences

I in the total number of packet injections between neighboring nodes is at most K. We

now focus on a particular node n. At the beginning of the (m+l)st routing cycle, n has

complete knowledge of the differences in packet injections of its neighbors relative to

itself up to and including the m-th cycle. By convention, neighbors that are ahead of n

in injections have relative differences I> 0, while those lagging behind n have as their

relative differences I < 0. In general, n would have some neighbors having differences

zero, some positive, and some negative. If n has some critical neighbors with I= -K,

then, according to the synchronization protocol, n is denied injection in this cycle. Thus,

the change in I for these neighbors of n can only be 0 or + 1 during this cycle. Therefore,

after this cycle, the differences in the total number of packet injections between n and

its critical neighbors are still at most k. For those neighbors with - K < I < K, no

matter what n and these neighbors do in this cycle, their differences are guaranteed to

be at most K. For those neighbors with I = K, n is itself a critical neighbor of them,

and the above argument for the critical neighbors of n can be applied to guarantee a

difference of at most K. Hence, after the (m+l)st routing cycle, the difference in the

total number of packet injections between any pair of neighboring nodes remains at

most K. This establishes the validity of the lemma. ■

The above lemma provides us with a synchronization protocol that guarantees a bounded

maximum difference in the total number of packet injections across neighboring nodes

in our network. We now show that, with eventual delivery of the packets already in

jected, this injection-synchronization protocol establishes cooperation among the nodes

to assure the eventual occurrence of empty cut-through buffers in the message interface

for nodes that have real packets waiting for injection as permitted by the protocol.

CHAPTER 2. FEASIBILITY 48

Lermna 2.8 A node that has a packet queued for an injection that is permissible under

the injection-synchronization protocol will eventually be able to inject, provided the

network is livelock free.

Proof. Observe that, by convention, if the pending packet is null, the node is able to

inject immediately, so that the lemma is true vacuously. We now proceed to establish

its validity for real packets. Suppose, to the contrary, that a particular node, n E N, is

blocked from injection indefinitely because the injection mechanism cannot accumulate

sufficient empty buffer space to absorb the injection transient. Our injection protocol

then dictates that its neighbors also will be blocked indefinitely from injecting. These,

in turn, indefinitely block their neighbors, and so on. Given a finite network, all nodes

are eventually blocked from any further injection, and eventually no new packet can

enter the network. Given that the network is livelock free, ultimately it will be void

of packets; at that point, the input channel to the interface of n will become idle, thus

enabling it to resume the accumulation of empty spaces inside the cut-through buffer.

Eventually, it will have collected enough spaces to enable the injection of its queued

packet into the network. This contradicts the original indefinite blocking assumption of

n, hence establishing the validity of the lemma. ■

We are now ready to show that by following the above injection protocol every individual

node will eventually be permitted to inject, and, hence, according to the above lemma,

will eventually inject. Specifically, let M be a network, and let Ti denote the total

number of packet injections from node ni E N since initialization. We now prove that

Ti is strictly increasing over time.

Theorem 2.9 Given the stated injection-synchronization protocol and a finite network

that is livelock free, the total number of packet injections for each node strictly increases

over time.

Proof. During a routing cycle, let t = minn;EN Ti denote the mrn1mum among

numbers of packet injections since initialization, taken over all the nodes of the network,

and let S = {ni E NITi = t} denote the set of nodes that have recorded the minimum

number of packet injections since initialization. Since K > 0, according to our protocol,

every node n E S is permitted to inject. Lemma 2.8 then guarantees eventual injections

CHAPTER 2. FEASIBILITY 49

from all of the nodes in S; hence, t, the minimum number of packet injections per node,

is guaranteed to eventually increase over time. This, in turn, guarantees that Ti strictly

increases over time, Vni E N. ■

Since the total number of packet injections per node is guaranteed to be strictly in

creasing over time, we are assured of eventual packet injection for each of the individual

nodes of the network. In other words, the above theorem establishes fairness in net

work access among all the nodes. We now prove that the above protocol actually allows

us to establish strong fairness among the nodes of our network under the consumption

assumption1 ; i.e., each node that has a packet pending injection will be allowed to inject

within a bounded finite period of time. We now proceed to establish this strong-fairness

result.

Corollary 2.10 Letting M be a finite network, as described in Theorem 2.9 above,

that satisfies the consumption assumption, then each node that has a packet pending

injection will inject within a bounded period.

Proof. We proceed to prove the stated result by exhibiting such a finite, albeit

unrealistically pessimistic, bound. Let D denote the network diameter, J./ denote the

total number nodes, and .C denote a bound on the maximum packet latency whose

existence was established in Theorem 2.6 of the last section; and let t' = min Ti and

T' = max Ti denote the minimum and maximum number of injections per node since

initialization among all the nodes of M. Then we have T' ::; t' + K D according to our

synchronization protocol. Let t~ and T/ denote the respective values oft' and T' after

each routing cycle, Ci, Vi; and let co denote the current routing cycle. Since the values

of t1 and T' increase strictly over time, we are guaranteed that there will exist a routing

cycle, cm, such that t~ > TIJ and t~ ~ TIJ, Vi, 0 < i < m. We assert that during the

cycles c1 up to Cm there cannot have been more than (2K D+ 1) J./ packet injections into

the network. To see this, observe that we have T:n - t~ ::; K D and TIJ - tb ::; K D.

Adding them together, we have T:n - tb ::; 2kd + t~ -TIJ. But Cm was defined such that

t~ - TJ = 1; hence, T:n - tb ::; 2K D + 1. Since there are a total of J./ nodes in the

network, the assertion follows directly. Based on Theorem 2.6, we know that there is at

1 As a matter of fact, the token recirculation scheme described in the previous subsection also assures
strong fairness to every node.

CHAPTER 2. FEASIBILITY 50

least one packet injection within every f, routing cycles. Therefore, the total number of

routing cycles, m, elapsed must be:=:; (2KD+l).1/ l. Since t:n > TIJ, we are guaranteed

at least one injection per node in our network every m cycles. The above bound on m

then establishes the validity of the required strong fairness result. ■

The above theorems suggest that by following the prescribed injection-synchronization

protocol, together with the introduction of packet-delivery guaranteed priorities de

scribed in the previous section, we can guarantee progress in every individual node and

every individual packet inside a finite network, a very desirable state of affairs.

It is interesting to compare the injection-synchronization protocol with our previous

token-recirculation scheme. As has been pointed out, the token-recirculation scheme

is inefficient in that a pending node under heavy traffic has to wait for the occurrence

of an empty buffer brought back by reply packets across the network. In contrast, in

the injection-synchronization scheme, a pending node under heavy traffic prohibits fur

ther injections of its neighbors, and the area under curfew extends gradually outward if

congestion persists. Intuitively, this allows the pending node to capture empty buffers

beginning with its local vicinity, which appears to be more efficient. Our null-packet

injection convention has the interesting property that an idle node with no packet to

inject tends to have its own total number of injections drift toward the maximum among

those of its immediate neighbors. As a result, idle nodes tend to exert minimum in

terference with the activities of busy nodes. Another difference between the injection

scheme and the token-recirculation scheme is that under the token-recirculation scheme,

more round-trip packets are injected into the network precisely when heavy congestion

occurs. This further overloads the network resources and can increase the message

latencies substantially. In contrast, the injection scheme tends to regulate total net

work packet population, which prevents message latencies from growing excessive under

heavy-traffic condition. In fact, as we shall see in the next chapter (section 3.5.4),

the injection-synchronization protocol can be extended to serve as a congestion control

scheme to help stabilize the network operating points within regions that deliver favor

able performance, regardless of the external applied load. Such schemes indeed provide

a practical alternative to the theoretical priority-based delivery guarantee strategy, which

appears to be rather formidable to realize on silicon in its present form.

CHAPTER 2. FEASIBILITY

2.6 Summary

51

In this chapter, we have focused on addressing a number of feasibility issues that are

fundamental to any message communication network that supports reliable concurrent

computations. An adaptive cut-through switching model is presented that allows us

to discuss a number of fundamental issues, such as communication deadlock, eventual

packet delivery, and eventual packet injection.

An argument based on the desire to be able to exploit alternate routes in order

to lessen local network congestions is given that led to the adoption of the misrouting

discipline. The basic coherent exchange protocol is presented that, together with the

misrouting discipline, renders communication deadlock freedom in cut-through switch

ing a non-issue. This, in turn, allows us to exploit arbitrary alternate routes without

having to worry about potential communication deadlock, which is difficult and expen

sive to avoid using more conventional means.

The necessity of having extra buffer space per node is demonstrated with a livelock

example; and the buffer requirement, which is necessary and sufficient to avoid such

livelocks, has been determined under a set of reasonable buffer operating assumptions.

A general packet-priority scheme for constructing packet-delivery guaranteed routing

algorithms for arbitrary network and adaptive control is developed. The priority scheme

developed is then shown to be lockout free, and, under the consumption assumption,

shown to assure delivery of message packets within a bounded period over a finite

network.

The problem of assuring eventual message packet injection at pending nodes is ex

amined in detail. The two conditions under which a pending node is allowed to inject

its queued packet are discussed. A detailed description of a conceptual realization of

the packet injection mechanism inside the message interface is given. Two different

solutions are then presented, each corresponding to a guaranteed eventual occurrence

of one of the two desirable conditions. The two solutions are each examined in detail,

followed by a discussion of the relative merits of the two approaches.

The main emphasis of this chapter is to lay down a basic foundation for exploring

various strategies and extensions of the adaptive framework for message routing in mul

ticomputer networks. We have focused on addressing the fundamental feasibility issues

CHAPTER 2. FEASIBILITY 52

of guaranteeing deadlock freedom, packet delivery, and packet-injection progress, and

we did not encounter any insurmountable problem. Rather, the simplicity of these reso

lution mechanisms gives us hope that adaptive schemes may be found that will improve

on the already highly evolved oblivious-routing schemes. In the later chapters, we shall

investigate other theoretical and practical aspects of our adaptive routing formulation,

namely, the possible performance gain and reliability enhancement issues.

53

Chapter 3

Performance

In the last chapter, we concentrated on describing the basic adaptive cut-through

message-routing model for tightly coupled multicomputers, and the various problems

concerning the jeasibility of the proposed framework. Specifically, we examined such

fundamental issues as communication-deadlock freedom, packet-delivery assurance, and

packet-injection assurance. We also discussed in great detail such low level issues as the

coherent channel protocol that works for arbitrarily extensible networks, and a packet

buffering discipline for fixed-length packets under realistic hardware assumptions. Hav

ing demonstrated affirmatively the feasibility of the adaptive approach, we move on, in

this chapter, to investigate issues concerning questions of network performance.

Specifically, in section 3.1 of this chapter, we define and discuss the principal perfor

mance metrics for the multicomputer networks in which we are interested. In particular,

we shall focus on the cases of 2D and 3D rectilinear networks, and derive simple theoreti

cal bounds on their various average performance figures. These low-dimension networks

are chosen as representative of regular networks that are readily realizable in prac

tice. In section 3.2, we present a qualitative discussion of the operating characteristics

and message traffic pattern in multicomputer networks, followed by a discussion of the

corresponding implications to performing adaptive-routing decisions. Following these

discussions, in section 3.3, we motivate and develop a simple stochastic switching model

based on certain simplifying assumptions. We then use the model to derive a number

of analytic approximations that provide insights into the nature of our adaptive-routing

formulation. In section 3.4, we describe in detail a set of simulation experiments de

vised to explore tradeo.ffs and behaviors of the various performance characteristics of our

CHAPTER 3. PERFORMANCE 54

adaptive cut-through routing formulation for the 2D and 3D rectilinear networks. We

follow this in section 3.5 with a detailed discussion of the experimental results. When

ever possible, interpretations are given in accordance with the understanding derived

from the theoretical model developed in section 3.3. Finally, we summarize the chapter

in section 3.6.

3.1 The Performance Metrics

We have motivated the adaptive-routing approach as a technique by which we can more

efficiently utilize available network bandwidth by exploiting the existence of multiple

routing paths to common destinations that is inherent in the communication networks

that connect multicomputers. The two most important performance figures for routing

networks are the average message latency, and the average message throughput. Our

use of the term average here presupposes the existence of a steady-state traffic over

the long term. While, in reality, such an average may never be achieved, its various

approximations, nevertheless, provide useful indicators of overall network performance.

3.1.1 The Principal Performance Metrics

In this section, we shall define and discuss the principal performance metrics of multi

computer networks. For our present purpose, we shall make the simplifying assumption

that the network operates synchronously in discrete routing cycles. The synchronous

assumption establishes a direct correspondence between elapsed time and elapsed cy

cles, allowing us to use the discrete quantity as a convenient measure. Bearing in mind

that we are primarily interested in the time average of these performance metrics, here

are our definitions:

Definition 3.1 The channel utilization is the fraction of time a channel is busy trans

mitting data. The injection rate of a node is the rate at which the node is injecting new

packet data. In the absence of misrouting through the internal channel, the injection

rate is equal to the utilization factor of the internal channel.

Definition 3.2 The packet latency is the total number of elapsed cycles from the time

the first flit of a packet enters the network at the source-node message interface to the

CHAPTER 3. PERFORMANCE 55

time when the last flit of the packet leaves the network at the destination node message

interface.

Definition 3.3 The message latency is the total number of elapsed cycles from the

time the first flit of a message enters the network at the source-node message interface

to the time when the last flit of the message leaves the network at the destination-node

message interface. For single-packet messages, message latency is identical to packet

latency.

Definition 3.4 The throughput of a network is defined to be the total number of mes

sage data flits delivered, i.e., consumed at their destinations, by the network per cycle.

Network throughput, unlike latency, is a performance figure that is independent of the

packet and message lengths of the underlying network traffic. It measures the quantity

of service provided by a particular network and its routing algorithm. The message

latency, on the other hand, is a performance metric that measures the quality of the

provided service. Depending on the operating assumptions, the packet latency can be

further decomposed into four contributing components:

• Processing Delay: The total time spent in computing the output channel assign

ments at each intermediate node along the routing path. This delay is proportional

to the number of hops along the routing path joining the source and destination

nodes.

• Propagation Delay: The total time elapsed between the time when the first flit

of a packet leaves the source node to the time when this flit arrives at the desti

nation node, assuming no queueing at the intermediate nodes. This delay is also

proportional to the length of the routing path joining the source and destination

nodes.

• Transmission Delay: The total time elapsed between the time when the first flit

of a packet is received at the destination to the time when its last flit is received.

This delay is proportional to the length of the transmitted packet.

• Queueing Delay: The total time a packet spends waiting in queues inside the in

termediate nodes along the routing path. This delay is a highly nonlinear function

of the utilization factors of the communication channels along the routing path.

CHAPTER 3. PERFORMANCE 56

Because it is clear that the processing delay can be absorbed into the propagation de

lay, as both are directly proportional to the length of the routing path, this shall be

ignored in our subsequent discussion. An ideal routing algorithm should support an

average message throughput that is close to the upper limit set by the physical network

bandwidth, and have an average message latency that is close to the lower limit set by

the average message length and the message distance from destination. However, these

two performance metrics are not independent of each other, and are both influenced

by other factors as well. For example, under reasonable assumptions, one will be able

to increase the maximum sustainable throughput toward the upper limit set by the

network's physical bandwidth by adding more internal buffers per node. Similarly, by

reducing the amount of message traffic, hence, the network throughput, it is possible

to decrease the average latency toward the lower limit determined by the communica-

tion patterns. Qualitatively, the effect of having a better routing strategy under heavy

applied-load conditions is to realize a more favorable characteristic curve along which

the network operates. The major challenge in the design of network routing algorithm is

that most state information necessary to arrive at good routing decisions is distributed

globally over the nodes of the network. Moreover, the information regarding the local

states of each node dynamically changes over time. Such changes are particularly noto

rious in the message patterns generated in networks that support fine-grain concurrent

computations. These traffic are highly bursty and tend to be transient in nature [3,13].

Another performance figure that we are interested in is the extent to which pack

ets sent between a source-destination pair arrive out of sequence. Recall that in our

adaptive-routing formulation, packet trajectories are nondeterministic, allowing packet

traffic between a pair of source and destination to arrive out of sequence. In general,

this puts extra demand on the node memory due to the need to buffer received packets

that are awaiting message reassembly and message-order resequencing. Hence, on the

average, received packets have to be stored in the node memory for a longer period

before they can be processed. The extent to which this happens has a major impact on

the storage requirements at each node.

CHAPTER 3. PERFORMANCE 57

3.1.2 Bounds on Network Performances

Before proceeding to the modeling and analysis of our adaptive-routing formulation, it

is natural to first examine in greater detail the performance bounds imposed by the

physical limits. In this section, we shall derive the theoretical bounds on the average

message latency and network throughput for the general classes of k-ary-n-cubes and n

dimensional meshes. Lower dimensional members of these regular topologies represent

networks that are readily realizable in practice. For our present purpose, we assume the

following:

l. Uniform network traffic pattern; i.e., each node in the network is equally likely to

be the message destination of each generated packet.

2. Independent and homogeneous network injection rate; 1.e., message packets are

independently generated at identical rates at each node of the network.

3. Wormhole or virtual cut-through routing of packets or messages.

Specifically, we shall derive quantitative bounds on the average message latency and the

average node-injection rate, based on restrictions imposed by the statistical properties

of the uniform traffic pattern and the different network bisection bandwidths [58].

Lower Bound on Average Message Latency

From the previous discussion of the various components of packet latency, it is clear

that by ignoring processing and queueing delay, we obtain a lower bound on the message

latency as follows:

Message Latency ~ Message Distance to Destination + Message Length

More importantly, this inequality remains valid for the average values of the above quan

tities. Assuming uniform network traffic, the average message distance to destination,

Dtorus, for the n-dimensional torus with total number of nodes, N = kn, assuming k

even, can be obtained as follows:

Dtorus

CHAPTER 3. PERFORMANCE 58

where we have taken advantage of the node-symmetry in torus networks, and the sta

tistical independence across different dimensions for uniform traffic in our calculation.

Similarly, the corresponding average value, Dmesh, of the n-dimensional mesh is given

by [3]:

Dmesh -

for any realistic value of k. As an example, for a uniform message traffic on a 32 x 32 2D

mesh with an average message length of 96 flits, we may conclude that the steady-state

average message latency must be 2: 117 cycles, and 2: 112 cycles if the network is a 2D

torus of the same size.

Bounds on Average Network Throughput

We now derive bounds on the average network throughput, or, equivalently, the average

node injection rate, imposed by the network bisection bandwidth restriction. Consider

an n-dimensional mesh with N = kn nodes: assuming again that k is even, the network

bisection bandwidth is= f. The bisection can be visualized as a cut by a hyperplane of

n-1 dimensions that is orthogonal to the axis of one of the original n dimensions, splitting

it into two halves each with ~ nodes. For uniformly random traffic, any message sourced

at nodes on one side of the cut will have a 50% chance of being destined for nodes on

the other side of the cut. Hence, for q, the average injection rate at each node is:

q <

N

k
4

k

The above expression gives an upper bound for the average node-injection rate, q, mea

sured in the normalized unit of flits/cycle. Notice that the derived bound is independent

of the dimension of the network. Similarly, recall that then-dimensional cube is almost

identical to the mesh except that it has end-around connections. Hence, its bisection

bandwidth is twice that of a mesh of identical dimension. This gives:

8
q < --k

CHAPTER 3. PERFORMANCE 59

For networks of reasonable sizes, e.g., a 32 X 32 2D mesh, the network bisection band

width limits the node injection rate to :s; ! for a steady-state uniform traffic pattern,

even under the best of circumstances. It is interesting to note that for networks of

small radix, the network bisection bandwidth may actually not be the communication

bottleneck. For example, for the binary 6-cube or, equivalently, the 4 X 4 X 4 3D torus,

the above bound evaluates to k!4 = 2. In other words, as long as the internal channel

is of the same width as the network channels, the network channels in the 6D cube will

never be loaded to more than 50%; rather, in this case, the bottleneck has been shifted

to the internal channel.

3.2 Adaptive Cut-Through Switching Decision

Intensive research in packet-switching networks, such as the ARPANET [27,39], has

produced many interesting and useful results, and a complete overview of this literature

is beyond the scope of the present discussion. Of prime interest to us is the research

results concerning practical adaptive-routing algorithms in these loosely coupled net

works. Almost all of the proposed adaptive routing algorithms to date have been based

on the notion of the shortest paths [10] between nodes. In these schemes, the length

of a communication link between two nodes is assigned a value which is assumed to

characterize the amount of congestion along that link. Given a consistent gl?bal as

signment of congestion values that reflects the current traffic situation, a shortest path

between a source and destination would represent a minimum latency route for the

message. Adaptability to local network congestion fluctuations is achieved by periodic

shortest-path calculations that keep updating the assigned congestion values. However,

such schemes are impractical in tightly-coupled multicomputer networks for at least two

important reasons:

1. The highly bursty and transient character of the message pattern generated by con

current computations demands high-frequency updates of congestion estimates.

The overhead required in the collection and periodic broadcasting of these con

gestion estimates over the network will dramatically reduce the available network

bandwidth for normal message traffic.

CHAPTER 3. PERFORMANCE 60

2. The successful operation of the shortest-path routing algorithm requires each node

to maintain global knowledge of the network. Specifically, the shortest distance to

every possible destination has to be explicitly maintained in each node in order to

accurately reflect the current network condition. Given the scarcity of hardware

resources per node in massively concurrent multicomputers, maintenance of global

knowledge would be far too expensive, and infeasible in the case of a fine-grain

machine.

Therefore, instead of relying on periodic shortest-path calculations to adapt to chang

ing network conditions, and, hence, achieve low-latency routing, one is led to consider

practical adaptive control that will perform routing decisions based solely on local infor

mation available at the time of decision. The local decision policy adopted may assume

a variety of different forms. For example, a dispersive policy was suggested originally in

[8] for permutation routing. Under this policy, a node would always send away any in

coming message regardless of whether it can make any progress. The rationale suggested

is that by sending the competing messages to adjacent nodes, we may manage to enlarge

the locally congested bottleneck. The main difficulty with such dispersive approaches

is that indiscretionary misrouting can be counterproductive, especially when employing

cut-through switching, or when under heavy network traffic. On the other hand, it is

generally very difficult and expensive to make discretionary misrouting choices, since any

such decisions necessarily involve more than just local information, e.g., as required to

distinguish local congestion from global congestion. Henceforth, we shall adopt a more

conservative policy toward misrouting, employing it only as a defensive mechanism to

prevent buffer overflow. Instead, we depend on the ability of our multipath control to

exploit the rich connectivity inherent in most popular multicomputer networks. This

capability to direct messages along many alternate paths tends to smooth out any tem

porary congestion and disperse the local traffic hotspots. The richer the connectivities,

the more numerous the number of alternate routes a message can follow, hence, the

more effective this dispersive strategy will be. Adaptation occurs entirely at the local

level where messages are forwarded to one of their profitable channels depending on the

specific traffic assignments at the time of decision.

CHAPTER 3. PERFORMANCE 61

Exactly how each packet gets assigned to which output channel depends on the

underlying network topology and the actual mechanics of the local assignment process

which may assume a variety of forms. However, they are all expected to obey the

following no-idle policy: Whenever an output channel becomes available and there is at

least one packet waiting for the idle channel as one of its profitable channels, then the

channel will be assigned to one of these packets within a short delay period depending

on the processing requirements. In other words, while it is a well-known fact from

scheduling theory that following the no-idle assignment policy could cause anomalies in

scheduling, concerns over the raw routing logic complexity (as well as speed in general)

dictate the use of simple, greedy assignment heuristics.

Another common property likely to be shared by all reasonable assignment logic can

be obtained from the following observation: In virtual cut-through switching, packets

generally will arrive at and leave the intermediate nodes at arbitrary times. Although

each router has a multiple number of input channels, the arrival of a multiple number

of packet headers at the same cycle tends to be very rare. Similarly, in steady-state

operation, it is very rare for a router to assign a multiple number of packets to output

channels at the same cycle; in a majority of cases, the routing assignments are made

in a sequential and event-driven fashion. Furthermore, the routing decisions are mostly

single packet-to-channel assignment decisions. As we shall see in the next section, these

properties are sufficient to allow us to derive matching statistics that remain valid over

a wide range of possible assignment heuristics.

In the basic, adaptive cut-through routing framework described in the previous

chapter, we have formalized the notion of a local multipath routing algorithm R, as

a set of routing relations, ~ at node ni, that generate all profitable channels given

any message destinations. In particular, for simplicity, we have tacitly assumed that

the various profitable channels are all indistinguishable since forwarding the packet

along any one of these channels will reduce the message-to-destination distance. In

practice, this restriction is unnecessary. In fact, as we shall see in the next chapter,

the underlying metric employed in the definition of the routing relations may actually

suggest certain channels as being more profitable than others. Whether the routing

control hardware wants to take advantage of the proposed distinctions will depend

mainly on the additional complexity involved.

CHAPTER 3. PERFORMANCE 62

D

s

Figure 3.1: An Assignment Decision Having a Preferred Direction

As an example of the way in which certain output channels may be regarded as

more profitable than others, consider the case of a 2D rectilinear mesh, assuming that

the routing relations are generated according to the usual L1 or city-block metric. As

we have argued in the previous paragraphs that the ability to route on a multiple

number of alternate paths is advantageous, this consideration suggests the following

performance enhancement heuristic for the 2D mesh: Wherever there is a choice between

two profitable channels, always pick the one that lies along the longer dimension (see

Figure 3.1). The rationale behind this preference is that it systematically allows a

message to preserve the existence of multiple alternate choices for as long a period as it

can. Empirical simulation results indicate that for low- to medium-traffic density, the

heuristic consistently gives rise to a few-percentage improvement in message latencies.

The advantage, however, diminishes when the applied load further increases. Therefore,

whether it is in fact desirable to incorporate this heuristic into the adaptive routing

control, depends primarily on the amount of extra circuitry required to implement it.

CHAPTER 3. PERFORMANCE 63

3.3 Stochastic Modeling and Analysis

In this section, we shall first describe a very simple operational model for our adaptive

cut-through switching formulation. We then use this model to perform a simplified

probabilistic analysis in order to derive the first-order theoretical tradeoff relationship

between packet latency and throughput. Our main objective in performing this analysis

is to promote understanding of the mechanics of adaptive-routing decisions. We start

by first defining a number of symbols to be used in the subsequent development. Some

of these symbols have already been used in previous sections, and are repeated here for

the sake of completeness.

Definition 3.5 Let p denote the channel utilization factor, i.e., the fraction of time a

channel is busy.

Definition 3.6 Let q denote the injection channel utilization factor, i.e., the fraction

of time a node is injecting new packets.

Definition 3. 7 Let c denote the degree of a node, 1.e., the number of bidirectional

network channels that join it to its neighbors.

Definition 3.8 Let b denote the total number of packet buffers available at each node.

Definition 3.9 Let d denote the average distance a packet has to travel. Notice that

for very low traffic density, the average message latency should be approximately equal

to the sum of the average packet-distance to destination and the average message length,

assuming a metric-based routing relation.

In general, without any a priori knowledge of the computations being performed over

a multicomputer network, it is impossible to determine the applied traffic load, and,

therefore, the network performance. The following set of assumptions, not all inde

pendent, are chosen to represent a reasonable generic traffic demand and to allow for a

tractable analysis. Again, several of the assumptions have already been used in previous

sections, and they are restated in greater detail here.

1. The network is node symmetric, i.e., the network topology appears to be identical

from the viewpoint of every node of the network.

CHAPTER 3. PERFORMANCE 64

2. Network traffic density is homogeneous all over the network; m particular, the

average channel utilization is identical over all channels of the network.

3. Packets are generated and injected into the network at each node independent of

each other. The packet-arrival processes at each node are assumed to be time

invariant Poisson processes with identical injection rates.

4. The message packets are generated to destination uniformly over the entire net

work. The average message distance-to-destination d, is dependent upon the spe

cific network size and topology under consideration.

5. The applied load is within the network bandwidth limit, and the network traffic

has settled into a steady-state pattern; i.e., the average node-injection rate and

average message-arrival rate are equal.

6. Packets have a fixed identical length = L flits. Longer messages are broken into a

multiple number of fixed-length packets, with each packet routed independently

by the network.

7. Packets are routed m the virtual cut-through fashion; i.e., once an idle output

channel has been assigned, the selected packet will be forwarded immediately

without waiting for the complete arrival of the entire packet.

8. Complete routing information is contained in the header flit of length one; e.g.,

we can regard the header as holding the packet destination node address. Under

this assumption, the propagation delay per intermediate node is one cycle.

Assumptions (1) to (4) are simplifications that allow us to carry out the analysis on a

node-by-node basis, rather than over the entire network. Furthermore, these assumptions

represent reasonable approximations in popular networks such as the k-ary-n-cube if

some form of load balancing is provided for. More importantly, while these assumptions

are seldom directly applicable, they represent a realistic approximation to the case of

completely random object placements and communications. Randomizing strategies are

particularly attractive in concurrent computations that are highly irregular and dynamic

in nature [3]. Assumption (5) is an idealization chosen to allow us to proceed with

meaningful steady-state analysis. Specifically, it means that the message-injection rate

CHAPTER 3. PERFORMANCE 65

per node generated by the Poisson process mentioned in assumption (3) must be smaller

than the upper bound on throughput imposed by the network bisection bandwidth.

Assumption (6) is chosen to capture the likely engineering tradeoff involved in a practical

VLSI implementation of the adaptive scheme. Assumptions (7) and (8) together made

explicit our interest in employing the virtual cut-through switching technique to take

advantage of the special operating characteristics of the tightly coupled multicomputer

networks mentioned in Chapter 1.

3.3.1 The Assignment Statistics

Since our adaptive-routing formulation is motivated by the desire to exploit the existence

of multiple routing paths between senders and receivers, we shall start our analysis

by investigating assignment statistics concerning the underlying adaptive mechanism,

i.e., the assignments of packets to their respective profitable channels. As we shall

see later, these statistics ultimately govern the performance of our routing formulation.

Naturally, the statistics themselves will depend on the network topology, the operational

characteristics, and the traffic pattern under consideration. For our discussion, we shall

concentrate only on the practical cases of 2D and 3D tori connections, and only for traffic

following the assumptions enumerated earlier in this section. We shall also assume that

each node has a sufficient number of packet buffers so that the amount of misrouting is

minimal and can be ignored in our subsequent development. The performance figures

obtained under this assumption simply provide an upper bound on those achievable

under any realistic, finite buffer restriction.

The routing decision for each packet depends on the respective destination of the

packet and on the corresponding state of the router at the time of decision. Consider

the case of a 2D torus: Each packet routed in a 2D torus may have anywhere from

one to four profitable channels. As long as the network traffic is uniformly distributed,

and the average message-to-destination distance is not too small, i.e., the torus is of a

reasonable size, an overwhelming majority of the packets will have exactly two profitable

channels when they arrive at an intermediate node. A similar observation reveals that

most packets routed in a 3D torus will have exactly three profitable channels at an

intermediate node. Furthermore, the assumptions on uniform message traffic, node

symmetry, and homogeneity on link utilization imply that the distribution of profitable

CHAPTER 3. PERFORMANCE 66

channels is isotropic, i.e., equally likely in all directions. These observations allow us to

simplify the modeling process by adopting the following approximations:

l. For the 2D torus, the profitable channels of each arriving packet at an intermediate

node falls exactly into one of four groups: N and E, Sand E, N and W, and, finally,

S and W; these correspond to each of the four planar quadrants.

2. For the 3D torus, each packet falls into exactly one of eight groups of exactly three

profitable channels, these correspond to each of the eight spatial octants.

3. In both cases, the distribution of profitable channels for each packet is independent

and uniform among the different groups with equal probabilities, i.e., ¼ for the 2D

torus and ½ for the 3D torus.

Having modeled the distribution of profitable channels for the packets, the next job is to

model the routing-assignment process. To proceed, we observe that during every period

of L routing cycles, each output channel will be able to forward exactly one packet if

there is some packet requesting that channel. In other words, as long as we focus on

a time resolution equal to L cycles, each output channel will appear to be available

for assignment, for every £-cycle interval. Therefore, we shall take advantage of this

and define the assignment statistics over a window of L cycles, i.e., the total number

of successful assignments over a period of L cycles. In particular, we seek an answer

to the following question: Given that we start with a node initially having i internally

stored packets, how many packets will be forwarded profitably within the next L cycles,

assuming that j new arrivals will occur during this same £-cycle interval? In other

words, we are seeking the probability, Pi,j,k, for i ~ 0 and Os, j, k S: c, where k denotes

the number of successfully assigned packets.

We now argue for a simple approximation for the assignment probability Pi,j,k· To

proceed, observe that routing decisions in cut-through switching can be made with very

little delay; therefore, it is clear that all i+j packets are legitimate candidates for channel

assignment during this same L-cycle interval. Furthermore, given our assumptions that

the distributions of profitable channels for all packets are identical and independent, all

i+ j packets are indistinguishable from each other from a probabilistic point of view. Since

the distribution is assumed to be isotropic, the channels are likewise indistinguishable

CHAPTER 3. PERFORMANCE 67

2D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.1877 0.0470 0.0116 0.0029 0.0007 0.0002 0.0000 0.0000
3 0.0000 0.0000 0.8123 0.5466 0.3083 0.1626 0.0838 0.0428 0.0214 0.0105
4 0.0000 0.0000 0.0000 0.4064 0.6801 0.8345 0.9155 0.9570 0.9786 0.9895

Figure 3.2: Sequential Assignment Probabilities for a 2D Torus

3D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 1.0000 0.0696 0.0087 0.0011 0.0002 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.9304 0.2678 0.0740 0.0196 0.0051 0.0013 0.0003
5 0.0000 0.0000 0.0000 0.0000 0.7235 0.5623 0.3367 0.1838 0.0952 0.0488
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.3626 0.6435 0.8111 0.9035 0.9509

Figure 3.3: Sequential Assignment Probabilities for a 3D Torus

from each other. From the discussion at the end of the previous section, we know that the

routing assignment decisions are carried out primarily in a sequential fashion. Together,

they suggest that the actual assignment statistics can be reasonably approximated by

those generated under a strictly sequential assignment process over a total of i + J

random packets. In other words, we have Pi,j,k ~ mi+j,k, where ma,(3 denotes the

probability of having /3 profitable packet-to-channel matchings, given initially a total

of a packets. Furthermore, the assignments are performed sequentially, matching one

channel after another. To obtain the desired statistics, a Monte Carlo simulation was

performed and the corresponding results for the 2D torus and 3D torus are tabulated in

Figures 3.2 and 3.3. Once we have obtained these assignment statistics, we can use them

to obtain a stochastic equilibrium solution for our adaptive cut-through routers. As we

shall see, the assignment statistics govern the probabilistic state-transition properties

of our system.

3.3.2 Stochastic Equilibrium

Having obtained the necessary assignment statistics, we are ready to analyze the adap

tive virtual cut-through routing formulation. In general, multi-server queueing systems

are notoriously difficult, and, except for a few special cases, usually defy analysis. In

principle, any stochastic system can be modeled as a Markov process by incorporating

complete information in the state description. In practice, however, such is not feasible,

CHAPTER 3. PERFORMANCE 68

and the challenge becomes that of picking an acceptable state representation with suf

ficient information [5]. In the present case, a complete state description would consist

of the total number of packets presently stored in the node; the set of profitable output

channels for each packet; whether or not each input and output channel is busy, and

for how long; and, for systems with packet delivery guarantee, the relative priority of

each stored packet. In fact, just keeping track of the profitable channels for packets in

the buffers will require a total of (
33

+6
6

-
1

) = 906192 different states, for a 3D mesh

network with six bidirectional channels, and six internal buffers. There is clearly little

hope of obtaining the stochastic equilibrium solution for such an enormous system; even

if we did, we would be overwhelmed by too many insignificant details. In any case, such

a complete state description is simply out of the question!

Another source of difficulty in network traffic modeling arises from the inherent

dependency between the packet interarrival times and the packet length [26]. These

dependencies render the modeling problem intractable to analysis. Therefore, in order

to proceed, we shall adopt the following additional simplifying assumptions:

9. Packet arrivals at the various nodes and channels are independent of each other.

10. The packet-arrival distributions are memoryless which, in the present case, is

modeled as a Poisson process with arrival rate ,\ = cp/ L.

11. After each period of L cycles, a new set of profitable channels is chosen for each

packet from the idealized distribution described in the previous subsection.

Assumptions (9) and (10) closely resemble the well-known Kleinrock Independence As

sumption [26], and were chosen with the same purpose and motivation in mind. In the

original statement of the independence assumption, in addition to memoryless arrivals,

each time a packet is received at a node, a new length is chosen from an exponential

distribution. Since we assume fixed-length packets, such is not necessary; instead, we

replace it with assumption (11), which eliminates the history dependencies in successive

rounds of routing decisions. These assumptions, together with our earlier symmetry

assumptions, allow us to completely characterize the stochastic state of a node by the

total number of packets that are stored internally, i.e., the queueing population. In terms

of standard shorthand notation in queueing theory [27], we have something akin to the

CHAPTER 3. PERFORMANCE 69

M/ D / c queueing system, i.e., memoryless arrivals; deterministic service time = L, and

c 2: 1 servers. However, there is one important difference between our case and those

studied in conventional queueing systems: non-identical servers. This is because each

packet has its own choice of profitable channels, hence, a server, i.e., a channel, may

remain idle even if the queue is nonempty.

We are now ready to model the transition behavior of the system. Based on the

observation made earlier, we shall observe the state of our system, i.e., the queueing

population of a node, only at the sequence of snapshots at cycles: 0, L, 2L, 3L, ··•,etc ..

State transitions occur as a net result of two continuous processes: The arrivals of

new packets at the intermediate node, and the departure of packets forwarded by the

node. The stochastic equilibrium equations can now be obtained by coupling together

the governing statistics of these two processes: the packet-assignment statistics, and

the average packet-arrival rate. 1 In particular, let Qi(t) denote the state probability of

having i queued packets at cycle t. We have, Vi 2: 0:

where i + J - k 2: 0,

Next, in these equations, we let t-too. Under our steady-state assumptions, Qi(t) -t Qi,

the equilibrium-state probability, or time average, of having i queued packets at a node,

and given the ergodicity of the system, this is also equal to the ensemble average. Hence,

we have:

where i + J - k 2: 0,

and the normalizing equation:

Given the matching probabilities mi,k, and the arrival rate, A, these equations can be

solved numerically using such well-known successive relaxation techniques as the Guass

Seidel method. To continue our analysis, we observe that having the equilibrium state

1 Observe that under our assumption, it is possible, if not probable, to have more than c packets
arriving in ::::; L cycles. The independence assumption becomes more accurate with a larger number of
channels per node. Therefore, we expect the theoretical predictions for the 3D torus to be better than
those for the 2D torus.

CHAPTER 3. PERFORMANCE 70

probabilities, Qi, allows us to determine S, the expected decrease in the total packet

to-destination distance per node over a £-cycle interval:

where i + j - k ~ 0,

which should be =AL= cp, the average throughput of a node, as we have ignored any

misrouting in our model. This identity serves as an effective accuracy check for any

numerical approximation obtained using finite truncation.

Given our assumption of homogeneous traffic, the total expected decrease in packet

distance of the entire network over a £-cycle interval is: A = NS, where N is the

number of nodes in the network. The following observation then allows us to determine

the steady-state packet-injection rate per node: Since the network is in a steady-state

equilibrium, any decrease in packet distance must be balanced by an equivalent average

influx of newly injected packets. Therefore, we have A = N qdL; after rearranging, we

have the average throughput per node: q = rz;- = ~. We are now ready to pursue our

final objective in this analysis, i.e., to derive an approximate theoretical relationship

between packet latency and the applied load. To proceed, we observe that the expected

queueing population per node, Q, is given by:

On the other hand, according to Little's Theorem [30], we have:

Average Queueing Population= Average Throughput X Average Queueing Delay

From these, we obtain the average queueing delay, Tq = ~ Q. Finally, we have for the

total average network packet latency, TN = Tq + Tp + Tt, i.e., expressed as the sum of

queueing delay, propagation delay, and transmission delay:

(3.1)

Equation 3.1 allows us to determine the desired theoretical relationship between latency

and throughput. Figures 3.4 and 3.5 depict the latency curves obtained for the 2D torus

and 3D torus. In these figures, the applied load has been normalized with respect to the

upper bound imposed by the network bisection capacity. Similarly, the average packet

latency has been normalized with respect to the lower bound imposed by the sum of

CHAPTER 3. PERFORMANCE

N 20
0
R
M
A 15
L
I
z
E 10
D

L
A
T
E
N
C
y

5

0

Packet Length= 32, Average Distance = 16

0.0 0.2 0.4 0.6 0.8

Normalized Applied Load

Figure 3.4: Network Latency versus Applied Load: 2D Torus

Packet Length= 32, Average Distance = 24

N
16

0 14 R
M
A 12
L
I 10 z
E 8 D

L 6
A
T 4
E
N 2 C
y

0
0.0 0.2 0.4 0.6 0.8

Normalized Applied Load

Figure 3.5: Network Latency versus Applied Load: 3D Torus

71

1.0

1.0

CHAPTER 3. PERFORMANCE 72

the packet length and the average message distance to destination. It is clear from the

figures that at a very low applied load, the network latency is almost completely incurred

by the sum of propagation delay and transmission delay. As applied load increases, the

queueing delay starts to dominate and the overall latency approaches values comparable

to those obtained in store-and-forward routing [25].

In the foregoing analysis, we have deliberately ignored the traffic through the internal

channel connected to the message interface of a node. This traffic represents packets

that are injected by and delivered to the message interface of the node. By deliberately

omitting this traffic, we obtain results that are intrinsic only to the network and to the

routing strategy. To see why, recall that in homogeneous steady-state equilibrium, the

additional injected traffic from the message interface is exactly canceled by the arriving

traffic destined to this node, on the average. Hence, the average queueing popuiation,

the average resulting queueing delay, and, TN, the average network packet latency, all

remain unchanged.

However, the internal channel does introduce two additional queues into the system:

a source injection queue at the message interface of the sender and a destination arrival

queue at the router side of the receiver. For a reasonable-sized network, their effects can

be safely ignored. Consider a typical 2D torus of size 32 x 32. The bisection bandwidth

limits the injection rate to be ::; 0.25. In other words, the two additional queues are

each operated at a utilization factor of ::; 0.25. In almost all queueing disciplines, this

appears to be a very small perturbation that does not affect the first-order results.

Furthermore, it is clear from the above argument that this perturbation decreases as

the network size increases. For smaller networks that are shorter in each dimension,

however, the effect of this internal channel on the message interface cannot be ignored.

Following our assumptions, packets having arrived at their respective destination nodes

that are waiting to be sent to the message interface will form a M / D /1 queue connected

in tandem at the receiver side. For an 8 x 8 x 8 3D torus network, the injection-channel

utilization factor, q, is limited to ::; 1; therefore, the extra delay can no longer be

neglected. The average value of this extra delay, W, is given by the Pollaczek-Khinchin

Formula [27] for M / D /1 queues:

W= q L
2(1 - q)

CHAPTER 3. PERFORMANCE 73

Since, under our assumption, the individual packets are also generated according to a

Poisson distribution, we can finally observe that the same M/ D /1 queue is also formed

at the message-interface side for packets waiting to be injected. In other words, the

average source queueing time is also given by the above formula. We shall have more to

say about these extra queues in section 3.5.

3.4 The Simulation Experiments

Our stochastic analyses presented in the previous section were carried out under many

simplifying assumptions. These analyses are primarily useful for understanding the qual

itative behavior of the networks under our adaptive-routing formulation. For example,

modeling the dynamics of a routing node in detail points out the significance of the

packet-to-channel matching distribution. This suggests that random object-placement

strategies are very attractive in terms of both simplicity and excellent matching char

acteristics. To evaluate the conclusions derived from our stochastic models, and to

gain additional insights into situations that do not satisfy our simplifying assumptions,

we performed a set of discrete event simulation experiments employing adaptive cut

through routing on several representative networks. In performing these simulations,

we specifically sought answers or insights into the following issues:

1. The accuracy of our stochastic analysis in predicting the network performance

under situations that satisfy our simplifying assumptions. Of primary interest

here are the general characteristics of performance behaviors. Another interest

is the effectiveness of adaptive multipath routing in diffusing local congestions

generated in unbalanced traffic, as compared with the performance obtained from

oblivious wormhole routing.

2. The network performance for sending and receiving multipacket messages. Since

messages generated by computing objects are rarely of the same length as the

chosen packet length, longer messages will have to be broken into a multiple

number of packets.

3. The interaction between processing delay and communication delay and its effect

on overall computing performance. In a majority of concurrent applications, com-

CHAPTER 3. PERFORMANCE 74

munication traffic is highly reactive in the sense that the sending of a new message

is predicated upon the receipt of a previously sent message. The result is a kind

of negative feedback system that is governed by the highly nonlinear relationship

between message throughput, message latency, and processing speed.

4. The effectiveness of performing congestion control, based on an extension of the

network-access fairness guarantee scheme. Our motive here is to investigate prac

tical schemes that will maintain favorable network performance without incurring

substantial overhead. Of primary interests here are the self-stabilizing effects on

network operating points, and the second-order performance metrics, e.g., the

standard deviations in messages latencies.

It is clear that, in addition to the ones listed above, there are many other performance

characteristics that are both interesting and informative. Rather than attempting a

comprehensive coverage of all these areas, we have chosen instead to focus our inves

tigations on those that we believe are the most important and fundamental, given the

realistic constraints imposed by our computing resources.

3.4.1 The Assumptions

We now describe the set of basic assumptions that are common to all the simulations we

have performed, and discuss their roles in our simulations. In the subsequent description,

we shall use the ftit as our basic data unit, and the routing cycle as our basic time unit.

1. Network Topology: We have chosen to perform simulations on 2D and 3D meshes

and tori networks; this gives us a total of four different topologies. These represent

regular networks that are practically realizable. The tori, being node- and arc

symmetric, are ideal candidates for investigating the performance of an adaptive

scheme in balanced traffic. They provide an excellent approximation to our sim

plifying assumptions. The meshes, on the other hand, tend to produce congestion

across nodes located at the center; thus, they are natural candidates for inves

tigating routing under unbalanced traffic. All our simulations assume a network

with synchronous communication channels.

2. Packet Format: For the adaptive router, messages are broken into, and routed in

the form of fixed-size packets whose length= 32 flits. For example, the fixed packet

CHAPTER 3. PERFORMANCE 75

size for a typical flit width of 8 bits would be 256 bits. The first flit of a packet

is the header of the packet, and contains the address of the message destination.

Being primarily a circuit-switching technique, the oblivious wormhole routers do

not break messages into packets; rather, messages are routed as single entities.

In both cases, the first flit of the packet or message holds enough information to

perform local routing decisions.

3. Routing Strategy: Packets are forwarded by the adaptive router in virtual cut

through fashion. Since the headers are only one flit long, packets or messages can

be forwarded along their routes without delay at each cycle. For simulations of

the adaptive cut-through routing, conflicts in channel access are resolved in two

different ways, depending on the simulation objectives:

(a) First-come first-served: where assignments, profitable or otherwise, are per

formed in a FCFS manner. This simple policy is used only in the congestion

controlled traffic experiments, and represents a realistic scheme that is prac

tically realizable.

(b) Distance-priority: where conflicts are resolved according to the packets' dis

tance priorities. This represents a compromise between the desire to guar

antee packet delivery theoretically, and to satisfy the information constraint

imposed by using single-flit headers. This scheme is used in all other traffic

experiments.

Packets denied immediate access to channels are stored in buffers inside the adap

tive router. Packet misrouting is triggered only if there is danger of buffer overflow.

4. Buffer Structure: The buffer storage inside each adaptive router is organized as a

collection of 32-flit long FIFO buffers, where leaving and arriving packets can share

the same buffer. Each node has fifteen buffers, so as to minimize preemptions and

thus obtain results that are indicative of achievable upper-bound performance.

5. Message Destination Selection: Message destinations are selected uniformly over

the entire network, due to the absence of a priori knowledge on the type of com

putations supported. Uniform message destination traffic patterns represent a

CHAPTER 3. PERFORMANCE

Message Length Probability Density

0.014

0.012

0.010
D
E N 0.008
s
I 0.006
T
y 0.004

0.002

0.000

0.00 100 200 300 400 500

Message Length in Flits

76

600

Figure 3.6: Erlangian Distribution: Mean = 96 and Standard Deviation = 32

bound on the network performance that is readily implementable through ran

dom placement techniques and offer excellent results in load balancing [3,53].

6. Message-Length Distribution: For simulations regarding multipacket messages,

message lengths are generated according to the Erlang (Ek) Distribution; this is a

special case of the more general class of Gamma Distribution [57]. The probability

density is given by:

and the cumulative distribution is given by:

k-1 (>.[)i
F(l) = l - L e->.l __ -

1
j==O J.

for l 2". 0 with a mean E(l) = ! and a standard deviation a(l) = -/kE(l). For our

simulation, we have chosen a mean of 96 flits and a standard deviation of 32 flits.

Figure 3.6 shows the selected distribution. The specific density was picked so as

to approximate the message-length distribution generated in typical concurrent

computing applications [7,29].

CHAPTER 3. PERFORMANCE 77

The parameter space over which the networks were simulated was chosen under the guid

ance of our theoretical models and is expected to represent regions of practical interest.

We have chosen to simulate networks of medium sizes: 16 X 16 = 256 nodes in the case

of 2D networks, and 8 x 8 x 8 = 512 nodes in the case of 3D networks. The simulated

network sizes were chosen as a compromise between our interest in the performance of

the adaptive-routing approach in large networks, and the practical limit imposed by

the available computing resources. The enormous computing costs and address space

requirements dictate that the simulations themselves be performed on existing concur

rent computers. The simulation program is written in C and runs under the Reactive

Kernel developed here in the Computer Science Department at Caltech [52,55]. The

simulation experiments were run almost continuously on the iPSC/1 d7 cube, and later

on the iPSC/2 d4 cube and Symult Series 2010 machine [23,24,51]. The entire set of ex

periments, including a few more from the next chapter, took approximately four months

to complete.

3.4.2 The Experiments

We now describe in detail the various sets of simulation experiments we have performed,

and the additional assumptions relevant to the individual experiments. The simulation

experiments can be conveniently divided into four different categories:

1. Independent, Constant Applied Load: In this set of experiments, messages are

generated independently and at a rate that is identical at each node. The message

generation distribution is memoryless, which in our discrete case is generated by

a Bernoulli process of fixed rate. The rate or applied load was the parameter that

varied in the simulations. These experiments were designed to test the intrinsic

network performance figures, and can be further divided into two subcategories:

• Balanced Traffic: The first set of experiments simulated uniformly random

message traffic on the 2D and 3D tori. The node- and arc-symmetries in

these networks give rise to traffic that is homogeneous everywhere.

• Unbalanced Traffic: In order to test the effectiveness of adaptive routing in

exploiting multiple alternate routes around regions of local congestion, sim

ulations of uniformly random message traffic on the 2D and 3D mesh were

CHAPTER 3. PERFORMANCE 78

conducted. The topology of the mesh networks creates highly unbalanced

traffic with congestion over nodes around the center of the mesh, thereby

providing a testbed for our present purpose. A corresponding set of simula

tions on the oblivious routers was also performed for comparison.

Within each category, the experiments can be further subdivided into:

(a) Single-packet messages: These experiments were designed to test the theoret

ical predictions, and provide indications of performance levels for networks

that route relatively short messages.

(b) Multiple-packet Messages: These experiments were designed to test the more

realistic case of variable-length messages. Reassembly-buffer population and

packet-order preservation are also of interest.

2. Reactive Message Traffic: The previous set of simulations were targeted to extract

information intrinsic to the communication networks and their routing strategies.

In this regard, messages are generated at a constant rate that lies within the limit

imposed by the network bisection bandwidth. Our next set of simulations will in

vestigate the impact of interactions between processing delay and communication

delay on the overall performance of computing. In particular, in most concurrent

applications, computations proceed in a reactive style, in which a process or object

receives a message sent to it, performs some local computations, and then sends

new messages off to other objects that carry on the computation. In general, the

message-generation rate is not independent of the message traffic. Rather, it is

regulated by the sustained network throughput; this forms a negative feedback

system that seeks its own equilibrium. For this set of experiments, each node in

the network was endowed with a fixed number of messages at the beginning of the

simulation that are ready to be sent. Additional messages were generated at each

node upon receipt of previously generated messages sent from another node. The

processing delay was scaled in proportion to the length of the received message.

In a crude sense, it was an attempt to model the interaction between process

ing and communication during actual concurrent computations. By varying the

scaling factor in the simulations, we attempted to cover a wide spectrum that

CHAPTER 3. PERFORMANCE 79

ranged from processing-intensive to communication-intensive computations. Only

multipacket messages were simulated in this set of experiments.

3. Congestion-Controlled Message Traffic: In the first two sets of experiments, the

packets are allowed to be injected into the network in their earliest possible time,

where network congestions have not been actively taken into account. In our

third set of experiments, we explore the effects of adding congestion control to

help stabilize and confine the network operating point to stay within the favor

able regions, i.e., the throughput regions that deliver acceptable network latency

values, regardless of the external applied load. In particular, we extended the

injection-synchronization protocol described in section 2.5.3, to include additional

injection restriction whenever misrouting occurs. In other words, as long as a

node is misrouting some of its packets, it will not advance its injection count, re

gardless of whether it has a packet to inject or not. When the misrouted packets

have completely left the node, it will revert back to follow the normal injection

synchronization protocol. The rationale behind this congestion-control scheme is

that the occurrence of misrouting is symptomatic and, hence, indicative of the

onset of network congestion. By directly monitoring misroutings, the network

packet population can be controlled to stay within regions where misroutings are

rare and transient events and, hence, will help to stabilize the network operating

point. From this perspective, it is similar to the reactive traffic experiments in

that it forms a negative feedback system that seeks its own equilibrium. For this

set of experiments, the maximum injection count difference, K, used in the pro

tocol is set to one. Only the mesh networks which inherently create congestions

in the center were simulated in this set of experiments.

4. Fast Fourier Transform Traffic: In the first three sets of experiments, the traffic

patterns were all generated artificially. In our final set of experiments, we chose

to simulate the traffic pattern generated by an actual concurrent computation:

the Fast Fourier Transform, on a 16 X 16 2D mesh. These experiments also gave

us an opportunity to compare the effects of different object placement strategies

on the overall computational performance. There are many different concurrent

formulations for the FFT [50], each corresponding to a different tradeoff point

CHAPTER 3. PERFORMANCE 80

along the Area X Time2 complexity curve [58]. In our experiment, we chose the

fine-grain iterative formulation that gives O(log N) run time, using O(N) number

of nodes. In particular, we performed a 4096-points FFT computation in situ;

i.e., we started with a vector of 4096 data figures, already located in the mul

ticomputer, with 16 at each node. The end result of the FFT computation is

another array, i.e., the transform, that is also spread out among all the nodes of

the multicomputer. Since the FFT butterfly operations are distributed over the

underlying physical network, the required data distribution has to be implemented

by message communication. The particular mapping chosen, however, can affect

actual computation performance. In particular, we chose to compare the effects

of the two simplest placement alternatives:

• Systematic Placement: The mapping used here is simply the identity map

between logical addresses and physical addresses of the data elements.

• Randomized Placement: The mapping used here is a pseudo-random bijective

address mapping that disperses the message traffic.

In addition to routing the traffic generated by the FFT computation, the speed

of floating-point arithmetic, or MFLOPS, is another primary parameter that is

varied in this experiment.

During each simulation session, except for the FFT experiment, the networks were sim

ulated for total of 80000 cycles which was partitioned into four nonoverlapping intervals

of 20000 cycles each. The statistics for the intervals in each simulation were compared

and were found to be typically within 2% of each other. This suggests that the simula

tion interval is long enough for the statistics that were collected. Within each window

period, each node typically would have injected and received several hundred messages,

and various statistical measures were taken. We now list the set of primary statistical

measures taken during the simulations.

1. Average Message Latency: The mean time between the injection of the first packet

of the message at the source, and the arrival of the last packet at the destination.

This is our primary performance metric.

CHAPTER 3. PERFORMANCE 81

2. Average Packet Latency: The measurement of the routing service without the in

fluence of message length or extra reassembly delay. It is essentially a performance

measurement of the network.

3. Average Sustained Network Throughput: The mean sustained message data deliv

ery rate. Under steady-state condition, it should always be identical to the mean

message-injection rate.

4. Average Source Queueing Time: The mean time between the generation of a

message and its subsequent injection into the network. The total message delay

between generation at source and consumption at destination is the sum of the

queueing time plus the message latency.

5. Average Router Queueing Population: The mean number of packets queued inside

the adaptive router. This gives a rough indication of the number of internal buffers

per router required to sustain the desired network performance.

6. Average Fraction of Out-of-Sequence Message Arrivals: This measure provides a

useful indication of the extent to which messages arrive out of sequence. These

messages require resequencing when message-order preservation between sender

and receivers is desired.

7. Average Reassembly/Resequencing Buffer Population: The mean number of pack

ets buffered at the receiver side waiting for message reassembly and message-order

resequencmg.

3.5 The Simulation Results

In this section, we present and discuss the results obtained from the simulation exper

iments described in the previous section. Our emphasis here is the understanding of

network performance behavior over the entire range of applied load. Whenever possible,

a qualitative interpretation will be given in accordance with our understanding of the

adaptive router obtained from the theoretical model.

To facilitate the comparison of experimental results with theoretical limits, we have

normalized both the applied load, i.e., the rate at which messages are generated, and

CHAPTER 3. PERFORMANCE 82

the network throughput, i.e., the rate at which messages are delivered, with respect to

the upper bound imposed by the network bisection bandwidth. As a concrete example,

a 16 x 16 2D mesh network has a maximum throughput of 0.25 flits/cycle for uniformly

random traffic. Hence, a normalized applied load of 0.4 indicates that, on the average,

a node is generating 1 flit every 10 cycles. As a result of this normalization, when we

compare normalized throughput curves of different network topologies, such as torus

and mesh, the traffic volume injected and delivered by the torus is twice that injected

and delivered by the mesh at the same normalized applied load. Under steady-state

conditions, average applied load should be identical to average network throughput.

When the applied load exceeds the capacity that can be handled by the network and

its routing strategy, the source injection queue size increases without bound.

3.5.1 Single-Packet Messages

The relevant statistics for simulation runs of single-packet message traffic are shown

in Figures 3.7 to 3.14. Figures 3.7 and 3.8 plot the latency versus throughput tradeoff

curves for the 16 x 16 2D torus and the 8 X 8 X 8 3D torus. Also shown in these two figures

are the theoretically predicted curves obtained from our theoretical model. Starting at

~ 10% throughput, the latencies in both networks are very close to their theoretical

lower bound, i.e., 32+2 (\6) ~ 40 cycles for the 2D torus and 32+3 (¾) ~ 38 cycles for

the 3D torus. Both curves stay relatively flat until the throughput increases to ~ 70%,

at which point the latencies start to climb rapidly and approach values comparable to

those expected in store-and-forward switching. This phenomenon is characteristic of the

virtual cut-through switching technique: The message latency is close to that of circuit

switching at low traffic density, and approaches that of store-and-forward switching at

high traffic density [25]. As we shall see later, one of the main differences between

the oblivious wormhole scheme and our adaptive cut-through scheme would be in the

location of the transition points. Observe that the matching between the theoretical and

experimental curves is closer for the 3D torus than between those of the corresponding

2D torus. We conjecture that this is due to the increased number of channels per node

in the case of the 3D torus, which makes the Poisson arrival assumption more accurate.

Figures 3.9 and 3.10 plot the corresponding latency-versus-throughput tradeoff curves

for the 2D and 3D mesh networks. Shown in these figures are the tradeoff curves for

CHAPTER 3. PERFORMANCE 83

both the oblivious wormhole and for our adaptive cut-through results. Oblivious worm

hole routing differs from cut-through switching in that it treats the routing paths as

data pipelines that join the source and destination nodes, allowing messages to ripple

through. Messages trying to access channels currently being used are blocked, which in

turn, block other messages behind them in the pipelines [11]. Again, the characteristic

shape mentioned above for the virtual cut-through switching tradeoff curves is obtained.

For oblivious wormhole routing, the transition points lie at ~ 30 to 40% of normalized

throughput, with the maxima never exceeding 50% and 40% for the 2D and 3D mesh,

respectively. Figures 3.11 and 3.12 plot the relationships between sustained throughput

and applied load for all the relevant networks and routing schemes. Observe that for the

oblivious schemes, the sustained throughputs remain stable at their respective maxima

even after the applied load exceeds the capacity that can be handied. In addition, the

network latencies also remain stable at their respective maximum values. Apparently,

the blocking that occurs at those traffic densities is also sufficient to throttle further

congestions created by excessive injection. On the other hand, the figures indicate that

our adaptive cut-through switching can sustain as much as 85% normalized throughput,

given a total 15 packet buffers per node, which is the case in our simulations. Again,

the transition points in the latency curves occur at about 70% normalized throughput.

While the average network latencies of the oblivious wormhole routing remain stable

for applied loads that exceed their sustained throughput capacities, the corresponding

source queueing times increase without bound. Figures 3.13 and 3.14 plot the relation

ships between source queueing time and applied load for all the relevant networks and

routing schemes. Observe that under adaptive routing, the torus network curves resem

ble those predicted by the Pollaczek-Khinchin Formula for the M/ D/1 queues. These

facts are consistent with the memoryless message-generation distribution used in our

simulation experiments. Furthermore, we observe that the curve of the 3D torus is much

steeper than that of the 2D torus. That such should be the case can be understood if

we recall that the maximum steady-state injection rate of the 3D torus is identical to 1,

whereas it is ½ for the 2D torus. Hence, for the 2D torus, the average utilization of the

internal channel never exceeds one-half of its capacity. Another interesting point to ob

serve in these two figures is that the average source queueing time for the mesh networks

is lower than for the corresponding torus networks for all normalized applied loads up

CHAPTER 3. PERFORMANCE 84

to ~ 75%. This may seem like a contradiction at first, as we expect the congestion

created at the center of the mesh to result in a much higher average source queueing

time than that obtained from the balanced traffic generated over the torus. However,

only those nodes at the center of mesh experience this congestion, whereas the majority

of nodes at the periphery are operating with their channel utilizations much less than 1.

Hence, there is little or no interference to the traffic carried by the internal channel at

these nodes, which are injecting at a rate that is half of the corresponding normalized

value for the torus. It is only after the congestion area begins to grow in response to

increases in traffic density that the overall average source queueing time begins to climb

rapidly and far exceeds that for the torus networks. Hence, in this regard, if a mesh is

expected to operate under very heavy traffic density, fairness-guarantee schemes (such

as those presented in Chapter 2) should be employed. However, in such cases, because

the figures indicate that the torus connections are superior in terms of flow control and

fair access to the network, the torus may prove to be a much better topology than the

mesh. On the other hand, we might adopt the point of view that a network should

never be driven to support a traffic density beyond that of the transition point in its

respective latency curve, in which case, the torus has no clear advantage over the mesh.

In fact, under a constant bisection capacity assumption, the channel width of a mesh

is twice that of a torus, which more than compensates for the longer average message

distance to travel.

CHAPTER 3. PERFORMANCE 85

2D Torus, 256 Nodes

400

350

300 Model Prediction

L
250 A

T
E 200
N
C 150 y

100

50

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.7: Single-Packet Message Latency of 2D Torus

3D Torus, 512 Nodes

300

250

L 200
A
T
E 150
N
C
y 100

50

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.8: Single-Packet Message Latency of 3D Torus

CHAPTER 3. PERFORMANCE 86

2D Mesh, 256 Nodes

350

300

250
L
A 200 T
E
N 150
C
y

100

50

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Throughput

Figure 3.9: Single-Packet Message Latency of 2D Mesh

3D Mesh, 512 Nodes

300

250

L 200
A
T
E 150
N
C
y 100

50

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Throughput

Figure 3.10: Single-Packet Message Latency of 3D Mesh

CHAPTER 3. PERFORMANCE

T
H
R
0
u
G
H
p
u
T

T
H
R
0
u
G
H
p
u
T

2D Networks, 256 Nodes

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.11: Single-Packet Message Throughput for 2D Networks

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2

3D Networks, 512 Nodes

Oblivious, Mesh

0.4 0.6

Normalized Applied Load

0.8 1.0

Figure 3.12: Single-Packet Message Throughput for 3D Networks

87

CHAPTER 3. PERFORMANCE 88

2D Networks, 256 Nodes

s 350
0
u

300 R
C
E 250 Oblivious, Mes

Q
u 200
E
u 150 E
I
N
G

100

T 50
I Adaptive, Toru

M 0 E
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.13: Single-Packet Message Source-Queueing Time for 2D Networks

3D Networks, 512 Nodes

s 350
0
u
R 300
C
E 250
Q
u 200 Ob ivious, Mesh
E
u 150 E
I
N
G

100

T 50
I

M 0 E
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.14: Single-Packet Message Source-Queueing Time for 3D Networks

CHAPTER 3. PERFORMANCE 89

3.5.2 Variable-Length Multipacket Messages

The relevant statistics for the simulation runs of the variable-length multipacket message

traffic experiments are shown in Figures 3.15 to 3.28. The lengths of these messages

are chosen according to the Erlang Distribution described in the previous section. This

generates messages with an average length of 96 flits and a standard deviation of 32

flits. In the oblivious wormhole scheme, the entire message is routed as a single entity

across the network; hence, the network sees the same mean and standard deviation of

the original distribution. The adaptive cut-through scheme, on the other hand, breaks

the messages into a multiple number of fixed-size packets of length 32 flits. As a result

of this repackaging process, the network sees a different mean and standard deviation

for the length of its message traffic. Results from Monte Carlo simulations show that

the mean of the repackaged message to be ~ 112 flits, whereas the standard deviation

remains ~ 32 flits. This extra overhead reduces the effective maximum throughput to

i°162 ~ 85.7% of its original value. In other words, a normalized throughput value of

0.857 represents a ceiling on the effective throughput of the adaptive scheme for the

message traffic under discussion.

Figures 3.15 and 3.16 plot the latency versus throughput tradeoff curves for the

2D and 3D mesh networks. Shown in these figures are the message latency curves for

both the oblivious wormhole and adaptive cut-through schemes. The latency curves of

individual packets in adaptive routing are also plotted. We again observed the familiar

characteristic shape of latency versus throughput tradeoff. The latency curves for the

oblivious wormhole scheme closely resemble those of the corresponding single-packet

message traffic, with the transition points at~ 30 and 35%, and the maximum sustained

throughput at ~ 40 and 50% normalized values, respectively, for the 2D and 3D-mesh.

Similarly, the transition points for the adaptive schemes occur at~ 60 to 65% normalized

throughput. The maximum sustained effective throughput is, as far as the figures

show, up to at least 80%, or ~ 93% in actual network traffic, given a total of 15

packet buffers per node. The difference between the packet- and message-latency values

for the adaptive scheme remains relatively fixed over the range below the transition

point. In fact, close examination of the numerical figures reveals that it is very close

to the difference between the average message length, 112, and the packet length, 32.

CHAPTER 3. PERFORMANCE 90

Furthermore, these packet latency curves are much steeper than the corresponding

curves obtained in the single-packet message-traffic experiments. In other words, while

the adaptive scheme allows exploitation of multiple alternate routes to destination, this

advantage appears to be realized only at the message level, but not by individual packets.

In fact, the very bursty packet traffic generated by these multipacket messages is highly

correlated. In a crude sense, successive packets of the same message follow each other

sequentially in order, and are broken only occasionally by other competing messages

along the way.

Figures 3.17 and 3.18 plot the corresponding latency curves for the 2D and 3D

torus networks. The curves for the 2D torus behave as expected, with the transition

points lying at ~ 70% in normalized value. Similarly, the maximum sustained effective

throughput is at least 80%, the equivalent of ~ 93% in actual network throughput

values, given 15 packet buffers per node. The latency curves for the 3D torus, however,

are unexpected. While we still recognize the familiar characteristic shape, it is distorted

toward the high end. In particular, the maximum sustained effective throughput occurs

at ~ 60% in normalized value. This is much lower than the corresponding maximum

obtained in the single-packet experiments, and, contrary to intuition, since we generally

would expect a 3D network to perform better than its 2D counterpart. This discrepancy

is illustrated most clearly in Figures 3.19 and 3.20, which show the curves of throughput

versus applied load for all the relevant networks and routing schemes. The maximum

sustained throughput under heavy applied load remains very stable for the oblivious

wormhole schemes. The throughput curves for the 2D torus, 2D mesh, and 3D mesh

under the adaptive scheme all behave normally and do not level off until they are very

close to the throughput ceiling. The curve for the 3D torus, on the other hand, starts

to level off unexpectedly at ~ 60% normalized value. To understand the reason behind

this anomaly, we recall that there is an internal channel in each node that connects the

router and the message interface and that it forms a separate arrival queue in tandem

with the router of the receiving node. For all other network topologies and for their

respective sustained traffic density, this queue remains short and its effect can generally

be neglected. However, for the 3D torus, since the maximum steady-state injection

rate, and, hence, the delivery rate, is identical to 1, this queue will grow to become

much longer as the sustained throughput increases. Figures 3.21 and 3.22 plot the

CHAPTER 3. PERFORMANCE 91

average packet population per node versus the applied load for the adaptive routers.

The curve for the multipacket 3D torus clearly reveals the rapid growth in queue size.

As the normalized applied load approaches 0.6, all available buffers become filled and

remain practically full thereafter. Since misrouting of packets is used in the adaptive

scheme to prevent deadlock in the network as the buffers become full, the effective

normalized throughput does not increase beyond 0.6. The interesting point to observe

is that the effective throughput also does not decrease below 0.6, as the corresponding

throughput curve in Figure 3.20 remains relatively flat under increasingly heavy applied

load. Apparently, the misrouting of packets through the internal channel that occurs

at those traffic densities is also sufficient to throttle any further congestion created by

excessive injection. Figure 3.22 also reveals a similar but less prominent growth in queue

size for the case of single-packet messages in a 3D torus.

Figures 3.21 and 3.22 also reveal another interesting point: The queue sizes for

the multipacket message traffic are always larger than the corresponding ones for the

single-packet message traffic. For example, the 2D mesh at 0. 7 normalized applied load,

i.e., around the transition points on the latency curves, has an average queue size of

~ 0.5 for the single-packet message traffic, ~ 3.2 for the multipacket message traffic.

Similarly, the average queue size at 0.7 normalized applied load for the 3D mesh is~ 1.2

for the single-packet message traffic and ~ 4.2 for the multipacket message traffic. We

can understand this phenomenon qualitatively in the following way: We recall from the

previous discussion that the very bursty nature of multipacket traffic and the correlation

in the destination addresses result in channel-access collision patterns that actually

more closely resemble message switching than packet switching. Hence, theoretically,

the average number of queued messages per node will remain close to that found in

single-packet message traffic; and the number of queued packets per node will be much

higher, as each message consists of a multiple number of packets. Most importantly, this

explains why the maximum sustained throughput is only 0.6 for multipacket messages

on the 3D torus. Since, in that case, the queues for normal network traffic and for

arrival messages are both competing for the finite number of buffer at each router. In

contrast, the curves from the other network topologies indicate that the extra demand

on buffer space due to the arrival message queue is minimal for practical networks of

reasonable size. For example, the average queueing population per node for all the other

CHAPTER 3. PERFORMANCE 92

networks is ~ 6 at 75% applied load and throughput. In any case, the results of these

experiments suggest that the average length of the intended message traffic should be

included as an important design factor in determining the exact amount of buffer storage

allocated in each node. On the other hand, as the traffic experiment on the 3D torus

shows, the effect of having insufficient buffers per node appears simply to truncate and

create a plateau rather than a disastrous drop in the throughput performance curve.

Figures 3.23 and 3.24 plot the average source queueing time versus the applied load

for all relevant networks and routing schemes. As expected, the curves indicate that the

source queueing time remains negligible until the applied load approaches the maximum

throughput limit identified in the previous curves, after which it climbs rapidly. The

exact numerical values near the high end limits should not be taken seriously, as most

of them actually increase without bound when one waits long enough. For example, in

the case of the 3D mesh, the plotted curve shows a finite average even for applied loads

exceeding the throughput ceiling (which is clearly the result of impatience on the part

of the author).

Finally, average number of packets and messages being reassembled, and resequenced,

against the normalized throughput for all four different networks. Reassembly of re

ceived packets is necessary to deliver entire messages as complete entities; resequencing

of received messages is necessary to maintain the message order between senders and

receivers. Both operations put extra demand on the local memory of each processing

node. However, as is indicated by these curves, the amount of extra storage occupied by

these operations appears to be minimal. For example, even at 80% normalized through

put (except the 3D torus, which never reaches 80%), the average number of waiting

packets is < 7. In fact, the average fraction of messages received out of sequence is uni

versally < 0.6%, even at 80% sustained throughput. We have chosen not to separately

plot this statistic because it is almost entirely flat and stays very close to zero. We

conjecture that the main reason behind this flatness is that in all our experiments, the

profitable channels are always chosen from those that lie along the shortest paths joining

the node under consideration and the packets' destinations. As a result, no matter what

the local decisions are, every message between the same source/destination pair has to

travel an identical number of hops before arriving at its destination. This appears to be

sufficient to constrain the set of probable message arrival sequences to those very close

CHAPTER 3. PERFORMANCE 93

to the original injection sequence.

CHAPTER 3. PERFORMANCE 94

2D Mesh, 256 Nodes

2500

2000

L
A 1500
T
E
N
C 1000
y

Message Latency, Oblivious

500

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.15: Variable-Length Message Latency for 2D Mesh

3D Mesh, 512 Nodes

1800

1600

1400

L 1200
A
T 1000 ro ghput

E
N 800
C
y 600 Message Latency, Oblivious

400

200

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.16: Variable-Length Message Latency for 3D Mesh

CHAPTER 3. PERFORMANCE

2D Torus, 256 Nodes

2000

1500 da tive

L
A
T
E 1000
N
C
y

500

0
0.0 0.2 0.4 0.6 0.8

Normalized Throughput

Figure 3.17: Variable-Length Message Latency for 2D Torus

1200

1000

L 800
A
T
E 600
N
C
Y 400

200

0

0.0 0.2

3D Torus, 512 Nodes

Ada tive

Thro ghput

Ceil ng

0.4 0.6 0.8

Normalized Throughput

Figure 3.18: Variable-Length Message Latency for 3D Torus

95

1.0

1.0

CHAPTER 3. PERFORMANCE 96

2D Networks, 256 Nodes

1.0

0.8
T
H
R 0.6 0
u
G
H 0.4 p
u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.19: Variable-Length Message Throughput for 2D Networks

3D Networks, 512 Nodes

1.0

Ada tive Throu h ut Ceilin

0.8
T

Adaptive, Mesh

H
R 0.6 0 u
G
H 0.4 p Oblivious, Mesh

u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.20: Variable-Length Message Throughput for 3D Networks

CHAPTER 3. PERFORMANCE 97

2D Networks, 256 Nodes, 15 Buffers

16
p

14 A
C

12 K
E
T 10
s
p 8

E 6 R

N 4
0
D 2
E

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.21: Average Adaptive-Router Queue Population for 2D Networks

3D Networks, 512 Nodes, 15 Buffers

16
p

14 A
C

12 K
E
T 10
s
p 8

E 6 R

N 4
0
D 2
E

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.22: Average Adaptive-Router Queue Population for 3D Networks

CHAPTER 3. PERFORMANCE 98

2D Networks, 256 Nodes

s 3000
0
u
R 2500
C
E

Q 2000

u
E 1500 u
E
I 1000
N
G

T
500

I
M 0
E

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.23: Variable-Length Message Source-Queueing Time for 2D Networks

3D Networks, 512 Nodes

s 6000
0
u
R 5000
C
E

Q 4000

u
E 3000 u
E
I 2000
N
G

T
1000

I
M 0
E

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.24: Variable-Length Message Source-Queueing Time for 3D Networks

CHAPTER 3. PERFORMANCE 99

2D Mesh, 256 Nodes

5
B
u
F 4 F
E
R

3 Number of Buffered Pa
p
0
p

2 u
L
A
T 1
I
0
N

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.25: Average Reassembling/Resequencing Buffer Population for 2D Mesh

3D Mesh, 512 Nodes

6
B
u

5 F
F
E
R 4

p
0 3
p
u
L 2
A
T
I 1
0
N

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.26: Average Reassembling/Resequencing Buffer Population for 3D Mesh

CHAPTER 3. PERFORMANCE 100

2D Torus, 256 Nodes

7
B
u 6
F
F
E 5 Ada tive

R

p 4
0
p 3 Ce ling
u
L

2 A
T
I 1 0
N

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.27: Average Reassembling/Resequencing Buffer Population for 2D Torus

3D Torus, 512 Nodes

8
B u
F
F 6 E
R

Ada tive

p
0 4 Thro ghput
p
u Ceil ng
L
A 2 T
I
0
N

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.28: Average Reassembling/Resequencing Buffer Population for 3D Torus

CHAPTER 3. PERFORMANCE 101

3.5.3 Reactive Message Traffic

The relevant statistics for the simulation runs of the reactive message traffic experi

ments are shown in Figures 3.30 to 3.41. The length of the messages used in this set of

experiments are chosen from the same Erlang Distribution used in the variable-length

multipacket message experiments. In other words, a normalized value of 0.857 again

represents the effective throughput ceiling for the adaptive-routing schemes. In these

experiments, each node is initially endowed with a fixed, identical number of messages

waiting to be processed while the network is quiescent. The amount of time spent in

processing each message, referred to below as the processing delay2 , is directly propor

tional to the length of the message. The proportionality constant is a parameter that

varied in these experiments. Upon completion of the processing of an old message, a

new message is generated with its destination to some other random node. In this way,

the total message population in the entire system (network + nodes) is held constant

throughout the simulations. This reactive traffic is believed to be a realistic approxima

tion that models the communication patterns and captures the feedback stabilization

inherent in most message-passing concurrent computations.

Given an average message length of 96 flits, the average processing delay per message

chosen in our simulations spans a range from ~ 100 to 1200 cycles. This range roughly

corresponds from one processing cycle per flit to twelve processing cycles per flit, or an

equivalent processing rate of from ~ 0.08 flit per cycle to one flit per cycle. Although

highly dependent on the programming style, this range was chosen to reflect typical

figures obtained in fine-grain concurrent computations. In particular, a number of

recent developments have the potential to push the average processing delay toward the

extreme low end. The notion of message-driven processor [3,13] represents architectural

attempts to reduce the substantial overhead in message handling. Furthermore, the

very fine object granularity achievable in concurrent languages employing the actor

computation model [1,3,7] encourages a programming style that generates computations

with extremely simple objects and very intensive message traffic; preliminary traffic

statistics obtained from programming experiments using Cantor [3,7] produce results

with extremely low processing delay. In addition, the disparity between the typical

2 Not to be confused with the packet routing processing delay mentioned in section 3.1.

CHAPTER 3. PERFORMANCE 102

channel flit width and the typical processor word width also contribute to reduce the

average processing cycles per flit.

Figures 3.30 and 3.31 plot the average sustained network throughput versus the av

erage processing rate for the 2D mesh under the oblivious wormhole and adaptive cut

through schemes, respectively. Corresponding curves for the 3D mesh, the 2D torus,

and the 3D torus are shown in Figures 3.32 to 3.35. Shown in each of these figures are

four curves, corresponding to the different starting message populations of 1, 2, 4, and 8

messages per node. In each of these plots, a higher starting message population always

results in a higher sustained throughput. In fact, a population of eight messages per

node is sufficient to drive each network to the maximum throughput capability achiev

able under the respective employed routing scheme. For each curve shown, starting

from a very low processing rate, the average throughput increases roughly linearly as

the average processing rate increases, until it reaches saturation, and stays constant

thereafter. Under adaptive cut-through routing, the transition occurs at an average

processing rate of ~ 0.2 flits per cycle for the 2D mesh and ~ 0.4 flits per cycle for the

3D mesh. These rates are approximately equal to the maximum sustained throughput

obtained from our previous simulation results. To understand these figures, observe

that as one increases the average processing rate, the rate at which a processor can

generate messages increases. The transition points occur roughly at the point where a

processor working full speed can produce a traffic density high enough to saturate the

network throughput capacity under the employed routing scheme. Below the transition

rate, however, a processor simply cannot produce messages fast enough to cause satu

ration. As a check, we observe that the transitions occur at processing rates of~ 0.12

flits per cycle for the 2D mesh and ~ 0.2 flits per cycle for the 3D mesh, using oblivious

wormhole routing. Because of its very high throughput capacity, the curves for the 3D

torus exhibit no transition for the range of delay values shown here.

Figures 3.36 to 3.41 plot the processor utilization ratio versus the average message

processing delay for the various networks and routing schemes. The various utilization

curves all start from very low ratio and climb roughly linearly until they reach satura

tion. Again, the saturation utilization ratio for the m = 8 curves are always higher than

the rest. In fact, with m = 8, the saturation values are almost always unity. Observe

that the transitions into saturation also occur at roughly the corresponding throughput

CHAPTER 3. PERFORMANCE 103

saturation points. For delay values less than the saturation figure, the utilization ratios

are much lower than one. The very fast turnaround time from message consumption

to message generation at these lower processing delay values produces little or no pro

cessing backlog at each node. On the other hand, the bottleneck occurs in front of the

communication network, which is unable to deliver messages fast enough to keep the

processors busy. As the processing delay values increase beyond the saturation value, a

backlog of workload starts to pile up at each node. As a result, the processor is always

working at full speed trying to catch up with existing backlog. The communication

network, operating at less than full capacity, readily replenishes each node with new

backlog arriving from other nodes. These observations are consistent with the average

message source-queueing time and processing backlog-time statistics collected during

the experiment. In general, as the processing delay increases, the source queueing time

starts from very high and decreases to almost negligible; in contrast, the processing

backlog time starts from almost negligible and increases to very high values. In sum

mary, we can conclude that, according to our experiments, with a sufficient number of

computing objects per node, a computation with an average message-processing time

that is less than the saturation value is communication time bounded. On the other

hand, a computation with an average message-processing time that is greater than the

saturation value is processing time bounded. This suggests that the ideal message pro

cessing rate is approximately the rate at which the messages generated are just enough

to saturate the network. The particular saturation values will depend on the network

parameters and routing schemes employed; and, in practice, they will also depend on

the message-destination distributions. As the network size increases and resource per

node decreases, maintenance of message locality becomes progressively more important.

Exactly how to achieve load balance while retaining message locality at a reasonable

cost remains a difficult issue.

Another interesting point to observe is that as the number of starting messages

per node is reduced, the corresponding sustained network throughput and processor

utilization are also reduced. For example, except at very low delay values under oblivious

wormhole routing, none of the m = 1 curves ever reaches throughput saturation; and

none ever fully utilizes the processors. In fact, at high delay values, the utilization

ratio for the m = 1 experiments stays relatively flat at /::j 0.55, irrespective of the

CHAPTER 3. PERFORMANCE 104

network topology or routing scheme used. Similar asymptotic behaviors on the processor

utilization ratios are observed for all other message populations as well, regardless of

the underlying topology and routing scheme. In retrospect, we see that it is possible

to understand these asymptotic equilibrium behaviors. In fact, we shall derive a very

simple, closed-form analytic approximation of the asymptotic processor-utilization ratio

for any finite message population, based on certain simplifying assumptions:

• First, we note that at the very high processing delay values where the asymptotic

behavior is observed, the network throughput is extremely low, and the aver

age message latency is negligible when compared to the average processing delay.

Hence, we can obtain a very good approximation by regarding message delivery as

immediate. This also explains why the asymptotic behaviors are identical across

different network topologies and routing schemes.

• Next, we make the simplifying assumption that the message processing delays are

exponentially distributed, although it was actually Erlangian in our experiments.

• The third assumption we make is to assume that the number of nodes in the

network, N, is very large. Having a very large network allows us to equate the time

average obtained at a node to the ensemble average obtained over the network.

• Another assumption we make is to assume that the total message population in

our network is very large. Hence, it is possible, if improbable, for a node to have a

very large backlog. This allows us to obtain very good approximation by replacing

the finite total population restriction with the finite average population restriction.

• Finally, we observe that since the random message destinations are generated

uniformly over the entire network, this gives rise to complete homogeneity and

allows us to focus the analysis on a single node.

Let Si and Pi denote the state, and its corresponding probability, of having a backlog

of i messages waiting at each node, including the one being processed. The desired

processor-utilization ratio is then simply given by 1 - PO· Let µ denote the average

message-processing rate; this is also equal to the message-generation rate at each node

having a nonempty backlog. Given the network in equilibrium, the average fraction of

CHAPTER 3. PERFORMANCE 105

µ(1- Po) µ(1- Po)

µ µ µ

Figure 3.29: State Transition Rate Diagram for Asymptotic Utilization Analysis

nodes with nonempty backlog is given by 1 - po. Also, since each message generated has

an equal probability of being destined to any other node, the average message arrival

rate at each node is given by (1 - Po)µN Jr = (1 - po)µ. These considerations allow us

to write down the following set of equilibrium equations (see Figure 3.29):

Po(l - Po)µ

Pl (1 - Po)µ

Pi(l - Po)µ

subjected to the normalizing constraint of I:~o Pi = 1. The regularity of the above set

of equations allows us to solve for Pk explicitly in terms of po:

Pk = Po(l - Pol

Observe that the normalizing constraint is trivially satisfied independent of the value

of po. To determine the exact value of po, we need to use the fact that the network

consists of a closed system of M = m x N messages. Given the immediate message

delivery assumption, as well as the homogeneity condition, each node in equilibrium

with the rest of the network will have an expected number of backlog that is exactly

equal to m. In other words, we have:

00

I::iPi = m
i=O

CHAPTER 3. PERFORMANCE

Using the obtained explicit form for Pk, we obtain:

Po

Po(l - Po) I:~1 £(1 - Poi-I
Po(l - Po) P\
1-po

1i_O

m+l

106

This gives us the desired closed-form analytic approximation for the asymptotic proces

sor utilization ratio:
m

U asymptotic = m + 1

For the values m = 1, 2, 4 and 8, the approximation gives utilization ratios of 0.50, 0.67,

0.80, and 0.89. These figures are all within ~ 5% of the experimentally obtained figures,

and, more importantly, this derivation reveals the nature of this asymptotic behavior.

On the one hand, the analytic approximation and experimental results show that for

frregular computations whose communications lack any discernible pattern one cannot

realistically expect 100% efficiency, even in the extreme case when communication delay

is negligible. On the other hand, it is consistent with the intuitive belief that decom

posing a computation into more objects of finer grain size will increase the amount of

concurrency. This increase in concurrency is subsequently reflected in a higher average

processor utilization ratio.

CHAPTER 3. PERFORMANCE 107

Average Message Length = 96

0.5

0.4
T
H
R 0.3 0
u
G
H 0.2
p
u
T

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Average Processing Rate in Flits Per Cycle

Figure 3.30: Oblivious Network Throughput under Reactive Traffic for 2D Mesh

Average Message Length = 96

1.0

0.8
T

m=4

H
R 0.6 0

m=l

u
G
H 0.4
p
u
T

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Average Processing Rate in Flits Per Cycle

Figure 3.31: Adaptive Network Throughput under Reactive Traffic for 2D Mesh

CHAPTER 3. PERFORMANCE 108

Average Message Length= 96

0.40

0.35 m=

T 0.30
H
R 0.25
0 u 0.20
G
H 0.15 p
u

0.10 T

0.05

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Average Processing Rate in Flits Per Cycle

Figure 3.32: Oblivious Network Throughput under Reactive Traffic for 3D Mesh

Average Message Length = 96

0.8

T 0.6
H
R
0 g 0.4

H
p
u
T 0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Average Processing Rate in Flits Per Cycle

Figure 3.33: Adaptive Network Throughput under Reactive Traffic for 3D Mesh

CHAPTER 3. PERFORMANCE

T
H
R
0
u
G
H
p
u
T

0.8

0.6

0.4

0.2

0.0

0.0

Average Message Length = 96

0.2 0.4 0.6 0.8

Average Processing Rate in Flits Per Cycle

109

1.0

Figure 3.34: Adaptive Network Throughput under Reactive Traffic for 2D Torus

Average Message Length= 96

0.7

0.6

T 0.5 H
R
0 0.4
u
G 0.3 H
p
u
T

0.2

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Average Processing Rate in Flits Per Cycle

Figure 3.35: Adaptive Network Throughput under Reactive Traffic for 2D Torus

CHAPTER 3. PERFORMANCE 110

Average Message Length = 96

p
1.0 R

0
C
E 0.8 s
s
0
R 0.6

u
T
I 0.4
L
I
z 0.2 A
T
I
0 0.0
N

0 200 400 600 800 1000 1200

Average Processing Delay Per Message

Figure 3.36: Oblivious Processor Utilization under Reactive Traffic for 2D Mesh

Average Message Length= 96

p
1.0 R

0
m=8

C
E 0.8 s s
0
R 0.6

u
T
I 0.4
L
I
z 0.2 A
T
I
0 0.0
N

0 200 400 600 800 1000 1200

Average Processing Delay Per Message

Figure 3.37: Adaptive Processor Utilization under Reactive Traffic for 2D Mesh

CHAPTER 3. PERFORMANCE 111

Average Message Length = 96

p
1.0 R

0
m=8

C m=4

E 0.8 s
s
0
R 0.6 m=

u
T
I 0.4
L
I
z 0.2 A
T
I
0 0.0
N

0 200 400 600 800 1000 1200

Average Processing Delay Per Message

Figure 3.38: Oblivious Processor Utilization under Reactive Traffic for 3D Mesh

Average Message Length = 96

p
1.0 R

0 m=8

C 0.9
E
s 0.8 s
0 0.7 R

=2

u 0.6
T m=

I 0.5 L
I 0.4 z
A
T 0.3
I
0 0.2
N

0 200 400 600 800 1000 1200

Average Processing Delay Per Message

Figure 3.39: Adaptive Processor Utilization under Reactive Traffic for 3D Mesh

CHAPTER 3. PERFORMANCE 112

Average Message Length = 96

p
1.0 R

0
C 0.9
E
s 0.8 s
0

0.7 R

u 0.6
T
I 0.5
L

m=

I 0.4 z
A
T 0.3
I
0 0.2
N

0 200 400 600 800 1000 1200

Average Processing Delay Per Message

Figure 3.40: Adaptive Processor Utilization under Reactive Traffic for 2D Torus

Average Message Length = 96

p
1.0 R

0
C 0.9
E
s 0.8 s
0

0.7 R

u 0.6
T
I 0.5
L
I 0.4 z
A
T 0.3
I
0 0.2
N

0 200 400 600 800 1200

Average Processing Delay Per Message

Figure 3.41: Adaptive Processor Utilization under Reactive Traffic for 3D Torus

CHAPTER 3. PERFORMANCE 113

3.5.4 Congestion-Controlled Message Traffic

The relevant statistics for the simulation runs of the congestion-controlled message

traffic experiments are shown in Figures 3.42 to 3.53. In these experiments, additional

congestion control, also known as flow control [17], in the form of injection restriction

has been imposed. The restrictions are coordinated through the use of the injection

guarantee protocol described in section 2.5.3. In its original form, the fairness protocol

assures eventual network access whenever a node has a packet queued for injection; in

a certain sense, this already provides limited congestion control. The protocol used in

these experiments is an extension that provides more spontaneous congestion control:

A node that is forced to misroute its buffered packets will not advance its injection

count until after all currently misrouted packets have completely left, irrespective of

whether it has a packet to inject or not. The rationale for this added restriction is that

misrouting of any sort will serve as a good indication for the onset of congestion.

The performance curves from all the previous experiments show that as the network

is pushed toward its throughput limits, the quality of the first-order performance metric,

e.g., message latency, decay rapidly. In addition, there are the second-order metrics,

which are at least of equal importance. These include the standard deviation of the

message latency, where a large value implies that there are large fluctuations from the

average. This is undesirable, and, hence, a main objective for imposing congestion

control is to confine the network operating points to the region where it will deliver

acceptable performance. In fact, since all performance metrics display a transition

of qualities, with the transition points occurring roughly around the same throughput

value, the congestion-control mechanism should ideally prevent the network from passing

beyond the transition point, yet not interfere at lower throughput values. This set

of experiments tests the effectiveness of our congestion-control protocol against this

objective.

Figures 3.42 to 3.45 plot the average sustained network throughput against the

average applied load under adaptive cut-through. Two curves are shown in each of these

figures: One is from our earlier uncontrolled simulations, where channel-access conflicts

were resolved according to the distance priority. For these, our earlier experiments show

that the latency transition points all occur at ~ 70 to 75% normalized throughput. The

CHAPTER 3. PERFORMANCE 114

second one is the congestion-controlled curve where conflicts are resolved in a first-come

first-served fashion. It is remarkable to observe that, in every one of these figures,

except for the single-packet message traffic in the 2D mesh, the controlled throughput

curve levels off almost exactly at the respective transition value. Furthermore, for an

applied load below the transition, there is no difference between the controlled and

the uncontrolled curves: Both climb along with unit slope. Similarly, for applied load

beyond the transition, the throughput remains stable without showing any reduction.

The controlled saturation throughput for multipacket messages in a 3D mesh is at

~ 67%; and is consistent with our expectations following the earlier discussion in section

3.5.2 because of the relatively small radix (8) of the chosen 3D network. On the other

hand, the corresponding controlled saturation throughput for single-packet message

traffic in the 2D mesh is ~ 90% normalized value. This is ~ 10% higher than expected.

To understand this will require an examination of the corresponding latency curves.

Figures 3.46 and 3.53 plot the average message latencies versus the normalized

throughput for single-packet messages. In both cases the controlled curves are consis

tently lower than the corresponding uncontrolled curves around the transition region;

e.g., in the 2D mesh, at 80% throughput, the average latency of the controlled traffic

is ~ ½ that of the uncontrolled traffic. Similar but less prominent latency improve

ments are observed in the 3D mesh as well. Such latency reductions are not surprising,

but are in fact consistent with the nature of our congestion-control mechanism. To

see this, observe that misrouting has the side effect of undoing the useful work done

previously. Therefore, to keep up with the demanded throughput, the channel utiliza

tion and, hence, the network population will both have to increase beyond that found

without misrouting. The net result of this increased network population is an increase

in latency, as predicted by Little's theorem [30]. Restraining new injections whenever

misrouting occurs under our congestion-control protocol keeps the amount of misrouting

minimal; thus keeping the network population lower than that found with uncontrolled

traffic. This is confirmed by the simulation statistics. This translates into a lower aver

age latency; as a result, the effective transition points are shifted a bit higher, explaining

the higher saturation value observed in Figure 3.42 for the 2D mesh under congestion

control. Similar latency reductions around the transition regions are also observed in

Figures 3.50 and 3.52 for the multipacket message traffic.

CHAPTER 3. PERFORMANCE 115

The corresponding standard deviations of these message latencies are shown in Fig

ures 3.47, 3.49, 3.51 and 3.53. Again, substantial reductions are observed in all the

controlled traffic around the respective transition regions. Note that the observed stan

dard deviations are always much lower than the corresponding average latencies for the

controlled traffic, whereas they are approximately identical for the uncontrolled traffic.

A reduction in the latency standard deviations implies a more consistent routing quality

for all the packets delivered by the network, and this is achieved without using prior

ity assignments. This improved consistency can be understood as follows: While the

distance priority employed in the uncontrolled traffic assures global progress, such assur

ance does not apply to individual packets. In fact, packets that are far away from their

destinations are more likely to be misrouted as traffic density increases. This in turn

further increases the latencies of these long-distance packets, which translates into much

higher latency standard deviations. In contrast, for the controlled traffic, channel-access

conflicts are resolved in the first-come first-served manner. In the absence of misrout

ing, the FCFS scheme assures fairness in channel access, given a dynamically changing

collection of packets. By waiting long enough, each packet is guaranteed assignment to

one of its profitable channels, regardless of its distance from destination. While such

an assurance no longer holds when packets are misrouted, the nature of the congestion

control protocol is such that it will help minimize the possibility of misrouting. As a

result, this assurance remains approximately valid, thus leading to a reduction of the

latency standard deviations.

In summary, the experimental data obtained in these simulations suggest strongly

that the described congestion-control scheme is very effective in achieving the desired

objective, which is to confine the network operating points within regions that will de

liver acceptable network performance. In particular, it is very effective for preventing

the network from passing the transition point, while not interfering at lower throughput

values. As we shall see in Chapter 5, this congestion-control scheme offers a practical al

ternative to the rather complicated priority-based scheme for providing network progress

assurance.

CHAPTER 3. PERFORMANCE 116

2D Networks, 256 Nodes

1.0

0.8
T
H
R 0.6 0
u
G
H 0.4 p
u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.42: Throughput Comparison for Single-Packet Messages in 2D Mesh

3D Networks, 512 Nodes

1.0

0.8
T
H
R 0.6 0
u
G
H 0.4 p
u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.43: Throughput Comparison for Single-Packet Messages in 3D Mesh

CHAPTER 3. PERFORMANCE 117

2D Networks, 256 Nodes

1.0

0.8
T
H
R 0.6 0
u
G
H 0.4 p
u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.44: Throughput Comparison for Multipacket Messages in 2D Mesh

3D Networks, 512 Nodes

1.0

0.8
T Uncontrolled

H
R 0.6 0
u Controlled

G
H 0.4 p
u
T

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 3.45: Throughput Comparison for Multipacket Messages in 3D Mesh

CHAPTER 3. PERFORMANCE

1400

1200

1000
L

{ 800
E
N 600
C
y

400

200

0
0.0

2D Networks, 256 Nodes

Uncontrolled

0.2 0.4 0.6 0.8

Normalized Throughput

Controlled

1.0

Figure 3.46: Latency Comparison for Single-Packet Messages in 2D Mesh

2D Networks, 256 Nodes

1600

1400

x 1200

I 1000 Uncontrolled

N
C 800
y

600
s
T 400 D

200

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

118

'igure 3.47: Comparison of the Standard Deviations of the Latencies for Single-Packet
1essages in 2D Mesh

CHAPTER 3. PERFORMANCE 119

3D Networks, 512 Nodes

700

600

500
L
A 400 T
E
N 300
C
y

200

100

0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.48: Latency Comparison for Single-Packet Messages in 3D Mesh

3D Networks, 512 Nodes

600

500
L
A

400 T
E
N
C 300
y

s 200
T
D

100

0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Throughput

Figure 3.49: Comparison of the Standard Deviations of the Latencies for Single-Packet
Messages in 3D Mesh

CHAPTER 3. PERFORMANCE

L

3500

3000

2500

~2000
E
~ 1500
y

1000

500

0
0.0

2D Networks, 256 Nodes

0.2 0.4 0.6

Normalized Throughput

0.8 1.0

Figure 3.50: Latency Comparison for Multipacket Messages in 2D Mesh

3000

2500
L
A
T 2000
E
N
C 1500
y

S 1000
T
D

500

0

0.0 0.2

2D Networks, 256 Nodes

Uncontrolled

Controlled

0.4 0.6 0.8 1.0

Normalized Throughput

120

Figure 3.51: Comparison of the Standard Deviations of the Latencies for Multipacket
Messages in 2D Mesh

CHAPTER 3. PERFORMANCE

2000

1500

L
A
T
E 1000
N
C
y

500

0
0.0

3D Networks, 512 Nodes

Controlled

0.2 0.4 0.6 0.8

Normalized Throughput

1.0

Figure 3.52: Latency Comparison for Multipacket Messages in 3D Mesh

2000

x 1500
T
E
N
C 1000
y

s
5 500

0
0.0

3D Networks, 512 Nodes

0.2 0.4 0.6 0.8 1.0

Normalized Throughput

121

Figure 3.53: Comparison of the Standard Deviations of the Latencies for Multipacket
Messages in 3D Mesh

CHAPTER 3. PERFORMANCE 122

3.5.5 Fast Fourier Transform Traffic

The data dependency graph generated by the FFT computation is shown in Figure 3.54

[50]. The computation is divided into log N stages, and can be best understood if one

associates the data elements with corresponding vertices of a hypercube of the same size.

At each stage, intermediate data are generated and distributed between pairs of vertices,

known as butterflies. The receiving side of the butterflies are comprised of vertices that

differ in their highest dimension, whereas the sending side are comprised of vertices that

differ in successively lower dimensions of the imagined hypercube. Since the receiving

end of the butterflies always involves nodes that differ in the highest dimension, we have

grouped data elements that correspond to vertices that differ in their most significant

bits into each node. In this way, every butterfly will both send and receive exactly two

messages during each stage. At the end of the computation, each node will hold the

transformed values of the same locations in the output data array. We have assumed

that the various wi values have all been precomputed and are stored at each node.

The required payload for each message consists of two double-precision floating-point

numbers that correspond to the real and imaginary parts of the complex numbers per

data point, the physical destination address, and an integer that indicates the message's

stage count. At each stage, upon receipt of the two messages, a node has to perform two

butterfly operations, each of which consists of four floating-point multiplications and

six floating-point additions. This gives a total of twenty floating-point instructions per

stage before the generation of two new messages for the next stage. The exact number

of cycles required to process these floating-point instructions could differ tremendously,

depending on whether the nodes have access to floating-point hardware. For example, on

one hand, the newer RISC processors, like the Motorola 88000 family [38], have on-chip

floating-point hardware that employs pipelining and can complete one floating-point

operation per machine cycle. On the other hand, the processor may have to emulate

floating-point instructions completely in software, and typically requires hundreds of

instructions per floating-point operation.

For systematic placement, the 12-bit logical index of each data item provides a direct

mapping allowing one to physically locate the data item: The least-significant 8-bits of

the index gives the physical node identifier to where the data can be found; and the

CHAPTER 3. PERFORMANCE 123

XQ xo

XI XI

X2 x2

X3 X3

X4 X4

X5 X5

Xe Xe

X7 X7

Figure 3.54: The Data Dependency Graph of Fast Fourier Transform.

most significant 4-bits differentiate between those stored at the same node. Under this

mapping, the average message-to-destination distance is six hops. For the randomized

placement, the pseudo-random bijective mapping is generated by a linear feedback shift

register sequence that is defined by an 8th-degree primitive irreducible polynomial over

GF(2) [35]. In comparison, the particular pseudo-random mapping chosen generates an

average message-to-destination distance of 9.6 hops.

The simulation results for the FFT computations are plotted in Figure 3.55. The

quantities plotted are the number of butterfly operations per cycle delivered by each

node averaged over the entire duration of the FFT computation. The experiments were

carried out with the network speed held constant while the available computational

speed at each node was varied as the independent parameter. In order to relate this

abstract quantity to a more familiar notion of speed, let us assume that the network

cycle time is 20 ns. Then a speed of 0.01 butterfly operations per cycle is equivalent to

5 MFLOPS. Hence, the range of available computing speeds at each node plotted is as

high as 12.5 MFLOPS. As a comparison, the Motorola 88000 family of RISC processor

with an on-chip floating-point unit running on 20 MHz clock claims to deliver ~ 6

MFLOPS performance.

CHAPTER 3. PERFORMANCE 124

The performance curves for the four experiments all start initially as unit slope

lines with the average delivered speeds following closely those of the available speed at

each node. As the speed of each node keeps increasing, the average delivered speed

exhibits a transition and then starts to level off. The respective transition points of the

oblivious control occur at ~ 2.5 MFLOPS, whereas those of the adaptive control occur

at ~ 5 MFLOPS. Roughly speaking, these transition points separate the performance

curves into two distinct regions. For a node speed that is slower than that of the

transition point, the computation is primarily processing time bounded. Instead, for

node speed faster than the transition point, the computation becomes communication

time bounded. Observe that as long as one stays within the processing time bounded

region, the concurrent formulation enjoys a close-to-ideal linear speed-up factor. One

advantage of the adaptive scheme over the oblivious one is that it aliows the computation

to stay inside the linear speed-up region for even faster node speeds.

Another interesting point to observe in these curves is that the performance dif

ference between systematic placement and randomized placement is much more pro

nounced in the case of oblivious control than in the case of adaptive control. In our

experiments, the average distance a message has to travel was 6.0 under the systematic

placement and 9.6 under the randomized placement (which represents an increase of

over 50%). The two performance curves diverge only after the network has become

saturated. This empirical result seems to suggest that the performance of the adaptive

scheme is less sensitive than the oblivious scheme to object placement. It should be

pointed out, however, that it is premature and risky to generalize on a single example.

CHAPTER 3. PERFORMANCE

0.008

B
u
T
T
E
R
F
L
y 0.006

0
p
E
R
A
T
I
0
N
S 0.004
p
E
R

C
y
C
L
E

D 0.002
E
L
I
V
E
R
E
D

4096 Points FFT, 2D Mesh, 256 Nodes

Adaptive, Systematic

Adaptive, Randomized

0.000 ~---~--~---~---~---~

0.000 0.005 0.010 0.015 0.020 0.025

Butterfly Operations Per Cycle

Figure 3.55: Computation Rate per Node - Delivered versus Available.

125

CHAPTER 3. PERFORMANCE

3.6 Summary

126

In this chapter, we have examined a number of issues concerning the performance of our

adaptive cut-through routing formulation in multicomputer networks. The emphasis has

been to understand the dynamics governing the different factors and their relationships

to the overall performance of the network. Theoretical bounds on the various average

performance metrics have been derived for the general class of k-ary-n-cubes and meshes

under random message traffic. These bounds provide a uniform frame of reference for

the interpretation of performance results obtained under the adaptive routing scheme.

In particular, we have studied the performance behaviors both analytically through

stochastic modeling, and also experimentally through extensive traffic simulations. We

now summarize the major facts and conclusions drawn, based on our studies:

• For random traffic, the average node injection rate scales inversely with the radix

of the network.

• Randomized object-placement strategies are simple and very effective in delivering

good assignment statistics for the adaptive multipath routing control.

• The message latency obtained under cut-through switching is close to that of

circuit switching at low traffic density, and approaches that of store-and-forward

switching at higher traffic density. One advantage of the adaptive scheme over the

oblivious scheme is the postponement of transition until a higher load is applied.

• The average length of the intended message traffic should be included as an im

portant design factor in determining the amount of buffer storage to be allocated

in each router.

• The effect of having insufficient buffers per router is to truncate and create a

plateau, rather than induce a disastrous drop, in the throughput curve.

• Just as one would expect, simulations show that for reactive computations, the

ideal object-processing rate is approximately the rate at which just enough mes

sages are generated to saturate the network. A faster processing rate results in

computations that are communication-time bounded, whereas a slower rate results

in computations that are processing-time bounded.

CHAPTER 3. PERFORMANCE 127

• The congestion-control protocol, which is an extension of the network access fair

ness assurance protocol in Chapter 2, has proven to be very effective in confining

the network operating points within regions that will deliver acceptable network

performance. In fact, actual performance improvements have observed around the

performance transition regions.

• Although it is premature to conclude, the performance of the adaptive control

does appear to be less sensitive than the oblivious scheme to object placements.

In addition to the ones studied in this chapter, there are obviously many other per

formance characteristics that are also both interesting and informative. Rather than

attempting comprehensive coverage, we have chosen instead to focus our investigations

on those that we believe are the most important and fundamental. Having studied in

detail the feasibility and performance issues, we shall move on in the next chapter to

investigate questions concerning potential reliability gain under the adaptive-routing

formulation.

128

Chapter 4

Reliability

The issues involved in building reliable multicomputers are numerous and complex, and

require coordinated efforts across many levels of abstraction, from physical hardware

support, through operating system functions and communication protocols, to user pro

gramming constructs and methods. The design and building of a reliable communication

network is a necessary and important step in this direction. Since it is impossible to

build a finite physical network that would always operate correctly in spite of component

failures, we have to settle for the more modest alternative of providing fault-tolerant

routing in the presence of a limited number of failures. Fault-tolerant routing has been

an intensively studied subject in the long-haul and local-area network communities, and

is gaining more and more attention in the multicomputer /multiprocessor network liter

ature. Some examples of previous work include [4,18,20]; an informative survey can be

found in [44].

In this chapter, we investigate and evaluate the potential reliability enhancements

achieved by the adaptive routing schemes studied in the last few chapters. In particular,

we shall investigate the effectiveness of our adaptive-routing formulation as a general

technique to exploit the inherent path redundancies provided by the richly connected

topologies employed in multicomputer networks, such as the k-ary-n-cubes and meshes.

We shall focus on addressing issues that are fundamental to performing routing success

fully in a faulty communication network. Our primary interest is in the potential of the

adaptive approach rather than in any specific networks.

Specifically, in section 4.1 of this chapter, we motivate and discuss the problems in

volved in performing message routing in a faulty multicomputer network. The discussion

CHAPTER 4. RELIABILITY 129

identifies and contrasts the special requirements dictated by high performance that are

unique in large-scale multicomputers with those faced in conventional networks. Based

on this understanding, we then present a set of assumptions and an idealized model

that is intended to capture the salient features of faulty multicomputer networks so as

to provide the framework for our current discussion. In section 4.2, we present the main

conceptual development of this chapter: Two theoretical notions are introduced that

characterize the conditions under which our adaptive routing formulation is adequate to

provide fault-tolerant routing. In section 4.3, we continue the discussion by describing

the computational problems involved in the application of these ideas, and discuss a

possible heuristic solution. In section 4.4, we describe a set of simulation experiments,

and the corresponding results, that were designed to evaluate the effectiveness of the

adaptive approach for the class of k-ary-n-cube and mesh networks. In section 4.5, we

provide an example to illustrate the potential of the adaptive approach: Based on the

obtained experimental results, we motivate and suggest the octagonal mesh network, a

variant of the basic 2D mesh, that shares most of the same advantages of the rectilinear

mesh. We also develop a set of routing relations for the octagonal mesh that displays

excellent fault-tolerant potential under our adaptive-routing formulation. This section

also includes an in-depth study of the various performance and fault-tolerant behav

iors of the network. Finally, in section 4.6, we summarize the various developments

presented in this chapter.

4.1 Routing in Faulty Networks

In this section, we motivate and discuss the problems involved in performing message

routing in a faulty multicomputer network. Before we proceed with the main discus

sion, we have to be more specific about our scope of interest. In particular, we want to

make a distinction between fault-tolerant routing, our specific interest, and the much

more general study of fault-tolerant communication, of which the first can be consid

ered a subtopic. In fact, fault-tolerant communication is a vast subject consisting of

many different area of interests. For example, maintenance of reliable communication

across unreliable physical channels has long been an intensively researched area, and

many protocols designed to achieve reliable communication have been documented in

CHAPTER 4. RELIABILITY 130

published literature [56,6]. Similarly, the study of the theory and practice of forward

error-correcting codes [9,36] represents another active and important area in the field

of fault-tolerant communication. In addition, the meaning of faults used in our current

discussion also requires clarification. Roughly speaking, we can distinguish between two

different classes of faults or failures in communication resources:

• Soft failure - This is a transient error that occurs randomly and is mostly noise

related. A typical example would be the garbling of a few bits during the trans

mission of data across the physical channels.

• Hard failure - This is a persistent error, whose occurrence may also be random;

once it occurs, the error condition will persist until the faulty unit is physically

attended to. An example would be an irreversible failure such as a damaged circuit

component.

For our purpose, the most important distinction between these two classes of failures is

that while the impact of soft errors can be minimized through a combination of temporal

and hardware (i.e., physical resources) redundancies, the impact of hard errors can only

be minimized by providing hardware redundancies. An interesting discussion of some

high-level techniques and strategies for handling various types of soft failures in the

message-communication network of multicomputers can be found in [3]. The success of

many of these techniques, however, depends on the continuous operation of the physical

communication network. Unfortunately, for the oblivious wormhole networks, even a

single broken channel has the effect of disconnecting many source-destination pairs.

Obviously, having the ability to route and deliver messages among the subset of nodes

that survived, in spite of a limited number of hard failures in the message network, is

a sine qua non to supporting truly fault-tolerant computation in multicomputers. The

research reported in this chapter represents an attempt toward achieving this goal.

4.1.1 The Fault-Tolerant Routing Problem

In order to understand the main problem involved in performing fault-tolerant routing

in multicomputer networks, we observe that the popular connection topologies of mul

ticomputer networks such as k-ary-n-cubes or meshes are highly regular. Apart from

the obvious advantages of having reasonably high bandwidths and systematic layouts,

CHAPTER 4. RELIABILITY 131

the regularity in these topologies allows for simple algorithmic-routing procedures based

entirely on local information. In our adaptive-routing formulation, the existence of an

algorithmic-routing procedure is essential for keeping the cost of realizing the routing

relations at each node at an acceptable level. Such capability is particularly important

in fine-grain multicomputers where resources at each node are scarce. Equally impor

tant, the existence of simple algorithmic routing procedures in these regular topologies

allows direct hardware realization of the routing functions, which is absolutely essential

in high-performance systems. The Torus Routing Chip [11] and the Mesh Routing Chip

[14] are successful examples of these hardware routers.

As individual nodes and channels fail, the regularity in these networks are destroyed

and the algorithmic-routing procedures are no longer applicable. Routing in irregular

networks can be systematically achieved by storing and consulting routing tables at

each node of the network. However, such routing tables demand excessive resources

at each node and become unacceptable as the networks grow in size. Schemes such as

hierarchical clustering of network nodes have been proposed [28] to achieve savings in

routing-table sizes. However, such methods appear to be unsatisfactory for multicom

puter networks for the following reasons:

1. The hierarchical clustering of nodes in the richly connected topologies that are

commonly used in multicomputer networks typically eliminates the use of many

alternative paths by confining routes to those paths that are consistent with the

hierarchy.

2. As nodes and channels fail, the change in the network topology could force a global

renaming of network nodes, in the course of adjusting the hierarchy.

3. The circuitry required to store, consult, and update the routing tables represent

considerable hardware overhead cost paid in advance in every node, regardless of

the presence or absence of failures.

Conceivably, another alternative would be to devise some systematic search technique

with appropriate backtracking capabilities that would allow the packet to home in on its

destination. However, such schemes tend to be difficult and complicated and, in general,

are very inefficient in using the very precious remaining bandwidth. Essentially, these

CHAPTER 4. RELIABILITY 132

approaches are developed to handle routing in highly irregular networks. A different

and more satisfactory approach would try to exploit the regularity of the original non

faulty network. In this chapter, we suggest and investigate such an approach based on

our adaptive multipath-routing formulation.

4.1.2 A Simple Fault Model

We now describe a simple fault model to be used in our subsequent discussion of fault

tolerant routing in multicomputer networks. As before, a multicomputer network, M, is

a connected, undirected graph, M = G(N,C). The vertices of the graph, N, represent

the set of computing nodes; the edges of the graph, C, represent the set of bidirectional

communication channels. Recall from Chapter 2 that a computing node is conceptually

divided into four subsystems: processor, node memory, message interface, and network

router. Since our primary subject of interest is message routing, we shall not make the

fine distinction between a node and its router. We now state the additional definitions

and notations needed for discussing faulty multicomputer networks:

Definition 4.1 A node (i.e., its router) n E N is faulty if it is unable to perform its

packet-to-channel routing-assignment functions correctly.

Definition 4.2 A channel c E C is faulty if it is unable to forward packets and follow

the coherent protocol correctly.

Definition 4.3 A network is faulty if it contains at least one faulty node or one faulty

channel. The non-faulty nodes and channels are referred to as the survived nodes and

survived channels. Given a faulty network, the set of all survived nodes and survived

channels together constitutes the survived subnet.

Definition 4.4 A route Pii from node ni to node nj generated by R of the original

non-faulty network is legal in its faulty descendents if, and only if, both the source, ni,

destination, nj, and all intermediate nodes and channels of Pij remain non-faulty in the

faulty network. Observe that whether a route remains legal depends on the particular

fault pattern of the network under consideration.

We assume the following:

CHAPTER 4. RELIABILITY 133

1. A packet forwarded to a faulty node is consumed by that node.

2. A packet forwarded along a faulty channel is lost.

3. A survived node is able to determine the status of all of its own channels locally.

4. Node faults and channel faults occur independently and randomly.

Together, the first three assumptions capture the essence of the well-known notion of

a fail-stop processor that has well-defined failure-mode operating characteristics [46].

In particular, it assumes that a faulty node simply stops executing without performing

incorrect routing or generating spurious messages into the network. More specifically,

we approach the problem of fault-tolerant routing by assuming the existence of a mul

ticomputer network consisting of such fail-stop nodes and channels in order to motivate

the issues, and discuss the solutions at an abstract level.

The independent and random occurrences of node faults and channel faults model an

environment of random component failures such as malfunctioning integrated circuits

or failed connections due to bad contacts. Fault distributions that are highly correlated

and non-random in character will require a different approach from what is explored

here. A very good example of such non-random faults is found in power-supply failures.

In a typical arrangement, a single power supply is used to provide power to a whole

cluster of nodes, such as a contiguous submesh. Hence a single power-supply failure will

disable the entire chunk of nodes supported by it. A natural solution to handle such

failures is to provide redundancy at the location of the bottleneck, i.e., to provide for

backup power supplies, instead of relying on the routing network.

It is interesting to observe that under our model, a non-faulty node cannot distin

guish a faulty neighboring node from a faulty channel joining them. In fact, a faulty

node is empirically equivalent to a survived node whose channels are all faulty. In a

limited way, the notion of a faulty node models a highly correlated local concentration

of channel faults.

4.2 Systematic Fault-Tolerant Routing

Motivated by our desire to build high performance networks through hardware realiza

tion of the routing operations, we look for the solution that will allow us to continue

CHAPTER 4. RELIABILITY 134

to use, with minimal change, the original routing hardware for the non-faulty network,

so as to exploit the inherent regularity in these multicomputer networks. To proceed,

observe that an immediate result of having only local information to guide routing is

that pairs of survived nodes may not be able to communicate with each other even if

they remain connected. In this section, we introduce and define two theoretical notions

that characterize the situations under which we can continue to use the algorithmic

routing relations, defined for the original non-faulty networks, to systematically direct

routing in its faulty descendents.

One immediate advantage of this insistence in using only the set of original routes

is that we can obtain a priori bounds on the length of routes joining pairs of sources

and destinations in the survived subnet. Another advantage, as we shall see, is that it

is very easy to detect messages destined to faulty nodes based only on localiy available

information. Once detected, such messages can then be sunk into an intermediate node,

thus triggering exception processing.

Obviously, a scheme that confines the routing paths to those used in the original

non-faulty networks would fail miserably if the routing functions are oblivious. The

effectiveness of this scheme under our adaptive routing formulation will ultimately de

pend on the connection topology and on the set of routing relations defined by the

algorithmic-routing procedure.

4.2.1 The Convex Subset

We shall first introduce the notion informally using the 2D rectilinear mesh network that

employs the usual shortest-path routing relation as an illustration. Consider Figure 4.1,

which depicts a 2D mesh network whose faulty nodes are disconnected from the bulk of

the survived nodes. It is straightforward to observe that the illustrated fault pattern has

the following interesting property: There exists at least one legal route between every

pair of survived nodes. Recall that a route of the original network is legal in its faulty

descendents if the route lies completely within the set of survived nodes and channels.

This property is sufficient to allow all survived nodes to communicate by sending and

receiving messages among one another according to the routing relations of the original

non-faulty network. In particular, given a survived node, ni, and its corresponding set

of survived channels, Cf ~ Ci, let R!j ~ Cf denote the restricted routing relation of ni

CHAPTER 4. RELIABILITY 135

Figure 4.1: A Convex Survived Set in a 2D Mesh Network

to another node, ni; i.e., Rii = ~in Cf. The above sufficiency property is equivalent to

having R1i cf 0 for every pair of survived nodes ni and ni. Under this condition, each

message packet that arrives at an intermediate node but is destined to another survived

node will find from the restricted routing relation of the intermediate node at least one

profitable channel that is non-faulty. The acyclicity of the original routing relations

then guarantees the existence of a route. In summary, these observations motivate the

following definition:

Definition 4.5 Given the set R = {Rii} of routing relations of a non-faulty network,

a set of survived nodes, S ~ N, is convex under R, if for every pair of nodes, ni, ni E S,

there exists at least one legal route leading from ni to ni that is generated by R.

Notice that the original non-faulty network is convex by definition. When the entire set

of survived nodes and channels of our network forms a convex set, we have the happy

situation where all survived nodes can continue to communicate with each other. These

communications are achieved with virtually no change in the basic routing decision

mechanism at each node. The only added requirement is for a router to be able to

CHAPTER 4. RELIABILITY 136

recognize its own faulty channels. This property renders a direct hardware realization

practical.

When the set of survived nodes and channels does not form a convex set under R,

because certain pairs of nodes do not have legal routes joining them that are consistent

with R, we have a problem. In the interest of pursuing simplicity and generality, we

suggest and investigate the following simple alternative: to selectively discard certain

survived nodes that are particularly difficult to communicate with, so that the remaining

subset of survived nodes constitutes a convex set. In other words, instead of asking how

to route messages in an irregular network, we ask the alternative question: how to

restore regularity, or in this case, convexity, back to the survived network. In essence,

nodes that become difficult to reach without global information are abandoned as a

result of our insistence on using only local information to guide routing. This approach

immediately suggests the following problem.

Problem 4.1 (Maximum Convex Subset) Given the set R of routing relations of

a non-faulty network, the set of survived nodes S ~ N, and survived channels, find the

maximum cardinality subset Sc ~ S, which is convex under R.

By restricting all computations and communications to within the convex subset of a

survived network, routing of messages can again be carried out by the hardware router

implementing the original set R. of routing relations, a very simple state of affairs. An

illustration of this technique is depicted in Figure 4.2, where the broken nodes denote

nodes that are deliberately disconnected from the bulk of the remaining network. The

cardinality of the maximum convex subset of a survived network provides a useful figure

of merit to gauge the effectiveness of this approach to fault-tolerant routing.

4.2.2 The Communication Kernel

The finding of the Maximum Convex Subset of the set of survived nodes is one useful

simple strategy that enables us to regularize the survived network and, hence, to be able

to continue to use a restricted version of the original routing relations to guide message

routing. We now describe another useful regularization strategy, namely, restraining

certain survived nodes to operate only as pure switches: A switch can only forward

messages but cannot itself generate and consume messages. In particular, a switch can

CHAPTER 4. RELIABILITY 137

Figure 4.2: A Convex Survived Subset in a 2D Mesh Network

never be the destination of a message. Instead, its presence is to retain certain routes in

order to enable communication between pairs of nodes that would otherwise be impos

sible. The rationale is that some survived nodes that are difficult to reach, and thus are

discardable, might be located in positions that enable other pairs to communicate and,

thus, should be retained. Restraining such nodes to act as pure switches represents an

attempt to capture both conflicting objectives. Because of the nondeterministic nature

of message trajectories in our adaptive formulation, a node is eligible to be a message

destination if and only if legal routes that are generated by R exist between it and every

survived node. This way, a message with sufficiently high priority will always be for

warded toward its destination, regardless of where the message is. These observations

motivate the following definition:

Definition 4.6 Given the set R = { Rij} of routing relations of a non-faulty network,

and S ~ N, the set of survived nodes, the set K ~ S, called the communication kernel

of S under R, is the set of survived nodes { nj}, where for all ni E S, at least one legal

route that is generated by R exists that leads from ni to nj.

CHAPTER 4. RELIABILITY 138

Notice that the kernel of a non-faulty network is by definition the entire network. Given

a fixed nonempty set of survived nodes, its communication kernel always exists and is

unique. The word kernel is jargon borrowed from computational geometry, where the

kernel of a simple polygon is defined to be the set of points inside the polygon that are

visible from every point in the polygon. The cardinality of the communication kernel

of a survived network provides a useful figure of merit to gauge the effectiveness of this

strategy.

These two regularization strategies, namely, selectively discarding nodes, and selec

tively restraining certain nodes to operate as pure switches, can be combined to achieve

even better node-reclamation results. By deliberately discarding certain nodes that

are excessively difficult to reach, it may be possible to increase the cardinality of the

communication kernel of the remaining nodes. This observation suggests the following

problem.

Problem 4.2 (Maximum Communication Kernel) Given the set R, of routing re

lations of a non-faulty network, the set of survived nodes S ~ N, and the survived

channels, find the subset SK ~ S that contains a communication kernel of maximum

cardinality, over all such subsets, under R,.

Figure 4.3 shows a typical communication kernel obtained for a 2D faulty mesh network.

The blank nodes in the figure are nodes that have been restrained to operate as pure

switches. The ratio of this maximum kernel cardinality to the size of the original non

faulty network serves as a natural reliability measure for our subsequent investigation.

4.3 Computational Considerations

In the previous section we have motivated and defined the two problems - MCS, finding

the maximum convex subset, and MCK, finding the maximum communication kernel

- as our principal regularization strategies that allow for the continuing use of R, to

guide message routing in a faulty network. Their computations are the subject of this

section.

CHAPTER 4. RELIABILITY

Figure 4.3: An Example Communication Kernel in the 2D Mesh

4.3.1 Computational Complexity

139

Before one can meaningfully derive effective computational schemes to determine the

MCS and MCK for any survived network, it is natural to first investigate the com•

plexity of the involved computations. We shall start by proving the NP.completeness

of the two decision problems; this is sufficient to establish the NP.hardness of the two

corresponding search problems [16].

Theorem 4.1 The maximum convex subset (MCS) decision problem is NP.complete:

Given an arbitrary network, M = (N,C), an arbitrary set of routing relations, an

arbitrary set of survived nodes and channels, and a positive integer J ~ /NI, determine

if M contains a survived convex subset of size J or more.

Proof. MCS, as defined, is in the class NP; i.e., given a subset of survived nodes,

there exists polynomial time algorithms for checking the convexity of the subset. We

now transform the Maximum Clique decision problem for an arbitrary graph, G, of /NI
vertices into MCC. To proceed, we first define our original non.faulty network M to be

the completely connected graph, Kn, and routing relations, R. = {~j} with Rij = {cij},

CHAPTER 4. RELIABILITY 140

where Cij is the only channel joining node ni to node ni in M = Kn, The transformation

from the arbitrary graph, G, to a survived subset of M is defined as follows: Vertex Vi

in G is mapped to node ni in M, and the edge eii in G is mapped to a survived channel

Cij in M. All remaining channels in Mare considered to be faulty. Under this mapping,

a clique in G is equivalent to a convex subset in M under R. Hence, a solution to the

MCS applied to the network M can be trivially transformed back to give a maximum

clique for G. This establishes the NP-completeness of MCS. ■

Theorem 4.2 The maximum communication kernel (MCK) decision problem is NP

complete: Given an arbitrary network, M = (N, C), an arbitrary set ofrouting relations,

an arbitrary set of survived nodes and channels, and a positive integer, J S INI, de

termine if M contains a survived subset having a communication kernel of size J or

more.

Proof. The proof is almost identical to that in MCS. The network, M, the set

of routing relations, R, and the vertex-to-node and edge-to-channel mappings are all

identically defined. The proof is completed by observing that, for the defined network,

M, if a survived subset contains a communication kernel of size J or more, it also

contains a convex subset of size J or more, and vice versa, by definition. Hence, a

solution to the MCK problem in this case can also be transformed back to give a

maximum clique for G. This establishes the NP-completeness of MCK. ■

The above NP-completeness results imply that the corresponding search problems of ac

tually finding the maximum convex subset and maximum communication kernel subset

are NP-hard; hence, unless P = NP, exact solutions that run in polynomial time will not

be found. The question as to whether the restriction of certain fixed topologies and cer

tain fixed routing relations would reduce the problem to polynomial time remains open.

In any case, in the interest of studying the performance of different network topologies

and routing relations at the current stage, we shall have to rely on computations that

have been done by approximating heuristics.

4.3.2 Approximating Heuristics

We now proceed to describe a simple but effective heuristic elimination procedure to

find reasonable solutions to the MCK problem. Whether there exists approximation

CHAPTER 4. RELIABILITY 141

algorithms capable of providing a priori performance guarantees is yet another open

question.

The heuristic elimination procedure to be described is motivated naturally by the

objectives behind our introduction of the MCK problem. The objectives are:

1. Selectively discard a subset of survived nodes that are difficult to reach given the

survived structure.

2. Selectively restrain a subset of survived nodes to operate as pure switches. These

switches maintain the reachability among other pairs of nodes without insisting

on being reachable themselves.

We observe that the second objective can be readily achieved, once we have decided

which subset of survived nodes to discard. This is because every fixed subset of sur

vived nodes has a unique communication kernel, by definition. Any survived node that

is not inside the kernel will then be restrained to operate only as a switch. On the

contrary, achieving the first objective optimally is far more difficult since there are an

exponential number of candidate subsets to consider. Here we suggest the following

heuristic approach that delivered reasonable results for all our subsequent simulation

studies.

Sequentially discard one node at a time by eliminating the one that is the

most difficult to reach at that moment. During the entire elimination pro

cess, keep track of the maximum cardinality kernel ever obtained. Termi

nate when the number of remaining survived nodes is equal to the size of the

recorded maximum kernel; at this point, we are sure no further improvement

is possible under this heuristic.

In order to apply this heuristic, we need a way to quantify the vague notion of a node

being difficult to reach. We suggest the following intuitive definition, which appears to

give good empirical results:

Given a survived node, n;, let h(n;) denote the total number of survived

nodes, ni i=- n;, for which there is no legal route leading from ni ton;. The

node, n*, with the maximum count, i.e., h(n*) 2:: h(n;), VJ is designated as

the node that is the most difficult to reach. Ties can be broken arbitrarily.

CHAPTER 4. RELIABILITY 142

Oftentimes, the computation of the cost estimate, h(nj), can be rather expensive; in

such case, a simpler estimate, h1 (n3), which counts the number of other survived nodes,

ni for which R:3 = 0, may be used instead. The simpler estimate, h' (n 3), shares with

the more accurate estimate, h(n3), the property that at each stage of the computation,

all nodes in the communication kernel have their respective cost estimates equal to zero.

Thus, computing the suggested cost estimates after each elimination also simultaneously

computes the desired new kernel configuration. Furthermore, since the elimination

procedure evolves sequentially until it is suspended when the desired maximum kernel

has been found, it is possible to resume and continue the elimination procedure when

new faulty nodes or channels are identified. In other words, it is conceivable that we

can run the elimination procedure as a background process in each node that serves

as an exception handler, to be activated when additional faulty nodes or channels are

detected.

An implementation of this heuristic running on the iPSC1/d7 Cubes [23] provides

the principal tool for our simulation studies of the effectiveness of this approach to

fault-tolerant routing in multicomputer networks.

4.4 Simulation Experiments and Results

In this section, we present the simulation and computation results for the important

class of n-dimensional rectilinear meshes. We shall abuse the nomenclature somewhat

by referring to them as the k-ary-n-meshes, although these networks do not have end

around connections. One major advantage of these networks is the existence of very

simple routing relations that are based on the natural city-block or L1-metric defined

over these n-dimensional grids. For any two points, Pl = (a1, a2, · · · , an) and P2 =
(b1,b2,···,bn), the L1 metric dL 1 (p1,p2) is defined as follows:

n

dL1 (P1,P2) = L lai - bi!
i=l

Notice that when k = 2, we have the familiar binary-n-cube, and when n = 2, we have

the k x k 2D mesh. Our primary figure of merit in these simulations is defined as follows:

Definition 4. 7 The yield is the fraction of operating nodes reclaimed by the kernel

computation, as compared to that of the total number of nodes in the original non

faulty network.

CHAPTER 4. RELIABILITY 143

Notice that even in a perfect scenario, the yield would be identical to the fraction of

survived nodes, which is always< 1, in any faulty network. In a crude sense, it represents

a first-order measure of the degradation in computing power due to the ensuing faults.

Specifically, our goals in performing these simulation studies are:

1. To collect the empirical statistics on the effectiveness of our approach for providing

fault-tolerant routing to a popular class of networks that has practical importance.

2. To quantitatively compare the tradeoff of arity versus dimension under the random

and independent-fault assumption.

3. To assess and interpret the empirical behavior of these tradeoffs in order to provide

insights into suggesting means for improvement.

To help differentiate the impact of node failures and channel failures on the effectiveness

of our approach, we simulated separately the two distinct cases of having purely node

faults and having purely channel faults. The faults are generated independently using

identical probabilities chosen over a range from one to ten percent. Figures 4.4 to 4.9

plot the simulation and computation results obtained for three different networks: the

2-ary-10-cube, the 4-ary-5-mesh, and the 32-ary-2-mesh. Notice that all three networks

were chosen to have 1024 nodes, representing the range from low- through medium

to high-dimensional networks. In these figures, we have chosen the scattered plots in

order to convey pictorially the statistical distributions of the collected simulation results.

From these plots we notice the following general trends:

1. In all three networks, the yield of the purely channel failure case is worse than the

corresponding yield of the purely node failure case of the same failure percentage.

That such should be the case is not straightforward, since each node that is faulty

renders all its incident channels faulty. In fact, for our chosen range of fault

probability, under the same percentage of faults, the total number of channels that

are rendered faulty due to purely random node faults would be approximately

twice that of the corresponding number due to purely random channel faults.

Apparently, the very dispersive occurrences of pure channel faults is much more

effective in destroying routes in these survived networks.

CHAPTER 4. RELIABILITY 144

2. The yield obtained under both the random node faults and random channel faults

decreases as we decrease the dimension of the networks. This fact is consistent

with our intuition, since the average number of distinct paths between source and

destination is a combinatorial function that increases steeply with the dimension

of the networks. In fact, the differences are so great that, from the empirical

figures, one is justified in concluding that the binary-n-cube is extremely robust

under our adaptive scheme, whereas the 2D mesh, at least in its present form, is

not.

3. The fitted curve is a much better representation of the actual statistical distri

bution of simulation results in the higher-dimensional networks than the lower

dimensional ones. The lower-dimensional networks have distributions that are

highly dispersive. Again, this fact can be understood statistically from the com

binatorial disparity in the number of paths across networks with different dimen

sions. A larger number of distinct paths implies a better convergence to the mean

value according to the law of large numbers.

While the above empirical results indicate that the binary-n-cube network is much more

robust than the 2D mesh connection, this advantage is offset by the excessive wire bi

section required to connect this topology. A lucid explanation of the wire bisection

argument can be found in [13]. Perhaps most importantly, low-dimensional networks

such as 2D or 3D meshes or tori are practical in that they are readily realizable. In

particular, 2D structures are very desirable since they are much cheaper to build. Fur

thermore, they leave the third physical dimension behind; this is extremely convenient

for service and maintenance purposes that are particularly important in large networks.

However, the above empirical results for the 2D mesh connection are rather disappoint

ing. It is therefore desirable to look for methods to improve the yield while remaining

in 2D. Such a network will be presented in the next section. To proceed, let us first

examme more closely the reason behind the poor performance of the 2D rectilinear

mesh.

Figure 4.12 shows a typical kernel obtained in a 2D mesh network when there are

only a few faults. In this figure, the solid boxes denote reclaimed nodes, the blank boxes

denote switching nodes, the broken boxes denote discarded nodes, and the missing nodes

CHAPTER 4. RELIABILITY 145

and channels are faulty. Observe that, except for the possibility of discarding whole

corner regions, each faulty channel has to be accommodated by eliminating either an

entire row or an entire column of nodes, whereas, node fault causes both an entire row

and an entire column to be eliminated. It is straightforward to see that it does not take

many faulty nodes or channels before the mesh completely collapses. The problem exists

because although our adaptive routing scheme allows us to exploit multiple alternate

routes, if such exist, the routing relations defined by the city block metric leave many

source-destination pairs with only a unique route between them. In particular, any pair

of nodes that lies on the same row or column is connected via a single route defined

under the city block metric. In essence, the set of routes defined by the routing relation

for the 2D mesh topology simply is not rich enough in connectivity. It is clear that in

order to improve the reliability, such bottlenecks must be removed.

CHAPTER 4. RELIABILITY

1.0

0.9

y 0.8
I
E
L
D 0.7

0.6

0.5

1.0

0.8

y
I
E 0.6
L
D

0.4

0.2

0

0

2

1024 Nodes, 5120 Channels

4 6 8

Percentage of Node Faults

10

Figure 4.4: Binary-10-Cube with Node Faults

1024 Nodes, 5120 Channels

2 4 6 8 10

Percentage of Channel Faults

Figure 4.5: Binary-10-Cube with Channel Faults

146

+

12

12

CHAPTER 4. RELIABILITY 147

1024 Nodes, 3840 Channels

1.0

0.9

0.8

y
0.7 I

E
L 0.6 +

+ + D

0.5

+
++ 0.4

0.3
0 2 4 6 8 10 12 14

Percentage of Node Faults

Figure 4.6: 4-Ary-5-Mesh with Node Faults

1024 Nodes, 3840 Channels

1.0

0.9

0.8
y
I
E 0.7
L
D

0.6

0.5

0.4
0 1 2 3 4 5 6

Percentage of Channel Faults

Figure 4.7: 4-Ary-5-Mesh with Channel Faults

CHAPTER 4. RELIABILITY 148

1024 Nodes, 1984 Channels

0.8
+ +

0.7

0.6

y 0.5
I
E 0.4
L
D 0.3

0.2 +

0.1
+'

0.0 _I_

0 2 4 6 8 10 12

Percentage of Node Faults

Figure 4.8: 32 x 32 Rectilinear Mesh with Node Faults

1024 Nodes, 1984 Channels

1.0

0.8

y 0.6
I
E
L
D 0.4

0.2

0.0
0 1 2 3 4 5 6

Percentage of Channel Faults

Figure 4.9: 32 x 32 Rectilinear Mesh with Channel Faults

CHAPTER 4. RELIABILITY 149

1024 Nodes

1.0

0.8

f 0.6
E
L
D0.4

0.2 32-Ary-2-Mesh

0.0
0 2 4 6 8 10 12 14

Percentage of Node Faults

Figure 4.10: A Comparison of Yield with Node Faults

1024 Nodes

1.0

0.8

yo.6
E
L
D0.4

0.2

0.0
0 1 2 3 4 5 6

Percentage of Channel Faults

Figure 4.11: A Comparison of Yield with Channel Faults

CHAPTER 4. RELIABILITY 150

.--,
I I
L-.J

.--,
I I
L_.J

.--,
I I
L-.J

.--, .--,
I I I I
L_.J L-.J

.--, .--,
I I I I
L-.J L-.J

.--, .--,
I I I I
L-.J L-..>

.--, .--, .--, .--, .--,
I I I I I I I I I I
L-.J L-.J L-.J L-.J L-.J

.--, .--, .--, .--, .--,
I I I I I I I I I I
L-.J L-.J L-.J L-.J L-.J

.--, ,--, ,--, ,--, ,--,
I I I I I I I I I I
L-.J L-.J L-.J L-.J L-.J

Figure 4.12: A Typical Kernel for the 2D Mesh Network

Figure 4.13: The Octagonal Mesh Network

CHAPTER 4. RELIABILITY 151

4.5 The Octagonal Mesh Network

In the previous section we have presented evidence that the existing routing relations,

which are based on the natural shortest graph-theoretic distance or Li-metric defined

over n-dimensional grids, are too weak for lower-dimensional meshes. We have ar

gued that this weakness stems from the fact that with the Li-metric based routing

relations, there are far too many pairs of nodes connected by single routes. Since our

approach to fault-tolerance relies heavily on the existence of multiple paths joining pairs

of nodes, hindsight clearly reveals that the scheme would fail miserably for these lower

dimensional meshes. In order to increase the reliabilities of these lower-dimensional

meshes, we shall need to augment the network with more channels, and to seek a better

set of routing relations that will generate a much more richly connected set of routes.

In particular, we focus our attention on 2D networks, since they constitute the simplest

nontrivial interconnection patterns that are still much cheaper and easier to assemble

physically than three- or higher-dimensional structures.

Figure 4.13 depicts a two-dimensional octagonally connected mesh network, where

each node is connected to eight neighbors. Its channel connections are almost identical to

the ordinary 2D rectilinear mesh, except that it is augmented with additional diagonally

connected channels. The octagonal mesh shares most of the same advantages with the

simpler rectilinear mesh, such as having a systematic, regular layout, and uniformly

short connections. Furthermore, as we shall see next, it is possible to define a simple

set of routing relations that will give rise to a very richly connected set of routes.

4.5.1 The Routing Relation

Given any network, the standard way to generate a set of acceptable routing relations is

to define them in terms of the reduction of the standard graph-theoretic distance metric.

Specifically, the set of profitable channels for a message is the subset of channels whereby

forwarding the message across such a channel will decrease its graph-theoretic distance

from destination. For the octagonal mesh, the graph-theoretic distance metric happens

to be identical to the L 00-metric defined as follows:

CHAPTER 4. RELIABILITY 152

Under the L00-metric, nodes lying along the same row or the same column of the mesh

are connected by a multiple number of routes, provided that they are not adjacent to each

other. In other words, using the new octagonal mesh and the L00-metric based routing

relations, we have succeeded in removing the bottlenecks in our original 2D rectilinear

mesh. Unfortunately, in so doing, we have created a different set of bottlenecks: Nodes

lying along the same diagonals are now joined only by single routes. Clearly, we need

to introduce extra alternate routes in addition to those allowed under the L 00-metric,

provided that, collectively all the generated routes remain acyclic.

To proceed, we observe that the two Li- and L00-metrics defined on a 2D mesh are

compatible with each other over the octagonal mesh. They are compatible in the sense

that moving in a direction that decreases one metric will never result in an increase in

the other metric. This is summarized in the following lemma:

Lemma 4.3 The Li- and L00-metrics are compatible with each other over the 2D

octagonal mesh.

Proof. Let 8X and 8Y denote the corresponding change in absolute distances from

the destination in the X and Y directions when a message is forwarded across a channel.

We observe that during every move, 8X and 8Y can only assume the discrete values

from the set { -1, 0, + 1}. To decrease the Li-metric, we must have 8 X + 8Y < 0 ⇒

8X:::; 0 /\ 8Y :::; 0, which can never increase the L00-metric. Similarly, to decrease the

L00-metric, we must have 8X < 0 V 8Y < 0 ⇒ 8X + 8Y :::; 0. In other words, it can never

increase the Li-metric. ■

Compatibility of the Li- and L 00 - metric allows us to define a new metric M as the sum

of the two old metrics:

It is straightforward to see that M, defined above, is a genuine metric over the octagonal

mesh network. We shall now define an alternative set of routing relations, R* = {R!j},

based on the reduction of this new metric, M:

which guarantees the acyclicity of routes generated collectively by the R*s. Notice that

another possible way to generate a combined metric for the octagonal mesh is to define

CHAPTER 4. RELIABILITY 153

Figure 4.14: A Worst Possible Route in the Octagonal Mesh

it lexicographically as (dL
00

, dL 1). We favor the summation-generated metric because

its values are more closely related to actual distances. Under this combined metric,

the routes generated are no longer shortest graph-theoretic distance paths. However,

since the routes are generated so as to reduce at least one of the component metrics of

M, and dL 1 can be twice as much as dL
00

, it is clear that the route lengths cannot be

more than three times those of the shortest distance paths. In fact, on the octagonal

mesh, the worst-case route length is at most 3dL1 - 1, since the last move on any

route must simultaneously reduce both dL 1 and dL
00

• That such a worst case does

exist is exemplified in Figure 4.14. The advantage we gain from paying such a price

is that between every pair of nonadjacent nodes, there now exists at least two node

disjoint routes joining them. Hence, with this new set of routing relations, we succeed in

removing the bottlenecks that have caused the low yield results in the two-dimensional

rectilinear mesh.

4.5.2 Reliability Assessment

In this section, we present the simulation and computation results for the octagonally

connected mesh network discussed in the previous section. Again, we have attempted to

CHAPTER 4. RELIABILITY 154

differentiate the effects of node failure and channel failure by simulating them separately.

The results are plotted in Figures 4.15-4.18. The followings observations are made

regarding these figures:

• The average yield statistics of the 2D octagonal mesh are far better than the corre

sponding statistics of the 2D rectilinear mesh under identical failure probabilities.

• The statistical patterns are comparatively more dispersive than those obtained

from all the previous simulations.

• The statistical patterns for the node faults are much more dispersive than those

obtained from the channel faults, with a number of occasional outlying points.

The relatively dispersive nature of the yield statistics and, in particular, the existence

of these outlying points require some further explanation; this also helps us to gam

additional insights into how the octagonal mesh achieves the much better yield over

that of the rectilinear mesh. In Figures 4.21 and 4.22, we have shown the computed

kernel configuration of a few scattered isolated faults, and that of a single cluster of

faults. Notice that as long as the fault cluster sizes are small, they can be readily routed

around by the redundant paths generated under the routing relations, R*s. However,

as the fault cluster sizes increase further, they can no longer be accommodated, and a

phenomenon so familiar in the original rectilinear mesh commences: Entire columns,

rows, or diagonals are restrained to operate as pure switches. For randomly generated

faults, such large fault clusters remain relatively rare until the failure probabilities be

come relatively high. On the other hand, the occasional occurrences of the few large

fault clusters result in the existence of the observed outlying points. In particular, the

formation of clusters are much more likely if the failure probabilities of neighboring

resources are highly correlated. Since node faults are in effect highly correlated channel

faults, this explains why many more outlying points are observed under the indepen

dent node faults assumption than are observed under the independent channel faults

assumption.

Figures 4.19 and 4.20 compare the yield statistics of the octagonal mesh, the rectilin

ear mesh, and the binary-n-cube. It is interesting to observe that the yield statistics for

the 2D octagonal mesh is consistently better than those obtained for the binary-n-cube

CHAPTER 4. RELIABILITY 155

of the same size. However, it should be pointed out that the significant gain in yield

is achieved at the expense of reducing the effective available network bandwidth, as we

shall find out in the following subsection.

CHAPTER 4. RELIABILITY 156

256 Nodes, 930 Channels

1.0

0.9 +++ + +
y t +*+
I +
E 0.8 + +
L
D + + +

0.7 +

+
0.6

0 2 4 6 8 10 12 14 16

Percentage of Node Faults

Figure 4.15: 16 X 16 Octagonal Mesh with Node Faults

256 Nodes, 930 Channels

1.00

0.95

y 0.90
I
E
L
D 0.85

0.80
+ + + +

0.75
0 2 4 6 8 10 12

Percentage of Channel Faults

Figure 4.16: 16 x 16 Octagonal Mesh with Channel Faults

CHAPTER 4. RELIABILITY 157

1024 Nodes, 3906 Channels

1.00

0.95

0.90

y
0.85 I

E
L 0.80
D

0.75

+
+ + +
+ +

0.70

0.65 + +
0 2 4 6 8 10 12 14

Percentage of Node Faults

Figure 4.17: 32 X 32 Octagonal Mesh with Node Faults

1024 Nodes, 3906 Channels

1.00

0.95

y 0.90
I
E
L
D 0.85

0.80

0.75
0 2 4 6 8 10 12

Percentage of Channel Faults

Figure 4.18: 32 x 32 Octagonal Mesh with Channel Faults

CHAPTER 4. RELIABILITY 158

1024 Nodes

1.0

0.8

y 0.6
I
E
L
D 0.4

0.2 32 X 32 Rectilinear Mesh

0.0
0 2 4 6 8 10 12 14

Percentage of Node Faults

Figure 4.19: Another Comparison of Yield with Node Faults

1024 Nodes

1.0

32 x 32 Octagonal Mesh

0.8

y 0.6
I
E
L
D 0.4

0.2 32 x 32 Rectilinear Mesh

0.0
0 2 4 6 8 10 12

Percentage of Channel Faults

Figure 4.20: Another Comparison of Yield with Channel Faults

CHAPTER 4. RELIABILITY 159

Figure 4.21: A Kernel Configuration Induced by Isolated Faults

Figure 4.22: A Kernel Configuration Induced by a Cluster of Faults

CHAPTER 4. RELIABILITY 160

4.5.3 Performance Assessment

The previous subsection focused on a reliability assessment of the proposed octagonal

mesh network. In this section, we move on to study the various performance aspects of

the octagonal mesh. More specifically, our objectives are two-fold:

1. To evaluate the average latency and throughput performances of the octagonal

mesh as a potential connection topology in itself; and

2. To obtain preliminary understanding about the amount of communication perfor

mance degradation in the presence of random node and channel faults.

Our investigation of the performance behaviors is patterned after that in Chapter 3.

Network Perforr.aance Bounds

To start, we shall first derive the bounds on average performance for uniformly random

and independent traffic over the N = k x k octagonal mesh. The argument is similar to

that presented in Chapter 3 and is based on the notion of network bisection bandwidth,

and the average network distance.

For an k x k mesh, the network bisection capacity is 3k - 2 channels in the middle,

splitting the network into two halves. Therefore, the average injection rate, q, at each

node for random traffic is given by:

q (~

2

) (½) < 3k - 2

q < 12k - 8 _ 12 (!)
k 2 - k + 0 k

In other words, given that the bisection bandwidth capacity is ~ 3 times that of the

rectilinear mesh of equal size, the expected maximum throughput under ideal conditions

should also be ~ 3 times that of the rectilinear mesh.

Next, in order to obtain the lower bound on the average message latency, it is nec

essary to obtain the average message distance from its respective destination measured

over the octagonal mesh. For the octagonal mesh, the graph-theoretic distance is given

by the L00 -metric, and the average distance, Docta, is defined as:

k-l

Docta = L iP(max(AX, AY) = i)
i=l

CHAPTER 4. RELIABILITY 161

Since for uniformly random and independent traffic, AX and b.Y are independent of

each other, this can be written equivalently as follows:

k-1

Docta = L i(P(b.X = i)P(b.Y::; i) + P(b.X::; i)P(b.Y = i)- P(b.X = i)P(b.Y = i))
i=l

In order to evaluate Docta, we need to evaluate the quantities P(b.X = i) = P(b.Y = i)

and P(b.X ::; i) = P(b.Y ::; i). Following the argument presented in [3], we have:

p(b.X = 0) P(b.Y = 0) 1
le

p(b.X = i) P(b.Y = i) 2(k-i) 0<i::;k-1 k2

P(b.X ::; i) P(b.Y ::; i) ! + Li· 2(k-j)
k 1=1 kz 0<i::;k-1

k+(2k-l)i-i2

kz

From these expressions, we obtain the following, for 0 < i :S'. k - 1:

P(max(b.X, b.Y) = i)

We are now ready to evaluate the average distance from destination, for a reasonable

mesh size, k, after simplifying and rearranging terms as follows:

Docta =
k-1
L 44 (2k2i2 - 3ki3 + i4)
i=l k

For a 32 x 32 octagonal mesh, the average message distance is ,;:,j 14.93. This result is

very close to that obtained from Monte Carlo simulations. Notice that the asymptotic

limit is very close to that obtained from a 2D rectilinear torus of the same size.

The Simulation Experiments and Results

In order to obtain insights on the effects of random faults upon the communication

performances of the proposed octagonal mesh, three identical sets of simulation exper-

CHAPTER 4. RELIABILITY 162

iments were performed on three 16 x 16 octagonal meshes, each corresponding to a

varying degree of faults. The first network has no fault, i.e., all of its 256 nodes and 930

channels are operational. The second network has a total of 235 nodes and 891 opera

tional channels, whereas the third has a total of 199 nodes and 836 operational channels

(see Figures 4.23 and 4.24). We shall henceforth refer to these reclaimed networks as

networks A, B, and C, respectively. The faults in networks B and C were generated

independently and uniformly under 5% and 12% channel-failure probabilities. Within

each set of experiments, the network traffic was uniformly random and independent,

with the applied load being varied to cover the entire range. Except for the use of a

different network topology, all the assumptions described in section 3.4 remain valid for

the current simulations. Since our main focus here is the investigation of the inher-

ent network performance figures, only the artificially generated traffic experiments were

conducted.

Figures 4.25 and 4.27 plot the average normalized throughput versus normalized

applied load for the three different networks. Consider, for example, network A (the

non-faulty mesh): The normalized network throughput increases linearly with increasing

applied load, until it reaches~ 72%, after which the throughput remains stable, in spite

of increasingly heavy applied load. Similar behaviors are observed in networks B and C

with corresponding saturation throughput values of~ 0.58 and 0.38, respectively. The

fact that the saturation throughput for network A occurs around 70% can be understood

by looking at the very dispersive nature of the routes generated by the routing relations,

R*. In particular, our previous bandwidth argument counted only messages that must

cross the bisection from their sources on one side to their destinations on the other

side. However, many more routes exist that have both their sources and destinations on

the same side, but that nonetheless cross the bisection more than once. These routes

were not taken into account and are responsible for the < 100% observed saturation

throughput. In other words, a reduced maximum throughput is the price paid in order

to obtain a higher network reliability by adopting a more dispersive routing strategy.

Similar throughput behaviors are observed in the reclaimed networks B and C, but

having correspondingly lower saturation values. For network B, with 235 nodes, or a

yield of ~ 92%, the normalized saturation throughput is reduced from 0. 70 to 0.58, or

~ 80% that of the non-faulty network A. Similarly, for network C, with 199 nodes or a

CHAPTER 4. RELIABILITY 163

yield of~ 78%, the saturation throughput is reduced to 0.38, or ~ 53% that of network

A. While these figures are specific to the fault configurations of the two simulated

networks, they are suggestive of the extent of performance degradation induced by

random faults in general. In particular, if we assume that both the node and channel

resources are degraded to the same extent, we may expect that, on the average, the

relation between applied load and available bandwidth will remain unchanged. However,

the average length of survived routes are increased due to increased reliance on detouring

and, hence, they consume additional bandwidth. As a result, we conjecture that the

effective saturation throughput will degrade at a rate faster than that of the node and

channel resources. The empirical figures obtained for networks B and C appear to be

consistent with this conjecture.

The corresponding message latencies for these networks are shown in Figures 4.26

and 4.28. These curves also present no surprises. Again, we observed the familiar char

acteristic curve for latency behavior. Each curve starts at latency values very close to

the theoretical lower bound under low to moderately heavy applied load, and increases

rapidly as the load approaches the respective throughput limit. For example, in Fig

ure 4.26, the transition point throughput for networks A, B, and C are ~ 0.6, 0.45, and

0.3, respectively. One way to interpret these results is as follows: For computations that

are primarily communication bounded, network C, as a result of the ensuing faults, is

reduced to ~ 0.78 X g:: ~ 0.39 of the raw computing speed of the original non-faulty

network A. This superlinear degradation in the overall computing performance will in

general be observed for traffic patterns generated under random placement strategies

that are very effective in maintaining approximate load balance. Because of its simplic

ity, such random placement strategy is particularly attractive in faulty networks, since

these networks are substantially more irregular than the original non-faulty networks.

CHAPTER 4. RELIABILITY 164

Figure 4.23: Reclaimed Convex Network B - 235 Nodes and 891 Channels

Figure 4.24: Reclaimed Convex Network C - 199 Nodes and 836 Channels

CHAPTER 4. RELIABILITY 165

16 x 16 Octagonal Mesh

0.8
Network A

0.7

T
H 0.6 Network B
R
0 0.5 u
G
H 0.4 twork C
p
u 0.3 T

0.2

0.1

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 4.25: Normalized Throughput for Single-packet Message

16 x 16 Octagonal Mesh

1600

1400

1200
L

1000 A
T
E 800
N
C 600 y

400

200

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Throughput

Figure 4.26: Average Latency for Single-packet Message

CHAPTER 4. RELIABILITY 166

16 x 16 Octagonal Mesh

0.7
Network A

0.6

T 0.5 H Network B

R
0
u 0.4

G
0.3 H

p
u 0.2 T

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Applied Load

Figure 4.27: Normalized Throughput for Variable-length Message

16 x 16 Octagonal mesh

2500

M
E 2000 s Networ A

s
A
G 1500
E

L
A 1000
T
E
N 500 C
y

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized Throughput

Figure 4.28: Average Latency for Variable-length Message

CHAPTER 4. RELIABILITY

4.6 Summary

167

In this chapter, we have examined a number of issues that are fundamental to perform

ing fault-tolerant routing in multicomputer networks. In particular, we have investi

gated and evaluated the effectiveness of our adaptive routing formulation as a general

technique to exploit the inherent path redundancies provided by the richly connected

topologies popular in multicomputer networks. Our primary emphasis is on the poten

tial of the adaptive multipath approach rather than in any specific networks.

A simple fault model that captures the salient features of faulty multicomputers was

described, and provided the frameworks for our discussion. Motivated by the desire to

build high-performance networks through direct hardware realization of the routing op

eration, we investigated solutions that would allow us to continue to use, with minimal

change, the original routing hardware for the non-faulty networks; and, in particular,

the notions of convexity, and the communication kernels that characterize the condi

tions under which we can continue to use the original algorithmic routing relations to

systematically direct routing in faulty networks.

The computational complexities involved in determining the fault-tolerant routing

configurations suggested by these theoretical notions were studied. In particular, we

established the NP-completeness of the problems, and described a simple but effective

elimination heuristic procedure to compute the desired fault-tolerant configurations.

The effectiveness of this approach was studied through a set of simulations over the

important class of n-dimensional mesh networks. This provided additional insights into

the nature of our fault-tolerant routing approach. In particular, based on the simulation

results, the 2D octagonally connected mesh network was proposed; this admits excellent

fault-tolerant capabilities under the adaptive routing framework. Both the performance

and the reliability characteristics of the octagonal mesh were studied in detail. While

the simulation results presented in this chapter are still preliminary, and a much more

extensive study should be carried out to produce a comprehensive evaluation, the pos

itive results derived from this preliminary study, and the simplicity of this approach,

give us hope that the adaptive scheme can be refined to provide a practical basis to

support fault-tolerant routing in high-performance multicomputer networks.

168

Chapter 5

Realization

In the last three chapters, we have examined a variety of theoretical issues that are

fundamental to performing adaptive cut-through routing in multicomputer networks. In

this chapter, we proceed to examine a number of realization issues concerning a practical

implementation for achieving high-speed routing. There are a number of hidden design

and implementation problems, as well as some partial solutions in realizing the adaptive

routing approach developed in this thesis. Our objective here is to highlight the various

major architectural issues that must be addressed in any practical implementation of the

proposed framework, rather than to propose a complete final architectural design. In

fact, from the experience in the development and refinement of the oblivious wormhole

router, it is clear that many iterations will be required before a highly competitive

design of the adaptive router will emerge. Rather, what we are going to describe here

summarizes what has been learned, and is intended to serve as a starting point for

any serious attempt to implement the adaptive router. This chapter differs from the

previous ones in that it raises many more questions than it gives answers; the hope is

that these will provoke new ideas.

Specifically, in section 5.1 of this chapter, we shall take a second look at the packet

delivery guarantee issue, this time with the emphasis on implementation rather than on

theoretical feasibility. We shall argue for a more practical approach based on congestion

control, a feedback mechanism that is an extension of the injection-fairness-guarantee

protocol described in section 2.5. In section 5.2, we shall examine the header-encoding

issues in detail, and shall propose possible encoding formats for both the rectilinear and

the octagonal meshes; these have a number of desirable properties. This is followed in

CHAPTER 5. REALIZATION 169

section 5.3 with a discussion of the buffering issues involved in the storage management

of variable-length packets, and a possible solution is presented that can be viewed as a

starting point for further investigation. In section 5.4, the various problems involved in

performing fast adaptive control will be discussed. A possible pipelined control scheme

is examined that provides the context for the discussion of the various decision processes.

An observation that may lead to certain additional speedup opportunities is presented,

with the hope that it will stimulate further thought. In section 5.5, we shall describe a

handshake protocol between neighbors that maintains a set of consistent clock signals at

each node in a multicomputer network. This allows the use of synchronous logic design

techniques, and yet still is arbitrarily extensible. Finally, in section 5.6, we summarize

the chapter.

5.1 Congestion Control

The first realization issue we shall discuss concerns the practical assurance of packet

delivery. Recall from our feasibility study in Chapter 2 that it is theoretically possible

to guarantee delivery of every individual packet in transit inside the network. The

scheme calls for the assignment of a priority to each packet, and resolves channel-access

conflicts according to the specified ordering. A priority assignment provides information

to allow the network to pick consistent winners in these conflicts, so that these winners

will eventually be delivered. A direct implementation of the suggested priority scheme,

however, is rather unlikely as there are several difficult issues yet to overcome. For

example, the entire priority field, consisting of the packet's distance from destination

and its age, is likely to occupy at least a few flits; hence, a number of cycles will pass

before its priority can even be examined, which is somewhat undesirable in fine-grain

machines (see section 5.2 for more detail on this). In addition, the requirement to

dynamically and consistently increment the age parameter is another nontrivial task.

However, perhaps the most challenging of all is the priority-discrimination task. With

packets dynamically arriving and leaving, resolution of packet priorities will require

the maintenance of a dynamically changing priority queue, where each comparison is

performed on a multi-flit data field. Then, on top of all these are the necessary tasks of

performing profitable channel assignments, and occasionally misrouting to avoid buffer

CHAPTER 5. REALIZATION 170

overflow, both of which are quite complex even without any requirement for following

the priority ordering. Clearly, a practical hardware implementation will have to employ

something quite a bit simpler.

It is interesting to observe that the congestion-control mechanism employed in the

experiments described in section 3.5.4 actually suggests a possible practical alternative

that is readily implementable on silicon. In particular, an important property of the

congestion-control protocol described there is that it helps to minimize, if not completely

eliminate, misrouting. As we recall, by allowing misrouting we destroy monotonicity

in packet-to-destination distance reduction; this raises the whole issue of guarantee

ing delivery. In this sense, the congestion-control protocol described there employs a

negative feedback approach to confine the network operating points to regions where

misroutings are generaily rare; hence, the monotonicity in distance reduction is approx

imately restored. The experimental data obtained in those simulations presented strong

circumstantial evidence that this negative feedback technique is generally successful.

Another main ad vantage of employing the congestion-control mechanism is that it

also assures approximate fairness in network access. The assurance is no longer absolute

because one no longer has absolute assurance of packet delivery, which is fundamental

to establishing an absolute fairness guarantee. In other words, the congestion-control

protocol is one mechanism that attempts to serve two masters, i.e., guaranteeing packet

delivery and packet injection, but that achieves both objectives only approximately.

Whether it is possible to further modify the protocol such that one can restore the

absolute guarantee remains an open question.

Implementation of the congestion control protocol is rather straightforward. Follow

ing the description in section 2.5.3, each channel needs one extra wire for passing the

injection information required to carry out the protocol. Depending on whether or not

a node has advanced its injection count, a 1 or a O will be passed to its neighbors in

each cycle, according to the protocol specification. Whether the node will be allowed

to inject or not in the next cycle depends on the signals received from its neighbors,

and on whether misrouting has occurred in this cycle. It is clear that a few simple logic

gates are sufficient to generate the required injection-control signals.

In our simulation experiments described in section 3.5.4, channel assignments are

performed in a first-come first-served manner; this is a fair policy for a dynamically

CHAPTER 5. REALIZATION 171

changing set of packets. Sometimes the maintenance of the FCFS ordering may itself be

rather expensive. For example, as packets come and go, different buffer locations may be

randomly assigned in such a way that a packet's arrival order cannot be directly inferred

from the assigned buffer location. In such cases, the simpler round-robin assignment

ordering, which is another fair policy, can be used to provide an excellent alternative.

5.2 Header Encoding

The second problem we shall discuss concerns the format of the header of a packet.

A main advantage of wormhole routing is its extremely low message latency under

relatively light network traffic conditions. This is made possible by having a node

forward an incoming packet as soon as enough header information has been accumulated

to determine the correct output channel. Performance considerations and the desire

for hardware simplicity both suggest that we choose a header format that provides all

relevant routing information in the first flit of the packet. In an oblivious scheme, where

routing proceeds in dimension order so as to avoid deadlock, it is natural to pack the

delta values of the corresponding dimensions in that same order. For example, for the

rectilinear meshes, we require the following information: LlX, LlY for the 2D meshes,

and also LlZ for the 3D meshes. Suppose the oblivious scheme routes a message first

along the X dimension, reducing LlX to zero; then along the Y dimension, reducing

LlY to zero; and finally along the Z dimension, reducing LlZ to zero; the header will be

organized with LlX in front, followed by LlY, and then .ti.Z. The foremost delta value

is decremented by one every time the message header is forwarded one step toward its

destination, and when a zero has been detected, the message is switched to the next

dimension. Under such a scheme, the message latency, T, under light network traffic

conditions, can be expressed as:

T~pD+L,

where p is the delay per stage required to perform the incremental update, D is the

distance the message has to travel, and L is the length of the message. To facilitate

the zero-detection and the decrement-by-one operations, a coding scheme that explicitly

encodes the notion of a leading-zero was developed [14] that allows a message to ripple

through an intermediate node with a delay of only two clock ticks, i.e., p = 2.

CHAPTER 5. REALIZATION 172

In contrast, for an adaptive scheme that attempts to take advantage of possible

alternate routes, it is essential to optimal routing decision to have the direction infor

mation of every dimension simultaneously available. In particular, the presence of such

direction information in the first flit of the header is extremely desirable in order to

allow the assignment logic to make immediate direct cut-through routing decisions. One

possible scheme is to have the delta value corresponding to each dimension be present

explicitly in parallel, starting from the first flit of the header. In addition, we shall

need to perform bit-serial increment- and decrement-by-one operations on the encoded

numbers. It is clear that for the adaptive scheme to stay competitive with the oblivious

scheme, the delay per stage, p, must be kept to a minimum. This is especially true in

a fine-grain machine, where the average message distance, D, tends to be large, and

the average message length, L, tends to be small. In such cases, pD will become the

dominant component of T; hence, it is essential to keep p as small as possible. In the

following, we describe an encoding scheme for the adaptive router with a delay per stage

which matches that of the oblivious scheme, i.e., with p = 2.

5.2.1 Rectilinear Mesh

In this subsection, we shall describe a coding scheme for the rectilinear meshes, assuming

the routing relations are defined according to the reduction of a message's L1-metric

from destination. To help simplify the subsequent exposition, we shall first describe

the encoding of the delta value for a single dimension. To proceed, we observe that

having the sign of delta displacement value is necessary and sufficient to determine the

profitable direction for that dimension. In particular, for each dimension, an encoding

of its sign must be able to distinguish between three possible alternatives: positive-,

negative- or zero-delta displacement. This consideration naturally suggests the use of

a sign-and-magnitude encoding. Furthermore, our need to perform bit-serial arithmetic

on the numbers also suggests the use of a least-significant-bit-first arrangement. As

in the case of the oblivious encoding, let us try to use an alphabet with 3 symbols,

{O, 1, Z}, representing zero, one, and leading-zero. This gives us almost what we want,

i.e., realizing p = 2, except for the following difficulty: Decrementing a positive mag

nitude by one; by examining only the first two input symbols; e.g., it is impossible to

distinguish between +1, represented as (···ZZl+), and +3, represented as (···Zll+).

CHAPTER 5. REALIZATION

NODE 0 MOOO+
NODE 1 OM11+
NODE 2 OM10+
NODE 3 OM01+
NODE 4 OMOO+
NODE 5 OOM1+
NODE 6 OOMO+
NODE 7 OOOM+
NODE 8 00000 <--- TIME
NODE 9 OOOM-
NODE 10 OOMO-
NODE 11 OOM1-
NODE 12 OMOO-
NODE 13 OM01-
NODE 14 OM10-
NODE i5 Oiviii-
NODE 16 MOOO-

DECREMENT-BY-ONE

+8
+7
+6
+5
+4
+3
+2
+1

0
-1
-2
-3
-4
-5
-6
-7
-8

Figure 5.1: Decrement-by-One Operations Under the {O, 1, M} Alphabet

173

Decrementing the former values gives (· • • ZZZ0), i.e., zero; while decrementing the lat

ter gives (· • • ZlO+), i.e., +2. It is clear that the output symbols generated are different

in the two cases, and so it is necessary to modify the coding scheme to help distinguish

the two cases. One solution is to observe that because the sign is represented explicitly

in the very first flit, zero detection can be done readily; thus, there is really no need to

encode the leading-zero. Instead, we shall replace the alphabet with {O, 1, M}, where

M explicitly encodes the notion of a most-significant-one. Using this new alphabet,

+ 1 is represented as (· • · 000M +), whereas +3 is represented as (· · · 00MI +), with the

aforementioned ambiguity removed. Figure 5.1 depicts the sequence of values generated

by the decrement-by-one actions. Using this representation, decrement and increment

operations both require inspection of two consecutive input symbols in order to deter

mine the next output symbol in the header. This is identical to that required in the

oblivious prefix encoding scheme. Figure 5.2 depicts the corresponding update automa

ton for this representation, where the next output symbols and next automaton states

are tabulated, i.e., described as a Moore machine1
. The symbol I stands for idle, and

1 State-output finite-state automaton.

CHAPTER 5. REALIZATION 174

ii State II Update Operation, Input Symbol 11

II +, 0 +, + +, - ... I II -. 0 -. + -. - -. I II
II START I, PSIGN I, NSIGN I, ZSIGN I. START II I, PSIGN I, NSIGN I, ZSIGN I, START

+, 0 +, 1 +, M +, I -. 0 -. 1 -, M -. I
ZSIGN +, POS10 - NEG10
PSIGN +, POS10 +. POS01 + POS01 +. POSU + POSOO 0, POSOO
POSOO 0, POSOO 0, POS10 0, POSMO 0, START 0, POSOO 0, POS10 0, POSMO 0, START
POS01 0, POS10 0, POS01 0, POSOM
POS10 1, POSOO 1, POS10 1, POSMO 1, POSOO 1, POS10 1, POSMO
POSU 1, POSU 1, POSOO M, POSOO
POSMO M, POSOO M, START M, POSOO M, START
POSOM 0, POSMO
NSIGN -. NEG11 -. NEGOO 0, NEGOO - NEG10 - NEG01 -. NEG01
NEGOO 0, NEGOO 0, NEG10 0, NEGMO 0, START 0, NEGOO 0, NEG10 0, NEGMO 0, START
NEG01 0, NEG10 0, NEG01 0, NEGOM
NEG10 1, NEGOO 1, NEG10 1, NEGMO 1, NEGOO 1, NEG10 1, NEGMO
NEG11 1, NEG11 1, NEGOO M, NEGOO
NEGMO M, NEGOO M, START M, NEGOO M, START
NEGOM 0, NEGMO

Figure 5.2: Update Automaton for the Sign-and-Magnitude Encoding Using {O, 1, M}

the blank entries represent don't care entries that correspond to transitions that cannot

occur, assuming sufficient flits have been reserved to prevent magnitude overflow. The

state transitions for the increment operation are an exact mirror image of the decrement

operation, and have been included in the figure for the sake of completeness.

The alphabet described above requires three distinct symbols for the binary repre

sentation. A generalization of this scheme, to an arbitrary radix-r representation, will

require a total of 2r - 1 symbols: { 0, 1, M1, 2, M2, · · · , r-1, Mr-I}, where Mi encodes the

most-significant-i symbol. Observe that by using this more general radix-r representa

tion, it is possible to bit-serially subtract any positive value that is < r from the encoded

number, while maintaining a delay of two clock ticks per stage. The decrement-by-one

operation described in the previous paragraph for the radix-2 representation is just such

an example.

On the other hand, if decrement-by-one is the only subtraction operation of interest,

as in the present case, it is then possible to devise an alternate solution using the original

{O, 1, Z} alphabet. This alternate scheme is more economical when generalized to a

radix-r representation for r > 2. In particular, observe that the distinction between

+1, (···ZZZl+), and +3, (···ZZll+), can be made if one is allowed to examine the

third symbol as well, since a leading-zero in the representation then will unambiguously

identify a + 1. This motivates the alternate solution: Subtract one from the magnitude

CHAPTER 5. REALIZATION

NODE 0 Z111+
NODE 1 Z110+
NODE 2 Z101+
NODE 3 Z100+
NODE 4 ZZ11+
NODE 5 ZZ10+
NODE 6 ZZZ1+
NODE 7 ZZZZ+
NODE 8 zzzzo <--- TIME
NODE 9 zzzz-
NODE 10 ZZZ1-
NODE 11 ZZ10-
NODE 12 ZZ11-
NODE 13 Z100-
NODE 14 Z101-
NODE 15 Z110-
NODE 16 Z111-

DECREMENT-BY-ONE

+8
+7
+6
+5
+4
+3
+2
+1

0
-1
-2
-3
-4
-5
-6
-7
-8

175

Figure 5.3: Decrement-by-One Operations Under the {O, 1, Z} Alphabet

representation, so that + 1 is now represented as (· · · Z Z Z +) and +3 is represented

as (· • • ZlO+). Because we have subtracted one from the magnitude encoding, we can

now unambiguously distinguish + 1 from larger positive numbers, and -1 from smaller

negative numbers; hence, we can update after looking at just the first two symbols.

Figure 5.3 depicts the corresponding sequences of values generated by the decrement

by-one operations under this new representation. The advantage of this so-called sign

first-one-shy-magnitude representation is that it can be generalized to any arbitrary

radix r using an alphabet of size r + 1 instead of 2r - 1: 0, 1, • • ·, r - 1, and Z. This

could lead to substantial savings when representing a large number.

In addition to the encoding for the delta values, we would also need at least three

other encodings: I for the idle flits, D to mark the start of the user data section, and T

to represent the tail flit. Since each dimension requires its own delta displacement value,

and since each dimension induces at least three distinct alternatives (0, 1, and, Z or M),

a format for a 3D mesh would require a total of 33 + 3 = 30 different symbols. These can

be nicely represented using five bits. Figure 5.4 depicts a possible arrangement using

CHAPTER 5. REALIZATION 176

USER PAYLOAD SECTION DELTA DISPLACEMENT

1 0 0 L
M E
n C

u u u s s
s

T E < s > E
s D T T
E A s I

r:I R R R T C: C: T n
I A I I G L
L B

I < B > I
B G G N E
I s N N

F N N N T T T F F

L A A A A F F L L
I R
T y < R > y

R R I I I I
y T C C T T

r:I r:I

D D D N N
A
T < A > T

A T T
T

r:I A Cl

Figure 5.4: A Five-Bits Packet-Encoding Layout for a 3D Rectilinear Mesh

such an encoding for the 3D mesh. These, together with the additional 1 bit required to

carry out the congestion-control protocol, take a total of six bits per channel. Similarly,

one can use the same five-bit wide format for a 2D mesh that explicitly encodes ~X,

~Y, and l~Xl- l~YI, all of which change by ±1 across channels. The sign of the

last quantity, i.e., the difference in magnitude, enables efficient discrimination of the

maximum of l~XI and l~YI. Having this information allows one to implement the

optimizing heuristic mentioned in Chapter 3.

5.2.2 Octagonal Mesh

In this subsection, we extend our previous discussion to consider the encoding problem

for the 2D octagonal mesh, which has been demonstrated in Chapter 4 to display some

nice fault-tolerant potential. In particular, we shall assume the routing relations to

be defined according to the reduction of the combined metric that is the summation

of the Li-metric and the L00-metric. In other words, the set of profitable channels at

any intermediate node is the union of those that reduce the Li-metric with those that

reduce the L00-metric.

As was mentioned in the previous subsection, it is extremely desirable to have explicit

direction information for all the profitable channels simultaneously available in the first

flit of the packet header. There are several different ways in which to organize the

CHAPTER 5. REALIZATION 177

header so as to provide the necessary information. In particular, it is interesting to

observe that:

• The profitable channels induced by the reduction of the L00 metric, when restricted

to the non-diagonal channels, are a subset of those induced by a reduction of the

Li-metric.

• For the diagonal channels, the reverse is true; i.e., the profitable channels induced

by the reduction of the L1 metric, when restricted to the diagonal channels, are a

subset of those induced by a reduction of the L00-metric.

For example, the first observation indicates that having the L:::i.X and L:::i.Y displacement

values is sufficient to cover the required direction information for the horizontal and the

verticai channels. The second observation indicates that it is possible to decouple the

diagonal and the non-diagonal channels from each other, and to encode the required

direction information for the two sets separately.

To obtain the direction information for the four diagonal channels, it is clear that

we must maintain extra information. For our present purpose, two sets of quantities

that naturally provide the required information are the !:::i..(X + Y) and !:::i..(X - Y) dis

placement values, and the magnitude difference l!:::i..Xl-l!:::i..YI. In particular, Figures 5.5

and 5.6 illustrate how these extra delta quantities can be used to identify the profitable

diagonal channels. The delta-sum and delta-difference encodings give explicit direction

information for the diagonal channels, independent of the L:::i.X and L:::i.Y encodings. On

the other hand, the delta-magnitude-difference encoding requires some extra decoding

in order to extract the desired direction information. For our purpose, we shall choose

the latter because it has one fewer value to maintain. Observe that the sign of these

quantities gives us almost what we want. However, by looking at only the first symbol,

one cannot distinguish + 1 from larger positive numbers, or -1 from smaller negative

numbers. In particular, having the delta-sum or delta-difference equals to ±1 implies

that both channels of the corresponding diagonal axis are nonprofitable. For example,

with the delta-sum equal to +1, sending the packet across the south-west channel in

creases dL
00

by 1, and dL 1 by 2, whereas sending it across the north-east channel leaves

both metrics unchanged. In other words, they are indistinguishable from zero for the

purpose of direction discrimination.

CHAPTER 5. REALIZATION 178

+.6.(X + Y)

(+,-) (+,-)

(-,-) (+,+)

-.6.X +.6.X

(-,-) (+,+)

(-,+) (-,+)

~
-.6.(X + Y) -.6.Y +.6.(X - Y)

Figure 5.5: Diagonal Channel Encoding: Signs of .6.(X + Y) and .6.(X - Y)

(-,+,-) (+,+,-)

(-,+,+) (+,+,+)

(-,-,+) (+,-,+)

(-,-,-) (+,-,-)

Figure 5.6: Diagonal Channel Encoding: Signs of .6.X, .6.Y, and l.6.XI- l.6.YI

CHAPTER 5. REALIZATION 179

We now proceed to describe the possible encodings for these extra delta quantities

so that the required direction information is given correctly and explicitly in the first

flit. First of all, from the above definitions, it is clear that one may be required to

perform bit-serial increment-by-two and decrement-by-two operations on these quan

tities when the packet is forwarded across a diagonal channel. As we have seen in

the previous subsection, this can be accomplished with p = 2, if we use an alphabet

{O, 1, M1, 2, M2, · · ·, r - 1, Mr-1} with r 2'.: 3. To help distinguish ±1 from zero, an

immediately obvious solution is to invent two new special symbols: P for +1, and N

for -1. In particular, let us assume that we shall use a radix-4 representation, using

{0,1,A(= M1),2,B(= M2),3,C(= M3)}. Figure 5.7 illustrates the decrementing se

quences. Hence, using this radix-4 encoding for [AX[-[AY[, together with the encoding

of b.X and b.Y, the required directional discrimination for the diagonal channels can

be carried out by examining only the first flit of the header. In particular, since the

radix-4 encoding for the AX or AY value requires only five symbols, {O, 1, 2, 3, Z},

using one-shy magnitude encoding, the entire triplet (AX, AY, JAX[- [AYJ) requires

5 x 5 x 7 = 175 symbols. This can fit nicely into a byte-wide flit width. It is also inter

esting that there are many curious combinations of the different alphabets mentioned

here. For example, it is possible to perform decrement-by-two operations with p = 2

using the alphabet {O, 1, Z, M} with one-short-magnitude encoding. The final choice

will thus depend on the automaton-implementation complexity.

In summary, by encoding AX, AY, and JAX[-[AY[in parallel, all direction informa

tion necessary for guiding routing in the octagonal mesh network under the composite

L1 + L00 metric is available in the very first flit of the header. Furthermore, all necessary

updates can be performed with a delay of two clock ticks per stage, giving p = 2.

5.3 Storage Management

It is clear from our study of the stochastic model in Chapter 3 that the extra perfor

mance gain achieved in changing from the oblivious wormhole technique to adaptive

cut-through switching requires the investment in more silicon area. The adaptive tech

nique offers the opportunity and ability to trade silicon area for channel utilization more

efficiently. The largest component of circuitry is the internal storage. Internal buffers

CHAPTER 5. REALIZATION 180

NODE 0 OOBO+ +8
NODE 1 OOA3+ +7
NODE 2 OOA2+ +6
NODE 3 OOA1+ +5
NODE 4 OOAO+ +4
NODE 5 OOOC+ +3
NODE 6 OOOB+ +2
NODE 7 OOOAP +1
NODE 8 00000 <--- TIME 0
NODE 9 OOOAN -1
NODE 10 OOOB- -2
NODE 11 oooc- -3
NODE 12 OOAO- -4
NODE 13 OOA1- -5
NODE 14 OOA2- -6
NODE 15 OOA3- -7
NODE 16 OOBO- -8

DECREMENT BY ONE

NODE 0 00B0+ +8
NODE 1 OOA2+ +6
NODE 2 OOAO+ +4
NODE 3 OOOB+ +2
NODE 4 zzzzo <--- TIME 0
NODE 5 000B- -2
NODE 6 OOAO- -4
NODE 7 OOA2- -6
NODE 8 OOBO- -8

DECREMENT BY TWO (EVEN SEQUENCE)

NODE 0 00B1+ +9
NODE 1 OOA3+ +7
NODE 2 OOA1+ +5
NODE 3 OOOC+ +3
NODE 4 OOOAP <--- TIME +1
NODE 5 OOOAN -1
NODE 6 oooc- -3
NODE 7 OOA1- -5
NODE 8 OOA3- -7
NODE 9 00B1- -9

DECREMENT BY TWO (ODD SEQUENCE)

Figure 5.7: Decrementing the Radix-4 Representations

CHAPTER 5. REALIZATION 181

are required for storing packets temporarily while they are waiting for their respective

profitable channels. These waiting packets form the pool of candidates that compete

for output channel assignments. Since the matching statistics are better for larger pool

sizes, it is desirable to have many buffers. In practice, the number that one can af

ford depends on the amount of available silicon area and the complexity of the buffer

circuitry.

5.3.1 Bounded-Length Message Packets

In all our discussions so far, we have adopted the fixed-packet-length assumption, which

simplifies the foregoing exposition of the fundamental ideas behind the described frame

work. It is, however, not necessarily convenient, since messages sent by different pro

cesses or objects generally do not contain the same amount cf data, nor do they always

come in with lengths that are exact multiples of the chosen fixed-packet length. As a

result, many packets must be padded with null characters to the next rounded-up mul

tiple of L, thereby wasting network bandwidth. A better alternative is to replace the

fixed-packet-length assumption with the bounded-packet-length assumption. Under this

assumption, packets may have variable lengths, subject to the restriction that packet

lengths be ::; L. Long messages are partitioned into multiple packets of size up to L;

short messages are simply transmitted as single packets of length l ::; L. This eliminates

internal fragmentation, and allows much more efficient use of available network band

width. As usual, the maximum packet length, L, is determined as a tradeoff between

apparently contradictory objectives:

• Short maximum length - to more efficiently exploit the multiple paths allowed in

adaptive routing if possible, and, in particular, to reduce the amount of buffering

resources required at each node.

• Long maximum length - to reduce the inefficiencies caused by the overhead

necessary to carry the routing header information. The smaller average number

of packets per message also reduces the pressure on message reassembly at the

destination nodes.

For example, consider the message traffic distribution used in our performance simu

lation experiments in Chapter 3. Setting L = 128 flits instead of 32 flits reduces the

CHAPTER 5. REALIZATION 182

fraction of fragmented messages from 99.6% to ~ 15%; whereas setting L = 256 flits

further reduces the fraction to less than 0.1%, nearly eliminating message reassembly

overhead. In the following subsection, we shall highlight the problems involved, and

describe a possible storage structure for handling such variable but bounded-length

packets that could be viewed as a starting point for further investigation.

5.3.2 Bounded-Length Packet Storage

Let us take a closer look at some of the problems that arise when we allow variable-length

packets in our network. Since packets can have length :S L, many more variable-length

packets may require storage than fixed-length packets. This can occur because the

output channels may be transmitting previously stored long packets while short packets

a:re continuously arriving at the input channels during the same period. For exampie,

consider a 16 x 16 2D mesh with a typical L of 256 flits, and a minimum packet length

of 6 flits (1 sign flit, 1 tail flit, and 4 delta displacement flits for a 16 x 16 mesh). In the

worst case, a router may be required to temporarily store hundreds of short packets. It is

clear that simply keeping track, let alone managing the storage, of such a large number

of packets simultaneously is already a formidable task, as is performing assignment

optimization on these many packets. Clearly any acceptable storage structure would

have to keep down the complexity of the corresponding control logic.

In order to keep the assignment logic reasonably simple, we shall restrict outside

access to the storage structure to a small fixed number of ports. In particular, we shall

assume the following:

1. Storage is organized as a collection of b FIFO buffers of equal size. FIFO buffers

are readily implementable in VLSI.

2. Each FIFO buffer has exactly one input and one output port; this permits simul

taneous reading and writing.

3. A FIFO buffer can be used to simultaneously store a multiple number of packets.

Figure 5.8 in the next section depicts a possible conceptual layout of the adaptive router,

where the internal buffer pool is organized as a collection of FIFI buffers. Using FIFO

buffers, the assignment logic need not explicitly keep track of the stored packets, and

CHAPTER 5. REALIZATION 183

there will always be a small fixed number of candidate packets at the output ports that

may be considered for optimization. In particular, every stored packet will eventually

emerge at one of the output ports, at which time it will become eligible for output

channel assignment. Similarly, the input control logic need not explicitly keep track of

where the empty spaces are. Rather, there will always be a small fixed number of input

ports where incoming packets may be allocated for storage. Furthermore, it helps to

minimize the coupling between the buffer inputs and the buffer outputs, allowing the

input and output control logic to operate almost independent of each other. However,

cooperation must still exist between the two controllers to prevent buffer overflow when

the buffer is filled to capacity.

For a limited-access storage structure like the set of FIFO buffers assumed here to

function properly, it has to satisfy the foilowing requirements:

(a) Each packet should always have a chance to wait for its own profitable channels

when it emerges at the output port.

(b) Whenever the storage is filled to capacity, valid data must be present at a sufficient

number of output ports so that misrouting can proceed as necessary to prevent

buff er overflow.

To satisfy these requirements, we shall use a set of FIFO buffers of total capacity B'

to emulate a buffer structure of a smaller capacity B with the desired properties. In

essence, this scheme allows us to trade for a more efficient communication bandwidth

usage by a somewhat inefficient use of memory.

We now describe the storage management policy for these FIFO buffers. Whenever

the input control wants to allocate a buffer to a newly arrived packet, it is necessary

to locate a FIFO with an idle input port. Furthermore, the selected FIFO must either

be empty or have sufficient empty space to store a maximum-size arriving packet. This

is necessary in order to decouple the input allocation logic from the output assignment

logic. This decoupling is necessary because we allow each buffer to simultaneously store

a multiple number of packets. Since the output assignment logic has no access to the

stored packets before they reach their respective output ports, in order to allow each a

chance to wait for its profitable channel, it must be possible for each packet to wait for

their profitable channels if so determined by the assignment logic. This in turn requires

CHAPTER 5. REALIZATION 184

the buffer to have sufficient empty space to store the newly allocated packet, which may

be of maximum size.

For the sake of description, let us assume that the FIFO buffer length is equal to kL,

where k > 1 is some small positive number. Let B denote the capacity of the simulated

storage structure. Observe that since the variable length packets may terminate any

time during input, the storage structure must guarantee the existence of at least d

buffers with 2::: L empty space to store new packets at all times. In general, with no

a priori knowledge of the output control decisions, a maximum of B flits of stored

packet data can be scattered arbitrarily among the b FIFO buffers. We now observe

that as long as B < (b-d+l)((k- l)L+l), we can be sure that there is always at

least d buffers with sufficient room to hold a maximum size packet. This establishes an

upper bound on B, given the totai number and the length of the FIFO buffers used in

order to satisfy requirement (a). On the other hand, the preemption requirement, i.e.,

requirement (b), dictates that when the storage structure is filled to its full capacity B,

there are at least d+ 1 nonempty buffers, so that the privileged packet can always be

retained for transmission later. Again, the necessity to accommodate any arbitrary data

distribution among the b buffers implies that we must have B > dkL. To summarize,

we have derived the following structural requirements:

d k L < B < (b-d+l)((k-l)L+l).

The number of FIFO buffers, b, should be chosen to be small enough to admit prac

tical implementation, and large enough to deliver acceptable performance. From the

simulation results obtained in Chapter 3, having b 2::: 10 appears to deliver reasonable

performance. To get a better feeling of the typical amount of storage required under this

scheme, let us assume for the 2D mesh network that b = 16, k = 3, L = 128 flits, and

d = 5, w = 5 bits. With these parameters, we can pick B = 1920 bytes. In other words,

this scheme employs a total of 3840 bytes of storage organized into sixteen FIFO buffers

of size 240 bytes each to simulate the desired limited-access storage structure of capac

ity of 1920 bytes. This gives a simulation efficiency of exactly 50%, and represents the

typical overhead paid to accommodate the irregularity introduced by variable-length

packets under this scheme. Higher efficiencies can be obtained if the number or the

length of the buffers is increased. For medium-grain machines such as the Symult Se-

CHAPTER 5. REALIZATION 185

ries 2010 or Intel iPSC/2, where each node typically has several megabytes of memory,

this represents an insignificant factor of ~ 0.1 % in silicon real estate investment to im

prove network performance. For fine-grain machines, however, the amount of storage

required may itself constitute a large fraction of the total silicon area per node. In such

case, one may have to go back to fixed-length packets in order to conserve silicon area.

Whether better solutions that require less storage, while simultaneously satisfying both

requirements (a) and (b), will be found remains an open question.

5.4 Adaptive Control

Given that all of the routing direction information is present at the very first flit of the

packet header, and given a suitable set of FIFO buffers, how to perform the desired

adaptive assignments becomes the next natural design issue to consider. At issue is how

to perform the packet-to-channel routing assignment fast enough that it does not itself

become a new bottleneck in the system. In addition, there is also the need to allocate

buffers to the arriving packets that require temporary storage. In this section, we shall

describe a tentative control scheme for performing these tasks. Our main purpose is

to use the proposed scheme to provide a context to highlight and discuss the various

problems involved.

5.4.1 A Pipelined Control Scheme

Since it is clear that the adaptive control process is rather complicated, a pipelined

approach is called for in order to keep the cycle time acceptable. Conceptually, the

adaptive control process can be nicely partitioned into a number of sequential phases:

1. Buffer Allocations: Upon receipt of each newly arrived packet, the first step is

to allocate an available internal buffer for its temporary storage. It is possible

to avoid certain unnecessary allocations, e.g., in the case of a direct cut-through,

by deferring this stage until after the assignment has been computed. However,

performing the allocation first helps to streamline the data flow, which can simplify

the layout and the control logic considerably.

2. Profitable Assignments: The second phase attempts to aggressively assign as many

profitable channels to the competing packets as possible by having each packet

CHAPTER 5. REALIZATION 186

bid for its own profitable output channels. Here the competitors include those

that have already been buffered previously and those that have just arrived.

3. Misrouting Assignments: Given the profitable assignment results obtained from

the previous step, the current step then attempts to fill in the remaining assign

ments by defensively misrouting packets in cases where that is required in order

to prevent buffer overflow. The result then becomes the final packet-to-channel

assignments according to which the buffered packets will be sent out.

4. Header Modifications: This stage updates the encoded header according to the

direction it is being sent out; the result from this stage will then be driven across

the chip boundary into the next router. This modification has to occur last be

cause a header can be correctly modified; i.e., incremented or decremented or not

changed, only after the correct assignment has been computed.

This four-stage partitioning of the adaptive control process appears to make it a natural

candidate for pipelining. Figure 5.8 shows a possible conceptual layout of the datapath

and control structures for the adaptive router. At the input side, incoming packets

arriving from the input channels are switched into the FIFO buffers through the input

crossbar, where they are temporarily stored, and wait for their turn to be switched out.

At the output side, packet-to-channel assignments are computed for all the buffered

packets, and the assigned packets are then switched out to the output channels through

the output crossbar. Although the input and output control logic are drawn in between

the two crossbars and the internal buffers, in practice, they are likely to be physically

meshed into the correspondingly controlled crossbars.

Figure 5.9 depicts a possible conceptual structure of the control pipeline for the

adaptive router, where the four stages correspond exactly to the four control tasks

specified above. Assuming that one employs the canonical two-phase nonoverlapping

clocks in a silicon implementation, the four stages can be computed in two clock cycles:

buffer allocations during </>1, and profitable assignments during </>2 of the first cycle;

misrouting assignments during </>1, and header modifications and driving signals off

chip during </>2 of the second cycle. It is important to observe that since the header

modification process already induces a necessary delay of two clock cycles, propagating

the control flow through this pipeline will not incur extra delay, and therefore will not

CHAPTER 5. REALIZATION 187

From Input Channels To Output Channels

\I\ '/ \ /

H

' E
R / INTERNAL I I ~ N Ill '

R p R
D R s 0
E u

p p 0 ./ R T
u ¥ C
T c:i ' F X F 0 T /

p
M u
0 T

C ~ ~ ' R
D
I C

0 N ./ F R s ~ I BUFFER s
y 0
I s

B F 0 ./ N s
R ~ f R '

G B
A

R C ./ POOL L R
0

' G
/ I

C

/\ I \ /\

From Input Channels To Output Channels

Figure 5.8: A Possible Conceptual Layout of the Adaptive Router

slow down the packet data flow. In particular, packet data will be latched into the FIFO

storage during ¢1 of each clock cycle. Thus, by <p2 of the second cycle, each candidate

packet will have at least two flits around to feed the modification circuit, which should

now be implemented as a Mealy machine2
•

Figure 5.9 shows a number of internal-state feedback paths within the control

pipeline. For example, the assignment states are updated alternatively by both the

profitable assignment logic and by the misrouting assignment logic, and the output of

one serves as input for the other. Likewise, changes in output channel state are triggered

by tail-flit detection circuits during ¢1 of a cycle, and are fed back to the assignment

decision logic during ¢2 of the second cycle. This allows other packets to be assigned

and driven off chip during ¢2 of the third cycle, assuring continuous nonstop operation

of the pipeline. In fact, all the necessary information needed by stages that are active

during ¢2 is computed by stages that either are active during ¢1 of the same cycle or

are active during ¢2 of previous cycle, and vice versa.

2 Transition-output finite-state automaton.

CHAPTER 5. REALIZATION

I
N
p
u
T

F
R
0
M

0
F
F

C
H
I
p

~I/

-:)

➔

-

ALLOCRTI ON

D
R
I

A V
L I

I L N
N 0 G
p C
¥ ~ i

I p
T 0 u
0 N T

B D D
u E A
F C T
F I A
E s
R ~ ~

N
F
I
F
0

STATE

ASSIGNMENT

-

s II
p s
A s
C I
K G

.... ~ ~ ~
/ 0 E

F T N
I 0 T
i ,. n r? B H E
L R C
E N I

N s
E I ,-- L 0 ,, N

I I\

F='ED BACK
OUTPUT

STATE FEEDBACK

~v - D
R
I
V
I II H N

/ p s E G
A s R
C I D 0
K G E u
~ ~ '

R i ' / E / M u
M N 0 T
I T D
I n

I D ' - F R
/ 0 E / I T

u C C R
T I A
I s T 0
N I I F
G 0 0 F

N N
C
H
I
p

11\

CHANN ~L
1

,,.STATE FEEDBACK
I"'-

~

Figure 5.9: A Conceptual Pipelined Control Scheme for the Adaptive Router

188

' /

0
u
T
p
u
T

T
0

0
F
F

C
H
I
p

It is interesting to observe that the complexities of these different pipeline stages can

be made relatively well balanced. In the first stage, the buffer allocations are computed

and the input signals are driven across the input crossbar into the FIFOs; both will

require a nontrivial amount of time. In the final stage the headers are modified and

the signals are driven across the output crossbar, and then across the chip boundary.

Header modifications can be done quickly; if driving signals off chip takes approximately

the same amount of time as computing the buffer allocations, the first and the last stage

will be balanced. Similarly, computing the profitable assignments and the misrouting

assignments (which also keeps track of the misrouting quota) are likely to take approx

imately equal amounts of time. On the other hand, both assignments are likely to be

more complicated than just buffer allocation. Hence, if the delay of the assignment logic

can be kept to at most twice that of the buffer allocation logic, all four stages will be

well balanced.

CHAPTER 5. REALIZATION 189

5.4.2 The Decision Logic Structures

We observe that because the buffer allocation and the channei assignment decisions

can be considered to be mirror images of each other in that they are conceptually very

similar, they may be grouped together and discussed under a generic decision-process

framework. It is rather clear that the most complicated decision process is that of

computing the profitable packets-to-channels assignments. The computation of these

profitable assignments may be regarded as the true productive work done by the adaptive

control, whereas the others are just housekeeping overhead. Hence, we shall discuss the

profitable channel assignments decision in detail; this will serve as our prime example

of the generic decision process.

Mathematically, an optimal solution to this assignment task is identical to the max

imum matching problem of a bipartite graph, where the two vertex sets are the unas

signed packets and the available channels; and the edge set is the set of profitable

channels for each packet. While the maximum matching problem admits rather simple

sequential algorithmic solutions [43], it is clear that a direct hardware implementation

of such exact solutions remains unrealistic. An excellent approximating alternative that

is algorithmically much simpler is to find instead a maximal matching. Figures 5.10

to 5.13 compare the matching statistics for the 2D and 3D torus obtained under the

two matching schemes, where the profitable-channel distributions are assumed to be

isotropic as in section 3.3.1. A maximal matching can be computed using a very simple

one-pass sequential assignment process in which the scan can proceed in the desired

round-robin fashion. In particular, a sequential scan over the set of competing packets

provides a very convenient context for each packet to make further discriminatory se

lection among its own set of profitable channels, e.g., as required in the implementation

of the performance-enhancing heuristic mentioned in section 3.2.

The desired maximal assignment decisions can be implemented very naturally by

using an iterative decision network. At every cycle, the partially formed assignment

decision will ripple around the chain, picking up any profitable assignments along its way,

until it gets back to its starting position, at which point, the decision has been completed.

If further discrimination among the profitable channels is desired, it can be implemented

using a bilateral iterative network [21]. Figure 5.14 depicts such a possible structure,

CHAPTER 5. REALIZATION 190

2D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.0624 0.0156 0.0036 0.0009 0.0002 0.0001 0.0000 0.0000
3 0.0000 0.0000 0.9376 0.2835 0.1369 0.0664 0.0318 0.0154 0.0081 0.0039
4 0.0000 0.0000 0.0000 0.7009 0.8595 0.9327 0.9680 0.9845 0.9919 0.9961

Figure 5.10: Maximum Matching Probabilities for a 2D Network

2D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

l 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.1877 0.0470 0.0116 0.0029 0.0007 0.0002 0.0000 0.0000
3 0.0000 0.0000 0.8123 0.5466 0.3083 0.1626 0.0838 0.0428 0.0214 0.0105
4 0.0000 0.0000 0.0000 0.4064 0.6801 0.8345 0.9155 0.9570 0.9786 0.9895

Figure 5.11: Maximal Matching Probabilities for a 2D Network

3D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 1.0000 0.0011 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.9989 0.0154 0.0034 0.0008 0.0002 0.0001 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.9843 0.1097 0.0515 0.0237 0.0124 0.0058
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.8869 0.9477 0.9761 0.9875 0.9942

Figure 5.12: Maximum Matching Probabilities for a 3D Network

3D TORUS Number of Packets
Matching Size 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 1.0000 0.0696 0.0087 0.0011 0.0002 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.9304 0.2678 0.0740 0.0196 0.0051 0.0013 0.0003
5 0.0000 0.0000 0.0000 0.0000 0.7235 0.5623 0.3367 0.1838 0.0952 0.0488
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.3626 0.6435 0.8111 0.9035 0.9509

Figure 5.13: Maximal Matching Probabilities for a 3D Network

CHAPTER 5. REALIZATION

C
H
A
N
N
E
L

s
T
A
T
E

I
N
p
u
T

l::

I
I -

I

I -

~

~r,,-,.1-s ~,..,...,.1-s

1-•r'-"'-r-

=
::;jr,;-,} 1-ilr-,r,}

~'-"-1:
-,-,

u:... w...

*--.,)-< fal...,,,.,.1-s

f-,j '-"'- }i

cT. =
V ~

BUFFER STATE OUTPUT

~ ~ ~
..T. ..T. ..T.

->I~ ;r fal...,.,J- -,lr,;-,.}i

falulc... fa! '-"- }a -,tk..:lc...
--:r, r.t'.'C

.ik.I...J... d.. =
~ ~...,.,H -air,;-,}

ellk..:lc... I-' fa! '-"'- ta 1k..:lc..."t
T T rr,

w;. <..L LI....

->I~]-: '>I,..,.., fal....,..,.1-s

i-.i""- fal'-"-H -,t'-"-}
T. ---:r.- er.

cT. LI.... =
-,(~ f>L-,. ~

BUFFER STATE INPUT

"'17<

1-C,,..,.l-s

fa! '-"'- }a

=
fal...,,,.,.1-s

1-a1=t
-;r,

<..L

--i...,., 1-l

1->1'-"-t,
;r.

'-'--

~

~ ~
I

I

-,i""-];a_
I

I

1U<...l;
T I

I

-,i=
-:r. 7

I

191

C
H
A
N
N
E
L

s
T
A
T
E

0
u
T
p
u
T

Figure 5.14: A Bilateral Iterative Decision-Network for Profitable Assignments

where the shaded cells represent the starting scanning positions. The assignment state

inputs are gated into the network during </>2, and the updated assignment state outputs

will be latched out during </>1. In any case, the starting positions will be cyclically shifted

by one position for the next clock cycle. This implements the desired round-robin scan,

which, in the absence of misrouting, assures fairness in making profitable assignments.

The decision logic for computing the misrouting assignments, and that for allocat

ing internal buffers both can be implemented using similar unilateral iterative logic

structures. For the misrouting assignments, a misrouting quota can ripple along with

the partial decision. The quota will decrement every time a successful misrouting is

committed; when it reaches zero, further misrouting is disabled. Decrementing can be

accomplished easily with a shift, if the quota is generated in a unary representation.

Again, these scans should proceed in a round-robin fashion in order to generate more

balanced buffer allocation and misrouting assignment distributions.

The main advantage of such iterative decision-network implementation is that it is

very well matched to the topological layout of the underlying datapath; this is very

desirable in a VLSI implementation. In particular, it is possible and perhaps advanta

geous to embed the iterative logic structure inside the crossbar, which is likely to save

CHAPTER 5. REALIZATION 192

some silicon area. The main disadvantage of such an iterative structure is that it could

be rather slow. For example, during each active clock phase, the partial decisions have

to ripple through all the buffer entries. As a result, the rippling delay will be propor

tional to the total number of internal buffers. Hence, the challenge here is to design the

logic gates fast enough so that the total rippling delay will not become excessive, and

therefore slow down the clock. Otherwise, a different faster decision structure will have

to be found.

5.4.3 A Speedup Opportunity

An additional speedup opportunity exists which, if properly exploited, may shorten the

average cycle time. Following the discussion in the performance chapter, we realize

that statistically; during a majority of the routing cycles, the adaptive router is just

passively switching flits without making any new decisions. Furthermore, during those

active cycles when decisions have to be made, they are most likely to be associated with

single-packet arrivals or departures.

To get a better feel for the likelihood of having multiple headers arrive at the same

cycle, let us derive a rough approximation of the desired probability: Assume that

the average packet length is l flits. Then the probability, Pm, of having two or more

packet headers arrive during the same cycle under an average channel-utilization factor

p, assuming independent memoryless, (i.e., Bernoulli) arrival processes, will be:

1- Po -Pi

(p) C (p) (p) c-1 1- 1- 1 -c
1

1- 1

For example, for c = 5,l = 32, and p = 0.7, i.e., at the performance transition point,

we have Pm ~ 0.0046. In other words, the chance of having multiple header arrivals is

approximately 0.5%, even under extremely heavy traffic! On the other hand, there is

~ 10% chance that there will be exactly one new header at each cycle, and that the

remaining ~ 90% of the cycles will have zero arrival. In fact, the longer the average

packet length, or the lower the channel-utilization factor, the less likely is the occurrence

of arrival or departure.

One immediate consequence is that these statistical variations will lead to an average

cycle time that is lower than the worst-case cycle time. To get a rough idea of the kind

CHAPTER 5. REALIZATION

A 100
V
E
R
A 80
G
E

C
y
C
L
E

T
I

M
E

60

40

20

A Two-Tier Model: 20ns and lO0ns

Naive Curve

1 5 10 50

Percentage of Active Cycles

100

Figure 5.15: Simulated Average Coherent Cycle Delay for a 16 X 16 Mesh

193

of speedup possible, let us consider a simple two-tier model, where the cycle time falls

into only two hypothetical figures, either 20ns or lO0ns, and nothing else. A 16 X 16

2D network that follows the coherent-channel protocol, where the cycle times of its

individual elements, which are picked probabilistically between the two delay values,

are simulated. Figure 5.15 plots the average cycle delay time for a network that follows

the coherent-channel protocol, versus the percentage of active cycles, i.e., those having

long cycle delay. Also shown in the figure is the curve that plots the naively computed

average, i.e., those values computed by ignoring any interaction between adjacent nodes,

which serve as an obvious lower bound for comparison with the simulated values. Since

the percentages will be less than 10% for all reasonable packet lengths and feasible

network throughputs, these simulation results show that an implementation that can

exploit these statistical variations may indeed make it possible to gain ~ a factor of 2

in speed.

If one is to implement the decision processes in asynchronous handshake logic [33,48],

then it is possible to exploit the statistical variations in a rather straightforward manner.

By generating explicit completion signals in each of the decision processes, the decision

logic will return almost immediately in a majority of the cycles, i.e., the passive cycles.

CHAPTER 5. REALIZATION 194

Even for cycles with single-packet arrivals or departures, the decisions can often return

much faster than the worst-case delay, which must be accounted for in a synchronous

implementation. On the other hand, a synchronous implementation is likely to consume

much less silicon area; this may prove to be very important in implementing the adaptive

router because of its rather extensive buffer requirements.

For synchronous implementation, these statistical variations must be exploited at a

higher organizational level. In particular, the decisions should be organized in a way

that can take advantage of the passive cycles where no input- or output-state change

occurs. For example, for the assignment logic, it may use these passive cycles to pre

compute a possible future assignment, so that when the actual output channel state

change occurs, a simple lookup would suffice to arrive at the decision. The control flow

in a scheme like this is necessarily very complicated, and it is likely to require some

form of microcoding for implementation. Whether one can devise a simple synchronous

scheme to effectively exploit these statistical variations remains an open question.

5.5 Distributed Clocking

The final topic we shall discuss concerns the system level issue of how to maintain a

consistent clock for an arbitrarily large synchronous network. Recall from our feasibility

study in Chapter 2 that in order to assure communication deadlock freedom, in spite

of the formation of arbitrary loops due to the exploitation of multiple routes, we have

chosen to follow the no-blocking convention. This convention, in turn, requires a strict

balance in the input and output data rates across all the communication channels of

a node. This required balance can be accomplished by following the coherent channel

protocol described in section 2.2.1. The coherent protocol is an example of an asyn

chronous handshake protocol that assures secure data transmission between neighbors

without making any timing delay assumptions about the respective channels. Perhaps

most importantly, the coherent protocol defined in section 2.2.l results in a network

that is arbitrarily extensible. In particular, the usage of an asynchronous handshake

protocol is just a specific example that follows a more general system design discipline:

self-timed or delay-insensitive circuit design [33,48].

The self-timed asynchronous approach is in contrast to the more conventional syn-

CHAPTER 5. REALIZATION 195

chronous approach, where information transfer occurs in a lock-step fashion that is

coordinated with the use of a system-wide clock signal. The synchronous approach has

the advantage of being conceptually intuitive; many design and analysis methods for the

synchronous model have been thoroughly studied and are widely practiced. However, it

suffers from a major drawback in that the distribution of the global clock signal across

the system becomes progressively more difficult as the size of the computing structures

increases, because of the inevitable problem of clock skews and delays [15]. Furthermore,

the scaling of VLSI structures is in such a direction that these problems will only get

worse as the circuit feature size shrinks [48]. As an alternative to synchronous clocking,

in the self-timed approach, circuit elements coordinate their information transfer by

following predefined handshake protocols. The self-timed schemes have the advantage

that the time required for a communication event between interacting elements need

not be determined ahead of time to assure execution correctness. Furthermore, it has

the ability to exploit statistical variations in the processing speeds of the individual

components in a data-dependent manner. This usually results in an overall system per

formance that reflects the average rather than the worst-case computation, in contrast

to the synchronous clocking approach; this, as we have seen in the previous section,

may translate into a possible performance gain.

The advantages obtained in using self-timed asynchronous schemes are not without

cost. A drawback of such an approach is that, given the current state of circuit design

methodology, self-timed circuits are still fairly difficult in their designs and analyses.

This is admittedly a rather subjective opinion. Furthermore, it must be mentioned

that recently there has been tremendous progress in understanding the methodologies

for designing delay-insensitive VLSI circuits. See [34] for an excellent example. In

any case, they can still be rather expensive, in terms of area, to implement. In this

section, we explore a third alternative, which represents a hybrid of the synchronous

clocking and the self-timed handshake approach. In our scheme, on-chip logic is again

coordinated by clock signals. However, instead of distributing a single master global

clock signal over the entire network, each processing element generates its own local

clock signal. The elements coordinate their on-chip circuitry according to their locally

generated clock signals. Orderly transfer of information across chips is then brought

about by synchronizing the independently generated clock signals between neighbors.

CHAPTER 5. REALIZATION 196

A more restrictive form of this same approach can be found in [54].

5.5.1 The Synchronization Protocol

To proceed, we shall assume as our implementation medium the silicon CMOS technol

ogy, and employ the conventional two-phase, nonoverlapping clocking scheme [40]. One

basic requirement we shall need is the ability to treat the silicon area covered by a single

chip as an equipotential region [48]. This requirement is satisfied in the present state of

technology with a 2µm feature size, and shall remain so for even smaller feature sizes

as long as long-distance signals are distributed on metal wires.

Our goal is to design a clock-generator circuit to generate the local two-phase

nonoverlapping clock signals </>1, </>1, <P2 and </>2 on each chip. This circuit will coop-

erate with its counterparts in its neighboring nodes to enforce the correct synchroniza-

tion among the corresponding independently generated clock signals. In particular, it

enforces locally determined timing constraints in the form of a guaranteed minimum

overlap between the identical clock phases and a guaranteed separation between the

opposite clock phases across neighbors. In essence, each node determines from its own

considerations, such as local circuit speed and complexities, a minimum clock phase

duration that must be satisfied in order for its circuitry to function correctly. The task

of the clock generator circuit is to make sure that such requirements are also met by

the communicating neighbors. Since each node imposes its own clock speed limit on

the network, the clock speed of the tessellation is ultimately determined by the speed

of the slowest node, as has been demonstrated in actual simulations.

The correct sequence of clock signal transitions is synchronized by having the neigh

boring nodes follow a handshake protocol that employs six handshake signals: three

from each of the neighboring partners. At the expense of using a more complicated

protocol, it is possible to reduce the number of required handshake signals to four. The

present protocol is chosen primarily because it is simpler; hence, it can better convey

the underlying concepts. The protocol is completely symmetric between the partners,

and can be considered to be an extension of the coherent protocol described in section

2.2.1. We represent the local minimum overlap requirement of a node as a delay imposed

between certain signal transitions. We now define the signals involved. The subscripts

i and o are used to distinguish between input and output signals.

CHAPTER 5. REALIZATION 197

• <f>1 , <f>1 , and </>2, </>2 denote the locally generated two-phase nonoverlapping clock

signals.

• h10, h20 and d0 denote the output handshake signals generated by the local clock

circuit to its neighbors.

• h 1i, h2i and di denote the corresponding input handshake signals generated by the

clock circuit in its neighbor.

• u denotes the delay initiation signal, and v denotes the delay completion signal.

This pair of signals provides an abstraction of the local minimum delay criterion

at each node. It can be thought of as input and output of a symmetric delay

element whose detail need not concern us at this point.

We now define our protocol in a CSP-like notation [33]:

*[</>1 i, </>d; h10 i, [hii]i u j; [v]; do i, [di]; </>d, </>ii; h10 L [,hli];

</>d, </>d; h20L [-h2i]; ul; [,v]; doL [,di]; </>d, </>2i; h20 i, [h2i];

All three pairs of handshake signals, h10, h1ii h20, h2ii and d0, di, interlock with each other

to guarantee the stability of one another as required in the firing rules discussed below.

Briefly, the protocol works as follows: The upward transition of h10 and downward

transition of h20, and the wait for hli and ,h2i, are used to initiate and mark the

beginning of the minimum delay durations. The two opposite transitions of d0 serve

to communicate the satisfaction of the local minimum duration requirement to the

communicating neighbors. Symmetrically, the wait for the two opposite transitions of

di are used to observe those of the neighbors' requirements. The downward transition

of h1o and upward transition of h20, and the wait for ,h1i and h2i are used to enforce

the separation of opposite clock phases across neighbors.

5.5.2 Circuit Derivation

We now outline informally the reasoning steps that led to our final circuit. We shall be

applying the derivation techniques developed for the design of delay-insensitive circuits

reported in [33]. First, we observe that the output signals, h10, h20, and d0, always pair

up with their corresponding input signals, h1i, h2i, and di, in the protocol. Therefore

CHAPTER 5. REALIZATION 198

we shall first introduce three new signals to help simplify our reasoning:

h10 I\ hli f---t hd

,h1o I\ ,h1i f---t hd

h20 I\ h2i f---t h2 i

,h20 I\ ,h2i f---t hd

do I\ di f---t dj

,do I\ ,di f---t dL

Since these firing rules denote the Muller-C element behaviors, they can be imple

mented with three C-elements. Once we have defined these signals, we are ready to

list and strengthen the whole sequence of signal firings for one complete clock cycle.

It is remarkable to observe that this sequence represents the only possible sequential

firing order as dictated by the causality relationships defined in the protocol. The only

possible non-sequential firings are the possible concurrent firings of the clock signals

and their inverted forms. Following the notation and methodology specified in [33], we

summarize:

,d I\ h2 f---t </>1 i, </>d (5.1)

</>1 /\ ·</>1 f---t h10 i (5.2)

h10 I\ hli f---t hd (5.3)

h1 I\ h2
8 vj (5.4) f---t u i f---t

V f---t do i (5.5)

do I\ di f---t dj (5.6)

dv ,h2 f---t </>d, </>1 i (5.7)

·</>1 /\ </>1 f---t h10 L (5.8)

,h10 I\ ,h1i f---t hd (5.9)

d I\ ,h1 f---t </>d,</>d (5.10)

</>2 I\ •</>2 f---t h20L (5.11)

,h20 I\ ,h2i f---t hd (5.12)

,h1 I\ ,h2
8

vL (5.13) f---t u L f---+

CHAPTER 5. REALIZATION 199

-.v I----+ doJ (5.14)

-.do/\ -.di I----+ dJ (5.15)

-.d V h1 I----+ </>d,</>21 (5.16)

--i</>2 /\ </>2 I----+ h20 i (5.17)

h20 /\ h2i I----+ hd (5.18)

From the above sequence of firings, we can immediately pair up similar firing rules to

get implementations. First of all, we have the following:

(5) /\ (14) ⇒ V W d0

(4) /\ (13) ⇒ (h1, h2) Cu

where, for example, the handshake output, d0 , is simply the delay completion signal,

v, driven off-chip. To generate the clock signals, we observe that instead of generating

both the normal and inverted forms independently, one form can be obtained from

another simply by using an inverter. This way, we shall have forced explicit sequential

dependencies between the clock signals and their inverted forms. By exploiting these

dependencies, we can avoid using C-elements to generate the handshake output signals

h10 and h20. In particular, we shall choose to generate the clock signals, </>1, </>2 directly,

and </>1, </>2 by using extra inverters:

(1) /\ (7) ⇒ (d, -.h2) '.{. </>1

(10) /\ (16) ⇒ (d, -.h1) 6. </>2

These, together with the C-elements defined previously:

(h10, hli) C h1

(h20, h2i) C h2

(d0, di) Cd

form our core circuit, where we have left out the C-elements required to synchronize

signals from multiple neighbors. The complete core circuit is shown in Figure 5.16. Note

that we have replaced the signal d by its inverted form, and then pushed the bubbles

related to the inputs of the and gate and the or gate forward to become a nor gate and

CHAPTER 5. REALIZATION 200

u

V

c/>1

Figure 5.16: Clock Synchronization Circuit

a nand gate, which are more natural in CMOS implementation. Observe that because

of the symmetry in our handshake protocol, it is possible to connect the output signals,

h10 , h20 and d0 , back to the circuit as the input signals, hli, h2i and di. This provides for

a systematic way to connect a multiple-neighbor clock-synchronizer module at places

such as at the edges of a mesh, where there are fewer neighbors than required in normal

connections.

Some final words on implementation are in order here. First, we observe that while

it is difficult to directly implement large delays on MOS, the problem can be nicely

circumvented by using an asynchronous binary counter. In fact, implementing the

delay using an asynchronous counter actually gives us a programmable delay element

that can be very helpful for testing purposes. Furthermore, if one can obtain an a priori

upperbound on the number of counting transitions needed for the electrical signals to

settle, it is possible to hardwire that count on chip and obtain a variable rate clock

that scales with such determining physical parameters as feature size and operating

temperature. Next, we observe that the signals, c/>1,c/>1,c/>2,c/>2,h10 ,h20 and d0 , must

all be either driven off-chip or distributed across the whole chip. Hence each must be

buffered by an appropriate driver, and the signals tapped directly at the output of these

CHAPTER 5. REALIZATION 201

drivers.

Finally, observe that our circuit as derived has a number of state holding elements.

These elements have to be initialized correctly during system reset in order for the circuit

to operate as desired. We now address this problem. Conceptually, for successful system

startup, we want all our nodes to be initialized into the same consistent state within the

handshake sequence. If we ignore the handshake actions of h10 , hli, h20 and h2i, we are

left with a simple astable circuit that starts with </>1 J. It continues until it is engaged

in the wait action [h1i]- Our strategy then is to initialize all our nodes to this common

state; i.e., every node in the tessellation engages in the wait action [h1i]. This we can do

by forcing the input, h1i, to low during reset by gating it correctly with the reset signal.

In particular, we also force the inputs: h2i to high and di and v to low. Meanwhile,

during reset, we initialize h1 to low, h2 to high, and d and u to low. These initial values

constitute the required consistent state of our synchronization circuit. All we need is to

have the reset signal be simultaneously applied to all the nodes in the tessellation for a

period of time long enough so that all our combinational logic elements have stablized.

The removal of the reset signal in each node can now proceed independently and in any

arbitrary order, thanks to the speed independence of our circuit.

5.6 Summary

In this chapter, we have examined a number of issues concerning the practical implemen

tation of the adaptive cut-through routing studied in this thesis. Rather than present a

final architectural design that is unlikely to emerge until after many design iterations,

we have focused on examining several major realization issues that are either essential

to the implementation or are likely to help simplify the final design.

Because of the rather high complexity of any conceivable implementation of the

packet priority scheme, we have argued in favor of the much simpler congestion-control

protocol described in section 3.5.4 as an approximate technique to assure network

progress. Since negative-feedback schemes have been successfully applied in numer

ous real-life practical systems, and because the simulation results obtained in section

3.5.4 have been very encouraging, we believe that the much simpler protocol provides

an excellent practical alternative.

CHAPTER 5. REALIZATION 202

Motivated by the desire to support fast direct cut-through routing, possible header

encoding schemes for both the rectilinear mesh and the octagonal mesh have been

examined in detail. A number of encoding formats that provide all relevant routing

information in the very first flit have been suggested. Furthermore, these encodings

allow the distance information to be incrementally updated with a minimal delay of two

clock cycles, which is identical to that used in the oblivious router.

The storage-management issues involved in supporting bounded-length packets have

been examined. In particular, it is desirable to decouple the buffer input and output

control as much as possible. One solution has been suggested that uses a set of FIFO

buffers of a certain capacity to emulate that of a smaller capacity, but that allows very

loose coupling between the input and output control.

Based on a conceptual partition of the adaptive control process into a number of

simpler tasks, a pipelined control structure has been suggested. The pipeline is organized

into four stages in which the odd and even stages are active in alternate half-cycles.

This allows the packet data to cut through a node in a minimum delay of two clock

cycles. The assignment tasks have been discussed in detail, and a possible iterative logic

structure has been suggested. Based on an observation of the statistical percentage of

active cycles, the possibility of speeding up the average cycle time using asynchronous

handshake logic is suggested and examined.

The issue of maintaining a consistent clock in an arbitrarily extensible synchronous

computation structure has been examined. An approach based on synchronizing the

clock signals locally across neighbors through the use of a handshake protocol is sug

gested. The corresponding delay-insensitive asynchronous circuit that enforces the sug

gested synchronization protocol has been derived.

In addition, a number of open problems related to the above discussions have also

been mentioned. Our objective in this chapter is to describe and summarize that which

has been learned. This is intended to serve as a starting point for any serious attempt

to implement the adaptive cut-through router.

203

Chapter 6

Conclusions

In this thesis, we have proposed a new framework for performing adaptive multipath

routing in multicomputer networks. This framework attempts to exploit the rich con

nectivity in these networks by allowing the routing control to direct messages along

many alternate routes in order to smooth out any temporary congestion and to disperse

the local traffic hot spots. The very low transmission-error rates of these networks also

allow us to employ cut-through switching; this results in a dramatic reduction in the

overall message latency under moderate traffic conditions for messages with reasonable

lengths that have to travel across multiple channels.

In order to direct routing in multiple alternate routes, we have adopted a misrouting

discipline in our framework that, together with the coherent-channel protocol, allows

us to follow a no-blocking convention, yet avoid any buffer overflow. This renders

communication deadlock a non-issue. Under this framework, message trajectories are no

longer deterministic, but are continuously perturbed by local message loading. Message

packets will tend to follow their own shortest-distance routes to destination in normal

traffic loading, but can be detoured to other longer but less-loaded routes as local

congestion occurs.

Because misrouting destroys the monotonity in message-to-destination distance re

duction, and creates the risk of livelock, we have to find separate means to assure the

eventual delivery of packets in our framework. Theoretically, we can assign a suitable

priority, such as a lexicographic combination of a packet's age and distance from its des

tination, to each packet, and resolve any channel-access conflicts accordingly. This has

been shown to assure delivery of message packets under the consumption assumption.

CHAPTER 6. CONCLUSIONS 204

Another problem we have examined is that of assuring fairness in network access,

i.e., eventual message-packet injection. Fairness in network access is a generic issue in

any distributed network, but it is particularly important in our case because of the no

blocking convention, and we have presented two different solutions. The first solution

is a passive mechanism that relies on round-trip packets; this is undesirable in that

the overhead increases at the precise moment when network bandwidth is insufficient.

The second solution is an active feedback mechanism that synchronizes the injection

count among neighbors, so that none will fall behind by too much. Because this scheme

operates by directly controlling injections, it has been extended to provide congestion

control.

In order to obtain a first-hand understanding of the dynamics governing the different

network parameters and their relationships to the overali performance of the network, we

have studied the performance behaviors both analytically, through stochastic modeling,

and also experimentally, through extensive traffic simulations. Based on a bisection

bandwidth argument, we have obtained a theoretical upper bound on the average steady

state injection rate per node for the general class of k-ary-n-cubes and meshes under

random message traffic. The result has a general form that is inversely proportional

to the radix of the network. This agrees with our intuition that because the network

bisection bandwidth grows at a sublinear rate, the amount of traffic each node can

produce will decrease as the network size increases. Similarly, the sum of the average

packet length and average message distance forms a theoretical lower bound on the

average packet latency. These bounds provide a uniform frame of reference for the

interpretation of performance results obtained from simulations.

All of our simulation experiments indicate that regardless of the connection topology

and routing scheme used, the network performance behaviors can always be partitioned

into two regions: First, there is an unsaturated region in which the network throughput

closely follows the applied load, the average message latency stays very close to the

theoretical lower bound, and the average source queueing time is practically zero. As

the applied load increases, the network shifts into a saturation region in which the

network throughput stays at a stable constant saturation value, but the average message

latency increases rapidly, and the average source queueing time becomes unbounded. A

difference between the adaptive and the oblivious schemes is the applied load at which

CHAPTER 6. CONCLUSIONS 205

this transition takes place. Simulation results indicate that the adaptive scheme enjoys

approximately a factor of two increase in the applied load before the network becomes

saturated.

These network behaviors are different from most conventional communication net

works where the throughput and other performance metrics will actually deteriorate at

very heavy applied loads. It appears that the main reason for this difference is that in

conventional networks packets are discarded when a receiving node's buffer is full. Un

der very heavy traffic, where the buffers at every node are likely to be filled to capacity,

this leads to a disastrous drop in the number of successful packet transmissions, and

results in a reduced overall network throughput.

The congestion-control protocol, which is an extension of the network-access fairness

assurance protocol, has proven to be very effective in confining the network operating

points to the unsaturated region that delivers acceptable network performance. Because

the protocol directly monitors the occurrence of packet misrouting at each node, it has

the effect of minimizing the amount of misrouting. This results in a general improvement

in network behavior around the transition region, and provides a practical alternative

to assuring packet delivery in our adaptive scheme.

We have explored the possibility of improving the reliability of large-scale multicom

puter networks by performing fault-tolerant routing under the adaptive framework. In

particular, our investigation focused on finding an effective scheme that is both simple

and practical, and that is subject to the constraints present in multicomputer networks.

Our approach relies on the ability of the adaptive scheme to exploit the inherent path

redundancies that are already provided by the richly connected topologies popular in

multicomputer networks. Rather than attempting to devise a fault-tolerant routing

algorithm, which appears to be difficult because of the restriction of using only local

information, and which is likely to be topology dependent, we instead introduced the

notions of a convex subset and a communication kernel that characterize the conditions

under which we can continue to use the original algorithmic routing relations to sys

tematically direct routing in faulty networks. Such a strategy also satisfies our desire to

reasonably maintain the high performance achieved in networks that directly implement

the routing operation in hardware, since it allows us to continue to use, with minimal

change, the original routing hardware for the non-faulty networks.

CHAPTER 6. CONCLUSIONS 206

The actual regularization procedure proceeds both by selectively discarding certain

nodes that are difficult to reach and by selectively restraining certain nodes to operate

as pure switches. As one would have expected, the simulation and computation results

indicate that our strategy is more effective for a network that is more richly connected,

e.g., the binary-n-cube, than for a network with a connectivity that is comparatively

sparse, e.g., the 2D rectilinear mesh. As an example of how to improve the regularization

yield for 2D structures, we suggest the 2D octagonal-mesh network, which is formed by

augmenting the rectilinear mesh with additional diagonal channels. This new 2D net

work admits excellent fault-tolerant capabilities under our adaptive-routing framework.

Both the performance and the reliability characteristics of the octagonal mesh have been

studied, and the preliminary results indicate that it is a serious candidate that deserves

f1..1rther in-depth investigation.

As a practical implementation alternative to the use of the complicated priority

based delivery-assurance scheme, we suggest the use of the very simple negative-feedback

based congestion-control protocol described in section 3.5.4 as an approximate technique

for assuring network progress. The protocol can be implemented with one extra wire

per channel and a few simple gates at each node. Another implementation issue that

we examined is how to encode the header of a packet for both the rectilinear mesh

and the octagonal mesh, using a relatively narrow flit width. We have suggested the

use of more complex alphabets to encode the required delta displacement values in a

sign-and-magnitude format. The signs of these delta values provide all relevant routing

information in the very first flit of the header. Furthermore, these alphabets encode

additional information that allows the encoded number to be incrementally updated

with a minimum delay of two clock cycles; this is identical to that used in the oblivious

router.

Based on the conceptual partition of the adaptive control process into four simpler

tasks, i.e., buffer allocation, profitable packet-to-channel assignment, misrouting assign

ment, and header modification, we suggest a four-stage pipelined control structure in

which the odd and even stages are active in alternate half-cycles. Using such a pipelined

control allows the packet data to cut through a node with the desired minimum delay of

two clock cycles. The same conceptual partition of the adaptive control also suggests a

corresponding datapath for the adaptive router that employs an input crossbar to switch

CHAPTER 6. CONCLUSIONS 207

the input packets into the internal buffers, and an output crossbar to switch the output

packets from the internal buffers. The corresponding buffer- and channel-assignment

tasks can be readily implemented by using suitable iterative logic structures. Since we

are primarily interested in networks that are either very large or are intended to be

arbitrarily extensible, we have developed an asynchronous handshake protocol between

nodes that allows us to maintain a set of consistent clocks in a network of synchronous

nodes. The circuitry within each node is coordinated by the locally generated clock

signals, and the protocol synchronizes these local clock signals between neighbors. The

synchronization protocol is enforced by a very simple delay-insensitive asynchronous

circuit.

In summary, we have studied the possibility of performing adaptive multipath rout-

ing in order to improve the performance and reliability of muiticomputer networks.

To this end, we have proposed a new framework for performing adaptive cut-through

routing in these networks, and we have organized our study around four major area of in

terests: establishing the theoretical feasibility, investigating the performance behaviors,

exploring the potential reliability enhancements, and examining the major implementa

tion issues of our proposed adaptive-routing framework. Our study has been generally

successful and the positive results give us hope that the adaptive scheme can indeed be

made to improve on the already highly evolved oblivious scheme.

In addition to those studied in this thesis, there are a number of other issues and

open problems that clearly require further study. For example, one area of interest that

deserves further investigation concerns how to actively employ misrouting in order to get

around traffic hot spots. In all our performance investigations, we have always adopted a

conservative policy toward misrouting, using it only to defensively avoid buffer overflow.

The main reason is that it is very difficult to perform discretionary misrouting based only

on local information, and it is unlikely that misrouting of any form will help in a network

with heavily loaded traffic. In fact, from the congestion-control traffic experiments, we

have actually observed improvements in network performance by minimizing misrouting

under such heavy traffic conditions. However, it is still conceivable that some form of

randomized misrouting [60] may be helpful in situations where the network is not globally

congested. The challenge will be to devise a scheme for reacting quickly and for keeping

the amount of misrouting under control when the network traffic conditions change.

CHAPTER 6. CONCLUSIONS 208

Another area of interest that deserves further investigation concerns how to effec

tively perform broadcasting under our adaptive scheme. There are a number of issues

that require attention here. In broadcasting, it is generally necessary to duplicate a

received packet in order to transmit it across a multiple number of channels. Such an

action may lead to buffer overflow if it is not handled carefully. Additional problems

can arise because of the misrouting requirement. For instance, a packet received may

not be transmitted across all of its desired output channels, but instead be sent to other

previously transmitted channels. Closely tied to this is the issue of how to determine

the termination of the broadcasting action in face of this nondeterminism.

Yet another area of interest that naturally suggests itself for further investigation

is that of fault-tolerance, where quite a number of issues remain to be resolved. First

and foremost is the problem of fault diagnosis, i.e., how to determine if a channel or a

neighbor has malfunctioned. For example: If a neighbor is dead and therefore unable to

participate in the coherent protocol, how long should a node wait before it times out?

Furthermore, in our discussion of fault-tolerant routing in Chapter 4, we have adopted

the idealized notion of a fail-stop processor, i.e., one that will stop completely rather

than send spurious messages when a fault occurs. In practice, this condition may not

be satisfied, and a scheme must be installed to guard against such dangers. A second

problem that demands investigation is the study of how to carry out the regularization

procedure on-the-fly as faults are incrementally discovered. Closely tied to this is a

whole set of higher-level abstraction issues, such as end-to-end error correction and the

retransmission of missing packets, that have to be imposed on top of our basic scheme

in order to support truly fault-tolerant computation.

Another related problem that requires study concerns the scaling behavior of our

regularization approach. For example, it is doubtful that the impressive regularization

yield displayed by the 2D octagonal mesh can be maintained as we increase the size of

the mesh. In fact, a deterioration in yield is likely to be observed for any network with

a bisection bandwidth that grows at a sublinear rate. Given any fixed nonzero fault

probability, as the size increases, such a network will most likely be disconnected into

many small disjoint components. The question is to determine how large the size of a

network can increase, while still being able to deliver favorable yield statistics, before

the scaling effect takes over. To this end, the octagonal mesh enjoys a favorably large

CHAPTER 6. CONCLUSIONS 209

yield margin, e.g., ::,:,j 85% yield at 10% faults even at 1024 nodes. This observation

reinforces our earlier conclusion that the octagonal mesh is a serious candidate for

further investigation.

Yet a third problem related to fault-tolerance concerns the finding of alternate 3D

structures that will deliver favorable yield statistics. Three-dimensional structures, like

the two-dimensional counterparts, have their own attractive properties. For example,

in addition to being physically realizable, the extra degree of freedom typically creates

many more paths between nonadjacent nodes. This is an important advantage for fault

tolerance in light of the scaling issue discussed above. Furthermore, for a machine of size
2

N, the bisection bandwidth capacity of a 3D structure scales at a rate that is O(Na),
1

which is much faster than the O(N2) rate for a corresponding 2D structure. This

disparity generally dictates that the larger machines be configured into 3D structures.

Similarly, for machines of the same size, the average message distance will generally

be much shorter in a 3D configuration than in a 2D configuration. Some of the 3D

lattice structures, such as the body-centered cubic lattice and the face-centered cubic

lattice, that have been studied by chemists appear to be promising candidates for further

investigation.

While there are clearly many additional challenging areas of interest to pursue,

perhaps the most challenging of all will be to realize, on silicon, the adaptive routing

control studied in this thesis.

210

Bibliography

[1] G.A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,

MIT Press, 1986.

[2] W.C. Athas and C.L. Seitz., "Multicomputers: Message-Passing Concurrent Com

puters," IEEE Computer, August 1988, pp. 9-24.

[3] W.C. Athas, Fine-Grain Concurrent Computation, TR:5242:87, Computer Science

Department, Caltech.

[4] B. Becker and H. Simon, "How Robust is the n-Cube?" Proc. 27th Ann. IEEE

Symp. Foundations Comput. Sci., Oct. 1986, pp. 283-291.

[5] V .E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic,

Academic Press, New York, 1965.

[6] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall Inc., Englewood Cliffs,

N. J. 07632, 1987.

[7] N.J. Boden, A Study of Fine-Grain Programming Using Cantor, Caltech Technical

Report CS-TR-88-11, 1988.

[8] A. Borodin and J. Hopcroft, "Routing, Merging, and Sorting on Parallel Models

of Computation," Journal of Computer and System Sciences, Vol. 30, 1985, pp.

130-145.

[9] R.E. Blahut, Theory and Practice of Error Control Codes, Addison- Wesley, Mass.

1983.

[10] K.M. Chandy and J. Misra, "Distributed Computation on Graphs: Shortest Path

Algorithms," CACM, Vol. 25, No. 11, Nov. 1982, pp. 160-177.

BIBLIOGRAPHY 211

[11] W.J. Dally and C.L. Seitz, "The Torus Routing Chip," Distributed Computing,

1986(1), pp. 187-196.

[12] W.J. Dally and C.L. Seitz, "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Transactions on Computers, Vol. C-36, No. 5,

May 1987, pp. 547-553.

[13] W .J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer Academic

Publishers, 1987.

[14] C.M. Flaig, VLSI Mesh Routing Systems, Caltech Computer Science Department

Technical Report, 5241:TR:87.

[15] A.L. Fisher and H.T. Kung, "Synchronizing Large VLSI Processor Arrays," IEEE

Transactions on Computers, Vol. C-34, No. 8, August 1985, pp. 734-740.

[16] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[17] M. Gerla and L. Kleinrock, "Flow Control: A Comparative Survey," IEEE Trans

actions on Communications, Vol. COM-28, No. 4, April 1980, pp. 553-574.

[18] J.M. Gordon and Q.F. Stout, "Hypercube Message Routing in the Presence of

Faults," The Third Conference on Hypercube Concurrent Computers and Appli

cations, Vol. 1, ACM Press, 1988, pp. 33-36.

[19] K.D. Gunther, "Prevention of Deadlocks in Packet-Switched Data Transport Sys

tems," IEEE Transactions on Communications, Vol. COM-29, No. 4, April 1981,

pp. 512-524.

[20] J. Hastad, T. Leighton, M. Newman, "Reconfiguring a Hypercube in the Pres

ence of Faults." Proceedings of the 19th Annual ACM Symposium on Theory of

Computing, May, 1987.

[21] F.C. Rennie, Finite-State Models For Logical Machines, John Wiley and Sons, Inc.,

1968.

[22] T.C. Hu, Combinatorial Algorithms, Addison-Wesley, 1982.

BIBLIOGRAPHY 212

[23] Intel Scientific Computers, iPSC User's Guide, Order No. 175455-001, 15201 N. W.

Greenbrier Parkway, Beaverton, Oregon, August 1985.

[24] Intel Scientific Computers, iPSC/2 Brochures and Application Software Material,

Order No. 280110-001, 15201 N. W. Greenbrier Parkway, Beaverton, Oregon.

[25] P. Kermani and L. Kleinrock, "Virtual Cut-Through: A New Computer Commu

nication Switching Technique," Computer Networks Vol. 3, No. 4, Sept. 1979, pp.

267-286.

[26) L. Kleinrock, Communication Nets: Stochastic Message Flows and Delay, McGraw

Hill, New York, 1964.

[27] L. Kleinrock, Queueing Systems, Vol. 1 & 2, John Wiley & Sons, New York, 1975,

1976.

[28] L. Kleinrock and F. Kamoun, "Hierarchical Routing for Large Networks: Per

formance Evaluation and Optimization," Computer Networks, Vol. 1, 1977, pp.

155-174.

[29] C.R. Lang, Jr., The Extension of Object-Oriented Languages to a Homogeneous,

Concurrent Architecture, TR:5014:82, Computer Science Department, Caltech.

[30] D.C. Little, "A Proof for the Queueing Formula: L = >..W ," Operations Research,

Vol. 9, May 1961, pp. 383-387.

[31] M.T. Liu, "Distributed Loop Computer Networks," Advances in Computers, M.

Yovits, Academic Press, 1978, pp. 163-221.

[32] C. Lutz, et. al., "Design of the Mosaic Element," Proceedings of the MIT Confer

ence on Advanced Research in VLSI, Artech Books, 1984, pp. 1-10.

[33] A.J. Martin, "A Synthesis Method for Self-timed VLSI Circuits," Proc. 1987 IEEE

International Conference on Computer Design: VLSI in Computers & Processors,

IEEE Comp. Soc. Press, 1987, pp. 224-229.

[34] A.J. Martin, et. al, "The Design of an Asynchronous Microprocessor," Advanced

Research in VLSI: Proceedings of the 1989 Decennial Caltech Conference on VLSI,

MIT Press, 1989, pp. 351-373.

BIBLIOGRAPHY 213

[35] R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Aca

demic Publishers, 1987.

[36] R.J. McEliece, The Theory of Information and Coding, Addison-Wesley, Mass.,

1977.

[37] P. Merlin, and P. Schweitzer, "Deadlock Avoidance in Store-and-Forward Networks

- I : Store-and Forward Deadlock," IEEE Transactions on Communications, Vol.

COM-28, No. 3, March 1980, pp. 345-354.

[38] Motorola Inc. "MC88100 Technical Summary: 32-Bit Third-Generation RISC Mi

croprocessor," Semiconductor Technical Data, 1988.

[39] J.M. McQuillan, I. Richer; and K C. Rosen, "The New Routing Algorithm for

the ARPANET," IEEE Transactions on Communications, Vol. COM-28, 1980, pp.

711-719.

[40] C. Mead and L. Conway, Chapter 3, Introduction to VLSI Systems, Addison

Wesley, 1980.

[41] J.Y. Ngai, A Framework for Adaptive Routing, TR:5246:87, Computer Science

Department, Caltech.

[42] J.Y. Ngai and C.L. Seitz, "A Framework for Adaptive Routing in Multicomputer

Networks," Proceedings of the 1989 ACM Symposium on Parallel Algorithms and

Architectures, Santa Fe, NM.

[43] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and

Complexity, Prentice Hall, Englewood Cliffs, N .J. 1982.

[44] D.K. Pradhan, Chapter 7, Fault-Tolerant Computing: Theory and Techniques, Vol.

2, Prentice Hall, Englewood Cliffs, N .J. 1986.

[45] W. Reisig, Petri Nets: An Introduction, Springer-Verlag, 1985.

[46] R.D. Schlichting and F.B. Schneider, "Fail-Safe Processors: An Approach to De

signing Fault-Tolerant Computing Systems," ACM Transactions on Computer Sys

tems, Vol. 1, No. 3, August 1983, pp. 222-238.

BIBLIOGRAPHY 214

[47] C.L. Seitz, "The Cosmic Cube," CACM, Vol. 28, No. 1, January 1985, pp. 22-33.

[48] C.L. Seitz, "System Timing," Introduction to VLSI Systems, C. Mead & L. Conway,

Addison- Wesley, 1980, Chapter 7.

[49] C.L. Seitz, J. Seizovic, and W-K. Su, "The C Programmer's Abbreviated Guide to

Multicomputer Programming," TR:88-1, Computer Science Department, Caltech.

[50] C.L. Seitz, "Concurrent VLSI Architectures," IEEE Transactions on Computers,

Vol. 33, No. 12, Dec. 1984, pp. 1247-1265.

[51] C.L. Seitz, et. al., "The Architecture and Programming of the Ametek Series 2010

Multicomputer," The Third Conference on Hypercube Concurrent Computers and

Applications, Vol. 1, ACM Press; 1988, pp. 33-36.

[52] J. Seizovic, The Reactive Kernel, Caltech Technical Report CS-TR-88-10, 1988.

[53] C.S. Steele, Placement of Communicating Processes on Multiprocessor Networks,

TR:5184:85, Computer Science Department, Caltech.

[54] W-K. Su, Supermesh, TR:5125:84, Computer Science Department, Caltech.

[55] W-K. Su, Ph.D. Thesis, To be published, Computer Science Department, Caltech.

[56] A.S. Tanenbaum, Computer Networks, Prentice Hall, Englewood Cliffs, N.J., 1981.

[57] H.C. Tijms, Stochastic Modelling and Analysis: A Computational Approach, John

Wiley & Sons, 1986.

[58] C.D. Thompson, Complexity Theory for VLSI, Technical Report CMU-CS-80-140,

Department of Computer Science, Carnegie-Mellon University, August 1980.

[59] S. Toueg and J.D. Ullman, "Deadlock-Free Packet Switching Networks," Proc.

ACM Symposium on the Theory of Computing, Atlanta, Georgia, May 1979, pp.

89-98.

[60] L.G. Valiant, "A Scheme for Fast Parallel Communication," SIAM J. Computing,

Vol. 11, No. 2, 1982, pp. 350-361.

