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Abstract

If G is a transitive subgroup of the symmetric group Sym(2), where {2 is a finite set of
order m; and G satisfies the following conditions: G=(S), S:{yl,...,gr}QG#, g1---gr=1, and
Zr: c(g9;)=(r—2)m+2, where c(g;) is the number of cycles of g; on £2, then G is called a group of
i=
genus zero. These conditions correspond to the existance of an m-sheeted branched covering of
the Riemann surface of genus zero with r branch points. The fixed point ratio of an element g
in G is defined as f{g)/|92|, where f{g) is the number of fixed points of g on 2. In this thesis we
assume that G satisfies Ln(¢)<G<PGLn(g) and G is represented primitively on §2. The
primitive permutation representations of G are determined by the maximal subgroups of G. We
obtain upper bounds for fixed point ratios of the semisimple and unipotent elements of G. The

bounds are expressed as rational functions which depend on 2, ¢, the rational canonical forms of

the elements, and the maximal subgroups. Then those bounds are used to prove the following:

Theorem: If G is a group of genus zero, then one of the following holds: (a) ¢=2 and n<32, (b)
g=3 and n<12, (c) ¢=4 and n<1l, (d) 5<¢<13 and n<8, (e) 16<¢<83 and n<4, (f)

89<¢<343 and n=2.

Thus for those G satisfying Ln(¢)<G<PGLa(g), this theorem confirms the J. Thompson’s
conjecture which states that except for Z,, A, with k>5, there are only finitely many finite

simple groups which are composition factors of groups of genus zero.
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Introduction

Let fX-Y be a branched covering of compact Riemann surfaces. That is fis a
continuous surjective map preserving the analytic structures on X and Y. It turns out that for
each z€X, there exists a neighborhood N of z such that fN-f{N) is conformally equivalent to
the map z+— 2 for some positive integer e(z) in terms of local coordinates. The integer e(z) is

called the ramification index at z. There is a positive integer m such that at any y€Y,

Y.  e(z)=m. Moreover there is a finite set B={b,,...,b-}={b€ Y:|f }(8)]<m} of branch

z€f 1 (y)
points such that £ X—f~ 1(B)-# Y— B is an m-sheeted topological covering. Thus from elementary

algebraic topology, we have that f induces an injection fu:m (X—f1(B))-»m,(Y—~B) of the
fundamental groups with |7(Y—B):m(X—f'(B))|=m. We call f an m-sheeted branched
covering with branch points B. The genus ¢ of X and the genus h of Y are related by the

Riemann-Hurwitz formula: Y {e(z)—1}=2{g+m(1-k)—1}.
zeX

We say that two branched coverings f;:X,-»Y are equivalent if there exists an
isomorphism of Riemann surfaces a:X,—+X, such that f,oa=f;. There is a natural bijection g
between the set of equivalence classes of m-sheeted branched coverings of Y with branch points
in B={b,,...,br}CY and the set of equivalence classes of transitive permutation representations

of m,(Y—B,b,) of degree m, where b, is a base point.

Suppose that Y is of genus zero; that is Y is conformally equivalent to the Riemann
sphere P'=CuU{oo}. Let y; be the path class in 7,(P'— B,b,) around b;. Then =,;(P'—B,b,) is
the free group on {y;:1<i<r} modulo the relation y;---y,=1. If o:m (P! —B,by)+Sm is the
permutation representation supplied by the bijection 8 above, then o(y;) has cycle lengths e(z),
where z€f'(b;). Thus the Riemann-Hurwitz formula gives illnd(y,-)=2(g+m—l), where

i=

Ind(y;)=m—c(y;) and c(y;) is the number of cycles of o(y;).



2

We say that a transitive subgroup G of Sym(2) is a group of genus g if there exists

S:{gl,...,gr}_C_G# with G=(S), ¢,---¢9»=1, and Zr:lc(y,-)z(r—2)m—2g+2. If Gis a group of
i=

genus g with |2|=m and |S]=r, we call the triple (G,£2,5) a genus g system of degree m and

size . The relation between branched coverings of P' of genus g and groups of genus g is

exhibited in the following

Riemann’s Existence Theorem: There is a natural bijection between:
(a) Equivalence classes of m-sheeted branched covering of P' of genus g with branch points
B= {bl" . .,br}.

(b) Sym(2)-conjugacy classes of genus g systems (G,12,5) of degree m with [S]=r.

For a proof of this theorem, see [Fr2].

The field of meromorphic functions C(Y) is by definition the set of all branched
coverings ¢:Y-P!. Thus the covering i X—Y induces an injection f*:C( Y)»C(X) by ¢—dof,
i.e., C(X) is an extension field of C(Y). Moreover the Galois group Gal(K/C(Y)) is the image
of 7,(Y—B) in Sm under the bijection 8 above, where K is the Galois closure of C(X) over
C(Y). This remark shows that the study of groups of genus g is useful in the inverse Galois

problem; i.e., the problem of showing that each finite group is a Galois group over Q.

It is well known that for each G which is either Z,, p a prime, or Am with m>5, there
is a cover ¥:P'-P! such that G is a group of genus zero corresponding to 1 under the bijection
in Riemann’s existence theorem. Let E(g) be the set of all composition factors other than Z,
and Am of all groups of genus g. It was conjectured by J. Thompson that E(g) is a finite set for
each ¢>0 (cf [GT]). Since for K a composition factor of a group of genus zero, K is also a
composition factor of a group of genus g for any g, E(0) plays a special role in the study of E(g).
From now on, we assume ¢g=0. In this case, Thompson has observed that the conjecture

reduces to the case that G is primitive, i.e., if K is a composition factor of a group of genus zero,
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then K is also a composition factor of a primitive group of genus zero, see Corollary 2.4 in [GT].
In this case, the general structure of G is described in the following theorem about maximal

subgroups by M. Aschbacher and L. Scott (cf [AS]):

Theorem: Suppose G is a finite group and H is a maximal subgroup of G such thatg QGHg =1.
Let @ be a minimal normal subgroup of G, and L be a minimal normal subgroup of . Let
A={L,,...,L,} be the set of G-conjugates of L. Then G=HQ and precisely one of the following
holds:

(a) L is of prime order p.

(b) F{(G)=Q and HNQ=H,x---x H,, where H;=HNL;#1, 1<i<t.

(c) F*(G)=@QxR with Q~R and HNQ=1.

d) F(G)=Q, HnL=1, AN Q#1.

(e) F/(G)=@Q, HNQ=1, and |L|#p.

There have been some results on groups of genus zero concerning the above cases (a), (c), (d)
and (e); see [GT] and [Ne] for case (a), and [Sh], [As4], [GT] for cases (c), (d), and (e)
respectively. The case (b) still remains open. These results essentially reduce the problem of

groups of genus zero down to the case that G is almost simple.

In this thesis, we consider a subcase of (b), that is Q=PSL.(q). More precisely, we
assume that G is a group such that Ln(g)<G<PGLn(g), where for n=2, ¢>4, and G has a
faithful primitive permutation representation on 2. This is equivalent to requiring that for
€, H=G, is a maximal subgroup of G with L,(g)<H. In that event the permutation
representation of G on 2 is equivalent to its representation by right multiplication as a

subgroup of Sym(G/H). Our result is the following:

Theorem A: If G is a group of genus zero, then one of the following holds:



(3) q=2 and n<32.
(b) =3 and n<12.

(c) =4 and n<11.

(d) 5<q<13 and n<8.
(e) 16<q<83 and n<4.

(f) 89<q<343 and n=2.

This theorem confirms that Thompson’s conjecture is true in the case that G satisfies
the condition Ln(¢)< G <PGLn(q). Let G, H be the preimages of G, H in GLn(g) rspectively in
the rest of this introduction. The approach used in this thesis is roughly the following: we
distinguish the representation of G on {2 according to whether H is:

(a) reducible.
(b) irreducible and contains a transvection.

(c) irreducible and contains no transvection.

In case (a), the representation is equivalent to the representation on A,, where A, is the

set of all d dimensional subspaces of the n dimensional vector space V over GF(g).

Case (b) splits into two subcases:
(by) Vis a nontrivial direct sum of a set of subspaces stabilized by H.

(by) H is primitive on V, i.e., V is not a nontrivial direct sum of subspaces stabilized by H.

In the first case, the representation is equivalent to the representation on Ay ,;, where
kl=n and
Ak,1={{ Vl’ Vz,. .oy V]} : V= Vl® Vz@‘ D V[, dim( V])-——k V]}.

In the second case, a list of maximal subgroups is extracted from W. Kantor’s paper [Ka).

In case (c), we appeal to the paper by M. Aschbacher [As2] on maximal subgroups of

the classical groups and a theorem of M. Liebeck bounding the order of almost simple subgroups



of the classical groups.

In each case, we obtain bounds for the fixed point ratio of unipotent and semisimple
elements of G. For a permutation representation of G on §2, the fixed point ratio N (7) of
7€G is defined as f7)/|f2|, where f(§) is the number of fixed points of § on 2. The fixed
point ratio comes into play in this problem as follows: Define U(g)=¢(g)/|2]. Then the
Riemann-Hurwitz formula gives the bound zr:l‘ll('g',-)>r—2 when (G,2,5) is a genus zero

i=

system and S=(7,,...,fr). Further U(F) can be expressed in terms of fixed point ratios of 7'

(see (1.1)), so this bound translates to a bound involving fixed point ratios.

The concept of fixed point ratio is of some interest in contexts other than this problem.
For example, there is a conjecture which states that if G is a finite almost simple group
represented primitively and faithfully on X with N (g)Z% for some nonidentity element ¢ of G,
then G is isomorphic to Sm, Am, or Sp,,,,(2) for some m, (or a slight modification obtained by
adding a few more examples). A positive solution to this conjecture can be used to study the
subgroup structure of A;,. Moreover, P. Kleidman has solved a conjecture of Wielandt using
the notion of fixed point ratio. Thus the following result giving bounds for fixed point ratios for

G between Ln(g) and PGLa(g) is of independent interest:

Theorem B: Suppose Ln(g)<G<PGLn(q) and G is represented primitively by right multiplica-
tion on 2=G/H. Let §€G and assume that § is of prime order. Then one of (a), (b), or (c)

holds:

1
qﬂ—d'

(a) & is the stabilizer of a d-dimensional subspace and N (7) Sqld—i-
(b) One of the following holds:

(1) H is the stabilizer of a direct sum decomposition V=V,®V,®---®V,, with

dim(V;)=Fk Vj and I>2. Also N@)gqn‘*_k if ¢>3 and N(y)52§§k if g=2.

— _— n-1 n
(2) H=GNPGLn(g,), where ¢g=¢], r a prime; and .N'(?)S(n,q—l)(aih—l) (%) if g is
—

. _ g—1 a n+l a 2n-3 = .
unipotent, N(g)g(n,q—l)A—q—(ql_l) (7> if § is semisimple.
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2-—
(3) H=GNPGUa(g,), with ¢g=¢%, n>3; and N(?)S(g)(-r%i—) if g is unipotent,

31

2 —
N (7)5(—(-'3-’;—11)2,}2—3 if § is semisimple.
“—

(4) H=GNA, where A=A(V,£,)/Z, Z=2Z(GLn(9g)), fy a symplectic form on an n=21

dimensional vector space V over GF(q) with 1>2, A(V,f,) the group of all similarities; and

N (?)Sf_”lq——)_,;q}—z—z if § is unipotent; N (7)5(7(-_21—’)%-—_—%),:—1 if § is semisimple and 1>3; and
_ 2
.N'(?)S(4’q lggq;l-l)l()q +2) if § is semisimple and 1=2.
T\ -

(5) G=L3(4) and H=A4,.

(6) G=Ly(9) and H =4;.

(c) The preimage H does not contain a transvection. For § unipotent, let ¥ be the number of

Jordan blocks. Then N (’j)sqnl_,,, if the smallest dimension of Jordan blocks of ¢ is 1; and
N ('g')gq—;‘—_lv—_l, if all blocks have dimension at least 2; and if g is a transvection, then N(g)=0.
For § semisimple, let ¢ be the degree of min(g). Then either N (?)Sq,,-l_—-,,, where p is the
smallest dimension of homogeneous components of g; or one of the following holds:

(1) H~ GL?(q')ﬂ G, where r is a prime dividing n. H acts on V', where V' is V considered

(m,g—1) if rf ¢

n
F

as } dimensional vector space over the field GF(¢"). N(7)<—% 5
q("“a"-)(”—F)(q_l)"—

(n,q-l)('"f_'fl)

a)< n
N@)< L ED0-

?)_n( 1)2"_? if rlc, where m=%. If n=2, then r=c=2, and N(7)<
q—-

4 __
o(q—1)

(2) H~GL(V,)*GL(V,)NG, where V,, V, are I, m dimensional vector spaces over GF(q)
respectively; and n=Im, I#m, {#1, m#1, V=V,® V,. Moreover there is a homomorphism
T GL(V))XGL(V,) = GL(V) by (9,®v5)(91,92)T=v,91® V395, and g=(g;,95)7. N@)<
(mg—1) [ (=D’ -DA-D1=(red(g—1)" it ol but  ofm N@)<(ng-1)/

(DDt (- )™ i dm bt ok N@<{(ne-1)/
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(=2 00Dt g1y i {(,g1) [ 0P 00-Dot=remi (1)} i ot
and c|m.

(3) H=Ng(R), where n=r" is a power of prime r#p and R is an r-group of symplectic
type such that |R:Z(R)|=r*". Also R is of exponent r if r is odd and of exponent 4 if r=2.
Moreover |Z(R)|>2, ¢=p°®, where e=|p| in the group of units U of Z; with *=|Z(R)], and e
is required to be odd. %zCAut(R)(Z(R))zE'ﬂm-szm(r). If r=2, then ¢=p. N(7)<
(mg—1)a?m*? [ pPa=tr=n (g—1)»-1},

(4) H=DSwNG, where D~GL(V))*GL(Vy)*---*GL(Vm), each V; is a k-dimensional
vector space over GF(¢), V=V,;® V,®---® Vi, n=k™, m>1, DS is the semidirect product of
D by Sm, and there exists a homomorphism 7:GL(V,)wrSm— GL(V) by (v,Qv,Q---®vm)
(2,(915 - 1 gm))T =0, 101V, _1,® - @V, _19m, € Sm, and 9=(2,(g1s..-s9m)) .
N@)<(mg—1) [{(m=1)1g®*"-0-D-0" 41" o N(@)<(ma-1)m!/
{qk"""(1—%)—k2(m—%)-(k'"+k)(q_1)'="‘+'=}_

(5) H:O;m(q)GF(q)#nG, p odd, n=2m, c even, and .N'(?)S_(n,q—l)(qg—1)/{q%"2(1’%)
(q—l)”’l}-

— (n,g—1)
O XD

V-7

For some special cases in this theorem (for example, when n=2 or 3 in the case (b)(2)), there
are better bounds contained in the body of this thesis. Also note that in some cases, the bounds
are not useful, e.g., in case (b)(1) when ¢=2 and 2" ¥<56. For the cases (b)(5) and (b)(6), the
bounds can be calculated easily from the character tables. Since all these three cases fall into
that finite number of exceptions for groups of genus zero, we don’t need their bounds in the

process of proving Theorem A.

To apply these bounds for the purpose of reducing the genus zero problem to a finite
number of exceptions, a certain amount of calculation is involved. Define M(g)=maz{N(Z) :

TG(?)#} If .AL(?)SS—IS for all F€35, then (G,2,3) is not a genus zero system (cf. (2.5)). The
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first step of the reduction is done by applying the threshold 31—5 This enables us to eliminate

immediately those G’s with g sufficiently large.

However for small ¢’s, there are elements § with N (?)>§1-5. This is where most of the
case analyses occurs, especially in the case that H is the stablizer of a point, i.e., a one
dimensional subspace. In these cases, although the calculations are rather messy, they are
entirely elementary. For a generating set S=(§,,...,§r), we define the type of S as
(Ig1ls.-+r]). In the bulk of the case analyses, to show that for a certain type of a generating
set S the triple (G,2,5) cannot be a GZS (i.e., genus zero system), we usually show that
i AL(g;)>r—2 cannot hold. But for some ‘small’ cases (e.g., S is of type (2,3,8), (2,4,5), etc.),
i=
a closer look is needed; and usually the analysis is done via elementary number theoretic means
(e.g., congruence), to show that the equality.ilcll(?‘)z(r—2)+ l?z.)-l actually cannot hold for n

i=

sufficiently large. In some rough sense, the amount of calculation involved in each individual

case depends on how big the fixed point ratio can get.

For example, when H is the stablizer of a point, for ¢=2, the fixed point ratio of a

transvection is %_Q—(T'L—T); and for ¢=3, the fixed point ratio of a pseudo-reflection is
—13+3W,4—_—_T). A big portion of the calculation in this thesis is done for such cases. It seems to

me that a certain amount of calculation is unavoidable, unless we can better untilize the two
conditions, (§,,...,9r)=G and §,---Fr=1, to exclude more possibilities for small ¢’s and not

rely so heavily upon Zr: o(7;)=(r—2)|22| +2 to get contradictions.

Now some comments about the notation. In the following chapters, the symbols listed
below always have the meanings explained here unless stated otherwise. F=GF(q) is the field of
¢=p° elements of characteristic p. V is the n dimensional vector space over GF(g). G satisfies
Ln(9)<G<PGLn(g) and the bar notation indicates that G, § are the images of G, g under the
projective map P:GL(V)—+PGL(V). Z is the center of GL(V). Sym(£2) is the symmetric group

on the set 2. Most group theoretical notations used in the following chapters are fairly
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standard. [z] denotes the least integer greater than or equal to z, and [z] is the largest integer
less than or equal to z. Other notations will be defined in the body of this thesis when they are

needed.



Chapter | 10
Preliminary Results and Miscellaneous Facts

Section 1. Lemmas on Permutation Representations.

Let w:G-Sym(£2) be a permutation representation. For g€ G, denote flg)=|Fiz(gr)]
and c(g)=c(gr), where Fiz(gr) is the set of fixed points of g on £ and c¢(gr) is the number of
cycles of gr. Define U(g)=c(g)/|2|, N(9)=Rf9)/|2|, and M(g)=max{N(z) : r?re(gw)#}.
The material in this section is well known, see for example [As4]. For completeness and easy

reference, we include some of the proofs.

(1.1) Suppose we have a permutation representation 7:G-Sym(f2), not necessarily faithful. Let
g€G. Then c(g).:]—l-gl 3 ¢(%|)f(gd), where ¢ is the Euler’s ¢-function.
dllg

Proof. Denote a=|[g| and S=|gr|. So o=~ for some 7. Let’s count the sum s of the numbers
of fixed points f{g‘') as i ranging from 1 to a in two different ways. Let d|a and k be such that

%’,k):l. Then as (3,dk)=(8,d), we have ((gr)?*)=((g7)%); which gives {g?*)=fg¢%). Hence

szzqﬁ(%)ﬂg"). On the other hand, each point in a t-cycle of gr appears as the fixed point in
dla

(g7)* exactly when i=tm, where 1<m<%. In this way, we collect « fixed points for each cycle.

Hence s=ac(g). So we have the conclusion.

Remark. In particular, (1.1) says that no matter which preimage ¢ of gr we choose, the

L > d)(%l)f(gd) always gives us the same thing, that is c(g), although we might have

’9ld“g|

expression

lgl#(¢’| for a different preimage ¢’ of gn. Hence, when we calculate AU(gr), we can choose any

preimage g.

(1.2) Suppose 7:G-+Sym(£2) is a permutation representation. Then
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(a) c(9)<e(d"), W(HLU(S'), AD)<Ae), N(9)<N(g"), N(9)<M(9).
(b) If 7 is faithful, then %(g)gll?l(1+./ﬂo(y)(|g|—-l)).

(c) If the triple (G,2,S) is a GZS, then 3" U(g;)>r—2.

(1.3) Suppose a finite group G has a transitive permutation representation on §2 and H is the

leGnH
9G]

Proof. By counting the set X={(¢",w) : z€G, w€N, wg®=w} in two different ways, we have

stabilizer of a point wg in 2. Then N(g)=

Ro)leCG|=|X|=|R|l¢GnH]

Section 2. Lemmas on Groups of Genus Zero.

In this section, let (G,02,5) be a GZS. For S={g,, -+,9r}, define the type of S to be

(Jg1}s-++,)gr]). For the proofs of (2.1), (2.2), and (2.3), see [As4].

(2.1) Let S:{gl,---,g,}gG# with S of type (my,---m,). Then for each o€Sym({1,---,r}), there

exists T ={h1,---,hr}§G# such that (G,2,T) is a GZS of type (m4,:++,mro) and g,-,Eh,G.

(2.2) Assume S is of type (k,m) with k<I<m and 1/k+1/l41/m>1. Then either G is

solvable or (k,{,m)=(2,3,5) and G~ A;.
(2.3) If Sis of type (2,2,2,2), then G is solvable.

(2.4) (a) If M(g)<} or if U(9)<2 Vg€S, then r=|5|<5.
(b) If M(9) <75 or if U(g)<3 Ve, then |5]<a.
(c) Suppose G is not solvable. If A(g)gilz or if '-’u(g)S% Vg€S, then [S]=3.

Proof. Let g€S. Since M(Q)Sl%"*‘-ﬁl’(!l)S%‘*'%:%» we have r—2<2r: <‘LL(g;,,-)_<_2—3—". So r<6, and
i=1
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thus r<5. For part (b), we have that AU(g)< % i%:%, and then r——2<zr: %(g‘-)s?’—f)—r implies
i=1

r<5b, so r<5. For part (c), if ‘U.(g)S% Y g€S, then we have that r—2<_zr: ‘U(g,-)g%, which

implies r<4, so r<3. Then as G is not solvable, r#2. So [§|=3. If ./ﬂa(g)< then by (b),

24’

[S|<4. If [S|=4, then S is not of type (2,2,2,2). So "U,(g)< 2; and

Ltgi=35 if lol=

4 if [¢|>3. Thus E U(g;,)<3- 24+8—2’ a contradiction. So |S]|=3 again.

U(g)<d+y=3

1,

3t

(2.5) Suppose G is neither solvable nor G~A;. Then there is at least one g€S such that
1

Ho(9)>gx

Proof. Suppose there is no such g in S. Then by (2.4)(b), |S]<4. Since (2.3) says that S is not

959<2—-|S| 2, a contradiction.

5+85=510
So |5]=3, and (2.2) says that 1/|g;|+1/|go]+1/|g93]<1l. Then it is easy to calculate that

of type (2,2,2,2), if |S|=4, we have that E °U.(g,)<3+l

1/]g11+1/192]+1/|93| achieves the maximum when S is of type (2,3,7), i.e., we have

/g1 4+1/195]+1/|951<1/2+1 /341 /7= é Under our assumption, E%(g,)<2{|;.l+

=1
P S R S W IPTP N BV NP P
-t} & {Lra-bkl<a-g & Led<a-fof+d=1 which is »

contradiction. So at least one g€S is such that b( g)>8L5

Remark. This crucial fraction §1§ appears in [GT) too. Since we assume G is neither solvable nor
G~ Ay, it follows from (2.2) and (2.3) by purely elementary means as we saw in (2.5). This
threshold 8i5 plays an important role in eliminating those G’s with n and ¢ sufficiently large, as

we will see later.

(2.6) Suppose G is neither solvable nor G~A;. Also suppose that $ is of type (k{,m) with
k<I<m and for all g€ G of prime order, fb(g)<A. Then
(a) 1>1/k+1/1+1/m>(1-3X)/(1=2A).

(b) k<3(1—X)/(1—3A).



13
(c) If Mo(g,)<a<A, then I<2(1—A) / {(1_%)(1—@—”}.
(d) X M(g)<a<A and M(gy)<b<), then m<(1-)\)/{(1——%)(l—a)—{—(l—%)(l—b)-—
( 1+/\)} provided that the right hand side is positive.
Proof. Since G is neither solvable nor G=Ag, 1/k+1/1+1/m<1 by (2.2). Suppose A(g;)<a,
M(g,)<b, and M(g3)<c. Then by (1.2)(b), 1=r—2<2°u(g‘-)5%(1+(k—1)a)+%(1+(1—1)b)+
L1—(m=1)c)=a+b+c+(1—a)/k+(1—=b)/I+(1—c)/m; call this inequality (+). If we let
a=b=c=) in (x), then 1-3A<(1=A)(}+}+%)<3(1—2)/k, which implies (b) and the latter
part of (a). If we substitute b=c=A in (), then (l—a.)(l—-%)<2/\+(l—)\)(%+—1,ﬁ)§
22+2(1-2A) /L Since (1——a)(1—%)—2z\>0, we have (c). Similarly, by letting c=\ in (%), we

can show (d).

Section 3. Elementary Properties Related to GLn(g).

In this section, we collect some elementary properties about the permutation
representations of GLn(¢), or PGLyn(q); about unipotent and semisimple elements of GLn(g);
and about the elements which generates GLn(g). These properties will be used in the

subsequent sections.

Let G and £ be as in the introduction. Let H be the stabilizer of a point of £ in G.
Suppose G is a subgroup of GLs(¢) such that the image GP under the projective map P is such
that GP=G. Denote the restriction of P to G by P,. Let H=H P!, the preimage of H in G.
So Z(G)=ker(P,)=2ZNG, Z(G)<H, and H is maximal in G. Since the representation of G is

faithful, H does not contain SL( V).

(3.1) Let G and H be as above, and G be represented on 2=G/H by the right multiplication,
f9)_R9)

then —=~ ==,
12| 1£2]

Proof. Denote the representation of G on 2 by 7, and the representation of G on 2=G/H by
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7. We have the composition a=P,7 : G—OSym(.r)). The map B : 202 defined by Hz — HZT

is an equivalence between 7 and a. So in particular, gr and ga have the same number of fixed

fo) _fg) A7)

oints. Thus =t =L,
P 2172 19

Remark. Suppose that G is a group of genus of zero. Thus @1,...,7,)=6' and g, --Gr=1. Let
g; be a preimage of §; in GLn(g). So we have g,---gr=A€2Z. Since grA"1=7,, we can choose
g;’s so that ¢,---gr=1. Let G,=(gy,...,9r). Since SL.(¢)<G,Z, we have SL,.(q):OpI(SLn(q))
<o? ’(GIZ)sGlgGL,.(q). In particular, we have that (g,,...,9-) is absolutely irreducible. For a
group of genus zero G, when we utilize the generator condition (7,...,gr)=G and §;---g,=1,
we usually work inside G;. In particular, we will use the absolute irreducibility of {gy,...,gr)
quite often. When we utilize the condition ig"ll(i,-)z(r-ﬂ)-}-l?%—l, we usually work inside G; or
sometimes it is convenient to think inside G in view of (1.1) and (3.1), especially when it is
given the matrix representation of the preimage g;. Here G is such that GP=G; and
particularly, we often take G to the preimage of G in GLa(g). Finally, note that we can also

choose the preimage g,’s so that ¢,---gr=w, where w is a generator for GF(q)#. If this is the

case, then Z<(g,,...,9r), and thus (g,,...,¢r) is the preimage of G in GLna(qg).

(3.2) (a) Suppose Ln(q)<C=(Fy,. . Tr)- Then_z'j1 dim[V,9,]> n, where each g, is a preimage of
£
9
(b) Suppose that Ln(¢)<G=(g1, T2 93)<PGLn(g) with §,9,73=1 and [7,|=2. Then
La(9)<(73, Ta)-
Proof. For (b), as §,957; =71 ¥z =(3:91)7 =(7395) ' €(73, Ts)=4, T,€Ng(A). Also

'g‘aeNa(A). Hence A<IG=(g,, §3). So Ln(g)<A as we assume that when n=2, ¢#2 and 3.

(3.3) Assume G=(g;,...,9r) < GLn(g).

(a) Suppose G is absolutely irreducible. For each 1<i<r—1, suppose E; is an eigenspace for
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g; corresponding to the eigenvalue A;, where ); is in the splitting field of min(g;). Denote
v;=dim{E;}. Also suppose E is an eigenspace of gr, 1<{<|gr|, corresponding to A in the
splitting field of min(g,). Denote p=dim{E}. Then ,ugt{(r—-l)n—r'iiu,-}.

(b) Suppose G is irreducible. Let 1<t<|g-|. Denote p:dim{gv(gﬁ)}, v;=dim{Cy(g;)}.
Then pgi{(r—l)n—';z:_iui}.

(c) In particular,—suppose G is absolutely irreducible, r=2, and v;=dim{Cy(g,)}. Then
n<|gyl(n—v,). Soif g, is a transvection, then 2<|g,].
Proof. We prove (b). The proof for (a) is similar. Let W;=Cy(g;)N C’V(gf")ﬂ---ﬂCV(gf:_l).
We have that for each i with 1<i<r—1, gr acts on U;=Cy(gr)NW,;. Hence g, acts on
U=U;N---NU,_,. Also each of g,,..., g,_; centralizes U. Then G=(g,,...,gr) acts on U. Since
G is irreducible, U=0. But as U=Cy(gr)NWN---NW,_;, and dim(W;)>tv;—({—1)n, we

r—1 r—1
have 0=dim(V)>pu+ 3 dim(W;)—(r—1)a>p+1tY v,—(r—1)n.
i=1 i=1

(3.4) (a) For g€ GLn(g) with |g|=p°, let d be the largest dimension of all Jordan blocks of g.
Then p*~'+1<d<p°.

(b) Let f=1'—a€ GF(q)[] with (#,p)=1 and |a|=b. Let o be the smallest positive integer
such that (¢8)|(¢*—1). Then GF(¢%) is the splitting field of f over GF(q).

(c) Let g€ GLn(q) and § be the image in PGLn(g) such that [§|=t with ({,p))=1 and
¢'=a€ GF( q)#. Let b and o have the same meaning as in (b). Then g has a simple submodule
of dimension a.

Proof. (c) follows from (b).

(3.5) Denote N(g,G/H) the fixed point ratio of g on G/H. Assume that H<G=GIL(V), and
ZSL(V)<G<G, Hy=G,nNH. Then N(¢,G,/H,)<(n,q—1)N(9,G/H).

__|gGmH1|<ICGI(9)|I9GmHl

G
Proof. We have that N(g,G,/H,)= ICa@lls&nH]_

<(mg—1)2G2A Tl
O < e ST
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(n,¢—1)N(9,G/ H).

Now a few words about a notation which will be used later. For g€ GLx(¢), denote by
a®b’... the type of g. Here the notation means that if |g|=p¢, then the Jordan decomposition
of ¢ has a blocks of dimension @, B blocks of dimension b with b#a, etc. If (Jg|,p)=1, the
notation means that g has a homogeneous component which is the direct sum of a simple
module of dimension a, etc. If there are two or more non-isomorphic simple submodule of

1

. . . o a . . . .
dimension @, we use subscripts a;'a,2--- to distinguish different homogeneous components,

where a; =a,=a, etc.

Section 4. Some Combinatorial Results on Finite Dimensional Vector Spaces over GF{(g).

Let Ay={W: W<V and dim q)( W)=d}. We also denote the order of 4, by [ 7 ]q.

GF(

n n_1)(gn-1—1)...(gn=d+1—1 " .
(4.1) [ d ],,:(q (qd_)fg)(qd—l_)_l)(.?.(q._l) )’ and [ d ]q=[ nod ]q-

Proof. This is well known.

Remark. In the following, we always use the convention that | 3 [ =0 if d<0 or d>n.
4lq

(4.2) Let W be a fixed d-dimensional subspace of V. Then the number of subspaces U such that

(n-d)

WeU=Vis qd ; the number of m-dimensional subspaces U such that W< U<V is [,’;‘,'_‘f,]q;

and the number of m-dimensional subspaces U such that W+ U=V is [m_,_‘}__n]qq("_m)("_d).

Proof. This can be shown by a counting argument.

(4.3) Z‘; q(d—u)(v—u)[ n-v M v ].,=[ n ]q=;ql‘(n—d~v+#)[ n=v l,[ v ]q, for any 0<v<n.

Proof. Choose a fixed U<V with dim{U}=v. Let W<V be such that dim{W}=d and



17
dim{WnU}=p. So dim{W+U}=d—p+v, W=(WNU)oX with dim{X}=d—p, and
W4+ U=U®X. For each fixed W the number of X is q(d_")“. For each fixed subspace Y with

(d—u)v

U<Y and dim{Y}=d—pu+v, the number of X such that Y=U® X is ¢ . So for each such

Y, the number of W with W+ U=Y is q(d_")("_")[ . ] . Also the number of such Yis| 3=}, ] .
q q
Hence q(d_“)("_”)[ ah ]q[ " ]q is the number of W with dim{ WNU}=y; and thus we have the

conclusion. Exchange the role of 4 with d—p, v with n—v, we have the second equality.

Remark. [ 7 ]q corresponds to the binomial coefficient (3), and the formular in (4.3) corresponds

to the identity E((’;:Z)(,‘:):(g) in binomial coefficients.
M

(4.4) Suppose n=klL. Let A, ,={{V},V,,..,V;} : V=V, V,®---0V;, dim(V;)=Fk Vj}. Then
d=fe L 2 1ol {2 )t o

Proof. It suffices to show that the number of ordered Ktuples (Vy,V,,...,V;) such that
V=V, V,&--0V,, dim(V;)=k Vj, is q%"("-”[ 2 ld"#* ] % Jd & ] The factorial
& in the denominator is due to that {V,,V,,...,V,} is considered as a set, hence is not ordered.
We induct on I It is true for I=1. The number of chioces for V| is [ % ]q, and for each fixed
V1, the number of U such that V=V, & U is qk("_k) . Hence by induction, the number of

ordered Ftuples (V,V,,...,V;) here is q%("—")("—%)”("—k)[ 4 ]q["Ek]q”'[ ¥ ]q[ p :Iq:

q%n(n—k)[ n ]q[n;k]qm[ 2k ]q[ k ]q.

Section 5. Some Estimates.

The following inequalities are used later to estimate bounds of fixed point ratios.

1
(5.1) (=1 (a4 B) 32D < (g 1)(gr-11)---(2-PH1 1)< P+,
Proof. As (qa_l)(qa—l_l). . .(qa-ﬂ+1_1)=(q_ l)ﬁ(qa—l+qa—2+ R q+ 1)(qa—2+ qa—3+ PR q

+ 1). . .(qa—ﬂ 4qa=B-14...4 q+ 1) =(q_ l)ﬁ{q(a—1)+(a—2)+' . '+(a—ﬁ)+ﬂq(a-1)+(a—2)+- ct(a=p)-1 4
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1
---}Z(q-—l)ﬂ(q+ﬁ)q5p(2"'p"l)'l, the first inequality holds. The second one is clear.

(5.2) ¢P-<[ 5] <q_+_3 (_4_) - qP(a=P) < gf(a=F+1) and [g]q~qﬂ(a—ﬂ) as ¢— 400, where

A g)~g(g) means fq) and g(q) are asymptotically equal as g— +oco.

Proof. As L_ el

- 1>q°"‘/3 V0<i<f~—1; by (4.1), we have [g]qZQﬂ("‘*ﬁ). For the second

qip(za-ﬂu)

(¢=1)°(q+B) P B-D-1

inequality, we use (5.1). So [g] < but —,B(2a—ﬂ+1)— B(B-1)=

B(a—pB)+pB.

(5.3) [ 3:3 ]q/[ a ]qsq(a—ﬁ)d"'ﬁl(n—a-d-q-p).

" °—1) (@) (1) (TP
Proof. We have " = . , and
[ ] / d —1)( n— d+[5+1_1) (q"_d+ﬂ—1)"'(qn_d+l—l)

q;.“ig L for j>i, also a(d—B)+B(n—2d+B)=(a—B)d+B(n—d—a+B).
¢g-1 q

g 1
(5.4) (a) q ] / (‘_1) a(d—p)+p(n—a-2d+zp)'

(b) Let a+y=n, B+6=d. Then [;;]q[}]q/[d] <(L1)d(—q+—ﬁ%—)q1—, and
[51[3)/[2],~5 where f=d(n—d)—B(a—p)—6(1-9).
Proof. We only prove (a), for (b) is similar. So we have [g][g:g] /[ n ]q:zg,{ df,, L,

(q _1) ( a-B+1 1) 1 (qn a 1) (n—a d+8+1 1)

(@ —1) (P 1)— p(n—a) Y= @ —1) (1) = e ﬂ)(a 7y and

where z=

(26 ],=[8], () €. Since  B(n—o)+(d=B)(a—B)—Bd—B)=0(d—p)+

B(n—a—2d+20), we have the conclusion.

(5.5) Suppose a>B. Then

@3 2] sglan ][5 ],
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(b) In particular, ;[ Al | ] <[ 3t ] +[ 4zt ], for any v with 1<v<n—1.

Proof. Denote z=§:[ 2u ][ 8], and v= z;[ 2]l %) By (43), we have

[t ]+ 6 ]qq”"‘=[,€’]q=[ ]+ 82h],  which  gives o= % [ 2]

{[ et ]+ o ]«}+d.§,,:< AR R = K ® and
=5 L ) lasa )5 1, 3 L Lo ] )

[0 )=, 5 L % 1 L )80, 5 [,

L5 L B

Hence  if  d=2¢—1,  then  y—z[¢][ 2} ]q(qc—q°")+[ A=

d [l+l>[l -1

—-d
[dc_',, ]q ‘p‘:% ]qqa T4, For d—pu<p, we have a—d+pu>pfF—p as a>p.

a-—C

1
[ ][ =] e I ot e -0}, But
(q"'°”~1)4°‘1(q—1)—(qﬁ'°-1)(4°—1)={Q"(q—1)—qﬁ}+(q T+t =1)20, as a>f, so we
have y>z. If d is even, d=2¢c, then y—zZ[ T ][f__ll ] (¢ =g 1)+[ c=1 J[ﬁc—l ]q

a—c+l1
L ][ % )0 P [ o [p -1 {(q = :;();q_c )1) N Py (P 1)}'

Similarly to previous case, as a>f3, we have that the expression in the curly bracket is >0,

which gives y>z.  So in any case, we have y>z.

Remark. Suppose g,h€ GL(V) such that g has two eigenspaces A, B in V of dimension «, S
respectively with V=A@ B, and h has two eigenspaces C, D in V of dimension 7, § respectively
with V=C®D. Without loss of generality, we can assume that y—6>a—32>0. Then in view
of (6.2), (5.5) is equivalent to the assertion that h fixes at least as many d dimensional
subspaces in V as g does. In particular, pseudo-reflections fix at least as many subspaces as any
g of the above type does. Later we will see that only elements in the center Z fix more d-

dimensional subspaces than pseudo-reflections, see the remark after (6.6).



(5.6) Denote [z] the least integer >z. Then n—[}]>[

Proof. This is easy to verify.

(r—1)n

r

1—1, where n>r>1.

20
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Chapter Il

Maximal Parabolic Subgroups

In this chapter, we assume that H is the stabilizer of a d-dimensional subspace and that
n>2d; as H is the stabilizer of an (n— d)-dimensional subspace in the dual representation, there
is no loss of generality in this assumption. Let f{g, 4,) be the number of W in A, fixed by g¢.

Note that f(g, A;)=fAg, A,;) for any z\EGF(q)#.

This chapter is devoted to a proof of the following result:

Proposition 1. G is not a group of genus zero unless one of the following holds:
(a) g=2 and n< 32.

(b) q=3 and n<12.

(¢) 4<q<13 and n<8.

(d) 16<q<83 and n<3.

(e) 89<q<167 and n=2.

Section 6. Bounds for the General Cases and the Initial Reduction.
(6.1) N(9)=R9, 42)/144l-
Proof. G is transitive on A;, as SL(V) is and SL(V)CG. Since H==Stabg(W) for some W in

Ay, the representation of G on 2=G/H and on A, are equivalent.

Suppose g€ GLn(g) with (|g|, char(GF(g)))=1. So g is semisimple. Thus min(g) has no
multiple roots. Let f=min(g)=f,f, - fa, Where each f, is irreducible in GF(g)[z]. So all f}, f,,
..y fo are distinct. By the elementary divisor theorem, V=V, 0 V,&---® Vo, V=V, 0V, &

] VM“, 1<pu<a, where each Vy, is an irreducible GF(g){g)-module and V,
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is the homogeneous component corresponding to the irreducible factor fu. Denote cy=deg(fys).

So dimg(Viuw)=cy, dimp(Vy)=ducy, and n=ilduc,,.
,‘:

6.2) g, Ap= 4 d2 .| da . In particular, if min(g) splits in
(6-2) Ao 4d) ,1c1+,202§..+,a5a=d['1],cl['z]qcz [’a]qca ’ (9)

GF(g)z], flg, Ag)= didz| .. [daf .

(9], fg, A,) ’lw.z_.w:d[ 10%] 4],

Proof. Suppose W<V with Wg=W. As Wfg)=0, min(ng)|f. Hence min(g|W)=f,,1f,,2~~-fqﬁ,
1<fB<a. By the elementary divisor theorem, W= Wn, & Wn,®---& Wag, Wa, =Wy 10 Wy 2®
@ Wy _sy_, where each Wy _; is a g-cyclic subspace; thus dimGF(q)(W,,Tk):deg(fnr)zc,,T V.
We have Wy < Vy_. Alsoif Wy, W,,..., Was, are gcyclic subspaces in V), with W, & W,.®
<o Wasy=Wu<Vy, then Wug=W,. Thus the number of W, in V, such that
dimGF(q)(W,,)zs,,c,, and Wug=W, is same as the number of W, in V, such that
Wu=W,;1® Wy 2®---® Wys,, where each W, is a gcyclic subspace in V. To find the

number of such Wy, we count the number of pairs (( W1, W,,,..., Wys,), Wy), where each W,

is a g-cyclic subspace in V,, and Wy=W,

@ W, @@ Wys,. The number of choices for W,

., Cud ¢ . . . .
is (¢""¥=1)/(¢"~1), as each non-zero vector in V, generates a c,-dimensional g-cyclic

subspace and every such subspace has qc”—l non-zero vectors. Similarly, the number of choices

Cud Cu(k-1 C
I‘I‘_ql‘( ))/(

for W, is (¢ g " —1). Hence the number of choices for the ordered su-tuple

. Cud Cud 4 Cud 2C Cud Cu(spu—1)
(Wars Wazse . s Was,,) s z=(¢ "= =g )@ =g ) (g P =g )Y

(qc"——l)s“. Once we have chosen W,

w1 Wyasooy Wysy, Wy is uniquely determined. Hence the

number of pairs (( Wy, W,5,...,Wys,), Wy) is 2. On the other hand, for each W, the number
. Cus c Cu, € 2¢ c Cu(sp-1)
of  (WusWuzseosWas,) is y=(¢ " =1)(¢ " ~¢*)(g "~ )l =g 7))/

(qc”—-l)s”. So the number of W, such that W,<V,, dim Wy)=cusy, Wug= W, is equal
GF(q)

z

Cud Cud Cuy, Cud 2¢ Cud Cu(su—1) Cus Cus c
to =@ =@ =g YW= ) (=TT (e =) =

Cus 2C Cus C#(s —1)
(0" =g ) (¢ =TT )=

i dy dg da]
fixed by g1s Z [’l] 01["2] g [aa co
81c1+39co+  +saca=d q q q

:[d#] ou Therefore the number of d-dimensional subspaces
q
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(6.3) Suppose g is semisimple and V=V, ® V,®---® Vo with V, a homogeneous component of g

for each p, 1<pu<a. Let B be such that 1<f<a and v=dim{V,®V,®---®Vg}. Then

CYRES R =RIEAR

q

Proof. This follows from the argument of (6.2).

(6.4) Let A, B, C be subspaces of V satisfying Ag=A, A=B®C, g acts as a scalar A€ GF(q)#
on C. Then either there exists at most one subspace W such that Wg=W, WNA=B3B,
W+ A=YV, or g has the eigenvalue A on V= V/A. In particular, if A is the eigenspace of A on
V, and U is such that A U<V, then there is at most one W such that Wg=W and A® W="U.

Proof. We may assume A7 V and ) is not an eigenvalue of ¢ on V. Thus g is not unipotent.
So replacing g by its semisimple part, we may assume g is semisimple. Now W is the sum of B

with the homogeneous components of g distinct from the eigenspace E, for A.

(6.5) Let g be any element of GLa(g) and v be the dimension of an eigenspace E of g
corresponding to an eigenvalue A€ GF(q)#. Then f(g,Ad)gz“j[ an ]q[ u ]q.
Proof. Let E be the eigenspace above, and E<U<V with dim{U}=d+v—pu. The number of
such U’s is [ an ]q. Fix such a U and suppose there is at least one W such that Wg= W,
dim{W}=d, and W+ E=U. Let D be such that E<D<U and '13=D/E is the eigenspace
corresponding to A for g on U= U/E. Then A\~lg acts on D either as an element of order p or as
the identity. Since W+E=U, we have dim{WND}=p+a, where a=dim{D}. Also as
(WND)+E=D, WND has a surjective projection on each non-trivial Jordan block of A™'g on
D. The number of subspaces S of D of dimension p+a with Sg=§ and S+ E=D is at most
qﬂ(”-”)[ s ]q, where $ is the number of non-trivial Jordan blocks of A™'g on D. Since for

each fixed S, the number of W with Wg=W, W+ D=U, and WND=S is at most one by (6.4),

and also qp(”—”)[ z:g qg[ " ]q, we have the conclusion.
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(6.6) Let g€ GLn(q) with g not in Z. Then .N'(g)s-qla q,}_d 42—‘,
Proof. For g unipotent, we have 1<dim{Cy(g)}=v<n—1. For g semisimple and min(g) not

irreducible, let v be the dimension of a homogeneous component of g; and thus 1<v<a2—1. In

these two cases, by (6.5) and (6.3), we have f(g,Ad)SZ[ 3:;:][”]( Then by (5.5),
B

Jlu
2 . . ..
.N'(g)<{[ n-1 +[ n-1 ] }/ qd+qn—dsqd Now suppose ¢ is semisimple and f=min(g)
is irreducible in GF(¢)[z]. Let c= deg(f) Then flg,4,)=0 if c/d; and flg,4;) [ ]qc otherwise,
where A=%, szg, and c¢>2. So N(g) [ ]qc/[cf,\]q<q°-’(* ’+1)/q“(c)\ €8) =

1 1
cs{(c—l)(k—a)—-l}sq_CE

N(g)= [ ]q2/[ 3 ]q=ﬁ_’—_—1$ q_15=613' So the bound qld+qn1_d works for any unipotent or

semisimple g. Hence it works for any ¢ not in Z.

=qld, unless c=2 and A=2, s=1. But in this case, we have directly that

Remark. Actually, among all the elements g€ GLn(g) with g not in Z, the pseudo-reflections, i.e.,
semisimple elements with two eigenspaces in V of dimension 1 and n—1, fix the most number of

d-dimensional subspaces, because in the notation of (6.6), [ ’} ] P S[ i ]q.

(6.7) G is not a group of genus zero unless one of the following holds: (a) ¢=2 and d<T; in
addition if d=7 then n<14. (b) ¢=3 and d<4. (c) ¢=4, 5, and d<3. (d) 7<¢<13 and d<2.

(e) 16<¢<167 and d=1.

Proof. This follows from (6.6),

qnl_ 458_15 except for those cases listed above.

Remark. This initial reduction still leaves an infinite number of possibilities open. To reduce
down to a finite number of exceptions in the case of maximal parabolics, we carry out the
analyses according to ¢=2, 3<¢<13, 16<¢<167 in the following sections. We already have an
exact formula for f{g,4;) in (6.2) when ¢ is semisimple. For unipotent g, the next few lemmas

give better bounds than the overall bound =+ nl_ =, and are used in later sections.
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In the following, assume [g|=p¢ for some e. Thus min(g)=(z—1)" for some m. So
11

each Jordan block of g has the form 1 1 | Let {vy,...,9;,9;,1,...,¥n} be the basis of V
1

corresponding to the Jordan canonical form of g, such that {v,...,v;} is the basis for a Jordan
block of ¢ of dimension j. So vig=v;+v;, v,9=vy4v3,..., v;_19=v;_;+v;, v;9=v;. Denote

by m; the canonical projection of V onto (v;).

(6.8) (a) Let s, be the number of d-dimensional subspaces W such that Wy=W, and
Wry=Wnry=---=Wm_,=0, Wr;#0, 1<k<j. Then skSQ"—d-ka, where £ is the number
of (d—j+k—1)-dimensional subspaces W, of (v;,4,...,tn) such that Wi=W,. In particular,
skgq"_d'k“[d_?;z_l]q, with equality if v;g=v; Vi>j.

(b) The number fg,4;) of d-dimensional subspaces fixed by g is at most

DY St I v n-i+1 f 1 ith > d it is equal to
E [d-g+i—1:|q+|: d ]q or any wi Jj24 and 1 q

h?r‘
»-AH

Z_: d_k+1[d_'}:£_1:|q+[ n-g+l ]q if v;g=v; Vi>j. Here if =1, then the summation is to be

understood being empty by convention.
(c) Suppose g has two Jordan blocks of dimension j;, j,. Then for any [, I, with [, <j,
-1

1-1
—d—ky—ko+2,
,<jy, we have flg,4 d)< E n 172 [

I: n-jlll:llcgt% ]}+ qn-d—-11-k2+2[ n:]l;+1ca+l ]q+[ n—11312+2 :lq‘

(d) Suppose g is of type 2°1”~2%, Then f(g,Ad)=Z:q‘("-d—a+i)[ e ] nre "]q.
3

1
n—d- k1+1{ 22 n—io—i :I
. N3 Td +
d—j,~ k1$¥kg—2
2_1 71 124 1‘z 2 q

k=1
q

Proof. Suppose that W satisfy those conditions given in (a). Then W contains a vector of the

form vi+z+u with 2€(veyq5..9;), € U=(v;,1,9;,9,...,9n). Since (ve+z+u)(g—1)' =v,,;+

g—1)" +u(g—1)* with z(g—1)* G(vk““, 4+¥;), W contains a vector of the form w=v;+u with

u€lU. For a fixed w=v,+u, as weW and Wg=W, wizvk+,.+u(g—1)i=w(g—1)i€ W,

0<i<j—k, where (9—1)°=1. Thus (wo,wy,..,w;_)<W and clearly dimg(wo,wy,...,w;_z)=
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j—k+1. As Wry=Wry=--.=Wr,_,=0, W+U=(v,%,,..,), which implies
dimp(WNU)=d+(n—j)—(n—k+1)=d—j+k-1. So  W=(wp,w,...,w;_;)®(WNU), and
(WNU)’=(WnU). Now we count the number of pairs (w,X), where w=1v,+u with u€ U, and
X<U, X*=X, with dim{X}=d—j+k—1. Since the number of such w is ¢"~/, the number of
pairs (w,X) is ¢n—J-£. For each fixed W satisfying the conditions in (a), the number of such
(w,X)’s with we W, and X=WNU is ¢é-i+k-1  ag for w':v,,+u’ with v/ U, v —u=v—w
ewnu. So the number s; of Ws satisfying the conditions in (a) is at most
qrie€ [ qdivk-1=gnmdmkL g Also it is easy to see that in particular,

s, <q"” —d- k"'ll:d Ti- 1] with equality if v;g=v; Yi>j. Finally, (b) follows from (a); and if we
apply (a) twice, we have (c). For part (d), we have that the number of W with Wg=W and

dim{[W,gl}=i s equal to """ ¢ ] [zt ] .

(6.9) (a) Let j be the dimension of one of the Jordan blocks of ¢ and suppose [ is such that j>1

Then N(g9)< E In particular, if j is the dimension of any non-

1 +
G- (n—d=k+D+(k-1)d T (- l)d

trivial Jordan block of g, then N(g)sqv:l}T—ﬁ—d)-i-qldSqld; and if j>3, then

1

1 1
N(g)< q(j..l)(n—d)+ q(j—z)(n—d—1)+d +q71'

qd 1 qn l_qn~d qn- -d—1

1n—2a
"1 gn-1-1 -1

(b) If g is a transvection, then N (g)—- If g is of type 2¢

and g is not a transvection, i.e., @>2, then .N'(y)_qn_d+qn1~1+q%d.
(c) Supoose g has at least ¢ non-trivial Jordan blocks. Then N(g)< = d+q} <

(d) Suppose g has two Jordan blocks of dimension j;, j,; and j>l, j,>l,. Then

I1—1 lg-1

1
N (9)<,,12_3__1,, Z_:l O F k) (k= kg B+ (D@ (kD@D T

I1—-1
1
k12=1q(jl—k1)(n—-d—k1-12+2)+(k1—1)d+(lg—1)(d-—l)+

19-1

1 1
k22=1q(jz—kz)(ﬂ—d—Il—k2+2)+(Il+k2—2)d + q('l+l2-2)d.
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mxn{a [2]}

() Suppose g is of type 2°1"2%, Then N(g)< (q— ) i(n_2d+21‘.)+a(d_2’.).

s 1
q q(J—k+1)(n—d FFF(k=1)d  g(3-F)(n—d—E+D)+(k-1)d’

Proof. By (5.3), ¢"~*~**'[4_75i_. /

and n I+1:|/ . q(l 1)d’ thus by (6.8)(b) we have that N(g)<

—d—k+1 1 1 _. :
{E - [d Sri- 1] +[n Hl] }/ lq(J—k)(n—d E+1)+(k-1)d q(l—l)d’ 1€+
the first part of (a) holds. Since j>2 always, by letting [=2 or letting /=3 if j>3 in the first

part of (a), and noting that (j—1)(n—d)>n—d>d, we get the rest of (a). If g is a transvection,

then N(g)= {[ ey ] [" 2] + [" i :l }/ qd_ (1—3::‘::%)+q;;d_—11, hence the

first part of (b) holds. If g is of type 2%1™2* with a>2, let {v;,v,}, {va,v4} be the bases for

two Jordan blocks of dimension 2 respectively. The number of W with Wg= W, Wr;#0 is less
than or equal to q"'d[ n-2 ]q. The number of W with Wg=W, Wr, =0, Wr3#0 is less than

or equal to q""l_d[ n=3 ]q. The number of W with Wg=W, Wr; =0, Wr3z=0 is less than or

equal to [";2 ]q. Thus N(9)<{Q" d ] +en-1- d[ "a 2] }/

q,,l_d+q,,1_1+ by (5.3), i.e., the second part of (b) holds. For part (c), let vg ),...,v(- *) be the

Jordan canonical basis for s-th block of g, 1<s<t, and let =, () be the canonical projection of V
onto (v1 )) Then the number of W such that Wg= W, and W‘tl' ;/:0 is less than or equal to
qn- d[" 1:] ; and the number of W such that Wg= W, and Ww(5)=0 V1<s<t is less than or

equal to [”;' o Hence -N'(Q)S{sél‘l"'d[s §§ +[ "a ]}/ == lq(J,—ll)(n d) q}“

—qn d+q%d. For part (d), we have for example by (5.3), [ 4—112124"‘13"2*2 :lq/ p

1 . L

O i P D (nm -k Egd D+ (k1 hp =20 Since (7, +1,— ki —k+2)(n—d—k —k+2)+

(ki +ky—2)d—(n—d—k +1)—(n—d—k —ky+2)=(j, +J, — ks — ks) (n— d—ky —ky +-2) + (k; — 1) d+
—d—ky+1 n—d—ky—kg+2 .

(ky—1)(d—1), we have R [ d—j 27 hE RRy—2 :lq/[ d ]qS

The estimations for other terms are similar,

q(jl+-"2"‘1""2)("-4-’°1"k2+2)+(’°1-1)d+(’=2'—1)(d-1)'

so by (6.8)(c), we have (d). For part (e), we have [‘}‘ q - "2‘,‘]/

(qa__l).__(qa—|:+1_1).(qn—a-xt_1)“.(qn—a—ti+i+l_1). (qd—.l)“-(qd_ﬂ-l—-—l) .
(qn_l)“_(qn—s+1__1) (q"_'—l)-“(qn_d'H'H—l) (qn—d+c_1)“.(qn—d+l__l)
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(| DS SR C e V2 Uit} -
(qd—2t__1)”'(q_1) —qs(n—a)+a(d—2:)+a(n—2d+t) (qd—-2a_1)'”(q_1)

(q“"—,l)"'(q”l"l):[a":;'.-],=[ 7] <(Z5) 0 by (62, and as in-a)+

(¢ =1)+(¢-1) TN
a(d—2))+i(n—2d+1)—i(d—2i)—i(n—d—a+i)=a(d—2i)+i(n—2d+27) thus
i(n—d—a+i) i i 1

q [. q a3 ] / ( ) g (n—2d+20)+a(d=-27)

(6.10) Suppose |g|=p°. If g has only one Jordan block, then flg,4;)=1. If g has exactly two
: . . min(“lx"z—“z)
Jordan blocks of dimension vy, v, respectively, then flg,4;)= q .
uy+pg=d, 0<pu . <v;
Proof. Let V,, V, be subspaces corresponding to two blocks. Suppose Wg=W. Let
po=dim{ WnV,}. So dim{W+ V,}=v,+pu,, where p;=d—p,. Let U be the unique subspace
of V; with Ug=U and dim{U}=py,. Let X, Y be the Jordan canonical bases of WNV, and V,
respectively. So XCY. Since W+ V,=U® V,, we can complete X to a basis X' of W so that

—X={u;+v;: 1<i<p,}, where T={u;: 1<i<pu;} is the Jordan canonical basis of U and

AO0B
% €Vy, V 1<i<u;. Then MzMX’uY(g|W+ V2)= 0C D| Also M:MTUy(glw+ V2)=
00F
A0O I QR
0 C D | and there exists N=| 0 I 0 | such that M N=NM. This implies that AQ=QC
00E 0017
and AR+ B=QD+RE. Since A and C are Jordan blocks of dimension pu;, v,— pu, respectively,

mi”(l‘p”g"l‘z)

the number of @ is ¢ For each fixed choice of @ and R, we can choose

B=QD+RE—AR. Hence the number of d-dimensional W with Wg=W and p,=dim{ WNV,}

min(,,vo—#y)

is equal to the number of @, which is ¢ . So we have the conclusion.

(6.11) Suppose |g|=p°. If g has only one Jordan block, then N'(g)<——~—=. If g has exactly

qd(n d)’

two Jordan blocks, then N( 9)5;201_14——1')’

Proof. If g has only one Jordan block, then N(g)=1 / [ n ] < Suppose ¢ has two Jordan

1
—qd(n—d)'
blocks of dimension v,, v,. Without loss of generality, we can assume that v,>v,. So d<v,

and thus min(p,,ve—p,)=min(d—pyvy—p,)=d—p,. Then by (6.10) we have that
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(@ -1 =D)- (P~ 1
(qn_l)'__(qn-d‘l-l_l) —qd(u—d—1)°

N(@<O+a++¢) [ 3] =

(6.12) Suppose d=1. Let g be any element in GLn(g), and Ay,...,Ar be all the eigenvalues of ¢
with A;€ GF(q), and Vj,...,V, be the corresponding eigenspaces. Denote v,=dim(V;). Also let

v=maz{v;:1<i<r}. Denote g the image of g in PGLn(gq). Then we have

llr_
g r; in particular if g is unipotent, then N(g)=

V1
() N(g) =1 = :

¢ -1
1

<-—,,—1—_,,, where
q
v=dim{Cy(g)}. Alsoif [g|=s, then N(g)gﬁ; in particular, if each v;<1, then N(g)<-=%5.
q
(b) N(g)gql—,,+‘}ﬁl;—,;; in particular for any 'g’EPGIm(q)#, N(i)5%+71:—1.
q

(c) If ¢ has an eigenspace of dimension n—1, then either Ag is a transvection for some

/\EGF(q)# or g is a pseudo-reflection, and .N'(g)S%, % nl_l respectively. If géZ and for any
: q

A€ GF( q)#, Ag is neither a transvection nor a pseudo-reflection, then N (g)§-1§+ n1—2'

¢ 1

Proof. (a) follows from N(g):[”ll]q+---+[”1']q/['f]q and [’}]q:qqi_—Tl (b) holds as

fean<[r] +[ 1],

Section 7. The Case ¢=2.

In this section, we always assume ¢=2. So GLn(2)=S5Ln(2)=PGLn(2)=Ln(2)=G=0G,
where G and G have the same meanings as in Sec. 3. The conclusion of this section is the

following;:

Proposition: If G is a group of genus zero, then n<33.

Proof. This follows from (7.31), (7.53) and (7.54) in this section.

(7.1) (a) Suppose d=1. Then for any g€ G, N(g):%Z:iST‘%y, where v=dim{Cy (¢)}.

(®) fod)=[5 ], +2 [ i ],+[1], where v=dim{Cy(g)}, a=dim{Cy(s")},

2

and z= %(dim{ Cy(¢*)} —dim{ Cy(9)))-
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Proof. (a) follows from (6.12)(a). For part (b), suppose W<V with dim{W}=2 and Wy=W.
We have that the number of such W’s on which g acts as the identity is [ 4 ]2, the number of
W’s on which ¢ acts as an element of order 2 is 2"_1[ *Y ]2, the number of W’s on which ¢

acts as an element of order 3 is [ - ]22. Since g acts on W as an element of order at most 3, we

have (b).

In the following, sometimes we denote N'(g) by N(g,d) to indicate a particular value of

d involved. Similar for U(g,d).

(7.2) Let g€G, and v=dim{Cy(g)}. Let |g|=2°m with m odd. Define d(m)=min{k>0 :
2¥=1(mod m)} if m>1 and d(1)=0, a=2°"" if ¢>0 and a=0 if ¢e=0. Then v<n—d(m)—a.
Also n>d(m)+a+1 if e>0 and n>d(m) if e=0.

Proof. Let z=¢™ and y=g¢°. Then the minimum dimension of a faithful GF(2)(g)-module is
achieved when V=[V,y]® Cy(y) with dim([V,y])=d(m) and Cy(y) a Jordan block for z. By

(3.4)(a), dim(Cy/(y))=2°""+1 in our minimum case. Hence we have the conclusion.

In order to prove the proposition stated in the beginning of this section, in view of (6.7),

we always assume in the rest of this section that n>33 and d<6.

(7.3) Suppose {g|=2° with e>1. Then N (9)52%, unless one of the following holds:

(a) e=3 and d=1, and ¢ is one of the following types: 7'1"~7, 6'2!1"~% 61"~
5131178 5l921n=9 5lglyn=7 5lin-5

(b) e=2 and d=2, and ¢ is one of the following types: 3'2'1"~%, 31173 4!1"~*  and also
.N'(g)<2%32 21—6, é—%—i-{-é, #+§1-§ respectively; or e=2 and d=3, and g¢ is of type 3'1"~3, and
N(9)<231 1

(c) e=2 and d=1, and g is one of the following types: 421"~8; 41312*1"~7=2¢ for o=0 or
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1; 322%1776-29 for =0, 1, or 2; 41217472 for 0<a<3; 312°1"7372* for 0<a<4.

(d) e=1 and d=4, 5, or 6, and g is of type 2'1”~2, and .N'(g)__2n d+-21—d; or e=1 and

d=3, and g is of type 2'1”2 or 221"%, and .N'(g)(230 :?13, 21%+§1§ respectively; or e=1 and
d=2, and g is of type 2'1"~%, 221™~* or 231"7¢ and .N'(g)s—%+#, 2_::[5‘6'*'%’ §%+§1-é

respectively.
(e) e=1 and d=1, and g is of type 2°1"~2* with a<6.

Proof. If e>4, then ¢ has a block of dimension j;>9. Hence by (6.9)(a), N(g9)<

8
1 l 1 1 1

>20.

If e=3 and g has two blocks of dimension j;, j, both >5, then by (6.9)(d),

1 S 1
N(g)<k123 kZ (10—Ic1—kz)(n—d—-kl—k2+2)+(k1—1)d+(k2—1)(d—l)+k§12(5—1:1)(n—d—k1—3)+(k1—l)d+4d—4

4
" 1 l 1 .1 1

1 1
kZ—IQ(S TRy)(n—d-kp-9)¥(arRp)d T pea <38 T ot om T oma<ym as for example

(5—ky)(n—d—ky—3)+(3+ky)d>(n—d—ky—3)+(3+k,)=n—d>27. So g has only one block of

4
: . . 1 1 1 1 1
dimension j>5. If d>2, then by (5.9)(a), N(g)Sgl2(5—k)(n-—d—k+1)+(k—l)d+2—4ds2_22+2—8 57"

as (b—k)(n—d—k+1)+(k—1)d>n—d—k+1>24. So d=1. Then as .N'(g)—

where

2" 1’
v=dim{Cy(g)}, we have .N'(g)S% if y<n—7. Thus g is one of the following types: 7'1"~7,

61211"_8, 611"-6, 51311"—8, 51221'1—9’ 51211”—7’ 5117!-—5.

Suppose e=2. If d>2 and g has two blocks of dimension j;, j, both >3, then by

1
(6.9)(d)’ N(g)<k§ kz 2(6 kl—k2)(n—d kq1— k2+2)+(k1 1)d+(k2 1)(d- 1)+

2 2

1 1 +l <4 2 2 1
(3—-k1)(n—d-k1-1)+(k1-1)d+2d—2+k22= Nes F3)(n—d=kz-D)¥(1+k5)d T 54 1aSss0to2atoastoss

517, as for example (6—k, —ky)(n—d—k, —ky+2)+(k,—1)d+(ky—1)(d—1)>2(n— d—k, — ky +2)

2
k1=12

1
gy

n~d—2>25. Hence if d>2, then g is one of the following types: a'2°1"%~2% where a=3 or 4,

>50. Also if g has >4 non-trivial blocks, then by (6.9)(c), N (g)<2,l 5

and 0<a<2. Suppose a=3 first. Then by (6.9)(a), N(g)< i ¢)+2nl 1+_1—dg§17 if d>4. If



32
d=3 and a>1, then (6.9)(d) gives that .N'(g)_<_21—7. So a=0, i.., for d=3, g is of type 3'1"~3,

1 11,1 If d=2, then by (7.1)(b),

in  which case N(¢9)<——— 2(n—3)+2" 1

N(g)= {[n—2-— ] + 2n-3— a+l] }/ g 2(a+2)+2"1_1, which is 5517 if a=2, and

5—%7+§1-, %+2-% for a=1, or 0 respectively. Now suppose that a=4. Then by (6.9)(a)

N(g)< 1< 2l if d>3. I d=2, then by (7.1)(b),

3(n d)+22n a3t 2n+d 2+2 3d—=

N(g)={["_§'°’]2+ 2"‘4""’ °’1+1 ]2}/[3]2522(§+3)+§l,—,, which is 52—17 if a=1, or 2, and

<2—:1,——+§1-5 for a=0. If
d=1, then as before, v<n—7 implies .N’(g)s—217. So g is one of the following types: 421778,
41312%17"77% for a=0 or 1; 322°1"7%"2% for a=0, 1, or 2; 4!2°1""*"2* for 0<a<3;

312¢17-3-2* for 0<a<4.

Suppose e=1. So g is of type 2°1"72%, If d>2 and a>4, then as before by (6.9)(c),

+-L <l Soa<3. If d=1, then a<6.

4
N(Q)S2n-d 94d =797

(7.4) Suppose g is semisimple. Then N( g)s‘-?l?, unless one of the following holds:

(a) |g|=3 and d<3; g is of type 2°1"~%* with a<3 if d=1; with a=1, and N(g)§2—£§+%,
2L”+él‘§ for d=2, 3 respectively.

(b) |9|=>5 and d=1, and g is of type 4'1™"%,

(¢) lgl=7, d<2, g is of type 3‘1’13;’21"-3(a1+a2)

, where a;+a,<2 if d=1; and a;+a,=1,
.N'(g)S% if d=2.

(d) |g|=9, d=1, and g is of type 615,

(e) |gl=15, d=1, and g is of type 411"~ or 41211"~6,

(f) |gl=21, d=1, and g is of type 61175,

(g) |g|=31, d=1, and g is of type 5'1"~5,

(h) |g|=63, d=1, and g¢ is of type 611776,
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Proof. Let a be the dimension of a simple submodule of g with ¢>2, and aa be the dimension

of the cooresponding homogeneous component. Suppose a>d. Then N (g)g[ nopa ]2 / [ 7 ]25

1
2daa'

In paticular, if |g|#3,5,7,9,15,21,31,63, then as g has a simple submodule of dimension

a>T7>d, we have N(g)sﬁgi%.

Suppose a is such that 2¢>d>a. Then -N(Q)S{[ @ ]26 n-aa ]2+ [ n-aa ]2}/[ n ]2
Since by (5.3), I: naa ] / 5 S 2, with z=(a—1)ad+a(n—d—aa+a)=(a—1)a(d—a)+
a(n—d)>a(n—d) and [1 ]Za_2°’“, we have .N'(g)sél—y+§71a—a, where y=a(n—d—a). Suppose
|9|=5,9,15,21,31, or 63. Then g has a simple submodule of dimension a>4. Thus 2a>d, and

1 1 1
daa’ 2—ﬁ+2daa}527 if d>2 If

y=a(n—d—-a)24(n—7§‘—%)=n. So we have that N(g)<maz{—L

d=1, then those statements follow from (7.1)(a) easily.

271 8 —1_
571 <28.

If d=2 and a>2, then .N'(g,2)={ +[ "‘20’] }/ —{——1—<21 ; and for a=1,

Suppose |g|=3. So g is of type 2*1""2*, If d=1 and a>4, then N(g)<

1 l
N(9,2)= {1+[ n32 ]}/ 2_ 2(n—2)+24——262+ Similarly, if d=3 and «>2, then

NS bt gta<ss and  for o=l N(e3)={[ "7 ]2+[ "s? 1,}/[3],<

min{a,3]}
+1l< -},—2+l6. Suppose d>4. We have N(g,d)< Y [ n- 2"] / and
1=0

28= 39173
)223(0-5) d =2i+(d=-2i)(n—-d- 2a+2|)/2d(n d) L

for i21, [¢ 22[ "QMJ/ ( <o

because d(n—d)—-2i(a—z')-—(d—2i)(n—~d—2a+2i)—dz2z'(n~— d—a+i)+2(a—i)(d—2i)—d>

2"—1

2(n—d—a+i)—d>2(B—d+i)—d=n—3d+2i>17.  For i=0, ["-20]/ )< 1 -1§

Hence N(g,d)s% 2135217 for d>4.

n-3(a;+ay)

Suppose |g|=7. So g is of type 3?]3;21 If d=1 or 2, then N(g,d)<

[ n-3(ag+a3) :I / 2__—33—(W, which is <2— if a;+@,>3 and d=1; or a;+a,>2 and

d=2. For d=2 and a;+a;=1, we have that N(g,2)=[ "3 ]2/[ 2<216 If d=3, 4, or 5,

wen =], e Gl e e L)
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[3]2522,12-12‘*'23(%&%) It d=6, then 'N-(-"’ﬁ):{[all]zs[al?]f"'

1
—9"
[l Lm0 Tp+{sel, [ = D a2 ]} /[e],<

1
5—7

2 1
94n—26 +22n-15 + 1s(a1+a2)

(7.5) Suppose |g|=2%s with (2,s)=1, e>1 and s>3. Then N(g)S% unless one of the following
holds:

(a) |g|=6, d<3, and N(g)<26++,, Z,L for d=2, 3 respectively.

232
(b) lg|=10, 12, 14, 20, 24, 28, 30, 42, 60, 62; and d=1.

Proof. By (7.3) and (7.4), e<3 and s=3,5,7,9,15,21,31, or 63. Suppose e=1. For |g|=6, as

N(9)<N(g%), by (7.4)(a), d<3. Since we have that v=dim{C/(g)} <n—3, for d=1, N(g)521—3.

If d=2, then by (7.4)(a), ¢° is of type 2'1”2%, because otherwise .N'(g)S.N'(gZ)S-él?. So

dim{Cy(¢)}=n—2. Also z=L(dim{Cy(s*)}—v)<i(n—1). Thus by (7.1)(b), N(g2)<

{m* v+ [z]22}/[3]255175+2,}_1+2,}_152ls+#. If d=3, then by

(6.4)(a), N(g)gx(g2)g-2%+zi32. For |g|=10, 18, 30, 42, 62, 126, by (7.4) we have d=1; and

by (7.2) for |g|=18 or 126, we have N(g)521—7. For |g|=14, we have d=1 or 2. If d=2, then by

(7.4)(c), ¢° is of type 3'1"3. So by (7.1)(b), N(g,?)ﬁ{[ n3d ]2+2"'1["'f'":|2}/['2‘]2_

1, 1 1
98 T gn-1S57

Suppose e=2. For |g|=12, as N(g)<N(¢*), by (7.4)(a), d<3. Since we have that
v=dim{Cy(g)}<n—4, for d=1, N(g)< -13 If d=2, then by (7.4)(a), ¢* is of type 2'1"72
because otherwise .N'(g)S.N'(gz)SE-i. So dim{Cy(¢°)}=n—2. Also by (7.3)(b), ¢° is of type

3121175, 311"3) or 4'1"1.  So z=%(dim{C’V(ga)}-v)S%(n—-Q). Thus by (7.1)(b),

—4 —1[ n-2- 1 1 . TR
.N'(g,2)5{[ n- ]2+2u [n 2 v 2 22} / 28+2n_1+2n_15—. Similarly, if d=3,
then N(ﬂ)Sél—r For |¢|=20, 36, 60, 84, 124, 252, by (7.4) we have d=1; and by (7.2) for

|g|=36, 84, 124 or 252, we have .N'(g)52l7. For |g|=28, we have d=1 or 2. If d=2, then by
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(T.4)(c), ¢* is of type 311" So by (T.1)(b), N(s2)<{[ "5° J,+27[ n-i*—vjz} /[3]2_

1
n-l-<—-2_7'

Suppose e=3. As |¢°|=8, and N(g)<N(¢*), by (7.3)(a), d=1. By (7.2), for |g|=8s

with s=5,7,9,15,21,31,63, we have N(g)ﬁ%. So it left only |g|=

7.6) If d>2, then U(g)<27. 1 4 1

Proof. Suppose d>2. Then by (7.4), (7.5), and (7.6), we have N(g)< 51—7 except possibly when
|91=2,3,4,6,7; and in which cases, N(y)5#+-2%, -21—4+#, 2%-}-2—:1,-5, -21—6+2—%i, % respectively.
So ‘u(g)fl |{1+¢(2)(22+231)+¢(3)( +2sz)+¢(4)(24+232)+¢(6)(26+231)+¢(7) 26+

|l
sNGgIsh@ed+lt 2 so<h Ll

7
d||g|.d>4,a#6,7 I d||g|,a>4,a#£6,7

(7.7) Assume d=1. We have the following upper bounds for AU(g):

(a) Suppose |g| is odd:

(i) (lgl,21)=1, Ql(y)SI%ﬁ%.

(ii) 39| but 7f|g], or 3/|g} but 7||g|,°u(g)5§_é.i+

1
lgf ~ 16°

vas —7 l _l.
(iii) |g|=0(mod 21), U(g9)< 16y +1g-

(b) |¢g|=2° and €23, U(g)< —g I%I“Lz%'

(<) 2llgl but |gl#2°:
(i) 411, 3/1gl and 7Ylgl, W(9)<-
(i) 4llgl, 3f1l and 7 1gl, U(D)<T b+
(i) 4f1gl, 3ll9] and 7Y1gl, W< L+

<7.1., 1
(iv) 4/|gl, 3/lgl and 7]|g], U(g) <] e
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(v) 4llgl, 3llg| and 7J{g], U(g)< %
(vi) 4gl, 3llgl and 7]lgl, U(g)< % |L+%,
(vil) 4llgl, 3]lgl and 7llgl, (o) <o+

<21,

8

(viii) 4/|gl, 3[lg| and 7||g}, U(g)<

211 .1
In any case, we always have U(g)< 8 lgl+16.

Proof. For example, we show part (viii) in (c). So |g|=0(mod 84). We have by (7.2) that

1 o o 1o o o
“l(y)=|-g—|{1+¢(2)N(9 2)+¢B)N(93)+6(4)N(g %) +8(6)N(98)+S(TIN (g7 )+

|s] |g|—14
N(od <l 1+_1.+2.l+2.l+2.l+6.l + g L =Zl.l+l.'
dIIgI,d>Z4,d¢6,7¢(d) (GIN<pg(1+g+2-g+2- 3+ 25 +6-g)+ =15 =% [ 16

<211, 1
(7.8) For 1<d<6, we have U(g)< 3 Igl-l-lﬁ.

Proof. This combines (7.6) and the last statement in (7.7).

In the following, unless we explicitly change the definition, v; denotes dim{Cy/(g;)} for
¢;€S. In particular, v; is the number of Jordan blocks of g; when g; is unipotent. Also when
we write U(g)<bd, it means that it holds for any d with 1<d<6 unless it is mentioned

explicitely what specific value of d is under consideration.

(7.9) (a) Suppose |g|=2. If d=1, then U(g)< % 2 for transvection and non-transvection

respectively. If d>2, then ‘U.(g)<5 232, g -217 for transvection and non-transvection

respectively. If d>2 and dim([V,g])>3, then U(g)<5 1

__1__33

(b) Suppose d>2. Then for |g|=3, 4, and 5, U(g 5§+ < respectively.
8 160

1 _ 1.
3.261’ 32 232
If |g|>6, then ‘il(g)<128 If |g|=3 and g is not of type 211”72, then ‘U(g)g%— If [g9y=4 and ¢

is not of types: 3'211"~% 31173, 41174 then ‘i!.(g)<256 2%

() For |¢1>3, W(g)<]. For |¢|>42, U(g)<}-
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(d) Suppose d=1. If |[¢g|=5 or |g|>7, then ‘U.(g)gi.

(e) Also we have bounds of U(g) for g of certain orders:

|9l U(g) lgl U(9)

41 57/656 40 17/160
39 5/52 38 15/152
37 53/592 36 1/24

35 1/10 34 7/68

33 9/88 32 111/2048
31 47/496 30 17/160
29 45/464 27 1/9

26 3/26 25 41/400
23 39/368 22 389/5632
19 35/304 17 33/272
16 13/128 13 316/4096
11 47/512

Proof. The first part of (a) follows from (7.2) immediately. If d>2, then by (7.3)(d),
N (g)_231+212, 2:1,04-513 respectively. Thus we have the second part of (a). The third part of
(a) also follows from (7.3)(d). Part (b) follows from (7.4)(a), (7.3)(b) and (d), (7.4)(b) and
(7.6). For example, if |g|=3 and ¢ is not of type 2'1"7% then by (7.4)(a),
‘U.(g)< (1+ 7)—192 If |[gj=4 and ¢ is not of types: 3!2'17% 3173 4'1"~% then by
(7.3)(b), N(g)<i g7 this together with (7.3)(d) gives U()< 4{14-(22+231)+27}—256+2},3
For part (c), by (7.8), if g6, then U()<Z-1+L=1 1t |g=5, then by (T.4)D),
"U,(y)<5(1+24)—1. If |g|=4, then by (7.3)(b) and (c), %(g)gz(1+%+§—2)=%. If |g|=3, then
by (7.4)(a), q.L(g)_<_§(l+%)=-12-. So the first part of (c) holds. Similarly, the second part of (c)

follows directely from (7.8). For part (d), suppose d=1. If |g|>14, then %(9)52_81'1171-'—1%:11_1'
For [g]=13, 11, 10, 9, 8, or 7, by (7.7) we have l11(g)<22098, 12776’ %, 2%, i, % respectively. For
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lg|=12, we have %(9)511—2(1+%+22i+%+-22§+%)=%; and for |g|=>5, ‘U(y)<5(1 %) }—1 by

(7.2). Since ma.x{22098, 12776’ %, 2%, Z}—4’ (d) holds.  For part (e), except for |g|=36, 32, 22,

16, 13, and 11, by plugging in the formulars in (7.6) and (7.7) directly, we imediately have
those bounds. For |g|=32, since ¢ has at least one block of dimension 2>17,
dim{CV(yz)}gn—IS, dim{Cy(¢*)}<n—13, dim{CV(y4)}5n—9, so we have U(g1)<

B+t Aokt o= <glk Ao for d22, by (73) Ueds

:%§(1+%+2H_;,8+—1—6)=2101—418. It is similar for |g|=16. For |g|=13, since the smallest positive

integer ¢ such that 13|2'—1 is 12, ¢ has at least one non trivial simple submodule of dimension

12. As d<6, N(g,)<[ "3V ]2 /[3]25§1_<# Thus ‘U(g)<13(1+ 2)=318. Similar for

lg)=11. For |g|=36, g* has at least one simple submodule of dimension 6, and thus ¢'% has at
least 3 simple submodules each of dimension 2. So N(g), N(¢?), N(¢*), N(¢*), N(¢°), N(¢'?)
are all S% by (7.2) for d=1 and by (7.4)(a) for d>2. Thus U(g)<
2 2+2+6+4+6+12)= 1

53 % 24 For |g|=22, since ¢° has at least one simple submodule

of dimension 10, N(g), N(g°) both <21 for any d with 1<d<6. Thus U(g)<

+

L4l
36(1+5+

10

22(1 +5 +21100+21o) =389 .

(7.10) |S]<5.

Proof. Let r=|S|. By (7.9)(a) and (b), for all gGG#, Ql(g)g%. Thus r—2<3y° °U.(g)< r,
ges
which gives r<7.

Let a be the number of transvections in S. Then we have r—2<3" CU,(g)<3oz+(r— a)5
geSs
which gives a>3r—16. Further as n>r—1, G is not generated by r—1 transvections, so

a<r—2. Hence r<6.

Suppose r=6. Then as 3r—16<a<r—2, we have a=3 or 4. Let 8 be the number of

involutions in S which are non transvections. Since r—2<2 "U.(g)<3a+5 ﬂ+2(r—a B3), we
geS
have 4r—16 <2a+ 3, which implies that either =4 and #>0, or a=£=3.



39

Suppose a=3 and assume without loss of generality that g;, g5, g3 are transvections

and g4, g5, g¢ are non transvection involutions. Then we have 4<E "U,(g)<9+2 2{1+.N' (9}
15+E N(g,), which implies at least one i, say i=4, is such i;h:tG N (g4)>12 But this forces

d=1 and n—v,=2 by (7.3). Then we have Edcm{[ ,g,]}<5+2<n, contradicting

G= (gl" . '795)‘

<n,

5
So a=4 and #>1. Say g5 is an involution. Then we have ) dim{[V,g,-]}§4+'—2’
i=1

contradicting G=(g,, ...,95)-

So |5|<5.

(7.11) || <4.
Proof. Suppose |S|=r=>5. Assume first that d>2. As there are at most 3 transvections in S, we

have by (7.9)(a) and (b) the contradiction E‘ll(yi)53-(§+§%)+2-(% —=-)<3. So d=1.

531
Let o be the number of transvections in S, and 8 be the number of non-transvection
involutions in S. First suppose a+ 3=5, i.e., all elements in S are involutions. Since ¢=2 and

=1, we have |2|=|G/H|=2"—1. The condition z:c(g,) (r—2)|2|+2 thus implies

$=1

d
§+l}5:2 *1 =3+572—, and this 9"i=9"48. Without loss of lit
975 = 1» gives E + ithout loss of generality, assume

i=1

v;>-->vg. Then 2°%|8, which gives v5<3. But Vszl'%]. So as we assume n>33, not all

elements in S are involutions.

Similar as in (7.10), since 4r—16<2a+ 3 and a+B+#5, we have a+3=3 or 4, and

a>1. Also clearly a<3.

Suppose a=3, say g¢;, g5, g3 are transvections. Then by (3.3), |g4] and |gs| are both
73‘ 11, which implies that "U,(g,)<21 -11 l(i 15736 for i=4 and 5. Then the contradiction

*i
Y U(g;,)<3: 3+2 176<3 shows that a=1 or 2.

Suppose a=2, say g¢,, g, are transvections and g3 is an involution. Then u,._<_%+2 for
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1
3.213'

i=4 and 5. Thus for i=4 and 5, if |¢;]=3, then ‘il(y,-)s%)(l 51 Similarly, for

lg;|=4, 5, or 6, we have U(g;,)< ‘g % % ;12, % 39 1 3 Tespectively. If {g;|>7, then
Tyv_ T

“U.(g|)< 116 173 Since ma::{3 ; % 2% %4_5 ;12, 1 1 » 15} =1g We have that

if a+p=3, then Y U(g;)<2- 4+g %:3 If a4+pB=4, say g, is an involution, then

va+vys<n+2. Since vz and v, are both 2[!—2'], we have v; and v, are both

5n—|’%‘|+25n—4, which gives that AU(g;) and U(g,) are both 5%(1+-l—4)=:1—3%. Thus

Hence a=1. If f=2, then E%(g,—)s%+2-g+2-%<3. So #=3. Say g¢; is a

transvection and g¢,, g5, g, are non-transvection involutions. Then there is at most one g¢; in

{92, 93, 94} with »;=n—2. This implies E%(gi)§%+g+2-% %:3

Therefore r<4.

(7.12) If Sis of type (2,2,2,k), then d=1 and 3<k<6.

Proof. By (2.3), not all ¢,>s in S are involutions, i.e., ¥>3. As G=(g,;, ...,93), we have

vi+v,+v3<2n. Also as n>33, there is at most one element among {g;,95,95} of types 2%172*

2 65
27 =192

for |g,]=3 as g, is not of type 21”72, Hence by (7.9)(b), cU.(g4)<ma:v{192, 2—13— 160°
129

— 1
128} ~33, Which gives the contradiction Z‘ﬂ(g,)<(8 2)+2 256+( +232) If

with 1<a<8. Suppose d>2 first. If there is a transvection, say ¢,, then ‘U,(g4)<3(1+
+

there is no transvection in S, then we have by (7.9)(a) and (b) the contradiction
17,1 129

Since n—1>v,;>2 V1<i<3, 2"142"242"3 achieves the maximum when {v;, v,,

+1y<88l  For  k>15,

3
vi}={n—1, 34-1, }; and thus _El‘l,l(g‘.)sg,;_%(%.*. —
1=

NS

U(g)<Z -+ & =8 by 1.7). 1t k=14, U(g)<T-L+ k=3 by (7.7)()v). Similarly, for
27 g 19 3 29 27, 19
k=13 and 11, we have respectively ‘il(y4)<208 i7g- Since maz{ ' 16" 308" 176}—80’ we
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have Z‘U.(g, S2i —8-—9 <2, a contradiction. So k<10 or k=12.
=1
If there is no transvection among ¢,, ¢,, ¢35, then n—22u,-2'§' V1<i<3. These three

conditions plus the condition v;+v,+v3<2n implies that maz:{2u1 +272 +2”3} =

ml:

oy

)_42

n—2 , o3+2
27742277422, 25

(=

Hence za:%(gi)$§+l(—1-+ ,,1 +
= 3+t o

N
S

Suppose k29, by (7.7), U(g,) <% §+7=1L. Also by (7.7)(b), for k=8, U(g,)<3.

<421

<355 + 1 <2, a contradiction.

4
So if there is no transvection among g;, ¢,, ¢35, then ) U(g;)<
1=1

Thus for k>8, one of ¢;, g, g3 is a transvection. Then this implies that v,< %+1, and thus

N(gq)< 31_15%' So for k=12, we have W(gy)={5{1+N(5)+2N(gd)+2N(g3)+2N(d})+
2

4N(94)}Sﬁ(1+%+%+%+%+i)=1—5-. For k=9, as ¢3 has at least 3 simple submodules of

(V)

dimension 2, we have °U.(g4)<9(l+~2—6 %) For k=10, as [g2[=5, we have that N(gi)g—l‘i,

1
8
and thus U(gs)=15{1+N(6}) +4N () +4N(9)} SJ(1+§+{G+35) =Tgp- For k=8, as ¢} is
not of type 31"7%  dim{Cy(¢})}<n—3. So .N"(g4)_23, and  thus
U(gq) = {1+ N (g9 +2N(e) +4N ()} <F+1+2+ )—m' Hence for k=8, 9, 10, and 12,
‘U,(g4)<maz{128 & %— (15_5}=64’ which gives Z‘il(g,)<45l 15911 +9 4 contradiction. So
k<7.

Suppose k=7. If one of g¢,, g, g3is a transvection, then 1@5%-}-1, and thus

N(94)<

51'5' Then °U.(g4)<7(1+ 6)_ 350 and we have E‘U,(g,)<4g1 +2=8l,9 ,

9
A 327256

n_
27

2

contradiction. So no transvection in S. Since we always have cU.(g)g%(l g) + for [g|=7, in

this case, we have Z‘u(y,) 4-2-l+}1=25ig<2, a contradiction again. So k<6.

256
(7.13) S is not of type (2,2,2,6) for d=1.

Proof. Denote a=dim{Cy/(¢3)} and B=dim{Cy(¢2)}. Since |2]=2"—1 and Z‘il(g‘) 2+|[22|

_ 2 3 2—1112—122-—122—1
_2+2——,,__1, we have 5 22 " +6+6 L. +6 5 +6 o =24

2 _ This identity can be transformed to 2"*!—2%—3(2" 1+2"2+2”3)=2""1+2"““—24.

2"—1
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vatl

Suppose v, >3. As A>v,, 2¢ divides 2"*1—27—3(2"14+2"24+2"3)—27*' _9"4™". which implies

vytl

24|24, a contradiction. So if n>8, then v4,=0, 1, or 2. Suppose v,=0. Then 2'B+1+2 —24

=2(2p—11). So for n>6, we have 4|(2ﬂ-—11). But 2°—11 is even only when S=0 and in

which case 11—2°=10. Thus for n>6, v,7#0. Suppose vy=1. Then 2'3+l+2”4+1

—24=
p—-1 B-1 A-1 . H

4(2"7 " —5). So for n>10, we have 8|(2"  —5). But 2°  —5 is even only when #=1 and in

which case 5—2°'=4. Thus for n>10, v,#1. So if we assume n>10, we must have v,=2.

vatl

Then 2°*' 424" _24=2°*'_16. Thus for n>10, 2°|(2°*'=16). Then B>4 and B=2 give

contradictions. So for n>10, we must have »,=2 and #=3, in which case 2ﬂ+1+2”4+1—24=0.
That is for n>10, we have 2"*!—2°—3(2"14+2"242"3)=0. Now if g, and ¢} are both
transvections, then v;=n—1=a. Thus 2"“—2“—3(2”1-{-2”2-}-2”3):—-3(2”2+2u3)<0 and
this contradiction shows that g; and g3 cannot both be transvections. If g, is a transvection but
g3 is not, then v;=n—1 and a<n—2. Thus 2”'252"+1—2"—3-2”123(2”2+2ua). On the

other hand, since v, +v,+v3;<2n, we have v,+v3<n+1. This together with V,-Z% gives {v,,

Va}_—_{g, g+1} if n even, and {E;-—l, ntly jp n odd. So either 2"~ 2<3(22+2§

> ) or

n+i n
+1 B

n-7
2"2<3.2 ? 77, which implies either 2

2
<9 or 2 2 <3 So if n>11, we have a

contradiction. If no g;, 1<i<3, is a transvection, then v;<n—2, and we always have a<n—1.
Thus 2"—15%(2"“—2°’)=2”1+2”2+2”3. Then at least one, say v;=n—2. So 2"~2<2"242"3

Since v;+v,+v3<2n, we have vy+vz<n+2. This together with n—2>v,> % gives
vy va3 % §+2 . %‘2 . . . . .
2 °42°<2°42 if n>8. Then we have 2 <5, which is a contradiction if n>10. So in

conclusion, we have that if n>11, then S is not of type (2,2,2,6).

(7.14) S is not of type (2,2,2,5) for d=1.

Proof. We have % 122,, —1+5+g 22,, _'1--2-{-2 2 = This identity can be transformed to

2"——5(2”1+2”2+2 )=8(2 *—5). If n>12, then v;>6 V1<i<3. Hence 2° divides the left

hand side of the equation. Then 8|(2"4--5). But 2°4—5 is even only when v,=0 and in which
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case 5—2 *=4. So we have a contradiction. Thus if n>12, then S is not of type (2,2,2,5).

(7.15) S is not of type (2,2,2,4) for d=1.

Proof. Denote a=dim{Cy/( 9} Similar to the above, this time we have
3 V
% % ; =1 + + }1 -g—:-—'—l -i% 22—,,— =24 72— 7% 2 i This identity can be transformed to

2m—2(2"14+2"242"3)—22=16(2"*"°—1). If n>10, then a and »,>5 V1<i<3. Hence 2°
divides the left hand side of the equation. Then 2](2”—3—1). This implies v,=3. But if

n>13, then v,>4. So for n>13, § is not of type (2,2,2,4).

(7.16) S is not of type (2,2,2,3) for d=1.

Proof. We have 5 + 5 2 2" TNy ~1 + 1 +2 2741 =245 This identity can be transformed to

373 2" 1 2 -1
2" —3(2" 42”2 42"3)=g(2"4~ 1—3). If n>10, then v,>5 V1<i<3. Hence 2° divides the left
hand side of the equation. Then 4|(2y4_1—3). But 2”47 is even only when v4=1 and in which

case 3—2"4_1-:2. So we have a contradiction. So for n>10, S is not of type (2,2,2,3).

(7.17) Suppose |S|=4. Then there are at most 2 involutions in S.

Proof. This combines (7.12) to (7.16).

(7.18) Suppose |S|=4 and S has 2 involutions. Then d=1 and S is one of the following types:
(2,2,4,6), (2,2,4,4), (2,2,3,4), (2,2,3,3), or (2,2,3,6).

Proof. Suppose without loss of generality that g, and g, are involutions. Suppose d>2 first. If
9, and g, are both of types 2°1"~2% with a<3, then for |g;|=3, i=3 or 4, g; is not of type
2'1772, So as in (7.12), %(gi)gé—% é%i’ which gives the contradiction E‘U.(g,.)SQ‘(%’—}-i%)-k

2-(%’—%+-2—},,5)<2. If there is only one among g;, g, of type: 2°1"~2% with <3, then we have the

contradiction E‘ll(g,-)_<_(§+2%2)+§§g+2 (8 )<2. So d=1.

26]
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Suppose for i=3 and 4, |g;|#3, 4, and 6. Then by (7.9)(d), we have the contradiction

4
E‘il(gi)52%+2-‘l1=2. Hence one of g3 and g, has order equal to 3, 4, or 6.
=1

First suppose that both g, and g, are transvections. Then by (3.3), |g,|>[ 1>17 for
4

i=3 and 4. Thus (7.9)(d) implies 2%(g,~)_<_2-%+2-%:2’ So there is at most one transvection
=1

among gy, g3.

Without loss of generality, suppose that g, is a transvection. Suppose |g3]|=6. As

<Ll g is a

vi+vy+rvs<2n, vi=n—1, uzzg, we have V3$g+l. So .N'(g3)< 2S5

2
transvection, then dim{Cy (g;)NCy(92)NCy(93)}> % —2, which implies dim{Cy (g3)}< % +2

<l

<Ll ¢3 is not a transvection, then N(g3)< i So whether g; is

- 23

and in this case N(g2)< ,,
25
a transvection or not, we always have .N'(gg)+2N(g§)§maz{%+2, }-1+%}=% Hence

°U(ga)<6(1+3+ 2) 15— As maz{-l%, %}:-1%, we have that if |g3| and |g4| are both >5, then

Z:I‘U.(g,-)s%+g+2-i%::2, a contradiction. So one of the elements in g3, g4 is of order 3 or 4.

Suppose that |g3]=3 or 4. Since v;=n—1, we have v,+vz<n+1. As 2 5<vy<n—2,

0<rvz3<n—2, we have that 2"242 3<2"_2 3 and 1 2" -l-% 2"3<% 2n2 g 3-23. This implies

%{N(g2)+.N'(g3)}5%+2n1_2 for |g3|=4; and 2.N'(g2)+2N(g3)}< +3 21 —; for |g3]=3. So

)=%+2n1_2 for |g3]=4; and

1 __41
32”4_4

g
=
~~
Q
2 .
1A
»Nw >
wln-a

:1‘; %N(gz)'*‘ 3N (g3)< —g -1-3021,.,_4 for |g3|=3. So in either

WIH

3
cases, we have 2 (g,)<7 321n 5+ For [g4]>15, we have U(gy)< 2-81 %+%=%2. If

l94] =14, 13, 11, 10, or 9, then ‘1!.(94)5-3- 29 27 1 5 respectively. As ma:c{]‘-g-, 1;36-’ 52028"
2 —5-} 19 we have i'i.l.(g-)<Z —1_+ 1949 a contradiction. So |94] <8 or |g4|=12.
176’ 5’ 24 0 = <zt 3.97—4" §0 94 94

Since vy +v,+v,<2n and 351/2, we have V4S%'+l.

(=

Sl

—231-1' So for |g4|=12,

la4l,2,2,2, 4 y 11, 1 imi 1 =1
U(g)Spp(l+5+5+5+H§5+55)<z5+ 5 Similraly, cu(g,,)gg+2%_l, where =g,
for |g4|=8, 7, 5 respectively. For example, §=312 for |g,]=8 is because g2 is not of type

L
il
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31", Thus N(g})<} and U(g))<F(1+1+E+— 1)5:_)’77_,_231_1_ As maz{1l, % 3 {l)}z%,
we have S U(g)<T+ Lo+ P+ =34+ 1 1 %, 1 4 1lco s <4
? E (9:)< 32"“‘4"18+2_"5_‘1 8F g i TasT 3P o ° loal<

or |g4|=6, i.e., S is one of the following types: (2,2,4,6), (2,2,4,4), (2,2,3,4), (2,2,3,3), or

(2,2,3,6).

Now suppose none of ¢, g, i8 a transvection. So U(g;) and U(g,;) both Sg. If one of

g3, g4 is not of order 3, 4, and 6, say g3, then ‘U.(g;,)s% by (7.9)(d). Hence we have the
4

contradiction Z‘U.(g,.)§2-g+%+%=2. So again S is one of the following types: (2,2,4,6),
i=1

(2,2,4,4), (2,2,3,4), (2,2,3,3), or (2,2,3,6).

(7.19) S is not of type (2,2,4,6) for d=1.

Proof. Suppose S is of type (2,2,4,6). Denote a:dim{CV(gg)}, ﬁ::dim{CV(gi)},

— 2 2 12”'-—1112“—122 —1,1,12°-1
vy=dim{Cy(g3)}- We  have 2§ +itir gt s st a1t
%gn_l-l-s 2,.—_1—2+2 2 -1 This identity can be transformed to 7.2"—3.9% 9P+ _

6(2"1+2”2+2v3)=27+2+2"4+2—48. Suppose v4>3. We have v3>4 as |g3|=4, and also «, 3,

vy, vy all 22>16. As B2v,, 2° divides 7.97—3.2% 2P+ _g(2"1 422 4.2"%) 27+ o',

which implies 25|48, a contradiction. So »v4=0, 1, or 2. Suppose v ,=0. Then

2-y+2 va+2

+2 —48=4(2" —11). We have 4|(2” —11). But 27 —11 is even only when y=0 and in

vat2

which case 11—27=10. Thus v,#0. Suppose v,=1. Then 27+ 49 —48:8(27_1—5). As

v3>5, a, B, v, v, all >8, we have 8)(27 "' —5). But 277 —5 is even only when y=1 and in

which case 5-2""'=4. Thus v, #1. So we must have wv,;=2. Then

vy+2

272 12"47"_48=2"*?_32. Thus 25|(2"**—32). Then 7>4 and y=2 give contradictions.

va+2

So we must have v,=2 and y=3, in which case 27*2 19 —48=0. That is we have

2" —3.29 2P _g(2"1 4224 2"3)=0.  Since v,+v,+v3<2n, B<vi<n—1 for i=1, 2,

3n n
<vg<n—2, we have 2°142"242"3<an 1191 9% G 3.07 9P 62" 4272 12"%)<

]
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3n o 3n_ o 2.1
3271497 +3.2" 4+ 3(2 ¢ "'2+24+1)=5.2"+2"-1+3(2 ot +24+ ). But when 2>16,

3n n

3% 4 9<n—2 and thus 27 +2%7 <2""L Then 3-2° 427" +6(2" +2"242"%) <527 2"

+3-2""1=7.2", and this is a contradiction. Therefore, S is not of type (2,2,4,6).

(7.20) S is not of type (2,2,4,4) for d=1.

Proof. Suppose S is of type (2,2,4,4). Denote a:dim{CV(gg)}, ﬂ:dim{CV(gi)}. We have

Lple2io1 119012231 1.12°-1
2):“, ++,,+421++,,+

0|

This identity can be transformed to 2“'1+2p—1+2y1+2”2+2'l3+2”4—

2" 4+8. We have v5 and v, both >4, and also «, 8, v,, v, all > % >16. Thus 2*|(2”+8). This

is a contradiction. So S is not of type (2,2,4,4).

(7.21) S is not of type (2,2,3,4) for d=1.

Proof. Suppose S is of type (2,2,3,4). Denote a=dim{Cy(43)}. We have

”i

+142.2 —1112—122—1 2 s .
gty gy tita g3t 9 2+2 = This identity can be

2
1433 5=
transformed to 3-2°’+6(2V1+2y2+2"4)-—5-2"=16(3—2V3—1). We have v,>5, and also a, vy,
vy all > % 16. Thus 22|(3—2”3'1). But 3—2"37" is even only when v3=1 and in which case

3-2 v3i =2. This contradiction shows that $ is not of type (2,2,3,4).

(7.22) S is not of type (2,2,3,3) for d=1.

Proof. Suppose S is of type (2,2,3,3). We have 1+2: -1-3-|-2 22,, _1—2+2 2 . This

identity can be transformed to 3(2°1+2"2)—2"*'=24—4(2"3+2"%). We have both v, v,>2,
then we have the contradiction 2*|24. So one of vi, vy, say v3<l. If vy=0, then
24—4(2y3+2”4)=4(5—2y4). Then n>10 implies that 23E(5—-2”4). But 5—2"* is even only
when v,=0 and in which case 5-—2"%=4. So we must have vz=1. Then

24—-4(2"34+2"4)=4(4—2"*). Thus we have 23|(4—2"%), which forces v,=2. But vz3=1 and
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v,=2 cannot occur at the same time, because for |g|=3, every non trivial simple submodule is

of dimension 2, and thus v3=1 implies n is odd, while v,=2 implies n is even. So § is not of

type (2,2,3,3).

(7.23) S is not of type (2,2,3,6) for d=1.

Proof. Suppose S is of type (2,2,3,6). Denote a=dim{Cy(g3)}, B=dim{Cy/(¢5)}. We have

142°-1.1,223-1.1, 1.2°-1 2271
143 oy t3+t3 oy te e 1T o1t

%-2”4_1=2+ 2_ . This identity can be transformed to 3(2”1+2y2)+4-2y3+2-2v4+2°'+
=3.2"4+24. If v;=n—1=v,, then 3(2"14+2°2)+2°—-3.2"=2°>32 for n>10 gives a
contradiction. So say without loss of generality that —2’551/1§n—-1, gsyzgn—l Also we have
0<vz<n—2, vi+vy+v3<2n. Thus similar as before, we have 3(2y1+2u2)+4-2”33
3(2" 1 4+2"2)4+4.23=9.2""2132. Suppose v,>4. As f>vy, if n>10, then 2°|(24—4-2"3),
which cannot be satisfied. So v4<3. Then as a+pf<n+v,<n+3, we have
2% +2°* <on=14 95 Hence 3(2°1+2°2)+4-2"3+2.2"4 42+ 2°* <9.27~2 4 32+ 164271 25

=11.2""2480<3-2" +24 if n>8. Therefore S is not of type (2,2,3,6).

(7.24) Suppose |S|=4. Then S has at most 1 involution.

Proof. This combines (7.16) to (7.22).

(7.25) Suppose |S|=4 and S has 1 involution. Then d=1 and S is one of the following types:
(2,3,3,3), (2,3,3,4), (2,3,4,4), (2,4,4,4).
Proof. Suppose without loss of generality that g, is an involution. Consider d>2 first. Then by

4
(7.9), Z%(g;)s(g+2—}3—2)+3~(%+ <2, a contradiction. So d=1.
i=1

3. 261)

If there is at least one element among g¢,, g3, g4, say g4, of order =5 or >7, then

4
CU-(94)S‘11 by (7.9)(d). Then by (7.9)(c), 2%(9{)5%+2-%+}1=2, a contradiction. So for i=2,
i=1
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3, and 4, |g,|=3, 4, or 6. Since for [g|=6, 'u(g)gg, there is at most one element among ¢,, ¢,

g4 of order 6.

Suppose S is of type (2,3,3,6), or (2,3,4,6), or (2,4,4,6). If g, is not a transvection, then
1
E%(gi)sg+2-%+%=2, a contradiction. So g, is a transvection. Then as both g, and g3 have
.'_

eigenspaces of dimension >Z 5 both v, and v3< 3n+1 which implies both N(g;) and

N(93)<

s 5:—217. So we have ’El‘il(g,)<3+g+x_g+r, where z=2 3(1-}- 7),
9 =

%(1+%)+}—1(1+%+%), 2.}1(1+%+%) for S of types (2,3,3,6), (2,3,4,6), (2,4,4,6) respectively.
4

In any case, 15%, which gives the contradiction Y U(g;)<2. So no element in S is of order 6.
i=1

Thus S is one of the following types: (2,3,3,3), (2,3,3,4), (2,3,4,4), (2,4,4,4).

(7.26) S is not of type (2,3,3,3) for d=1.

Proof. Suppose S is of type (2,3,3,3). We have 2+% 22,, _11-}—1+2 22,,—1 2+ 1. This
identity can be transformed to 3-2”1+4(2V2+2V3+2v4)=3-2"+24. If all vy, v3, v42>2, then
we have the contradiction 2*|24. So one of v, vy, say v4<l. First suppose v,=0. In this
case, as 3-2”1+4(2"2+2”3)=3-2"+20, one of v,, v, say v3=0. Now suppose v,=1. In this
case as 3-2”1+4(2V2+2”3)=3-2"+16, we have that one of v,, v3, say ¥3<2. So in any case we
have that 3.2°14+4(2"24+2"34+2"4)<3.2""1 4 4(2"2+2+42%)=5.2""1424<3-2"+24. So S is

not of type (2,3,3,3).

(7.27) S is not of type (2,3,3,4) for d=1.

Y1
Proof. Suppose S is of type (2,3,3,4). Denote a:dim{CV(gi)}. We have %+%-22,,:11+%+
3
P

6(2” +2y4)+8(2”2+2"3)+3-2°=7-2"+48. We have v,>5. Suppose both v,, v3>2, then we

y.
= +1 g"—i 3 22,, _]‘—2+2 2 —_l This identity can be transformed to

have the contradiction 2°|48. So one of v,, vg, say v3<1. First suppose v;=0. In this case, as

6(2"1+2"4)+8-2"2+3-2°’=7-2"+40, we must also have v,=0. Now suppose v3=1. In this
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case as 6(2°1+2"4)+8.2"243.29=7.2" 432, if v,>3, then we have the contradiction 2°|32. So
v,<2. Thus in any case, we have that 6(2°'+2"%)+8(2"2+2"%)+3.22<6(2" 42" %)+

8(224+2)+3-2""1=6-2"4+48<7-2" +48. So S is not of type (2,3,3,4).

(7.28) S is not of type (2,3,4,4) for d=1.

i 1,1, 2 1,22°~-1,2,12%-1
Proof. Suppose S is of type (2,3,4,4). We have 3 2 +3+3 +4+4 2,.__1+

B 4 oVi
l-u+%-z:2,,_11=2+2"2 7 where a=dim{Cy(¢3)}, B=dim{Cy(¢3)}. This identity
i=34 -

can be transformed to 6(2"1+2"3+2"%)+3(2% +2°)~8-2"=2%(3—2"2""). Since both v and
v4>5, and as 2° divides the left hand side of the equation, we have 22|(3—2V2_1). But

3—-2”2—1 is even only when v,=1 and in which case 3—2”2_1=2. So S is not of type (2,3,4,4).

(7.29) S is not of type (2,4,4,4) for d=1.

Proof. Suppose S is of type (2,4,4,4). We have %+% 22,, 11+%+i-§,,—_—1+}1-g,, %-i—
v 4 oYi__ . .
}-1-%7—:—%+%°i§22n_11=2+2n2_1, where a=dzm{CV(g§)}, ﬂ:dzm{CV(gg)}, and

v=dim{Cy/(¢3)}. This identity can be transformed to 2(2”1+2”2+2"3+2”4)+2°’+2ﬁ+27=
3-2"+16. We have v,;>4 Vi and also a, 3, v are all >5. Then we have the contradiction

25|16. So S is not of type (2,4,4,4).

(7.30) Suppose |S|=4. Then there is no involution in S.

Proof. This is the combination of (7.24) to (7.29).

(7.31) |S|=
4

Proof. By (7.9)(c), for any ¢ with [g[>3, ‘U(g)ﬁ%. Thus we have Z‘il(g,-)54~%=2, a
i=1

contradiction. Therefore |S|=3.
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(7.32) Suppose d=1 and S is of type (2,,m). Then we have the following bounds for

{:%‘U(gl)+‘u(g), where ¢ is either g, or g3.

|9l § lgl 3

28 47/112 24 41/96

21 183/448 20 69/160
18 71/192 15 5/12

14 57/128 12 233/512
10 521/1280 9 25/64

8 245/512 7 45/112

6 6179/12288 5 579/1280
4 321/512 3 299/512

Proof. In the following, denote v, =dim{Cy (g,)} and v,=dim{Cy(g)}.

Let |g=28. Then U< k+k=2L by (7.7). So if v,<n—3, then

—‘U.(gl)+‘U.(g)< +‘11 23+23214 15 BY (3.3), vy=n—1 is impossible, as we assume n>33. If

vi=n—2, then by (7.1)a), N(¢")<—1%

1 1 2 6 6 2 97
%(g)$2_8(1+2n—28+2n 14+2n——8+2n 4+ L 2)<28(1+2n 28+2n 15)< 17939 Thus

1 1.1, 97 _ 657 _47
FU(e)+u(g)<t+1 52 T 1792 = 1792 <112°

2" —;» because dim{Cy(¢")}<t(n—v,)=21 So

Let |g=24. Then W(9)<L(1+1+3+7+2+2+%+8)=F  Soif v,<n—3, then

8 ' 16 48
-°U.(g1)+‘i.l,(g) % % %+—7§=6-(1§. Similar to the previous case, ¥;=n—1 is impossible. If
— 1
vi=n—2, then N(¢')< Son-7 So %(9)521—4(1+2n1_24+2n2-12+2r:1—6+2n?-16+2n2—8+2n4—4
5

257 1 1411, 257 2117 a1
+ 302 S3q(1+gkz) Sgrgg Thus JU(0)+U(O) < F+ 555+ = 5141 <08

Let |g|=21. Then °U.(g)5—7~—1—+-1— by (7.7). So if v;<n—4, then

%u(gl)+m(g)5%+%,§13+% %% Since

dim{E}<7(n—v,), we have that v, =n—1 is impossible. If n—2>v;>n—3, then similar to the

" has an eigenspace E with dim{E}Zg, and by (3.3),

1 1 2 6 12 1025
previous case, N(9)<2n 3¢ So %(9)52_1(1+2n—21+2n 9+2n—3)—21(1+2n 23)<21504
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Thus lcU.(gl)-*-a‘-l'(!l) % % 2Lz+§1T05205—4=§7175%<%'

Let |g|=20. Then U(R<I-L+k=2 So if v;<n—3, then lU(g)+U(g)<
%4‘%-2%"'2%:16—90- Similar to the previous case, v;=n—1 is impossible. If v;=n—2, then
N(Q')Sﬁ. So ‘U-(y)<20(1+2" 2o+2n210+2"4 E‘4'2"4“ 2n- 2)“‘20(14—2" 21)<4200956
Thus 1‘11(y1)+°u(9) % % §1§+¢%=%<i§%'

Let |g|=18. As g¢? has at least one simple module of dimension 6, ¢° has at least 3

simple modules of dimension 2, which implies N(g), N(¢%), N(¢®) and N (96)5%. Thus U(g)<

1 1,2,2,.6_ 6v_35 : 1 1,11 .5 __171

I§(1+§+§—6+2_6+56+2_6)_E' So if v;<n—4, then 5‘11(91)+‘1L(g)51+ ?4'-—8 193 We

have that v,=n—1 is impossible. If n—2>r;>n—3, then similar to the previous case,
2 2 6 <L Thus

N(g‘)_<_§an3—t. So cU-(Q)Sls(l'*‘21;1_27'*'2n—18'*'2u—9"'27; 6+2n 3)< 8(1+2"-28) 192
5U(01)+ W) < f+1 25+ 15 =193

Let |g/=15. Since ¢° has an eigenspace E with dim{E}>2, and by (3.3),
dim{E} <5(n—v,), we have that v;>n—2 is impossible. So v;<n—3. Let 2°1%, 4°1¢ be the

types of ¢°, ¢° respectively. As G=(g1,g)=(g1,g3,gs), we have v;+b+d<2n. Then b+d53Tn.

This together with 0<bd<n—2, 0<d<n—4, gives that T25 2b+15 2 .gn- 2+14_5_2§+2. So
<l,11.1q,2, 4 . 8)_199, 1 i
3U(0) +U(D<F+5 pts(I+5rt a5 +50) =150 RS Uy
2 15-2
Let |g/=14. Then U(g)< <.l 1_3 goif vy <n—>5, then 1°u(g1)+<u(g)< +1.1
=414 "'1671 474 95

6
3 57 Similarly, if v;>n—2, then ’—2‘5dim{CV(g7)}$7(n—-—u1)_<_14, contradicting to

n>33. If n—3>v,>n—4, then N(¢' )_2n_4‘ So "U.(g)< (1-+-2”_.28-+-2"_8+2,1 1)<

57
<i2g

1 1 1
ﬁ(1+2n-29)52774 Thus JU(g,) +U(9) <3 +1- 2—+§1-771=

e

Let |g|=12. Suppose v;>n—2. Then by (3.3), %5/1:dim{CV(ge)}gﬁ(n—ul)SIQ,
contradicts to the assumption #>33. So v;<n—3. Denote a=dim{Cy(¢°)} and let 221° be

the type of ¢g*. As G=(g,,9)=(91,9°,9%), we have v, +a+b<2n. If b>n—4, then v, +a<n+4.

3—"-1-4

n vy 94 +_§2_ 2%‘

Since §<vi<n=3, 250<n 2, we have z.2 29< Since N(g)<N(g?),

e
=

+

-
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we have 1.N'(gl)+12{2.N'(g3)+4.N'(g)}<-—-L+1%- 3,., which implies that 1ClJ.(gl)+°U.(g)<
24 24

1,1.1.,1 1 2 .2 6 .1 _29, 1 _233

Z+21‘2—4+—2( 5 2—2+2—3)+ﬁ52—4—6—+2—25<—1—2 Now suppose that b<n—6. Thus

N <N(H<N(gH< _lé Since ¢g* has an eigenvalue of multiplicity >11, v;+a<2n—11.

This together with 351/1511—3, %’50:57:—2 gives l-2v1+%-2“5%-2" 9+12 2”2, Hence
1 2 2627 _233
3+ U<+t (gt S+ 5+ A+ =510 <5h5-

Let |g/=10. Suppose v;>n—3. Then by (3.3), g5p=dim{cv(g5)}55(n—u1)g15,
contradicts to the assumption n>33. So v;<n—4. Denote a=dim{Cy (¢°)} and let 4°1° be

the type of ¢*. As G=(g;,9)=(9;,9",9%), we have v, +a+b<2n. If b=n—4, then v;+a<n+4.
+5.gaglgr B g2+t
10 © —4 10

Since %Sulgn—fi, %Sagn—l, we have . Since N(g) <N (¢%), we

have 1.N'(gl)+10{.N'(gs)+4.N'(g)} }z L3, 1 which implies that we have

-‘U-(y1)+‘1l(g) ‘ll %#-i—ilﬁ(l 2124—24)—- 23—3<59ﬁ 15—% Now suppose that b<n—8.

Thus N(g9)<N(¢%)< Ls. Since ¢° has an eigenvalue of multiplicity >7, v,+a<2n—7. This

together with %‘gulgn—4, ggaSn—l gives %-2”1+1—16~2 %2" 6+110 271 Hence
s <«lyl 1. 1q,1.4,4, 521
‘*1(91)+‘11(y) <iti 2s+10(1+2+23+2s)—1 5

Let |g)=9. Suppose v;>n—3. Since ¢° has an eigenspace of dimension ng, and by
(3.3), p<3(n—v,)<9, which contradicts to n>33. So v;<n—4. Let 6°3°1° be the type of g¢.

Since a>1, ¢® has at least 3 simple modules of dimension 2, so N (ga)< Hence

25
Ju(g) +u(g)<i+1- atg+5+5=2
2\ =4 96 " 96/ 64"

Let |g|=8. Suppose v;>n—4. Then by (3.3), %szdim{CV(g4)}54(n—u1)516,

contradicts to the assumption #>33. So v;<n—5. Since v;+v,<n, %‘Sul, we have vzgg.

Hence §U(01)+U(9)<f+]-T5+5(1+5+ 5+ D) =Fh+ - <2

93 5 2%-«-1—512'

n
2

Let |g|=7. Let 3:13;21" be the type of g. Since g has an eigenspace of dimension >5,

vy<n—>5. Also as v,+b<n, ggulgn—& 0<b<n—3, we have ;11--21’14-9-2”5‘11-2"“5-&%-25. So
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we bave §U(0) + U <G+ 35 +(1+ ) =55 +rpnms <11y

Let |g|]=6. Suppose »v;>n—5. Then by (3.3), <d1m{CV(g3)}<3(n vy)<15,
contradicts to the assumption n>33. So »;<n—6. Denote a=dim{Cy(¢°)} and let 2°1° be

the type of ¢>. As G=(g1,g)=(g1,g3,g2), we have v, +a+b<2n. If b>n—6, then v, +a<n+6.

n n
Since !2-‘5111(1; 6, ’2‘Sa<n—1 we have %-2"1+% -2% 5% 22+§-22+6 Since N(g)<N(g%), we
have  IN(9)+HN()+2N(9<k-Li+3- -1,  which implies that we have
22 22

1‘“»(91)4-91(9)5% % 2l16'+%(1+2—?0+1)=%+m<-w. Now suppose that b<n—8. Thus

.N'(g)S.N'(gz)Szl—s. Since ¢° has an eigenvalue of multiplicity >11, v;+a<2n—11. This
together with g_<_1/15n—6, -2“51-2"“1°+%-2""1. Hence

n

2
1 1,1 1 ;14,1 2. 6179
U+ WD+ +i0++E+ D=5

Let |¢g|=5. Since g has an eigenspace of dimension >7, v;<n—7. Let 4°1° be the type

of g. Then v;+b<n. As %51/1511-—7, 0<b<n—4, we have %-2”1+%-2b5%-2"_7+%-27. So we

1,111 1157, 1 579
have %(g1)+‘u(g) ata s+ 1= 9560 * 5,979 <1280"

2n"

Let |g|=4. Since v,+v,<n, 2<V1<n 1 and <V2<n—-2 we have 4 2" +4 272 <

3n n
}—1-2 4 +121-24, and this implies that lcll(gl)-i-‘ll(g) % %-1—2 (1+ +-5a )<
24 2
_1_ 1 321
310 T 538 <573

Let |g/=3. Since g has an eigenspace of dimension >11, v;<n—11. Let 2°1® be the

type of g¢. Then v;+b<n. As gSVISn—-ll, 0<b<n—2, we have 1‘2"1_*_%.263

-i- "'n+§ 211, So we have 1‘i.l.(g1)+"u.(g)< +1 211+3(1+

Wl

1
11)<12+ ——<gl—2

2n- 913 7 3.921

(7.33) Suppose |S|=3 with |g,|=2. Then one of g,, g5 is of order 3 or 4 if d>2; and one of g,
g3 is of order 3, 4, or 6 if d=1.
Proof. Suppose d>2 first. If g, is one of the types: 2°1"~2% with a<3, then by (3.3)(c), both

|g.] and |g3|> >11, which implies that both U(g,) and U(g3)< —g Lyl =227 by (7.8).
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iction 5,1 227 ;
Then we have the contradiction E‘ll.(g,-)g(—+ﬁ,)+2 i 408<1 Hence g; is not one of the

types: 21"~ 2% where a <3, which implies that ‘U.(gl)< 9 by (7.9)(a). For |g|>8, (7.8) implies

256
that WU(g)< 167‘ %+%=3’L2. For |g;|=7, where i=2 or 3, g; cannot be of type 3'1"~2. Thus by
(7.4)(c), we have that qx(g,.)g%(1+§)<3l2. By (7.9)(b), for |g;|=5, U(g)<3D<L. For

lg;|=6, as G={(g1,9;)=(91,97,97), we cannot have both g? of type 2'1"? and g¢? of type

2°1"72% with a<3. So either N(g?) and N(g;) both <-=, or N(g7) and N(g;) both <——

— l <l
Then  either Ql(g,)<6{l+(22+231)+27+27} 192+ <g5 Or ‘ll(gi)gé{1+-2—7+

3.2%2
2(24+262)+27}_24596+3 ;62<372 Thus if no element among g¢,, g5 is of order 3 and 4, then

E ( g,)<§§g 32<1 a contradiction. So one of g,, g3 is of order 3 or 4 if d>2.

Now consider d=1. Suppose neither [g,| nor |¢3| is of order 3, 4, and 6. Let ¢;=g, or
g3. If |g;|>42, or g; is one of the elements on the table in (7.9), then ClJ.(g,.)S%, which gives
l‘ll(gl)+°ll(g,~)51. If g; is one of the elements on the table in (6.32), as we assume |g;|#3, 4,

3
and 6, we still have lq.l.(gl)+‘11.(g,) % Then Y AU(g;)<1, a contradiction.
i=1

(7.34) Suppose d>2 and S is of type (2,,m) with I=3 or 4. Then d=2, I=3 and m=8.

Proof. Since g, has an eigenspace of dimension >%>8, we have cl.[.(gl)<129 Also if [g,]=3,

=4= 256°
then g, is not of type 2'1"~2, so by (7.9)(b), U(g,)< —Q% If |g,|=4, then g, is not of types:
312115 3117=3) 41174, and thus by (7.9)(b), q.l.(g?)g% 2—1— 952, i.e., in either cases,

555 For |g5|>12, by (7.8), W(g3)<3L- 12+21, 1. For |g5]=11, the table in (7.9)(e)

gives %(93)554'1'77 For |g3/=10, we have by (7.3)(d), (7.4)(b), and (7.5) that

°1L(g2)<

1,1 — 1 _ 3 .
U(g3)< 0{1 ( 231)+27+27} 160 XY For |g3|=9, as g3 has at least 3 simple

modules each of dimension 2, we have ‘U.(ga)<9(1+27+27)—-144 For |g3|=7, as g3 is not of

type 3'1"73, we have by (7.4)(c) that QJ.(ga)<7(1+ 7)— 67 . Since mar{11298, AT 2l 1

448’ 512’ 160 5.23%’
%;;%, fTs}z%, if |g3]|>9 or |g3]=7, then we have the -contradiction Z‘U(gi)s
=1
129 , 65 , 67 —

Suppose S is of type (2,4,8). By (3.2), as G=(¢%, g3)=(gs, ¢3), we have that ¢ is not
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of types 291772 with a<4, and ¢2 is not of types: 3'2'1"~%, 311"~3 4'1"~%. Thus by (7.3),

N(g,), N(g3), N(g3), N(g3) are all < 2 =. This gives that "U.(gz)gzll—(1+2l7 %) }3;, and
3
‘ll.(ga)< {1+(22+231)+27+ }=Ssi+-1—. Then we have the contradiction ,-2%(9‘)51'25%

S
=02
Dol

-581——2 §1§;<1. So S is not of type (2,4,8).

Suppose d>3 and S is of type (2,3,8). By (3.2)(b), G=(g,, g3). As g, has an
eigenspace of dimension >8, g2 is not one of the following types: 3'2'1775, 311773 41174,

Thus by (7.3)(b), .N(g3) L., Hence by (7.3)(d), we have cl.l.(g3)< {1+(23+230)+27+27)—

LQ —13 Then we have the contradiction E"U.(g, _279 %ﬁ 515— 2-l-33<1

Hence d=2 and S is of type (2,3,8).

(7.35) Suppose d=1 and S is of type (2,6,m). Then m=4 or 6.
Proof. Suppose v;>n—5. Then by (3.3), <dzm{CV(gz)}<3(n v,)<15, contradicts to the
assumption 2>33. So v;<n—6. Denote a=d:’m{CV(gg)} and let 2°1° be the type of g3. As

G=(91,92)=g1,95,92), we have v;+a+b<2n. If b>n—6, then v,+a<n+6.  Since

n n
12’451/1511—6, $_<_a5n—1, we have %-2”1+%-2°5%~22+6+%~22. Since N(g,)<N(g3), we have
l.N’(gl)+ {.N'(g3)+2.N'(g2)}<—-—,_,1—;+%-l§, which implies that we have

22" " 2?

U(g1)+U(g2)< % '1—+%(1+-—3-+—2~)=%+§5—<4—62~. Now suppose that #<n—8. Thus

10

Mli—‘
l\D

.N'(gz)S.N'(gg)S—lg. Since g2 has an eigenvalue of multiplicity >11, v;+a<2n—11. This

(V]

together with ggulgn—G, gSagn—l gives %o2yl+%-2°5-12--2"'10-}-%-2"'1. Hence
1,1.1 .1 1,2, 2,\__4627 :

°U.(g1)+‘ll(gz)5§+§ W+3(1+§+F+—8) 144" So in any case, we have

"u(gl)+‘ll.(g2)_4 27. Suppose |g3|>15. Then by (7.8), "U.(g3)<21 115+16 %g By the table

in (7.9), for |g3]=13 or 11, "ll(ga)<4301966, 34—1% respectively. As mar{ég, 4301966’ ;172} %%, we

have that for |g3|>15 or |g3|=13 or 11, E%(g,)<g?zi+ég<l. This contradiction shows that

lg3|<10 or |g3|=14 or 12. But by the table in (7.32), for |g5|=5, 7, 8, 9, 10, 12, 14, we have
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1 579 45 245 25 521 233 __245
Ut lesmeliygg 513 60 fwr Sty fg)=f13 Ao by (7:32)

—°U.( 91)+U(g;) < 162127898 Thus Z U(g;)<5nag <3 2127898 +£5 g‘g <1. This contradiction shows that |g3|=4

or 6.

(7.36) Suppose d=1 and S is of type (2,4,m). Then m=6.

Proof. Since v,4+v,<n, 2<1/1<n—1 and <u2<n-2 we have %2 +%-2 5% 2T+%-2 .

Hence (g,)+U(9)<g+5 +j(L+5+F)<f+sh+obs<f+le  For lol243, by (7.0)
24 2
%(93)5%1'13—13+1—16=% or |g3|=42, by (7.7)(c)(vi), U(g3)< %41—24-—16-:—% (% From the

table in (7.9), if 412(ga|>11 with |ga|#12, 14, 15, 18, 20, 21, 24, 28, then U(gs) < mas{L,

1lr 5 15 83 1 1 7 9 1541 47 17 45 1 3 41 39
160’ 52° 152 592' 24° 10’ 68 B8 o5’ 496° 160’ 464’ 9 26° 400° 368’
389 35 33 13 316 47, 85 ; i

5655 301 7% 158 A3es 51g) <eng: S° if lgsl>11 with |g5|#£12, 14, 15, 18, 20, 21, 24, 28,

then _E‘u(g.)<7 212+(§3858<1. This contradiction shows that |g3|=28, 24, 21, 20, 18, 15, 14,

12, or |g5|<10.

By (3.2), G=(g3, g3). If g3 is a transvection, i.e., a=dim{Cy/(¢3)}=n—1, then by

(3.3)(c), |gs|>n>33. So for |g35|=28, 24, 21, 20, or 18, g2 is not a transvection. Then similar

to the calculation in (7.32), we have that ‘U.(gl)-i-cll(gz) ‘ll %—1—+‘ll(l+#+l-n)<
2 2

n 3
4 T

@

%+2% -8—2 Also from (7.32), we have %%(gl)+%(y3)5maz{i%, %, }%}8.’ %,

_9._
16
-%—}:-6—96 This implies that E‘U.(g, % 1%-(-)<1 and thus |g4|#28, 24, 21, 20, or 18.

Similarly, for |g3|=15, 14, 12, 10, 9, 7 or 5, by (3.3)(c), dim{C/(¢3)}<n—3. Hence we

+%+'1T %7— Also from (7.32), we

210 " 928

Ca-')

have %"!J.(gl)ﬁ-ﬂl(yz)f.%-i-%'l%'l'%(l'f2%,+%Tn)<
2

2
3
have %‘U.(gl)+°ll(g3)5ma:c{§- 57 233 521 25 45 &}_233 This implies that Y U(g;)
i=1

8=

512°

w

<23+ 233<1, and thus |g5|#15, 14, 12, 10, 9, 7 or 5.
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For |g5|=8, by (3.3)(c), dim{Cy(¢3)}<n—5. Hence we have —‘U.(gl)+°ll.(g2)<%

+ (1+%+%_) B+ # 2% <28l Also from (7.32), We have 1U(g))+U(g5)< 215.
24

izl
i

1
4
2

0"

This implies that E‘ll.(g, 5—6—- §T2<1 and thus |g5|#8.

Therefore |g5|=6.

(7.37) Suppose d=1 and S is of type (2,3,m). Then m=12 or 8.
Proof. Since g, has an eigenspace of dimension >11, v;<n—11. Let 291% be the type of g,.

Then v;+b<n. As L‘SVlgn—ll, 0<b<n—2, we have %-2”1+%-2b$%-2"'11+%-211. So we

have U(g1)+U(gy)< % % % 3(1+2n 11)_" 212’*’3 ;21<(5;i22 For |g3|>26, by (7.7),
‘ll.(g3)< 3 26 116 10 From the table in (7.9), if with |g3]=25, 23, 22, 19, 17, 16, 13, or 11,

then "U.(g3)<maz{— 29 380 35 33 13 316 £}<101 So if |g5[>11 with |g5]#12,
14, 15, 18, 20, 21, 24, then Zu(g)<g}ﬁ+m4<1. This contradiction shows that |g;|=24,

21, 20, 18, 15, 14, 12, or |g5|<10.
For |g3]=21, 18, 10, 9, or 7, by the table in (7.32), l‘U,(gl)+°ll.(g3)_<_maxc{}%g, %2-,
L, B =18 Ao by (7.32), 1U(e)+W(s)<BY.  This implies that
3
S U(g;) <229 1+ 183 1 and thus |g4|=24, 20, 15, 14, 12, or 8.
For |g3|=24, or 20, we saw in the proof of (7.32) that U(g5)<% 47
lgal=15, by (7.7), we have cU.(gs)<16 15+16 230 Since ma:c{4—8, 20}=2%, we have

chl(g,) %ii +20<1 This shows that |g5|=14, 12, or 8.

For |g3|=14, as G=(g,, ¢2) and g, has an eigenspace of dimension aZ%‘, we have that

dim{CV(gg)}gn—ag%". Hence N(g3) and N(g3) both <L, which gives that
2

n
3

-

W(gs) <1 +3+8 +5; n)<28+

=771 2 5123 , 771
93 o3 107168 Thengﬂ(gi)56144+7168<1. So |g5]#14.

Therefore |g3|=12 or 8.
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(7.38) Suppose d=2. Then S is not of type (2,3,8).
Proof. Since d=2, |.Q|=[ 3 ]2=%(2"—1)(2"'1—1). Suppose that S is of type (2,3,8). Denote

@ -nEt T o
2@ —1)(2" 1-1)

a=dim{Cy(gd)}, f=dim{Cy(¢3)}. Then by (7.1)(b), we have that 1+1

-V V2 vo— -1 n—y
- —1)(2 - 2
(2 1) 1 |2 2 °=1)( 1) 2 1 ,

i 1)(2“ D e e

OOl

29 —1)(2°7'—1) 1 32°73@" e —1) o (@°-1)@"'-1) 532772

1(
5'(2"—1)(2"-1—1) 8 (2"-1)(2"t-1) 8 (2" 1)(2"! 1)+8 @2"-1n(2"! 1)+

ﬂ""3

"3_ u3—1__ . vg—l1 _
4,(2 (2 — 1,432 (2 — 1)._—:1+ m 6n—l . This identity can be
@-DE-D) 8 @-nE-) @ -DE-0)

transformed into 3-2°171_9g.9"1%7 1 9?2*3 _3.9¥2%3 L g Vatt | g 92a-1 45 913,920

2vg+l va+2

3.2 —9.2377=02n"1_9n_97-1_96. Since v,;> 2, vy> 8, a>l, ﬂ24, v,>0, and n>33

as we have assumed, 4 divides the left hand side. But 4[26. So S is not of type (2,3,8).

(7.39) Suppose d=1. Then S is not of type (2,4,6).

Proof. Suppose that S is of type (2,4,6). Denote a:d:’m{CV(gg)}, ﬂ:dim{CV(gg)},

. 1 2 —1 1.2%—1 21 12°-1
v=dim{Cy(¢3)}. Then §+2 +4+4 o 1+4 2,, +6+6 o1t

~
%'g" +% 22,,"'1—1+2 2 = This identity can be transformed to 9n_3.90 _9f*1_

vg+2

6(2"1+2"2)=2"*?4+2"3""_48. Since y>v3, and v,, a, B all >2>16, v, >2>8, if v5>3, then

n

1

25(48, a contradiction. So v3<2. If v3=0, then 2" *2+2"3** _48=4(2"—11). But 2* divides
3 3

the left hand side, which implies that 4}(2”—11), a contradiction. If vz=1, then

vg+2

272 12”37 _48=8(277'—5). As 2° divides the left hand side, 827" —5), a contradiction. If

vg+2

v3=2, then EASE) —48=25(27_3—1), which implies that y=3. Thus n is odd and

on—3.20 21 _3.9"1* _3.9"2*"  Then v, a, 8 all >“+1. As v,+v,<n, we have
n+l
S-Tl. Since 2 % divides the left hand side, %151/24-1. So u;,:n%l. Then a=v,+1.

V1+1 1

n1,,
Thus 2"—27*'—3.2""=3.27 " Then either f=2F1 or v,=2FL 1r p="EL, then
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n+l n+1+

== 5
on_3.9"1% =92 +3. Hence v =~=5— '{1-}—2 and 2" =2 ? . This forces n=11. As we assume
n+l
2
that n>33, this is a contradiction. If Vl——j_— then 2" —2°*1=3.2 T . So ﬂ:%l-i-l, and

2
n+l
—5—t+4 .
thus 2"=2 2 ' . This forces n=9, a contradiction again. So S is not of type (2,4,6).

(7.40) Suppose d=1. Then S is not of type (2,6,6).

Proof. Suppose that S is of type (2,6,6). Denote a;=dim{Cy(¢?)}, B;=dim{Cy(4})}, i=2, 3.

1,120 2'—1 L2201 29" 2
Then 3+5-5 +E{6 143 3=t =140y

This identity can be
i=2 6 2"~ 2" —

—I

pz'l'] ﬂ3+1

transformed to 2"+24=3-2”1+2(2"2+2"3)+2a2+203+2 +2 As G=(gy,92), by

(3.3)(c), n<|gpl(n—v,)=6(n—v,), thus v;<n—6. Also as v;+v,<m, v;> 2, we have 1/,-5%,
i=2, 3. By (3.2), G=(s}, g5) and thus by (3.3)(c), n<lgsl(n—Fa)=6(n—B,), which gives

Ba+1
3", Then

B,<n—6. Similarly, B3<n—6. Denote £=3-21+2(2"2+2"3)+2"2" 42
3-23<§53-2"-6+2-22 +2.2775<3.9n6 L on=6 4 4.97"6_9n-3 44 §+2<n—6. If
ap=n—l=as, then 3-2°14+2(2"2+2"3)+2°242%3 272" 19 3+1=2"+§>2"+3-2g>2"-1~24,
a contradiction. If one of a,, aj is <n—2, then 27249%3 4 e<only 2n2497 3 29n 194, o

contradiction again. So S is not of type (2,6,6).

(7.41) Suppose d=1. Then S is not of type (2,3,8).

Proof. Suppose that S is of type (2,3,8). Denote a:dim{CV(yg)}, ﬂ:dim{CV(gg)}. Then

14
1,121 1,.1,227 —1 +1.22-1 _,2-1
AR s N s SO 18571t
v3
%-22,, —11=1+2_"2:i' This identity can be transformed to 12(2”1+2"3)+3~2°’+3-2ﬂ+1-—-2"=

25(3—2"2 ) We have v,, @, both >">16 ,@>">8 and as 7>33, v3>5. So 27 divides the
left hand side of the equation, and thus 22[(3-—2 ), a contradiction. So S is not of type

(2,3,8).

(7.42) Suppose d=1. Then S is not of type (2,3,12).
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Proof. Suppose that S is of type (2,3,12). Denote azdim{CV(gg)}, ﬂ:dim{CV(gg)},

y=dim{Cy(sd)}, 6=dim{Cy(s?)}.  Then %+%22 =1+1+2. 22,.‘1+112+112 L=ty

p v ] V3
i%'g"—:—i+'2—'2_—__1+l'g;l+i'2—_—l=l+2"2—l° This identity can be transformed to

2"+48_—.—.6.2"1+8-2v2+4.2"3+2°‘+2p+1+27+1+26+1. As before, since v,+v,;<n, v;> 2,

have »;<8, i=2, 3. Since g, has an eigenspace of dimension >11, and G=(g,, ¢2), we have
v, <n—11 and 6<n—11. Denote z=6-2"1+8-2"2+4.2"34+2%*! and y=2°+2""" 427" So
we have z+y=2"+48. Also 3-2%<z56-2"‘u+8-2%+4'2g+2”‘1°_<_2"’8+8-2"‘16+4-2"'16<
277 as g_<_n—16. If at least two from {a&, #+1, v+1} are equal to n—1 or as sets {a, f+1,
y+1}={n—1, n-—-2, n—2}, then y>2", which implies z+y>2"+3-2g>2"+48, a
contradiction. Otherwise, y<2”~1+2"~24273, which implies that z+y<2" 42" 242" 34

2"~7 < 2" 1 48, a contradiction again. So S is not of type (2,3,12).

(7.43) If |S]=3, then there is no involution in S.

Proof. This is the combination of (7.33) to (7.42).

(7.44) Suppose |S|=3 and the smallest order of elements in S is 3. Then d=1 and S is one of
the following types: (3,3,6), (3,4,6), (3,3,4), or (3,4,4).

Proof. Suppose without loss of generality that |g,|=3. Let 21" be the type of g;. Since g, has
an eigenspace of dimension >11, we always have v, <n—11 for i=2 and 3. If vy=n—2, then
by (3.3), n<|g;|(n—v,)=2|g;| for i=2, 3. Hence |¢;|>17, as we assume that n>33. Then for
i=2, 3, by (7.8) we have °U.(g,)52—81 —17 —%: 29 Hence ‘Zi:l"ll(gi)s%+2 25792<1 a

contradiction. So v;<n—4.

Consider the case that d>2 first. So by (7.9)(b), %(ge)S% for any g; with |g;|=3. If
|9;/=4, where i=2 or 3, then as g, has an eigenspace of dimension >11, g; is not of types:

321175 311m=3 411"~ Hence by (7.9)(b), ‘il.(g,)<285l6 535" Thus again by (7.9)(b), for
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]9;>4, where i=2 or 3, we have "'l.l.(y,-)<ma::{2-§516-);+21 _6%’ i?%}=2_513+§}’_3<16_52 Since S is
not of type (3,3,3), we have the contradiction ):"U.(g)g -6—52+(28—-6+—2%—)<1. So d=1.

Since v,<n—4, we have Cll.(_4]1)$3(1+24) =3 For |g/>11, we have
W<y -L+k=55  For |g=10, 9, 7, or 5, we have by (7.7), U(g)<L, £, L, A
respectively. For |g|=8, Ql(g)s-s-(l+§+§§+2—;)=z. Since ma:c{176, %, 254, }1, %(1]’ l}=I7_36’
thus if no element in S—{g¢,} is of order 3, 4, and 6, then E‘ll(g,-)<3+2 15736 <1, a

i=1

contradiction. So one of g,, g5 is of order 3, 4, or 6.

Without loss of generality, suppose |g,|=6. Since g, has an eigenspace of dimension
>11, vy<n—11l. As G=(g;, ¢35, ¢2), we have a+pB<2n—11, where a:dim{CV(gg)},

B=dim{Cy(¢3)}. Also gSQSn—l, 0<f<n—2, we have 2“+2-2p52"'1+2-2""10. Hence

%(92)3%(1+%+§%—6+§%)= 550% if |g3/>5, then we have %(g3)<maz{176 %%}:%,
3

which gives the contradiction E%(gi)<3+2501438+176<1. Therefore if one of g,, g5 is of order
i=1

6, then without loss of generality, S is of type (3,3,6) or (3,4,6).

Suppose |g,]=4. As before, since v,<n—11, we have Cll(yz)sl(1+l+§%—l)=‘ll%%%. By
(7.8), for |g5|>15, U(ga)<E-Fk+ k= % For |g5]=14, 13, 11, 10, or 9, by (7.8), U(gs) <7,

%8-’ 127—76’ %, % respectively. Suppose |g3|=12. Denote a:dim{Cv(gg)}, ﬂ:dim{CV(g3)}.

Since G=(g;, g3, 9¢3), we have a+p<2n—11. Also 0<a<n-—2, '—‘_<_ﬂ§n—2, we have

27427 <272 42", Thus U(ge)<T5(1+3 +222+229+223+2n) =385 Suppose |g5|=8. As
ve<n—ll, We)SFO+5+5+:1)=q4505  Suwppose lgl=7.  As wvs<a—ll,
‘U.(gs)<7(1+2n) %%g Suppose |g3|=5. As v3<n—11, %(ga)s%)(l-i-fl—l):%l—é)’ﬁ. So for

29 27 1 5 38 897 1027 513

195127 or |g5]=5, we have U(gs)<maz{gg, fg 708 {76 5 34 2048 4098" 7168 25600 =
So if |g3|#3, 4, and 6, then we have the contradiction E‘u(g‘ <3 }1%%'(75+%?]<1 So without

loss of generality, if one of the element in g, g5 is of order 4, then S is of type (3,3,4), (3,4,4),

or (3,4,6).

Suppose |g,]=3. Since g¢,, g, both have an eigenspace of dimension >11, v;<n—11 and
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vo<n—11. So we have "‘ll(g,)<3(l+2u)_. 072 for i=1 and 2. By (7.8), for |g3|>10,

%(ga)su A —3 As we have seen already, for |g3|=9, 8, 7, or 5, we have by (7.7),

8 10116~ 40°
U(g) <= 25 11 21 respectively. As maz'{ } if |g3|#4 and 6, then we have
40 2 2 80 i 59 £ 50Y=10 if 19
the contradiction E‘U.(g,-)52 :13833+‘11%<1 So without loss of generality, if one of the element
=1

in g,, g5 is of order 3, then S is of type (3,3,4) or (3,3,6).

(7.45) Suppose d=1. Then S is not of type (3,3,4).
Proof. Suppose that S is of type (3,3,4). Denote a= dzm{CV(93)} Then 2{34_3 o —1}+4

i 2n 174 2n_1 =1+ This identity can be transformed to 8(2V1+2V2)+3-2a+

3.2"3% =2"+48. As seen before, v;<n—11, for i=1, 2, and 3. Also as %Sus, we have

n
- 1 4
3297 <8(2"1+2%) +3.23 <3.2" 8, So if a<n—2, then 8(2"'+2"%)+3.2943.2"3" ¢

2n~14on=249n=7 1 9n~8 9" 1 48, a contradiction. If a=n—1, then 8(2'+2°%)+3.2°+
n
1

EASCLNE KL

3.2 >2"+48, a contradiction again. So S is not of type (3,3,4).

(7.46) Suppose d=1. Then S is not of type (3,3,6).

Proof. Suppose that S is of type (3,3,6). Denote a=dim{Cy(43)}, B=dim{Cy(3)}. Then

—1 1 2« —1 2 2 =1 —1__ . . . b
{3+3 on }+ 697 = 6 o7 +6 2,.. 1 1+2 -1 This identity can e
transformed to 4(2”1+2y2)+2°’+2ﬂ+1+2”3+1=2”+24. As seen before, v;<n—11, for i=1, 2,

and 3. We have 4(2”1+2V2)+2V3+152”"8+2"'1°. So if both or one of &, #+1 is <n—2, then

y3+1_<_2"'1+2"'2+2"'8+2”'1°<2"+24, a contradiction. Hence

42" +2 %) 429427 42
a=n—1 and f=n—2. But on the other hand, as G=(g,, g3, g2), we have a+p<2n—11.

Thus this contradiction shows that S is not of type (3,3,6).

(7.47) Suppose d=1. Then S is not of type (3,4,4).

Proof. Suppose that § is of type (3,4,4). Denote a;=dim{Cy(4?)} for i=2, 3. Then
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1+3 22,,_1+Z:{4 1.2 ""11+4 2n_1}—*1+ 2_1 This identity can be transformed to

1+3+6(2u"’-}-2"3)+3(2 42 3) =2"*1448. As seen before, v;<n—11, for i=2 and 3. We
also have 251/2 and v, +v,<n, which implies V153—4'-'5n——8 as n2>33. So 2V1+3+6(2y2+2ua)5
2""543.2"7%, If one of a;, a, is equal to n—1 and the other is >n—2, then 3(2&2-4-20[3)2
3(2" 142" 2)=2"*1 1 9725971 1 48, a contradiction. Hence either both a; and a, are
<n-2, or one of a;, &, is equal to n—1 and the other is <n—3. In both cases, we have
3(2724+2%3)<3(2" 1 427"3) =2 on—1 p on-2  gn-3, But  this  implies  that
g?1+3

+6(2v2+2l’3)+3(2 +2 3)<2n 211-—1 2n 2 20—3+2n—5+3.2n—9<2n+1+48’ a

contradiction again. So S is not of type (3,4,4).

(7.48) Suppose d=1. Then S is not of type (3,4,6).

Proof. Suppose that S is of type (3,4,6). Denote a=dim{Cy(g3)}, B=dim{Cy(43)},

— i 2 122"1—1;1,2 —-1,222-1,1.,12 -1
vy=dim{Cy(g3)}. Then 3+ 55 _1+4+4 > 1+4 5 1+6+6 -t
L v 14 14
%-g—n—_l+%-22,, _1+2n2__1. This identity can be transformed to 2 1+3+3-2 2+l+2 3+2+

3-2942°* 1 27*2=3.97 1 48. Similar as before, »;<n—11, for i=2 and 3. Also v;<n—8. So

9”173 4 .92t L 9¥3* 2 gn—5 L on-8 Lon-10  [f one of A41, y+2 is <n—2, then
3.99 4 9Pt 19T+ cg on-1  on gn=2_gn+l Lon=1 902 Ghich  gives 2170 43.2°2%
ll3+2

+2 +3.2a+2ﬁ+1+27+2$2n+1+2n-1+2n—-2+2n—5+2n—-8+2n—10<2n+1 +2n<3_2n+48’ a
contradiction. Hence both S+1, v+2 are >n—1, which implies f+7y>2n—5. But on the

other hand, as G=(g;, ¢3, ¢2), and g, has an eigenspace on dimension >11, we have

B++<2n—11. This contradiction shows that S is not of type (3,4,6).

(7.49) If | S|=3, then any element in S has order at least 4.

Proof. This is the combination of (7.43) to (7.48).
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(7.50) Suppose |S|=3 and the smallest order of elements in S is 4. Then d=1 and S is of type
(4,4,4).
Proof. Consider the case that d>2 first. Suppose g;€S is such that |g;|=4. If v;>n—3, then
by (3.3), n<|g;l(n—v;)<3|g;| for j#i. Hence |g;|>11, as we assume that n>33. Then by (7.6)
we have CU.(gJ)<%g 111+217 124—2(;% Hence E‘u(g,)<(32+232)+2 1242078<1 a contradiction. So
if |g;]=4, then ¢; is not of types: 3'211"~5, 311"-3 4117~ Thus by (7.9)(b), we have then
2—5(-).+2L for any g€S. But then we again have the contradiction
3 U(0) <3 (S

U(g)<

Without loss of generality, assume |g;|=4. Then as ”12%» and n>33, we always have

1/53—", so v;<n—9 for i=2 and 3. Also ‘11.(91)5%(1-{-%-}-%):%. For ge{g,, 93} with |g|>14,

=4
%(9)52—81- ili-'-%:%' As in the proof for (7.20), we have that for |g|=13, 12, 11, 10, 9, 8, or 7
Cll.(g)si%—%, }—1, 127—6’ %, —2—521-, }I’ % respectively. For g€{g,, g3} with |g/=6. Denote

a:dim{CV(ga)}, ,B.—_dim{CV(gz)}. Since G=(g;, ¢°, ¢°), we have a+ﬂ§2n—u1574——n. So

3n
29 42.99<on-149.94"

22‘1 2—29)S2308438’ For g€{g,, g3} with

|g|=5. Then %(9)5-15-(1+%)=(15?Tg- Suppose |g;| and |g3| are both >5. Since maz{zll’ 198 %’

2r 1 5 11 389 129}_4, we have E‘U.(g,)< +2- 4—1 a contradiction. So at least one

176’ 5’ 24’ 4’ 4’ 2048’ 640

of the element among ¢,, g3 is of order 4.

Suppose without loss of generality that [go|=4. Then both %U(g;) and

W) <§A+5+5) =513 Por lga|215, U(ss) <K {5 +1g=gp- For los|=14, U(gs)<y by

512
(7.7).  For |g3|=12, as v3<n—9, we have M(g3)51(1+%+§2-2-+-2-2§+23+29)—1%5% For
lgs|=8, as v3<n—9, we have "U.(ga)<8(1+ +23+29)=2 For |g3|=7, as v3<n—9, we

have U(gs)<l (1+29)— So if |g3|#4, then U(g3)< max{so, 3 20 353 27 1 5

256" 16° 208’ 1536’ 176’ 5' 24°

225 37 389 129y _19 Lpiep gives the contradiction }:cll.(g,.)SQ é?g+ég<1. Therefore S
i=1

is of type (4,4,4).
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(7.51) Suppose d=1. Then S is not of type (4,4,4).

Proof. Suppose that S is of type (4,4,4). Denote a;=dim{Cy(g?)} for 1<i<3. Then

{ i +Z-T,;-l- %22,, — 1} 1+ This identity can be transformed to

2(2 vit +2°‘)=2"+16 Since o >'2', v; > , V i, and as we assume that n>33, 2'° divides the
i=1

left hand side, which gives the contradiction 2'°|16. Thus S is not of type (4,4,4).

(7.52) Suppose |S|=3. Then any element in S has order at least 5.

Proof. This follows from (7.49) to (7.51).

(7.53) Suppose |S|=3. Then d=1 and S is of type (6,6,6).

Proof. Suppose S is not of type (6,6,6). Then by (7.52), at least one element in S is of order 5

or >T7. For |g|=5 or |g|>7, we have by (7.9)(d) ‘U.(g)gé. For |g|=6,

“U.(g)<l(1+l+—-2—+—2-)=§ Hence 23:‘11( -)<l+2~§=l a contradiction. So S is of type
A APYR: 3 A TS gTEg= D '

3
(6,6,6). Suppose d>2. Then by (7.9)(b), 3 U(s;)<3- 3L <1, a contradiction. So d=1.
=1

(7.54) Suppose d=1. Then S is not of type (6,6,6).

Proof. Suppose that S is of type (666). Denote a;=dim{Cy/(¢})}, B;=dim{Cy(g})} for

This identity can be

3

=1

i
transformed to 2(2”1+2y2+2y3)+(2al+202+203)+2(2 l-{-23""-{-2‘63)=3-2"+24. Suppose
v;>n—3. Then by (3.3)(c), n<6(n—v;)<18 which contradicting to our assumption n>33. So
v;<n—4, Vi. Let z be the number terms among «;, 8;+1, 1<i<3, which are equal to n—1.
Then  3-2"+24<3.2" 34 2.2" 14 (6—12)2""2=3-2""143.2""34+2.2""2  which  implies
4.2"24 2731 94<1.2""%, Hence z>5. Then there exists an i such that a;=n—1 and
Bi=n—2. But as Cy(g})NCy(9?)=Cy(g;), this implies v;>a;+ B; —n=n—3, which we have

seen is impossible. So § is not of type (6,6,6).
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Section 8. The Cases: 3<¢<13.

The result of this section is the following:
Proposition: Suppose G is a group of genus zero. Then (a) n<12, if q=3. (b) n<8, if 4<q<13.

Proof. This follows from (8.30) to (8.35).

(8.1) Suppose ¢>3, n>9, and 2<d<4. Then .N'(y)S%, unless g has an eigenspace F for some
Ae GF(q)# and with dim{E}>n—2.

Proof. Let v be the maximal dimension of eigenspaces of g. Suppose v<n—3. If also 3<v, or if
g is semisimple and V has a direct summand of dimension v consisting of homogeneous
components and with 3<v<n-3, then by (6.5), (6.3) and (5.5), .N'(g)s{[ rks ]q+

(][ a2 )23 ) a3 L}/ a]) st o+ otamst

(P—(i—_ﬂs#+—ql—6+—1-+L_<_i. So v=0, 1, or 2. First consider that ¢ is unipotent, then v#0;

and by (6.11), as d(n—d) and d(n—d—1) are both >5, we have N(g)sqls. Now consider that ¢

is semisimple. Suppose min(g) is not irreducible. Then g has a homogeneous component of
dimension n—2 or n—1 and g is of type a®2!, a*12, a*1}1}, or a®1', with a>2. As n>9, we
have a>4. Suppose g is of type a®1'. If d#0 and 1 modulo q, then f{g,4,)=0. If d=ap, then
N@)=[§]p /[ at ]_T(a_l)(a——p) Since (a,8)=(2,1), (3,1), (2:2), or (4,1), we have

aB(a—1)(a—pB)>5 always. So N(g)s%. If d=af+1, then N(g)=[5]na /[ml]

qaﬁ(a-1)(a—lﬂ)+a(a-2§)' Since (a,8)=(2,1), or (3,1), we have af(a—1)(a—p)+a(a—28)>5
always. So .N'(g)gglg. It is similar for g of type a®2', a®1%, a®1}1}. Now suppose that min(g)
is irreducible, So n=ga with >2 and either fg,4;)=0, or d=af and thus
N(9)=[5 ] /[zg]qgm. Since for (a,8)=(2,1), (3,1), (2,2), or (4,1), we have
respectively that af{(a—1)(a—pB)—1}>6, 9, 8, or 20. So .N‘(g)_<_q—15. Therefore the claim is true

for g unipotent or semisimple. Now suppose ¢ is neither unipotent nor semisimple. So |¢|=

with (p,s)=1, and e>1, s>1. Let v, v, be the maximal dimensions of eigenspaces of ¢* and
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g ‘ respectively. If both v,, v, are >n—2, then v>n—4>5 and as we have seen above,

N'(g)sqls. If one of vy, v, is <n—3, say for example v, then .N'(g)g.N(g’)galg. Therefore

.N'(g)sqls, unless ¥>n—2.

(8.2) Suppose ¢>3, n>9, and 2<d<4. Then N(Q)Sq%y unless ¢ has an eigenspace of dimension

E corresponding to some A€ GF(q)# and with dim{E}>n—1.

Proof. Let v be the maximal dimension of eigenspaces of g. Suppose v<n—2. If 2<v, orif gis

semisimple and V has a direct summand of dimension v consisting of homogeneous components

and with 2<y<n—2, then by (5.5), (5.3) and (5.5), N(g)g{[ Rl R =
] }/ q2d+q+11+ 2(3—4)-;4+ql7+q13+q105q24 So »=0, or 1. First consider that

¢ is unipotent, then »#0; and by (6.11), as d(n—d)>5, we have .N'(g)g(—%. Now consider that

¢ is semisimple. Suppose min(g) is not irreducible. Then g is of type a®1!, with a>2. Exactly

<2

the same as in (8.1), for this case and the case that min(g) irreducible, we have N (g)< q5—q4

That is the claim is true for ¢ unipotent or semisimple. The case that g is neither unipotent nor

semisimple is also exactly the same as in (8.1). Therefore N' (g)s%, unless y>n—1.
q

(8.3) If g acts as a scalar A€ GF(q)# on a subspace W of V, and « is the order of g on V/W,
then the order of g on V divides Lc.m.(a, |A|) unless g has the eigenvalue A on V/W. If g acts
on W and g acts as a scalar «\GGF(q)# on V/W, and a is the order of g on W, then the order of
g on V divides l.c.m.(or, |A]) unless g has the eigenvalue A on W. In particular, if g has an
eigenspace of dimension n—1 coresponding to A€ GF(q)#, then either A~1g is a transvection or ¢
is a pseudo-reflection; and thus |g||p(g—1).

Proof. Suppose ¢ acts as a scalar A€ GF(q)# on a subspace W of V. Then there exists a basis X

AB A’ CB]

of V so that M=MX(g)=[0 A 0 XIl

:l. Denote f=l.c.m.(a, |A]). We have that M:[
where C=A""14AA" 24 4 X244 X1 V i>1.  Since (A=ADA° T +24° %+ 4

/\p—2A+/\p-11)=Aﬂ—/\pI=0, if A is not an eigenvalue of g on V/W, then A— I is invertible,
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and thus 4”7 +247724... 4277244 2P~ =0, which implies that M’ =1 So the order of g
on V divides l.c.m.(a, |A]). The second part is similar. The last statement is evident from the

first part.

(8.4) Let S be the set of all possible orders of the elements in GL,(¢g).

(a) Let A, B be the sets of all divisors of g—1 and ¢*—1 respectively. Let C={s : s=pz
with 2z€ A}. Then S=BUC.

(b) Let g€ GLn(g) with n>3. Denote v the largest dimension of the eigenspaces of g. Let T
be the set of all possible orders of those ¢g’s with v>n—2. Then T=S if p is odd. If p=2, then
T=SUR, where R is the set of all divisors of 4(¢—1); and in this case, T#3S.

(c) Let §€PGLn(g) with n>3 with a preimage g€ GLn(q). Suppose ¢ has an eigenspace of
dimension v>n—2. Let T be the set of all possible orders of such §’s. Then T =S for p odd;
and T=S5U{4} for p=2. Also the set of all possible order of |[g| with v>n—1 is {p}UA, where
A is the same set as in (a).

Proof. Part (a) is clear. Let E be the eigenspace of ¢ corresponding to A€ GF( q)# with
dim{E}=v>n—-2. If v=n—1, then by (8.3), either A7lg is a transvection or g is a pseudo-

reflection. So |g|€S. Suppose v=n—2. If g has no eigenvalue A on V/E, then by (8.3), |g|

| Al
(aal’\l).

Z(GLy(q)). Thus we have af€S, which gives |[g|€S. If ¢ has the eigenvalue A on V/E, then

divides a3, where a€S and f= Since @ divides ¢—1, # is the order of some element in

there exist D with E<D< V, A~!g acts as a transvection on D, and ¢ acts as a scalar § on V/D.

If 6# A, then by (8.3), |g| divides ay, where a is the order of g on D and y= (al—ilé—lj. Again as
)

a€S and v|(¢—1), we have [g|€S. If §=A, then there exists basis X so that g has the matrix

isyi-l
representation M::MX(g)=I:'g ’\IB } where A:[3 f\] We have A‘:['}) ”\)‘; b ] Vi
n-—-2

So |A|l(¢g—1)p. Also M':l:i:) S,B{l, where C=A""142A°"24... 3272440 =

sas—1 A~ 2hr
0 sA*!

s—1
:] with z=2i=%(s——l)s. Now for p odd, take s=(¢—1)p€S. Then as s
i=0
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and %(s—l)s are both =0(mod p), we have C=0, which gives |g}|s. So |gl€S. That is for p

odd, we always have |g|€S. If p=2, take s=4(¢—1). Then %(s—1)s=2(s-—1)(q—-1)50(mod 2),

110
which gives C=0. Hence |g||[4(¢—1). So TCSUR. On the other hand, since | 0 1 1 | has
001

order 4, it is clear that RC7T. Hence T=SUR. Since 4¢S, we have S#T. So (b) holds. For
part (c), clearly we have TCT. To see that SCT, note that since n>3, for g such that
M)((9)=[61 IO ] we have [§|=|g|. For p odd, by (b), as T=S, we have T=5. For p=2,
n-2
from the proof of (b), we can see that [g|€S, which gives [F|€S, unless
M=M |4 B ith A= A b Al f bove that in this case
=Mx(9)= 0 M,_, ™ =0 Al so we can see from above tha

M*=A*I, which implies [§||4. Thus it is clear that 7=S5U{4}.

(8.5) Let 1# g€ GLn(q), where n>3. Suppose g has an eigenspace of dimension v>n—2. If
¢=3, then |g|€{2, 3, 4, 6, 8}. If q=4, then |g|€{2, 3, 4, 5, 6, 12, 15}. If ¢=5, then |g|€{2, 3,
4, 5, 6, 8, 10, 12, 20, 24}. If ¢=7, then |g|€{2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 42, 48}.

Proof. Using the notation in (8.4), for example, when ¢=4, S={1, 2, 3, 5, 6, 15}. Since the

divisors of 4(¢—1)=12 are R={1, 2, 3, 4, 6, 12}. Hence T=SUR={1, 2, 3, 4, 5, 6, 12, 15}.

(8.6) Let 1#7€PGLn(g), where n>3. Suppose a preimage g of § has an eigenspace of
dimension ¥>n—2. If ¢=3, then [7]|€{2, 3, 4, 6, 8}. If ¢=4, then [7|€{2, 3, 4, 5, 6, 15}. If
¢=>5, then [§|€{2, 3, 4, 5, 6, 8, 10, 12, 20, 24}. If ¢=7, then [g|€{2, 3, 4, 6, 7, 8, 12, 14, 16,
21, 24, 42, 48}.

Proof. Using the notation in (8.4), for example, when ¢=4, S={1, 2, 3, 5, 6, 15}. Hence

T=5u{4}={1, 2, 3, 4, 5, 6, 15}.

(8.7) Let v=v(g) denote the maximal dimension of eigenspaces of g. Suppose for all g#1,
N(g)<a; for all g with v=n—2, N(g)<b<a; and for all g with v<n—3, N(g)<c<b. Then

cu(g)g{1+(p+q—3)a~|—{q(q—1)+(p—l)(q——-2)+z}b}l%l-§-c, where z=0 if p odd, and z=2 if
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p=2.
[zl
Proof. We have c‘U.(g):"u.(?)_ E ¢(d).N' (§?). We break the summation into parts

according to whether d=1, l;ﬁde{p}UA=D, deT—D, d¢ T, where T has the same meaning
L]
as in (8.4)(c), and A is the set of all divisors of ¢g—1. So if d€ T — D, then v(g ¢ )<n—2; which

el ls} ]
gives N(7 ?)<b. If d¢T, then v(g?)<n—3; which gives N(7 ¢ )<c. Since ¥ ¢(d)<
1£2d€D

(p—1)+(g—1)—1=p+4¢—3, the part of the summation over d with 1£d€D is <(p+¢—3)a.

Since Y H)=(L-D)+(p-1)(g—1)+z—(p+9¢-2)=g¢(¢—1)+(p—1)(¢—2)+7z, where
d€T—D

z=0 if p odd; and z=¢(4)=2 if p=2, we have that the part of the summation over d€ T—D is

<{e2(¢—1)+(p—1)(¢g—2)+z}b, where z=0, 2 for p odd, even respectively. The rest is clear.

(8.8) Suppose #n>9, d>2 and ¢=3. Then U(g)< Tg -.;:l-l—

4

Proof. In any case, we have .N'(g)sqld+qn1 q1—2+q_17 Also .N'(g)sl4 except when [§|=1,2,3;

and .N'(g)5~1— except when [g|=1,2,3,4,6,8. Hence ‘U.(g)sl_f{1+(¢(2)+¢(3))( +37)+
(¢(4)+¢(6)+ 4®)-% RS CIF SIRL IS JNE B LA W

5 =17 25
3 dllgl.d>4,d#6,8 729 1g]73

225, 1 +4
(8.9) Suppose ¢>4, n>9 and d>2. Then U(9)<{55° |g| L

Proof. Using the notation in (8.7). Since we have agl
q

(p+q—3)a~_§q—d2:i+n—_2d—_—1$2+—2,-4. Similarly, as {q(q—l)+(p—I)(q—Z)a{-z}SZq2 and bg% for

qnl_.d and (p+¢—3)<2g, and thus

d>2; we have {g(¢g—1)+(p— 1)(q—2)+x}b<4<4— Also c:% for d>2. Hence

[\
o

1,122 1,1
WD +3+o5 g1+ =18 Fite

(8.10) Suppose n>9, d=1. If ¢=3, then U(F)< 4_6:(3) l_g,—1~l+(%+3ie). If g=4, then we have both

U@ G+ B+t 3

S1é>565691,1+(_1_+L), If ¢=5, then U(F)<
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12 7 1 1,1
F+-5 + If 3<¢<13, then U =+H(5+-5)-
(5 s)'—| (52+57) < en (9) |g|+(q2+q7)

wl-q

Proof. For example, we consider the case that ¢=3. In any case, we have N(g)< q—l-

14 1_ except when [g|=1,2,3; and .N'(g)gl 1_ except when [7|=1,2,3,4,6,8. Hence
q2 qn 2 q qu 3
U@L +HBR)+60) G+ 30+ (B +O) +®) (+3) +Gstze) T 4(d)

d||g|.d>4,dF6,8
1
S—{l+(1+37)+8(32+37)}+(33+

)= —460 1
[7]

=+ +-=). It is similar for ¢g=4. Suppose
36 43 [7] (33 36) 7 PP

7l

3<¢<13. Since the preimages of 7 ¢ have an eigenspce of dimension =n—1 iff 1#£de{p}UA,

where A is the set of all divisors of ¢—1. Thus similar to (8.9), we have U(7)<{1+

(p+q—3)(% 1)}|g|+( + P 2) As for 3<¢<13, (p+q—3)(q )< 3, we have the last

conclusion.

(8.11) Denote v(g) the maximal dimension of eigenspaces of the preimages of §. Suppose ¢>3,

n>9.
2312.___7537__1 1, 2 5 , 1 55,6
(a‘) Suppose d22' Then CU'(g) ma 6561 162 +4 3 5+5.431 243+2.37y 3 3+7s)
17,1 1 2 3
+—= += 25+55+2 57 for [7|=2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.

108557 81+39 36
(b) Suppose d>2 and v(g)<n—2. Then U(F)< T3 85 —5—+-1—+—1-, %+—2— for

[71=2, 3, 4, 5 respectively.

(c) Suppose d>2 and v(§)<n—3. Then U(F)< % ﬁ 36
(d) Suppose d=1. For [g]=2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 we have respectively

< 8749 10937 2.3 13 13
VO iesy 5t 5.37 9+79’ 8.3%
1
9 7

for [g|=2, 3 respectively.

Mli-‘

4+

gitanty 195t sm 1217 130130 1607139 3431 5.7 For |§|=2, we have
%(?)5%4-5’14—8, g’f‘E:lgg, %+2.%3 for ¢>4, 5, T respectively. For [g]|=3, we have
%(7)5%+§—%§, % 3258 for ¢>4, 5 respectively.

(e) Suppose d=1 and v(g)<n—2. Then °U.(g)<5 ﬁ %.}-% %+é§’ }1+5.1_46 for
[71=2, 3, 4, 5 respectively. For [§|=2, we have ‘U.('g‘)_<_§§+2.147, %+2.157, %+2177 for ¢>4,
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5, T respectively. For |§|=3, we have %(‘j)g%+§-.24—7, 593 525— for ¢>4, 5 respectively. For
. nell 9 .
|g|=4, we have %(9)532+49 if ¢>4.
_ N em Neld, 1 29,2 33 31, 4
(f) Suppose d=1 and v(g)<n—3. Then ‘U.(g)s + 7.3% 81+37’ 128+ 5 35+5 38
—6+843 for [gl=2, 3, 4, 5, 6, 7, 8 respectively. For [g|=2, we have

2

3
U7y $§§-+—1— 83 L 1 g ¢>4, 5 respectively. For [§|=3, we have %(g)sl—Q oy

128" 9.4 1257 9.56
3—7-5+5—%—6 for ¢>4, 5 respectively.

Proof. We only show several examples, since for the cases which are not shown here the

calculations are similar. Suppose d>2 first. If [§|=2, then ‘U(?)S%{1+(ld+ ,,l_d)}S
7T 49

%{1+( 3n 2)}_2?% Suppose |g|=4. If v(§)<n—2, then %(7)5%(1+(§1§+:-3-17)+2-§23))=

4 —

1772+Z-l3—7' If ¥()=n~—1, then 4|(¢—1). So ¢>5 and thus %(9)5%(1+3-(5lz+51_7))=27_5+;%
47, 1

< 62+4.37

Now suppose d=1 in the following. Suppose [g|=4. If v(§)=n—1, then 4{(¢—1). So

¢>5 and thus %(?)5%(1-{-3.(% 8))—-2-"4358

Suppose [g|=5. If v(g)=n—1, then as either p=>5 or 5|(¢—1), we

Otherwise, we have that %(7)5}1(1+(%+3l§)
1.1 2. 3
(32 37)) 4. 58

have ¢>5. Thus ‘U.(g)gé(l+4-(%+51§))=%+5%. If v(g)=n—2, then by (8.6), ¢>4; and thus
R | 1.1 1 9
"ll(g)_<_5(1+4-(:1—i+i))=a+5—.14—652—5 53 Otherwise, we have that ‘U.(g)<5(1+4 (33+36))
4

Suppose [g}=6. If v(7)<n—2, then CU-(?)Sg(l‘F?"(g‘l"?)+2'(?+y))=
0, 1_ v(g)=n-—1, then as 6|(¢—1), we have ¢>7. Thus ‘11(7)5%(1+5~(%+%))=

2
%+—5—851—+—1~. Suppose |§|=5 and v(7)<n—2. So .N'(g)54—12+% if ¢>4. By (8.6), for

6-75=27 " 2.37
g=3, v(g)<n—3, which gives N(g)< 33 #5;11§+217. Thus %(?)5%(1+4-(§+4—17-))=
%+-5—'14—6. Suppose [§|=4 and v(g)<n—3. If ¢=3, then »(72)<n—2. So N(F?)+2N(7)<
1

(l —7 +2(33+3s)<(4 48)+2(43+46)’ which gives that in any case we have
—AL 33

W(F)<3 (1+(4 4s)+2(43+4s)) 128 T5

In the following, unless mentioned otherwise, we denote v;=v(7;) the maximal

dimension of eigenspaces of the preimages of §,;. Also we assume in the rest of this section that
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for ¢=3, n>13, and for 4<¢<13, n>9.

(8.12) |8]<4.

Proof. Suppose d>2 first. Then "ll(g)(maz{zg.pi, (252.(75?’ %-%+§15, %8 i+45

which implies that |S]<4 by (2.4)(b).

243 7
Hence for [g|>3, we have AU(7)<

Now suppose d=1. For [g|>7, by (8.10), we have "‘U(?)Smaz{%o 1+(33+36)

196691 1 37.1 37.1
65536 +(43+46)’ i3 7+(52+57)}—13 7+(52+57)

10937 2. 3 9.4 10, 1 371 10937 _ 8749 .
maz{igesy 51155 28150 27t 57 13 7+(52+57)} 19683 <13122°

we have U(7) < 183714292; which gives r—2< E U(g;)<r 183714292 This implies that |S|=r<6.

that is for any §#1,

6
Suppose |S|=6. If not all elements in S are involutions, then Y U(7,)<5- 183714292+
i=1

%gggg<4 a contradiction. So all elements in S are involutions. Since n>9, not all

o _ 874
v(7;)=n—1. Then;::l‘ll.(y,-)_§5 131292+(9+ 137)54. Hence 5] <5.

5
Suppose |5]=5. Let a be the number of involutions in S. Then we have 3<3" U(7;)<
i=1

8749 | (5_ 10037

**13122 19683

, which implies that a>2.

Suppose a=5. There are at most 3 involutions in S which have eigenspaces of

5
dimension n—1. So if ¢>4, then ’;%(7,.)53(3 Y 48)—{-2( 147)53, a contradiction. So
¢g=3. Suppose n>13. There are at most two §;’s such that v(7;)=n—1, because any preimage
of g; is either of order 2 or 4, hence has an eigenspace of dimension >4. Suppose that

v(g;)=n—1, say for i=1 and 2. Then at least one of 7,’s, i=3,4,5, is such that »(7;)<n—3.

5
In this case, we have Z aU(g;)<2: 183714292+2(5+ 1 7)+( 6)53. If there is at most one §;
such that v(g;)=n—1, then Z U(g )<183714292+4(g+2 3.,)<3 again a contradiction. Thus

a<4.

Suppose a=4. Say [§;|=2 for 1<i<4. From the reasoning in the previous paragraph,

5. 1 17, 1 8749 | /5 14, 1
we see that E‘U(g.)<maz{3(+ s TGt POt GGt )

8749 4 : _ _
D1 +3G+; 17)} 218371292+(5+ 17)+( +555)-  Since U(TS)<1ggar, 2%(95)53, a
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contradiction. So a<3.

Suppose a=3. Say [7,/=2 for 1<i<3. If one of these involutions is such that

5
v(7;)<n—3, then ,21‘11(7.-)52-1857142—%+(%%+5}3—6)+2-%%§—§s3. So v(F,)2n—2 ¥ 1<i<3.
=

Then v(7,)<n—3 for i=4 and 5. So for i=4 and 5, we have %(?]’,—)gmax{%%-kéz-s, %+4—3?§,

10 1 37.1 1,1 s g
+54§, 2—7+§l3—7, %%r}+(#+{7)}=ﬁ7+(5—2+?) Hence we have the contradiction

... o
I Mw Nle

— 8749 37.1 1,1 —
ql(g5)53'm+2'{ﬁ'7+(5—2+5—7)}s3. So a=2.

Say |7;|=2 for 1<i<2. If v(g;)=n—1 for both i=1 and 2, then at least one of g,’s,

13122 719683

371, 1.1 — Nen_9 e S a1 V<8749 (5. 1
{i3 7+(52+57)}53. If one of v(g;)<n—2, i=1, 2, then i;%(g,)513122+(9+2_37)+

5
i=3,4,5, is such that v(g;)<n—3. In this case, we have z%(ji)$2-8749 9.10937
i=1

110937
319683 =3

Therefore | 5| <4.

(8.13) Suppose |S|=4. Then d=1 and S is of the type: (2,2,2,3) with ¢=3 or 4.

Proof. Suppose d>2 first. For [§|>3, we have "U.(?)Smax{%, 146_72+ﬁ’ %-%—f—%,
2

3
4
%%‘3%"’;13}:% If there are at most 2 involutions in S, then ‘gﬂ(’ji)gl%g—i-}— 2.2075 9

6
So S has 3 involutions. Say [§;|=2 for 1<i<3. If there is at most one §;, 1<i<3, with

374216216561

v(g;)=n—1. Then v(7,)<n—2, which implies that %(74)5max{%, i%% :1%7’ %1—91-%+%,

2251, 172251, 1 QU .)<2.2431 , 83 L 2251, 1 _
585+ }= + =, Theni§%(95)52 4374+162+(128 5+45)§2. So d=1.

4
v(g;)=n—1, then E‘u(y,-)g% 2._814_&7_552' So there are two §,’s, 1<i<3, with
i=1

Let o be the number of involutions in S. Suppose a=3 first. Say [§;|=2 for 1<i<3.
Since g?GZ, 1<i<3, each g; has exactly two eigenspaces of dimensions of dimension v, and

n—v; when p is odd; and V,--—-dim{CV(g,.)}Z['g] when p=2. So N(7,)+N(7,)+N(73)<

v

(@034 g 3-6)/(¢"—1). Since v;+v,+v3<2n, [%]SV,-Sn—l, we have

n

n, n
q”1+---+q”3$q"_1+q2 +¢%. Also T

-Vi n—y

+--4+q "3<3¢%. Thus N(7,)+N(7,)+N(73)<
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+4. This  gives W(T)+UFT)+UF)<3+id+=+%), which s
- 2

q q q q

Sg -2-—73— if ¢g=3 and n>13; is <13+ e if ¢g=4; is <g+ 9 = if ¢>5. If ¢=3 and [§4]>7, then

4
El"ll.(?,-)g(g+2 36)-{—(323 %+(33+36))<2 So in this case 3<[7,4|<6. If ¢g=4 and [74]|>5,

then by (8.10), °U.(74)Smaz{2—5+59, (7 48)6+(4—2+F)}, which implies E‘u(g;)gl So for

¢=4, 3<|741<4. I ¢>5 and [§4|>7, then ‘11(94)<maz{49+79, ?g é+(52+57)}, which
4

implies that 3 U(7;)<2. So for ¢>5, 3<|7,4|<6. Since ViZ[%-I V 1<i<3, if some v;, say
i1

v,>n—4 when ¢=3, v;>n—2 when ¢>4, then v,<n—3; which implies that for 4<[74|<6 we

have "U,(g4)<maz{l28+ig, 13315+5 35 81+2 39}_142184-33 Also maz{g+2—7§-é, 183+4_4’
8+—}_ +2—36 This gives Z"U.(g,)<(3 6)+(128+49)<2 and in this case we also
have for ¢>5, and [g4]|=3, El‘u(g,-)s(5+2 55)+(:13%:,{)+ 5)<2. If v;<n—5 when ¢=3,
v;<n—3 when ¢>4, V 1<i<3; then U(7,)+U(T,)+U(T3)<3: 2(1+maz{43+46,
3%+3L})$3-%(1+(215+74—15)). Since for 4<[|g,|<6 we have °ll(g4)<maz{5 458, 295+;9,
1—.(;+2—'1§7}=§ 23— z_:'ﬂ §:)<2; and in this case we also have for ¢>5, [§4]=3, Ecl.l.(g,)<

Suppose a=2. Say [§;|=2 for 1<i<2. If one of v, v,, say v;>n—4 when ¢=3,

vi>n—2 when ¢>4, then vz and v,<n—3; which implies that CU.(g‘)< 5 3 if [7;1>4, i=3,

T35+

4. Suppose [G3|>3 and [g4]>4 if ¢>4; and [§3| and [§4] both >4 if ¢=3. Then E‘U(?,«)S
i=1

2: 183714292+(32+ 46)+(14218+3§)<2 Hence if ¢>4, then [g3]=[74]=3; if ¢=3, then [g3]|=3.
4

Consider ¢>4 first. Since V32|'-'|23, v, and v, cannot be both >n—1. Thus } U(F,)<
i=1

(g s)+(32+ ——=)+2- (32+ 5)<2. Now consider ¢=3. Since v3>[g]>5

v1+v,<2n—5, which implies that .N'(71)+.N'('g‘2)5(%+3+2)+(3l4+$). Thus Ecll(g,)<1+

i=1

% {(3 312)-+-(34-|~39)}+2 (81+ 7)52. So both v, and v, are <n—>5 when ¢=3; <n—3 when

4
¢>4. Also we have v3+v,<2n—5, which implies that 2%(?;)52-(% 6)+1ggg,§+
i=1

(29 2)<2 So a#2.

4
Suppose a=1. Say [§,|=2. If [7,|>4 V 2<i<4, then 3 U(F,) <S4 3.2 +-3 )<
y 194l [9:1> ST :';1 ([:)< >13199 (5 1.58 )
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2. So say [g,|=3. Suppose both v, and v, are >n—3. Then v; and v, are both <n—3.

Then zcu(y )< 8749 183714292 +%gggg+2 (8 %)52. So one of vy, v, is <n—4, which implies
8749 14 1 10937 10937 —

CU.(g1)+‘ll(g2)$mar{13122+(ﬁ+y), (—'+Ts)+19683} (27+ )+19683° If [g;|>4 for

4
i=3 and 4, then f_:"\l.(‘y‘,-)ﬁ(l‘l 71 36)+10937+2 (54-4 58)<2 So say [§3|=3. Since

19683
Vvotv3<2n—5, %(y2)+q.l.(ga)<(29 2”‘%823; Also similar as above, U(7,)+U(7,) and
U(F,)+U(Fs) are both 5(ﬁ e)+}823§ Thus if [§4]>4, then zjcu(g,)<(14+ 136)+

100as + (G +2)+105a5) + B+ 59 <2 So [9al=3. Since vy+vstvy <o, [F1<vi<n—1,

2n n

2n
1 - —_ —
we have q”"’-}----+qy4$q"-1+(13+ +¢3. Also qn lh"’+---+¢1’1 v453q3 . Thus N(g,)+N(73)

+NFI<E+ =+ +3 This  gives W(T ) +WFs)+U(T4) ST+
3

i

+ .}n+ ,,), which is <1+g%+3— if ¢g=3 and n>13; and is <1+:1‘+3— if ¢>4 and

!.'_
¢ 37

n>9. Thus we have respectively Z‘U(g )<183714292+1+§%+3—9y (8+ 5)+1+3 +32 g both of

them <2. So a#1.

4
Suppose a=0. If there are at most two elements in § with [g;|=3, then 3 U(7;)<

i=1
2. iggg§+2(2+ 3s)<2 So say [§;/=3 V 1<i<3. Then the same as in the previous

paragraph, ‘11(71)+‘11('y’2)+°U.("g'3)5maz{1+2—%+%, l+3+ }—1+ +32G, which implies
1,2 10937
Z:Cll(g )< 143 +3 45+19683<2 So a#0.

Therefore S is of the type: (2,2,2,3) with ¢=3 or 4.

(8.14) Suppose d=1. Then S is not of type (2,2,2,3) when ¢=3 and ¢=4.

Proof. Suppose ¢=3. Pick a fixed preimage g; for each §;. Let v;, u; be the dimensions of
eigenspaces of g; corrsponding to the eigenvalues 1 and —1 respectively. For 1<i<3, the
preimages of §; has exactly two eigenvalues and either they are {1,—1} or {wz,ws}, where w is
such that GF(32)#=(w). If they are {w?,w®}, then v;=0=p;. Otherwise, v,+ u,=n, v;#0,

#;#0; and in this case we can pick g; so that v,>pu; V 1<i<3. Also either v,=0 or ps=0,
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- 3 i ]
and we can pick g, so that u,=0. Since l.Ql:[ ? ]3:%(3"—1), we have %4—%2;—3'—';}‘%-}-
=1 -

934-1_,. 4
343 5= 2+3"—1'

This identity can be transformed into 3(3°1+3"24+3"3+
3“‘+3"2+3“3)+4-3"4=3"+5.32. If all v,, p; are 0 for 1<i<3, then 4-3°*=3"+33. But if
vy<n—2, then 4-3"4<3"; and if vy=n—1, then 4.3"4=3"4+3""153" 133, So not all Vi B
are 0 for 1<i<3. If v;, u; are 0 for, say i=1 and 2, then 3(3v3+3“3)+4-3”4=3”+11.3. This
is a contradiction as 1@2[%123 and v3>puz>1. If only say vy=p,;=0, then 3(3”2+3V3+
3"243"3)4+4.3"4=3"113.3. Again, this is a contradiction as 32 divides the left hand side but
not the right hand side. So none of v, y; is 0 for 1<i<3. Then V;Z[%]Z2 V 1<i<3. If we
also have p;>2 V 1<i<3, then 3 divides the left hand side, which is a contradiction. So for

some & p;=1. Then the left hand side is >3"+4-3"4>3"+5-32, a contradiction again. So S is

not of type (2,2,2,3) when ¢=3.

Suppose ¢=4. We have V,-:dim{CV(g,-)}?_f%], V 1<i<3. The preimages of g, has
three eigenvalues. They are {1,w21,w42}=GF(4)#, or {w’,w?®,w*}, or {w'*,w*,w3%}, where

w is such that GF(43)#=(w). In the last two cases, we have N(g4)=0. For the first case,

— 4°+4P 41473
-N‘(94)='—L4ﬁ‘i_T——

1, w?, w*? respectively. Also |f2|=['1‘]4:%(4"-—1). Thus if N(g4)#0, then we have

, where a, 3, v are the dimensions for the eigenspaces corresponding to

o B Y
E -1+1 2.4°44°+47-3_, 6

3 1 o1 This identity can be transformed into

wlw

3(4"1+4"2+4"3)+4(4°+4° +47)=4"+7.2%. So if all @, B, 7 are >1, then we have a
contradiction. So exactly one of them, say y=0. Then 3(4V1+4y2+4"3)+4(4°’+4ﬂ):
4"4+13-2?, which gives a contradiction again as o and B are both >1 and 1/{2[3122, v
1<i<3. Thus N(g,)=0. Similarly, this time we have 3(4"'+4"2+4+4"3)=4"111.22. This

supplies a contradiction too as all v;>2. So S is not of type (2,2,2,3) when ¢=4.

(8.15) |S|=3.
Proof. This follows from (8.12) through (8.14).
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(8.16) Suppose S has an involution, say [§,|=2. Then d=1 and S is one of the following types:
(2,6,6) with ¢=3; (2,4,5) or (2,4,6) with ¢=3, 4, or 5; (2,3,8), (2,3,9), (2,3,12) with ¢=3 or 4.
Proof. Suppose d>2 first. If v(g;)=n—1, then by (3.3) |7,| and 73| are >n>9. Then for i=2

and 3, U(7; )<ma:c{1117 1,1 2251 } %gg 9+ =, which implies E‘U.(y )<i§g}1+

(%gg gl)+45)51. So v(g,)<n—2. Suppose [§;/>5 for i=2 and 3. Then U(F;)<

2056 1 55,6 LUT1,1 2251, 13 56, 1 .0 .o .
543 2437337 37’ S t7E 730 §3e 38R+ 5t =oi5tggr Which implies that

E‘U(g )<162+2(243+ s)<1. So say [g,|=3 or 4. Then both v(7,) and v(g,) are <n—3.

maz{s 5

Since for [§3]|>7, we have %(g,)<ma:c{343+768, % 8137’ é{+39+36, 25+545+2 = 1712%7%1
+315’ %%g 111+ 5}—343+78’ and %(72)5"‘“’7{(3 e)v 158+3,14+4137}_11§+3—,2§’ we have
E‘ll(? )_<_(% 5)+(3 36)+(343+78)Sl. For [g,]=4 and |[§3/=5, we have
pRTCAE g—13-5>+<f8-+§4+437>+<5 L)<l For [gy/=4 and [74]=6, as

SEn(D(02.3), we have v(g3)<n—2. Hence U(Fs)SH{1+(Fy+H)+4-Z} =4+ Lg, which

3
T - 1
implies that i§=1°ll(g,-)5(2+2 35)+(18 34+4 37)—}-(243-}-2 38)<1 Hence d=1.

Suppose v(§;)=n—1 first. So [§,| and [F3| are >n and each eigenspace of them is of
dimension 1. Suppose ¢=3. If |7,]=13, then U(7,)< L3 ——% If |7,]=14, as g, is semisimple

and each eigenspace of g, is of dimension 1, each eigenspace of g3 is of dimension <2, and each

eigenspace of g7 is of dimension <7.  Hence cll.(gfz)<14(1-+- == +6- = 2-|—6 141)<

14+7136+319 For [7,]215, we have by (8.10), U(7,) <300 L +.L 7+31. Similar for U(F3).

. 12 1,1 .1 460 1 _460. 1,1 .1

Since ""‘”{ﬁ*;»,_w ﬁ*;?‘“'g,‘w 243 15+27+36}"243 15*27+36’ we  have

Zﬁl(g )<183714292+2 (ggg 115+27 =%)<1. So for ¢=3, v(g,;)<n—2. Similarly for ¢>4, if
_ 1,50 3., 57 10 1 67

[721=9, 10, 11, 12, 13, 14, 15 then UF)<GH32)s sy+ige 11+ §Hags 13+

1—113—2 1}328, 11270+51i7 respectively. For [§,]>16, we have by (8.10), U7, <
37.1

(%4.42’5)%4.(?4.27), (152-1-57%)%-{-(#4—517), 3 16+(72+ 7) for ¢g=4, 5, ¢>7 respectively.
These bounds implies that E"Il(gi)s(g-kz 48)+2{( )i—6+(4_2+F)}’
37.1

GriordF+ Rt G2 gt} for e=4, 5 g7
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respectively; each of them is <1. So v(7,)<n—2.

Since g, has an eigenspace of dimension >2, every eigenspace of §, is of dimension
Rep— = = 11, 2 7,43 17, 2
<5<n—3. So by (8.11), for 7<[g,|<14, we have M(g2)5m05{63+7.3 +8 ¥ 81+310+

2021, 121,10 2. 11 25 .12 52, 14 27, 1 B (310), for

57 1217119 13F1.03% 1697139 343 277 =125 557

) we have that %(jz)Smaz{‘mo 1+( + 6), (Z+%) +( +_1,7),
243 15 " ‘27 " 3 4 15 4

TGt =t Gt So i [Fl27,  then
1

13
U7, Sm“{i‘%‘*'—l— 31.15+(-1_2+l7)} 1—23+7. Similar for U(g3). Also by (8.11), we
91)<

1 113, 1 2,
.37 32V 5.7 BT 557 1973 77} 9+2 37
+

-.—)+2{1—§5+ 57}51. So one of [7,| and |73 is <6.

Hence if both |7 ,]

i=1

Say 3<[7,|/<6. We also suppose that [§,|<[7 3| in the following.

Suppose [§,|=6. Let a, B be the maximal dimension of eigenspaces of §3, G2

respectively. Then as G=(§,75, 73), we have v, +a+3<2n, [g]gulgn—Z [%]Sagn—l,

fg]SﬁSn—l- So %N(71)+%N(§§)+6 < "1_1{%(9‘,14"1"_"1—2)+%(q°’+q"‘°‘—2)+

n-[31+1 | 311 1 "-f%1 f"]

2Py P 1 1 _oyal nel,
sl +a "2 <5150 +q 2)+5(q ~2)+3(¢" " +g-2)}<

hﬁ
_
-~

(%+——1—) Since every eigenspace of §, is of dimension S[g], we have

1, 1 +2~-—6—, which is less than or equal to
1 6 T3]

11, 2 1 5, 34
g+l+31-ﬁ, %+—2-2-3+—1— 5 tst=rs 7+§——- 7 8for ¢=3, 4, 5, and ¢>7 respectively.

w
>
w
=S
ool
[y
w
ot

Now for [§3|>7 and ¢=3, we have %(?3)5maz{(15—%+7.235, 36+—i é—%+'2—+l7, 1__5+_.1_7’
3

8-3%
259. 'I+(27+36)}"125+2157 Similarly, for [75]27, we have W(73) <+

3
Y U(7;)<1. Hence [§4|=|g3|=6. Suppose S is of type (2,6,6). Let v, § be the maximal

=1

(152__*__5-7_) +(52+57), 113'; 111_*.(72.{.77) for ¢g=4, 5, and ¢>7 respectively. In any case, we have

dimension of eigenspaces of §3, §2 respectively. Since PSLn(q)<(Fs F2)=(33, 73, 2), W
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have a+pf+7v<2n. Also as [g]SQSn—-l, [g]gﬂgn—l, [g]s'ygn—l, we have

i {(¢" '+

n—

(" +¢"*~2)+( +4¢

_2)+(qf§1+qn-f d

1 —2)+(¢"+¢"~

(1—2)+(<l"—r'§1]+1+qr§]‘1

~2)}<(G+ 11’+(r 2t =t ]+1)+

[y

3

(7o* n_lr%.])s(%+q,,1_1)+2( r;-;11-1+ n-lrg1)' Similarly for N(33)+N(@2)+N(@2. So
q q q

IN@D+ENED+ENGD+ENGD=HNGD+N@D+NGDI+HNED+NEFH+NFDH) <

%(5+qn1_1)+§( r%11_1+ n_lrg])' This implies that U(F,)+U(T3)<F+5(G+ ql )+
q q

201 1 2.6 Sy-2 14 12, _2_
3(qf§1—1+qn-f§1)+3 qu]’ which is less than or equal to st W +3 3 e » Bt 757 5+
élg-;+§—1?8, 2%+3——27—2+';3A+§17 for ¢=4, 5, and ¢>T respectively. This implies that
3

7)< (3422, L 2 _1_4_ 11, 26 , 1
12, 2 , 14 , 1 5, 34 14 —
2G5 3,59 (7+37 3)+2(21+ 72+3 ity for ¢=4 5, and 27

respectively. Since each of them is <1, we have that ¢=3 and S is of type (2,6,6).

Suppose [7z|=5. Since vo<[§], UF) <R +4--Fp)<F+35. For [75]27 or [7,]=5,

TSty

have  UF)<HgtzEn  GrIE+Grh, Bh

b
)

O
3
=
+
~

7) for ¢=3, 4, 5, and ¢>7 respectively. Since we also have U(g 1)<ma:lc{9

“l,l'-'

2.37

L_ 25 for ¢=3, 4, 5, and ¢>7 respectively, in any case, we have

! 25+2 57 49+2 77

+
.IH
p—n
oa

e
Q
TX

1. Suppose S is of type (2,5,6). Then as in the previous paragraph, U(g,)+WU(73)<

e 815 &l
no
=S
-3

-
1
-

o=~
+
“alvo

+3—%—3, which gives 2‘-’0,(?,.)51 again.
t=1

Suppose [7,|=4. Since v;+v,<n, [’2—‘]51/151:—2, f%]5u25n—1, we have

n~[§1 +qff-ﬂ

n—yv

& '=2)+(¢+¢

—2)<-L_
2)Sqr,z,]+

pN@)+EN @< = *~2)} <m0

L__ If ¢=4, then as ¢, g, are unipotent, we have %N(71)+%N(?2)_<_
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SHIWH !

O (| RECIS 1) 3 W By ‘2)<2(4r:,-‘1 e Since

NG 2)5-1—2 ll- tli+—1§ , %+é for ¢=3, 4, 5, and ¢>7 respectively, we have respectively

OO
O‘l'—‘
U\

ool

WF,)+UF)<H+ L

as 1/35[%], we have Cll.('g'i:,)gsl)(l+2-%+6-L)=§7+—. For ¢=3 and [§3|=10, as |¢|=5 or

10, gg has a simple submodule of dimension 4, hence %(?3)51—16{1+(%+511§)+4(3171+L

39)
121
+4(36+37)} 405 10- 39+10 31z’

+10 = 7 7 11, 2 7,43 5
37 So for ¢=3 and |[g3]>7, %(93)5ma3:{6—§+_3_5, 3_6+'8——38’ 7_}_328’
4601

56 120, 1 1,10 460 1 _
405+10 39+10.312’ 11+3’ 243 19+ (g7 +39)} =243 1o+ (gy +3)  which implies ~that

cons1der ¢>4. For example if [§3|=12, then as PSLa(g)<(§2, §3), the maximal dimension

For ¢=3 and [73|=11, we have %(?3)511—1(14“10':1),—;):

1)+{ggg 112+(27+ =5)} <1. Thus if ¢=3, then [g3|=5 or 6. Now

v(F3) of eigenspaces of §2 is such that V(?%)sn—[g]s n—3. Then as (§3)=(73,73), one of

v(33), v(73) is <n—2 Also as v3<[f], we have U(Fs)<{5{1+3G+L)+25+5)+
q 7T 4q

2( + 6)+4( + 4)}<384+ 5_1 43 Similarly, for [75]=7, 8, 9, 10, 11, 13, 14, 15, we

3-4° " 3.4°
30 41, 1 1, 10 21 1 13
have respect1ver that ‘1l(g3)<7 Ll 256+ +—— W 6+§—+9_?" 160+2 +2 e
1 50 1 15 5,9 577 1, 2
1—1+11.45, ﬁ+13 ek 56+45+ 14.45 6+ 44+5 ek By taking the maximum, for ¢>4 and
7<[73|<15, we have Z‘U(g )<({gg+f9)+(6+3_zg+ﬂ_3)<l Also for [§3]>16, we have
3
— 1056, 3 7 3,1 1.1 01 1 12 i1
LUEILGR+)HE+H DT+ s+ b (g + 7o) HE+ )+ (ot
—1—)} (Z+—1—+-l-+-—1——)-}-{37 1+(—1~ —1—)} for ¢=4, 5, and ¢>7 respectively. Since each of
577009 T 73 T 78 7 4.98 13 16 2 7

them is <1, we also have that for ¢>4, [g3|=5 or 6. Suppose ¢>7. If [g5|=6, then as

(73)=(73,7%) and u35[’l], we have V("g‘%)-{-u(‘g‘%)ﬁn-{-[g]' Thus cU,(g3)< {1+( + 7)+

2(}+4 )+2( + 4)}<13427+3875+2378 If [75]=5, then M(§3)gl+5—3—35. This 1mplles that if
8

— 7,1.,1
g1 and |9 3|=5 or 6, then ’gﬁ(g i)5(§+’7_3+%'§+ s)+(147+ .75
conclusion, if [§,]=4, then |g3|=>5 or 6 with ¢=3, 4, or 5.

+ 78) 1. So in

Suppose [7,|=3. Since v,+v,<n, ]'%]Suign—z fg]guzsn-—l, we have



g T =) 44+ T2 <k ST (B g 3 =)<

<l
N(91)+3N(92) 6 6 -1

%(———1 .l-i- 1|.,,.|). For ¢=3, we have assumed that n>13, thus U(F,;)+U(72)< g —3% For
n—|3
q q

— . — — D, 455 5,147 +12
g=4, 5, or ¢>7, as n>9, we have respectively "U.(yl)+°l.l.(gz)56+m, 6+ =6 w6 6 3.75"

Similar to above, by applying the formula for the bounds in (8.10), we have [75]|<15, 19, 20, 20
for ¢=3, 4, 5, and ¢>7 respectively. For ¢>4 and [73]=20, as PSLa(q)<(7,, 72) and [g]SVz,
we have u(?%)gn—fﬂlgn—& Also as Vaslg], we have ‘11(?3)52lo{l+7(}1+4%)+
4(43+46)+8(45+44)}— 4+541 5—% Similarly, for ¢>4 and [74|=16, 17, 18, 19, we have
et Ty T Tt et iag® 19 iags  These bounds all
lead to 231‘11.(7,‘)51. So both for ¢>4 and ¢=3, we have [§3|<15. Consider ¢>4 first. For

respectively U(73) <55

|73/=15, since (7;,):(7;5,,'52) and V;,ﬁ[%], we have V(‘g'g)+u(jg)§n+[%]. Thus

‘11(?3)5115{1+2(%+-17)+4(% 8)+8( 5+ )}<120+§2"-17,+5147 Similarly, for [§4]=7, 10,

30 21, 21 1 1,50 1 15
11, 13, 14, we have respectively ‘U.(gs)< -i-7 el 160+10 i 10 et 11+11 e 13+13 e

f—‘%+7.46+14 YLk So for ¢>4 and 7<[73|<15 with [g5]#8, 9, 12, by taking maximum, we

have that z:‘il.(g,)<(5 455)+(7 25)51- For ¢>5 and [75]=8, as PSLn(9)<(72 73)

and [§1<vs, we have »(F3)<n—[§1<n=3.  So UFa)Sg{l+(G+zp)+25+50)+

3
4(55+ 1y)=18 4 8Ly Lo This gives 2&1(?,.)5(% 147)+(125+——+ 158)51. For

4.5°  8.5% 5°
¢>7 and [§3|=9, then °U.(y3)<9{1+2(7 78)4-6(75+74)}— +31(7i5+9278 For ¢=5 and

[73]|=9, since g3 has a simple submodule of dimension 2, we have N' (?3)55—2—{-517, which gives

‘11.(?3)5%{1+2(#+%)+6({%+%)}=%+—5%+§1%. So in case ¢>5 and [§5]|=9, we have

3
Z;lcu(y,.)g(g D +G+5+ 29<1 For ¢25 and [gal=12, as PSLn(9)<(7s T3)

v(73)<n—[B1<n—3. Since (75)=(73:72), one of ¥(33), ¥(74) is <n—2. Also as v <[l], we

1,1 ,
have U(Fa)<h{1+3(3+ 5B)+2(52+57)+2(53+56)4—4(5{.,-;»54)}--375 6656+12*°%8. So it

leaves only g=4 with [§4]|=8, 9, 12. Now suppose ¢=3. For |[§3|=15, since §3 has a simple
submodule of dimension 4, we have %(g3)<15{1+2(3 312)+4(34+39)+8( +36)}—

S1)+;264+ 33. Similarly, for [g3|=7, 10, 11, 13, 14, we have respectively U(73)<3 +72§7,
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2 u 1 1 40 1 48 2,40 1 _ — .
5+ 9 10 312) 11+11 312, 13+13.37) ﬁ-’- 37+14.312. SO fol' q-—-3 and 7Slg3’515 Wlth

3
[73l#8, 9, 12, by taking maximum, we have that E‘U(?,-)S(6+98)+(7+ 247)<1 Hence
=1

|73/=8, 9, or 12. In conclusion, if [§,|=3, then |[75|=8, 9, or 12 with ¢=3 or 4.

(8.17) If d=1 and ¢=3, then S is not of type (2,6,6).

Proof. Pick a fixed preimage g; for each §;. Let v;, u; be the dimensions of eigenspaces of g,
corrsponding to the eigenvalues 1 and —1 respectively, and we can choose g; so that v;> ;.
We have either v, =0=yp,; or v,+pu,=n, v;#0, u;#0. For i=2 and 3, let «a;, B; be the
dimensions of eigenspaces of g7 corrsponding to the eigenvalues 1 and —1 respectively. Since a2,
i=2, 3, has either 1 or —1 as its eigenvalue, but not both of them, we denote by 7; the
dimension of the eigenspace of g7 with the eigenvalue in GF(3). We have o;>v; and 8;>y;.
Also a;=f;=0 iff g?:—[, in which case v;=pu;=0 and 7, is the dimension of the eigenspace
corresponding to —1. If one of v;, p; is not 0, then v, is the dimension of the eigenspace

corresponding to 1, and v;>v;+u;.  Since l.f—2|=['1']3=%(3"—1), we have (%+2-%—).)+

3,,1_1{%(3”1+3“1—2)+(l.i.izi;z(s“‘+3”‘-2)+(25.izi;2(3”"—1)+§§;2(3”‘+3 —2)} =14zt
This identity can be transformed into 3(3”+3”1)+(3a2+3ﬂ2+303+3ﬂ3)+2(372+373)+
2(3"2+3"2+3"3+3"3)=3"45.3%. Suppose v;=n—1. Then as 7,-2[%]25 for i=2 and 3, we
have that the left hand side is greater than 3.3"142.37253"4+5.32, Suppose v;=n—2. Then
3(3”1-}—3"1):3""1-{-33, which implies that both v, and y3; are <n—2. Also v;=n—2 implies
that v; and p; both <2 for i=2 and 3. Since (77, 7:)=(7,), i=2 and 3, we have
a;+v;<n+maz{v;,p,;}<n+2 and similarly B;+7v;<n+2. This together with n—2>7v;>5
gives that both 3% 43" and 37437 are <3"~243%  Hence the left hand side is
<(3"1+3%)+4(3"2+3%)+4.32<3" +5-3%. Suppose v;=n—3. Then 3(3"1+43")=3""2434,

So if one of v,, 773 is n—1, then the other is <n—3. Since v, and pu, are both <3, if one of v,,

vs is n—1, say 7,=n—1, then 3°24+3"? and 3°24+372 are <3"~14+3%. Also as PSL.(3)<(72,
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¥3)y 72=n—1 implies that v3 and uj are both <1, which gives that az+v; and B4+75 are
<n+1l. Then 5<vy3<n—3 implies that we have 373433 and 3p3+373 are both <3"~3434,
So the left hand side is <(3"72+3%)+2(3"7'+3%)4+2(3" 3 +3%)+2-33+2.3<3"+5.3%. If
both v,, 5 are <n—2, then both 3% 43" and 3p.-+37‘- are <3""243% for i=2 and 3. This
implies that the left hand side is <(3"2+3%)+4(3""2+3%)44-3%<3"+5.3%. Hence we must
have v,<n—4. So 3(3”1+3“1)53""3+35. It is easy to see that we cannot have both vy, and
v5 equal to n—1. So 372+37353"‘2+3"‘1. Suppose one of v,, 73, say for example y,>n~2.
Then v; and p; are both <2, which implies both a3 and (3 are <n-—3. So
303+3p353"'3+33. Since v; and p; both 5[%]511—7 for i=2 and 3, we have a2+72_<_n+[%]
and ,32+72$n+[7§’]. So both &y and B, are <[f]+2<n—5, which gives 3°243P2<9.3m-5,
Hence in this case the left hand side is <(3""3+3°)+2-3"%4+(3""34+33%)+2(3" 243" 1)+
4.3""7<3"4+5.3%. Suppose both v, and y; are <n—3. Since 3a"+3ﬂ"53""1+3 and v, p;
both <n—7 for =2 and 3, we have that the left hand side is <(3""2+3°)+2(3"1+3)+

4.3 3144.3""7"<3" +5.3%. Therefore in conclusion, we have that S is not of type (2,6,6).

(8.18) If d=1 and ¢=3, then S is not of type (2,4,5).
Proof. Pick a fixed preimage g¢; for each g;. Let v;, u; with v;>u,; have the same meaning as
in (8.17). Let c, 3 be the dimensions of eigenspaces of g3 corrsponding to the eigenvalues 1 and

—1 respectively. We have a>v,+pu,. Since |?—2|=[',‘]3=%(3"-1), we have (%+Ll1+%)+

(337 +3" )+ 137437 -2)+ 33" +3" -2 +§(8" 43" -2} =14 52k, This
identity can be transformed into 10(3"1+3"1+3"2+3"2)4+5(3%+3")+16(3"3+3"3)=3"+161.
Clearly, we have v, <n—3 V 1<i<3, and maz{a,f}<n—2. Suppose maz{v,,v,}>n—4. Then
v and pj both <4; and also 3”1+3“1+3y2+3”253”'3+34. Since 3°’+3ﬁ_<_3"'2+32, we have
that the left hand side is <10(3"72+43%)+5(3""%+3%)+32-3*<3"+161. Now suppose
maz{ul,uz}gn;—5. So 13""+3“"53""'5—{-35 for i=1 and 2. If one of a, B is n—2, then v5 and

sz both <2. Hence the left hand side is <20(3"7°+3°%)+5(3""2437)+32-32<3"+161. If
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maz{ce,f}<n—3, then we have that the left hand side is <20(3"~°43%)+5(3" 3+3%)+

16(3"3+33%)<3"+161. Therefore S is not of type (2,4,5).

(8.19) If d=1 and ¢=3, then S is not of type (2,4,6).
Proof. Pick a fixed preimage g; for each §;. Let v;, y; with v;>pu, have the same meaning as
in (8.17). Let a,, B,, where A=1 or —1, be the dimensions of eigenspaces of g¢2, ¢3

corrsponding to the eigenvalues A respectively. Let y be the dimension of the eigenspace of g3

with the eigenvalue in GF(3). So 72[%]25. Then as PSLn(3)<(7,, 73), we have

pa<vy<n—5. Similar as before, we have (%4.%_,_(15)_}_3"1_1{%(3”_'_3#1_2)_'_
}1(3"1+3"-1—2)+§(3”2+3“2—2)+}i(3"1+3”-1-2)+§(3’—1)+(-25(3”3+3“3—2)}=1+§,%1.

This identity can be transformed into 6(3"1+3"1+3"2+3"2)+3(3%1+3%1)+2(3"1+3°-1) 4
4-37+4(3y3+3"3)=3"+31-3. Denote the left hand side of this identity by z. It is easy to see
that maz{a,,0_,}, v, and v are all <n—2. As 3, and y both >v3, we have v3<n—3. Also
if maz{B,, B_1}=n—1, then y<n-3. So 2(3ﬂl+3p_1)+4-3152(3"-1+3)+4~3"'3. Suppose
v3>n—6. Then a;, a_;, v, p;, i=1 and 2, are all <6. So z<6-4-3°43-2.3°42(3" "1 4 3)+
4-3"7344(3" "% 4+3%)<3”4+31-3. So vz3<n—7. It is easy to see that maz{aj,a_;}=n—2=v,
is impossible. Suppose maz{a,,a0_;}=n—2. Then r3<2; which implies that maz{8,, f_;}<
n—3 and 2(3ﬂ1+3p'1)52(3""3+33). In this case, if y=n—2 and v,=n-3, then
6(3"1+3")+3(3" 1 +3° 1) +4.3"=6(3" "2 +3%) +3(3" "2 +3%) +4.3""2=3"+7-3°>3" 4+ 31.3.

So either both 4 and v, are <n—3; or y=n—2 and v, <n—4. Since p,<v,<n—>5, in the first
case, we have z<6(3""3+33)+6(3"5+3%)+3(3"2+4+3%)+2(3" 3 +33%)+4.3""344.2.3%<
3"+31.3. In the second case, we have z<6(3" *+3%)+6(3"°+3%)+3(3" 2+3%)+
2(3"'3+33)+4-3"'2+4-2'32<3"+31-3 too. Thus in any case, we have maz{a,,a_;}<n-—3.
Suppose v;=n—2. Then v,<2 and v3<2. Since 6:3"*+4.37>6-3""2+4-3""2>3"+31.3 if
y=n—2, we must have y<n—3. Also as before, v3<2 and v>5 implies max{f3,, #_;}<n—3.

This together with y<n—3 implies 2(3"1+3"~1)+4.37<4(3""3+3%). Then 2<6(3"2+3.3?)
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+3(3""343%)+4(3"3+3%)44.2.32<3" +31-3. Thus in any case, we have v,<n—3. Suppose
maz{fy, B_;}=n—1. If y=n—2, then 2(3°1+3°~1)+4.37=2(3"143)4+4-3"2>3" 4+ 31.3,
So y<n—3. Since 7>5, we have v3>4; which implies that v, and maz{a,,a_,} are both
<n—4. Then z<6(3" " +3%)+6(3" 5 +3%)+3(3" "t +31) +2(3" 1 +3) +4-3" 3+
4(3"'7+37)<3"+31-3. Thus in any case, we have maz{3,;, _;}<n—2. Also as maz{8,,6_,}
+v<n+v3<2n—7, we have 2(3"1+3p'1)+4-37_<_4(3"'2+3"‘5). Now as v;<n—3, v,<n-—35,
maz{ay,@_1}<r—3, and v3<n—7, we have z<6(3""34+33)+6(3"5+3°%)+3(3"3+3%)+

43" 243"%)+4(3"""+3")<3" 4+ 31.3. Therefore S is not of type (2,4,6).

(8.20) If d=1 and ¢=3, then S is not of type (2,3,8).

Proof. Pick a fixed preimage g¢; for each 7;. Let v;, u; with v;>pu, have the same meaning as
in (8.17). Since [§,|=3, we can pick g, so that u,=0. Thus V22[g125. Let a,, 3,, where
A=1 or —1, be the dimensions of eigenspaces of g3, g3 corrsponding to the eigenvalues A
respectively. We have (%+%+%)+3_n1?1{%(3”1+3"1_2)-{-%(3"2._1)+%(3°’1+3°’-—1__2)+
%(3ﬂ1+3'B'1—2)+%(3”3+3”3—-2)}=1+§,%1. This identity can be transformed into
12(3" +3"1 4+3"3 433 +16.3"24+3(3" +3°"1) +-6(3"1 +3”~1)=3" +59.3. Denote the left hand
side of this identity by z. Since v,>5, we have v, and v; both <n—5. Also as PSLx(3)<(7,,
32), we have max{f,, f_;}<n—5. This gives 12(3"1+3"1+3"3+3"3)+6(3"1+3"-1)<
10(3"%43%). Also clearly v,<n—3 and maz{a;,a_}<n—2. Suppose v,=n—3. Then v,
vy, and maz{B,, B_,} are all <3. This implies that z<12-4.3%416-3""2+3(3""%43%)
+6-2:33<3"4+59-3. So v,<n—4. This together with maz{e;,a_;}<n—2 implies that

z<10(3" % +3%)+16-3""* +3(3""2+3%)<3" +59-3. Therefore S is not of type (2,3,8).

(8.21) If d=1 and ¢=3, then S is not of type (2,3,9).
Proof. Pick a fixed preimage g; for each §;. Let v;, u; with v;>u; have the same meaning as

in (8.17). Since [§,|=3 and [g3|=9, we can pick g, and g3 so that pu,=0 and p;=0. Thus
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v, 2[%125 and V32[g]22. Let o be the dimension of the eigenspace of g3 corresponding to
the eigenvalue 1. So 0‘2[%125- We have (%+%+%)+3—,,1_—1{%(3"1+3“1—2)+§(3"2—1)+
%(3"’—1)+g(3”3—1)}=1+3—,,4_—1. This identity can be transformed into 9(3"1+3"1)+
12(3"243"3)4+4-3*=3"+13-32. Denote the left hand side of this identity by z. If y,;>1, then
3? divides z, which is a contradiction. So p,;=0. Since either v, and pu, are both non zero, or
both are 0, we have v;=pu,=0. Then 12(3"2+3v3)+4~3°'=3"+11-32. But as v4>5, v3>2,

and a>5, we still have that 3% divides the left hand side of the equation, but not the right hand

side. So S is not of type (2,3,9).

(8.22) If d=1 and ¢=3, then S is not of type (2,3,12).

Proof. Pick a fixed preimage g; for each §,;. Let v;, u; with v;>pu,; have the same meaning as
in (8.17). Since |g,|=3, we can pick g, so that p,=0. Thus Vngg]Zf)- Let oy, B Y
where A=1 or —1, be the dimensions of eigenspaces of ¢35, ¢3, ¢2 corresponding to the
eigenvalues A respectively. Since 173 =4, the eigenvalues of g3 which are not +1 are either all
in pairs {w,w?} or all in pairs {w?w®}, where w is such that GF(32)#=(w). So we have
B1+P_1=n—2k with k>1. Also clearly o;>8,+0F_;. Let 6§ be the dimension of the
eigenspace of g3 corresponding to the eigenvalue in GF(3). Then § 2[%‘]25. We have
By

11,1 1 glia%1, 9¥1 2(9v2 1 /9% | o%-1 2 (96 2 (of1
(3+3+p)+gn {38 +37-2)+353 °-D+5B "+3 T -2)+56 - D+5(3 " +3

2)+%(3“+3’—1—2)+14—2(3”3+3"3—2)}=1+

3,,4_1. This identity can be transformed into
6(3"1+3"1)+8-3"2 4+ (31 +3° ) +2.3° +2(3" +3°-1) + 23" +37-1) +4(3"3 +3"3) =3" 1 29.3.

Denote the left hand side of this identity by z. Since v4>5, we have v, v3, and maz{y,,v_,}
are all <n—5. So 6(3"1+3"1)+2(3" +37-1)+4(3"2+3"%)<12(3"°+3%)=3""3 4+ 3"~ +4.35.
Also clearly maz{a,,a_}=maz{B,, B_;}=n—1 and maz{a,;,a_;}=6=n—1 are both
impossible; and v,<n—2. Suppose v,=n—2. Then v,, v3, and maz{y,,7_;} are all <2,

which gives that 6(3"1+3"1)+2(3" +37~1)+4(3"2+3"3)<4-3%. Since 8-3"2=2.3""14+2.3""2,

we have maz{ay,a_;}, 8, and maz{B;, B_;} are all <n—3. Also as maz{a,,a_;}+6<
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n+maz{7;,7.,} <n+2, we have (3°'+3°71)4+2.3°<2(3"~343%). Now if maz{f,, f_;} =n—3,
then as oy >f,+B_;=n—2k with k>1, we must have k=1 here, which contradicts to a; <n—3.
So maz{B,, B_;}<n—4, which gives 2(3"+3°"1)<2(3"*41).  Thus 2<4.33+
(2-3"71+2.3"7%)+2(3" 2 +3%)+2(3""* +1)<3" +29-3. Hence v,<n—3. Suppose 6=n—1. If
vo=n—3, then v,, v,3, and maz{y,,y_;} are all <3. Since maz{a;,a_;}+6<
n+maz{y,,7_,}<n+3, we have B, +B_,<maz{a;,a_,}<4. Hence £<24-33+8-3""34+2.3%+
2-3""14+4.3*<3"+29.3. For v,<n—4, as maz{aja_;}+6< n+maz{y;,7_}<2n—5, we
have maz{ea;,a_,}<n—4, which implies that maz{f8;, f_,}<n—4 and (3"'+3%"1)+2.3°<
3""443442.3""L  So z<(3" 243" *144.3%)48-3" 14 (3" 4314237 ) 423"+ 1)<
3"+29-3. Hence §<n—2. This together with maz{a;,a_1}+6<2r—5 implies that
(3% 143°"1)4+2.3°<3""14342.3""%  Also as v,<n—3 and B;+SB_,<n—2, we have
8-3°242(3"1 4371y <3m-1 43724 2.37~349. Thus z<(3" 3 4+3""*+4.35)+ (37143724

2-3"34+2)+(3""14+3+42-3""%)<3”+29-3. So §is not of type (2,3,12).

(8.23) If d=1 and ¢=4, then S is not of type (2,4,5).

Proof. Since for i=1, 2, and 3, ([§;|,¢g—1)=1, we can choose a preimage g; of 7; so that ¢g*=1,
where k=|g;|. Then if g; has an eigenvalue in GF(4), it must be 1; and similar for ¢5. Let v;
be the dimension of Cy(g;) for i=1, 2, and 3. Let a be the dimension of Cy/(¢3). Since

|r21=[;']4=§(4"—1), we have (J+i+D+ps0@ -+ -+ -+

%(4"3—1)}=1+4,,(i_ This identity can be transformed into 10(4"1+4y2)+5~4°’+16-4u3=

T
4™ +5-25. Since ulzl'%'|25, 1/22[%']23, and aZ[g]Z& if ¥3>1, then 2% divides the left hand
side of the equation but not the right hand side. So v3=0. Then we have
10(4"1+4"?)+5-4*=4"+9.2%. But this time we still have that 25 divides the left hand side of

the equation but not the right hand side. So S is not of type (2,4,5).

(8.24) If d=1 and ¢=4, then S is not of type (2,4,6).
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Proof. For i=1 and 2, we choose g; in the same way as in (8.23), and let »; and « have the
same meaning as in (8.23). For g3, let x, be the dimension of the eigenspace corresponding to
the eigenvalue A€ GF(4)#=(w). Similarly, let vy, be the dimension of the eigenspace of ¢2
corresponding to the eigenvalue A. Thus v,;>4, V A€(w). Soif g3=w?I or wI, then all p,
2

and all v, are 0. For g3, it can have at most one eigenvalue in GF(4)#; they are 1, w, w

according to gd=1, w?l, wl, respectively. Let 8 be the dimension of this eigenspace. Thus we
— v a v 8 M e T2
have (%+%+61-)+4,.1_1{%(4 1_1)+%(4 _1)+%(4 2_1)_,_%(4 _1)+%(4 1 g 0w g'w —3)+

o v
%(4“1+4““’+4 “’2—3)}:1+‘ﬁ. This identity can be transformed into 6(4 '+4"2)+

3.4742.4° 444" 4479 44 “* 44" 1 4" 1 4"9?) 47 1 7.42. Denote the left hand side of this
equation as z. As v12f§]25, we have v,<n—35, and each u, <n—5. As V22[%]23, we have
v;<n—3, and each 7v,<n-3. Suppose a=n-—1. Then each p,<1, which gives
4(4”1+4”“’+4““’2)53-42. Also clearly f<n—2. Since (63, ¢3)={g3), we have
yy+B<n+maz{pu,}<n+1, which gives 2-4p+4(471+41“’+47“’2)§2-4"—2+3-44. Thus
2<6(4" 3 +4"%75)43.4""1 4 (2.4 24+ 3.4%)+3.42<4" +7-42. So a<n—2. Then 3-4°+2.4°<
3.47249.4"1.  Since 6(4" +4"2)+4(4 1447014 V214" 14" 14 0P <p(4n3 £ 47~5) 4
4(4" 3 +4341)+4(4" 5 +4%41), we have <3471 4477242.47"3 40,4744 04”5145

4%+42.4 <4™+7-4% So S is not of type (2,4,6).

(8.25) If d=1 and ¢=4, then S is not of type (2,3,8).

Proof. For i=1 and 3, we can choose a preimage g; of 7, so that gf =1, where k=|g;|. Let v;
be the dimension of Cy/(g;) for i=1 and 3. Let a, B be the dimension of Cy/(g3) and Cy(g3)
respectively. For g,, let x4, be the dimension of the eigenspace corresponding to the eigenvalue

AGGF(4)#=(w). So if g3 =w?I or wl, then all u, are 0; and B+ pot+p a=n if =1 We

]
have (3+3+D+53@ - D+3 +4" a9+ 1)+ L4 - )+ - )=

1+£—1,,—6_—1. This identity can be transformed into 12(4”1+4y3)+3.4°+6.4ﬁ+
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424" 4" 4 4" 9P =47 £ 7.95. Since vi2[B125, v32[2122, @>[2]1>5, and B2[2]23, we
have 22 divides (4”1+4”“’+4,“"2)—7-2. This can be satisfied only when there are exactly two
zeroes among fy, pw, M2, Which contradicts to that g, is not a scalar. So S is not of type

(2,3,8).

(8.26) If d=1 and g=4, then S is not of type (2,3,9).

Proof. Let v, have the same meaning as in (8.23). For g,, ¢3, g3, let oy, By Yar be the
dimension of the eigenspace corresponding to the eigenvalue A€ GF(4)#=(w) respectively. We

1,11 1 ¢lias? 2(4% Fw2 B 8 B2
64714 g w4 w? - 6 his identi : v
§(4 +4'“+4 ——3)}—1+4—,t-i. This identity can be transformed into 9-4 “+
g ¥
1247 4% +479%) 4 4@ 147 147N 1 124" 4479 4479 =47 12525, Denote the left
hand side of this equation as r. Since VIZI—%]_>_5, we have all a,, v, are <n—5, which gives
o gow 4 Tw? M 4w g w2 n-5__,4n-2 n-5
12(4 “+47“+4 “7)+12(4 "+4 “+4 “7)<12:6-4"7°=4""°+6-4""". Also clearly we have v,
B
and all B, are <n—2, which gives 9~4”‘+4(4” 14470 14 “?)<9.4"2 4 4(4"2 4424 1)=

13-4""2 443 +4%. Hence 2<14-4""246-4""°44% 147 <4" 4+ 25.23. So S is not of type (2,3,9).

(8.27) If d=1 and ¢=4, then S is not of type (2,3,12).

Proof. Let v,, B, 6 be the dimension of the eigenspace of g,, ¢35, g5 corresponding to the
eigenvalue in GF(4) respectively. Let a,, 7,, &), s, be the dimensions of eigenspces of g,, g3,
g2, g3 corresponding to the eigenvalue A€ GF(4)#=(w) respectively. We have (%+%+é)+
4—,,1_—_—1{%(4"1—1)+§(401+4°'“’+4a“’2—3)+1l2(4ﬂ—1)+12—2(471+47“’+41“‘2——3)+12—2(4’—1)+%(4€1
+4‘“’+4‘“2-3)+I4z2(4“‘+4““’+4"w2—3)}=1+4,,—6_i. This identity can be transformed into
64”1 +8(4% +4° +47%) £ 4% 4 2(4 " 14" 447 4248 1245 4 afe 1450 p4(d gty
4u”2)=4"+27. Denote the left hand side of this equation as z. We have ulzfg]ZS. As
[73]=4, we have 35[2]5657)—2. Also clearly 7,,>&,. Thus maz{¢,}<n—2. It is clear that

v;<n—2. Suppose v;=n—2. Then maz{a,} and maz{y,} are both <2; which implies each
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a, =0, and 4(4“1+4u“’+4”“’2)§3-43. If maz{vy,}=n—1, then 6-4y1+2(471+47“’+47w2)>
14-4""2%; which implies that maz{f,}<n—3 and B<n—2. Also since maz{y,}+6<
n+maz{p,}<n+2, we have §=3. Then 2<6-4""248.34+4" 242(4" 14441)+2-4°+
24" 3 44%41)43.43<4" 427, So  maz{v,}<n—2. Then 2(471+4’“+47‘“’)5
2(4""24+4%+1). Also as §+maz{€,}<n+maz{u,}<n+2, we have 2-46+2(461+4E‘”+4£“’2)§
2(4"7%+3-4%).  Thus 2<6-4"7248-3+4"14+2(4" 2 +4%+1)+2(4" 2 +3-4) +3-4° <4” +27.
Hence vi<n—3. If maz{y,}=n—1, then as maz{y,}+6<n+maz{pu,}<2n—5, we have
5<n—4.  So 24" 44744 %) 12.45<2(4" 14 441) 424774 If maz{y,}<n—2, then
24" 4479 +479%) 12.48 <2AP T4 424 1) 424" 2 <247 4 44 1) 42474, Also  as
VIZ[%]ZS, maz{a,} and maz{p,} are both <n-5; which gives 8(4al+4°’“’+4a“’2)+
44" 144" 14"9%) <12(47 5 1 454 1)=3.4""* £ 3.45 4 12. So whether maz{7,} equal to n—1
or not, we have z<6-4"7I4(3-4""*143-4°412)44" "1 424" +44+1)+24" 74+

2(4""?4+4241)<4™+27. Hence S is not of type (2,3,12).

(8.28) If d=1 and ¢=35, then S is not of type (2,4,5).

Proof. Since (5,—1)=1, we can choose a preimage g; of §3 so that g‘;’,:l. Let v3 be the
dimension of Cy(g3). Clearly g; can have only at most two eigenvalues in GF(5); let , § be
the dimensions of their eigenspaces respectively. Similarly, let 7, be the dimension of the
eigenspace of g, corresponding to AGGF(5)#=(w). Let &, & be the dimensions of the
eigenspaces of g2 with corresponding eigenvalues in GF(5). Since lf)l:[ ? ]5= }1(5"—-1), we

Y2 Y3
have (%+%+%)+5—nl_—l{%(5°+5”-2)+%(5"+5‘—2)+§(5’”+5W+5 +5 93 _4)+

%(5”3 -1}=1+ This identity can be transformed into 10(5* +5ﬁ) +5(5° +5€) +

8
51
106" +57 4572 1.57%) 1 16.5"3=5" +49.5. Denote the left hand side of this equation as .
Clearly v3<n—2. Suppose v3=n—2. Then maz{a, 8}, maz{é, £}, and maz{y,} are all <2.
This implies that z<(20+410+40)5%24+16-5""2=3.5""145""242.5%14.53<5"+49.5. So

v3<n—3. We have v32[g122. So 16-5°3>49-5, which implies that maz{a, B}, maz{6, £},
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and maz{vy,} are all <n—2; and it is easy to see that these three maximum cannot all equal to
n—2 at the same time.  Then 10(5%+5°)+5(5°+5%)+10(5""+5"“+5 “* 45 %)<
10(5""245%)+5(5" "2 +5%)+10(5" "2 +5% +14+1)=4-5""1+5""2 4 5 1 4.5% 1-4.5. Hence
2<4-5" 1 4572 1 5% 44,53 44.5416-5" 3 =4.5""1 4+4.5"2 1 5”73 1 4.53 1+ 4.5<5" +49-5.  So

S is not of type (2,4,5).

(8.29) If d=1 and ¢=>5, then S is not of type (2,4,6).
Proof. Let a, 3, v,, 6, and £ have the same meaning as in (8.28). It is easy to see that there
are at most 2, 1, 2 eigenvalues in GF(5) for ¢3, g3, g5 respectively. Denote the dimensions of

their corresponding eigenspaces by s, ¢, u, v, w in that order. Then we have (%+211-+ %)+

el {157 +5° —2)+ L(6P 455 =2) + 357 457 +5 “ 45" “* —a) + (5" +5' ~2) + 25 — 1)+

%(5”+5w—2)}=1+%. This identity can be transformed into 6(5%+5°)+3(5°+5%)+
65" +57%+5" %2 +5%%) 4 2(5° +5%) +4-5% +4(5° +5%) =57+ 153. Denote the left hand side of
this equation as z. Clearly maz{a, f}<n—2 and maz{y,}<n—2. Since g3, g3 both have a
simple submodule of dimension >2, we have u<n~—2 and maz{v,w}<n—2. Also either all
75=0 or their sum equal to n. For each of the pairs {a,8}, {s,t}, {6,£}, either both numbers
in the pair are 0, or both non zero and their sum equal to =n. Suppose
maz{6,6}=n—1=maz{s}. Then a=B=0 and 7,=0 Vy. Thus 6(5%+5")+3(5°+5%)+
6(5"1+57“'+5”“2+57‘"3)+2(5’+5‘)=5"+61. This implies 5%+45"+5%=23, which can be
seen easily impossible. Suppose maz{6,6}=n—1. So maz{s,1}<n—2. Also maz{v,w}<1l. If
maz{a,f}=n—2=u, then 6(5°+5ﬂ)+3(56+5£)+4-5“=5”+165, which is a contradiction. If
maz{a,f}=n—2 and u<n—3, then v,=0 Vv and maz{s,t}+u<n+maz{v,w}< n+1 implies
2(5* +5')+4.5% <2(5" 2 +5%) +4-5°. This leads to 2<6(5" 2+5%)+3(5" 1 +5)+24+
2(5""2+5%)+4-5°+40<5"+153. If maz{e,f}<n—3 and u>n—3, then 7,<3 V4. Then
r<6(5™ 3 4+53) 4+3(5" 1 4+5)+6-4.-53 4+ 2(5" 2 +5%) +4-5" "2 +40<5" +153. If maz{a,f}<n—3

and u<n—4, then z<6(5" 3 45%)43(5" 1 +5) +6(5" 2 4+52+2) +2(5" 2 +5%) +



93
4-5""* 1 40<5" +153. Hence maz{6,£}<n—2. Suppose maz{s,t}=n—1. Since
maz{a,f}+maz{y,}<n, we have 6(5°’+5p)+6(511+57”+57“’2+57“’3)56(5n_2+53). If
maz{§,6}=n—2, then maz{v,w}<2; which gives z<6(5" 2+53)43(5""24+5%)+2(5" 1 +5)+
4-5""244.2.52<5" 4153, If maz{6,6}<n—3, then z<6(5" 2+5%)+3(5" 345%)42(5" 1 +5)
+4-5""244(5" "% +5%)<5"+153. Hence maz{s,t}<n—2. Then as maz{6,£}<n—2, u<n—2
and maz{nw}<n—2, we have z<6(5" 245%)+3(5" 2+52)+2(5" 24+52)+4.5" "%+

4(5""24+5%)<5"+153. So S is not of type (2,4,6).

(8.30) S has no involution.

Proof. This follows from (8.16) to (8.29).

(8.31) S has no element of order 3.
Proof. Suppose without loss of generality that [g,|=3. Consider d>2 first. If v(7{)>n—2,

then by (3.3) we have |g,| and |73] are both 2[7—']25. Similar as in (8.16), for |g;|>9, i=2 or

56 1

2251, 1
3, we have U(7;)<f55°g+,5 Thus for [7;|>5, we have U(y; )<"””{5+5 43 2437 5.7

1289 " 4
22

255 6 17 . 1 2251, 1, 56 , 1 2675 1
3a3t7® T0stgge 1289t st =gzt g This gives 2:C“(-"=)<6561+2 (545 + 557 <1
Hence v(7,)<n—3, which gives that °U.(g1)5§+§; by (8.1). Similarly if [§;]=3 for i=2 or 3,

we have "ll(?.)<:1—;+:—327;. Since one of F, T3 is of order >4, say [§3|>4, we have
3

U(F ) <maz{ AL+ -1 264 1 3=47, 1l Thus we have Z%(?i)§2~(%+3—26)+
’ : i=1

(%-{-4—'13—)<1 Therefore we must have d=1.

Suppose v(§,)=n—1. Thus [§,| and [g3| are both >2>9. For i=2 and 3, if

9<|7,|/<14, then we have U(T; )<maz{g+3m+2 27 41 2l 100 2, 11

37 125g5m RITL 137
25 12 52, 1 4y_27 .1 - 460 1,1 .1
169+139’ 343+ 7}—1'2'—5 '2":37- For Ig'|215, we haVe CU-(g1)< {2'4_3"13'1"”27‘*'36,
1 37.1 _
G+ + G+ 5, (12+58)ﬁ,+(l+57), Bt Gat)=

371 1 10937 1
3 15+(72+77)<125+2 =T Then Z"U.(g,)<19683+2(125+2.57)51. Hence we must have

v(71)<n—2; which implies that ‘1].(91)_— Assume without loss of generality that in the

|N>

3%



following [7,]|<[7s|. Now if [§|>7, then %(?)Smar{‘llg+ 5 }1+8§ i2l+%7}=%+7ﬁ9.

9 2.5
: - n - = F 41,33 31, 4
Since u(gl)2[—123, both v(g,) and ¥(§3) are <n—3. Thus "‘ll.(gz)Smaz{128+4 » 135 a8

25, 23 13,6 41 33
81+2 39 49+79} 128 9 if [§,]>4; which gives q"'(g1)"”;“'(92)<(27"'38)"’(128'*‘ 5)- If

|7,]=3, then both »(g,) and v(g,) are <n—3, which implies ‘U(gl)+°l.l.(gz)<2(2g 527)<
. — 3
(27+38)+(128+i—§). So if [g3|>7, then we have ‘Z:l‘il(g‘-)S( 8)+(128 —%)-lr-

(49+79)51. Hence we must have both [7,| and [§ 3| are <6.

Suppose [§,|=[F3}=6. If ¢>4, then as v(7,)<n—2, we have ‘U(‘g‘l)gg+#. Then

3 .
Z"‘U.(‘g".)s(g.}.?%).}. (§?+-2—2-3—9)<1 So ¢=3. Thus V(EI)ZF:%]ZE), which implies

¥(g,)<n—5, and thus v(73)+v(73)<n+v(g,)<2n—5. Then N(72)+2N(7§)s(§z+§%)+
1

1 D4 5 A
2(§+3T) which gives tll.(g2)<6{1+( +39)+2(3 312)4-2( +38)}—-8 236+ +313

It is similar for U(g3). Hence E‘U.(jq',-)s(2—7+38)+2(18+ 5 B4 710+313)51. So S is not of
1=1

2.3
type (3,6,6).

Suppose [§,|=5. Then E"u(y )<( 38)+(I:%15+—4—-)+(§—?+-2-3—9)51-

Suppose |g,|=4. Then as V(EZ)Z[%]Z& we have v(g7;)<n—3; which implies that

%(‘gl)gg—ﬁh%. Then Ecu(g )<B+% )+2(128+49)<1

Suppose [g5]=3. Then both v(7,;) and v(§,) are <n—3 if ¢>4; and both <n—5 if
3
g=3. Consider ¢>5 first. Then by (8.11), ig‘ll(i,-)ﬁ?(gg-&-z 56)+(128 %)51. Suppose
g=4. Since v(7§,)+v(g3)<n and both of them are <n—3, we have N(7,)+N(75)<
(Zlg-i-zlg)-i— ; which implies EQJ.(g )<2+§{(—§+46)+46}+(128 )<1 Suppose ¢=3.
2 S
Then both AU(F,) and U(F,) are %{1+2(35+38)}—3+36+39. Then 3 U(7,)<
1,22 41 , 33

2(§+3—6+3—9)+(m+z§)$1

Therefore S has no element of order 3.

(8.32) d=1 and $ has no element of order 4.

Proof. Suppose d>2. From above we saw that all [§;|>4. Also we have seen in previous entry
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that for (7;/>5, we have %(7£)5§5§-+2L3. Thus for any 77;€S, we have
1 56 =47 . 1 +-L_

U(7, )<maz{162+4 37 2 —3+2 37}— 162 437. Then Z‘U(g )<3(162 .37 5)<1. Hence

d=1.

Suppose without loss of generality that [§,|=4 and [§,|<[g3]- Since v(g,)>[ 2’]23,

both v(§,) and v(g;) are <n—3. If |g3]>7, then ‘il(y3)<maz{63+7235, :%+£§—8,

175+—.l—7}=122—75+-2—.1?{. Also as %(y2)<128+33, we have Z"d(g,)<(2+ )+(128 %’%)-{-
(i—+;)<l. Hence [73|<6. So v(§,)<n—2. If one of §,, g3 is of order 5, then

_ 31, 4
7)<(g+ 1 38)+(123+49)+(135+5 38

n—3; which gives Z%(g,)<3(128+z§)51. It leaves only type (4,6,6). Suppose ¢>4. Then

Me
£O"

)<1. If [§,|=4, then both v(7;) and v(7,) are

-
I
-

il Mw l/\

U7, )<(32+49)+2(25+ )<1. For ¢=3, we have y(‘§1)2[%124, which implies both

2.3°
Then v(§3)+v(§3)<n+v(g,)<2n—4. This gives that

R
~~~
o
»
S

®

=]
j= ¥

N
~~
™
w
N’

]

I

A

B

|
[

N(@3)+2NF3)<(G5+ 510 +2(G +51)- Hence  U(7,)<} {1+(33+310)+2(3 )+

2(L+1 }=%+§.5—+263513 Similar for U(F3)- Then );:1 cu(y,-)s(m+4 38)+
6

S )<1. Therefore S has no element of order 4.
2.3° 2.3

w

(8.33) S has no element of order 5.

Proof. Suppose without loss of generality that [§,|=5 and [§,|<[g3|- If [§3]|>7, then as we
have seen previously that cU.(g3)<19-§-769; which gives ch.l.(g )5(25+ 9)+( +——-—)+
(——— —)51. So [7,|1<|73|<6. Then v(§,)<n—2; which implies Eq.l.(g,)<(4+ 46)-*-

i=1

2(%g+2 37)<1 Therefore S has no element of order 5.

(8.34) S has no element of order 6.
Proof. Since there are at least two among v(7;), v(§,), v(§3) which are <n—3; and if

- - 25, 23 13,6, 25, 2 3 o1 1
V(ﬂi)S"—3, then ql(gi)smaz{s_ 2239v 43 } 8 2 ggt we have igcll'(yi)S(Q%+2 37)+
2(3—?

5. 39)<1 Therefore S has no element of order 6.
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(8.35) S has at least one element of order less than or equal to 6.

3
Proof. We know already that |S|=3 and d=1. If each [§;|>7, then EQJ.(?,.)_<_3(‘11‘3+ 6 5)<1.
i=1

Section 9. The Cases: 16<¢<167.

In the following, if ¢ has an eigenspace of dimension n—1, then we say that g is of type
B. The result of this section is:
Proposition: G is not a group of genus zero unless one of the following holds: (a) 16<q<83 and
n<3. (b) 89<q<167 and n=2.

Proof. This is the combination of (8.1) and (8.7).

(9.1) If 89<¢<167 and n>3, then G is not group of genus zero.

Proof. By (6.6), we have for any gEG#, N(g)$%+#5%+§§$ é 81_5 Thus G is not

group of genus zero.

In the following, we assume that 16 <¢<83 and n>4.

(9.2) (a) Suppose 25<¢<83. Then for any g€ G#, .N'(g)§2l4

(b) For any gEG# N(9) <oz 257 For any ¢ not of type B, N(¢)< <1

4096° 55"

(c) If |g|=2, then ‘u(g)<§:;’gg If [¢|>6, then %(g)<254358716
Proof. For (a), as in (6.6) we have N(g)<}+ 1-151 215""2;,3 5 Part (b) follows from
(6.6) similarly. The first part of (c) follows from (b). For lg|=6, WU(g)< %(14_5,4_20%7_6)_%’%8716;

and for |g|>7, °U.(g)< + 4205$;76<254358716 So (c) holds.

(9.3) |8 =

Proof. If 25<¢<83, then the conclusion follows from (9.2)(a) and (2.4)(c).

For ¢=16, 17, 19, or 23, (9.2)(b) implies |S|<4 by (2.4)(b). Suppose |S|=4. As there
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. . . TN 4353 , (1, 257
are at most 3 involutions in S, we have the contradiction Y U(g;)<3: 8192+(3+71_9—6)<2'
=1

Therefore |S|=

(9.4) S has exactly one involution.

Proof. If the smallest order of elements in S is >4, then we have the contradiction
z;cu(g,)<3 (G+5m) <1

Suppose the smallest order of elements in S is 3. Say |g;|=3. Then neither g, nor g3
can be of type B, because G={g,,¢;), i=2 or 3, and n>4 implies that ¢; has an eigenspace of

dimension >2. If [g>5, then U(g)<) 1,257 ~ 4417 yf |41=4, i=2 or 3, then

4096 <16384"
(g <L+ BT+ ) =F1L. 1f |g,]=3, i=2 or 3, then U(g,)<L(1+2-fg)=F3. Since

at most one of g, g3 can be of order 3, we have the contradiction

2 1 257 4417 . -
> ‘ll.(g,-)gg-(l+2 4096)+192+16384<1' Hence S has exactly one involution.
=1

(9.5) S is of the type (2,3,k) for some k>7.
Proof. By (9.4) we assume without loss of generality that |g;]=2. As in (9.4), neither g, nor g3

can be of type B. For |g|>6, then by (9.2)(c), we have ‘11(g)<254358716 For |¢;|=5, i=2 or 3, we

128) 1363 <254358716 So if both |g,| and |g3| are >5, then we have the

contradiction E aL( g,)s 3+2 25?4358716<1 So one of g,, g3, is of order 3, or 4.
=1

have ‘U.(g,)<5(1 +4-

Suppose |go|=4. As g, is not of type B, as in (9.4), we have %(.‘12)<16384 If [g3]>8,

then q‘l(g3)<1+42051;6 If |g5|="7, then "U.(ga)S%(l-i-ﬁ 8)—448<8+305$;?6 So if |g3[>7, then

3
we have 3 U(g;) <4353 4417 +(%+ 257 )<1, a contradiction. So |g3|=5 or 6. If g, is not of
i=1

<8192 T 16384 + 8+ 1096
type B, then we have the contradiction E‘U,(g,)< (1+128)+4417 +2<1, where

16384
r=4¢ (1+4 53) (1+ 257 | 9.257 1 9. =5z) for |g3|=5, 6 respectively. So g, is of type B.
5 128 ' 6 4096 4096 128 3 1

Then each eigenspace of g;, i=2 or 3, is of dimension 1. Thus we have N(g;)<>5 lg ‘l ,-g—;l, and
¢ q
e 4353 1 257 4 -1 5
the  contradiction E‘i.l.(g,)<8192 (1+4096+2~—6—3)+y< 1, where y=g(1 +4.__3),

6(1+4205976+2 42()5gﬁ+2 63) for |g3|=5, 6 respectively. So S is neither of type (2,4,5) nor of
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type (2,4,6). Therefore one of g,, g4 is of order 3; and thus without loss of generality, S is of the

type (2,3,k) for some k>7.

(9.6) S is not of type (2,3,k) for any k.

Proof. Suppose g;, where =1 or 3, is of type B. Thus g; has an eigenspace W of dimension
n—1. Since n>4, if g, is unipotent, then g, has at least 2 blocks, which implies U=Cy/(g,) is
of dimension >2; if g, is semisimple, then g, has at least one eigenspace U of dimension >2.
Then UN W#0, which contradicts to that G=(g;,9,) is absolutely irreducible. So g¢; is not of

type B for +=1 and 3. Similarly, g, is not of type B. That is there is no element of type B

among ¢, ¢, ga. For |g3|>11, we have ‘\l(g3)<11+405s;76 For |g3]=10, 9, 8, 7, we have that
257 L 4. 257 L 4. 1 10110.257 1o 1 257 0. 257 4 4. 1
o) <1o(1+foo +4-doos +4 128> 0 +2do06 018 (L dee 2 oo +4 38

7(1+6-128) respectively. As each of these 4 numbers is less than 11+¢12()5$;76’ we have for |g5|>7,

‘ll.(ga)< +4?(?S;76 Then we have the contradiction i;%(gi)5§(1+m)+%(l+2-%g)+
1, 257

ii +4096<1. So S is not of type (2,3,];)_

(9.7) If 16<¢<83 and n>4, then G is not group of genus zero.

Proof. This is the combination of (9.5) and (9.6).
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Chapter Il
Irreducible Maximal Subgroups Containing a Transvection

Section 10. Conjugacy Classes of Transvections.

Assume that H is an irreducible maximal subgroup of G, where SLn(¢)<G< GLn(9).

Let T be the set of all transvections of H and M=(T). Assume T#@. Lemmas (10.1) through

(10.6) use some of the ideas in the proof of chapter 6 in [As3].

(10.1) Let s, ¢ be transvections, and S=(s,?). Then one of the following holds:

(a) [s,}=1 if and only if [V,s]<Cy (%) and [V,{]<Cy(s).

(b) [Vislo Cy()=V=[V,®Cy(s). S is irreducible on [V,5] with dim[V,5]=2. [s,] is not
a transvection. For p odd, either (a) S~SL,(GF(p)())) for some A€GF(q) and S has 2
conjugacy classes of transvections; or (b) S~SL,(5) and p=3. In both (a) and (b),
(sS)=S=(tS). For p=2, S~ D,,, where k=|st| >3 is odd, and s, t are conjugates in S.

(c) Either [V,s]<Cy(¥) and [V,]£Cy(s), or [V,]<Cy(s) and [V,s]£Cy(?). S is
extraspecial of order p®. s and t are not conjugates in S, and r=[s,1] is a transvection. If
[V,s]<Cy(t) and [V,]£Cy(s), then Cy(r)=Cy(?) and [V,r]=[V,s]. If [V,{]<Cy(s) and
[Vis]£Cy (D), then Cy(r)=Cy(s) and [V,r]=[V,]. Moreover, if p=2, then S~Dg; if p odd,
then S is of exponent p.

Proof. (a) is well known. So suppose st#ts. Thus at least one of [V,s]£Cy/(?) or [V, £Cy/(s)
holds. First consider the case that both of them hold. Then we have V=U®[V,s]®[V,{], where
U=Cy(s)NCy (%) and [V,S]=[V,s]®[V,]. So dim[V,5]=2. Also it is easy to check that S is
irreducible on [V,S]. S has a faithful representation on [V,S]. For a suitable basis X of [V,9],
we have the matrix representations My (s) =[} ?], M X(i):[(l, f], for some A€ GF(q); and easy to
check that [s,7] is not a transvection. If p is odd, by Dickson’s theorem, we have either (1)

S~SL,(GF(p)(})), and in this case it is well known that S has 2 conjugacy classes of
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transvections; or (2) S~SL,(5) and p=3. In both (1) and (2), (s5) and (t5) are normal in &,
and neither of them is contained in Z(S). So if S4SL,(3), then S/Z(S) simple implies that
(s5)2(S)=S=(t5)2(S). Moreover as S is perfect if S4SL,(3), so we have (s5)=S5=(t5). In the
case that S~SL,(3), MX(s2)=[% (1’]; and as 2 is not a square in GF(3), s> and s are not
conjugate in SL,(3). Then s?€(sS) implies that all transvections of S are contained in (s°).
Since SL,(3) is generated by transvections, we have (s5)=S. Similarly, S=(t5 ). If p=2, then
s and t generate the dihedral group D,;, where k=|st|. Since S<SL([V,S]), if k is even, then
k=2. But k=1 or 2 implies that st=1s, a contradiction. So k is odd and k>3. Say k=2a+1,

a>1. Denote r=st. Then r*=r"'. Thus O gD

=sr=t, i.e., s and { are conjugates in
S. It remains to consider the case that exactly one of [V,s]£Cy (%), [V, £Cy(s) holds. Say
[Vi£Cy(s) but [V,s]<Cy(?), the other case is similar. So V=[V,{]®Cy(s). Let

U=Cy(s)NCy(?). Then dim(U)=n—2. We can choose basis X={v,...,vn} of V such that

U=t stnczh Vill=(vasa)  Cp(=(Uiva_s) [Vi=(va), and Mx(8)=[1"0‘32:l,

MX(t)=[1"63 g} with A=[§g§] and Bz[égﬂ for some A€GF(g). So S~(A,B). Let

r=[s,{]. Then Mx(r) =[I"0_3 g j] with C=A"1B'1AB:[—;A g ?1) :l So ris a transvection with

Cy(N=Cy(t), [Vid=[V,d. Also as CA:[-}E §]=Ac and CBz[-;A:f) H:Bc,
[rs=1=[r{. So (r)<Z(S). Let S=S/(r). Then 357=75 and S is not abelian imply
S=(F,1)~ZpxZ,. So S(l)=(r)=<15(5'). If (N<Z(S), then |Z(S)|=p? and thus S=(s)Z(S)
which implies S is abelian, a contradiction. Hence (r)=2(S). So S is extraspecial of order 3.
If t=s* for some a€S, then 7=3°=3F as 5 is abelian. Then this implies S~Z,, a

contradiction. So s, ¢ are not conjugate in S. As S is of class 2 and £2,(S)=S, S is of exponent

p for p odd by (23.11) of [Asl]. If p=2, then |st|=4 as r=(st)® has order 2. Thus S~ Ds.

(10.2) For each t€ T, there exist m& M such that (¢,{™) is not a p-group.

Proof. Since H is irreducible, Op(H)=1. Then Op(M)=1, as MJH. Thus the Baer-Suzuki
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theorem, (39.6) of [Asl], completes the proof.

(10.3) If r, t are transvections in H with Cy/(r)=Cy(t), then (rMy=(tM).

Proof. By (10.2) and (10.1)(b), there exists ¢, =t™ for some m€& M such that (1,1™)~SL,(K) for
some K, or D,, for some odd k. In either case, we have Cy ()N[V,4j]=0=Cy(};)N[V,{]. I
[nt]=1, then [V,4)]<Cy(r)=Cy (%), a contradiction. Thus S=(nt,)~SL,(K), D,; with k odd,
or extraspecial of order p®. In the first two cases, re(t‘lg )g(t{k’ y=(tM)gM, which implies
(rMy<(tM). If S is extraspecial of order p3, then r,=[r,t;]€T. Either Cy(r))=Cy(r) and
[Vinl=[V,4], or Cy(r)=Cy(t) and [V,n]=[V,1]. The first case implies that
[Vi)<Cy(r)=Cy (1), a contradiction. So it is the case that Cy(r)=Cy(1), [V,r]=[V,7].
Denote a=[t,r]. If a=1, then ([V,{|<Cy(r)=Cy(%), a contradiction. Also
[Vir]=[V,1J<Cy(r)=Cy (1) implies that (f,r;) is not a group in (10.1)(b). So (t,r) is
extraspecial of order p®, and hence a€T. Then either Cy(a)=Cy(n), [V,a]=[V,] or
Cy(a)=Cy(1), [V,a]=[V,r;]. The first case gives [V,t]=[V,a]<Cy(a)=Cy(r)=Cy(1), a
contradiction.  So it 1is the second case which gives Cy(a)=Cy(H)=Cy(r),
[V,a]=[V,n]=[V,r). As a€T, there exist some B€ M such that (a,ap) is not a p-group; this is
the  case (b) in (10.1)  which  corresponds  to  the  situation  that
CV(a)ﬂ[V,afp]=0=CV(ap)ﬂ[V,a]. Thus CV(r)ﬂ[V,aﬁ]=0=CV(ap)ﬂ[V,r] and it again
corresponds to case (2) in (11), i.e., X=(r,aﬁ) is not a p-group and re((aﬂ)X). But
a=t'1tr1€(tM)gM, so ((aﬂ)X)g(tM). Hence r€(tM), which implies that (rM)<(tM); i.e., in
any case, we have that (rM )S(tM ). By the symmetry of the assumption, we also have

(tMy<(rM). Therefore (rM)=(tM).

(10.4) If r,s are transvections in H with (V,r]=[V,s], then (rM)=(sM).

Proof. The proof here is dual to that of (10.3).
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Let T

1

i€ be the distinct M-orbits on T and M;=(T;). Then

(10.5) For i#j, either M;=M; or [M;, M;]=1.

Proof. If [T}, T;]=1, then [M;, M;]=1. So suppose there exist s€ T;, t€ T; with stzts. Then
by (10.1), either S=(s,8)~SL,(GF(p)())), p odd and A€ GF(g); or S extraspecial of order p> and
r=[s,§€T. In the first case, by (10.1)(b), t€S=(s°)<(T;)=M;<dM, so Tj=tMgM,-, and
M;<M;. Similarly, M;<M;. Hence M;=M;. In the second case, we have that either
Cy(r)=Cy(s) and [V,]=[V,f] or Cy/(r)=Cy(?) and [V,r]=[V,s]. Then by (10.3) and (10.4),

M.-:(sM):(rM):(tM):MJ-. Therefore either M;=M; or [M;, M;]=1.

Now let M;, M,,..., M, be all the distinct M;’s, thus M=MM,---M;. Also let

V;=[V,M;] for 1<5<i.

(10.6) (2) V=V,@ V,@---& V,, dim(V;)=Fk V3, n=FL.

(b) H is the stabilizer of decomposition V=V,®V,&---®V; in G if 1>2, ie.,
H~GN(GLi(q)wrS)).
Proof. Since M H, H acts on [V,M] and Cy/(M). But H is irreducible on V, so [V,M]=V and
Cy(M)=0. Let U;=(V;: i#j). Thus V=V,;+U,. Alsolet N;=M,---M;_,M;,,---M,. Then
N; centralizes V; and M; centralizes U;. So V;NU;<Cy(M)=0. Hence V=V, 0 V,&---0 V.
Clearly H stabilizes the decomposition V=V,® V,®---®V,. As H is irreducible on V, H is
transitive on Vy, V.., V;. Hence dim(V;)=k Vj  The stabilizer of decomposition
V=V,0V,®---®V, in GLn(q) is GLy(g)wrS,. Since H is maximal in G, we have

Section 11. Stabilizers of Direct Sum Decompositions.

In this section, we assume that I>2. Let A, ; be the same as in Section 4. Let fg,4; ;)
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be the number of {V},V,,...,,V;} in 4, ; fixed by g.

(11.1) N(9)=f(9aAk,1)/|Ak,1|-
Proof. G is transitive on A, ,;, as SL(V) is and SL(V)CG. Since H=Stabg({Vy,V,,...,V}}) for

some {Vy,V,,...,V;} in A, ;, the representation of G on 2=G/H and on 4, ; are equivalent.

Now assume ¢g€GLn(g) with (|g|,p)=1. Let f=min(g)=ffy - fa, where each f, is
irreducible in F[z]. Let V=V,®V,&---® V4, where each V, is the homogeneous component
corresponding to the irreducible factor fs. Denote cy=deg(fy). So dimF(V,‘)zd,,c,,, and

n=f: ducy. Also we label that fi=z—1, if 2—1 is a factor of f.
p=1

For X={W,..,W;}€A;;, define S(X)={YeA,, : |XNY]>1}. Let

(11.2) 1500120 -0y 4,

k(n—k)

Proof. Since the number of U such that W, U=V is ¢ , the number of Ye€S(X) with

WeXnY is ¢ "4, ,]. Similarly, the number of YES(X) with {W,,W,}€XnY is

q2k(n_2k)|A,,,,_2|. Thus by the inclusion-exclusion principle, we have |S(X)|2(i)qk("_k)|/1k,,_1|

2k(n—2% k(n—#) H1—1)? 26(n-28)—k(n-2k _ k(n—k
—(é)q (n )|Ak,z-2|={lq (v )—'(-2—)9 (n=2k)-K(n )/["kk]q}|~’1k,t-1|21{q (n=H)_

—1)\2
St EPRAND

(11.3) (a) N(g)<n(D.

(b) N(g)<

q(lfl)k’ if 923-

(c) N(g)s2(—,5_61—)—,,, if g=2.
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Proof. We show (a) by induction. We claim that for any Y€ A, ;, the number of X with X=X

and YeS(X) is at most a=qu("_k_l)IAk’,_llr(l—l). Suppose this is true for the moment.

k(n—k-1)
_ af 9, A1) e lq |4y alr(i—1)
e oy el G o) e
X=X He™ === HAkl
__LI(_I_I)_I)_Z_=1(I) So it remains to prove the claim. Let Y={Uj,...,U;} be fixed and
& -
1 (1_2qk2(1_1))

suppose X={Wj,...,W,} is such that X=X and U;=W,€XNY. It suffices to show that the

number of such X is at most qk("_k‘I)Mk,,_llr(I—l). If Wi=W,, then g acts on
W=W,®---&@W,. So W,=(W,nV})®---@(W,NVa), and W=(WNV)&---&(WNVa). For
any fixed A such that A<Vy, A'=A with dimg(A)=scu, the number of BV, such that
ANB=0, B’=B, dimg(B)=rcu is equal to [ d,,r-s ]qc”(qc“)”. Hence the number of W such
that W,@ W=V and W =W is ¢°, where ﬁ:f:lc,,s;,(d;,—sﬂ), and sy is such that
b=

dz'mlF(Wlﬂ Vu)=cusy, 1<p<a. If g is not trivial on one of the W, then g is not trivial on
every W. In this case, the number of X is at most q"IAU_lh(l—l) by induction. Since
f:lcps,,zk and Za:lc,,duzn; if any one sy, is such that cusy=k,  then
p= p=

h=cusu(du—sy)=kdy—su)<keu(dy—su)=kcudy—k)<KHn—k—1); if every cusu<k—1, then
hs(lc—l)él(d,,—s,,)g(k——l)‘glc,,(d,,—sl,)=(k—1)(n—k)=k(n—-k)—(n—k)5k(n—k)—lc. So the
number of X in this case is at most qk("_k_1)|/1k,,_1|7(l—~1). If g acts as the identity on W,
then sy=dyu, V 2<u<c. In this case, the number of X is exactly q"|A,,,,_1|, which is at most

¢ETHID 4, L, because h=s,(dy—s,)=s,(n—K)<(k—1)k(i—1). Since k(n—k—1)—k(i—2)

. . k-1)k(-1 k(n—k—-1 k(n—k-1
=(k—1)k(I—1) implies that q( k( )gq (n )qk(:l-z)°l—2 1 P =q (n )r(I—l), we
il;ll( _24"2‘)
still have that the number of X is at most ¢*"™* ™| 4, ,_,|r(i—1).

If W{#W,, then ¢ has an scycle on X, say (W;,W,,..,W,). Denote

dimp (W@ @ Ws)N V) =cusy, 1<p<a.  So "Z::lc#s#:sk. The number of W such that
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Wo(W,®---&@W,)=V and W =W is ¢® with h=za: cusu(du—sy). If any one cusy=sk, then
pu=1

all other s,=0. That is W, ®---® W,<V, for this particular y. Since s>2, we have c;>2,

which  implies that s,.—é-ksik<sk 1. Thus  h=cusu(du—sy)=su(cpdu—cusy) <

(sk—1)(n—sk). If every cusyu<sk—1, then hg(sk-l)il(d,,—su)S(sk—1)i1c,,(d,‘—s”)=
bB= u=
(sk—1)(n—sk).  Thus in the case that W{#W,, the number of X is at most

q(sk-l)("_’k)Mk,,_,l for some s>2. Now we will be done if we can show that for any ¢ with

1<t q(u_l)(n—tk”/ik’,_,lsq(k-l)k(l_l)lAk),_ﬂ, because the latter term does not exceed

qk(n—k_l)lAk,,_lldl—l) as we have already seen. Choose a fixed 0#£v€ V and a fixed E<V so

that (v)@E=V. So dimg(E)=n—1. Also choose fixed A, E,,..,E, so that

A®E,® - ®E,=F<E, and dimc(A)=k—1, dimc(E;)=k ¥V 2<j<t. Let E;=(v)®A. The

(=1)(nk)

number of D such that A@D=F is ¢ Thus g(k_l)k(l_l)lAkl,_ll is the number of

{E\,D,,...,D;}€ Ay, such that A®D,®---®D,=E. The number of D' such that '@ D'=E is

O Thus (VO AL | is the number of {Ey,Ey,.. ., EqDyyiye. Dy} €4y, such

that E"G)D,+1®---69D,=E. As ADE,®---®E,=F', we have that q(tk—l)(n_tk)lAk,,_tlg
(k=1)k(1-1
q M )lAk,I—ll'

For part (b), if ¢>3, then i2 <——i2 <2 vV i>1 So T 1— i’ 2
r T ( )’ 1 929, € 2qk2i_2.3‘_i(i| 1) 1z 1. ‘_I_Il( 2qk2 )
l| ll(l 2q')>(1 2q)-| I (1 e 1))__(1 2q)3>6 3> which implies that r()<-——~ - l)k, if

2
¢>3. Now suppose ¢=2. Since for i>13, we have 2°*2>i3(i+1), which gives H (1— )>

=1 2.9k%
o0 0
_ 2 \o.21 12_9 56 o _
,.Ell(l 2.+1)>1"I1( 2‘“),53(1 z(.+1))2 1000 14=5000 S0 "< if ¢=2- Thus (o)

holds.

Now assume g is such that |g|=p°, where p=char(F). Define S(X) for X€ A, ; and r(l)

in the same way as before.
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(11.4) Suppose V=U,®U with U{=U;, U'=U. Let a,,...,0a; b,... ,bs be the dimensions of
those Jordan blocks of U;, U respectively Then the number of W such that V=U,&® W with
W =W is equal to ¢", where h= E Z min(ay,by).

=ly=1

Proof. Since the Jordan canonical form of ¢ is unique, for some bases B,, B,, Bz' of U, U, W

respectively, g has the matrix representation [i)( 3] with respect to both B;UB, and B;UB,’.
As C= CGL( V)( Ul)nCGL( V)( V/U,) is regular on complements to U; in V, there exists a

unique c€C with Uc=W. Hence there exists a matrix [é 2] corresponding to ¢ such that

[é ?]:)é 3:': [)0( 3]:é ?] This is equivalent to that CX=YC. So the number of W

such that V=U,® W with W/ =W is equal to the number of C’s satisfying CX=YC. Write
X=(Xy), Y=(Y»), C=(Cuu), 1<p<a, 1<v<pB, where X,, Y, are the Jordan blocks of X and

Y. Then CX=YC is equivalent to CouXuy=Y,Cyyu, V g, and v. As X and Y are in the form

0 €11 1,a—1
11 : : :
Lok we have ’ : ’ =
1 0 €p—1,1 Cp—1,a~1
0 cp1 €h,a~1
21 °22 ¢2a
Cou(Xu—Ia)=(Yo—1,)Cou= . : : , where for simplicity we
b1 b2 ¢ba
0 0 0

have written a=ay and b=b,. This implies that c;;=0 if i—j>min(0,b—a), and ¢;;=c; ;1 j1

min(a,b)

if i—j<min(0,b—a). So the number of choices for Cyu is ¢ , which implies that the

number of choices for C'is ¢* with h= 2 2 min(ay,by).

=ly=1

(11.5) (a) N(9)<r(D).
(b) N(9)<—+=+ - l)k’ if ¢>3.
(c) N(9)<—+2 (1 1)1:’ if g=2.

Proof. Exactly as in the proof for (11.3), we only need to show that for any fixed Ye A k1) the

number of X with X=X and YeS(X) is at most azlqk("_k_l)|Ak’,_1|1(1-—1). Pick
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Y={U,,..,U;} and suppose X={W,,..,W;} is such that X=X and U;=W,eXnY. If
W{=W,, then g acts on W,&.--® W,. Let a,,...,a0; by,...,b5 be the dimensions of those Jordan

blocks of W;, W,&---@® W, respectively. Then the number of W such that V=W;® W with

B B o
W! =W is equal to ¢", where h= f: > min(ay,b,). We have that A< i Y b=) (n—k)=
p=lv=1 u=lv=1 pu=1

a(n—k), and k< {:1 ila,,-—.%llc:ﬁk. Either a<k—1 or f<n—k—1, so respectively either
v=1p= v=
h<(k—1)(n—k)=kn—k)—(n—k)<k(n—k)—k or h<(n—k—1)k; ie., we always have
h<kKn—k)—k. Since the Jordan decomposition of g is unique, either g acts as the identity on
every W with V=W, ® W and W?=W, or g doesn’t act as the identity on everyone of them.
For the latter case, by induction, the number of {W,,...,W;} on which g acts with
W,® W,&---@& W,=V, and thus the number of X, is at most qk("-k—l)lAkJ_lh(l—l). If g acts
as the identity on W, then every b,=1. Thus a<k—1, which implies that
h=a(n—k)<kn—k)—(n—k)=kn—k)—k—k(I—2) as we have seen. In this case, the number of
X is exactly |4 k-1l which is less than or equal to
qk(n_k_l)lAk,,_d-qk(+_n5qk("‘k-l)|/lk',_1|r(l— 1). If W{# W,, then g has a p’-cycle on X, say
(W1, W,,..,Wp,). The number of Jordan blocks of g in W& W,®---@& W, is at most kp°—1.
Let a,...,8a; by,...,bs be the dimensions of those Jordan blocks of W;® W,®---®W,, and
Wysy1®---® W, respectively. So a<kp’-1. The number of W such that
We(W, @@ W,a)=V and W =W is ¢ with h=3" f; min(a“,by)gﬂi:lvglby =§_;1(n—kp’)=

p=lr=1
a(n—kp*)<(kp*—1)(n—kp®). So the number of X is less than or equal to q"lAk’,_p,IS
q(kps_l)("_kp’)lziky,_p,|, which is less than or equal to q(k_l)k(l-l)lAk’,_ﬂs
qk("—k_l)Mk’,_llr(l—l) as we saw in the end of proof of (11.3). So in any case, the number of

FOTED)| gy alr(i-1).

X={W,,..,W,} such that X’=X and W, =U,€XNY is at most ¢

(11.6) If G is a group of genus zero, then one of the following holds:
(a) ¢=2 and n<24.

(b) ¢=3 and n<10.
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(c) ¢g=4 and n<8.
(d) ¢=5 and n<6.
(e) 7<¢<17 and n<4.

(f) 19<¢<83 and n=2.

Proof. For example, when ¢=2 and n>25, we have N(g)<2(‘5*61)"—2f3']S§1_S§15 When ¢>19
and n>3, we have N(g9)< qr i%i 8l5 For ¢>89 and n=2, we have !=2, k=1 and

N(g)s«2)=ql—lss—15.
T2

Section 12. Primitive Cases.

Now assume that =1, i.e., H is primitive on V. So M is generated by an M-conjugacy
class of transvections. As M<JH and H maximal in G, H:NGv(M')zGﬂNGL( V)(M) Since H

is irreducible, Op(M)=1 and Cy (M)=0.

(12.1) (W. Kantor) Suppose M is a subgroup of SL(V) generated by a conjugacy class of
transvections, such that Op(M)<M'NZ(M). Then V=WeU with M trivial on U and
indecomposable on W, such that M acts on W as one of the following tensored with GF(q).

(a) M=SLm(s) or Spm(s) in SLm(s), or M=SUm(s%) in SLim(s).

(b) M=0E(s)<SLm(s), s even.

(c) M=Sm<SL,,_4(2), d=(2,m).

(d) M=S,,, in SL,,,_,(2) fixing a 1-space, or in SL,,,(2) fixing a 1-space and a (2m—1)-
space.

(e) M=3-Ag<SL3(4).

(f) M=SL,(5)<SL,(9).

(g) M=3-PR¢""(3)< SLg(4).

(h) M=SU,(2)<SLs(4) fixing a 1-space or a 4-space.
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(i) M=the semidirect product of A with Sm belongs to a Borel subgroup of SLm(2*), where

A is normal in M and isomorphic to the direct product of m—1 copies of cyclic group of order
a|lg—1.

Proof. See [Ka].

(12.2) Let V be an n-dimensional vector space over F=GF(g), p=char(F), G a group such that
SL(V)XG<GL(V), H an irreducible maximal subgroup of G with Z(GL(V))=Z<H and
SL(V){H. Let T be the set of all transvections of H and M=(T). Suppose M is generated by
an M-conjugacy class of transvections. Then M and H are one of the following:

(a) M=SLn(q%), g=p™, r a prime with rjm, H= GﬂZGLn(q%).

(b) M=S5pa(q), H=GNA(V,f), where fis the symplectic form on V and A(V,f)=Sp(V,f)(p),
p is defined by z,;_,p=12,;_,, z,;p=az,; for some hyperbolic basis X={z; : 1<i<n} of V, and
with (a)=F#. If ¢ is even, then A(V,f)=Sp(V,f)xZ.

(¢) M=SUa(s), ¢=s’, H=GNA(V,f), where f is the unitary form on V and
AV, )=GU(V,fyxZ with GU(V)NZ=(bl), beF# is of order s+1.

(d) M=3-A4, G=S5Ls(4), and H=Ng(M)=M.

(e) M=SLy(5), SLy(9)< G<ZSLy(9), and H=Ng(M)=GnMZ with Z=2Z(GLy(9))-
Proof. We use the notation in Kantor’s theorem. Then U has to be equal to 0, and thus
V=F® i W, where F =GF(q), K=GF(s), ¢=s5°. We consider the cases (a) and (b) in Kantor’s

theorem first. So let M=SL(W), Sp(W), SU(W), or Oi( w).

We first observe that W is an absolutely irreducible KM-module. To show this,
consider the center [W,f] of a transvection t€M. For  z€Endpp(W),
(W, ile=[W,"]=[W,{]=(w), so wz=Aw for some A€EK. For h€M, whz=wzh=A(wh), which
implies that z acts as scalar A on (wk : k€ M). But SL(W), Sp(W), SU(W), O:t(W,Q) are all
irreducible on W. So W=(wh : he M). Hence Endgps(W)=K, which implies that W is an

absolutely irreducible KM-module for M=SL(W), Sp(W), SU(W), or Oi( W,Q); hence V is also
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an absolutely irreducible FM-module.

Then by (3.15) in [As2], NGL(V’F)(M)SGL(W,K)F#. Suppose K<F. Let r be a
prime such that e=re;, L= GF(seo), U=L® p W, and My=SL(U,L). By (3.15) in [As2] again,
# #

Newy, F(M)<GL(U,LF*. Thus H=GNNgyy, F(M)<GNGL(W, )F* <GnGL(U, L)F
=H, and as H is maximal, we have K=F and W=V for M=Sp(W), SU(W), or Oi(W,Q).

Further |F:K|=r with r a prime for M=SL(W), and in this case, H=GNZGL( W, K).

We show next that for M=Sp(V) or SU(V), H=GNA(V,f), where fis a symplectic or
unitary form on V respectively.  Let n€Ngpy)(M).  Define fo€L( V,V%F) by
fa(v,u)=fvn,un), where 6€Aul(F) is of order 1 or 2 respectively. Then Va€M,
fa(va,ua)=fvan,uan)=fvna"™,una™)=fvn,un)=fa(v,u), which implies that fo€Lps(V,V?).
Since 0#£feLy(V,V?), by Ex.9.1 in [Asl], fa=Anf for some An€F. Thus flvn,un)=Anf{v,u)
which implies that n€e A(V,f). So N GL(V, F)(M)SA( V,f). A(V,f) normalizes M is clear. Thus

H=GNnA(V,)).

For M= Oi(V,Q), as char(F)=2, O:h( V,@Q)<Sp(V,f), where fis the symplectic form
associated with the quadratic form @, and as Oi( V,@Q) is absolutely irreducible, by previous

argument, N~ I( V)(M)gA( V.f). Then the maximality of H supplies a contradiction.

For f symplectic, A(V,f)=Sp(V.f){p), where p is defined by z,;_p=2,;_;, T5;p=10az,;
for some hyperbolic basis X={z; : 1<i<n} of V, and with (a):lF#. If ¢ is even, then
A(V,)=58p(V,)xZ. For funitary, A(V,f)=GU(V,f)xZ with GU(V)NZ=(bl), bGF# is of order

1
¢*+1. See (6.3), (6.4), and (6.2) in [As2].

For the cases (c) and (d) in Kantor’s theorem, let Vi, be the m-dimensional vector space
over GF(2), and let X={z,,...,zm} be a basis of Vin. So S permutes the basis vectors in X.
Let Vi=(3z;) and V,,_;={>"0;2;:3 a;=0}. Then V;<V,,_; if and only if m is even. Also
Sm acts on V,_; and centralizes V;. Thus case (c) corresponds to the action of Sm on

W=V,_1/(VinV,,_;). Define a bilinear form on V. by fz;,2;)=6;;, the Kronecker delta.

ij
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This form f induces a symplectic form f on W by f(%,7)=f{4,v), and Sm preserves F, see Ex7.7
in [Asl], i.e., Sm<Sp(W)=3S5p,,_4(2), where d=(m,2) and n=m—d. The transposition (i) acts

on W as a transvection with center (z;47z;). So for z€Endgp(W), z acts as scalar A;; on

(z;¥7;). Since 7;_1+12;, Z;+%;,1, %;_,+2;4; generates a 2-dimensional space, the scalar A;;
does not depend on i,j; which implies that z acts as a scalar on W, which implies that Sy, is
absolutely irreducible. Thus by previous argument, first W=V and then N I( V)(Sm)gA( V.f).
So the case (c¢) is out. Case (d) corresponds to the action of S,,, on V,,,_, or the original

action on V, . Since S,,, centralizes V;<V,,._,, and H is irreducible, case (d) is out.

For case (e¢) and (f), the conclusion can be obtained from the atlas of PSL;(4) and

PSL,(9) respectively. Case (g) is out as 3-P25""(3) <SUs(2).

Case (i) corresponds to a direct decomposition of V=V,;®:.-® Vy into n 1-dimensional
subspaces, and A, the direct product of n copies of cyclic group of order a, fixing this
decomposition, S, permutes the V;’s, and A=[A(,Sn]. Since we assume H is primitive on V,

this case is out too.

(12.3) Let G be a connected algebraic group over an algebraically closed field F of characteristic
p and o an endomorphism of G with G= Ca(a) finite. Let g be a unipotent or semisimple
element in G, E’:Ca(g), and C° the connected component of C. Define an equivalence
relation ~ on C/C° by z~y if there exists z€ C/C° such that z=27yz~'.

(a) (S. Lang) The map 2+ zo(z™!) is surjection of G onto G.

(b) The G-classes in GN ¢G are in one to one crrespondence with the equivalence classes of
C/C°. In particular, if C is connected, then GN ga =¢G.

(¢) G is transitive on Go and H= Cc—;(a"’) is transitive on {r€Ho:7"=0c™}.

Proof. See [El].

(12.4) Denote by fg,G/H) the number of fixed points of g on G/H. Let V be an n-dimensional
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vector space over GF(g), and Z=Z(GL(V)). Suppose H=ZK. Let p:%. Then
j(g,G/H):ll‘{f(g,G/K)+](gz,G/K)+---+j(gz"_l,G/K)}, where z is such that Z=(z"!). In
particular, if g€ H is such that |g|=p°, where p=char(F), then f(g, G/H):%j(g, G/K).

Proof. Since %27%, ZnK:(z_"), and H=KUKz—1U~--UKz_(”_l). Suppose Hzg= Hz.
Then KzgC Hz and thus Kzg=Kzz"® for some 0<a<pu—1. Then Kz, Kzz‘l,...,Kzz—(“-l) are

(s-1)

all fixed by ¢z*. Conversely, if Kz is fixed by g2%, then each of Kz, Kzz7},.. ,Kzz~ is fixed

by gz%, which implies that Hzg= Hz. Also if Kz is fixed by ¢z, then it is not fixed by any gzﬂ
for any f#a with 0<A<pu—1. Hence f(g,G/H):%{f(y,G/K)-i—j(gz,G/K)+---+ﬂgz"_1,G/K)}.
The second statement is due to the fact that no element in H— K has the order equal to a power

of p.

(12.5) Let V be an n-dimensional vector space over F, g€ GL(V) with (|g|, p)=1. Suppose
f=min(g,F,V)=fifs---fa, where each fy is irreducible in Fz]. Let V=V,®& V,®---® Va, where
each V, is the homogeneous component corresponding to f. Denote cu=deg(fu),

np=dimg(Vy). Let C= CGL( V)(g), Cu={e€C: e acts as the identity on each V, with v#u}.

Then C=C;xCyx---xCy and C,,:GLn,‘(qc“) for each u.
Cu

Proof. For each e€C, e acts on each homogeneous component V,. Thus C=C;xCy%:-- X Ca,
with C, defined as above. Then without loss of generality, we can assume that V is a
homogeneous F(g)-module, i.e., fis irreducible in F[z]. Thus ¢:F—F, z—z’ is transitive on the
roots of f, which are same as the set of all distinct eigenvalues of g. Let c=deg(f) and
L=GF(¢°). So fsplits in L, and ¢ is diagonalizable in W=L®g V. Let X be a basis of V.
Define a field automorphism o on GL(W) by Mx(3°)=(Mx(y))°. Let Y be an eigenvector
basis of W and ) a root of f. So D=My(g)=diag(Al,, AI,, ..., X*7'I, ), where d; is the
dimension of eigenspace corresponding to the eigenvalue A% We have M y(¥)=BMx(y)B™!
for some invertible BEL"*". So with respect to Y, o is defined by My (y°)=A(My(y))°A7",

where A=BB~°. Since ¢e€GL(V), DA=AD’. Write A=(4;;) into the block form
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. . . . gi-1 ¢J .
corresponding to the dimension of the eigenspaces. So A" "A;;=A"" A;;, and thus A;;70 iff

AT, Thus we have a permutation & on {1,2,...,c} defined by Ag(j)j;&O. Denote
Aj=Ay;y;- We have eGCGL(V)(g) iff eECGL(W)(g) and e’=e. Also eECGL(W)(g) iff

E=MY(C)=diay(El,Ez,...,Ec); and e”=e iff E‘A"jzA‘JE: Vl,] iff E f(J)AJ=AJE7 V] iff

ot—1 [
E (1)—(A€t 1(1)AZ¢__2(1)"'A1 )EYt(Aft—l(l)AZt—2(1)”’A; ) ! VOStS‘:' So
dy=dy=---=d.=%. Since A=BB, we have AA”---A°""'=BB~', (BB~"");;=0 if i#£'(j)

and (BB™"");;=A AZ'™Yif i=¢€'(j). In particular, as BEL"X", BB ™" =1I,,

£t 1(.1) £‘ 2y

A '=I,. As E,=E
c

ety the condition for t=c is just E;=E]".

thus = AgemryAge—20y

Thus CGL( V)(g)z GLg(qc).

(12.6) Let K=GF(q,), ¢g=4q7, r a prime, F=GF(g), W an n-dimensional vector space over K,
V=F ® pr W, g€ GL(W) with (|g],p)=1.

(a) Let Co=C (9), C=C (). Then |—Cl<(—“1—)"(l)"2'2"+2 If n=2, then
o=~ GL(W)\I) Y=RGL(V)\9) AR VAN : ’

1q 2 1a _ «g—1)*(*-1)
h It 3, th <
we have ICol (41—1) "= en lCol ‘11(41"1) (91“1)

(b) Let H=GL(W), G=GL(V). Then .N'(g,G/H)<(q _1) ( ) 27D 1t n=2, then we

a(an+1) d(g+a+l)
have N(g,G/H)<=3—=——*. If n=3, then N(¢,G/H)<=5—=5—"—2.
@G/ F e 0,/ (¢ +q+1)

(c) Suppose ZSL(V)KGLGL(V), H=GNZGL(W), where Z=2Z(GL(V)). Then

.=l e ey — 4¢(q,+1) _
N(9:G/B)<(mq—1)- 27 (ql_l) (%)™ 1f n=2, then N(sG/B) <= 2. 18 =3,

9¢i(¢i +a1+1)
then N(g,G/H)<—1 11"/
DG rer)
Proof. Let m=min(g,K,W)=min(g,F,V)=ffo---fo, a product of irreducibles in K[z,
cu=deg(fu), W=W,&W,®---®Wa, where W, is the K(g)-homogeneous component
corresponding to  fu, nu=dimy (W), dp=2—;‘. Then Cy=C;x---xCq, where each
°u

Cu~GL, ”(qT). Each f, is either (a) irreducible in F[z], when (cu,r)=1; or (b) splits into r

irreducibles: f,= A,l)--- ,,r) in F[z], when 7|c,; in this case, deg(jfj)):c%‘ Vi. We have that
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2 cu
C=A,x---XAqa, where A,,'zGLd“(qc") in case (a) and Au~GL,,(¢" )x---xGLy,(¢"), r copies,

in case (b). We have that (s—-l)ksk(k_l)SlGLk(s)ISs"z. So in case (a),

14, |GLa, (4] eud ma o \Pudn

|_#|= . TNES cp gu cudu(du 1)"( q—l-l) (qll) ’ as
sl |GLa ()] (g*—1)

Cp nyd
q q ¢ A r— c d (r-1) uneu
cul 15(41 1 1) ¥ and cudy=nyu. In case (b), {C”:_chd“(qI“)[ g™ _(qll) . So

in either case, H ( l)”#(q_qi)"udu and thus I—O]-=ﬁ “—S( L )“=1 (‘11)

We have that in,,:n; and if every dy,<n—2, then in,,d,,g(n—2)f: np=(n—2)n<
p=1 p=1 p=1

n’—2n+2; and if one dy=n—1, say dy=n—1, then either ¢;=1, ny=n-—1, a=2,

co=dy=mny,=1, i.e., g is a pseudo-reflection; or ¢; =2, a=1, n;=n=2; so in both cases we have

R

En,‘d,,_(n—-l)2+1—n —2n+2. That is we always have in“d“5n2—2n+2. Hence
p=1

n2-2n+4
1'% (a2 (@)

Suppose n=2. If a=2, then C~ GF(q)#xGF(q)# and Cy~ GF(ql)#xGF(ql)#; which

gives 1a_ (qq—ll) If a=1, then CO:GLI(qf)=GF(qf)#. We have that
—

1O _g—1 g+1 1 _g=1 ¢=1 o g+l _g-1
I—O]—ql_l-qﬁ_l and G~ o<1 o ¥ 1" Since 01+1<11 it in any of these three cases, we
2
h .Lcl< g—1
:a,ve| OI_(ql_l)
= — - # # #
Suppose  n=3. If «a=3, then C~GF(q)" xGF(g)" xGF(q) and

Co~ GF(ql)# X GF(ql)#x GF(ql)#. If a=2 and ¢;=c,=1, then C~ GF(q)# xGLy(g) and
CozGF(ql)#x GLy(g;). If a=2 and ¢ =1, ¢,=2, then C,~ GF(ql)#xGF(qf)# and
C~GF( q)# x GF( qz)#, C~GF( q)# X GF(q)# X GF(q)# for r#2, r=2 respectively. If a=1,

then Co=GF(@)" and CxGRP)¥, C=CR)FxCRQFxCHQF for r#3, r=3

14 _ a(e— 1)%(¢*—1)
|Co|—41(€l1—1) (41—1)

respectively. Thus it is easy to check that in any case we have
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G

For part (b), let ¢€g " NH. Since g, g° have the same set of eigenvalues, including the
same multiplicity for each eigenvalue, g, ¢° have the same Jordan cannonical form in K"*"

with respect to possibly different bases of W. Hence g, ¢° are conjugates by some element in

GL(W). So gGﬂH=gH. Thus N(y,G/H)—Ig] an] :g_: ||6?|lgl| Since ¢, <g¢ implies
g 0

) e e E@TREWT v e

|l062|—(q1—1) (Q)n2_2n+2, thus we have .N'(g,G/H)<(q _l)n(%)%n 1). If n=2, then as

— 2——
%=Q—1E91 1;2(31 1;), we  have N'(g,G/H)<q;Ezl_:—1;) If n=3, then as
ne—iNg —

|H_gi(a—D(g - 1) (g +q+1)
G~ PPy =D " e NG/ DS i Ty

For part (c), let G;=GL(V), Hj=GL(W). Now use (12.4), the p there is such that

ZH, -1 -
p=I|Hf||=q'ql_1; and we have f(g,Gy/ZHy)=L{f(6,G1/ H))+R9%Gy/ Hy) +---+ o™, G/ Hy)},

where Z=(z"1). Also IGl/ZHll=Il‘|G1/H1|, and as each gz*, 0<i<pu—1, is semisimple, by part

(b), N(0,Gy/2H;)= EN(yz Gmy<e(Z) () =) (G Then

(3.5) gives the bound in part (c).

Suppose n=2. Without loss of generality, we can assume g€ ZH,. So g= Zh for some
he H,. Suppose some g’:zjh’ with h'€H, and j#i. Since 1=det(¢" g'l)—-z )det(h'h'l)
and det(h'h'l)eGF(qI)#z(z-"), we have pf2(i—j). But 1<[|i—jl<p—1, so
2(i—))=p=¢{"'+---+¢,+1. Thus gGanHl is contained in only one coset z'H, if ¢, even or
if ¢; odd and r odd; and gGlﬁZH1 is contained in at most two cosets z' H, and sz1 if ¢, odd
and r even. Hence by part (b), we have N (g,Gl/ZHI)quq‘(%-{-)-Q. Finally, note that when
n=2, (n,g—1)<2, so we have the bound in part (c) for n=2. For n=3, similarly, gGlﬂZHI is

contained in at most three cosets of H;, and (n,g—1)<3, thus we have the extra factor 9

multiplied to the bound in (b) when n=3.



(12.7) Let g€ G=GLa(q) with |g|=p°, >0, and C=C(g). Suppose the Jordan canonical form

of g has d, blocks of dimension ¢y, where 1<u<a, cp#cy for p#v, and f: cudy=n. Denote
p=1

o d o
np=cudy. Then |C1=q”;‘I:II{(q—1)(qz~1)---(q “—1)}, where 3=”Z_:l{npdu—%du(du+1)}+

3 dudymin{cy,c.}. In particular, if we arrange cu’s so that ¢;>¢;>--->ca, then
pFEv

o
z=2{n,,d,,-—%d,,(d,.+1)} +2 3 dums.

p=1 1<u<vLa

Proof. We can arrange the Jordan canonical form J of g with respect to some basis X so that
J=Mx(g)=diag{J,,...,Jo}, where « is the number of distint elementary divisors of g, and each
Ju is the direct sum of dy Jordan blocks each of which is of the same dimension ¢y, and without
loss of generality ¢;>c¢y;>-->co. We have (J—In)A=A(J—1I,) iff c€C, where A=Myx(c).
Denote ny=cud,. Now J,,—In“=diag{5§,l),...,Sg,d”)}, where each SE:.) is the cyxcuy matrix
[Ofli:%]. Writing A in the block form, i.e., A=(4u), 1<y, v<a; and each A, =(4%7),
1<i<dy, 1<j<d,, where A,y is an nyxn, matrix and Asf,:i) is a cyx ¢, matrix. So cg=gc iff
(J—I)A=A(J—1Iy) iff def{A)#0 and SAGP =400 v 1<u, v<a and 1<i<d,,
1<j<d,. For simplicity, write a=cu, b=c,. Let m=min{a,b} and T be the mxm upper

triangular matrix of the following form:

B I Z Z3 Tm-2 Tm-1 Im ]
0 I ) e Im-3 Tm-2 Tm-1
p 0 ?’l ’{m-4 3{m—3 ’{m—z
0 0 0 e zl 372 173
0 0 0 0 z, Ty
B 0 0 0 0 0 z B

Then it is easy to check that S’E,i)Agf )=A£f,;" )Sf,j) iff Agﬁ )= T when a=", equivalently u=v; or
Affx}i )=[O T], when a<b, where O is an ax(b—a) matrix whose entries are all zero; or

ij) | T
AE;,}’ ):[ OJ, when a>b, where O is an (a—b)xb matrix whose entries are all zero. For a fixed
p, let Au=(a,;), where q;; is the entry on the southeast corner of AE,‘,{). Thus det(Auu)#0 iff

det(A4)#0. Suppose det(A)#0. Then it is easy to see that de#(Au)#0 V pu, which gives
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det(Auu)#0 V p. Now suppose det(Au)#0 V p. By induction on a, it can be shown that
del(A)#0. That is with A in the form described above, ¢€ GLn(q) iff each de#(A,)7#0. For
each fixed p, the number of choices for A, is equal to [GLy,(g)]. Thus the number of choices
for A,, is |GLd“(q)|-q(c“‘l)dz=qn"d"_%d"(d“ﬂ)(q——l)(qz—1)---(qd“—l). The number of

A(U) m‘ﬂ{C”,Cy}

choices for each , which gives that for each fixed pair (u, v) with u#v, the

dudymin{cy,cy}

number of choices for Ay, is ¢ . Hence we have the conclusion.

(12.8) Let K=GF(q,), g=4¢;, r a prime, F=GF(g), W an n-dimensional vector space over KX,
V=F® i W, g€ GL(W) with |g|=p°, p=char(K).

(a) Let H=GL(W), G=GL(). Then N(s,G/M<(; L _1)"'1(%)". If n=2, then

2 2 2
-1 (a—-D(@+qa+1)

N(g,G/H<B==.  If a=3, then N(3G/H)< . If r=2, then
-1 (-1)(+¢+1)

N(9,G/H)<=—2.
(g /H)_2_q1

(b) Suppose ZSL(V)SGLGL(V), H=GNZGL(W), where Z=Z(GL(V)). Then

n=lrg\" 2(q 1)
N(9,G/H)<(n,q—1)- (q _1) (7) . If a=2, then N(g,G/H)< F-1 If n=3, then

3(91 1)(‘11+41+1) _1)..5
N(g,G/H)< D195 If r=2, then N(g,G/H)<(n,q—1) g

GﬂH, g° and ¢ have

GﬂH:gH.

Proof. We can suppose without loss of generality that g€ H. Since for g°€g
the same Jordan canonical form with respect to possibly different bases, we have ¢

So N(g’G/H)#IIGHI]I‘gI’ where Co=Cg(9), C=Cg(g9). We use the notations in (12.7). By
a
@1 —1\%# Jdu(du+1 -1 2_:“#
(12.7) and as (g —1)(gf—1)-- (41 —1)>( ) P - ), we have ]COIZ(q—Iql )“-1 ¢

and |C|<¢’, where y_.z nudu+Y, dudymin{cu,cv}. As Zdy<n 1 and E nu=n, we have

pFv u=1

ys(“{:ld“)(glnp)s(n—l)n. Thus [_lc_Cv‘]O_l—(gh_l_l_)"“l(q_l)”("‘l). Then as before :—g—} ( ) ,

n-—1 n
so we have N(g,G/H)<( 1) (%1) . Suppose n=2. It is easy to see that we have

2—
CH(g):GF(ql) XEq,, Cg(g)':GF(q)#xEq. Hence .N‘(g,G/H)SZé_i. Suppose n=3. Let
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k=dim{Cp(g)}. If k=1, then by (12.7), we have |Cy(9)|=gi(e;—1) and |Cg(9)l=¢"(¢—1).
If k=2, then |Ch(9)l=a}(q,—1)* and |Cq(9)|=¢*(¢~1)’.. So in any case, we have

ICa(9l _ ¢(4—1)? |H] _ ¢i(q,—1)(gi —1)(gi —1)

. Then as when n=3, we have = , we have
ICa (DI~ ¢ (g, —-1)° G P(g—1)(¢* - 1)(¢°—1)
2_ 2
N(¢,G/H) 5((";2 _11))((“;2?;:11)). Suppose  r=2. By (127), we have
19 _ ¢ 1+ 0+ -1+L)}), where  y=3 nudu+¥ dudumin{cpcr} Let
iC I—ql L & 2 aph y= L, T udy 1y Cv fe
0 p= L5 ‘N u= nFv

s,~=s,~(q1)=(1+qll)(l+%)---(1+%). Then we have Iog(si)zlog(l+q-1—1)+j22log(1+;—j)§
1 1 = 1

1

‘11(‘11‘1)

Iog(1+qll)+z:2(—ll7510g(1+qll)+mill—:—l), which gives si§(1+qll)e ggﬁgg. Hence
I=2qq

”ﬂISqi’(g)a. Now as before yS(:ldl‘)(i n,,):(#zz:ld,,)n, and n—(ﬂgld,,)=”§1d,,(c,,—l)2

0 p=1

il(c,,—l)Z%a(a-—l)Za—l, as we assume without loss of generality that ¢;>c¢y>:-->ca. If
p=

a=1, then ¢>2 and n—dy=(c;—-1)d;>1=a. So if n—(ﬂi:ld,‘)za—l, then
a—l:uz:d,,(c,,—l)=%a(a—l) gives a=2 and c,=1, ¢ =2, d;=1, dy=n—2. Hence
"(

a
thus y<na(n—a). Hence if g is not a transvection, then .N'(g,G/H)Sq"La(g) 52 5qn, Ifgisa
1 s

&
d,,):a——l iff g is a transvection. So if ¢ is not a transvection, then ) dy<n—a, and
p=1

®
itge

g Iq T 2.2 n—2 IHI 1
transvection, then as == +1 +1)--- +1), and == ,
Gyl G A+ D (d7H D, and = e @ D (G4 D

.1 (n+1) 5 —
where z=35n(n—1), we have N(¢,G/H)= <25. F t (b), let G;=GL(V),
2 ( ) (g / (qi;...l ' l)(qi) ; 1)_2'4'1 or par ( ) 1 (
|ZH, |

H;=GL(W). Now use (12.4), the p there is such that p:—ITT:qq;ll;
1 1~

have j(g,GI/ZHI)=Il‘j(g,G1/H1), where Z=(z"!). Also IGI/ZH11=%‘|G1/H1|, thus by part (a),

and we

-1
N(9,G,/ZH,)=N (g, Gl/Hl)S(%)n (%l)n Then (3.5) gives the bound in part (b). Finally,

note that when n=2 or 3, (n,q—1)<2 or 3 respectively, so we have the bounds in part (b) for

n=2 and 3.
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(12.9) Suppose Ln(9)<G<PGLa(q) and H=GNPGLn(q,), where ¢g=g¢], r a prime, and G is a
group of genus zero. Then one of the following holds:
(a) n=2 and ¢<343.
(b) n=3 and ¢<27.
(c) n=4 and ¢<25.
(d) 5<n<8 and ¢<9.

(e) 9<n<11 and ¢=4.

Proof. Suppose n=2 first. By (12.6) and (12.8), as 2(q1 1) 2q1((ﬁ_-i—) ) and ¢;<¢, we have

that for any §#1, N(?,@/I_{)S4zl((qq_:_-:)l)<q ‘F—"'l <g if ¢>358. Since g=g¢] with r>2, ¢ is

not a prime. So if n=2 and G is a group of genus zero, then ¢<73=343. Suppose n=3. By

9gi(gi+q1+1) 9a(a+a+1)_

(12.6) and (12.8), we have that for any §#1, N(7,G/H)< < =
( ( ) (@ +a+1) ~ (¢ +a+1)

q(q+‘ﬁ+1)$8_15 if ¢>31. So if n=3 and G is a group of genus zero, then ¢<27. Now consider

- — n+l 2n-3
n>4. For semisimple g, by (12.6), N(?,G/H)S(n,q—-l}qq—l(q & 1) (%) =z; and for
=

S n-1 n
unipotent 9 we have N(7,G/H)<(n,q—1)- (q 1) (%) =y. Since
-

y_(a\" 2 (@=1D)? ¢ (a1’ 24T, N(3.C/T IR AT A
=(8) a2ttt foraw 7#T N@E/M<(a-)(31) (%)

n-—-1 n a
Sn'(qlq—l-l) (%) =an. Now 2:1=(1+,ll)- <1 except when ¢,=2 and ¢=4.

5]
(a—1)g
Consider the case that (¢;,9)#(2,4) first. So N(g,G/H)<4( 1) (21) =a4. Suppose ¢>27.

= ____4 4 1 4 4 1
If r=2, then ¢,>6 and thus a4—( =) q1< 6585 If >3, then a4_( 1—1)3qf523-35585

3
unless ¢;=2. But when ¢;=2, if ¢>16, then we have a4=4—8'-%—-5—81—. Hence it leaves only to

o

consider  (¢,¢)=(2,8), (3,9), or (5,25). For ¢=25, if =n>5, then we have

N(7,G/H)<aq =l4$§15. For ¢=9, if n>9, then we have N(i,@/ﬁ)gagzé%gg%. For

- = n—l
¢=8, if n>9, then we have N(7,G/H)<(n,g—1)-%5 _2

T 1 . .
5 0_<_85 So it remains to
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consider the last case that ¢g=4. In this case, for semisimple g, we have by (12.6) that

N(?,C'/fl)gé-,—?_—i. For ¢ unipotent, we have by (12.8) that N(y,é/fl)52},§lg2,?_2. So if
n>12, we have .N'(?,@/I_I)Ssl—s.

(12.10) Let ¢=¢?, F=GF(q), V an n-dimensional vector space over F equipped with a unitary
form f, g€ GU(V,f) with (lgl,p)=1, m=min(g,F,V)=ff,- - fa, where each f, is irreducible in
Flz]. Let V=V,® V,® .- ® Vo, where each V, is the homogeneous component corresponding to
fu. Denote cy=deg(fu), nu=dimg(Vy). For each fy, define fu to be (z—/\l—ql)---(z—/\zsl),
where {A;,...,Ac,} is the set of roots of fu. f u is called the inverse-conjugate of fu. Then each
f 4 is an irreducible factor of m, i.e., f ,=f, for some v. If fu=Ffu, then f, is called self-inverse-
conjugate. By pairing inverse-conjugates together, we can write V="U;®---® Us, where U, is
either some V, when f is self-inverse-conjugate, or U,=V,® V,, when f, is not self-inverse-
conjugate and here V),V , are homogeneous components for fu, f . respectively. Then each U,
is a nondegenerate subspace. Let C=Cg u( V)(g) Then for each e€C, e stabilizes the

decomposition V=U,®---® Us, and C=C,x---xCg, where each C, act as the identity on all

Uy with p#v, and C,~G Un”(qf ) if U,=V, for some p when f, is self-inverse-conjugate; and
o

CuzGLn_L,(qc") if U,=V,® V, for some u when f, is such that f,#fu.
Cu

Proof. Let X={z;:1<i<n} be an orthonormal basis of V with respect the unitary form f Let L
be the splitting field of m, W= LoV, and extend f naturally to W. Define 6:L-L by P
and o:GL(W)-GL(W) by Mx(y°)=(Mx(y))~ T’, where T denotes the transpose of a matrix.
Let Y={y;:1<i<n} be an eigenvector basis of g in W, so D=My(g)=diag(A I, Asly,, ...
Ayly,), where {Ay,..,Ay} is the set of all distinct eigenvalues of g.  We have
My (y")=A(My(y))’A™", where A=J(Y,f)=BB~° for some B=(b;;) defined by yingij:cj.
Write A=(4;;) into the block form corresponding to the dimension of eigenspaces. Since ¢° =g
iff DA=AD® iff \;A;;=; A Vijiff A,;=0 V \,;#);"* and A;; nonsingular ¥V X;=A; L.

So for each eigenvalue A, /\J_-q1 is also an eigenvalue of g. Thus f , is an irreducible factor of m.
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Also we have a permutation £ on {1,2,...,4} defined by Af(i)f#o or equivalently ,\f(j)zz\;ql.
Since the exponent by — g, acts either on the roots of f, if f, is self-inverse-conjugate, or acts on
the union of the roots of f, and f, if f, is not self-inverse-conjugate, we see that A has non zero
blocks only on the main diagonal corresponding to each U.{’ , e, A= diag(A(l),...,A(ﬂ)). Hence
each U, defined above is a nondegenerate subspace. Therefore, we can choose X such that X is
the union of the orthonormal basis of U,’s. Then B is in the diagonal block form

nuXny

B=diag(B,,...,Bs), where each B, corresponding to U, and B,,G(GF(qc”)) if Uy

2n, X2
corresponds to fu and f, self-inverse-conjugate; and BVE(GF(QC“)) ot

if U, corresponds to
fu and fu not self-inverse-conjugate. Denote A;=A )i+ We have e€Cq I( V)( g) iff
e€ CGL( W)(g) and e’=e. Also e€ CGL( W)(g) iff E=My(e)=diag(E,E,,...,Ey), and e’ =ce iff
E;A;j=A;;E] Vijiff Ee(j)Aj-:AjE; Vj iff for each orbit of £ and a fixed j contained in that
orbit, we have that ng(,-) £t-1(4) Z"Z(J')' et-1(5)
0<t<l, where ! is the length of the orbit. Hence clearly we have that for each e€ C, e stabilizes

=(4 A ~ATTHE (A A ~ATTHT Y

L4 .
€2
the decomposition V=U,&---® Us, and C=C;x---xCy, where each C, act as identity on all
Uy with p#v. It remains to determine C,. Let C,, U, be corresponding to fi. Suppose fy is

self-inverse-conjugate first with A; a root of fs, and thus c, is odd. The orbit of £ on j has

length cu. E. needs to  satisfy the condition that E.=F., .=
# 4 IR
cu—1 cu cu-1 -1 . .
A, A% o ---Af E (A, _, A%, _, -.-A? in which
Aeewmigyeon2y A7 B AepmAlenagy 45 )
it —olH . . ) ,(¥)o (u)oc“-‘l_
szAfc,,—l(j)A:ou_z(j)'-~A‘; =(BB™" ");;; and N, is a block in A"A"...4 =

°p

X
B.,B;"':“=B,,BZ1 I which is a diagonal block matrix. But BVG(GF(qc”))n" e

SO

cu L 2cy Cyu m cu cu Lm
5T )T gl g’ gy gTo" g, BT hich implies that NI N, Thus

c
E;=N;E] ”N;-l iff E]»GGU,#(qlc"). So Cy~ GU,_,_e(qlc“) in this case. Now suppose that f, is
u Cu

not self-inverse-conjugate. Then the length of the orbit of £ on j is 2¢cu. E; needs to satisfy the

02c”—1_

... A9
G

2
condition that Ej=E£2C”(j)=NjE'; C“N;I in which N,-:Afi,c“_l(j)A:?c“_Q
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2nyuX2ny

(BB“’2C") But B,e (GF(¢™* implies that B,B;° “=B,B;i'=I H =1
v q )) imphes a v Dy =Dy ence i=

is
2
which implies the condition E;=FE} . Soin this case Cy=GLn,(¢™").

J B
Cp

(12.11) Let F=GF(q), ¢=¢?, V an n-dimensional vector space over F with n>3, f a unitary

form on V, g€ GU(V,f) with (|g|,p)=1.

(a) Let H=GU(V), G=GL(V). Then .N'(g,G/H)S(——L—f(n_l). If ¢g=4, then
-1

.N'(g,G/H)_ . If n=3, then N(g,

G 1
2"t /)< G(d+q+1)

(b) Suppose ZSL(V)SGLGL(V), H=GNZGU(V), where Z=Z(GL(V)). Then

(anf_l) 15
N(g, G/H)S(q—l)z—n‘_—_?;. If q=4, then N(y,G/H)SZn i If n=3, then
1—

3'(37Qf”'1)
N(9,G/H) < 5—5——=.
H) G(E+q+1)

Proof. The reason that we assume n>3 is that GU,(¢)=SLy(g;), which has been considered
already. Let fy, cu, nu, a, B be defined in the same way as in (12.10), and d,,::—::. From (12.5)
and (12.10), we have that Co=Cpg(g)=D;x---xDg, C=Cg(g9)=C;x---xCg, where for each
1<u<p, either (1) Dy~ GUd”(qlc") and C,,:GLd”(qc”); or (2) D,,:GLd“(qc“) and
C,.:GLd“(qc“)x GLd”(qC”), which is the case corresponding to fy whose conjugate f #fs.. We

S GL qcu
have that (g—1)*¢; " 1)<'GUk(41)l<(ql+1) 7. So in case (1), |-C—"I=I a(e )l

1Dl |GU, (")

cpdlzt <( a1 )cudu nudy and i (2) IC}l' |GL ( c,,)|< cpdﬁ 2nyudy
; and in case L — )
(q:#__l)duq:udu(du-l)- ¢;—1 @ " Dl a\q )ISe 0
2 cudp E nudy
|_C]__I9 I | Ui =1 # # . o .
Hence =M1 755 o . We still have that Y cudy=n; and exactly as
IC | p=1 I I 91_1 =
1 .

(24
in (12.6), since n>3, we have Y n,d,<(n—2)n unless g is a pseudo-reflection. Hence ‘=
u=1

Gl

n
(q q_l_l) q;'z‘z" if g is not a pseudo-reflection. If ¢ is a pseudo-reflection, then as n>3, both f;
1

and f, are self-inverse-conjugate. So Cy~GU,_(¢))xGU(g;), and thus
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O _ 3n=1n=2) a2 o n-1 - ;
|?(qu1 (ni—1)*(gt+1)--- (¢ +(—1)""").  Suppose ¢=4. Then in case (1),

IC;A' lGLdu(q )l cudn(du—l)

2¢ dyc d dun duyn
—_— 2H 2T 1) (2P (1) <27H s, <(2)27H
D= 160, () @* =)@ * 41 @ (=) ™)<2™ sy, <(3)

where sd“=(1+2%‘)(1+2}_c;)...(1+2d}‘cﬂ)gg as before; and in case (2), we still have

So 'ﬂg(g) 2=' . Suppose n=3. If a=1, then Cx=GF¢)7,

Co~GU(¢?); and thus lﬂ:qi’—l. If =2 and ¢;=2, c;=1, then C:GF(qz)#xGF(q)#,
Co~GU,(¢)xGUy(q;); and thus %:(qf—l)(ql—l). If a=2 and ¢;=c,=1, then
C:GL2(q)xGF(q) y Co~GUy(q)xGU(qy); and thus I%%:ql(ql—l)z(qf+l). If a=3, then
C= G xGRQF xGR@)¥, Co=GU,(¢,)x GU,(g,)xGU,(g,); and thus I’%:(ql—na. So
for n=3, in any case, we have llcﬂolSql(ql—l)z(qf+ 1). Now let F be the algebraic closure of F
and V=F®pV, G=GL(V). For an orthonormal basis X of V with respect to f, define
0:G-G by MX(y")z(MX(y))-qu. So H_C—(a) Since ¢ is semisimple, C = C—(g) is

connected. Thus by (12.3)(b), g GﬂHDyGﬂHDg 80 gGr'lH=gH. Thus

. n(n-1) n n

N(g,G/H)—:g : e since =1 /(™" V(g1 +1) (af + (1)}

[
(__I)_nl—_"("—l)’ we have that N (g’G/H)S(q_l—ll—)Z'-‘ if g is not a pseudo-reflection, and
Hh—1i) 4
N(g,G/H)= P ‘11+(1 G )_ 2(n_1) if g is a pseudo-reflection. In both cases, we have

o

«N'(g,G/H)S—-——;—Z-(-m. For ¢=4, denote £=‘2 dun,. If a=1, then ¢,>2, n;=n>4, d15-2-,

(-1 #=1

n2
. . 2 5 5

and thus dyn;< 2, which gives .N'(g,G/H)<(2}2n(n_l) (g) n(lg-l)sg"ﬂszﬂ‘l’ So

o
suppose a>2. We have dy<n—a+1 V p. If dy<n—a V pu, then 55(n-—a)21n,4=(n—a)n,
p=

which gives .N'(g,G/H)S(%)a————l———<(%)(~—5—) <2 < 5 [f some u, say p=1, is such

2n(a—1)-— gn+l —-2n+2—2n -1

that d,=n—a+1, then c,=1 V p and dy=1 V p>2; and also in this case g is a pseudo-

reflection iff a=2. Then é=(n—a+1)?+(a—1) and n(n—1)—&=(n—2)a+(n—a)(a—3)>
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(n—2)a if a>3. So in this case, if ¢ is not a pseudo-reflection, then

5\*__1 5 \*<_5
N(s,6/M<(3) 2(,._2)05(2"_1) <gos if n24; and if n=3, then the bound N(9,6/ D)<z

_5

clearly holds but is useless. If g is a pseudo-reflection, then as above N(¢,G/H)<———— 2(n 1) aT"

|H _ 1

=4. For n=3, as == y
IGl™ ¢2(g,—1)(g3 +1)(g} —1)

So in any case, we have N(g,G/

we have N(g,G/H)< 2 1 . For part (b), let G;=GL(V), H;=GU(V). Now use (12.4),
@

G(@+aq,+1)

the p there is such that u:lliqli-l=q1—-l; and we have fy,G,/ZH))=
1

/—lz{j(g,Gl/Hl)+f(gz,Gl/Hl)+---+j(gz”_l,G1/H1)}. Also |G1/ZH1[:%‘|G1/H1|, and as each gz',

4-1 .
0<i<p—1, is semisimple, thus by part (a), .N'(g,Gl/ZHl)zE.N'(gz',Gl/Hl)S(—lL)zT_—a.
i=0 U

Then (3.5) gives the first bound in part (b). For ¢=4, as p=1 and (n,¢f—1)<3, we have
N (g,G/H)52}‘51 For n=3, similarly as in (12.6), gGanIfl is contained in at most three

cosets of H;, thus we have the extra factor 3(3,¢? —1) multiplied to the bound in (a) when n=3.

(12.12) Let F=GF(q), ¢=¢7, V an n-dimensional vector space over F with n>3, f a unitary
form on V, ge GU(V,f) with |g|=p®, where p=char(F).
(a) Let H=GU(V), G=GL(V). Then N(g,G/H)S(‘g)-—Z(nL_Z—). If n#4, then N(g,G/H)<
'3}

5\._ 1 (g +1)°
(5) P If n=3, then .N'(g,G/H)_(—————+11)(q y

(b) Suppose ZSL(V)<G<GL(V), H=GNZGU(V), where Z=Z(GL(V)). Then N(g,G/H)<

ng—1 nq
(%)'(———qéff,_”)» If =n#4, then N(g,G/H)s(g)(qf,ﬁ_a) If =n=3, then

1

B —D(a+1)’?
NG D)

Proof. For part (a), let W=Cy(¢)N[V,g], U=Cy(9)+[V,g]. Since g€ GU(V), CV(g)z[V,g]‘L

Thus W is totally singular, and U< wl. But dim(U)=dim(Cy (g))+ dim([V,g]) — dim( W)=
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n—dim( W)= dim( WJ'), thus U= W+, Let W bea complement to W in wL. So W' is a non-
degenerate subspace. Let R={r;:1<i<m} be a basis of W. Then there exists
S={5:1<i<m}CV such that for each i, {r;,s;} is a hyperbolic pair of the hyperbolic plane

W;=(r;,s;), and (W’)'L is the orthogonal direct sum of W;’s. Let T be a basis for W/, and

0 0/Inm
thus X=RUTUS is a basis of V. With respect to X, we have that J=J(X,)=| 0 « 0 |, and
Im0 0

thus aT":a, where 0: GF(¢q)-+GF(q) by szl Also m>1, as |g|=p°, and g#1. Let
C=Cg(9).- Then C acts on W and WL, as C acts both on Cy(g) and [V,g]. Hence C is
contained in the parabolic subgroup P of G stabilizing the flag 0< W< WL<V. Let F be the

algebraic closure of F, V:?@F vV, G =GL(V), and P the parabolic in G stabilizing the flag

AO0O
0<wW< W‘L< V. P is a connected algebraic group. We have that yeP iff M x(y)=| BC 0
DEF

Define 0:G~G by MX(y")=J(MX(y))'T9J_1. So H:Cé(a), and o acts on G. Let yeP.

Te
00Inf A00O0 0 0 Inm
Then Mx(y°)=|0a 0} BCO 0 et 0 |=
m0 0§ DEF Im 0 O
FTo 0 0
T Te_ -1 sy s 1 o5 0. o
aF aC 0 , which implies that y™°€P. So y’€P, and P°=P. Also

pTe pTe,—1 ATe
we can see that ¢ acts on the Levi factor L of P corresponding to B, D, E being zero matrices;
and on the unipotent radical U of P corresponding to A, C, F being identity matices; which
implies that P,=Cp(c¢)=C[(¢)C(c). The representation of G on G/H is equivalent to the

representation of G on 0. We have 0"/ =07 iff a”eaGnaCG(g)gaGﬂaP. Since o2 acts

as the identity on G, we have (¢%)2=(0?)*=0?; and as P’=P, by (12.3)(c), P=CI—J(02) is
transitive on GnaP Thus we  conclude  that aGﬂaP= aP , and
N(g,G/H) '0' ﬂoq_|6 ﬂaPl ld I IH”PI We have that yGCP(U) iff MJMTGZJ,
G 7 1% el lelAl
A00O T
where M=My(y)=| BC 0 But MM =
DEF
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0 0 AFTe
0 cacT? CaET® 4 prTe , hence yeCy(c) iff B, D, E all zero
FATY  pBTe L pacT®  FDT4 EaET 4 DFT?

matrices, F=4"T0 and CaCToza; thus Cr(0) = GLm(Q)XGU,_am(q).- Also yeCy(o) iff A,
C, F all identity matrices, aETo+B=0, and DT0+EaET0+D=0. For any given
EG(GF(q))mx("_zm), B is determined by B=—aET?; and Eaz—EaET"=(e,-j) is then fixed
too. We have that ETO_EO,, ie., ea ; V ij. Let p:GF(q)»GF(q,) by zrsz+2°. Thus p is
a surjective GF(g;)-linear transformaton. So |ker(p)|=g¢,. Denote D=(d;;). The condition
D+DT9=E‘Q is equivalent to d; +do =¢;; V i, . Thus as each e;;€GF(gq,), there exist ¢,
choices for d;;. For i<j, we select d;;€GF(q) arbitrarily and let djiz(e,-j—d,-j)e, then

d; j+d?,-=e,- j 18 automatically satisfied V %)  Therefore, for each fixed choice of

- -1
EE(GF(q))mx(" 2m), there are at least gf qzm(m )—-q'l“2 chioces of D such that
DT 4 EaETO 4 D=0 is satisfied. So |Cp(0)|>¢™ " 2™ g2 =¢{2"3™™  Also P=LU, where
U 1 1

L~GLm(q)XGL,,_5,,()XGLm(q) and U is a semidirect of N by A, where N~F ((n=m)m is

s GL, _om n-3m)m __
normal in U and AZEq(n—Zm)m‘ Thus IIP||<|GLm( 9)|- l%ﬁ'x(%)ll (2n=3m)m _
"= 1) = 1) ("~ DM = DG+ 1) (24 (= 1)), Since
|G|—1/{ zn(n l) =1 (g +1)---(¢f +(-1)" )} we have that
| Hj| P {(41—1)(01—1) (@ =DH(a+D(g+D)---(¢F+1D)} —
|G”P1| (qn 2m+1+( 1)n-2m+1) (q1+( l)n) =a. Let b—(q1+1)
(g +1)- (¢ +1), c= (u-U(@-1-("~1) d=(g; "™ +1)

- k— _ ’
g T E T ) (22 -1

@) (D), =@ T @E T ) (D, Then o= it

i

n=2k—1, and az%b if n=2k.  Since q—l—:lg% for j>i, we have c¢< 11 .
J_ 1747 2m(k-m)+5m(m~1)
Fl Q Q 2
m(m+1) 2m(k-m)+m(m-1)

Similar as before, we have b<(g)q . Also clearly, d>g¢; and
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e> qu(k—m)+m(m+l).

b(d 1 —(5 1 —
So %-<-(?)qm(4k—3m—2)_(i)qm(Zn—Sm) as n=2k—1, and
1 1

b (5 1 {5 1 — : P
%—<—(E)qm(4k—3m)_(i)qm(zn—:im) as n=2k  Since ISms[g], it is easy to check that
1 1

m(2n—3m)>2n—3 except when n=4 and m=2, in which case m(2n—3m)=2n—4. Hence we

have .N'(g,G/H)S(%)T(%_—Z); and if n#4, then N(g,G/H)g(g)q—znl—_-é. If n=3, then m=1, and
'3 1

we have |Py|=¢} (01— 1)*(g1 +1), |Pl=¢*(¢—1)%=¢5( —1)°. Since
| H] 1 (n+1)?

== we have N(¢,G/H)<—5—"—5—. For part (b let
G~ F oD@+ E—1) (0 G o =) ®),

|ZH,|_¢i—1

G,=GL(V), Hi=GU(V). Now use (12.4), the u there is such that p=|—H—|_—q—+T=q1—
1 1

L
and we have f(g,Gl/ZHl)zl-ljj(g,Gl/Hl), where Z=(z"1). Also IGI/ZH1|=ll‘|G1/H1|, thus by

part (a), .N'(y,Gl/ZHl)=.N'(g,Gl/Hl)S(g)T('}_—”. Then (3.5) gives the bound in part (b).
3

(12.13) Suppose Ln(g)< G <PGLn(g) with n>3 and H=GNPGUn(q,), where g=¢?, and G is a
group of genus zero. Then one of the following holds:

(a) n=3 and ¢<25.

(b) n=4 and ¢<25.

(c) n=5 and ¢<9.

(d) 6<n<11 and ¢=4.

.. - 9
Proof. Suppose n=3 first. For ¢ semisimple, by (12.11), N(7,G/H)<—5—5%——=<
(12.10) G(d+a+1)

3(g,+1)° J -
mss_‘r’ if ¢>7. If ¢,=6,

3(a+1)?
(g +1)(g—1)

then as (3,g—1)=1, we have for g either semisimple or unipotent that

For g unipotent, we have N(7,G/H)<

- mhe (@D a9 1 ;
.N'(g,G/H)S(——Z,_'_—l-)—(a—B=—§5—55§—5. Hence if n=3, then ¢<25. Suppose ¢=4 and n>12.
Q Q-

For semisimple 9 we  have N(@@,G/H)< 2}31; and for  unipotent g

.N'(?,(_;’/f_l)S_(g)-22§_352}£l_<_81—5. Hence if ¢g=4, then n<11. Now consider n>4 and ¢>9.

=an. Since a—zz—1=(1+%)-—l——<1 we

(41—1)2_ ’

For semisimple g, we have N (?,E' /H) 5(——;‘?"_—3
' Rt



have N(7,G/H)<a, =—4 <1 if ¢ >5. For unipotent ¢, we have

(0 —1)°~85 -
- _ b -
N(7 <{3._n ___3 g ntl_ L1 7 (9} 41
(g,G/H)_(Z) q,f(n_z) bn. Since - 1+z) qgﬁl, we have N(g,G/H)<b, (2) 458
if ¢, >6. So if n>4, then ¢<25. Thus it remains to consider the cases in which ¢=9, 16, 25.

For ¢=9 and n>6, we have «16=—6—5i and b= (—) %SSL Hence if ¢=9, then #<5. For

929=85 5"
¢g=16 or 25, if n>5, then we have a5_<_3£7 8'1_5 and bsS(g) %5-813. Hence if ¢g=16 or 25, then

n<4. In summary, we have the entire conclusion.

(12.14) Let V an n-dimensional vector space over F = GF(g), p=char(F), n=2[ with I>2, and f,

a symplectic form on V, ge A(V,f,).

(a) Let H=A(V,fy), G=GL(V). If (lg|,p)=1, then .N'(S},G/H)<i—1—-)%—_1qTi for 1>3; and
1 2
N(g,G/H)<(q+—2()§—qI”—)) for 1=2. 1 [g|=p", then N (5, 6/ M) < ki
(b) Suppose ZSL(V)XGLGL(V), and H=GNA(V,fp). If (lgl,p)=1, then

— _ 2
N(g G/H)<(—————-(2I’)q,_11q),_1 for 1>3; and N(s,G/H) <22 28:_1)1(; 2 for 1=2. 1t |g|=p°

then .N'(y,G/H)__((LI%,}—)2

Proof. The reason that we assume I>2 is that Sp,(¢)=SLy(q). Let A=A,={feL(V,VF) :
Ru,v)=—fv,u) and flv,1)=0 Vu,v€V}. Thus f€A and A is an (g)-dimensional subspace of
L(V,Vi;F). Define m:GL(V)-GL(A) by ((97)f)(u,v)=Rfug,vg) V u, v€V, and here A is
considered as a left FG-module while V is considered as a right FG-module. That is
(((a:m)(g2m)N(w0)=((17)((927)))(w,0) = ((927) ) (w91, v9,) = {191 92,091 92) = (((9192) ") (w,2),

so wm is a group homomorphism and G is represented on A. We have
H=A( V,fo)=StabGL( V)((fo)) and thus the representation of G on G/H is equivalent to the
representation of G on G(fo), where G(fo) is the orbit of the 1-dimensional subspace (f;) under

G. Suppose (j)EG(fo) with gr(f)=(f). Then grf=wf for some welF#, which implies that
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(H< E(gm,w,A), the eigenspace of gr in A with respect to the eigenvalue w. So j(g,G(fo)), the

number of fixed points by gr in G(fo), is such that j(g,G(fo))S >°  n(w), where n(w) is the
weF
number of 1-dimensional subspaces in E(gm,w,A). Denote d(w)=dimg(E(gm,w,A)), then
d(w)

n(w)=1 q——l—l' Now consider the case that (lg|,p)=1 first. Let K be the splitting field of

m=min(g,F,V), A(g)={)1,...,Aa} be the set of roots of m in K, and m, be the multiplicity of
Au. Let Ak =K®pA. Then AK s isomorphic naturally to A( vK ) as K-spaces. Since
wEF#, dimF(E(gw,w,A))zdimK(E'(1®g1r,w,AK)). Let X={z;:1<i<n} be an eigenvector
basis of g in V. Denote A(z;) the eigenvalue of g corresponding to z;. For fe Ak, (gm)f=wf
iff flz;9,2;9)=whz;,2;) Vi<y, if (M(z;)M(z;)—w)fz;,2;)=0 Vi<y, iff fz;,2;)=0 Vi<j with
A(z;)M(z;)#w. Thus d(w) is equal to the number of pairs (47) with i<j and A(z;)A(z;)=w.
Given A, €A(g), denote in, the multiplicity of A, € A(g) where A, is such that Aud,=w; if no
such A, €A(g) exists, let Mm,=0. Thus d(w):%{ S mu(mu—1)+ 3 m,,ﬁl,‘}, where
Au€4d, AEA,
A, ={A€A(g):\?=w)} and A,={reA(g): 3 M €A(g) such that A\'=w and A#)'}. Thereis a
group homomorphism 7:A( V,fo)—oF# defined by z+—7(z), where 7(z) is determined by

fo(uz,vz)=7(2)fo(u,v) for z€ A(V,fy); and ker(r)=Sp(V). This gives |H|<|Sp(V)|(¢—1). So

d(w)
g <Isp(V)l 2@ _py< 1521 4@ prom the order

S; 1(1-1 -
formular  for  Spy(g), we have ‘IG—I’L-ZQ——"((qq))Ilzl/{q( )(q—l)(q3—1)~~-(q2' 1—1)}5

Now d(w)<} & mumu<l & my(21-3)=2£-31 if all m,<20-3. If some
A€A A4

mu=2I—1, then d(w)Smaz{%(2I—-1)(2I—2), 21—1}=2—-314+1. Suppose some my, say

-1
(g—-1)'¢" "™V

my =2[-2. Then either my=1=m3, or my;=2. We have similarly that

d(w)s%(21—2)(21—3)+1§2I’—3I+1 unless m,=2 and I=2. So for [>3, we always

have d(w)<2P—3141, which gives N(g,G/H)S( Now suppose !=2. Denote

-1
q___ 1)1—1 q'—-l
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x= X (qd(w)—l). By writing ¢ in diagonal form in VK, it is easy to see that d(w)<4 for
weF

any wEF#. Also it is clear that if some d(w)=4, then x<(¢*—1)+(¢*—1); and if some

d(w)=3, then x<2(g*-1). If every d(w)<2, then x<#(—1)+(6—2%)(¢g—1)=
=) +B~—{2(¢—1)}<U?—1)+(3—1)(¢*—1)=3(¢>—1), where t is the number of w’s with

ISpa()l _ 1

d(w)=2. So in any case, we have y<(¢°—1)+(¢*—1). Since = , we
(w) y x<(q )+(q ) [GL,(9)] q2(q-—1)(q3—1)

N (P—D+(a*~1)_(¢+1)(¢*+2)
have N(gaG/H)S q2(q_1)(q3_1)_ qz(qa—l) )

X={zy,...,zn} be the Jordan cannonical basis of g in V, and denote d, the dimension of u-th

Now consider the case that |g|=p°. Let

Jordan block of g, 1<u<a, where a is the number of Jordan blocks of g. So either

T;9=1%;+2;4, or z;,9=z;. Denote f{z;,z;)=c;;. The condition f{z;g,z;9)=wf(z;,z;) is equivalent

to one of the following: (1) (w—1)a;;=0; ;414 j+ @i j415 (2) (W—1e;=a; ;445 (3)
(w—Da;;=0a;,;;; (4) (w=1a,;=0. If w#lthen these four conditions force @;;=0 Vi,j.

Thus d(w)=0 Vw#l. For w=1, these four conditions imply that

an=4 ¥ min(d“,dy)+f;[‘l2—“]. We have that d(1)=1 3 min(d,,,d,)+i[d—2"]5

e = =y =

f:min(d,‘,dy)s%f:i %f: N=al<(21-3)l if a<2l—3. If a=2—2, then either
“: = =

v=1

1
2

®
10

o

\==dy_9=1, dy_1=2=dy or dy=.--=d,_;=1, da=3. In the first case
d(l)=%{(a——2)2—(a—2)+4(a—2)+4}+2=212—51+6:(212—-3I+2)—2(1—2)5_212—3I+2 as

I>2. In the second case d(l):%{(a-1)2—(a—1)+2(a—1)}+1:212——51+4=(212—3I)—2(1—~‘2)

<2P -3l If a=2I—1, then d,=---=d,_;=1, do=2 and d(l):%{(a—l)z—(a—1)+2(a—1)}
+1=217-3142. So in any case, we have that d(1)<2F-31+2. Thus
M1 _IspW)] a0

q
N(Q,G/H)<|0| 2 g—1 S'IGL(V)I

_(q 1)1 =) = = 1)1 7= i.e., the second part

of (a) holds. Part (b) follows easily from (a).

(12.15) Suppose Ln(q)<G<PGLn(q) with n=2i>4 and H=GNA, where A=A(V,f,)/Z,
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Z=2(GLn(q)), f, a symplectic form on a 2Ldimensional vector space V over GF(g), and G is a
group of genus zero. Then one of the following holds:
(a) n=4 and ¢<17.
(b) n=6 and ¢<5.
(c) n=8 and ¢<3.
(d) 10<n<26 and ¢g=2.

4(g+1)(¢* +2)_
(1)

q31—1(1+%+ql )+ 2(; l) . +q 1} which is decreasing when ¢ is increasing, and thus it

Proof. Suppose =2 first. For semisimple g, we have N(7,G/H)<

implies N(y,G/H)< if ¢>19. For unipotent g, we have .N'(g,G/H)<( 4 )2<815 if ¢>19.

Hence if n=4, then ¢<I17. Now suppose [>3. For semisimple ¢, we have

.N'(g,G/H)(———zI—:a,. For unipotent g, we have N(g,G/H)<

( 1)1_1q1_1 =b,=b,(q).

21
( l)lql'—z

. - b
Since ﬂ=u§1, and ”1— 1+1 1 <1, we have for both cases that
1 b U (g-1)¢=

N(@,G/H)<by= 6 == if ¢>7. So for I>3, we must have ¢=2, 3, 4, or 5. Since

e

b14(2)=-—7—4 b5(3)_432, b4(4):1—1—, b4(5)=§(1)7) and each one of them is 58—15—. Hence for

¢=2, 3, 4, 5, we have respectively that <13, 4, 3, 3. Therefore we have the conclusion.
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Chapter IV
Irreducible Maximal Subgroups Containing No Transvection

Section 13. Initial Reduction.

Now assume that H is a maximal subgroup of G such that H contains no transvection
and H is irreducible and primitive on V, where H and G are the preimages of H and G
respectively. Note that since SLn(¢)<G, the unipotent radical denoted as A in (13.1) through

(13.4) is contained in G. The result of this section is:

Proposition. If G is a group of genus zero, then one of the following holds:
(a) n=2,3 or 4, and q<83.
(b) n>5 and q<9.

Proof. This follows from (2.5), (13.6) and (13.7) directly.

(13.1) (J. Thompson) (a) Suppose g fixes some hyperplane U. Let A be the group of all

|C 4(9)
[A] -~

(b) Suppose |g|=p¢, where p=char(F). Then N (9)5#, if the smallest dimension of Jordan

transvections with axis U. Then N(g)<

blocks of g is 1; and N (g)s-—l—-, if all blocks have dimension at least 2; where v is the

gh-v-1
number of Jordan blocks of g.

(c) If g is a transvection, then N'(g)=0.

Proof. This can be obtained as a special case from [Th]. For easy reference, we include a proof
here. Let Oy, O,,..., Oy be the A-orbits on 2, and f; be the number of fixed points of g in O;.

As HNAY=1 Vy€G, A is regular on each 0;. Also U’=U implies A°=A. Suppose fi21, ie,

l—z if and only if

— - . + +...+
g laga™*=1. Thus either f;=0 or f=|C4(¢9)l. Then .N‘(g)zlz({%:'Ollf_l|_|£‘;|+....{k|0k|-<—

there exists z€0; with zg=z. Now zag=za if and only if z¢g 'aga”
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1C4(9)]
{IO ps—far

g. We can arrange {v,...,vn} so that {v,,...,v4} is the basis for a Jordan block of g of the

So (a) holds. Let {v,...,u,} be the basis of the Jordan canonical form of

smallest dimension. So v,g=v +v, if u>2 and vyg=v, if p=1. Let U=(v,,...,vn) and A be
the group of all transvections with axis U. Let t€C4(g) with v;t=v +u, where u€U. Since
v,9 = v, +w for some we U, v,g~ tg=(v; + w)tg=(v; +u+w)g= v, +ug. So u€ Cp(9) and thus
ICA@IICY@I.  But Cy()=Cy(9) if u>2 and Cyl9@(n)= Cylg) if u=1; and
dimF(CV(g)) is equal to v, the number of Jordan blocks of g. So |Cy(g)|<¢" if u>2 and

|C4(9)|<¢""!if p=1. Then as |A|=¢""", (b) holds. (c) is evident.

(13.2) Suppose V=Ue®W with U'=U, and W =W. Let u:dimF(U), and
A=CGL(V)(VV)OCGL(V)(V/W). Let Oy, 0,,..., O, be the A-orbits on £, and f, be the

number of points in O; fixed by g. Then

(a) Either ;=0 or f,=|C37 (g)|, where A;=-4-, and z;€0; with z;9=z; Also
A; A,

Az;=ANGs,= ANH’S for some y,€G.

1C3,(9)
(b) .N'(g)Sm?x{ IA ' } where A; is as in (a) for each 1.

(c) Let Az, A; be as in (a). Suppose E<A with ENAg,=1, and CE(g)zl. Then

Proof. Suppose f,#0. Let z,€0; with z;9=z;, Then (Aa:i)g=A3:‘., so ¢ induces an
automorphism on A;:A/A,;... Since z;ag=z;a if and only if zig'laga“lzz; if and only if

g’laga'leA,,-i if and only if Az, aGC’A (9), we have f.:lCA (9)]. So (a) holds. As

o) fith++f
.N'(g)—IQI |01|'1|'|022|+ +"lok‘<maa:{lo l}, but |0;]=]A,]; so by (a), we have (b). As

EnAz;=1, |E|=|E|. Since Cp(9)=1, ENCy (=1 So |EIIC; (9)|=IECy (9I<IAil.
1C2,)

ence ——=t—-
|4

=L

L =,
=|E||E]

(13.3) Suppose (|g|,char(F))=1, and min(g)=ff; - fo with a>2, where each f,, 1<v<a, is

irreducible in F[z]. Let V=V,® V,®---® Va, where each V, is the homogeneous component
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corresponding to f,. Let A=CGL(V)(VV)OCGL(V)(V/W), where W=V,®---®Va. Then
Cyl9)=1.

Proof. C4(g) acts on V; and centralizes V/ W and W; which implies that C4(9)<C4(V)=1.

(13.4) Suppose g satisfies the conditions in (13.3). Using the notations in (13.3), let u be the

q,,l_.,,. In particular, if min(g) spits in F[z]. Then p is

the smallest dimension of all the eigenspaces of g¢.

smallest dimension of V,. Then N(g)<

Proof. Without loss of generality, assume p=dimg(V;). Let A and W be the same as in (13.3).
¢:A— A is an isomorphism by (13.3), where ¢:z—[z,g]. Let H be a hyperplane of Vi,
B=C/4(H), and E=¢"Y(B). So |E|=|B|=q" ¥, as Bis a group of transvections with axis
W+H and centers in W. For z€ENAs; or Az;z€Cy(g), we have [5,g]€ BNAs;=1, as Az,
contains no transvection. So (13.3) implies that ENAz =1, and CE(g)zl. Thus by (13.2)(b)

and (), N(9)< 7

Remark. It remains to consider the case in which (|g],char(F))=1, and min(g) is irreducible in

F(z]. Since we are interested in finding the bound for ‘i;q—), and as f{7)<A(F)") for any integer

2! Zg) ., _{9)
i, it suffices to bound for f{§) for § with |g| a prime. Suppose §=2¢g. Then (?>=—Zg_:(g)?ﬁZ'

So assume that [§|=s is a prime such that (s,p)=1 and the representative g is such that min(g)

irreducible in F[z]. Then ¢*=w'€Z, where (w)= GF(q)#. We have two cases:

Case 1: s|i or sf g—1. If i=sj, then replacing g by w-jg, we can assume that |g|=s. If
s/ ¢—1, then (w*)=(w), which implies that w'=w"’ for some j. Hence replacing g by w_jg, we
can still assume that |g|=s. So in case 1 we always assume that |g|=s. The degree ¢ of min(g)
equals the order of ¢ in the group of units in Z,. If XA is an eigenvalue of g, then

-1 ;
min(g):cH (z— /\qj). V is a homogeneous F(g)-module and C(g)=~GLn(¢°).
i=0 ¢

Case 2: s|g—1 and sfi. In this case, the polynomial z*—w* has no linear factor in F(z].

Let ¢g—1=sy and let X be a root of z*—w’. Thus )\, Aw’, ..., ,\w('_lh are all the distinct
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roots of #’—w'. Let acAut(F())) with a: a—a’. Now a has an orbit of length I>1 on
{M\A%,...}. Thus each irreducible factor of z* —w* in F[z] has degree I, which implies I|s. As
I>1 and s is a prime, I=s. That is 2’ —w® is irreducible in F[z] and thus min(g, F, V)=2"—uw';
F(AN)=GF(¢"); A, A%, ..., /\qs-l are all the distinct eigenvalues of g, min(g):alj:(:c-—/\qj). Visa
homogeneous F{g)-module and CG(g):GLg(q’). Let ({):GF(q’)#. So |£J|_-=q“—1=(q—1)c,
where e=¢*~!+... 4+ g+1=0(mod s) as ¢g=1(mod s). Thus e=s§. We have w=¢¢ and thus

A=£¢% is a root of 2 —w'. Hence |g|=|£“|:=£—-.—l)—3 in this case.

(i,(q—l)S)
In both cases, if ¢’ € GLn(q) with |¢'|=|g| and min(¢')=min(g), then ¢'=g" for some
z€G. In the following, we assume that g is either in case 1 or in case 2. Also we always denote

the degree of min(g) by c, so ¢=s in case 2.

(13.5) One of the following holds:

(a) H~GLn(¢")NG, where r is a prime dividing n. H acts on V', where V' is V considered
r

as I dimensional vector space over the field GF(¢"). N(g)< T 1)((7:q’—‘—) 1 — if T c;
q n-=e¢- -r (q—l) -7
(n’q_l)(m:‘rl_l) n

if rlc, where m=g¢. If n=2, then r=c=2, and

(b) Hx~GL(V))*GL(V,)NG, where Vi, V, are l, m dimensional vector spaces over F
respectively; and n=Im, l#m, l#1, m#1, V=V,®V,. Moreover there is a homomorphism
m:GL(V))XGL(Vy)— GL(V) by (%,®v,)(91,92)7=1v,9,®v95, and g=(gy,95)7. N(g)<
(n,q—1)/q('z'z)("‘z'1)(1‘%)'1‘("*")(q—1)"” if c|l but cf m; N(9)<
(n,q-—l)/ (P =D DO-D1-ram) (Y™™ i om but o N(g)<
(mg—1) / g0*=2m* -D=b=1-(r+1)(g—1)** 4 (n,g—1) [ =D -Da-D=1=(nm) (1) if

c|l and c|m.

(c) H=Ng(R), where n=r" is a power of prime r#p and R is an rgroup of symplectic
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type such that |[R:Z(R){=r*™. Also R is of exponent r if r is odd and of exponent 4 if r=2.
Moreover |Z(R)|>2, ¢g=p°, where e=|p| in the group of units U of Zr" with *=|Z(R)|, and e
is required to be odd. %zCAut(R)(Z(R)):Erzm-szm(r). If =2, then ¢=p. If ris odd,
then g is in case 2. In any case, N(g)s(n,q—l)nz"”a/q"z(l-%)—"(q—l)"—l.

(d) H=DSmN G, where D~GL(V)*GL(V,)*---*GL(Vm), each V; is a k-dimensional vector
space over F, V=V,®V,® --® Vi, n=k™, m>1, DSy, is the semidirect product of D by Sm,
and there exists a homomorphism m:GL(V)wrSm—GL(V) by (1,®0,® - ®vm)
(@(915- - wgm))T=v,,_10,®V, 19,9 @V, __19m, 2E€Sm, and g=(z,(g1,....gm))7T.  N(9)<
(n,q—1)/(m—1)!(1("2"“"2)(1‘%)'('°m+")(q—-1)""’"""c for g in case 1; and N(g)<
(n,q—l)m!/q"zm(l"%)"‘2('"‘}‘:)'("'"*”‘)(41—l)km+k for g in case 2.

(e) H=O;m(q)F#ﬂG, p odd, n=2m and c¢ even, g in case 1, and N(g)<
(n,q—1)(93—1)/9%"2(1'%)(0—-1)"‘1-

(n,g—1)
n_ay_ n-2"
c 3) 3(q__l) c

Proof. Suppose H=H, NG, where H, is on the list of C; through Cg in [As2]. We consider only

)N (g)sq(”_l)(n_

the case that G=GLn(q), as for general G with ZSLn(¢)< G< GLn(g), the bound for N(g) can
be obtained by multiplication of the factor (n,g—1) according to (3.5). Also suppose N'(g)#0.
Thus ¢GNH#P. Without loss of generality, assume that g€ H. As H is irreducible, H is not in

C,.

Suppose HEC,. Then H is the stabilizer of a direct sum decomposition of V,

contradicting to the hypothesis that H is primitive.

Suppose HeC3. Then He~ GLg(q') where r is a prime dividing n, and H acts on V/,
where V' is V considered as % dimensional vector space over the field GF(¢"). For g, we
consider case 1 and case 2 together, thus here let ¢ denotes the degree of
Jf=min(y, V,F)=T]:[:(z—»)\qj), i.e., for case 2, c=s. Suppose that r[c first. Then the map

j=

p':z»—»:cqr is transitive on the eigenvalues of g. Thus min(g, v, GF(¢"))=f and is irreducible in
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GF(¢")[4). So V' is a homogeneous GF(q"){g)-module, it follows that C H(g)zGLrL,c_(q”). Now
if g’eanH, then ¢"=g¢" for some heH because min(¢®,V/,GF(¢"))=min(¢",V,F)=
min(g, V,F)=min(g,V/,GF(¢")) and g, ¢° both homogeneous on V. So gGﬂHng. Since

lGLE(qr)‘ ln n—? 1 2r—1 2r+1
e =/ {8 D@ ) D ) (1) (@ )

|GLa(¢)  1.2(n-2)

n—l__l < 1 - °c_1 20_1 c("—l)__l
(DS ad = @@ ) )
q (¢-1) Fe
c(r+1) e(2r-1) c(2r+1) n—c 2(n-P) |H”CG(9)I
-1)... -1 -1)..- —1)< , h N()=i——T
(@1 =D))< e have (o= S
1 5. Now suppose that rjc. So c=pgr. We have f=min(g,V/,GF(¢")|f=

g =
¢ =P (1)

gi~1+kr

B-1 -
fifo - fr, where fi=T]] (z—A YEGF(¢")[z]. Thus fszlfgz---ff", where §,=0 or 1, and
k=0

0;+654---+6+>1. Let b; be the number of Jordan blocks of g on V! corresponding to f;y so if
6,=0, then =0 and if §,=1, then b,>1. Thus b, +by+---+b,=% and
Ch(9)=GL, (¢°)% GLy,(¢°)% - x GLy,(¢°)- Conversely, if ¢ acts on V' with
min(g,V',GF(q')):filf;szﬁ' for some choice of §.’s, then min(g,V,F)=f=ffy---fr. So
gGﬂH=LI;JzH , where A is the set of elements of H such that for 2€A4,
min(z, V’,GF(q’)):fflfg"’mff’ with 6, +8,+---+6->1, and for =z,,2,€4 with z,7#z,,
(bgl),bgl),. . $‘>)¢(b§2’,b§2’,. . .,bf-z)). The number of H-conjugacy classes is equal to the number
of solutions of b;+b,+---+b-=%=m; which is equal to the number of strings of the form

1110010---011 in which there are m 1’s and r—1 0’s; for example, the string 1110010---011

corresponds to b, =3, b,=0, by=1,...,br=2. Hence the number of solutions is ('""'"1). Since

r—1
r r
¢3 bi(b;-1) 2,0

GL: (¢°)XGL, (¢°)x-+-xGCL. (a° i=1 c_1yi=1 ' (-1 c__ 2o n(Fe-1) _1\n
|GLy, (§°) X GLy,(¢°)x -+ x GLy,(4°)| 2 ¢ (1= 2g¢ (¢°~1)°2¢ (¢—1)

r—1

n n r—1
C c(n=7)+n my
l G(g), q and thus N(g)< ( ) . If n=2, then

gives us < Sy} < 5 = 5
IC(9I= (=1 L EDGBn e
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2|GLi(¢")__ 2
[GLy(9)| a(g—1)

r=c¢=2, and there are two H-conjugacy classes. Thus N'(g)<

Suppose HeC,. So H~GL(V,)*GL(V,), where V;, V, are I, m-dimensional vector
spaces over F respectively; and n=Im, l#m, l#1, m#1, V=V,®V,. Moreover there is a
homomorphism m:GL(V)x GL(V,)— GL(V) by (v, ®@v9)(91,92)7=v,9,®v,9,. Thus if Ay, A,
are eigenvalues of g,, g, respectively, then A A, is an eigenvalue of g=(g;,9,)7. Thus neither g,
nor g, can have more than ¢ distinct eigenvalues, as ¢ has exactly ¢ eigenvalues. Also clearly
either g, &Z(GL(V,)) or g,€Z(GL(V,)). Say ¢;€Z(GL(V,)). First consider ¢ in case 1, so
|g|=s, and thus g;€Z(GL(V;)). Then as (s,g—1)=1, we can assume without loss of generality

e—1

that |g;||s for i=1 and 2. So g, has an eigenvalue \;&F, and A\;,A{,..,A]  are all the distinct

c—1
eigenvalues of g;. Let u be an eigenvalue of g,. Then p),, uAj,..., uA]  are all the ¢ distinct

c-1

[
eigenvalues of g. Hence their product u°(AA]---A7  )eF. But 0# X A] - A

1GIF, so p°€F.
Since c|(s—1), s=cv+1 for some v. So p(p¢)’=p*=1, as |g,||s. Then pu=(u®)~"€F, which
implies g,€Z(GL(V,)). We thus have that either g, € Z(GL(V,)), g, has exactly c¢ eigenvalues
or g,€Z(GL(V,)), g, has exactly c¢ eigenvalues. Correspondingly, either c|l, Cg(g)=Ax*B,
where the product is central with A~GL;(¢°), B~GLm(q), and Z(B)<Z(A); or c|m,
Cp(9)=CxD where the product is central with C~GL(q), D':GL%.,(qc), and Z(C)<Z(D).
Under these notations, we have three possibilities: (1) ¢|l but ¢fm, gGﬁH = gH with
Cy(9)=AxB.  (2) c|m but ], gGﬂH=gH with Cgp(9)=CxD. (3) c|l and c|m,
gGﬂsziHUzgf with Cy(z)=AxB, Cg(z;)=CxD. Now consider that ¢ in case 2. Let
Al,/\f,...,/\fa—l, Az,)\g,...,/\gﬂ_l be orbits of A;, A, under the map p:z—z°, where Ay Ay are
eigenvalues of g,, g, respectively. Since A;), is an eigenvalue of ¢ and has orbit length ¢ under
p, cll.e.m.{a,B}. As c=s is a prime, we have that either c|a or ¢|3, say c|a. Also clearly a<ec.
Hence a=c and min(g,) is of degree ¢ and is irreducible in F[z]. So V; is a homogeneous F(g,)-
module and thus ¢|L We still have three possibilities: (a) ¢|l but ¢fm,

108 m<le T NIl ) clm but oft, [CnE<IGL@NT™ L. () ol and ¢]m,
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L
NI < e D GLn(@I+1GL (@IS ™ D). For cases (1) and () above,

o< FHOIGLR @I GLa()
(9= ROl ]

9 n.2 11 :
<gt+m2+e() /qn(n—l)(q—1)“q¢é(6-1)(q°—I)CS

1/q(’z"z)('"z‘l)(l"rl:)"1‘("'“)(q—1)"”. Similarly, for case (2) and (b),

N(g)_<_1/q(”‘z‘2)(’2‘1)(1‘}’:)‘1-("*’"‘)(q——1)"+m. For case (3) and (c), N(9<

{1 / q(12—2)(m2—1)(1—%)—1-<»+1)(q_1)"+'}+{1 / q(mz—z)(I’A)(x—%)—1—(n+m)(q_1)"+'"}_

Suppose He C;. Then H~GL( U)F#, where U is an n-dimensional K-subspace of V and
K is the subfield of F of prime index r; and F# is the center of G. But then H contains a

transvection, contradicting to the hypothesis.

Suppose HE Cg. Then H=N;(R), where n=r" is a power of prime r#p and R is an
group of symplectic type such that |R:Z(R)|=r*". Also R is of exponent r if r is odd and of
exponent 4 if r=2. Moreover by (Cgl) in {As2], |Z(R)|>2, ¢g=p°, where e=|p| in the group of
units U of Zrk with 7*=|Z(R)|; also e is required to be odd. By (4) of Theorem A in [As2],
n%z CAut(R)(Z(R))' If gisin case 1 and s=r, then lsqc.—_qrtzq’lzq(mod s), where c=r' for
some I<m; but this is a contradiction as ¢=|¢|>2 in Z,. So s#r. Suppose ris odd first. Then
R is an extraspecial r-group. Since [(g),Z(R)]=1, V is a faithful GF(p)(g)R-module, Cy (g)=0,
and p, r, s are distinct primes, by (36.1)(1) in [Asl], s=2%+1 is a Fermat prime and r=2, a
contradiction. So r=2, then |Z(R)|=4, and (p,2)=1 implies p?=1(mod 4). Thus e|2. So e
being odd implies that e=1. So ¢g=p. By exercise 8.5 in [Asl], a 2-group R of symplectic type
of exponent 4 is isomorphic to D', D*'Q, or Z,+D', where D=Dg, Q=Qg, and D' is the

central product of ¢ copies of D with identified centers. But for the first two cases, |Z(R)|=2.

Hence we have R~Z D', and thus t=m here. By same exercise, Fi#z Aut(R)(Z(R)):

|H||Cq(9)l

E22m'5p2m(2)' Hence N(!J)S IG!

2 n
S(p_1)22m22m +"'pc(z)2/pn(n-l)(p_1)ﬂs
2
n2m+3/1’" (1'%)'"(1'—1)"“1. Now consider g is in case 2. If r=2, we have the same result. If

r is odd, then ;‘%z A“t(R)(Z(R))=Inn(R)-Sp(%):Er2m-Sp2m(r). Thus
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2 n
N-(g)s|HIIIC;T'G‘(y)IS(q_1)r2mr2m +ch(3)2/qn("-—1)(q‘_l)ﬂs n2m+3/qn2(1_%)_n(q_l)n—l.

Suppose HEC,;. Then H=DSm, where D~GL(V,)*GL(Vy)*--- *GL(Vm), each V; is a
k-dimensional vector space over F, V=V, V,®:--® Vm, n=4k™, m>1, H is the semidirect
product of D by Sm, and there exists a homomorphism m:GL(V})wrSm— GL(V) by
(11®0;® - @Um)(Z,(915. . 4 gm))T=10, 101 @V, 192 ®-- @V, . _19m, 2ESm. We consider that g
in case 1 first. Suppose g€D. So g=(1,(¢y,...,gm))7. If Ay,..,Am are eigenvalues of gy,...,9m
respectively, then A;---Am is an eigenvalue of g. Since g has exactly c eigenvalues, a similar
argument to the case for C, shows that all g;€ Z(GL(V;)) except one g; for some j, and this g;
has exactly ¢ eigenvalues. Thus c|lk and Cp(g)=A*B, where the product A*B is central and
Ax~ GL(é,qc), B is the central product of m—1 copies of GLi(g) with identified centers, and
Z(B)<Z(A). Let heH, h=(z,(h,..,hkm))7. Then ¢*={(z71,(hit, .. .hmz))(1,(91s-9m))

h
(2 (hyye o hm )Y =(1(0,2_1yegi™_ ) If  heCg(g), then  (1,(g1,...gm))7=

(1,(yfi_1,...,g";':_l))1r. As g=(1,(z1,...,zj_l,gj,zj,,,l,...,zm))n' with 2,€Z(GL(V;)) for i#j, we
have jz=j. Thus Cg(g9)~Cp(9)S,—1, Where the product is semidirect. Also if ¢;, g,€ gGﬂD,
then ¢,,9, are conjugates in H. Now suppose gGﬂ(H\D);éO. Without loss of generality,
assume that ge H\D. So g=(z,(gy,...,9m))7 with z=(a)(b)---(ay---as)(B,:--Bs) -, = has at
least one s-cycle; and |g|=s implies g2, g3, ..., o 90y " Gay 95,95, " 9p,» -~ are all in F#. As
(Vs 9oy ® Vo, ga; Ja, @+ ® Vo, ga; Jay G, _y @ Vay ) (@1 @s)s(Garyse - 1 900s)) T = Vary§or; @ Vo, g  Joy @
" ®Vayfay oy Jo, 1 ®Va,fa;Jay Jas = H(Va,00,® Vo,0a,00,® @ Va,da;ay *Jo,_; ®Vay),
where pEF#. So if z has no 1-cycle, or if for any 1-cycle (a) of z, gaeF#, then ¢ would have
an eigenvalue in F, which is a contradiction. Since ¢ has exactly c eigenvalues, z has a 1-cycle
(@) such that gagF# and g, has exactly c eigenvalues; and for any other 1-cycle (b) or any s
cycle (a;---as), ((8),9;), ((@1+-@s)y(gays--19a,s)) acts as scalars on Vi, Vo, ®Va,®:--® Va,
respectively. So without loss of generality, can assume g,, gays..+9a, are all equal to 1. But
then  p(ve;®Vay® - ®Va,)=(va; ®Vay® - ®va,)((a;- - @s)y(1,..41)) T =00, @V, ® - ®Va,_,

implies that va,=u'val for some p' GF#, contradicting to that dimg( V,)=k>2 Vi So
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G _ Gang—.GAp— H ~ : —_
¢ N(H\D)=0. Hence ¢ "NH=g " ND=g", and Cy(g9)~Cp(9)Sm-1 with Cp(g)=A*B,

| LI CLym ()]
where AxB is as above. So N(g)z(m—l)'IGL (q)|°| GLk(q°)|‘<‘
: k™ k

m é m m
qk2+c("—;—"—)2/(m_1)!qk'"(k"‘-1)(q_1)’= qc’e’(%—l)(qc-1)‘51/(m—1)!q(’°2m-’°2)(1—%)—(’° ) (g—1)*

Now counsider that g in case 2. Let g=(z,(gy,...,gm))7™ with zESm. Since min(g)=2"—u*
with wiGF# and k>2, each cycle of z is either an s-cycle or a 1-cycle. Similar to above, if z
has no 1-cycle, or if for any 1-cycle (a) of z, ga EF#, then ¢ would have an eigenvalue in F,
which is a contradiction. Since g has exactly s eigenvalues, as in the case for C4, = has at least

one l-cycle (a) such that the map p:z+—z' has an orbit of length s on the eigenvalues of ga

and g, has exactly s eigenvalues. Hence |anH]Sm%|GLk(q)|m'l(m—l)!, which gives
£

ol

<

mi|GL (1™ GLym(0)] . o
2 <m!q""‘zﬂ(T)z/qkm(km—l)(q_1)’° ¢FG-D(g—1)

N(g< [GL ()] GL,;(qﬂ)| <

m! / "D (m=)- (k™ k) (g 1) HE,

Suppose HeCg. Then H=3Sp( V)F#; or GU( V)IF#; or p odd and H= O,,(q)IF# if n
odd, H= Or?(q)F#, if n even. But Sp(V) and GU(V) contain a transvection, so the first two
cases are out as we assume that H contains no transvection. So H contains the orthogonal
group. We consider both cases together. We will show that ¢, thus n, has to be even. Let (, )
be a nondegenerate symmetric bilinear form on V. Let K=GF(¢%), and A={/\,/\q,...,/\qc_1},
the set of eigenvalues of g. So Vki 211 Va, where Vo is the eigenspace for @. Now for u€ V,,
ve Vg, (w,v)=(ug,v9)=af(u,v). Thus either (u,)=0 or f=a"'. But |a|#2, so atal.
Hence ( , ) is trivial on each V,. As (, ) is nondegenerate, for each a€4, a™ € 4. So |A|=c is
even, say c=2a and n=2m. Then A~'=1?" and A={/\,z\“,...,/\“a-l,/\'l,,\_q,...,/\-qa"l}. If ¢
in case 2, then s=c=2 and {\A"!} are the only eigenvalues of g, which implies that

z* —w'=min(g)=2%—1, contradicting to sfi. So g is in case 1, and ( , ) is trivial on €BA Va,
ac



142
where A={z\,/\q,...,/\qa_l}. Thus the Witt index of V is m; which implies that the only
remaining possibility is H=0§m(q)F#. Since |O;m(q)|$q2m(m_l)(qm—l), we have N(g)<

H C g m -_ m n 2 l 2 __2 n—
l HIG?( )l_(q—l)q2 (m 1)(q _l)qc(g)z/qn(n—l)(q_1)”S(q2_1)/q2n @ c)(q——l) 1

Finally, if H is not one of the subgroups in the list C; through Cg of [As2], by the

bound for |H] in Liebeck’s paper [Li], we have .N'(y)<||fé!l_ (”_1)(n___31) 3(

_1)"‘

(13.6) Suppose |g|=p°® with e>1. Let v be the number of Jordan blocks of g. Then one of the
following holds:

(a) v=n—1iff g is a transvection, in which case Ab(g)=0.

(b) If g has only one block of dimension p®~!41 and all other blocks are of dimensions at
most p°~', then M(g)=0.

(¢) v<n—2 and ¢ has at least one Jordan block of dimension 1, and N (g)<;—, which is at
most % except when 2<¢<9.

(d) v<n—2 and all blocks of g have dimensions at least 2, then N(g)<—5— @ } , which is at
most 313’ except in following cases: (1) ¢=2 and #<14. (2) ¢=3 and 2<10. (3) ¢=4 and 2<8.
(4) 5<¢<9 and n<6. (5) 11<¢<83 and n=3 or 4.

Proof. These follow from (13.1) by direct computation. For example, in case (b),

e—1 e—1
M(9)=N(g" )=0as g’ is a transvection.

(13.7) Suppose g is semisimple, and assume that it is not one of the following cases: (1) ¢=2
and n<12. (2) ¢=3 and n<8. (3) ¢=4, 5 and n<6. (4) 7<¢<9 and n<4. (5) 11<¢<19 and

n<3. (6) 23<¢<83 and n=2. Then we have that either

(a) .N'(g)< ,, and .N’(g)<85, or

(b) N(9)< 5.

Proof. If min(g) has at least two irreducible factors in F[z], then by (13.4) N(g)< ,,1__“

IA
'ﬁ|g|"‘
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where p is the smallest dimension of homogeneous subspaces of g and thus #S%- Also if it is

not one of those cases listed above, it is easy to check that l,_,s 813 So (a) holds in this case.
q2
Now suppose min(g) is irreducible in F[x]. Then the conclusion follows from (13.5) by direct

calculation. We record several examples here; for the rest the calculations are very similar. If

H~GLa(¢")NG with r a prime dividing n, then N(g)< (ng—1) = if ¢
. (ﬂ---l)("—F) n"r
(¢—1)
(n,q—l)('":‘_'fl)
n
I

n_ Dy n-3
c-D(n-F n(q_1)2

if rlc, where m=%. Since n———-1> —1>1 if n>4, and

>1, we have that in the first case (n—-—l)(n——)>n if n>4. Also clearly n#2, 3,

because if it were, then r=n=c contradicting to rfc. So in the first case, (a) holds. In the

second case, we consider ¢>3 first. Thus ('"+'—1)§2m+"15(q—1)"'+r'1. Since

r—1
2n—F—m—r+1>n—r+1>1, we have that for ¢>3, N(g)sm. If n>8, then
q 3 F)—n
(n———l)(n——ﬂ)——n>(!-——3)g % i.e.,, (a) holds. For n=7, c¢=r=7, and thus

(n—3—-1)(n—P)—n= 232%‘, i.e., (a) holds. If n=6, then (r,c)=(2,2), (2,6), (3,3) or (3,6); and
we have that ("‘:’_'1"1)=4, 2, 6, or 3; and 2n—}=9, 9, 10 or 10 respectively. Since
(n—%—1)(n—})—n>0 and (n,g—1)<6, for ¢>7 we have that .N'(g)<36<21 , i.e., (b) holds. If
n=>5, then c¢=r=>5, and thus (n—%-1)(n—})—n= 7>2, i.e., (a) holds. If n=4, then
(r,e0)=(2,2) or (2,4); and we have that (’"*’"1) 3 or 2 respectively; and 2n—7}=6. Since

(n—2—1)(n—2)—n=—2 or 0 respectively and (n,g—1)<4, for ¢>11 we have that

(g)_(qlqu)e_z—q—_gl—):;gél—s, i.e.,, (b) holds. If n=3, then c¢=r=3, and thus
(n—2—1)(n—P})—n=-1, :’_"1'1) 3, 2n—R=5. SoN(g)<( 1)5_(q ll)a_é—squ>23 i.e.,

(b) holds. If =2, then ¢=r=2, and N(g)< = 4 l)<%<815 if ¢>89, i.e., (a) holds. Now
consider the case ¢=2. So (n,g—1)=1. Since (n—%—1)(n—3})—n—m— r+1>(§~—6)n>" if
n>14, and if n=13, then r=c¢=13, and (n—%—l)(n—?)—n—m—r-i—1=106_>_’§', we have that
in this case (a) holds. For H in (13.5)(b), i.e., H~GL(V,)*GL(V,)NG, where V,, V, are |, m

dimensional vector spaces over F respectively and n=Im, l#m, I#1, m#1l, V=V,®V,, we
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2 2 1 1on .
have that N(g)s{(n,q—l)/q(l —A(m =1)(=e)=1~( “)(q—l) +‘}+

2 .2 N
{(ng—1) /g 7DD ymeml The condition n=lm, I#Em, I#1, ml

[

2

implies that n>6 and Im<Z-, 12+m25(%+sl))n2, mzs%. Hence (12—2)(m2—1)(1—%)—1—

+1 if n>11, in which case N(g)< ,,2 Slﬂ, ie., (a)
q7+1 q2

holds. Clearly 2#7 and n#9. If n=6, then I=2 and m=3 and the formular reduces to

(n+I)Z%(n2—2m2—12)—n—123]6n2——%n2g
1
N(9)<(6,¢—1)a/(g—1)°+(6,¢—1)/¢*(4—1)°<6/(¢—1)" +6/(q—1)°+6/(¢—1)°, which is less
than or equal to # if ¢>7. If n=8, then I=2 and m=4 and the formular reduces to
N(9)<(8,¢—1)/¢*(¢—1)"°+(8,¢4—1)/®(¢—1)}2<1/¢* if ¢>4, i.e., (a) holds. If n=10, then
=2 and m=>5, and the formular reduces to
N(g)g(lo,q-1)/q12(q—1)12+(10,q—1)/q377(q—1)155 1/¢° if ¢>3, ie., (a) holds. For H in
(13.5)(d), we have that n=km, m>1, and
.N'(g)S(n,q—1)/(m—1)!q(kzm"‘z)(l‘cl':)’("m*"‘)(q—l)km'”‘ if g is in case 1. Since
(B =) (A~D)— (k" + B 2L ;™ + B (" —k—2) 2L (K™ +8) unless k=2=m. So N(g)glg, ie.,
(a) holds. If k=2=m, then n=4 and N(g)54/(q—1)6, which is less than or equal t(ia 21—8 if

¢>11.

Section 14. The cases: 2< ¢<9.

In this section, we keep the hypotheses and the notations in Section 13. The result of

this section is:
Proposition. If G is a group of genus zero, then one of the following holds:

(a) q=2 and n<20.

(b) =3 and n<9.

(c) 4<q<9 and n<5.

(d) 11<q<83 and n<4.
Proof. This follows from the proposition in Section 13 and (14.4), (14.9), (14.13), (14.17),

(14.21), (14.25), and (14.29).
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In the following, in view of the proposition stated in the beginning of Section 13, we

distinguish the cases ¢=2, 3,..., up to ¢=9.

Case 1: ¢=2.

Unless explicitly specified, we assume that n>16 in the following.
(14.1) N( g)gs%, unless g¢ is listed in the following table. Column 3 and 4 list upper bounds for

N'(9), U(g) respectively.

type |9l N(g) U(g)
21172 2 0 1/2
22174 2 1/4 5/8
3'in-3 4 0 1/4
23176 2 1/8 9/16
3igt1n-5 4 0 1/4
4114 4 1/8 3/8
241n-8 2 1/16 17/32
3tg?1n-7 4 0 1/4
32178 4 1/16 11/32
41211m-¢ 4 1/16 11/32
511n-38 8 0 1/8
251710 2 1/32 33/64
3123179 4 0 1/4
3221178 4 1/32 21/64
419218 4 1/32 21/64
413117 4 1/32 19/64

51211n—7 8 0 1/8
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6'1m—¢ 8 1/32 3/16
261n-12 2 1/64 65/128
3ig4n-1 4 1/64 1/4
32221710 4 1/64 41/128
33179 4 1/64 37/128
413121179 4 1/64 37/128
4218 4 1/64 35/128
51921n-9 8 0 1/8
5l3lin-8 8 0 1/8
6'2!'17-8 8 1/64 23/128
717 8 1/64 5/32

Proof. The conclusion follows from (13.6) and (13.7) plus some direct calculation. For example,
if g is of type 3'2'1™~°, then ¢ is a transvection. So N(g)=N(¢?)=0, and thus U(g)=1/4. If
g is of type 32177 then ¢* is of type 221""%. So ‘11(9):}1{1+¢(2).N'(g2)+¢(4).N'(g)}_<_
l14l49.1y 11
11++2 =5

(14.2) We have the following bounds for AU(g):

|9l U(g) lgl U(g)

3 43/128 5 13/64

6 81/384 7 131/896
9 11/96 10 41/320
11 133/1408 12 49/384
13 67/832 14 83/896
15 9/128 17 1/16

18 7/96 19 137/2432

20 5/64 21 23/448
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Proof. These bounds follow from direct calculations. For example, suppose that |g|=12. Then
U(g)=15{1+N(s°) +2N(¢°) +2N(g*) +2N(5*) +4N(g)}. Since |¢°|=2, N(g®)<. 1f ¢° is mot
of type 3'1"3, then N(ga)s%. Thus .N'(g6)+2.N'(g3)$%. If ¢° is of type 3'1"~3, then ¢° is of
type 2'1"2 and N(¢®)<l, N(¢®)=0. Thus we still have .N'(g6)+2.N'(g3)§%. Also

N(SN(P)SN(")< 5 Hence W()<Tp{1+5+(2+2+4) 55} =55

(14.3) |S|=
Proof. Let g€S. If |g|=2, then °u(g)5§(1+}i) =2, If |¢|>3, then ‘U.(g)<l A9 % 1=T.

As maz{ }< by (2.4)(a), |5 <5.

Suppose |S]=5. Let a be the number of ¢’s in S such that g is of type 221"~*. For

g€S is mot of type 221"7%, then U(g)<}+ % if 19125 (o)< if lgl=4; cu(g)<129 if
lg|=3; %(g)sl—ﬁ if |g|=2. Since maz{%, %, 199° 16}—16’ |S]— 2<ZS%(g) implies that

3<ga+l%(5—a). So a>3, i.e., there are at least 4 elements in S are of type 22174, As

G=(91, 9, 93, 94), and for g of type 221"~*  dim[V,g]=2, (3.2)(a) supplies a contradiction.

Now assume that |S|=4. Let a be the number of involutions in S. Then a<3. If
|g|>8, then ‘U(g)_<_%+%=g. Checking the tables in (14.1) and (14.2), as maz{f%%, %’ (1i_§1’ 3_8_8-11’
131

m}:g, we have that if g€S is not an involution, then %(g)gg. Thus |S]—-2<Y U(g)
ges
implies that 2<ga+g(4-—a); which gives a>2. Then a=3 and thus (3.2)(a) supplies a

contradiction. Therefore |S|=

In the following, we assume that |g,|=k, |g,|=1, |g3|=m with k<I<m.

(14.4) One of the following holds:
(a) Sis of type (2,4,5) and n<16.

(b) S is of type (2,4,6) and n<20.
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(c) Sis of type (2,4,8) and n<16.

(d) S is of type (2,3,8) and n<18.
Proof. Since .A‘o(g)S% Vg€ G, (2.6)(b) gives that k<8. By the table in (14.2), we have that for

For |g|>12, U(9)< Lyl

s<lol<11, W(<maz(l3, 8L, 181, L 4, A 18 H+i=%

133y 7
64’ 384’ 896’ 32’ 96’ 320’ 1408}—32'

Hence if k>5, we have Y U(g)<1, which is a contradiction. So k=2, 3, or 4.
geS

Suppose k=4. For |g|=4, g® is of type 221"* iff g is of type 419°17 or 322"1[5, in

either cases, the number of blocks Vzg—l. Hence there are at most 2 ¢’s in S such that their

squares are both of type 221"~%. Suppose g1, 9o are such that gf, g% are both of type 221"~%,
Let v; be the number of blocks of g, Then Vlzg-—l, 2% 1. So
n—ul—IZVz-—lzg—226, and thus ‘U.(gl)_g%(l+%+2%)=%. Similarly ‘U.(g2)<128 If

lg/=4 and ¢° is not of type 221"~ %, then g is of type 4°3°2°1¢, where (4,6)#(0,2) and (1,0). If
(,6)=(0,1), then U(g)<i by the table in (14.1). If a=0 and 523, then

We)<ia+i+ él—,.,)=3—8 If a=1 and 521, then U(e)<i(+i+2% 5)_— If a>2, then

CU,(g)<4(1-+-16+2l5) 358 So in any case we have that ‘U.(g3)<19 5 If 5<|¢|<15, then by

<16’
the table in (14.2), we have that tl.l.(g)sma:",{(li—i, 38T14’ %—3715, :—;%, sl)—(l). 311— 143038’ 348%1’ 86372’ 88936’

128}—32 1—6 If |g|>16, then cl.l.(g)<16+1 % So we always have cl.l(g3)51—6, which implies
S U(g;)<2- 14218 156=66‘—i’ a contradiction. So we assume that only g, is such that g7 of type

22174, Then ‘U.(gl)< which implies that E‘ll.(g,)<3+2 156_1’ a contradiction again. So no
g; is such that ¢? is of type 221"~%. Then Z%(gi)53-13<1, a contradiction. Therefore k=2

or 3.

Suppose k=3. If there is g€ is such that |g|=4, then as at least on eigenspace of g, in

the splitting field of min(g,) has dimension greater than or equal to %, by (3.2), the number v of
1 3

blocks of g is at most 2311. Thus n—v—1>5 and 'il.(g)< (1+ +2 )——- For g with |g|>5,
as before we have "U.(g)g—. For g with |¢g|=3, ‘U.(g)<128 As we can have at most 2 elements

21 =1, a contradiction. So k=2.

in S of order 3, E‘U.(g,)<2 128 +57
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If |g| odd, then %(g)(lgl 1 If |gl=2s with (2,5)=1, then
2¢
U =N EHDN ISy ,(1+4)+%§ ‘%W;—s. It fol=4s with

A

2
lsl

LU+N(@*)+2N(@)+4AN(")+ Y #(DN(g)}<
ll d||g|,d#1,2,4,8

RA=1, then UG+ N)FING)+EHON G sha+ireh+ldt Lo

1.1
«=+=5. If 8ljg|, then U(g)=
g 28 Hal (9)

DI

%l(l+l+2-l+4-i)+|‘ql—_8-—1—513-—1—+l, as if d is divisible by some odd number, then

ls| ls|

N(g? )5—1—; other d=2° for some e>4, then gT has at least one block of size greater than or
28

ls]
equal to 9; if it is size 9, then N(g?)=0 by (13.6)(b); if it is of size at least 10, then

Lp Ll particular, if |g|>9, then

" 2%
425 is impli 9,131 . 1,y,2 1,1 47
3304+ This implies 1<3°U(g;) <3+ (19’2|+193|)+28' Thus ™ |93|>208

8
So |g,|<8. We consider the case 5<|g,|<8 first. Suppose g; is of type 221*~%. If |g,|=8, then

.N'(gd)_<_-1—<-l-8. So in any case, we have U(g)<

X
O

X}
°°|§

£
&
IA

|»--

o;._.
+

N2l=
Il

’—’Sdim{CV(gz)}gn—dim{CV(gl)}=2 implies that n=16 and g, is of type 82. Then
2067 _ 425 5 2067 425

°U(g2)<8(1+ 7+2 211+4 213) 914 <2304° Thus 3 U(g;)<g+ 914 +a304<L 2
contradiction. It is impossible that |g,|=5 or 7, as dim{Cy(g;)}=n—2 and g, has an
eigenspace of dimension at least 3. Suppose |g,|=6. If g5 is of type 221"* or 231", then
dim{Cy(9,)NCy(g3)}=n—4, n—5 respectively, which contradicts to g5 has an eigenspace of
dimension at least 6. So g3 is not of type 221** or 2217~¢, and thus N(gg)g%, which implies
that U(g )<l(1+l+2 Lo —L) 23 Then E"‘U(g.)<§+ 23 <1, a contradiction. So g¢

2/= 16T “ 987 “98/7128 /=87 4128 !

is not of type 221"*, thus U(g,)< %, and also U(g,) and "U,(g3)<maz{éi, 388_14’ é—%%, é—i,
425 v __ 81

W}=384’ which implies that Z‘il(gi)gm+2-?§?14<l, a contradiction. So /=3 or 4.

Suppose |gy|=4. Let v; be the number of blocks of g;, 1<i<2. Since n—v,>v,>2>4,

4
‘U,(gl)S%(l +2l4)=:-13—%. Also  as n—uzzylzgz& .N'(g2)§21—7; which  gives
%(92)5%(1+%+22—7)=2%16. For |g3|>11, U(g3)< §3 11—1+2%=2%. So for |g3|=7, 9, 10 or
1 . N
lg5]>11, ‘11(93)5maz{83—(1;, l—%, 3%), 242_176}=2121%’ which implies that
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(g < —; % 2—7=~%<1 a contradiction. So }g3|=35, 6, or 8.

Suppose S is of type (2,4,6) and n>1T7. As before, n—v,;>v,>5 implies

‘U(gl)<2(1+ 5)----33 Since g5 has an eigenspace of dimension d>4, by (3.2), we have that «,

64°
the number of blocks of ¢ is such that m—a>d>4, which implies that N (93)52l As
n—vy20,29, N(9)<gs  So W(e)<j(+5+2)=13L  Thus TU()<P+537+53=
505

519 <1, a contradiction.

Suppose S is of type (2,4,6) and n>21. As before, n—v;>v,>6 implies
%(g1)<2(1+ 6)—128 Let a, B be the number of blocks of ¢gZ, g3 respectively. Since g3? has
an eigenspace of dimension d>7, by (3.2), nZdim{CV(gg)ﬂCV(gg)}+d2a+ﬂ—n+d. So
(n—a)+(n—pB)>d. For any t such that t=(n—a)+(n—pB)>d, it is easy to check that
1 (a2 1 1 1,11 1,1.1_13
—.N'(g2)+ N(93)< 6 t= 2—16+6 2"‘2<16+6 25 199 As n—v,2v, 211,

N(9:)S5t- So W(gr)+ %(93)=(;+g>+2N(gz>+{§N<g2)+lN(y§)}+%{2N(g§)+w(gs)}s
5 3 2995 2995 _611
12+211+T2+%'%=6—17f4' Hence Y U(g;) <16258+6144 6142<1 a contradiction.

Suppose S is of type (2,4,8) and =2>17. As before, n—v>v,>5 implies
%(g1)55(1+%)=g—2. Let @, B be the number of blocks of g2, g3 respectively. By (3.2), we

have that n—a>dim{Cy(g5)}23 and n—f2dim{Cy(s,)}25. Thus N(¢f)<p5 and

.N'(gg)sls. Also as n—v,2>v,>9, and n—v3>v,>9, we have N(g,)< 2 and N(ga)S%.
Thus “U.(gz)< (1 +§1§+~22§):%%-g and cU.(ga)<1(1-|- -}-225 29):1—1(-]622. Then
Z:‘U.(g,)ggz 145-}-11—62-%: -19—8214<1 a contradiction.

Suppose |go]=3. As g, has an eigenspace of dimension d>6, q.l.(gl)< (1+26)—128

For |gal=7, 9, 10 or |gg|>11, as before °U.(g3)5—417- which implies that

E(u(g')<128+738 28_76= g?g’<l, a contradiction. So |g5]|=8.

Suppose S is of type (2,3,8) and #>19. Since g, has an eigenspace of dimension d>7,

%(gl)gé(l-\‘-%):%. Let o be the number of blocks of g3. By (3.2), we have that

n—a>d>"7. Thus N(Q?{)Sél_f' Also as n—wv3>v,>10, we have N(g3)< Lo So
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4y\_ 325 129 , 43 | 325 _2045
"U.(gs)<8(1+ +27+—--)._-———-. Then E‘U.(g,-)s-z—ﬁ+m+—6——8 5048 <L a contradiction.

(14.5) If ¢=2 and n>21, then G is not a group of genus zero.

Proof. This follows from (14.4) clearly.

Case 2: ¢=3.

Unless explicitly specified, we assume that n>10 in the following.
(14.6) N (9)5315’ unless ¢ is listed in the following table. Column 3 and 4 list upper bounds for

N(g), U(g) respectively.

type lgl N(g) U(g)
21172 3 0 1/3
22174 3 1/9 11/27
3173 3 1/9 11/27
231n-¢ 3 1/27 29/81
3i211n-5 3 1/27 29/81
4114 9 0 1/9
241n-8 3 1/81 83/243
3122177 3 1/81 83/243
3%1n-® 3 1/81 83/243
4121176 9 0 1/9
51175 9 1/81 35/243
25 3 1/81 83/243

Proof. These follow from (13.6) and (13.7) directly.

(14.7) We have the following bounds for U(g).

gl U(9) gl U(g)
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2 122/243 4 41/162

5 247/1215 6 50,/243
7 83/567 8 125/972
9 35/243 10 14/135
11 23/243 12 17/162
13 85/1053 14 128/1701
15 103/1215 16 43/648
17 259/4131 18 26/243
19 29/513 20 131/2430
21 5/81 22 4/81

Proof. For example, suppose |g|=9. Then l11.(9):%{1+2.N'(gr3)-{—6)‘('(5])}. First ¢® cannot be of

1"—4

type 311773, Also ¢3 is of type 22 iff g has one block of dimension 5 and the rest of the

blocks are all of dimension less than or equal to 3, in which case, 2N (¢%)+6N (g)5%+§63=-28—7.
If ¢ is not of type 221"~%, then 2N(¢)+6N(g)< 21+56—3=§87. Hence we always have

W <Fa+8)=22

(14.8) |S|=
Proof. Since for |g|>3, we have U(g)< % %:%; for |g|=2, Cl.l(g)<23§, and ma:c{%, %}<%, by
(2.4)(b), |SI<4. If |S|=4, then at least one ¢€S is not an involution.  So

) cu-(g)<3 122 % <2=|5]—2, a contradiction. Hence |S]=3.
geS

In the following, we assume that |g,|=k, |g,|=1, |g95]|=m with k<I<m.

(14.9) If ¢=3 and n>10, then G is not a group of genus zero.
Proof. Suppose k>4. As .N'(g)sl, we have q'l'(g)sil'-)'i—ﬁl):zll_g Vg€S with |g|>5. Also for |g|=4,

°U.(g)<162<% Thusz ‘U.(g)<31 <1=|S5]—2, a contradiction. So k=2, or 3.
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247

Suppose k=3. Since for |g|>6,U(g9)< % % if |g|>4, then "U.(g)<maz{162, 515’

+1l=
9™
1%}:% Thus if >4, then 2‘1].(g,)< 7+2 —%:2-15 <1, a contradiction. So I=3 and m>4.

Suppose |g,|=|gy|=3. Let v; be the number of blocks of g;. As n—v;>v;>4, where
{15} ={1,2}, .N'(g,-)sl4 for i=1,2. So %(gi)s%’(l+3—%)—28‘133 for =1 and 2. Then

2%(95)32'% +1% 3gg<l a contradiction. So k=2.

Suppose |¢;|=2 and |g,|>4. For |g|>8, ‘ll.(g)<1 g—% Hence for |g|>5,
‘U.(g)Smaz{I%%, 25703, 5%, %—;}:1—2 Since among ¢,, g3, there are at most one of them is
order 4, we have Y U(y;) 5—22+—4———+%z<1, a contradiction. So |g,|=3.

Suppose |g;|=2 and |g,|=3. Since g, has an eigenspace of dimension d2%25,

n—v,>5, where v, is the number of blocks of g,. Thus J‘f(grz)_<_3 and cll(g2)<3(1+34)—243

If |g3/>23, then %(g3)<23 +1=32  por 7<|¢9,|<22, from the table in (14.7), we have

9=207
123 85 14 23 1T 85 12 103 43 259 26 20 A3l 5
Womar{y 573 35 135 345 160 1053 170 1215 64w 4131 243 513 2430 8T
A1=83 <32 Thus Tu(g,)< 122+83 +.32 <1, a contradiction.

Case 3: ¢=A4.

Unless explicitly specified, we assume that n>8 in the following.
(14.10) N (g)58l5, unless ¢ is listed in the following table. Column 3 and 4 list upper bounds for

N(g), U(g) respectively.

type |9l N(9) U(g)
2!1"-2 2 0 1/2
221m~4 2 1/16 17/32
3tn-3 4 0 1/4
23176 2 1/64 65/128
3ial1n-s 4 0 1/4

411 4 1/64 35/128
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24 2 1/64 65/128

(14.11) We have the following bounds for U(g).

|gl U(g) |9l U(g)

3 43/128 5 13/64

6 23/128 7 131/896
8 275/2048 9 11/96

10 7/64 11 133/1408
12 3/32 13 67/832
14 71/896 15 9/128

Proof. For example, suppose |g|=8. Then °U.(g)=%{1+N’(g4)+2N(g2)+4N(g)}. If ¢ is of type
51493%2°1¢, then as ¢* is a transvection, N(g)=N(g>)=N(¢*)=0. So cl.l.(g):l. If g is of type

574°3%2°19 with z>2, then .N‘(g4)<16, N(gz)_45, .N'(g)__47. So U(9)<s55%5 A36L  yf g is of type

32768
675°4°... with z>1, then .N'(g4)<16, N(yz)_44, N(g)_45. So ‘i.l.(g)<2207458. If g is of type
776°5%... with z>1, then .N'(g4)<64, .N'(gz)_45, .N'(g)_46. So "U,(g)<é(1)33 If g is of type

8°7°6%... with z>1, then N(g*)<L 27 .N'(gz)_46, .N'(_q)_47. So U(g)<alld  ~ As maz{%,

32768
4361 275 1043 4115,_ 275 275
39768’ 2048’ 8192’ 32768 —32048’ "¢ always have U(g) <557

(14.12) |8|=

Proof. By (2.4)(b), as .N'(g)< g V9I€C, |S|<4. Suppose [S|=4. As S has at most 3 involutions,
and for |g|>3, ci.l.(g)< +16 4—3, so E"’U.(g,)<3 4—9 gi 2=|8|—2, a contradiction. So
|S|=

In the following, we assume that |g,|=k, |go| =1 |g95|=m with k<I<m.

(14.13) If g=4 and n>8, then G is not a group of genus zero.
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Proof. Suppose £>3. For |g|=4, ‘\.l.(g)<13258 As .N'(g)<16, we have U(g)<z +116 % %53

VgeS$S with |g|>5. Since there are at most 2 elements in S which are of order 3,

Y U(g)<2- 4738 %:—é<l=|$’|—2, a contradiction. So k=2.
ges

Suppose k=2. Since for |¢|>6, °U.(g)<6+16 ‘118’ if |g|>5, then ‘ll.(g)<ma:r:{64,

a—é}:% Thus if I>5, then Y U(g;)< 2+2 ‘llé 32<1 a contradiction. So I=3 or 4.

ey

Suppose |g,]=4. Since for |g|28,%(g)5%+%=1%, if |g|>5, then ‘U.(g)Smaz{éi, 12238’

836’ 16}_ Let v; be the number of blocks of g;. If g; is of type 221"~*, then vy +v,<n,

lgo)=4 and n>8 implies n=8 and g, is of type 4% So in this case

q‘j'(gl)+¢u(g2)5'12'(1+'1_6)+%(1+4_15+'2_5)=21——ggg’ which implies Y AU(g; —Ggg -1-% %gigﬂ a

contradiction. So ¢; is not of type 221"7%, then ct.l.(_qu)<2(1-{-—1§)=6—58, which implies

<1, a contradiction again. So |g,|=3.

OSIOS
N4

65 35 13
L) <To5 o564 =
Suppose |g;|=2 and |g,}=3. For |g3|>11, U(g3)< ll —16 12776 Hence for |g5|>7,

131 275 11 7 =
%(ys)smar{sgﬁa 2048’ 96’ 64’ 176} 176

n—v,>3, where v, is the number of blocks of g,. Thus .N'(grl)<— and cU.(gl)<2(1 —13) lﬁ%

Since g, has an eigenspace of dimension d>3,

Then 3U(y;) <16258 I4§§ +-2—76 gg; <1, a contradiction.

Case 4: ¢=5.

Unless explicitly specified, we assume that #>6 in the following.
(14.14) N (9)5-8—15, unless g is listed in the following table. Column 3 and 4 list upper bounds for

N(g), U(g) respectively.

type |l N(g) U(g)
221n-4 5 1/25 29/125
311n-3 5 1/25 29/125

23 5 1/25 29/125
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(14.15) We have the following bounds for U(g).

|gl U(g) lgl U(g)

2 63/125 3 127/375
4 32/125 6 13/75

7 131/875 8 33/250
9 133/1125 10 3/25

Proof. For example, suppose |g|=10. Then ‘U.(g):-llT){l+N(g5)+4.N'(g2)+4.N'(g)}. Since

.N'(g5)_ 55 .N'(g2)5512, .N'(_q)< 5, We have ‘ﬂ(g)s%

(14.16) |S]=

Proof. By (2.4)(b), as .N'(g)< VgEG |S}]<4. Suppose |S|=4. As S has at most 3 involutions,

and for |g|>3, °u(g)5-13 5= 75, so Y U(g;)<3- 16235_'_3? g%<2_|5| —2, a contradiction. So

|51=

(14.17) If ¢g=5 and n>6, then G is not a group of genus zero.

Proof. Suppose k>3. As .N'(g)<25, we have cU.(g)< +25 100 Vg€S with |g|>4. Also there

127 . 29 _1451 _,
are at most 2 elements in S which are of order 3. Hence E U(g)<2- 375 t100=1 o <1=

geS
|S|—2, a contradiction. So k=2.

Since  for  |g|>5,U(9)< % :‘ll?)=25’

2
Z%(g;)s%+2'§%=i—2—g<l, a contradiction. So I=3 or 4.

Suppose |g;|=4. Then |g3|>5. Hence Y U(yg;) 73 -32—5 =1, a contradiction.

gl@

Suppose |g,|=3. For |g5|>9, U(9)< ?15 2% 37 Hence for |g3|>7, ‘ll(g)<max{%
-35—30 %}:—3% Thus we have Y U(g;)< —~23— ﬁ 53——:@% a contradiction.

Case 5: ¢=T1.
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Unless explicitly specified, we assume that n>6 in the following.

14.18) N(g < , unless g is listed in the following table. Column 3 and 4 list upper bounds for
=85

N(g), U(g) respectively.

type |9l N(g) U(g)

22174 7 1/49 55/343
3173 7 1/49 55/343
23 7 1/49 55/343

(14.19) We have the following bounds for AU(g).

lgl U(g) |9l U(9)

2 257/512 3 43/128

4 259/1024 5 13/64

6 87/512 8 263/2048

Proof. For example, suppose |g|=6. Then q.l(g)z(l-i{l+.N'(g3)+2N'(g2)+3.N'(g)}. Since

N(ga)_28’ N(gz)_28a N(g)< gy We have Qj,(g)<512

(14.20) |S]=
Proof. By (2.4)(b), as .N'(g)sal—VgG G, |S|<4. Suppose |S|=4. As S has at most 3 involutions,
and for |g|>3, U(g)< % l:% so > U(g;)<3- gi’; 1‘327<2=[S|—2, a contradiction. So
|5]=

(14.21) If ¢=7 and n>6, then G is not a group of genus zero.

Proof. Suppose k>3. As .N‘(g)<49, we have %(g)<4+49 15;)?;; Vg€eS with |g|>4. Also there
are at most 2 elements in S which are of order 3. Hence E U(g)<2- 1‘%238+15936<1=|S|—2, a
ges

contradiction. So k=2.

Suppose  k=2. Since  for  |g|>5, ‘-U.(g)< + - 49 25‘;15, if I>5, then
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> U(g;)< g?g+2 25445<1 a contradiction. So /=3 or 4.

Suppose |g,|=4. Then |g5|>5. Hence Z‘U(g,)sg?'T 2—271+25f45 <1, a contradiction.

Suppose |g5=3. For |g5]28, U(g)<§+7==L. Hence for |g5]>7, U(g)<maz{,

??T}z 35453 Thus we have E%(g,)sg‘;’;+14238+ %(1, a contradiction.
Case 6: ¢=8.

Unless explicitly specified, we assume that n>6 in the following.
(14.22) N (g)<85, unless g is listed in the following table. Column 3 and 4 list upper bounds for

N(g), U(g) respectively.

type |9l N(g) U(9)
22174 2 1/64 65/128
3iyn-3 4 0 1/4

23 2 1/64 65/128

(14.23) We have the following bounds for U(g).

|l U(9) |9l U(g)
3 43/128 4 261/1024
5 13/64 6 11/64
7 131/896 8 1045/8192

Proof. For example, suppose |g|=8. Then cu.(g):%{l-i-.N'(g‘*)+2J‘{'(g12)-{-4.N'(g)}. Since
N <gp N()<gs N(9)<, we have U(9)<glg5.
(14.24) |S]=3.

Proof. By (2.4)(b), as .N'(g)< 7 VIEG, |S]<4. Suppose |S|=4. As S has at most 3 involutions,

and for |g|>3, %(g)5%+6—4=-1§9—2, so Y U(g;)<3- 16258+1%72<2:|S|—2, a contradiction. So
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|S1=

(14.25) If ¢g=8 and n>6, then G is not a group of genus zero.

Proof. Suppose k>3. As .N'(g)<64, we have ‘ll.(g)< +64 64 VgeS with |g|>4. Also there
43

are at most 2 elements in S which are of order 3. Hence Z U(g)<2- 198 64<1---|S| 2, a
geSs
contradiction. So k=2.
Suppose  k=2. Since for  |g|>5,U(9)<z +64=§% if I>5, then
E"ll(g,)<128+2 36290<1 a contradiction. So I=3 or 4.
65 , 261 , 69

Suppose |g;|=4. Then |g5|>5. Hence zu(g,.)gm+1024+m<1, a contradiction.

Suppose |g,|=3. For |g3|>8, ‘U(g)sl+—l—=£- Hence for [g5|>7, ‘U(y)smar{%%,

64764
62-} 13—(15 Thus we have E"U.(g,)<1%5g —23— %<1, a contradiction.
Case T: ¢=9.

Unless explicitly specified, we assume that >6 in the following.
(14.26) N (g)gé, unless g is listed in the following table. Column 3 and 4 list upper bounds for

N(g), U(g) respectively.

type |9l N(9) U(g)

22174 3 1/81 83/243
3tn-3 3 1/81 83/243
23 3 1/81 83/243

(14.27) We have the following bounds for U(g).
|9l U(9) lgl U(g)
2 257/512 4 259/1024

5 13/64 7 131/896
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Proof. For example, suppose |g|=4. Then ‘\J.(g):%{1+.N’(g2)+2.N'(g)}. Since .N'(gz)_zs,
.N'(g)g 5y We have QL(g)<12052%
(14.28) |S|=3.
Proof. By (2.4)(b), as N(g)< 1V9€G, |S]<4. Suppose |S|=4. As S has at most 3 involutions,

and for |g|>3, U(g)<l +81 81’ so Y U(g;)<3- g?g §?<2=|S|—2, a contradiction. So
|5]=3.

(14.29) If ¢=9 and n>6, then G is not a group of genus zero.

Proof. Suppose k>3. As N(g)<81, we have ‘U.(y)<4+ Vg€S with |g|>4. Also there

81 324
are at most 2 elements in S which are of order 3. Hence ) U(g)<2- 28433+382i<1=|5|—
geS

contradiction. So k=2.
Suppose  k=2. Since for  |g|>5,U(9)< % 81—:%5-, if I>5, then

> U(g;)< 12+2 48065<1 a contradiction. So =3 or 4.

Suppose |gy|=4. Then |g3]>5. Hence Z%(g,)(%?g —0-5-94—*- 48065<1 a contradiction.
Suppose  |g,|=3. For |g3|27, '11(93)3%4-%:%87. Thus we have

2 U(g;) <§?; +28433 + 58687 <1, a contradiction.
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