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ABSTRACT 

Two-dimensional models of quantum gravity have been solved using matrix 

model techniques. Furthermore, these solutions have turned out to be encoded in 

integrable nonlinear PDEs belonging to the KdV hierarchy. This thesis presents a 

new KdV recursion relation, distinct from one found previously by Dijkgraaf and 

Witten, for a certain class of theories known as the two-matrix models. The two 

recursion relations together are used to relate arbitrary correlation functions con

taining a puncture operator P (at any genus) to the three basic correlators (PP), 

(PQ), and (QQ) by unique algebraic expressions. (Q is the dilaton operator.) The 

derivation requires assuming a certain scaling law, whose justification is discussed. 

Other KdV recursion relations, given by Virasoro or W-algebra constraints, are 

possible for multi-matrix models when an infinite number of couplings are added. 

These constraints have been presented for An-type models by Fukuma et al. and 

Dijkgraaf et ai. We derive analogous Virasoro constraints for the multi-matrix mod

els associated with the other simply-laced Lie algebras D2n+l' E6, E7, and Eg. As a 

check, it is verified that the proposed constraints imply operator scaling dimensions 

identical to those found by Kostov. It is then demonstrated that these Virasoro con

straints (or, more generally, W -algebra constraints) can be used to derive expressions 

for correlation functions containing a non-primary operator in terms of correlation 

functions that only contain primary operators. 

The second subject of this thesis concerns the underlying symmetries of string 

theory as probed by fixed-angle scattering at very high energy. The asymptotic 

behavior depends sensitively on the choice of the string vacuum. Therefore, we 

examine the effect of modifying the vacuum on the behavior of high-energy scattering 

amplitudes. In particular, high-energy fixed-angle elastic scattering of open-string 

tachyons is studied explicitly. Tadpole corrections to the tree-level formulas are 

included. The main conclusion of the analysis is that symmetry relations among 
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amplitudes at high energy seem to be unaffected by modifications of the vacuum, 

even though the amplitudes themselves do change. 
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1. Introduction 

Presently, there are four fundamental and outstanding problems in elementary 

particle physics. Two of the problems are related to phenomenology and two of the 

problems are related to deeper understanding of quantum field theory. First, there 

is an urgent need to find the Higgs particle. Second, there is an equally urgent 

need to find a supersyrrunetry particle. Third, there is the longstanding problem 

of understanding strong QCD, and in particular, the demonstration of confinement. 

Fourth, there is the problem of understanding quantum gravity. 

String theories directly address the last two problems (and, less directly, the first 

two, as well). Superstring theories are the only consistent theories of quantum gravity 

known. Indeed, the framework of superstring theories is such that the unification 

of the strong force, the weak force, the electromagnetic force, and gravity can come 

about naturally. Also, a string theory in four dimensions may be the appropriate 

description of strong QCD. 

The Es xEs heterotic string theory with six dimensions compactified on a Calabi

Yau manifold has been very successful in giving nearly realistic phenomenology. The 

excitement over string theory in recent years has been that, for the first time, we have 

candidates for consistent quantum theories, with finite renormalizations of physical 

quantities, which can incorporate all known forces. In other words, we have found 

possible candidates for the "theory of everything." 

The attempts to find realistic phenomenology for superstrings have stimulated 

the growth of investigations into conformal field theories and their classification. 

The consistency condition for strings to propagate in a particular background is the 

same as the condition of conformal invariance of the corresponding 2-D quantum 

field theory on a 2-D string world sheet, so that the classification of conformal field 

theories has enabled one to find many candidates for the classical string vacuum. 
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The distant goal is to find a non-perturbative mechanism in a superstring the

ory which will choose the unique vacuum out of the many candidates. One knows 

that non-perturbative effects must be important in superstring theories, since super

symmetry can not be broken perturbatively, and yet one knows that, in our world, 

supersymmetry is broken. Recently, c < 1 non-critical strings have been solved ex

actly via matrix model techniques, and non-perturbative effects examined. The hope 

is that the understanding of non-perturbative effects in non-critical strings will shed 

some light on non-perturbative effects in critical strings. Also, c < 1 non-critical 

strings can be thought of as c < 1 conformal matter coupled to 2-D gravity, so one 

might learn from these models something about quantum gravity in four dimensions. 

In the matrix model approach to 2-D gravity one finds that the space of theories 

obtained by taking the continuum limit of matrix models is organized by KP flows. 

Furthermore, the KdV equations and the string equation for each resulting theory 

in the continuum limit can be reformulated in terms of equations for propagation 

of loops, which can be elegantly expressed as Virasoro constraints and W-algebra 

constraints. The major part of this thesis will be concerned with the KdV equations 

and the Virasoro constraints. 

In chapter two we present a review of the derivation of the KdV equations and 

the string equation to establish a general framework for issues in chapters three and 

four. We explain the connection between a discrete version of 2-D gravity and matrix 

models. We take the continuum limit of the exact results found in matrix models to 

obtain the KdV equations and the string equation. 

In chapter three we examine the KdV equations for the two-matrix models and 

find an identity from which we can derive KdV recursion relations for correlations, 

which express all correlations with an insertion of P in each genus in terms of (P P), 

(PQ), and (QQ) in a unique way. Here P and Q are the puncture operator and 

the dilaton operator, and also we assume the scaling ansatz. The importance of the 

KdV recursion relations is that they do not involve explicitly the infinite number 

of coupling constants as happens in the case of the recursion relations given by the 
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Virasoro constraints and the W-constraints. Thus, we offer an alternative way to 

determine the correlations of the theory. 

In chapter four we find Virasoro constraints for D2n+I, E6, E7, Es-type models 

analogous to the Virasoro constraints recently discovered for An-type models by 

Fukuma et al., and Dijkgraaf et al. We verify that the proposed Virasoro constraints 

give operator scaling dimensions identical to those found by Kostov. We check that 

these Virasoro constraints and, more generally, W -algebra constraints can be used 

to express correlation functions with non-primary operators in terms of correlation 

functions of primary operators only. The importance of the Virasoro constraints 

for D2n+l-type models is that they make the correlations much easier to compute 

than as given by the KdV equations and the string equation. The importance of 

the Virasoro constraints for E6, E7, Es-type models is even more pronounced, since 

presently there does not exist any description of these theories in the framework of 

the KdV equations and the string equation. 

In chapter five we turn to critical bosonic strings in 26 dimensions, and we 

examine the effect of modifying the vacuum on high energy scattering of strings. 

The fixed-angle asymptotic behavior depends sensitively upon the choice of string 

vacuum. However, the underlying high energy symmetries of string theory seem to 

be independent of vacuum modifications. We explicitly calculate high-energy fixed

angle scattering of four open string tachyons at the tree level modified by a tadpole 

insertion, which is described by an annulus diagram with one Neumann boundary 

condition and one Dirichlet boundary condition. The importance of the calculation 

is that we have modified the vacuum by insertions of string condensates generalizing 

the point particle condensates usual in conventional field theory. 
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PART 
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2. Matrix Model Approach to 2-D Gravity 

In this chapter we present an introductory review of the matrix models approach 

to 2-D gravity establishing a general framework for the issues of interest to be ex

amined in chapters three and four. 

In section one we state the three different approaches to 2-D gravity to give an 

account of the recent efforts to understand 2-D quantum gravity. In the subsequent 

sections we review in detail the development of the matrix model approach to 2-D 

gravity. In section two we explain how a discrete version of 2-D gravity can be 

described by matrix models. In section three we take the continuum limit of the 

results obtained in the matrix models. In section four we obtain non-perturbative 

results of 2-D gravity from the matrix models. In section five we generalize the 

results for the matrix models considered in section four by considering multi-matrix 

models and their continuum limit. We conclude in section six by addressing three 

unresolved issues. 

2.1 Introduction 

Using string excitations as collective degrees of freedom of a physical system 

as an alternative to point particles as elementary excitations in conventional field 

theory is a powerful idea. String theories will inevitably be the most appropriate 

descriptions for many physical systems in their various phases. Early attempts to 

apply strings to the hadron phase of QCD stimulated Polyakov [1] to propose a 

version of non-critical strings in which the residual degree of freedom of the two 

dimensional world sheet metric is the Liouville degree of freedom. The importance 

of understanding non-critical strings is that it may be the key to solving various 

physical problems including the 3-D Ising model, QCD at strong coupling, etc. 

Critical bosonic strings in 26 dimensions can be described as conformal matter 

with central charge 26 coupled to 2-D gravity. Non-critical strings in less than 26 
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dimensions correspond to conformal matter with central charge less than 26 coupled 

to 2-D gravity. Non-critical strings in zero dimensions is therefore pure 2-D gravity. 

Pure 2-D quantum gravity is non-trivial because of the residual Liouville degree of 

freedom. 

There are three approaches to conformal matter coupled to 2-D gravity that have 

been studied recently. The first approach is to use Polyakov's Liouville action and 

couple the conformal matter to the residual gravitational degree of freedom. This 

was done in light cone gauge by KPZ [2] and in conformal gauge by DDK [3]. The 

main result was that the conformal dimensions of the operators which were given by 

a quadratic formula derived by BPZ [4] in the absence of gravity are simplified to a 

linear formula when there is coupling to gravity. 

The second approach is to use a random lattice as a discretization of a curved 2-D 

surface and study the resulting theory as the lattice spacing approaches zero. Ran

dom lattices can be simulated either numerically or analytically. Although numerical 

simulation can address more diverse models, in some cases analytical approaches give 

exact results, which facilitate analysis. Analytical simulation of random lattices can 

be implemented via matrix models. The multi-critical points of the matrix mod

els, where the number of lattice cells diverges with fixed total area, may correspond 

to the continuum limit of physical theories. Since the lattice is generated dynami

cally, every genus can contribute, giving rise to non-perturbative effects. (Douglas, 

Shenker, Kazakov, Brezin, Gross, Migdal [5]) 

The third approach is topological sigma models coupled to topological gravity 

pioneered by Witten [6]. Correlation functions of operators calculated at genus zero 

coincide with those calculated using matrix techniques. One positive sign that recent 

progress in 2-D quantum gravity is on the right track is that whenever the results 

from the various approaches overlap, they are in agreement. 

2.2 Matrix Models and 2-D Gravity 

We are interested in understanding how to formulate a theory in which strings 
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are the elementary excitations. There are various ways to proceed. For example, 

there is the string theory as given by the N ambu string action and there is the string 

theory as given by Polyakov string action. At the classical level, the two string 

theories give the same string propagation, since the equations of motion of the two 

theories for the string's target space coordinates XI' are identical. At the quantum 

level, one can proceed much further in the Polyakov string theory in the sense that a 

path integral measure for the string coordinates is concretely defined and the internal 

metric is treated as fields living on 2-D world sheet. (Notice that this is quantum in 

the sense of the 2-D field theory, but not in the sense of the string loop expansion.) 

In the critical dimension, the Polyakov string theory simplifies dramatically in 

that the partition function or scattering amplitudes are given by a finite dimensional 

integral over the moduli space of Riemann surfaces. The enormous simplification is 

the result of the cancellation of the conformal anomaly between the Liouville degree 

of freedom and the contributions from the space coordinates. This enables one to 

gauge away most of the degrees of freedom of the 2-D metric using the reparameter

ization invariance and conformal invariance of the partition function. In non-critical 

dimensions of interest, for example, D=3 fermi strings (which may describe Ising 

models in three dimensions) or D=4 strings (possibly relevant to QCD), much less is 

known, because we are unable to treat the Liouville degree of freedom satisfactorily 

when there is a tachyon in the spectrum. The presence of a tachyon suggests that 

the vacuum has not been identified correctly. 

Consider the D = 2 world sheet, c = 0 target space string theory given by the 

Polyakov partition function 

z= J (2.2.1) 

METRICSg 

The 2-D world sheet ~ is a genus 9 Riemann surface, the 2 x 2 real symmetric matrix 

hab is the internal metric of the Riemann surface ~, and METRICSg is the space 

of metrics on a Riemann surface of genus g. The IE d2av'h - IE d2 aJdet(hab ) 
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action gives the coordinate reparameterization invariant intrinsic area of surface L:. 

J.L is the "cosmological constant" for the 2-D world sheet. Note that the familiar 

Jr:, dUldu2Vhhab8aXI'8bXI' term, where XI' is the target space-time coordinate, is 

not included in the Polyakov string action in eq. (2.2.1), since the dimension of the 

target space is c = O. 

We want to find a suitable discrete version of the continuum string theory given 

by eq. (2.2.1). Consider 

Z = L e-I' Area(G) , 

G 

(2.2.2) 

We construct distinct 2-D manifold surfaces by gluing small equilateral triangles 

together in different configuration and by varying the number of triangles used. A 

graph G is specified by a set of discrete points and a set of pairs of these points, 

since we know that a pair of points is separated by a fixed distance and that the 

surface is tiled by adjacent triangles. Knowing the genus of the surface, a graph Gis 

information out of which such a surface can be reconstructed. J.L in eq. (2 .2.2) is the 

cosmological constant for the discrete case, which differs from J.L in eq. (2.2.1), since 

the cosmological constant is non-universal and it changes value in renormalization 

flows. Finite summation on the finite number of triangulated graphs G is a dis

crete version of the integration over space of metrics MET RICSg in the continuum 

Polyakov string theory partition function. We can numerically simulate the discrete 

graphs and the summation on computers as in lattice QCD studies, and we can try to 

extract the critical exponents. Alternatively, we can calculate the partition function 

analytically giving a closed exact expression by the methods of matrix models, and 

thereafter, extracting the critical exponents. We now give a brief description of the 

relationships between the discrete version of the continuum string theory and the 

matrix models. In the next section of this chapter the matrix models will be solved 

giving an exact expression for the partition function. 

Consider a curved 2-D manifold of a given topology, for example, a Riemann sur

face of genus g, described by a metric hab(UI,U2)' where U1,U2 are local coordinates 
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on the surface. One way to visualize this curved 2-D manifold, is to embed it in some 

ambient Euclidean space of sufficiently high dimension with the metric induced by 

the embedding. There is a theorem by Nash that guarantees that an n-dimensional 

Riemann manifold can be isometrically embedded in an Euclidean space of dimen

sion 2(2n + 1)(3n + 7). Furthermore, we can obtain a discrete approximation to this 

surface by tiling the surface with equilateral triangles of unit side. We will use the 

term triangulated surface to refer to the non-smooth surface formed by the tiling 

triangles together with the graph out of which such a surface can be reconstructed. 

A graph is specified by a set of discrete points and a set of pairs of these points, since 

we know that a pair of points is separated by unit distance and that the surface is 

tiled by adjacent triangles. Curvature is concentrated at the vertices. At the places 

on the smooth surface where the curvature is zero, there are six adjacent equilateral 

triangles meeting at a vertex of the triangulated surface. At the places where the 

curvature is less than zero we will have more than six triangles meeting at a vertex. 

At the places where the curvature is greater than zero we will have fewer than six 

triangles meeting at a vertex. 

The difficult step is to define the proper measure In the computation of the 

partition function. In our case this amounts to assigning weights to each graph rep

resenting some particular triangulated surface in the computation of the partition 

function. One possibility is to use the Feynman path integral prescription of assign

ing equal weights to all inequivalent triangulations. That this prescription would give 

the same results as the Liouville measure of the continuum theory is not guaranteed 

a priori. However, there is evidence that this is the correct prescription. The major 

evidence is that the critical exponents obtained from the conformal gauge Polyakov 

action of the continuum theory are identical to the critical exponents obtained by 

considering the continuum limit of the discrete theory with the inequivalent trian

gulations weighted equally. The critical exponents obtained from the discrete theory 

also agree between the computer lattice simulation results and the matrix models 

results. 

The key to the relationships between the discrete version of the continuum string 
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theory and the matrix models is that there is a one-to-one mapping between trian

gulations of a 2-D world sheet and </>3 cubic graphs of quantum field theory. The 

mapping is via a duality transformation. The dual graph is obtained from the trian

gulation by connecting the centers of adjacent triangles with lines. Thus, the vertices, 

edges and faces of the triangulation correspond to the loops, lines, and vertices of 

the </>3 cubic graphs. 

Thus, the partition function of the discrete version of the theory is 

Z = J dM e -).' ITr[tM2+~], (2.2.3) 

where M is an N x N Hermitian matrix and oX-I = ell-. It is the cosmological constant 

in eq. (2.2.2). The free energy F = -log(Z) is the sum of all connected vacuum 

graphs. We use Hermitian matrices since we are interested in continuum closed string 

theory in which the surfaces are closed Riemann surfaces (this is explained below). 

First, we note that the standard path integral graphical expansion of the partition 

function as defined above would result in each vertex Tr M3 being contracted with 

other vertices to form a connected graph. The important point is that the internal 

lines can be considered as thickened to become flat bands because M is a Hermitian 

matrix. The thickened bands can be imagined to be further thickened until the 

gaps between the bands close up completely, and the result is an oriented closed 

two-dimensional surface. 

Each discrete closed Riemann surface is obtained uniquely from a vacuum graph 

of the matrix models and is labeled by a topological invariant, the genus. From 

't Hooft's work [7] on large N expansions for QeD, it is clear that expanding the 

partition function for large N and collecting powers of 1 IN corresponds to a genus 

expansion in which each power of liN corresponds to contributions from the closed 

Riemann surfaces of definite genus. This technique of doing perturbative expanding 

in the small parameter liN is called the large N expansion, which was invented by 't 

Hooft in the context of QeD. Stimulated by such an interesting problem, the matrix 

models were studied [8, 9] and exactly solved by using the orthogonal polynomial 

techniques in the classic paper of Bessis, Itzykson, and Zuber [9]. 



11 

2.3 Continuum Limit of Matrix Models 

Let us define more precisely the physical problem that we are interested in. We 

are interested in the physics of Euclidean signature 2-D gravity coupled to various 

kinds of conformal matter. We hope it will give insights into Lorentz signature 

4-D gravity and critical strings. Work on Lorentz signature 2-D gravity is still 

being developed at this time. We will simplify the considerations by examining pure 

Euclidean signature 2-D gravity without coupling to matter given by a 2-D world 

sheet and c = 0 target space. We will follow Witten's review paper [10]. Witten 

took the classical action in the Feynman path integral to be the Polyakov's string 

action for c = 0 target space, and defined the path integrals: 

F(g) = J (2.3.1) 

METRICSg 

F( A) J Dh e-).lA-).2 II; d2(T.Jh2~. g, = (2.3.2) 

METRICSg,A 

Since the 2-D world sheet E is a connected genus 9 Riemann surface, one IS 

evaluating the contribution of genus 9 surfaces to the free energy F rather than the 

partition function Z = e-F , which includes contributions from disconnected surfaces. 

The 2 x 2 real symmetric matrix hab is the internal metric of the Riemann surface 

E. The J'5:. d2uVh = J'5:. d2uVdet(hab) term gives the coordinate reparameterization 

invariant intrinsic area of the Riemann surface E. MET RIGSg is the space of 

metrics on a Riemann surface of genus g, and MET RI G Sg,A is the space of metrics 

on a Riemann surface of genus 9 and area A. R, the scalar curvature on the Riemann 

surface E, is given by R = _haboahcdObhcd. 

X(E) = 2~ J d2
uVhR = 2 - 2g 

'5:. 

(2.3.3) 

is a topological invariant, the Euler number of the Riemann surface E. Higher 

derivative terms made out of the products of the R's are irrelevant when we take 
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the limit in which the length of the edges of the triangles in the triangulation of the 

Riemann surface E approaches zero. These higher-dimensional terms have coupling 

constants which are proportional to a negative power of a mass scale. The only mass 

scale in the theory is provide by the inverse of the lattice length. Therefore, as the 

lattice length approaches zero, these "non-renormalizable" terms become irrelevant 

in the continuum limit. 

The key problem in defining the continuum limit of a discrete lattice approxi

mation to a continuum theory is to obtain finite answers. Thus, the problem is to 

adjust the real parameters .AI and .A2 as a cutoff E -+ 0 so that F(g, A) converges to 

well defined function of 9 and A. E is the area of small equilateral triangles used to 

tile Riemann surfaces of fixed area A. We can rewrite eq. (2.3.2) as 

(2.3.4) 

The procedure of triangulating a Riemann surface E was described in the previous 

section. Every triangulation of E determines a metric. Suppose one triangulates a 

Riemann surface of genus 9 and area A with n triangles of small area E. For the 

number triangles n large, it is reasonable to assume that metrics corresponding to 

the triangulations are points distributed randomly in MET RICSg,A, the space of 

metrics on a Riemann surface of genus 9 and area A. With a large number of points 

distributed randomly in MET RICSg,A, one takes the prescription that integration 

over METRIC Sg,A in eq. (2.3.2) can be approximated by summation over the 

inequivalent triangulations. The key assumption is that the random distribution is 

uniform. This is basically the Monte Carlo method for integration. The prescription 

above is precisely the same as described in the previous section, in which equal 

weights are assigned to inequivalent graphs in the definition of a partition function. 

Let V(g, n) be the number of isomorphism classes of triangulations of a genus 9 

surface with n triangles. The mathematics of graph counting gives the result that 

for large n: 

(2.3.5) 
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The constant, is universal, even if squares or pentagons were used to tile a surface, 

whereas c is not universal. Like the cosmological constant, the value of c changes 

in renormalization flows. Let us triangulate a surface of area A using n triangles of 

small area € and interpret Volt:(g,A) = V(g,n)/€ as the € cutoff approximation to 

Vol(g, A). So, we have that 

(2.3.6) 

This gives the finite and well-defined quantity in the limit € ---+ 0 (with A = n€ held 

fixed): 

(2.3.7) 

with Al = c/f. and A2 = ,log(Ao/f.). 

2.4 Non-Perturbative 2-D Gravity 

In this section we will review the solution of the matrix models, the continuum 

limit of the matrix models, and the non-perturbative solutions obtained in [6]. It is 

possible to compute analytically the partition function [7-9]: 

ZN = J dM e-).' ITrV(M) for V(M) = t ;:-1 M 2
p, 

p~1 

(2.4.1 ) 

where M is an N x N Hermitian matrix. (gl is set to !.) Each Hermitian matrix 

M can be written as M = U AUt by some unitary transformation of a diagonal 

matrix A, where U is an N x N unitary matrix. The integration over the Hermitian 

matrices in eq. (2.4.1) becomes, by variable substitutions, integration over unitary 

matrices and diagonal matrices. The integrand in eq. (2.4.1) does not involve the 

matrix elements of the unitary matrices. The unitary matrices can be thought of as 

"angular" variables, and the diagonal matrices can be thought of as "radial" vari

ables. The situation here is similar to that in gauge fixing, and the important thing 
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is to remember to compute the Jacobian. Denoting the diagonal matrix elements of 

a N x N diagonal matrix A as Xi, for i = 1 to N, ref. [9] gets the result that 

Where 

N 

ZN = J (II dXi) e-A' 10:::1 V(Xi)) ~(A)2. 
i=1 

~(A) = II(Xi - Xj) = det(x{-l) = det(Pj-l(Xi)) 
i>j 

(2.4.2) 

(2.4.3) 

is called the Vandermonde determinant. (j = 1 to N.) P n ( x) = X n + . . . is an nth 

order polynomial, for n non-negative integers, defined by the authors of ref. [9] as 

orthogonal polynomials such that (m takes the non-negative integer values): 

(2.4.4) 

The determinant det(Pj-l(Xi)) in eq. (2.4.3) can be written as alternating sums of 

products of the matrix elements Pj-l(Xi). The result can be plugged into eq. (2.4.2) 

and most of the terms will not contribute to ZN because of the orthogonal property 

of the polynomials. It follows that 

(2.4.5) 

where the Rn's are defined recursively by xPn(x) = Pn+1(x) + RnPn-l(X). 

By partial integration: 

(2.4.6) 

A recursion relation for the Rn's is given by substituting the definition of potential 

V in eq. (2.4.1) into eq. (2.4.6): 

(2.4.7) 

The paths can be described as stair climbing traversals from height n - 1 to n in 
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2p+l steps, and a Rd/ N factor occurs in the R.H.S. of eq. (2.4.7) for each descending 

step from height d, whereas the factor 1 occurs for each ascending step. 

It is convenient to define 

R(>"y) = Rn(>..)/N and y = niNo (2.4.8) 

(Note that>.. dependence of Rn can be seen in eq. (2.4.4) and more explicitly in eq. 

(2.4.7)). For y near one and N finite, perform a Taylor expansion: 

R~>") = R(>..) + >.. n ~N R'(>") + ~2 (n ~N)2 R"(>") + .... (2.4.9) 

To each potential V(M) in eq. (2.4.1) one associates a function: 

~ 2p+ 1 2p+1 
W(R) = 2 ~ ( !)2 gp+1 R . 

p=o p 
(2.4.10) 

Set n = N in eq. (2.4.7), use eq. (2.4.9) in eq. (2.4.7), and take continuum limit 

N --+ 00. Ignore 0(1/ N) terms, and the result is 

>.. = W(R(>")). (2.4.11) 

A multi-critical point >"c = WeRe) of order m is defined to be potential V(M) with 

gp such that 

(2.4.12) 

In the continuum limit N --+ 00, different multi-critical potentials give rise to con

tinuum theories with different conformal matter fields coupled to 2-D gravity [ll). 

To consider pure 2-D quantum gravity, consider the simple quadratic potential 

V(M) = glM2 + g2M4 / N and the associated function W(R) = 2g1R + 12g2R2. (gl 

is set to 1/2 ) Using eq. (2.4.12), the condition of being at a multi-critical point 



16 

is W(R) - Ac <X (R - Rc)2. It follows that Ac = -9i!1292, Rc = -91/1292, and 

the proportionality constant is 1292. For a simple quadratic potential, one adjusts 

the parameter A in eq. (2.4.1) to reach a multi-critical point. With a higher order 

polynomial potential, it is necessary to tune the coupling constants 9i, as well as >., 

to reach a higher multi-critical point. 

Setting n = N in eq. (2.4.7), one gets 

A - 2RN [ 2 (RN+1 RN RN-1)] 
- N 91 + 92 N + N + N . (2.4.13) 

Using eq. (2.4.9) in eq. (2.4.13), and considering large N, one gets 

(2.4.14) 

For A near Ac , eq. (2.4.14) can be rewritten as 

(2.4.15) 

Note that a continuum limit in which every genus contributes to the partition func

tion requires the double limit of N ~ 00 and A ~ Ac resulting in eq. (2.4.15). 

Whereas, eq. (2.4.11), with the continuum limit N ~ 00, results in only genus zero 

contributing to the partition function. 

Now assume the scaling ansatz R - Rc = N-P. f(N v.6..) where .6.. = (A - Ac). 

Finite genus calculations give the values JL = ~ and v = ~ for pure 2-D quantum 

gravity [12]. Eq. (2.4.15) becomes 

The O(N-4) terms are negligible in comparison with the first three terms of eq. 

(2.4.16). Letting x = Nt.6.., eq. (2.4.16) becomes 

(2.4.17) 

Set 92 = 9-t /48 and rescale f by f ~ (-3692/9r)f. Thus, the scaling function f(x) 



17 

satisfies the non-linear differential equation: 

x = j2 + j". (2.4.18) 

Eq. (2.4.14) has a solution which is a Painleve transcendental of the first kind. There 

are two integration constants, of which one is fixed by matching up the solution at 

large x with results from perturbative genus expansion, but the non-linear differential 

equation also has some non-perturbative solutions at finite x. It is clear that eq. 

(2.4.18) has solutions of the form 

j", 6 
(2.4.19) 

(x _k)2' 

for x near k. Parameter k is presently undetermined [5]. Assume k is a finite positive 

constant, the model has a singularity at x = k, and there should be some kind of 

phase transition, such as a condensation of handles, when x goes below k. 

2.4 Multi-matrix Models 

The multi-matrix model partition function is defined in ref. [13] as 

J (lIT ) - (2:;=1 Tr[Vi(M(t))]+ 2:;~11 CtTr[M(t)M(t+l)]) 
ZN = dM(t) e 

t=l 

(2.5.1) 

Where M(t) for t = 1 to Tare N x N Hermitian matrices, ~(A) = TIi>j(Xi - Xj) 

as before, and St[xd = Vt(Xi(t)) + CtXi(t)Xi(t + 1). (Define CT = 0.) A(t) for t = 1 to 

Tare N x N diagonal matrices with diagonal matrix elements Xi(t) for t = 1 to T 

and i = 1 to T. In analogy with the one-matrix models, ref. [13] define orthogonal 
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polynomials: 

T J (IT dx(t») P~)(x(l»e-l:~=l Se[x(t)]p!T) (x(T» = 8m ,n = (min), 
t=l 

(2.5.2) 

T J (IT dx(t») P~)(x(l»x(u)e-l:~=l Se[x(t)]p!T) (x(T» = (mIQ(u)ln), 
t=l 

(2.5.3) 

(2 .5.4 ) 

nand m are positive integers and u is an integer from 1 to T. (Note that, for the 

purpose of defining an operator P(u), the way we inserted dxtu) in eq. (2.5.4) is 

one choice amongst many possible.) Eq. (2.5.4) can be integrated by parts to give 

discrete time equation of motion by which pet) and Q(t) are determined by pel) and 

Q(l). Thus, the complete theory (given by the partition function and correlation 

functions, which are obtained by taking derivatives of the partition function) is solved 

once pel) and Q(l) are known. Furthermore, operators pel) and Q(l) are subjected 

to the condition [P(l), Q(l)] = 1. 

Expand the operator Q(1) in the complete basis {In)} as 

Q(l)lm) = L Qm,nln). (2.5.5) 
n 

Form another complete basis {In/N)} by relabelling the original basis {In)}. Eq. 

(2.5.2) becomes (m/Nln) = 8m ,n Let N be large, so that the labellings n/N on 

the new basis approximates the continuum real line (the labellings take on positive 

values only). Define a function Qm-n(n/N) = Qm,n as the continuum version of 

Qm,n in eq. (2.5.5). 
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It will be shown below that in terms of the new basis Ix) one can write 

(2.5.6) 

where D = dj dx. It will be first argued that eq. (2.5.6) is consistent with the 

definition Qm-n(njN) = Qm,n. Consider matrix elements of Q(l), one gets using 

eq. (2.5.6): 

(yIQ(1)lm) = J dx (YlQ(1)lx)(xlm) 

(2.5.7) 

Using eq. (2.5.7), one has 

Qm,n = (nlm) = J dy (nly)(ylm) = J dy (nly) L Qk(Y)(Y + ~ 1m) 
k 

(2.5.8) 

It is clear that one can reverse the argument above by starting out with eq. (2.5.8). 

Then, eq. (2.5.7) follows, and orthonormal property of the bases In) and In/N) can 

be used to obtain eq. (2.5.6) from eq. (2.5.7). 

The matrix elements Qm,n are nonzero for 1m - nl ~ B for some finite B, if the 

potential Vt(M(t)) in eq. (2.5.1) are finite order polynomials. This is clear, since 

Q(1) simply inserts a factor of x(1), so that, for 0 ~ n ~ m+1, we have that Qm,n are 

non-zero, and therefore m - n is bounded below. For the other direction of bounding 

above, consider the matrix elements of Q(T) and peT) which can be shown to be 
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bounded above, and since Q(1) is related to Q(T) and P(T) by a polynomial relation 

given by the equation of motion, so m - n is bounded above for matrix elements 

Qm,n to be non-zero. 

One can tune the couplings in Vt(M(t)) and Ct'S to reach a critical point at which 

Qk(X) is non-analytic in x. Only the non-analytic contributions, which correspond 

to surfaces tiled by divergent number of small triangles, will survive the continuum 

limit. These surfaces will have finite area even when the size of the small triangle 

approaches zero. The analytic contributions which corresponds to surfaces with a 

finite number of infinitesimally small triangles become irrelevant at the continuum 

limit. Letting N ~ 00, Q(1) becomes a finite order differential operator, since Qm,n 

are non-zero for 1m - n I ~ B for some finite B. Therefore, one has that 

q 

Q(1) = L ui(x)Di. (2.5.9) 
i=O 

The coefficient uq can be set to 1 by rescaling. Uq-l can be set to zero by changing 

the norm of {In)}. U q-2 gives the leading contribution to the free energy F, and 

U q-2 '" ~:{ = (P P). P is the puncture operator as defined later in eq. (2.5.16) . 

The coupling constant of the puncture operator is the cosmological constant x. 

A very rough analogy of the double scaling limit of multi-matrix models to the 

double scaling limit of one-matrix models is given as follows. The operator Q(1) is 

analogous to the operator Rn of section 2.4. When eq. (2.4.9) is substituted in eq. 

(2.4.13), the result is eq. (2.4.15) with an infinite number of higher derivative terms. 

Taking the double scaling limit, one only retains the three lowest derivative terms 

in eq. (2.4.15). The result is eq. (2.4.18). Similarly, in the case of the multi-matrix 

models, one starts out with eq. (2.5.6), where the operator Q(1) has an infinite 

number of higher derivative operators. Taking the double scaling limit, by letting 

N ~ 00 and tuning the coupling to reach a critical point, one obtains the result that 

the operator Q(1) becomes a finite order differential operator. 

In the double scaling continuum limit of multi-matrix models, one expects P(l) 

to become a finite order differential operator in the same way as Q(1). One demands 
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that the condition 

[P(1),Q(l)] = 1 (2.5.10) 

holds in the continuum limit, and that it uniquely determine Uo, UI,' .. ,Uq-2 in eq. 

(2.5.9). So q - 1 independent equations is needed. Notice that (Q(1)~)- commutes 

with Q(l) to give an order q - 2 operator for p > q relative prime, so one lets 

pel) = (Q(l)~)+. The + subscript denotes taking the differential operator part of 

the pseudo-differential operator and the - subscript denotes dropping the differen

tial operator part of the pseudo-differential operator. Taking fractional powers of a 

differential operator, in general, requires one to consider pseudo-differential opera

tors. Pseudo-differential operator algebra is the closure of the differential operator 

algebra and an operator D-I . The action of D-I is given byeq. (2.C.3) in appendix 

2.C. 

To find the spectrum of operators in the theory, ref. [13] proposed that they are 

the maximal sets of commuting flows generated by the fractional powers of Q(1): 

(2.5.11) 

Therefore, the coefficients Ui in eq. (2.5.9) are functions of infinite number of vari

ables, x, tI, t2, t3, .... Setting i = 1 in eq. (2.5.11) gives x = ti' 

The continuum limit of the multi-matrix models, as given in ref. [13], is conjec

tured to be (Aq_I, Ap-d-type conformal field theories coupled to 2-D gravity. Let 

L = Q; then, the theories are formulated compactly in terms of pseudo-differential 

operators by rewriting eqs. (2.5.9), (2.5.10), and (2.5.11): 

q 

L = L Ui(tb t2," .)Di. (2.5.12) 
i=O 

(2.5.13) 
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(2.5.14) 

Eqs. (2.5.12), (2.5.13), and (2.5.14) can be rewritten as an action principle [14]: 

00 

s = J dx Res[L~+l +. 2.;:: tiL~]. 
1=1, Ii=nq 

(2.5.15) 

n is an integer in eq. (2.5.15), and index i runs over positive integers not divisible 

by q. Res(L) is defined to be the coefficient of D-1 of a pseudo-differential operator 

L. The ti's are the sources for operator insertions. Define the operators CTi and the 

puncture operator P by 

(CTi) = J dx Res(L~), 

(2.5.16) 

The coupling constant of the puncture operator is x = t1, the cosmological constant. 

It is useful to define 

(2.5.17) 

to be used in later chapters. It is also shown in ref. [13] that the partition function 

of the continuum theory is given by 

(2.5.18) 

where T(t1' t2, t3, ... ) is the T function of KP hierarchy (see appendix 2.C for the 

definition). Therefore, the one point functions of the operators CTi are given by 

(2.5.19) 

To compare the results in this section with the one matrix models, consider the 

case q = 2,p = 3. L = D2+u(t1' t2, .. . ), (L~)+ = D3+(3/4)u, D, and [L, (L~)+] = 1 
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III eq. (2.5.13). Integrate eq. (2.5.13) once in x, to get (15/32)u2 + (5/32)u" = x + c. 

x, the cosmological constant, is non-universal (its value changes in renormalization 

) 2 32 111)h flows. Redefine x + c as x, and rescale u --+ 2 3-555u and x --+ 2- 3-555x , t e 

result is 

2 " x = u +u . (2.5.20) 

Eq. (2.5.20) is the same as eq. (2.4.18), and we can identify u = f = (P P). 

2.6 Conclusion 

We conclude by pointing out three issues which are presently still unresolved. So 

far, the exactly solved models of conformal matter coupled to 2-D quantum gravity 

all have c < 1 . The case of c = 1 conformal matter coupled to 2-D quantum gravity 

is of great interest since this is one of the values of the central charge at which 

one expects a phase transition to occur. In particular, the continuum analysis of 

conformal matter coupled to 2-D quantum gravity in conformal gauge by DDK [3] 

gives a formula for the string susceptibility that is sensible for c < 1 and c > 25 

only. The unresolved issue is to obtain well-defined theories with 1 < c < 25 or to 

understand why this is not possible. 

One of the unsatisfying features of the matrix model approach to studying confor

mal matter coupled to 2-D quantum gravity is that the resulting continuum theories 

of (q -I)-matrix models, which are labeled by (Aq- 1 , Ap- 1 ) minimal models coupled 

to 2-D gravity, have q < p. Ultimately, one would like a formulation in which q and 

p are treated on an equal footing. 

It is still a mystery why, in the treatment of the one matrix models which can be 

mapped directly to discretized pure 2-D gravity, it is possible to obtain non-unitary 

conformal models coupled to 2-D gravity by considering higher multi-critical points 

in taking the continuum limit. One would like to understand in detail how the 

conformal matter arises at the higher multi-critical points. 
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Appendix 2.A. Lie Algebras, Dynkin Diagrams, and Coxeter Numbers 

Lie groups are continuous groups with an infinite number of elements. The local 

information is contained in the Lie algebra: 

(2.A.1) 

Ti are generators, and exiT; parameterizes by coordinates Xi the group elements 

near the identity element. A maximal set of linear combinations of generators Ti 

that mutually commute is called a Cartan subalgebra. The dimension of the Cartan 

sub algebra is the rank r of the Lie algebra. Let Hi be a basis of the Cartan sub algebra 

and Ecx be a basis of the elements of the Lie algebra not in the Cartan subalgebra. 

a is an r- dimensional vector with components ai. It is possible to choose the basis 

such that 

(2.A.2) 

Then a is called a root vector. Each root vector can be spanned by r linearly 

independent root vectors: 
r 

a = 2: cia(i) . 

i=l 

(2.A.3) 

A root vector is called a positive root if the first nonzero Ci is positive. A simple root 

is a positive root that cannot be written as the sum of two positive roots. For a Lie 

algebra of rank r, there are r simple roots, which are just the a{i). 

A Cartan matrix is an r X r matrix defined by 

(2.AA) 

Here the a(i) are the r simple roots, and the inner product amongst the simple roots 

is the ordinary r-dimensional vector inner product. The diagonal elements of the 

Cartan matrix are all equal to 2, and it can be shown that the only possible values 

of the off-diagonal matrix elements are 0, -1, -2, -3. 
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A Cartan matrix, which contains compressed but complete description of a Lie 

algebra, can be graphically represented by a Dynkin diagram. To construct a Dynkin 

diagram, first draw r dots representing the r simple roots, where r is the rank of 

the Lie algebra. Next, connect the ith and jth dot with n lines, where n = Ci,jCj,i' 

(i and j indices are not summed.) It can be shown that n can only take values 

n = 0, 1,2,3, which represents the angles () between the simple roots with values 

() = 7r /2, 27r /3, 3n-j 4, 57r /6, respectively. Lastly, let black dots represent short simple 

roots and white dots represent long simple roots. (The length square of a simple 

root Ctj is (Ctj, Ctj).) 

In figure 2.A.1, the Lie algebras An, En, Cn, Dn of rank n are the Lie algebras 

of the Lie groups SU(n + 1), SO(2n + 1), Sp(2n) , SO(2n), respectively. Lie algebras 

An, Dn, E6 , E7 , Es are called simply laced, since their Dynkin diagrams consist of 

only white dots, which are simple roots of equal length. 

The n polynomials in the generators Ti which commute with every element of a 

rank n Lie algebra are called the Casimirs. The degrees of the Casimirs minus one 

are called the Coxeter exponents. The Coxeter number of a Lie algebra is the largest 

Coxeter exponent plus one. In table 2.A.1, Coxeter exponents for simply laced Lie 

algebras are presented. 
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Figure 2.A.l Dynkin Diagrams for Various Lie Algebras 

A 
n 

0-0----0-0 
B @Q)-Q----0-0 

n 

C ~---~ n 

D o-o---~ n 

G2 ~ 

F4 ~ 

E6 0-0-6-0-0 
E7 
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Table 2.A.l Coxeter Exponents for Simply Laced Algebras 

Lie Algebra Coxeter Exponents Coxeter Number 

An 1,2,3, . .. ,n n+l 

Dn 1,3,5, . .. ,2n -3,n - 1 2n -2 

E6 1,4,5,7,8,11 12 

E7 1,5,7,9,11,13,17 18 

Es 1,7,11,13,17,19,23,29 30 
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Appendix 2.B. Classification of Minimal Conformal Field Theories 

by Simply Laced Lie Algebras 

The work of ref. [15] is reviewed, where systematic analysis of modular invariant 

partition functions leads to a complete classification of minimal c ::; 1 conformal 

theories with solutions labeled by simply laced Lie algebras. The minimal two

dimensional conformal invariant field theories [4] carry a set of representations of 

two Virasoro algebras of common central charge 

6(p _ pl)2 
c = 1 - (2.B.1) 

ppl 

with (p', p) a pair of relative prime positive integers. BPZ [4] have shown that 

it is consistent to retain only a finite number of primary fields <h Ii of conformal , 

dimensions h and Ii chosen among the Kac values [16] 

(rp - spl)2 _ (p _ pl)2 
hrs = I = h .... - rp - s , , 4pp r , 

(2.B.2) 

with 

1 ::; r ::; p' - 1, 1::; s ::; p - 1. 

An important subset of these minimal theories consists of the unitary c < 1 conformal 

theories, for which p and p' must be consecutive integers:\p - p'\ = 1 [17]. 

Cardy [18] has shown that putting such a conformal theory in a finite box with 

periodic boundary conditions, i.e., on a torus, gives stringent constraints on its op

erator content. These constraints arise from the requirement of modular invariance 

of the partition function which has the general form: 

(2.B.3) 

The conformal characters Xh( T) = tr( e211'ir(Lo-c/24)) are explicit functions of T, the 

modular ratio of the torus; Nh h' = Nh' h are non-negative integers, arising from the , , 
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decomposition of the representation of the Virasoro algebras carried by the space of 

states into irreducible representations. 

Gepner and Witten [19] have studied modular invariants sesquilinear in charac

ters of an affine Lie algebra: 

(2.B.4) 

with N",. non-negative integers. Take the case of AP) representation of level k. 

The integrality and positivity conditions on the coefficients N',l. reduce drastically 

the acceptable affine modular invariants. There are only three classes of solutions 

[15]. The first, which exists for k ~ 1, corresponds to the trivial diagonal invariant 

2:: IXh 12 , while the second appears only for even k ~ 4. In addition, there are three 

exceptional cases for k + 2 = 12, 18, and 30, which are the Coxeter numbers of the 

exceptional Lie algebras E6 , E7 , Es . These two infinite series and three exceptional 

solutions are in correspondence with the simply laced Lie algebras Ak+l, Dk/2+2 , 

E6 , E7 , and Es. 

To produce positive conformal modular invariants, a pair of affine invariants of 

levels k = p -1 and k' = p' - 2 is needed. p and p' are relative primes, so they cannot 

be both even, and this forces one of the two algebras to be an A algebra. Modular 

invariant partition functions in terms of conformal characters and the corresponding 

labels by pairs of simply laced Lie algebra are summarized in table 2.B.l [15]. 



30 

Table 2.B.l Classification of Minimal Conformal Field Theories 

by Simply Laced Lie Algebras 

(Ap·_1, A p- 1) 1 2:P- 1 2:P·-1 1 12 '2 s=1 r=1 Xrs p',p ~ 2 

(D2p+2, Ap_I) 1 2:P-
1 {2:4P+1 1 12 '2 s=1 r odd=l, r:;!:2p-l Xrs p' = 4p+2 

+2IX2P+1,sI2 p~2 

+ 2:;P~~=1 (XrsX;,p-s + c.c.)} 

(D2p+1, Ap-d 1 2:p- 1 {2:4P- 1 1 12 1 12 '2 s=1 r odd=1 Xrs + X2p,s p' = 4p 

+ 2:;P;:n=2(XrsX;-r,s + c.c.)} p~2 

(E6 , A p- 1) ! 2:~:~ {IXls + X7 s 12 + IX4s + XSs 12 p' = 12 

+ IX5s + Xlls 12} p~2 

(E7,Ap- 1) ! 2:~:~ {IXls + X17 s 12 + IX5s + X13s 12 p' = 18 

+IX7s + xllsl2 + IX9s12 p~2 

+[(X3s + X15s)x9s + c.c] 

(Es,Ap- 1) 12:
p

-
1 {1 12 '2 s=1 XIs + Xlls + X19s + X29s p' = 30 

+IX7s + X13s + X17s + X23s1 2 p~2 
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Appendix 2.C KdV Equations, Pseudo-Differential Operators, 

and the T Function 

The KP hierarchy [20] is defined by the equations for commuting flows: 

The pseudo-differential operator 

(2.C.1) 

(2.C.2) 

has coefficients Ui, which are functions of an infinite number of variables tt, t2, t3," .. 

t denotes the variables tt, t2, t3, .... D = ix, so that n = 1 in eq. (2.C.1) implies 

that x = ti' The + subscript denotes taking the differential operator part of the 

pseudo-differential operator and the - subscript will denote dropping the differential 

operator part of the pseudo-differential operator. The closure of the differential 

operator algebra and D-I defines a pseudo-differential operator algebra in which 

fractional powers of operators are well defined. The action of D-l is 

00 

D-If(x) = L)-1)i(D(i)f(x))D(-I-i). (2.C.3) 
i=O 

The T function is defined by the following equations: 

(2.C.4) 

(k is a real number.) 
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The p-reduction of the KP hierachy is defined by imposing an additional con

straint on L: 

(2.C.5) 

This means that the coefficients Ui in eq. (2.C.2) have no dependence on the variables 

t q , t2q, t3q, .... Eq. (2.C.5) also implies that the coefficients Uj can be expressed in 

terms of U2, U3, ••. , u q • The two-reduction and three-reduction of the KP hierarchy 

are called the KdV and Boussinesq hierarchy, respectively. 
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Appendix 2.D W -algebra 

W-algebra [21], which is associated with higher spin fields, is a generalization 

of Virasoro algebra, which is associated with spin two fields. See ref. [4, 21] for 

definition of spin and scaling dimension of a field. For example, in the case of spin 

three, the W-algebra is denoted W(3). Write the generators of W(3) as W~3), where 

n is an integer. The algebra of W(3) is defined by [15]: 

[ 
(3) (3) 

Ln, Wm ] = (2n - m)Wn+m, 

1 2 2 
-9(n - m)Un+m - 10n(n -l)(n - 4)On,-m, (2.D.1) 

where Un = L:k<-2 LkLn-k + L:k>-l Ln-kLk and Ln are the generators of Virasoro 

algebra. Note that W~3) does not form a Lie algebra, but rather it is a more general 

algebra with quadratic determining relations, eq. (2.D.1). 
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3. KdV Recursion Relations for the Two-Matrix Models 

The continuum limit of the one-matrix models is given by eqs. (2.5.12), (2.5.13), 

(2.5.14), and (2.5.15), for q = 2. Using the KdV equations (2.5.14) for q = 2, Dijk

graaf and Witten [1] found a KdV recursion relation between correlation functions 

of the one-matrix models. (See section 3.3.) Ref. [1] also found a KdV recursion 

relation between correlation functions of the two-matrix models. In this chapter we 

find a new KdV recursion relation for the two-matrix models that is not equivalent 

to the one in Ref. [1]. 

In section one, we summarize the recent developments in matrix models. In 

section two, a useful identity is derived, and we use it to find two KdV recursion 

relations for the two-matrix models. A technical assumption used, called "the scaling 

ansatz", is explained. As a warm-up exercise, in section three, we consider the 

applications of the KdV recursion relation for the one-matrix models . It turns out 

that every correlation function containing an insertion of P can be expressed in terms 

of (P P). P is the puncture operator defined by eq. (2.5.16). Finally, in section four, 

we consider the KdV recursion relations for the two-matrix models . It can be shown 

that every correlation function with an insertion of P can be expressed in terms of 

(P P) and two other correlation functions . In section five, KdV recursion relations 

for the three-matrix models are considered, and we give the conclusion in section six. 

3.1 Introduction 

Recently there has been much interest in understanding the role of the KdV 

recursion relations and the string equation within the context of the multi-matrix 

models approach to conformal matter coupled to 2-D gravity [1-4]. By recasting 

the KdV equations for the one-matrix models and the string equation, Dijkgraaf et 

al. [5] derived the loop equations which, remarkably, have the algebraic structure of 

Virasoro constraints. Fukuma et al. [6] also derived the Virasoro constraints, but in 

a different way. (See section 4.2 for a review of the results obtained in ref. [5].) We 
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are interested in treating KdV recursion relations as algebraic recursion relations for 

the correlation functions. For the one-matrix models, we will find that all correlation 

functions with an insertion of P at any genus can be determined in terms of (P P). 

We will show the above statement by using the KdV recursion relation for the one

matrix models and assuming a scaling ansatz for correlation functions at each genus. 

For the two-matrix models, we will find a KdV recursion relation in addition 

to that in [1]. Writing the two-matrix models in the compact language of pseudo

differential operators, we will be able to derive a simple and useful identity. From 

this identity, we can obtain two KdV recursion relations for the two-matrix models. 

The procedure is simple but laborious, so the algebra needs to be carried out on a 

computer. 

It will be clear that the method we use to find the two KdV recursion relations 

for the two-matrix models can also be applied to finding the KdV recursion relations 

for the three-matrix models and, in general, all of the multi-matrix models proposed 

by Douglas [3]. The multi-matrix models have interaction terms of the action with 

nearest neighbor matrices only forming a simple linear chain. The diagrams of the 

linear chains are the same as the Dynkin diagrams of the An Lie groups. Other 

multi-matrix models have interaction terms forming diagrams that are the same as 

the Dynkin diagrams of the Dn, E 6 , E7, Ea. However, it is not clear whether the 

method we use for the two-matrix case generalizes to the matrix models related to 

the Dn, E 6 , E7, Ea. 

3.2 Two-Matrix Model KdV Recursion Relations 

The KdV equations of the continuum two-matrix models, formulated in terms 

of pseudo-differential operators, are given by eq. (2.5.14) for q = 3 [1,3,4]: 

8L .!!. 

8i
n 

= [L.+, L1, n E {3j + 1,3j + 2\j E Z,j ~ O}, (3.2.1) 

where L = D3 + 3{Ul,D} + 3U2 is given byeq. (2.5.12), and D = lx' (We have 

rescaled and redefined Ul and U2 for later notational convenience.) Coefficients Ul 
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and U2 are functions of an infinite number of variables x, tt, t2, t3, . •.. Setting n = 1 

in eq. (3.2.1), we get that x = tl. Also, the 3-reduction condition Ceq. (2.C.5)) 

applies to the two-matrix case, and this fact is reflected in eq. (3.2.1). Therefore, 

the coefficients Ul and U2 are functions of tn for n positive integer not divisible by 

three. The string equation of the two-matrix models is given by eq. (2.5.14) for 

q = 3. The string equation will not be needed again in the rest of this chapter, but 

it is mentioned for the sake of completeness. 

The action of the two-matrix models is given by eq. (2.5.15) for q = 3: 

s = J dx Res[L~+1 +. t . tnLR-]. 
1=1, ,;f3, 

(3.2.2) 

i is an integer in eq. (3.2.2), and index n runs over positive integers not divisible by 

three. p labels the multi-critical points of the two-matrix models. Distinct multi

critical points correspond to distinct conformal matter coupled to 2-D gravity. For 

example, Ising conformal model coupled to 2-D gravity corresponds to q = 3 and 

p = 4. Res(L) is defined to be the coefficient of D-1 of a pseudo-differential operator 

L. The operators J dx Res(L~) will be denoted by (O"n). The puncture operator is 

defined to be P = 0"1. The dilaton operator is defined to be 0"2. tn are the coupling 

constants of the scaling operators O"n, tl is the coupling constant of the puncture 

operator P, and t2 is the coupling constant of the dilaton operator Q. To insert 

an operator O"n in a correlation function, differentiate the correlation function with 

respect to tn. 

The + subscript denotes taking the differential operator part of the pseudo

differential operator and the - subscript will denote dropping the differential oper

ator part of the pseudo-differential operator. Wherever the index n appears in this 

chapter, we will implicitly assume that n is a positive integer that is not divisible by 

three. Lastly, we gather from section 2.5 the important fact that U1 = (P P), and it 

will be shown below that U2 = (PQ). 

We also need a technical assumption called the "scaling ansatz": we assume 

that every correlation function at every genus scales as a power of t1 = x, when all 
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the other couplings ti are set to zero, and that a higher genus correlation function 

has x to a higher power than the same correlation function at a lower genus. The 

scaling ansatz can be shown to be true for simple correlation functions at low genus 

using matrix model techniques. For example, the partition function for the pure 2-D 

gravity critical point of the matrix model scales as x 5xl\ X = 2 - 2g. 

We will now proceed to derive the two KdV recursion relations for the two-matrix 

models. We define Rn,i, for i = 1 and 2, by L! = {Rn,l, D-1} + R n,2D - 2 + O(D-3
). 

Then, eq. (3.2.1) translates to: 

8Ul 8u~ 8U2 3 -1 -2 (6
8t 

)D+3-
8 

+3-
8 

=[D ,{Rn,I,D }+Rn,2D + ... ] 
n tn tn 

(3.2.3) 

Eq. (3.2.3) simplifies in compact notation as: 

8Rn i , 
---a;-' i = 1 and 2. (3.2.4) 

1 

Starting with L = D3 + 3{uI, D} + 3U2, we can compute L~ to find that L~ = 
{Ul' D-l} + U2D-2 + O(D-3 ). We can compute L~ by squaring L~, and we will 

2 

find that L~ = {U2' D-l} + O(D-2). So Rl,1 = Ul and Rl,2 = U2 implies tl = x. So 

R2,l = U2 implies U2 = (PQ). In general, we get Rn,l = (Pun) and R n ,2 = (Qun). 

Note that R 1,2 = U2 = R2,1. 

We now find an identity [7] from which we can derive the KdV recursion relations. 

On the one hand we have: 

[L ~+1 L] [L L~+l] (R' )d R" , + , = ,- = 6 n+3,1 + 3 n+3,l + 3Rn+3,2· (3.2.5) 

On the other hand we have: 



40 

(3.2.6) 

Thus, we have the identity: 

(3.2.7) 

The identity above will have coefficients of Dl and DO only, and we set them to 

zero to obtain the two KdV recursion relations. Note that [L, L!] = [L, L!]+ can 

be used to simplify the computations. The Dl coefficient gives: 

(3.2.8) 

The DO coefficient gives: 

3 'R' 15 'R" 3" D 9 "R' 6" D 3 "R - u2 n,2 - ul n,l + ul ~Ln,2 - ul n,l + U2~Ln,1 - u2 n,2 

O R (3) 2 "'R 1 R(5) -1 Ul n,l - ul n,l - 3' n,l· (3.2.9) 

We translate eq. (3.2.8) and eq. (3.2.9) by using eq. (3.2.4), and we obtain unique 

assignments of the genus for the correlation functions by using scaling arguments 

described below: 

(Un+3 P P)g = L (3(un P P)gl (PQ)g2 + 2(P P)gl (Un PQ)g2 
91+g2=9 

(3.2.10) 
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(an+3P Q)9 = L (-(QP P)91 (anQP)92 - (QP P P)91 (anQ)92) 
91+92=g 

+ L (3(PQ)91 (anPQ)g2 + (QPP)gl (anQ)92 + (PPP)91 (anPQ)g2 
91+92=g-1 

+ L ( -16(P P)gl (P P)92 (anP P)93 - 16(P P)gl (P P P)g2 (anP)g3) 
91+g2+g3=g 

The scaling ansatz is used to construct scaling arguments used to obtain the 

assignments of the genus subscripts in eqs. (3.2.10) and (3.2.11). We observe two 

simple rules by applying the scaling ansatz. The first rule is that from DDK scaling 

dimensions, and earlier works in matrix models, we have the result that a higher 

genus correlation function scales with a lower power of x, the scaling variable, than 

the same correlation function at a lower genus. This rule implies that, given two 

correlation functions which scale with the same power of x and differ only in the 

number of insertions of P, the correlation function containing more P insertions 

must be at a lower genus. 

Each term in the R.H.S. of eqs. (3.2.10) and (3.2.11) is a correlation function or a 

product of correlation functions. The second rule is that we may distribute insertions 

of P's to each factor within a term which is product of correlation functions, since 

that is just taking derivatives -Ix of the term. Therefore, terms which differ only in 

the distribution of insertion of P's must correspond to the same total genus. The 
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total genus of a term is defined to be the sum of the subscript genus assigned to the 

correlation functions which multiply to make up that term. It follows that similar 

comment holds for distributing the insertions of un's, and, in particular, we will use 

the fact that terms which differ only in the distribution of insertions of Q's must 

correspond to the same total genus. 

We now apply the two rules above to eq. (3.2.11). First of all, there are the terms 

without any explicit insertion of Q, which are the last seven terms of eq. (3.2.11). 

Using the first rule, we deduce that the terms which are products of three correlation 

functions must have total genus of g, the terms which are products of two correlation 

functions must have total genus of 9 -1, and the term which is one correlation must 

have total genus of 9 - 2. The genus of the correlation functions in the other terms 

can be similarly determined. 

3.3 One-Matrix Model Correlation Functions 

For the one-matrix models at the (k - 1 )th multi-critical points, k ~ 2, we will 

determine all correlation functions with an insertion of P in every genus in terms of 

(P P) of that genus and lower genus. We assume that every correlation function scales 

as a power of x, the coupling constant of the puncture operator. The procedure will 

demonstrate the method to be followed for the more complicated two-matrix models. 

The one-matrix model KdV recursion relation can be derived from KdV equa

tions for the one-matrix models given by eq. (2.5.14) for q = 2. (We have seen that 

for q = 2 and p = 3, the theory is identified byeq. (2.5.20) to be pure 2-D gravity. 

For the one-matrix models, we have p = 2k - 1.) Using an identity similar to eq. 

(3.2.7) and following the same arguments as in section 3.2, one can find the KdV 

recursion relation given by ref. [1]: 

(UmP P)g = L ((Um-2 P )gl (P P P)g2 + 2(Um-2P P)gl (P P)g2) 
gl+g2=g 

(3.3.1) 
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(m is an odd integer through out this section.) 

We will argue inductively genus by genus and build up correlation functions with 

more and more operator insertions. Let us first examine the genus zero case. 

The one-matrix model KdV recursion relation for genus zero is 

(3.3.2) 

At the (k - 1)th multi-critical point, the matrix model results give (P P)o = xt 

[2]. The correlation function (P P)o is calculated using the string equation (2.5.13), 

and it will serve as the initial data of the KdV recursion relation, eq. (3.3.2). The 

scaling ansatz gives (O"m)O = amxbm . Plugging them into the KdV recursion relation 

eq. (3.3.2), we get that bm = 1 + m2t 1 and am = 2/(1 + ~tl )(m + 1). 

Differentiate the genus zero KdV recursion relation eq. (3.3.2): 

(3.3.3) 

The R.H.S. is determined once (O"iO"m-2P P)o is determined. Also, (0"10"m-2P)0 is 

determined by integrating (O"iO"m-2P P)o with respect to x. Since (O"IP P P)o is de

termined by differentiating (0"1)0 with respect to x, so (O"IO"mP P)o is determined via 

induction. Differentiate twice the genus zero KdV recursion relation, eq. (3.3.2), 

we get that (O"iO"iO"mP P)o is determined once (O"iO"iO"m-2P P)o is determined. So 

(O"iO"iO"mP P)o is determined, and so on. (i and I are positive odd integers.) 

For genus one, the scaling ansatz gives (O"m)! = cmxdm • Using the genus one 

KdV recursion relation gives dm = -1 + (m -1)/2k and cm's determined by co. CO 

is undetermined, and this is the reason that the initial data of the recursion relations 

are the values of (P P) for every genus. For higher genus, there are no new features, 

and the same arguments follows. 
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There is, however, one crucial point in our arguments which needs more careful 

attention. In order to use the KdV recursion relation to build up the correlation 

functions in terms of lower ones, we had to integrate the L.H.S. of both eqs. (3.3.2) 

and (3.3.3) once to eliminate one insertion of P from the insertion of P P, and plug 

the results back to the R.H.S. of eqs. (3.3.2) and (3.3.3), respectively. Usually, 

the integrated correlation scales with x to a non-zero power, so that the integration 

constant can be set to zero using the scaling ansatz. In the special case that the 

integrated correlation scales as x to the zero, let us examine the problem involved. 

Rm is a homogeneous polynomial in u, u' , uti, ... of degree (m + 1) /2, where 

degree(u) = 1, degree(u') = 3/2, degree(utl
) = 2, ... [8]. From section 2.5, we 

have Rm = (umP) is defined by eq. (2.5.17) and u = (P P). The homogeneity of 

the polynomial is related to scaling behavior. For example, in genus zero Rm = 
u(m+l)/2, so that (umP)o scales as x(m+1)/2k. We can use the homogeneity property 

to determine the integration constants: 

R'm = nu, u', uti, ... ], Rm = F[u, u', u", .. . ] + const. (3.3.4) 

For each m ~ 1, Rm is a homogeneous polynomial in u, u' , uti, . .. of degree 

(m + 1)/2, and this determines const. Namely, if F[u, u', uti, ... ] is a homogeneous 

polynomial in u, u', uti, ... of degree m, then const. is set to zero, else Rm is not homo

geneous since a constant has degree zero. Similarly, we can integrate ((TI'ES It;, )Rm)' 

to get (TI'ES It;, )Rm. Requiring that each (TI'ES It;, )Rm be a homogeneous polyno

mial in u, u', uti, ... of degree (m + 1) /2, determines the integration constants. The 

result is that we first express every correlation in terms of u = (P P) and its deriva

tives u', uti, .... Then, we substitute in u = (P P) expressed in terms of x, the scaling 

variable, to determine every correlation in terms of x. 

In passing, we will mention that a non-linear recursion relation exists for Rm [8]: 

m-2 m-2 

Rm = I: RiR':n_3_i + ~ I: R~R'm-3_i 
i=-l i=-l 
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m-2 m-2 
+~ L RiRm-3-i + L RiRm-I-i, m ~ 3. 

i=-l i=l 

(3.3.5) 

The summation index i runs over odd integers. Also R-I = 1 and RI = u. But the 

non-linear recursion relation above gives the same results as the recursion relation 

eq. (3.3.1), which, using the fact that Rm = (Pum), can be expressed as: 

R' Rill 2 R' 'R m = m-2 + u m-2 + u m-2· (3.3.6) 

Note that eq. (3.3.6) can be solved to give Rm = R':n-2 + 2uRm-2 - (fx)-lu'Rm-2, 

where (fx)-l does not have any integration constant [8]. The key point is that 

eq.(3.3.6) can be used to determine Rm recursively. 

3.4 Two-Matrix Model Correlation functions 

We proceed by induction genus by genus and build up correlation functions in 

terms of lower ones as in the case of the one-matrix models. Consider genus zero, 

the KdV recursion relations are: 

(Un+3 P P)o = 3(unP P)o(PQ)o + 2(P P)o(unPQ)o 

(3.4.1) 

-16(PP)0(PP)0(O'nPP)0 -16(PP)0(PPP)0(O'n P)0. (3.4.2) 

We assume that we know (P P)o, (PQ)o, and (QQ)o, and we assume the scaling 

ansatz. Setting n = 1 in eq. (3.4.1), we can determine (O'4P)O after we integrate out 

one insertion of P and using the scaling ansatz. Setting n = 1 in eq. (3.4.2), we can 

determine (O'4Q)0 after integrating out one P. Setting n = 2 in eq. (3.4.1), we can 

determine (O'5P)0. Setting n = 2 in eq. (3.4.2), we can determine (O'5Q)0. We can 
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proceed with n = 4, n = 5, n = 7, n = 8, ... in eq. (3.4.1) and eq. (3.4.2) to find 

all (anP)o. Note that it is clear that eq. (3.4.1) by itself would be incomplete as a 

recursion relation. Other correlation functions and higher genus proceed as in the 

one-matrix models. The result is that we have shown that the two KdV recursion 

relations for continuum two-matrix models can be used to express all correlation 

functions containing an insertion of P at any genus in terms of (P P), (PQ), and 

(QQ) in a unique way. P and Q are the puncture operator and the dilaton operator, 

respectively. A technical assumption called "the scaling ansatz" was also required. 

(See section 3.2 for the definition.) 

3.5 Three-Matrix Model KdV Recursion Relations 

The procedure by which we derive the two KdV recursion relations for the two

matrix models is systematic so that it can be generalized to higher multi-matrix 

models. In this section, we will derive the three KdV recursion relations for the three

matrix models. For the three-matrix models, we can find KdV recursion relations 

by using an identity similar to eq. (3.2.7): 

!!l+1 1 !!l 1 !!l 
0= [L, L!. ] - 2"{L, [L, L!.]} + 2"[{L!., L }+, LJ, 

mE {4j + 1,4j + 2,4j + 31j E Z,j ~ 1}. (3.5.1) 

The identity above has coefficients of D2, Dl, and DO only, and we set them to zero 

to obtain three KdV recursion relations for the three-matrices models. It is clear 

that we can proceed systematically to find KdV recursion relations for (q -1 )-matrix 

models, and that we will find that there are (q - 1) KdV recursion relations given 

by identities similar to eqs. (3.2.7) and (3.5.1). 

Lastly, we comment that the KdV recursion relations found for the two-matrix 

models, eqs. (3.2.10) and (3.2.11), do not involve explicitly the infinite number 

of coupling constants in contrast to the recursion relations given by the Virasoro 

constraints and the W-constraints [5,6]. The same comment also holds in the cases 

of the three-matrix models and, in general, (q - 1 )-matrix models. 
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3.6 Conclusion 

We conclude by discussing some questions and speculations. As mentioned, we 

can proceed systematically to find that there are (q - 1) KdV recursion relations for 

(q - 1 )-matrix models. In the one-matrix models, the KdV recursion relation can 

be used to perturb away from the string equation to obtain the Virasoro constraints 

[5]. In the two-matrix models, one can speculate that the KdV recursion relation 

in [1] can be used to perturb away from the string equation to obtain the Virasoro 

constraints, whereas the KdV recursion relation found in this paper can be used to 

perturb away from the string equation to obtain the W-constraints. In general, for 

(q - 1 )-matrix models, one can speculate that one of the KdV recursion relations 

is related to the Virasoro constraints and (q - 2) remaining ones are related to the 

(q - 2) sets of W-constraints. Recently, ref. [9] has derived the W-constraints from 

the KdV equations and the string equation. 

There is a question about whether one can recover the KdV equation from the 

Virasoro constraints [5]. As we have seen, using the KdV equations and assuming 

a scaling ansatz, one can determine all correlation functions with an insertion of P 

in terms of (PP). At the (k _l)th multi-critical point the Virasoro constraints de

termine correlation functions with non-primary fields in terms of primary fields, but 

it seems that the correlation functions of primary fields are undetermined. There

fore, it seems unlikely that the KdV equations can be recovered from the Virasoro 

constraints at the (k - l)th multi-critical point. 
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4. Virasoro Constraints for D2n+l, E6 , E7 , Es-Type 

Minimal Models Coupled to 2-D Gravity 

The continuum limit of the multi-matrix models considered in section 2.5 gives 

rise to eqs. (2.5.12), (2.5.13), (2.5.14), and (2.5.15). These equations can be used 

to compute scaling dimensions of the operators in the theory. It turns out that 

the scaling dimensions obtained are identical to those of (Aq- 1 , Ap - 1 )-type minimal 

conformal field theories coupled to 2-D gravity as calculated in the continuum Liou

ville formulation. (See appendix 2.B for the classification of minimal conformal field 

theories.) 

The Virasoro algebra is intimately related to the KdV formalism. Dijkgraaf 

et al. [4] reformulated KdV related equations (2.5.12), (2.5.13), and (2.5.14) as 

constraint equations that obey Virasoro algebra. Fukuma et al. [3] also fuck the same 

constraint equations. An advantage of reformulating the KdV related equations as 

Virasoro constraints is that correlation functions become easier to compute. Virasoro 

constraints obtained in refs. [3,4] are associated with (Aq- 1 , Ap_1)-type minimal 

conformal field theories coupled to 2-D gravity. 

In this chapter we find Virasoro constraints associated with (D2n+b Ap-d-type 

minimal conformal field theory coupled to 2-D gravity. We also find Vir as oro con

straints associated with (E6, Ap- 1 ), (E7, Ap- 1 ), and (Es, Ap_l)-type minimal confor

mal field theory coupled to 2-D gravity. We call these theories D2n+1, E6, E7, Es-type 

models. We verify that the proposed Virasoro constraints for D2n+b E6, E7, Es-type 

models give operator scaling dimensions identical to those found by Kostov [11] . We 

check that these Virasoro constraints and, more generally, W-algebra constraints can 

be used to express correlation functions containing non-primary operators in terms 

of correlation functions of primary operators only (see section 4.4). 
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4.1 Introduction 

Matrix models simulating spin interactions on random surfaces have been used 

recently to study minimal conformal field theories coupled to 2-D quantum grav

ity [1, 2]. Analytical formulas for these matrix models, when taken to continuum 

limit, allow non-perturbative computations of all correlation functions extending the 

domain of exactly solvable models. Surprisingly, the space of resulting theories is 

organized by the space of KP flows. 

In the works of Fukuma et al. (3] one-matrix models were studied using the 

Schwinger-Dyson equation, and the resulting loop equation in the continuum limit 

was expressed as Vir as oro constraints. At the same time, Dijkgraaf et al. (4] found 

the loop equation by combining the string equation and the KdV equation for con

tinuum limit matrix models and obtained identical Virasoro constraints. Both works 

conjectured that Douglas' [2] chain of matrices associated with the Dynkin diagram 

of An should give rise to W-algebra constraints. In the Dn , E 6 , E7, Ea [5] case, where 

there is no analog of the Mehta formula [6] to solve the matrix models, we must rely 

on the KdV formalism of Drinfel'd and Sokolov [7,8]. We therefore do not expect a 

Schwinger-Dyson loop equation derivation of the Virasoro constraints, but what we 

can do is to find the Virasoro constraints by using a vertex operator representation 

for Dn , E 6 , E 7 , Ea. The Virasoro constraints can then be compared with the results 

of the KdV approach [8]. 

4.2 Virasoro Constraints for An-Type Models 

In this section we will review the results obtained III refs. [3, 4]. Recursion 

relations between correlation functions of An-type minimal conformal models coupled 

to 2-D gravity were found to satisfy elegant Virasoro constraints and W-algebra 

constraints. In ref. [41, the Virasoro constraints were obtained by reformulating the 

KdV equation and the string equation into equations for string loops, which have 

more physical interpretations. It turns out that operators appearing in the loop 

equations obey commutation relations corresponding to part of a Virasoro algebra. 
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Recall some results from section 2.5 and 3.3. The KdV recursion relation of the 

one-matrix model is 

R~ = R!~_2 + 2uR~_2 + u' Rm-2, m ~ 3 (4.2.1) 

usmg eqs. (2.5.16) and (2.5.17) in eq. (3.3.1). (m is an odd integer throughout this 

section.) The string equation for the one-matrix model is: 

00 

o = I.: mtmRm[u], (4.2.2) 
m=l 

usmg eq. (2.5.13) and eq. (2.5.14). The physical meaning of Rm is that Rm[u] = 

((J'mP) as given in eq. (2.5.17). By eqs. (2.5.15) and (2.5.19), we have that the 

insertion of (J'm in the correlation function corresponds to differentiation with respect 

to the coupling constant tm. tm is identified with the coordinate parameterizing the 

mth KdV flow of u. Also, we have au/Otm = aRm/ax, t1 = x, and u = (PP) from 

section 2.5. 

To facilitate algebra, define w(z), j(z), and L(z) as: 

00 

w(z) = I.: (J'n z- T- 1. (4.2.3) 
m=l 

00 

j(z) = I.: tnzT . (4.2.4) 
m=l 

1 >. 2 t2 
L(z) = [j'(z)(w(z))]< + 2>.2(w2(z)) + -(w(z))2 + -2 + _1 . 

4 2z 4z 
(4.2.5) 

>. is the string coupling constant. The < subscript in eq. (4.2.5) denotes taking 

terms with negative powers of z. Writing L(z) in terms of a Laurent expansion in z, 
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Ln is defined by: 

L(z) = 8),2 L (L;7 )z-n-2, (4.2.6) 
n~-1 

where 7 is the 7 function of the KP hierarchy (see appendix 2.C for the definition). 

Substituting eqs. (4.2.3), (4.2.4), and (4.2.6) in eq. (4.2.5) implies L(z) = 0, if and 

only if 

Ln7 = 0 for n ~ 1, where 

00 m a 1 
Lo = '" -t - + - and ~ 2 matm 16' 

m=1 

(4.2.7) 

From eq. (4.2.1), one has that 

Du 
[),2 D4 + (2u - z)D2 + (Du)D](w(z)) + vIZ = o. (4.2.8) 

Using the equation above, eq. (4.2.8), ref. [4] shows that 

[),2 D4 + (2u - z)D2 + (D(u - ~ ))D]L(z) = O. (4.2.9) 

Plugging in eq. (4.2.6) , one has that 

( 4.2.10) 

Since the string equation can be translated to L_17 = 0, one can use induction 

formula above, eq. (4.2.10), to show that Ln7 = 0 for n ~ -1. Therefore, one also 

has that L(z) = o. Thus, the KdV recursion relation and the string equation for 

the one-matrix models has been reformulated in refs. [3,4] as constraint equations 

(4.2.7) which obey Virasoro algebra. 
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4.3 Virasoro Constraints for D2n+l-Type Models 

We consider (D2q+1l A p- 1) type minimal conformal field theory coupled to 2-D 

quantum gravity in the context of finding out the Virasoro constraints. For example, 

the unitary model (8, 9) = (4q,p) corresponds to (Ds, As). (The D2q case will not 

be considered, because one of the exponents occurs twice, whereas in KP flows each 

operator has a different scaling dimension.) We use 2q+ 1 twisted bosons to construct 

the vertex operator representation of the level one D2q+l Kac-Moodyalgebra. 2q of 

the bosons have Z4q twisting and one has Z2 twisting. Associated with the D2q+l 

Dynkin diagram are Coxeter number = 4q and exponents I = {2q, 1,3,5, ... ,4q -1}. 

(See appendix 2.A for a review on Lie algebras.) We also define indices J = {j Ii = 
i + 4qn, i E I, nEZ, n 2:: O}. Specifically, we write the twisted bosons mode 

expanSIOns as 

8 ",i ~ -(..i..+n)-l· I 8
z

'f' = L...J ai+4qn Z (q ,~E. 

nEZ 

(4.3.1) 

(4.3.2) 

(The Z4q cyclic nature is reminiscent of the infinite number of identical blocks of 

4q X 4q matrices in the reduction of the T function [12].) 

For a level-one simply laced algebra the Sugawara construction coincides with the 

Virasoro construction using the quantum equivalence theorem [5]. Therefore we can 

write the stress-energy tensor in terms of the generators of the Cartan subalgebra, 

Hi as , 
1 2q+I . 

T = "2 L : (H')2 : +z-2(constant). 
i=l 

Since /z<l>i's are complex and Hi,s are real, we use the linear combinations: 

( 4.3.3) 
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( 4.3.4) 

Each boson tz<pi contributes i(::;;i) to the normal ordering constant, so we have: 

_ ~ ~ . (~A.i)(~A.4q-i) . -2(~ _1 .:1-) 
T - 2 fef· az If' az If' • +z 16 + 96q + 12 . (4.3.5) 

(These terms are just the diagonal invariant terms in the CIZ-classification [10].) 

The mode expansion of T = L:nEZ L n z-n - 2 has Virasoro components: 

1 [1 ~ .. ~. a] 
L-1 = - - L..t ZJtitj + L..t zti at. . 

4q 2 . . ). . . ) 1-4q 
I,JE ,I+J=4q IE 

(4.3.6) 

1 L. a q 1 q2 
Lo = -[ zti- + (- + - + -)]. 

4q . ati 4 24 3 
IE) 

(4.3.7) 

(4.3.8) 

For example, the D5 case gives: 

( 4.3.9) 

The W-algebra (see appendix 2.D for the definition) components will be given 

by mode expansions of higher order Casimirs, W(s) of conformal spin s, constructed 

out of the -/z<pi fields. We will not construct them explicitly (number of Casimirs = 
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W (s+l) _ '"""' uAs+l) -n-s-l I 
- ~ VVn Z , 8 E . 

nEZ 

(4.3.10) 

Generalizing the works of Fukuma et ai. and Dijkgraaf et al. to the present 

situation gives the Virasoro and W-algebra constraints as 

Ln7 = 0, n 2:: -1. ( 4.3.11) 

(s+l) 
Wn 7 = 0, 8 E I, n 2:: -8, (4.3.12) 

where the 7(tl, t2, t3, ... ) is related to the partition function of the theory by Z = 

e-F = 7
2 . The operators of the theory are given by < (Ti >= 2k log 7, i E J. 

Furthermore, 7 satisfies additional reduction constraints related to the group D2q+l 

(see section 4.6). Note that W~2) = L n , and that L_17 = 0 is the non-perturbative 

string equation of the theory. (For An-type models, L-17 = 0 given in eq. (4.2.7) is 

obtained by integrating once the string equation, eq. (4.2.2).) 

4.4 Scaling Dimensions 

We will now deduce the scaling dimensions of the operators. The gravitationally 

dressed conformal primary fields are identified as (there are (2q + 1)(p -1) of them 

for the unitary models): 

pr 
<for,s = (T-4qs+pr where rEI, 1 :::; 8 :::; [4q]' (4.4.1) 

To consider the (D2q+l, Ap-d model, we set all t; = 0 for i E J, except tl = x, 

t4q+p = 1 to reach the pth multi-critical point, so we get from eqs. (4.3.6-9) and eq. 

(4.3.11): 

1 
0= Ln7 = 4[x < (T4qn+l > + < (T4qn+4q+p > + L < (Ti >< (T4qn-i >]. 

q . J . 4 IE , 1$ qn 
( 4.4.2) 

Note that we include the sphere contribution only, so that correlation functions with 

two operators do not appear, as they are suppressed by an infinite factor. The infinite 
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factor is the result of 1/ N2 suppression when N -+ 00 in taking the continuum limit 

of the matrix models and N x N is the size of the Hermitian matrices. We let the 

scaling be < (Ti >"'-' x 1--r+.t..., then ~4qn+1 + 1 = ~4qn+4q+p = 1 -, + ~i + ~4qn-i. 
("'-' means proportional. We do not need the proportional constant, since we are only 

determining the scaling dimensions.) The equalities of the scaling dimensions imply 

that ~i is linear in i and, using ~1 = 0 for the identity operator (T1, we get: 

(1+ 2 )+ .01 i-I < (TO >"'-' x tq+p. 1 tq+p. 1 ~ ° = -----
I , I 4q + p _ 1 ( 4.4.3) 

For i E I, this is precisely Kostov's formula [11], i.e., scaling dimension = (expo

nent -1)/(Coxeter number -1). More generally, fields <Pr,s have scaling dimensions: 

-4qs + pr-1 
~r,s = ------

4q + p-1 
(4.4.4) 

which is the KPZ-formula [12]. 

Kostov [11] considered the A, D, E 2-D interaction-around-face statistical models 

formulated on a fluctuating planar lattice. The continuum limit of such systems is 

described by minimal conformal theories coupled to 2-D quantum gravity. These 

models are formulated as a gas of self-avoiding non-intersecting loops on a random 

planar graph. The scaling dimensions of the order parameters can be determined at 

genus zero. The scaling dimensions given by: 

m-l 
~m= h ' -1 

( 4.4.5) 

depend linearly on m whose values are the exponents of the groups A, D, E, and h 

is the Coxeter number of the groups A, D, E. 
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4.5 Primary Fields and Non-primary Fields 

We will now deduce the criteria distinguishing the primary fields from the non

primary fields. It is clear from demanding a Laurent expansion of W(s) in integer 

powers of z that 

-n-1w(s+1) -n-l ~ t t t a 
z n-s = Z ~ i1 i2··· i. ~ 

Ut"+l 

+Z-n-l(terms with more than one 8's), s E I, (n -s) ~ -s, (4.5.1) 

where iI, i2, ... , isH E J, il + i2 + ... + is - is+1 = -4qn. At the critical point, 

til = ti2 = ... = ti •. 1 = t4q+p = 1 gives the largest integer value for i s+ l amongst all 

of the terms. Therefore, we have 

(correlations made with 0"" i < 4qn + ps), s E I, n ~ O. (4.5.2) 

Thus, these Virasoro constraints can be used to express correlation functions with 

non-primary operator in terms of correlation functions of primary operators only. 

The point is that the first term in the R.H.S. of eq. (4.5.2) is never a primary 

operator. 

4.6 Virasoro Constraints and KdV Approach 

Di Francesco and Kutasov [8] developed a KdV approach to Dn-type minimal 

models coupled to 2-D gravity based on the works of Drinfel'd andSokolov [7]. The 

result for a D2q+l-type model at the pth multi-critical point is summarized in the 
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language of pseudo-differential operators: 

L = D + U-1 D-1 + U_2D-2 + ... , 

(4.6.1 ) 

where (L4qD) is anti-self-adjoint [7] and has the constant one as the leading coeffi

cient. 

The question is how are the W-algebra vertex operator approach to D2q+1-type 

conformal minimal models coupled to 2-D gravity related to the KdV approach? Let 

us assume that the conjecture given in refs. [3,4] is indeed correct and applicable to 

the D2q+1-type models. We answer the question posed above by establishing that 

the conjecture in refs. [3,4] implies equations defining the D2q+ 1-type models via the 

KdVapproach. 

We take the constraint L-1 r = 0 and differentiate with respect to ti, i E 

{I, 2, ... ,4q -l}, then we set all ti = 0 for i E J except t1 = x, t4q+p = 1. Apply

ing the general relations between the KP r function and the KP pseudo-differential 

operator L (note that -:& = D): 

(4.6.2) 

8 8 k 8 k 
-8 -8 logr = 2(L )-2 + -8 (L )-1, k ~ 1, etc. 

t2 tk t1 
(4.6.3) 

Thus (V)-l = ... = (LP)-(4q-2) = 0 and (LP)-(4q-1) = (constant)t1 which repro-

duces: 

(4.6.4) 

The other remaining conditions of the KdV approach cannot be deduced. We take 

them as the reduction constraints for D2q+1 -type models, imposing relations between 
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*at log T, k 2:: 1. We presume that there are no inconsistencies between the re

duction constraints and the W-algebra constraints, since the KdV approach is just 

Drinfel'd et al.'s [7] theory in the specific context of the matrix models. So all we 

have to do is to show that we have enough degrees of freedom to rig those remaining 

conditions. 

4.6 Virasoro Constraints for E6 , E7 , Es-Type Models 

Associated with the Dynkin diagram E6 is Coxeter number = 12 and exponents 

I = {I, 4, 5, 7, 8, ll}. We also define indices J = {jli = i + 12n, i E I, nEZ, n 2:: D}. 

Specifically, we write the twisted bosons mode expansions as 

(4.7.1) 

We can write the stress-energy tensor as 

(4.7.2) 

All the discussion for D2q+l carries through for E6. Associated with the Dynkin 

diagram E7 and Es are Coxeter numbers 18, 3D and exponents {1, 5, 7, 9,11,13, 17}, 

{1, 7, 11, 13, 17, 19,23, 29}. We can define the stress energy tensor in a similar fashion 

as above and carry out the similar analysis as for D2q+1. (The normal ordering 

constants for E7 and Es are !~~ and ~~, respectively.) 

4.7 Conclusion 

We will conclude this part by discussing some questions and speculations. For 

Aq_1-type models, refs. [3,4] have shown methods to derive the Virasoro constraints 

in the form of the loop equations. However, to completely prove the conjecture [3,4) 

that Aq-1-type models can be reformulated in terms of W-algebra constraints, one 

needs to derive the W-algebra constraints explicitly. 
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Dijkgraaf et al. [4] proved that the Vir as oro constraints for the one-matrix model 

are identical to the topological recursion relations. K. Li [13] derived W -algebra 

constraints for the multi-matrix models by topological considerations. 

The reduced Hirota's bilinear identities for the KP T function [9] in the specific 

context of the Aq_1-type multi-matrix models are expected to simplify to linear W

algebra constraints on the T function. Establishing this fact directly would provide 

additional evidence for the correctness of the W -algebra approach. 
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II 
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5. High Energy Scattering and 

the Unbroken Symmetry of String Theory 

The effect of modifying the vacuum on high energy scattering of strings is ex

amined. The fixed-angle asymptotic behavior depends sensitively upon the choice 

of string vacuum. However, the underlying high energy symmetries of string theory 

seem to be independent of vacuum modifications. 

5.1 Introduction 

String theory [1] is a unique candidate for the theory of quantum gravity. To 

understand the stringy nature of quantum gravity, there has been recent interest [2-

4] in string dynamics at energies far beyond the Planck scale. Diffractive scattering 

(s - 00, t = fixed) was studied in refs. [2] and [3] and it has been found that 

the dynamics exhibits an effective strong coupling physics. Thus, it is necessary to 

sum over contributions at every order in the string perturbation expansion. Fixed

angle scattering has been studied in ref. [4] (s _ 00 , t _ 00, sft = fixed) and 

exact results of high energy scattering amplitudes were obtained to all orders in the 

string perturbation expansion. This result enabled Gross [5] to observe that in the 

ex' _ 00 limit there exist underlying symmetries of string theory that are not yet 

fully understood. A set of linear recursion relations was derived among scattering 

amplitudes involving different mass string states, which are exact to all orders of the 

string loop expansion in the limit ex' _ 00. 

String theories are usually analyzed in some specific vacuum such as the flat 

26- or IO-dimensional space-time with no other non-trivial field condensates. This 

is certainly not the unique vacuum of string theories. Recent efforts to compactify 

string theories either on a Calabi-Yau space or some other consistent conformal field 

theory provide more realistic vacua. Whatever the modified vacua may be, they 
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must be interpreted as different minima of the string field theory effective potential~ 

In analogy to point particle field theories, we may expect that symmetry break

ing through modification of the vacuum depends only on long-distance (or, more 

properly, infrared) physics. It is not yet clear to what extent we can interpret com

pactifications through a Kaluza-Klein type mechanism or conformal field theories 

as infrared physics of the underlying dynamics. If one temporarily accepts this to 

be the case, one may expect that ultraviolet (or short-distance) physics such as high 

energy scattering will not be directly affected by the details of a particular vacuum. 

M. B. Green [6] studied the above issue (in a somewhat different context) and his 

results suggest that, contrary to our expectations above, vacuum structure (infrared 

physics) and high-energy scattering (ultraviolet physics) are not disconnected at all. 

The high energy behavior around two different vacua are drastically different in 

the lowest non-trivial order of string loop perturbation expansion. Even though the 

results of ref. [2-4] imply that one must sum to all orders of the string loop expansion 

in order to get the correct high energy behavior of scattering amplitudes, Green's 

results suggest that one should re-examine the relation between vacuum structure 

and ultraviolet string dynamics such as in the high energy scattering discussed above. 

We will return to this issue later. 

In the next section we discuss general features of vacuum stability and string 

symmetry breaking. Next we study high-energy fixed-angle scattering of bosonic 

string tachyons. From this we will infer the relation between string vacua and high 

energy scattering behavior and draw our conclusions. For concreteness, we consider 

the model of open and closed bosonic strings only. For technical simplicity, we will 

concentrate only on the lowest non-trivial order corrections to high-energy fixed

angle scattering amplitudes coming from the modification of vacuum structure. It 

would be interesting to also study the equally important higher order terms and 

extensions to superstring theories. In particular, we are interested in understanding 

the modification of the supersymmetric vacuum into a non-supersymmetric one. 

* Although this is not as straightforward in a theory that includes dynamical gravity as in a 
theory where the space-time geometry is rigid . 
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5.2 Vacuum Stability and String Symmetry Breaking 

In point particle field theory, the criterion of whether a candidate vacuum In) is 

a true vacuum or not is the stability of the effective potential around that vacuum 

In). We denote by <I>(x) a generic quantum field and r[<I>o(·)] an effective action of 

the given theory. Here, 

7. ( ) = (nl<l>(x)ln) 
0/0 x (0.10.) (5.2.1) 

is an averaged classical field configuration in the vacuum In). In order for In) to be 

a true vacuum, the effective action must satisfy 

[8r/8~]-_ - = o. 
¢J-¢Jn 

(5.2.2) 

If the L.H.S. is nonzero, one constructs a new corrected vacuum In') by adding 

tadpole insertions to cancel out the non-vanishing L.H.S. of eq. (5.2.2). In string 

theory, conventional vertex operators Va (x) correspond to small fluctuations around 

a given (flat, for instance) space-time background condensate. In principle, one 

may calculate a string effective action rst.[~o(·)] from some string field theory. The 

stability condition, eq. (5.2.2), amounts to saying that 

(nI8<1>(x)ln) = (nl<l>(x) - <1>10.) (5.2.3) 

= L9a (nWa(x)ln) 
a 

= o. 

In the second line, we have identified string field fluctuations with the vacuum average 

of linear combinations of vertex operators with couplings 9a ~ Therefore, vacuum 

stability is satisfied if 

for all a. (5.2.4) 

This is the first-quantized string notion of the condition eq. (5.2.2), and as such we 

may evaluate this one-point amplitude perturbatively in the string loop expansion. 

* A subtlety is that in general we must include contributions of auxiliary field vertex operators. 
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Then eq. (5.2.4) becomes 

where 

00 

L (Va)g . II:XE(g) = 0 
g=O 

(8)g = j(Dg.DX/M).8.e-SfIGt, 

Sflat = J d2(J'Jggab8aXI' . 8bXv . 'fJl'v· 

n g 

(5 .2.5) 

M denotes a symmetry group volume of the path integral, and appropriate powers 

of the string coupling constant II: are inserted in accordance with the requirements 

of factorizability and unitarity. XE = 2 - 29 is the Euler characteristic of the genus 

9 world-sheet. 

In open and closed bosonic string theory, eq. (5.2.5) is satisfied in the lowest order 

for closed string states on a sphere, S2, and for open string states on the boundary 

of a disc, D2, due to invariances of S2 and D2 under the projective symmetries 

SL(2,C) and SL(2, n), respectively. However, in the next orders of the string loop 

expansion, one-point amplitudes are not zero in general. Aside from the the subtlety 

required to define massive state asymptotic configurations, this is also the case for 

supersymmetric strings in general. The Fischler-Susskind mechanism [7] modifies 

the space-time structure of the vacuum, but, as we will discuss later, it is not the most 

general way to modify the vacuum. Actually, we will find that the Fischler-Susskind 

mechanism does not change the high-energy scattering behavior at all. 

A generic "stringy" symmetry breaking is induced by insertions of tadpoles of 

zero momentum. In the first quantization method, we cut a disc D2 out of the original 

world-sheet configuration and assign a string wave function around its boundary 

8 D2 = Sl. On 8 D2 = Sl, X I' ( (J'a) satisfies the Dirichlet boundary condition 

XI'( (J'a) I = Xl' (constant). 
8D2=Sl 

(5.2.6) 

Define T(X) to be the wave function of a zero momentum point-like string state 
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which is a superposition of point-like string states satisfying XI'(u, r) IX) = Xl' IX). 
T(X) can be thought of as the coupling of the point-like string state to the vacuum 

In) , so it is a tadpole amplitude. If the vacuum In) is shifted to In') via a tadpole 

amplitude T(X), 

0= L L KXE(g) • ga . <n'lvaln')g 
a 9 

= L L L K;XE(9) • [T(XW . ga . (n!Valn)g,t· (5.2.7) 
a 9 

Each term of the R.H.S. of eq. (5.2.7) is an amplitude corresponding to a genus 9 

Riemann surface with an insertion of the vertex operator Va and t insertions of the 

tadpole amplitude T(X). Accordingly, scattering amplitudes in the new vacuum are 

defined by 

N 

iA(Pb . .. ,PN) = (27r)D 8(D)(Pl + ... + PN)[IT (27r)D-l(2P?)]-1/2 
i=l 

. L L K;XE(9) [T(X)]t (VII (pI) ... VIN(PN ))g,t· (5.2.8) 
9 t 

In order for eq. (5.2.7) to be consistent with factorizability and unitarity, T(X) must 

be proportional to K~ ( There are N tachyons and t tadpole insertions so a general 

loop diagram is proportional to KN +t-2 K2g , and KN +t is absorbed into the vertex 

operators and tadpole amplitudes.) 

* Each puncture increases the Euler number of the surface by one unit. 
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5.3 High-Energy Fixed-Angle Scattering of Open Strings 

We will now explicitly calculate high-energy fixed-angle scattering in various 

vacuum configurations. In the end we will obtain an explicit answer for scattering 

N closed string tachyons in the modified vacuum in the high energy limit. Let us 

first consider the four open-string tachyon amplitude on the disc, which is the lowest 

order diagram. The well-known Veneziano amplitude with U(l) gauge group is 

_ r ( -~s - 1) r ( -~t - 1) r ( -~u - 1) 
r (~ + 2) r G + 2) r (~ + 2) 

ex (stu)-3 exp[ -(s log s + tlog t + u log u)] as lsi, Itl, lui -+ 00. (5.3.1) 

Modification of the tree level amplitude due to a tadpole insertion is described 

by an annulus diagram A2 with one Neumann boundary condition and one Dirichlet 

boundary condition. The Dirichlet boundary of the annulus takes a fixed value in 

the target D = 26 space-time, corresponding to the emission of a point-string state. 

The Neumann boundary corresponds to the freely moving ends of an open string. 

1 2 N 

= T(X) J dq [fib((q))] J IT d<Pi (}(<Pi - <Pi-I) 
o q 2 q ;=2 

(5.3.2) 

Our notations are as follows: the Neumann boundary of the annulus is fixed at unit 

radius, the Dirichlet boundary is at radius q, which ranges from 0 to 1, 'Y = log ( q) / i7r, 
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N is the number of tachyon vertices on the Neumann boundary, the ith tachyon vertex 

with momentum Pi is situated on the unit circle and labeled by angle 27rcPi, which 

may range from 0 to 211", D = 26 is the space-time dimension, (h, (h denote classical 

Jacobi theta functions, while h, 12, and 14 are 

00 

h(q) = ql/12 II (1 -In), 
n=1 

00 

(5.3.3) 
n=1 

00 

J4(q) = q-l/24 II (1- q2n-l) . 
n=1 

The high energy scattering limit ex' -+ 00 is controlled by q '" 1, as we will see, and, 

to this end, we make a Jacobi transformation of eq. (5.3.2). The result is 

(5.3.4) 

where w = exp(211"2)/log(q))"r' = -1/"cPi = -4>d,. It is convenient to introduce 

.. _ Jh((4>i - 4>j)/2I,'/2) 
G'J - -z O2 (( 4>i _ 4>j )/21,' /2) 

_ Vzi - VZ; 00 (1 - w n
/
2 [Jzi/Zj + JZj/Zi] + w n

) 

- Vzi + VZ; 11 (1 + w n / 2 [.;z:r;; + v0Tzi1 + w n ) , 

(5.3.5) 

where Zi = exp[27ri4>iJ. Note that the annulus has a rotational symmetry (only 

differences 4>i - 4>j appear), so we use this freedom to set 4>1 = O. Thus, the integral 
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in eq. (5.3.4) is now over the range w < ZN < ZN-l < ... < Zl - 1. We define 

variables 

for 2 ::5 i ::5 N 

and 

(5.3.6) 

Letting these new variables range from 0 to 1 automatically implements the angular 

orderings of vertex operators and makes the duality explicit. 

We will now study the fixed-angle high-energy limit of eq. (5.3.4). Define Sij = 

-Pi· pj and Si = -Pi· Pi+l where N + 1 is identified with 1. Treat particles 1,2 as 

incoming and the rest as outgoing, so the center of mass energy squared is s = Sl. 

The high energy scattering limit we are interested in is s -+ 00 and Sij = AijS -+ -00 

for i =f j and Sij =f s, where Aij are essentially the fixed-angles. We will compute the 

S -+ -00 limit and analytically continue to S -+ 00 to obtain physical amplitudes. 

Substituting eq. (5 .3.6) and eq. (5.3.5) in eq. (5.3.4), one finds that the amplitude is 

dominated by the end-point where all Ui -+ O. Saddle point evaluation of eq. (5.3.4) 

at this endpoint shows that eq. (5.3.4) is peaked only for i + 1 = j, 

N 

II[Gijfa·p;·Pi rv II[Gi,i+1]-2a· S;. (5.3.7) 
i<j i=l 

Note that N + 1 is identified with 1 in eq. (5.3.7) . Finally, eq. (5.3.4) becomes 

(VT(P1) . .. VT(PN )~en 

N 
(5.3.8) 

= T(X)[r(5j4)]N II(2a'S;)-5/4. 
i=l 

This is the N-point amplitude generalization of high energy (a' -+ 00 limit) 
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fixed angle scattering of the four-point amplitude. We note that eq. (5.3.8) has a 

power-law decrease different from the exponential decrease of conventional scattering 

amplitudes so that, when ci -+ 00, amplitudes with tadpole insertions dominate over 

those without the insertions. 

5.4 High-Energy Fixed-Angle Scattering of Closed Strings 

Similarly, one may consider the effect of tad poles on closed string tachyon N

point amplitudes. Again it is necessary to examine carefully an annulus diagram 

with mixed Neumann and Dirichlet boundary conditions. 

The Green function is found to be 

(5.4.1) 

where 

The N -point closed string tachyon amplitude is, with Zl = real, 

(1Ir (p) ~ (p ))closed = T(X) J1 dq [!l(q)] [!I(q2)] 8N 
T 1 •.. T N A2 q !f(q) J4(q2) 

o 

(5.4.2) 

Using the Jacobi transformation, we parametrize vertex operator positions by 

so that 

G . . _ i81((vi - vj)/2ICT'/2)) 
'J - 82((vi - vj)/2ICT' /2)) 

(5.4.3) 



and 
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Vzi - VZ; 00 (1 - Wn
/

2 (Jzi/Zj + JZj/Zi) + Wn
) 

= Vzi + VZ; 11 (1 + w n / 2 ( JziTij + .;z;r;i) + w n ) 

Gi' = i(h((Vi - Vj)'/211'/2) 
1 02((Vi - Vj)' /211' /2) 

_ Vzi -.jZj 00 (1 - w n
/
2 (.jzi/Zj + .jZj/ Zi) + w n

) 

- Vzi +.jZj 11 (1 + w n / 2 (..fiJij + ~ + wn ) • 

(Note that (v') =j:. (v') since /' is an imaginary variable.) 

(5.4.4) 

(5.4.5) 

We now look for a saddle point of eq. (5.4.2). We find it convenient to make a 

change of variables 

so that 

/1i = (zi/Zi_l)1/2 

iii = (ii/ Zi_l)I/2 

for 2 ~ i ~ N, 

for 2 ~ i ~ N, 

/11 = .jW/ZN 

iiI = .jw/ zN = /11, 

-. _ . (/1i+l . /1i+2 .. . /1N/11) 
/1, - /11 - - - - . 

/1i+l . /1i+2 ... /1N/11 

(5.4.6) 

(5.4.7) 

A steepest descent saddle point is at /11, ... ,/1n --+ 0 , just as in the open string 

case. To see this, we keep terms only up to linear order in /1i and iii in the scattering 

amplitude, 

(Y- (p ) Y- (p ))closed "" T(X) Jl dq [If (q)] [it (q2)] 8N 
T 1 ... T N A2 q3 If(q) J4(q2) 

o 

N d2 N 

J II /1i 5/4 II - -a·S · 
. . l/1iI21/1il . IGj,j+1.Gj,j+11 J. 

1=1 1=1 

(5.4.8) 



73 

The last integral is approximated by 

N N J II d2Ilillld-3/4 II 1(1 + 21l;)(1 + 2iL;)I-a
·
S

,. 

i=1 ;=1 

(5.4.8) 

In the limit that 0:' Si -+ CX), we find that lJ.lil, ... , IJ.lN I -+ 0 is the saddle point while 

no saddle point exists in the angular directions. So we may integrate the angular 

variables directly over the range. The amplitude eq. (5.4.8) then becomes 

T(X) U J d2Ildllil-3/4 U exp[-2Re{lli+iLda' Si] = T(X)[r(5/4)]N A U[a'Si]-5/4 
I 1 I 

(5.4.9) 

where 

",/2 N 

A = J JI dOi[2Re(ei8i + ei8i+2iC8i+l+ .. +8N+81)]-5/4. 

-",/2 1=1 

This is the desired high-energy scattering amplitude formula. 

A striking feature of the result above is that the saddle point is such that all the 

vertex operators approach the Neumann boundary. This means that if we calculate 

mixed amplitudes with both open string tachyons and closed string tachyons, the 

high energy behavior is essentially the same as eq. (5.4.9), since the saddle point 

evaluation of the amplitude is again dominated by contributions coming from the 

Illi I -+ 0 limit in which the closed string vertex operators approach each other. More 

generally, had we considered scattering amplitudes with arbitrary combinations of 

open and closed string states (for example, a scattering process involving gauge 

bosons and dilatons), we would have gotten the same answer except for the details 

of the respective vertex operators. Therefore, at least to this order, the scattering 

amplitudes are recursively related in a similar manner to the results of closed bosonic 

string theory that Gross derived [4,5]. It is important to notice that our lowest 

order recursion relations are independent of the string tadpole amplitude T(X), and 

therefore the choice of vacuum. Of course we don't know whether this is true in 
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the next order or to all orders in general. But the lowest order result suggests that 

in the high energy limit open and closed string amplitudes have similar polynomial 

behavior. It would be worthwhile to explore whether this is the case even after we 

include higher order terms of the string loop expansion. 

5.5 Conclusion 

We will now address the issue of the relationship between high energy scatter

ing and symmetry breaking. The sensitive dependence of high energy scattering 

amplitudes on the choice of vacuum that we have found means that the ultraviolet 

and infrared behaviors of string dynamics are not independent. The stringy tadpole 

is a singular mapping from 8D2 = 3 1 of the world-sheet to a single point X ll in 

space-time, and the non-locality of this mapping is perhaps the reason we find the 

non-exponential high-energy asymptotics of the scattering amplitudes in eq. (5.4.9). 

The stringy tadpoles considered in this paper are effectively static ( no momentum 

transfer) string condensates, so particles are expected to scatter with large-angle 

deflections. Following the procedures in the papers of D. Gross [4,5], we can find 

exact recursion relations among the scattering amplitudes in the case of symmetry 

breaking phase. It seems that we get exact recursion relations similar to those found 

by D. Gross even after the symmetry breaking. Thus, we learn truly high-energy 

dynamical information that is independent of the vacuum selected. The point is 

that, unlike point particle field theories, scattering amplitudes do depend upon the 

choice of vacuum. Different vacua are described by different tadpole amplitudes, and 

the prescription amounts to a modification of the · scalar field content of the string 

field expanded in mass levels. 

This conclusion may seem contradictory to the usual concepts of low energy ef

fective Lagrangians of string theories. If the characteristic energy scale one focuses 

on is much less than that of the string tension, only mild fluctuations in the string 

field or, equivalently, massless mode dominance is expected, and we get low energy 

effective Lagrangians involving only massless modes (graviton, antisymmetric tensor 

field, dilaton and gauge bosons). If space-time is curved slightly (for instance through 
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the Fischler-Susskind mechanism [7]), do the above arguments mean that the tiny 

bit of difference in curvature makes high-energy scattering behavior drastically dif

ferent? The answer to this is no. The important point is that the Fischler-Susskind 

mechanism is not the most general "stringy" symmetry breaking. It is possible to 

explicitly calculate N-point scattering amplitudes in a slightly curved background 

generated by the Fischler-Susskind mechanism, and the tadpole included there only 

shifts the dilaton field background. When one uses perturbation expansions in a 

curved space-time background, the high-energy scattering behavior in that back

ground agrees with the scattering behavior in conventional flat space-time. This 

is what we would expect from low energy effective action concepts. The Fischler

Susskind mechanism is still not fully stringy, because only the finite number of fields 

associated with the massless particles acquire vacuum expectation values. 

Our tadpoles are non-local on the world-sheet, hence really stringy, whereas the 

Fischler-Susskind tadpole is local on the world-sheet. As mentioned above, this non

locality on the world-sheet is crucial to the drastically different high-energy scattering 

behavior. Whereas a point-like modification of the vacuum will not affect ultraviolet 

dynamics, a stringy modification (as in our case) results in a change in ultraviolet 

dynamics. 

Our explicit calculations suggest that the relations among high-energy asymp

totic scattering amplitudes are independent of the choice of vacuum. (Gross notes 

in refs. [4, 5] that this is an unbroken phase of string theory, where all the particles 

are gauge fields.) This raises many related questions: Is there a low energy effec

tive action description of string field theory when we modify the vacuum? Can we 

find a truly stringy four-dimensional vacuum of string theory? Does conformal field 

theory compactification allow a truly stringy solution such as monopoles or vortex 

configurations? Further research into these issues could help to acquire a deeper 

understanding of the vacuum structure of string theory. 
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Appendix 5.A Jacobi Theta Functions 

The four Jacobi theta functions, (h for k = 1 to 4, satisfy the heat equation 

(5.A.l) 

They are defined by 

00 

Ol(vlr) = i I: (_1tq(n-~)2 ei7r(2n-l)v 

n=-oo 
00 

= 2J(q2)qt simrv II (1 - 2q2ncos27rv + q4n), (5.A.2) 
n=l 

n=-oo 
00 

= 2J( q2)qt COS7rV II (1 + 2q2ncos27rv + q4n), (5.A.3) 
n=l 

n=-oo 
00 

= J(q2) II (1 + 2q2n-lCOs27rv + q4n-2), (5.A.4) 
n=l 

n=-oo 
00 

= J(q2)qt II (1 - 2q2n-lCOs27rv + In-2), (5.A.5) 
n=l 
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where 

(5.A.6) 

and 
00 

f(q2) = II (1 - q2n). (5.A.7) 
n=l 
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