
PARALLEL HIERARCHICAL N-BODY METHODS

Thesis by

John K. Salmon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1991

(Defended December 6, 1990)

11

@ 1991

John Salmon

All rights Reserved.

111

TCaHoB, ttboai

Yuk Ha Ben Finley Chris Meisl Andrea Mejia Susan Gerhart
Ed Vail Bill Jones Cliff Kiser Anna Jaeckel Susan Ridgway
Kim Liu Brad Scott Clo Butcher Anna Yeakley Tanya K urosky
Nye Liu Bruce Bell Curtis Ling Anthony Chan Walker Aumann

Alex Wei Charles Hu Dave Agabra Craig Volden Bill Gustafson
Dave Kim Dan Frumin Dave Krider David Knight Bonnie Wallace
Ian Agol Dave Skeie Dawn Sumner Dawn Meekhof Brian Kurkoski
Jim Bell Deepi Brar Fred Mallon Dion Hawkins Carmen Shepard

Ken Hahn Di McMahon Harold Zatz Ed Llewellyn Dana Pillsbury
Ken Wong Ed Naranjo Hoyt Hudson J ames Daniel Harry Catrakis
Tom Wahl Erik Hille Jack Profit Jerry Carter Jesus Mancilla
Viola Ng Eugene Lit Jared Smith Josh Partlow Kurth Reynolds
Alice Lee Francis Ho Joe Andrieu Kevin Archie Lee Hesseltine
BG Girish Greg Harry John Beahan Laura Ekroot Lisa Henderson
Ben Smith Harvey Liu John Butman Lieven Leroy Matthias Blume
Betty Pun Irene Chen Jung Carl 1m Lynne Hannah Nancy Drehwing
Castor Fu James Shih Ken Andrews Marc Reissig N oam Bernstein

Chen Yuan Jay Higley Lynn Salmon Mark Vaughan Pam Katz Rosten
Chris Chu Joe Shiang Marc Turner Mike Maxwell Peter Ashcroft
Dan Kegel John Houde Mark Berman Mike Pravica Randy Levinson
Dan Ruzek Karen Ross Max Baumert Nathan Inada Richard Murray
Danny Chu Katy Quinn Mike Bajura Shawn Hillis Scott McCauley
Dave Cole Ke-Ming Ma Mike Nygard Tim Hochberg Stefan Marelid
Dave Hull Ma Blacker Mike Rigler Tim Horiuchi Stephanie Buck
Davy Hull Mark Dinan Mike Serfas Tom Aldcroft Andrew Lundsten
Doug Gray Matt Tyler Mike Yamada Torry Lawton Bengt Magnusson
Ed Nanale Mike Nolan Mimi Zucker Tracy Ollick Eric Hassenzahl
Fred Wong Mike Ricci Niel Brandt Vincent Chow Glenn Eyechaner
Greg Kopp Minei Chou Paul Amadeo Alex Densmore GloryAnne Yango
Jinha Kim Pa Blacker Pete Dussin Barbara Chang Imran Kizilbash
John Hart Ray Banlbha Pete McCann Betina Pavri Mac Rhinelander
John Wall Rob Padula Pete Wenzel Chris Cusanza Margaret Carter
Kevin Kan Steve Bard Pui-Tak Kan Deron Walters Mike Guadarrama
Marc Abel Steve Hwan Randy Baron Frank Lowther Nikola Pavletic
Mark Huie Susan Sheu Rich Zitola James Okamoto Roderic Schmidt
Matt Kidd Ted George Rob Fatland Jen Messenger Simon Goldstein
Matt Penn Ted Rogers Robert Horn John Erickson Christina Garden
Mike Chwe Vince Chen Robert Lord Ken Poppleton Graham Macnamara
Peter Cho Alex Rosser Ron Goodman Lushalan Liao Jennifer Johnson
Po King Li Allen Price Shubber Ali Margi Pollack Mike Bronikowski
Steve Lew Andy Miller Steve Gomez Mark Montague Samantha Seaward
Tom Fiola Anna George Steve Hawes Marty O'Brien Sandra Blumhorst
Tom Nolan Ben Holland Sylvia Chin Mike McDonald Susan Sharfstein
Allan 'Wong Bill Greene Todd Walker Philip Nabors Konstantin Othmer
Andrew Hsu Bill Newman Tom Megeath Randy Pollock Suman Chakrabarti
Andy O'Dea Blake Lewis Tony Bladek Rodney Kinney Celina Mikolajczak
Arthur Ang Brian Adams \Vurzel Keir Rorke Haining Marcos Phoniadakis
Ben Discoe Chad Nelson Alan Kulawik Sue Hannaford Bibi Jentoft-Nilsen

IV

Acknow ledgments

Throughout my many years as a graduate student, r have been fortunate to

receive support and assistance from many people and organizations. This oppor­

tunity to publicly acknowledge their contributions is welcome.

First, r thank Professor Geoffrey Fox, my thesis advisor, for his encourage­

ment and guidance during the long undertaking of this research project. During

my tenure, he has provided me with an excellent working environment with the

freedom to pursue topics that interest me.

Secondly, r thank Professor Thomas Prince, for stepping in as my advisor

in the interim after Professor Fox's departure from Caltech. r look forward to

continuing this relationship.

The work described in this thesis was the result of a fruitful collaboration.

r certainly could not have done it without Peter Quinn, Wojciech Zurek, Craig

Hogan and especially Mike Warren, who spent many, many hours helping with the

development, testing, debugging and running of the parallel BH code.

r am indebted to Joshua Barnes for making his implementation of the al­

gorithm available, in source code form, to the astrophysics community, myself

included.

None of this work would have been possible without the staff which created

and maintained a superb computational environment. Thanks to Chip Chapman,

Heidi Lorenz-Wirzba, Mark Beauchamp, Charles DeBardeleben, Hiram Hunt,

Doug Freyberger. r would also like to thank Mary Maloney and Terry Arnold

for keeping the red tape at bay.

Many others have helped and inspired me. r am grateful for their friend­

ship, as well as their direct contributions. Thank you Jon Flower, Adam Ko­

lawa, Mark Muldoon, Shih-Chyuan Huang, Mark Johnson, Sean Callahan, Roy

v

Williams, Steve Otto, David Walker, Jeff Goldsmith, Sun Ra, Paul Stolorz, Clive

Baillie and James Kuyper.

Throughout my stay at Cal tech, I have been the recipient of generous financial

support. The Shell Foundation supported me with a graduate fellowship. In

addition, this work was supported by the National Science Foundation, and the

Departement of Energy.

Very special thanks must go to the members of Blacker House for "engaging

me in varied and interesting conversation."

Finally, I would like to thank my wife, Lynn, for her love, support, patience,

and understanding. Words cannot express how grateful I am for her stubborn but

helpful insistence that I really could complete this dissertation.

VI

Abstract

Recent algorithmic advances utilizing hierarchical data structures have resulted

in a dramatic reduction in the time required for computer simulation of N-body

systems with long-range interactions. Computations which required O(N2) oper­

ations can now be done in O(N log N) or O(N). We review these tree methods

and find that they may be distinguished based on a few simple features.

The Barnes-Hut (BH) algorithm has received a great deal of attention, and

is the subject of the remainder of the dissertation. We present a generalization of

the BH tree and analyze the statistical properties of such trees in detail. We also

consider the expected number of operations entailed by an execution of the BH

algorithm. We find an optimal value for m, the maximum number of bodies in a

terminal cell, and confirm that the number of operations is O(N log N), even if

the distribution of bodies is not uniform.

The mathematical basis of all hierarchical methods is the multipole approxi­

mation. We discuss multipole approximations, for the case of arbitrary, spherically

symmetric, and Newtonian Green's functions. We describe methods for comput­

ing multipoles and evaluating multipole approximations in each of these cases,

emphasizing the tradeoff between generality and algorithmic complexity.

N-body simulations in computational astrophysics can require 106 or even

more bodies. Algorithmic advances are not sufficient, in and of themselves, to

make computations of this size feasible. Parallel computation offers, a priori, the

necessary computational power in terms of speed and memory. We show how the

BH algorithm can be adapted to execute in parallel. We use orthogonal recursive

bisection to partition space. The logical communication structure that emerges

is that of a hypercube. A local version of the BH tree is constructed in each

processor by iteratively exchanging data along each edge of the logical hypercube.

Vll

We obtain speedups in excess of 380 on a 512 processor system for simulations of

galaxy mergers with 180000 bodies. We analyze the performance of the parallel

version of the algorithm and find that the overhead is due primarily to interpro­

cessor synchronization delays and redundant computation. Communication is not

a significant factor.

VIll

Table of Contents

Acknowledgments IV

Abstract VI

Table of Contents VllI

List of Figures . XlI

1 Hierarchical Techniques and N -body Simulations . 1

1.1 Categories of N-body simulations. 2

1.1.1 PP methods. .2

1.1.2 PM methods. .4

1.1.3 PPPM methods. 5

1.2 Tree methods 6

1.2.1 Appel's method. 6

1.2.2 Barnes and Hut's method 11

1.2.3 Greengard's method. 16

1.2.4 An illustrative example. 18

1.2.5 Other tree methods. 21

1.3 Categorization of tree methods. 23

1.4 Outline of dissertation. 24

2 Properties of the BH Tree. 27

2.1 Building the tree. 27

2.2 Notation. 33

2.3 Expected number of internal cells. 35

2.4 Probability that a cell is terminal. 36

2.5 Expected number of terminal cells. 37

2.6 Expected population of terminal cells. 38

2.7 A verage depth of bodies. 40

2.8 Uniform distribution, i.e., p(x) = const. 44

2.9 Non-uniform distribution, i.e., p(x) =I- const. 51

IX

2.9.1 Large N. 51

2.9.2 Bounds on Cavg . 52

2.9.3 Bounds on Davg. 53

3 Multipole Expansions. 56

3.1 The multi pole expansion. 56

3.2 General case: arbitrary Green's function. 57

3.3 Spherically symmetric Green's function. 58

3.4 A softened Newtonian potential. 62

3.5 Pure Newtonian potential. 64

4 Practical Aspects of the Barnes-Hut Algorithm. 68

4.1 Space requirement for storing multipoles. 68

4.2 Computing multipoles. 69

4.2.1 Direct summation. 69

4.2.2 Parallel axis theorem. 70

4.2.3 Hybrid algorithm. 72

4.2.4 Operation count. 74

4.3 Choosing r'Y. 76

4.4 Evaluating <P'Y(n)(r) and a'Y(n)(r). 77

4.4.1 Arbitrary Green's function. 77

4.4.2 Spherically symmetric Green's function. 78

4.4.3 Newtonian potentials. 79

4.5 Choice of the terminal size parameter, m. 80

4.6 Running time. . 82

4.6.1 A counter-example to the O(N log N) behavior. 83

4.6.2 Interaction volume. 84

4.6.3 Number of BClnteractions. 88

4.6.4 Number of BBlnteractions. 89

4.6.5 Uniform distribution, i.e., p(x) = canst. 92

4.6.6 Non-uniform distribution, i.e., p(x) =I- canst. 98

4.7 Number of dimensions not equal to three .. . 102

x

5 Analysis of Errors in the BH Algorithm. 104

5.1 Error analysis. 104

5.1.1 Arbitrary Green's function. 106

5.1.2 Spherically symmetric Green's function. 108

5.1.3 A softened Newtonian potential. 109

5.1.4 Newtonian potential. 112

5.2 Statistical analysis of errors. 129

5.2.1 Uniform distribution in a sphere. 133

5.2.2 Uniform distribution in a cube. 134

6 Opening Criteria. 146

6.1 General form of the opening criterion. 146

6.2 Opening criteria in the literature. 148

6.3 The detonating galaxy pathology. 149

6.4 The cause of the problem. 153

6.5 Comparing opening criteria. 154

6.6 A voiding the detonating galaxy pathology. 162

6.7 Optimizing the opening criterion computation. 163

7 Parallel Implementation of the BH Algorithm .. 167

7.1 Domain decomposition, orthogonal recursive bisection. 169

7.1.1 Hypercube communication pattern. 172

7.1.2 Estimating work loads and bisection. 172

7.1.3 Choosing between x > Xsplit or x < Xsplit. 176

7.1.4 Choosing which Cartesian direction to split. 178

7.2 Building a "locally essential" tree. 184

7.2.1 Data types for the parallel BuildTree. 188

7.2.2 Control structures for the parallel BuildTree. 191

7.3 The DomainOpeningCriterion function. · 207

8 Performance in Parallel. · 212

8.1 Definition of terms. · 212

8.1.1 Com pu tational over heads. · 213

Xl

8.1.2 Memory overhead. · 218

8.2 Performance data for the N-body program. .220

8.2.1 Time for a single timestep, T step . .222

8.2.2 Estimating Toneproc and Tintrinsic. · 222

8.2.3 Speedup and overhead. .227

8.2.4 Single-processor data requirement, Doneproc. · 231

8.2.5 Memory overheads, Mcopy and Mimbal. · 231

8.2.6 Natural grain size, q. .234

8.2.7 Complexity overhead, fcplx. .240

8.2.8 Waiting overhead, f wait. .246

8.2.9 Communication overhead, fcomm. .250

8.2.10 Load imbalance overhead, fimbal. .253

8.3 Summary. · 255

A Proof of bounds on Cavg and Davg. .256

A.l Bounds on Cavg .. · 256

A.1.1 Proof of Lemma 1. .257

A.1.2 Proof of Lemma 2. · 260

A.1.3 Proof of Lemma 3. .262

A.l.4 Proof of Theorem 264

A.2 Bounds on Davg 266

B Shell Formation Using 180k Particles ... 268

C Primordial Density Fluctuations ... 272

D Rotation of Halos in Open and Closed Universes279

E Correlation of QSO Absorbtion Lines ... · 296

F Cubix .309

References · 317

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

Xll

List of Figures

An example of Appel's hierarchy of clumps.

The binary tree representation of an Appel hierarchy.

Expanded representation of a BH tree.

Flat representation of a BH tree . . .

Representation of the hierarchy of levels in Greengard's method.

Earth-Sun system

Iterative construction of BH tree.

Iterative construction of BH tree.

Iterative construction of BH tree.

Iterative construction of BH tree.

< Pop> vs. A,

< Pop> 1m vs. A,/m.
Cavg vs. N ..

mCaV9 N
-N- vs .

Davg vs. N.

mS Da "9 N
N vs.

One dimensional pathological BH tree.

Labeling of regions around V,.

Labeling of regions around V,.

Boundary effects in estimating Pmid.

(Nbb) INm VS. N.

K 1 (a,(3)

IVK1 (a,(3)1

K 2 (a,(3)

IVK2 (a,(3)1

K 4 (a,(3)

.8

.9

13

15

17

19

29

30

31

32

41

42

47

48

49

50

85

87

90

94

97

ll7

ll8

ll9

120

. 121

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

XllI

Geometry used in K~up computations.

Contour of K;UP(r) = 0.01

Contour of K;UP(r) = 0.1

Contour of KtUP(r) = 0.1

1~<p~(4)(e)))1

l~a~(4)(e)))1

((<p;(2)(e))) ~

122

124

126

127

128

140

141

142

((la~(2)(e)12)) ~

((<p;(3)(e))) ~

....................... 143

((la~(3)(e)12)) ~
A two-galaxy system.

Pathological situation for BH DpeningCri terion.

Worst case situation arising from BH DpeningCri terion.

Geometry of Vmid with the original BH DpeningCri terion.

Geometry of Vmid with the (edge, Cart) DpeningCri terion.

Foe vs. e
Equivalent values of e for different opening criteria

An ORB domain decomposition ..

A one-dimensional decomposition

A Gray code decomposition

Domain Decomposition.

A two-galaxy system.

Menwry and processor domain geometry

A two-galaxy system with long-dim splits

Data flow in a 16 processor system.

Illustration of FindParent

144

145

150

152

155

157

158

160

161

171

177

177

179

181

182

183

189

.205

7.10

7.11

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

XIV

Illustration of DomainOpeningCri terion.

False positive from DomainOpeningCri terion

T step vs. Number of processor.

Tforce vs. N

Speedup vs. Number of processor.

Total overhead vs. Ngrain.

Copied memory overhead, gcopy vs. Ngrain

Imbalanced memory overhead, gimbal vs. Ngrain

Ngrain vs. maxC dstep)

Simplified interaction domain of a processor

Memory/ Ngrain vs. natural grain size, q.

Complexity overhead, fcplx vs. Ngrain. .

Complexity time, Tcplx vs. copied memory, Mcopy.

Complexity overhead, Nindcplx vs. natural grain size, q.

Waiting overhead, fwait vs. Ngrain.

209

210

223

225

228

230

232

233

235

236

239

241

244

245

247

Empirical fit for waiting overhead, fwait *Nint vs. natural grain size, q.249
l082(Nproc)

Communication overhead, fcomm vs. Ngrain.

Load imbalance overhead, Jimbal vs. Ngrain ..

252

254

1

1. Hierarchical Techniques and N-body Simula­

tions

Physical systems may be studied by computer simulation in a variety of ways.

Simulations with digital computers are constrained by factors associated with the

finite speed of computation and the finite size of the computer. Generally, these

factors require that the first step in any computer simulation of a physical phe­

nomenon be to develop a mathematical model of the phenomenon consisting of a

finite number of discrete parts. The correspondence between the discrete compo­

nents in the computer simulation and the physical phenomenon itself is completely

arbitrary, limited only by the imagination of the scientist.

Often, the discretization is arrived at indirectly, by means of partial differen­

tial equations. First, one models the physical system by a set of partial differential

equations. Then, one applies techniques of discrete approximation such as finite

difference methods or finite element methods to recast the mathematical problem

into a discrete form. An alternate, and less widely used, approach is to discretize

the physical system into a finite set of "bodies" or "particles" which interact with

one another as well as with externally applied "forces." The bodies carry some

state information which is modified as the simulation proceeds, according to the

interactions. Simulations based on this type of discretization are referred to as

"N-body" simulations. Hockney and Eastwood[l] have extensively reviewed the

techniques of N-body simulations, as well as applications in plasma physics, semi­

conductor device simulation, astrophysics, molecular dynamics, thermodynamics

and surface physics. Applications also exist in fluid mechanics,[2, 3, 4] applied

mathematics,[5] and undoubtedly other areas as well.

In the simplest case, the state information associated with each body may

2

consist of a position and a velocity, and the interaction between bodies is a model

for some kind of force law. The dynamical state of the system is evolved by alter­

nately adjusting the velocities based on accelerations that result from interparticle

interactions, and the positions, based on the velocities.

1.1. Categories of N-body sinlulations.

In their monograph, Hockney and Eastwood[l] classify N-body methods broadly

into three categories:

1. Particle-Particle (PP) methods.

2. Particle-Mesh (PM) methods.

3. Particle-Particle Particle-Mesh (PPPM or p 3 M) methods.

We briefly review these methods to provide context for the discussion of tree

methods which follows.

1.1.1. PP methods.

In PP methods, particles interact directly with one another. The basic control

structure, which is repeated over and over as the simulation proceeds, is outlined

in Codes 1.1 and 1.2.

ComputeAlllnteractions

for(each body, b)

Computelnteraction(of b with all other bodies)

endfor

for(each body b)

UpdatelnternaIState(b)

endfor

endfunc

Code 1.1. Function to compute all pairwise interactions among a set of

bodies.

PP methods are particularly useful because of their simplicity. Often, the

interaction follows directly from a well understood physical interaction with lit­

tle or no approximation, e.g., the Newtonian force of attraction between massive

ComputeInteraction(b)

for(each body, bj 3 bj -=1= b)

PairInteraction(b, bj)

endfor

endfunc

3

Code 1.2. Function to compute all interactions with a particular body,

b.

bodies. The simplicity of Codes 1.1 and 1.2 allows for straightforward expression

in a suitable computer language like C or FORTRAN. The simplicity also allows

one to easily take advantage of "vectorization," whereby the full power of modern

supercomputers can be efficiently used. Parallelization is also reasonably straight­

forward,[6] making it possible to use large parallel computing systems which de­

rive their speed and cost-effectiveness from the assembly of numerous modest,

autonomous processors into a single parallel system.

The most significant drawback of PP methods is their scaling for large num­

bers of bodies. An implementation following Codes 1.1 and 1.2 requires each body

to interact with every other body in the system. Each time Code 1.1 is executed,

the function Pairlnteraction is called N(N -1) times, where N is the number of

bodies in the simulation. Even if Code 1.2 is modified to take advantage of a com­

mutative interaction, i.e., one for which Pairlnteraction(b1 , b2) is equivalent to

Pairlnteraction(b2 , b1), then Pairlnteraction is executed only half as many

times. Unfortunately, this does little to mitigate the rapid growth, proportional

to N 2
•

If the interaction between particles is short-range, then Code 1.2 can be re­

placed with Code 1.3. The loop in Code 1.3, which is restricted to bodies in a

ball of radius rcut around b, requires computation of only Nneigh pair interactions,

where N neigh is the number of bodies in the ball. For homogeneous systems,

Nneigh is of 0(1), i.e., independent of N. Hockney and Eastwood describe data

structures which allow one to select the Nneigh neighbors in a ball of fixed radius

from the entire set of N bodies in time O(Nneigh). Thus, the entire calculation of

4

Code 1.1 requires only O(N N Neigh) executions of Pairlnteraction. Of course, if

Nneigh is very large, this may be little improvement over the the O(N2) behavior

of Code 1.2.

If the interaction does not have a natural distance cutoff, PP methods are

limited to situations in which N < few x 104
.

CornputeShortRangelnteraction(b)

for(each body bj ::1 Separation(b, bj) < Tcut)

Pairlnteraction(b, bj)

endfor

endfunc

Code 1.3. An alternative form of Cornputelnteraction, applicable

when the interaction is negligible beyond a distance of Tcut.

1.1.2. PM luethods.

PM methods offer the advantage of O(N) behavior for large N, even if the interac­

tion cannot be neglected outside of some distance cutoff. However, they introduce

approximations which may be problematical. PM methods are applicable when

the interaction is expressible as the solution of a differential equation, discretized

onto an auxiliary mesh. Electromagnetic and gravitational interactions have this

property, with

(1.1)

(1.2)

The values of p on the mesh are computed from the locations of the bodies. Then,

Poisson's Equation, Eqn. 1.2, is solved. Finally, a discrete approximation to the

gradient in Eqn. 1.1 is evaluated, and the values of the acceleration, ii, are inter­

polated at the position of each body. The dominant contribution to the overall

time required by PM methods is the solution of Poisson's Equation. Hockneyand

Eastwood discuss several methods for solution of Poisson's Equation. It is likely

that these methods have been superseded in the intervening years by multigrid

5

methods,[7, 8] which converge in time O(Nmesh), with a remarkably small con­

stant of proportionality, where N mesh is the number of grid points in the discrete

mesh.

Hockney and Eastwood discuss the relationship between Nand N mesh . Gen­

erally speaking, the two should be roughly comparable. Otherwise, laboriously

obtained information is thrown away each time one moves back and forth between

the mesh representation and the body representation.

The approximation introduced by the PM method generally results in de­

pressing the strength of short-range interactions. The interaction between any

bodies whose separation is less than a few mesh spacings will be significantly re­

duced from the PP case. In some circumstances, this "error" actually results in

the simulation more faithfully representing the physical phenomena, e.g., collision­

less plasmas. In any event, PM methods can only model phenomena on length

scales larger than a few mesh spacings. Thus, the smallest interesting length scales

dictate the required mesh spacing. If the system under study is highly inhomoge­

neous, with length scales extending over a few orders of magnitude, then the size

of the mesh may become prohibitive.

1.1.3. PPPM methods.

Finally, Hockney and Eastwood discuss PPPM methods. These methods attempt

to recover some of the accuracy lost by PM methods without reintroducing the

O(N 2
) behavior of PP methods. In essence, a carefully designed short-range inter­

action is computed by PP methods, as in Code 1.3. This additional force is added

to the usual PM interaction. The short-range component is an analytic approxi­

mation to the error introduced by the PM method. Since the error introduced by

the PM method is of limited range, i.e., a few mesh spacings, the correction may

be computed using Code 1.3 in time O(N Nneigh).

PPPM methods still encounter difficulty with highly inhomogeneous systems.

When the range of length scales is large, one is faced with a choice between a very

large mesh, or a very large average value of N neigh. If N mesh is comparable to

6

N, then Nneigh may be a significant fraction of N, leading to O(N2) behavior,

albeit with a much smaller constant of proportionality than simple PP methods.

Furthermore, the great simplicity of Code 1.2 which facilitated efficient vectoriza­

tion and parallelization is lost for PPPM techniques. Although still possible, it

requires considerably more effort to vectorize or parallelize a PPPM method.

1.2. Tree lnethods

Since Hockney and Eastwood's monograph was published, an entirely new class of

particle simulation methods has emerged as an alternative to PP, PM or PPPM

methods. These methods are characterized by an organization of particles into a

hierarchy of clusters, which span the full range of length scales from the minimum

interparticle spacing up to the diameter of the entire system. These methods are

usually referred to as "tree methods" or "hierarchical methods" because of the

data structures which are used.

1.2.1. Appel's m.ethod.

Hierarchical data structures were introduced into astrophysical N-body simulations

by Appel. [9] It has been known for some time that the gravitational effect of a large

group of bodies may often be approximated by the effect of a single object located

at the center of mass. [10] Appel realized that one can use this fact to significantly

reduce the computational complexity of the gravitational N-body iteration. He

claimed to reduce the complexity to O(N log N), but subsequent work has shown

that Appel's algorithm is asymptotically O(N), although the difference may be of

purely academic interest for practical values of N.[ll] The basic idea is captured

by the following example: when calculating the force of the Earth on an apple,

it is not necessary to compute the effect of each and every atom on one another.

To a very good approximation, we can take both the Earth and the apple to be

point masses located at their respective centers-of-mass, and analyze the system as

though it contains only two bodies. The details of how to make this approximation

uniformly throughout a system of interacting bodies is the subject of the various

hierarchical N-body methods that have recently received attention.

7

In Appel's terminology, bodies are collected into "clumps," which in turn are

collected into larger clumps, and so on. The resulting data structure is a binary

tree. Of course, there are many binary trees that can be constructed from a

collection of bodies. A good tree will collect physically nearby bodies within the

same branch. Figure 1.1 illustrates how a region of space might be divided into

clumps which represent amorphous regions of space. Figure 1.2 shows the binary

tree equivalent to the hierarchy of clumps shown in Figure 1.1. Of course, even

given the constraint that clumps should correspond to compact regions of space,

there is still a great deal of freedom in the choice of hierarchy. Appel builds the

tree in two steps:

1. Build a "k-d tree" with the property that the bodies contained within the

two descendants of a given node are separated by a plane parallel to one of

the Cartesian axes, and have equal numbers of bodies. In other words, the

left child contains all bodies below the median coordinate, and the right child

contains all bodies above the median. The coordinate, i.e., x, y or z, alternates

at successive levels of the tree.

2. Refine the tree, so that the nearest external clump to any clump is its parent.

This is achieved with a local modification procedure that Appel calls a "grab."

He points out the effectiveness of the "grab" procedure is difficult to analyze.

Once the tree is built, the acceleration of each clump is calculated by a re-

cursive descent of the tree. Each node of the tree, i.e., each clump, only stores

velocities and accelerations relative to its parent. The acceleration of a clump rela­

tive to its parent is due solely to the influence of its sibling. Thus, the acceleration

of all the nodes in the tree can be computed by applying the recursive procedure,

ComputeAccel, shown in Code 1.4, to the root of the tree.

So far, we have not made use of the approximation that well-separated clumps

can be computed by treating them as point-masses. The subroutine Interact,

shown in Code 1.5, uses an adjustable parameter, /5, and makes the point-mass

approximation whenever the diameter of the larger of two clumps exceeds /5 times

the separation.

8

Figure 1.1. An example of Appel's hierarchy of clumps.

9

H I

Figure 1.2. A binary tree equivalent to the collection of clumps in Fig­

ure 1.1.

10

ComputeAccel(node)

ComputeAccel(RightChild(node»

ComputeAccel(LeftChild(node»

Interact (RightChild(node) , LeftChild(node»

endfunc

Code 1.4. Appel's algorithm for computing the acceleration of a node

in a tree.

Interact(A, B)

Larger = larger of A and B

Smaller = smaller of A and B

if(Diameter(Larger) > 8 * Separation(A, B))

Interact (RightChild(Larger) , Smaller);

Interact (LeftChild(Larger) , Smaller);

else

Monopole(Larger, Smaller);

Code 1.5. Appel's algorithm for computing the interaction between two

nodes in a clustering hierarchy. If the nodes are sufficiently well sepa­

rated, then a monopole approximation is used. Otherwise, the interac­

tions between their components are individually computed.

The parameter 8 may be freely varied between 0 and 1. When 8 equals

zero, every pair of bodies interacts, in much the same way as in Code 1.2. For

fixed, non-zero values of 8, Appel estimates the number of evaluations of the

subroutine Monopole to be O(N logN), but Esselink [11] has shown that Monopole

is actually executed only O(N) times. Esselink's arguments are rather involved.

The following simple discussion illustrates why Appel's algorithm is O(N):

1. The nature of the recursion in Code 1.5 guarantees that clumps which inter­

act via Monopole, are approximately the same size. The reason is that the

recursive call to Interact always subdivides the larger of the two clumps. Its

two daughters are unlikely to be very different in size from one another, or

11

from the smaller sibling.

2. Consider a particular clump, C. The clumps with which it interacts VIa

Monopole are more distant than its size times 8-1
, and less distant than its

size times 28-1 . If they were more distant than 28-1 , then they would have

interacted with C's parent.

Assuming these two premises are valid, we conclude that the volume available

for the clumps with which C interacts is limited to some fixed multiple of C's

volume, while the clumps themselves are not smaller than some other fixed multiple

of C's volume. Thus, there can be at most, 0(1) such clumps, independent of N.

Since there are 2N -1 clumps in a binary tree with N terminal nodes, and each is

an argument to Monopole only 0(1) times, the total number of calls to Monopole

must be O(N).

Appel's algorithm has not been widely adopted. Appel himself recognized

that the imposition of a hierarchical data structure on the physical system, and

its associated approximations, might lead to non-physical, hierarchical artifacts

in the final result. This would be highly undesirable in circumstances where the

purpose of the simulation is to study the evolution of some physical clustering

phenomenon, e.g., the growth of structure in the universe.[12] Furthermore, the

somewhat chaotic and tangled structure of the binary tree after the application

of the "grab" procedure makes the accuracy of the method difficult to analyze

precisely. Finally, the restriction to the very crude monopole approximation re­

quires a low value of 8, and a large number of executions of Monopole in order to

achieve acceptable accuracy. It is possible, however, to adapt Greengard's[13] or

Zhao's[14] formalism for higher order multipoles into Appel's framework.[15]

1.2.2. Barnes and Hut's Ill.ethod

Barnes and Hut's (BH) algorithm[16, 17] differs from Appel's in several important

respects. First, the tree data structure is significantly different. Each internal cell

in the tree corresponds to a cube in physical space, and has up to eight immediate

descendants, corresponding to the eight smaller cubes obtained by splitting the

12

larger one in half along each of the three coordinate axes. In Appel's terminology,

each such cube represents one "clump," with size given by the length of an edge.

We shall call these cubes "cells." In addition, the tree structure is recomputed, ab

initio for each iteration; there is nothing analogous to the "grab" procedure.

The second important difference is that BH compute accelerations only for

bodies. The internal nodes of the tree are not dynamical objects that influence one

another. They are merely data structures used in the computation of the forces

on the bodies. In fact, it is possible to compute accelerations for arbitrary test

bodies; even ones which are not included in the tree.

Finally, BH suggest, and Hernquist[18] elaborates upon the possibility of in­

cluding quadrupole and higher order terms in the force calculation.

An example of the tree used by BH is shown in Figure 1.3. For simplicity, we

shall usually render trees and other data structures as though we were considering

two-dimensional simulations. The generalization to three dimensions is obvious.

The figure makes clear the hierarchical nature of the structure, with each internal

"node" or "cell" having exactly four descendants, each of exactly half the linear

size of the parent. In three dimensions, of course, each cell has eight descendants.

The root of the BH tree corresponds to the entire computational volume, i.e.,

it encompasses all of the bodies in the N-body simulation. As we shall see, the

terminal nodes correspond to regions that contain one body. Thus, the BH tree

contains groupings of objects over the entire range of length-scales present in the

simulation. The tree is "adaptive" in the sense that it naturally extends to more

levels in regions with high particle density and short length-scales.

Figure 1.4 shows a flattened representation of the same tree as Figure 1.3. In

Figure 1.4 it is clear that the terminal nodes of the BH tree completely fill the

com pu tational volume with cubical (square) cells whose linear size is an integer

power of t times the full size of the volume. We shall use representations like

Figure 1.4 repeatedly. It should be borne in mind that Figure 1.4 is n1.erely short­

hand for Figure 1.3. The internal nodes that are apparent in Figure 1.3 are always

present. It is only the graphical representation of Figure 1.4 which obscures their

13

Figure 1.3. Expanded representation of a BH tree.

14

presence.

The BH algorithm proceeds as follows:

1. Build a BH tree with the property that each terminal node has exactly zero

or one body within it.

2. Compute the mass and center-of-mass of each internal cell in the tree. Record

this information so that each internal cell may be treated in Code 1.6 as a

body with a mass and position.

3. For each body, traverse the tree, starting at the root, using the procedure in

Code 1.6.

ComputeField(body, cell)

if(cell is terminal)

Monopole(body, cell)

else if(Distance(cell, body) > e * Size(body»

fore each child of cell)

ComputeField(body, child)

endfor

else

Monopole(body, cell)

endif

endfunc

Code 1.6. Function ComputeField computes the interaction between

a specified body, and all bodies lying in a cell.

As we shall see in Chapter 4, when ComputeField is called for every body in the

tree, Monopole is executed O(N log N) times.

The BH algorithm can be generalized in several ways.

1. The tree can be constructed with a terminal-size parameter, m. Terminal

nodes are required to have m or fewer bodies. BH consider m = 1. We

consider the effect of m i=- 1 in Chapters 2 and 4.

2. The distribution of bodies within a cell can be modeled more accurately than

as a point mass at the center-of-mass. It is common practice to compute the

quadrupole moment and to replace the final call to Monopole in Code 1.6 with

15

Figure 1.4. Flat representation of the same BH tree as in Figure 1.3.

16

a function that computes both monopole and quadrupole interactions. [18, 17,

19,20]

3. The form of the interaction need not be Newtonian gravity. In Chapters 3, 4

and 5, we consider the applicability of the BH algorithm to other forms of

interaction.

4. The form of the opening criterion, i.e., the predicate which determines whether

the multipole approximation will be used for a given body and cell, may be

modified. In addition to adjusting the parameter (), one can contemplate

alternatives which are both faster and more accurate. This topic is considered

in Chapter 6.

5. It is possible to reformulate the algorithm to take advantage of "vector" su­

percomputers.[21, 22, 20]

6. The BH algorithm can be reformulated to take advantage of parallel computer

hardware. This is discussed in Chapters 7 and 8.

1.2.3. Greengard's method.

Another algorithm has been introduced by Greengard and Rokhlin.[13, 23, 24]

Greengard combines feature of Barnes' as well as Appel's formulation, and develops

an extensive formalism based on spherical harmonics. As in Appel's method,

accelerations are computed between internal nodes of the tree, leading to an overall

time complexity of O(N). On the other hand, the cells in the hierarchy are cubes

which fill space completely, as in the BH method. Greengard has presented his

algorithm in a static, rather than an adaptive form. The hierarchy in Greengard's

method is a set of grids, each with twice as many cells in each direction as the

layer above it. The structure is shown in Figure 1.5. With a representation of

the data as in Figure 1.5, Greengard's method is not adaptive. The finest level

of the hierarchy samples the system at the same level of detail, throughout the

computational volume.

Greengard's method does not have a tunable parameter like () that controls the

descent of the tree or the number of interactions computed. In three dimensions,

17

1=0

1 = 1

1=2

1=3

Figure 1.5. Representation of the hierarchy of levels m Greengard's

method.

18

each cell interacts with 875 = 103 - 53 nearby cells at the same level of the tree.

Instead, Greengard controls errors by expanding the mass distribution in each

cell to a fixed number of multipoles. He makes an extremely strict accounting

of the errors introduced by approximating a distribution by a 2P-pole multipole

expansion, and concludes that the fractional error, E, is bounded by

(1.3)

Hence, he concludes that to obtain results accurate to within E, one should carry

out the expansion with

(1.4)

Greengard develops an extensive formalism for manipulating coefficients of

spherical harmonics. The basic "interaction" in Greengard's algorithm consists of

the translation of a multipole expansion from one center to another. For all but the

simplest situations ("\vhich corresponds to the Monopole clump-clump interactions

in Appel's algorithm) this is an extremely complex operation, requiring evaluation

of high-order spherical harmonics and some p4 floating point operations. Thus,

despite its extremely promising O(N) asymptotic behavior, the constant of pro­

portionality which relates time to N is very large. Greengard estimates that some

875p4 N operations (some of them evaluations of high-order spherical harmonics)

are required to compute potentials for N bodies. Greengard does not discuss

the additional complexity needed to compute forces, except to remark that the

gradients of the spherical harmonics may be computed analytically.

1.2.4. An illustrative example.

We have now briefly reviewed three hierarchical N-body algorithms currently in

use. To illustrate the differences between these algorithms, consider how each

would calculate the gravitational effect of the Sun on the Earth. Specifically,

imagine that both the Earth and Sun are modelled as roughly spherical clouds

each containing several thousand bodies. The geometry is shown in Figure 1.6.

19

~

X earth

Sun

Figure 1.6. Earth-Sun system.

~

X
test

Earth

20

Appel would consider both the Earth and Sun to be "clumps" located at their

respective centers-of-mass. The acceleration of all of the Earth bodies (neglecting

interactions between pairs of Earth bodies) would be the same, given by

(1.5)

In particular, there would be no tides, which arise from the difference between the

Sun's gravitational attraction on the daytime and nighttime sides of the Earth.

If tides are important, Appel would recommend decreasing 0 so that,

Diameter(Earth) > oSeparation(Earth, Sun), (1.6)

in which case the Earth would be subdivided into two or more sub-clumps before

the monopole approximation was made. This would also have the effect of re­

quiring subdivision of the Sun into many earth-sized clumps, each of which would

require its own monopole interaction. Of course, there is no guarantee that the

Earth would be split into the "correct" sub-clumps. They are as likely to be the

Northern and Southern Hemispheres as to be Night and Day. Thus, the only safe

procedure is to set

o <t:: Diameter(Earth) / S eparation(Earth, Sun). (1.7)

Such a small value of 0, would, of course imply a very large number of executions

of Monopole.

N ow consider the BH method. In this case, the Sun would be treated as

a point-mass at its center of mass. Each of the Earth bodies would be treated

separately, with the monopole approximation being evaluated separately for each

one. Tides raised by the Sun would be treated correctly because bodies on the

nighttime side of the Earth would feel less force due to their larger distance from

the center of the Sun. The correct behavior of solar tides is obtained with relatively

little effort.

21

Finally consider Greengard's method. Again the mass distribution of the Sun

is approximated, but now many terms (perhaps up to 210_pole) in the multipole

expansion are retained. Of course, since the Sun is almost spherical, the magni­

tudes of most of the high-order terms would be very small. The field from the Sun

is "translated" to the center of the Earth resulting in a new multipole expansion

about the center of the Earth. The familiar solar tides arise from the contribution

of the Sun's monopole term to the quadrupole term in the expansion about the

center of the Earth. If we consider only the monopole term from the sun, then

Greengard's formalism tells us

GMsun 2 (4; °
-I~ 131 R earthl VSY2(B,</J)+""

Xearth

(1.8)

where Yim are the spherical harmonics, B is the angle between Rearth and Xearth.

The azimuthal angle, </J, happens to be irrelevant in this case. Greengard does

not compute explicit error bounds for the gradient of </J, but we may compute it

analytically as:

~) GMsun ~ (I 1 ff7r 0) -'\1</J(Xtest = - ~ 2'\1 Rearth -Y1 (B,</J)
IXearth 1 3

+ GMsun V (IR 12 (4; yO(B A.))
1 ~ 13 earth V S 2 , If'
Xearth

(1.9)

The first term in Eqn. 1.9, gives rise to the usual acceleration of all Earth parti­

cles uniformly toward the Sun, while the second gives the tidal variations, which

depend on the angle e.

1.2.5. Other tree rn.ethods.

There are a number of other hierarchical N-body methods in the literature. In

this section, we provide a very brief overview of them.

22

Jernigan and Porter[25, 26, 27] describe a method which treats the hierarchy

as a dynamical object, in which the velocity and acceleration of a node in the tree

is always with respect to its parent. They use a binary tree similar to Appel's. In

order to improve on the accuracy of Appel's method, they transform the equations

of motion for each pair of siblings into a "regularized" form.

Pepin, Chua, Leonard, and Winckelmans[15, 28] have described yet another

hierarchical method. The simulation of interacting "vortex particles" as mod­

els of fluid flow shares the same long-range difficulties as gravitational N-body

simulations. They use a binary tree, similar to that used by Appel, and a mul­

tip ole expansion similar to Greengard's two-dimensional formalism. Pepin has

shown that the method can be parallelized, achieving good efficiency on up to 32

processors.[15] This work specifically treats two-dimensional problems, for which

Greengard's formalism is considerably simplified. In principle, three-dimensional

problems may be treated by adopting either Greengard's or Zhao's formalism for

translation of three-dimensional multipoles.

Zhao[14] has described an O(N) algorithm that is very similar in structure

to Greengard's method. The difference lies in the representation of the multipole

expansion. Where Greengard uses a formalism based on spherical harmonics, Zhao

uses a formalism based on Taylor series and Cartesian coordinates. Otherwise, the

structure of the algorithms is identical. Zhao and Johnsson[29] have demonstrated

that the algorithm may be adapted for execution on the Connection Machine, a

SIMD system with 65536 single-bit processors and 2048 floating point units. Their

results are only for uniform distributions of bodies. They do not consider problems

of load balancing or implementation of adaptive hierarchies.

Katzenelson[30] presents a unified framework which encompasses both Green­

gard's algorithm and a non-adaptive version of Barnes' algorithm, as well as an

outline for implementation on the Connection Machine. He also does not con­

sider the problem of load balance or the need for adaptive structures when the

distribution of bodies in space is highly non-uniform.

Benz, Bowers, Cameron and Press[31, 32, 33] have proposed yet another

23

method with similarities to Appel's method and BH. As in Appel's method, the

hierarchy is constructed as a binary tree. The construction is slightly different,

however, based on a technique for finding "mutual nearest neighbor" pairs. This

technique seems to eliminate some of the uncertainties associated with Appel's

"grab" procedure. The force calculation now proceeds in a manner very similar to

the BH algorithm. The tree is traversed once for each body, applying an opening

criterion at each node which determines whether the quadrupole approximation

is adequate, or, conversely, whether the interaction must be computed with the

daughters of the node. The method requires O(N log N) executions of the basic

quadrupole interaction subroutine to compute forces on all bodies. Makino [20]

has found that the force evaluation is approximately as time-consuming as the

BH algorithm, for a given level of accuracy, but the construction of the tree takes

roughly ten times as long.

1.3. Categorization of tree lllethods.

Obviously, a large number of tree methods have been suggested, with diverse

scalings, data structures, mathematical foundations, etc. Nevertheless, many also

share features in common. Table 1.1 categorizes the different methods according

to the following criteria:

Tree type: The methods use either binary trees or octrees. The octrees are

generally easier to construct, as they do not require searching for neighbors,

computing medians, etc. Since they do not impose any external rectangular

structure, the binary trees may introduce fewer artifacts into the simulation.

There is little evidence one way or the other.

Multipoles formalism: Methods make use of monopole, quadrupole or arbitrarily

high order multipoles. When high order methods are used, they are either

based on spherical harmonics or Taylor series expansions.

Adjustable opening criterion: Some methods have an adjustable parameter, e.g.,

B, which controls the opening of nodes in the tree during traversals.

Adaptive: A method is considered adaptive if the hierarchy extends to deeper

24

levels in regions in which bodies are present with high spatial densities. In

general, those methods which are not adaptive can be made so by altering the

fundamental data structure from an "l-D array of 3-D arrays" to an octree.

Scaling: The methods are either O(N log N) or O(N). As logN grows so slowly

the difference between the asymptotic speeds for very large N may be of little

practical significance. For practical values of N, the "constants" are at least

as important as the functional form of the scaling.

Interaction type: Some of the methods compute interactions between nodes of

the hierarchy, while others only compute interactions between isolated bodies

and nodes of the hierarchy. All methods compute some interactions between

pairs of bodies. The methods which allow nodes to interact have a scaling

behavior of O(N), while those which have only body-node interactions scale

as O(N log N). Generally, node-node interactions are extremely complex.

We distinguish between the different algorithms based on the most complex

type of interaction allowed, i.e., either body-body (B-B), body-node (B-N) or

node-node (N-N).

Table 1.1. Classification of tree methods according to criteria described in the

text.

Appel BH GR Zhao Pepin Benz JP

Binary fOct-tree B 0 0 0 B B B

Multipoles Mono Quad Sphr. Tayl. Sphr. Quad Mono

Adjustable OC Yes Yes No No Yes Yes Yes

Adaptive Yes Yes No No Yes Yes Yes

Scaling N NlogN N N N NlogN NlogN

Interactions Jr-If B-N N-N N-N N-N B-N B-N
AI-tJ

1.4. Outline of dissertation.

The remainder of this dissertation will be concerned with various aspects of the

BH algorithm. \iVe concentrate on the BH algorithm for several reasons:

1. It has received, by far, the most attention in the astrophysics community and

25

will likely be the most reliable algorithm for use in "real" scientific simulations.

2. Joshua Barnes kindly provided a copy of his version of the code which was

written in the C programming language, facilitating portability to Caltech's

parallel computers.

3. The firm distinction between the force calculation and the tree construction

phase makes effective parallelization much easier. Although by no means im­

possible to parallelize, Appel's and Greengard's algorithms require consider­

ably more bookkeeping because of the need to store and compute interactions

for non-terminal objects in their hierarchies. It is likely that load balance ,vill

be considerably harder for either of these algorithms, in comparison to BH.

4. The asymptotic rates, O(N log N) vs. O(N), do not tell the whole story.

Based on Greengard's estimate of 1752N pair interactions per time-step[13]

(pg. 70-71), and our empirical observation that the BH algorithm with

B = 0.8 requires approximately 15-35 N log2 N pair interactions per timestep,

the asymptotic regime in which Greengard's algorithm is expected to be su­

perior is near N ~ 1015
- well beyond any planned simulations. It is worth

noting that the exact value of the crossover point depends exponentially on

the precise constants that precede the O(N log N) and O(N) factors. The

turnover point can be changed by many orders of magnitude by relatively

small adjustments in parameters or algorithms.

In Chapter 2, we investigate the statistical properties of the BH tree. VVe

present rigorous estimates for the average depth of the tree, the average number

of cells, etc. These results are not unexpected, but only heuristic arguments have

been presented before. In Chapter 3, we develop some of the mathematics of the

multipole expansions used in the BH algorithm. Multipole expansions, of course,

are not new, but the fact that the BH algorithm can be applied to non-Newtonian

potentials has not been generally recognized. In Chapter 4, we consider some

aspects of the algorithm itself. In particular, how much memory and time are

required to execute it. Again, the results are not unexpected, but it is reassuring

26

to obtain rigorous estimates of the expected performance of the algorithm. Espe­

cially interesting is the fact that the performance is only weakly effected by highly

non-uniform distributions of bodies. In Chapter 5, we return to the multipole

expansion, and compute error bounds for various approximations. These error

bounds are useful for controlling the accuracy of simulations, and for choosing

a strategy for selectively using the multipole approximation. In Chapter 6, we

consider the issue of opening criteria, i.e., the question of when the multipole ap­

proximation may be used, in some detail. We discuss a serious flaw in the usual

procedure, and consider some alternatives that do not suffer from the same diffi­

culty. In Chapter 7, we address the issue of parallel computation. We find that

the BH algorithm can be formulated so that it may be executed on a parallel

computer. Adaptive load balancing, and a strategy for constructing only a small

fraction of the BH tree in each processor is necessary to efficiently use a large num­

ber of independent processors. In Chapter 8, we analyze the parallel algorithm

in some detail. A general framework for identifying the sources of inefficiency in

a parallel algorithm is described, and applied to the parallel BH algorithm. In

contrast to the majority of parallel scientific algorithms, the inefficiency in the

parallel BH algorithm is not related to interprocessor communication. Most of

the overhead is due to processor synchronization and redundant calculations. Ap­

pendix A contains detailed proofs of some assertions in Chapter 2. Appendix B

contains a reprint on the formation of galactic shells. Appendix C contains a

reprint on formation of galaxy halos in an expanding universe. Appendix D con­

tains a reprint on the relationship between the local mass density and the rotation

of halos arising in N-body simulations. Appendix E contains a reprint of a paper

on the statistics of QSO absorption line systems. Finally, Appendix F contains

a reprint of a paper on Cubix, a programming tool which was used for all of the

parallel programs described in this dissertation.

27

2. Properties of the '" H Tree.

In this chapter we investigate some statistical properties of the BH tree. Such

quantities as the average depth of the tree and the number of non-terminal nodes

will be important in the discussions of performance, so we begin by studying the

tree itself.

2.1. Building the tree.

We define a generalized BH tree by the following properties:

1. The cells partition space into an octree of cubical sub-cells, so that each cell

has eight descendants of equal size.

2. No terminal node of the tree contains more than m bodies. BH consider the

case, m = 1.

3. Any node of the tree which contains m or fewer bodies is a terminal node,

i.e., it is not further subdivided.

There are many ways to construct such a data structure from a list of bodies.

One method is to begin with an empty tree and to examine each body in turn,

modifying the tree as necessary to accommodate it. To add a body, it is necessary

to find the most refined element of the current tree which contains the body, and

then to add the body directly to that element, either by refining it further or by

simply inserting the body. Barnes describes a recursive procedure which performs

the above steps. In the following code fragments, we will encounter two distinct

data types:

Bodies: These contain a position, a mass, a velocity, and perhaps other physical

data which is carried by the bodies in the simulation.

Cells: These represent cubical volumes of space. Cells which are internal have

somewhat different storage requirements and properties from cells which are

28

terminal.

Cells may be further subdivided into two types:

Internal Cells: These are the internal nodes of the BH tree. Each Cell contains

a set of multipoles which may be used to approximate the effect of all the

bodies which are descendants of the cell. In addition, a Cell contains pointers

to up to eight direct descendants.

Terminal Cells: These are the terminal nodes of the BH tree. As we shall see

in Chapter 4, if m is chosen correctly, then terminal cells need not store a

multipole expansion. They simply store the header for a linked list of bodies

and enough information to specify the size and location of the region of space

enclosed by the cell.

Insert(Body, Cel l)

if(Cell is not terminal)

if(Cel l has a Child which encloses Body)

Insert (Body, Child)

else

NewChild(Body, Cell)

endif

else if(Cel l contains fewer than m bodies)

InsertD i rectly(Body, Cell)

return;

else if(Cel l contains exactly m bodies)

NewCell=a new, non-terminal cell with

eight empty children

fore oldbody = each body in Cell)

Insert (oldbody, NewCell)

endfor

Insert (Body, NewCell)

replace Cell with NewCel1

endif

endfunc

Code 2.1. Procedure for inserting a new body into an existing BH tree.

29

•

•
• • Ie

•

•
•

Figure 2.1. Snapshot of an m = 1 BH tree after eight bodies have been

inserted using Code 2.1.

30

• •

•
• • .. •

• •
• •

~ • • •
•

Figure 2.2. Snapshot of an m = 1 BH tree after 16 bodies have been

inserted using Code 2.1.

31

• • •

w
~ • • •

• • • • ..
• • •

~ • • • •
•

•

Figure 2.3. Snapshot of an m = 1 BH tree after 24 bodies have been

inserted using Code 2.1.

•
•

• •

• •

• • • •

• •

Figure 2.4. Snapshot of an m

inserted using Code 2.1.

•

•

32

~ •
•

~
~ t ..

• • Ia

•
~ • •

•
•

•

1 BH tree after 32 bodies have been

33

The function Insert in Code 2.1 is essentially equivalent to Barnes' method

of inserting a body into a cell. The function InsertDirectly, which is used by

Insert, simply adds a body to the list of bodies associated with a terminal cell.

The function NewChild, creates a new terminal node which contains only one Body,

and links it into the tree as a child of Cell.

Figures 2.1 through 2.4 show the evolution of a two-dimensional tree built ac­

cording to the method of Code 2.1. Notice that the sequence shown in these figures

would be very different had we inserted bodies in a different order. Nevertheless,

the tree that finally results from this procedure is unique.

Once the tree is in place, the centers-of-mass and multipole moments of each

of the internal nodes can be computed using a general form of the parallel axis

theorem. We will consider multipole moments and the parallel axis theorem in

some detail in Chapter 4. We now turn to the statistical properties of the tree

itself.

2.2. Notation.

We begin with a finite cubical volume, Va, representing all of space, i.e., no body

falls outside of this volume, and an underlying probability density function p(x).

Now consider a collection of N coordinates (or bodies), {Xl, ... ,X N }, independent,

identically distributed random variables, with probability density p(x). We are in­

terested in statistical properties of the BH tree constructed from these bodies. For

example, how deep is it, how many internal nodes does it contain, and how many

operations are entailed by an application of the BH force calculation algorithm,

on average?

We begin with some notation. We shall label cubical cells with a subscript ,.

Every possible cell is labeled by some, - those which are in the BH tree, as well

as those which are not.

Every cell, except the root, has a unique parent, which we denote by i b)

In addition, every cell has an associated depth, db), which is the number of its

34

ancestors. We note that all cells at the same depth have the same volume,

V - Vr 8-d(i)
i - 0 , (2.1)

and there are 8d cells with depth equal to d. We define Ld as the set of cells at

level d, i.e.,

(2.2)

For any cell, Pi is the probability that a particular body lies within Vi'

(2.3)

The probability that Vi will contain exactly z bodies is given by the binomial

distribution function,

(2.4)

We also define the cumulative binomial distribution and its complement,

m

CN,m(Pi) = LBN,j(Pi) (2.5)
j=O

and
N

DN,m(Pi) = 1 - CN,m(Pi) = L BN,j(Pi)' (2.6)
j=m+l

The functions, Cm,N and Dm,N are related to the incomplete beta function.[34]

For two disjoint volumes, /1 and /2, the probability that there are exactly il bodies

in ViI and exactly i2 bodies in Vi2 is given by

(2.7)

We shall also use the limi t

lim DN,m(P) = pm+l (N).
p,-O m + 1

(2.8)

35

2.3. Expected number of internal cells.

The probability that a cell, " is an internal node of the BH tree is exactly the

probability that it contains more than m bodies, i.e.,

Prob(r is internal) = DN,m(Pi). (2.9)

Thus, the expected number of internal nodes in the tree is given by

Cavg = ~ DN,m(Pi)
i

00

= ~ ~ DN,m(Pi)
d=O iECd

(2.10)

00

where we have defined

GN,m(d) = ~ DN,m(Pi)· (2.11)
iECd

As long as p is bounded, we have

< V; 8 -d([) Pi _ pmax 0 , (2.12)

and hence, using Eqn. 2.8 and the fact that there are 8d cells in Ld,

lim GN,m(d) = O(8-md). (2.13)
d-+oo

Therefore, the sum in Eqn. 2.10 clearly converges. In fact, it converges very

rapidly, and we will have no problems evaluating it numerically in Section 2.8.

36

2.4. Probability that a cell is ternlinal.

Now we ask for the probability that a cell, V" is terminal, and that it has exactly

a bodies, denoted by Prob(Pop(V,) = a). In order for a cell to be terminal, its

parent must be internal. Thus,

Prob(Pop(,) = a)

= Probe V, contains a bodies AND Vii contains> m bodies)

= Prob(V, contains a bodies)

- Prob(V, contains a bodies AND Vii contains::::; m bodies)

= Prob(V, contains a bodies)

m-a
- L Prob(V, contains a bodies AND (Vii - V,) contains j bodies).

j=O

(2.14)

We can now use the binomial distribution functions defined in Eqn. 2.7 to obtain

m-a
Prob(Pop(,) = a) = BN,a(P,) - L BN,a,j(p"Pil - p,).

j=O
(2.15)

The probability that a cell is terminal, regardless of how many bodies it

contains, is clearly a summation over Eqn. 2.15,

(2.16)
m m-a

= CN,m(P,) - L L BN,a,j(p"PiI - p,).
a=O j=O

Now observe that

m m-a m s

where s = a + j, (2.17)
a=O j=O s=Oa=O

37

and also, by the binomial theorem

s

L BN,a,s-a(P"Ph - p,) = BN,s(Ph)·
a=O

From Eqns. 2.16, 2.17, and 2.18, we obtain

m s

Prob(V,is terminal) = CN,m(P,) - L L BN,a,s-a(P"Ph - p,)
s=Oa=O

m

= CN,m(P,) - LBN,s(Ph)
8=0

= CN,m(P,) - CN,m(Ph)

= DN,m(Ph) - DN,m(P,)·

2.5. Expected number of terminal cells.

(2.18)

(2.19)

We now estimate the expected number of terminal cells, Tavg in a BH tree with

N bodies as

Tavg = L Prob(V,is terminal) ,
00

= L L Prob(V)s terminal)
d=O ,ECd

00

= L L (DN,m(Ph) - DN,m(P,)
d=O ,ECd

00

= L 8GN,m(d -1) - GN,m(d)
d=l

00

= 7Cavg .

(2.20)

Thus, the expected number of terminal cells is exactly seven times the expected

number of internal cells. This is not a surprising result. In general, if an octree has

38

N term terminal nodes, then we can expect approximately N term /8 nodes which

are parents of terminal nodes, N term /64 nodes which are grandparents, etc. The

total number of nodes will be the geometric sum,

N term

7
N term + N term + ...

8 64
(2.21)

Equation 2.20 verifies that the loose reasoning of Eqn. 2.21 is indeed exactly correct

when treating expectations of cell populations. We note that the sums in this

section include terminal nodes with zero bodies. In practice, such empty terminal

nodes will not require storage space, so the results are not of great significance.

2.6. Expected population of terminal cells.

The expected population of V-y is also a summation over Eqn. 2.15,

m

< Pop(V-y) >= L aProb(Pop(V-y) = a). (2.22)
a=l

Note that we are considering the population of a cell to be zero if it is non-terminal.

We now make use of the following identities:

Thus,

aBN,a,j(P, q) = NpBN-l,a-l,j(P, q).

(2.23)

(2.24)

(

m-l m-l-a)
= Np-y CN-l,m-l(P-y) - ~ .t; BN-l,a,j(P-y,Ph - P-y)

(2.25)

39

Again, using Eqns. 2.17 and 2.18, we obtain

= Np,(CN-1,m-l(P,) - CN-1,m-l(Ph))

= Np, (DN-l,m-l(Ph) - DN-l,m-l(P,))·

(2.26)

This result tells us the expectation value of the number of "terminal bodies" in a

cell whose integrated probability is p, and whose parent's integrated probability

is Ph. For very large P" the expectation is small because it is very unlikely that

the cell is terminal. For very small P" the expectation is also small because it is

unlikely that any bodies fall in the cell at all.

We can quantify these observations if we assume that N is very large, and

that p, is very small, but that Np, = .A,. Under these conditions, the binomial

distribution goes over to the Poisson distribution,

(2.27)

Furthermore, we assume that p(x) is almost constant over the volume Vi" m

which case

(2.28)

Under these conditions, Eqn. 2.26 becomes

m-l

< Pop(V,) >= .A, L (Pi(.A,) - Pi(8.A,)). (2.29)
i=O

Figure 2.5 shows a plot of < Pop(V,) > as a function of .A" for m ranging

from 1 through 5. The maximum of the expected population is approximately

40

proportional to m. This is because m is the maximum number of bodies that can

reside in a terminal cell. As m increases, we expect proportionally more bodies

in terminal cells. Furthermore, the value of A, which gives rise to the maximum

expected population is also approximately equal to m. The reason is that for

significantly higher AI" cells are likely not to be terminal, while for significantly

smaller A" cells are likely to have low populations, or not to have parents which

are internal cells. Figure 2.6 shows the same data as Figure 2.5, but with the axes

rescaled to reflect the fact that the heights and widths of the curves in Figure 2.5

are approximately proportional to m.

From Figure 2.6, we see that the expected number of terminal bodies in a cell

peaks when AI' is slightly less than m. Furthermore, even for "resonant" values

of AI" close to the peak, the expected population of V, is slightly less than about

m/2. Thus we conclude that in a BH tree with a maximum of m bodies per node,

we can expect, on average, slightly fewer than m/2 bodies in the terminal nodes.

This should not be a surprising result. Consider the fact that the probability that

a given node, not necessarily terminal, with AI' ~ m has m bodies is not too much

different from the probability that it has m+ 1. In the latter case, it will likely give

rise to eight smaller terminal cells, with an average population of only (m + 1)/8.

Thus, almost-empty terminal cells are about as likely as almost-full terminal cells,

and it isn't surprising that the average population of terminal cells is near to m/2.

2.7. Average depth of bodies.

Now we can ask for the expected population of all cells with depth equal to d.

Clearly, this is just a sum over all appropriate, of Eqn. 2.26,

< Pop(depth = d) >= L Npl'(DN-l,m-l(Ph) - DN-l,m-l(PI')).
I'E L d

Equation 2.30 may be simplified by noting that

Pa = L PI"
,3I(,)=a

(2.30)

(2.31)

::::
Q)
C)

2.5

2

1.5

0.5

o

o

41

Average population of terminal cells

5 10 15 20
A, expected nUInber of particles in cell

Figure 2.5. The expected value of the number of bodies in a cell with

N PI' = .AI'.

42

0.6 Scaled expected population vs. A

E
..........

1\ 0.4

~
.~
ttl

'"5
p.
0

p..

v

0.2

2 3 4
AI rn

Figure 2.6. The expected value of the number of bodies in a cell with

N P, = .A" with both the ordinate and abcissa scaled by m.

5

43

i.e., for a given cell, the sum of the probabilites of its children is equal to its own

probability. Thus,

< Pop(depth = d) > = N (L P,DN-l,m-l(P,) - L P,DN-l,m-l(p,))
,ECd-l ,ECd

= N (FN-1,m-l(d - 1) - FN-l,m-l(d)) ,

(2.32)

where we define

FN,m(d) = L p,DN,m(P,). (2.33)
,ECd

We can check our calculation by computing the sum of the expected popula-

tion, over all values of d,

00

< Total population> = L < Pop(depth = d) >
d=O

~ N (t, (FN-l,m-l(d - 1) - FN-l,m-l(d)))

= N J~oo (t (FN-l,m-l(d - 1) - FN-l,m-l(d)))
d=l

= N Dlim (FN-1,m-l(O) - FN-l,m-l(D))
-+00

= N (1 - lim FN-1,m-l(D)) D-+oo
=N.

(2.34)

The last identity follows from the fact that

(2.35)

by the same argument as led to Eqn. 2.13.

The total population is exactly as it should be. By a very roundabout method,

we have determined that the expected number of bodies in a BH tree constructed

from N bodies is precisely N.

44

The average depth of a body in a BH tree may also be obtained from Eqn. 2.31,

1 00

Davg = N ~ d < Pop(depth = d) >
d=O

D

= J~oo ~ d(FN-l,m-l(d - 1) - FN-l,m-l(d)))
d=l

D-l

= Dlim (~FN-l,m-l(d) - DFN-1,m-l(D))
-+00

d=O

00

= ~ FN-l,m-l(d)
d=O

= ~P,DN-l,m-l(P'). ,

(2.36)

The value of FN,m(d) depends on the details of the probability distribution, p. We

cannot make further progress analyzing the average depth of the BH tree, or the

average number of cells it contains, unless we make assumptions about p.

2.8. Uniforln distribution, i.e., p(x) = const.

If the distribution of bodies, p(x), is constant, we can explicitly evaluate FN,m(d)

and GN,m(d) and then numerically evaluate C avg and Davg. The results are in­

teresting in their own right, as approximately uniform distributions of bodies are

used to describe the early universe in cosmological simulations. More importantly,

we can extrapolate the results for a uniform distribution to situations with a non­

uniform distribution, but a sufficiently large value of N.

We now consider the situation in which p is a uniform distribution, i.e., a body

is equally likely to appear anywhere in the volume, Vo. Since p(x) is a probability

density, we have

1
p(x) = V

o
'

P
- S-d(,),) ,- ,

(2.37)

(2.38)

45

and there are exactly 8d cells with depth d. Equation 2.11 becomes

and Eqn. 2.33 becomes

Now we use Eqns. 2.10 and 2.36 and obtain

and

00

Cavg = I:: 8 d
D N ,m(8-

d
)

d=o

00

Davg = I:: DN_1,m_l(S-d).

d=O

(2.39)

(2.40)

(2.41)

(2.42)

We can verify that they are well defined if we make use of the limit, Eqn. 2.8.

In fact, Eqn. 2.8 tells us that the sums converge very rapidly and can eaily be

evaluated numerically given values Nand m.

Figure 2.7 shows Cavg computed according to Eqns. 2.41 and 2.10. Based on

the figure one is tempted to conjecture that

NCm
Cavg <-­

m
for all N. (2.43)

A plot of mC;;vg is shown in Figure 2.8, in which the abscissa is remarkably constant

over a large range in N.

Figure 2.9 shows Davg computed according to Eqns. 2.42. Again, the figure

suggests a very tight bound,

for all N, (2.44)

which is substantiated in Figure 2.10 by a plot of ~8Davg vs. N. Prov­

ing these conjectures is rather involved, and is the subject of Appendix A.

46

We show values for em and dm for several values of m in Table 2.1.

Table 2.1. Values of em and d m as defined in Equations 2.43 and 2.44.

m em d m

1 0.50 5.2

2 0.52 4.1

3 0.55 4.0

4 0.58 4.1

5 0.63 4.2

20 0.78 5.2

47

Cavg vs. N

r 1000
" u

S

100

10

1

0.4L--L~UUllll __ ~LLUW~~-L~llllL--L~~~ __ ~-U~~~-L~UllL-~
1 10 100 1000 10 •

Figure 2.7. Plot of Cavg vs. N. for several values of m.

48

0.7

m=5

0.6

Z
'-...

E' 0.5 m=4
u

S

m=l

0.4
m=3

m=2

0.3

1 10 100 1000 10 •

Figure 2.8. Plot of m~"g for several values of m. Note how Cavg IS

approximately proportional to ;;:,.

49

Average Depth vs. loga(Nbodi ••)

6

CJ
Q)

I-.
::r:::
JIl
.....
0

..c: 4
p.,
Q)

'd
Q)

be
ttl
I-.
Q)

~

2
m=l

m=2
m=3.4.5

o L-~ __ -L __ ~ __ ~ __ L-~ __ -L __ ~ __ ~ __ L-~ __ -L __ -L __ ~ __ L-~

o 2 6 8

Figure 2.9. Plot of Davg vs. N. for several values of m.

50

5 m=5

" m=l
" :a
0 .c

Z
..........

~ 4 m=4
'" " '" ~
~
OJ

* S
m=3
xn=2

3

2 L-~~~~ __ ~~~il--L~~~ __ ~~~ilL~~~~ll--L~LU~ __ ~

1 10 100 1000

Figure 2.10. Plot of ;:; SDav
9 vs. N for several values of m.

51

2.9. Non-uniform distribution, i.e., p(x) =I const.

Now we return to distributions of bodies that are not constant. We can no longer

explicitly evaluate quantities like FN,m(d) and GN,m(d), so our conclusions can­

not be as specific as in the previous section. However, we will find that if N is

reasonably large, then the bounds of previous section apply with minor modifica­

tions, even if p(x) is not constant. The exact condition on the magnitude of N is

simply a precise statement of the idea that N must be large enough so that a col­

lection of N samples drawn from the distribution, p(x), is sufficient to accurately

reconstruct the distribution, p(x). This condition is always satisfied by practical

N-body simulations.

2.9.1. Large N.

We start with the assumption that p is well-behaved, i.e., bounded with bounded

derivatives, etc., everywhere in the region Vo. Then, to any desired level of accu­

racy, we can find a set of disjoint cells that partition Vo such that p is approximately

constant over each cell. Call this set S. We can precisely characterize S by

(2.45)

V, E S: p(x) is approximately constant over V/,,

We designate by lSI the number of elements in S.

Now, we compute the expected number of bodies in each member of S,

N/, = Np/" (2.46)

The condition we need for the results of this section is that

1

Ni» 1 (2.4 7)

That is, in every region over which p is approximately constant, we can expect a

substantial number of bodies. The purpose of the one-half power in Eqn. 2.47 is

so that the number of bodies that actually fall within each I E S will be a good

52

1

estimate of N I . In the following, we will neglect all terms smaller than N:;2. We

shall refer to a distribution 15 which satisfies these conditions as "measurable with

N samples." If 15 is measurable, then it can be accurately reconstructed from a

statistical realization with N samples, simply by approximating:

N 15(x) ~ I
NVgamma

for x E VI. (2.48)

2.9.2. Bounds on C avg •

rt is well known that the binomial distribution, B N,i(p), has mean value, N p, and

variance Np(l - p). Thus, in each cell in the set S, we can expect to find

(2.49)

bodies. Based on Eqn. 2.47, we can neglect the last term in Eqn. 2.49 and conclude

that there will be almost exactly N I bodies in each of the elements of S. \Ve can

now treat each of the cells, , E S, as a separate and independent BH tree. By

construction, these cells have constant 15, and a specified number of bodies. We

can now simply calculate the number of bodies in the entire BH tree,

Cavg(N) = L Cavg(NI)

IES (2.50)

+ # cells resulting from assembly of the elements of S.

The elements of S are disjoint and cover all of Vo, taken together, they form

the terminal nodes of an octree (quadtree in two dimensions). The number of

additional nodes which constitute their ancestors in the entire BH tree must be

less than ~. Thus, we have

(2.51)

From Eqn. 2.43, we have

(2.52)

53

and, since the elements of S are a disjoint partition of Vo, we have

C (N)
cmN ~

avg < m + 7 . (2.53)

2.9.3. Bounds on Davg.

We now turn to the average depth of bodies when the probability density is not

constant. Again, we express Davg(N) in terms of a sum over the elements of S,

1
Davg(N) = N ~ N,(Davg(N,) + depthCr))·

,ES
(2.54)

First, we note that the depth of a cell, T, may be expressed in terms of the

logarithm of its volume,

depth(T) = -logs V,.
Va

(2.55)

We can make use of Eqn. 2.44, and Eqn. 2.54 becomes

(2.56)

Now, we recall that

N, = Np" (2.57)

so Eqn. 2.56 becomes

(2.58)

The sum in Eqn. 2.58 has some interesting properties. First, we note that it may

be approximated by an integral over the volume Vo. Since p is approximately

constant over each V" we have

p, ~ p(x,) V,. (2.59)

54

We define the quantity, H, as the sum in Eqn. 2.58, and in light of Eqn. 2.59, we

have

(2.60)

and

(2.61)

The integral in Eqn. 2.60 is similar to the "entropy" of the probability distri­

bution, p. Thus, we might expect that it has a minimum when p is constant. This

is indeed the case. One can easily show, using the method of Lagrange multipliers

that H has an extremum when

in which case, we trivially have

VI = VO,
PI

H =0.

(2.62)

(2.63)

Furthermore, the matrix of second-derivatives of H, i.e., its Hessian, is positive

definite when Eqn. 2.62 is satisfied. Thus, we conclude that

H ~O, (2.64)

and equality only holds if Eqn. 2.62 is satisfied.

In practice, H is usually a fairly small constant. For example, the Jaffe

model[35] cut off at R = A,a, which is used as a benchmark in Chapter 8 and

which is used for the initial configurations in Appendix C, has a density profile of

It is a simple exercise to compute the "entropy,"

if I < A,a;
otherwise.

(
4 + 3A) 2

HJafJe = A logs(l + A) -logs(3e). (2.65)

55

For large A, H grows only logarithmically with A,

. (A3

) hm HJaJJe = logs -2 '
A-HXJ 3e

(2.66)

while for small A, H JaJ Je approaches a constant,

lim HJaJJe = logs (e 2

) ~ 0.43.
A-+co 3

(2.67)

The benchmarks in Chapter 8 were run with A = 10. The corresponding value of

His

HJaJJe(A = 10) ~ 2.43. (2.68)

Clearly, the magnitude of H is not very large.

For practical values of N, in the range 104 -106
, H is considerably smaller than

logs(dmN 1m), so the correction due to the non-uniformity ofthe distribution does

not greatly affect the average depth of the tree.

56

3. Multipole Expansions.

In this section, we treat some of the mathematical issues that arise in the applica­

tion of clustering techniques to potential problems. The analysis will proceed in

several steps. First, we will develop a multipole expansion for a very general class

of potential problems. Then we will specialize these results for particular forms of

the potential, proceeding from completely general to spherically symmetric, to a

softened Newtonian potential, to a strictly Newtonian potential. As we shall see,

the strictly Newtonian potential has some important mathematical features which

simplify both the mathematical analysis as well as the computational problem.

3.1. The 111ultipole expansion.

The computational N-body problem is usually an approximation to a continuous

physical system or a discrete physical system with a very much larger number of

degrees of freedom (simulations of globular clusters are a notable exception). In a

large elliptical galaxy, there may be 1011 stars, sufficiently many that the densities

and distributions of stars may be treated as a continuum. In the continuum limit,

the problem is described by a Green's function, G(r), a density field, p(f), and a

potential, <PC f), related by

(3.1)

where V is the volume over which the density is known to be non-zero. The density

and Green's function are considered "inputs" and the potential, or perhaps its

gradient,

(3.2)

are the desired "output."

57

First, we note that the expression for cp in terms of p is linear in p. If we

partition space into disjoint regions, V, such that

Then

V=U V,. ,

cp(r) = L cp,(r), ,

cp,(r) = r G(r - x)p(x)d3x.
lv,

3.2. General case: arbitrary Green's function.

(3.3)

(3.4)

(3.5)

Now let's choose a point, r" which is not necessarily inside V" and do a Taylor

series expansion of G(r - x),

G(r - x) =G((r - F'.y) - (x - F'.y))

1 . .
+ 2(x - r,)Z(x - r,)JoiojG!1"_1",

(3.6)

1 . . k
- 6(x - r,)Z(x - r,)J(x - r,) OiOjOkG!1"-1", + ...

Inserting this expression into the integral in Eqn. 3.5, the dependence of the inte­

grand on the value of r can be factored out, and we have the following,

cp,(r) =M,co)G!1"-1", - M~Cl)OiG!1"-1",

1 ij o.! 1 ijk!:l. !:l. + 2 M,(2) zOjG 1"-1", - 6M,(3)UZUJOkG!1"-1",

The gradient of the potential, a,i, is given by

a,i(r) = - M,CO)OiG!1"-1", + M~Cl)OiOjGI1"-1",

1 jk
- 2M,(2)OiOjOkGI1"-1",

1 jk/ ! + 6M,(3)OiOjOkO/G 1"-1",

(3.7)

(3.8)

58

where

are the multipole moments of the mass distribution in V,. In the following, we

will need to refer to the individual terms of the expansion, separately. Thus,

(_l)n . .
)., Mll···ln ~ 3 GI 'f',(n) = , -yen) Vii··· in 1'-1'''1'

n.
(3.10)

(3.11)

and Eqns. 3.7 and 3.8 can be written succinctly as

00

<p-y(r) = L <P-y(n)(r), (3.12)
n=O

00

a-y(r) = L a,(n) (r). (3.13)
n=O

If the multipole moments are known, then Eqns. 3.12 and 3.13 tell us how

to evaluate the potential <p(r) and its gradient at any point, r, (assuming that

the Taylor series converges). We have characterized the continuous distribution of

mass p(r) inside V, by a countable set of multipole tensors, M-y(n). If we have the

M-y(n) in hand, then in order to evaluate the potential <p,(r), we need only evaluate

G and its derivatives with one argument, r - r" and perform some summations

over indices. In many cases, this is vastly simpler than integrating G over the

volume, V,.

3.3. Spherically symmetric Green's function.

Although it is useful to have a completely general formulation of the method,

in practice, Green's functions often obey special properties which make both the

algorithm and the associated analysis much simpler. We begin our process of

specialization by investigating spherically symmetric Green's functions.

59

If the Green's function is rotationally invariant, we can write it as

G(T) = g(IF1) = f(r2/2),

from which follow its derivatives:

[JiG =J'(r2/2)ri,

[Ji[JjG =fl/(r2/2)rirj + J'(r2/2)bij,

[Ji[Jj[Jk G = fill (r2 /2)rirjrk + fl/ (r2 /2)(ribjk + 2permutations),

[Ji[Jj[Jk[J1G =fl/l/(r2 /2)rirjrkrl + f"l(r2 /2)(rirjbkl + 5perm.),

+ f"(r 2 /2)(bijbkl + 2perm.),

If we define the "normalized" nth derivative,

(3.14)

(3.15)

(3.16)

then the derivatives of G may be written explicitly in terms of inverse powers of

Ir - r;1 and the unit-vector pointing in the direction of r - rl' First, we define,

(3.17)

- -r-r e = I
- d (3.18)

60

In terms of d and e, we have

~. ~. GI- - - g(d) (g(n)(d)e· e'
UtI· •• U Zn 1'-1'-., - d n 11 • •• Zn

+ g(n-l)(d)(C .. e' e' e' + ... U tl t2 t3 Z4... tn

+ g(n-2)(d)(c . . c .. e' e' + ...
U tl t2 U t3 t4 t5··· tn

+ ...).

Alternatively, we can write Eqn. 3.19 as

<.!!.

Oil ... Oin Glr-r-y = g~~) t g(n-m)(d)
m=O

(~) permutations)

~ (n)permutations)
2. 22

(3.19)

(3.20)

In order to insert Eqn. 3.20 into Eqns. 3.7 and 3.8, we introduce the following

notation for the trace of the multipole tensor Mi(n) with 1 remaining indices,

(3.21)

and the following for the contraction of M~~)n) with the "mth" power of the unit­

vector, e,

(3.22)

Note that under rotations, (M~~)n) I e(l)) transforms as a scalar and (M~?n) I e(l-l»)

transforms as a vector.

61

With this notation, Eqns. 3.7 and 3.8 become

+ (~) (M~(~2) le(n-2») g(n-l)(d)

+ ;! (2
n
2) (M~(~4) le(n-4») g(n-2)(d) (3.23)

and

Or, following Eqn. 3.20,

+ ~ (n) / M(n-6) le(n-6») g(n-3)(d)
3! 22 2 \ I(n)

+ ...)

+ ng(n)(d) (M~(l)le(n-l»)

+ (~) (M~(~2) le(n-2») g(n)(d)e

+ (2
n
1)g(n-l)(d) (M~(~2)le(n-3»)

+ ~ (n) / M(n-4) le(n-4») g(n-l)(d)e
2! 22 \ I(n)

+~(n)g(n-2)(d)(M(n-4)le(n-5»)
2! 2 2 1 I(n)

+ ...).

(3.24)

()
n (d) m'.5:. n /2 ,

¢ = -1 9 ~ n. (M(n-2m) le(n-2m») (n-m)(d) (3.25)
I(n) dnn! ~ m!2m(n _ 2m)! I(n) 9

62

and

_ (_l)n+lg(d) ms:n/2 n!

a/en) = dn+1n! ~ m!2m(n - 2m)! (3.26)

((M~(~2m) le(n-2m)) g(n+l-m)(d)e

+ (n - 2m) (M~(~2m)le(n-2m-l)) g(n-m)(d»).

3.4. A softened Newtonian potential.

We are now ready to consider a particular functional form for the Green's function.

Often, astrophysical N-body simulations use a non-Newtonian potential which

lacks the singularity at the origin, and makes time integration of the N-body

equations considerably easier. The "Plummer" model is frequently used:

1
g(r)=-R' (3.27)

(3.28)

This Green's function behaves like Newtonian gravity for separations much

greater than E, but for small separations, the potential is not allowed to go to

infinity. In physical terms, it is the potential energy around a "Plummer" sphere,

i.e., a density distribution of the form,

3 E2

Pplummer(r) = 471" (r2 + E2)5 /2 . (3.29)

It is a useful modification of the true potential because it eliminates the singu­

larity at the origin, and limits the maximum potential energy, and hence orbital

frequency, of a pair of bodies.

In the notation of Eqn. 3.15,

(3.30)

The derivatives of this particular I(x) are easy to evaluate by induction,

63

and

(
r)2n g(n)(r) = (2n - 1)!!(_l)n R .

We also define the "softened unit-vector", h,

Inserting Eqn. 3.32 into Eqns. 3.25 and 3.26, we immediately have

(d) m<S:.n/2 ()m()11
A.. (r) = _g _ "" -1 2n - 2m -1 .. / M(n-2m)lh(n-2m))
,+,/(n) Rn ~ m!2m(n _ 2m)! \ len)

m<n/2 a r _ g(d) ~ (-1)m(2n - 2m - I)!!
/(n)() - Rn+1 ~ m!2m(n - 2m)!

x ((2n - 2m + 1) (M~(~2m) Ih(n-2m)) h

- (n - 2m) (M~(~2m) Ih(n-2m-1))) .

(3.32)

(3.33)

(3.34)

(3.35)

For reference, the summations and combinatoric factors are presented for the first

few values of n:

<P(O) = _R- 1 M(o),

A.. - _R-2 / M(l) Ih(l))
'+'(1) - \ /(1) ,

A.. = _R-5~ (105/ M(4) Ih(4)) - 90/ M(2) Ih(2)) + 9 (M(O) Ih(O)))
,+,(4) 24 \ /(4) \ /(4) /(4)'

(3.36)

64

(3.37)

a . = _R-6 ~ (945/ M(4) Ih(4)) h - 420 / M(4) Ih(3))
(4)% 24 \ ')'(4) \ ')'(4)

Equations 3.36 and 3.37 are implemented directly in the Pairlnteraction

phase of the BH algorithm. It is worth noting that these equations are slightly

different from those used by Hernquist,[18] who, apparently, failed to account for

the terms involving the trace of the various multipoles. This almost certainly

explains his results which indicate a failure of the second order correction for

separations approaching E.

3.5. Pure Newtonian potential.

Now let us take E = o. Thus, we have finally specialized to the case of pure New­

tonian gravity. The Green's function now has the following important property,

away from the origin

(3.38)

In component notation,

(3.39)

65

Since derivatives may be taken in any order, we immediately have

i' =1= 0; (x, (3 :s; n. (3.40)

This allows us to add arbitrary multiples of the Kronecker-delta to any of the

multipoles, without changing the value of <P(n) or a(n)' computed according to

Eqns. 3.10 and 3.11. That is, if we define

(3.41)

where C(n) is any fully symmetric rank n - 2 tensor whatsoever, then

(_I)n . .
).. QZ

1 •••
Zna a GI <P(n) = , (n) i1 . .. in r-r-y' n.

(3.42)

(_I)n+l Qi 1 ... i n ~ ~ GI
a(n)io = , (n) Ui o ' .. Ui n 1'-r-y·

n.
(3.43)

In particular, we may choose C(n) so that Q(n) is completely trace-free, on any

pair of indices. We shall refer to the tensor, Q(n), that results from such a choice

of C(n) as the "reduced multipole tensor." Since M(n) is symmetric under inter­

change of indices, and Eqn. 3.41 is manifestly symmetric by construction, Q(n) is

a completely trace-free symmetric tensor of rank n. C(n) is readily evaluated in

terms of M(n) by simply taking traces of both sides of Eqn. 3.41. We show the

results of this procedure for C(2) through C(6):

i 1 (l)i
C(3) =5 M"(3) ,

cij _~(M(2)ij _ ~M(O) 5ij)
(4) -7 "(4) 10 "(4) , (3.44)

C ijk _ 1 (M(3)i j k 1 (M(l)i cjk 2 .)))
(5) -9 "(5) - 14 "(5)v + permutatIOns ,

C ijkl _~(M(4)ijkl _ ~((M(2)ij _ ~M(O) 5ij)5kl + 5 t f))
(6) -11 "(6) 18 "(6) 21 "(6) permu a IOns .

66

The reduced multipole moments are extremely useful, since they make it much

easier to evaluate <P(n) and a(n). First we replace M(n) with Q(n) in Eqns. 3.10

and 3.11. Equations 3.25 and 3.26 follow just as they did before, only with M

replaced by Q. But we know that the trace of Q, on any pair of indices, vanishes

by explicit construction. In other words,

Q(l) - O.
,en) - , 1< n. (3.45)

This means that all but the leading terms in Eqns. 3.25 and 3.26 vanish, and we

have

A. () (-1) n 9 (d) (Q I (n)) (n) (d)
\f'{(n) r = d n n1 ,en) e 9 , (3.46)

a,(n)(r) = (-in:~~(d) ((Q,(n) I e(n») g(n+I)(d)e + ng(n)(d) (Q,(n) le(n-I»)).
(3.4 7)

Using the explicit expressions for the g(n), we have

(3.48)

~ _ (2n -1)11 1 (() (I (n») ~ (I (n-I»)) a,(n)(r) - - n1 dn+2 2n + 1 Q,(n) e e - n Q,(n) e .

(3.49)

Recall from Eqns. 3.17 and 3.18 that the vector, e, is a unit-vector, and points in

the direction of the vector, i - i" and that d is the magnitude of i - i-y.

Equations 3.48 and 3.49 give an explicit form for the multipole approximation

67

for a Newtonian potential. We tabulate the first few cases for reference:

<P(O) = -R-1M(O),

<P(l) = _R-2 (Q-Y(l)le(l»),

<P(2) = _R-3 ~ ((Q-y(2) le(2»)) ,

<P(3) = _R-4~ ((Q-Y(3)le(3»)) ,

<P(4) = _R-5 3
8
5 ((Q-y(4) le(4»)) ,

<P(5) = _R-5 68
3

((Q-y(5) le(5»)) ,

<P(6) = _R-5 213; ((Q-Y(6) I e(6»)) ,

-- R- 2 M A a(O)i = - (O)e,

a(l)i = -R-3(3(Q-Y(1)le(1»))e- (Q-y(1)le(O»)),

a(2)i = _R-4~ (5 (Q-Y(2) le(2») e - 2 (Q-Y(2) le(1»)),

a(3)i = _R-5 ~ (7 (Q-Y(3) le(3») e - 3 (Q-Y(3) le(2»))

a(4)i = _R-6 3
8
5 (9 (Q-Y(4) le(4») e - 4 (Q-Y(4) le(3»)),

a(5)i = _R-6 68
3

(11 (Q-Y(4) le(4») e - 5 (Q-Y(4) le(3»)),

a(6)i = _R-6 226
1

(13 (Q-y(4) I e(4») e - 6 (Q-y(4) le(3»)),

We shall discuss methods of evaluating these expressions in Chapter 4.

(3.50)

(3.51)

68

4. Practical Aspects of the Barnes-Hut Algorithm.

We are now ready to analyze the Barnes-Hut algorithm in some detail. In this

chapter, we attempt to bridge the gap between the the data structures and math­

ematics of Chapters 2 and 3 and the BH algorithm, as implemented on a serial

computer. Issues that arise from parallel computers will be deferred until Chap­

ter 7. Of particular interest are methods for computing the multipole moments of a

system, the amount of storage space required to store the components, the number

of operations necessary to compute the multipoles themselves and to compute the

multipole approximations derived in Chapter 3. The BH algorithm is described

in Chapter 1, and a method for constructing a BH tree is described in Chapter 2.

Here, we discuss the form of the data in the BH tree, and how it is used.

4.1. Space requirement for storing multipoles.

Before we analyze the algorithm for computing the multipoles, we need to know

how much space will be required to store them. Each multi pole of order n is a

rank n fully symmetric tensor. Such a tensor is completely specified by only a

small fraction of its components. We need to store only the following components,

(4.1)

Then, when any of the components is needed in an expression such as Eqn. 3.7,

we can permute the desired indices to obtain the ordering of Eqn. 4.1 and find the

stored element. A simple combinatoric argument reveals that there are exactly

(4.2)

distinct components to M(n), and storage is required for each of them. In order to

69

store all multipoles up to some maximum order, p, we will need storage equal to

(4.3)

Thus, the storage requirement for the whole tree of multipoles is

(
p + 3) 3 Cavg 3 = O(p), (4.4)

where Cavg is the number of internal cells in the tree. We found in Chapter 2 that

Cavg is proportional to N. Equation 4.3 is a special case of a very useful identity

[36] which will be needed several times in the following,

(4.5)

Equation 4.4 is an example of the case when m = 0, n = 2, r = p, s = 2, and

b = 0.

4.2. Computing multipoles.

Two approaches are available for computing the multipole moments of the cells in

the BH tree. The methods have different behavior with respect to the number of

bodies in the cell, and the highest order multipole required. As we shall see, it is

easy to select between the two methods as the calculation proceeds, according to

which will produce the result in the shortest time.

4.2.1. Direct summation.

One possibility is to simply identify all the bodies in each cell, and compute the

multi pole moments as

(4.6)

Let us investigate how many operations are required to compute the multipole

of one cell using Eqn. 4.6. Equation 4.6 requires computing (nt2) terms. If the

70

terms are computed in order of increasing n, then each new term is the product

of a component of if - r; and a previously computed term. Thus, to compute

all multipoles up to order, p, for a single particle, and a single r;, using Eqn. 4.6

reqUIres

(4.7)

multiplications. Since each body is computed independently, the total number of

operations required to compute a multi pole by direct summation is

N (P+3)
'Y 3 ' (4.8)

where N, is the number of bodies contained within VI.

4.2.2. Parallel axis theorem.

An alternative to direct summation of all bodies contained in a node, is to compute

the multipole moment of a node using only the information available in its eight

children. If we had a procedure which would tell us the multipole moments of

a cell, given the moments of its children, then we could proceed with a bottom­

up traversal of the tree and compute the multipole moments of each cell from

the information already computed for its children. The appropriate mathematical

expression is a generalized parallel axis theorem. [37]

We note that the multi pole moments act as tensors under rotations, and

obey some useful transformation rules under translation, as well. If M,(n) are the

multipoles of a mass distribution defined around a point, rl , and M~(n) represents

the same distribution, defined around the point, r~ = r; + y, then by definition,

(4.9)

Factoring out powers of y we get

(4.10)

71

Furthermore, the multipole moments of two distributions, defined around the same

point, may be added term-wise to obtain the multipole expansion of the combined

mass distributions. Equation 4.10 is a generalization of the Parallel Axis Theorem.

For p = 2, and rl located at the center-of-mass of the VI' Eqn. 4.10 reduces to

M 'ij Mij + i jM
(2) = (2) Y Y (0)' (4.11)

Note that for the purposes of defining the multipole moments, there is no

logical reason why the point, f'-y, must lie in the region, VI' Thus, Eqn. 4.10 can

be used to "translate" the multipoles of several disjoint volumes, e.g., the daughter

cells of a cell, to a common point, e.g., the rl of the parent, where they can be

added, term-wise, to give the multipole of the mass in the set of volumes.

In order to compare Eqn. 4.10 with direct summation, we analyze how many

operations are required to translate a set of multipole moments up through some

order, p, using Eqn. 4.10. To implement Eqn. 4.10 for all orders up to p, we first

compute all monomials formed by repeated products of the components of the

vector, if, up to order, p. As with the multipole moments themselves, there are

exactly (n~2) such monomials of order, n, making a total of (P!3) up to order, p.

We rewrite Eqn. 4.10 schematically as follows,

m=n

MI(p) = ~ (Product of m components of y) 0 MI(n-m)' (4.12)
m=O

Let us assume that all of the "products of m components of y" are available. There

are exactly (mi2) such products. Each of them must be multiplied with each of

the components of MI(n-m), and added into the result, giving us a total operation

count of

(4.13)

Each term is evaluated as a single product and is added to a stored component

of MI(n)' Thus, the number of operations required to translate MI(n) is equal to

72

To translate all multipoles up through order p, using Eqn. 4.10 requires

(4.14)

operations. We note that this result IS entirely independent of the number of

bodies within VI'

4.2.3. Hybrid algorithm.

The best way to compute all the multipoles in a BH tree is a hybrid of the two

methods just described. A recursive routine, which traverses the hierarchical tree

of volumes from the bottom up is shown in Code 4.1. For each child of a given node,

either TranslateMul tipoles is called once, or BodyMul ti is called repeatedly to

produce the desired result.

GenerateMultipoles(cell)

for (each child of cell)

GenerateMultipoles(child)

endfor

ChooseRgamma(cell)

if(cell is terminal)

else

cell.nbody = number of bodies in cell

for(each child of cell)

TranslateMultipole(cell, child)

endfor

endif

endfunc

Code 4.1. Function GenerateMultipoles to fill in multipole moments

of the cells in a BH tree.

The information needed to choose r, may not be known until the multipoles

of the daughter cells have been computed, so the call to ChooseRgamma is delayed

until after the multi pole moments of the daughter cells have been computed.

73

TranslateMultipole(cell, child)

if (child. nbody < Ncutof f or child is terminal)

DirectSum(cell, child)

else

ParAxis(cell, child)

endif

cell.nbody += child.nbody

endfunc

Code 4.2. Function TranslateMul tipole to compute the contribution

of the contents of a child to multi pole moment of a cell.

DirectSum(cell, child)

if(child is terminal)

else

fore each body, b, in child)

BodyMulti(cell, b)

cell.nbody += 1

endfor

fore each grandchild of child)

DirectSum(cell, grandchild)

endfor

end if

endfunc

Code 4.3. Function DirectSum to compute the contribution of a child

by direct summation of all contained bodies, using Eqn. 4.6.

The two functions, BodyMul ti and ParAxis, are direct implementations of

Eqns. 4.6 and 4.10. Code 4.1 contains an if-clause which decides whether to use

Eqn. 4.6 or 4.10. based on the number of bodies contained in the child which

is being translated. The reason for this is that application of Eqn. 4.10 requires

constant time, while application of Eqn. 4.6 requires time proportional to the

number of bodies contained within the child. There is a particular value of the

number of bodies in the child, Ncutoff, above which Eqn. 4.10 is faster and below

which Eqn. 4.6 is faster. The exact value of Ncutoff, of course, depends on details

of the implementation. We may estimate the value of Ncutoff from the operation

74

counts implied by Eqns. 4.6 and 4.10.

(p+ 3) (p+ 6)
Ncutof f 3 ~ 2 6 ' (4.15)

or

1 (p + 6)
Ncutoff ~ 10 3 . (4.16)

In practice, Ncutoff should be determined empirically from timing data, but

Eqn. 4.16 may be used if timing data is unavailable. In most of our produc­

tion calculations, p = 2, and Eqn. 4.16 suggests Ncutoff ~ 3. In fact, we used

Ncutoff = 1, which allows for some simplification of Code 4.3. This choice is almost

certainly not optimal, but is not so far from optimal as to contribute significantly

to total running time.

4.2.4. Operation count.

We now estimate the total running time when GenerateMul tipoles is applied

to an entire BH tree. Clearly, the mass and position of each Body effects the

multi pole moment of each cell which is an ancestor of the Body. For ancestors

with fewer than Ncutoff descendants, the effect is computed by DirectSum. For

ancestors with more than Ncutoff descendants, the effect is implicitly computed

by ParAxis.

We first estimate the number of times BodyMul ti is executed. Recall from

Section 2.6, that each terminal node of the tree is expected to have approximately

r:; bodies. Furthermore, as we ascend the tree, we can expect to find eight times

as many siblings at each higher level. Therefore, the expected number of parents

with fewer than Ncutoff descendents is approximately

1 (
2Ncutoff) ogs ,

m
(4.17)

and the total number of times BodyMul ti is executed is estimated to be

(4.18)

75

In order to estimate the number of times ParAxis is executed, we simply need

to estimate the number of cells which have more than Ncutoff descendants. The

Parallel Axis Theorem is applied to each such cell exactly once, to translate the

multipole from the r, of the cell to the r, of its parent. The number of cells with

more than Ncutof f descendants is exactly equal to the number of non-terminal cells

in a tree constructed with the parameter m, set equal to Ncutoff. In Section 2.9

we found that the expected number of non-terminal cells in a BH tree is

(4.19)

Thus, the expected number of internal nodes in a tree with m = Ncutoff, and

hence, the expected number of executions of ParAxis is approximately

CNcuto!!N

Ncutoff .
(4.20)

Table 2.1 tabulates values of Cm for small values of m. The value of Cm increases

slowly with increasing m, but for m < 20, the value of Cm is well below unity.

We let TParAxis be the time required to execute ParAxis and TBodyMulti be

the time required to execute BodyMulti, and we assume that Ncutoff has been

chosen optimally, so that

TParAxis
Ncutoff = .

TBodyMulti
(4.21)

Then the total time spent in GenerateMul tipoles IS

N (2Ncutoff)
TCenerateMultipoles ~ CNcutoJ! N TParAxis + N logs m TBodyMulti

cutoff

((
2Ncutoff)) = NTBodyMulti CNcuto!! + logs m .

(4.22)

Thus, the time to construct the multipole tree is linear in N, with a constant of

proportionality, i.e., TBodyMulti, that scales with the maximum multipole order,

76

p, as

(4.23)

4.3. Choosing Ti .

We must first choose an i, and then find the corresponding multipole moments

for each cell in the tree. Most hierarchical N -body methods take r; to be the

center-of-mass of the cell.[9, 16, 32, 38] This choice has the advantage of causing

the n = 1 multipole, i.e., the dipole moment, to vanish identically. That is

- 1 J -()d3 1 "'"' -r, = ~ xp x x = M ~ mpxp,
(0) V 0 EV

Xp -y

(4.24)

implies

(4.25)

This choice appears to have the disadvantage that the magnitude of higher mul­

tipoles might be larger than with some other choice of i,. Greengard[13] takes

i, to be in the geometric center of each cell. Such a choice affords the best strict

bound on the magnitude of an arbitrary term in the multipole expansion. This is

evident from Chapter 5, where the maximum error is seen to depend on a power

of

b sup Ii' - r;1. (4.26)
xEV-y

The quantity b, and hence the maximum possible error, is minimized by placing

i, in the geometric center of V" like Greengard, rather than at the center of mass

of V" as is more common. On the other hand, the magnitude of the quadrupole

moment is minimized by taking r; to be the center of mass. If the calculation will

be to limited to low orders, e.g., only terms up to quadrupole will be computed,

then it is best to use the center of mass for if" If the calculation will be include

high order multipoles then it is best to follow Greengard and use the geometric

center of the V,. The center of mass is especially good when one terminates the

77

multipole expansion after only one term, in which case, one gets the dipole term

"for free," and the leading correction is the quadrupole term.

The cost of computing the center of mass of each cell in the tree is easily

accounted for. The computation of the center of mass is comparable in structure

and expense to the computation of the dipole moment (compare Eqn. 4.24 with

Eqn. 4.6, n = 1). Thus, we have a situation in which we either compute the center

of mass, but we don't compute M(!), because of Eqn. 4.25, or we compute M(!),

but need not compute the center of mass. In either case, the work has already

been accounted for in the analysis of Section 4.2.

4.4. Evaluating ¢,(n)(r) and a,(n)(r).

Once a suitable set of multipole moments has been computyd and stored, the BH

algorithm computes <P,(n)(r) and a,(n)(r) repeatedly for different values of rand

for the various cells, V,. We now estimate the number of operations in each such

body-cell interaction, i.e., in each evaluation of Eqns. 3.10, 3.25, or 3.48. As with

the mathematical derivation, certain assumptions about the Green's function and

its derivatives playa significant role in the results of this section. We treat the

same cases as in Chapter 3.

4.4.1. Arbitrary Green's function.

Since we make no assumptions about the Green's function, there is no choice but

to evaluate Eqn. 3.10 exactly as written. The right-hand side of each of these

equations is a sum of 3n terms, each of which is of unknown complexity (i.e., it

includes the evaluation of one of the nth partial derivatives of the Green's function.)

Computing Eqn. 3.10 for each order n up through p, thus requires at least

(4.27)

multiplications, and a like number of evaluations of the derivative of the Green's

function.

78

4.4.2. Spherically symmetric Green's function.

As we saw in the mathematical analysis, it is possible to make considerable simpli­

fications if the Green's function is spherically symmetric. Now, we must evaluate

Eqn. 3.25 for a particular value of d and e. A detailed accounting of the number

of operations implied by Eqn. 3.25 is not particularly useful, as a practical imp le­

menation of any particular Green's function can certainly be optimized once the

properties of the Green's function and its derivatives are known. Nevertheless, it

is worthwhile to obtain a bound on the number of operations required to com-

pute repeated inner products like (M~(J)le(m»). Let us assume that we have first

computed all possible outer products like

(4.28)

Then the computation of the inner product, (M~(J) I e(m»), requires only a sum­

mation of products of a component of M~(J) with one of the outer products of

components of e. There are precisely (m;2) such terms, so the number of opera-

tions required to compute (M~(J) I e(m») is proportional to

(4.29)

From Eqn. 3.25 the computation of <P,(n) is a sum of n/2 terms, each of which

consists of a combinatoric factor, an evaluation of g(m)(d) and an inner product

like (M~(J) I e(m)). If we assume the time spent evaluating n/2 instances of g(m)(d)

and the combinatoric factor is negligible, then the total number of operations is

(4.30)

It is easy to show that this expression is always less than

~ (n + 4)
2 3 '

(4.31)

79

indicating that the evaluation of <P,(n) requires time cubic in n.

Inspection of Eqn. 3.26 reveals that terms which are combined to compute

O,,(n) have a very similar formal structure to those used in the computation of

<P,(n). As there are two separate terms on the right-hand side of Eqn. 3.26, we

expect that the computation of a,(n) will be about twice as costly as that for

<P,(n)·
We may now use Eqn. 4.31 to estimate the total work associated with com­

puting <p,(n) and O,,(n) for all values of n up through p. The total work requires

less than

(4.32)

operations, indicating that, in general, a full multipole interaction up through

order p, for a spherically symmetric Green's function, requires time proportional

to p4.

We have assumed, in this analysis, that the products of components of e, as

in Eqn. 4.28, were "pre-computed" before attempting to evaluate expressions like

(M~(J) le(m»). In a complete evaluation of all orders through p, we can compute

the products of elements of Ii. only once, and ammortize the cost over all orders,

n. The products of the components of e are essentially the same as the products

necessary to compute the multipole moments of a point mass. In Section 4.2, we

found that this calculation required approximately

(4.33)

operations. It is clear that, for a general spherically symmetric Green's function,

the "pre-computation" of products of Ii. is a negligible expense, compared to the

computation of the <P, and a,(n)·

4.4.3. Newtonian potentials.

If the Green's function represents a softened Newtonian potential, i.e., Eqn. 3.27,

the derivatives, g(n)(d), are particularly easy to evaluate. In fact, all dependence

80

on g(n)(d) in Eqns. 3.34 and 3.35 is obviously contained in the "softened unit-
~

vector," h. It is clear that the considerations of the previous section apply, except

that the unit-vector, e, should be replaced by the "softened unit-vector," h, in

all expressions like (M~(J) I h(m»). In this way, only combinatoric factors and

expressions like (M~(J) I h (m») need to be evaluated, and the total time required

for a full evaluation of all multipoles up through order, p is proportional to

(4.34)

The pure Newtonian case allows for even more simplification, however. Equa­

tions 3.48 and 3.49 contain only two distinct inner products, (Q~(~) le(n») and

(Q~(~) le(n-l»). The combinatorial terms are also considerably simplified. The

total number of operations required to compute both <p-y(n) and o'-y(n) in the purely

Newtonian case, assuming that products of components of e are pre-computed, is

proportional to

(4.35)

and the time required to evaluate terms up through order p is proportional to

(4.36)

In this case, the time required to pre-compute products of components of e is

not negligible, contributing approximately the same number of operations as the

computation of the inner products, (Q~(~) I e(n»). Nevertheless, the total operation

count is proportional to p3.

4.5. Choice of the tenllinal size parailleter, m.

We have just seen that the computation of the interaction between a body and a

set of multipoles can be rather costly. It is safe to say that a multipole interaction

81

will generally be more time consuming than a simple body-body interaction, i.e.,

a single evaluation of the Green's function. This leads us to construct multipole

expansions only if there are a sufficient number of particles to achieve a net decrease

in computation time.

If we have a set of N, bodies in the volume, V" as well as a set of multipoles,

M,(n), we can compute the field at a point, r, in two ways:

N..,

</J(r) = L G(r - Xi) (4.37)
i=l

or
p

</J(r) ~ L </J,(n)(r). (4.38)
n=O

Let the time required to evaluate Eqn. 4.37 be

(4.39)

and the time required to evaluate Eqn. 4.38 be

(4.40)

For any particular implementation, we can determine the ratio of the cost of a

body-multipole interaction to the cost of a body-body interaction,

Tb- m
q=-­- n-b·

Clearly, it is never advantageous to use Eqn. 4.38 unless

N, > q.

(4.41)

(4.42)

Thus, it is a waste of time and space to compute and store a multipole expansion for

any collection of bodies with fewer than q elements. Furthermore, it is desirable

to have a multipole expansion for any collection of bodies with greater than q

82

ComputeAllFields()

fore each body at which forces are required)

bOdy.if = 0

bOdy.a 0

ComputeField(body, root of tree)

endfor

endfunc

Code 4.4. Function ComputeAllFields to compute an approximation

to if and a for each body in simulation, by recursive descent of a BH tree.

elements. We recall from the definition of the BH tree that terminal nodes of the

tree are guaranteed to have m or fewer elements. If we set

m = LqJ, (4.43)

then terminal nodes of the tree need never have multipole expansions, and internal

nodes of the tree, which are guaranteed to contain more than m bodies, should

always contain multipole expansions. Close examination of Code 4.1 reveals that

multipole moments are never computed for terminal nodes, and they are always

computed for internal nodes. A smaller value of m would lead to the computation

of useless multipole moments, while a larger value of m would lead us to use

Eqn. 4.37 on occasions when Eqn. 4.38 would be preferable.

4.6. Running time.

Once the tree is complete, we use the algorithm in Code 4.4 to compute all po­

tentials and accelerations. Code 4.4 calls ComputeField which traverses the BH

tree once for each Body. If a terminal node is encountered during the traversal,

then a BBlnteraction is computed for each of the bodies contained within the

terminal node. If the OpeningCri terion is satisfied for an internal node, then the

traversal continues with its descendants. Finally, if the OpeningCri terion fails

for an internal node, then the multi pole approximation is acceptable, BClnterac­

tion is executed to compute the interaction between the body and the multipole

expansion of the node. The recursive procedure is also shown in Code 4.4.

83

ComputeField(body, cell)

if(cell is terminal)

fore each fieldbody in cell)

BBlnteraction(body, fieldbody)

endfor

else if(OpeningCriterion(cell, body))

fore each child of cell)

ComputeField(body, child)

endfor

else

BClnteraction(body, cell)

endif

endfunc

Code 4.5. Function ComputeField computes the interaction between a

specified body, and all bodies lieing in a cell. BBlnteraction computes

the interaction between a specific pair of bodies, while BClnteraction

computes an interaction between a body and the multipole expansion

stored in a cell.

We now consider how many times BBlnteraction and how many times

BMinteraction are called during one execution of ComputeAIIFields. The "fact"

that the BH algorithm is O(N log N) has been reported repeatedly in the litera­

ture.[16, 38, 19] The literature only contains, however, some very rough justifica­

tions for this claim. In this section, we use some of the machinery developed in

Chapter 2 to attack the running time of the BH algorithm with somewhat more

rigor than has been done before. We shall see that the O(N log N) claim is, in

fact, justified for any collection of bodies drawn independently from an underlying

distribution, p. It is not, however, guaranteed to be true in all circumstances, as

the following counter-example demonstrates.

4.6.1. A counter-example to the O(N log N) behavior.

Consider a one-dimensional arrangement of N bodies on the unit line, at positions

1 S; n S; N. (4.44)

84

A one-dimensional BH tree constructed for these points is shown in Figure 4.1.

The bodies are shown on a line-segment in Figure 4.1 and the BH tree is shown

above it in the form of a binary tree. of shorter line-segments. The tree is highly

unbalanced. The right child of any node is terminal, while the left. child of all

nodes except one is internal. This unbalanced structure follows from the positions

of the bodies, which clump exponentially closely near the origin.

Now consider the interactions that are computed in the course of traversing

the tree to find the potential at body j. Body j is actually inside j internal cells,

so no matter what the DpeningCri terion, at least j internal cells will be opened,

and j - 1 BBlnteractions will be executed (with all bodies, n < j). Even if we

disregard what happens for n > j, we see that there are at least

N

Nbb = LU -1)
j=l (4.45)

= N(N -1)/2

body-body interactions computed. Thus, we have a counterexample to the claim

that the BH algorithm is strictly OeN log N).

Nevertheless, this example is clearly contrived. The density of bodies in space

grows exponentially near the origin, and as N increases, new bodies are not dis­

tributed in the same way as the old ones. Thus, there is no underlying distribution

function, p, which could plausibly give rise to bodies distributed in this way for

arbitrarily large N. It is this pathology which causes the BH algorithm to fail.

4.6.2. Interaction volume.

Although the BH algorithm proceeds by treating each body separately, after the

tree is built, analysis of the timing is easier if we focus on the cells. Rather than

asking how many cells does each body interact with, we ask how many bodies does

each cell interact with. Since we also want to know how many BBlnteractions

are computed, we also ask if a cell is terminal, then how many BBlnteractionsare

computed with the bodies contained in the cell.

85

o 1

Figure 4.1. One dimensional pathological BH tree.

86

We proceed as we did in Chapter 2 with a set of N "bodies," located at

N independent, identically distributed random positions, restricted to a finite,

cubical volume, Vo. We also imagine a complete hierarchy of BH cells beneath

Vo, extending to arbitrarily small volumes, and we select an arbitrary cell, VI'

somewhere in the hierarchy. We do not, a priori, assume that VI contains any of

the bodies, or even that it is represented in the BH tree constructed from the set

of bodies.

Around V I' we identify a set of other regIOns which will be useful in the

following discussions. Figure 4.2 shows, schematically, the region around VI' Vii

is the immediate parent of VI in the BH tree. Vnear is the region around VI' for

which DpeningCri terion succeeds, but not including VI itself, i.e., it is the region

in which the multipole approximation cannot be used for VI' Vfar is the region

around the parent of VI for which the DpeningCriterion fails (for the parent),

i.e., it is the region in which the multipole approximation is always used for the

parent. Vmid is the region between Vnear and Vfar, i.e., it is the only region in

which the multipole approximation for VI will be used.

Now, let us assume that there are n l bodies in VI' nmid bodies in Vmid, etc.,

and that the integrals of the probability density, 15, are

(4.46)

Then the probability of such a configuration of bodies is given by a multinomial

distribution, which we write formally as

(4.47)

If there is no possibility of confusion, we will use the following shorter notation

87

V far

Figure 4.2. Labeling of regions around VI' for computation of BClnter­

actions.

88

for the multinomial distribution function,

(4.48)

The multinomial distribution function obeys some useful identities:

N

L PN(nl, ...) = PN(.. .),
nl=O

m

L PN(nl,PI; m - nl,P2; ...) = PN(m, (PI + P2); .. .),
nl=O (4.49)

m

L PN(n,p) = CN,m(P),
n=O

N

L PN(n,p) = DN,m(P) = 1- CN,m(P),
n=m+1

where Cm,N and Dm,N are defined in Chapter 2. They are, in turn, related to the

incomplete beta function. [34]

4.6.3. Number of BClnteractions.

Now consider a particular cell, V,. The number of BClnteractions in which V,

is the cell is simply the number of bodies in the Vmid, i.e., nmid. Bodies in V far

cannot interact with V, because their traversal would be terminated before reach­

ing VI" Similarly, bodies in Vnear or in V, itself cannot interact with V, because

the OpeningCri terion succeeds, and traversal continues with the descendants of

V,. Thus, the number of BClnteractions with V, is

N _ {nmid'
bq - 0 ,

n , > m;
otherwise. (4.50)

There are no body-cell interactions unless V I is a bona fide internal cell, containing

more than m bodies. Now, we can compute the expected number of body-cell

89

interactions, simply by summing over the probability distribution and using the

identities in Eqn. 4.49,

(Nbc-y) = L L nmidPN(n
"

nmid)
n-y>m nrnid

= L L NpmidPN-l(n"nmid) (4.51)

n-y>m nrnid

We can now sum Eqn. 4.51 over all cells, V" and obtain the expected number of

interactions with all cells in the tree,

= N LPmidDN-l,m(P,),
-y

4.6.4. Number of BBInteractions.

(4.52)

Counting the average number of BBInteractions IS slightly more complicated.

First, we divide the space around V, into a slightly different set of disjoint regions,

as shown in Figure 4.3. Vsib is the set of "siblings" of V" i.e., those cells which

share a common parent, ane V</> is the region which is "near" to the parent of V"

The number of bodies in each region, e.g., nsib and the integrated probabilities,

e.g., Psib, are defined just as in the previous section.

Each cell is assigned a certain number of BBInteractions. If the cell is not

terminal, then it is assigned no BBInteractions. Otherwise, the cell is assigned n-y

BBInteractions for each body which encounters the cell during its tree traversal.

Since bodies do not interact with themselves, we subtract one interaction if the

body which encountered the cell is actually contained within the cell. The regions

shown in Figure 4.3 have been constructed so that bodies which fall within V-y, Vsib

and V</> are guaranteed to encounter V-y during their tree traversal, and all other

90

Figure 4.3. Labeling of regions around VI for computation of BBlnter­

actions.

91

bodies are guaranteed not to. Thus, the number of BBlnteractions associated

with cell V-y is

N _{n-y(n-y-1+nsib+n</», bb-y -
0,

n-y + nsib > m;
otherwise.

(4.53)

To compute the expected number of interactions, we simply sum over all possible

values of n-y, nsib and n</>,

m N N

L L n,(n-y - 1 + nsib + n</»PN(n-y, nsib, n</». (4.54)

Using the identities in Eqn. 4.49, and the fact that

Ph = P, + Psib,

the sums in Eqn. 4.54 can be eliminated and we obtain

(Nbb-y) =N(N - l)p-y

X (p-y (CN-2,m-2(P-y) - CN-2,m-2(Ph))

+ P</> (CN-2,m-l(P-y) - CN-2,m-l(Ph))

+ Psib (CN-2,m-l(P-y) - CN-2,m-2(Ph))).

(4.55)

(4.56)

Now, we sum over all possible cells, V-y, to obtain the total expected number

of BBlnteractions,

(Nbb) =N(N - 1) LP-Y
-y

X (P-y(CN-2,m-2(P-Y) - CN-2,m-2(Ph))

+ P</> (CN-2,m-l(P-y) - CN- 2,m-l(Ph))

+ Psib (CN-2,m-l(P-y) - CN-2,m-2(Ph))).

(4.57)

92

We may use the following identities, all of which represent absolutely convergent

sums, to rewrite the sum in Eqn. 4.57:

~P .. /CN-2,m-2(Ph) = ~ C N- 2,m-2(P J ~
, ,00EChild(,)

, OiEChild(,)

The result is

2
POi ,

(Nbb) = N(N - 1) LP,(P4> + Psib - Pnear)CN-2,m-l(P,) ,
= N(N - 1) LP,PmidCN-2,m-l(P,). ,

4.6.5. Uniform distribution, i.e., p(x) = const.

(4.58)

(4.59)

We now have two formal expressions, Eqns. 4.59 and 4.52, for the expected number

of of BBlnteractions and BClnteractions that are executed when all bodies

traverse the BH tree according to Code 4.4. Despite the fact that we required

Psib, P4>, etc. to derive Eqns. 4.59 and 4.52, the only probabilities that appear in

the final results are P, and Pmid. The expected number of interactions depends

implicitly on the underlying distribution of bodies, p(x), through the quantities

p, and Pmid. Before we consider the general case of an arbitrary p(x), it is useful

to treat the special case of a uniform distribution, i.e.,

1
p(x) = Vo'

(4.60)

93

The inequality appears in Eqn. 4.60 because for some cells, V-p the associated

"middle" region, Vmid extends outside of Vo. The situation is illustrated in Fig­

ure 4.4.

In Chapter 2, we defined the depth of a cell, d(,), and the set of cells which

comprise a "level" of the BH tree, Cd. Since all cells on a level have the same

volume, they also have the same PI. The sums over all cells in Eqns. 4.59 and 4.52

can be restated as sums over levels, d. Furthermore, the ratio, Vmid/VI, is entirely

independent of ,. It depends only on the DpeningCri terion function used during

the tree traversal. We shall discuss DpeningCri teria in detail in Chapter 6. For

now, we shall characterize the DpeningCri terion with the constant

Po _ Vmid
oe - V .

I

Finally, we note that on each level, there are exactly Pal separate cells.

4.6.5.1. Number of BClnteractions.

Thus, Eqn. 4.52 may be rewritten as

00

(Nbc) :::; N Foe L DN-l,m(Pd)
d=O

S-d Pd = .

(4.61)

(4.62)

Equation 4.62 is closely related to the average depth of bodies in the BH tree,

D avg , computed in Chapter 2, where we found that Davg is tightly bounded by

the logarithm of N. In fact, using Eqns. 2.42, 2.44 and 4.62, we have

(
dm+lN) (Nbc) :::; FoeNDavg(m + 1) :::; FoeNlogs m + 1 . (4.63)

The values of dm are tabulated in Table 2.1.

4.6.5.2. NUll"lber of BBlnteractions.

The situation for Nbb is again somewhat more complicated. The number of BBln­

teractions is not related to a previously computed statistic about the tree. Nev­

ertheless, we can estimate the value of (Nbb). Again using the fact that all cells

,

,

94

/'

........................ ,/
V 'd illl

... ,/

Figure 4.4. Cell VI for which Vmid extends outside of Vo.

95

on a level are equivalent, we have

ex>

(Nbb) ::; N(N -l)Foc LPdCN-I,m-I(Pd);
d=O

8- d
Pd = . (4.64)

The cumulative binomial distribution, CN,m, has the following properties which

allow us bound the summation in Eqn. 4.64,

CN,m(P) ex: exp(-Np); Np» m,
(4.65)

Np~m.

For small values of d, i.e., large values of N Pd, the terms in Eqn. 4.64 are

limited by the exponentially small value of CN-I,m-I. For large values of d, the

terms are limited by the exponentially small values of Pd itself. The only values

of d for which the terms of Eqn. 4.64 are non-neglible are those for which

(N -l)pd ~ m. (4.66)

The terms for which Eqn. 4.66 holds have magnitudes approximate equal to

NmO(l), (4.67)

where the 0(1) accounts for the small number of terms that satisfy the approxi­

mate equality, Eqn. 4.66, and the fact that CN-I,m-I(Pd) is of order unity. Thus,

we conclude that, for a uniform distribution of bodies,

(Nbb) = FocNmO(l). (4.68)

We can, of course, simply compute the summation in Eqn. 4.64 numerically

for specific values of Nand m. The exponential decrease of Pd for large values of d

assures us that the sum will converge rapidly. The result of numerical evaluation

of Eqn. 4.64 is shown in Figure 4.5. In light of the limiting behavior indicated

by Eqn. 4.68, Figure 4.5 shows the ratio of Nbb to N m. Based on the arguments

above, and Figure 4.5, we conjecture that

(4.69)

96

where values of bm are presented in Table 4.1. A rigorous proof of Eqn. 4.69

can almost certainly be constructed along the lines of the proof in Ap­

pendix A concerning Cavg . Values of bm in Eqn. 4.69 are shown in Table 4.1.

Table 4.1. Values of bm as defined in Eqn. 4.69, estimated from numerical evalu­

ation of Eqn. 4.64 over the range 8 :::; N :::; 2 X 106 .

m bm

1 0.52

2 0.55

3 0.59

4 0.62

5 0.64

20 0.79

97

0.8

S
0.6

* .,
" :a
0

m=l .c
Z
'-..

.c m=2 .c
Z 0.4

m=3

m=4

0.2 m=5

o L-~~LllllL~-L~WWL-~LL~WL~-LLU~ __ ~LL~~~-LLUilll __ ~

1 10 100 1000

Figure 4.5. {Nbb} /Nm vs. N.

98

4.6.6. Non-uniform distribution, i.e., PC x) -f const.

In practice, one does not simulate systems of constant particle density. The

purpose of numerical simulations is to study systems which are too complicated

to treat by other means. These are precisely the systems which deviate signifi­

cantly from uniformity. (Uniform systems can be treated analytically, and almost­

uniform systems can often be treated by analytic means.) Thus, it is important

to assess the performance of the algorithm for situations in which the distribution

of bodies in space is non-uniform.

Fortunately, a non-uniform distribution of bodies has only a weak adverse

affect on the performance of the BH algorithm. In Chapter 2, we analyzed some

statistical properties of BH trees with non-uniform particle distributions. We de­

fined the "measurability" of a distribution, and were able to estimate the properties

of the tree under the constraint that p(x) be measurable. We shall use exactly

the same strategy in this section, and the results will be valid under very similar

conditions on Nand p(x)

Recall that for a distribution to be "measurable," we must have a finite set

of cells, S, with the properties:

V, E S: p(x) is approximately constant over Vmid, V near and V-y
(4.70)

V,E S:

The conditions in Eqn. 4.70 are slightly stronger than those in Eqn. 2.45 because

Eqn. 4.70 requires that p be approximately constant over a larger region, namely

Vmid, V near and V-y. Equation 2.45 only required that p be approximately constant

over V-y.

Nevertheless, for any distribution function, p, which is continuous and

bounded, there is always a value of N and a set, S, which satisfies Eqn. 4.70.

The results of this section are valid when the conditions of Eqn. 4.70 are satisfied.

99

N ow we follow the same approach as was used in Chapter 2 and use the results

developed in the previous section for each of the constant-density cells in S. VVe

begin by formally writing the summation over all cells, I, as two separate sums,

(4.71)
, aES ,EDesc(a) ,EAnc(S)

where Anc(S) is the set of all cells which are ancestors of cells in Sand Desc((T)

is the set of cells which are descendants of (T.

4.6.6.1. NUll1ber of BBlnteractions.

It is somewhat simpler to estimate the number of BBlnteractions in the non­

uniform case, so we first treat (Nb b), which is given by Eqn. 4.59. Using Eqn. 4.71,

we have

(4.72)

Each cell in S has very nearly N, bodies in it, and very nearly constant p

throughout the cell, and in its immediate surroundings. Thus, the sum over the

descendants of (T in Eqn. 4.72 may be replaced by Eqn. 4.69,

(Nbb) ~ (L bmFOCN,) + N(N - 1) L P,Pmid C N-2,m-l(P,)· (4.73)
,ES ,EAnc(S)

Now we can make use of the properties of the cumulative binomial distributions.

For N satisfying Eqn. 4.70, and p, E S, CN- 2,m-l(P,) is exponentially small.

Thus, the second summation in Eqn. 4.73 is completely negligible and we have

(Nbb) ~ bmFoc L N,
,ES (4.74)

Equation 4.74 is identical to Eqn. 4.69. All that has changed is the domain of

applicability. Eqn. 4.74 applies as long as N is large enough so that p is measurable,

according to the definition of Eqn. 4.70.

100

4.6.6.2. Number of BClnteractions.

Computing the number of BClnteractions is slightly more complicated. We begin

with Eqn. 4.52, and again use Eqn. 4.71. Just as in the previous section, every cell

in S has very nearly constant p. Thus, the sum over the descendants of (j may be

replaced by Eqn. 4.63. The result is:

The cumultative binomial distributions that appear in Eqn. 4.75, D N -1,m(P,), are

exponentially close to unity, so we can eliminate them for simplicity,

(4.76)

The final summation in Eqn. 4.76 is:

L Pmid:::; L Focp, (4.77)
,EAnc(S) ,EAnc(S)

Now we make use of the fact that the elements of S cover all of Va. Thus,

L P, = L L P,np = L L P,np = L ppdepth(pp). (4.78)
,EAnc(S) ,EAnc(S) PES PES "YEAnc(S) PES

We can use Eqns. 4.78 and 4.77 in Eqn. 4.76, and obtain:

(4.79)

We now follow the same reasoning as in Chapter 2, with

(4.80)

101

After some simple algebraic manipulations,

(4.81)

where H was defined in Chapter 2,

'" (p-y Vo) H = ~p-ylogs V- .
-yES -y

(4.82)

In Chapter 2 we noted that H is closely related to the "entropy" of the

underlying distribution, p. Since p is approximately constant over all the elements

of S, the sum can be rewritten as an integral, and we have

H ~ r j5(x)logs(p(x)Vo)dV. ivo

H is a characteristic of the underlying distribution.

In Section 2.9.3 we showed that the

H ~O,

(4.83)

(4.84)

where equality only holds for a constant distribution. Thus, the performance of

the BH algorithm should degrade somewhat as p departs from uniformity. Nev­

ertheless, H does not depend on N, and so it does not influence the assymptotic

"order" of the expected number of BClnteractions,

(4.85)

We showed in Section 2.9.3 that for practical values of N, in the range 104-106 ,

H is considerably smaller than logs(dm+1N/m + 1), so the correction due to the

non-uniformity of the distribution has only a small effect on the total number of

BClnteractions.

102

4.7. Number of dimensions not equal to three.

The results of this chapter apply only to systems in three spatial dimensions.

If the number of dimensions, d, is not equal to three (d = 2 being of greatest

physical interest), then the number of components in MI(n) is given by

(
n + d -1).

d-1
(4.86)

The following results are obtained by exactly the same logic as their counterparts

in the previous section.

The total storage required for all moments up through order p is

(4.87)

The number of operations required to translate the components of MI(n) is

(
n + 2d -1).

2d-1
(4.88)

The number of operations required to translate all moments up through order

pIS

(
p + 2d)

2d . (4.89)

The number of operations required to compute potentials for an arbitrary

Green's function requires approximately

dP+1

d-1
(4.90)

multiplications and a similar number of evaluations of derivatives of the Green's

function.

If the Green's function is spherically symmetric, then the total work in eval­

uating <PI and al(n) through order p is

(
P+d+2).

d+1
(4.91)

103

If the Green's function is Newtonian, then the number of operations is further

reduced to

(4.92)

The total number of BBlnteractions in a system of d dimensions is still

proportional to N m. The constants of proportionality will be different from those

in Table 4.1, however.

Finally, the number of BClnteractions will satisfy

(4.93)

but the precise values of dm will be different from those in Table 2.1.

104

5. Analysis of Errors in the BH Algorithm.

5.1. Error analysis.

In Chapter 3, we saw how to carry out a multipole expansion for an arbitrary

Green's function, and several interesting special cases. Such an expansion is only

useful, of course, if it provides an adequate approximation to the desired result.

We need to investigate the conditions under which the multipole expansion con­

verges, and further, obtain estimates for the magnitude of the error introduced

by terminating the expansion after, say, n terms. Some of the results of this sec­

tion have been reported by Greengard.[13] Barnes and Hut[17] have also obtained

similar results. The formalism we develop here allows us to treat non-Newtonian

Green's functions, which cannot easily be incorporated into Greengard's analysis.

Furthermore, we derive error bounds for the gradient of the potential, which are

new, and which suggest that the gradient of the potential is considerably harder

to evaluate than the potential itself.

To carry out this program, we must replace the implied infinite summations

in Eqns. 3.7 and 3.8 with finite summations and firm error terms. This is accom­

plished by returning to the Taylor expansion with error term, [39]

From Eqn. 5.1, we obtain

n

<p,(r) = L <P,(n)(r) + <I> ,en) (r), (5.2)
m=O

105

where

(5.3)

and

(5.4)

We may also express the remainder in the "Lagrange form" as

(_l)n+l . .
K (x) = (x - r)tl ... (x - r)tn+l

n (n+1)! -y -y
(5.5)

o :s; t :s; 1,

or in the "Cauchy form" as

(5.6)

o :s; t :s; 1.

In both of these forms, t represents an unknown value in the range

o :s; t :s; 1. (5.7)

Since we are interested in the magnitude of q)-y(n) , we take the absolute values

of both sides of Eqn. 5.3,

(5.8)

where

K~UP = sup IKn(x)l. (5.9)
xEV",!

106

If we further assume that p(x) is non-negative, then

(5.10)

The gradient of K n is also of interest. It contains information about the

residual error after n terms have been used to approximate a(r). Taking the

gradient of Eqn. 5.2, we have

n

a(r) = L a,(n) (r) + A,(n) (r), (5.11)
m=O

(5.12)

Following the same reasoning as above, we conclude that

(5.13)

Clearly, if we can place firm bounds on the magnitude of Kn(x) and its gra­

dient, then we will be able to place correspondingly firm bounds on the error

introduced by truncating the multipole expansion after only n terms. In the fol­

lowing sections, we investigate bounds on the magnitude of Kn(x) under various

assumptions about the form of the Green's function, G(x).

5.1.1. Arbitrary Green's function.

We begin by assuming that the region, V" IS bounded and that its "radius,"

measured from r" is b,

b = sup Ix - P-yl. (5.14)
xEVI'

As we shall see, the error bounds that we develop for <p,(n) are expressed as a power

of b over a length-scale introduced by the geometry and the Green's function.

With a completely arbitrary Green's function, there is little we can do except

apply dimensional arguments. In order for dimensions to agree, we must be able

to write the nth derivative of the Green's function as

(5.15)

107

where D has the dimensions of length, and depends on the precise value of r -

r'Y - t(x - r'Y). Let us suppose, now, that with rfixed, and with t and x allowed to

range through their respective domains, that the magnitude of the the derivative

of G is bounded. That is, that there exists a non-zero function, D n +1 (r), such

that

(5.16)

We may now take the absolute value of Eqn. 5.5 and apply Eqns. 5.14 and 5.16,

noting that there are 3n +1 implied terms in the Einstein summation over the

indices iI, i2 , •••• We obtain

(5.17)

and, by Eqn. 5.8,

(5.18)

Thus, we have a very general result. The error in the multipole expansion

after n terms is bounded by the leading term in the expansion times the n + 1

power of the ratio of the radius of V'Y to a length-scale, Dn +1 • The length-scale

depends on the details of the Green's function, and the geometry of V'Y and r. The

convergence of the Taylor series depends on whether IDn+11 is sufficiently small

for large n. It is clear from Eqn. 5.18, that a sufficient condition for the eventual

convergence of the Taylor series, Eqn. 5.2 is

lim IDn I > 3b.
n-+<X)

(5.19)

108

5.1.2. Spherically symmetric Green's function.

Now, we investigate what further progress can be made if the Green's function is

spherically symmetric. We shall use the following identities:

(5.20)

........ (........) r-r -tx-r A _, ,

et = d
t

' (5.21)

(5.22)

(

....) A

_ X - r, . et
/1t = .

C
(5.23)

If we use Eqn. 3.20 for the derivative of G in Eqn. 5.4, and make use of the

definitions, Eqns. 5.20 through 5.23, we obtain

1 n m~~ n } -1 d ()n-l (c) (d) '""' n(-1) (n-m)(d) n-2m '(n-l - t 1 - t -d 9 t ~ 2m(_)" 9 t Pt .
O t n 2m .m.

m=O

(5.24)

The equivalent Cauchy form of Eqn. 5.24 is

K n- 1(x) = (-I)ng(d,) (;,) n (1 - t)n-1 ~ 2m(n _n2m)!m!g(n-m)(d')I'~-2m.
(5.25)

It is clear, from Eqn. 5.14 that

c ~ b, (5.26)

and from Eqns. 5.20 through 5.24 that

(5.27)

Thus, Eqn. 5.25 implies

109

and, finally, setting t = 0, as that provides us with an upper bound,

(5.29)

where we have defined VI' to be the "shadow" of VI'

(5.30)

and dmin is the shortest distance from the point, r, to the region, V I'.

The normalized derivatives, g(n), are dimensionless, although they may well

depend on some internal length-scale. Nevertheless, we have found that d min is

a natural unit of length, which is much more definite than the unspecified Dn

of Eqn. 5.17. We now have a very powerful result. For a spherically symmetric

Green's function, the magnitude of the error term is bounded by the n+ 1 power of

the radius of VI divided by the distance from r to the shadow of VI" Nevertheless,

we still have an arbitrary function, g(r), and its derivatives in our expression for

q)1(n). In order to make more specific claims, we must specify a precise functional

form for g(r).

5.1.3. A softened Newtonian potential.

We now return to the example of the softened Newtonian potential. With a

completely specified Green's function, we can, in principle, evaluate q)1(n) for any

particular values of x, rl and r. Our first step is to simplify the expression for

J(n, and to cast it in terms of as few independent variables as possible.

We simply use Eqn. 3.32 in Eqn. 5.24, and obtain

1 () n m~n/2 ()m()"
,r () _ 1 (d) ~ (_)n-l '" -1 2n - 2m - 1 .. n-2m

]\'n-l X - n 9 t R 1 t ~ '2m(_ 2)' vt ,
o t m=O m. n m .

where

R t = (di + (;2) t ,

dt
Vt = /-It R

t
:::; /-It :::; 1.

(5.31)

(5.32)

(5.33)

110

The summation in Eqn. 5.31 is precisely identical to the Legendre polynomial,

Pn(Vt), [34] Thus, we have

We find that Kn may be computed in terms of p, a and (3, where

C

0:'= d'

Simple algebraic manipulations reveal that

R 1 -i = (1 - 2pat + a 2 t 2 + (32) 2" ,

d
Vt = (p - at)-.

R t

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

The situation is now well-defined enough so that it is worthwhile to compute

the gradient of the Kn. A somewhat tedious exercise in algebra reveals that

1 t (d)n+3 V Kn(x) = - d2 a
n+1 (n + 1) Jo dt(l - t)n R

t
(5.40)

((n + 2)Pn+1 (Vt)ht - (x,- Vtht)P~+l(Vt)) ,

where

- - (5.41)

x, =
x - 7',

c

We can express the gradient of]{ n as a sum of two orthogonal parts, one

parallel to e and one perpendicular,

n}T () (n + 1)a
n
+

1
(}'7 A }T (A A))

V \.n X = - d2:"ee + \....L X - pe , (5.42)

111

where

(5.43)

KL(X) = l' dt(l - t)" UJ n+3 ((1 + UJ 2 (" - at») P~+l(Vt) (5.44)

+ (n + 2)at ~t Pn+l(Vt»).

With explicit expressions for Kn and its gradient, we can now quantitatively ad­

dress several issues regarding the multipole series.

5.1.3.1. Convergence of the multipole series.

First, we investigate the conditions under which the multipole series eventually

converges as n grows arbitrarily large. Upon noting that the Legendre polynomials

and their derivatives are bounded, inspection of Eqns. 5.34 and 5.40 reveals that

Kn(x) and its gradient approach zero with increasing n, if

(1 - t)da
R

t
< 1; for 0 < t < 1.

Using Eqn. 5.38, we find that Eqn. 5.45 is equivalent to

We note that Eqns. 5.22, 5.35 and 5.14 imply

b
a < d'

(5.45)

(5.46)

(5.47)

so the following is sufficient to guarantee Eqn. 5.46, and hence convergence of the

senes:

(5.48)

112

Thus, the multipole expansion of a softened Newtonian potential converges for all

points, r, outside a ball of radius, (b2
- (2)~, centered on the point, r'Y.

Knowledge of the convergence of a series is of little practical use because

one rarely has the facilities to explicitly evaluate the sum of an infinite number

of terms. In practice, it is much more useful to understand the behavior of Kn

and its gradient for fixed, reasonably small, values of n. In order to simplify the

analysis, and the presentation of results, we shall defer this discussion until we

treat the case of pure Newtonian gravity, in which case the parameter (3 vanishes,

and there are only two free parameters to adjust, a and J-L.

5.1.4. Newtonian potential.

The situation for a purely Newtonian potential is essentially the same as for the

softened version. For a purely Newtonian potential, t, or equivalently (3, may be

taken to be zero in any of the equations in the previous section. This implies that

R t may be replaced by dt , and Vt may be replaced by J-Lt. Thus,

(5.49)

5.1.4.1. Bounds on <1>,(n)'

It is easy to place bounds on Eqn. 5.49. First we note that the Legendre polyno­

mials are bounded by

(5.50)

and

iff Ixl = 1. (5.51)

Furthermore, we observe that if J-L = 1, we have the following identities:

d 1
----,
dt 1- a (5.52)

J-Lt = 1,

and finally, we observe that for fixed a and t,

(5.53)

113

Based upon Eqns. 5.49, 5.50 and 5.53, we conclude that the maximum possible

value of Kn is obtained by setting f-l = 1. That is

(5.54)

The integral expression in Eqn. 5.49, with f-l = 1 becomes

T.T () I _ 1 () n+ 1 r 1 d (1 - t) n
An X J.t=1 - -d n + 1 a Jo t (1 _ at)n+2' (5.55)

which is readily evaluated as

(5.56)

We now combine Eqns. 5.47, 5.10 and 5.56 to obtain

(5.57)

Equation 5.57 tells us that the error after n multipole terms is bounded by

a constant times the magnitude of the first multipole term. The constant is a

function of the ratio of the maximum extent of V, to d, the distance from i, to the

point at which the field is evaluated. Essentially the same result as Equation 5.57

has been obtained by Greengard [13] using a different formalism, which does not

treat the case of non-Newtonian potentials.

5.1.4.2. Bounds on A,(n).

The expression for I'9Kn (x)1 cannot be separated into pieces, each of which is

maximized at f-l = 1, as we did for the expression for Kn. Nevertheless, we conjec­

ture that the upper bound on !VKn(x)! also occurs when f-l = 1. This conjecture

is verified empirically for n < 4 by the figures in the following subsection. When

f-l = 1, the expression for V K n (x) is greatly simplified,

- T () _ e ()() n+l 11 d (1 - t)n
\7 I\.n X J.t=l - - d2 n + 1 n + 2 a t ()n+3.

o 1 - at
(5.58)

114

The integral may be explicitly evaluated, and we obtain

_ e a n +1

VKn(X)IL=l = - d2 (1 _ a)2 (n + 2 - a(n + 1)). (5.59)

If we accept Eqn. 5.59 as an upper bound for IVKn(x)l, then we may use it in

Eqn. 5.13 to obtain

I
- I M a

n +1
a n +1

Ay(n) :::; d 2 (1- a)2 (n + 2 - a(n + 1)) = la,(o) 1 (1- a)2 (n + 2 - a(n + 1)).

(5.60)

With Eqn. 5.47, we have

(5.61)

Comparing Eqn. 5.61 to Eqn. 5.57, we note some important differences. Equa­

tion 5.61 contains an additional factor of (1- bjd)-l, and another factor approx­

imately proportional to n. We can expect the fractional error in the acceleration

after n multipole terms to be substantially greater than the error in the potential.

Thus if a given number of multi pole terms provides a desired level of accuracy

in the computation of potentials, it will not necessarily provide the same level of

accuracy in the computation of accelerations. The best choice of parameters for

computing the potential is not necessarily the best for computing the acceleration,

to a specified level of accuracy. This is an important consideration in the appli­

cation of Greengard's algorithm to the computation of accelerations. Greengard

computes only errors in the potential, and estimates the number of multipoles

based on those errors. If accelerations are required, then additional analysis is re­

quired to determine the magnitude of the errors. The result will certainly resemble

Eqn. 5.61, and will likely imply that even more multipole terms are needed for the

accurate computation of accelerations than for the computation of potentials.

115

5.1.4.3. Values of Kn(a, J-L).

Equations 5.57 and 5.61 give firm upper bound on the error in the potential after

n multipole terms. Recall that the true error is actually an integral of the mass

density weighted by the function, Kn(x). In the worst case, the mass density may

be concentrated at the point, x, which gives rise to the maximum magnitude of

K n , and hence, Eqns. 5.57 and 5.61. In general, however, the mass density will be

more evenly distributed, and it is useful to gain an understanding of the behavior,

Kn(x), and its gradient over their entire domain. Figures 5.1, 5.3 and 5.5 are

contour plots of Kn(ex, p,) with contours every 0.05 from -0.5 to 0.5. The factor of

-~ has been factored out, so that the contours represent a dimensionless quantity.

Similarly, Figures 5.2,5.4 and 5.6 are contour plots of IVKn(ex,p,)I, with contours

every 0.05 from 0.0 to 0.5. The factor of d12 has been eliminated, so the contours

represent a dimensionless quantity. These figures provide a picture of the behavior

of Kn over its entire domain.

Several points are worth noting in these plots.

1. As f-L ranges from -1 to 1, the value of Kn changes sign. Averaged over f-L,

for any given fixed value of ex, the error vanishes. This will be demonstrated

analytically in Section 5.2.

2. For a given value of ex, the typical value of Kn(x) is much less than the

maximum value, which occurs at f-L = 1. This suggests that the worst-case

analysis that leads to the error bound of Eqn. 5.57 may be very pessimistic.

The typical error (in the potential) may be much less than the maximum

error.

3. The same is true, but to a much lesser extent, for the gradient of Kn. Thus,

we can again expect that the statistically typical case will be somewhat better

than the worst-case of Eqn. 5.61, but the improvement will not be as great

as for the potential.

4. These graphs may be used to estimate the behavior of a particular choice of

opening criterion in the Barnes-Hut algorithm. As we saw in Chapter 4, the

116

OpeningCriterion controls the range of values of a for which the multipole

approximation is used. Once the range of a values is determined, Figures 5.-5

through 5.0 may be consulted to estimate the errors that will be introduced by

multipole approximations of given order. We will return to this in Chapter 6.

117

0.8

0.6

0.4

0.2

OL--L~ __ ~~ __ L--L~ __ ~-L __ L-~~ __ ~-L __ L-~~ __ ~-L~

-1 -0.5 o
J.L

0.5

Figure 5.1. Magnitude of the error in the field, cp, after n = 1 multipole

terms.

118

0.8

0.6

0.4

0.2

OL--L~ __ ~-L __ L-~~ __ ~-L __ L-~~ __ ~-L __ L-~~ __ ~-L __

-1 -0.5 o
/-L

0.5

Figure 5.2. Magnitude of the error in the acceleration, - V cp, after n = 1

multipole terms.

119

0.8

0.6

0.4

0.2

OL-~~~~-L~~~~ __ L-~-U __ ~-L __ L-~~ __ ~-L~L-~~

-1 -0.5 o
JL

0.5

Figure 5.3. Magnitude of the error in the field, </J, after n = 2 multipole

terms.

120

0.8

0.6

0.4

0.2

OL--L~ __ ~-L __ L--L~ __ ~-L __ L-~~ __ ~-L __ L-~~ __ ~-L~

-1 -0.5 o
I-L

0.5

Figure 5.4. Magnitude of the error in the acceleration, - V </J, after n = 2

multipole terms.

121

0.8

0.6

0.4

0.2

o L-~~ __ ~-L __ L-~~ __ ~-L __ L-~~ __ ~-L __ L-J-~ __ ~-L~

-1 -0.5 o
I-L

0.5

Figure 5.5. Magnitude of the error in the field, <p, after n = 4 multipole

terms.

122

0.8

0.6

0.4

0.2

OL-~~--~~--~~--~~--~~~~~~--~~--~-L--L--L~

-1 -0.5 o
J-L

0.5

Figure 5.6. Magnitude of the error in the acceleration, - V 4;, after n = 4

multipole terms.

123

5.1.4.4. Contours of constant K!;"uP.

Another way of visualizing the error function K~up is to plot three dimensional

contours on which the value of K~up is constant. These contours are particularly

useful because they help us to formulate the appropriate criterion for deciding if a

multipole approximation is valid or not. Computing K~up for a particular value of

i is a non-trivial task, naively requiring a search of the entire interior of VI until

the point x with the maximum value is determined. We can simplify the task by

observing that Kn is a strictly increasing function of <:t, which is proportional to

the magnitude of x. Thus, we can immediately restrict our search to the boundary

of VI. We can restrict the search further by observing that for any fixed value of

/-l and i, there will be a unique maximum value of <:t, which corresponds to the

point x on the surface of VI with

X· e
Ixl = /-l, (5.62)

Ixl maXImum. (5.63)

The geometry is illustrated in Figure 5.7. There are two points on the boundary

of the square which satisfy Eqn. 5.62. Of these, Xl has the larger value of <:t. Thus,

in Figure 5.7,

<:tmax =
IXI - ill
Ii-i-yl

(5.64)

In three dimensions, the set of points satisfying Eqn. 5.62 will be a deformed circle,

on the surface of the cube.

Thus, searching VI for a maximum value of Kn(x) is reduced to searching the

range of /-l for a maximum value of

(5.65)

Of course, <:t max depends on e as well as the geometry of VI.

Figures 5.8 through 5.10 show contours of constant K~up for VI' a cubical

box with sides of length b. These figures are useful for determining an appropriate

124

-t
• r

Figure 5.7. Geometry used in J{~up computations. The value of cmax(P)

is /XI - r; /. In two dimensions only two distinct points on the boundary,

Xl and X2, satisfy the condition on the angle p. In three dimensions,

the set of points is topologically a circle. Nevertheless, there is a unique

value of Cmax analagous to Xl.

125

OpeningCri terion, as in Chapter 6, because they represent the region of space

that must be excluded if one wishes to guarantee a certain accuracy from the

multipole approximation. It is interesting that the surfaces in these figures are

not at all round. They follow, more-or-less, the shape of the cubical volume V"

We shall return to this observation in Chapter 6.

126

Figure 5.S. Contour of K;UP(r) = 0.01, maximum radius = 4.33b.

127

Figure 5.9. Contour of K;UP(r) = 0.1, maximum radius = 2.20b.

128

Figure 5.10. Contour of KtUP(r) = 0.1, maximum radius = 1.60b.

129

5.2. Statistical analysis of errors.

In the previous section we analyzed the multipole approximation and developed

analytic expressions for the errors introduced by replacing the integral expression,

Eqn. 3.1, with a multipole expansion. That analysis lead to a firm upper limit

on the errors, Eqns. 5.57 and 5.61. We also noted that over most of its domain,

the function, f{ n (ex, f1.) is much smaller than its maximum value, suggesting that

the typical error may be much smaller than the upper bound. In this section

we investigate some statistical properties of the multipole expansion. It has not

proved possible to obtain useful results from a statistical treatment of the complete

error term, i.e., «P/,(n) and A/,(n). Instead, we estimate the mean and variance of

each of the terms in the multipole expansion separately. Thus, in order to use the

results of this section to select parameters for an algorithm that uses the multipole

approximation, one looks at the mean and variance of the first few terms which

are not computed by the algorithm. If these terms are acceptably small, then the

affect of neglecting all higher terms will almost certainly still be acceptable.

Although the statistical analysis may be carried out for the general Green's

function, definite results do not emerge until a specific form of the Green's function

is chosen. In this section, we will restrict ourselves to the Newtonian potential.

Two different types of statistical averages will be studied. The first is an

average over possible configurations of the density field, p. We treat density fields

made up of collections of point particles, so this type of average is really an average

over particle positions. If f is some function of the density field configuration, then

we shall denote the mean of f over possible density field configurations by

(f) . (5.66)

The second type of average is over measurment position, i.e., the point, 1-:, at

which the field and gradient are to be evaluated. Since the Green's function of

interest is spherically symmetric, the angular and radial dependence of the errors

generally decouple. It is useful to compute averages over a solid angle, i.e., the

unit-vector, e. If 9 is a function of r, then the average of 9 over possible values of

130

the unit-vector, e, is denoted by

(5.67)

Suppose we have a density field characterized by N mass points distributed

at random throughout the region V" Then, the density is given by

N

p(x) = L mp83(x - xp)' (5.68)
p=o

Let us assume that the position of each point, i.e., xp , is an independent, identi­

cally distributed random variable with probability distribution function, p(x). For

the remainder of this section, we shall take r, to be the origin, which greatly sim­

plifies much of the algebra. As Eqn. 3.1 is translation invariant, this simplification

entails no loss of generality. In addition, we shall take the Green's function to be

Newtonian.

Since the particles are independently distributed, we can use the following

statements about the expectation value of a function of particle positions,

and

The total mass inside V" M, is given by

N

M= Lmp.
p=l

(5.69)

(5.70)

(5.71)

131

The multi pole moments (and their traces) of this mass distribution are

(5.72)

By straightforward application of Eqn. 3.34, we obtain

(~) ~m m?!2 (-1)m(2n - 2m -I)!! n-2m I In
<P(-yn)(r') = dn+1 ~ p f;;:a m!2m(n _ 2m)! flp xP '

(5.73)

where

(5.74)

The summation in Eqn. 5.73 is the Legendre polynomial, Pn(flp),[34] so Eqn. 5.73

may be written as

(5.75)

Applying Eqn. 5.69 we obtain

(5.76)

In other words, the expected magnitude of the nth multipole correction to a col­

lection of N mass points is precisely equal to the magnitude of the nth multipole

correction to the underlying probability distribution that governs the position of

those mass points.

A similar result follows for the acceleration at the point, r, due to the collec­

tion of mass points. Taking the gradient of Eqn. 5.75, we obtain

i'L-y(n)(r) = - dn1+2 L mp (((n + l)Pn(flp)) e - (1 - fl~)~P~(flp)X.lp), (5.77)
p

132

~a,(n)(r))) = -la,(o)1 (dIn)

1 d3 xp(x) Ix In (((n + I)Pn(fl)) e - (1- fl2)~P~(fl)!r-L) ,
V-y

(5.78)

where

(5.79)

is a unit-vector perpindicular to e, in the plane of e and x. The result is similar

to that of Eqn. 5.76. The expectation of the acceleration from the set of N mass

points is again exactly that which one expects from the underlying distribution

that governs the particle positions.

In order to estimate fluctuations in the nth multipole term due to the fi­

nite number of discrete mass points, we compute the mean square values of the

potential and acceleration. Applying Eqn. 5.70, we obtain

and

((la,(n)(r)1
2

)) = (1- N~ff) 1G:,(n)1
2

(5.81)

+ _1- la,(0)1
2 r d3 xp(x) Ixl 2n ((n + I? P~(f-L) + (1- f-L2)p~2(f-L)),

Neff Jv-y

where NeJ J is the effective number of particles in the sample,

(5.82)

We now have two contributions to the mean square of the nth order potential

and acceleration. There is a term proportional to the square of the nth multipole

133

of the undrerlying probability distribution, and a second "statistical" term pro­

portional to N;j~ times the monopole term times a function of order unity, which

depends on the underlying probability distribution.

5.2.1. Uniforrn distribution in a sphere.

Let us now consider the situation in which V, is a sphere of radius, b, and the

underlying probability distribution, p(x), is constant.

The orthogonality of the Legendre polynomials allow us to explicitly evaluate

the integrals of the previous section very easily. We use the identities:

to obtain

and

11 () () 2onn , dJ-lPn J-l Pn , J-l = ,
-1 2n + 1

11 d (1 _ 2)(p' ())2 = 2n(n + 1)
-1 J-l J-l n J-l 2n + 1 '

{<p,(n)(r))) = 0

{ a,(n) (r))) = 0

n > 0,

n > 0,

1 (b)2n 3
((4>~(n)(r))) = Neff <p~(o) d (2n + 1)(2n + 3)'

111_ 12\\ 1 1_ 12(b)2n 3(n+1)
\\ a,(n)(r) II = Neff a,(O) d (2n + 3)"

(5.83)

(5.84)

(5.85)

(5.86)

Thus, when the region, V" is a sphere, and N bodies are distributed uniformly

and randomly inside the sphere, only the statistical term contributes to the mean

square magnitude of the nth multipole. The magnitude of this term contains a fac­

tor of N;j~, which makes the mean square estimate of the error considerably less

than the worst-case estimates from the previous section. This result for spherical

systems suggests that in situations where the distribution of matter is reason­

ably uniform, the multipole approximation may, in fact, be much better than the

estimates of the worst-case situation.

134

5.2.2. Uniform distribution in a cube.

Let us now consider the situation in which V-y is a cube of linear dimension I, and

the underlying probability distribution is uniform, i.e.,

1
j5 = [3.

Note that I is related to the "radius" of V-y, b, by

(5.87)

(5.88)

Since the volume, V-y is expressed most naturally in Cartesian coordinates, the

algebra is greatly simplified if we return to the Cartesian expansion in terms of

Q-y(n). Taking expectation values of Eqns. 3.48 and 3.49,

and, for the rms fluctuations we have

//1.... ()1 2\\ I.... 12 ((2n _1)!!)2
\\ a-y(n) r II = a-y(O) n!

(((n2 1(Q-y(n)le(n-l))1
2 + (2n + 1) (Q-y(n)le(n))2)))

(M-y(o) dn) 2

(5.90)

Since the tensor, Q-y(n), is obtained by linear combination of the components

of]v[-y(n), we begin by evaluating the expectation of M-y(n). Returning to the

definition of M-y(n) , and using Eqn. 5.69 we obtain

(5.91)

135

where

(5.92)

and from Eqn. 5.70 we also obtain

{M,(n) ® M,(n)~ = M;(o) (N~ff M ,(2n) + (1 - N~ff) M ,en) ® M ,(n)) .

(5.93)

Now we define a linear operator, L(n), which maps M,(n) into Q,(n), and

recall that in general, the order of linear combinations and expectation values

may be interchanged. Thus,

(5.94)

and hence,

{Q,(n)~ = L(n) ~M,(n)))

~Q,(n) ® Q,(n)~ = (L(n) 0 L(n)) «M,(n) ® M,(n)~'
(5.95)

Putting all this together, we have

~ Q,(n) ~ = M,(O)L(n)M ,en) = M,(O)Q,(n)

~Q,(n) ® Q,(n)~ = M;(o) (N~ff (L(n) 0 L(n))M,(2n) + (1- N~ff) Q ® Q) .

(5.96)

For the case of a uniform distribution, p, in a cube of dimension, 1, the integrals

that appear in the definition of M ,en) can be explicitly evaluated,

n x , ny, n z even;
otherwise,

(5.97)

where n x, ny and n z are the number of indices from the set, i 1 ... in, \vhich are x,

y and z, respectively. We note that the expression is completely symmetric with

respect to exchange of any two indices, as well as with respect to any permutation

136

of x, y, and z. It is clear from Eqn. 5.97 that the expectation of M,(n), and hence,

Q,(n), vanishes if n is odd.

We also introduce the notation,

(5.98)

which will be used repeatedly in the equations which follow.

Using Eqns. 3.41, 5.22 and 5.97, we easily find that the lowest multipole for

which the expectation value does not vanish is n = 4, in which case we have

(5.99)

Thus, the fourth order multipole is the lowest order which does not vanish when

averaged over particle configurations. The magnitude of the average value of the

fourth order corrections to the potential and acceleration around a uniform cube

are obtained from Eqns. 5.89 and 5.99,

(5.100)

The magnitude of the acceleration is given by

1

+ 16(e~ + e~ + e~) + 9(e; + e! + e;)2) "2 (5.102)

M (1)4 7 = d2 d 192 (12 - 30e4 + 4e6 + 18es) .

137

The maximum magnitudes of the previous expressions occur when e points in one

of the cartesian directions, in which case

(I)4 7 I {<p-Y(4)(r)))lmax = I <P-y(O) I d 480 (5.103)

I ((£l-Y(4)(r)))lmax = l£l-y(o)I (~) 4 9
7
6' (5.104)

The small numerical factor of 7/480 in Eqn. 5.103 indicates that the mag­

nitude of <P-y(4), although non-zero will be, on average, quite small in comparison

with the monopole term for any sensible value of II d. The numerical factor of 7/96

that appears in Eqn. 5.104 is considerably larger, indicating that the fourth-order

correction to the acceleration is not likely to be completely negligible, unless II d

is sufficiently small. This is further evidence that analysis of the potential only

can be misleading if one intends to compute accelerations to a desired degree of

accuracy.

Although the average of the nth order multipole vanishes for n < 4, the

rms fluctuations are non-zero for smaller values of n. The magnitude of these

fluctuations contains a factor of N:t~, and hence, are most significant when the

number of bodies in the cell is small. For any given order, the magnitudes of the

fluctuations may be calculated from Eqns. 5.90 and 5.96. The results of a rather

tedious calculation are tabulated here.

The details are rather cumbersome, even for small values of n. The full angular

dependence of the rms values of the potential and acceleration are as follows:

112 \\ 1<p~(o)I(I)2(1)
\\ <P-Y(l) II = Neff d 12'

(5.105)

138

(5.106)

(5.107)

II la 12)~ = la,(o) 12 (~) 6 (14000e6 - 15795e4 + 17007)
\\ ,(3) '/ Neff d 80640 .

The preceding formulas are quite formidable, but really just define some rather

simple functions on the unit sphere. The functions obey cubic symmetry, so it is

easy to find their maximum values. It is also easy to compute their values when

averaged over the entire unit-sphere. When integrated over the unit-sphere, the

quantity, en, has mean

3
(en)· = --.

e n + 1

Thus, the relevant features of the functions appearing above are:

II <jJ2 \\ _ 1<jJ~(0) I (~) 2 (~ ~)
\\ ,(1) II max,avg - Neff d 12' 12 '

Ilia (1)12\\ _ la,(0)1
2

(~)2 (~ ~)
\\, II max,avg - Neff d 2' 2 '

II 2)~ 1<jJ~(o)1 (1)4 (1 19)
\\ cP,(2) '/ max,avg = Neff d 48' 1200 '

I'" 12 _ a,(O) I 2119 I... 12 ()4 ()
\\ a/(2))) max,avg - Neff d 80' 80 '

II 2 \\ I cP~(O) I (1) 6 (1139 583)
\\ cP/(3) II max,avg = Neff d 181440' 141120 '

II ... 2\\ la/(o)1
2 (1)6(3803451)

\\ \a/(3) 1 II max,avg = Neff d 20160' 2688 .

(5.108)

(5.109)

(5.110)

(5.111)

139

We can also plot these functions in three dimensions. The plots in Figures 5.11

through 5.16 were obtained by plotting a surface whose distance from the origin

is proportional to the function evaluated at the corresponding point on a sphere.

The shading from dark to light is also proportional to the value of the function

being plotted. Plots such as appear in Figures 5.11 through 5.16 fail to provide

a measure of the overall scale of the function. This information is available from

Eqns. 5.109 through 5.111.

140

Figure 5.11. Radius proportional to I {<p1'(4)(e))) I·

141

Figure 5.12. Radius proportional to 1((a,(4)(e)}I·

142

1

Figure 5.13. Radius proportional to ((<I>;(2)(e))) "2.

143

1

Figure 5.14. Radius proportional to ((pi')'(2)(e)12)) 2.

144

1

Figure 5.15. Radius proportional to ((4>~(3)(e))) "2.

145

1

Figure 5.16. Radius proportional to ((li1.,'(3)(e)1 2
)) 2.

146

6. Opening Criteria.

We saw in Chapter 4, that the performance of the BH algorithm depends crit­

ically on the OpeningCri terion used when traversing the tree. The choice of

OpeningCri terion is constrained by the requirement that the approximations

be sufficiently accurate for whatever scientific purposes are intended. We cannot

make the OpeningCri terion too strict, however, or we will derive no benefit from

the BH tree at all. Thus, the OpeningCri terion must be sufficiently conservative

that whenever the multipole approximation is used, sufficient accuracy results,

but it must also allow enough multipole approximations to achieve acceptable

performance. The basic routine responsible for tree traversal appears in Code 6.1.

ComputeField(body, cell)

if(cell is terminal)

fore each tbody in cell)

BodyBodylnteraction(body, tbody)

endfor

else if(OpeningCriterion(cell, body))

fore each child of cell)

ComputeField(body, child)

endfor

else

BodyCelllnteraction(body, cell)

endif

endfunc

Code 6.1. Function ComputeFields to compute an approximation to

<p and a for a body, by recursive descent of a BH tree.

6.1. General fonu of the opening criterion.

In Chapter 5 we computed numerous error estimates for the multipole

147

approximation. A common feature of all the error estimates (both maXImum

and statistical, and both potential and acceleration) is that they are increasing

functions of the ratio

(6.1)

where b measures the size of Voy, and d measures the distance from Toy to the body.

In general, the approximation is completely unreliable for ~ > 1, and the error

goes to zero as

(
b)P+l

Ji~ lerrorl ex d ' (6.2)

where p is the highest order multipole considered.

The functional form of the error term suggests an OpeningCri terion of the

form shown in Code 6.2. This general form for the OpeningCri terion relies on an

additional function, D(cell,body), and an adjustable parameter, B. D(cell,body)

may be loosely interpreted as the distance from the body to Toy. It is related to

the quantity, d = Ix - roy I, but it need not be identical to d. The optimal form

for d would have contours that follow the constant-error contours of Figures 5.8

through 5.10. On the other hand, there is little benefit in following the contours

of Figures 5.8 through 5.10 precisely. The function, D(cell, body), should be as

simple as possible, while still maintaining contours shaped roughly like those in

Figures 5.8 through 5.10.

OpeningCriterion(cell, body)

return bIB> D(cell, body)

endfunc

Code 6.2. General form of the OpeningCri terion function.

The adjustable parameter, B, in Code 6.2 controls the accuracy of the sim­

ulation. Small values of B imply high accuracy, and less willingness to use the

multipole approximations, while large values of B imply lower accuracy, with a

greater reliance on multi pole approximations.

148

We shall consider six distinct DpeningCri teria III this chapter. We may

select one of two options for D(cell, body):

1. The distance from the body to r,.
2. The distance from the body to the edge of V,.

In addition, we may select one of three options for the metric used to compute

the distance:

1. The usual Cartesian metric, i.e., (8x 2 + 8y2 + 8z2)~.
2. The Manhattan or L1 metric, i.e., 15xl + 15yl + 18zl.

3. The Loo metric, i.e., max(18xl , 18yl ,18zl).

We shall use subscripts on () to indicate which DpeningCri terion is under con­

sideration. The subscript BH indicates Barnes' original DpeningCriterion which

uses distance to r, and a Cartesian metric, i.e.,

()BH = Or Cart·
"I'

(6.3)

6.2. Opening criteria in the literature.

The original Barnes-Hut DpeningCri terion makes the following choice for the

DpeningCriterion,

D(cell, body) = distance from r, to the body. (6.4)

This particular choice of strategies has been studied in some detail. [18, 17]

Nevertheless, there is a serious problem with this DpeningCri terion which has

gone unnoticed. As we shall see, other strategies offer superior accuracy for the

same performance.

Some work has been done on alternative DpeningCri teria. Makino has sug­

gested an alternative formulation of the DpeningCri terion, based on statistical

arguments. [20] He notes the factor of N~~, as well as the factors, 1 <P,(O) 12 or

15,(0) 12 , which are proportional to N~ in Eqns. 5.85 and 5.86. Thus, he mini­

mizes the "error" based on the assumption that the error is proportional to N~/2.

Makino points out, however, that there may be difficulties with large cells and

149

warns against a naIve application of the method. The reason for the failure of

convergence is contained in Eqns. 5.76 and 5.78, which tell us that when the un­

derlying distribution of matter is not perfectly uniform, we no longer have the

benefit of the extra factor of N-l. Assuming that the distribution of matter is ex­

actly uniform leads to an overly optimistic error estimate which explains Makino's

observation that "convergence of the multipole expansion is not guaranteed for

large cells, since the criterion leads to a too-large opening criterion for large cells."

Barnes has described yet another DpeningCri terion,[22] which is motivated

primarily by the desire to eliminate conditionals from the tree traversal routine

in order to facilitate vectorization. The resulting DpeningCri terion is applied

to groups of bodies, rather than one at a time, as in Code 6.2, and all bodies

in a group either interact with a cell, or not, according to the result of a single

execution of DpeningCri terion. The DpeningCri terion is the usual BH one,

except that the distance is calculated from the boundary of the group of bodies

to the r'Y of the cell. Groups of bodies are defined, effectively, as terminal nodes

of a BH tree with m = ncrit, where ncrit is comparable to the vector length

of the target architecture. Barnes compares the alternative DpeningCri terion

with the original one and concludes that the choice can be made on the basis

of computational performance, i.e., from a strictly numerical point of view there

is little evidence to recommend one over the other. Unfortunately, the modified

DpeningCri terion remains susceptible to the systematic source of error described

in the next section.

6.3. The detonating galaxy pathology.

Before we investigate alternatives to DpeningCri teria, we consider a serious dif­

ficulty with the original formulation. We found, quite by accident, that the BH

DpeningCri terion with () ~ 0.58 can result in very significant systematic errors

that can completely destroy a simulation.

To understand the difficulty with the original DpeningCri terion, consider

the situation illustrated in Figure 6.1. A small secondary galaxy is moving toward

150

Figure 6.1. A two-galaxy system that may exhibit the detonating galaxy

pathology.

151

a massive "primary" system which is stationary at the lower left corner of one of

the hierarchical cells. Unless ()BH is very small, the internal dynamics of the small

system will be severely disrupted by systematic errors introduced into the force

calculation.

Consider the situation when the evolution reaches the configuration shown in

Figure 6.2. Much of the secondary system has passed into the cell P. The center­

of-mass of cell P, however, has not moved appreciably, and remains near the lower

left corner. Thus, when the opening criterion is applied for the body marked with

an X, one finds that the distance to the center-of-mass of cell P is about v'2.
For any value of ()BH > jz, cell P will not be opened. All the bodies in cell P,

including those in the secondary galaxy, e.g., the body Y, will be represented by a

multipole expansion around i" near the lower left corner of P. The result is that

the gravitational attraction of the part of the core of the secondary galaxy that

has passed into P will be greatly reduced on body X, and the secondary galaxy,

if it was gravitationally bound on its own, will lose a considerable amount of its

self-gravity. In practice, the secondary galaxy appears to detonate as it crosses the

cell boundary. For this reason, we shall refer to this problem as the "detonating

galaxy pathology."

Note that the point X is outside of cell P, so this problem is distinct from the

"self-interaction" problem discussed, and solved, by Hernquist [18] and Barnes,[17]

which may be treated by modifying the opening criterion so that a cell which

contains the body whose potential is being calculated is always opened. In effect,

Hernquist and Barnes have corrected the problem for bodies like Y, which are

inside cell P, but not for bodies like X.

It is noteworthy that this pathology actually arose in a "real" simulation

before we were aware of its existence, so it may not be "solved" by asserting that

it will not occur in practice. The simulation in question was of a physical system

much like that shown in Figure 6.1. It consisted of two "galaxies" on a headon

collision orbit inclined at 45° to the Cartesian axes. Interestingly, Barnes has used

P

cmofP

x
•

152

•

Figure 6.2. Pathological situation for BH DpeningCri terion.

153

a similar system to verify the correctness of his approach in an extensive series

of tests.[17, 22] The galaxies in Barnes' test case were of equal mass and on a

headon collision course parallel to one of the Cartesian axes. In this configuration,

the pathology does not arise, and Barnes was able to "verify" the accuracy of

the algorithm. Makino[20] has similarly verified the accuracy of his alternative

OpeningCri terion on an even simpler system-a single Plummer sphere of bodies.

Again, the pathology did not arise.

6.4. The cause of the problem.

The fundamental cause of the detonating galaxy pathology is easily understood.

It stems from the proximity of the point X, to the cell P, which is treated by

a multipole expansion. Clearly, as the point X becomes arbitrarily close to the

boundary of cell P, the multipole expansion of P fails to account for the very-near­

neighbor interactions that are possible between X and bodies inside P.

It is worth noting that this behavior is "predicted" by Eqns. 5.57 and 5.61,

which give strict upper bounds on the remaining error after the nth multipole

term. We can write Eqn. 5.57 as

(6.5)

and Eqn. 5.61 as

(6.6)

The factor of (d - b) appearing in the denominator of both of these equations

has a simple geometric interpretation, shown in Figure 6.3. As the test point

X approaches the boundary of V" the maximum possible error increases as an

inverse power of the distance from the point to the boundary, i.e., (d - b)-I. In

fact, the factors of (d - b)-1 in the potential and (d - b)-2 in the acceleration,

154

correspond to the magnitude of the error that would result from a body placed

inside the cell, near the boundary, a distance of (d - b) from the test point.

For values of the ratio, ~, which are not vanishingly small, we must include

the term proportional to (d - b) -1 in our estimate of the error, if we hope to obtain

a predictable level of accuracy.

In order to constrain our DpeningCri teria, we compute the minimum pos­

sible distance between the boundary of a cell and a body which interacts with the

multipole approximation of that cell. Unless this distance is greater than zero,

there is no guarantee that the multipole expansion will produce accurate results,

and the detonating galaxy pathology may arise. The worst case is illustrated in

Figure 6.3, which shows a cell with center-of-mass near one of the corners and a

sphere (circle in the two-dimensional figure) of radius b()-l outside of which the

multipole approximation may be used. From Figure 6.3, we see that for any value

of () > 1/ V3 ~ 0.58, there may be no distance at all between a test point and the

boundary of a multipole approximated cell. This is the basis of the claim that the

original BH DpeningCriterion is unreliable for () > 1/V3.

6.5. Comparing opening criteria.

Before we explore the relative merits of various DpeningCri teria mentioned in

Section 6.1, we need a method for comparing one with another. We found in Chap­

ter 4 that the total number of interactions computed in an N-body simulation is

proportional to the volume of the region, Vmid, which satisfies the DpeningCri te­

rion of the parent of a cell, but fails the DpeningCri terion of the cell itself. The

quantity, Foe, was defined to be the ratio of Vmid to V .. p and is the only character­

istic of the DpeningCri terion which influences the total number of interactions

computed.

We know that, in some cases, the BH DpeningCri terion implies largely

incorrect approximations, and that, perhaps, some other DpeningCri teria will

not share the same difficulty. Unfortunately, we lack a quantitative measure of this

phenomenon. In lieu of any statement like: "The alternative DpeningCri terion

155

."""""",

x

Figure 6.3. Worst case situation arising from BH DpeningCri terion.

The distance from the test point, x to the corner of the cell is only

biB - v!3b.

156

results in an average 20% improvement in the error for a fixed number of computed

interactions," we adopt the simple hypothesis that the approximations implied

by each OpeningCri teria are equally good. Then, we can find a value for aalt

which leads to the same number of interactions as any given value of aBH. We

assume that a simulation carried out with an alternative OpeningCri terion and

this equivalent value of a will be at least as accurate as the simulation using

the original BH OpeningCri terion. The detonating galaxy pathology inherent

in the BH opening criterion suggests that it is not a particularly good choice

for a benchmark. Nevertheless, there is considerable evidence that it performs

well, at least when the detonating galaxy pathology does not arise. Thus, despite

its problems, we use the BH opening criterion as a benchmark with "known"

numerical properties,[17] and we compare the alternative OpeningCri teria to it.

With these caveats in mind, we turn to computation of the values of Foe for

the alternative OpeningCri teria under consideration. The region, Vmid, corre­

sponding to the original BH OpeningCri terion is shown in Figure 6.4. The value

of Foe is clearly

Foe = 47r (_2)3 _ 47r (_1)3
3 aBR 3 aBR

(6.7)

In Figure 6.5, we show the Vmid arising from a Cartesian metric and an edge

distance function. The value of Foe is

Foe = 7 (1 + 6 + 37r + 47r)
aedge,eart a;dge,eart 3a~dge,eart

(6.8)

It is a simple exercise in solid geometry to calculate the value of Foe for the

remaining OpeningCri teria:

28
Foe = 3a~

'r-y,Man

56
Foe = ()3

T'"'{,Loo

(6.9)

(6.10)

157

Figure 6.4. Geometry of Vmid with the original BH OpeningCri terion.

-1 e

158

-1
28

Figure 6.5. Geometry of Vmid with the (edge, Cart) OpeningCri terion.

159

Foe = 7 (1 + 6 + (j2 6 + 383 4) ,
8e dge,M an edge,M an edge,M an

(6.11)

Foe = 7 (1 + 8 2) 3
edge,Loo

(6.12)

The functions in Eqns. 6.7 through 6.12 are plotted in Figure 6.6.

In addition, we can set the values of Foe in Eqns. 6.7 through 6.12, equal

to one another, and obtain equivalent values of 8, by which one can compare

different DpeningCri teria. Since we have adopted the BH DpeningCri terion as

our benchmark, we relate the new DpeningCri teria to it. The results for three

cases are easy to state explicitly as

Ll -1/3Ll
Or Man ~ 7r OBH, -y, (6.13)

8- L "-' T--y, 00 ,-...,,; (6) 1/3
- 8BH ,
7r

(6.14)

2BBH
~ -(4-)-1-:-/3--

Ll
-·

3" -OBH

(6.15)

For the other two, we refer to Figure 6.7, which graphically represents equivalent

values of B.

160

Volume of interaction region. Vmid

1000

Figure 6.6. The volume of Vmid plotted against () for the SIX Open­

ingCri teria discussed in this chapter.

161

(edge, Cart)
(edge, L.) (edge, Manh)

1.5

0.5

o L--L __ ~~ __ J-~~~ __ L--L __ ~~ __ ~~ __ ~ __ L--L __ ~~ __ J-~~~

o 0.2 0.4 0.6 O.B
Barnes-Hut (}BH

Figure 6.7. Equivalent values of () for different DpeningCriteria. ()BH

is shown on the horizontal axis, and equivalent values of () for the other

five DpeningCri teria are plotted.

1

162

6.6. Avoiding the detonating galaxy pathology.

It is clear that we can eliminate the detonating galaxy pathology by ensuring that

there is a finite separation between a body and a cell which fails the OpeningCri­

terion for that body. When the OpeningCriterion uses a D(cell, body) which

measures the distance from a body to the edge of a cell, then the separation is, by

construction, always greater than zero. Thus, any of the edge-type OpeningCri­

teria are not susceptible to the detonating galaxy pathology. If distances are

measured from the body to i" then only certain values of () guarantee that bodies

are well separated from unopened cells. The values are

()r L < l.
'"Y' 00

For each of these three, we can compute the value of Foe:

Foe(i" Cart) > 287fV3,

Foe(i'-y, Man) > 252,

Foe(i
"

Loo) > 56.

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

These values are useful because they give us an indication of the "maximum safe

operating speed" for the given OpeningCri terion. For example, it is almost cer­

tainly a bad idea to use a (i .. y, Man) OpeningCri terion with Foe < 252. As this

value is even higher than the corresponding value for the BH OpeningCri terion,

there is little to recommend the Manhattan metric. On the other hand, with

()r L = 1, Foe is only 56. A simulation with such an OpeningCri terion will
'"Y' 00

execute at approximately the same overall speed as a BH OpeningCri terion with

()BH ~ 0.8. Values of ()BH that large exhibit the detonating galaxy pathology, so

the (i" Loo) metric is preferred in this case.

163

6.7. Optimizing the opening criterion cOlnputation.

The opening criterion is evaluated many times during the course of a simulation. In

fact, a careful analysis of the algorithm shows that it is evaluated approximately as

many times as the pair-wise force computation. It is critical to choose an opening

criterion that can be evaluated very rapidly, as it can have an impact on the overall

performance of the algorithm.

Our first observation in this regard refers to the Cartesian distance between

two points in space. Typically, evaluation of the square-root is a very time con­

suming operation, and an obvious "simplification" of the opening criteria is to

eliminate the square-root, and compare the squared distance with the square of

the diameter of the cell, i.e., modify Code 6.2 to be:

OpeningCriterion(cell, body)

return (bje)2 > Dsquared(cell, body)

endfunc

Code 6.3. Modified form of the OpeningCri terion function for Carte­

sian metrics.

A second observation is that when evaluating an OpeningCri terion one does

not strictly need to evaluate DC cell, body) completely. In many cases, it is possible

to determine that the OpeningCri terion has failed before all three Cartesian

directions have been accumulated to obtain the "distance." One begins with a

"cutoff" distance, bje, and decreases the value appropriately for bX, by and bz. If

the cutoff ever falls below zero, then FALSE can be returned immediately.

In Codes 6.4 through 6.6, we illustrate these ideas for three of the

OpeningCri teria. In order to be as explicit as possible, we present C language

implementations. These C programs are organized to make translation into a con­

cise set of machine instructions as simple as possible. The predicates within the

if statements are comparisons of the result of an arithmetic operation with zero.

This type of operation corresponds to commonly available "conditional branch"

instructions.

cutoff = b*thetainv;

cutoff *= cutoff;

d = x-xgamma;

if((cutoff -= d*d)

d = y-ygamma;

if((cutoff -= d*d)

d = z-zgamma;

< 0)

< 0)

if((cutoff -= d*d) < 0)

return TRUE

164

return FALSE;

return FALSE;

return FALSE

Code 6.4. C language code fragment to compute an OpeningCri terion

based on a Cartesian distance to r,.

cutoff = b*thetainv;

if((d=x-xgamhi) > 0){
if ((cutoff -= d) < 0)

}else if((d -= b) < O){

if ((cutoff += d) < 0)

}
if((d=y-ygamhi) > 0){

if((cutoff -= d) < 0)

}else if((d -= b) < O){

if ((cutoff += d) < 0)

}
if((d=z-zgamhi) > 0){

if((cutoff -= d) < 0)

}else if((d -= b) < O){

if((cutoff += d) < 0)

}
return TRUE;

return FALSE;

return FALSE;

return FALSE;

return FALSE;

return FALSE;

return FALSE;

Code 6.5. C language code fragment to compute an OpeningCri terion

based on a Manhattan metric to the edge of a cell, of size b and with

maximum Cartesian coordinates xgamhi, ygamhi and zgamhi.

The Loo and Manhattan metrics contain fewer multiplications, but more con­

ditional branches than the Cartesian metric. All three methods require approxi­

mately the same number of additions and subtractions. It is likely that the Loo

cutoff = b*thetainv;

if((d=x-xgamhi) > 0){

if((cutoff - d) < 0)

}else if((d -= b) < O){

if((cutoff + d) < 0)

}

if((d=y-ygamhi) > 0){

if((cutoff - d) < 0)

}else if((d -= b) < O){

if((cutoff + d) < 0)

}
if((d=z-zgamhi) > 0){

if((cutoff - d) < 0)

}else if((d -= b) < O){

if((cutoff + d) < 0)

}
return TRUE;

165

return FALSE;

return FALSE;

return FALSE;

return FALSE;

return FALSE;

return FALSE;

Code 6.6. C language code fragment to compute an OpeningCri terion

based on an Leo metric to the edge of a cell, of size b and with maximum

Cartesian coordinates xgamhi, ygamhi and zgamhi.

and Manhattan metrics will be somewhat faster, so they are recommended for

that reason.

However, the Manhattan metric when combined with the r, distance function,

is only reliable for Br-y,Manh < 1/3. Equation 6.20 tells us that the value of Foe

at the maximum acceptable value of B is even larger than the BH case. Thus, we

reject this particular case.

The contours of constant error, shown in Figures 5.8 through 5.10 are dis­

tinctly "boxy" in appearance. This suggests that the contours of Vm,id should

also be boxy. The three metrics we consider, Manhattan, Cartesian and Leo

have isosurfaces that are octohedra, spheres and cubes, respectively. The closest

approximation to the shapes in Figures 5.8 through 5.10 is obtained with the cu­

bic isosurfaces derived from the Leo norm. Thus, the most promising choice of

166

DpeningCri teria uses the Loa norm and either the edge or r-y distance function.

As we shall see in Chapter 7, the edge distance is advantageous for parallelization

because the result of the DpeningCri terion is determined purely by the geometry

of the cell, and is independent of its contents, which influence r-y-

167

7. Parallel Implementation of the BH Algorithm.

We now turn to issues that arise in the implementation of the BH algorithm on

a parallel processor. In particular, we are concerned with multiple instruction

stream, multiple data stream, message passing, tightly coupled, asynchronous dis­

tributed memory, large grain size, homogeneous, highly parallel processors. Taking

each of these adjectives in turn, we have:

Multiple instruction stream

Each processor executes instructions from its own instruction stream, regard­

less of the instructions executed by its neighbors.

Multiple data stream

Each processor addresses its own data space, separate from that addressed by

the other processors in the system.

Message passing

Data is transmitted between processors in discrete messages, in contrast to

the use of shared memory.

Tightly coupled

The message passing system is an integral part of the hardware and software

environment, allowing the user to treat the system as a unified whole, rather

than a collection of autonomous servers and clients.

Asynchronous

The processors have independent clocks, and synchronize only during trans­

mission of messages.

Distributed memory

The memory is distributed amongst the processors, and is not commonly

accessible. Each processor's data space is uniquely its own.

168

Large grain size

The individual processors are "large," in the sense of being capable of signifi­

cant computations. A precise definition of large is problematical, but a good

operational definition is that a "large" processor is as powerful as the current

state of the art in scientific workstations.

Highly parallel

There are many, up to a few thousand, processors in the system. This is

in contrast to sequential processors or systems which can be configured with

only a handful of processors.

Homogeneous

The individual processors have identical cpus and equal amounts of memory.

This allows the same program to be loaded into each processor. A program

may determine the processor on which it is running, and other aspects of the

parallel environment by making operating system calls.

For some of the above categories, the fact that we are targeting a particular

instance does not rule out using the same algorithm on the alternatives. Certainly,

if the algorithm performs well on a distributed memory machine, then it will

perform at least as well on a shared memory machine. One can always elect not

to share the memory. Similarly, if a machine has only eight processors, it does not

qualify as "highly parallel," but there is no reason that the algorithm would not

perform well.

Highly parallel, distributed memory computers are capable of extremely high

overall performance. It is likely that in the near future, distributed memory paral­

lel machines will outperform the fastest vector supercomputers. One can contem­

plate extremely large N-body simulations on such machines, which would be pro­

hibitively expensive on more common vector supercomputers. Thus, this chapter

is devoted to understanding issues related to parallelization of the BH algorithm.

The parallelization proceeds in three steps. First, the bodies are divided

amongst the processors. Second, a representation of the BH tree is constructed

169

in each processor. Finally, the bodies in each processor traverse the tree in that

processor exactly as in the sequential algorithm.

7.1. Domain decomposition, orthogonal recurSIve bisection.

The first problem is usually referred to as "decomposition." [6] We seek a way

to "decompose" or map the set of bodies into the set of processors that make

up the parallel computer. The simplest decompositions is the so-called "domain"

decomposition. In a "domain" decomposition, the physical space of the simulation

is partitioned and each processor manages the degrees of freedom associated with

a contiguous portion of the underlying physical space. In our case, the underlying

physical space is the three-dimensional space in which the bodies move. Domain

decompositions are generally susceptible to "load imbalance," a situation in which

the computational loads assigned to individual processors are not exactly equal,

resulting in the the parallel computation, as a whole, executing at the speed of

the most heavily burdened processor.

Thus, we must use a domain decomposition to assign bodies to processors.

We use "orthogonal recursive bisection," ORB,[40] to partition the particles among

processors. The object of ORB is to partition space into a structure similar to

Figure 7.1, assigning all the particles in one partition to one processor. The goal

is to choose a partition in which the amount of work in each domain is equal. The

basic steps in ORB are outlined in Code 7.l.

Orthogonal recursive bisection repeatedly splits sets of processors in half until

there is only one processor in each set. Each time a set of processors is divided in

half, ORB partitions the remaining domain between the two subsets. When there

is only one processor in each set, each processor has a spatial domain associated

with it, and taken together, the spatial domains of all the processors partition the

entire physical space. An outline of the ORB procedure is shown in Code 7.l.

At each iteration of the loop in Code 7.1, the physical domain is partitioned by

selecting a particular Cartesian direction, and a value of the the corresponding

Cartesian coordinate. Space is partitioned into the region "above" the coordinate

170

ORB()

set the current processor subset to all processors.

dowhile(more than 1 processor in the current subset)

choose one of the Cartesian coordinates to split.

find a splitting coordinate for the bodies

in the current processor subset.

decide if "this" processor

will be above or below the split.

place those bodies which are on the other side of

the split in a buffer.

exchange the buffer with a processor on the other

side of the split.

incorporate the newly received bodies into the

local list of bodies.

update the current processor subset so that it

contains only those processors on the same

side of the split as "this" processor.

enddo

endfunc

Code 7.1. Function ORB, which performs an orthogonal recursive bi­

section to obtain a decomposition of bodies into processors.

and the region "below." It is possible to generalize ORB to allow more general

partitions, For example, one could allow partitions along arbitrary planes, rather

than only those perpendicular to the coordinate axes. Such a partition would lead

to processor domains which are general convex polygons, rather than rectangular

parallelepipeds. This would present difficulties for the DomainOpeningCri terion

function discussed in Section 7.3, but is, in principle, possible.

We shall find that the tree-building algorithm exchanges data between the

subsets defined by the splitting coordinates of the ORB. The communication pro­

ceeds by iterating over each ORB split. For each one, every processor must ex­

change data with another processor on the other side of the split, i.e., in the other

processor subset. If we require that for each split, every processor in one sub­

set communicates with a unique processor in the other subset, then the pattern

171

Figure 7.1. A division of space in to rectangular domains, as are pro­

duced by orthogonal recursive bisection.

172

of communication is identical to that of a hypercube. Thus, the most natural

architecture on which to implement ORB, and the parallel BH algorithm, is a

hypercube. This does not imply that hardware configured as a hypercube is nec­

essary for the algorithm to work. It simply means that the communication paths

correspond to those in a hypercube, but those data paths may be realized with

hardware or via routing through some other network.

7.1.1. Hypercube communication pattern.

Let us consider the hypercube defined by the ORB further. In a hypercube

of log2(Nproc) dimensions, each processor is connected to log2(Nproc) neigh­

bors. A numbering scheme exists, in which processors are numbered from

o through Nproc - 1. Each processor is connected to the log2(Nproc) other pro­

cessors whose numbers, when represented in binary, differ in exactly one bit. Con­

versely, connections can be assigned a "channel" number, which is the unique bit

which differs in the two processor numbers on the two ends of the connection.[6]

The loop in Code 7.1 can now be identified with a loop over channel numbers.

For each channel number, ORB determines a Cartesian direction to split, a value of

the Cartesian coordinate which bisects the data, and which half of the processors

are assigned to which portion of the data.

7.1.2. Estimating work loads and bisection.

In order to apply ORB, one must be able to estimate the work associated with

a given spatial domain (rectangular parallelepiped). Otherwise, there would be

no way to find a bisection of the work into two equal parts at each iteration.

In the N-body program, this is a simple matter. During each time-step, the

work associated with each particle can be recorded (either by reading the system

clock, or simply by counting interactions). The nature of the differential equation

solver used for the time-integration requires that the system's gross features not

change dramatically from one timestep to the next. The work associated with a

body is roughly proportional to the logarithm of the local density of bodies in its

neighborhood. Clearly, if any body's local particle density fluctuates rapidly then

173

the time-step is much too large. Thus, the work necessary to compute the force

on a particle in the last timestep is guaranteed to be an excellent estimate of the

work in the subsequent timestep. This gives us the desired relationship between the

work assigned to a processor and the bodies that lie within the processor's domain.

Given a domain, we can estimate the work associated with it by identifying the

bodies that lie within it, and adding up their associated work values from the last

time-step. To choose a splitting coordinate, Xsplit, we can define a function, W(x),

which corresponds to the fraction of work in the portion of the current Domain

below the coordinate, x,

Work(sub-domain below x)
W(x) = --'---:------,---....:....

Work(whole domain)

The median coordinate, Xsplit, is the root of the equation,

W(Xsplit) = 0.5,

(7.1)

(7.2)

which is easily found with a few iterations of any general purpose root-finder.

A method for evaluating W(x) is shown in Code 7.2. First, each processor

in the current Domain sums the work associated with particles it controls. Then

these partial sums must be transmitted and added so that each processor in the

subset has the value associated with the entire subset. This implementation is

not strictly optimal, as it fails to use information learned on previous evaluations.

In particular, it could be improved by partially sorting the bodies, each time it

is called, into those above X and those below X. Then, subsequent evaluations

could restrict the loop over bodies to a much smaller set. This optimization has

not been implemented because the total time spent in the naive WeightFrac IS

not significant compared to other phases of the algorithm.

This function WeightFrac implicitly contains interprocessor communication,

VIa the global aggregation function, Combine. The functionality of Combine is

provided as a system call in some software environments, e.g., ExPress, CrossIII.

In any event, it is easy to implement in terms of the more basic send/receive prim­

itives.[6] The second argument to Combine is a function of two arguments which

174

returns the result of some commutative and associative operation. Combine returns

the result of applying the operator to all the arguments in a ProcessorSubset.

The result of Combine is identical in all of the processors in a ProcessorSubset.

It is useful to recall that a great deal of accuracy is not required in the root­

finder. Our experience indicates that locating the root with accuracy greater than

a few percent is a waste of time, as the predictive power of the last timestep's

estimates is only accurate to a few percent anyway. Finally, we note that on the

very first timestep, the work load associated with the last timestep is not known.

Lacking any knowledge to the contrary, we simply assume that all bodies require

an equal amount of work, which leads us to assign an equal number of bodies to

each processor.

WeightFrac(bodylist, X, CartDirection)

WorkAbove = 0

WorkBelow = 0

for (each Body in Bodylist)

if(Coordinate of Body in CartDirection > X)

WorkAbove += Work(Body)

else

WorkBelow += Work(Body)

end if

WorkAbove = Combine (WorkAbove, ADD, ProcessorSubset)

WorkAbove = Combine (WorkBelow, ADD, ProcessorSubset)

return WorkBelow/(WorkAbove+WorkBelow)

endfunc

Code 7.2. Function WeightFrac which evaluates the function, W(x),

used to find the a splitting coordinate, Xsplit.

Unfortunately, the total computational effort is not entirely contained in the

force calculation. In parallel, a significant fraction (see Section 8.2, jcplx) of the

computation is spent building the tree and computing multipoles. This work load

is not so neatly assigned to individual bodies, as the size and complexity of the

175

tree needed by a given processor depends on the distribution of bodies outside of

the domain of the processor. In addition, this work load is not exactly balanced

by the requirment that the force calculation work load be balanced. It is easy

to compensate for this discrepancy by seeking a division of the force:-calculation

work load which does not assign exactly half to each ProcessorSubset. Although

the exact amount of tree-build work associated with a given domain is not easily

predicted a priori, we can again make use of the fact that the structure of the

tree, and hence, the expense of building it, may not change dramatically from one

timestep to the next. Thus, if the load was not balanced on the last timestep, then

we can approach a more equitable distribution by seeking a splitting coordinate,

Xsplit, which is not exactly the median of the distribution of work, W(x). Thus,

our "median finder" no longer seeks a root of Eqn. 7.2, but instead seeks a root of

W(Xsplit) = p, (7.3)

where p is a "percentile" which is adjusted dynamically.

We define the load imbalance on the last timestep as

Total time in ProcessorSubset assigned below Xsplit
laid = ~ l' . b h S b - 0.5. (7.4) ota tIme In ot Processor u sets

We compute Pnew by

Pnew = Paid - loldW ,

(7.5)
O:::;W:::;l.

The constant, w, is arbitrary, and is chosen to prevent the percentile from oscil­

lating because of overcorrections. We have used W = 0.75. Although such large

fluctuations have not been observed, it seems prudent to also limit the range of

allowed percentiles to some fixed range like

0.25 < Pnew < 0.75. (7.6)

Occasionally, during the course of the calculation, the decomposition under­

goes gross changes. These occur when choice of splitting directions changes and

176

also on the second timestep when information about the work associated with each

body becomes available. Whenever such changes in the decomposition occur, the

assumptions underlying Eqn. 7.5 are invalid, and it is best to revert to a simple

median, i.e., Pnew = 0.5.

7.1.3. Choosing between x > xsplit or x < xsplit.

Let us assume that the bit (channel) corresponding to each split starts with the

most significant bit, and progresses toward less significant bits for each split. The

exact order is of little importance, but a definite order aids in understanding the

process. Recall that for each bit, half of the processors in the current Domain will

have a 1 in the corresponding location in their processor number, and half of the

processors will have a O.

An obvious method for determining whether a processor falls in the x > Xsplit

sub domain is simply to assign all those processors with a 1 in the corresponding

processor number bit to the x > Xsplit sub domain, and vice versa. This assignment

is equivalent to a simple linear assignment of processors to domains, as illustrated

by Figure 7.2. This decomposition has the drawback that neighboring processors

are not near to one another in the presumed hypercube topology. For example,

for data to travel from processor 011 to processor 100, it must pass through pro­

cessors 111 and 101. This problem can be resolved by numbering the processors

according to a Gray code, rather than the "counting" code of Figure 7.2.[41, 6]

A Gray code can be incorporated into ORB by changing the correspondence

between the value of the bit corresponding to the channel and the boolean value,

Above, corresponding to whether this processor is assigned to the subset above the

split point or vice versa. If, for each channel and in each processor, we make the

decision according to

Above = Above Xor Bit, (7.7)

then the decomposition of eight processors is as in Figure 7.3. Evidently, this is

a Gray code mapping similar to that described by Fox et al[6]. It is not hard to

show by induction that the assignment of processors to domains determined in

a)

b)

c)

177

000,001,010,011 100,101,110,111

000,001 I 010,011 100,101 1 110,111

000 I 001 1°101
OIl 100 11011 110 111

Figure 7.2. A one dimensional decomposition: a) after channel 2 is

split, b) after channel 1 is split, c) after channel ° is split.

000,001,010,011 100,101,110,111
a) ______________________ ~------------------------

b)

c)

000,001 I 010,011 110,111 I 100,101

000 I 001 1°111
010 110 11111 101 100

Figure 7.3. A Gray code decomposition, using ORB on eight proces­

sors: a) after channel 2 is split, b) after channell is split, c) after channel

° is split.

178

this way always gives rise to a Gray code, as long as the number of processors is

an integral power of two.

7.1.4. Choosing which Cartesian direction to split.

We now turn to the question of which Cartesian dimension to split corresponding

to each channel of the hypercube. There are two considerations which affect the

decision. First, we must consider the desire to have nearby domains assigned to

processors which are relatively close in the hypercube. This can be accomplished

by selecting the dimension to split without reference to the current domain or

processor subset, e.g., in three Cartesian dimensions,

Direction = channel mod 3. (7.8)

This is the strategy used in Figure 7.1. In Figure 7.4, we show the same set of

domains, with processor numbers assigned by the Gray code method of Eqn. 7.7.

The resulting pattern of domains is always equivalent to a rectangular grid, in the

sense that row and column numbers for domains are well defined. If the processor

assignment decisions are made according to a separate Gray code criterion for

each Cartesian direction, then adjacent processors in the same row or column will

be hypercube neighbors. Unfortunately, there is no guarantee that the logical

rows and columns represent neighboring domains in the physical space of the

decomposition. That is, the domains that border a given domain in physical space

may not be in the same logical row or column.

Figure 7.5 shows a domain decomposition that might arise from a system con­

taining two well separated "galaxies." The large border between processors 0110

and 1010, does not correspond to a hypercube connection. Even in this fairly

pathological situation, however, most of the domain borders still correspond to

hypercube channels.

It is important to remember that the structure represented in Figure 7.4

and that represented in Figures 2.1 through 2.4 are logically separate entities.

The latter show the data structure used by the BH algorithm, while Figure 7.4

179

1100
1110

0100
1101

0110 1111

1011

0101
1001

0111

1010
0001

0011
1000

0000

0010

Figure 7.4. A typical domain decomposition, with processor numbers

assigned by the Gray Code method of Eqn. 7.7.

180

is a picture of a domain decomposition which assigns bodies to processors. The

processor boundaries in Figure 7.4 do not necessarily correspond to the boundaries

of cells in the BH tree.

It is clear from Figure 7.5 that when FindSpli t is based on a median (or

percentile) finder, the domains that result can become very long and thin. The

reason is that the density of bodies, and hence, workload, in physical space can be

highly inhomogeneous. Splitting the work in half can easily split physical space

into two regions of widely disparate sizes. The smaller piece will generally be much

longer than it is wide. This tendency adversely affects the memory required by

each processor. The reason is that a processor must allocate enough memory for

the bodies in its domain, as well as all for other cells and bodies that are used in

the force calculations for the bodies in its own domain. For illustrative purposes,

let's imagine that a processor's domain is of dimension, Lx, Ly and Lz in each

of the three Cartesian directions. Furthermore, let's assume that space must be

allocated in the processor for all bodies and cells within Lint of the boundary of

the domain in any Cartesian dimension. Then the total memory is approximately

proportional to

(7.9)

Figure 7.6 illustrates the situation in two dimensions. It is easy to show that with

the volume, V = LxLyLz, fixed, memory is minimized by a cubical geometry with

Lx = Ly = L z. Furthermore, if the domain is interpreted as being associated with

a ProcessorSubset containing two processors, and it is split along, for example,

Lx, then the total memory required by the two processors will be

(7.10)

Splitting along the largest of the three Cartesian directions leads to the small­

est total memory requirement. Thus, if we wish to reduce the total memory

required by the parallel implementation, we should split domains along the di­

mension corresponding to the maximum extent of the current Domain, at each

181

1110

Figure 7.5. A two-galaxy system which gives rise to processor domains

with high aspect ratios.

182

Lint

Figure 7.6. Relationship between memory and the geometry of a pro­

cessor's domain. The processor's domain is Lx by L y , but it must have

roughly enough memory to store the data in a volume which is Lint larger

in each direction.

183

·····················:········.-:············\zJ::· r··

Figure 7.7. The same two-galaxy system as in Figure 7.5, but the de­

composer always splits the longest Cartesian direction.

184

step in ORB. Figure 7.7 shows the domains that result from splitting the two

galaxy example of Figure 7.5 along the longest dimension. The domains have

somewhat smaller aspect ratios, but the correspondence of hypercube neighbors

with physical neighbors is all but lost.

As we shall see from the detailed timings, a significant fraction of the compu­

tational overhead associated with the parallel implementation is proportional to

the amount of memory required by each processor. This overhead is much greater

than the overhead associated with data communication. Thus, we adopted the

strategy of splitting in the longest dimension in ORB. One additional complica­

tion is that the procedure for load balancing, which uses information about the

quality of load balance on the last time-step, works best when the splitting di­

rections remain the same from one time-step to the next. For this reason, we

introduced a small amount of "inertia" so that the splitting coordinate changes

only if the extent of the domain in its longest direction is more than 20% larger

than the extent in the direction that was split on the last timestep.

7.2. Building a "locally essential" tree.

After the decomposition phase, each processor has the bodies that it must compute

the forces on. It does not, however, have enough information to compute those

forces. Clearly, information must be exchanged which will allow each processor to

evaluate the forces on each body. It is important to realize that the nature of the

hierarchical algorithm allows each processor to neglect most (but not all) of the tree

data. This ability to make due with only a subset of the entire data set is, in fact,

the essence of the domain decomposition. If it were not for this fact, the domain

decomposition would be a waste of time, because every processor would need to

construct the entire BH tree, and there would be no reason whatsoever to restrict

each processor to evaluating the forces on particles in a restricted spatial domain.

We shall refer to the subset of the tree which is necessary for the evaluation of

forces in a processor's domain as the "locally essential" subset. It is interesting that

the existence and exploitation of a "locally essential" subset of a global data set is

185

common to many algorithms which may be parallelized loosely synchronously.[6]

After the decomposition phase, each processor controls a region of space, and

must compute forces for all of the bodies within that region. Imagine that each

processor obtained a copy of the entire hierarchical tree. Each body, when it tra­

verses the tree, as in Code 4.5, will access only a subset of the tree. In fact, since

the bodies are restricted to a limited domain, most of the tree is completely un­

necessary for any of the bodies managed by a single processor. This is a fortunate

result, because without it, we would have to store the entire tree in each processor.

Large simulations would be impossible on distributed memory parallel computers

because there would not be enough local memory for each processor.

DomainOpeningCriterion(Domain, Cell)

if (there exists a TestPoint within Domain such that

OpeningCriterion(TestPoint, Cell) is TRUE)

return TRUE

else

return FALSE

endif

endfunc

Code 7.3. Function DomainOpeningCri terion, which tests whether a

call to ComputeField for a body at any point in a domain could require

that the children of the cell be accessed.

Let us assert the existence of a procedure, DomainOpeningCri terion, which

tells us whether any body in a specified rectangular domain could possibly require

inspection of the descendants of a given cell or conversely, whether the cell may

be treated as terminal, for the purposes of any body which lies in the domain.

DomainOpeningCri terion is shown schematically in Code 7.3. If such a function

exists, then we can use it to test cells in a "local" BH tree to determine whether

they are needed by other processors. The function BuildTree in Code 7.4 uses

this idea to iteratively build up a local tree which eventually contains precisely

the data needed to evaluate the fields at any position within a processor's own

186

BuildTree(bodylist)

Tree = EmptyTree

BuildTreeLocal(bodylist, Tree)

fore each bisection created by DomainDecomp)

Traverse the Tree and queue any data which may be

necessary to the domain on the other

side of the bisector.

Traverse the Tree again, and delete any data which

can never be necessary on "this"

processor's side of the bisector.

Exchange queued data with corresponding processor

on other side of bisector, and merge it

into the Tree.

endfor

Do any necessary housekeeping to finish the tree.

endfunc

Code 7.4. Function BuildTree which constructs a locally essential

representation of a tree.

rectangular domain.

Recall that ORB produced a set of bisectors. The first one divides the uni­

verse into two halves, each of which is a rectangular region of space. Half of the

processors are assigned to one of the domains, and half are assigned to the other.

Then each of those domains is split again into two more rectangular regions, and

half of each subset of processors is assigned to each of the new domains. This pro­

cess repeats until there is one rectangular domain per processor. At every stage

of the ORB, a processor identifies itself with one or the other of the two domains

that were created. The function BuildTree uses this fact to organize the way it

transmits data and constructs a locally essential tree.

After each iteration of the for loop in BuildTree, every processor is a mem­

ber of a subset of processors which have not yet communicated any information

amongst one another. Because of the nature of ORB, this subset forms a sub­

cube in the hypercube topology. Furthermore, the spatial domains assigned to the

187

processors in this subset, when taken together, form a rectangular region.

At the end of each loop iteration in BuildTree, all the information that may

be necessary for a force calculation anywhere in a processor's current subdomain

was either originally stored on one of the processors in the subset, or has been

transmitted to one of the processors in the processor's current subset by a prior

"exchange/merge" operation. This assertion is easy to prove by induction. It is

obviously true before the first iteration because all relevant data is certainly avail­

able somewhere in the entire ensemble. If it is true before an iteration, then it

must also be true after, because any necessary data is either already in a proces­

sor in the subset or in a processor which will exchange data with a processor in

the subset during the iteration. The first tree traversal in BuildTree guarantees

that the data will be identified and transmitted to one of the processors in the

subset. The DomainOpeningCri terion function is used during this tree traversal

to identify which data needs to be transmitted.

After data has been exchanged between each of the bisectors in BuildTree,

each processor is in a subset that consists only of itself. Thus, based on the as­

sertion of the last paragraph, we conclude that each processor has obtained all

the data necessary for force calculations anywhere in its domain. This is precisely

the desired, locally essential data set. The pattern of communication exhibited

by BuildTree is similar to that of Furmanski's "Crystal Accumulator."[42] The

crystal accumulator also consists of an iteration over hypercube channels, with in­

terleaved operations which modify the transmitted data. In the case of BuildTree,

the interleaved operations are quite complex, consisting of merging the new data

into the BH tree followed by a traversals of the tree to identify the next batch of

data to send, followed by another traversal to prune unnecessary data.

Figure 7.8 shows schematically how some data may travel around a 16-

processor system. The second tree traversal in BuildTree conserves a processor's

memory by reclaiming data which was transitted through a processor, but which

is not needed by the processor itself, or any other member of its current subset.

The body sent from processor 0110 through 1110 and 1010 to 1011 in Figure 7.8

188

would likely be deleted from processor 1110's tree during the pruning on channel

2, and from 1010's tree during the pruning on channel O.

7.2.1. Data types for the parallel BuildTree.

In order to implement the tree traversals and the merge operations implied by

BuildTree, we will need to distinguish between some new types of cells and bodies.

We will also need to be able to set some boolean flags on a per-cell or per-body

basis. Thus, we introduce the following data types:

Local Body

Abbreviated LBody, these are identical to the bodies manipulated by the se­

quential code fragments. They contain a position, velocity, mass, and perhaps

other data of physical interest. The position of an LBody is always within a

processor's spatial domain.

Foreign Body

Abbreviated FBody, these are bodies which have been transmitted into a pro­

cessor because they may be needed for a force calculation of one of the Lbod­

ies. It contains a position and a mass, but lacks a velocity, and other physical

data.

Leaf Cell

Abbreviated LCell, these are identical to the terminal cells manipulated by

the sequential code fragments. They are really just the head of a list of

Bodies. They contain no multipole information because such information

would never be used in lieu of a direct sum over the list of Bodies, as discussed

in Section 4.5.

Internal Cell

Abbreviated ICell, these are cells internal to the BH tree. They contain

multi pole expansions, as well as pointers to up to eight daughter cells. They

are identical to the internal cells in the sequential code fragments.

189

.. '

~ 1100~
1110 0

0100 lJp'C\
0110 I 111\

1101
,

3/ \

r\ J
I .
J P

\
i

tJ J 2
/1011 / !

0101
I
10 I

I 1001 f I
I

I / f
0111 til

J

/
1010 I

0001 7
0011 I

I 0000
1000

of
[L~_ 0011 //P' r--.

~-- .~ ----------~----- -.-..... -..------~
3

>-.

\
\
l

\
\
l
\
I

21
I
I
I

/
I

i
I
/
i
I

Figure 7.8. Data flow in a 16 processor system. Arrows indicate the

flow of data. Arrows are labeled by hypercube channel number.

190

Multipole Terminal Cell

Abbreviated TCell, these are also terminal cells in the BH tree, but they con­

tain a multipole expansion to represent their contents. The region represented

is guaranteed to be outside the processor's domain, and it is furthermore guar­

anteed that no force evaluation in the processor's domain could ever require

"looking inside" a TCell.

We will assume that there is some form of memory management software that

efficiently allocates and reclaims single objects of each of these types. The func­

tions NewTCell, etc., in the Code fragments below, and the function FreeMemory

constitute our abstraction of the memory management system. We will not assume

the existence of any "garbage collection" system, so we must be careful to explic­

itly return the memory associated with any object that becomes disconnected from

the data structures.

Some additional information must be recorded on a per-cell basis. This infor­

mation is:

M poles Correct

Internal cells have a bit which identifies whether the multipoles stored with

this cell are correctly computed to correspond with the positions and multi­

poles of its descendants. TCells always have a correct multipole, and LCells

have no multipole moments at all.

Transmission Pending

ICells, TCells and LCells have a bit which indicates that they will soon

be transmitted, and should not be removed from memory by a tree-pruning

operation.

Free when Sent

Another bit IS used to indicate that the space used by an ICell, a TCell

or the Bodies in an LCell should be returned to the memory management

system after the data exchanging routines have communicated the data stored

in the memory. This bit will be set during the pruning operation when the

TransmissionPending bit is detected.

191

Nbody

The number of bodies contained in an ICel1 IS useful for optimizing the

computation of multipole moments for ICells.

ContainsTCells

In addition to the number of bodies, a bit which indicates whether any termi­

nal descendants of an ICel1 are TCells is also necessary for optimizing the

computation of multipole moments.

7.2.2. Control structures for the parallel BuildTree.

With these data types and flags, we have sufficient framework to describe the

components of the parallel BuildTree algorithm.

7.2.2.1. Selecting data for transmission.

TraverseAndQueue (Cell)

if(Cell is type LCel1 or TCel1)

EnqueueForSending(Cell)

else if(!DomainOpeningCriterion(Cell, OtherDomain))

EnqueueForSending(Cell)

else

fore each child of Cell)

TraverseAndQueue(child)

endfor

end if

endfunc

Code 7.5. Function TraverseAndQueue

It is clear from Codes 7.4 and 7.5, that the TraverseAndQueue function starts

at the root of the tree and descends toward the leaves, selecting a fraction of the

nodes for special treatment. The nodes which are enqueued satisfy two properties:

1. Their parent satisfies the DomainOpeningCri terion test for the domain Oth­

erDomain, meaning that the node itself may be required by the processor

subset on the other side of the current bisector.

EnqueueForSending(Cell)

if(Cell is type ICell)

ComputeMpoles(Cell)

endif

192

Set (TransmissionPending, Cell)

record a pointer to Cell in a list to be scanned

during the communication phase.

endfunc

Code 7.6. Function EnqueueForSending

2. The node itself is either terminal, or it fails the DomainOpeningCri terion

test for the domain OtherDomain, meaning that the processor subset on the

other side of the bisector can never need to "look inside" the node.

These are exactly the objects that must be transmitted to the other proces­

sor subset. Thus, TraverseAndQueue in Code 7.4 selects the right objects for

transmission.

Cells that are enqueued for transmission pass through the EnqueueForSend­

ing function immediately upon being identified. In addition to the mundane task

of storing a pointer to the cell, (or its constituent Bodies, in the case of an LCell),

EnqueueForSending guarantees that the multipole information stored in ICells

is up-to-date by calling ComputeMpoles. It ensures that the multipoles are correct

at this early stage because a significant amount of manipulation of the tree will

ensue between the time a cell is enqueued and the time it is eventually transmit­

ted. ComputeMpoles must be called early enough that we can be sure that the

tree has not been disturbed by "pruning" or insertion of information from other

processors, before the multipoles are calculated.

7.2.2.2. COlnputing n1.ultipoles.

The function ComputeMpoles is shown in Code 7.7. It is similar to the sequential

function analyzed in Code 4.1, but there are some important differences. The most

significant difference is that in parallel, we are only computing multipoles when

193

they are needed. The Mul tipolesCorrect bit signals that the multipoles stored

in a cell are up-to-date with respect to the descendants of the cell. We must take

care not to use the parallel axis theorem to translate the multipoles of a cell unless

the multipoles are correct. Another complication is that the leaves of the tree can

contain TCells as well as Bodies. When the descendants of a cell include one

or more TCells, it cannot be advantageous to use direct summation to move its

multipole moment, because the TCel1 would require a call to ParAxis, equal in

expense to the one call to ParAxis that would translate the entire cell. Thus, we

must take care that the optimization discussed in Section 4.2, which conditionally

uses direct summation rather than the parallel axis theorem is never applied to

cells that contain a TCell. The flag ContainsTCells, which tells us whether a

cell has descendants of type TCell, is set, along with the value of Nbody in the

insertion functions in Codes 7.15 and 7.19.

ComputeMpoles(Cell)

if(IsSet(MpolesCorrect, Cell))

return

ZeroMpole(Cell)

fore each Child of Cell)

TranslateMpoles(Child, Cell)

endfor

Set (MultipolesCorrect , Cell)

endfunc

Code 7.7. Function ComputeMpoles, which recursively calls Trans­

lateMpoles to determine the multipole moments of a cell.

7.2.2.3. Pruning the tree.

Several considerations enter into the process of pruning the tree. First, of course,

we must only prune data that we will never need again. Unnecessary cells have

two properties:

1. They fail the DomainOpeningCri terion test applied to the domain of the

processor's own subset of processors.

194

TranslateMpoles(Child, Cell)

if(Child is type LCel1)

for(each Body in Child)

BodyMpole(Body, Cell)

endfor

else if(Child is type TCel1)

ParAxis(Child, Cell)

else if(IsSet(MpoleCorrect, Child) AND

(IsSet(ContainsTCells, Child) OR Nbody(Child»Ncutoff)

ParAxis(Child, Cell)

else

for(each Grandchild of Child)

TranslateMultipoles(Grandchild, Cell)

endfor

endif

endfunc

Code 7.B. Function TranslateMpoles computes the multi pole mo­

ments of a cell either by direct summation of the contained bodies, or by

use of the parallel axis theorem (Section 4.2).

2. They are not terminal. The function TraverseAndPrune in Code 7.9 selects

precisely the nodes that satisfy these two conditions and applies the function

PruneDescendants to them.

The function PruneDescendants is applied only to ICells. Its purpose is to

recursively delete all of the descendants of the node, returning their memory to the

memory management system for later use. Since the data "beneath" the node is

about to be destroyed, this is the last opportunity to compute a correct multipole

expansion for that data. Thus, before destroying the data, it must first ensure that

the multipole moment stored in the cell is up-to-date. Finally, the ICell should

be replaced by a TCel1 since it is now terminal and contains a multipole expansion

to represent its contents. The process of recursively deleting the descendants of

a node is complicated by the fact that a node scheduled for deletion may also be

195

TraverseAndPrune(Cell)

if(Cell is type ICel1)

if (!DomainOpeningCriterion(Cell, MyDomain))

PruneDescendants(Cell)

else

fore each Child of Cell)

TraverseAndPrune(Child)

endfor

endif

endif

endfunc

Code 7.9. Function TraverseAndPrune uses DomainOpeningCri te­

rion to identify sub-trees which are no longer needed.

scheduled for transmission. The function ZapCel1 in Code 7.12 solves this problem

by testing the TransmissionPending bit. If it is set, then the FreeWhenSent bit

is also set, and the deletion of the cell or body is deferred until after the contents

of the body or cell has been safely transmitted. If it is not set, then there is no

reason not to delete the cell or body immediately. If the FreeWhenSent bit is set

in any body or cell, then we can be sure that that body or cell has been completely

disconnected from the tree. There is no "path" from the root of the tree to it, and

we may safely delete it immediately upon its transmission, without fear of leaving

a "dangling pointer" in the tree.

7.2.2.4. Communication systems.

Communication systems on parallel machines are extremely diverse, and any par­

ticular set of assumptions is likely to be violated by some system. This makes it

difficult to abstract a set of communication primitives that map naturally onto a

variety of software/hardware combinations. The communication requirements of

the algorithm are extremely simple. We need the ability to queue a fairly large

number of fixed size blocks for transmission, the ability to execute a simple func­

tion, SendFilter, after each block is safely on its way, and the ability to process

PruneDescendants(Cell)

ComputeMpoles(Cell)

fore each Child of Cell)

FreeSubtree(Cell)

endfor

Replacement = NewTCell()

196

copy multipoles from Cell to Replacement.

replace Cell in the tree with Replacement.

endfunc

Code 7.10. Function PruneDescendants calls FreeSubtree to recur­

sively delete a sub-tree.

FreeSubtree(Cell)

if(Cell is type ICel1)

for(each Child of Cell)

FreeSubtree(Child)

endfor

end if

ZapCell(Cell)

endfunc

Code 7.11. Function FreeSubtree, a simple recursive function to de­

stroy a sub-tree.

the blocks one-at-a-time upon receipt. SendFil ter clears the TransmissionPend­

ing bit and conditionally calls FreeMemory for each object once it is safely en route

to its destination. It is shown in Code 7.13.

It is not necessary for the communication system to overlap the processes of

transmission and input processing, but the algorithm can take advantage of such

a system if it is available. It is easy to implement these requirements in any com­

munication system that supports blocking, point-to-point communication, e.g.,

CrOSH!, ExPress, the Cosmic Kernel, Vertex, etc. Furthermore, the algorithm is

structured so that communication may take place in a few very large data transfers

(one per channel), or in many smaller transfers, as dictated by the availability of

197

ZapCell(Cell)

if(IsSet(TransmissionPending, Cell))

Set (FreeWhenSent, Item)

else

if(Cell is type LCell)

fore each Body in Cell)

FreeMemory(Body)

endfor

endif

FreeMemory(Item)

endif

endfunc

Code 7.12. Function ZapCell, which is used by FreeSubtree and

later to destroy the contents of a cell. If the cell's TransmissionPend­

ing bit is set, then deletion is defered until after the contents have been

sent.

SendFilter(Cell)

arrange for hardware to transmit the data In the Cell.

if the Cell an LCell, this means send the Bodies,

otherwise it means send the multipole moments.

Clear(TransmissionPending, Cell)

if (IsSet(FreeWhenSent, Cell))

FreeMemory(Body)

else

endfunc

Code 7.13. Filter to apply to outgoing data.

communication buffers and the details of communication latency and throughput.

In Code 7.5, we built a queue of pointers to Cells and Bodies which required

transmission. This queue contains Cells of all types. In order to transmit the data

in an ICell or in a TCell, we must send the entire multipole expansion stored in

the cell, as well as the r, around which the multipole expansion was computed.

In the case of an ICell, it is not necessary to send information about the eight

children or other information related to the structure of the tree. Transmission of

198

an LCell implies transmission of the positions and velocities of the Bodies stored

in it. For LBodies, it is not necessary to send the velocity or other information

related to the time evolution. Thus, the stream of outgoing data is made up of

two fundamentally different types of objects, TCells, i.e., multipoleexpansions,

and FBodies, i.e., positions and masses. The details of the communication and

memory management systems dictate how we should go about sending this data.

It is possible to split the transmission into two separate phases, exchanging the

multipole data during the first phase and the body data during the second. Al­

ternatively, it is equally easy to mix the data types in the same stream, inserting

a very small amount of control information so the receiving processor can decode

what is being received. Also, it is easy to buffer the data in relatively small pieces,

placing less demand on the memory resources used by the communication system,

or one could send the data in a single very large transfer, minimizing the relative

importance of communication latency with respect to throughput. Finally, we

note that a significant fraction of the cells which are transmitted will have the

FreeWhenSent bit set. The memory used by these cells or bodies may be recov­

ered and immediately reused to store the incoming data stream as soon as the

data has been safely delivered into the communication system. Thus, if memory

is extremely tight, it is possible to: 1) reorder the export queue so that all bodies

with the FreeWhenSent bit set are sent first, and 2) buffer the communication, or

overlap the communication with the processing of incoming data so that Free­

WhenSent objects can be recovered to make space for the incoming data objects

and memory can be used most efficiently. The choices between these strategies all

depend on details of the hardware and software and must be guided by consider­

ations particular to a specific machine. The algorithm takes some care to allow,

for example, newly received data objects to be inserted into the tree before all of

the enqueued objects have been transmitted, so the decision can be made on the

basis of efficiency. The algorithm performs correctly in any case.

We assume that the communication system has been set up to call the func­

tions Recei veFBodyFil ter and Recei veTCellFil ter for each FBody and TCell

199

which is received. This does not imply a communication model which interrupts

"regular" processing to process each incoming item. Nor does it exclude such a

model, although some additional effort will be necessary to isolate "critical sec­

tions" in the insertion functions. Two obvious critical sections occur where the

FreeWhenSent bit is set in Codes 7.12 and 7.20. The communication model may

be implemented simply by buffering the incoming and outgoing data in two large

arrays, exchanging them with a blocking communication call, and scanning the

incoming arrays, calling the appropriate Recei veFil ter for each item. We found

that memory was a very precious commodity on the NCube system, and adopted

a slightly more sophisticated system in which the incoming and outgoing arrays

are of order a few hundred objects in size, and blocking communication routines

are called repeatedly to transfer the whole data set. Only pointers to the actual

data objects were copied during the TraverseAndQueue phase of the algorithm,

and since many of the transmitted data items have the FreeWhenSent bit set, we

found that we could run very close to the edge of memory, utilizing the space just

freed by the outgoing data when processing the next incoming buffer.

The choice of buffer size was motivated by the competing desires that the

buffers be large enough so that communication speed not be adversely affected by

latency, and small enough that they consume a negligible fraction of the available

memory. On the NCube, buffers of about ten thousand bytes, or a few hundred

data objects satisfy both these requirements.

The two filters that process incoming bodies are shown in Code 7.14 through

Code 7.20. They are very similar to the function Insert in Code 2.1, which

performs an identical function in the sequential algorithm. Insertion of new data

into the tree is complicated by three features not present in the sequential situation.

1. The possibility that Cells in the tree are scheduled for subsequent transmis-

slOn.

2. The presence of TCells, both in the incoming stream of items and in the tree

into which we are inserting items.

3. The fact that incoming TCells have a specific size and location in the tree

200

from which they came, and the tree into which we insert them may not be

constructed to that level yet.

The first difficulty is handled by checking the TransmissionPending bit in

Cells into which new data is being inserted. If we try to insert a new item (a

Body or a TCell) into an original TCell or LCel1 with the TransmissionPending

bit set, then we must take care to make an exact copy of the original and substi­

tute the copy into the tree, severing the original from the tree. Then we set the

FreeWhenSent bit in the original element so its memory is reclaimed after it is no

longer needed. This way, items which have been queued for transmission are sent

in their original form. If we mistakenly modified a TransmissionPending item

before it was sent, for example, by merging an incoming Body into an outgoing

TCell, then we would effectively be returning the Body back to the processor from

which it came, hidden inside the TCell. The function ReplacelnTree performs

most of the necessary housekeeping required to sever a Cell from the tree and

replace it with a new one.

TCells in the tree are Cells which are guaranteed to be unopenable by any

processor in the current (or subsequent) processor subset. Hence, if we encounter

a TCel1 at any time when we are traversing the tree looking for a place to insert

a new object (Body or TCell), we can simply add the new object to the multipole

expansion already in the TCell. When the new object is a Body, this is accom­

plished with BodyMpole, and when it is a TCel1 it is accomplished with ParAxis.

These are precisely the same functions that are used in Code 7.7 to compute mul­

tip ole expansions in the first place. The mathematics underlying these functions

was described in Chapter 3.

A further complication arises from the fact that the TCells which are trans­

mitted have a specific size and r; which is implicitly located at the center of their

cubical volume. In order to insert a TCell into the tree, we must be certain that

it represents exactly the same cell that it represented in its original processor.

Figure 7.9 shows a situation in which a TCell is received by a processor which has

not previously refined its tree to the point at which the TCell must be located.

201

The function FindParent finds the immediate parent of a TCell, if it exists in the

tree, and if it does not, it refines the tree sufficiently so that it does.

ReceivedFBodyFilter(Bodydata)

NewB = NewFBody()

Copy Bodydata into NewB.

InsertBody(NewB, Root)

endfunc

ReceivedTCeIIFilter(TCelldata)

NewC = NewTCell()

Copy TCelldata into NewC

InsertTCell(NewC, Root)

endfunc

Code 7.14. Functions to execute for each FBody or TCel1 in the incoming

data stream.

InsertBody(Body, Cell)

if(Cell is type ICel1)

InsertBodyICell(Body, Cell)

else if(Cell is type LCel1)

InsertBodyLCell(Body, Cell)

else if(Cell is type TCel1)

InsertBodyTCell(Body, Cell)

endif

endfunc

Code 7.15. Function to execute for every FBody received.

202

InsertBodyICell(Body, ICell)

ClearBit(MpoleCorrect, ICell)

if(ICell has a Child which contains Body)

InsertBodyCell(Body, Child)

else

Child = NewLCell()

make Child a child of ICell, correctly sized

and positioned to contain Body.

InsertBodyLCell(Body, New)

endif

endfunc

Code 7.16. Function InsertBodyICell to insert a Body into an ICell.

InsertBodyTCell(Body, TCell)

if(IsSet(TransmissionPending, TCell))

New = NewTCell()

ReplaceInTree(New, TCell)

else

New TCell

endif

BodyMpole(Body, New)

endfunc

Code 7.17. Function InsertBodyTCell to insert a Body into a TCell.

203

InsertBodyLCell(Body, LCell)

if(IsSet(TransmissionPending, LCell))

New = NewLCell()

ReplacelnTree(New, LCell)

else

New = LCell

endif

if(New has fewer than rn Bodies)

add LCel1 directly to the list of bodies in New

else

Newer = NewICell()

ReplacelnTree(Newer, New)

endif

endfunc

Code 7.18. Function InsertBodyLCel1 to insert a Body into an LCell.

InsertTCell(NewCell, Cell)

Parent = FindParent(NewCell, Cell)

if(Parent already has a Child at the location of NewCell)

if(Child is type TCel1)

else

else

ParAxis(NewCell, Child)

child must be type LCell.

fore each OldBody in LCel1)

BodyMpole(OldBody, Cell)

endfor

end if

ZapCell(Child)

make NewCell a child of Parent.

endif

endfunc

Code 7.19. Function to execute for every TCel1 that is received.

204

ReplacelnTree(New, Old)

modify the parent of Old so that New is its child

in place of Old.

if(Old is type LCel1)

else

if(IsSet(TransmissionPending, Old))

fore each Body in Old)

else

Copy = a copy of Body

InsertBody(Copy, New)

endfor

SetBit(FreeWhenSent, Old)

fore each Body in Old)

InsertBody(Body, New)

disconnect Body from Old

endfor

ZapCell (Old)

endif

copy multipole information from Old to New.

ZapCell(Old)

endif

endfunc

Code 7.20. Function ReplacelnTree which substitutes a new cell for

an old one in the tree, taking care to either remove the old cell, or set

the FreeWhenSent bit.

205

Tree before FindParent

r-----.. ----·-----.. ------·--·------.. --.. ·1

~ ~

I I
~ ~
: ~
~ {

1 0 {
~ i
~ NewCell f

I I
I I
: .•.•••••••..••••••.••.•••..••...••.••••••••••••••••••••. u .•••••.••.•.•..••.••...•• ;

Tree after FindParent Tree after NewCell inserted

;-~

I
\
\

cell returned by FmdParent

Figure 7.9. FindParent must create the parent of New-Cell if it does

not already exist.

206

FindParent(NeyCell, Ancestor)

SetBit(ContainsTCells, Ancestor)

if(Ancestor is exactly tyice as large as NeYCell)

return Ancestor

else

if(Ancestor has a Child yhich contains NeYCell)

if(Child is type ICell)

else

Sub = Child

else

Sub = Refine(Child);

endif

Sub = NeyICell()

make Sub a child of Ancestor containing NeYCell

end if

endif

return FindParent(NeyCell, Ney)

endfunc

Code 7.21. Function FindParent to locate the immediate parent of a

received TCell, or to create it if it does not exist.

207

7.3. The DOlnainOpeningCriterion function.

We are now in a position to understand why the edge type opening criteria are, in

addition to being numerically superior to the BH criterion, also easier to parallelize.

The performance of the parallel algorithm depends on a fast and accurate

implementation of the DomainOpeningCri terion. Implementation of a Domain­

OpeningCri terion is complicated by the fact that the complete contents of a Cell

are not known to the processor which must evaluate the DomainOpeningCri terion

for the Cell. Nevertheless, the DomainOpeningCri terion is required to produce

an answer which tells us whether the final, complete Cell will be openable by

test-points in the given domain. This is only possible because the correctness of

the algorithm is assured if the DomainOpeningCri terion returns "false-positives,"

but no "false-negatives," i.e., it is acceptable for the the DomainOpeningCri te­

rion to tell us that a cell is openable, even though it is not. Such errors lead

to unnecessary data communication, and memory usage because the descendants

of the falsely openable cell are communicated and stored, but never used. False­

negatives, on the other hand, would lead to errors in the field calculation, or at

least differences between the serial and parallel program which would be hard to

characterize. A falsely negative return from DomainOpeningCri terion would as­

sure a processor that a particular cell would never be opened, and would instruct

the processor to send only the multipole expansion, but not the detailed contents.

During the force evaluation, the processor would try to inspect the descendants of

the cell, which would not be available.

Although the final contents of a Cell are not known when DomainOpen­

ingCriterion is called, the geometry of the cell, i.e., its size and position in

space, is known. In fact, the geometry of the cell and the geometry of the domain

are all that DomainOpeningCri terion can use to determine an answer.

Consider the implementation of DomainOpeningCri terion when the Open­

ingCri terion follows the original BH prescription, i.e., i, is the center-of-mass

of the cell, distance is measured from the test-point to i, and the size of a cubical

208

cell is given by the length of an edge. At the time DomainOpeningCri terion IS

called, it is impossible to know what the final center-of-mass of the cell will be. All

that can be assumed is that the center-of-mass will lie somewhere within the cell.

Thus, following the rule that false-positives are allowed, but false-negatives are

not, the DomainOpeningCri terion must be implemented as in Code 7.22. The

geometry is shown in Figure 7.10.

DomainOpeningCriterion(Domain, Cell)

if (ex Distance from nearest point In Cell

else

to nearest point in Domain < size of cell)

return TRUE

return FALSE

endif

endfunc

Code 7.22. DomainOpeningCriterion for the original Barnes-Hut open­

ing criterion.

When used with the BH OpeningCri terion, the DomainOpeningCri terion

of Code 7.22 results in a very large number of false-positives. Figure 7.11 shows

an example of how a false-positive DOC can arise. In the figure, the distance

computed between the cell and the processor domain, as computed by Domain­

OpeningCri terion is much less than the true distance, which is known only after

r, is computed. V/hen the OpeningCri terion is applied to the distance from the

domain to the edge of the cell, the test passes, but when it is applied to the true

distance, the test fails.

One way to avoid false-positives in the DomainOpeningCri terion is to use an

OpeningCri terion which only relies on the geometry of the cell. Fortunately, the

edge-based OpeningCri teria from Chapter 6 satisfy this property. In Chapter 6,

we introduced edge-based OpeningCri teria as a means to eliminate a source of

systematic error from the algorithm. Interestingly, the DomainOpeningCri terion

for the edge-based OpeningCri teria is precisely the same as for the BH opening

209

distance
V

Y1
.... ..

Processor Domain

distance

V
Y2

Figure 7.10. The distance used by the DomainOpeningCriterion is

computed by finding the shortest distance between the processor domain

and the boundary of V'Y'

210

Doc distance - ..
-) - ~

r
r
-- .. Processor Domain -- ~

BH distance

Figure 7.11. The DomainOpeningCri terion can return a false positive

result when the true distance from the i'.y to the domain is much greater

than the pessimistic assumption made by DomainOpeningCri terion.

211

criterion, i.e., it is exactly as shown in Code 7.22. The distance is still measured

from the boundary of the cell to the boundary of the domain. Thus, we have

only one DomainDpeningCri terion, which is used for either the both types of

DpeningCriteria.

There are two reasons why the edge OpeningCri teria perform considerably

better in parallel. First, there are no false-positive returns from DomainOpen­

ingCri terion. The reason is that the distance used by DomainOpeningCri te­

rion is precisely the same as the distance used by the OpeningCri terion itself.

The discrepancy shown in Figure 7.11 cannot arise when the OpeningCriterion

measures distances to the edge of the cell. Second, we recall that a given degree of

accuracy is obtained with a much larger value of e when the edge DpeningCri te­

ria are used, vis-a.-vis the BH opening criterion. (See Figures 6.6 and 6.7). Since

both methods use the same DomainOpeningCri terion, the overhead associated

with tree building, storing and computing multipoles, etc., depends only on the

value of e, but is independent of which OpeningCri terion is used. Since e is

much larger when edge DpeningCri teria are used, the tree building overhead is

much smaller, and the performance of the parallel implementation is much better,

both in terms of memory and cpu performance.

212

8. Performance in Parallel.

It is possible to evaluate numerous measures of the performance. Among them are

"efficiency," "speedup," "wall clock time," "largest practical problem." All of these

may be related to absolute problem size, "grain size," number of processors, and a

multi-dimensional space of "tuning parameters," e.g., 0, and hardware parameters,

e.g., communication bandwidth. All this makes it almost impossible to produce

an entirely satisfactory analysis of parallel performance.

The timing data reported here was obtained from the 512 processor NCube

system at Caltech. The NCube was used because it had the largest number of

processors of any readily available distributed memory machine. Good perfor­

mance on smaller numbers of processors is considerably easier to obtain. It was

our experience while developing the parallel algorithm that testing an algorithm

on 8 or even 64 processors often failed to illustrate the difficulties that will be

encountered when running on highly parallel systems with several hundred pro­

cessors. It is hoped that the lessons learned from the experience with the 512

processor NCube prepare us for systems with another factor of ten more proces­

sors and perhaps a factor of one thousand in total performance. The total system

performance of the NCube barely qualifies it as a supercomputer, but the large

number of processors allows us to extrapolate performance to the large parallel

supercomputers that will be available in the very near future.

8.1. Definition of terms.

Before studying the details of the performance characteristics of the parallel

N-body program, we devote a section to definitions. The quantities defined in

this section will be analyzed in the subsequent sections. The performance mea­

sures that we define in this section are not at all specific to the particular program

213

we are studying. They can be used systematically to investigate the performance

of any loosely synchronous parallel program. Several of these quantities, most no­

tably "speedup" and to a lesser extent "efficiency," have been reported so widely

as to be almost cliches. In the following sections, we develop a consistent set of

quantities which, when measured for a variety of different configurations of Nproc

and problem size, can provide a very detailed understanding of a parallel program.

8.1.1. Computational overheads.

First, we will assume that we are capable of measuring elapsed time on a per­

processor basis. That is, every processor in an ensemble may access a timer without

interfering with, or interacting with any other processor in the ensemble. Whether

or not there is a true, global system clock is irrelevant for our purposes. All we

are concerned with is the ability to measure elapsed time, not absolute time.

Accordingly, any measurement of time is recorded in an array of Nproc values,

one for each processor. Such per-processor times will be denoted with the lower­

case letter, t. In the following, we will consider measurements of the elapsed time

for a number of different operations. These times will depend on the number of

bodies, N, and their exact locations, as well as the number of processors, N proc ,

and system parameters like e, etc. We have used three fundamentally different

simulations, and averaged the values over several (usually 10) timesteps to arrive

at the values reported in the following sections.

Our N-body simulation is typical of large-scale scientific calculations in that

a full calculation consists of a loop over a large number of basic calculations.

In our case, the basic calculation is to compute the forces on each body in the

system, and to advance the positions and velocities of each body in the system

by one unit of simulated time. Let t step be the elapsed time required for a single

step in a simulation. The existence of a basic unit of calculation is crucial to the

development in the remainder of this section. In any large calculation, as long as

one can define an appropriate t step , then all of the other quantities defined below

may be computed as well. In other situations, t step may be the time required to

214

perform a matrix inversion, a single cycle of relaxation, an FFT, etc. In any case,

it is the time required for the basic unit of calculation in the algorithm.

The maximum value of t step , over the ensemble of processors, is of primary

importance. It is equal to the time required for the entire ensemble of processors

to carry out the basic computation. In our case, it is the time required for the

entire ensemble to advance the positions and velocities by one timestep. We define

T step = max(tstep). (8.1)

In Eqn. 8.1, Tstep is a single number, obtained from the array t step . In the following,

quantities defined with an uppercase T will be single numbers representing some

statistic, e.g., max, average, applied to the array, t. We shall use the statistic

slow(t x), which is defined to be the value of tx on the processor with the largest

value of t step, i.e., the slowest overall processor. Often, slow(t x) is the same as

max(t x), because the slowest processor happens to have the largest value of tx,

but the two statistics are defined quite differently.

It is useful to separate the time, t step , into component pieces,

t step = twork + tcomm + twait, (8.2)

where

tcomm is the portion of t step devoted to transferring data in or out of each pro­

cessor.

twait is the portion of t step spent idle waiting for some type of interprocessor

synchronization to take place. Since we are using a synchronous communica­

tion system, waiting occurs whenever one processor is ready to send/receive

data, but its neighbor is not yet ready. Other communication systems allow

processing to continue, for example after data has been queued for transmis­

sion. When such systems are used, waiting still occurs when a processor waits

for data to be received, or at explicit synchronization points, which are often

necessary when such communication systems are used.

twork is the remainder of t step , presumably devoted to some form of computation.

215

With these definitions, we may also define

where

Tstep = Timbal + Twork + Tcomm + Twait,

Timbal = SlOW(twork + t comm) - avg(twork + t comm),

Twork = avg(twork),

Tcomm = avg(t comm),

Twait = SlOW(twait).

(8.3)

(8.4)

We may further subdivide the load imbalance into components related to commu­

nication, waiting and work,

where

Timbal = Tiwork + Ticomm,

Tiwork = SlOW(twork) - avg(twork),

Ticomm = slow(tcomm) - avg(t comm).

(8.5)

(8.6)

Note that Twait is defined using the slow statistic, rather than the avg statistic,

so there is no associated "waiting load imbalance." The reason is that there is

little to be gained from separating the waiting time into "average" and "imbal­

anced" components. Synchronization delays represent a form of "microscopic"

load imbalance anyway. It is not useful to consider the "average microscopic load

imbalance" separately from the "imbalance of the microscopic load imbalance."

All of the quantities so far defined are directly measurable by inserting suit­

able calls to a time-reporting function into a program. Statistics like max, avg

and slow are easily computed in parallel using utility functions which perform

global aggregation over the ensemble of processors. Some software systems, e.g.,

ExPress,[43] provide utilities, e.g., excombine, which facilitate these aggregations,

but they are simple enough to construct even if the native software does not pro­

vide them. We point out that it is not particularly "efficient" to compute an

216

average of Nproc values on an Nproc processor system. Nevertheless, the time is

negligible, measured in msec, at most, and the diagnostic information is almost

certainly worth the expense. As long as the overhead associated with invoking the

timer is small compared to the times in question, we have a perfectly adequate

method for obtaining the various Txxx quantities.

Finally, we divide T work into components that distinguish between the in­

trinsic work, Tintrinsic, associated with calculation and the additional time, T cp1x ,

which was necessary to process the data in parallel because of additional complex­

ity in the parallel algorithm,

Twork = Tcplx + Tintrinsic. (8.7)

In Eqn. 8.7, Tintrinsic is related to the time, Toneproc, an optimal single processor

implementation of the algorithm would require to execute the same basic compu­

tational unit,

T
Toneproc

intrinsic = N .
proc

(8.8)

Evaluation of Toneproc may be problematical. Distributed memory parallel

computers usually have limited per-processor memory. Almost certainly, a sim­

ulation which utilizes the full resources of the entire ensemble will simply not

fit within a single processor. Current designs of MIMD parallel processors do

not allow data sets to exceed the size of available dynamic memory, i.e., there

is no virtual memory, and even if there were, a timing made on a single proces­

sor "thrashing" in virtual memory would not accurately reflect Toneproc anyway.

Thus, there is no direct way to measure Toneproc, except for relatively small sim­

ulations. In order to obtain values for Toneproc for large simulations, we will need

to extrapolate from smaller simulations which fit on a single processor.

Once Toneproc is known, a host of other other statistics may be defined. First,

the speedup, S, of the implementation is defined by

S = Toneproc

Tstep
(8.9)

217

The speedup is the ratio of the time a single processor would spend on a step to

the time that the ensemble would spend. One measure of the effectiveness of a

parallel program is how close its speedup is to the number of processors employed.

Thus, we are led to the "efficiency," E,

S Toneproe
E - ----- - ----~----

- Nproe - NproeTstep

Tintrinsie

Tstep
(8.10)

Although useful, the efficiency lacks simple algebraic properties. We cannot

say "the efficiency is the sum of X and Y and Z." A quantity related to the

efficiency, but with superior algebraic properties is the "overhead," f, where

f = ~ - 1 = Tstep - Tintrinsie

E Tintrinsie

Using Eqns. 8.3 and 8.7, we can define

Tohead = Tstep - Tintrinsie = Timbal + Tepl x + Teomm + T wait ,

and thus, we have

f = fimbal + feplx + feomm + fwait,

where

fimbal =

feplx =

feomm =

fwait =

We can also define fiwork and fieomm as

fiwork

fieomm

Timbal

Tintrinsie
,

Teplx

Tintrinsie
,

Teomm

Tintrinsie
,

Twait

Tintrinsie

Tiwork

Tintrinsie '

Tieomm

Tintrinsic'

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

218

and, from Eqn. 8.5, we have

limbal = jiwork + licomm. (8.16)

Equations 8.13, 8.14, 8.15 and 8.16 are precisely the algebraic relations that are

lacking for the efficiency. We have defined a single number, the total overhead, j,

which measures the effectiveness of a parallel program. In addition, we can say

that j is identically equal to a sum of components, each readily identified with a

particular aspect of the parallel implementation. If we understand the components

of the overhead of an algorithm, i.e., the dependence on Nand N proc , and the

reason for it, we are well on our way to fully understanding the parallel algorithm,

and can predict how it will perform in a situation with, for example, more or faster

processors, faster communication or a larger data set.

8.1.2. Mernory overhead.

Often, memory considerations are completely overlooked when considering the

performance of a parallel program. Nevertheless, effective utilization of memory

resources may be as important as effective utilization of processing resources. Just

as one asks the question, "Given Nproc processors, each capable of x operations

per second, how large a system can I simulate?" One can also ask, "Given Nproc

processors, each with y words of storage, how large a system can I simulate?"

This is especially true of algorithms with O(N log N) or better performance. Such

algorithms may be applied to extremely large data sets in reasonable time, making

available memory, rather than cpu cycles, the limiting resource. Just as we defined

overheads for processor utilization, above, we now define the overhead associated

with memory utilization.

First, we define 1n s tep to be the memory requirement on each processor. Mem­

ory is naturally divided into that used for code and that used for data. On a MIMD

processor, the code is replicated in each and every processor. Thus, one of the hid­

den costs of using very many processors is the "wasted" memory that results from

many identical copies of the same executable code. It is convenient to separate

219

this easily analyzed source of memory overhead from those specific to a particular

algorithm. Thus, we write

mstep = dstep + C, (8.17)

where C is the memory required on each processor by the executable code, and

dstep is that required for the data.

Then, we define Mstep to be the largest memory requirement amongst all of

the processors,

Mstep = max(mstep). (8.18)

If we make the conservative assumption that all processors in the parallel ensemble

have the same amount of available memory, and that it cannot be shared or repar­

titioned dynamically, then M step is the amount of per-processor memory required

to run the simulation for a timestep. If any less memory were available on each

processor, then at least one of the processors would run out of memory.

We now define a "one-processor" memory requirement, Moneproc, which is

the memory used by a single processor implementation of the algorithm. Just as

above, we split the one-processor memory into that required for the executable

code, Coneproc and that required for the data, Doneproc,

Moneproc = Doneproc + Coneproc. (8.19)

If the parallel algorithm were perfectly efficient, memory-wise, it would require

no more memory than the single processor implementation, but that memory

would be divided amongst Nproc processors. Thus, we define the intrinsic memory

requirement, by analogy with Tintrinsic as

Moneproc
Mintrinsic = -N-~­

proc

and the memory overhead, Mohead, as

Mohead = Mstep - Mintrinsic'

(8.20)

(8.21)

220

Just as with the computational overhead, Tohead, the total memory overhead can

be separated into pieces whose sum is equal to Mohead. Thus,

Mohead = Meode + Meopy + Mimbal, (8.22)

where

M - C _ Coneproe
code - N '

proe

Meopy = avg(dstep) - Dintrinsie,
(8.23)

Mimbal = max(d step) - avg(d step).

Now, we can define dimensionless overheads simply by dividing each of the

quantities in Eqn. 8.23 by an appropriate single-processor quantity. Because of its

extremely simple dependence on N in the BH algorithm, we elect to use Dintrinsie

as the "unit of memory" by which we define the various memory overheads. Thus,

we have the following dimensionless memory overheads, gxxx,

Meode
geode =

Dintrinsie
,

geopy =
Meopy

(8.24)
Dintrinsie

,

Mimbal
gimbal =

Dintrinsie

Thus, we have quantitative measures of how "efficiently" we are using memory in

the parallel system, completely analogous to our measures of how "efficiently" we

are using cpu cycles.

8.2. Performance data for the N-body program.

Now that the necessary definitions are out of the way, we can investigate the

sources of overhead in the parallel N-body code. All of the plots in this section

are derived from a set of timing runs in which three distinct "models types" were

constructed with varying numbers of particles. The model types were:

221

1. Particles distributed uniformly, at random, throughout a sphere of unit radius.

This distribution is expected to perform well because load imbalance should

be minimal. It is typical of the initial stages of astrophysical simulations of

cosmological density perturbations. In such simulations, small fluctuations

grow via gravitational instability. Usually the perturbations start out quite

small, and from a purely computational viewpoint, the particles are almost

uniformly distributed. Uniform model data are all connected by dashed lines

in the following figures.

2. Particles distributed at random, according to a "spherical Jaffe profile," [35]

cut off at r = Aro in which the number density of particles inside radius Aro

IS

N A + 1 r6
p(r) = 47rrg ----;:- r2 (r + ro)2 ' (8.25)

where ro is the half-mass radius. The cutoff was at A = 10. The Jaffe profile

(A = 00) is an analytic density profile that resembles that of real elliptical

galaxies. The very sharp density profile at the center of the Jaffe models

leads to difficulties with load balance. This model is a "worst case," since the

densi ty is very sharply peaked in one place, and relatively smooth elsewhere.

It is typical of astrophysical simulations which study the dynamics of single

galaxies. Jaffe model data are all connected by solid lines in the following

plots.

3. Particles chosen at random from a "real" simulation, consisting of two inter-

acting galaxies. The full simulation had 180000 bodies, in two Jaffe galaxies

in orbit around one another. This model is typical of astrophysical simula­

tions of galaxy interactions. Merger model data are all connected by dotted

lines in the following plots.

All of the timing runs were carried out on the N cube/10 at Caltech. Each

processor of this system has 512 kbytes of memory and a proprietary custom cpu

with builtin communication channels. The simulations were run using the edge­

distance opening criterion with a Cartesian metric, and ()edge,Cart = 1.4. Each

222

benchmark run lasted from between 7 to 10 timesteps. The vanous txxx were

measured directly on each processor using the Ncube system call ntirne. The

txxx values were aggregated into Txxx values at the end of each timestep, and

the values were recorded. Finally, the recorded values were averaged, excluding

the first two timesteps to eliminate "transients" associated with reading the data

file and the poor decomposition on the first two timesteps, which are carried out

without knowledge about the work associated with each particle. The resulting

averages are displayed in the plots in the following sections.

8.2.1. Time for a single timestep, Tstep.

We begin with the "bottom line." Figure 8.1 shows Tstep plotted against the num­

ber of processors, for various data sets. Figure 8.1 provides direct information on

how long a simulation will actually take on a particular hardware configuration.

If one is simply interested in the speed of a simulation, and not the underlying

nature of the algorithm, or the parallelism achieved, Figure 8.1 contains the rele­

vant data. Clearly, the Tstep is decreasing as more processors are added, up to 512

processors, but many of the data sets have reached a point of diminishing returns.

If the parallel implementation were "perfect," then each factor of two in number

of processors would correspond to a factor of one half in T step . Clearly, this is

not the case and it is important to understand the nature of the overheads that

prevent perfect speedup.

8.2.2. Estimating Toneproc and Tintrinsic'

In order to estimate how efficiently we are using a parallel machine, and to compute

the various overheads and speedups, we need to estimate Toneproc and Tintrinsic'

As we discussed in Section 8.1, it is not possible to simply run the program on

a single processor for any but the smallest data sets. Thus, we must estimate

Toneproc by extrapolating results from a few relatively small simulations. One way

to do this would be to develop an accurate model of Toneproc as a function of

N. Unfortunately, the accessible range of N on a single processor only extends

up to about 2000 bodies. Over this range, it is difficult to accurately distinguish

100

,-...
0
Q)
fI.l
'-'

'" ..
"'il

E--<

10

2

c

x

"

*
'"

0.4

~" ,".

ll.

,".
" . :a.. ' •

.....

223

Time for a single timestep

'\

'"

.....
.....

.•.......•... "
.... "

x ,
" "

..... 'x
'

·ll .• :::--,.

~- -)., - - - - - - - -"A.,

-J..- __)..

-
10

Number of processors

-

...... "
....... -c "-

- ..

100

Figure 8.1. Tstep vs. Number of processors.

-x

1000

224

terms proportional to N log N from those proportional to small powers of N. An

accurate extrapolation to several hundred thousand bodies would be difficult.

If we could find a subset of the basic computational unit which

1. is independent of the number of processors, and

2. provides an accurate estimate of Toneproc,

then we could use the time for that subset to estimate Toneproc for larger data sets.

In the N-body program, the time spent evaluating forces after the tree is

constructed very nearly satisfies these conditions. Inspection of the code reveals

that in an ensemble of processors, the force on each body is evaluated in exactly

one processor. By design, the interactions that each body encounters in a single

force calculation are exactly identical to those encountered in a sequential imple­

mentation. Furthermore, there is absolutely no synchronization or communica­

tion during the entire force calculation phase, in contrast to the tree construction

phase. Thus, the time spent evaluating forces, after the tree is constructed, sat­

isfies the first condition. We demonstrate this empirically in Figure 8.2, which

shows Lproc t force plotted against the number of bodies in the simulation. Notice

how the graphs with different numbers of processors lie almost exactly on top of

one another, verifying condition 1.

It is interesting that the time spent in force evaluation, for a fixed number

of particles, is a decreasing function of the number of processors. That is, more

processors appear to do slightly less work than a single processor. The reason is

that in a multi-processor system, many of the interactions are between Bodies

and MTCells. In contrast, on a single processor, the equivalent interactions are

between Bodies and ICells. Each interaction with an ICell implies that the

DpeningCri terion function returned False, while there was no need to execute

DpeningCriterion at all in the parallel case when an MTCell was encountered

during tree traversal. The effect is small but noticeable, and suggests that there

may be sequential methods which reduce the number of calls to DpeningCri te­

rion. In fact, Warren[44] has devised a version of the algorithm that completely

----()
Q)

1000 Ul
~

0 e
0

...:>'
" e
'" ~

100

225

Time computing forces after treebuild

... Nproc=l

J. Nproc=2

.. Nproc=4

.. Nproc=8

C Nproc = 16

x Nproc=32

• Nproc=64

• Nproc= 128

o Nproc=256

* Nproc=512

Number of bodies

Figure 8.2. Tforce VS. N.

/

---/

/
* /

226

eliminates explicit traversal of the tree, in favor of hash table lookup, and hence,

eliminates all calls to DpeningCri terion, and Barnes[22] has described a similar

mechanism which he uses to allow vectorization of the tree traversal on vector su-

percomputers. The improvement in overall performance in our situation is likely

to be small, but the approach may have other advantages.

A "parallelism invariant" subset of the program does us no good unless we

can also use it to estimate Toneproc. In fact, we find that to within the accuracy

of our time measurements, we have the following relationship,

Toneproc = Tforce INproc=l + eN,

where e depends on the type of simulation,

e = 0.0060 sec Jaffe sphere,

e = 0.0059 sec Uniform sphere,

e = 0.0063 sec Merger data.

Figure 8.2 and Eqn. 8.26 allow us to estimate Toneproc as

Toneproc = tforce + eN

processors

and

Tintrinsic = avg(tforce) + eNgrain,

where we have defined the "grain-size," Ngrain, as

N
Ngrain =-N

proc

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

227

8.2.3. Speedup and overhead.

Now that we have a good estimate of Tintrinsic, we can compute speedups, ef­

ficiencies, etc. We begin with Figure 8.3, which shows the speedup achieved by

the parallel machine, plotted against the number of processors. The curves in

Figure 8.3 are typical of parallel programs on MIMD processors. The speedup

is approximately linear with the number of processors for a while, but it begins

to flatten out at some point beyond which adding additional processors does not

appreciably improve performance. On the other hand, as the problem size is

increased, speedup typically increases. In other words, the point at which the

curves in Figure 8.3 flatten out is a function of problem size, with larger prob­

lems admitting of greater parallelism. This behavior is seen again and again in

parallel applications.[45, 46] In fact, this observation is so common, that it leads

us to plot grain size, defined in Eqn. 8.30, on the horizontal axis in a number of

subsequent plots. It is often found that overhead (or equivalently, efficiency or

speedup) depends on Nand Nproc only through the single parameter, Ngrain.[6]

As we shall see, things are not so simple for us, but the idea of studying how

various components of the overhead depend on grain size remains an important

one.

Efficiency is closely related to speedup. In fact, according to Eqn. 8.11, there

is no new information in Figure 8.4, which displays overhead plotted against grain

size. It is clear from Figure 8.4 that the overhead is a fairly rapidly decreasing

function of grain-size, and a fairly slowly growing function of N proc . The largest

simulations practical on the 512 processor suffer from overheads below 35% which

is quite acceptable, corresponding to a speedup in excess of 380. Nevertheless, it is

of interest to know the sources of the overhead, and to see if it can be substantially

reduced, or if the different categories of overhead all have the same general depen­

dence on increasing grain-size and processor number. We shall see that that in the

important regime of large numbers of bodies and large numbers of processors, all

the overhead is mostly due to fwait and fcplx. The other components, i.e., fcomm

228

Overall Speedup

A N=100
... N=200
... N=500
.. N=1000
c N=2000

100 x N=5000

• N=10000

• N=20000

o N=50000

* N=100000

p. ... N=200000
~

"d
C1)
C1)
p.

(IJ

10

1
0.8 LJ-L~~L-__ -L __ L-~-LLUU-__ ~ __ ~~~~~ ____ L--L-L-LLLLW

0.4 1 10 100 1000

Number of processors

Figure 8.3. Speedup vs. Number of processors.

229

and !imbal, are negligible.

Furthermore, all of the components of the overhead obey the same general

trend with increasing grain-size and processor number. There is no indication that

with substantially increased Nproc that the overhead will be much worse than at

Nproc = 512, and there is considerable evidence that with increasing grain size (as

is available on more modern MIMD processors) that all types of overhead will be

considerably lower than in Figure S.4.

1

0.1

0.02

4 10

230

Total Overhead

100

grain size (N/Nproc)

Figure 8.4. Total overhead vs. Grain size.

A Nproc == 1

..... Nproc=2

... Nproc=4

Nproc=8

" Nproc=16

)(Nproc=32

" Nproo=64

• Nproc=128

o Nproc =256

* Nproc=512

1000

231

8.2.4. Single-processor data requireillent, Doneproc.

Before we turn to the individual components of the overhead, we investigate the

memory overhead. As we shall see, the computational overhead is closely related to

the memory overhead, and it will be much easier to understand the computational

overheads after the memory overheads have been discussed.

The one-processor memory requirement, Doneproc, is considerably easier to

estimate than Toneproc. In the case of memory, we have a very good theoretical as

well as empirical basis for asserting that

Doneproc = 17.5N words,

Dintrinsic = 17.5Ngra in words.
(8.31)

This results from the fact that in a single-processor implementation, each Body

requires 8 words (1 word for the mass, 3 each for position and velocity and one

more to identify the object as a Body), and each Cell requires 19 words (1 word

for the mass, 3 for ii' 6 for the quadrupole moment, 8 for pointers to children

and one more to identify the object as a Cell and hold the various boolean flags,

FreeWhenSent, etc.). vVe find in Chapter 2 that the number of Cells in a BH

tree containing N bodies is expected to be

(8.32)

Thus, the total number of words, for both the Bodies and the Cells is as in

Eqn. 8.31. This relationship is confirmed by the single-processor simulations,

which were limited to N < 5000 because of memory constraints.

8.2.5. Meillory overheads, Mcopy and MirnbaZ.

With Dintrinsic established from Eqn. 8.31, it is a simple matter to compute gcopy

from recorded values of avg(dstep). The result is plotted in Figure 8.5. It is also

easy to compute gimbal from recorded values of avg(d step) and max(d step). The

result is shown in Figure 8.6.

*'"

...
'" 0

" bIJ

-d'
to

10
Q)

...c:
I-<
Q)

P-o
>.
I-<
0

S
Q)

E
"d
Q)
p..
0
u

1

0.4

4 10

232

Copied memory overhead

~---~

.....

...1.- ___ "'"-

"" Nproe=l
.... Nproe=2
.... Nproe=4

Nproe=B
[] Nproe=16

)(Nproe=32

• Nproo=64

Nproc=12B

o Nproc =256

* Nproc=512

...

...

::".. ---~ --.------
..... -

100

grain size (N/Nproe)

1000

Figure 8.5. Copied memory overhead, 9copy vs. Ngrain

*.
'.

10

~

:§
t:lIl

.rJ
(1j
Q)

...r::
I-<
Q)

:>-
0

>.
1 I-<

0

S
Q)

S
"0

Q)
C)

~
(1j

.-<
ctl
.0
S

0.1

0.03

4 10

233

Imbalanced memory overhead

".

......
".

.........
'.

".

o '.

'*"

'.
".

'. '. '.
"e.. •

100

grain size (N/Nproc)

". '. -0

Figure 8.6. Imbalanced memory overhead, gimbal vs. Ngrain

6. Nproc=l

..L. Nproc=2

..

..
" Nproc=16

Nproc=32

II(Nproo=64

Nproc=128

o Nproc=256

* Nproc=512

1000

234

These plots are only moderately interesting, III and of themselves. As we

shall see in the following sections, their importance lies in the fact that much of

the computational overhead can be directly related to memory overhead. It is

worth noting that the overheads decrease quite rapidly with Ngrain, indicating

that less and less memory is wasted as the grain-size grows. This fact is espe­

cially reassuring, as it suggests that the largest runnable simulation grows faster

than linearly with increasing processor memory. That is, if processor memory is

doubled, we are capable of running a simulation with more than twice as many

particles. This is demonstrated by Figure 8.7, which plots the size of the simula­

tion, Ngrain against max(d step). The trend is especially evident for large numbers

of processors, for which the maximum allowable grain size increases rapidly with
. .
IncreasIng memory.

8.2.6. Natural grain size, q.

The reason for this surprising behavior is that the grain sizes attainable with the

Ncube's limited memory are small compared to the "natural" size dictated by

the algorithm. In order to provide a gross estimate of the algorithm's "natural"

grain size, let's make some drastic assumptions about the nature of the algorithm.

During each force calculation, each body interacts with a number of other bodies

and cells. Call this number Nint. We saw in Chapter 4 that Nint is approximately

proportional to logs N, with a constant of proportionality roughly of order 100, i.e.,

Foc. In order to estimate the memory that will be required during a calculation,

let's assume that the Nint interactions are with the nearest Nint other bodies

in the simulation, which lie in a ball of radius, Rint. * Furthermore, let us

assume that the domain of a processor is spherical, with radius, Rgrain. Figure 8.8

schematically shows region from which bodies must be drawn, in order to obtain

the nearest Nint bodies for each body in a given processor.

If the density of bodies is p, and each body obtained by a processor requires

* This assumption is grossly inaccurate, but suffices for the discussion at hand.

235

Ngre1n vs. per processor memory

.. Nproc=l
1000 J. Nproc=2

... Nproc=4

Nproc=8
a Nproc=16
x Nproc=32

• Nproo=64

• Nproc=128
o Nproc=256

* Nproc=512

.!l 100
'"

Z

10

5
4 10 100

Per-processor rnenlOry requirelllent (kbytes)

Figure 8.7. Ngrain vs. max(dstep).

236

.....
...•.

. /

Figure 8.8. Simplified interaction domain of a processor.

237

ma units of memory, then we immediately have, from Figure 8.9,

(8.33)

which are easily reduced to

(
1/3) 3

M N 1 + (Nint) = ma grain P
Ngrain '

(8.34)

dlog Ngrain (Nint) 1/3
--=---=--- = 1 +

dlog M Ngrain
(8.35)

Equation 8.35 tells us that when the grain size is significantly greater than Nint,

we can expect Ngrain to be proportional to M. On the other hand, for smaller

grain sizes, the logarithmic slope of Ngrain vs. M may be significantly greater

than 1. Thus, the "natural" grain size for the algorithm is simply the value of

N int . Now we can compare the grain sizes in our simulations to Nint. For the

largest simulations, Ngrain and N int are roughly comparable. Thus, we should not

be surprised that the maximum attainable Ngrain increases faster than linearly in

Figure 8.7 for most of our simulations.

One might be tempted to try to fit the actual memory requirements to a

parameterized version of Eqn. 8.35. Unfortunately, the assumptions required to

"derive" Eqn. 8.35 are grossly inaccurate, and Eqn. 8.35 is a very poor model for

the true dependence of memory on Ngrain and N proc . Its sole utility is to motivate

the existence of a natural grain-size, approximately equal to Nint.

Unfortunately, no simple, well motivated model for the memory usage seems

to fit the data. The problem is that the data spans the regime with Ngrain near to

N int , but does not extend to high enough values of Ngrain to exhibit the asymptotic

238

behavior at large grain sizes. In the range of grain-sizes and processor numbers for

which we have data, the memory usage is determined by complicated tradeoffs in

the transition from small Ngrain to large Ngrain behavior, as well as the transition

of the algorithm from its small N, O(N2
), to large N, O(NlogN), behavior. It is

no surprise that the data fails to display a conveniently simple form. Nevertheless,

a simple empirical form does fit the available data.

Figure 8.8 shows a plot of Mcopy vs. the quantity,

(8.36)

The figure suggests that the Mcopy is fairly insensitive to changes in N, N proc , Nint

and model type, which leave q unchanged.

We can now attempt to extrapolate from Figure 8.9 to values of q inaccessible

in our simulations. Here, we lack a theoretical guide to the expected behavior,

and the conclusions must be regarded as conjecture. Figure 8.9 shows a line of

logarithmic slope -2/3, which fits the data reasonably well, leading us to conjec-

ture

Mcopy = Ngrain!(q),

(8.37)

a ~ 2/3.

What does Eqn. 8.37 imply about the asymptotic dependence of memory on

N, Ngrain and N proc? First, we notice that for large N, we may use

Nint ex log(N) = log(Ngrain) + log(Nproc). (8.38)

If we let N go to infinity, holding Nproc fixed, then q increases in proportion to

N, and Eqn. 8.37 becomes

I-a ((IOg(Ngrain))) a
)~~. Mcopy ex Ngrain 1 + log(Nproc)

Nproc fixed

(8.39)

239

Functional fit for memory requirement

'.

1

0.1

A

)., Nproc=2

J.. Nproc==4

Nproc=B

o Nproc=16

x Nproc=32

.. Nproo =64

• Nproc =128

o Nproc=256

* Nproc =512

0.08 OL-LJ-~~~ __ -L __ L-~~~~ ____ ~~~-L~~~ __ ~ __ ~~~

0.003 0.01 0.1 1

q Ngraln/Nlntlog2(Nproc)

Figure 8.9. Memory / Ngrain VS. natural grain SIze, q.

240

Similarly, if we let Nproc go to infinity, holding Ngrain fixed, then q approaches

zero and

lim M ex: logQ'(Nproc) (1 + (log(Nproc))) Q'

Nproc-oo, log(Ngrain)
Ngrain fixed

(8.40)

The specific value of a in Eqn. 8.37 is highly suspect, although it does fit

the limited range of available data. Nevertheless, it is probably safe to draw

the following general conclusions about the behavior of M for large numbers of

processors:

1. For fixed Nproc and large Ngrain, Mcopy is proportional to some low power of

Ngrain, near to 1/3.

2. For fixed Ngrain and large N proc , Mcopy is proportional to a power the loga­

rithm of N proc , near to 4/3.

8.2.7. Complexity overhead, fcplx.

The significant portion of the total overhead comes from additional complexity

introduced into the code in order to parallelize it. The complexity overhead, fcplx,

is plotted against grain size in Figure 8.10.

We have already seen in Section 8.2 that the force evaluation in parallel is

executed with no complexity overhead (in fact, the overhead associated with force

evaluation is very slightly negative, as discussed in Section 8.2). Thus, we must

look elsewhere for the complexity overhead.

A comparison of the code fragments in Chapter 7, which describe the con­

struction of the locally essential tree, with those in Chapter 2, which describe the

construction of a complete tree, makes it clear that there is considerably more

involved in building the tree in parallel than on a single processor. None of the

median searches or other computations associated with orthogonal recursive bi­

section need to be performed on a single processor. Nevertheless, the detailed

timing data (not plotted) reveals that only a small part of the complexity over­

head can be attributed to the orthogonal recursive bisection. The vast majority

of the complexity overhead is associated with building the locally essential tree,

1

..
.!i
'" S
0
0

'H

"0
ttl
Q)

...c:1
H
Q)

>
0

»,
.~
Q)

P.. 0.1
E
0

0

0.02

4 10

241

Complexity overhead

100

grain size (N/Nproc)

Nproc=l

Nproc=2

J.. Nproc:=4

Nproc=B

" Nproc=16

x Nproc=32

• Nproo=64

Nproc=12B

o Nproc=256

* Nproc=512

1000

Figure 8.10. Complexity overhead, !eplx VS. gram SIze, Ngrain.

242

and not specifically with determining the domain decomposition.

The steps required by Code 7.4 which specifies two traversals of the tree ,
along with the procedure for inserting new FBodies and MTCells into the tree are

undeniably more complex than the simple procedure in the sequential procedure

in Code 2.1. Nevertheless, only a small amount of the complexity overhead is due

to the complexity of the insertion process itself, i.e., the additional comparisons,

bit-setting operations, branches, etc. necessary for each inserted item. Instead,

almost all of the additional complexity is due to the fact that the number of Cells

and Bodies in a locally essential tree is considerably larger than the Np~~c times

the number of Cells and Bodies in the equivalent complete sequential tree. Thus,

the subroutine InsertBody, which inserts a Body into the tree, and the subroutines

BodyMpole and ParAxis, which compute multipole moments, are executed more

times in parallel than on a single processor. Examination of Code 7.14 through

Code 7.21 reveals that insertion of FBodies and MTCells into the tree involves a

tree descent to find a terminal cell at which to insert the new object, followed by a

substantial calculation to compute the new multi pole moments of the terminal cell

with the new object included. The tree descent is not costly, but the computation

of new multipole moments for each inserted item constitutes the vast majority of

Tcpl x .

We can substantiate this claim by plotting Tcplx against Mcopy. If the claim

of previous paragraph is correct, then Tcplx will be proportional to the excess

memory required by the parallel implementation. It is clear from Figure S.11 that

Tcplx is reasonably well accounted for by the relationship,

Tcplx = cMcopy c ~ O.2(sec/ kbyte). (S.41)

It is especially reassuring that the different models types, i.e., Jaffe sphere, uni­

form sphere, and merger, all coincide in Figure S.ll. Thus, the extra time spent

"computing" in parallel, over and above that which is required by the sequential

algorithm is proportional to the extra memory used in parallel, over and above

243

that which is required by the sequential algorithm. The constant of proportional­

ity in Eqn. 8.41 depends, of course, on the particulars of the implementation, but

does not depend on the detailed distribution of bodies in space.

We can combine Eqn. 8.37 together with Eqn. 8.41 to obtain an estimate of

Tcplx purely in terms of Nand N proc . If we take

(8.42)

then

fcplx = Tcplx ex f(q) .

Tintrinsic Nint
(8.43)

Figure 8.12 shows a plot of fcplxNint vs. q. The points in Figure 8.12 are rea­

sonably coincident, confirming that Eqn. 8.43 is a good empirical model for the

behavior of fcplx. Furthermore, the curves all have logarithmic slope of about

-2/3, at least for small q, in agreement with Eqn. 8.37.

As we hope to be able to use the algorithm on systems larger than the Ncube,

it is important to estimate the behavior of fcplx for large values of Nproc and large

values of Ngrain. Simple algebraic rearrangement reveals that

and

lim
NproC-OOt

Ngrain fixed

fcplx ex 10g(Nproc)

1 (N) 1/3

f
og grain

lim ex
Ngrain- OO , cplx N 2 .
Nproc fixed graln

(8.44)

(8.45)

These results are extremely encouraging, as they tell us that adding more proces­

sors of a fixed size will lead to a degradation of performance which grows very

slowly (logarithmically) with the number of processors. Furthermore, overhead

decreases rapidly (as the -2/3 power) as a function of grain size (and hence,

processor mernory).

244

Toplx VS. Moopy

10
.--.
()
<1)
rt.l
'-' ..

p.
u

E-<
<1)-

S '" Nproo = 1
:0 Nproc=2
>, ..., ... Nproc=4 • .-<
~
Q) .. Nproc=8 -p.,

S c Nproo=16
0
u x Nproc=32

.. Nproc=64
1

• Nproo=128

o Nproo=256

* Nproc=512

2 10 100

Copied ITIerrlOry. Mcopy (kbytes)

Figure 8.11. Complexity time, Tcplx vs. copied memory,]"1copy.

:E z
* ~
"

Q)-

C)

s:1
It! -It!
,0

S
>..
+'

><
(J)

'a
S
0
u

245

Functional fit for fcplx

100

10

... Nproc=l
). Nproc=2
.... Nproc=4

.. Nproc=8

" Nproc=16

" Nproc=32

• Nproo=64
Nproc=128

o Nproc=256

* Nproc =512

3 bL-L~LL~L-__ -L __ L-~LL~LL ____ L--L~-L~~~ __ ~ __ ~~~

0.003 0.01 0.1 1

q Ngram!(loga(Nproc)*Nlnt)

Figure 8.12. Complexity overhead, Nindcplx vs. natural grain size, q.

246

8.2.8. Waiting overhead, fwait.

The overhead associated with waiting for processor synchronization points is ac­

counted for by fwait. In the BH algorithm, fwait is the largest identifiable fraction

of the total overhead in large simulations. Figure 8.13 shows f wait plotted against

Ngrain.

Since the algorithm presented in Chapter 7 is based on a synchronous model

of communication, it is a simple matter to locate where waiting overhead might

occur. Waiting can occur at any point in the algorithm at which data is exchanged

between processors. Since the communication is synchronous, all such points ap­

pear explicitly in the program, i.e., as subroutine calls or language constructs.

A review of Chapter 7 reveals two points in the algorithm at which data must

be exchanged, during the orthogonal recursive bisection, and during the tree-build

phase. In orthogonal recursive bisection we see that each processor carries out

an explicit exchange of data with each of log2(Nproc) other processors. Further­

more, each time through the loop of ORB, it is necessary to find the median of a

distribution of work, which in turn is equivalent to finding the root of a function.

Each function evaluation contains an explicit synchronization amongst all proces­

sors in a ProcessorSubset. Fortunately, the time between synchronizations is

both short, and approximately the same on all processors in the ProcessorSub­

set, so the Twait associated with these synchronization points is small. In fact,

the total time spent in ORB, including waiting, communication and computation is

negligible compared to Tintrinsic. Thus, at least for the purposes of understanding

the dominant contribution to fwait, we may disregard ORB. (Note, however, that

Figure 8.14 shows all contributions to fwait, including that from ORB).

The majority of Twait occurs during the tree-build phase of the algorithm. The

top-level procedure for constructing the tree is shown in Code 7.4, which consists of

an iteration over each of the bisectors (log2(Nproc) of them) identified by ORB. Each

of the iterations consists of two tree traversals, followed by an exchange of data

between two processors, with an implied synchronization, followed by the insertion

0.1

'ii
..!
'0
ttl
Q)

..c:
f-<
Q)

:>-
0

bl)
I=!

0.01 ...,
'aj
~

0.001

0.0007

4 10

247

Waiting overhead

100

grain size (N/Nproc)

Figure 8.13. Waiting overhead, jwait vs. Ngrain.

... Nproc=l
;.. Nproc=2
... Nproc=4

Nproc=8

a Nproc=16

x Nproc=32

• Nproc=64
Nproc=128

o Nproc=256

* Nproc=512

...
".

. ..
. ...

1000

248

of the newly received data into the tree. The possibility for synchronization delay

is present at each of the data exchanges. The amount of time a processor waits

at one of the synchronization points depends, of course, on the amount of work it

was required to perform since the last synchronization point, and how much work

its neighbor was required to perform since the last synchronization point.

We saw in the previous section, that the computational effort expended in

building the tree, calculating multipoles, etc., is accounted for by Teplx . Let us

assume, pessimistically, that the slowest processor spends some fraction of Teplx

waiting at each of the 10g2(Nproe) synchronization points. Then, we conclude that

fwait ex feplx 10g2(Nproe).
(8.46)

Using Eqn. 8.43, we can predict that

f · 10g2(Nproe) f()
watt ex N. q .

tnt
(8.4 7)

Figure 8.14 shows a plot of fwaitNint/log2(Nproe) against q. If Eqn. 8.47 is valid,

then all the curves in Figure 8.13 should coincide. The coincidence in this case is

not as convincing as in, for example, Figure 8.12. Nevertheless, Eqn. 8.47 appears

to be accurate to within a small numerical factor for the data available. In fact,

the data appear to lie on a line of logarithmic slope -1. If that trend continues

to hold for data outside the regime we have studied, then

10g2(Nproe)
f w a it ex ---"'-N-::-'--­

q int

(1092(Nproe)?
Ngrain

(8.48)

which means that as the number of processors increases with fixed Ngrain, fwait

will increase as the square of the logarithm of N proe , but if the grain size increases

with the number of processors fixed, then fwait will drop as the inverse of Ngrain.

This is a reassuring result, as it tells us we can expect slowly degraded perfor­

mance with increasing processor number, but rapidly improving performance with
. . ..
IncreasIng graIn sIze.

249

Functional fit for waiting overhead fwait
100 rr-.-."",----.--.--r.-rr''._--~--.__.._ .. "._--_.--._._~

10

1

0.1
0.003 0.01 0.1

-'"
.... ~ »: .. ",... ..'

--~.-~, \
\.
~

q Ngro.ln/Nlntlog2(Nproc)

1

.4 Nproc=l

.... Nproc=4

Nproc=8

" Nproc=16
x Nproc=32

" Nproo=64

Nproc=128

o Nproc=256

* Nproc=512

Figure 8.14. Empirical fit for waiting overhead, fwait*Nint vs. natural
log2(Nproc)

graIn SIze, q.

250

8.2.9. Corll.munication overhead, fcornrn.

The time spent in communication is of little practical importance in the algo­

rithm. It is much smaller than any of the other sources of overhead we discuss.

Of course, the magnitude of the Teomm depends on the performance of the hard­

ware and software used to transmit data from one processor to another. The

dimensionless communication overhead is the ratio of Teomm to the intrinsic time

associated with the algorithm, Tintrinsie. Tintrinsie does not depend in any way on

the communication subsystem, but does reflect the computational power of each

processor in isolation. Thus, one often characterizes communication overhead in

terms of the ratio of "characteristic communication time," T eomm , and "character­

istic calculation time," Teale. Unfortunately, real computers are rarely so simple as

to be characterized by one or two characteristic times. Communication, for exam­

ple, may be characterized by a latency, and a rate of throughput, or perhaps may

be highly load dependent. Integer, floating-point, vectorized and non-vectorized

calculations may all have widely different characteristic times. Thus, it is difficult

to predict with precision how an algorithm will perform on another type of hard­

ware. Nevertheless, the communication overhead on the Ncube is about a factor

of 10 smaller than other overheads, which implies that communication will not be

a significant problem on any machine with a suitably defined ratio of Teomm and

Teale less than ten times the ratio for the Ncube. Even if the ratio is larger, that

only means that feomm is the dominant form of overhead. It does not necessar­

ily imply that feomm is large in absolute magnitude. Figure 8.15 indicates that

communication overhead drops rapidly with grain size, so a poor communication

system may still be compensated for by a large grain size, i.e., memory.

Figure 8.15 shows communication overhead plotted against grain size. Com­

parison of Figure 8.15 with Figure 8.10 reveals that communication overhead

closely parallels complexity overhead. This result follows from the following con­

siderations:

1. Data ready for transmission is queued, so that it may be sent in large blocks

251

(whose maximum size is dictated by memory constraints). Thus, there are

few individual messages, of large size, so throughput is more significant than

latency, and Tcomm is approximately proportional to the amount of data trans­

mitted.

2. As discussed in Section 8.2, Tcplx is the result of building a locally essential tree

containing data acquired from other processors, and is roughly proportional

to the amount of data copied from other processors. Since the copied data

referred to in Section 8.2 must have been transmitted, we conclude that Tcomm

is roughly proportional to Tcplx .

We note that all communication takes place between processors which have

the logical structure of a hypercube. If the hardware is configured as a hypercube,

then communication overheads may be significantly reduced, as the mapping from

logical to hardware processors, and the routing of messages is extremely simple.

If the underlying hardware reflects a different topology, then some mapping from

the logical hypercube structure onto the hardware must be devised, and messages

must be routed to their logical neighbors. Whether this entails any significant

overhead will depend on the details of the hardware and software available. We

emphasize that the logical hypercube structure is the natural one of the algorithm,

and it is simply fortuitous that it corresponds to the hardware configuration of the

Ncube. Furthermore, communication overhead constitutes a small fraction of the

total overhead. Only machines with a very much greater ratio of communication

speed to computation speed than the Ncube will be affected by communication

overhead at all. In most cases, the overhead that arises from supporting the logical

hypercube topology in software (if necessary) will not be significant.

'"d
cO
OJ

..c:
H
OJ

0.1

~ 0.01
~
o,
cO
CJ

'§
S
S
o
u

0.001

4 10

252

Communication overhead

100

grain size (N/Nproc)

Figure 8.15. Communication overhead, fcornrn vs. Ngrain.

.L Nproc=4

.. Nproc ==8

o Nproc=16

)(Nproc=32

• Nproo=64
• Nproc=128

o Nproc=256

* Nproc=512

1000

253

8.2.10. Load iInbalance overhead, firnbal.

Finally, we turn to the last significant component of the computational overhead,

the load imbalance. Figure 8.16 shows the load imbalance overhead plotted against

Ngrain. In most situations with substantial grain size, i.e., Ngrain> 100, the

load imbalance is considerably smaller than the other sources of overhead. We

can use Eqn. 8.16 to distinguish between computational and communication load

imbalance. In this case, the communication load imbalance is at least a factor

of ten smaller than the communication overhead, and the data are not plotted

separately. In fact, the communication load imbalance, defined as in Eqn. 8.15,

is almost as likely to be positive as negative. The slowest processor, overall,

may well have a slightly less than average communication load. In any case,

the overwhelming majority of the load imbalance is due to computation and not

communication.

In Section 7.2, we described the technique used to minimize computational

load imbalance. The procedure, which involves dynamically adjusting the target

percentile used in the orthogonal recursive bisection algorithm, performs very well

in practice. In most cases, the computational load imbalance is within a factor

of a few times N;;'~in. This level of load imbalance is generally the best that

one can hope for. Load balance can only be achieved by transferring discrete

bodies, of which each processor has, on average, Ngrain. The "roundoff error"

introduced by this discreteness effect is of order N;;'~in' so we expect that under

good conditions, i.e., when the balancing algorithm is working effectively, the

residual load imbalance will be proportional to N;;'~in.

..

.c

.§
..cJ
cd
(])

...c:
'""' (])

>
0
(])
I:)

1:1
cd
cd
.c
S
'0
cd
0

.....:1

1

0.1

0.01
4 10

254

Total load imbalance overhead

.•......
'1:>, '",,_

100

grain size (N/Nproc)

Figure 8.16. Load imbalance overhead, J;mbal vs. Ngrain.

Nproc=l

Nproc=2

..... Nproc==4

Nproc=8

[] Nproc=16

)(Nproc=32

• Nproo=64

Nproc=128

o Nproc =256

* Nproc=512

1000

255

8.3. Summary.

The parallel N-body algorithm performs extremely well. The most significant re­

maining sources of overhead are processor synchronization and additional parallel

complexity. Load imbalance is very low, indicating that the orthogonal recursive

bisection with dynamically adjusted splitting, described in Section 7.1, is effec­

tively seeking an equitable distribution of work. Communication overhead, which

is often the most significant source of overhead,[6] is completely negligible. It

seems unlikely that substantial reduction in the two remaining sources of over­

head can be achieved without drastically modifying the algorithm. Warren's [44]

approach may succeed in eliminating some of the remaining complexity overhead,

by eliminating redundant calculation and storage of multipole moments. Com­

munication overhead will increase, however, and the extent to which gains offset

losses remains to be seen. In any event, even if one could "magically" eliminate all

sources of overhead, the program would only run about 35% faster (less for larger

problems), suggesting that the algorithm of Chapter 7 has probably reached the

point of diminishing returns on investment of additional improvements.

256

A. Proof of bounds on C avg an,d Davg.

In this appendix we present a detailed proof of the claim that Cavg is bounded by

N em, and an outline of a proof that Davg is bounded by logs dmN.

A.I. Bounds all. C avg .

We wish to show that there exists a constant, em, such that

Cavg(N) < N em (A.I)

for all N > o.
In order to complete the proof, we will make use of the following three lemmas:

Lemma 1. For all N, m, and p,

DSNm(p/8) (Np2 m(m+1)) , <exp --+ .
DN,m(P) 1 - P 2(N - m)

(A.2)

Lemma 2. If Np(l - p) > 2m then DSN,m(p/8) < DN,m(P).

Lemma 3. If there exists constants, A> 1, OJ, 02, a}, a2 > 0, Xo and ao,

and the function, f(x), has the following properties:

(
O}) 02 f(Ax) < f(x)exp - +-,

XQl X(Y2
for all x > xo, (A.3)

f(x) < ao, for all Xo < x < 8xo, (A.4)

then

for all x > Xo, (A.5)

where

(A.6)

257

A.I.I. Proof of Lell.l.ll.l.a 1.

It is well known [34](Eqn.26.5.24) that the cumulative binomial distribution may

be evaluated in terms of the incomplete beta function,

Where B(a, b) is the beta function,

B(b)=f(a)f(b)
a, f(a+b)' (A.S)

Thus,

1 l PIS

DSN,m(P/S) = B(N) tm(1- t)SN-m-1dt.
m + 1,S - m 0

(A.9)

A simple change of variables under the integral, to y = St, and a small amount of

algebraic rearrangement leads to

(
B(m+1,N-m))

DSN,m(P/S) = sm+l B(m + 1, SN - m) (A.10)

1 r m(l _)N-m-l ((1 -y/S)SN-m-l) dt
B(m + 1,N - m) io y y (1- y)N-m-1 .

We may place an upper bound on this expression by noting the following relation­

ship, which holds when f(x) and g(x) are everywhere positive,

l

b

f(x)g(x)dx < sup g(x)l
b

f(x)dx.
a a<x<b a

(A.11)

Using Eqn. A.11, we transform the integral in Eqn. A.10 into DN,m(P) times an

expression N, m, and P,

(
B(m + 1 N - m)) ((1- y/S)SN-m-l)

DSN,m(P/S) < DN,m(P) sm+IB(m +' 1,SN _ m) o~~~p (1 _ y)N-m-1 .

(A.12)

258

We note that the final expression in Eqn. A.12 is an increasing function of y,

and so we may simply replace it with its value at y = p. With some additional

algebraic rearrangement, Eqn. A.12 becomes

D8N,m(p/8) < (B(m + I,N - m)) ((1- P/8)8)N (1- p)m+l
DN,m(P) 8m+1 B(m+l,8N-m) I-p I-p/8

(A.13)

Now, we treat the three terms on the right-hand side of Eqn. A.13 separately.

The last term is less than 1, by inspection

-p < 1
(

1) m+l
1 - p/8 .

The second term may be recast as an exponential,

(
(1 - P/8)8) N = exp (N (8In(1 _ p/8) -In(1 _ p))).

I-p

We make use of two properties of the natural logarithm,

In(1 - x) < -x

x
-In(1 - x) < --.

I-x

From these, we have have the following inequality,

p2
8In(l- p/8) -In(l- p) < --,

I-p

and thus, from Eqns. A.15 and A.18,

(
(I_ P/8)8)N (Np2) <exp -- .

(1 - p) 1 - p

Now we turn to the first term on the right-hand side of Eqn. A.13,

(
B(m, + I,N - m)) r(N - m)r(8N)

8m+1 B(m + 1,8N - m) - 8m +1 r(N)r(8N - m)"

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

259

We use the well known property of gamma functions, for integer m,

_f-'-.(z---,+---,---,m-'-.) = (z + m - 1) (z + m - 2) . . . (z) .
fez)

Thus, we obtain

B(m+1,N-m) (SN - l)(SN - 2)··· (SN - m)
(SN - S)(SN - 16)··· (SN - Sm) sm+1B(m + 1,SN - m)

(1 - l/SN)(l - 2/SN) . .. (1 - m/SN)
(1 - l/N)(1 - 2/N)··· (1 - miN)

1

< (1 - l/N)(l - 2/N)··· (1 - m/N)·

Now, we use Eqn. A.17 again to obtain

m k

-In(l -l/N)(l - 2/N)··· (1- miN) < L N k
1- -

k=l N

1 m

< N_m Lk,
k=l

which implies,

m(m + 1)
-In(l - l/N)(l - 2/N)··· (1 - miN) < .

2(N - m)

Therefore,

B(m + 1,N - m) (m(m + 1)) -----.:-.,----'--------'-----,- < exp .
sm+1B(m + 1,SN - m) 2(N - m)

We now combine Eqns. A.13, A.14, A.19, and Eqn. A.25 to obtain

DSN m(P/S) (Np2 m(m + 1))
, <exp --+ .

DN,m(P) 1 - P 2(N - m)
Q.E.D.

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

260

A.1.2. Proof of Lemma 2.

For this lemma, we take a different approach, and return to the definition of

DN,m(P) in terms of the binomial distribution function,

DN,m(P) = 1 - CN,m(P) = 1 - L BN,i(P).
i=O

We define the continuous function,

r(n + 1) (-nA) i (1 _ -nA) n-i,
hAn) = Bn,i(A/n) = rei + l)r(n + 1 - i)

and observe that with A = N p,

b>.,i(N) = B N,i(p)

h,i(8N) = B sN,i(p/8).

Now we compute the logarithmic derivative of b>',i(n) with respect to n.

(A.27)

(A.28)

(A.29)

_dl_n_h--,-,i-,-(n--,-) = (~(n + 1) _ ~(n + 1- i)) _ .£_1_ + (_x_ + In(l- x)). (A.30)
~ nl-x I-x

Where ~ is the digamma function,

r'(z)
~(z) = r(z) ,

A
x-­

n

(A.31)

(A.32)

Properties of the digamma function are well known. In particular, for inte-

ger i[34J,

j<i 1
~(n + 1) - ~(n + 1 - i) = '" --..

~n-J
)=0

(A.33)

261

Clearly each of the terms in this sum is positive, and there are precisely m terms.

Furthermore, the smallest term is .!., so we may place a lower bound,
n

. z
?,b(n + 1) - ?,b(n + 1 - z) > -.

n
(A.34)

The last term in parentheses in Eqn. A.31 may be expanded in a power series,

X x 2 x 3

-- + In(l - x) = (x + x 2 + x 3 + ...) - (x + - + - + ...)
1- x 2 3

x 2 2x3 3x4

=-+-+-+ ...
2 3 4

(A.35)

Thus, from Eqns. A.30, A.34, and A.35 we conclude

dIn h i (n) iiI x 2

----',---'-~ > - - - -- + -.
dn n n 1- x 2

(A.36)

Simple algebraic manipulation of the terms on the right-hand side of Eqn. A.36

gIVes

dlnhAn) x (\() .)
dn > 2n(1 _ x) /\ 1 - x - 2z . (A.37)

Finally, we recall that we are concerned with the derivative of b>",i(n) only for

N :::; n :::; 8N, in which case

,\ ,\
1-->1--

n N
(A.38)

or

1- x> 1- p. (A.39)

Thus, we conclude that

dIn b>.., i (n) x .
> ()(Np(1- p)-2z),

dn 2n 1 - x
(A.40)

262

and, finally,

dIn h i(n) , >0
dn

for all n > N, Np(l - p) > 2i. (A.41)

Since the logarithmic derivative of h,i(n) is positive, h,i(n) must be a strictly

increasing function of n, for n > N. Therefore,

b)..,i(8N) > b)..,i(N)

B SN,i(p/8) > BN,i(P)

if Np(l - p) > 2i,

if Np(l - p) > 2i.
(A.42)

According to the premise of the Lemma, Np(l - p) > 2m, so Eqn. A.42 may be

applied to each term in the following sum,

m m

i=O i=O (A.43)

Thus, we finally have

DSN,m(p/8) < DN,m(P)· Q.E.D. (A.44)

A.1.3. Proof of Lenl.lua 3.

First, we show by induction that

k (51 k-1 1) (52 k-1 1)
f(A x) < exp XCY1 t; AiCY2 f(x) + XCY2 t; AiCY2 . (A.45)

From the premise of the Lemma, Eqn. A.3 we have

(A.46)

We now assume that Eqn. A.45 holds for the induction variable equal to k. Thus,

we obtain

(A.47)

(
52 (k-1 1) 52 1)

f(x)+xCY2 t;AiCY2 +xCY2 A kCY 2 .

263

Simple algebraic rearrangement of Eqn. A.4 7 results in

(A.48)

which verifies the induction. The first step of the induction, i.e., k = 0, is asserted

by the premise of the Lemma, Eqn. A.5. Thus, Eqn. A.48 is proved for all k ;::;;: O.

We now note that the summations in Eqn. A.44 are bounded for A > 1, and

k;::;;: 0, i.e.,

Therefore, for all k ;::;;: 0 and x > Xo, we have

where

Now let

Then we have

and from the premise, Eqn. A.4,

f(xd < ao·

Combining Eqns. A.50, A.52, and A.55, we have

for all x > x 0 .

(A.49)

(A.50)

(A.51)

(A.52)

(A. 53)

(A. 54)

(A. 55)

Q.E.D. (A.56)

254

A.1.4. Proof of Theorem.

We prove the theorem by demonstrating that the the function,

c(N) = C;;g, (A.57)

satisfies the conditions on f(x) in Lemma 3. We obtain a tight bound by careful

selection of the constants, 81 , 82 , and ao.

First, we refer to Figure 2.7, from which it is clear that the constant ao exists,

and that Eqn. AA is satisfied with Xo > 4000. In the following, we let

Then

8- d
Pd = .

00 1
c(8N) = L 8N DSN,m(Pd)

d=O Pd

1 00 1
= 8N + L N DSN,m(Pd)

d=1 Pd-l

Now we choose a depth, do, and split the sum into two parts,

1 d o-l 1 00 1
c(8N) = 8N + L N DsN,m(Pd/8) + L N DsN,m(Pd/8).

d=O Pd d=d o Pd

We select the depth, do, so it has the following properties:

If N > 32m, then we can be sure that

1
Pdo < S·

(A. 58)

(A. 59)

(A.50)

(A.51)

(A.52)

(A.53)

265

From Eqn. A.62, we can also show that

N2p~O (1 - Pdo? < 4m2,

Np2 4m2
do < ___ _

1 - Pdo N(l - Pdo)3'

Np~o m(m + 1) 4m2 m(m + 1) ----''-- + < + --':'---"":""
1 - Pdo 2(N - m) N(l - Pdo)3 2(N - m)'

(A.64)

Np~o m(m + 1) 1 (4m
2

m(m + 1)) ----''-- + < - + --':'---"':""
1-Pdo 2(N-m) N (1-Pdo)3 2(1-~) ,

and, using Eqn. A.63,

N p~o m(m + 1) 1 ((6 1)) _-=c...+ <- m m+- .
1 - Pdo 2(N - m) N 2

(A.65)

Equation A.63 tells us that the premise of Lemma 2 is satisfied for all the

terms in the first summation in Eqn. A.62. Thus, we may write

1 do-1 1 00 1
c(8N) < 8N + L NDN,m(Pd) + L NDN,m(Pd) (exp (N2p~o(1- Pdo?))·

d=O Pd d=do Pd

We now use Eqn. A.65, to obtain

1 (m(6m + 1.)) < 8N +exp N 2 c(N).

Equation A.67 is formally identical to Eqn. A.3 with

ct1 = ct2 = 1,

A=8,

1
61 = m(6m + 2)'

1
and 62 = -.

8

(A.66)

(A.67)

(A.68)

(A.69)

(A. 70)

(A.71)

266

Thus, we have verified the conditions of Lemma 3, and the conclusion follows. The

constants, Cm, in Table 2.1 are obtained simply by evaluating the right-hand side

of Eqn. A.5.

A.2. Bounds on Davg

Figure 2.10 suggests that Davg(N) is bounded by logs dr::nN . An argument very

similar to the one in the previous section shows that this is, indeed, the case. In

this section, we will be slightly less rigorous than in the previous section. The

proof will be outlined, but not presented in as much detail. This time, we define

a function,

deN) = m SDavg(N),
N

which is plotted in Figure 2.10. Clearly,

follows from

so we need to prove that deN) is bounded by a constant.

We begin by placing a bound on Davg(SN),

<Xl

Davg(SN) = L DSN-l,m-l(Pd)
d=O

<Xl

= 1 + L DSN-l,m-l(Pd/S)
d=O

(A.72)

(A.73)

(A. 74)

(A.75)

where C is a constant, independent of N. Some algebraic manipulations suffice to

prove by induction that Eqn. A.75 implies

Dav,(Sk N) < ~ exp (; t, sL) + exp (; ~ :;) Dav,(N). (A.76)

267

We now bound the sums inside the exponentials in Eqn. A.76, using Eqn. AA9,

and obtain

k ~ (S c 1) (S c) Davg(S N) < ~ exp "7 N Sk-i + exp "7 N Davg(N). (A.77)

Now, we use the fact that the exponential of a small argument is close to unity.

More precisely,

x
exp(x) -1 < (exp(xI) -1) *­

Xl

This allows us to rewrite Eqn. A.77 as

and, again, using Eqn. AA9, we have

(A.7S)

k 1 ((S c)) (S c) Davg(S N) < k +"7 exp("7 N - 1 + exp "7 N Davg(N). (A. SO)

We define to, as

(A.S1)

and using Eqn. A.S1, we have

k > O. (A.S2)

Equation A.S2 holds for all k > O. It is clear from Figure 2.10 that the right-hand

side of Eqn. A.S2 is bounded by a constant, designated dm , for 4000 < N < 32000.

It follows that

NI > 4000 (A.S3)

because for any NI > 4000, it is possible to find an integer k and a value 4000 <

N < 32000, for which NI = Sk N. From Eqn. A.S3, we have

N > 4000. Q.E.D. (A.S4)

268

B. Shell Formation Using 180k Particles ...

Reprinted by permission from "Dynamics and Interactions of Galaxies", ed. R.

Wielen, 216-218, Springer-Verlag, (1989). J. Salmon, P.J. Quinn, M. Warren,

"Using Parallel Computers for Very Large N-Body Simulations: Shell Formation

Using 180K Particles"

269

Using Parallel Computers for Very Large N-Body Simulations:
Shell Formation Using 180 K Particles

J. Salmon 1, P J. Quinn 2, and M. Warren 1

1 Cal tech Concurrent Computing Project
2Mt. Stromlo and Siding Spring Observatories, The Australian National University,
Woden Post Office, ACT 2606, Canberra, Australia

\Ve have used a parallel version of the Barnes-Hut C treecode running on a parallel supercomputer (a 512 node
l\'CUBE) at the Caltech Concurrent Computing Project to follow the evolution of systems with very large numbers
of particles (N)IBO,OOO). Many important problems in astrophysics demand large N and in particular we have
studied the fully selfconsistent formation of stellar shells around an elliptical parent galaxy via the merger with
another elliptical of one tenth its mass. The final system shows a spread in shell radii similar to that in observed
shell galaxies. Major changes in the structure and dynamics of the primary have resulted from the merger.

Large N problems: the motivation

Traditionally, N-body simulations of collision less systems have been run with the largest number of particles
possible given the limitations on machine time and memory. This push to large N was motivated by the need to
control the collisionality of the simulation over the desired number of dynamical times. The arrival of methods
with computational times that scaled like N LogN instead of N 2 (PM, PPPM, Treecodes) meant that for a fixed
computing resource,lO,OOO - 100,000 particles could be evolved with high dynamical resolution and in runs of only
a few tens of hours on machines like the CRA Y 1. In trying to achieve very large N, most of the NlogN codes
run up against serious memory constraints on machines like the CRAY X-MP . In an attempt to address this
memory problem we have developed the Barnes-Hut treecode on a parallel architecture in which individual nodes
have substantial amounts of memory. The 512 node NCUBE at the Cal tech Concurrent Computing Project has
5l2K of memory per node giving a total machine memory of 256 MgB which is more than ten times the typical
maximurn process size on the X-MP.

Tree Codes on Parallel Computers

The basic problem in designing a parallel algorithm is the decision of "who gets what data, when?" Given
an appropriate organization of the data, termed a "decomposition" J one is usually able to carryover the basic
sequential algorithm with little or no change. That is, each processor behaves as though it is performing the
original sequential algorithm on a subset of the complete data set.

The simplest decomposition to consider is one in which each processor is assigned all the bodies in a region
of space. The processor boundaries are chosen to assign approximately equal work loads to the processors. Given
a decomposition of the particles which balances the load, it is tempting to think we can construct the tree on
each processor, merge them into a collective tree which is copied to each processor and proceed with the force
evaluation. Unfortunately, this leads to severe problems with the available memory. One is limited to treating
problems whose entire tree fits into the 512 kbytes available to each processor. Thus, this approach provides
extremely good utilization of the parallel processor when the total number of bodies is less than a few thousand,
but it doesn't work at all for large numbers of bodies.

At this point, it is crucial to realize that by the very nature of the Barnes-Hut(1986) algorithm, it is not
necessary to store the entire tree in each processor. Since each processor is concerned with computing forces only
within a restricted region of space, it will need to access the most detailed levels of the tree only in a restricted
region. Distant regions of space may be accounted for with much less data.

Thus, the parallel force calculation algorithm proceeds as follows:
(a) Determine processor boundaries by recursive bisection of the estimated work.
(b) Build the tree for the local particles.
(c) Communicate to obtain only those details of other processors' trees which may be necessary for force compu­

tations.
(d) For each local particle descend the tree and compute the force.

The performance of the parallel algorithm may be measured several ways. Of primary interest is the overall
performance. Counting all of the overheads, load imbalances, i/o operations, etc., the system computes the force
on our 180,000 bodies in approximately 200 seconds (9 = 0.8,monopole). In addition, it is of interest how th;s
figure scales with the number of processors. Obviously, we were not able to evaluate the forces on a 180,000 body

Dynamics and Interactions of Galaxies Editor: R. Wielcn
© Springer-Verlag Berlin, Heidelberg 1990

270

100 N-IOOO

N-2000

N=5000

N=10000
Po

" N=20000

"" ~ 10 N=50000 ~

go

Figure 1

10 100

system on a single processor with 512 kbytes of mcnl0ry. Nevertheless, extrapolation from a series of runs with
fewer particles indicates that we obtained a speedup of 300 on 512 processors. Figure 1 shows the speedup resulting
from the use of parallel processing as a function of the number of processors, as well as the number of bodies. It
is typical of such plots that for a fixed problem size, the speedup begins to level off and the addition of more
processors does little to reduce the overall running time. On the other hand, if the problem size is allowed to grow
with the number of processors, the speedup continues to increase up to very large numbers of processors. Thus,
large parallel computers are generally well matched to large problems, but are a poor match to small problems.

Shell Formation

Since the early 1980s, stellar shells around ellipticals have been recognized as the product of a collision
between a large elliptical and a compact and/or dynamically cold companion galaxy. Models of shell formation
by Quinn (1984), Dupraz and Combes (1986) and Hernquist and Quinn (1988) have all used rigid potential
models for the primary and hence have ignored important selfconsistent effects like dynamical friction and tidal
stripping. As a result several important features of shells galaxies, like the small radii of the innermost shells, have
remained unexplained. In order to address important dynamical effects such as the orbit decay and progressive
tidal distruction of the companion as well as the selfconsistent effects on the primary, we have undertaken a study
of shell formation using the treecode on the NCUBE.

Figure 2 shows the distribution of companion particles near the end of the simulation. The core of the
companion stayed intact for five peri centre passages and was destroyed in the final pass. The following is a
summary of the main points of the simulation with regard to shell production:
o Shell making particles are removed from the companion after each close encounter with the core of the primary.

As a consequence the final shell distribution is complex, consisting of several overlapping shell systems.
o Since the companion core continues to lose orbital energy over the course of the simulation, the final shells are

confined to smaller radii than the shells that resulted from earlier pericentre passages. The innermost shells

:;: '.

. :- :.' ', .
..... : .. .f •. _

" ... ":: . . '",

'. :
-,:.

", ~ -.'
: '.~ :-. ~

~.' .~. .J ••••

:E;;(~':?;Jt;j,;~:.';;<,f. • Figure 2 : The distribution of companion particles at the
end of the simulation seen from about the original orbit
plane. The box is 15 half-light radii of the initial primary
on an edge.

271

are within 0.3 effective radii and the outer shells extend to more than 20 effective radii which gives a shell
radius range similar to many observed shell galaxies.

o Because of the complex nature of the multiple shell system, it is very difficult in this case to apply the
techniques outlined by Hernquist and Quinn (1987) to probe the underlying potential using the distribution
of shell radii.

Conclusion

Many problems in galaxy formation and evolution will require the use of very large numbers of particles in
N-body simulations. The model of shell formation we ran has addressed a number of outstanding issues in shell
formation; in particular the radius of the inner most shells. The simulation has also given us valuable new insights
into the effects shell making mergers have on the primary galaxies. These effects may explain many generic features
of ellipticals (photometric and kinematic axis alignment, rotation curve shape, see Quinn and Zurek, this volume).
The simulation also teaches us about the complex process of tidal disruption and the dynamics of mergers. By
comparing this simulation with others on the formation of counterrotating cores by Balcells and Quinn (1989) and
the cosmological simulations of Quinn, Salmon and Zurek(1986), we can start to see common processes emerge that
may tell us a great deal about the way mergers work in general and how they may have influenced the properties
of galaxies along the Hubble sequence.

Acknowledgements

We would like to thank the Cal tech Concurrent Comput­
ing Project for providing travel funds and CPU time on
the NCUBE. This work was supported in part by Depart­
ment of Energy, Applied Mathematical Sciences grant
DE-FG03-85ER25009.

References

Baleells, M. and Quinn, P.J., 1989, preprint.
Barnes). and Hut,P., 1986, Nature, 324, 446.
Dupraz, C. and Combes, F., 1986, Astr. (3 Ap., 166, 53.
Hernquist, L. and Quinn, P.J., 1987, Ap.J., 312, L
Hernquist, L. and Quinn, P.J., 1988, Ap.J., 331, 682.
Quinn, P.J., 1984, Ap.J., 279, 596.
Quinn, P.J. and Zurek, W.H., 1988, Ap.J., 331, L
Quinn, P.J. and Zurek, W.lf., 1989, preprint.
Quinn, P.J., Salmon, J.K. and Zurek, W.lf., 1986, Nature,

322,392.

272

C. Primordial Density Fluctuations ...

Reprinted by permission from from Nature, 322,329-335,24 July 1986. Copyright

© 1986. P.J. Quinn, J.K. Salmon, W.H. Zurek, "Primordial Density Fluctuations

and the Structure of Galactic Haloes."

273

Reprinted from Nature, Vol. 322, No. 6077, pp. 329·335, 24 July 1986

© Macmillan Journals Ltd., /986

Primordial density fluctuations and the
structure of galactic haloes
P. J. QuinnOt*, J. K. Salmontt & W. H. Zurek*

N-body models used to study the formation of structure in n = 1 universes reveal that the mass profiles of the collapsed
structures-galactic haloes-are intimately related to the power spectrum of initia~ gaussian, density perturbations, In
particular, flat rotation curves observed in disk galaxies are obtained only when the exponent of the power law P(k) - k"
is, on the megaparsec scale, less than -I, but not as small as - 3. These results have important implications for various
cosmological models.

THE structures observed in the Universe on the galactic and
larger scales are believed to have been seeded by primordial
density perturbations'. These perturbations were presumably
imprinted much earlier by a process such as inflation' Later,
they were modified in the course of the radiation-dominated era
(redshift z> 2.5 x utah'). Both this initial imprinting, and the
more recent modifications depend sensitively on the composition
of matter in the Universe and on the physics at very high energies.
Therefore, an understanding of the formation of structure from
initial, seed perturbations is essential for cosmology as well as
for particle physics.

We now explore, by means of computer modelling, the forma­
tion of collapsed and virialized structures in Einstein-deSitter
(0 = I) universes. We focus on a class of model universes
characterized by gaussian, scale-free density perturbations.
Their power spectra:

P(k)=Ak" (I)

are completely specified by the normalization constant A and
the exponent n. k is the wavenumber. The white noise case
corresponds to n = O. Scale-free perturbations in an 0 = 1 uni­
verse result in hierarchical cIusterin~-'o, which is both reason­
ably easy to analyse and often a good approximation of more
complicated and more realistic models. We shall also simulate
the formation of haloes in COM (cold dark matter) uni­
verses"-". Indeed, we shall normalize our scale-free power
spectra so that on a 'galactic scale' they have similar power to
the CD M case. The influence of 0 on the structure of galactic
haloes will be treated elsewhere (W.H.Z., PJ.Q. and 1.K.S.,
manuscript in preparation).

Observations of rotational velocities in disk galaxies indicate
that the bulk of the mass of these objects is invisible 'dark
matter'. Moreover, this dark matter is distributed so that the
rotational velocities of stars, H II regions and neutral hydro­
gen'·-'· are approximately independent of radius out to dis­
tances near to and even well beyond the optical radius of the
galaxy. This implies a density (p) of dark material that, at large
radii, falls off like;

p(r) - r-l

or alternatively, the mass profile:

M(r)-r

(2)

(3)

We will demonstrate that mass profiles of this kind can be
obtained when the initial density perturbations have at least as
much energy on the large scale as they have on the small scale,

• Space Telesrope Scienoe Institute. 3700 San Martia Drive, BaJtimoI'C, Maryland 21218, USA.
f Theoretical AstrOpbys.ia.Califomia InstituteofTechnololY. Puadena, California 91125, USA
i Theoretical Astrophysics, Los Alamos National labofllCOry. Los Alamos, New Mexico 875-45,
USA.

n < -1. This conclusion has been anticipated analytically by the
'secondary infall' models proposed by Gunn and Gott'·. In
particular, using the secondary infall paradigm, Hoffmann and
Shaham20 have conjectured that the average density profile
should be related to the power-law exponent n by

where

p(r)-r-Y (4)

3(Hn)
y= (4+n) (5)

for n>-l, and should relax to p_r-2 for -1>n>-3. Our
results are in approximate agreement with these conclusions for
n > -2, even though the process of formation of collapsed
objects does not seem to conform with the secondary infall
picture.

Computer simulations
A gaussian field of initial density perturbations can be repro­
duced by writing:

Ap(;)=p(;)-(p)

= ~ Is(1 e-'" e-/('; (6)

Here Iski are the absolute values of the complex amplitudes of
all the mode~ and t/>(are their phases. One can realize power
spectrum P(k) by choosing:

lif=·hp(k)R~ (7a)

t/>f = 21rRt (7b)

where {R~, Rt} are a pair of random numbers with distributions
which are, respectively, gaussian in the interval (0, (0), and
uniform in the interval (0, 1].

We have found it extremely useful to implement different
power spectra by using the same set of random number pairs.
This allows us to model 'the same' fragment of the universe
with different power laws and therefore to bring out systematic
changes which would otherwise be overwhelmed by the random
nature of the initial perturbations.

The density distribution can be faithfully represented in the
form given by equation (6) only when, on the scales of interest,
the amplitude u=~ is much smaller than the average
density;

u« (p) (8)

This follows not just from the trivial requirement that p be
positive; beyond the linear regime mode-mode interactions
induce correlations between modes which in tum invalidates

274

the assumption of gaussian density perturbations and makes the
use of equation (6) impossible (see ref. I).

We guarantee the validity of equation (6) by adjusting the
normalization constant A in equation (I) so that mass fluctu­
ations on the scale-of-interest (A) are small:

[~l = 0.06 (9)

We impose the same condition on SM / M for the COM models.
It will be useful but will entail no loss of generality, to refer to
this chosen scale A by analogy with the COM case-for which
A can be estimated by comparison with present-day galaxy
correlation functions 12

•
13

•
21-as the 'megaparsec scale'. In other

words, we anticipate that 'galactic haloes' will form from A-sized
fragments of the initial distribution after a time interval corre­
sponding to the Hubble time. With this convention in mind we
can now state that our models are initiated with the Hubble
constant Ho = 100 km S-I M pC-I at Z;nt = 24 and are evolved for
-10,000-14,000 Myr beyond the conventional present which for
this set of initial conditions occurs at an unrealistically short
time of 6,700 Myr after the big bang. It is essential to keep in
mind that for the power law models the above convention is
nothing but a convention as the scale-free nature of P(k) implies_
Our results--density profiles of haloes-are independent of the
value of Ho. The Hubble constant influences only the total values
of the masses of haloes, but not their shapes.

The initial conditions are imprinted on a system of 643 parti­
cles, each of them with a conventional mass of m = 1.02 x 1 O· Me,
n = 1. They represent a (IOMpc)3 section of the model universe.
The initial conditions are imposed using the Zel'dovich 'growing
mode' method' .20.22 which deforms the cubic lattice of particles
in the desired manner. The evolution of the system to Z = 0 is
then simulated by a Fourier (c1oud-in-cell) code with a 643 mesh.

The Fourier methods are inaccurate on scales smaller than a
few mesh spacings. Therefore, we use it only to set up initial
conditions for the N-body simulations. These are provided by
the output of the Fourier code at Z = 5.25 and/ or Z = 10.1. (We
do not want to generate initial conditions this late in the history
of the universe, as by then the inequality (8) is no longer valid
and equation (6) cannot be trusted.) The use of the Fourier
code allows us to employ sufficiently many particles at very
early times to imprint initial conditions without the danger of
introducing errors via shot noise or aliasing (ref. 21 and work
in preparation). Moreover, using this technique we can obtain
the first 'blurred' but, nevertheless, informative pictures of the
model at z = O.

Two kinds of N-body runs are used. Low-resolution simula­
tions use particles with a mass ML = 27m. A sphere with a
diameter of 10 Mpc cut out from the Fourier cube provides the
initial conditions. Each of the low resolution particles has the
location and the velocity of the centre of mass of a 3 x 3 x 3
fragment of the original Fourier lattice. However, particle masses
are now close to 3 x 10'0 M 0 which means that a typical galactic
halo will contain no more than -100 particles. Therefore, to
investigate smaller scale structures we have employed a different
mapping of the Fourier particles onto the N-body initial condi­
tions.

High-resolution runs use a one-to-one mapping in a chosen
sphere of 2 Mpc radius, and a very low-resolution mapping (64
Fourier particles to one !V,body particle) towards the outskirts
of the model. Masses in the transition region between 2 and
3 Mpc take on intermediate values. The resulting multi-resol­
ution system is evolved using the N-body code for a time
comparable to the corresponding low-resolution run (see Fig. I).

Typically 5,000-7,000 particles are evolved and a run is comp­
leted within 2-4 hrs of Cray-I CPU time. Usually more than
one high-resolution sphere-of-interest is chosen for each low­
resolution model. Therefore, the same fragment of the universe
is modelled using three distinct resolutions. All of the N-body
runs use a smoothing length of 10 kpc. Note that on the scales

on which all three resolutions are expected to be accurate, all
of them yield comparable results. Low-resolution runs are then
used to extract information about the large-scale structure, mer­
gers, and so on. The results of these runs will be discussed
elsewhere. Here we shall concentrate on the small-scale informa­
tion contained in the high-resolution runs. Specifically, we shall
consider the density profiles of haloes, that is objects with masses
between 10"M0 and 1012M 0 •

Halo density profiles
Figure 2 contains a graphic summary of the key results discussed
in this section. Two conclusions are immediately apparent: (I)
the high-resolution portions of the particle plots in Fig. 2 contain
related structures (the 'same' halo can be usually identified in
the figures corresponding to the neighbouring values of n). (2)
The realizations with more power on small scales (larger n)
have larger numbers of more compact haloes. In particular,
while the model with n = -2.75 exhibits only two reasonably
well developed haloes, there are about 10 such structures of
various sizes for n = 1. Moreover, models with a lot of power
on the large scale exhibit more pronounced 'caustics' and
'filaments'. The CDM model is the closest in appearance to the
n = -1 and n = -2 cases. This is not unexpected: the effective
exponent of the cold dark matter power spectrum is close to
-1.5 on the mega parsec scale.

Most of the haloes in the high resolution region contain only
high-resolution particles. However, some of them are contami­
nated by heavy particles that have entered from the low-resol­
ution part of the model. The results given below are inferred
from haloes that contain .,.10% of these heavies by mass. (In
fact, only 10% of the analysed halos had more than 1 or 2
heavies).

For the densities given by equation (4), the mass profile (the
mass within radius r) is given by the relation:

M(r) - r-Y (10)

The corresponding rotational velocity inferred for such M(r) is;

v(r) _ r(2-Yl/2 (II)

The circular rotational velocities of haloes obtained in the com­
puter experiment are for a subset of the haloes shown in Fig.
2. We also indicate there the velocity profile predicted by
equation (5).

Models with n = 1 and n = 0 produce centrally condensed
haloes with the mass falling off faster than in the flat rotation
case. The typical slope of the density profile is well approximated
by the value of "y inferred from equation (5) although a system­
atic discrepancy can also be noted: densities tend to fall off
faster than equation (5) would have it. In particular, rotation
curves are not quite flat for n = -1 but clearly flatten for COM
as well as for the n = -2 case. In all cases when n> -I rotation
curves flatten at radii between 10 and 20 kpc. (The resolution
of our N-body code is 10 kpc and does not allow us to comment
on the structure on the innermost parts of the halo.) It is
interesting that virtually all haloes formed in a simulation with
a given power law have very similar rotation curves.

The situation is different when n = -2.75. Now the rotational
velocities are still rising at r = 50 kpc and some of them do not
flatten even in the 100 kpc range. This seems to imply that the
structure of these haloes is inconsistent with the conclusions of
Hoffman and Shaham, who conjecture that flat rotation curves
will form even for n = -3. It is unlikely that such haloes with
rising rotation velocities are a temporary, unstable phenomenon:
We have checked the slope of the density profile at z = -0.5, at
a time equal to 14,000 Myr. It is still rising and equation (5)
still provides as good an estimate as a flat rotation profile. More
relevant in understanding this discrepancy is probably the sys­
tematic increase of the size of the soft core with n decreasing
to -3. This trend is visible already for n '" -2. Indeed, rotation
profiles between 1 00 and 200 kpc, not shown in Fig. 2, are quite

275

O.6g9E+OJ ---. ~----'---'--""----""-"T"~-~ ...-~~--~- ... ~~~-~ 0.158£+0.

a b

0.3<49+03

o.oooe+oo O.OOOE+OO

-0.349+03 -0.169E+03 Fig. I Six photographs
taken in comoving coor­
dinates at equal time inter­
vals during the evolution
of the high-resolution
model (P(k)-k-'). The
initial conditions (z =
5.25) for the N-body run
as obtained from the
Fourier code (which was
started with gaussian
density perturbations at
z=24). are shown in a.
Note that there are size­
able regions with large
overdensities inside the
high-resolution sphere,
and a slightly perturbed
lattice of massive particles
on the outside. b-e, The
state of the system at inter­
mediate times. f, z = O.
Only the inner, high-resol­
ution parts of such models
were used (see Fig. 2).

-0.699E+03 '-::-'-~-:-':-:"~~~:-"-::---:~:--:~~~...J
-0.699E+03 -0.349£+03 O.OOOE+oO 0.349+03 0.899E+03 -0.158:~~;8'=E""O:C.C--_O:C.7~.:'-.::-E '~O~3~O.700::-00:E;-"'-:-OO""O:C.7~.~'E::-'~O~3~O.~t'-'8E-+O.

c d

0.121E+04 0.160E+O.

o.oooe+oo o.oooe+oo

-0.121E+04 -0.160E+O.

-0.243+04 L....~~~~~~~~~~~~~...J -0.321E+04 L..~~~~~_~~_~~_~....J
-0.243E+04 -0.121£+04 O.OOOE+OO 0.121E+04 0.243E+04 -0.321[+0. -0.160E+O. O.OOOE+oo 0.160E+O. 0.321+04

Units are kiloparsecs. e

-. 0.220E+04

..c :
0.000£+00

'.-oj'
':.'iI<

O.OOOE+OO

-0.191E+O. -0.220E+04

-0.381E+O. L..~~~~~~~~~~~~~.-J -0 .• 39E+04 L...~~~~~_~~~~~~~~
-0.381E+O. -0.191E+O. O.OOOE+OO 0.191E+O. 0.381E+04 -0.-439E+04 -O.220E+0~ o.oooe+oo 0.220E+O. 0.439E+O.

flat for n = -2.75. Therefore, the relevant part of Fig. 2 may be
showing just the soft core parts of the haloes for this case.
Moreover, the treatment given in ref. 20 breaks down for n < - 3.
Hence, it is not too surprising that its predictions for n = -2.75
are inaccurate. Indeed, one should be surprised that the argu­
ments of Hoffman and Shaham give as good an estimate of the
resulting density profiles as they do, as the assumptions on
which they are based are only approximately valid.

The mass profile of the cold dark matter haloes is reasonably
close to the flat rotation curve variety out to 100-150 kpc. Beyond
that distance rotation profiles begin to fall off. The rotation
parameters (A) of the collapsed objects are typically in the
0.05-0.1 range (A = IEI'!'J/GM'/2, where E is the total energy
of the halo, J its angular momentum, M its mass, and G is the
gravitational constant.) This is consistent with our earlier
findings"·2.5 as well as with a number of other cold dark matter
simulations26

.

We have concluded that the mass profiles of collapsed, virial­
ized objects in the n = I universe initiated with an effective
power law spectrum on the galactic scale are detennined over
the range of interest by the value of n. Equations (4) and (5)

give a fair estimate of the corresponding density profiles.
Although a power spectrum translates unambiguously into a
rotation curve, one should keep in mind that the reverse argu­
ment is not so straightforward: The fact that a flat rotation curve
is observed, often allows, within the errors, a range of halo
density profiles. Moreover, baryonic material in the dissipative
process of settling in the centre of the core will inevitably steepen
the final rotation curve".

Comparisons with theory
Gunn and Gott have developed the secondary infall scenario
based on the assumption that the fonnation of collapsed objects
in an overdense region begins from the density peak which in
due coUrse accretes surrounding shells of material'" Each of
these shells is thought to be much less massive than the already
collapsed and virialized core. Assuming spherical symmetry,
one can show that material from each consecutive shell will be
eventually deposited at a radius:

'm{f:l-I) ,=----
2

(12)

276

0.248E+04

a

250

0.124E+04

.......
~

O.OOOE+OO :. 150

~
>

-0.12"E+04

50

-0.2"8E+0" 0
-0.2"8E+04 -0.12"E+0" O.OOOE+OO 0.124E+04 0.2"8E+04 0

0.2"8E+0" 300

b

250

0.12"E+01

... ~

O.OOOE+OO

.~ • . • ..¥-
-0.124E+04 .,. ~--:

-0.2"8E+O" 0
-0.2"8E+0" -0.12"E +0" O.OOOE+OO 0.12"E+0" 0.2"8E+0" 0

c

250

0.114E+0"

O.OOOE+OO
~. .~,. "t

;i,~
..... '*.

-0.11"E+0"

-0.229E+0" L..~~~-'-~~~~~~~~~~~~
-0.229E+04 -0.11"E+04 O.OOOE+OO 0.114+0" 0.229+04

around the centre, where r m is the radius of maximum expansion,
and fJ characterizes the density of the already virialized core:

(13)

With a few additional assumptions, this can be used to calculate
the density profile. The maximum radius of expansion for a
spherically symmetric density perturbation with the initial rela­
tive overdensity ll; is given by:

(14)

20

20

20

40 60
Radius (kpc)

40 80
Radius (kpc)

40 60
Radius (kpc)

80 100

80 100

80 100

Fig. 2 The formation of
haloes in an Einstein-
deSitter (!l = 1) universe
with different power
spectra. Particle plots
show only the inner, high.
resolution regions. The
exponent of the power law
is indicated in the plots of
the rotation velocities. The
rotation profile predicted
by p(r)_r-3(l+"l/(4+"' is
indicated by dashed line .
A scaled down average
rotation profile of Se
spirals, ref. 15, is plotted
along with the CDM

haloes.

Here ll; characterizes the initial overdensity inside the sphere
of radius r;:

M(r < r;) = (431T)r?(P)(1 + ll;(r;» (15)

In the case considered here fl; = I. Therefore, the final density
of the halo is:

p(r) -1l,(r;(r»3 (16)

Hoffman and Shaham20
, following Peebles12

, argue that in a
universe with a scale-free spectrum of initial density perturba-

0.233E+04 --.--.-----~.--.-__._ ..--~ ~-r~"T"""__._--.--'r----..---,-~ 300

d

250

200

O.OOOE+OO

-0.111E+04

1
-0.233E+04 ~~~~~~._~~~~J

-O.233E+04 -O.117E+04 O.OOOE+OO 0.117+04 O.233E+04

O.230E+04
i

,,-.- -
[e

l
I

0.115E+04~

--~-l

1
1

1
1
1
j
j

j
O.OOOE +00 t ...", 1

··" i ' 1

-0 230E+04 ~ ~-~~~~-~~

250

200

E
~ 150

0.230E+04 -O.115E+04 O.OOOE+OO O.115E+04 0.230+04

O.111E+04

O.OOOE+OO

250

t
200

E

:. 150

1
>

100

50

277

20

20

40 60
Radius (kpcl

40 60
Radius (kpcl

COM

80

80

P ... ~"

.. ---'----

100

100

°0~~~~~~~~~~~60~-L~8~0~~~'00

Radius (kpcl

tions, given by equation (I), the relative overdensity around a
local maximum can be estimated by:

(
r,)-<3+")

~i- -
r.

(17)

Here r. is the characteristic smoothing distance ".20,2. , related
to the distance between the peaks. Consequently, the final
density of the collapsed halo is given by:

p(r) - (r,(r»-3(3+") (18)

To express the right-hand side of this relation in terms of the
distance from the halo centre we use equation (14) together
with equation (17) to obtain:

rm(/l-I)
r=----

2

_ (/3 - 1) (!!.)4+"
2 r.

(19)

278

I ' , , I '

r~1.5

\.
'. r~1.8

O~-L~~LJ-L-L~LJ~-L~~~-L~
I 1.5 2 2.5

log Id Ikpcl

Ftg. 3 Density autocorrelation functions, equation (2\), for the
particles in the high-resolution portions of some of the power law
models. The prediction of the hierarchical clustering scenario­
power law with the exponent given by equation (22)-is indicated
by the dashed line. Results for: A, n = -2; ., ", = -1; 0, n = 0
respectively. Note that each curve has been offset ~rtically by an

arbitrary amount for clarity.

Therefore.

(

r)-313+")/(H")

p(r)- -
rA

(20)

Our derivation of equation (20) paraphrases a more detailed
discussion in ref. 20.

Hoffman and Shaham, following Fillmore and Goldreich29
,

conjecture that the mass profiles with M - T ... •• E > 0, are
unstable. Therefore, they conclude that haloes with y < 2 will
relax into flat rotation curve haloes. This additional conjecture
has not been so far confirmed by our computer models. The key
difference between the situation analysed by Fillmore and Gold­
reich and our computer simulations may be due to the absence
of angular momentum in the spherically symmetric, self-similar
calculations reported in the ref. 29. Large angular momenta may
stabilize haloes with rising rotation curves.

The analysis leading to equation (20) hinges on assumptions
which are at best only approximately valid: (1) The initial
overdensity profile. equation (17), is a reasonable estimate of
the actual density profile only for a limited range of initial radii.
When r < TA, near the peale, Ili(ri) is flatter than equation (17)
would suggest. Moreover, for larger r, fluctuations of overdensity
soon begin to exceed the systematic behaviour given by equation
(17)20,28. Therefore. the derivation is based on an assumption
which is approximately accurate only for a rather limited range
of radii. (2) A detailed discussion by Bardeen el aL 28 shows that
the criterion implicitely used by Hoffman and Shaham to define
density maxima is biased towards unusually broad peaks. (3)
The density profile around correctly chosen density maxima
falls off more steeply than equation (17) would have it. This.
difference may account for the discrepancy between the rotation
curves predicted on the basis of equation (20) and the steeper
rotation profiles obtained in our simulations. (4) The paradigm
of the secondary infall onto a peak does not appear to be valid
in the course of collapse leading to the formation of the haloes­
considered here. In particular, merging of smaller, already col­
lapsed objects (see Fig. I) appears tO

J
be a better description of

the formation process. This is at odds with the picture of shells
deposited spherically symmetrically onto a pre-existing core. In

19. Gunn. J. E. a. Gott, J. R. klropltys. J. 176., 1-19 (1972).
20. Hoffmann. Y. It Shaham, J. As,",plrys. 1. 297, 16-22 (1985).
21. Efltathiou. G .. Dam, M .. FTnlk, C. S. I:. White, S. D. M. ktrophys. 1. s.q,pt 57, 241-260

(1985).
22. Zeldovich. Va.. B. As,,.. Asrropllys. 5, 8"'-89 (1970).
23. Davis, M., Efstathiou. G., Frenk.. C. S. It White. S. O. M. ,,(s'ropilys.. J. 29z.. 371-394 (1985).

spite of all these problems equations (4) and (5) give a reason­
ably accurate prediction of the density profiles of the collapsed
objects. Discrepancies, which we have already pointed out in
the previous section, are worth further study.

Scale-free spectra lead to a self-similar clustering hierarchy'-'o
Peebles has pointed out that the density autocorrelation function
in an evolved region of such a hierarchical universe should have
a power law form·:

(p(x)p(x + r»x = T-
r

with an 'hierarchical' exponent r given by:

r=3(3+n)
(Hn)

(21)

(22)

This r differs from the y in the density formula. equation (5).
We have verified (see Fig. 3) that this estimate for r is indeed
correct in the high-resolution portions of our models. Note,
perhaps not unexpectedly. that when the density autocorrelation
is calculated only for the particles inside the haloes-that is,
for x chosen from within the perimeter of the halo, but for an
arbitrary T in the notation of equation (21j-it is considerably
steeper, with the effective power law exponent close to the one
given by equation (5).

Conclusions
Our numerical experiments provide clear evidence of a direct
connection between the form of the power spectrum responsible
for the gaussian density perturbations and the rotation curves
of the resulting haloes. In particular, P(k) - k" with n - -1-+-2
leads to flat rotation curves in present day galactic haloes. Power
law spectra with n > -I give haloes with rotation curves steeper
than observed. This puts severe constraints on the shape of the
power spectrum in the range corresponding to 1 Mpc. Further­
more, baryon condensation in the central parts of the halo can
be expected to further steepen the rotation profile27

• This indio
cates that density perturbations with the preponderance of the
power on small scales are untenable as models for galaxy forma·
tion. On the other hand. baryon condensation can probably
flatten rising rotation curves inside broad soft cores, making
n = -lor n = -2 attractive. The cold dark matter power spec­
trum falls into the category of spectra producing haloes compat­
ible with observations. Further studies to determine the environ­
ment dependence of other halo properties (such as the radii of
their soft cores, angular momenta, and eccentricities) are
underway.

We thank Stirling Colgate, Richard Epstein. Mike Fall.
Yehuda Hoffman. Craig Hogan. Robert Hotchkiss, Nick Kaiser,
Jeremy Ostriker and Martin Rees for stimulating discussion and
help. Completion of this project would have been impossible
without the large amounts of computer time provided by Los
Alamos National Laboratory. Caltech and the Space Telescope
Science Institute. We thank Kate Quinn for helping to prepare
the manuscript.

Received 14 Febnaary; accepted 2l May 1986.

1. Peebles, P.I. E. n~LI,,~ScakSlnICtJI~oflhe U,.;wrw(Princeton Univenity Preu.1980).
2 Gulh. A. Plrys. Rftl On. 347-356 (1981).
3. Linde, A. D. Plr71. LM.. I08B, 389-393 (1982).
4. Albf"CCbt., A. &; Steinhardt., P. J. Phys.. Rftl. Lell 41. 1220-1223 (1982).
s. 'Pre&s, w. H.&; Schechter. P. Astrophy.s. 1. 187,425-4)8 (1974).
6. Pc;bles. P. J. E. Astrophys. J. 189, LSt-LS3 (1914).
7. G&u. J. R. &; Rees. M. J. kIP". k.rophys.. 4S. 365-376 (1975).
8. Goa.. J. R. .. Turner. E. L Itfropllys. J.216, 357-371 (1977).
9. Wbilew-..$. D. M ... R.ees. M. I. Mon. Not. R. alP". Soc. 1&1. 341-358 (1978).

10. Fa~;t:lhP!:ti~~'T=;o=~U~I:a~)~ H. A.. Coyne. G. It. 1.onpr, M.)

II. Peebles, P. J. E. ktropltys. J. 263. L1-LS (1982).
12 Peebles, P. J. E. AslrOphys. J. m. 470-477 (1984).

~!: ::m~~ .. GF~F~~~~ ~A:::;~~~·!!;;Si. ~.~~:;/g~~-525 (1984).
IS. Rubin. V. Co Buntein, 0 .. Ford. W. K.. a. Thonnard. N. Asfrophys. 1. 219. 11-104 (1915).
16. Bosma. A. thesis, Univ. O(Gronilcn (1918).
17. Carisnan, C. .t. Freeman. K.. C. ,A.s'rop/Iys.. J. 290C. 494-501 (1980).
18. van Albada. T. S .. Baheall.J. N .. Begeman. K. a. Sancisi, R. Preprint (Princeton Univ., 1915).

24. Quinn, P. J .• Salmon, J. K.. .t Zurek, W. H. IltV Syrnp. 117 (in the press).
25. Zurek., W. H .• Quinn, P. J. 4. Salmon. J. K.. IA,V Syrnp. 117 (in the pre-55).
26. Frenk., C. S., White. S. D. M., ErstAthiou, G. 4. Davis. M. NGtuf'r 317, 595-597 (1985).
27. Blumenthal, G. R., Faber, S. M .. Aorn. R. &:. Primack, J. R. Astrophy1. 1. 301. 27-34 (1986)
28. Bardeen, J. M., Bond, J. R., Kaiser. N. &:. Szalay, A. S. A,stroplrys.. J. 304., 15-61 (1986).
29. Fillmore, J. A. It. Goldreich, P. As.rophys. 1. 281. 1-8 (1984).

279

D. Rotation of Halos in Open and Closed Uni­
verses ...

Reprinted by permission from The Astrophysical Journal, 330, 519-534, July

15, 1988. W.H. Zurek, P.J. Quinn, J.K. Salmon, "Rotation of Halos in Open and

Closed Universes: Differentiated Merging and Natural Selection of Galaxy Types."

280

THE ASTROPHYSICAL JOURNAL. 330: 519-534, 1988 July 15
() 1988. The AmencaD AmonomiQ.! Society. All ",his rnerved. Prinled in U.s A

ROTATION OF HALOS IN OPEN AND CLOSED UNIVERSES:
DIFFERENTIATED MERGING AND NATURAL SELECTION OF GALAXY TYPES

W. H. ZUREK
Theoretical Astrophysics, Los Alamos National Laboratory

P. J. QUINN
Space Tdescopc Science Institute

AND

J. K. SALMON
Theoretical Astrophysics., California Institute of Technology

Receivd, 1987 Sepumber"; accepted 1988 January 5

ABSTRACT
We use computer simulations to study the properties of galactic halos fonned from Gaussian initial density

perturbations in both open and closed (0.2 < no < 8) dark matter universes. The specific angular momenta of
the fonning halos are consistent with those observed in spirals but are about one order of magnitude larger
than those found in the baryonic components of ellipticals. The rotational properties are almost completely
uncorrelated with halo densities or masses and with the density of the large-scale environment characterized
by flo. However, the central densities of the halos depend sensitively on the density of their environment. This
and the observed dependence of the morphological type on the environment suggest that the structure of the
luminous, baryonic components in galaxies is closely related to the central halo density. Denser halos, which
occur in denser environments, must allow baryons to lose their angular momentum and fonn compact, disk­
less objects with the morphology of elliptical galaxies.

Our simulations suggest that the required selective loss of angular momentum by the baryons occurs in
mergers of well-differentiated protogalaxies with condensed-out stellar cores. By contrast, mergers of less dif­
ferentiated progenitors reheat the gaseous component. Hot gas settles into a disk on a cooling time scale with
negligible losses of angular momentum. Such mergers result in spirals with bulges that have fonned from the
amalgamated stellar cores of their partially differentiated progenitors.
Subject headings: cosmology - dark matter - galaxies: fonnation - galaxies: internal motions­

galaxies: structure

I. INTRODUCTION

The origin of the morphological differences between spirals
and ellipticals is a long-standing puzzle (Sandage, Freeman,
and Stokes 1976; Gott and Thuan 1976; Fall and Efstathiou
1980; Faber 1982; Kashlinsky 1982). One obvious distinction
between the luminous, stellar parts of the two types of galaxies
is their specific angular momentum which can be inferred
directly from observed velocity and luminosity distributions.
For a typical spiral, the ratio of baryonic angular momentum
to baryonic mass [J/M]B is -6 times that of an elliptical of
comparable luminosity (Fall 1983) where we have chosen to
label collectively all the luminous material in galaxies as
baryons. Another way to quantify this difference involves the
dimensionless spin parameter). = JI El t /2/GM'/2, where E is
the total energy and G is Newton's constant. For ellipticals, the
typical value of).B - 0.05, while for spirals).B - 0.5. Therefore,
one is tempted to conjecture that an obvious origin for the
morphological differences between ellipticals and spirals is the
initial angular momentum content of the material out of which
the galaxies were fonned. This "obvious" hypothesis faces,
however, a number of difficulties.

The spin parameter). predicted theoretically (Peebles 1969;
Doroshkievich 1970) and observed in numerical experiments
(Efstathiou and Jones 1979; Zurek, Quinn, and Salmon 1987;
Barnes and Efstathiou 1987) falls in the range). - 0.02-{).08
which is quite reasonable for the luminous parts of ellipticals
but an order of magnitude too small for the luminous parts of

spirals. This fact should be regarded more as evidence that).B

for the luminous material can change in the course of the
collapse to fonn a galaxy rather than as an inherent difficulty:
Dissipation may be able to increase the binding energy enough
to change).B by an order of magnitude (Efstathiou and Silk
1983). However, dissipation of energy is not enough to account
for the observed differences in).B: elliptical and spiral galaxies
have similar effective radii at a given luminosity (or mass) (Fall
1980). Hence, they have collapsed by similar factors, which in
tum implies that their luminous parts must have dissipated
comparable amounts of energy. Therefore, the question:" How
did).B for ellipticals end up with more or less its initial value in
spite of a similar loss of energy due to dissipation?" remains
open. The only obvious answer is that, somehow, the fonna­
tion process for ellipticals has affected both J Band EB, while in
spirals J B was left largely untouched. Consequently: baryons
lose their angular momentum when forming ellipticals, but con­
serve it when forming spirals. At this preliminary stage of our
argument, this statement is only a reasonable guess. Below, in
§ II, we will show that the specific angular momentum of halos
is too large by about an order of magnitude to account for
ellipticals. This additional evidence will allow us to raise the
status of our guess about the dissipation of J B to a
"conjecture." Proof will probably demand more simulations
which account for the dissipative baryonic material and a
much better knowledge of the star fonnation process than is
currently available (Bodenheimer 1981). At this moment we

281

ZUREK, QUINN, AND SALMON Vol. 330

can nevertheless already state that the ls value observed in the
luminous components of galaxies is likely to be quite different
from the l of the dark halo.

The second difficulty one encounters in trying to trace the
origins of the distinction between spirals and ellipticals to the
initial angular momentum content of the halos is the strong
correlation of galaxy type with environment (Oemler 1974;
Dressler 1981; Postman and Geller 1984; Giovanelli, Haynes,
and Chincarini 1986). The morphology~nvironment connec­
tion is clearly an important clue about the nature of the galaxy
formation process, but, in spite of some early hopes, it does not
seem to involve angular momentum. Faber (1982) suggested
that the observed morphological selection could be due to an
anticorrelation between the spin parameter l and the average
density of the environment. A similar possibility was also con­
sidered by Blumenthal et al. (1984), who have pointed out that
if the high-density peaks-which are known to be more corre­
lated than the "average height" ones-were endowed with
smaller values of A, then the overabundance of ellipticals in
clusters would follow. However, a simple argument given by
Faber in an appendix of her 1982 paper demonstrated that
there is no reason to expect any relation between the peak
density and We shall confirm this negative conclusion in
§ III by showing that the anticorrelation between l and halo
density is negligible, and that the dispersion of the values of l is
much too large to allow small systematic effects (Hoffman
1986) to explain why in clusters -80% of galaxies are early
types, while in field - 80% are late types. Similarly, we shall see
in § III that halos which" maintain their identity" in simula­
tions with different values of 0 for the same set of initial Gauss­
ian perturbations show no systematic trends of l with O. We
will also confirm the findings of Barnes and Efstathiou (1987)
that l is not strongly correlated with halo mass in contradic­
tion of the claims of Thuan and Gott (1977) that such a correla­
tion should exist

Section IV contains what we regard as the most important
evidence in our attempt to determine which halo parameters
may be decisive in choosing the morphological type of a
galaxy. There we will present N-body results which prove that
the mean central densities of halos are correlated with the
large-scale densities of their environments. A simple, analyti­
cally derived dependence of the final density of the halo on the
initial large-scale overdensity (Zurek, Quinn and Salmon,
1987) is confirmed by the numerical simulations. This suggests
that halos forming in overdense regions of future clusters in a
flat cold dark matter universe are significantly (factors of 3-10)
denser than their field counterparts. This strong correlation
suggests that: the baryonic cores of ellipticals are formed in the
deep potential wells of dense halos while spirals form in shallow
halos which are more populous in the field. The dynamical
process that determines the final spin of the baryons must then be
intimately related to the halo density. Such" natural selection"
is forced on the evolution of the galaxy by the environment. It
works on two levels; it selects dense halos as the sites for
forming ellipticals, and it selects denser cluster environments as
the sites of formation of dense halos.

In § V we shall suggest and discuss what we believe is the key
difference between the formation process leading to spirals and
ellipticals: both ellipticals and spirals grow to their present sizes
through mergers. However, the progenitors of early-type gal­
axies convert their baryons into stars before merging, while in
late-type galaxies mergers occur while the bulk of the baryons is
still gaseous. In § V we shall also discuss what we believe is the

origin of the apparent coincidence between the initial value of l
acq uired through tidal torq uing and the final l. of ellipticals.
Both fall in the range 0.02....().08. Yet l of the dark halo is
determined purely by dissipationless dynamics, while l.
becomes what it is in a process involving the dissipation of
both J B and E •. We shall venture a speculation that the
approximate equality of land l. is not just a coincidence and
argue that this value of l. is determined by dissipationless
dynamics occurring on the level of collapsed stellar cores of
merging subhalos, which are, in the model suggested here, the
progenitors of a future elliptical.

In § VI we shall give a summary of the main points of the
paper and briefly discuss the status of some of the key assump­
tions and consequences of our model for the creation of the
ellipticals and spirals. There we shall also compare and con­
trast the model of differentiated mergers with the earlier dis­
cussions of the relevance of mergers in determining the galactic
morphology.

II. THE SPECIRC ANGULAR MOMENTUM Of GALAcnc HALOS

We have employed a discrete N-body code to model the
evolution of -10' mass points. "Galactic halos" are col­
lapsed, virialized objects (see example in Fig. 1) of the same
type we have described previously in the course of the investi­
gation of rotation curves in scale-free universes (Quinn,
Salmon, and Zurek 1986, referred to as QSZ hereafter). A
detailed discussion of our methodology is given in QSZ; below
we give a brief summary of several key points.

We begin our simulations at a redshift z = 24 with a Gaus­
sian density perturbation field characterized by a power-law

Pock" , (1)

where k denote the wavenumbers of the Fourier modes. The
normalization is such that on the scale A corresponding to
10% of the length of the edge of our sample "box" of the
universe, mass fluctuations lJM/MI" are equal to 0.1 at the
initial epoch. The value of A corresponds to 1 Mpc (comoving)
for a conventional normalization of the cold dark matter spec­
trum in an 0 = 1, h = 1 universe (Blumenthal et al. 1984). This
fixes our" conventional" unit system which we shall use below.
The normalization as well as the choice of 0 and h are some­
what arbitrary (QSZ). Therefore, we shall focus our analysis on
these results of our simulations which are expected to be inde­
pendent of such arbitrary choices. The unit system of the simu­
lations is masses in units of 1010 M0 solar masses, lengths in
kiloparsecs, time in gigayears, and velocities in kilometers per
second.

Following the Zel'dovich approximation we impose only the
growing mode of the initial perturbations on a lattice of 643

particles at z = 24. The early stages of the evolution are carried
out with a Fourier code. Subsequently (at the redshift z - 10 or
sometimes z - 5) we switch from the Fourier code to the
N-body code which evolves a subset of 5000-8000 of the
Fourier particles inside a sphere of radius 2 Mpc with high
spatial resolution. The remainder of the Fourier box is mapped
onto a low-resolution shell containing -1000-2000 more
massive particles which provide a background. In the conven­
tional units the low-resolution shell reaches out to radius of
5 Mpc.

In the course of the discrete N-body stages of the evolution
particles interact with a Newtonian force. For small distances
this force law is modified (smoothing length of 10 kpc) which
sets a fundamental limit on our resolution. Halos forming in

282

No. 2, 1988 HALOS IN OPEN AND CLOSED UNIVERSES

~.,
"-" -,:,

i:··-
..

".,: ". ,4", I

,.;~ ... :
.. :.',..: .

"i

•• -01(.:..

~ .. .,:'
..

, .. ,.
'¥i . ,

,t' ••

FIG. I.-Halos fonned in universes with diffcrml values of n. The Gaussian initial conditions were realized using the power spectrum P(k) ex: k- ' and Fourier
oeries of density perturbations with the same phases and relative amplitudes of the mndes. Note that there are more halos and that they are smaUer and denser in
comparison with the density of the background for open universe (0 - 0.15 and 0.31) than in the flat (0 - 1.05) or dosed (0 - 8.06) universes. The objects which
exist individually when 0 < I are merged in the 0 > 1 universe at the same epoch. Each paRd is -10 Mpe on an edge and can be thought of as an overdense or
underdense box embedded in an 0 - I, h = 1 universe.ln each panel z = O.

the high-resolution region (Fig. 1) are checked for contami­
nation by low-resolution, massive particles that may get mixed
in during collapse. Contaminated halos were found only near
the boundaries of the high-resolution sphere and are not con­
sidered in this analysis.

Before we focus on specific issues related to the role of the
halos in the choice of galaxy type, let us first call attention to
the apparent differences between the runs corresponding to
n., = 0.15,0.37, 1.05, and 8.06. Already M to the naked eye," it is
quite obvious that halos are more numerous and more
compact in universes with low values of n than in similar

fragments of universes with n > 1. (Here, as in QSZ, we are
using the trick of implementing the initial conditions in cases
corresponding to different values of n with the same set of
pseudo random numbers. Therefore the M same" halo is usually
formed in universes with different values of n. This facilitates a
discussion of small trends in halo parameters with !l, power
spectra, etc.).

The halos we shall analyze in the rest of this paper are dense
(overdensity in excess of 160) and have no visible substructure.
Therefore, they can be thOUght of as individual galactic halos.
This is in contrast to the class of objects investigated recently

283

ZUREK, QUINN, AND SALMON Vol. 330

by Barnes and Efstathiou (1987), which are typically less over­
dense (bpi p - 64 in most instances) and usually have signifi­
cant substructure.

The angular momentum of each halo is calculated with
respect to its center of mass for the region that contains 90% of
the total bound mass. Halos typically contain -100-1000 par­
ticles and have conventional masses between 10" M0 and
1012 M 0' The specific angular momenta of the halos found in
all the models are shown in Figure 2, which is the key result of
this section. We have made no attempt to differentiate too
finely between the points corresponding to different values of 0
and power-law exponent n. No significant systematic trend of
JIM with 0 and n is found in the explored range of the investi­
gated parameters (0.2 5: 0 0 5: 8.1 and -2.75 5: n 5: I).

The results of our simulations are plotted against the esti­
mates of specific angular momentum for spirals and ellipticals
given by Fall (1983). It is striking that practically all the halos
in Figure 2 have specific angular momenta characteristic of the
luminous matter in spiral galaxies (In order to compare with
Fig. I of Fall where the mass on the horizontal axis is the
baryonic mass, we have shifted our masses by a self-consistent
factor given by Fall as _(2)1/2/A. using the customary value of
A. = 0.07. A smaller A. = 0.05, which is in better accord with our
results-see next section-would further increase the gap
between the specific angular momenta observed in ellipticals
and measured in halos forming in our simulations.) Moreover,

()

0.
~ - •

few halos which have somewhat smaller-more" elliptical"­
JIM do not come from models with large O. Rather, there
appears to be no definite correlation between the large-scale
density and specific angular momentum. Hence, specific
angular momentum of the halo cannot account for the preva­
lence of ellipticals in dense environments. It follows that in
order to form ellipticals, the JIM of the baryonic, luminous
component must decrease in comparison with the dark halo it
inhabits. With Fall (1983), we can consider several possible
ways to accomplish this.

Tidal stripping (Fall 1983; Davies et al. 1983) of the outer­
most parts of the forming galaxy is one possibility. It would
occur preferentially in clusters and, therefore, if efficient, could
account for the high content of ellipticals in dense regions of
space. The problem with this suggestion was noted by Fall
(1983): stripping of the outer layers of the halo removes
angular momentum J and mass M in such proportions that
the stripped object" moves" almost parallel to the

(2)

line (Freeman 1975) on Figure 2. Therefore, unless a halo was
to lose -90% of its initial mass, it could not bridge the gap
dividing spirals and ellipticals. This scenario appears rather
unlikely.

"

I
() 3
Q) • I : •

• e:Jl. UJ

6
~

r: .,
'0

,.-....

::E2
............,
..........

OD
0

e
,

-1

• • •
•••

e ,
,' .

e " , .
, •

• . "
,~"

" e

"
"

"
"

"

"

,
"

2

FIG. 2.-Spccific angular momenta JIM for the obj<cts formed in our simulations with Cl ~ 1 (.), Cl > I(+ ~ and Cl < 1 (-), are plotted as a function of the
luminous mass associated with the halo. The ratio of dark to luminous mass is (2)112...1.- 1 (Fall 1983) where we have taken l = 0.07. Solid line has the slope
JIM ex: M 3 f. and is taken from Fall's Figure 1. Dotted lines bracket the region in FaU'!i diagram occupied by elliptical galaxies. Note that the specific angular
momenta of halos fonned in our numerical study have JIM values characteristic of spiral galaxies. If. as seems reasonable to assume. tidal torquing imparts the same
JIM to both baryonic and dark components of a galaxy. the angular momentum of the luminous parts of the ellipticals must have decreased by about on order of
magnitude since the initial collapse. By contrast. the specific angular momentum of the spirals may be close to the initial value.

284

No.2,1988 HALOS IN OPEN AND CLOSED UNIVERSES

Mergers (White 1983) are another possible process which
could change the angular momentum content or distribution
inside a galaxy. We should, however, at the outset carefully
differentiate between the two versions of the merging mecha­
nism: mergers of undifferentiated halos without a well­
developed central baryonic core and mergers of protogalaxies
in which the baryons have condensed out, i.e., with morphol­
ogies similar to the present-day galaxies. We shall discuss these
two possibilities in detail in § V.

Here let us only note that the halos forming in our simula­
tions have specific angular momenta inconsistent with those
seen in ellipticals. Hence, mergers of undifferentiated protoga­
laxies with mostly gaseous baryons and dark matter distrib­
uted in a similar, diffuse fashion do not allow sufficient losses of
J to account for the observed properties of ellipticals. Suppose,
however, that these progenitors are dense enough to allow
baryons to concentrate into" lumps" in their cores and form
stars. During the dissipationless merger process, the dynamics
of the core material from the progenitors-regardless of
whether it is stellar or dark~n be studied using our purely
dissipationless N-body techniques. Employing these methods
we shall demonstrate in § V that the stellar lumps will sink into
the core of the resulting merged object. As the specific angular
momentum of the halo material at some radius r is approx­
imately proportional to r (Quinn and Zurek 1988):

£...1 ~ r' +,(n' (3)
dM r '

merging of the lumps into the elliptical must be accompanied
by the loss of J. {Above (' is a small correction which depends
on the spectrum of the initial density perturbations. Barnes
and Efstathiou 1987 also find-in a study of a somewhat differ­
ent, not necessarily virialized class of objects-that (' is close to
0.) In § V we shall also use numerical simulations to argue
more directly that the baryonic material which settles through
the dissipationless process that includes relaxation and viriali­
zation into the core of the merged object loses angular momen­
tum to the surrounding dark matter halo. Therefore, while
neither dissipation nor star formation are incorporated into
our present code, N-body results provide us with a very sug­
gestive model for the formation of ellipticals.

This model should be contrasted with the merger of undif­
ferentiated protogalaxies, which is followed by reheating of the
gas. Reheated baryons are no longer confined to the core.
Therefore, they will settle in to the core of the merged object in
a slow, "adiabatic" manner (Blumenthal et al. 1986; Ryden
and Gunn 1987), with no loss of angular momentum. We shall
return to this distinction between mergers of differentiated and
undifferentiated progenitors in § V of the paper.

III. IS nrn SPIN PARAMETER INFLUENCED BY nrn DENSITY OF

nrn ENVIRONMENT?

On the basis of the numerical simulations our answer to the
question posed in the heading would have to be: "perhaps, but
not enough to account for the observed dependence of the
morphological type of a galaxy on its environment." We shall
devote this section to the discussion that justifies such an
answer.

Figure 3 shows the spin parameter A plotted as a function of
the halo density and mass at z = O. The striking feature of this
figure is the large scatter of the yalues of A.. The average value
of A over all of the objects that contribute to Figure 3 is

0) - 0.05 . (4)

The scatter of the values of A around this average is

J (2
) - 0)2 - 0.03. (5)

In spite of the large scatter we have attempted to fit the data
corresponding to all the n = 1 runs with a power law:

A=p'.

The resulting s is -1.4 with an error of 0.28 and with X2/

d.oJ. = 4.42 for the 43 points. The correlation coefficient is,
however, only 0.02, and the chance of getting a correlation of
this magnitude from 43 uncorrelated points is considerable,
-77%.

Points corresponding to halos formed in universes with dif­
ferent values of nand n are plotted with different symbols. No
obvious systematic trends of A with any of these parameters
can be inferred from the results shown in Figure 3. This is not
to claim that such correlations do not exist: a more careful
examination of statistical trends may reveal small systematic
effects of changes in nand n on A. What is clear, however, is the
absence of a strong systematic dependence of the kind seen
between n, n, and the mass distribution of the halo. (See the
next section for a discussion of the dependence of rotation
curve shapes and n. The trend of rotation curve type and n has
already been demonstrated in QSZ.)

Confirmation of this statement can be found in Figure 4.
There we have plotted the A values of several halos which
maintain their identity in runs with different values of n.
Changes in n result in a systematic and significant change in
halo density. Therefore, ifthere was a systematic dependence of
A on n, one would see it in Figure 4. Yet there is no evidence of
such a relation in these plots.

Perhaps more importantly, Figure 4 addresses directly the
issue of correlations between the density of the environment
and the spin parameter of the halo. A region of larger n can be
regarded as an overdense region in an Einstein~e Sitter uni­
verse (Peebles 1980; Zel'dovich and Novikov 1983). Therefore,
if systematic differences in the efficiency of tidal torquing in
regions of different large-scale densities existed, one would
expect to see an anticorrelation of A and n. There is no sign of
such an effect in Figure 4. Hoffman (1986) has argued that
there should be an anticorrelation between A and p. However,
he also demonstrates (Hoffman 1988a) that the scatter of the
values of A is larger than the systematic effects for any reason­
able range of halo densities. Indeed, his theoretical predictions
of the scatter are consistent with those shown in Figures 3
and 4.

If there is a small systematic anticorrelation between A and
p, it appears too small compared to the observed scatter of the
values of A to account for the environmental selection of galaxy
types. One should, however, keep in mind that the discussion
above provides strong arguments only about the acquisition of
angular momentum by halos and not about its subsequent
evolution in the environment of large-scale density fluctua­
tions. We have not followed any of the overdense future
"clusters" through their collapse and virialization. Therefore,
it is still possible that the initially acquired angular momentum
of an object that collapsed on the galactic scale may be
stripped (Davies et al. 1983) or otherwise altered, although we
do agree with Fall (1983) that it is hard to imagine that such
subsequent evolution could explain the observed degree of
morphological dependence of galaxies on their environment,
even if stripping somehow specifically singles out baryons.

285

.1.5

•
•

8

.1

e

.. 8

• 8

• 8

.... $

• • • • • (§j

e $

• • •
e e
• .. e • m

500 1000 1500

overdensity (z=O)
FIG. 3a

.1.5

• •

8

.1

e
8 ..

-< • 8

• •
~
• ... •• .1fIll

.05 ~.: • • .. • f!-e $
Sl.m i .. 8. • • 8 El" e e"

8 .m e • -e
~

...
o L-~~~L-~~~~~-L-L-L~~~~~~~~

o 20 40 10 60

mass (10 Msolar)
FIG.3b

80 100

FIG. 3.-Rotation parameter 1 as a function of (a) density and (b) total mass of the halos fonned in the simulations. Points obtained in the runs with different
values of n and different final values of 0 are represented by different symbols. Filled symbols are n = 1 runs. symbols containing a minus sign (-) have n < 1. and
those containing a (+) have n > I. The spectral index oflhe perturbation spectrum (n) is encoded by circle (-1), large square (- 2), large triangle (- 2.75), pentagon
(0), small square (1). small triangle (CDM). There is no obvious correlation between 1 and p or l and mass. The large dispersion of 1 vs. p makes small systematic
decrease of l as a function of p insufficient to explain the observed correlations of morphology with the environment.

286

HALOS IN OPEN AND CLOSED UNIVERSES

,
II

. 08
II • I I ,

1\\
,

,
,

I I ,

I i I
,

.06
,

. I ,
1'1 ,

I , ,
-< . " ,

\ It
I '

. 04 , ;
,
.~ . ..-,

,'.-
.02

o L-~~~-L~~~~~~L-~~~~~-L~~~~
o 2 4 6 8 10

0 0

FIG. 4.-Spin parameter l as a lunction 010 lor several 01 the halos which have preserved their identity in runs with different n Squares represent n = -2 and
circles n = -I. Lack olsysternaticchanges 01 l with 0 can be also regarded as a lack olscnsitivity 01 l to the large-sca1edensity oltheenvironroent.

IV. TIlE DEPENDENCE OF MASS PROFILES AND CENTRAL

DENSITIES ON °
So far we have produced only two" negative" pieces of evi­

dence regarding the connection between angular momentum
and the morphology of galaxies: we have shown that the bary­
onic components of galaxies must have suffered significant
changes of specific angular momentum JIM (to account for
ellipticals) and of the spin parameter;' (to account for the ;.
observed in the luminous parts of spirals). We have also shown
that the rotational properties of galactic halos have little to do
with halo density or with the density of their environment. The
specific angular momentum JIM and the spin parameter;' in
the baryonic parts of the galaxies must have been altered by
about a factor of 6 between the time the halo turned around
and the present epoch. Therefore, it is likely' that the process
which caused changes of JIM and;' is also responsible for the
distinction between spirals and ellipticals, and for the
environmental selection of the morphological type. The aim of
this section is to show that the actual density of the halo as well
as its density profile are a sensitive function of the overdensity
on some larger scale. To investigate this dependence we shall­
as before--simulate the evolution of the .. same" universe
(same phases in the initial conditions) for different values of n

A sensitive de~ndence of the final halo density on the large­
scale overdensity A; or, alternatively n, can be best understood
using the spherical collapse model. Elementary argument
shows that a shell of initial radius r, with an initial overdensity
lI, inside r, in a universe which has the average density Pb'
contains a mass

41t 3
M(r < rJ = 3 r, Pb,(I + lI,) (6)

and will tum around when its radius reaches the maximal
value r.

{
1 +lI,)

r .. = r • n 1 •
1 + u,-u, (7)

Above lI, and 0, correspond to the initial instant t, in the
evolution of the perturbation. Arguments leading to equation
(7) assume also that at t, the velocity field is just the Hubble
flow; that is, lI, has not yet induced any peculiar velocities. (In
other words, both growing and decaying modes are assumed to
be present initially).

We now adopt the basic tenents of the secondary infall
model (Gunn and Gott 1972; Fillmore and Goldreich 1984;
Bertschinger 1985). That is, we assume that the infaIIing
material will settle after virialization at the radius r = fr .. '
wherefis independent ofr .. and is ~0.5. Then the final density
of the halo is given by

_3[lI, - (0,-1 - I)J3
PI = O,Pet l + lIJf 1 + lI, (8)

After some simple algebra this can be transformed into

PI = Ped- 3[(x - I)3Ix'] = p.d-3'1(x) , (9)

where X is given by

x = (I + lI,)(l, , (10)

and the critical density Pel = PbJO, = 1/(61tGt;) is the average
density of a flat (0, = I) universe.

Figure 5 shows the final density for these halos which have
preserved their identity in runs with several values of 0, as a
function of X. The linear relation between log (P) and log ('1)

287

ZUREK, QUINN, AND SALMON Vo\. 330

-2.5

---- -3
~
Q.
V
Q()

.3-3.5

-4

-4.5 L.L~~~--,-~--'---'---'-~_'---'--~~--'---'----'---'----'~'---'

-1 -.5 o .5

log(1](Oj,Oj))
FIG. S.-Density of the balo as a function of the initial value of the large-scale density parameter Clj • Round symbols represent n = -1 halos and squares n = - 2

halos. The quantity plotted on the honwntal axis of the graph. ~ = Ix - 1)'Jx', where X = (I + ~J!l,. increases monotonically with increasing 0, for all growing
perturbations, ~, > 0,-1 - 1. Lines in the figure have a slope of one. which is the prediction of simple secondary infall. Relative vertical displacement of each halo
reflects differences in collapse factors through the term Pel f -3 in eq. (9a). These graphs are in a good agreement with the simple secondary infall model described in
the text which predicts a linear relation with slope 1 in this plane.

holds remarkably well considering the fact that the pertur­
bations which have seeded these objects were the peaks of a
Gaussian process and, therefore, were usually significantly
aspherical (Bardeen et al. 1986). Furthermore, they are subject
to tidal interactions with their neighbors and have formed
through a process which included mergers of subhalos in a
process intermediate between the "violent relaxation," and
"secondary infal\." In obtaining Figure 5 we have had,
however, to recognize that our procedure for imposing initial
perturbations is based on the Zel'dovich formalism and, there­
fore, includes only growing modes. In other words, at the
initial instant t, perturbations in our model have not only a
certain initial dimensionless overdensity, but also correspond­
ing velocity perturbation given by

(11)

The above equation holds exactly for il, = 1 and should be
understood as relating the peculiar velocity ov, to the distance
r, from the density peak which will eventually collapse to form
a halo. The turnaround radius calculated with the correction
implied by equation (II) is therefore:

[
1+0· J

rm = r, 1+ 0, _ 0, 1(1 ~ 07·6 0J3)' . (7a)

This in turn results in a new version of the formula for the final
density of the halo:

= il. .(1 + 0.)/-3[1 + 0, - il,-I(I - il7·
6 OJ3)'J3 (8)

PI ,p", 1+0, a

and

PI = Pdr3{[X - (1 - il?·60J3)']3/X'} = Pdr3'11.x) , (9a)

where X is still given by equation (10), but a new 'I is given by
equation (9a).

The agreement between the predictions of the simple
"secondary infall model" and the results of our simulations for
universes with different values of the density parameter il, can
be, in the linear regime (0, ~ I, il,-I - I ~ 1), regarded as
strong evidence of the depen~nce of halo parameters on the
initial large-scale overdensity 6,: in the linear regime a sphere
used in our simulations can be thought of either as a fragment
of a universe with the appropriate value of n, or as a fragment
of a flat universe (il = I) with the overdensity

~=il,-I. (12)

Assuming that both 0, and ~ are much smaller than unity, we
can rewrite equation (8a) as

P - Pdr 3(0, + ~ + o,~)'/[(I + o,XI + ~J]'
(13)

This equation should be compared with equation (8). It has
an intuitively obvious meaning: the overdensity of a peak in
the flat universe must be measured with respect to the critical
density Pd and, in the linear regime, is given by the sum of the
large-scale and small-scale overdensities.

A comparison of the process of galaxy formation in the field
(~ ~ 0) and in the clusters (~ > 0) is an obvious application of

288

No. 2, 1988 HALOS IN OPEN AND CLOSED UNIVERSES

the phenomenon discussed above. Galactic halos collapsing in
a larger, overdense region-which, before the present epoch,
would have collapsed and formed a cluster-would typically
have a larger QYerdensity than galactic halos forming in the
future" field" (A, :$; 0).

The cold dark matter universe with canonical Q = I, h = 0.5
(Blumenthal et al. 1984) provides an excellent example of such
an effect The spectrum of fluctuations, hM/M, is quite flat on
galactic scales and begins to steepen substantially only near
cluster scales. In this range of masses, typical overdensities
(ht)1/2 on the-Aalactic scale are -3 times larger than the
overdensities (Ai) 1/2 on the cluster scale. Moreover, dense
clusters are thought to form in regions with significant" 3 u"
overdensities on the cluster scale. Therefore, taking If. =
3At)1/2 - (ht)1/2 for the future cluster environment and com­
!'llring it with the future field values of large-scale overdensity,
A, = 0, one arrives at the conclusion that the objects of similar
galactic mass will be - 8 times denser when formed in the
environment of the future cluster than the entities of similar
mass forming in the field:

!!.f _ (hi + "K.)3 _ 8
PF - h? . (14)

This is a very significant difference between the galaxies
forming in the field and inside the future clusters. It would be
difficult to imagine that a change of density of the dark matter
halo by about one order ofmagnitucie would have no effect on
the observable properties of the luminous part of the galaxy.
An obvious application of this effect would involve an
" automatic" bias (Zurek, Quinn, and Salmon 1987) of the kind
required to make the cold dark matter scenario compatible
with the flat universe (Kaiser 1985; Bardeen et al. 1986). We
shall return to the discussion of the possible consequences of
this effect on the morphology of galaxies in the next section.

One more striking consequence of changes in the large-scale
overdensity and/or Q is shown in Figure 6. There we have
plotted the" rotation curves ":

v(r) = JGM(r)/r (15)

of hypothetical test particles moving in the gravitational field
of the halo with the cuml!lative mass profile M(r). We have, of
course, chosen halos which have preserved their identity in
runs with different values of Q.

A clear trend emerges from the examples shown in Figure 6:
halos forming in denser regions of a flat universe (or in denser
universes) have not only larger central densities (as was already
established in Fig. 5) but also very flat, or even gently rising
rotation curves. By contrast, halos forming in relative" voids"
are not only smaller, but also have decreasing rotation curves.
This behavior can be reproduced using the secondary infall
model (Hoffman 1988b).

It is tempting to speculate about the possibility of observing
systematic trend in the shape of the rotation curves with the
overall density of the environment. One should, however, keep
in mind that the typical shape of the rotation curve may also
depend on other factors. For example, if one were to choose
objects of similar luminosity in two environments of different
density, the galaxy existing in the less dense environment
would be a product of the initial perturbation with a larger
value of hi' However, galaxies with larger initial hi values will
tend to have systematically flatter rotation profiles (QSZ;
Hoffman 1988b). This selection effect would tend to crase dif-

ferences in the rotation profile conditioned by the
environment. Moreover, only the central parts of the rotation
curve of most of the galaxies are readily accessible. Rotation
profiles in these regions are, however, only in part due to dark
matter, as the baryonic component of the total mass plays a
decisive role in establishing the overall mass distribution in the
visible part of spiral galaxies. The physics which determines the
behavior of these central regions involves both dissipative pro­
cesses and star formation (Silk 1985a, b; Blumenthal et al.
1986). Therefore, it is difficult to estimate how much of the
differences in the rotation profiles conditioned by the
environment would be visible. Guhathakurta et al. (1987) have
recently reported on a study of the H I rotation curves of
spirals in the Virgo cluster. They find no systematic differences
between the rotation curves of Virgo spirals and those in the
field.

Recent simulations of Frenk et al. (1988) have also addressed
the issue of the influence of density of the environment on the
properties of the halos in a cold dark matter (CDM) universe.
While Frenk et al. (1988) stress different aspects ofthe influence
than us (e.g., they focus on the increase of the total halo mass
with Q rather than on the central density) their results are
generally compatible with ours. Small differences-for
instance, they seem to see much less trend in the shape of the
rotation profiles with varying O-can be probably attributed
to somewhat different initial conditions, although influence of
differences in the method (particle-particle/particle-mesh vs.
N-body) and, especially, the epoch in which initial conditions
are set up (z = 6 in Frenk et al. and z = 24 in ours) cannot be
entirely ruled out.

V. A MECHANISM FOR NAllJRAL SELECTION: ANGULAR

MOMENTUM TRANSPORT IN DIFFERENTIATED MERGERS

Mergers of halos have already taken place in the process of
formation of the objects shown in Figure 1 and are contrib­
uting to the graph of J/M in Figure 2. Most of the halos
formed in such simulations go through several episodes of
merging during the course of their formation (QSZ; Frenk et
al. 1985; Barnes and Efstathiou 1987). Yet the value of J/M of
all of these halos still clings to the upper" spiral" branch of the
plot. Hence halo merging has not altered the J / M versus M
relation enough to let some of the objects enter the" elliptical ..
region in Figure 2. In other words, the process of merging and
virialization in a population of objects with cosmologically
induced initial motions and spins produces a rather unique
and well-defined specific angular momentum for a system of a
given mass when gravity alone is responsible for the evolution.
This specific angular momentum is inconsistent with that
found in the luminous parts of ellipticals today.

To explain the values of [J/M]B and A.B that are character­
istic of ellipticals we are forced to search for a mechanism
which could alter the specific angular momentum content of
their baryonic component alone. In the hierarchical picture of
halo formation-which is valid for the scale-free simulations
discussed here as well as a good approximation to the CDM
scenario on galactic scales~bjects existing at present were
built up by the merging and accretion of smaller, less massive
progenitors. We shall suppose that in the denser regions of the
universe these progenitors were dense enough to allow baryons
to concentrate in their cores. This process takes place as an
inevitable consequence of energy dissipation via radiative
cooling.

The dissipation of energy in the gaseous component of an

200

UJ
'-....150

S
~

~100
"0

>

50

289

n=-1

e 0 0 =0.15

8 0 0 =0.38

• 0 0 =1.05
(j) 0 0 = 1.57

IB 0 0 =8.06
o L-~ __ ~~ __ ~~ __ ~~ __ ~ __ L--L __ ~~ __ ~~~

250

200

UJ
'-....150

S
~

~100
"0

>

50

o

o

50 100 150

radius (kpc.)
FIG.6a

n=-2

e 0 0 =0.15

8 0 0 =0.37

• 0 0 =1.02
(j) 0 0 = 1.50
IB 0 0 =8.23

50 100 150

radius (kpc.)
FIG.6b

FIG. 6.-Rotation curves for some of the halos which have maintained their identity in runs with different values of {1 (or (a) n = - I and (b) n = - 2 Halos
fonned when 0 > 1 have flat or even rising rotation curves and are more massive and larger than halos found in open (0 < I) universes.

>- 0

x

z=1.03

•• i....
.... '!-

>-
:~:

~ .. ~
.;';":.' :. .'. "

.'

x

z=O.

>-

.... ~

··:·.·i.~:t;;:r: .
.. <> .;'!,. '

x

290

N 0

x

z=1.03

•• 1.

:': ...
N

-200 L-~ ___ ,-____ ,-___ ----1

-'00
x

z=O.

-250 L.. __ ---' __ ~~ __ ~-'--_~~

550 700 750

X

Flo. 7a

N 0

-.00

N

.. 0"

y

.0·,·
. ...

y

.: .
.••••. :0.:,.

-'00
y

z=5.25

z=1.03

z=O.

"

FIG. 7.-EvoIution of a protohalo from z = 5.25 to z = 0 for n = - l. (a) At z - 0 all the bound particles within 100 kpc of the core were tagged and divided into
three bins of binding energy. The most bound particles are marked as solid dots, the least bound as open circles. and intermediate energies as crosses. The most
bound particles at z = 0 occupied the cores of subclumps seen at z = 1.03 which merged to form the final halo. At z = 5.25. the most bound particles also generally
live in regions of excess density. Note that each frame at a given z has the same linear scale in both axes (measured in kpc, noncomoving). (b) The same as (a). except
that now the tagging took place at z = 1.03. This figure proves that the core material of the progenitors ends up almost exclusively--solcly as a result of the
dynamical dissipation---in the core of the resultant halo.

291

ZUREK, QUINN, AND SALMON Vol. 330

z=5.25

..

>- 0 N 0

: \ :-..
x

z=\.03

N

x

z=O . ~

z=5.25

. " , .

..

x

z=\.03

x

z=O.

""
" ~o

y

z=\.03

z=O.

." 0'0

>-

0 .. :\

",'.<·;!~~;;~~t r-:;rlSO NISO

" .. ~ ..
0"

55<> eo<>

x X
FIG.7b

y

object which has recently grown through a merger will typi­
cally leave its J B unaltered: transport of energy occurs through
radiation, which does not carry significant amounts of angular
momentum. Stellar systems fonned from the gas heated in the
course ofa merger would therefore have [JIMJs, and, presum­
ably, morphologies, similar to those of present-day spiral gal­
axies. Indeed, it is natural to suppose that the present-day
spirals were formed in such a fashion (Fall and Efstathiou
1980; Gunn 1982; Ryden and Gunn 1987).

The increase of density resulting from dissipation is likely to
accelerate star fonnation. Hence, the bulk of the baryons in

sufficiently dense progenitors of present-day ellipticals could
be converted into stars before the "final "-that is, most
recent-merging episodes. These condensed-out, stellar cores
in the progenitors of ellipticals make angular momentum
transport possible (in fact, sufficiently clumpy gas clouds may
work as well if they can avoid reheating). Let us consider a
merger of several such progenitors into a larger galaxy.
Figure 7 shows the evolution of a halo from our n = - 1 simu­
lation. At fixed redshifts (z - 0 and z - 1), the halo particles
were tagged according to their binding energy and traced back
to z = 5.25. The most tightly bound particles (solid dots) show

292

No. 2, 1988 HALOS IN OPEN AND CLOSED UNIVERSES

that the cores of the progenitors sink into the core of the final
merged object. In this process, components of the luminous
part of the elliptical dispose of some of their angular momen­
tum through" tidal braking." Figure 8 shows the evolution of
the halo shown in Figure 7 in the energy-angular momentum
(Lindblad) plane. The halo was divided in binding energy bins
at z = 0, and the particles from these bins were remeasured at
z = 5.25. The figure shows that angular momentum is trans­
ferred from the orbital motion of the tighly bound Cores to the
loosely bound outer halo particles as the cores sink into the
center of the forming halo (see also Quinn and Zurek 1988).
This loss of angular momentum by the cores due to dynamical
friction will lead to a low specific angular momentum core in
the final galaxy. Moreover, the spin of the core could be further
reduced if the spins of the progenitors were randomly oriented
and therefore would tend to cancel (Fall 1979). Figure 8 also
shows that the constituents of the cores not only lose specific
angular momentum but, also, become more tightly bound. In
our simulations, the cores are composed of particles identical
to the rest of the halo. Therefore, when the only interaction
between the core components is gravitational--as is the case
when the cores are stellar-then the results obtained with our
dissipationless simulations apply at least approximately: the
equations of motion followed by the stars will be obviously the
same as those of cold dark matter particles. However, their
initial, premerger orbits inside the progenitors would be pre­
sumably more" organized n by rotation-i.e~ with), typical of
spirals. Consequently, stars would start with a different set of

~ 0

-5x104

-lxlO'

-1.5xlO·
1.5 2

initial conditions. Nevertheless, given the observed efficiency of
angular momentum redistribution in course of a typical merger
(Quinn and Zurek 1988), we anticipate that the final state of
the baryonic component should be largely determined by their
initial binding energy (or alternatively their final location).
Consequently, our numerical results show that a merger of
protogalaxies with condensed, stellar cores will lead to an
object with a relatively low specific angular momentum in the
luminous stellar component.

The angular momentum lost by the core is taken up by the
rest ofthe extended halo. In terms of the diagram JIM versus
M, Figure 2, this process can be represented-for a single
halo-by two arrows. The first one, describing the baryonic
core component, would point downward (as the "most
bound n particles of Fig. 8 and baryon mass conservation
jointly imply) and would push the stellar core component
down in the direction of the" elliptical strip n in Figure 2. The
other arrow, characterizing the nonbaryonic dark halo, would
point upward, almost parallel to the J - M'/4 line. The vector
sum of the two arrows should push the complete merged
system (i.e., dark halo plus baryons) up along the" spiral strip n

in Figure 2.
In the model of differentiated mergers the dynamics

responsible for the formation of ellipticals is purely dissi­
pationless. If the mixing accompanying a merger is efficient, the
typical angular momentum of the luminous part of the ellip­
tical can be estimated using its relative size (i.e., as compared
with the total size of its dark halo) and a typical total angular

2.5 3 3.5

log(J)
FIG. S.-Evolution of the protohalo shown in Fig. 7 in the Lindblad (energy-angular momentum) plane. At z = 0 the halo was divided up into five binding energy

bins. The angular momentum and binding energy of the particles belonging to these bins were then measured at z = 525 (filled circles) and compared to their z = 0
(filled squares) values. The error-diamond on each point represents the 1 u dispersion of E and J for each or the biDding energy groups at z = 5.25 and z = O. In
summary: particles that are initially tightly bound become considerably more bound and generally lose angular momentum, while particles that are initially loosely
bound gain significant amounts or angular momentum and become slightly more bound.

293

ZUREK, QUINN, AND SALMON Vol. 330

momentum of a halo. We should be therefore able to test our
model by using the results of our simulations to derive the size
of the gap between the spiral and elliptical strips in Figure 2.
To accomplish this we first assume that the luminous com­
ponent of a spiral galaxy has approximately preserved its orig­
inal angular momentum. Hence, its JIM is typical for a halo
and defines the spiral strip of Figure 2. On the other hand, the
baryons in spirals must have collapsed by a factor of -10 in
radius (Efstathiou and Silk 1983). Baryons in ellipticals are
presumably "compressed" by a similar ratio in comparison
with the sizes of elliptical halos. However, in the course of a
merger, stars in ellipticals must have lost enough angular
momentum to end up with a value of JIM smaller than the
halo as a whole by a factor of -10. Hence, the specific angular
momentum of an elliptical should be approximately one order
of magnitude smaller than in a spiral of a comparable mass.
This factor is clearly consistent with, but probably somewhat
larger than the estimate extracted from the somewhat uncer­
tain observational data (see Fig. 1 in Fall 1983). The model of
differentiated mergers has therefore passed an important con­
sistency check. It is also reassuring that our estimate ofthe gap
size errs on the high side. The angular momentum of baryons
settling in the core of a spiral is probably only approximately
conserved, and mixing of stars of the progenitors may not be
quite as complete as mixing of dark matter particles. Both of
these effects will tend to shrink the gap.

By the same token, relaxation occurring on the scale of the
stellar cores should also be responsible for the observed value
of the spin parameter).. in early-type galaxies. This can be
argued as a corollary to the formation model of ellipticaIs­
mergers of differentiated progenitors with stellar, dissi­
pationlessly evolving cores-we have described above: The
distribution of the spin parameter is determined in course of
the merging process by relaxation and mixing alone and is
fairly constant inside a virialized object (Quinn and Zurek
1988). Since the dynamics of merging of differentiated progeni­
tors is governed solely by gravitational interactions, which do
not distinguish between stars behaving as gravitationally inter­
acting dark matter, and bona fide dark matter, both stellar and
dark components should acquire the same J.. Hence for ellip­
ticals).. - J.. A typical range of)., as shown for instance in
Figure 3, is similar to the typical val ues measured in ellipticals.

Each of the two preceding paragraphs describes a test of our
model. While they,are not completely independent (both of
them involve rotation), passing of the first test does not auto­
matically guarantee passing of the second one. Therefore, we
regard their outcomes as quite encouraging.

The behavior of baryons which have not condensed into
stars or other compact objects and interact only via gravita­
tional attraction is still a major unknown. In the last few para­
graphs of this section we shall venture a relatively safe
"educated guess." To begin with, in the course of a typical
merger gas will reheat and, at least initially, fill in most of the
halo. As the distributions of the gas and dark matter are quite
similar, their angular momentum content can also be expected
to be almost the same. Subsequently the dark halo virializes,
and the subclumps in the distribution of dark matter disap­
pear. Gas filling the halo is also relatively uniform. Therefore, it
cannot exchange angular momentum with the halo as it begins
to cool and collapse to the rotationally supported disk configu­
ration.

This process has been discussed by Gunn (1982), Blumenthal
et al. (1986), and Ryden and Gunn (1987). Our analysis adds to
these treatments the following conjecture: The bulges of spiral

galaxies form from the stars which were already born in the
progenitors of the present-day spirals, before they underwent
the final merger episodes. Hence, they were able to give up
angular momentum in the course of these mergers and have
settled down into the present-day bulge. By contrast, gas con­
tained in these progenitors settled more slowly into a disk and
managed to preserve its original content of angular momen­
tum. Stars formed in the disk should therefore be on the whole
younger than those inhabiting the bulge. This is consistent
with the studies of stellar populations in spiral galaxies (see,
e.g., Freeman 1988, and references therein).

VI. DISCUSSION

The key conclusions from the computer simulations present­
ed in the previous sections can be summed up in four simple
statements:

1. If galaxies form through gravitational collapse from
initial, Gaussian density perturbations, then their luminous
parts do not have the "original" values of either specific
angular momentum (ellipticals) or spin parameter). (spirals).

2 The rotational properties of a halo depend only weakly
on either the halo density or the density of its environment.

3. Variations of the large-scale density of the environment
have an expected, dramatic effect on the density of individual
halos.

4. Dissipationless merging forces the cores of the merging
objects into the core of the merger product. In the process
cores become more bound and lose angular momentum.

Extrapolation of these results has led us to propose a model
for galaxy formation in which both ellipticals and spirals come
into being through mergers. The purpose of this section is to
review the assumptions which are important for the discussion
of the galaxy formation given in § V, but which have not been
justified by the computer models. We shall emphasize the role
of density~ependent star formation rates in accounting for
the correlations between the density of the halo, the
environment, and the morphology of the galaxy. We shall also
point out similarities and differences between the model of
differentiated mergers and some of its forerunners. We shall
end with a review of the observational consequences of the
proposed galaxy formation model.

Any attempt to explain the morphology of the luminous part
of the galaxy must face up to a very serious challenge: the
relevant astrophysics involves both dissipative hydrodynamics
of a self-gravitating system and star formation. At present, we
can claim only a limited understanding of the first, and an
almost complete ignorance of the second. We shall therefore
adopt the following "working hypothesis": the efficiency of
star formation is a steep function of the density of baryonic
material (Silk 1985b; Shu 1983; Tohline 1985; Terebey, Shu,
and Cassen 1985).

With the above assumption in mind, consider now two
peaks of the density field, two future" protogalaxies," one of
them with the average overdensity, 0, and the other with some
larger overdensity O2 • The second peak may be more overdense
either because it is inside a future cluster, or because it is just an
exceptionally high peak "in the field." In either case, as the
universe evolves, the smallest structures, subpeaks of density
within each of the two protohalos, will begin to collapse and
form individual, if short-lived, objects. To account for the mor­
phological dependence on the environment we will use our
assumption about the star formation rates. We assert that only
baryons in sid .. the denser peak have a sufficient density to

294

No.2,1988 HALOS IN OPEN AND CLOSED UNIVERSES

precipitate efficient star formation. Moreover, stars have
formed predominantly near the cores of the fragments. During
the next stage of the evolution-merging of protogalactic frag­
ments to form a present-day galaxy-the densest part of the
fragments sink into the center of the halo of the new galaxy. In
the core of the forming elliptical, torquing of the dark halo
material by the quadrupole moments generated by the merging
baryonic cores is inevitable and must lead to substantial losses
of specific angular momentum by the baryonic component.
Such interhalo transport of angular momentum is observed in
numerical simulations (Efstathiou and Jones 1979; Frenk et al.
1985; Barnes and Efstathiou 1987; Quinn and Zurek 1988) and
is necessary to account for the distribution of angular momen­
tum inside individual halos (Quinn and Zurek 1988). More­
over, we may be witnessing it today in ellipticals with mUltiple
cores (Lauer 1987).

Merging would also take place in the course of the evolution
of the future spiral. However, now the bulk of the baryonic
material remains gaseous and is distributed throughout the
fragments of the protohalo. Therefore, during the final merger
only the very central parts of the cores of the merging objects­
we assert citing the assumed, strong dependence of the star
formation rate on density-have managed to undergo some
star formation. These central, stellar components will again
lose their angular momentum due to tidal braking, and spiral
in to form the bulge of the newly formed spiral galaxy. The gas
in the outer parts of the halo is, on the other hand, distributed
more evenly and will maintain its specific angular momentum
JjM. Its spin parameter after reheating will probably be close
to the value of A. of the dark matter halo. However, as the gas
loses energy during the subsequent evolution, the value of its
spin parameter will increase until it is rotationally supported
(Fall and Efstathiou 1980). This stage of the evolution is
approximately axisymmetric and involves no losses of angular
momentum, but large, dissipative losses of energy (Efstathiou
and Silk 1983).

Both initial conditions and dynamical evolution play an
important role in this model of galaxy formation. Fluctuations
of the density field determine the star formation rates. The
efficiency with which gaseous baryons are converted into a
dissipationless stellar population determines how much inter­
halo angular momentum transport occurs in course of
mergers. Given sufficient understanding of the star formation
process one could use this model to discriminate between dif­
ferent spectra and normalizations of the cosmological density
fluctuations. Some sort of a" bias" (Kaiser 1984; Bardeen et al.
1986) could easily emerge from such considerations and would
be naturally and intimately tied to the morphology­
environment relation, as it was speculated by Zurek, Quinn,
and Salmon (1987). At present, however, any scenario in which
tidal torquing supplies enough angular momentum and where
merging of smaller objects leads to present-day galaxies could
be presumably accommodated with a judicous choice of the
star formation rate. In particular, in the version of the cosmic
string scenario in which galaxies form by mergers (Zurek 1986)
rather than by collapse around individual loops (Turok and
Brandenberger 1986) a similar picture could apply.

The role of the mergers in determining galactic morphol­
ogies was recognized by Toomre (1977) and explored in a
context of the specific" old merger model" by Fall (1979),
Efstathiou and Jones (1979), and Aareseth and Fall (1980).
There, the formation of ellipticals was a two-stage process.
First, came the dissipation of energy which was required to
account for the small sizes of galaxies relative to their dark

matter halos. Mergers constituted the second stage. The low
angular momentum of merger products was attributed to: (1)
the selection process-merging required orbits of low impact
parameter and (2) the statistical cancellation of the spins in the
remnant. While in the model we have suggested the bulk of the
angular momentum is transported away from the baryons by
tidal braking, selection and cancellation may play a role in
determining the outcome of a merger. However, our results
appear to suggest that these two effects-which must occur
naturally in course of our simulations-alone do not suffice in
bringing down the JjM values in typical halos into the ellip­
tical region of Figure 2. The key distinction between the" old
merger model" and the model of differentiated merging is
therefore the recognition, forced on us by the results of the
simulations, that the dark halo can take up excess angular
momentum of the stellar cores of merging protogalaxies. The
key similarity is, of course, the suggestion that ellipticals form
in mergers.

Many of the issues raised by this discussion can be settled
only with the dramatic improvements in our understanding of
the star formation process. However, some of the predictions
may be testable in the less distant future. For example, we may
be able to test the dependence of Hubble type on halo density
by measuring the density of the dark halos directly. Fall (1986)
has concluded that there is now considerable evidence of dark
matter in early-type galaxies. The hot X-ray coronae of ellip­
ticals (Forman, Jones, and Tucker 1985), polar ring galaxies
(Whitmore, McElory, and Schweizer 1987), and orderly shell
systems (Hernquist and Quinn 1987) all indicate the presence
of considerable amounts of dark matter. Hernquist and Quinn
(1987) have suggested a way to quantify the distribution of the
dark matter in galaxies of different morphological types. An
isothermal halo [M(r) - r)] can be conveniently parameterized
by

_ M(r) V~
"'-=--=0' (16)

where V~ is the asymptotic circular velocity. The slope of the
mass profile can be estimated from the X-ray data and shell
distribution given some assumptions (such as isothermality for
the X-ray gas). For spirals and polar ring SOs, V .. can be mea­
sured directly if the rotation curve is flat at the outermost
points. Figure 9 of Hernquist and Quinn plots E against lumin­
ous mass for the available X-ray and shell data as well as the
Bahcall and Casertano (1985) sample of spirals. The figure
indicates that the elliptical::: values may be higher than spirals
of the same luminous mass (factor - 5). This result is tentative
since there is very little overlap in luminous mass between the
X-ray elliptical sample and the spirals. A better data set includ­
ing a large range in luminosity for spirals and more low­
luminosity early-type galaxies (such as SOS) is currently being
compiled (Fall and Quinn 1987, in preparation). It should be
noted that, although halos in clusters were initially more dense
than their field counterparts, angular momentum transport
from the collapsing baryonic material may have reduced the
central halo density.

We would like to thank Mike Fall and Yehuda Hoffman for
valuable conversations and comments on the manuscript. We
are grateful to Los Alamos National Laboratory and the Space
Telescope Science Institute for providing the large amounts of
CRA Y and VAX-like computer time necessary to run and
analyze the N-body models presented in this paper.

295

ZUREK, QUINN, AND SALMON

REFERENCES
Aarseth, S. J., and Fall, S. M. 1980, Ap. J, 236, 43.
Baheall,J. N., and Casertano, S. 1985, Ap. J. (ulIl7s~ 293, L7.
Bardeen,J. M., Bond,J. R, Kaiser, N,and Szalay, A. S. 1986,Ap. J,304, 15.
Barnes, J, and Efstathiou, G. 1987, Ap. J,319, 575.
Bertschinger, E. 1985, Ap. J. Suppl, 58, 39.
Blumenthal, G. R., Faber, S. M, Flores, R, and Primack, J. R. 1986, Ap. J.,

301,27.
Blumenthal, G. R, Faber, S. M, Primack, J. R, and Recs, M. J. 1984, Nature,

311,517.
Bodenheimer, P. 1981, in IAU Symposium 93, Fundamental Problems in the

Theory of Stellar Evolution, ed. D. Sugimoto, D. Q. Lamb, and D. N.
Schramm (Dordrecht: Reidel~ p. 5.

Davies, R. L, Efstathiou, G, Fall, S. M, Illingworth, G, and Schechter, P. L.
1983, Ap. J, 266, 41.

Doroshkievich, A. G. 1970, Astrofizika, 6, 320.
Dressler, A. 1981, Ap.J, 236, 351.
Efstathiou, G., and Jones, 8. J. T. 1979, M.N.R.AS, 186, 133.
Efstathiou,G. and Silk,I.1983, Fund. Cosmic Phys, 9,1.
Faber, S. M. 1982, in Astrophysical Cosmology: Proceedings of the Vatican

Study Week on Cosmology and Fundamental Physics, ed. H. A. Bruck, G. V.
Coyne, and M. S. Longair (Rome: Specola, Vatieana~ p. 191.

Fal~S. M. 1979, Nature, 281,200.
--. 1980, in The Structure and Evolution of N orma/ Galax;.,s, ed. s. M. Fall

and D. Lynden-Bell (Cambridge: Cambridge University Press~ p. J.
--. 1983, in IAU Symposium 100, Internal Kinematics and Dynamics of

Galaxies, ed. E. Athanassoula (Dordrecht: Reidel~ p. 39 J.
--.1986, in Santa Cruz Workshop on Nearly Normal Galaxies, ed. S. M.

Faber (Berlin: SpringCT~ p. 326.
Fall, S. M, and Efstathiou, G. 1980, M.N.R.AS.,193, 189.
Fillmore, J. A, and Goldreich, P. 1984, Ap. J, 281, J.
Fonnan, W.,Jones, C, and Tucker, W.1985,Ap.J,293, 102
Freeman, K. C. 1975, Stars and Stellar Systems, Vol 9, Galaxies and the Uni­

verse, ed. A. Sandage, M. Sandage, and 1. Kristian (Chieago: University of
Chicago Press~ p. 409.

--. 1988, in I AU Symposium 130, Evolution of Large-Sca/e Structures in the
Universe (Dordrecht: Reidel~ in press.

Frenk,C. S, White, S. D. M, Efstathiou,G, and Davis, M.1985, Nature, 317,
595.

--.1988, Ap. J, 327, 507.
Giovanell~ R, Haynes, M. P,and Chincarini,G. L.1986, Ap.J,JOO, 77.
Got!,J. R,and Thuan, T.X 1976, Ap.J, 204, 649.

Guhathakurta, P, van Gorkorn, J. H., Kotanyi, C. G,'and Balkowski,C. 1987,
prepnnt.

Gunn, J. E. 1982. in Astrophysical Cosmology; Proceedings of the Vatican
Study Week on Cosmology and Fundamental PhYSics, ed. H. A, Bruck, G. V,
Coyne, and M. S. Longair(Rome: Specola Vaticana~ p. 233.

Gunn,J.E, and Gott,J. R.1972, Ap.J, 176, I.
Hernquist, L, and Quinn, P. J. 1987, Ap. J, 312, J.
Hoffman, Y.1986,Ap.J,3OI,65.
--.1988a,Ap.J.,328,489.
--.1988b,Ap.J,329,8.
Kaiser, N, 1984, Ap. J. (ullers~ 289, L9.
Kashlinsky, A. 1982, M.N.R.AS, 200, 585.
Lauer, T. R. 1987, Prinocton Univ. preprint.
Oemler,A. 1974, Ap.J, 194, I.
Peebles, P. 1. E. 1969, Ap. J, ISS, 393.
--. 1980. The Large Scale Structure o/the Universe (Princeton: Princeton

University Press).
Postman, M., and Geller, M. J. 1984, Ap. J, 281, 95.
Quinn, P. J, Salmon,J. K, and Zurek, W. H. 1986, Nature, 322, 329.
Quinn, P.J,and Zurek, W. H. 1988, Ap.J, in press.
Ryden, 8. S., and Gunn, J. E. 1986, Ap. J, 318,15.
Sandage, A, Freeman, K, and Stokes, N. R. 1976, Ap. J, 304, 831.
Shu, F.H.1983,Ap.J,214,488.
Silk,J.1985a,Ap.J.,297,1.
--.1985b,Ap.J,297,9.
Terebey,S, Shu, F. H,and Cassen, P. 1985, Ap. J,292, 529.
Thuan, T. X, and Gott, R.J. 1977, Ap. J, 216, 194.
Tohline,J. E.1985,Ap.J,292, 181.
Toomre, A. 1977, The Evolution of Galaxies and Stellar Populations, ed. 8. M.

Tinsley and R. B. Larson (New Haven: Yale University Press~ p. 401.
Turok, N, and Brandenberger, R. H. 1986, Phys. Rev. D,33, 2182.
White, S. D. M. 1978, M.N.R.AS, 184, 185.
--. 1983, in IAU SympOSium 100, Internal Kinematics and Dynamics of

Galaxies, ed. E. Athanassoula (Dordrecht: Reidel~ p. 337.
Whitmore, 8. C, McElroy, D. B, and Schweizer, F. 1987, Ap. J, 314, 439.
Zel'dovich, Ya. 8., and Novi1cov,l. D. 1983, The Structure and Evolution of the

Universe (Chicago: University of Chicago Press)..
Zurek, W. H, Quinn, P. J, and Salmon, J. K. 1987, in IAU Symposium 1l7,

Dark Maller in the Universe, ed. J. Kormendy and G. R. Knapp (Dordrecht:
Reidel), p. 316.

Zurek, W. H. 1986, Phys. Rev. ullers, 57, 2326.

P. J. QUINN: Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

1. K. SALMON: Theoretical Astrophysics, 130-33 Caltech, Pasadena, CA 91125

W. H. ZUREK: Theoretical Astrophysics, T6, MS B-288, Los Alamos National Laboratory, Los Alamos, NM 87545

296

E. Correlation of QSO Absorbtion Lines ...

Reprinted by permission from the Monthly Notices of the Royal Astronomical

Society, 221, 93-104, 1986. John Salmon, Craig Hogan, "Correlation of QSO

Absorption Lines in Universes Dominated by Cold Dark Matter."

1 Introduction

297

Mon. Not. R. astr. Soc. (191'6) 221, 93-104

Correlation ofQSO absorption lines in universes

dominated by cold dark matter

John Salmon California Institute of Techllology, Pasadella, CA 91125, USA

Craig Hogan Steward Observatory, University of Arizona, Tucsoll, AZ 85721, USA

Accepted 191'6 January 31. Received 1986 January 31; in original rorm 19~5 Seplember 27

Summary. Theoretical predictions for the redshift correlations between QSO
absorption-line systems are investigated in the context of 'cold dark matter'
cosmological models. Particles in 'particle-mesh' N-body simulations are
interpreted as absorbing clouds at epochs corresponding to mean redshifts, z, of
0.0, 1.25 and 3.0. The velocity correlation function for absorbing clouds is found
by passing lines-of-sight through the systems and computing velocity differences
for those particles which lie close to the lines. It depends strongly on:: and Q but
only weakly, if at all, on the number density, diameter or mass of the clouds. The
results are compared with observations of Sargent et al. Two interpretations are
possible (i) the heavy element absorption systems are associated with galaxies
which are an unbiased sample of the mass distribution in an Q o=0.2 universe or
(ii) the Lyman-a absorbers are an unbiased sample of the mass in an Qo= 1
universe and the heavy-element absorption systems, like galaxies, are more
strongly clustered than the mass. The very rapid evolution in the correlations is
understood by analogy with a power-law fluctuation spectrum. for which
analytical results are obtained using self-similarity.

Model universes dominated by 'cold dark matter' (Peebles 1984; Blumenthal el at. 1984; Davis et
at. 1985) have become attractive candidates as explanations for large-scale cosmological
structure, both because of their general agreement with data and because they are in principle
determined by only one parameter, the amplitude of the initial perturbations (we assume that Q

and flo will not always be regarded as parameters). In practice, interpretation of these models,
and their comparison with traditional statistical measures of the clustering, such as the galaxy
autocorrelation function and the distribution of peculiar velocities, is plagued by uncertainties,
such as whether or not the galaxy populations used to measure these statistics represent an
unbiased sample of the mass distribution predicted by the model. Nevertheless. cold dark matter
models are sufficiently precisely defined, and successful enough in agreement with data, that it is
worthwhile to investigate other observational predictions.

298

1. Salmon and C. Hogan

In this paper, we compute the correlation in redshift space predicted by cold dark matter
models for the absorption-line systems observed in distant QSO's. Because the correlation is
strongly affected by non-linear peculiar velocities, a numerical simulation is necessary. This
preliminary study is designed to investigate the effectiveness of QSO absorption lines as an
independent observational test of cosmological models in general. A similar study was made by
Dekel (1982), but in the context of 'pancake' scenarios (Zel'dovich]970). Line studies may
remove some of the ambiguity in interpretation alluded to above, since the selection criteria for
absorption clouds are very different from those for galaxies in catalogues used to measure
traditional statistics. Absorption lines provide in addition a measurement of structure at an
earlier epoch. and so give us a direct test of the evolution predicted by the models. For rapidly
evolving models. this can provide a powerful constraint. It is clear from the results obtained here
that QSO absorption-line correlations are sensitive probes of the evolution of large-scale
structure which are in many ways complementary to other types of data. It is possible, however.
that the observed velocity correlations are primarily the result of non-gravitationally induced
velocities. For example, correlated absorbing systems might arise in high-velocity outflows
associated with star formation within single galaxies. Our calculations are intended primarily as
benchmarks to provide some idea of the velocity correlation one expects from gravitational
clustering alone.

For comparison with our models, we will use the following results of Sargent ct al. (1980). based
on high-resolution spectra of six QSO's:

Nine pairs of heavy-element absorption systems (C IV doublets) in a sample with] .6::sz"hs::s2.3
were found with separation between 100-200 km S-l, which is 25 times the expected number for
this sample if the systems were uncorrelated in velocity space. We take this to imply that there is
probably a real correlation with amplitude between 15 and 35.

(ii) In a sample ofLy-a absorption lines with 1. 7::szans::S3.3 and a mean of2.44, with an average
of 6.5 pairs per 100 km S-l bin, the distribution is consistent with a random Poisson process. We
take this to mean that the Ly-a absorbers probably have correlation amplitude less than 2 on all
scales larger than 100 km S-l.

These results already indicate a real difference between the cloud populations. It is anticipated
that more data \vill be available in the near future which will allow a more detailed measurement
of the correlations.

The aim of the present work is to calculate what correlations are expected under the
assumption that the absorbing material is distributed like cold collisionless dark matter. Our
cosmological N-body simulations provide an approximation to a continuous density and velocity
field which would be produced in a particular volume in a cold dark matter model. We model
QSO absorption lines as though they are caused by clouds of gas which constitute an unbiased
discrete sampling of this field. We make no other assumptions about the nature of the clouds.
[See, for example, Black 1981; Oort 1981; and Fransson & Epstein 1982 for discussions of Ly-a
systems, and Young, Sargent & Boksenberg (1982) for discussions of C IV systems.] Both types of
systems clearly cannot represent an unbiased sample of the mass so one of the issues is to try to
elucidate the constraints imposed by the cold dark matter picture. In particular. we are able to
determine whether our picture (clouds following mass) is consistent with the observations for
either type of cloud.

Several difficulties with this approach must be addressed. First, there are modelling
1Il1cerlailllies: these include the density of sampling, corresponding to the number density of the
clouds: the radius assumed for the clouds; small differences in the exact redshift sampling; and
variations due to different realizations of the same power spectrum. Here, empirical estimates of
the uncertainty introduced into the correlation estimates can be made by varying each of these

299

Cold dark mailer cosmological models

separately. Surprisingly, and fortunately, only the latter causes a significant change in the signal.
This variation ought to be reflected in the realizations along lines-of-sight towards different
QSO's which, although they pass through many volumes the size of our simulation, typically
contain few correlated pairs, and therefore also sample limited regions of space. At present, the
total number of QSO's observed and the number of realizations simulated are both small, which
puts restrictions on the accuracy of the comparison beween the two. There are also many
observational difficulties (line blending, etc.), which will not be discussed here.

Secondly, as with any numerical calculation there arc systematic errors; particle orbits are not
treated accurately below a length scale dictated by the mesh used in the 'particle-mesh' algorithm
so there is a minimum believable length scale; and initial conditions arc not accurately realized

below the mass scale corresponding to a few particles. If the true velocity dispersion is dominated
by high wavenumber fluctuations. our results will be erroneous. These problems arc of course
familiar and their magnitude can be estimated using standard techniques (Hockney & Eastwood
1981; Efstathiou et al. 1985). The cold dark matter spectrum decreases rapidly enough at high
wavenumber, that we do not expect large errors of this kind. This is confirmed by the lack of any
discernible trend with either particle number or length scale (sec Tables 1-4 and Section 4).

There is also a certain amount of UI/hiased Sllll/filil/g error, which would arise even in an
unbiased infinite model from estimating the correlation function with a finite number of pairs.
The total sum of modelling uncertainty, systcmatic error and unbiased sampling noise appears to
he less than the intrinsic correlation signal in most models. and also less than the signal found in
the data for the heavy-element systems. so we find that the technique provides useful

information.

2 Initial conditions

The spectrum of fluctuations in a universe dominated by cold dark matter has been analysed
extensively in the linear regime (Peebles 1982b; Blumenthal & Primack 1983: Bond & Szalay

Table I. Simulation parameters for Q,,= 1.0 models. Dependencies on the Hubb1c constant arc expressed in terms of
h 2 ,=H,,/(22 krn s-' Mpc). which must be approximatelv 1 in order to properly normalize the particle-particle
correlation function (Davis el al. 1985). The vcJocity resolution is the Hubb1c velocity across two cells of the

particle-mesh force calculator. It is quoted at z=3.

Run L (h222 Mpc) M,o, .. ,(h22~ Mo) lVcloud " M""ud ("22~ Md "«, (1l22' kms-')

EdSI 248 2.0x 1017 21952 9.3xlO'2 128

EdS2 248 2.0x 10" 21952 9.3 X 10 12 128

EdS3 248 2.0x 10'7 21952 9.3xI0" 128

EdS4 186 8.6x JO'" 262144 3.3x 10" 96

EdS5 5R 2.6x JO" 262144 LOx JO'" 30

Table 2. Simulation parameters for Q,,=0.2 models. Dependencies on the Hubble constant arc expressed in terms of
",,,,= HII/(100 km s' I Mpc). The velocity resolution is the Hubble "elocit\' across two cells of the particle-mesh force

calculator. It is quoted at 2=3.

Run L(,,"~,Mpc) M,,,,,,, (""ii, Mol /\/,:h>ud ... ;\1d (l\1d (ll~:1 Mo) ,·«,(,,"~,kms-l)

01 45 1.1 x 10'· 32761-: 3.4x JO" 90

02 45 I.lxlO'· 21952 5.1 X](J" 90

03 30 5.0x]()I' 21952 2.3x 10" 60

(l4 33.75 6.3xI0" 262144 2.4 X 10' 67

300

1. Salmon and C. Hogan

Table 3. Representative values of nr .. "/(nr';~)' an estimate of the velocity correlation function, Win

Qo= 1.0 models in the velocity range 100 hi! km s - ':s Ll.ws2oo hi2' km s -'. No entry signifies that we
were not able to obtain reliable statistics for that model, cloud diameter and rcdshift.

Run z

EdSI 3.0
1.25
0.0

EdS2 3.0
1.25
0.0

EdS3 3.0
1.25
0.0

EdS4 3.0
1.25
0.0

EdS5 3.0,3.3

1.25
0.0

beam diameter

200 (hii kpc)

2.0, 1.1
7.8,5.5

13.4,20.7
2.1, 1.3
7.3,5.8

13.6, 17.2
1.6, 1.6
5.9,7.4

16.4, 15.6
3.2,2.5
7.4,7.1

18.0, 15.8
3.3

12.0, 13.7

100 (hil kpc)

2.4, 1.1
5.7,8.2

3.3, 1.5
4.5,8.2

1.3, 2.4
4.5.7.0

2.3,2.6
6.5,6.8

18.0, 13.9
3.5,3.0
5.0,5.7

50 (hii kpc)

1.8, 2.6
6.7.7.3

17.0, 16.8
3.4,2.6
8.4, 7.0

Table 4. Same as Table 3, for Q o=0.2 models in the velocity range 150h~l) km s-':s Ll.v :s2oo h~,l, km s-'.

Run z beam diameter

200 (h~~) kpc) loo(h~,;)kpc) 50 (h;;~) kpc)

01 3.0
1.25 13.7, 14.3 11.1,14.7 18.1, 13.9
0.0

02 3.0 6.4, 5.7 3.4, 4.3

1.25 12.7,8.6 11.6. 13.7 13.9,9.3
0.0 35.7,27.8 28.5, 31.7 31.1,26.3

03 3.0 15.9,3.8 7.0,8.0
1.25 8.4,7.0 10.3, 14.0 8.2, 16.4
0.0 27.5,31.2 36.2, 25.5 36.5

04 3.0
1.25 15.3,7.9 12.1, 13.8 13.3. 11.3
0.0 21.7, 22.5 34.3, 36.0 31.3, 36.9

1983; Bond & Efstathiou 1984). With scale invariant primordial fluctuations, the power is well
approximated by:

A2(t)k
P (k) = ----,-----,--:­

(1 +ak + /3k3/2+ ye)2
(1)

where a= 1.7/, /3=9.0/ 3
/
2, y= LOP, I =(Qohroo)- t Mpc and the wavenumber,k is in (MpC)-I, The

time dependence of A is given by linear theory but its amplitude is arbitrary (Peebles 1980, section
11). Here, we use the value of A 2 found by Davis et al. (1985) to give the best agreement of N-body
experiments with observational data on the shape of the galaxy autocorrelation function, 1;, at the
present epoch. They choose an initial amplitude for numerical reasons and then determine how
much evolution is necessary to reach agreement with present observations. Taking the value 1.8

301

Cold dark mallcr cosmological models

for the required expansion, which they propose for unbiased models, we compute a present epoch
value of

(2)

We use this value of A2 for all of our initial conditions. * When applied to our models, the
statistical measures discussed by Davis et al. (1985) should yield the same results, subject to the
fact that their experiments follow trajectories accurately on much smaller length scales. Thus, all
of our models have the correct shape for ~ at the present epoch over an appropriate range of
length scales. The Hubble constant is fixed by requiring that the magnitude of ~ agree with
observation. We scale our results according to the values determined by Davis et al. (1985):

Ho=22kms-1 - Mpcfor Qo=l.O, Ho=100kms- 1
- Mpc for Qo=0.2. With these values for H(),

the distribution of peculiar velocities agrees moderately well with data in the Q=0.2 models, but
not in the Q= 1 models, in which case the peculiar velocities are excessive. We allow for the
uncertainty in these values by reporting results in terms of Izn and IzUKI in the Qo= 1.0 and Qo=0.2
models, respectively.

Given the amplitude of the power spectrum, we generate a set of (64)' mode amplitudes with
independent Gaussian statisics, random phases and variance given by the power spectrum. We
convert this to a particle distribution using the Zel'dovich approximation. The particles are
initially placed on a cubic lattice (i.e. a distribution with the minimum possible noise). We
compute the perturbations, ~x, of the particles from their initial positions by requiring that

op
'i/'~x= -.

P
(3)

This is easily solved by reducing it to Poisson's equation and using the Poisson solver that is used
for the dynamics:

~x=-'i/¢,

Op
'i/ 2¢=-.

P

(4)

(5)

The particle velocities must also be adjusted to correspond to the growing mode solution ofthe
linear theory. This is achieved by adjusting the peculiar velocities so they are proportional to the
perturbations, ~x. The proportionality constant is the same for all particles and is given by:

(6)

where A (t) is the amplitude of density fluctuations in linear perturbation theory.
The particle distribution so constructed reliably realizes the desired power spectrum from

length scales L/ N t
/
3 up to L/2' where L is the comoving size of the computational volume and N

is the number of particles. The simulations were begun at an initial redshift of z=8, at which time
all fluctuations were safely in the linear regime.

3 Time evolution

Evolution in time is carried out with a 'particle-mesh' code which uses the Fast Fourier Transform
to solve Poisson's equation on a (64)' mesh with periodic boundary conditions. A 'cloud-in-cel\'

* Peebles (1982a) has shown that the rms multipo\e moments of the microwave background intensity arc

proportional toA. Our value of A implies: (I a:" IC)'!C=8.7X 10- 7 h'd .. which is smaller than the normalization used by
Peebles by about a factor of 3.

302

1. Salmon and C. Hogan

scheme is used for mass assignment and force interpolation. The Green's function is the
transform of the 7-point finite difference approximation to the three-dimensional Laplacian
(Hockney & Eastwood 1981). The time evolution uses a 'leap-frog' scheme with 'time' variable
p=(1+z)-1/2 and a step size dp=0.033. [See Efstathiou et al. (1985) for a discussion of time
variables, and the correct form of the equations.] The rather large time-step is made possible by
the low-resolution particle-mesh algorithm. The force is effectively cut-off at a comoving length
scale equal to the mesh size (L/64), so that tight binaries cannot occur and a large time-step is
numerically stable.

While allowing for a large time-step and large numbers of particles, the particle-mesh
algorithm restricts us to length scales larger than the mesh size. Thus, when our runs are
compared at z=O with those of Davis ('(al., we find excellent agreement on large scales. but not on
small scales where short-range interactions become important.

Some of the simulations (EdSl, EdS2, EdS3, 01, 02 and (3) were performed on the Cal tech
Hypercube, a parallel processor. The computational load, as well as the data storage was
distributed over 32 'nodes' each of which is an Intel 8086/8087 microprocessor with 256 Kbytes of
memory. They arc connected by a communication network which is topologically equivalent to a
five-dimensional hypercube with the processors on the corners (Fox, Lyzenga & Otto 1985). The
speed-up, which is the ratio of the speed on a single processor to the speed on the mUlti-processor
system is a measure of how effectively one is using the system. In our case the speed-up was in
excess of 25, so we were effectively using the power of 25 microprocessors, the other seven being
wasted in communication overhead, redundant calculation and/or idle time. An improved
version of the hypercube is under development. Each of the new nodes will be more than 10 times
faster than those of the current prototype, and will have 16 times the memory.

4 Correlation measurements

We 'observe' each simulation at three values of the redshift, z: 3.0, 1.25 and 0.0, by passing
lines-of-sight through the computational volume. A particle is 'observed' if it is within a certain
minimum distance of the line-of-sight, corresponding to the radius of the absorbing cloud. Proper
diameters of 50, 100 and 200 kpc were simulated with no significant differences in the strength of
the correlation. Although there is, as yet, no data for z::s 1.6 the measurements at smaller redshifts
are useful for discussion of evolutionary effects. Also, we expect that such data will become
available in the near future, from satellite observations.

The light travel time across the computational volume is much smaller than the time-step,
which in turn is much smaller than a dynamical time, so we may make the simplifying assumption
that a line-of-sight passes through the simulation instantaneously. Consider a snapshot of the
simulation at redshift z. A line-of-sight to a distant QSO is just a straight line through the
computational volume. We take the particles of the simulation to be absorbers of finite size and
record the positions and velocities of those close enough to the line-of-sight to be observed. If
there are two or more objects on any given line-of-sight we compute a velocity splitting for every
pair according to:

(7)

where ~vlI is the peculiar velocity difference, ~x is the proper separation along the line-of-sight
and H (z) is the Hubble constant at redshift z.

(8)

A cold, uncorrelated system would have velocity splittings distributed uniformly up to a

maximum of:

L
lfma,= ---H (z).

2(1+z)

303

Cold dark mat/er cosmological models

(9)

[Due to the periodic boundary conditions in the particle-mesh solver, the maximum separation at
redshift z is L/2 (1 + z).] The number of objects on a line-of-sight is a Poisson random variable
with parameter A = (Vlns! {}) N where VI." is the co moving volume swept out by the line-of-sight.
The average number of pairs is then:

x (,111)11(11-1) ,12
(llpairs)= ~exp -A - ---=-

II~O II! 2 2
(10)

and the averag~ number of pairs in a velocity bin of width f..11 is (,12 /2)(f..1' /l'maJ. We take this as
the background level and compute the velocity two-point correlation function as the fractional
excess over this level:

W(u)c= (11)

This is binned and plotted in Figs 1 and 2. which shows the largest and smallest values obtained in
all runs with the listed parameters, varying the realization. particle radius, simulation scale, and
particle number. These plots therefore give an idea of the total scatter in the calculations. We
omit l'split< 100 km S-I because we expect these to be unreliable due to Fourier mesh effects.
Tables 1 and 2 list the parameters for each simulation. Despite variations in mass per cloud,
Mcloud, by a factor of 30 and in cross-sectional area by a factor of 16, the scatter in Figs 1 and 2 is
usually less than a factor of 2.

-- ! -r

r
:0 r
16 ~ 0 0 = 1.0

16 ~

" ~ Z 'J
,..1.

c:
c

..<:: 12~
'-' I
:... ~
C

lOr u

8 r

[~

(a) \'clocity spl1tting (h~(}o krn/sl

Figure I. Line-or·sight velocity correlations for Q,,= 1 models (a) at z =3. ib) at Z= 1.25 and (c) at ~ =(). The upper and
lower histogf<im~ arc the largest and smallest estimates obtained from any single set of Iin-.?s-t.1f-sighL varying the
cloud size. computational volume. powcr.-spectrum realization and particle number. The true \alue isexpceted to lie

bcwccn these curves.

304

1. Salmon and C. Hogan

r:::
o

(b)

(e)

20

18

16

Z 1.25
I<

12

Velocllv Spllllll1£: (h~do km/s)

OL-L-~~J-~-L-L-L~~~ __ L-~~~J--L-L~~
a 200 qOO 600 BOO 1001 1201 IqOI 1601 IBOI 2000

Velocity splitting (h~do km/s)

Figure I - continued

We have also searched for possible systematic trends which could indicate gross inaccuracies in
the calculations. Tables 3 and 4 list W in a single velocity bin for each model at the three redshifts.
Multiple entries are the results of different 'surveys' of the same model, i.e. independent sets of
lines-of-sight yielded the different estimates of the correlation. Reading across Tables 3 or 4, one
sees the dependence of Won hole diameter. W displays no significant trend with hole diameter

305

Cold dark mafler cosmological models

over a range of at least a factor of2 and up to a factor of 4. Comparing entries in the same column
(at the same redshift) reveals the dependence of Won particle number and box size. For example,
models 04 and 05 have 21952 and 262144 particles respectively, but are identical in other
respects. The differences in W beween them are comparable to the differences within each model.
Similarly, models EdS5 and EdS6 have the same number of particles (262144), but realize the

C

--'
ro
C-

o
u

(a)

c
c
~

co

::
0
u

(b)

so --,---.

'-1 '5

'0 120= 02
i

Z = '")

j
d.

j

~
~

J
j
j
~

1

~~~~ 
200 '00 600 600 1001 1201 1401 1601 1801 2000 

VelocIty spllttmg (hil km/s) 

Su L 

~ 
,5 f-

:: I 120= 0.2 

Z = 1.25 

:'0 r-

:: l 
"r 10 

00 200 '00 600 800 1001 1201 1'01 160; 1801 2000 

Velocity splitting (hil km/s) 

Figure 2. Same as Fig. 1, for Qo=O.2 models. 



306 

1. Sa/moil and C. Hogan 

SOt 

:: t 
3S r 

',~y :)0 ~C~2 ~lll 
Z = O. 1 

; :r h 
~ :0 ~ Il 

_ ~ i 1 
b ~ I I 
~, 'I 
[ l, 

10 rILL 
:... i 

S :. 

t 

'-, 
'1-. 

'~L_' __ 

~ 
J 
1 
1 

[I L.: -L.....L~.....LI __ ~.......:.~ ~,--= ,====:r=~---': 

(el 

c· 20C 400 (.1:'1.1 ~',)d 10:]1 l.~Oi :-:(1 

VeloCily "l'lilllng (hid kt11/~) 

Figure 2 - continued 

1601 P301 

power spectrum on different length scales (L equal to 186 Mpc and 58 Mpc, respectively). Again, 
the variations between models are comparable to the variations within an individual model. We 

conclude that the true correlation for a large ensemble of realizations would probably lie within 
the range indicated by Figs 1 and 2. These figures also represent the range of correlations one 
expects in real data if the number of pairs per QSO is not large compared to unity, so that 
correlations are sampled from only a few clusters along the line-of-sight, as they are in our 
simulations. 

The basic trends in Figs 1 and 2 are: 

(i) In the Qo=0.2 models the 'clouds' are strongly correlated in velocity space. We find, for 
example, W= 1O±5 at z=3 for velocities between 100-150 km S-I. At z= 1.25 the W has grown to 

15 ±5 for the same velocities. These values are in reasonable agreement with the data for C IV 

absorption systems (Sargent et al. 1980) and we may identify the clouds (particles) in these models 
with such systems. Recall that the initial conditions were arranged so that the particle distribution 
would resemble the current galaxy distribution at z=O, so the heavy-element systems may simply 
be galaxies in this scenario. The above interpretation sheds no light on the identity of the Ly-a 
clouds. In fact some mechanism must be invented to prevent them from following the mass and 

the galaxies. 
(ii) In the Q = 1.0 models the correlations are much weaker. In fact, we cannot reliably measure 

any correlation at z =3 on any velocity scale. We identify the particles in these simulations with 
Ly-a systems which similarly show little or no correlation in the data (Sargent er al. 1980). Thus, 
in an Q= 1.0 COM universe, the Ly-a systems trace the mass and the heavy-element systems are 
more clustered than the mass. The various proposals for 'biasing' which have been suggested for 
the galaxy distribution might well apply to the heavy-element systems as well. We discuss, 
qualitatively, such a scheme below, 

(iii) Evolution in timc is extremely rapid in the Qo= I models, and less dramatic but still 
significant in the Q,,=(),2 models. This behaviour can be understood by comparison with the 
self-similar e\'oluti(l!l of correlations in a universe with po\\'er-law fluctuations. 



307 

Cold dark mailer co.wlOlogical models 

5 Similarity solution 

Let us leave the cold matter spectrum for the moment, and focus on power-law density fluctuation 
power spectra Ib~lo::kn, or b{J/{JocAr l

/
2

-
n/o. For Q=I, gravitational clustering is then 

scale-free, and must evolve self-similarly in time (Peebles 1974; Davis & Peebles 1977; 
Efstathiou, Fall & Hogan 1979; Peebles 1980). This permits us to write the following scaling 
relation for W. 

W(ZI' 1')= W [Z2' G ::~r1J l 
where 

II-I 
jJ= --. 

211+6 

(12) 

(13) 

This relation may be derived by requiring W(I") to be constant where l' IS defined by 
!; (11' /!-/) =constant, or equivalently by requiring IV to be always be the same on the velocity scale 
which currently has be/e=1. 

For a 'constant-curvature' spectrum 11= 1, the density contrast is constant in time at any fixed 
velocity, so as expected IV is constant in time. This is the asymptotic form for the cold dark matter 
spectrum at late times or large scales. For II < I, IV increases with time, and for 1/-> - 3, which is the 
asymptotic form of the CDM spectrum at small scales,jJ-> - YJ. This accounts qualitatively for the 
rapid evolution of W observed in our models. 

6 Discussion 

Studies of this type will probably be most interesting as data bearing on the absorption cloud and 
galaxy distributions relative to the mass distribution, and on the nature of the absorbing clouds 
and the structure of the intergalactic medium. The scenarios, (i) and (ii) above, are already 
constrained by the QSO data. In the Q =0.2 scenario, a way must be found to prevent the Ly-a 
clouds from following the gravitational potential of the galaxies and dark matter. In the Q=l 
scenario the Ly-a clouds may trace the mass distribution, but the fact that heavy-element clouds 
are already strongly clustered at high redshift seems to imply directly that at least some 
galaxy-like systems are laid down with substantially stronger correlations than the mass. We 
arrive at this conclusion entirely independently of any consideration of the present-day velocity 
distribution; it is a consequence of the weak correlations in the Q = 1 model, which would, without 
biasing, imply smaller correlations than are observed in the absorption systems. Thus, QSO 
absorption studies provide a surprisingly effective discriminant between different cold dark 
matter models 

At the present level of precision, the amount of biasing required to explain the QSO data in the 
Q = 1 case appears to be similar to that required by Davis et al. (1985) to obtain agreement with the 
galaxy velocities. In their biasing prescription, galaxy correlations are little affected by 
gravitational clustering, and are essentially laid down as initial conditions. We may use this idea to 
compare clustering at two epochs, using the following illustrative (and unphysical) model for the 
biasing. 

Suppose galaxy positions are fixed in comoving coordinates from 1 + z=4 to the present, and 
peculiar velocities may be altogether ignored. Then one would expect, in the absence of any 
dynamical clustering, a similarity relation of the form: 

(14) 



308 

1. Sa/mon and C. HORan 

so, for example, the clustering amplitude W at z=3 at 200 km S-I should be that today at 
100 km S-I. Within the observational errors, this prescription works for the QSO systems, since 
W(z=O, 100kms-I)=~(11z,ol)Mpc)=25, which agrees with W(z=2, v=100-200kms- l ) 

observed for the C IV lines. It is noteworthy that at a fixed velocity scale, the correlation amplitude 
for this non-dynamical clustering grows weaker with time, whereas that for gravitational 
clustering with n<l (as with CDM) grows stronger. 

The calculations presented here are up to the quality of presently published data, but better 
data arc forthcoming and will require more thorough exploration of parameter space and 
elimination of several residual sources of error. If correlations are found in the Ly-a systems, they 
will be weak enough that significantly better calculations will be required to test them against 
model predictions. 

Acknowledgments 

We thank Peter Quinn for many useful discussions. This work was supported in part by a Bantrell 
Fellowship and NSF grant AST82-14126 at Caltech and NASA grant 01AGW-763 at the 
University of Arizona (CHI) and by DOE grant DE-AS03-83ER13118 and a Shell Foundation 
Fellowship (1S). We arc also grateful for the computer time provided by the Caltech Concurrent 
Computing Project. 

References 

Black, 1. H., 1981. Mon. Not. R. str. Soc., 197,553. 
Blumenthal, G & Primack, 1., 1983. In: Fourth Workshop on Grand Unification. p. 256. eds Weldon H. A .. 

Langacker, P. & Steinhardt, P. 1., Birkhauser, Boston. 
Blumenthal, G., Faber, S. M., Primack, 1. R. & Rees, M. J., 1984. NalUre, 311, 517. 
Bond, J. R. & Szalay, A. S .. 1983. Astraphys. J., 274,443. 
Bond, J. R. & Efstathiou, G., 1984. Astrophys. J., 285, L45. 
Davis, M., Efstathiou, G., Frenk, C. & White, S. D. M., 1985. Astraphys. J., 292.371. 

Davis, M. & Peebles, P. 1. E., 1977. Astrophys. J. Suppl., 34,425. 
Dekcl, A., 1982. Astraphys. 1.,261, Ll3. 
Efstathiou, G., Davis, M., Frenk, C. & White, S. D. M., 1985. Astraphys. J. Suppl .. 57,241. 
Efstathiou, G., Fall, S. M. & Hogan, C. J., 1979. Mon. Not. R. astr. Soc., 189,203. 
Fox, G., Lyzenga, G. & Otto, S., 1985. Praceedings of the Computers in Engineering Conference, Boston, August 

1985, in press. 
Fransson, C. & Epstein, R., 1982. Mon. R. astr. Soc., 198,1127. 
Hockney, R. W. & Eastwood, 1. W., 1981. Computer Simulation Using Particles, McGraw-Hili International, New 

York. 
Oort, J. H., 1981. Astr. Astrophys., 94,359. 
Peebles, P. J. E., 1974. Astraphys. J., 189, L51. 
Peebles, P. 1. E., 1980. The Large Scale Structure of The Universe, Princeton Univcsity Press, Princeton. 
Peebles, P. J. E., 1982a. Astraphys. J., 263, LI. 
Peebles, P. 1. E., 1982b. Astraphys. J., 258,415. 
Peebles, P. J. E., 1984. Astraphys. J., 277,470. 
Sargent, W. L. W., Young, P. J., Boksenberg, A. & Tytlcr, D .. 1980. Astroph}'s. J. 5uppl., 42, 4l. 
Young, P. J., Sargent, W. L. W. & Boksenberg, A., 1982. Astraphy,. J. Suppl .. 48,455. 
ZcI'dovich, Ya. B., 1970. Astr. Astrophys., 5,84. 



309 

F. Cubix 

Reprinted with permission from the Proceedings of the Second Conference on Hy­

percube Multiprocessors, pp. 3-9 Copyright 1987 by the Society for Industrial and 

Applied Mathematics. All rights reserved. John Salmon, "CUB IX: Programming 

Hypercubes Without Programming Hosts." 



310 

CUBIX: Programming Hypercubes without 
Programming Hosts 

JOHN SALMON* 

Abstract. Typically, application programs for hypercubes consist of two parts, a master 
process running on the host and a server running in the nodes of the hypercube. 

CUBIX adopts a different viewpoint. Once a program is loaded into the hypercube, 
that program assumes control of the machine. The host process only serves requests for 
operating system services. Since it is no more than a file server, the host program is 
universal; it is unchanged from one application to the next. 

This programming model has some important advantages. 

Program development is easier because it is not necessary to write a separate pro­
gram for the host. 

Hypercube programs are easier to develop and debug because they can use standard 
I/O routines rather than machine-dependent system calls. 

Hypercube programs can often be run on sequential machines with minimal modifi­
cation. 

Versions of CUBIX exist for both crystalline and amorphous applications. In cry­
stalline applications operating system requests occur synchronously. Requests are either 
"singular" or "multiple" according to whether all nodes request the same or distinct 
actions. In amorphous applications requests occur completely asynchronously. The host 
process serves each request independently. Care is taken so that many processors may 
simultaneously access the same file. 

1. Introduction 

CUBIX was created to make programming hypercubes easier. It's goal is to elim­
inate significant duplication of effort on the part of hypercube programmers, and to make 
the hypercube environment appear much more familiar to application programmers. It is 
also intended to make hypercube programs more easily portable to sequential machines as 

• Physics Department, California Institute of Technology, Pasadena, CA 911:25 



311 

SALMON 

well as between different brands of hypercubes. 

The motivation for CUBIX can probably best be understood by sitting down with 
one's favorite hypercube and trying to get each of the nodes to perform a trivial task 
involving input and output to the console. For example, have each processor identify 
itself, and multiply its processor number by a number entered on the console, printing an 
informative message like: 

"I am processor 17 and 3 times 17 is 51." 

in response to the number 3 being entered. This is an extraordinarily difficult exercise 
because the nodes of the hypercube do not have direct access to the operating system 
facilities available on the host One can not, for instance, execute a "scanf' in the nodes to 
obtain data from the console. Instead, the host (intermediate host, cube manager, control 
processor, etc.) must allocate a buffer, read data from the console into it, pass the contents 
of the buffer to the nodes, read a message for each node containing the results of that 
node's calculation, format those messages and print the results. Programming this exercise 
requires two programs, one for the host and one for the nodes of the cube, often compiled 
with different compilers and different compiler options. 

This example is obviously frivolous, but it illustrates an important shortcoming in 
hypercube programming environments. Maintaining and debugging "real" programs is 
unnecessarily difficult for exactly the same reason as in the exercise: it is too hard to use 
the host's operating system. Debugging is extremely difficult because programs cannot be 
easily modified to produce output tracing the flow of control. Additionally, when a pro­
gram is modified, it often requires separate but coordinated changes to both the node pro­
gram and the host program. The necessary coordination is a rich source of minor bugs. 

A further deficiency in the hypercube environments is the duplication of effort 
involved in this programming style. Each programmer is forced to reinvent a host-cube 
protocol which resembles, functionally at least, the protocols that have been written hun­
dreds, if not thousands, of times already. After writing a few protocols, each programmer 
tends to develop a characteristic signature. Programmers quickly learn to reuse their 
'main' routines, but by then, their time has already been wasted. 

Finally, after expending the effort to develop an application on the hypercube, the 
programmer Imds that the program will not run on a sequential machine. The 1/0 proto­
col designed for the cube is completely foreign to the sequential machine. Even though 
the bulk of the application would operate correctly by linking with a very simple library 
of dummy communication routines, the host program and node program must be "glued" 
back together. Maintaining an evolving code intended to run on both sequential machines 
and hypercubes is quite difficult for this reason. (Note that the program, once glued, no 
longer runs on the hypercube.) 

All these deficiencies can be traced to a single source. Hypercubes are viewed as 
high-speed peripherals attached to a host computer which controls their operation. As 
peripherals go, they are extremely flexible and prograrrimable, but control, nevertheless, 
resides in the host The host loads programs and data into the cube, which then computes 
and eventually returns results which are expected, in number and length, by the host. In 
more sophisticated applications, the cube analyzes various tokens passed by the host and 
may perform different computations based on their values. This general organizational 
style is familiar to most hypercube programmers. 



312 

CUBIX: PROGRAMMjNG HYPERCUBES WITHOUT PROGRAMMING HOSTS 

2. A different perspective 

The basic idea behind cUBIX is that the program running in the cube should con­
trol the operation of the associated program running on the host. This is exactly opposite 
to the common style of programming discussed above. In cUBIX., tokens are passed from 

. the cube to the host requesting activities like opening and closing files, reading the time­
of-day clock, reading and writing the file system, etc. The host program does nothing 
more than read requests from the cube, act on them and return appropriate responses. All 
such requests are generated by subroutine calls in the cube. The host program which 
serves the requests is universal; it is unchanged from one application to the next, and the 
programmer need not be concerned with its internal operation. 

It is convenient to give the cube subroutines the same names and calling conventions 
as the system calls they generate on the host. This relieves the programmer of the task of 
learning a new lexicon of system calls. Any operation he would have performed in a host 
program can be encoded in a syntacticalIy identical way in the cube. It is of no conse­
quence that the subroutine caUed in the cube will actually coUect its arguments into a mes­
sage, add a token identifying the request, and send the message to the host for action. All 
the programmer sees is a call to, e.g., wrile(fd, plr, en!}. 

High-level utilities are often written in terms of a set of standard system calls. Since 
the cUBIX system calls have the usual names and calling sequences, system utilities 
designed for the sequential host computer can be readily ported to the hypercube. For 
example, the C Standard I/O Library can be compiled and linked with cUBIX allowing 
various forms of formatted and unformatted buffered I/O. Under CUB IX, the exercise of 
Section 1 would be programmed as: 

#include <stdio.h> 

mainO 
{ 

} 

int entry, pnum; 

pnum = /* machine dependent specification of local processor number * /; 
scanf("%d", &entry); 
fmulti(stdout); 1* see section 4. * / 
printf("I am processor %d, and %d times %d is %d\n", 

pnum, entry, pnum, pnum*entry); 
exit(O); 

3. The catch 

It is highly optimistic to think that a set of system calls designed for. a sequential 
computer can be sufficient for use in a parallel environment without modifications or 
additions. In fact, the requirements of the parallel environment do force one to restrict 
the use of some routines and also to add a few additional ones. The details differ 
markedly between crystalline and amorphous environments. The two cases will be taken 
up in the next two sub-sections. In both cases, the issue addressed is the same: 

How does one resolve the problem that different processors may need to do 
different things? 



313 

SALMON 

3.1 The crystalline case 

Crystalline programs are characterized by uniformity from processor to processor 
and a computation that proceeds in loose lock-step. Synchronization is maintained by 
enforcing a rendez-vous whenever data is communicated between processors. Since loose 
synchronization is the norm in crystalline programs, it is not unreasonable to demand that 
system calls be made loosely synchronously. That is, it is permissible to call system sub­
routines whenever all communication channels are free. Furthermore, when a system call 
is made in one processor, it must be made in all processors at the same time, and with 
identical arguments. (Exceptions will be discussed shortly.) This neatly resolves the prob­
lem of how to deal with disparate requests from different nodes; such an event is 
declared to be in error. 

Of course, there are times when different nodes need to request different actions 
from the host. The short program in Section 2 contains an example in which each proces­
sor attempts to print a different string. CUBIX adds two system calls, mread and nzwrite, 
to the usual set to allow for distinct I/O operations to be performed by different proces­
sors. Both must be called loosely synchronously, but they may have different arguments in 
each node. Their effect is as follows: 

nzread(fd, ptr, ellt) causes ellto bytes to be read from the file referred to by file descriptor 
fd, into the memory of processor 0 starting at ptr o. The next ellt 1 bytes 
are read from the file into the memory of processor 1 starting at ptr 1 , etc. 
Subscripts refer to the value of the argument in the corresponding proces­
sor. 

mwrite(fd, ptr, ellt) behaves like mread, except that data is copied from the memory of the 
various processors to the file. 

In C programs, it is much more common to use the the Standard I/O Library rather 
than to use system calls like read, write, opell and close directly. Thus, it is crucial to 
enhance the Standard I/O Library so users can take advantage of nzread and nzwrite along 
with the usual system calls. In the Standard I/O Library, I/O is directed to streams, 
declared as pointers to type FILE. In CUB IX, streams have a new attribute called nlldti­
plieity. That is, streams can be in either the sillgldar or multiple state. The functions, 
fmulti(stream) and fsingl(stream) are provided, which change the multiplicity of their 
argument to I!lultiple and singular, respectively. Singular streams behave in the usual way, 
and are bound by the usual rules of loose synchronization and identical arguments. Multi­
ple streams form the standard I/O interface to mread and mwrite. They allow the pro­
grammer to read and write data which is distinct in each node of the hypercube. Since 
output is buffered, queueing data for output to multiple streams need not be synchronous. 

On the other hand, flushing the buffer must be done explicitly, and it must be synchro­
nous. Flushing a multiple stream causes the data stored in each processor's buffer to 
appear in order of increasing processor number. The buffer associated with a stream may 
be flushed by calling one of fflush, fdose or exit, simultaneously in all the nodes of the 
hypercube. Since the programmer has control over when buffers are flushed, he can con­
trol,in detail, the appearance of his program's output. For example, the code fragment 

fmulti(stdout); 
prin tf("hello \n H); 
[f1ush(stdout); 
printf("goodbye \n "); 
[f1ush(stdout); 



314 

CUBIX: PROGRAMMING HYPERCUBES WITHOUT PROGRAMMING HOSTS 

printf("CUBIX "); 
printf("is flexible\n"); 
[flush(stdout); 

produces the following output when executed in all processors loosely synchronously: 

hello 
hello 

hello 
goodbye 
goodbye 

goodbye 
CUBIX is flexible 
CUBrx is flexible 

CUBIX is flexible 

Multiple input streams are not quite as flexible as output streams because the data 
must be available to the program when the input routine returns. This is in contrast to 
output routines which do not guarantee that the data has appeared on the output device 
upon return from the function. Thus, when input functions like scan! and getc are 
applied to multiple streams, each node reads as much of the input stream as necessary and 
then passes control on to the next node in sequence. The function, W1getc, when applied 
to multiple input streams replaces the last character read by the last processor. 

3.2 The amorphous case 

Amorphous (i.e. non-crystalline) programs are naturally asynchronous. It would be 
extremely inconvenient for the programmer to synchronize his calculation every time he 
wished to produce output or interact with the operating system. The processors in an 
amorphous CUB IX program are treated as though they are executing separate and 
independent processes. There is no notion of singular I/O, and there are no requirements 
of loose synchronization or identical arguments. Most system calls behave in a completely 
straightforward way when used in an amorphous CUBIX program, but the programmer 
must beware of asking for system resources too frequently. With currently available hosts, 
it would be easy to swamp the host's operating system if every node were to simultane­

ously request the same resource. 

There is some difficulty, however, in maintaining numerous open flies. If the host's 
operating system allowed CUBIX to allocate several hundred file descriptors, CUBIX 
could simply return a distinct file descriptor to every process that requested one. Unfor­
tunately, there is a limit of about twenty simultaneously open files, so the CUBIX host 
program must remember what files are already open and avoid reopening them. There is 
still a limit of about twenty simultaneously open file names, which means that the pro­
grammer usually cannot open a different file for each processor in the cube. 

When a file is opened by a processor, that processor's pointer into the file is 
unchanged by the activity of other processors. Each processor maintains some informa­
tion about the files it has opened, including the current offset at which to begin the next 
read or write operation. v,'hen a read or write request is sent to the host, this information 
is sent as well, so the host can "seek" to the Correct place before reading or writing the 



315 

SALMON 

data. Thus, each processor has complete control over the location of each byte it writes 
into the file. Using this system requires considerable care on the part of the programmer 
to keep processors using the same file from destroying one another's data. Nevertheless, 
such care often results in programs whose output is repeatable, so that the order of the 
data in output files does not depend on tiny variations in processor speed, etc. Aside from 
difficulty of use, there is another important disadvantage. In order for several processors 
to share a file, it must make sense for that file to have multiple pointers into it. This is 
simply not true of devices like terminals, to which data may only be appended. 

The UNIX operating system provides for file output in append mode, in which each 
datum is placed at the end of the We, regardless of the offset of the process' current file 
pointer. CUBIX supports the same idea. Placing output files in append mode is a simple 
way of guaranteeing that data will not be lost because of several processors writing to the 
same offset. Output to files in append mode may also be directed to a terminal or other 
serial device. Append mode has the disadvantage that each record in the file must usually 
be tagged to in.Oicate its originator. A system to automatically tag each record and record 
a "table-of-contents" at the end of the file upon closure is under development. 

4. Experience with CUBIX 

A crystalline version of CUBIX has been running at Cal tech since early 1986. A ver­
sion for amorphous applications was implemented about six months later. Since its intro­
duction, CUBIX has become quite popular, and systems are now operating on the Cal tech 
Mark II and Mark III machines as well as the Intel IpSC and the NCUBE. The prevailing 
attitude among users is that use of CUBIX is vastly simpler than the old host-cube proto­
cols (even among persons not in the author's immediate family). Several programs have 
been written for which the same code can be compiled and run on a sequential machine, 
as well as a hypercube running CUBIX. 

CUBIX's most significant drawback seems to be the increased code size in node pro­
grams. All computation that would have been done on the host is now done in the nodes 
of the hypercube. Although it is not any slower to perform inherently sequential tasks 
simultaneously in many processors, a copy of the code must reside in each processor. It is 
important to realize that both Standard I/O routines like prillt/. which usually does not 
appear in non-CUB IX programs, and application-dependent sequential code, which would 
have appeared in the host program, must now be included in the code that runs in every 
node. The size of this code can be significant, and reduces the amount of space available 
for data The code and data linked by a call to print/. for example, requires about 
6 kbYTes on each node in our implementation. Measures can be taken to reduce the size of 
application-dependent sequential code. For example, Wters can be used with UNIX pipes 
to massage the data prior to sending it into the cube, or after getting it back. So far, we 
have not needed more generality than that provided by simple input and output filters. 
Nevertheless, the possibility remains that in subsequent versions of CUBIX, application 
programs in the cube could call application-dependent subroutines linked into the host 
program. 

5. Conclusion 

Adopting the viewpoint that the program running in the nodes of the hypercube 
should control the behavior of the host program has some extremely desirable conse­
quences. 



316 

CUBIX: PROGRAMMING HYPERCUBES WITHOUT PROGRAMMING HOSTS 

It is possible to write a universal host program which accepts commands generated 
by subroutine calls in the nodes of the hypercube. 

Given a universal host program, programmers only write one program (the one for 
the nodes) for any application, eliminating considerable labor and an annoying 
source of bugs. 

All details of the host-cube interface are hidden from the application programmer. 
Operating system services are obtained by system calls identical to those used on the 
host 

Since applications require only one program to operate on the hypercube, it is usu­
ally a simple matter to run them on a sequential machine as a special case. 

Since operating system interaction is, for the most part, the same as in sequential 
programs, there is considerably less to learn before one can begin writing significant 
hypercube programs. 



317 

References 

[1] Roger W. Hockney and James W. Eastwood, Computer Simulation Using Par­

ticles, Mcgraw-Hill International, New York, 1981. 

[2] A. Leonard, "Computing Three-Dimensional Incompressible Flows with Vortex 

Elements," Annual Rev. Fluid Mech., 17, 523, 1985. 

[3] J.J. Monaghan, "An Introduction to SPH," Computer Physics Communica­

tions, 48, 89-96, 1988. 

[4] G.A. Bird, Molecular Gas Dynamics, Clarendon Press, Oxford, 1976. 

[5] S. T. O'Donnel and V. Rokhlin, "A Fast Algorithm for the Numerical Evalu­

ation of Conformal Mappings," SIAM J. Sci. Stat. Comp., 10, 475, 

1989. 

[6] G.C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving 

Problems on Concurrent Processors, Prentice Hall, Englewood Cliffs, 

NJ,1988. 

[7] VV. Hackbusch and U. Trottenberg, Multigrid Methods, Springer-Verlag, Lec­

ture Notes in Mathematics 960, Berlin, 1981. 

[8] W. Briggs, A lvIulti-grid Tutorial, SIAM, Philadelphia, 1987. 

[9] Andrew W. Appel, "An efficient Program for Many-Body Simulation," SIAM 

J. Sci Stat. Comput., 6, 85, 1985. 

[10] 1. Newton, Mathematical Principles of Natural Philosophy and System of the 

World, University of California press, Berkeley, 1962 (1st ed., 1687). 

[11] Klaas Esselink, "About the order of Appel's Algorithm," Dept. of Computing 

Science, University of Groningen, Netherlands, Report CS 8910, June 

1989. 



318 

[12] P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton Uni­

versity Press, Princeton, New Jersey, 1980. 

[13] Leslie Greengard, "The Rapid Evaluation of Potential Fields in Particle Sys­

tems," PhD Thesis, Yale University, Computer Science Research Re­

port YALEUjDCSjRR-533, 1987. 

[14] Feng Zhao, "An O(N) Algorithm for Three-dimensional N-body Simulations," 

MIT Artificial Intelligence Laboratory, 995, 1987. 

[15] F. Pepin, Simulation of Flow Past an Impulsively Started Cylinder using a 

Discrete Vortex Method, PhD. Thesis, California Institute of Technol­

ogy, 1990. 

[16] J. Barnes and P. Hut, "A Hierarchical O(NlogN) Force-Calculation Algo­

rithm," Nature, 324, 446-449, 1986. 

[17] Joshua E. Barnes and Piet Hut, "Error Analysis of a Tree Code," Astrophys­

ical Journal (Suppl.), 70, 389-417, June 1989. 

[18] Lars Hernquist, "Performance Characteristics of Tree Codes," Astrophysical 

Journal (Suppl.), 64, 64, 1987. 

[19] J. Makino and P. Hut, "Gravitational N-Body Algorithms: A Comparison 

Between Supercomputers and a Highly Parallel Computer," Computer 

Physics Reports, 9, 199, 1989. 

[20] J. Makino, "Comparison of Two Different Tree Algorithms," Journal of Com­

putational Physics, 88, 393, 1990. 

[21] Lars Hernquist, "Vectorization of Tree Traversals," Journal of Computational 

Physics, 87, 137, 1990. 

[22] J. Barnes, "A Modified Tree Code: Don't Laugh; It Runs," Journal of Com­

putational Physics, 87, 161, 1990. 

[23] L. Greengard and V. I. Rokhlin, "A Fast Algorithm for Particle Simulations," 

J. Comput. Phys., 73, 325, 1987. 

[24] L. Greengard, "Potential Flow in Channels," SIAM J. Sci. Stat. Comput., 

11, 603, 1990. 

[25] J. G. Jernigan, in IAU Symposium 113, Dynamics of Star Cluseters, ed. P. 



319 

Hut, 275, Reidel, Dordrecht, 1985. 

[26] David H. Porter, A Study of Hierarchical Clustering of Galaxies in an Expand­

ing Universe, PhD. Thesis, University of California, Berkeley, 1985. 

- [27] J .G. Jernigan and D.H. Porter, "A Tree Code with Logarithmic Reduction of 

Force Terms, Hierarchical Regularization of All Variables and Explicit 

Accuracy Controls," Astrophysical Journal (Suppl.), , 871, 1989. 

[28] K. Chua, A. Leonard, F. Pepin, and G. Winckelmans, "Robust Vortex Meth­

ods for Three-Dimensional Incompl'essible Flows," in Proceedings of 

Symposium on Recent Advances in Computational Fluid Dynamics, 

AS ME Winter Meeting, Chicago, 1988. 

[29] Feng Zhao and S. Lennart Johnsson, "The Parallel Multipole Method on the 

Connection Machine," Thinking Machines Corp, CS89-6, 1989. 

[30] Jacob Katzenelson, "Computational Structure of the N-Body Problem," 

SIAM J. Sci. Stat. Comput., 10, 787-815, July, 1989. 

[31J W. Benz, "Applications of SPH to Astrophysical Problems," Computer 

Physics Communications, 48, 97, 1988. 

[32] W. Benz, R. L. Bowers, A. G. W. Cameron, and W. H. Press, "Dynamic Mass 

Exchange in Doubly Degenerate Binaries r. 0.9 and 1.2 Msolar Stars," 

Astrophysical Journal, 348, 647, 1990. 

[33] W. H. Press, "Techniques and Tricks for N-Body Computation," in The Use 

of Supercomputers in Stellar Dynamics, ed. S. McMillan, 184, Springer 

Verlag, 1986. 

[34] M. Abramowitz and r. Stegun, Handbook of Mathematical Functions, Dover 

Publications, New York, 1972. 

[35] W. Jaffe, "A Simple Model for the Distribution of Light in Spherical Galax­

ies," }'10n. Not. Roy. Astron. Soc., 202, 995, 1983. 

[36] D.E. Knuth, The Art of Computer Programming vol. 1 Fundamental Algo­

rithms, Addison Vlesley, Reading, Mass., 1973. 

[37] L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1960. 

[38] L. Hernquist and N. Katz, "TREESPH - A Unification of SPH with the 



320 

Hierarchical Tree Method," Astrohysical Journal (Suppl.) , 70, 419, 

1989. 

[39] G. B. Thomas, Calculus and Analytic Geometry, Addison-Wesley, Reading, 

Mass., 1968.,J!' 

[40] G. C. Fox, "A Graphical Approach to Load Balancing and Sparse Matrix 

Vector Multiplication on the Hypercube," in Numerical Algorithms 

for Modern Parallel Computer Architectures, ed. M. Schultz, 37-62, 

Springer-Verlag, 1988. 

[41] John Salmon, "Binary Gray Codes and the Mapping of a Physical Lattice into 

a Hypercube," California Concurrent Computation Project, Report 

051, 1984. 

[42] W. Furmanski and G. C. Fox, Hypercube Algorithms for Neural Network 

Simulation: the Crystal Accumulator and the Crystal Router, ACM 

Press, New York, 1988. 

[43] ParaSoft Corp., ExPress Programmer's Reference Manual, ParaSoft Corp., 

Pasadena, 1990. 

[44] Mike Warren, private communication, 1990. 

[45] M.T. Heath, Hypercube Multi-Processors 1987, SIAM, Philadelphia, 1987. 

[46] Proceedings of the Third Conference on Hypercube Computers and Appli-

cations, ACM Press, New York, 1988. 


