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Comparison of the properties of cholinergic differentiation factors and 

examination of their possible role in vivo 

We have compared the immunological, biochemical, and biological properties 

of three previously described cholinergic factors, cholinergic differentiation 

factor/Leukemia inhibitory factor (CDF/UF), ciliary neurotrophic factor (CNTF), 

and membrane-associatedneurotransmitter-inducing substance (MANS). CDF/U F 

differs from CNTF and MANS in that it does not have any ciliary neurotrophic 

activity. Further, antibodies generated against the N-terminal sequence of CDF/LIF 

do not precipitate cholinergic activity from sciatic nerve (CNTF) or spinal cord 

(MANS) preparations indicating that CDF/UF is a distinct molecule. MANS 

preparations contain a 24 kD molecule immunologically related to CNTF and CNTF 

antisera also, immunoprecipitate the cholinergic differentiation activity present in 

MANS fractions. CNTF, like CDF/LlF, affects neuropeptide expression. Neuropeptide 

Y levels are reduced and vasoactive intestinal peptide, somatostatin and Substance P 

levels are elevated in a dose-dependent fashion. Unlike CDF/LlF, the effects of CNTF 

on cholineacetyltransferase and peptide induction are not antagonized by 

depolarization. In addition, CNTF, in contrast to CDF/LlF, does not modulate peptide 

levels in DRG neuronal cultures. Thus, at least two distinct factors, CNTF and 

CDF/LlF, exist and have distinct but overlapping functions. 

We have investigated the possible role of CDF (cholinergic differentiation 

factor from skeletal muscle), CDF/LIF CNTF, and MANS in mediating the target

directed noradrenergic to cholinergic switch that characterizes sweat gland 

innervation. Sweat gland extracts contain a cholinergic and peptidergic 

differentiation activity for cultured sympathetic neurons. Extracts from tabby mice 

(which lack sweat glands) and noradrenergic sympathetic targets have significantly 

reduced cholinergic differentiation activity. Expression of the differentiation 

activity in footpads occurs at a time period appropriate for a role for this factor(s) 

in vivo. Comparison with other differentiation molecules suggests that it is distinct 

from MANS, CDF and the heparin binding cholinergic factor. Immunological and 

biochemical analysis indicate that the major cholinergic-inducing activity is not LlF 

but is a CNTF-like molecule. Western blots, northern blot and in situ hybridization 

analysis fail to detect CNTF or CNTF message in footpads. The possible relationship 

between CNTF, LlF and sweat gland cholinergic differentiation factor(s) is discussed. 
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Introduction 

The development of the peripheral nervous system in vertebrates involves 

differentiation, migration to an appropriate location, projection to an appropriate 

target, synaptogenesis and expression of the appropriate neurotransmitters. Making 

the appropriate choices at each of these developmental steps is critical to the 

construction of an appropriately functioning nervous system. Our increasing 

awareness of the sheer number of neurons in the vertebrate nervous system, the 

diversity of neuronal phenotypes distinguishable on morphological, biochemical and 

electrophysiological criteria, and the plasticity of the nervous system has led to an 

appreciation of the magnitude of the problem that a developing organism faces in 

specifying the appropriate developmental fate of every neuron. 

Consider the question of how a developing organism regulates the 

neurotransmitter(s) a particular neuron will express. There are an increasing 

number of neurotransmitter candidate molecules: about a dozen known classical 

neurotransmitters and over 30 putative purine and peptidergic neurotransmitters 

(for review see Hokfelt et a/., 1980, and references therein). Furthermore, 

evidence has accumulated to show that neurons contain more than one and often two 

or even three different neurotransmitters (see Hokfelt et a/., 1980); most often a 

classical neurotransmitter is colocalized with a peptidergic neurotransmitter(s). 

Given this large number of neurotransmitter candidates and the possibility that any 

single neuron can express two, three or more of these molecules, the transmitter 

phenotypes a neuron could potentially express is extremely large. For example, if 

any three neurotransmitters of the 50 neurotransmitter candidates can be expressed 

in a neuron, the number of combinatorial phenotypes is over 110,000. While there 

are useful generalizations as to the combinations of classical transmitters and 

peptides produced, the numerous exceptions do not lead to any significant reduction 

in the number of possible combinatorial phenotypes. The problem becomes even 

more complex if one takes into account evidence that the neurotransmitters and 

peptides produced by a single neuron are differentially regulated both on a short 

term and a long term basis (see below). One would then not only have to specify in 

some manner the expression of a particular subset of transmitter and peptide 

molecules for every neuron, but also exercise temporal regulation over their 

expression. An example from the peripheral nervous system may make the 

magnitude of the problem clearer. In the rat, the stellate ganglion in the sympathetic 
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Introduction 

chain develops from cells which migrate from the neural crest. Precursor cells 

undergo mitosis to give rise to approximately 20,000 neurons in the adult. These 

neurons subsequently send projections to a number of different targets. Within the 

stellate ganglion, one can identify cells which express various permutations and 

combinations of at least five different neurotransmitters. The cell bodies of the 

neurons expressing anyone subset of neurotransmitters are not distributed in any 

organized fashion, but rather seem to be randomly distributed throughout the 

ganglion (Lundberg et al., 1979, 1982, 1983, Henion et al., unpublished results). 

However, the nerve fibers innervating a specific target seem to express a 

characteristic subset of neurotransmitters. For example, the sympathetic fibers 

innervating blood vessels contain TH (tyrosine hydroxylase), the rate-limiting 

enzyme for catecholamine synthesis and NPY (neuropeptide V), while those that 

innervate the sweat glands do not; instead, they contain ChAT (Choline 

acetyltransferase) and VIP (Vasoactive intestinal peptide), and the fibers that 

innervate the piloerector muscles in the hairy skin contain TH but not NPY. It is also 

important to note that these targets are not necessarily spatially segregated. Blood 

vessels lying adjacent to the sweat glands are innervated by fibers arising from the 

same ganglion and projecting along the same nerve trunk as fibers innervating the 

sweat glands, and yet the transmitter profiles are distinct. Thus, neurons expressing 

a subset of classical transmitter and peptide molecules, randomly distributed within 

the ganglion, project to their appropriate target even when the targets are not 

widely segregated. Furthermore, the lack of inappropriate projections suggests that 

the organism matches neurons expressing the appropriate subset of purine, 

peptidergic and classical neurotransmitters to targets possessing the corresponding 

set of receptors. Multiply this kind of specification from one ganglion to the whole 

nervous system and one begins to appreciate the degree of regulation involved. 

Several possible developmental strategies could regulate which two or three 

of the 50 or so transmitter candidates a neuron will express. One possible 

mechanism is prespecification by lineage. The classical transmitters, synthesizing 

enzymes, purines and peptides that every neuron in the nervous system will express 

could be specified by its lineaQe. Loss of that particular neuron would lead to an 

irreparable defect of that cell and its progeny. Studies in invertebrate development 

do in fact tend to support this view (Kenyon, 1985, Doe and Goodman,1985; 

Davidson, 1990). Indeed, in the C. elegans the lineage of every neural crest derived 

cell has been worked out (Sulston et al., 1983). In vertebrates, however, it has 

become increasingly clear that the expression of the transmitter and peptide 
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Introduction 

molecules cannot be specified only on the basis of a cell's lineage history. Given the 

estimated number of neurons in the central nervous system (10 11 neurons) and 

the 50 or so neurotransmitters, the possible permutations that would have to be 

coded for would far exceed the coding capacity of DNA. Thus, in vertebrates at least, 

specifying the lineage of every neuron is not feasible. Further clear examples of 

environmental regulation of transmitters expressed by a neuron are available (see 

below). 

Another strategy that does not require as extensive a control on the lineage of 

the cell is one similar to that which specifies the lineage and development of the 

hemopoietic system. For example, in the hemopoietic system a stem cell can give 

rise to macrophages, granulocytes, erythrocytes, lymphocytes and platelets by 

generating a series of committed progenitor cells which are restricted to a 

particular sublineage (Nicola and Johnson, 1982, Ogawa et a/., 1983). These 

committed progenitor cells give rise to a large number of identical cells (clonal 

amplification), which then undergo terminal differentiation. By analogy, in the 

nervous system a pleuripotent precursor would undergo a series of increasingly 

restricted developmental choices to give rise to committed or restricted precursors 

until the final division would lead to a committed postmitotic neuron. Such a model of 

neuropoiesis (see Anderson, 1989 and references therein) has been successfully 

invoked to explain segregation of the melanocytic, sensory and sympathetic lineages 

in the development of the peripheral nervous system (for review see Anderson, 

1989, Le Douarin 1986). The development of neurotransmitter subtypes in the 

stellate ganglion by analogy would be explained on the basis of a pluripotential cell 

present in the neural crest, which would undergo restriction in developmental fate 

to perhaps a restricted neuron or glial precursor The neuron precursor would 

undergo subsequent developmental restrictions to give rise to different neuron 

precursors, each of which is only capable of giving rise to neurons that express a 

particular subset of purine, peptide and classical transmitters. These specific 

neuron precursors would then divide to give rise to a large or small number of 

similar cells (clonal amplification). These cells would then undergo terminal 

differentiation to give rise to the differentiated transmitter phenotype. A more 

detailed analysis of the development of the stellate ganglion, however, makes it clear 

that such a developmental strategy does not completely explain the development of 

this ganglion. The cells expressing a particular neuropeptide, say the VIP positive 

cells, are not arranged in clusters showing a common developmental origin at any 

stage in development. Further, the expression of at least some of the different 
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Introduction 

transmitter and peptide molecules occurs well after the neuronal precursors have 

undergone their terminal division. Finally, external manipulations both in young and 

adult animals can alter the expression of classical transmitters and peptides in 

postmitotic neurons (see below). Thus, a hemopoietic model cannot completely 

explain the acquisition of different transmitter profiles by subsets of neurons seen 

in sympathetic ganglia such as the stellate (Lundberg et al., 1979, 1982, 1983) or 

chromaffin cells (Unsicker et al., 1980, Soinila and Eranko, 1980) or the 

phenotypic plasticity that has been observed in several developmental systems (see 

below). 

Another possible mechanism to regulate the temporal and spatial pattern of 

neurotransmitter expression would be to use extracellular signals to instruct a cell 

to switch on a particular neurotransmitter or group of neurotransmitters. Using 

environmental signals as a mechanism to generate diverse groups of neurons 

expressing different neurotransmitter profiles is particularly attractive for 

several reasons. Such a mechanism explains the remarkable diversity in 

neurotransmitter phenotypes seen in the developing and adult organism without the 

necessity of an extremely tight control on lineage. It is also attractive, in part, 

because the same external signals that regulate the expression of subsets of peptides 

and classical transmitters could modulate the short-term changes in levels of 

neurotransmitters and their synthesizing enzymes that have been described (see 

Schultzberg et al., 1978, Fischer Colbrie et al., 1988, Zigmond et al., 1989, Sachs 

et al., Neuroscience abstract, 1990). Using environmental signals can also bypass 

the problem of matching neurons expressing the appropriate subset of purine, 

peptide and classical transmitters to their appropriate targets with the appropriate 

receptors; one simply presumes that the specification of the appropriate 

neurotransmitter profile occurs after the neuron has innervated its target, i.e., at 

least in some cases the target tissue specifies the transmitter phenotype. Thus, one 

can postulate the existence of several factors which specify a single or some 

particular subset of the 50 neurotransmitter candidates. Spatial and temporal 

control of expression of a few of these factors, which would act on a number of 

neurons irrespective of their lineage history with certain caveats, would enable one 

to generate nearly all the different combinatorial phenotypes of neurotransmitters 

that have been described. In the simplest model, one would predict that individual 

factors would specify the induction of a particular purine, peptide or classical 

neurotransmitter molecule, and, therefore, there would be 50 or so factors, a 

number which, while large, is certainly not improbable. Neurons would respond to 
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Introduction 

the factors to which they were exposed during development to express appropriate 

peptidergic and classical transmitter molecules. It is, however, not strictly 

necessary that there be 50 or so modulators. One can imagine a situation where 

fewer factors code for subsets of neurotransmitters that are commonly co

expressed, for example a VIP and ChAT-inducing factor, or a TH and NPY factor. The 

transmitter phenotype could also be regulated by factors that inhibit the constitutive 

expression of a particular neurotransmitter. In this hypothesis the development of 

the stellate ganglion would be simpler to explain. The neurons in the stellate ganglion 

would be identical in terms of their developmental potential and would project along 

pathways to specific targets. Enroute to their target or soon after reaching the 

target, the neurons would react to environmental signals expressed in a restricted 

spatial pattern to express or repress the expression to some subset of the possible 

neurotransmitter phenotype that the cell is capable of expressing. This hypothesis 

does not imply that lineage does not play any role in determining at least some of the 

phenotypic diversity seen in vertebrates; rather, it envisages an additional layer of 

regulation which becomes necessary, due to the fact that within particular 

sublineages of neurons (sympathetic, sensory, etc.) additional subtypes are present 

which express different transmitter phenotypes. 

A hypothesis which postulates such an environmental regulation of the 

neurotransmitter phenotype would lead to several predictions. 1} Postmitotic 

neurons or their proximate precursors should be plastic with respect to their 

neurotransmitter phenotype. 2} It should be possible to identify extracellular 

signals that can differentially modulate, either up or down regulate, the levels of 

peptides and other neurotransmitters. In addition, one could also postulate that, at 

least in some instances, extracellular signals would be present at or made by the 

target. 3} Individual factors should act on neurons of different lineages. This is an 

important prediction, since only if we had general factors which acted on a 

reasonable subset of neurons would there be any advantage (as far as reduction in 

coding requirements) in devising a system that worked in this manner. 

Evidence has accumulated in support for all three of these predictions. I will 

discuss examples from both vertebrate and invertebrate literature for each of these 

points. 

Postmitotic neurons or their immediate precursors are plastic. 
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Introduction 

An important prediction for a hypothesis postulating that external factors 

regulate the expression of peptide and classical neurotransmitters is that neurons 

should be capable of switching their neurotransmitter status. Several examples of 

neurons changing neurotransmitter status in vitro and in vivo have been described. I 

will describe a few relevant examples. For a more complete review, see Landis, 

1988. 

Plasticity in invertebrates 

Given that, to a large extent lineage determines the development of 

invertebrates (Kenyon, 1985, Doe and Goodman, 1985, review by Davidson, 

1990), it seems surprising to find examples of plasticity. However, plasticity in 

identified neurons has been described in at least three different invertebrate 

systems: snails, hydra and the moth (Gesser and Larsson, 1985, Koizume and Bode, 

1986, Tublitz and Sylwester, 1990). These examples are of particular importance 

in that they represent the best examples of plasticity in identified populations of 

neurons in vivo. 

In Hydra, Koizumi and Bode showed that the FMR amide immunoreactive cells 

(FLI+) arise from FLI- neurons when these neurons are displaced to the tentacle, 

hypostome or peduncle from the body column. Furthermore, when the peduncle with 

FLI+ neurons is grafted to the body column, it is converted to basal disc or body 

column tissue and the FLI disappears. Since this appearance and loss of FLI is always 

position dependent it is clear that neurons in the mature nerve net of the hydra can 

modulate their neuropeptide phenotype. 

In the Lymanea stagnalis, seasonal changes in neuropeptide content have been 

described in a particular population of neurosecretory cells: the light green cells. In 

the spring, these cells contain Enk-Ll, in the fall, gastrin/CCK- LI, and in winter, 

immunoreactivity for both these peptides. In another group of neurons, the 

caudodorsal cells, which secrete an ovulation hormone, age-dependent changes in 

peptide immunoreactivity can be detected: In the young snail these cells are 

immunoreactive for both ENK and gastrin-CCK. In the adult, however, the same cells 

display only gastrin-CCK immunoreactivity. 

In the Manduca sexta, Tublitz and Sylwester have identified a group of four 

neurosecretory neurons that in the larva express high levels of CAP (cardioactive 

peptide) activity. When these same neurons are assayed in the pupa or the adult, no 
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CAP activity can be detected, but now these cells contain high levels of bursicon, 

another peptide hormone. Thus, functionally mature cells in vivo are capable of 

altering their neurotransmitter phenotype. 

The vertebrate nervous systems. 

A large body of evidence for plasticity has accumulated in the avian, rat and 

murine nervous systems, both in vivo and in vitro. 

Direct evidence for a change in neurotransmitter phenotype in individual 

cells was obtained in an elegant series of microculture experiments (Furshpan et 

al., 1976, 1986 a,b, Landis, 1976, Potter et al., 1986, Matsumoto et al., 1987). 

Sympathetic neurons grown on a small island of heart myocytes or fibroblasts will 

form functional synapses (Furshpan et al., 1976). The neurotransmitter released at 

these synapses can be assayed using various agonists and antagonists. Using this 

assay system it was possible to demonstrate transitions of neurotransmitter 

phenotype from noradrenergic to dual function and dual function to cholinergic. 

Thus, in culture at least, single identified post mitotic neurons can, under the 

influence of external agents over a period of time, change their neurotransmitter 

status. 

Similarly, in cultures of avian sympathetic neurons, cholinergic function 

can also be induced in the catecholaminergic subpopulation in culture by 

manipulation of the culture conditions. When neurons are grown on collagen with 

either fetal calf or horse serum, all neurons express catecholaminergic traits 

(Iacovetti et al., 1987) and little or no ChAT activity is expressed; however, when 

embryonic eye extract is added to cultures the ChAT activity is increased. Similarly 

(Acheson and Rutishauser, 1988), density and depolarization can influence 

neurotransmitter expression in chick sympathetic cultures. Furthermore, the 

density dependent increase in ChAT can be duplicated by treatment with neuronal 

membranes, indicating that an external environmental signal modulates 

neurotransmitter expression. 

Neuropeptide expression can also be modulated in culture. For example, 

Substance P levels can be modulated by a wide variety of agents including activity, 

non-neuronal cells and cell contact (Adler and Black, 1985; Kessler, 1984 a,b; 

Kessler, 1985 a,b; Kessler, et al., 1986; Wong and Kessler, 1987). Since 

Substance P is not normally present in detectable amounts in sympathetic neurons 

by immunocytochemistry, this de novo expression of Substance P, therefore, 
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represents the ability of postmitotic neurons to modulate their peptidergic 

phenotype. Somatostatin and VIP levels can also be modulated by activity and 

de nervation (Kessler et al., 1984 a, Sachs et al., Neuroscience abstract, 1990). 

Many neurons of the embryonic rat cerebral cortex that do not normally 

express TH can be made to do so when placed in the appropriate culture environment 

or when transplanted to the adult cortex (Park, Joh and Ebner, 1986, lacovetti et 

al., 1987). The induction of TH is stimulated by the coculture of cortical neurons 

with primary cultures of skeletal, smooth and cardiac muscle (Iacovetti et al., 

1989). 

During normal development, too, there appears evidence for plasticity. For 

example, transient TH immunoreactivity is seen during murine embryonic 

development in several organs including the kidney, dorsal mesentry and pancreas 

(Teitelman et al., 1981 a, Teitelman and Lee, 1987). At embryonic day 11.5 in the 

developing rat gut, cells which express TH and DBH-IR and catecholamine 

fluorescence can be detected (Cochard et al., 1979, Teitelman et al., 1979). No TH 

IR cells or catecholamine fluorescence is evident at a later date. Several lines of 

evidence suggest that the loss of catecholaminergic properties from the developing 

gut is not due to the disappearance of the cells, but rather due to a change in their 

properties (Jonakait et al., 1979, 1985, Gershon et al., 1984, Rothman et al., 

1978, 1980). 

Transient TH IR cells are also seen in several other developing systems. At 

embryonic days 10.5 and 12.5, TH I R cells are seen in both sensory and 

parasympathetic ganglia in the rat. With subsequent embryonic development, 

neither TH IR or catecholamine uptake can be demonstrated in the sensory ganglia 

(Jonakait et al., 1984, 1985, Katz et al., 1983, Katz and Black, 1986) or can be 

demonstrated in only a very small proportion of the cells, as in the sphenopalatine 

ganglia (Leblanc and Landis, 1988 b) and particular dorsal root ganglion (Price and 

Mudge, 1983). 

The most convincing example of neurotransmitter plasticity in normal 

development in vivo is seen in the developing innervation of the rat eccrine sweat 

glands. In the adult, fibers are immunoreactive with antibodies to 

acetylcholinesterase (AChE) and cholineacetyl transferase (ChAT), tissue 

homogenates contain high levels of ChAT activity (Leblanc and Landis 1986, Landis 

and Keefe, 1983) and functional assays demonstrate that transmission is cholinergic 

(Stevens and Landis, 1987). Thus, the innervation is morphologically and 

functionally cholinergic. The neurotransmitter properties initially expressed by the 
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developing sweat gland, however, are strikingly different (Landis and Keefe 1983, 

Leblanc and Landis, 1986, Stevens and Landis, 1987, Landis et al., 1988 ). At day 

four, when sympathetic fibers first become associated with developing sweat glands, 

they exhibit intense catecholamine histofluorescence and immunoreactivity for DBH 

(Dopa-B-hydroxylase) and TH (Tyrosine hydroxylase) properties characteristic of 

the noradrenergic phenotype. In contrast, no cholinergic properties can be detected. 

Evidence that this change in neurotransmitter properties takes place in a single 

population of fibers comes from ultrastructural studies (Landis and Keefe 1983), 

the persistence of certain catecholaminergic traits (Landis et al., 1988, Landis and 

Keefe, 1983), and the failure of cholinergic innervation to develop in animals 

treated with adrenergic neurotoxins during their first week of postnatal development 

(Yodlowski et al., 1984, Leblanc and Landis, 1986). 

Studies in the developing avian peripheral nervous system have also 

demonstrated striking evidence for plasticity. Recently, Coulombe and Bronner

Fraser (1986) showed that when postmigratory postmitotic cholinergic ciliary 

neurons were harvested and injected into the trunk neural crest pathway, many 

translocated to positions appropriate for cells derived from the trunk level of the 

neural crest. Following migration to the sympathetic ganglia or adrenal primordia, 

these cholinergic neurons began to express a catecholaminergic phenotype. Equally 

important, retrogradely labelled cells that settled in other locations did not contain 

catecholamine histofluorescence. Using chick-quail chimeras, Le Douarin and her 

colleagues (see Le Douarin, 1986) have demonstrated that back transplantation of 

sensory precursors from the dorsal root ganglion to the neural crest will give rise 

to cells which will migrate to the sympathetic ganglia and express catecholaminergic 

traits. Since cells in the the dorsal root ganglion do not express catecholaminergic 

properties, it is reasonable to assume that that this property rose de novo in either 

committed or uncommitted precursors. 

In the adult rat, Macmahon and Gibson (1987) have shown that 

crossinnervation results in a change in the peptide phenotype. Sensory fibers 

innervating the skin contain substance P, while the sensory afferents from muscle 

do not. When skin and muscle hind limb nerves are crossinnervated, then, ten to 

twelve weeks later, the former skin nerve (now innervating muscle) has 

substantially reduced Substance P immunoreactivity. Conversely, the muscle nerve 

now innervating skin shows increased Substance P immunoreactivity. These 

experiments, done in adult rats, show that some postmitotic neurons of the sensory 

system are plastic with respect to the peptides that they synthesize and, further, 
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that at least in this case, the target, in some manner, specified the phenotype. 

Thus, a number of examples of plasticity of either the neurotransmitter 

synthesizing enzymes, peptides, or classical neurotransmitter phenotype exist and 

plasticity in this context is not a unique or isolated event. It is, in fact, relatively 

common and has been obseNed in postmitotic neurons in a wide variety of species, 

both vertebrate and invertebrate. These changes have been described both in vivo and 

in vitro both in the CNS and in the PNS. These examples are inconsistent with the 

development of the nervous system following a strictly hemopoietic pattern. Such 

plasticity is far more consistent with an additional layer of environmental 

regulation determining the expression of peptide and classical transmitters in the 

neNOUS system. 

Factors can modulate neurotransmitter phenotype. 

A second prediction that can be made is that it should be possible to identify 

factors which will modulate transmitters in postmitotic neurons. In the simplest 

form of the hypothesis it should be possible to identify factors which regulate a 

single neurotransmitter. In more complicated versions of the hypothesis factors 

which modulate subsets of transmitters or inhibit the expression of a 

neurotransmitter should exist. Evidence for factors modulating transmitters over 

the long term or inducing de novo expression of a neurotransmitter has come mainly 

from cell culture experiments. 

Factors modulating neurotransmitter levels in sympathetic neuron cultures 

When sympathetic neurons are cultured with non-neuronal cells or 

conditioned medium from a wide variety of cells, they will switch from a adrenergic 

to cholinergic phenotype (see review, Landis, 1989). Using this as an assay system, 

several different factors were isolated and partially purified. Some of these factors 

are poorly defined: for example, chick embryo extract, human placental serum, and 

rat serum increase acetylcholine synthesis and/or ChAT activity (Higgins et al., 

1981; lacovitti et al., 1981, 1982; Wolinsky et al., 1985). Other factors have 

been partially characterized. A soluble 50 kDa factor has been obtained from brain 

by heparin affinity chromatography (Kessler et al., 1983). A membrane-associated 

neurotransmitter-stimulating factor (MANS) has been solubilized and partially 

purified from rat spinal cord; this activity is associated with a 29 kDa band (Wong 

and Kessler , 1987). Another factor of approximately the same apparent molecular 
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weight as MANS but possessing somewhat different properties has been partially 

purified from spinal cord membranes (Adler et al., 1989). The cholinergic 

differentiation factor (CDF) present in heart cell-conditioned medium (HCM) has 

been purified to homogeneity. It is a basic 45 kDa glycoprotein, with at least six 

glycosylation sites (Fukada, 1985). The deglycosylated protein has a molecular 

weight of 22 kDa and retains biological activity. A very similar molecule, present in 

skeletal muscle cell-conditioned medium (Weber et al., 1985), increases 

cholinergic function in spinal cord and nodose sensory neurons as well as 

sympathetic neurons (Geiss and Weber, 1984; Mathieu et al., 1984). Most 

recently, ciliary neurotrophic factor (CNTF), which was identified as a trophic 

factor for ciliary neurons (Adler et al., 1979; Varon et al., 1979; Barbin et al., 

1984; Manthorpe et al., 1986) has been shown to switch cultured rat sympathetic 

neurons from a noradrenergic to a cholinergic phenotype (Saadat et al., 1989). 

More recently, several factors have been partially characterized which can 

modulate the expression of neuropeptides in sympathetic neuron cultures. Two 

additional factors have been isolated and partially purified from heart cell

conditioned medium which can modulate VIP and Somatostatin levels respectively 

(Nawa and Patterson, 1990, Nawa and Sah, 1990). MANS originally isolated as a 

cholinergic differentiation factor has been shown to modulate the expression of 

several neuropeptides in culture (Lee et al., 1990). It elevates the levels of 

Somatostatin and vasoactive intestinal peptide while it has no effects on the levels of 

neuropeptide Y or Leu- enkephalin (Lee et al., 1990). CNTF has also been shown to 

modulate the expression of vasoactive intestinal peptide in embryonic chick 

sympathetic neuron cultures (Ernsberger et al., 1989). 

Factors which modulate the transmitter levels of other neurons. 

Several factors have been shown to modulate the levels of ChAT in motor 

neuron cultures. A 22 Kd protein has been isolated from skeletal muscle 

(Mcmanaman et al., 1988) which increases ChAT levels two- to three fold. It has 

been shown to have similar effects in vivo (Mcmanaman et al., 1990). It is an acidic 

protein with a pi of 4.8, is not glycosylated and is biochemically distinct from CNTF, 

CDF/LlF, and the heparin-binding growth factors (Mcmanaman et al., 1989). A 

selective increase in ChAT levels is also observed if spinal cord neurons are grown 

in muscle cell-conditioned medium or in extracts of neonatal muscle (Kaufman, 

Barry and Barrett 1985). The ChAT-inducing activity is associated with a 40 Kd 

protein. 
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A muscle-derived factor (MDF) has been shown to induce TH-IR and TH mRNA in 

cultures of embryonic rat cerebral cortex cells (Iacovitti et al., 1989). Basic FGF, 

EGF, Insulin and Insulin-like growth factors have been to shown to increase ChAT 

and dopaminergic levels in hippocampal and septal cultures (Knusel et al., 1989). 

Similarly, factors which modulate the levels of NPY and Leu-enkephalin in 

chromaffin cells have been identified in culture and in vivo. Glucocorticoids elevate 

the levels of enkephalin severalfold over cultures grown without steroid agonists 

(Naranjo et al., 1986, La Gamma and Adler, 1987, Stachowiak et al., 1988, Henion 

et al., unpublished observations). Similarly, insulin treatment in the animal (which 

reflexively stimulates the splanchnic nerve) will cause a six- to seven fold increase 

in Leu-enkephalin mRNA (Fischer-Colbrie et al., 1988). Paradoxically, bilateral 

transection of the splanchnic nerve also results in an increase in the number of L

enk immunoreactive cells as assayed by immunocytochemistry (Schultzber et al., 

1978, Lewis et al., 1987, Henion and Landis, 1990). Reserpine treatment will 

increase NPY levels in animals with intact splanchnic innervation, suggesting that 

this effect is associated with impulse activity (De Quidt and Emson, 1986, Schalling 

et al., 1988). 

A factor which can modulate the somatostatin levels in embryonic ciliary 

neuron cultures of the chick has also been partially purified from choroid cultures 

(Coulombe et al., 1991). This factor, named Somatostatin stimulating activity 

(SSA), can induce more than 90% of cultured ciliary neurons to express 

somatostatin. The molecular weight of this factor is between 30 to 40 Kd, and it 

appears distinct from the other peptidergic factors described. 

A number of smaller molecules, hormones, peptides, and transmitters have 

been found to induce the expression of particular phenotypic properties in 

developing neurons. Estrogen, for example, can differentially regulate the 

expression of cholecystokinin (CCK) and Substance P in a sexually dimorphic 

pathway in the amygdala (Simerly et al., 1989). Serotonin can increase the number 

of neurons expressing tryptophan hydroxylase in cultures of embryonic 

hypothalamus (De Vitry et al., 1986). Angiotensin II increases CA production in 

primary cultures of rat hypothalamus and brainstem neurons (Maclean, Raizada and 

Sumners, 1990). VIP stimulates proEnk A mRNA levels in cultured chromaffin cells 

(Wan and Livett, 1989), and several neuronal markers in spinal cord cultures 

(Foster, Eiden and Brenneman, 1989). 
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Factors can affect neurons of different lineages. 

The third prediction of our hypothesis was that factors should be able to 

modulate neurons of different lineages with certain caveats. If the neurons innervate 

the same target as can occur in the periphery, the factors should either affect only 

one population or should modulate the levels of neurotransmitters differently in the 

two populations. Data for this is not as convincing as it is for the presence of factors. 

One reason for this is that few of the factors have been purified to homogeneity, and 

few, if any, have been cloned. Perhaps the best example is that of heart cell

conditioned medium. It has been recently demonstrated that HCM will cause 

cholinergic induction in septal cholinergic neurons (unpublished results), in 

sensory nodose cultures (Geis and Weber, 1984), as well as in dorsal root ganglion 

cells (Nawa and Patterson, 1990), and that the same or closely related factor will 

cause induction in motor neurons (Kato and Patterson, unpublished results) and 

hippocampal neurons (Hefti and Patterson, unpublished results). 

Similarly, MANS has been shown to cause cholinergic induction in spinal cord 

cultures as well as in sympathetic neuron cultures (Lombard-Golly et al., 1990, 

Wong and Kessler, 1987, Adler et al., 1989). 

CNTF was originally identified as a survival factor for chick embryonic 

ciliary neurons (Barbin et al., 1984, Manthorpe et al., 1986). Subsequent 

experiments with purified CNTF have shown that it has cholinergic-inducing 

properties on cultures of rat sympathetic neurons (Saadat et al., 1989) and VIP

inducing effects on embryonic chick ciliary neurons (Ernsberger et al., 1989). 

Perhaps, somewhat surprisingly, while it has survival effects in ciliary neuron 

cultures, CNTF does not specifically increase the CHAT levels in ciliary neuron 

cultures (Eckenstein et al., 1990), indicating that for this population of neurons it 

is not a cholinergic factor. 

Thus, clearly none of the factors that have been tested on different 

populations is specific to cells of any particular lineage, rather, in keeping with our 

hypothesis, both central and peripheral nervous system neurons in culture respond 

to these factors, indicating that the receptors for these factors are fairly widespread 

and that a large variety of neurons will respond to these factors. 

While several key components of the hypothesis appear to be true, several 

questions remain to be clarified before we can accept the validity of this hypothesis. 

It is not clear if we have identified one factor, an adrenergic to cholinergic 

conversion factor, or a class of these factors. Nor is it clear if any other class of 
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factors exists. Clarifying this will enable us to predict if many such factors can be 

expected, or a single unique moiety will specify a particular phenotype. It is also not 

clear how general is the response of neurons of different lineages to differentiation 

factors. 

One very important problem is that, while as predicted a large number of 

factors have been identified which can modulate neurotransmitter phenotype in 

culture, none of these factors has been shown to playa role in normal development. 

Is it possible that the effects that have been identified are not physiologically 

relevant? This is an important question, as some of these factors have been purified 

from cultured cells. For example, CDF has been purified from heart cell-conditioned 

medium. Others have been purified from what a priori seems an inappropriate 

location. For example, CNTF has been isolated from sciatic nerve which contains 

numerous noradrenergic sympathetic fibers. Both CNTF and CDF from HCM have 

functions in addition to their cholinergic-inducing activity (see Ch. 1 and references 

therein). Thus, it would be important to demonstrate either a role for these factors 

in phenotypic conversion in the course of normal development, or the presence of 

these factors in a system in which a phenotypic conversion occurs. 

In my thesis I have addressed certain specific questions raised by this 

hypothesis. 

a) As an extension of the hypothesis that these factors may be capable of 

modulating the levels of several different neurotransmitters, I have assessed the 

neurotransmitter modulating properties of CNTF to define the subset of transmitters 

and peptides that CNTF modulates. I will present evidence that CNTF can alter levels 

of several different peptides in sympathetic neuron cultures, but not in dorsal root 

ganglion cultures. 

b) I have approached the question of how many cholinergic factors there are by 

comparing the immunological, biochemical and biological properties of these factors. 

I will show that CNTF and CDF are distinct molecules, that CNTF and MANS are 

immunologically and biologically similar, and that CDF from skeletal muscle is not a 

cholinergic differentiation molecule when added to sympathetic neuron cultures. 

c) I have then undertaken to assess if any of these factors is present in a 

biological system where normal development is characterized by a noradrenergic to 

cholinergic switch. I have identified a differentiation factor(s) present in sweat 

gland extracts which mediates a similar phenotypic change in culture and is likely to 

be the biologically relevant factor(s) in the development of the sweat gland 

in nervatio n. 
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d) I have compared the immunological, biochemical and biological properties of 

the sweat gland-derived cholinergic differentiation activity with four other 

cholinergic factors: MANS, CDF from skeletal muscle, CNTF, and CDF. I will present 

data on its similarities to and differences from CNTF and LlF. 
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The Cholinergic Neuronal Differntiation Factor from heart cell 

conditioned medium is different from the cholinergic factors in sciatic 

nerve and spinal cord. 
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ABSTRACT 

Environmental cues play an important role in determining the transmitter 

phenotype of developing sympathetic neurons. Several factors have been described 

which can induce cholinergic function in cultured sympathetic neurons. We have 

compared biological and immunological properties of three of them: cholinergic 

differentiation factor (CDF), membrane-associated neurotransmitter-stimulating 

factor (MANS) and ciliary neurotrophic factor (CNTF) to determine whether they 

are different. As previously reported, all three increased acetylcholine synthesis in 

cultured sympathetic neurons. In addition, MANS as well as CNTF and CDF decreased 

catecholamine synthesis. CNTF and MANS, but not CDF, promoted the survival of 

embryonic chick ciliary neurons. Affinity-purified antibodies raised against a 

synthetic peptide corresponding to the N-terminal sequence of CDF 

immunoprecipitated CDF, but not MANS or CNTF. These results indicate that although 

CDF, MANS and CNTF have similar effects on transmitter synthesis by cultured 

sympathetic neurons, CDF lacks the ciliary neurotrophic activity of MANS and CNTF. 

Further, CDF possesses an N-terminal epitope which is absent from both MANS and 

CNTF. Thus, CDF is distinct from MANS and CNTF, and at least two factors exist which 

can alter the transmitter phenotype of sympathetic neurons in vitro. 
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INTRODUCTION 

The neurotransmitter phenotype of neural crest-derived neurons is 

remarkably plastic and is sensitive to developmental signals present in the 

environment. In culture, noradrenergic sympathetic neurons dissociated from 

superior cervical ganglia (SCG) of newborn rats can be induced to become 

cholinergic. Sympathetic neurons express noradrenergic properties early in 

embryonic development (Eranko, 1972; Cochard et al., 1979; Teitelman et al., 

1979) and shortly after plating, cultured sympathetic neurons exhibit 

noradrenergic but not cholinergic properties (Mains and Patterson, 1973; Johnson 

et al., 1976; 1980; Patterson and Chun, 1977b; Landis, 1980). When grown in the 

presence of certain non neuronal cells such as heart myocytes and fibroblasts or in 

medium conditioned by heart or skeletal muscle cells, the neurons undergo a 

transition from noradrenergic to chOlinergic function; catecholaminergic properties 

including tyrosine hydroxylase activity and catecholamine synthesis are reduced and 

choline acetyltransferase (ChAT) and acetylcholine synthesis are induced (Patterson 

and Chun, 1977a; Weber, 1981; Swerts et al., 1983; Wolinsky et al., 1983; Potter 

et al., 1986; Raynaud et al., 1987). The transmitter plasticity and role of 

environmental cues revealed in these cell culture studies reflect the normal 

developmental events in situ. For example, a similar noradrenergic to cholinergic 

transition has been documented during the development of the cholinergic 

sympathetic neurons that innervate sweat glands (Landis and Keefe, 1983; Leblanc 

and Landis, 1986) and this transition is dependent upon target-derived cues 

(Schotzinger and Landis, 1988). 

The cholinergic differentiation factor (CDF) present in heart cell conditioned 

medium (HCM) has been purified to homogeneity. It is a basic 45 kDa glycoprotein, 

with at least six glycosylation sites (Fukada, 1985). The deglycosylated protein has 

a molecular weight of 22 kDa and retains biological activity. A very similar 

molecule, present in skeletal muscle cell conditioned medium (Weber et al., 1985), 

increases cholinergic function in spinal cord and nodose sensory neurons as well as 

sympathetic neurons (Geiss and Weber, 1984; Mathieu et al., 1984). 

A number of other sources contain factors that can induce cholinergic 

function in cultured sympathetic neurons. Some of these factors are poorly defined: 

for example, chick embryo extract, human placental serum and rat serum increase 

acetylcholine synthesis and/or ChAT activity (Higgins et al., 1981; lacovitti et al., 

1981; 1982; Wolinsky et al., 1985). Other factors have been partially 

characterized. A soluble 50kDa factor has been obtained from brain by heparin 
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affinity chromatography (Kessler et al., 1983). A membrane-associated 

neurotransmitter-stimulating factor (MANS) has been solubilized and partially 

purified from rat spinal cord; this activity is associated with a 29 kDa band (Wong 

and Kessler, 1987). Another factor of approximately the same apparent molecular 

weight as MANS but possessing somewhat different properties has been partially 

purified from spinal cord membranes (Adler et al., 1989). Most recently, ciliary 

neurotrophic factor (CNTF) which was identified as a trophic factor for ciliary 

neurons (Adler et al., 1979; Varon et al., 1979; Barbin et al., 1984; Manthorpe et 

al., 1986) has been shown to switch cultured rat sympathetic neurons from a 

noradrenergic to a cholinergic phenotype (Saadat et al., 1989). 

The relationship between these cholinergic factors is unclear. It was possible 

that the same molecule had been isolated independently from a number of sources 

since MANS, CNTF and the deglycosylated form of CDF are of approximately the same 

molecular weight. Defining the relationship of these factors will be important in 

addressing the issue of how the factors(s) act during normal development. We have 

compared the biological properties of these three factors and used an antiserum 

generated against a peptide corresponding to the N-terminal amino acid sequence of 

CDF to look for determinants shared between CDF, MANS and CNTF. Our findings 

indicate that CDF is different from MANS and CNTF in its spectrum of activity and 

that it is immunologically distinct from them. 
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RESULTS 

Effects on acetylcholine and catecholamine synthesis 

To examine the effects of COF, CNTF and MANS, equal protein concentrations 

(10 ug/ml) were added to dissociated sympathetic neurons from neonatal rats 

cultured in the absence of nonneuronal cells. Transmitter synthesis was assayed on 

the fourteenth day of culture (Table 1). The protein concentration used had been 

previously determined for each of the factor preparations to cause a significant 

cholinergic induction but not to yield the maximal cholinergic induction. The OEAE 

fraction of COF caused a 29-fold increase in acetylcholine synthesis and a 32% 

decrease in the synthesis of catecholamines when compared to control cultures, 

results similiar to those reported by Fukada (1985). CNTF treatment resulted in a 

13-fold increase in acetylcholine synthesis and a 74% decrease in catecholamine 

synthesis findings consistent with a previous report (Saadat et al., 1989). 

Similarly, MANS caused an eight-fold induction and a 53% reduction in the synthesis 

of acetylcholine and catecholamines, respectively. The induction of cholinergic 

function confirms a previous report (Wong et al., 1987), but the reduction in 

catecholaminergic properties has not been described before. The alterations in 

transmitter synthesis by these factors were not accompanied by changes in 

morphology or in neuron survival (Table 1). Thus, COF, CNTF and MANS had similar 

effects on transmitter status of cultured sympathetic neurons. 

Ciliary neuron trophic activity 

CNTF was initially identified because it promotes the survival of E8 chick 

ciliary neurons in culture (Adler et al., 1979; Varon et al., 1979; Barbin et al., 

1984; Manthorpe et al., 1986). Do COF and MANS share this trophic property? 

Aliquots of the same preparations that induce cholinergic function in rat sympathetic 

neurons were serially diluted from an initial concentration of 5ug/ml and were 

assayed for their ability to enhance the survival of chick ciliary neurons. Both CNTF 

and MANS had ciliary neurotrophic activity (Fig1). Control cultures showed no 

surviving neurons after 24 hours, but wells to which CNTF and MANS had been added 

contained numerous neurons with extensive neurites (Fig. 1). In contrast, neither 

OEAE nor Sephadex fractions of COF had detectable ciliary neurotrophic activity at 

any dose tested (Fig. 1). Since the failure of survival could have been due to the 

presence of a toxic component in the fractions, aliquots of CNTF were combined with 

the OEAE fraction of COF. The number of surviving ciliary neurons and the extent of 

neurite extension was similiar to that in cultures which had only CNTF added to them 
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(data not shown). Thus, the CDF preparation did not contain detectable amounts of 

material either toxic to, nor trophic for, ciliary neurons. 

Immunoprecipitation of biological activities 

The above data suggest that CDF is different from MANS and CNTF. It was 

possible, however, that there were actually two factors present in the partially 

purified fractions of MANS and CNTF, one which was responsible for inducing 

cholinergic function, identical to the cholinergic factor present in CDF fractions, and 

a second, the ciliary trophic activity, that is absent from CDF fractions. To address 

this question, we used affinity-purified rabbit antibodies generated against a 

synthetic peptide corresponding to the N-terminal sequence of CDF (Fukada, 1985). 

In one series of experiments, the antibodies were used to immunoprecipitate the 

three factor preparations and the resulting supernatants were then assayed for their 

ability to induce ChAT activity in cultured rat sympathetic neurons. Parallel aliquots 

were incubated without the antibody or with the antibody plus 10llM of the synthetic 

peptide used as the antigen. The antibodies completely precipitated the cholinergic

inducing activity present in the DEAE fraction of CDF, and the immunoprecipitation 

was blocked by preincubation with the N-terminal peptide (Fig 2). In contrast, the 

antibody had no effect on the ability of CNTF or MANS to induce cholinergic function. 

These results indicate that the cholinergic factor/s in CNTF and MANS does 

not share the N-terminal epitope with CDF. In a second series of experiments, the 

supernatants obtained after immunoprecipitation were tested for their ability to 

promote ciliary neuron survival. The DEAE fraction of CDF had no survival activity, 

and the trophic activities of both MANS and CNTF were not affected by the antibodies 

(Fig. 3). Thus, neither the cholinergic inducing nor the ciliary neurotrophic 

activities in MANS and CNTF share the N-terminal epitope of CDF. 

Immunoprecipitation of labeled fractions 

It is possible that the failure to immunoprecipitate activity from the CNTF 

and MANS fractions was due to the relatively crude nature of the preparations. To 

examine this possibility, the partially purified CNTF and MANS fractions were run 

on SDS PAGE gels and the regions which had been reported to have cholinergic 

activity were eluted. These proteins, as well as the DEAE and Sephadex fractions of 

CDF, were radioactively labeled by the Bolton-Hunter method. The labeled fractions 

were then subjected to immunoprecipitation with the same antibodies as described 

previously. The amount of radioactivity in the immunoprecipitates was determined, 
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and an aliquot of each was analyzed by SDS PAGE. Precipitation of radioactive protein 

was only detected in the CDF preparations and this was blocked by preincubation with 

the peptide antigen (Fig. 4). As expected (Fukada, 1985), SDS-PAGE analysis 

revealed that a protein of 45 kDa was specifically precipitated from both the 

Sephadex and DEAE CDF fractions (Fig. 5). In contrast, no labelled proteins were 

specifically immunoprecipitated from the MANS and CNTF fractions. The counts 

immunoprecipitated represent about 7% of the total protein present in the Sephadex 

fraction of CDF and about 1.5% of the protein in the DEAE fraction. These fractions 

were, therefore, at least as heterogeneous as the CNTF and MANS fractions (Wong et 

a/., 1987; Manthorpe et a/., 1986) from which no specific protein bands could be 

precipitated. 
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DISCUSSION 

A number of factors have been described that induce cholinergic function in 

cultured rat sympathetic neurons. Among the best characterized of these are CDF, 

MANS and CNTF (Fukada, 1985; Wong and Kessler, 1987; Saadat et al., 1989). CDF, 

MANS and CNTF not only induce cholinergic function in cholinergic sympathetic 

neurons but they also share a number of other properties, including similar 

molecular weights and similar effects on the neuropeptide expression by sympathetic 

neurons. While CDF produced by cultured heart cells has a molecular weight of 45 

kDa, this form is glycosylated. Treatment of CDF with endoglycosidases yields 

multiple bands ranging from 45 to 22kDa and both the deglycosylated and 

glycosylated forms are biologically active (Fukada, 1985). The molecular weight of 

CNTF isolated from rat sciatic nerve is 22.5 to 24kDa (Manthorpe et al., 1986; 

Sa ad at et al., 1989) while that of MANS is 29kDa (Wong and Kessler, 1987). 

Therefore, it was possible that MANS was a partially glycosylated form of CDF while 

CNTF was the completely deglycosylated CDF protein. In addition, CDF, like MANS, 

increases neuronal Substance P (Wong and Kessler, 1987; Nawa and Sah, 1990; 

Nawa and Patterson, 1990) and both CDF and CNTF increase VIP expression 

(Ernsberger et al., 1989; Nawa and Sah, 1990; Nawa and Patterson, 1990). The 

effects of MANS on VIP and CNTF on Substance P have not been reported. Given these 

similarities, it was important to determine whether these three cholinergic inducing 

factors obtained from different sources were identical. 

These factors were tested in two biological assays: transmitter synthesis by 

neonatal rat sympathetic neurons and survival of E8 chick ciliary neurons. In 

addition, affinity-purified antibodies raised against the N-terminal region of CDF 

were used to determine whether MANS and CNTF share this site. All three factors 

cause an increase in acetylcholine synthesis and ChAT activity as previously reported 

(Fukada, 1985; Wong and Kessler, 1987; Saadat et al., 1989). In addition, all three 

factors decrease catecholamine synthesis; these observations confirm earlier studies 

of the effects of CDF and CNTF and extend our understanding of the actions of MANS. 

CDF can be distinguished from MANS and CNTF, however. Both MANS and CNTF 

promote survival of E8 chick ciliary neurons while CDF does not. Furthermore, the 

affinity-purified antibodies immunoprecipitate both the cholinergic-inducing 

activity and a 45kDa protein from CDF. In contrast, the antibodies have no effect on 

the cholinergic-inducing activity or the ciliary neuron trophic activity present in 

MANS and CNTF, nor do they specifically immunoprecipitate a protein band from 
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these preparations. The assays used in the present studies do not permit us to 

distinguish between CNTF and MANS. 

The results of the assay of ciliary neuron survival indicate that while all 

three factors are competent to induce cholinergic function, only CNTF and MANS have 

trophic activity for ciliary neurons. Our finding that MANS promotes the survival of 

ciliary neurons raises the possibility that it is a member of the family of ciliary 

neuron trophic molecules. It should be noted, however, that the MANS preparation 

still contains many proteins. CDF, on the other hand, had no trophic activity at any 

dose tested. Since both DEAE and Sephadex fractions of CDF were tested, and the 

addition of both CNTF and CDF to the same culture resulted in survival of the ciliary 

neurons, it is unlikely that the failure of survival was due to a toxic component. It is 

of interest that while CDF from HCM does not support ciliary neuron survival, 

extracts of bovine heart do contain ciliary neurotrophic activity which is similar to 

CNTF (Bonyhady et al., 1980; Watters and Hendry, 1987). 

Further evidence for the distinct nature of CDF comes from 

immunoprecipitation studies using affinity-purified antibodies generated against the 

N-terminal domain of CDF. These antibodies immunoprecipitate all cholinergic

inducing activity from both the DEAE and the Sephadex fractions. In contrast, neither 

the cholinergic-inducing activity nor a protein band could be precipitated from 

MANS or CNTF purified by SDS PAGE electrophoresis. Since the antibody was 

generated against a peptide domain of CDF and can precipitate the glycosylated form of 

CDF, it seems unlikely that the failure to immunoprecipitate the biological activity 

from CNTF and MANS was due to differential glycosylation. The results, indicate 

therefore, that CDF possesses an N-terminal domain that is not expressed by either 

MANS or CNTF. 

CDF and CNTF also appear to differ in their charge. CNTF which has been 

purified from chick embryo ocular tissues and rat sciatic nerve has an isoelectric 

point of approximately 5.0 (Barbin et al., 1984; Manthorpe et al., 1986; Saadat et 

al., 1989). In contrast, glycosylated CDF is a basic protein (Fukada, 1985). Since 

glycosylation would add negatively charged residues to the protein, one would predict 

that a deglycosylated form of CDF would be far more basic than pi 5.0. Thus, the 

difference in charge between the two proteins can not easily be explained by 

differential glycosylation. Other, secondary modifications are not ruled out, however. 

The present studies indicate that CDF is distinct from MANS and CNTF but we 

can not at present rule out the possibility that they share some sequence homology. 

These factors not only act on sympathetic neurons, but they also induce cholinergic 
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function in other neuronal populations. CDF or a closely related molecule increases 

ChAT in spinal cord neurons and nodose sensory neurons (Geiss and Weber, 1984; 

Matheiu et al., 1984) and CNTF increases ChAT in retinal neurons (Hofmann, 

1988). In addition, other factors, whose relationship to the proteins examined in the 

present study remain to be defined, induce cholinergic function in ciliary (Nishi and 

Berg, 1981) and spinal cord neurons (McManaman et al. , 1989), populations that 

respond to CDF and CNTF. Thus, it seems very likely that there are multiple factors 

that have the same effect, the induction of cholinergic function, on a variety of 

responsive neurons. 

Why are there several different molecules that cause such specific changes in 

phenotypic expression by sympathetic neurons, and induce cholinergic function in 

other neuronal populations as well? One possibility is that the functional roles of the 

protein are segregated in space and/or time. An analogy may be found in the 

developmental roles of brain-derived neurotrophic factor (BDNF) and NGF. BDNF is 

present in the central nervous system (Barde et al., 1982; Leibrock et al., 1989) 

while NGF is present in peripheral target tissues as well as the central nervous 

system (Korsching and Thoenen, 1983; Shelton and Reichardt, 1984; Large et al ., 

1986; Auburger et al., 1987; Davies et al., 1987). Both are able to support the 

survival of sensory neurons (Levi-Montalcini and Angeletti, 1963; Johnson et al .. , 

1980; Hamburger et al., 1981; Davies et al., 1986; Hofer and Barde, 1988) but 

each has trophic activity for other distinct neuronal populations (for example, Levi

Montalcini and Booker, 1960a,b; Johnson et al , 1986). Most recently, BDNF and 

NGF have been shown to exhibit significant sequence homology (Leibrock et al ., 

1989). Moreover, since CDF, CNTF and MANS influence not only classical 

transmitters but also neuropeptide expression (Wong and Kessler, 1986; 

Ernsberger et al., 1989; Nawa and Sah, 1990; Nawa and Patterson, 1990), they 

may be members of a large group of phenotype specifying factors that act on neurons 

in a combinatorial fashion to produce the exceedingly large number of different 

combinations of neurotransmitters and neuropeptides found in the nervous system. 

In the hematopoetic system, for example, differentiation choices are affected by a 

group of proteins, the hematopoetic regulators or Iymphokines; four colony 

stimulating factors (CSF), granulocyte-macrophage (GM-CSF), granulocyte (G

CSF), macrophage (M-CSF) and multipotential (multi-CSF), can stimulate 

multipotential stem cell precursors to differentiate into granulocytes and/or 

macrophages (reviewed by Clark and Kamen, 1987 and Metcalf, 1989). Thus, 

multiple hematopoietic and neurotransmitter phenotypic regulators can have 
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distinct, but overlapping or partially redundant, biological effects. Having defined 

the presence of several factors which alter the transmitter phenotype of cultured 

sympathetic neurons, it will be important to determine which of these proteins play 

roles in normal development. The sympathetic innervation of the sweat gland, which 

undergoes a noradrenergic to cholinergic transition in transmitter properties during 

normal development (Landis and Keefe, 1983; Leblanc and Landis, 1986; Landis et 

al., 1988), provides an excellent system in which to examine this question. 
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Table 1. 

No of Cells CNDish Ach/Dish Ach/CA Fold Induction 

Medium 1046 ±. 52 8.61 0.28 0.032 ±. .012 

CDF 1171 ±. 286 5.86 8.33 1.42 ±. .297 44 

CNTF 1013±.118 2.23 3.72 1.67 ±. .08 52 

MANS 979 ±33 4.04 2.27 0.56 ± .116 17 

Effects of cholinergic factors on neurotransmitter function. 

10 ug/ml of CDF (DEAE fraction), CNTF (DEAE fraction) or MANS (Sephadex 

fraction) was added to cultured sympathetic neurons. After 14 days in culture, 

neurons were counted and neurotransmitter properties were determined by 

measuring the incorporation of tritiated precursors into catecholamines' and 

acetylcholine. This assay measures the net synthesis and accumulation of 

acetylcholine and catecholamines by living neurons (Mains and Patterson, 1973). 

Samples were run in triplicate, Data is expressed as mean picomoles of Ach or 

Catecholamines per dish. 
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Figure 1. 

Effect of CDF, CNTF and MANS on survival of E8 chick ciliary neurons. 

(a) Ciliary neurons were grown in serial dilutions of 10ug/ml of CDF (DEAE 

fraction), CNTF (DEAE fraction) or MANS (Sephadex fraction). The number of phase 

bright cells was counted after 24 hours in culture. Samples were run in triplicate. 

(b) No surviving neurons are evident after 24 hours in culture in the presence 

of CDF alone. X240. (c) Neurons with long neurites are present after 24 hours in 

the presence of CDF and CNTF. X240. 
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Figure 1. 
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Figure 2. 

Immunoprecipitation of cholinergic-inducing activity. 

CDF (DEAE fraction), CNTF (DEAE fraction) or MANS (Sephadex fraction) were 

incubated with Protein A sepharose (A), affinity-purified antibodies to the N

terminal sequence of CDF (8) or affinity purified antibodies pre incubated with the 

peptide antigen (C). After immunoprecipitation, supernatants were added to 

sympathetic neuron cultures. After 10 days, the cultures were assayed for ChAT 

activity by the method of Fonnum. The results are expressed as the fold induction of 

ChAT in comparison to the activity observed in neurons grown in medium without 

extracts. All samples were run in duplicate. 
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Figure 2. 
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Figure 3. 

Immunoprecipitation of ciliary neurotrophic activity. 

CDF (DEAE fraction), CNTF (DEAE fraction) or MANS (Sephadex fraction), were 

incubated with affinity-purified antibodies to the N-terminal sequence of CDF (8) 

or affinity-purified antibodies preincubated with the peptide antigen (C). After 

immunoprecipitation, the supernatants were added to ciliary neuron cultures. The 

number of phase bright cells was counted after 24 hours. Wells were run in 

duplicate. 
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Figure 4. 

Immunoprecipitation of 125 1 labeled fractions of CDF, CNTF and MANS. 

COFa (OEAE fraction), COFb(Sephadex fraction), CNTF (extract purified 

with SOS PAGE) and MANS (extract purified with SOS PAGE) were labeled with 

Bolton-Hunter reagent. Approximately 106 cpm of each labeled extract was 

incubated with Protein A sepharose (A), affinity-purified antibodies to the N

terminal sequence of COF (8) or affinity-purified antibodies preincubated with the 

peptide antigen (C). The counts immunoprecipitated are expressed as cpm. Samples 

were run in duplicate. 
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Figure 5. 

Autoradiographic localization of immunoprecipitated proteins. 

Following immunoprecipitation by affinity-purified antibodies to the N

terminal sequence of CDF, labeled proteins were extracted by boiling in SDS sample 

buffer and subjected to SDS PAGE electrophoresis in a 10% gel. The labeled proteins 

were localized on X-ray films developed after a seven-day exposure. Panel a shows 

CDF fractions labeled with Bolton Hunter reagent. The affinity-purified antibodies 

immunoprecipitate a 45 kDa band from the DEAE fraction (lane 3) and the Sephadex 

fraction (lane 4) of CDF. Preincubation of the antibodies with antigen prevents 

immunoprecipitation of a specific band (lane 2, DEAE fraction; lane 4, Sephadex 

fraction). Panel b shows CNTF (SDS PAGE extract) in lanes 2 and 4 and MANS (SDS 

PAGE extract) in lanes 3 and 5. In lanes 4 and 5, the antibodies were preincubated 

with antigen prior to immunoprecipitation. 14C standards were run in lanes 1 and 

6; a-chymotrypsin (25,700), ovalbumin (43,000) and phosphorylase b 

(97,400) are indicated. 
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MATERIALS AND METHODS 

Cell culture reagents were obtained from Gibco (Grand Island, NY.). 24 and 

96-well culture plates were purchased from Corning (Corning, NY.). Affi-gel 10 

was obtained from Bio-rad (Richmond, CA.). The Centricon filters were purchased 

from Amicon (Danvers, MA). 1251 Bolton-Hunter reagent and 3H methyl choline 

were obtained from Amersham (Arlington Heights, 111.). 3 H acetyl -CoA and 3 H 

tyrosine were purchased from New England Nuclear (Wilmington, DE.). Dispase was 

purchased from Boeringer-Mannheim (Indianapolis, IN.) and collagenase from 

Worthington Biochemicals (Freehold, NJ.). The Purified Protein Derivative (PPD) 

conjugation kit was obtained from Cambridge Research Biochemicals (Atlantic Beach, 

NY.). Other chemicals were purchased from Sigma Chemical Co. (St. Louis, Mo.). 

Nerve Growth Factor (NGF) was prepared from male mouse submaxillary glands as 

described by Bocchini and Angeletti (1969), and rat tail collagen was prepared by 

acid extraction from one or two rat tails under sterile conditions. 

Antibody generation 

Antisera were generated against an N-terminal peptide sequence derived from 

purified CDF. An 11 amino acid synthetic peptide corrresponding to the N-terminal 

region (Fukada, 1986; Yamamori et al., in preparation) was prepared. 

Approximately 2 mg of this peptide was conjugated to PPD using the aldehyde 

conjugation method (Lachmann et al., 1986). The conjugate was injected into rabbits 

previously primed with Bacillus Calmette Guerin (BCG) and boosted at two week 

intervals until a titer of 1 :30,000 was obtained. Serum from several bleeds was 

pooled and purified on a peptide affinity column prepared by conjugating the N

terminal peptide to a Biorad Affigel 10 column. The bound antibody was eluted from 

the column using 1 M glycine, pH 2.5. The eluate was neutralized with Tris 

buffer and then dialysed and concentrated using a Centricon microconcentrator with 

a 30 kDa cutoff. Affinity-purified antibodies were used for all experiments. 

Cholinergic Factors 

CNTF was purified from rat sciatic nerve according to the method of 

Manthorpe et al. (1986) with the omission of the sucrose density gradient step. The 

eluate from the DEAE column was used in most experiments. An additional 

purification step was added for studies involving immunoprecipitation of labeled 

proteins. The CNTF preparation was subjected to SDS PAGE and the region between 

17 and 25 kD was eluted using either an electroeluter or 0.1 % Triton X-100. This 

relatively broad molecular weight range was chosen in view of the different 
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molecular weights that have been reported for CNTF (Manthorpe et al., 1986; Saadat 

et al., 1989) 

MANS was partially purified according to the protocol of Wong and Kessler 

(1987). Adult rat spinal cord was homogenized and the cell nuclei and debris 

removed by centrifugation. Membranes were recovered by high-speed centrifugation 

and the protein was extracted using 4M NaCI. The extracted protein was dialysed 

against phosphate buffer and then separated into two fractions using a Centricon 

microconcentrator with a 30 kDa cutoff. For some experiments, the fraction 

containing MANS was subjected to SDS PAGE and the material between 25 and 30 kDa 

was eluted and used. 

CDF from heart cell CM was purified according to the protocol of Fukada 

(1985). The DEAE fraction was used for most experiments; in some cases, however, 

the Sephadex fraction was used. 

Cell culture 

Cultures of rat sympathetic neurons were prepared as described by Hawrot 

and Patterson (1979). Neurons were dissociated enzymatically with dispase 

(5mg/ml) and collagenase (1 mg/ml) and plated in 35 mm collagen-coated dishes. 

About 2000-3000 neurons were plated per dish. The neurons were grown in 

Leibovitz's L 15-C02 medium with NGF (100 ng/ml), 100 units of penicillin, 100 

Ilg of streptomycin and 10 uM cytosine arabinocide and 5% rat serum and the 

medium changed every second day. The cholinergic factors were diluted in growth 

medium, sterilized by passage through a 0.2 micron filter and added to the neurons 

from the third day of culture on. Neurons were harvested for assay between the ninth 

or fourteenth days of culture. 

Ciliary ganglia were dissected from E8 (embryonic day eight) chicks, 

dissociated and plated in DMEM with 10% fetal calf serum as described by Varon et 

al. (1979). Approximately 1000-2000 neurons were plated directly into medium 

in 96-well cell culture plates that had been coated sequentially with polyornithine 

and laminin. The cultures were incubated for 24 hours at 370 C and then fixed with 

2% glutaraldehyde as described by Barbin et al. (1984). The number of surviving 

neurons was determined by counting the phase bright cells. 

Iodination . 

Iodination was carried out by the Bolton-Hunter method (1973). 1 to 5 Ilg of 

protein in 10 III of 0.1 M borate buffer pH 8.5 was added to the dried iodinated ester 

and the reaction was allowed to proceed for 15 minutes at OOC and then for 15 

minutes at room temperature. 100 III of 0.2 M glycine was added to stop the reaction. 
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The labeled protein was separated from the unreacted label by dialysis using a 

Centricon microconcentrator with a 10 kDa cutoff. Labeling efficiency was between 

40-60%. Labeled fractions were stored at 40 C after adding 0.2mg/ml of BSA to 

prevent loss due to adsorbtion. 

Immunoprecipitation 

For the immunoprecipitation experiments in which the biological activity of 

the factors was tested, aliquots of CNTF, MANS and CDF sufficient for a cell culture 

assay were added to buffer (PBS pH 7.3 with 2% BSA, 0.2% Triton X-100, and 

0.02% PEG 6000). Affinity-purified antibody was added to each vial to a final 

concentration of 10 uM. After an overnight incubation, the antigen-antibody complex 

was absorbed to 10 ul of protein A Sepharose for a two more hours at room 

temperature. The bound complexes were separated by centrifugation and the 

supernatant was diluted into L 1S-C02 medium and used for cell culture assays. Two 

controls were performed to insure that the loss of activity consequent to absorption 

was due to a specific effect of the antibody. Aliquots of CDF were incubated without 

the antibody and treated as described above and other aliquots were treated with 

antibody that had been previously adsorbed with SOuM of the synthetic peptide 

originally used as antigen. A similar procedure was used for immunoprecipitation 

experiments with labeled fractions. After precipitation with protein A Sepharose, 

the radioactivity in the pellet was measured with a gamma scintillation counter. To 

determine the molecular weight of the protein bands immunoprecipitated by the 

affinity-purified antibody, the protein A Sepharose pellet was boiled in sample 

buffer for S minutes and the extracted material was subjected to SDS-PAGE. Labeled 

bands were visualized by autoradiography. 

Assays 

The neurotransmitter status of the neurons was determined in two ways. In 

some experiments, the incorporation of labeled precursors, 3 H-tyrosine into 

catecholamines and 3H choline into acetylcholine, was assayed by high-voltage paper 

electrophoresis as described by Mains and Patterson (1973). In other experiments, 

the induction of cholinergic function was determined by assaying choline 

acetyltransferase (ChAT) activity in homogenates, essentially according to the 

method of Fonnum (1969). To increase the sensitivity of the assay, an incubation 

period of an hour was used. All of the activity was inhibitable by SOOIlM 

napthylvinyl pyridine, a specific inhibitor of CHAT activity. Protein concentration 

was assayed by the method of Lowry, with BSA as a standard. 
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MANS preparations contain a CNTF like molecule. 
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Introduction 

Previous experiments (see Chapter 1) comparing the biological activities of 

CDF/LlF, CNTF and MANS and immunoprecipitation experiments utilizing an 

antibody against the N-terminal epitope of CDF/UF had suggested that CDF/UF was 

distinct from CNTF and MANS. Subsequent to these experiments, CNTF and CDF/UF 

were cloned (Lin et al., 1989, Stockli et al., 1989, Yamamori et al., 1989). 

Examination of the sequences of CDF/LIF and CNTF confirmed our findings that CNTF 

was distinct from CDF/UF and that the two proteins shared no sequence homology or 

even short stretches of identity. 

The relationship between CNTF and MANS, however, was not clear. Both CNTF 

and MANS had ChAT-inducing activity as well as the ability to reduce levels of 

catecholamines. Further, MANS preparations, like CNTF, had ciliary neurotrophic 

activity. The similarity in their spectrum of activities led us to postulate that MANS 

and CNTF may be related (Rao et al., 1990). Since the fractions compared, however, 

were only partially purified it was not possible to distinguish between the 

possibilities that CNTF was a contaminant in the MANS preparation, or that MANS 

and CNTF, while similar in their ability to induce cholinergic properties, were 

actually distinct molecules. The cloning of CNTF (Lin et al., 1989, Stockli et al., 

1989) and CDF/LIF (Yamamori et al., 1989) also led to the availability of CNTF in 

large quantities and a polyclonal antibody to rCNTF was generated by Dr. Donna 

Marrissey (Regeneron Pharmaceuticals). We obtained antibodies to rCNTF 

(recombinant CNTF) and tested their ability to recognize a CNTF-like molecule in 

spinal cord membrane preparations. 
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Results 

Antibodies to rCNTF crossreact with a 24-kd band in crude MANS preparations 

A polyclonal antibody generated to rCNTF was obtained, (The kind gift of Dr. Donna 

Marissey--Regeneron Pharmaceuticals) and used to probe Western blots of crude 

MANS preparations. Figure 1 shows that this antibody recognizes a 24-kd band in 

sciatic nerve preparations and also recognizes a similar band in spinal cord 

preparations. Both preparations of membrane extract from spinal cord, as well as 

preparations of soluble protein from sciatic nerve extract, contain CNTF-like 

immunoreactivity. 

Antibodies to rCNTF immunoprecipitate the cholinergic and ciliary neurotrophic 

activity in MANS extracts 

Our western blotting result suggested that a CNTF/CNTF like protein was present in 

crude MANS preparation. To distinguish between the possibility of whether two 

cholinergic molecules are present in the extracts or only one CNTF-like molecule is 

present, we performed immunoprecipitation experiments. Figure 2a shows that a 

1:4 dilution of the CNTF antisera is adequate to completely immunoprecipitate all the 

cholinergic-inducing activity in sciatic nerve preparations. This dilution of the 

polyclonal antibody does not alter the cholinergic-inducing ability of LlF (Fig 2b), a 

molecule which does not share any sequence homology with CNTF (Yamamori et al., 

1989, Lin et al., 1989, Stockli et al., 1989, Rao et al., 1990). This dilution of the 

antibody was then used to precipitate activity from spinal cord preparations. Figure 

3 shows that this dilution of the antibody can completely immunoprecipitate activity 

from both soluble and membrane protein fractions of spinal cord preparations. 
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Discussion 

To define further the relationship between MANS and CNTF, we have assayed 

the ability of an antibody generated against rCNTF to detect related molecules in 

spinal cord extracts by immunoprecipitation and Western blots. The antibody raised 

against rCNTF recognizes a 24-kD band the reported molecular weight of CNTF 

(Manthorpe et al., 1986, Lin et al., 1989, Stockli et al., 1989) in spinal cord 

membrane preparations. Further, our immunoprecipitation experiments show that 

all the cholinergic and ciliary neurotrophic activity in spinal cord extracts can be 

completely precipitated by the antibody to rCNTF. Thus, our data would indicate that 

spinal cord membrane extracts contain cholinergic-inducing activity and that all 

this activity is due to CNTF or a CNTF-like molecule. 

What then of MANS? Are there two different cholinergic factors present in 

spinal cord membrane extracts or is MANS a CNTF-like molecule? 

Given the Similarity in the biological (Wong and Kessler, 1987, Rao et al., 

1990, Sendtner et al., 1989) and biochemical properties (Wong and Kessler, 1987, 

Adler et al., 1989, Manthorpe et al., 1986, Lin et al., 1989, Stockli et al., 1989) 

of CNTF and MANS and our data that antibodies to CNTF can immunoprecipitate 

virtually all the cholinergic-inducing activity in spinal cord membrane 

preparations and that that CNTF like immunoreactivity can be detected on Western 

blots, it is likely that MANS and CNTF are closely related molecules. Further, since 

message for CNTF can be detected by Northern blot hybridization in spinal cord 

tissue, it would appear that the two factors may be closely related or even identical. 

MANS, however, is a membrane associated protein (Wong and Kessler 1987, Adler et 

al., 1989) unlike CNTF which is cytoplasmic (Lin et al., 1989, Stockli et al., 

1989) and its reported molecular wt is 29 kD, while that of CNTF is 22-24 kD 

(Manthorpe et al., 1986, Lin et al., 1989, Stockli et al., 1989). These 

observations, however, are not inconsistent with our results, as the association of 

MANS with the membrane is weak and can be easily dissociated by incubating the 

membrane pellet in 100 mM salt (Adler et al., 1989), which is less than the 

osmolarity of serum; thus, it is possible that some fraction of the CNTF/MANS 

present in the cytoplasmic fraction associates with the membrane fraction during the 

extraction process and is subsequently released on incubation with a 100 mM or 

higher salt solution. Consistent with this hypothesis is our finding that spinal cord 

supernatants comprising the soluble protein also contain cholinergic-inducing 

activity and that Western blots of this preparation also contain a 24-kD molecule 

recognized by an antibody generated against rCNTF. Recent reports on a cell surface 
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bound form of CNTF (John Rudge., Neuroscience abstract, 1990) also support this 

possibility. The small difference in molecular weights is also easily attributed to a 

difference in methodology. The molecular weight of MANS was estimated by gel 

permeation of non-denatured protein, while that of CNTF by SDS-PAGE. Estimate of 

the molecular weight of CNTF by gel permeation also gives a somewhat higher value 

(Manthorpe, personal communication). 

An alternative hypothesis that would be consistent with the data is the 

possibility that MANS is a completely distinct molecule which is, in fact, 

membrane-bound (or even associated with the extracellular matrix) and interacts 

synergistically with CNTF to cause cholinergic induction, but by itself is incapable of 

cholinergic induction. According to this hypothesis, CNTF/CNTF-like molecule would 

now be present (albeit in small quantities), as would MANS in spinal cord extracts. 

Immunoprecipitation of CNTF with the polyclonal antibody would result in a complete 

loss of cholinergic induction with spinal cord extracts, even though the antibody did 

not actually immunoprecipitate MANS. Indirect support for this hypothesis comes 

from the work of Laura et al. (1990 a, b), who have demonstrated that two factors 

are required for the differentiation of 02A progenitor cells (Laura et al., 1990 a). 

One of these is a soluble factor and is most likely CNTF (Hughes et al., 1988, Laura 

et a/., 1990 b), and the other is a molecule associated with the extracellular matrix 

and probably secreted by the mesothelial cells, which can be dissociated from the 

matrix by high salt solutions (1 to 2 M NaCI). This molecule, would therefore, 

appear very similar to MANS. No data on purification of this extracellular matrix 

component is available at present. It is difficult to prove or disprove this hypothesis 

as no experiments to test the ability of CNTF or purified MANS to induce cholinergic 

induction in defined medium or in single cell cultures of sympathetic neurons have 

been performed as have been done for heart cell conditioned medium (Furshpan et 

a/., 1976, 1986 a,b). However, given that CNTF protein as well as message is 

present in spinal cord extracts and giventhe fact that purified CNTF (Sadat et a/., 

1989, Rao et a/., 1990) and rCNTF (see Chapter 2) can cause cholinergic induction 

in defined medium, it does not seem necessary to postulate the existence of a cofactor 

for the cholinergic differentiation function of CNTF. Conclusive proof, however, that 

MANS is not a distinct factor will require amino acid sequencing of MANS. 
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Figure 1. 

CNTF-like immunoreactivity is detectable in spinal cord extracts in 

Western blot assays. 

Equal protein concentration (100 J.lg) of (a) sciatic nerve, (b) spinal cord 

supernatant and (c) spinal cord membrane extracts were electrophorised and 

transferred to nitrocellulose. The blots were probed with a polyclonal antiserum 

raised against recombinant rat CNTF. As expected, the antiserum recognizes a 24-kD 

band present in sciatic neNe extracts (a). It also recognizes a 24-Kd band in both 

spinal cord soluble and membrane extracts (lane band c, respectively). 
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A c 
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Figure 2. 

Specificity of the polyclonal antiserum. 

In a. Sciatic nerve extract (100 J.lg/ml) was incubated with different dilutions of the 

polyclonal antiserum against CNTF. After immunoprecipitation samples were added to 

sympathetic neuron cultures. Seven days after the addition of the extracts, the 

cultures were assayed for ChAT activity by the method of Fonnum. The results are 

expressed as fold induction of ChAT ± s.e.m. compared to the activity observed in 

neurons grown in medium without extracts. All samples were run in duplicate (n= 3 

experiments) . 

In b. Sciatic nerve extract (100 J.lg/ml) and recombinant LlF (25 ng/ml) were 

incubated with (+) or without (-) a 1:4 dilution (25 J.l1/100 J.l1) of the polyclonal 

antisera to rCNTF. After immunoprecipitation, the samples were added to 

sympathetic neuron cultures. Seven days after addition of the extracts, samples were 

assayed for ChAT activity by the method of Fonnum. The results are expressed as the 

fold induction of ChAT activity ± s.e.m. observed in neurons grown in medium 

without extract. All samples were run in triplicate. 
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Figure 3. 

Polyclonal antisera to CNTF immunoprecipitates the cholinergic

inducing activity in spinal cord extracts. 

Spinal cord soluble protein (100 /-1g/ml) and spinal cord membrane extract (100 

/-1g/ml) were incubated without (a) or with (b) a 1:4 dilution (25 /-11/100 /-11) of 

the polyclonal antisera to rCNTF. After immunoprecipitation the samples were added 

to sympathetic neuron cultures. Seven days after addition of the extracts, samples 

were assayed for ChAT activity by the method of Fonnum. The results are expressed 

as the fold induction of ChAT activity ± s.e.m. observed in neurons grown in medium 

without extract. All samples were run in triplicate. 
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Materials and Methods 

All materials and methods are as described in Chapter 1 except as described below. 

The antisera to CNTF was obtained from Dr. Donna Marissey - Regeneron 

Pharmaceuticals. 

Western blotting with antisera to CNTF 

Aliquots of extracts (60 ug/lane) were run on a 15% SDS PAGE minigel (Biorad) 

and the proteins were blotted onto nitrocellulose (overnight 30mA). The 

nitrocellulose blots were blocked in blocking buffer (5% defatted milk in Tris 

buffered saline, pH 7.2) and then incubated for two hours with a polyclonal antibody 

against CNTF (1 :1000 dilution) (the kind gift of Dr. Donna Marissey, Regeneron 

Pharmaceuticals). The blots were then sequentially incubated with a biotinylated 

secondary antibody (One hour), and avidin conjugated to alkaline phosphatase (one 

half hour). The bound enzyme was detected with NBT (Nitroblue tetrazolium) and 

BCIP(Bromo chloro indoyl phosphate) in 10 mM bicarbonate buffer pH 9.5. After 

optimal color development, the reaction was stopped by rinsing in distilled water. 

Immunoprecipitation of cholinergic-inducing activity. 

For the immunoprecipitation experiments in which the biological activity of the 

factors was tested, aliquots of sciatic nerve extract, spinal cord membrane 

preparations or spinal cord soluble extract sufficient for a cell culture assay were 

added to buffer (PBS pH 7.3 with 2% BSA, 0.2% Triton X-100, and 0.02% PEG 

6000). Affinity-purified antibody was added to each vial to a final dilution of 1 :4. 

After an overnight incubation, the antigen-antibody complex was absorbed to 10 JlI 

of protein A Sepharose for a further two hours at room temperature. The bound 

complexes were separated by centrifugation and the supernatant was diluted into 

L 15-C02 medium and used for cell culture assays. Two controls were performed to 

insure that the loss of activity consequent to absorption was due to a specific effect of 

the antibody. Aliquots of LlF were incubated with the antibody and treated as 

described above, and the two results were compared with aliquots incubated without 

the antibody but otherwise treated as described above. 

60 



Chapter 1 

References 

Adler, J. E., and Black, I. B. (1985). Sympathetic neuron density differentially 

regulates transmitter phenotype expression in culture. Proc. Natl. Acad. Sci. 

82 :4296-4300. 

Adler, J. E. and Black, I. B. (1986). Membrane contact regulates transmitter 

phenotypic expression. Dev. Brain Res. 30:237-241. 

Adler, J. E. Schleifer, L.S., and Black, I. B. (1989). Partial purification and 

characterization of a membrane-derived factor regulating neurotransmitter 

phenotypic expression. Proc. Natl. Acad. Sci. 86:1080-1083. 

Adler, R., Landa, K., Manthorpe, M., and Varon, S. (1979). Cholinergic 

neurotrophic factors. II. Intraocular distribution of trophic activity for 

ciliary neurons. Science 204:1434-1436. 

Auburger, G., Heumann, R., Hellweg, R., Korsching, S. and Thoenen, H. (1987). 

Developmental changes of Nerve Growth Factor and its mRNA in the rat 

hippocampus: comparison with choline acetyltransferase. Dev. BioI. 120:322-

328. 

Barbin, G., Manthorpe, M. and Varon, S. (1984). Purification of chick eye 

ciliary neurotrophic factor. J Neurochem 43:1468-1478. 

Barde, U., Edgar, D. and Thoenen, H. (1982) Purification of new neurotrophic 

factor from mammalian brain. EMBO J. 1 :549-553. 

Bocchini, V., and Angeletti, P. N. (1969). The nerve growth factor: Purification as a 

30,000 molecular wt protein. Proc. Natl. Acad. Sci. USA 64: 787-794. 

Bolton, A. E., and Hunter, W. M. (1973). The labeling of proteins to high specific 

radioactivities by conjugation to a 1251 containing acylating agent. Biochem J. 

133:529-539. 

Bonyhady, R. E., Hendry, I. A., Hill, C. E. and McLennan, I. S. (1980). 

Characterization of a cardiac muscle factor required for the survival of 

cultured parasympathetic neurones. Neurosci. Lett. 18:197-201. 

Clark, S. C. and Kamen, R. (1987). The human hematopoietic colony-stimulating 

factors. Science 236:1229-1237. 

Cochard, P., Goldstein, M., and Black, I. B. (1979). Initial development of the 

noradrenergic phenotype in autonomic neuroblasts of the rat embryo in 

vivo. Dev. BioI. 71 :100-114. 

61 



Chapter 1 

Davies, A. M., Bandtlow, C., Heumann, R., Korshcing, S., Rohrer, H., and Thoenen, H. 

(1987). Timing and site of nerve growth factor synthesis in developing skin in 

relation to innervation and expression of the receptor. Nature 236:353-358. 

Eranko, L. (1972). Ultrastructure of the developing sympathetic nerve cell and 

the storage of catecholamines. Brain. Res. 46:159-175. 

Ernsberger, U., Sendtner, M. and Rohrer, H. (1989). Proliferation and 

differentiation of embryonic chick sympathetic neurons: Effects of ciliary 

neurotrophic factor. Neuron 2:1275-1284. 

Fonnum, F. (1969). Radiochemical microassays for the determination of 

choline acetyl transferase and acetylcholinesterase activities. Biochem. J. 

115:465-472. 

Fukada, K. (1985). Purification and partial characterization of a cholinergic 

differentiation factor. Proc. Natl. Acad. Sci. USA 82:8795-8799. 

Fukada, K. (1986). The production of antisera against a cholinergic 

differentiation factor. Soc. Neurosci. Abstr. 12:378. 

Geiss, M. -C. and Weber, M. (1984). Acetylcholine metabolism in rat spinal cord 

cultures: regulation by a factor involved in the determination of the 

neurotransmitter phenotype of sympathetic neurons. J. Neurosci. 4:2269-

2278. 

Hamburger, V., Brunso-Bechtold, J. and Yip, J. W. (1981). Neuronal death in the 

spinal ganglia of the chick embryo and its reduction by nerve growth factor. J. 

Neurosci. 1 :60-71. 

Hawrot, E. and Patterson, P. H. (1979). Long-term culture of dissociated 

sympathetic neurons. Methods Enzymol. 58:574-583. 

Higgins, D., lacovitti, L., Joh, T. H. and Burton, H. (1981). The 

immunocytochemical localization of tyrosine hydroxylase within 

sympathetic neurons that release acetylcholine in culture. J. Neurosci. 

1:126-131. 

Hofer, M. M. and Barde, Y. (1988). Brain-derived neurotrophic factor prevents 

neuronal death in vivo. Nature 331 :261-262. 

Hofmann, H. D. (1988). Ciliary neurotrophic factor stimulates choline 

acetyltransferase activity in cultured chicken retina neurons. J. Neurochem 

51:1:109-113. 

Hughes, S. M., Lillien, L. E., Raft, M. C., Rohrer, H., and Sendtner, M. (1988). 

Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. 

Nature 335:70-73. 

62 



Chapter 1 

lacovitti, L., Johnson, M. I., Joh, T. J., and Bunge, R. P. (1982). Biochemical and 

morphological characterization of sympathetic neurons grown in a 

chemically-defined medium. Neuroscience 7:2225-2239. 

lacovitti, L., Joh, T. J., Park, D. H. and Bunge, R. P. (1981). Dual expression of 

neurotransmitter synthesis in cultured neurons. J. Neurosci. 1 :685-

690. 

Johnson, E. M., Gorin, P. M., Brandeis, L. D., and Perason, J. (1980). Dorsal root 

neurons are destroyed by exposure in utero to maternal antibody to nerve growth 

factor. Science 210:916-918. 

Johnson, M. I., Ross, D., Myers, M., Rees, R., Bunge, R., Wakshull, E. and Burton, 

H. (1976). Synaptic vesicle cytochemistry changes when cultured 

sympathetic neurons develop cholinergic interactions. Nature 262:308-310. 

Johnson, M. I., Ross, D., Myers, M., Spitznagel, E. L. and Bunge, R. (1980). 

Morphological and biochemical studies on the development of cholinergic 

properties in cultured sympathetic neurons. I. Correlative changes in 

choline acetyltransferase and synaptic vesicle cytochemistry. J. Cell BioI. 

84:680-691. 

Kessler, J. A., Conn, G. and Hatcher, V. B. (1986). Isolated plasma membranes 

regulate neurotransmitter expression and facilitate the effects of a soluble 

brain cholinergic factor. Proc. Natl. Acad. Sci. 83:3528-3532. 

Korsching, S., and Thoenen, H. (1983). Nerve growth factor in sympathetic 

ganglia and corresponding target organs of the rat: correlation with density of 

sympathetic innervation. Proc. Natl. Acad. Sci. 80:3513-3516. 

Lachmann, P. J., Strangeways, L., Vyakarnam, A. and Evan, G. (1986). Raising 

antibodies by coupling peptides to PPD and immunizing BCG sensitized 

animals. In: CIBA Foundation Symposium "Synthetic Peptides As Antigens" 

119:25-57. 

Landis S.C. (1980). Developmental changes in the neurotransmitter properties of 

dissociated sympathetic neurons: a cytochemical study of the effects of medium. 

Dev. BioI. 77:348-361 

Landis, S. C. and Keefe, D. (1983). Evidence for neurotransmitter plasticity in 

vivo: Developmental changes in the properties of cholinergic sympathetic 

neurons. Dev. BioI. 98:349-372. 

Landis, S. C., Schwab, M. and Siegel, R. E. (1988). Evidence for neurotransmitter 

plasticity in vivo: II. Immunocytochemical studies of rat sweat gland 

innervation. Dev. BioI. 126:129-138. 

63 



Chapter 1 

Large, T. H., Bodary, S. C., Clegg, D.O., Weskamp, G., Otten, U., and Reichardt, L. F. 

(1986). Nerve growth factor expression in the developing rat brain. Science 

234 :352-355. 

Laura., E. L., Sendtner, M., and Raff, M. C. (1990a). Extracellular Matrix

associated molecules collaborate with ciliary neurotrophic factor to induce 

Type-2 astrocyte development. J. Cell. Bio. 111 :631-640. 

Laura., E. L. and Raff, M., C. (1990). Differentiation signals in the CNS: Type-2 

astrocyte development in vitro as a model system. Neuron 5:111-119. 

Laura., E. L., Sendtner, M., Rohrer, H., and Raff, M., C. (1990)b. Type-2 astrocyte 

development in rat brain cultures is initiated by a CNTF-like protein 

produced by Type-1 astrocytes. Neuron. 5:485-494. 

Leblanc, G. and Landis, S. C. (1986). Development of choline acetyltransferase 

activity in the cholinergic sympathetic innervation of sweat glands. J. 

Neurosci. 6:260-265. 

Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., 

Thoenen, H., and Barde, Y. (1989). Molecular cloning and expression of 

brain-derived neurotrophic factor. Nature. 341 :149-152. 

Levi-Montalcini, R. and Angeletti, P. (1963) Essential role of the Nerve Growth 

Factor in the survival and maintainence of dissociated sensory and 

sympathetic neurons in vitro. Dev. BioI. 7:653-659. 

Levi-Montalcini, R. and Booker, B. (1960a). Excessive growth of sympathetic 

ganglion by mouse nerve growth factor. Proc. Natl. Acad. Sci. 46:373-383. 

Levi-Montalcini, R. and Booker, B. (1960b). Destruction of the sympathetic 

ganglion in mammals by an antiserum to a x nerve growth factor. Proc. 

Natl. Acad. Sci. 46:384-391. 

Lin, H. L., Mismer, D., Lile, J. D., Armes, G. L., Butler, E. T., Vannice, J. L., and 

Collins, F. (1989). Purification, cloning, and expression of ciliary neurotrophic 

factor (CNTF). Science 246:1023-1025. 

Mains, R. E. and Patterson, P. H. (1973). Primary cultures of dissociated 

sympathetic neurons. I. Establishment of long-term growth in culture and 

studies of differentiated properties. J. Cell BioI. 59 :329-345. 

Manthorpe, M., Skaper, S., Williams, L. R. and Varon, S. (1986). Purification of 

adult rat sciatic nerve ciliary neurotrophic factor. Brain Res. 367:282-

286. 

64 



Chapter 1 

Mathieu, C., Mosiasan, A. and M. Wever (1984) Acetylcholine metabolism by 

cultured neurons from rat nodose ganglia: regulation by a macromolecule 

from muscle conditioned medium. Neuroscience 13: 1373-1384. 

Mcmanaman, J. L., F.G. Crawford, S.S. Stewart, and S.H. Appel. (1988). 

Purification of a skeletal muscle polypeptide which stimulates choline 

acetyltransferase in cultured spinal cord neurons. J. BioI. Chern. 263:5890-

5897. 

Metcalf, D. (1989) The granulocyte-macrophage colony-stimulating factors. 

Science 229:16-22. 

Nawa, H. and Patterson, P.H. (1990). Separation and partial characterization of 

neuropeptide-inducing factors in heart cell conditioned medium. Submitted. 

Nawa, H. and Sah, D. W. Y. (1990). Distinct factors in conditioned media control the 

expression of a variety of neuropeptides in cultured sympathetic neurons. 

Submitted. 

Nishi, R., and Berg, D. K. (1981). Two components from eye tissue that 

differentially stimulate the growth and development of ciliary neurons in cell 

culture. J. Neurosci. 1 :505-513. 

Patterson, P. H. and Chun, L. L. Y. (1974). The influence of nonneuronal cells on 

catecholamine and acetylcholine synthesis and accumulation in cultures of 

dissociated sympathetic neurons. Proc. Natl. Acad. Sci. 71 :3607-3610. 

Patterson, P. H. and Chun, L. L. Y. (1977a). Induction of acetylcholine synthesis 

in primary cultures of dissociated rat sympathetic neurons. I. Effects of 

conditioned medium. Dev. BioI. 56:263-280. 

Patterson, P. H. and Chun, L. L. Y. (1977b). Induction of acetylcholine synthesis 

in primary cultures of dissociated rat sympathetic neurons. II. 

Developmental aspects. Dev. BioI. 60:473-481. 

Potter, D. D., Landis, S. C., Matsumoto, S. G., and Furshpan, E. J. (1986). Synaptic 

functions in rat sympathetic neurons in microcultures. II. 

Adrenergic/cholinergic dual status and plasticity. J. Neurosci. 6:1080-1090. 

Raynaud, B., Clarous, D., Vidal, S., Ferrand, C., and Weber, M. J. (1987). 

Comparison of the effects of elevated K+ ions and muscle-conditioned medium on 

the neurotransmitter phenotype of cultured sympathetic neurons. Dev. BioI. 

121 :548-558. 

Saadat, S., Sendtner, M. and Rohrer, H. (1989). Ciliary neurotrophic factor 

induces cholinergic differentiation of rat sympathetic neurons in culture. 

Cell BioI. 108:1807-1816. 

65 



Chapter 1 

Schotzinger, R. and Landis, S. C. (1988). Cholinergic phenotype developed by 

noradrenergic sympathetic neuorns after innervation of a novel 

cholinergic target in vivo. Nature 335:637-639. 

Shelton, D. L. and Reichardt, L. F. (1984). Expression of the B-nerve growth 

factor gene correlates with the density of sympathetic effector organs. 

Proc. Natl. Acad. Sci. 81:7951-7955. 

Stockli, K. A., Lottspeich, F., Sendtner, M., Masiakowski, P., Carroll, P., Gotz, R., 

Lindholm, D., and Thoenen, H. (1989). Molecular cloning, expression and 

regional distribution of rat ciliary neurotrophic factor. Nature 342, 920-923. 

Swerts, J.P., Le Van Thai, A., Vigny, A., and Weber, M. J. (1983). Regulation of 

enzymes responsible for neurotransmitter synthesis and degradation in cultured 

rat sympathetic neurons. Dev. Bio. 100:1-11. 

Teitelman, G., H. Baker, T. H. Joh, and D.J. Reis. (1979). Appearance of 

catecholamine synthesizing enzymes during development of the rat nervous 

system: Possible role of tissue enviroment. Proc. Natl. Acad. Sci. USA. 76:509-

513. 

Walicke, P. A., Campenot, R. B., and Patterson, P. H. (1977). Determination of 

transmitter function by neuronal activity. Proc. Natl. Acad. Sci. 74:3767-

3771. 

Waters, D. J. and and Hendry, I. A. (1987). Purification of a ciliary neurotrophic 

factor from bovine heart. J. Neurochem. 49:705-713. 

Weber, M.J., Raynaud, B. and Delteil, C. (1985). Molecular properties of a 

cholinergic differentiation factor from muscle conditioned medium. J. 

Neurochem. 45:1541-1547. 

Wolinsky, E., Landis, S. C. and Patterson, P. H. (1985). Expression of 

noradrenergic and cholinergic traits by sympathetic neurons cultured without 

serum. J. Neurosci. 5:1497-1508. 

Wolinsky, E. and Patterson, P. H. (1983). Tyrosine hydroxylase activity 

decreases with induction of cholinergic properties in cultured sympathetic 

neurons. J. Neurosci. 3:1495-1500. 

Wolinsky, E. and Patterson, P. H. (1985). Rat serum contains a developmentally 

regulated cholinergic inducing activity. J. Neurosci. 5:1509-1512. 

Wong, V. and Kessler, J. A. (1987). Solubilization of a membrane factor that 

stimulates levels of Substance P and choline acetyltransferase in 

sympathetic neurons. Proc. Natl. Acad. Sci. 84:8726-8729. 

66 



Chapter 2. 

The effect of ciliary neurotrophic factor on neuropeptide expression 

by sympathetic and dorsal root ganglion neurons. 
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Abstract 

Ciliary neurotrophic factor (CNTF) and sciatic nerve extracts have been shown to 

cause ChAT induction in cultured sympathetic neurons (Saadat et al., 1989, Rao et 

al., 1990). To determine if CNTF alters levels of other neurotransmitter candidates 

we have examined the effects of crude sciatic nerve extracts on the expression of 

several peptides in cultures of rat sympathetic neurons. Vasoactive intestinal peptide 

(VIP), Substance P, and somatostatin levels were increased several fold, while 

Neuropeptide Y (NPY) levels were significantly reduced in comparison to levels in 

control cultures. No change in levels of Leu-enkephalin (L-enk) were detected. The 

effects of crude sciatic nerve extract on expression of peptides were abolished by 

immunoprecipitating CNTF-like molecules from the extract with a polyclonal 

antibody raised against recombinant CNTF (rCNTF). rCNTF had the same effect on 

neuropeptide levels as crude sciatic nerve extracts. These observations suggest that 

the peptide modulating factor present in sciatic nerve extracts is CNTF. 

The changes in peptide levels observed with rCNTF treatment occurred in a 

dose-dependent fashion with maximal induction seen at a concentration of 5-25 

ng/ml. Peptide levels were altered three days after exposure to CNTF and levels 

continued to increase up to 14 days in culture. Treatment of sympathetic neuron 

cultures with 30 mM KCI, which has been shown to block the cholinergic 

differentiation effect of heart cell conditioned medium (Walicke et al., 1977) did not 

block the effects of CNTF on ChAT induction and peptide expression. Similar 

treatment with 30 mM K+ blocked the effect of cholinergic differentiation 

factor/leukemia inhibitory factor (CDF/LlF) on ChAT induction. Thus, the 

cholinergic induction in sympathetic neurons, by CNTF and CDF/LlF, is 

differentially modulated by depolarization. This suggests that the mechanism of 

cholinergic and peptide induction in sympathetic cultures by CNTF differs from 

CDF/LiF. 

CNTF also differed from CDF/UF in its effects on ChAT and peptide levels on 

cultures of DRG neurons. No change is detected in ChAT, VIP, Substance P, and 

somatostatin levels in response to 25 ng/ml of CNTF. These observations provide 

additional evidence of the overlapping but distinct spectrum of action of CNTF and 

CDF/LiF. 
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Introduction 

Over the past several years it has become increasingly evident that the 

transmitters and neuropeptides produced by a particular neuron are not specified by 

lineage alone (see Introduction). Rather, the transmitter profile represents a 

dynamic balance between cell lineage and environmental Signals. The role of the 

environment in inducing the de novo expression and/or modulating existing levels of 

classical neurotransmitter and peptides has been examined both in vivo and in vitro. 

The target that the neuron innervates, the level of preganglionic activity and the 

ganglionic environment (including cell density and presence of non-neuronal cells), 

have all been suggested as sources of extrinsic signals that regulate the expression of 

transmitters in neurons in vivo. 

Evidence for target specification of neurotransmitter phenotype comes from 

cell culture, crossinnervation and tissue transplant experiments. Co-culture 

experiments in which pineal cells or salivary glands were grown with sympathetic 

neurons from the superior cervical ganglion (SCG) have shown that Substance P and 

somatostatin levels are elevated (Kessler et al., 1984). Subsequent studies have 

demonstrated that the elevation in levels of somatostatin and Substance P by target 

tissue is mediated by a soluble factor (Kessler, 1984). MacMahon and Gibson 

(1985) have shown that sensory neurons can alter their expression of Substance P 

depending on whether they innervate skin or muscle. When sensory fibers 

innervating the muscle and exhibiting low levels of Substance P immunoreactivity 

are made to innervate skin, Substance P immunoreactivity in the fibers increases ; 

conversely, Substance P immunoreactivity in skin sensory fibers decreases when 

they innervate muscle spindles. These data suggest that levels of Substance P in vivo 

are regulated by the target. Tissue transplantation experiments (Schotzinger and 

Landis, 1989, 1990) demonstrate that the normal noradrenergic to cholinergic and 

peptidergic switch that characterizes sweat gland innervation (Landis and Keefe, 

1983 Leblanc and Landis, 1986, Landis et al., 1988) is specified by the target. 

When sympathetic fibers that normally innervate noradrenergic targets are made to 

innervate sweat glands (Schotzinger and Landis, 1989, 1990), they express VIP 

immunoreactivity and increased choline acetyl transferase (ChAT) activity. 

Noradrenergic markers such as tyrosine hydroxylase and catecholamine 

histofluorescence are decreased. Conversely, when fibers innervating the sweat gland 

innervate a noradrenergic target like parotid gland, they fail to express VIP and 

choline esterase immunoreactivity and maintain their noradrenergic markers 
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(Schotzinger and Landis, 1990). The actual mechanism by which the sweat gland 

influences the neurotransmitter expression is not known. A factor(s) has been 

solubilized and partially characterized, however, which can mediate a similar 

noradrenergic to cholinergic switch in culture (Rao and Landis 1990). 

Preganglionic activity can also influence neurotransmitter and neuropeptide 

levels. Denervation, for example, results in expression of Substance P in 

sympathetic neurons, and impulse activity and depolarization in culture reduce 

Substance P and somatostatin levels (Kessler 1983 a). Levels of VIP are also two

fold higher in the decentralized SCG as compared to sham operated animals (Sachs et. 

aI., Neuroscience abstract, 1990). In contrast to the decrease in Substance P and 

somatostatin levels, impulse activity and depolarization augmented noradrenergic 

characteristics (Thoenen, 1974, Walicke et al., 1977), indicating that the effects 

on Substance P and somatostatin are specific. Denervation and preganglionic 

stimulation also have specific effects on increasing L-enk and NPY expression in the 

adrenal gland (Schultzber et al., 1978, Lewis et al., 1987, De Quidt and Emson, 

1986, Schalling et al., 1988, La Gamma et al., 1984). Experiments with cultured 

adrenal chromaffin cells also demonstrate that cells grown under depolarizing 

conditions will up-regulate the levels of enkephalins (Henion, P .D., personal 

communication) in rat chromaffin cell cultures. Thus, preganglionic activity and 

depolarization can modulate the expression of several different peptides. 

Considerable evidence suggests that cell density and non-neuronal cells can 

also modulate the expression of catecholaminergic, cholinergic and peptidergic 

properties in sympathetic neuron cultures (Patterson and Chun, 1974, Bunge et al., 

1984, Kessler 1983, 1984, 1985). For example, increasing cell density in culture 

increases levels of ChAT and Substance P (Kessler, 1985, Adler and Black, 1985, 

Acheson and Rutishauser, 1988) without increasing the expression of noradrenergic 

traits or somatostatin (Kessler, 1985). Substance P levels can also be increased by 

co-culture of dissociated sympathetic neurons with ganglionic non neuronal cells and 

nonneuronal cell conditioned medium (Kessler, 1984, Kessler, 1985). Nonneuronal 

cell membranes/membrane extract can also increase ChAT activity (Kessler et al., 

1986, Wong and Kessler, 1987). Similar increases in somatostatin, but not 

Substance P, levels have been described when avian sensory neurons are grown with 

non-neuronal cells or non-neuronal conditioned medium (Mudge 1981). 

Both soluble and membrane-associated factors have been identified which 

could mediate the effects of the target and/or non-neuronal cells on transmitter and 

peptide expression. A membrane-associated neurotransmitter-stimulating substance 
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(MANS) (Wong and Kessler, 1987, Adler et al., 1989) was identified as a 

cholinergic-inducing factor for sympathetic neurons in culture. MANS preparations 

also increase the levels of Substance P and somatostatin (Wong and Kessler, 1987, 

Lee et al., 1990). It has been suggested that MANS is the factor responsible for the 

density-mediated change in ChAT activity and peptide levels. CDF/LlF, another 

cholinergic factor (Fukada, 1985, Yamamori et al., 1989), differentially regulates 

several peptides (Nawa and Patterson 1990 a, b). The evidence suggests that this 

factor is secreted by fibroblasts (Patterson and Chun, 1977, Fukada, 1980, Hozumi 

et al., 1984). CNTF purified and cloned from sciatic nerve (Manthorpe et al., 1986, 

Stockli et al., 1990, Lin et al., 1990) is made by Schwann cells and cultured type 1 

astrocytes (Saadat et al., 1989), Rudge et al., Neuroscience abstract, 1990). CNTF 

increases ChAT activity and reduces TH levels in sympathetic neuron cultures 

(Saadat et al., 1989, Rao et al., 1990). In addition, CNTF induces expression of VIP 

in embryonic chick sympathetic neuron cultures (Ernsberger et al., 1989). A 

cholinergic and peptide differentiation activity has also been solubilized from sweat 

gland tissue (Rao and Landis, 1990). The sweat gland differentiation activity 

increases VIP levels and decreases NPY levels in sympathetic neuron cultures. 

The interaction between cholinergic differentiation factors and other 

environmental influences on neurotransmitter and peptide levels in cultured 

sympathetic neurons is complex and incompletely defined. The effects of heart cell 

conditioned medium on induction of ChAT and reduction of catecholamines can be 

modulated by the activity of the neurons (Walicke et al., 1977, Walicke and 

Patterson, 1981 a, b). Depolarization can almost completely block the adrenergic to 

cholinergic switch (Walicke et al., 1977). The presence of killed ganglionic non

neuronal cells or skin fibroblasts can block the induction of somatostatin by 

fibroblast-conditioned medium in sympathetic neuron cultures (Spiegel et al., 

1990). The factor present in the fibroblast-conditioned medium was not identified 

but is likely to be CDF/LIF (Patterson and Chun, 1977, Fukada, 1980, Hozumi et 

al., 1984). The inhibitory factor(s) associated with killed fibroblasts is not MANS 

(Spiegel et al., 1990), but appears to be due to some as yet uncharacterized factor. 

Identifying the molecular signals that mediate the effects of poorly defined 

conditioned medium and tissue extracts on peptide levels will be critical for further 

analysis. We have begun examining the effects of CNTF on peptide expression and its 

interaction with other environmental influences to identify a possible role for CNTF 

in peptide regulation. In this chapter, we have examined the effects of CNTF on 

peptide expression by sympathetic and sensory neurons in culture. In initial 
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experiments the effects of crude sciatic nerve extracts, a rich source of CNTF, were 

determined. Subsequent experiments were undertaken with recombinant CNTF. We 

demonstrate that sciatic nerve extracts, in addition to regulating the levels of ChAT 

and TH (Saadat et a/., 1989, Rao et a/.,1990) also contain a molecule(s) that can 

modulate the levels of several different peptides. Using polyclonal antibodies to 

rCNTF, we show that the induction of peptides by crude sciatic nerve extracts is due 

to CNTF. We characterize the interaction of CNTF and depolarization on ChAT and 

peptide induction and compare it with the effects of depolarization on the effects of 

CDF/LIF. 
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Results 

Sciatic nerve extracts have peptidergic activity 

We examined the effects of crude sciatic nerve extracts on the expression of 

VIP, somatostatin, Substance P, NPY and L-enk. Sympathetic neuron cultures treated 

with sciatic nerve extracts were assayed for peptide levels by radioimmunoassay. 

The levels of VIP, somatostatin, and Substance P were elevated in comparison to 

control cultures grown without extracts (Table 1). Levels of NPY were reduced and 

L-enk levels remained unchanged. Since sciatic nerve extracts do not have any effects 

on cell number in sympathetic cultures over a period of nine days (Saadat et a/., 

1989, Rao et a/., 1990), sciatic nerve extracts affect differentially the levels of 

several different peptides in cultured sympathetic neurons. 

The peptidergic activity present in sciatic nerve extracts is due to CNTF 

A likely source of the peptidergic activity in the sciatic nerve preparations is 

CNTF since it has been shown to cause VIP induction in embryonic chick sympathetic 

neurons (Ernsberger et a/., 1989). To ascertain whether CNTF and/or any other 

peptidergic factor(s) were present in sciatic nerve extracts, we used a polyclonal 

antiserum generated against rCNTF to immunoprecipitate CNTF-like molecules from 

the extract. Sciatic nerve extracts incubated with and without antiserum were added 

to sympathetic neuron cultures and the ability of sciatic nerve extracts which had 

been depleted of CNTF to alter peptides levels was assayed. Figure 1 shows that no 

significant induction of VIP, somatostatin or Substance P is seen. Likewise, no 

changes in NPY levels were detected in cultures treated with extracts preincubated 

with a 1: 4 dilution of a polyclonal antibody to CNTF. This suggests that the factor(s) 

in sciatic nerve extracts responsible for altering the levels of four different peptides 

tested is immunologically related to CNTF. 

To confirm that CNTF has a similar effect on peptide levels as crude sciatic 

nerve extract, we added rCNTF to sympathetic neuron cultures and assayed peptide 

levels. rCNTF (Table 2) and sciatic nerve extract (Table 1) have similar effects on 

peptide levels. VIP, somatostatin and Substance P levels were raised as compared to 

those in control cultures grown without rCNTF. NPY levels were reduced and L-enk 

levels were unchanged. This suggests that CNTF is the molecule responsible for the 

effects of sciatic nerve extracts on the levels of the peptides tested and no other 

peptide regulating factor (for the peptides tested) is present. 
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Dose response of peptide induction 

We have determined the concentration of CNTF required to cause detectable 

changes in peptide levels. Figure 2 shows that the addition of as little as 200 pg/ml 

of CNTF caused a significant change in NPY and Substance P levels. The amount of 

rCNTF required to alter NPY, VIP and Substance P levels is similar to the 

concentration of rCNTF required for detectable effects on embryonic day-eight 

ciliary neuron survival (Stockli et al., 1989, Lin et al., 1989). Higher levels (1-5 

ng/ml) were required to see a detectable change in somatostatin levels. The maximal 

induction of all peptides is seen between 5-25 ng/ml of CNTF. This concentration of 

CNTF, required for maximal induction of peptides is five-fold higher than that 

required for ciliary neuron survival (Stockli et al., 1989, Lin et al., 1989) and is 

similar to levels of CNTF required for ChAT induction in sympathetic neuron 

cultures (Saadat et al., 1989, our unpublished results). 

Time course of peptide induction 

The time course of peptide induction in sympathetic neuron cultures in 

response to CNTF was examined (Fig. 3) to determine if it parallels the reported 

time course of altered ChAT activity (Saadat et al., 1989). Detectable increases in 

peptide levels (as determined by radioimmunoassay) are first seen as early as three 

days after exposure to 2 ng/ml of CNTF, and levels continue to increase up to day 14, 

the last time point examined. The increase in peptide levels paralleled the time 

course of ChAT induction in response to CNTF (Saadat et al., 1989, unpublished 

observations), and suggests that the peptide response does not occur secondary to the 

ChAT differentiation. Alteration in peptide levels in response to CDF/LIF is, in 

general, slower with induction first detected seven to ten days after exposure to 

CDF/LIF (Nawa and Patterson, 1990, Nawa and Patterson, Cold Spring Harbor 

Symposium, 1991). 

The effect of depolarization on neurotransmitter modulation by CNTF 

The effects of CDF/LIF and CNTF on ChAT activity, catecholamine levels and 

peptide expression are very similar (Saadat et al., 1989, Rao et al., 1990, Nawa and 

Patterson, 1990). To further examine the similarities and differences in ChAT 

induction by CNTF and CDF/LlF, we have assayed the effect of CNTF and CDF/LIF on 

neurons grown in 30 mM KCI. Depolarization with 30 mM KCI will block the ChAT 

induction of heart cell conditioned medium (Walicke et al., 1977, Raynaud and 
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Weber, 1987) and recombinant L1F (Fig. 4). The ChAT induction by CNTF is not 

blocked by high potassium culture conditions. Levels of ChAT activity in cultures 

grown with CNTF and 30 mM KCI are higher than in cultures grown in CNTF alone. 

Thus, CNTF and CDF/LIF differ in their ability to induce cholinergic function under 

depolarizing conditions. 

We have also examined the effect of depolarization and CNTF on peptide levels. 

As can be seen in Fig. 5, depolarization caused an elevation of NPY and VIP levels. No 

changes are seen in somatostatin and Substance P levels. The cell number is not 

altered by depolarization, although cells appear larger in diameter when compared to 

controls (unpublished observations). Depolarization did not block the effects of CNTF 

on peptide levels. The levels of VIP, somatostatin and Substance P are unchanged or 

higher in cultures grown with the addition of CNTF and 30 mM KCI when compared to 

control cultures grown with CNTF alone (Fig. 5). The change in NPY levels in 

cultures grown with CNTF and 30 mM KCI may represent the additive effect of 

depolarization and CNTF. Thus, depolarization with 30 mM KCI did not alter the 

response of sympathetic neurons to CNTF. 

Effect of CNTF on DRG neuron cultures 

CNTF receptors are present on rat dorsal root ganglion (DRG) neurons 

(Squinto et a/., 1991). CNTF has also been shown to be a survival factor for DRG 

neurons (Eckenstein et a/., 1990). It was possible that in addition to its effects on 

survival, CNTF would also alter peptide levels. To determine whether DRG neurons 

responded to CNTF by altering transmitter and peptide levels, we assayed the effect of 

CNTF on neonatal rat DRG cultures. As can be seen in figure 6, DRG neurons in 

culture expressed high levels of Substance P but contain little VIP, somatostatin, 

NPY or ChAT. L-enk was undetectable in DRG cultures (less than 1 pg/well). This is 

similar to the peptide expression reported in cultured DRG neurons (Nawa and 

Patterson, Cold Spring Harbor Symposium, 1991). Addition of CNTF caused no 

significant changes in either ChAT activity or in the levels of the peptides examined. 
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Discussion 

We have presented evidence for the effects of CNTF and crude sciatic nerve 

extracts on expression of neuropeptides by sympathetic neurons in culture. Our data 

comparing the effects of depolarization on ChAT and peptide induction by CNTF and 

CDF/LlF, as well as the effects of CNTF and CDF/LIF on sensory neurons, has 

provided additional evidence of their distinct but overlapping effects. 

Extracts of sciatic nerve modulate the expression of several different 

peptides in sympathetic neuron cultures. VIP, somatostatin and Substance Pare 

elevated and NPY levels are reduced, while no changes are seen in the levels of L-enk. 

Since the levels of induction are high and there is no significant difference in cell 

survival (Saadat et al., 1989, Rao et al., 1990), the varied effects on neuropeptide 

levels are not due to differential cell survival. An antiserum generated against rCNTF 

can completely immunoprecipitate the ChAT (see Chapter 1 appendix) and peptide

inducing activities present in sciatic nerve extracts. Further, Western blot analysis 

of sciatic nerve extracts probed with the same antibody reveal a single 24-kD band 

(see Chapter 1 appendix) the reported molecular weight of CNTF (Manthorpe et al., 

1986, Stockli et al., 1989). It is, therefore, reasonable to assume that the activity 

in sciatic nerve extracts is due to a single molecule that is immunologically related 

or identical to CNTF. This conclusion is supported by the fact that rCNTF, like sciatic 

nerve extracts, differentially regulates the levels of the identical peptides in a dose

dependent fashion. VIP, somatostatin and Substance P are elevated, while the levels of 

NPY are reciprocally down-regulated with no detectable change in L-enk levels. 

The alteration of peptide expression in response to rCNTF occurs at low 

concentrations. The half maximal dose for peptide induction is between 1-5 ng and 

maximal levels of VIP, Substance P and somatostatin are seen between 5-25 ng/ml 

of CNTF. The concentration of CNTF required to cause maximal changes in peptide 

levels is similar to that reported for changes in ChAT and catecholamine levels in 

sympathetic neuron cultures (Saadat et al., 1989). 

The peptides altered by CNTF and CDF/LIF (Nawa and Patterson, 1990), a 

second chOlinergic-inducing molecule, in sympathetic neuron cultures are identical. 

Thus, at least two different factors, CNTF and CDF/LlF, can alter peptide levels in 

sympathetic neuron cultures. Other, less characterized, peptide-inducing molecules 

have also been described (Wong and Kessler, 1987, Lee et al., 1990, Rao and Landis 

1990, Nawa and Sah, 1990, Nawa and Patterson, 1990) which alter peptide levels 
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when added to sympathetic neuron cultures. MANS (Wong and Kessler, 1986, Adler 

et a/., 1989, Lee et a/., 1990) and sweat gland cholinergic differentiation factor 

(Rao and Landis, 1990) have similar effects on VIP, NPY, Substance P and 

somatostatin (Wong and Kessler, 1986, Lee et a/., 1990, Rao and Landis, 1990, and 

unpublished results), and it is possible that these peptide-inducing molecules 

represent CNTF isolated from different sources. 

The time course of induction of these peptides is similar to that reported for 

changes in ChAT activity and catecholamine levels in sympathetic neuron cultures 

(Saadat et a/., 1989). An increase in ChAT activity is seen as early as two days in 

culture (Saadat et a/., 1989, our unpublished results). Significant induction of 

Substance P, VIP and somatostatin is seen as early as three days after the exposure to 

CNTF, suggesting that the change in peptide levels is not secondary to the 

noradrenergic to cholinergic switch. The time course of induction of both peptides 

and ChAT activity differs from that of CDF/LIF (Nawa and Patterson 1990). SCG 

neurons respond to CDF/LIF with an increase in ChAT levels first detectable four to 

five days after exposure to CDF/LlF, followed two to three days later with a change in 

VIP and Substance P levels (Nawa and Patterson 1990, Nawa and Patterson, Cold 

Spring Harbor Symposium, 1991). It is, therefore, possible that the short-term 

regulation of VIP, Substance P and somatostatin that has been described in 

sympathetic neuron cultures and ganglion explants (Kessler, 1983 a, Sachs et a/., 

Neuroscience abstract, 1990) is mediated by CNTF. 

The failure of CNTF to alter ChAT and peptide levels in DRG cultures was 

somewhat surprising, as recent reports have indicated that receptors for CNTF are 

present on neonatal and adult rat DRG neurons (Squinto et a/., 1991). Binding of 

CNTF to its receptor leads to a specific induction of c-jun, an early intermediate 

gene, in neonatal DRG neurons, indicating that the receptors present are active. CNTF 

is also a survival factor for embryonic chick DRG neurons (Eckenstein et a/., 

1990). A failure to respond to CNTF with altered ChAT activity and peptide levels 

may suggest that different kinds of CNTF receptors mediate the effects of CNTF on cell 

survival and alteration of peptide levels and ChAT activity. An alternative 

explanation is that DRG neurons are developmentally incapable of regulating 

neurotransmitter and peptide levels. Since CDF/LIF in DRG cultures causes a 10-

fold induction of ChAT and also differentially regulates peptide levels (Nawa and 

Patterson, Cold Spring Harbor Symposium, 1991), the inability of the DRG neurons 

to increase ChAT activity or alter peptide levels in response to CNTF is not due to a 

developmental restriction on plasticity. 
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CDF/LIF has also been shown to regulate the levels of peptides, including 

Substance P, somatostatin, Neuropeptide Y, and VIP (Nawa and Patterson, 1990, 

Nawa and Patterson, Cold Spring harbor Symposium, 1990). Given this remarkable 

similarity in the modulation of neurotransmitter levels of CNTF and CDF/LI F, it is 

tempting to speculate that these factors are acting by a common cascade of 

intracellular regulatory events to alter a developmental program in these neurons. 

Since LlF and CNTF share no sequence homology, it is unlikely that they bind to a 

common receptor. Further, LlF does not have any ciliary neurotrophic (Rao et al., 

1990) activity, indicating that LlF does not bind to at least one CNTF receptor. Thus, 

it is possible that their distinct receptors impinge on a common second messenger 

pathway. To explore the hypothesis that these two molecules were acting via a 

common mechanism, we compared the effects of depolarization on ChAT induction by 

CDF/LIF and CNTF. Depolarization has no effect on the induction of ChAT or peptides 

by CNTF, while it completely antagonizes the effects of LlF on ChAT induction. This 

failure of depolarization to antagonize the effects of CNTF suggests that CNTF acts 

differently from LlF in regulating the cholinergic status of cultured sympathetic 

neurons. Determining the hierarchy of interactions between factors in vitro will 

provide evidence for the mechanism of their actions, and will be the focus of 

subsequent studies. 
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VIP Substance P Somatostatin NPY L-enk 

Medium 42 ±. 24 85 ±. 15 55 ±. 29 1868 ±. 74 < 4.0 

Sciatic N. ext 214 ±. 77 2255 ±. 255 709 ±. 242 730 ±. 196 < 4.0 

Table 1. 

Sciatic nerve extracts can modulate neuropeptide levels in 

sympathetic neuron cultures. 

Sciatic nerve extract (50 Ilg/ml) was added to sympathetic neuron cultures. Seven 

days after the addition of the extracts, samples were homogenized and assayed for 

peptide levels by radioimmunoassay. The results are expressed as picograms of 

peptide/well ±. s.d. All peptides were assayed in triplicate in sister wells from a 

single culture (n=3 experiments). 
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VIP Substance P Somatostatin NPY L-enk 

Medium 176 ±. 21 291 ±. 20 41 ±. 15 880 ±. 30 < 4.0 

CNTF 800 ±. 80 2750 ±. 450 290 ±. 20 495 ±. 15 < 4.0 

Table 2. 

CNTF modulates neuropeptide levels in sympathetic neuron cultures. 

CNTF (2 ng/ml) was added to sympathetic neuron cultures. Seven days after the addition 

of the recombinant protein samples were homogenized and assayed for peptide levels by 

radioimmunoassay. The results are expressed as picograms of peptide/well ± s.e.m. All 

peptides were assayed in duplicate from samples pooled from three different 

experiments (n=3 experiments). 
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Figure 1. 

The peptide-regulating activity present in sciatic nerve extracts is 

immunoprecipitated with antibodies to rCNTF. 

Sciatic nerve extract (DEAE fraction) was incubated with either protein A sepharose 

or polyclonal antibodies to CNTF. After immunoprecipitation, the supernatants were 

added to sympathetic neuron cultures. Seven days after the addition of extract, 

cultures grown with (a) L 15C02, (b) sciatic nerve extract incubated with protein A 

sepharose, and (c) sciatic nerve extracts incubated with polyclonal antibody and 

protein A sepharose were assayed for peptide levels by radioimmunoassay. The 

results are expressed as picograms/well ± s.e.m. All samples were run in duplicate 

(n=3 experiments). 
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Figure 1. 
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Figure 2. 

Effect of increasing concentrations of CNTF on neuropeptide levels. 

Increasing concentrations of CNTF were added to sympathetic neuron cultures. Five 

days after the addition of CNTF, neurons were homogenized and aliquots were assayed 

for peptide levels by radioimmunoassay. Samples were run in triplicate. The results 

are expressed as fold induction, as compared to control cultures grown without the 

addition of CNTF ± s.e.m. All samples were run in duplicate (n=3 experiments). 
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Figure 2 a. 
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Figure 3. 

Time course of response to CNTF. 

2 ng/ml of rCNTF was added to sympathetic neuron cultures. Samples were 

homogenized at appropriate intervals after the addition of CNTF and assayed for 

peptide levels by radioimmunoassay. The results are expressed as fold induction, as 

compared to control cultures grown without the addition of CNTF ± s.e.m. All samples 

were run in duplicate (n=3 experiments). 
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Figure 4. 

Effect of 30 mM KCI on the ChAT-inducing effect of CDF/LIF and CNTF. 

Sympathetic neurons were grown with (a) L 15C02, (b) CDF/LIF (5 ng/ml) or (c) 

CNTF with (+) or without (-) the addition of 30 mM KCI. Seven days after the 

addition of CDF/LIF and CNTF, samples were homogenized and assayed for ChAT 

activity by the method of Fonnum. All samples were run in duplicate (n=3 

experiments). Results are expressed as fold induction, as compared to controls 

grown with L 15C02 medium.± s.e.m. 
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Figure 4. 
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Figure 5. 

Effect of 30 mM KCI and CNTF on neuropeptide levels. 

Sympathetic neurons were grown with (a}L15C02, (b) L 15C02 and 30 mM KCI, (c) 

CNTF (d) CNTF and 30 mM KCI. Seven days after the addition of CDF/LlF, CNTF 

and/or 30 mM KCI samples were homogenized and assayed for peptide levels by 

radioimmunoassay. All samples were run in duplicate (n=3 experiments). Results 

are expressed as picograms/well ± s.e.m. 
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Figure 5. 
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Figure 6. 

The effect of CNTF on neuropeptide levels in dorsal root ganglion 

cultures. 

CNTF (25 ng/ml) was added to DRG cultures. Seven days after the addition of CNTF 

samples were homogenized and assayed for peptide levels by radioimmunoassay. The 

results are expressed as picograms of peptide/well ± s.e.m. 
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Figure 6 
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MATERIALS AND METHODS 

Materials 

Cell culture reagents were obtained from Gibco (Grand Island, NY) and 

culture plates from Corning (Corning, NY). The Centricon filters were purchased 

from Amicon (Danvers, MA). 3H acetyl -CoA was purchased from New England 

Nuclear (Wilmington, DE). Dispase was obtained from Boeringer-Mannheim 

(Indianapolis, IN) and collagenase from Worthington Biochemicals (Freehold, NJ). 

VIP, Substance P and somatostatin RIA kits were obtained from Incstar (Stillwater, 

MN) and NPY RIA reagents from Amersham. Nerve Growth Factor (NGF) (the kind 

gift of Dr. K. Neet, Dept. of Biochemistry, CWRU) was prepared from male mouse 

submaxillary glands as described by Bocchini and Angeletti (1969). Pierce protein 

assay kit was obtained from Pierce (Rockford, II). Other chemicals were purchased 

from Sigma (St. Louis, MO). 

Tissue Extracts 

To prepare sciatic nerve extracts, nerves were dissected from adult rats or 

frozen dissected sciatic nerves were obtained from (pelfreez). Tissue from twenty 

animals was generally processed at one time. The tissue was homogenized for 5 

seconds in 10 volumes of 10 mM phosphate buffer pH 7.0 with a Polytron. The 

extract was then centrifuged at 100,000g for one hour. The supernatant was 

collected, filtered through a 0.2 mm filter and concentrated using a Centricon filter 

with a 10 kD cutoff. The protein concentration was determined with a Pierce protein 

assay kit. 

DEAE Chromatography 

Aliquots of the soluble extract were diluted five-fold with 10 mM phosphate 

buffer, pH 7.0, and applied to a 0.9 cm/10 cm DEAE column (Whatman/Bioprobe) at 

a flow rate of 10ml Ihr. The column was washed with an equal volume of phosphate 

buffer. The wash and the flowthrough were pooled and concentrated using a Centricon 

filter with a 10 kD cutoff. The bound protein was eluted with 10ml of 0.25M NaCI 

and concentrated in a similar manner. This extract, termed sciatic nerve extract 

(Manthorpe et al., 1986), was used in all experiments. 
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Immunoprecipitation 

For the immunoprecipitation experiments in which the biological activity of 

the factors was tested, aliquots of sciatic nerve extracts (DEAE fraction) sufficient 

for a cell culture assay were added to buffer (PBS pH 7.3 with 2% BSA, and 0.02% 

PEG 6000). A polyclonal antiserum generated against rCNTF (a kind gift of Dr. 

Donna Morissey, Regeneron Pharmaceuticals) was added to each vial to a final 

dilution of 1:4 (see Chapter 1 appendix). After an overnight incubation, the antigen

antibody complex was absorbed to 10 JlI of protein A Sepharose for a further two 

hours at room temperature. The bound complexes were separated by centrifugation 

and the supernatant was diluted into L 15 C02 medium and used for cell culture 

assays. To insure that the loss of activity consequent to absorption was due to a 

specific effect of the antibody, aliquots of the cholinergic factors were incubated 

without the antibody and treated as described above 

Cell culture 

Cultures of rat sympathetic neurons and dorsal root ganglion neurons were 

prepared as described by Hawrot and Patterson (1979). Neurons from the superior 

cervical ganglia or the dorsal root ganglia (thoracic and lumbar levels) of newborn 

rats were dissociated enzymatically with dispase (5 mg/ml) and collagenase (1 

mg/ml) and plated in 96-well plates coated sequentially with polylysine (0.1 

mg/ml) and laminin (10 Jl9/15 ml). About 2000 to 3000 neurons were plated per 

well except where indicated. The neurons were grown in Leibovitz's L 15C02 medium 

with NGF (100 ng/ml), 100 units of penicillin, 100 mg of streptomycin, 10 mM 

cytosine arabinocide and 5% rat serum, and the medium changed every third or 

fourth day. The tissue extracts were diluted in growth medium, sterilized by passage 

through a 0.2 Jlm filter, and added to the neurons from the second day of culture on. 

Neurons were harvested for assay between the ninth and fourteenth days of culture. 

Assays 

Choline acetyl transferase activity 

The induction of cholinergic function was determined by assaying choline 

acetyltransferase activity in homogenates, essentially according to the method of 

Fonnum (1969). To increase the sensitivity of the assay, an incubation period of an 

hour was used. All of the activity was inhibitable by 500 mM napthylvinyl pyridine, 
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a specific inhibitor of CHAT activity. Protein concentration was assayed by the 

method of Lowry using bovine serum albumin as a standard. 

Peptide assays 

Neuropeptide levels were determined by radioimmunoassay. Cultures were 

rinsed once with phosphate-buffered saline (PBS), and then homogenized in 100 ml 

of 2M acetic acid. After boiling for five minutes, samples were centrifuged for one 

minute in an Eppendorf microfuge. The supernatants were dried under vacuum and 

stored at -700 C for subsequent assays. VI P, Substance P and somatostatin were 

assayed using general protocols as specified in the RIA kits. The primary antibodies 

have been previously shown to display minimal crossreactivity with other peptides 

(see Refs in RIA kit). Since the antibody to NPY shows only 64% cross reactivity 

with rat NPY, standards were run with rat NPY (Peninsula Laboratories) and sample 

values read of that standard curve. 
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Characterization of a target-derived neuronal cholinergic 

differentiation factor. 
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ABSTRACT 

The sympathetic innervation of rat sweat glands undergoes a target-induced 

switch from a noradrenergic to cholinergic and peptidergic phenotype during 

development. Treatment of cultured sympathetic neurons with sweat gland extracts 

mimics many of the changes seen in vivo. Extracts induce choline acetyltransferase 

activity and vasoactive intestinal peptide expression in the neurons in a dose

dependent fashion, while reducing catecholaminergic properties and neuropeptide Y. 

The cholinergic differentiation activity appears in developing glands at postnatal day 

five and is maintained in adult glands. It is a heat-labile, trypsin-sensitive, acidic 

protein which does not bind to heparin agarose. The sweat gland activity is a likely 

candidate for mediating the target-directed change in sympathetic neurotransmitter 

function observed in vivo. 
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INTRODUCTION 

Most sympathetic neurons are noradrenergic; however, a minority 

population, including those that innervate sweat glands, are cholinergic. The 

sympathetic neurons which innervate sweat glands are further distinguished in that 

they contain vasoactive intestinal peptide (VI P) and calcitonin gene-related peptide 

(CGRP) immunoreactivity (Lundberg et ai, 1979; Landis and Fredieu, 1986; Lindh 

et a/., 1989) while many noradrenergic neurons contain neuropeptide Y (NPY; 

Lundberg et a/., 1982; 1983; Jarvi et a/., 1986). Although the mature sweat gland 

innervation is functionally cholinergic, the developing innervation is noradrenergic 

(Landis and Keefe, 1983; Leblanc and Landis, 1986; Stevens and Landis, 1987; 

Landis et a/., 1988). When sympathetic axons first innervate the developing sweat 

glands, they possess intense catecholamine histofluorescence and immunoreactivity 

for the catecholamine synthetic enzymes, tyrosine hydroxylase and dopamine ~ 

hydroxylase. As the gland innervation matures, catecholamine histofluorescence 

disappears, tyrosine and dopamine ~ hydroxylase immunoreactivities decrease and 

cholinergic and peptidergic properties appear. For example, acetylcholinesterase is 

detectable at postnatal day 7, VIP immunoreactivity at day 10, choline 

acetyltransferase activity at day 11 and cholinergic transmission at day 14. Thus, 

the cholinergic sympathetic innervation of sweat glands undergoes a striking change 

in neurotransmitter properties during postnatal development. 

Several lines of evidence indicate that the change from noradrenergic to 

cholinergic function in the developing sweat gland innervation is mediated by 

interactions with the target tissue. First, when the innervation of developing sweat 

glands is delayed by seven to ten days, there is a corresponding delay in the 

disappearance of catecholamine histofluorescence and the appearance of cholinergic 

properties (Stevens and Landis, 1988). Second, if the superior cervical ganglion, 

which contains noradrenergic sympathetic neurons, is transplanted to the anterior 

chamber of the eye with footpad tissue containing sweat glands, the neurons 

innervate the glands, reduce their expression of catecholamine histofluorescence and 

NPY and develop immunoreactivity for choline acetyltransferase and VIP (Stevens 

and Landis, 1990). Finally, cross-innervation experiments provide direct evidence 

for a target role. When footpad skin is transplanted in place of hairy skin in the 

thoracic region of early postnatal rats, the transplant is innervated by sympathetic 

neurons whose normal targets are piloerectors and blood vessels. The sympathetic 

102 



Chapter 3 

fibers which innervate hairy skin are noradrenergic and do not normally contain 

choline acetyltransferase activity, acetylcholinesterase staining or VI P 

immunoreactivity (Schotzinger and Landis, 1990a). Several weeks after 

innervating the transplanted sweat glands, however, the fibers show a marked 

reduction in catecholamine fluorescence and express properties characteristic of the 

innervation of their novel target; they exhibit choline acetyltransferase activity, 

acetylcholinesterase staining and VIP immunoreactivity (Schotzinger and Landis, 

1988; and unpublished observations). Conversely, if parotid gland, a target of 

noradrenergic sympathetic neurons, is transplanted to the footpad in place of the 

sweat glands, it is innervated predominantly by fibers which normally innervate 

sweat glands and become cholinergic; in this case, the fibers innervating the 

transplanted parotid fail to acquire cholinergic properties and continue to express 

catecholaminergic properties typical of the sympathetic innervation of the parotid 

glands (Schotzinger and Landis, 1990b). Thus, the normal expression of cholinergic 

properties in the sweat gland innervation depends on the presence of this particular 

target and sweat glands are able to induce cholinergic and certain peptidergic 

properties in sympathetic neurons which would not normally express them. Since 

sympathetic axons never contact sweat gland cells or the basal lamina that surrounds 

them directly (Landis and Keefe, 1983; Uno and Montagna, 1975; Quick et a/., 

1984), it seems likely that the target effect is mediated by a soluble factor. 

To identify the target factor responsible for the adrenergic to cholinergic 

switch observed in the developing sweat gland innervation and to explore the possible 

in vivo role of the candidate cholinergic factors identified in cell culture in this 

decision, we assayed the effects of sweat gland extracts on the transmitter properties 

of cultured sympathetic neurons. We found that sweat glands contain a soluble 

factor(s) with the appropriate spectrum of activities; it reduces the expression of 

catecholamines and tyrosine hydroxylase and induces the expression of choline 

acetyltransferase and VIP. This activity is present when the phenotype of the sweat 

gland innervation is changing. Our initial characterization of the sweat gland-derived 

choline acetyltransferase-inducing activity permits a comparison with the 

cholinergic factors previously identified in cell culture. 
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RESULTS 

Sweat gland extracts induce choline acety/transferase activity in sympathetic 

neurons 

To examine the effects of soluble factors present in sweat glands on 

neurotransmitter status, extracts from the footpads of adult rats were added to 

sympathetic neuron cultures at a concentration of 250Jlg extract protein/ml. 

Neurons in sister wells were grown either in medium without added tissue extract or 

in medium containing an equal protein concentration of liver, hairy skin or parotid 

gland extracts prepared in the same manner as the sweat gland extracts. The addition 

of sweat gland extract caused a 15-fold induction in choline acetyltransferase 

activity compared to neurons grown in medium alone or with extracts of liver, hairy 

skin or parotid gland (Fig. 1 a). 

One possible source of the cholinergic-inducing activity in the sweat gland 

extracts is CNTF possibly present in the peripheral nerve plexus of the footpad 

tissue. Comparison of the cholinergic-inducing activity in sciatic nerve extracts and 

sweat gland extracts (Fig. 1 b), however, indicated that the level of induction per mg 

of extract protein was similar despite the fact that the peripheral nerve plexus 

constitutes only a small proportion of the gland tissue. This observation, and the 

finding that extracts of hairy skin did not cause choline acetyltransferase induction 

in cultured sympathetic neurons even though the hairy skin contains a plexus of 

sympathetic and sensory nerve fibers and endings comparable to that in sweat gland

containing skin, make it unlikely that the ability of sweat gland extracts to induce 

cholinergic function is due to CNTF potentially derived from Schwann cells (Stockli 

et a/., 1989). Further evidence to support this conclusion was obtained in 

immunoblot experiments using antisera generated against recombinant CNTF (see 

below). 

The induction of choline acetyltransferase activity by the sweat gland extract 

was due to a direct effect on sympathetic neurons. Since the neurons were grown in 

the continuous presence of 10JlM cytosine arabinoside, nonneuronal cells were 

virtually absent; thus, it is unlikely that the sweat gland extracts exerted their 

influence indirectly via nonneuronal cells. In addition, when sympathetic neuron 

cultures were maintained in serum-free medium which yielded cultures free of 

non neuronal cells, cholinergic induction was seen following treatment with sweat 

gland extracts (Table 1). This observation also makes it very unlikely that the sweat 
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gland extract potentiated the cholinergic-inducing effects of the rat serum present in 

normal growth medium (Wolinsky et al., 1985; Wolinsky and Patterson, 1985). 

Sweat gland extracts were tested for their ability to support the survival of 

cultured sympathetic neurons. Table 2 shows that neurons plated in medium lacking 

NGF but containing sweat gland extracts at a dose of 1 mg/ml did not survive more 

than three days in culture. Further, there was no significant difference in neuron 

number in cultures grown with or without sweat gland extract, even at extract doses 

as high as 1 mg/ml in the presence of 50ng/ml of NGF. Since the levels of choline 

acetyltransferase activity and acetylcholine synthesis are initally very low in 

dissociated sympathetic neuron cultures (Johnson et al., 1976; 1980; Patterson and 

Chun, 1977b), and there was no significant change in cell number with a 50- to 

100-fold induction of choline acetyltransferase activity, it is extremely unlikely 

that the induction of choline acetyltransferase observed in the presence of sweat 

gland extract is due to the selective survival of pre-existing cholinergic neurons. 

Choline acetyltransferase induction is dose-dependent 

Serial dilutions of sweat gland extracts were added to cultured sympathetic 

neurons and the wells were assayed for choline acetyltransferase activity seven days 

later. Induction was seen with doses as low as 10Jlg/ml and increased with the 

addition of increasing amounts of extract to the maximum dose tested (Fig. 2a). When 

extract concentrations much higher than 1 mg/ml were used, some toxicity was 

evident in the cultures; neuron number was reduced and cell bodies were smaller in 

size. Similiar effects of high doses of other cholinergic-inducing factors have been 

described (Fukada, 1985; Saadat et al., 1989). 

The time course of induction was also determined. Elevated choline 

acetyltransferase activity was detected as early as the second day in culture and 

continued to increase through day 14, the last time point assayed (Fig 2b). This time 

course of cholinergic induction in sympathetic neuron cultures is similar to that 

reported for heart and muscle cell conditioned medium factors, presumably CDF/UF 

(Patterson and Chun, 1977b; Raynaud et al., 1987), and for CNTF (Saadat et al., 

1989). In contrast, increased choline acetyltransferase activity is seen significantly 

sooner following treatment of sympathetic neurons with MANS (Adler et al., 1989) 

or treatment of spinal cord cultures with a soluble factor isolated from skeletal 

muscle (MacManaman et al., 1988). 
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Sweat gland extracts cause a reduction in the expression of noradrenergic properties 

Not only does choline acetyltransferase activity appear during the normal 

development of the sweat gland innervation, but there is also a concomitant reduction 

in tyrosine hydroxylase immunoreactivity and catecholamine histofluorescence 

(Landis and Keefe, 1983; Landis et al., 1988). If the sweat gland extracts contained 

a factor(s} which played a role in altering neurotransmitter phenotype, one would 

predict that it would decrease the expression of noradrenergic properties in cultured 

sympathetic neurons. To assay the effect of sweat gland extracts on tyrosine 

hydroxylase levels, equal protein aliquots of neurons grown with and without extract 

were subjected to SDS PAGE electrophoresis, blotted onto nitrocellulose and probed 

with a monoclonal antibody to tyrosine hydroxylase (Rohrer et al., 1986; the kind 

gift of Dr A. Acheson, University of Edmonton). A single band was evident at 62-kD, 

the expected molecular weight (Lamoroux et al., 1979). Visual inspection of the 

immunoblots suggested that the amount of immunoreactivity was significantly 

reduced in cultures grown with sweat gland extracts (Fig. 3). When the color 

intensity was read with a laser densitometer, cultures grown with 1 OO~g/ml sweat 

gland extract exhibited a 2.5-fold reduction in the level of tyrosine hydroxylase 

detected. In contrast, levels of immunoreactivity for a cell surface adhesion 

molecule, L 1 (Rathjen and Schachner, 1984), revealed with a polyclonal antiserum 

(the kind gift of Dr. U. Rutishauser, CWRU) were not reduced when assayed in a 

similiar manner (data not shown). 

To determine whether the change in the level of tyrosine hydroxylase was 

associated with a corresponding change in the level of catecholamines, the 

catecholamine content was determined in cultures of sympathetic neurons grown 

with and without sweat gland extract. The total catecholamine content of wells 

incubated with sweat gland extracts was reduced compared to that of control cultures 

(Table 3). An inverse correlation was observed between choline acetyltransferase 

activity and catecholamine content; as the induction of choline acetyltransferase 

increased, the catecholamine content decreased. This relationship has been observed 

previously in studies with heart and skeletal muscle cell conditioned medium 

(Patterson and Chun, 1977a; Raynaud et al., 1987). 

Sweat gland extracts alter neuropeptide expression 

Changes in neuropeptide expression are observed in the developing sweat 

gland innervation. VIP immunoreactivity is initially absent but becomes detectable 
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by postnatal day 10; the immunoreactivity increases in extent and intensity with 

subsequent development. Since the sympathetic innervation of footpads transplanted 

to the thorax acquires VIP immunoreactivity, sweat glands are able to induce VIP 

expression in addition to choline acetyltransferase activity (Schotzinger and Landis, 

1988; unpublished observations). We therefore assayed cultures of sympathetic 

neurons treated with sweat gland extract by radioimmunoassay to determine whether 

extracts increased VIP levels. Sympathetic neurons grown in control medium contain 

relatively little VIP immunoreactivity. Sweat gland extracts significantly increase 

VIP (Fig. 4a); a dose of 100llg/ml causes an induction of 80 pg/well of VIP, a more 

than four-fold increase over the levels present in control cultures. The induction of 

VIP expression increased with increasing concentrations of sweat gland extracts 

(Fig. 4a). 

The effect of sweat gland extract on NPY content was examined because 

previous studies have shown that while many noradrenergic sympathetic neurons 

contain NPY immunoreactivity, cholinergic sympathetic neurons, including those 

that innervate sweat glands, do not (Landis et a/., 1988; Lindh et a/., 1989). The 

content of NPY-like immunoreactivity was high in control cultures as observed in 

previous studies (Marek and Mains; 1989; Nawa and Sah, 1990). Growth in the 

presence of sweat gland extract led to a reduction in NPY content (Fig. 4b). This 

reduction is in marked contrast to the elevation of VIP content and indicated that 

sweat gland extracts regulate the levels of the two peptides differentially. The 

decreased expression of NPY in sympathetic neurons grown with sweat gland extract 

is consistent with results of a previous study of target effect on peptide expression in 

vivo; following transplantation of the superior cervical ganglion from newborn rats 

to the anterior chamber of the eye, NPY-IR was absent when the ganglion was 

cotransplanted with sweat glands, but present when the ganglion was cotransplanted 

with the pineal gland (Stevens and Landis, 1990). 

Age dependence of choline acety/transferase-inducing activity in extracts of sweat 

glands 

The change in neurotransmitter properties in the developing sweat gland 

innervation occurs postnatally and is essentially complete by postnatal day 21. To 

determine the earliest age at which detectable cholinergic inducing activity was 

present in developing glands, extracts were prepared from footpads of animals 

ranging in age from two to 21 days and were assayed for their ability to induce 
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choline acetyltransferase activity (Fig. 5). Increased levels of choline 

acetyltransferase were detected in cultures treated with extracts from postnatal day 

5 glands and choline acetyltransferase inducing activity was present at all 

subsequent ages. Less than a two-fold difference was evident in the specific 

cholinergic inducing activity present in footpads of postnatal day 5 and adult animals 

when the inducing activity was expressed as the amount. of choline acetyltransferase 

activity detected per mg of extract protein. The amount of protein extracted from 

twenty footpads, however, varied almost fifteen-fold from the youngest to the oldest 

animals. Thus, the absolute amount of choline acetyltransferase-inducing activity 

increased approximately thirty-fold during development. These results indicate that 

cholinergic differentiation activity is present in developing glands when the 

properties of the innervation change. In addition, extracts from sweat glands of 

postnatal day nine, 14 and 21 rats were found to increase the expression of VIP and 

decrease levels of tyrosine hydroxylase as well as increasing choline 

acetyltransferase (data not shown). 

Initial characterization of the factor(s) responsible for choline acetyltransferase 

induction 

Preliminary characterization of the choline acetyltransferase-inducing 

activity is summarized in Table 4. It was heat and trypsin labile, and retained by a 

Centricon filter with a 10 kD cutoff indicating that the activity is a protein. The 

activity was only partially retained by a Centricon filter with a 30 kD cutoff 

suggesting that a low molecular weight protein is responsible for the induction of 

choline acetyltransferase. The cholinergic-inducing activity was relatively stable; 

little activity was lost with storage at -200 C and on repeated freeze-thawing. Since 

none of the activity bound to a heparin agarose column, the sweat gland cholinergic 

factor does not appear to be a heparin-binding protein like the 50 kD soluble 

cholinergic factor from brain (Kessler et al., 1986). Almost all choline 

acetyltransferase-inducing activity and 35% of the protein was recovered in the 

0.25M eluate from a DEAE column indicating that the differentiation activity is an 

acidic protein(s) and that this can be used as an initial purification step. The 0.25M 

DEAE eluate not only induced choline acetyltransferase activity but also increased 

levels of VIP and reduced levels of tyrosine hydroxylase (data not shown). Thus, the 

several effects of the sweat gland extract on neurotransmitter properties of cultured 

sympathetic neurons are not readily separated. 
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DISCUSSION 

Consideration of the developmental history of the sweat gland innervation 

(Landis and Keefe, 1983; Leblanc and Landis, 1986; Landis et a/., 1988) and of the 

results of cross-innervation experiments (Schotzinger and Landis, 1988; 1990b) 

enabled us to predict some properties of a target-derived signal expected to play a 

role in the noradrenergic to cholinergic and peptidergic switch that these neurons 

undergo. In order to identify the molecule(s) responsible, we prepared low salt 

extracts of sweat gland tissue and tested the ability of these extracts to modify the 

neurotransmitter phenotype of cultured sympathetic neurons. Extracts of sweat 

glands but not of liver, hairy skin or parotid gland increase levels of choline 

acetyltransferase activity and of VIP-like immunoreactivity in a dose-dependent 

fashion. As the levels of choline acetyltransferase activity increase in the cultured 

neurons, there is a concomitant decrease in the catecholamine content and tyrosine 

hydroxylase. Thus, extracts of soluble protein from sweat glands cause many of the 

phenotypic changes in cultured sympathetic neurons that characterize the developing 

sweat gland innervation in vivo and that are induced by the glands in cross

innervation experiments. 

The ability to alter neurotransmitter properties is present in sweat gland 

extracts of animals between 5 and 21 days postnatal when the fibers innervating the 

sweat glands are changing from noradrenergic to cholinergic (Landis and Keefe, 

1983; Leblanc and Landis, 1986; Landis et a/., 1988). Extracts from postnatal day 

5 animals increase choline acetyltransferase activity and when extracts of glands 

from animals between 9 and 21 days of age are tested, they alter all three 

transmitter properties examined; they increase choline acetyltransferase and VIP

like immunoreactivity and reduce tyrosine hydroxylase. Further, since elevated 

levels of choline acetyltransferase activity are detectable after two days of treatment 

in culture, the extract is able to induce changes with a time course consistent with in 

vivo studies. Establishing a more precise temporal correlation is difficult since the 

changes in the terminal plexus in the sweat glands in situ presumably reflect 

retrograde transport of a target-derived signal, altered expression of transmitter 

synthetic enzymes and peptides, and anterograde transport of these molecules to the 

terminals. 

Sweat glands of adult, as well as developing animals, contain activity. The 

functional significance, however, of the continued expression is unclear. Studies of 

cholinergic induction in cultured sympathetic neurons by heart and skeletal muscle 
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cell conditioned medium have shown that neurons once induced to acquire cholinergic 

function maintain it for a period. even if the inducing factor is removed from the 

culture medium (Patterson and Chun. 1977b; Vidal et al .. 1987). In contrast. the 

suppression of noradrenergic properties is reversible shortly after exposure to 

conditioned medium. although with continued exposure. catecholaminergic 

suppression is maintained for a period as well. Whether or not cholinergic 

sympathetic neurons in vivo require continued exposure to their target tissue for 

maintenance of the cholinergic phenotype is not known. Since interactions with sweat 

glands also influence neuropeptide expression . it is possible that while cholinergic 

function once induced is stable. peptidergic properties remain modifiable. According 

to this scenario. the continued expression of a particular peptide phenotype would 

require the continued presence of an inducing factor. This is. indeed. true for the 

peptidergic induction observed in cultured sympathetic neurons with CDF/UF (Nawa 

et al .• 1990); for example. withdrawal of CDF/UF results in the return of 

Substance P content to control levels. The finding in cross-innervation experiments 

involving adult sensory nerves that peptide phenotype can be altered is also 

consistent with this possibility (McMahon and Gibson. 1987 ). When a muscle nerve 

is cross-anastomosed to a cutaneous nerve and induced to innervate targets in the 

skin. the regenerated muscle nerves appear to acquire immunoreactivity for 

Substance P and. conversely. when the cutaneous nerve was cross-anastomosed to a 

muscle nerve. Substance P immunoreactivity is decreased in the cutaneous nerve. 

Although neuropeptide expression by sympathetic neurons can be qualitatively 

influenced by target interactions during development in vivo (Stevens and Landis. 

1990; Schotzinger and Landis. 1990b). it remains to be determined whether 

similar plasticity is exhibited by mature sympathetic neurons in vivo. 

Although comparison of the levels of biological activity observed in vitro with 

those present in vivo is difficult. it is of interest to estimate whether the glands 

contain enough cholinergic-inducing activity to mediate the switch. Retrograde 

tracing studies suggest that at least 200 neurons innervate the six palmar pads 

(Siegel and Landis. unpublished observations). ·Our extraction procedure yields 

about 10mg of soluble protein per gram of footpad tissue from 21-day old animals. 

or approximately 80llg/single pad. Since choline acetyltransferase activity is 

induced at concentrations as low as 10llg/ml in cultures containing several thousand 

neurons. it appears that they do. The concentration of cholinergic-inducing activity 

present in sweat gland extracts is greater than that in spinal cord extracts (Wong 
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and Kessler, 1987; Adler et al., 1989) and at least as high as that in sciatic nerve 

extracts (Sendtner et al., 1989; Rao et al., 1990). 

The extracts tested in these studies are relatively crude. It will be important 

to determine whether the activity present in sweat glands that increases choline 

acetyltransferase activity and VIP-like immunoreactivity and decreases tyrosine 

hydroxylase and catecholamine levels is represented by a single molecule or several 

molecules, each of which influences one aspect of the transmitter phenotype. Since 

CDF/LIF (Fukada, 1985; Yamamori et al., 1989; Nawa and Patterson, 1990; Nawa 

et al., 1990) and CNTF (Sendtner et al., 1989; Ernsberger et al., 1989) cause the 

induction of cholinergic function, the reduction of catecholaminergic function and 

increase VIP expression in sympathetic neuron cultures, it is clear that a single 

molecule can effect changes in all these. properties. Two observations from the 

present studies are consistent with the notion that one molecule in the extracts is 

responsible. Extracts prepared from animals of different ages influence the several 

properties assayed and, more importantly, the several effects were not resolved into 

distinct activities in the preliminary characterization that we have performed. Thus, 

a single molecule seems likely; however, the possibility that several factors are 

involved cannot be formally excluded. The cholinergic-inducing activity, whose 

properties we have examined, was obtained by extracting soluble proteins from gland 

tissue. 

It is of interest to compare the properties of the activity in sweat gland 

extract with the several factors which been previously described to induce 

cholinergic function in cultured sympathetic neurons. Since the cholinergic

inducing activity present in the sweat gland extracts is easily extracted in low salt 

solutions and no detectable activity is associated with membranes (unpublished 

observations), it is not likely to be related to the membrane-associated factors that 

induce choline acetyltransferase (Wong and Kessler, 1987; Adler et al., 1989) and 

reduce levels of tyrosine hydroxylase (Rao et al., 1990, Lee et al., 1990) in 

cultured sympathetic neurons. In addition, there is a difference in the time course of 

induction of choline acetyltransferase activity; cultures treated with sweat gland 

extracts exhibit a small increase in activity after two days, while cultures treated 

with a membrane-associated cholinergic-inducing activity show high levels of 

activity in the same time period (Adler et al., 1989). Two soluble factors, CDF/LIF 

and CNTF, are similar in their effects on sympathetic neurons; they increase choline 

acetyltransferase and VIP expression and reduce tyrosine hydroxylase and 
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catecholamine content (Fukada, 1985; Yamamori et al., 1989; Sendtner et al., 

1989; Ernsberger et al., 1989; Nawa and Patterson, 1990). In addition, like sweat 

gland extract, both CDF/LIF (Nawa and Patterson, 1990) and extracts of sciatic 

nerve containing CNTF (unpublished observations) decrease NPY expression. 

Further purification will however be required to determine the relationship of the 

sweat gland cholinergic-inducing activity to CDF/LIF and CNTF. 

In summary, we have shown that a cholinergic-sympathetic target 

tissue, sweat glands, contains cholinergic-differentiating activity which mimics in 

culture the effects of the target on sympathetic neurons in vivo. The activity was 

obtained by extracting soluble proteins from gland tissue. Secreted proteins will be 

represented in such an extract but so will cytoplasmic. As the purification and 

characterization of this activity proceeds, it will be important to establish that it is 

normally secreted by the target tissue and to examine its role in mediating the 

target-induced changes in transmitter phenotype observed in vivo. Our preliminary 

purification and analysis indicate that the cholinergic-inducing activity present in 

the sweat gland extracts represents an excellent candidate for mediating the target

induced phenotypic changes in the the cholinergic sympathetic neurons that 

innervate sweat glands. Subsequent efforts will be directed at further purifying this 

activity and comparing its physiological and biochemical properties with those of 

CNTF and CDF/LIF. 
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Table 1. 

Choline Acetyltransferase Activity 

Medium S.G. extract 

Defined medium 8.02 ± 1.64 109.93 ± 5.57 

L 15C02 + serum 18.05 ± 5.57 126.06 ± 5.58 

The cholinergic-inducing effect of sweat gland extracts is 

independent of serum. 

Sympathetic neurons were cultured in L 15-C02, either lacking serum or 

containing 5% rat serum with 30011g/ml of extract protein. Cells were 

harvested seven days after the addition of extract and aliquots were tested for 

choline acetyltransferase activity by the method of Fonnum. Samples were run 

in triplicate. Data are expressed as picomoles of activity/min/well ± sem. 
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Table 2 

Cell Number 

-NGF - NGF + ext +NGF +NGF + ext 

DAY2 5027 ±35 4734 ± 164 5027 ± 231 5324 ± 186 

DAY5 10 ± 12 12 ± 13 4624± 112 4867 ± 28 

Lack of trophic effect of sweat gland extracts. 

Sympathetic neurons were cultured in L 15C02 with NGF (50ng/ml) for two days. On 

the second day, the medium was replaced with medium containing a) no NGF, b) no 

NGF but with 1 mg/ml sweat gland extract, c) NGF (50ng/ml) or d) NGF (50ng/ml) 

and 1 mg/ml sweat gland extract. Cells were counted after an additional three days of 

culture. Samples were run in triplicate. Data are expressed as the number of cells 

surviving/well ±. sem. 
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Table 3. 

CA In plcomoles/well % Reduction 

Control medium 

Sweat gland Extract A (11) 

B (26) 

C (47) 

14.85 ± 2.55 

10.65 ± 0.9 

7.95 ± 0.15 

6.0 ± 0.6 

Sweat gland extracts cause a reduction in the detectable levels of 

catecholamines. 

Sympathetic neurons were grown with sweat gland extracts (100j.lg/ml, 250j.lg/ml 

and 1 mg/ml). Seven days after the addition of extract, the cultures were harvested 

and assayed for catecholamine content by HPLC . Samples were run in triplicate. Data 

are expressed as mean picomoles of catecholamines per dish ± sem. The figures in 

brackets are the mean fold induction of choline acetyltransferase assayed in sister 

wells by the method of Fonum. 
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Table 4. 

Thermal stability 

-201-70 storage 

Freeze thawing 

Boiling (100 C~or 5 min) 

Protease treatment 

Trypsin 

Trypsin+ inhibitor 

Heparin agarose chromatography 

Flow through 

Eluate 

Centricon Retention 

1 OkDa cutoff 

30kDa cutoff 

DEAE chromatography 

Flow through 

0.25M eluate 

Physiochemical characterization. 

% activity retained 

95 

90 

o 

o 

97 

95 

o 

95 

50 

2 

90 

Aliquots of sweat gland extracts (1 OOl1g/ml) were incubated as described below. 
To examine the effects of protease treatment, aliquots were incubated for 1 hr 
with trypsin (1 mg/ml) or with trypsin and trypsin inhibitor (3mg/ml). For Centricon 
separation samples were spun in a SS34 rotor until the retentate volume was 
25111. The retentate was diluted to 1 ml and spun again. After three such spins the 
flow through was collected and concentrated. Choline acetyl transferase activity 
was determined in cultures seven days after the addition of treated extracts. 100% 
represents activity evident in cultures exposed to untreated extract. 0% represents 
activity in cultures grown without the addition of extract. 
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Figure 1. 

Sweat gland extracts induce choline acetyltransferase activity. 

Soluble protein extracted from sweat glands, hairy skin, parotid gland, liver or 

sciatic nerve of adult rats was added to cultures of dissociated sympathetic neurons. 

Seven days after the addition of extracts, neurons were homogenized and aliquots 

were assayed for levels of choline acetytransferase (ChAT) activity by the method of 

Fonnum. Samples were run in triplicate. In a, 250119 of protein extracted from the 

indicated tissues was added. The data are expressed as the fold induction of ChAT 

activity compared to that present in control cultures grown without added extract. In 

b, 250119 of protein extracted from sciatic nerve or sweat gland was added. The data 

are expressed as the fold induction of specific activitylmg of extract protein added. 
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Figure 2a. 

Increasing concentrations of sweat gland extracts cause increased 

induction of choline acetyltransferase activity. 

Increasing concentrations of soluble protein extracted from sweat glands of adult rats 

were added to sympathetic neuron cultures. Seven days after the addition of extract, 

neurons were homogenized and aliquots were assayed for choline acetyltransferase 

activity by the method of Fonnum. Samples were run in triplicate. Data are 

expressed as picomoles of activity/minute/well ± s.d. 

Figure 2b. 

Time course of induction of choline acetyltransferase activity. 

100llg/ml of soluble protein extracted from adult sweat glands was added to 

sympathetic neuron cultures. Duplicate samples were homogenized at appropriate 

intervals after the addition of extract and assayed for choline acetyltransferase 

activity. Data are expressed as picomoles of activity/min /well ± s.d. 
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Figure 3. 

Sweat gland extracts reduce tyrosine hydroxylase. 

Sympathetic neurons were grown in medium without sweat gland extract (a) or with 

100llg/mi of sweat gland extract (b). Samples were pooled from several wells and 

homogenized in sample buffer, electrophoresed and blotted onto nitrocellulose. The 

blots were probed with a monoclonal antibody to tyrosine hydroxylase (inset). The 

laser densitometer scan (absorbance of 600 nm) of the staining intensity of the 

bands from control and treated cultures is shown. 
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Figure 4a. 

Sweat gland extracts modulate the expression of VIP. 

Serial dilutions of the soluble protein extracted from adult rat sweat glands were 

added to sympathetic neuron cultures. Cultures were harvested on the eighth day 

after the addition of extract. Sister wells were assayed for either vasoactive 

intestinal peptide levels using radioimmunoassay or for choline acetyltransferase 

activity. All samples were run in duplicate. The data are expressed as picograms of 

VIP ±. s.d.lwell or as picomoles of choline acetyltransferase activity ±.s.d.lwell. 

Figure 4b. 

Sweat gland extracts reduce the levels of NPY and elevate the levels of 

VIP. 

Sweat gland extracts (1 OO~g/ml) were added to sympathetic neuron cultures. 

Cultures were harvested on the eighth day after the addition of extract. Sister wells 

were assayed for VIP or for NPY by radioimmunoassay. All samples were run in 

triplicate. Data are expressed as picograms of VIP or NPY ± s.d.lwell. 
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Figure 5. 

Appearance of cholinergic differentiation activity in sweat gland 

extracts. 

Sweat gland extracts were prepared from animals at the indicated ages. 

Approximately equal protein concentrations (100 Ilg/ml) were added to sympathetic 

neuron cultures. Seven days after the addition of extract, neurons were harvested and 

aliquots assayed for choline acetyltransferase activity. At least three different 

preparations at each age were tested. Data are expressed as fold induction of choline 

acetyltransferase/mg extract protein ± s.d. 
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MATERIALS AND METHODS 

Materials 

Cell culture reagents were obtained from Gibco (Grand Island, NY) and 

culture plates from Corning (Corning, NY). The Centricon filters were purchased 

from Amicon (Danvers, MA). 3 H acetyl-CoA and Bolton Hunter reagent were 

purchased from New England Nuclear (Wilmington, DE). Dispase was obtained from 

Boeringer-Mannheim (Indianapolis, IN) and collagenase from Worthington 

Biochemicals (Freehold, NJ). VIP RIA kits were obtained from Incstar (Stillwater, 

MN) and NPY RIA reagents from Amersham. Nerve Growth Factor (NGF; the kind gift 

of Dr. K. Neet, Dept. of Biochemistry, CWRU) was prepared from male mouse 

submaxillary glands as described by Bocchini and Angeletti (1969). Pierce protein 

assay kit was obtained from Pierce (Rockford, II), ITS Premix from Collaborative 

Research (Bedford, MA) and reagents for SDS/PAGE from BioRad (Richmond, CA). 

Avidin-conjugated alkaline phosphatase was obtained from Cappel (Westchester, PA) 

and goat anti-mouse and anti-rabbit secondary antibodies from Jackson 

Immunologicals (Westgrove, PA). Other chemicals were purchased from Sigma (St. 

Louis, MO). 

Cell culture 

Cultures of rat sympathetic neurons were prepared as described by Hawrot 

and Patterson (1979). Neurons from the superior cerivcal ganglia of newborn rats 

were dissociated enzymatically with dispase (Smg/ml) and collagenase (1 mg/ml) 

and plated in 96 well plates coated sequentially with polylysine (0.1 mg/ml) and 

laminin (10 I-lg/1Sml). About 2000-3000 neurons were plated per well except 

where indicated. The neurons were grown in Leibovitz's L 1S-C02 medium with NGF 

(100ng/ml), 100 units of penicillin, 100l1g of streptomycin, 10l1M cytosine 

arabinocide and S% rat serum and the medium changed every third or fourth day. In 

some experiments, cells were grown without rat serum in L 1S-C02 supplemented 

with transferrin, selenium, bovine serum albumin, insulin and fatty acids. 

The tissue extracts were diluted in growth medium, sterilized by passage 

through a 0.2 11m filter and added to the neurons from the third day of culture on. 

Neurons were harvested for assay between the ninth and fourteenth days of culture. 

Tissue Extracts 

To prepare sweat gland extracts, footpads were dissected from rats of various 

postnatal ages and weighed. Tissue from twenty animals was generally processed at 
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one time. The weight of footpads from twenty rats varied from 0.5gms to 5gms 

depending upon the age of the animals. The tissue was homogenized for 5 secs in 10 

volumes of 10 mmol phosphate buffer pH 7.0 with a Polytron. The extract was then 

centrifuged at 100,000g for one hour. The supernatant was collected, filtered 

through a 0.2jlm filter and concentrated using a Centricon filter with a 10kD cutoff. 

The protein concentration was determined with a Pierce protein assay kit. Extracts 

of liver, sciatic nerves and parotid gland were prepared in a similiar manner. To 

prepare hairy skin extracts, the skin over the thoracic region was shaved and 

dissected free from the underlying panniculosis carnosus muscle and weighed. The 

skin was then cut into smaller pieces before being homogenized and processed as 

described above. 

Assays 

The induction of cholinergic function was determined by assaying choline 

acetyltransferase activity in homogenates essentially according to the method of 

Fonnum (1969). To increase the sensitivity of the assay, an incubation period of an 

hour was used. All of the activity was inhibitable by 500jlM napthylvinyl pyridine, a 

specific inhibitor of CHAT activity. Protein concentration was assayed by the method 

of Lowry using bovine serum albumin as a standard. 

Catecholamine content was assayed by high performance liquid 

chromatography (Rittenhouse et al., 1988) on a 5jlm pore reverse phase C-18 

column (Altex Ultrasphere-IP; Beckman, Berkeley, CA) using a coulometric 

detector (5100A; ESA, Bedford, MA). Three electrodes were set in series at +0.36, 

+0.03 and -0.38V relative to a reference electrode. Standards at known dilutions (5 

picomoles) were run at the same time to estimate the concentration. The total 

catecholamine content of a well was obtained by summing the levels of 

norepinephrine, dopamine and DOPAC, a metabolite, present in each extract. Neither 

epinephrine nor DOPA was detected. 

The amount of tyrosine hydroxylase present in the cultured neurons was 

determined by semiquantitative analysis of immunoblots. Cell cultures were 

homogenized in sample buffer (50 mM Tris pH 6.8 with 2% SDS, 10% glycerol and 

.004% bromophenol blue and 5% Bmercaptoetanol), aliquots of the extract were run 

on a 10% SDS-PAGE gel and the proteins were blotted onto nitrocellulose. The 

nitrocellulose blots were blocked in blocking buffer (5% defatted milk in Tris 

buffered saline pH 7.2 ) and then incubated with a monoclonal antibody against TH 

(the kind gift of Dr. Ann Acheson, University of Alberta, Edmonton) overnight. The 
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blots were then sequentially incubated with a biotinylated secondary antibody and 

avidin conjugated to alkaline phosphatase. The reaction product was developed with 

NBT (Nitroblue tetrazolium) and BCIP(S-Bromo-4-chloro 3-indoyl phosphate) in 

10mm bicarbonate buffer, pH 9.5. After optimal color development, the reaction was 

stopped by rinsing in distilled water. The blots were allowed to dry and the color 

intensity was read on a scanning laser densitometer (Shimadzu). Comparisons were 

made between samples run in parallel lanes and treated identically. 

Neuropeptide levels were determined by radioimmunoassay. Cultures were 

rinsed once with phosphate buffered saline (PBS) and then homogenized in 1 OO~I of 

2M acetic acid. After boiling for five minutes, samples were centrifuged for one 

minute in an Eppendorf microfuge. The supernatants were dried under vaccum and 

stored at -700 C for subsequent assays. VIP was assayed using a kit obtained from 

INCSTAR with primary antibodies previously demonstrated to show minimal 

crossreactivity with other peptides. To assay NPY by radioimmunoassay, antibodies, 

standards and labeled tracer were obtained from Amersham and peptide content was 

determined by the delayed tracer method. Since the antibody shows only 64% cross 

reactivity with rat NPY, standards were also run with rat NPY (Peninsula 

Laboratories), and sample values read off the standard curve. 
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Appendix to Chapter 3. 

Decreased content of cholinergic differentiation activity in footpad 

extracts of mutant mice that lack sweat glands. 
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Introduction 

Sweat glands in the rat and the mouse are found on the palmar, plantar pads 

and in the plicae digitalis (Ring and Randall, 1947, Sofaer, 1969). Sweat gland 

rudiments are first evident by postnatal day 2 and have acquired their adult 

morphology by postnatal day 21. Unlike most other sympathetic targets, adult rat 

sweat glands are innervated by cholinergic sympathetic neurons (Hayashi and 

Nagawa, 1963, Sjoqvist, 1963 a, b). The development of rat sweat gland innervation 

has been described in detail (Landis and Keefe, 1983, Landis 1983, Leblanc and 

Landis 1986, Landis et al., 1988). The initial innervation of the sweat glands is 

noradrenergic and fibers express catecholaminergic markers (Landis and Keefe, 

1983), but soon after innervating the target the fibers switch from a noradrenergic 

to a cholinergic phenotype (Landis and Keefe, 1983, Leblanc and Landis 1986, 

Landis et al., 1988). Transplant experiments (Schotzinger and Landis 1988, 1990) 

show that the noradrenergic to cholinergic switch is target mediated. Studies of the 

innervation of the mouse sweat gland suggest that its developmental history is 

similar to that documented for the rat, and it undergoes a similar noradrenergic to 

cholinergic switch (Landis, S. C., unpublished results). 

Sweat gland extracts from footpad rich tissue in developing and adult rats can 

cause induction of ChAT activity in cultures of sympathetic neurons (Rao and Landis 

1990). In addition to increasing ChAT levels, extracts can also increase the levels of 

VIP and decrease levels of TH and NPY. Thus, sweat gland extracts induce many of the 

changes in vitro that are seen during development of the sweat gland innervation in 

vivo. In view of the similar effects on the neurotransmitter phenotype and the 

appropriate temporal expression of the differentiation activity, we have postulated 

that the molecule(s) present in the extract plays a role in the adrenergic to 

cholinergic switch that occurs in the developing sweat gland innervation. 

Our data (Rao and Landis, 1990) suggest that some cells in the footpads make 

this factor. Since extracts are made by grinding entire pads, it is difficult to 

determine which cells in the footpads are making the molecule(s). Dissecting 

individual sweat glands free of contamination is not feasible and no well

characterized sweat gland cell line, which could serve as a source for the 

differentiation activity, is presently available. 

An alternative approach to identifying which tissues in footpads provide the 

differentiation activity in the extracts is the use of mutants defective in sweat gland 

development. Three such mutants have been identified: crinkled, down less and tabby 
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(Ta) (see Sofaer, 1969). Tabby is the best characterized of the three. It is a X

linked mutant first identified by Falconer (1952) which, in males and homozygous 

females, produces a syndrome of ectodermal dysplasia. The syndrome includes 

anhidrosis due to the absence of sweat glands (Grunber, 1971, Blecher et al., 

1982). Several other glands are also affected, including the respiratory mucous 

glands (Grunber, 1971). In addition, other epidermal derivatives, including dermal 

ridges, hair follicles, and tooth germs, are absent or abnormal (Dun, 1957, 

Kindred, 1967, Sofaer, 1969 a). The defects are due, at least in part, to an 

abnormal developmental and functional role of EGF (Blecher et al., 1982, 1990 a, 

b); when Tabby males are treated with EGF, sweat glands with an appropriate 

morphology develop and sweat in response to agonist treatment (Blecher et al., 1990 

a) . 

We have taken advantage of this mutant to determine whether differentiation 

factor(s) present in footpad extracts are produced by the sweat gland by comparing 

the morphology and cholinergic differentiation ability of Tabby footpads with control 

mice. 
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Results 

An initial examination of the adult sweat pads in tabby mutant mice was 

performed to determine the morphology of the tabby footpad. Semi-thin sections of 

control and tabby pads were stained with toluidine blue (Fig. 1) and examined for 

gross histological abnormalities. The epidermis, connective tissue, blood vessels and 

nerve bundles coursing through the tissue appear to be normal when compared to 

corresponding sections from control mice footpads. However, no glandular tissue is 

apparent in the sections in tabby footpad sections. Thus, in the plantar pads, the 

defect in tabby mutants appears to be limited to the absence of sweat gland ducts and 

secretory cells. These results are similar to previous observations on the deficit in 

sweat gland development in Tabby mice (Grunber, 1971, Blecher et at., 1982). 

To analyze the innervation of the aglandular pads, fixed footpad sections were 

stained for CGRP and VIP, markers for sensory and cholinergic sympathetic 

innervation, respectively (Yodlowski et at, 1984, Ishida-Yamamoto et at., 1988). 

The sensory innervation of the epidermis as assessed by CGRP immunoreactivity 

appears normal or even increased (fig. 2) as compared to the CGRP 

immunoreactivity in sections from control mice. No VI P positive fibers which 

characterize the sympathetic cholinergic innervation of sweat glands are seen in 

sections of tabby footpads, indicating that the sympathetic innervation of the sweat 

glands is not present in the adult tabby mice. In contrast, VIP positive fibers are 

seen around the sweat gland ducts in sections of footpad from control mice. 

We prepared extracts of footpad tissue from adult control mice and Tabby 

mice and assayed them for cholinergic-inducing activity by the method of Fonnum 

(1969). Figure 3 shows that extracts of control mice footpads caused cholinergic 

induction in rat sympathetic neuron cultures. In contrast, cultures treated with 

extracts prepared from the aglandular pads of Tabby mice showed significantly less 

cholinergic-inducing activity. Equal protein concentrations of Tabby footpad extract 

resulted in 70% less cholinergic induction as compared to controls. 

133 



Chapter 3 appendix 

Discussion 

We have compared the morphology and the cholinergic-inducing ability of 

tissue extracts made from footpads from Tabby and control mice. Semi-thin sections 

of tabby footpads show that sweat gland secretory tubules, ducts and the associated 

sympathetic innervation are absent. Other tissue in the footpad of Tabby mice is 

normal; specifically, the sensory innervation of the epidermis in tabby footpads is 

present and appears qualitatively identical to that in control pads. 

The lack of sweat glands in the footpads of tabby mice was associated with a 70 

to 80 percent of cholinergic-inducing activity in footpad extracts as assayed on 

sympathetic neuron cultures. Since the gross morphology and immunocytochemical 

examination suggests that the major difference in the control and tabby footpads is 

the absence of sweat glands and their assciated innervation, it appears likely that the 

differentiation activity is being made by sweat glands cells or by Schwann cells 

associated with the innervating fibers. Schwann cells in the sciatic nerve in the rat 

are known to make CNTF (Stockli et al., 1989, Lin et al., 1989., see also Chapter 2) 

and presumably Schwann cells along the sympathetic and sensory fibers in the 

footpad will also make CNTF. CNTF is a cholinergic differentiation factor for cultured 

sympathetic neurons (Saadat et al., 1989, Rao et al., 1990). Thus, footpad extracts 

could contain CNTF made by Schwann cells and the reduction in differentiation 

activity in tabby extracts is explained by the absence of sympathetic innervation. 

Two observations are inconsistent with this hypothesis. First, extracts prepared 

from hairy skin and parotid gland containing a large number of nerve endings do not 

have cholinergic-inducing properties in similar experiments (see Chapter 3), and 

second, tabby pads containing a large number of sensory endings show little 

cholinergic-inducing activity. Thus, it appears unlikely that the large reduction in 

cholinergic-inducing activity in Tabby pad extracts can be attributed to a small 

number (relative to the sensory innervation) of sympathetic fibers. We do note, 

however, that tabby pads still contain a small amount of cholinergic-inducing 

activity. We cannot identify the source of this activity. It is possible that the 

remaining activity in the pads represents CNTF activity from Schwann cells. The 

alternative possibility is that the differentiation activity in sweat gland extracts is 

due to sweat gland cells themselves. Although we cannot at present conclusively prove 

that this is true, it appears more likely when taken together with our data on the 

failure of hairy skin extracts to cause cholinergic induction (Chapter 3) and that the 

sensory innervation of the tabby footpads is normal. We would, therefore, suggest 

that the cholinergic differentiation activity is made by the sweat gland cells. 
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Figure 1. 

Morphology of control and tabby mice footpads. 

Toluidine stained semi-thin sections were examined for overall sweat gland 

morphology. Panel a shows footpads from control mice with a number of sweat gland 

ducts. Panel b shows a similar section of footpad from tabby mice with no sweat gland 

tissue present. 
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Figure 2. 

Sympathetic cholinergics are absent in Tabby footpads. 

Footpad Cryostat sections of adult control and Tabby footpads were stained for CGRP 

and VIP. CGRP and VIP positive fibers can be seen in sections from control mice 

(Panel a and b, respectively). Similar CGRP immunoreactivity is seen in tabby 

mice footpad sections (Panel c) but no VIP positive fibers (Panel d) can be detected. 
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Figure 3. 

Sweat gland extracts from mice alter ChAT activity in rat sympathetic 

neuron cultures. 

Footpad extracts from control and Tabby mice (25 Jlg/ml) were added to sympathetic 

neuron cultures. Seven days after the addition of the extracts samples were 

homogenized and assayed for ChAT activity. The results are expressed as fold 

induction of ChAT activity ± s.e.m as compared to control cultures grown in medium 

without the addition of extract. All samples were assayed in duplicate (n=3 

experiments) . 

139 



Chapter 3 appendix 

10 

I: 8 
0 :;:::; 
u 
::s 

"'C 6 .5 
l-
e:( 
.J::. 

4 0 
"'C 

;£ 
2 

0 

Medium Control Tabby 

140 



Chapter 3 appendix 

Materials and Methods 

All materials are as described in Chapter 3. Polybed 812 was obtained from 

Polysciences (Warrington, PA ). The CGRP antiserum was obtained from Amersham 

(Arlington Heights, II). The VIP antiserum was generated in guinea pig against 

porcine VIP (Paul Henion and Mahendra Rao, CWRU). Rhodamine-conjugated goat 

anti-guinea pig was obtained from Antibodies Incorporated (Davis, CA) and the 

flourescein-conjugated goat anti-rabbit was from Tago (Burlingame, CA). Mice were 

obtained from Jackson Laboratories (Bar Harbor, ME). 

Tissue Histology 

Control and tabby mice were killed with ether and perfused through the heart with 

2% paraformaldehyde and 2% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, for 

ten minutes. The footpads were dissected and further fixed by immersion in the 

fixative overnight. Tissue was then rinsed in 0.12 M phosphate buffer and placed in 

1 % osmium in phosphate buffer for one hour. After washing, tissue was stained en 

bloc using uranyl acetate overnight at 4°C overnight. The tissue was then dehydrated 

in ethanol and embedded. Semi-thin sections were stained with toludine blue. 

Immunocytochemistry 

Mice were killed with ether and perfused through the heart with 4% 

paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, for ten minutes. The footpads 

were further fixed by immersion in the paraformaldehyde solution for one hour. 

After rinsing with phosphate buffered saline (PBS), the tissue was equilibrated with 

30% sucrose in PBS. Fifteen /lm cryostat sections were thaw mounted onto gelatin 

coated slides and were processed for indirect immunoflourescence according to the 

method of Coons (1958). After sequential incubation with the primary antiserum 

(CGRP 1 :800, VIP 1 :300) overnight and the secondary antiserum for 2hrs the 

sections were rinsed and mounted in a 1:1 mixture of PBS and glycerol. The 

specificity of the antiserum has been previously determined (Schotzinger and 

Landis, 1990). 

Footpad extracts 

Extracts were prepared as described in Chapter 3. In brief, footpads were collected 

from five to six adult animals. The tissue was homogenized and the soluble protein 

collected and concentrated. 
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Cell culture 

Sympathetic neuron cultures from neonatal animals were prepared as described 

(Chapter 3). Two days after plating footpad extracts to be assayed were added to the 

cells. Seven days after the addition of the extracts, neurons were harvested and 

assayed for ChAT activity by the method of Fonnum (1969). Unless otherwise stated, 

25 Ilg/ml of the footpad extracts was added to cultures. 
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Abstract 

Treatment of cultured sympathetic neurons with sweat gland extracts mimics 

many of the changes in neurotransmitter properties seen in vivo during development of 

the sweat gland innervation (Rao and Landis, 1990). Further purification of the 

differentiation activity from extracts of adult sweat gland indicates that the activity is 

associated with a soluble protein(s) having an approximate molecular weight of 22-26 

kD and a pi of 5.0. Comparison of its immunological and biochemical properties with 

three different cholinergic differentiation molecules, CDF (cholinergic differentiating 

factor), CDF/LiF (cholinergic differentiation factor/Leukemia inhibitory factor), and 

CNTF (ciliary neurotrophic factor) suggests that it is related to CNTF. CDF differs from 

the sweat gland activity in that it does not cause cholinergic induction in sympathetic 

neuron cultures. The major sweat gland cholinergic activity is biochemically distinct 

from LlF and, in contrast to CDF/LlF, its effects on cholinergic induction are not 

antagonized by depolarization with 30 mM KCI. Further, antibodies generated against the 

N-terminal sequence of CDF/LiF do not immunoprecipitate the cholinergic-inducing 

activity from sweat gland extracts. Comparison of partially purified sweat gland 

cholinergic-activity with CNTF indicates that these two factors are biochemically very 

similar. In addition, purified sweat gland activity like CNTF supports the survival of E8 

chick ciliary neurons. Finally, antibodies to CNTF can partially precipitate the 

differentiation activity from extracts of sweat glands. The sweat gland cholinergic 

inducing activity may not be identical to CNTF, however, as western blots, northern 

blots and in situ hybridization experiments fail to detect CNTF or CNTF message in sweat 

gland tissue. These observations raise the possibility that the major sweat gland activity 

is a molecule closely related to CNTF. 
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Introduction 

The sympathetic innervation of the adult rat sweat glands is cholinergic (Landis 

and Keefe, 1983; Leblanc and Landis, 1986, Stevens and Landis, 1987). The fibers 

which initially innervate the sweat gland, however, are noradrenergic. During 

development the neurotransmitter-related properties of these fibers undergo a 

developmental switch from a noradrenergic to a cholinergic phenotype (Landis and 

Keefe, 1983, Leblanc and Landis, 1986). As discussed in Chapter 3, several lines of 

evidence suggest that this switch in neurotransmitter properties is target mediated. 

Sympathetic neurons which normally innervate sweat glands and become cholinergic fail 

to acquire cholinergic properties when they innervate the parotid gland, a target whose 

innervation is normally noradrenergic (Schotzinger and Landis, 1990). Further, 

normally noradrenergic sympathetic neurons will become cholinergic when they 

innervate transplanted sweat glands (Schotzinger and Landis, 1988). Although the 

evidence for a role of the target in directing this transmitter switch is compelling, little 

is known about the actual molecules involved. 

To identify the component in sweat gland tissue that is responsible for 

instructing the sympathetic neurons to alter their neurotransmitter phenotype, we have 

assayed extracts from sweat glands for differentiating activity. As previously reported 

(Rao and Landis, 1990), we have isolated and partially characterized a factor(s) 

present in crude extracts of sweat gland tissue which in vitro can mediate many of the 

changes in the neurotransmitter phenotype seen during the development of sweat gland 

innervation. Extracts from sweat gland tissue, but not from parotid gland or hairy skin, 

induce choline acetyltransferase activity and increase vasoactive intestinal peptide 

expression in cultures of sympathetic neurons. The induction of cholinergic properties 

is accompanied by a concomitant reduction in catecholaminergic properties and in levels 

of neuropeptide Y. The cholinergic differentiation activity that can be extracted from 

sweat gland tissue appears to be present in developing glands as early as postnatal day 

five and increases over a period of two weeks to reach adult levels. Thus, it is present at 

the appropriate time in development to be the factor responsible for the target-mediated 

adrenergic to cholinergic switch. In view of its appropriate spatial and temporal 

expression, we have postulated that this extracted activity represents the 

developmentally relevant molecule. 

Several proteins have been identified which cause a similar noradrenergic to 

cholinergic switch when added to cultures of sympathetic neurons and, therefore, 

represent potential candidates for the differentiation signal produced by sweat glands. 
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Some of these factors are poorly defined; for example, chick embryo extract, human 

placental serum and rat serum increase acetylcholine synthesis and/or ChAT activity 

(Higgins et aI., 1981; lacovitti et aI., 1981, 1982; Wolinsky et aI., 1985). Other 

cholinergic molecules like CDF from skeletal muscle, CDF/LlF, CNTF and MANS 

(membrane-associated neurotransmitter-stimulating factor) from spinal cord 

membranes have been more completely characterized. CDF prepared from skeletal 

muscle extracts has been purified and characterized (Mcmanaman et aI., 1989). It is 

biochemically distinct from CDF/LiF and CNTF and has been shown to increase levels of 

ChAT in spinal cord motor neurons both in vitro and in vivo (Mcmanaman et aI., 1990). 

Although the ability of CDF to induce cholinergic properties in cultures of sympathetic 

neurons has not been tested, it is a potential candidate since two of the factors that 

influence cholinergic function in sympathetic neurons, CDF/LiF and CNTF, have a 

similar effect on spinal cord cultures (Sendtner et al 1990, Yoshihiro et aI., 1990, Geis 

and Weber, 1984). The cholinergic differentiation factor (CDF), purified from heart 

cell conditioned medium (Patterson and Chun, 1977, Fukada, 1985), has been shown to 

be identical to leukemia inhibitory factor (LlF; Yamamori et aI., 1989). A very similar, 

if not identical, molecule is present in skeletal muscle cell conditioned medium (Weber 

et aI., 1985) and increases cholinergic function in spinal cord and nodose sensory 

neurons as well as sympathetic neurons (Geiss and Weber, 1984, Mathieu et aI., 

1984). Ciliary neurotrophic factor (CNTF), originally identified as a survival factor 

for ciliary neurons (Adler et aI., 1979; Barbin et aI., 1984; Manthorpe et aI., 1986) 

and recently cloned (Lin et aI., 1989; Stockli et aI., 1989), induces cholinergic and 

reduces catecholaminergic function in cultured sympathetic neurons (Saadat et aI., 

1989). MANS has been solubilized and partially purified from rat spinal cord. The 

latter activity is associated with a 29-kD protein (Wong and Kessler, 1987; Adler et 

aI., 1989). We have previously demonstrated (see Chapter 2) that the membrane

associated cholinergic-inducing activity is most likely to be similar/related to CNTF. 

MANS shares with CNTF the ability to support the survival of chick ciliary neurons (Rao 

et aI., 1990) and antibodies to CNTF can immunoprecipitate the cholinergic-inducing 

activity and detect a 24-kD band on Western blots (see Chapter 2). 

While the list of well-characterized cholinergic molecules is not extensive, 

several molecules including CDF, CDF/LlF, and CNTF have the appropriate biological 

properties to playa role in the adrenergic to cholinergic switch that characterizes sweat 

gland innervation. It is not clear, however, if any of these proteins is related to or 

identical with the cholinergic-inducing activity present in sweat gland extracts. Nor is 

it clear that the cholinergic-inducing ability of these factors represents their primary, 
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or even a relevant function, in normal development. Several of these factors have been 

shown in cell culture systems to have additional functions. For example, CDF/UF 

inhibits proliferation and induces macrophage differentiation in the M1 myeloid cell line 

(Hilton et aI., 1988) and maintains the developmental potential of embryonic stem cells 

(Smith et aI., 1988; Williams et aI., 1988) while CNTF has trophic activity for ciliary 

neurons (Barbin et ai, 1984, Manthorpe et aI., 1986) and motor neurons (Yoshihiro et 

aI., 1990, Sendtner et aI., 1990). In addition, it induces astrocytic properties in 02A 

progenitor cells (Hughes et aI., 1988). 

To determine if any of the previously identified factors are present in sweat gland 

extracts, we have further purified the cholinergic-inducing activity from sweat gland 

tissue and compared its biochemical and immunological properties with three of the 

better characterized cholinergic factors, CDF/LlF, CNTF and CDF (Fukada et aI., 1985, 

Stockli et aI., 1990, Mcmanaman et aI., 1990). Our results suggest that the activity 

present in sweat gland extracts is distinct from CDF from skeletal muscle and CDF/LlF, 

but shares many properties with those of recombinant CNTF. Western blots, in situ 

hybridization and Northern blot analysis suggest, however, that the sweat gland 

cholinergic-inducing activity is not identical to CNTF. 
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Results 

Characterization of the sweat gland cholinergic differentiation activity. 

Anionic exchange chromatography 

As an initial step in purification, we prepared sweat gland extracts from adult 

tissue and chromatographed it on a anionic exchange column (Mono Q). Figure 1 a shows 

that all the cholinergic activity bound to the column and eluted as a single peak with 0.25 

mM NaCI. This is similar to the behavior of CNTF and CDF (Manthorpe et aI., 1986, 

Mcmanaman et aI., 1988, 1989), but different from that reported for CDF/UF 

(Fukada, 1985), a basic protein. 

Isoelectric focussing 

The Mono Q peak fraction was chromatographed on a MONO P column and 0.5 ml 

fractions were collected and assayed for cholinergic activity. Figure 1 b shows that the 

ChAT activity eluted between pH 4.8-5.2 with a peak of activity at pH 5.0, indicating 

that the pi of the active protein was in this range. This is similar to the value reported 

for CNTF purified from sciatic nerve extracts (Manthorpe et aI., 1986). 

Size fractionation 

To determine the molecular weight of the cholinergic-inducing activity, peak 

fractions from the anionic exchange column were chromatographed on a sizing column. 

Fractions were tested for cholinergic-inducing activity on sympathetic neuron cultures. 

Figure 2 shows that the cholinergic inducing activity eluted in a peak between the 16 kD 

and 32 kD protein markers. Comparison of its size with the molecular weights reported 

for the other cholinergic factors indicates that the size of the sweat gland differentiating 

activity is similar to that reported for MANS (Wong and Kessler, 1987), CNTF 

(Manthorpe et aI., 1986) and deglycosylated lIF (Fukada et aI., 1985). 

To determine more accurately the molecular weight of the sweat gland 

differentiating activity, fractions of the sweat gland extract purified on an anionic 

exchange column were run on a SDS-PAGE gel. Slices of the gel between the appropriate 

molecular weight standards were cut and the proteins eluted from them using an 

electroeluter. Aliquots of the extracted proteins were tested for activity. Figure 3a 

shows that the activity has a molecular weight between 22-26 kD. 

The 22-26 kD fraction which had cholinergic-inducing activity was also tested 

for its ability to modulate levels of NPY and VIP. Figure 3b shows that the same SDS

PAGE eluted fraction induces VIP and reduces NPY levels. These observations indicate 

that a single protein or several closely related proteins with similar molecular weights 
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and pi's may mediate the several effects on the neurotransmitter phenotype that one 

observes after addition of sweat gland extracts to sympathetic neurons. 

Comparison of sweat gland cholinergic differentiating activity with 

skeletal CDF. 

A skeletal muscle polypeptide has been isolated from skeletal muscle from young 

rats (Mcmanaman et aI., 1988) which can stimulate the development of ChAT activity in 

embryonic day 14 rat spinal cord cultures. This factor has a molecular weight of 22-Kd 

and a pi of 4.8 biochemical properties similar to that of sweat gland factor (Mcmanaman 

et aI., 1988). The time course of expression of CDF activity in skeletal muscle extracts 

and that of sweat gland cholinergic-inducing activity in sweat gland extracts are also 

similar (Rao et aI., 1990, Mcmanaman et aI., 1989). To ascertain whether the sweat 

gland differentiating activity and CDF are similar, we obtained partially purified CDF 

(Hap? fraction, a kind gift of Dr. Mcmanaman), and tested the ability of this preparation 

to induce cholinergic activity in sympathetic neuron cultures. Figure 4 shows that this 

fraction does not induce cholinergic function in cultures of sympathetic neurons. The 

number of neurons in cultures with and without extracts were similar, indicating that 

the failure to observe an effect was not due to toxicity of the preparations. In contrast, 

the same fraction of CDF caused a maximal ChAT induction of 150% in spinal cord 

cultures (Dr. Mcmanaman, personal communication). 

Comparison of sweat gland cholinergic factor with L1F. 

The major cholinergic differentiation activity in sweat glands is biochemically distinct 

from LlF 

Additional purification of the sweat gland activity indicated that the biochemical 

properties of the soluble cholinergic-inducing activity were distinct from glycosylated 

L1F. The sweat gland differentiating activity is an acidic protein retained on an anionic 

column and has a molecular weight between 22-26 kD. It was possible, however, that 

the cholinergic-inducing activity in the extracts represented a deglycosylated or 

partially glycosylated form of L1F that interacted with another protein present in sweat 

gland extracts and, therefore, behaved differently during our purification procedures. To 

examine this possibility, we added recombinant deglycosylated LI F to sweat gland 

homogenates and after an overnight incubation determined whether LlF was retained on a 

DEAE column. Figure 5a shows that when recombinant deglycosylated L1F is incubated 
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with crude sweat gland extracts and then chromatographed on an anion exchange column 

it still does not bind to the column. 

Depolarization antagonizes the cholinergic induction by LlF but not by the sweat gland 

differentiating activity 

The action of heart cell conditioned medium but not CNTF can be antagonized by 

the addition of 30 mM KCI to cell cultures (Walicke et aI., 1977, Chapter 2). Figure 5b 

shows that this is true for recombinant LlF also. The action of sweat gland extracts on 

cholinergic induction, however, is not antagonized by depolarization with 30 mM KCI 

(Fig. 5b). 

Failure to immunoprecipitate biological activity with antibodies to CDFILIF 

Antisera generated against a synthetic peptide whose sequence corresponds to the 

N-terminal peptide sequence of CDF/LIF immunoprecipitate the cholinergic-inducing 

activity from a partially purified fraction (the DEAE flow through) from heart cell 

conditioned medium (Fukada, Neuroscience abstract, 1988, Yamamori et aI., 1989, Rao 

et aI., 1990). When the DEAE eluate fraction of the sweat gland extract was treated with 

affinity-purified antibodies to CDF/LlF, there was no detectable decrease in the ability 

of the extract to induce choline acetyltransferase activity (Fig 6a). Since the DEAE 

fraction is relatively crude, it was possible that inhibitory proteins or proteases were 

present in the sweat gland extract which were responsible for the inability to 

immunoprecipitate activity. In parallel experiments, however, the same antibodies 

added to the DEAE fraction of sweat gland extracts were able to precipitate iodinated 

recombinant CDF/LIF (the kind gift of T. Yamamori, California Institute of Technology) 

as the appropriate 20-kD band (Figure 6b). Thus, the principal cholinergic-inducing 

activity present in the sweat gland extracts is not likely to be CDF/LIF. 

Comparison of sweat gland cholinergic factor with CNTF. 

Sweat gland extracts have ciliary neurotrophic activity 

CNTF was originally isolated on the basis of its ability to support the survival of 

E8 chick ciliary neurons in culture (Manthorpe et aI., 1986, Barbin et aI., 1984) and 

was later shown to induce cholinergic properties in sympathetic neuron cultures (Saadat 

et aI., 1989). Since the molecular weight and pi of the differentiating activity in sweat 
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gland extracts was very similar to that reported for CNTF (Manthorpe et aI., 1986, 

Ernsberger et aI., 1989, Sendtner et aI., 1990, Lin et aI., 1990) and crude sweat gland 

extracts had ciliary neurotrophic activity (data not shown), we assayed the ability of 

SOS-PAGE purified extracts of sweat gland extract to support the survival of ciliary 

neurons. Figure 7 shows that purified sweat gland extracts supported the survival of E8 

chick ciliary neurons. 

Antibodies raised against recombinant CNTF immunoprecipitate cholinergic-inducing 

activity from sciatic nerve extracts and from sweat gland extract 

Immunoprecipitation of peptide and cholinergic-inducing activity from sciatic 

nerve extracts is complete with a 1:4 dilution of a polyclonal antiserum generated 

against rCNTF (see Chapter 2). In similar immunoprecipitation experiments, a 1:4 

dilution of the antibody failed to precipitate activity from L1F solutions and precipitated 

approximately 80% of the cholinergic-inducing activity in sweat gland extracts. Thus, 

the major cholinergic-inducing activity present in sweat gland extracts displays some 

cross-reactivity with CNTF. 

Oata from our partial purification suggested that the 22-26 kO fraction could be 

responsible for the spectrum of neurotransmitter modulating activities that are present 

in sweat gland extracts. To assess if antibodies to rCNTF also altered the ability of sweat 

gland extracts to modulate NPY and VIP levels, we assayed the effect of sweat gland 

extract incubated with and without antisera on peptide levels. Figure 8b shows that the 

peptidergic-inducing activities present in sweat gland extracts are only partially 

immunoprecipitated by this antibody. Fifty percent of the VIP-inducing and little, if 

any, of the NPY-reducing ability of sweat gland extracts is precipitable. These 

observations provide additional evidence that the molecule(s) responsible for the 

differentiating activity present in sweat gland extracts, while immunologically related 

to CNTF, may not be identical to it. 

Antisera against recombinant rat CNTF fails to detect CNTF in sweat gland extracts 

Our immunoprecipitation and biochemical data suggested that the sweat gland 

differentiating activity was either identical or closely related to CNTF. To examine these 

possibilities further, equal amounts of chOlinergic-inducing activity from sciatic nerve 

extracts and sweat gland extracts were loaded on an SOS-PAGE gel, electrophorised and 

probed with a polyclonal antiserum generated against recombinant rat CNTF. The 

antiserum recognized recombinant CNTF (Figure 9a) and a 24-kO band present in the 

sciatic nerve extracts (Figure 9b). Binding was completely blocked by preincubating the 
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antibody with 10 mM recombinant CNTF. No specific band was evident in the lanes 

containing either hairy skin extracts, which do not have cholinergic-inducing activity, 

(Rao and Landis, 1990), or sweat gland extracts even though the lanes containing the 

sweat gland and sciatic nerve extracts contained the same amount of cholinergic-inducing 

activity for cultured sympathetic neurons. Loading ten-fold more cholinergic-inducing 

activity and overstaining the blots failed to reveal any specific binding in lanes 

containing sweat gland extracts (data not shown). 

Northerns and in situ hybridization analysis with an oligonucleotide probe against rat 

(NT 

To determine if message for CNTF could be detected in sweat glands we prepared 

RNA from sweat gland from adult rats and probed the Northern blots for message. Figure 

10 shows that a band of 1.2 kb, the expected size of CNTF message, can be detected in 

sciatic nerves and a faint band can be detected in the lane containing RNA prepared from 

dorsal root ganglia which may also contain CNTF (see Chapter 2). In contrast, no specific 

binding can be detected in lanes containing RNA from liver or sweat glands 

The same probe was also used in the in situ hybridization studies to probe 

sections of sciatic nerve and sweat gland as a more sensitive assay for its presence that 

may be making CNTF/CNTF-like molecule. Figure 11 shows that a subpopulation of 

Schwann cells in the sciatic nerve exhibit a specific hybridization signal with the 

antisense probe as compared to the sense control. No specific signal, however, can be 

detected in sweat gland tissue either over the glands or over the Schwann cells present in 

the nerve fibers in the tissue. 
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Discussion 

We have previously shown that sweat gland extracts contain a cholinergic

differentiating activity as assayed on cultures of sympathetic neurons (Rao and Landis, 

1990). Further purification of this differentiating activity revealed it to be either a 

single, or several closely related molecules, with a molecular weight(s) between 22-24 

kD and a pi of 5.0. Since the activity has not been purified to homogeneity yet, we cannot 

at present distinguish between one or several molecules with very similar properties in 

sweat gland extracts. Given that several molecules (CDF, CNTF, MANS) have been 

identified which have a similar spectrum of activities, we would consider a single 

molecule more likely. It is of interest to compare the properties of the differentiation 

activity in sweat gland extract with these previously characterized molecules. We have 

compared the the sweat gland differentiation activity with three different cholinergic 

factors: CDF/LlF, CNTF and CDF from skeletal muscle. We did not consider MANS (Wong 

and Kessler, 1987; Adler et aI., 1989) to be a likely candidate because the sweat gland 

differentiating activity is easily extracted in low salt solutions and no detectable activity 

is associated with membranes (unpublished observations). Further, our 

immunoprecipitation and Western blot experiments with an antisera to rCNTF (see 

Chapter 1) suggested that MANS is closely related or identical to CNTF. 

CDF , a cholinergic factor for motor neurons with a pi of 4.8 and a molecular 

weight of 22 kd (Mcmanaman et aI., 1988, 1989, 1990) is biochemically very similar 

to the activity partially purified from sweat gland extracts. Further, expression of CDF 

in skeletal muscle extracts is temporally similar to that of differentiation activity in 

sweat gland extracts (Mcmanaman et aI., 1989, Rao and Landis, 1990). Although CDF 

had never been shown to cause cholinergic induction in sympathetic neurons, it 

represented a potential candidate for the sweat gland differentiation factor(s) as other 

factors which cause cholinergic induction in sympathetic neuron cultures, increase 

levels of ChAT in spinal motor neuron cultures (Sendtner et aI., 1990, Yoshihiro et aI., 

1990, Geis and Weber, 1984, Kato and Patterson, unpublished results). We, therefore, 

tested the ability of purified fractions of CDF to induce cholinergic function in 

sympathetic neuron cultures under conditions identical to those in which sweat gland 

extract, CDF/UF and CNTF cause 10-to-20 fold induction. CDF, however, had no effect 

on either ChAT or TH levels (unpublished results) in sympathetic neuron cultures. 

Thus, CDF differs from the other cholinergic factors and cannot be responsible for 

mediating the adrenergic to cholinergic switch in sweat gland innervation. 
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Two soluble factors, CDF/LIF and CNTF, are similar in their effects on 

sympathetic neurons; they increase choline acetyltransferase and VIP expression and 

reduce tyrosine hydroxylase and catecholamine content (Fukada, 1985; Yamamori et aI., 

1989; Sendtner et aL, 1989; Ernsberger et aL, 1989; Nawa and Patterson, 1990). In 

addition, like sweat gland extract, both CDF/LIF (Nawa and Patterson, Cold Spring 

Harbor Symposium, 1991) and extracts of sciatic nerve containing CNTF (see Chapter 

2) decrease NPY expression. Thus, they are potential candidates for a sweat gland 

differentiation activity. 

CDF/LIF is an attractive candidate; it has a consensus signal sequence, it is 

glycosylated and it is secreted by heart cells (Patterson and Chun, 1977 a; Yamamori et 

aL, 1989). Comparison of the biochemical characteristics of CDF/LIF with the sweat 

gland factor(s), however, indicate that this protein does not appear to be related to L1F. 

L1F is a basic protein of a molecular weight of 45 kD which does not bind to a DEAE 

column and has a pi of >7 (Fukada et aL, 1985). It is also unlikely that the protein in 

sweat gland extracts is the deglycosylated or partially deglycosylated form of LlF; 

glycosylation would tend to add negative residues to the protein and, therefore, the 

deglycosylated form of L1F would be even more basic. Indeed, an estimate of the charge on 

deg Iycosylated LI F shows 10 excess positive charges in rat (12 in human) with an 

estimated pi of 8.5. It is also unlikely that the protein present in the extracts is L1F 

bound to some other protein which causes it to behave differently on anionic exchange 

columns. Incubation of rLiF with sweat gland extracts does not alter the behavior of L1F 

on an anionic exchange column. Finally, affinity-purified antibodies raised against the 

N-terminal region of CDF/LIF can immunoprecipitate the cholinergic-inducing activity 

from the DEAE or Sephadex fractions of heart cell conditioned medium (Fukada, 

Neuroscience abstract, 1988, Yamamori et aL, 1989, Rao et aL, 1990) but these 

antibodies do not immunoprecipitate the cholinergic-inducing activity from sweat gland 

extracts. Thus, it is unlikely that the major cholinergic-inducing activity present in the 

sweat gland extracts is identical to or related to L1F. 

It is possible, however, that two molecules are present in the extracts, the major 

component being a molecule distinct from LlF and a minor LlF-like component. Since 

antibodies to rCNTF which immunoprecipitate virtually all the activity from crude 

homogenates of sciatic nerve immunoprecipitate about 80% of the cholinergic activity 

from sweat glands, and even less of the peptide modulating activity, it is possible that 

the non-precipitable differentiation activity which is yet to be characterized represents 

CDF/LIF. This notion is consistent with the recent PCR results suggesting a specific 

expression of LlF in sweat gland extracts (Yamamori, T., Caltech,.personal 
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communication). Clearly, however, there are several alternative explanations for our 

failure to immunoprecipitate all the cholinergic-inducing activity. For example, the 

immunoprecipitation experiments were done with a polyclonal antiserum using crude 

homogenates. Further, no additional peaks of activity corresponding to LlF were detected 

during purification. Further experimentation will be required to determine the 

biological and biochemical characteristics of minor differentiation component if, indeed, 

one is present. 

Even if the minor cholinergic-inducing component in the sweat gland extracts is not 

CDF/LlF, we cannot also at present rule out the possibility that LlF is present in the 

sweat gland tissue and is either lost or destroyed during the extraction process. While we 

cannot rule out the possibility that LlF is present in sweat glands in amounts that we 

cannot detect, we still have to determine which of the two cholinergic-inducing 

molecules present in the same tissue is the biologically relevant molecule. 

The biochemical and immunological properties of the major sweat gland 

cholinergic-inducing activity show remarkable similarity with those reported for CNTF. 

CNTF is also a acidic protein (Manthorpe et aI., 1986) with a pi of 5.0 (Saadat et aI., 

1989, Ernsberger et aI., 1989, Stockli et aI., 1989, Lin et aI., 1989) and a molecular 

weight of 24 kD (Manthorpe et aI., 1986). CNTF, like sweat gland extracts, is capable of 

mediating an adrenergic to cholinergic switch in sympathetic neurons (Saadat et aI., 

1989), as well as inducing VIP both in chick (Ernsberger et aI., 1989) and rat 

sympathetic neuron cultures and reducing NPY levels (Chapter 2). Since sweat gland 

extracts also have ciliary neurotrophic activity and this trophic activity copurifies with 

the cholinergic-inducing activity, the biological properties of the sweat gland factor(s) 

very similar to that of CNTF. Thus, it would seem that the major sweat gland activity is 

at the least immunologically and biochemically similar and probably even identical to 

CNTF. 

Several pieces of evidence are inconsistent with the notion that the sweat gland 

differentiating activity is identical to CNTF. Immunoblotting experiments with a 

polyclonal antiserum generated against, and recognizing, rat CNTF failed to reveal any 

CNTF-like immunoreactivity in sweat gland extracts. Further, Northern blot analysis 

(Sendtner, Neuroscience abstract, 1989, see results) and in situ hybridization 

experiments fail to reveal detectable message for CNTF. In contrast, message is easily 

detectable both in Northern blot and in situ hybridization analysis of sciatic nerve. 

Preliminary evidence that sweat gland protein does not support survival of a CNTF

dependent cell line (Dr. S. Squinto personal communication) is also consistent with the 

view that the factor(s) in sweat glands is not identical to CNTF. 
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One possible explanation for a failure to detect CNTF by Northerns, in situ 

hybridization and Western blots is that, as discussed above, two molecules are present 

in the extract. One is CNTF and the other is an as yet unidentified component, possibly 

lIF. This would then explain the failure to detect CNTF on Western blots or CNTF message 

in sweat glands, and also our finding that antibodies to CNTF can only partially 

immunoprecipitate the activity. An alternative explanation, also consistent with the 

results, is that the molecule present in the extracts is a novel factor immunologically 

related to CNTF. A third possibility is that a large amount of the immunologically 

identifiable CNTF in sciatic nerve extracts is biologically inactive and, hence, loading 

equal amounts of activity on Western blots does not necessarily imply equal amounts of 

detectable protein. According to this scenario, the sweat gland activity is identical to 

CNTF but the amount of protein and message present is much less than that in sciatic 

nerve and, hence, we fail to detect it in sweat gland preparations. Our data cannot 

distinguish between these possibilities. Further purification of the sweat gland 

protein(s), amino acid sequencing and in vivo perturbation experiments will help 

distinguish between these possibilities. 

If the factor in sweat gland extracts is indeed CNTF or a related molecule, a 

question that arises is how does CNTF synthesized by the sweat glands reach the 

fibers innervating the sweat gland? CNTF does not appear to be a secreted protein, it 

has no signal peptide (see review Verner and Schatz, 1988) and expression of CNTF 

in a cell line results in high levels of intracellular CNTF which is not secreted into 

the medium. It is possible, however, that novel secretory mechanisms may be 

present in the appropriate cell type to ensure the release of CNTF. For example, FGF 

and IL6 both lack signal peptides and are secreted by alternative mechanisms (Rifkin 

and Moscatelli, 1989, Kostura et aI., 1989). Alternatively, modified or related 

forms of CNTF may exist. We have shown (see Chapter 2 Appendix) that MANS, a 

membrane-associated protein, can be precipitated by antibodies generated against 

recombinant CNTF and, thus, a membrane-bound form of CNTF or a CNTF-like 

molecule is potentially present in spinal cord preparations. Recent evidence from 

astrocyte cultures (Rudge et aI., Neuroscience abstract, 1990) demonstrates the 

existence of a membrane-bound form of CNTF. While some evidence for a membrane

bound form of CNTF exists there is little evidence for a secreted form of CNTF. 

Although an extracellular soluble CNTF-like molecule has been reported (Hughes et 

aI., 1988, Laura et aI., 1990), it is not clear if the CNTF-like molecule is actually 

released into the media (Laura et aI., 1990). Clarification of these issues will 

require additional experiments. 
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In summary, there are two possible explanations for our results on the 

comparison of the sweat gland differentiation activity with CDF, CDF/LIF and CNTF. 

First, two factors are present in the extracts, a major CNTF/CNTF-like component 

and a minor, as yet uncharacterized component, which may be LlF. Alternatively, a 

novel cholinergic activity is present in sweat gland extracts which, when compared 

to several known cholinergic molecules, is very similar but not identical to CNTF. 

Further purification, amino-acid sequencing and in vivo perturbation experiments 

will distinguish between these possibilities. 
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Figure 1 a. 

The major cholinergic-inducing activity in sweat gland extracts is an 

acidic protein. 

Soluble protein extracted from sweat glands of adult rats was chromatographed on a 

Mono Q anionic exchange column and 0.5 ml fractions were collected, concentrated 

and added to sympathetic neuron cultures. Seven days after the addition of the 

extracts, neurons were homogenized and aliquots were assayed for ChAT activity by 

the method of Fonnum. All samples were run in duplicate. The data are expressed as 

the fold induction of ChAT activity compared to that present in control cultures 

grown without added extract. 

Figure 1 b. 

The major cholinergic-inducing activity in sweat gland extracts has a 

pi of 5.0. 

The peak fraction of activity from the Mono Q column was chromatographed on a Mono 

P chromatofocussing column. The fractions collected were concentrated and added to 

sympathetic neuron cultures. Seven days after the addition of the extracts, neurons 

were homogenized and aliquots were assayed for ChAT activity by the method of 

Fonnum. All samples were run in duplicate. The data are expressed as the fold 

induction of ChAT activity compared to that present in control cultures grown 

without added extract. 
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Figure 2. 

The major cholinergic-inducing activity in sweat gland extracts is a 

low molecular weight protein. 

The peak fraction of activity from the Mono P column was chromatographed on a 

Sepharose 12 sizing column. The fractions collected were concentrated and added to 

sympathetic neuron cultures. Seven days after the addition of the extracts, neurons 

were homogenized and aliquots were assayed for ChAT activity by the method of 

Fonnum. The data are expressed as the fold induction of ChAT activity compared to 

that present in control cultures grown without added extract. 
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Figure 3. 

Sweat gland SOS gel extracts induce ChAT activity. 

In a, SOS gel fractions between 22-26 kd and 26-32 kd were eluted and added to 

cultures of dissociated sympathetic neurons. Seven days after the addition of 

extracts, neurons were homogenized and aliquots were assayed for levels of ChAT 

activity by the method of Fonnum. Samples were run in triplicate. The data are 

expressed as the fold induction of ChAT activity compared to that present in control 

cultures grown without added extract ± s.e.m. 

In b., Sister cultures treated with SOS gel extracts as described above were assayed 

for NPY (neuropeptide Y) and VIP (Vasoactive Intestinal Peptide) levels by radio 

immunoassay. Samples were run in duplicate. The data are expressed as fold 

induction of peptide as compared to control cultures treated with SOS gel extract 

from native gels ± s.e.m. 
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Figure 4. 

Skeletal Cholinergic differentiation factor does not induce cholinergic 

properties in sympathetic neuron cultures. 

Aliquots of the Hap 7 fraction of the skeletal cholinergic differentiation factor (0 Ill, 

1 Ill, 5 Ill, and 15 Ill) were added to sympathetic neuron cultures. Seven days after 

the addition of the extracts, samples were assayed for ChAT activity by the method of 

Fonnum. Results are expressed as cpm/hr/well ±..s.e.m. The cell number, seven days 

after addition of the Hap 7 fraction, was 1952 ±. 162, 2077 ±. 15, 1993 ±. 28, 

2033 ±. 26, respectively. All samples were run in duplicate (n=three 

experiments). 
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Figure Sa. 

Sweat gland cholinergic-inducing activity is biochemically distinct 

from CDF/LIF. 

Sweat gland extracts (25 Jlg/ml) incubated a} with LlF (25 ng/ml) or b} without 

rLiF was chromatographed on a DEAE column. The flow through was collected, 

concentrated and added to sympathetic neuron cultures. Seven days after the addition 

of the extracts, samples were assayed for ChAT activity. Results are expressed as fold 

ChAT induction ± s.e.m. over controls grown in the presence of L15C02 medium. All 

samples were run in duplicate (n=2 experiments). 

Figure 5b. 

Cholinergic induction by sweat gland extracts is not antagonized by 

depolarization. 

Aliquots of a} sweat gland extract (25Jlg/ml), b} sweat gland extract (25Jlg/ml), 

and 30 mM KCI, c} rLiF (25 ng/ml), d} rLiF (25 ng/ml) and 30 mM KCI were 

added to sympathetic neuron cultures. Seven days after the addition of the extracts, 

samples were assayed for ChAT activity by the method of Fonnum. Results are 

expressed as fold ChAT induction over control cultures grown without the addition of 

extracts ± s.e.m. All samples were run in duplicate (n=three experiments). 

172 



Chapter 4 

Figure SA 12 

10 

8 

I: 
0 
t; 
::J 
'C 6 
.E 
~ 
c:( 
.I: 
0 
'C 4 
'0 
LL 

2 

o 
Medium S.Gland S.Gland+LlF 

Figure S B 

10 A Control 

B 30 mmol KCI 

8 

I: 
0 

6 :;:; 
U 
::J 
'C 
I: 

~ 
c:( 
.I: 4 0 
'C 
'0 
LL 

2 

o 
A B A B 

LlF S.G. extract 

173 



Chapter 4 

Figure 6. 

The major cholinergic-inducing activity present in sweat gland 

extracts is not immunoprecipitated with antibodies to CDF/UF. 

a. Sweat gland extracts (DEAE fraction) were incubated with (a) protein A 

sepharose, (b) affinity-purified antibodies to the N-terminal sequence of CDF or 

(c) affinity-purified antibodies preincubated with the peptide antigen. After 

immunoprecipitation, supernatants were added to sympathetic neuron cultures. Ten 

days after the addition of extract, the cultures were assayed for choline acetyl 

transferase activity by the method of Fonnum. The results are expressed as the fold 

induction of ChAT compared to the activity observed in neurons grown in medium 

without extract. All samples were run in duplicate. 

b. 125 1 labeled recombinant CDF/LIF (20,000 cpm) was incubated with affinity

purified antibodies to the N-terminal sequence of CDF (1 and 3) or affinity-purified 

antibodies pre incubated with the peptide antigen (2 and 4) in buffer (1 and 2) or 

with 100 /-1g of soluble protein extracted from adult rat sweat gland (3 and 4). 

Following immunoprecipitation by affinity-purified antibodies to the N-terminal 

sequence of CDF, the labeled proteins were extracted by boiling in SDS sample buffer 

and subjected to SDS-PAGE electrophoresis in a 10% gel. The labeled proteins were 

localized on X-ray films developed after a seven-day exposure. The arrowhead 

indicates a specific 20-kD band in lanes 1 and 3. 
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Figure 7. 

The SOS fraction which has cholinergic-inducing activity also has 

ciliary neurotrophic activity. 

The SOS gel eluate from the a) 22-26 kO fraction or the b) 26-32 kO fraction 

(100 ng/ml) was added to freshly dissociated chick ciliary neuron cultures. Twenty 

four hours later, the cultures were fixed and the number of phase bright cells with 

neurites was counted. Results are expressed as the number of surviving cells lweI! 

± s.e.m. All samples were run in triplicate. 
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Figure 8. 

Antibodies to CNTF can partially immunoprecipitate cholinergic 

differentiation activity from sweat gland extracts. 

In a, aliquots of sciatic nerve extract (a), sweat gland extract (b), or LlF (c) were 

incubated with (+) or without a polyclonal antibody generated against rCNTF. After 

overnight incubation, proteins specifically recognized by the CNTF antibody were 

adsorbed with Protein A sepharose. The supernatants were then added to sympathetic 

neuron cultures. Eight days after the addition of the supernatants, the samples were 

assayed for ChAT induction by the method of Fonnum. The results are expressed as 

fold ChAT induction ± s.e.m. as compared to control sympathetic neuron cultures 

grown in medium without the addition of extracts. All samples were run in triplicate 

In b., neurons were grown either (a) in medium without the addition of extract or 

with sweat gland extract (50 Ilg/ml of crude homogenate) incubated without (b) or 

with (c) an antiserum to rCNTF. Cultures were then assayed for NPY and VIP 

induction by radioimmunoassay. Results are expressed as picograms of peptide per 

well ± s.e.m. All samples were run in triplicate. 
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Figure 9. 

CNTF is not detectable in sweat gland extracts in Western blot assays. 

In panel a, 10 ng of recombinant CNTF was blotted onto nitrocellulose. In panels b 

and c, 60 I1g of soluble protein (DEAE fractions) from sciatic nerve extract (lane 

1), from hairy skin extract of adult rat (lane 2) or from sweat gland extract of adult 

(lane 3) or 21-day (lane 4) animals (panels b and c) were blotted onto 

nitrocellulose. In panels a and b, the blots were probed with a polyclonal antiserum 

raised against recombinant rat CNTF, while in panel c the blot was probed with 

antiserum pre incubated with 10 I1g recombinant CNTF. Panel a documents that the 

antiserum recognizes CNTF (arrowhead). As expected, the antiserum recognizes a 

24-kD band present in sciatic nerve extracts (lane 1 b, c), but no specific bands 

were evident in hairy skin extracts (lane 2) or in sweat gland extracts from 21-day 

(lane 3) or adult (lane 4) animals. Arrowheads in band c indicate 92, 30 and 22.5 

kD standards. 
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Figure 10. 

CNTF message is not detectable in sweat gland extracts. 

30Jlg of total RNA from (a) adult sciatic nerves, (b) sweat glands, (c) liver and (d) 

dorsal root ganglia was electrophorised and transferred onto nylon membrane. The 

membrane was then probed with an oligonucleotide probe to rat CNTF. Arrow shows a 

positive 1.3 kb band in lane (a), containing sciatic nerve RNA, and a fainter band in 

the same position in lane (d), containing dorsal root ganglia. No specific signal is 

detected in lanes band c, containing sweat gland and liver RNA, respectively. 
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Figure 11. 

CNTF message is not detectable in sweat gland extracts by in situ 

Hybridization. 

Sections of sciatic nerve and sweat gland were probed with a oligonucleotide probe to 

rat CNTF. Panel A shows sciatic nerve sections hybridized with a antisense (1 and 

2) and sense (3 and 4) oligonucleotide probe made against rat CNTF. Specific 

hybridization to Schwann cells is seen with the antisense probe. 

In Panel B, sweat gland sections hybridized with the sense (3 and 4) and antisense 

probe (1 and 2) do not exhibit specific binding to the sweat glands tissue or any 

other cells in the glaborous skin. 
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Materials and Methods 

Cell culture reagents were obtained from Gibco (Grand Island, NY). 24 and 96-

well culture plates were purchased from Corning (Corning, NY). Affi-gel 10 was 

obtained from BioRad (Richmond, CA). The Centricon and centriprep filters were 

purchased from Amicon (Danvers, MA). 1251 Bolton-Hunter reagent and 3H methyl 

choline were obtained from Amersham (Arlington Heights, II). 3H acetyl -CoA and 3 H 

tyrosine were purchased from New England Nuclear (Wilmington, DE). Dispase was 

purchased from Boheringer-Mannheim (Indianapolis, IN) and collagenase from 

Worthington Biochemicals (Freehold, NJ). Nerve Growth Factor (NGF) was prepared 

from male mouse submaxillary glands as described by Bocchini and Angeletti (1969). 

Avidin-conjugated alkaline phosphatase was obtained from Cappel (Westchester, PA) and 

goat anti-mouse and anti-rabbit secondary antibodies from Jackson Immunologicals 

(Westgrove, PA). T4 polynucleotide kinase and gamma 32p, and {a 35S}dATP were 

obtained from Amersham (Arlington Heights, III.) Other chemicals were purchased from 

Sigma (St. Louis, MO). 

Cholinergic Factors 

rCNTF was a kind gift of Regeneron pharmaceuticals. LlF was a kind gift of Dr. 

Yamamori. The cholinergic differentiation factor from skeletal muscle was obtained from 

Dr. Mcmanaman. The HAP7 fraction was used for all experiments (Mcmanaman et al 

1989). Sweat gland extracts were prepared as described previously (see Chapter 3). 

Unless otherwise stated, the DEAE fraction of adult sweat gland extracts was used for all 

experiments 

Cell culture 

Cultures of rat sympathetic neurons were prepared as described by Hawrot and 

Patterson (1979). Neurons were dissociated enzymatically with dispase (5 mg/ml) and 

collagenase (1 mg/ml) and plated in 96-well polylysine-Iaminin coated dishes. About 

1000-to-2000 neurons were plated per dish. The neurons were grown in Leibovitz's 

L 15-C02 medium with NGF (100 ng/ml), 100 units of penicillin, 100 ~g of 

streptomycin and 1 0 ~M cytosine arabinocide and 5% rat serum and the medium changed 

every second day. The cholinergic factors were diluted in growth medium, sterilized by 

passage through a 0.2 micron filter and added to the neurons from the third day of 

culture on. Neurons were harvested for assay between the ninth and fourteenth days of 

culture. 
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Ciliary ganglia were dissected from E8 (embryonic day eight) chicks, dissociated 

and plated in DMEM with 10% fetal calf serum as described by Varon et al. (1979). 

Approximately 1000-to-2000 neurons were plated directly into medium in 96 well 

cell culture plates that had been coated sequentially with polylysine and laminin. The 

cultures were incubated for twenty four hours at 370 C and then fixed with 2% 

glutaraldehyde as described by Barbin et al. (1984). The number of surviving neurons 

was determined by counting the phase bright cells. 

Iodination 

Iodination was carried out by the Bolton-Hunter method (1973). 1-5 Ilg of 

protein in 10 III of 0.1 M borate buffer pH 8.5 was added to the dried iodinated ester and 

the reaction was allowed to proceed for 15 minutes at OOC, and then for 15 minutes at 

room temperature. 100 III of 0.2 M glycine was added to stop the reaction. The labeled 

protein was separated from the unreacted label by dialysis using a Centricon 

microconcentrator with a 10 kDa cutoff. Labeling efficiency was between 40-60%. 

Labeled fractions were stored at 40 C after adding 0.2 mg/ml of BSA to prevent loss due to 

adsorbtion. 

Immunoprecipitation 

For the immunoprecipitation experiments in which biological activity of the 

factors was subsequently tested, aliquots of CNTF, LlF and sweat gland extracts (DEAE 

fraction) sufficient for a cell culture assay were added to buffer (PBS pH 7.3 with 2% 

BSA, 0.2% Triton X-100, and 0.02% PEG 6000). Affinity-purified antibody against 

LlF (Rao et aI., 1990) or a polyclonal antibody generated against rCNTF (a kind gift of 

Dr. Donna Marrissey, Regeneron Pharmaceuticals) was added to each vial to a final 

concentration of 10 IlM or a final dilution of 1 :4, respectively. After an overnight 

incubation, the antigen-antibody complex was absorbed to 10 III of protein A Sepharose 

for a further two hours at room temperature. The bound complexes were separated by 

centrifugation and the supernatant was diluted into L 15C02 medium and used for cell 

culture assays. Two controls were performed to insure that the loss of activity 

consequent to absorption was due to a specific effect of the antibody. Aliquots of the 

cholinergic factors were incubated without the antibody and treated as described above 

and for the LlF antibody experiments other aliquots were treated with antibody that had 

been previously adsorbed with 50 IlM of the synthetic peptide originally used as antigen. 
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Immunoprecipitation of labeled fractions 

A similar procedure was used for immunoprecipitation experiments with 

labelled fractions. After precipitation with protein A Sepharose, the radioactivity in the 

pellet was measured with a gamma scintillation counter. To determine the molecular 

weight of the protein bands immunoprecipitated by the affinity-purified antibody, the 

protein A Sepharose pellet was boiled in sample buffer for 5 minutes and the extracted 

material was subjected to SDS-PAGE. Labeled bands were visualized by autoradiography. 

CNTF Western Blotting 

Aliquots of extracts (60 I1g/lane) were run on a 15% SDS-PAGE minigel 

(BioRad) and the proteins were blotted onto nitrocellulose (overnight 30mA). The 

nitrocellulose blots were blocked in blocking buffer (5% defatted milk in Tris buffered 

saline pH 7.2) and then incubated for two hours with a polyoclonal antibody against CNTF 

(1 :1000 dilution) or with the antibody preincubated with 10 11M rCNTF. The blots were 

then sequentially incubated with a biotinylated secondary antibody (one hour) and avidin 

conjugated to alkaline phosphatase (30 min). The bound enzyme was detected with NBT 

(Nitroblue tetrazolium) and BCIP (Bromo chloro indoyl phosphate) in 10 mM 

bicarbonate buffer pH 9.5. After optimal color development, the reaction was stopped by 

rinsing in distilled water. 

Northern Blots 

Total RNA was prepared from liver, sweat gland and sciatic nerve using the single 

step guadinium-isothyocyanate method (Chomczynski and Sacchi 1987). 30l1g of total 

RNA was loaded per lane and transferred to a genescreen nylon membrane. Blots were 

probed with a 45 base pair oligonucleotide probe against rat CNTF sequence (from 99-

144). The probe was labelled at the 5' end using T4 polynucleotide kinase and gamma 

32p. Blots were sequentially washed and then examined by autoradiography. 

In situ hybridization 

The probe used in the Northern blot experiments was also used for in situ 

hybridization. It was labeled at the 3' end using terminal transferase and {a 35S}dATP. 

The in situ hybridization experiments were performed as described by Siegel (1989). 

Briefly, fresh frozen sections of tissue were fixed in 4% formaldehyde for five minutes, 

rinsed three times in PBS, incubated in acetic anhydride/triethanolamine for 10 

minutes, rinsed two times briefly in 2X SSC, and finally dehydrated through a series of 

graded alcohols. The slides were air-dried and processed for hybridization. After a one 
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hour pre hybridization incubation, hybridization was performed at room temperature 

for 15 hours in humidified containers. After washing, the sections were dipped in Kodak 

NT B-3 emulsion and exposed for six weeks. Sections were developed, fixed and 

counterstained with ethidium bromide. 

Fonnum assay 

The induction of cholinergic function was determined by assaying choline 

acetyltransferase (ChAT) activity in homogenates, essentially according to the method of 

Fonnum (1969). To increase the sensitivity of the assay, an incubation period of an 

hour was used. All of the activity was inhibitable by 500 IlMol napthylvinyl pyridine, a 

specific inhibitor of CHAT activity. Protein concentration was assayed by the method of 

Lowry, with BSA as a standard. 

Peptide Assays 

Neuropeptide levels were determined by radioimmunoassay. Cultures were 

rinsed once with phosphate buffered saline (PBS) and then homogenized in 100 ml of 2M 

acetic acid. After boiling for five minutes, samples were centrifuged for one minute in an 

Eppendorf microfuge. The supernatants were dried under vacuum and stored at -700 C 

for subsequent assays. VIP was assayed using a kit obtained from INCSTAR (Stillwater, 

MN) with primary antibodies previously demonstrated to show minimal crossreactivity 

with other peptides. To assay NPY by radioimmunoassay, antibodies, standards and 

labelled tracer were obtained from Amersham (Arlington Hts, II) and peptide content 

was determined by the delayed tracer method. Since the antibody shows only 64% cross 

reactivity with rat NPY, standards were also run with rat NPY (Peninsula Laboratories) 

and sample values read off the standard curve. 

Column chromatography 

Sweat gland homogenates (soluble fractions) were pooled and concentrated using a 

centriprep microconcentrator (Amicon). The final buffer concentration of the sample 

was 10mM P04 pH 7.0. 10 mg of protein was chromatographed on a MonoO column 

(Pharmacia- Sweden) using a Whatman HPLC. 0.5 ml fractions from a 0-1 M NaCI 

gradient were collected and assayed for biological activity. 

Peak activity from different runs on the Mono a column were pooled and and made 

to pH 7.0 Samples were injected on a Mono P HR 5/5 column (Pharmacia- Sweden) 

equilibrated with 0.025 M bis-tris pH 7.1. Fractions were eluted with polybuffer made 

to pH 4.0 with a saturated solution of iminodiacetic acid. Unbound protein and 0.25 ml 
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fractions between a 4.0 to 7.0 pH gradient were collected and the pH in the eluted sample 

was determined. Samples were stored at -70 degrees celsius until used. No attempt was 

made to remove the polybuffer as separate experiments had shown that it did not harm 

the neuronal cultures. 

Peak fractions from the Mono P run (pH 4.9-5.2) were pooled and 

chromatographed on a Sepharose 12 column (Pharmacia) equilibrated in 100mM NaCI 

and 10 mmPO buffer. 0.5 ml fractions were collected and assayed for biological activity. 

The retention time of the peak activity was compared to protein standards (Sigma) 

chromatographed under identical conditions. 

Elution of proteins from SOS-PAGE 

The active peak from the Mono P column run was electrophorised on a 15% 

preparative polyacrylamide gel using a Biorad gel apparatus. The appropriate regions of 

the gel were sliced and loaded onto a Biorad electroeluter. Proteins were electroeluted 

(10 mA/tube) for a period of four hours in elution buffer (50 mM Ammonium 

bicarbonate, 0.1 % SOS). Samples were concentrated and the SOS was precipitated by 

adding KCI to a final concentration of 100 mM as described by Suzuki and Terada 

(1988). 1 % BSA was added to the samples which were then dialyzed using a centricon 

(10 Kd cutoff) to remove the excess KCI. Samples were stored at -700 C until used. 
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