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Abstract

In this thesis, we address the problem of solving for the properties of interacting quantum

many-body systems in thermal equilibrium. The complexity of this problem increases ex-

ponentially with system size, limiting exact numerical simulations to very small systems.

To tackle more complex systems, one needs to use heuristic algorithms that approximate

solutions to these systems. Belief propagation is one such algorithm that we discuss in

chapters 2 and 3. Using belief propagation, we demonstrate that it is possible to solve for

static properties of highly correlated quantum many-body systems for certain geometries

at all temperatures. In chapter 4, we generalize the multiscale renormalization ansatz to

the anyonic setting to solve for the ground state properties of anyonic quantum many-body

systems. The algorithms we present in chapters 2, 3, and 4 are very successful in certain

settings, but they are not applicable to the most general quantum mechanical systems. For

this, we propose using quantum computers as we discuss in chapter 5. The dimension reduc-

tion algorithm we consider in chapter 5 enables us to prepare thermal states of any quantum

many-body system on a quantum computer faster than any previously known algorithm.

Using these thermal states as the initialization of a quantum computer, one can study both

static and dynamic properties of quantum systems without any memory overhead.
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Chapter 1

Introduction

1.1 Motivation and Overview

The main purpose of physics is to model and analyze nature to gain a deeper understanding

of the universe we live in. For mathematical models of physics to be useful in practice,

predictions about nature need to be extracted from the model’s mathematical statements.

One example of a very successful physical model is quantum mechanics. Quantum mechanics

has so far has survived many rigorous tests and is believed to describe the behavior of

particles at the quantum realm accurately. Information gathered about nature through

quantum mechanics have led to many technological advances such as transistors and lasers.

Whether we want to test quantum mechanics or use quantum mechanics to model and

understand physical systems, we need to extract information about the system of interest

from the equations of quantum mechanics. Starting from some initial conditions and infor-

mation about the model, we can attempt to solve these equations analytically. While this

may be possible for some simple systems, for more complex systems analytical solutions are

not known to exist.

To solve for the properties of general quantum systems, we need to resort to numerical

simulations. However, numerical simulations of quantum systems is not an easy task, as the

resources required for the simulations grow exponentially with system size. This requirement

limits us to very small system sizes for brute-force calculations. One way around this

problem is developing algorithms for approximating solutions that have better scaling with

system size. To achieve a better scaling, we usually constrain the number of available states

in our simulations.

In fact, most physical systems of interest in nature have local interactions that severely
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constrain the number of states required in their description. Their underlying geometric

structure allows us to devise algorithms specific for locally interacting models that are much

more efficient than algorithms for the general case. Over the years, many methods such

as White’s density matrix renormalization group (DMRG) method [5] have been devel-

oped for this purpose. These methods mostly focus on the low energy sectors of locally

interacting quantum systems [6–8]. They all owe their success to the fact that the con-

strained set of states for locally interacting models can be described very accurately with

a numerically feasible number of parameters. For example, matrix product states (MPS)

accurately approximate ground states of one-dimensional gapped Hamiltonians [9, 10], and

projected entangled pair states (PEPS) are accurate in higher dimensions at finite temper-

atures [11, 12].

Even though these states require few parameters, finding the right set of parameters for a

given system remains a formidable task [13]. Only in special cases, such as simulating imag-

inary time evolution within a variational set of states [14], or using iterative minimization

procedures [8], have successful heuristics been devised that solve this problem.

In this thesis, we focus on approximation algorithms that solve for thermodynamic

properties of quantum many-body systems on both classical and quantum computers. After

briefly discussing the problem in section 1.2, we generalize the classical belief propagation

algorithm to the quantum setting in chapter 2. Belief propagation (BP) is an algorithm to

solve inference problems defined on graphical models, which had previously been used in

many areas such as image recognition, artificial intelligence and statistical physics. To apply

this algorithm to the quantum many-body systems, we first solve for properties of small

clusters in our system, and use belief propagation to exchange classical information among

the neighboring clusters. After describing the algorithm, we present some numerical results

to show that the quantum belief propagation method works well at high temperatures as

long as the underlying graph does not contain many small loops.

In chapter 3, we combine quantum belief propagation with multiscale entanglement

renormalization ansatz (MERA) to expand the applicability of belief propagation to all

temperatures. MERA is an ansatz that yields an accurate coarse-graining of quantum

many-body systems by efficiently discarding high energy excitations using local operations.

When belief propagation stops being effective as we lower the temperature, we coarse-grain

our lattice using MERA and run belief propagation on the coarse-grained lattice. In the
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coarse-grained lattice, the effective size of clusters increases, making BP accurate for lower

temperatures. We continue this procedure of using BP on coarser lattices until we reach

zero temperature. We also demonstrate the effectiveness of this method using numerical

examples.

In chapter 4, we explore the anyonic entanglement renormalization algorithm, which is

the anyonic generalization of the bosonic multiscale renormalization ansatz. The Hilbert

space of anyonic systems is much smaller than that of bosonic systems for the same number

of particles due to the constraints arising from the fusion rules for anyons. Therefore,

simulation of anyons through embedding on a bosonic Hilbert space wastes scarce resources.

Motivated by the success of MERA on bosonic systems, we discuss anyonic entanglement

renormalization, which projects anyonic systems to their ground state by recursive coarse-

graining.

Finally, in chapter 5, we address the problem of preparing quantum many-body states

in thermal equilibrium on quantum computers. This task is important for both preparing

initial states for quantum computers and for studying static properties of thermal quantum

systems. Instead of preparing the entire thermal state using a single projective measure-

ment as was previously done, we break up the projections. We first thermalize small clusters

and recursively merge these clusters using projective measurements until we have thermal-

ized the full system. This method achieves an exponential speedup over previously known

methods.

1.2 The Quantum Many-Body Problem

1.2.1 Exponential Scaling of Quantum Simulations

The main difficulty in solving for the properties of quantum many-body systems is the

exponential scaling of resource requirements with the number of subsystems. This is due

to the exponential size of the Hilbert space the composite system is defined in. The Hilbert

space is the complex vector space with inner product that is the state space of the associated

physical system. If the system is in a pure state, then it can be described by its state vector,

which is a unit vector in the system’s Hilbert space.

All interactions in the system can be fully described by a Hamiltonian defined on this

Hilbert space. This Hamiltonian coupled with the initial state for the system |ψ(t = 0)〉
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can be used to solve for the evolution of the system by plugging them into Schrödinger’s

equation:

i~
d|ψ(t)〉
dt

= H|ψ(t)〉 . (1.1)

The solution is simply given by

|ψ(t)〉 = e−iHt/~|ψ(0)〉 . (1.2)

In the above equations, the state |ψ〉 is a unit vector in the Hilbert space of the system,

and H is a hermitian matrix, whose eigenvectors span the same Hilbert space. In particular,

in the diagonal form, the Hamiltonian of the system can be written as

H =
∑
k

Ek|ψk〉〈ψk| , (1.3)

where |ψk〉 are the eigenvectors of H corresponding to the eigenvalue Ek, and 〈ψk| is the

vector dual to |ψk〉.
The exponentiation operation in (1.2) can be written using the definition of the expo-

nential operator on matrices as

e−iHt/~ =
∑
k

e−iEkt/~|ψk〉〈ψk| . (1.4)

As the exponentiation operation is defined in terms of the eigenvalues and eigenstates

of the Hamiltonian, diagonalization of the Hamiltonian is required for any numerical sim-

ulations of the system. The computational cost of this exponentiation operation scales

polynomially with the size of the matrix H. For a single particle system, this cost can be

manageable, but the size of the Hilbert space along with the size of the matrix H increases

exponentially as we add more particles.

Given two systems, A and B with Hilbert spaces HA and HB, we can define a joint

Hilbert space HAB to be the tensor product of the Hilbert spaces of the two subsystems,

HAB = HA ⊗HB. The size of the joint Hilbert space HAB is now the product of the sizes

of HA and HB by the definition of the tensor product.

For N -particle systems, the Hilbert space is therefore dN dimensional, where d is the

dimension of the Hilbert space of a single particle. Any simulation of the composite system
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requires the diagonalization of dN × dN matrices, which takes exponential time in system

size.

1.2.2 Density Matrix

In this thesis, we will be focusing on calculating properties of quantum many-body systems

in thermal equilibrium. For this, we first need to introduce the formalism of ensembles of

states, or density matrices. Density matrices provide full descriptions of quantum systems

whose states are not known with full accuracy. For example, if our information about a

given quantum system is limited to knowing with probability pi that the system is in the

pure state |ψi〉 for any i, then we can write the density matrix corresponding to the system

as

ρ =
∑
i

pi|ψi〉〈ψi| . (1.5)

To calculate the unitary evolution of ρ, we need to unitarily evolve each of the eigenstates

using (1.2). This corresponds to

ρ(t) =
∑
i

pie
−iHt/~ρ(0)eiHt/~ . (1.6)

Similarly, measurements on density matrices can be expressed in terms of measurements

on pure states. For example, probability of getting the measurement outcome m from the

density matrix ρ can be written in terms of probabilities of outcome m from the |ψi〉’s.

P (m) =
∑
i

P (m|i) pi =
∑
i

pi〈ψi|Em|ψi〉 , (1.7)

where P (m|i) = 〈ψi|Em|ψi〉 is the probability of outcome m given that we are in state ψi

and Em is the measurement operator associated with outcome m. We can further use the

fact that Tr(AB) = Tr(BA) to write P (m) directly in terms of ρ instead of the form above,
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which requires the diagonalization of ρ.

P (m) =
∑
i

pi〈ψi|Em|ψi〉 (1.8)

=
∑
i

piTr(〈ψi|Em|ψi〉) (1.9)

=
∑
i

piTr(Em|ψi〉〈ψi|) (1.10)

= Tr(Em
∑
i

pi|ψi〉〈ψi|) (1.11)

= Tr(Emρ) (1.12)

Here, we have used the commutativity of the trace operation with the sum. In this form,

we can calculate all properties of the density matrix, ρ, using only multiplication and trace

operations.

1.2.3 Thermal Equilibrium

Now that we have all the tools we need, we proceed to calculate the eigenstates and the

associated probabilities of the density matrices for quantum systems in thermal equilibrium

(with a very large reservoir). We can obtain the ratios of probabilities of occupying two

eigenstates ψA and ψB from the corresponding multiplicities of the reservoir, ΩA and ΩB

respectively. Here, multiplicity is a measure of the number of accessible states in the

reservoir.

The fundamental assumption of statistical mechanics is that for an isolated system all

accessible microstates of the system are equally likely to be occupied. Even though our

system is not isolated, the system and the reservoir together are isolated from the rest of

the universe. To compare the probabilities of two eigenstates of the system, we need to

compare the number of microstates accessible when the system is in each of these states.

Even though we are fixing the state of the system, there are many accessible states for the

reservoir, all of which are equally likely. Intuitively, when the system is in a lower (higher)

energy eigenstate, the bath will have a higher (lower) energy leading to a greater (fewer)

number of accessible states. As all of these states are equally likely, we expect the system

to occupy lower energy eigenstates with a greater probability.

The ratio of the probabilities of the two states ψA and ψB is given by the ratio of the
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multiplicities of the reservoir when the system is in the corresponding state:

P(ψA)

P(ψB)
=

ΩA

ΩB
. (1.13)

By definition, the entropy is given by S = k ln Ω, where k is the Boltzmann’s constant.

Using this, we can write
P(ψA)

P(ψB)
=
eSA/k

eSB/k
= e(SA−SB)/k . (1.14)

In the simplified case, where the volume and particle number in the reservoir are con-

stant, the change in entropy of a microstate is only related to the change in energy. In fact,

temperature of a system is defined to be the reciprocal of its entropy vs. energy curve:

1/T ≡ ∂S

∂E
. (1.15)

This is because temperature can also be defined as the property that is the same for both

systems when two systems are in thermal equilibrium. When two systems are in thermal

equilibrium, we are most likely to find the joint system in the macrostate that maximizes

their combined entropy (natural logarithm of available microstates in the macrostate). In

fact, in the limit when the size of both systems is infinite, the likelihood of finding them in

a low entropy macrostate goes to zero. This follows from a simple combinatorics argument

and is also another way to state the second law of thermodynamics. When entropy is

maximized, any infinitesimal energy transfer between the two systems should not change

the total entropy (∂Stotal/∂E = 0). So, the entropy gain by one system must equal the

entropy loss of the other one. That is, in thermal equilibrium, the slope of the entropy vs.

energy curve for both systems must be the same. As we also defined temperature to be the

property that is the same for both systems in thermal equilibrium, it is natural to define

temperature as in (1.15).

Now, let us return to the quantum system in thermal equilibrium. We already related

the probability of occupying the two states ψA and ψB to the change in the entropy of the

reservoir, SA − SB, in (1.14). Assuming that the quantum system is much smaller than

the reservoir, the change in the energy of the system will only cause a small change in the

entropy of the reservoir. Therefore, we can use the definition of temperature from (1.15) to
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relate the change in energy of the reservoir to the change in its entropy.

SA − SB = (ERA − ERB)/T , (1.16)

where the superscript R refers to the reservoir. Using the fact that the system and reservoir

are isolated from the rest of the universe, the energy change of the reservoir is opposite of

the energy change of the system, ERA − ERB = −(EA − EB). With this, we finally have the

ratio
P(ψA)

P(ψB)
=
e−EA/kT

e−EB/kT
. (1.17)

So far, we have only derived the ratio between two eigenstates of our system in terms of

their energies and the temperature. To get the probabilities associated with each eigenstate,

we rewrite the above equation as

P(ψA)

e−EA/kT
=
P(ψB)

e−EB/kT
. (1.18)

The left hand side of this equation depends only on A (is independent of B). Similarly,

the right hand side is only a function of B and is independent of A. But both sides are

equal to each other, making the ratio a constant. This constant is written as 1/Z, where Z

is referred to as the partition function. Since we picked the two states A and B arbitrarily,

for any state ψi, we have

P(ψi) =
1

Z
e−Ei/kT . (1.19)

For the probabilities to be normalized, we need Z =
∑

i e
−Ei/kT , where the sum is over all

the eigenstates of our system Hamiltonian.

We now have all the tools needed to calculate properties of a quantum many-body system

at a thermal equilibrium. We first need to diagonalize the Hamiltonian of the system to

extract information about the energies associated with each eigenstate (the eigenvalues of

the Hamiltonian). Then, the probabilities in the density matrix ρ are given by (1.19). This

is equivalent to exponentiating the matrix −H/kT :

ρ(T ) =
∑
i

pi|ψi〉〈ψi| =
1

Z

∑
i

e−Ei/kT |ψi〉〈ψi| =
1

Z
e−H/kT , (1.20)
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where the partition function Z = Tr(e−H/kT ).

Once we have the density matrix, we can use (1.12) to calculate any property of the

system. As was mentioned earlier, the exponential scaling of the size of the matrix H with

the number of subsystems makes this calculation intractable for all but very small systems.

The rest of this thesis will be devoted to extracting approximate information about large

systems without brute-force diagonalization of the full Hamiltonian. Even though most of

the thesis will be focusing on simulations at finite temperatures, taking the limit of zero

temperature in all algorithms allows us to explore ground state properties.
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Chapter 2

Belief Propagation

2.1 Introduction

Belief propagation (BP) is a powerful algorithm designed to solve inference problems involv-

ing a large number of random variables. It operates on graphical models, where variables

are located at the vertices of a graph and edges encode dependence relations between the

variables. The algorithm is exact when the underlying graph is a tree. On graphs with

small loops, generalizations of BP can also provide reliable approximations [15, 16]. It is

also highly parallelizable in the sense that each random variable can be associated with a

different processor, and messages can be exchanged between processors that are joined by

an edge [17–20].

These features have made belief propagation an important tool in numerous scientific

and technological fields ranging from information theory to image recognition, and from

artificial intelligence to statistical physics. Indeed, it is one of the most powerful heuristic

algorithms to solve problems such as decoding of low-density and turbo error correction

codes [21–23], determining the phase diagram of quenched disordered systems [20, 24], and

random satisfiability problems [25, 26].

When used to solve thermal properties of classical systems, the algorithm essentially

reduces to a transfer matrix solution. On more general graphs, it can be described as per-

forming a constrained minimization of the Bethe free energy of the system [15]. Therefore,

it is often a very good approximation on graphs containing no small loops. On graphs with

small loops, generalizations of BP can also provide reliable approximations [15, 16].

Recently, belief propagation and graphical models were generalized to the quantum

setting [27, 28]. In this chapter, we characterize the performance of belief propagation
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1 2 3 N−2 N−1 N

Figure 2.1. The graph that f(x1, . . . , xN ) = f̃(x1, x2)f̃(x2, x3) . . . f̃(xN−1, xN ) is defined
on. Each vertex corresponds to a variable xi and the edges correspond to the functions
f̃(xi, xi+1) of the vertices they connect to.

when used as a heuristic algorithm to solve inference problems—e.g., compute correlation

functions—in the context of finite-temperature quantum many-body physics.

2.2 Classical Belief Propagation

2.2.1 Sum-Product Algorithm

Before we generalize the belief propagation algorithm to the quantum setting, we will first

discuss classical belief propagation with the aid of a simple example. Belief propagation is a

message passing algorithm that solves inference problems defined on graphs. One example

of such problem could be the calculation of the marginal of a function. The method we

discuss is also referred to as the sum-product algorithm.

Marginal of a function f(x1, x2, . . . , xN ) on Nth of its N variables is defined as the sum

over all variables except xN :

g(xN ) =
∑

x1,x2,...,xN

f(x1, x2, . . . , xN ) . (2.1)

If the function f does not have any internal structure, this sum has O(eN ) terms, and

takes O(eN ) time to compute. However, if the function is factorizable in the form

f(x1, x2, . . . , xN ) = f(x1, . . . , xN ) = f̃(x1, x2)f̃(x2, x3) . . . f̃(xN−1, xN ) , (2.2)

then we say this function is defined on a graph, and we can use belief propagation to solve

for its marginal g(xN ). The graph the function is defined on is a chain with vertices on

figure 2.1.

To solve for the marginal g(xN ), we can pass messages between vertices connected to

each other by an edge until all messages converge. At each iteration, all messages between

every pair of vertices get updated using the messages from the previous iteration. The right-
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and left-moving messages are

mi→i+1(xi+1, t) =
∑
xi

f̃(xi, xi+1)mi−1→i(xi, t− 1) , and (2.3)

mi→i−1(xi−1, t) =
∑
xi

f̃(xi−1, xi)mi+1→i(xi, t− 1) , (2.4)

and all messages will be initialized to mi→j(xj , 0) = 1. Note that all messages are functions

of a single variable, and operations on at most two variables is used for each message update.

At each step of the algorithm, we can also calculate our belief about the g(xN ) as

b(g(xN ), t) =
∑
xN−1

f̃(xN−1, xN )mN−2→N−1(xN−1, t) . (2.5)

The beliefs correspond to the best estimate of g(xN ) with the available information. As

we are passing messages between neighboring vertices, only local information is available

before t < N . For our example, at time t, each vertex has received information about the

states of 2t nearest vertices. When every vertex has received information from all other

vertices in the chain (at t = N in this particular example), the messages converge to their

final values. At this time, our belief about the marginal equals is the correct expression,

i.e., b(g(xN , t) = g(xN ).

2.2.2 Classical Hamiltonians

One direct application of the classical belief propagation algorithm is the calculation of

various properties of classical spin chains. Consider a system composed of N classical

spins on a chain with Hamiltonian H(x1, . . . , xN ) =
∑
〈i,j〉 h(xj , xj), where 〈i, j〉 denotes

neighboring sites. The partition function for this system is defined as

Z(β) =
∑

x1,...,xN

e−βH(x1,...,xN ) (2.6)

=
∑

x1,...,xN

e−βhN,N−1 . . . e−βh3,2e−βh2,1 , (2.7)

where we use the shorthand hi,j = h(xi, xj). A brute-force calculation of this quantity

requires summing over an exponential (in N) number of terms. However, taking advantage
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of the local structure of the Hamiltonian, the sum can be rearranged as follows:

∑
xN

e−βhN−1,N

(
. . .
∑
x2

(
e−βh2,3

∑
x1

e−βh1,2

)
. . .

)
.

Now, the sums can be performed sequentially with each sum only involving a small

number of terms, 1 allowing the computation of Z in a time proportional to N . This

leads to an iterative rule where messages mi→j are exchanged along the edge of the chain

connecting two sites i, j with the update rule

mi→i+1(xi+1) =
∑
xi

e−βh(xi,xi+1)mi−1→i(xi). (2.8)

With the initialization m0→1(x1) = 1, we see that Z(β) =
∑

xN
mN−1→N (xN ).

This procedure can be generalized to arbitrary graphs by defining the update rule for

the message mi→j(xj), passed from site i to a neighboring site j, to be

mi→j(xj) =
∑
xi

e−βh(xi,xj)
∏

k∈N (i)\j

mk→i(xi) , (2.9)

where N (i)\j denotes the set of neighbors of site i other than j. On a tree, these messages

will converge to their final value after a time equal to the tree’s diameter. The one- and

two-body beliefs:

bj(xj) =
1

Z(β)

∏
k∈N (j)

mk→j(xj) , and (2.10)

bi,j(xi, xj) =
1

Z(β)

∏
k∈N (i)

mk→i(xi)
∏

k′∈N (j)

mk′→j(xj)e
−βh(xi,xj) (2.11)

are equal to the reduced one- and two-body distribution respectively, and the partition

function can be evaluated from any one of their normalization. When the underlying graph

contains loops, BP is no longer exact but often provides accurate approximation to the true

marginal states and partition function.

1The procedure we are describing for a chain is usually referred to as the transfer matrix method in
statistical physics.
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2.3 Graphical models

To generalize the classical belief propagation algorithm to the quantum setting, we first need

to introduce quantum graphical models. We consider quantum graphical models (G, ρ) that

consist of a graph G and an n-bifactor state ρ. The graph G = (V,E) has a set of vertices V

and a set of edges E. Each v ∈ V is a quantum system, with Hilbert space Hv. A n-bifactor

state ρ is a positive operator on H =
⊗

v∈V Hv, that can be expressed as

ρ =
1

Z

( ∏
v∈V

µv

)
?(n)

( ⊙
(u,v)∈E

νu:v

)
, (2.12)

where Z is some normalization factor, and µv and νu:v are positive operators on Hu and

Hu⊗Hv, respectively. The operators νu:v are required to mutually commute when n is finite.

The product ?(n) is defined as X?(n)Y ≡ [X
1

2nY
1
nX

1
2n ]n, and has the property of producing

a positive operator when bothX and Y are positive. This product is noncommutative except

in the limit n→∞, which defines the � product:

X � Y ≡ lim
n→∞

X ?(n) Y = e(logX+logY ) . (2.13)

Both products ?(n) and � reduce to normal matrix product when X and Y commute.

A generic inference problem on a graphical model is to compute the reduced density

operator on a subset W ⊂ V of the quantum systems conditioned on the fact that a

measurement was performed on a disjoint subset U ⊂ V , where both W and U are of

constant size. This problem turns out to be equivalent to the seemingly simpler problem of

computing the reduced state on any subset W of constant size, i.e., ρW = TrV−W {ρ}, where

TrX denotes the partial trace over a systems in set X. Without additional assumptions on

the structure of ρ, solving this problem requires resources that grow exponentially with

the number of quantum systems |V |. However, the solution can sometimes be obtained or

approximated by QBP in a time polynomial in |V |.

2.4 Quantum Belief Propagation Algorithm

Given a graphical model (G, ρ), quantum belief propagation (QBP) consists of a sequence

of exchanges of operator-valued messages between neighboring vertices, which carry infor-
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mation about the state at other locations in the graph. More precisely, for (u, v) ∈ E, the

message passed from vertex u to vertex v at time t is an operator on Hv given by

mu→v(t) ∝ Tru

{
µu ?

(n)
(
νu:v �

⊙
v′∈n(u)−v

mv′→u(t− 1)
)}

, (2.14)

where n(u) denotes the neighbors of u. The proportionality factor can be chosen so that

Tr{mu→v} = 1, and the messages are initialized mu→v(0) = I. At time t, the belief

buv(t)—which is meant to represent some approximation of the state ρuv = TrV−uv{ρ} for

(u, v) ∈ E—is given by

buv(t) ∝ (µuµv) ?
(n)
(
νu:v �

⊙
w∈n(u)−v

mw→u
⊙

y∈n(v)−u

my→v

)
, (2.15)

where all messages are taken at time t. When all operators defining the bifactor state

commute, QBP reduces to the standard belief propagation algorithm [17–20].

Since the message update rule (2.14) at vertex u depends only on the incoming mes-

sages at that vertex, the algorithm can be operated in a highly parallel fashion where each

quantum system u is associated with a processor, and messages are exchanged between

processors u and v iff (u, v) ∈ E. Similarly, the beliefs on the pair (u, v), (2.15), can be

computed by combining the messages received at those vertices.

2.4.1 Convergence

In [27], it was shown that when G is a tree and (G, ρ) is either (i) a 1-bifactor state [cf. (2.12)

with n = 1] or (ii) a quantum Markov network, QBP yields the exact solution in a time

proportional to the graph’s diameter—i.e., buv(t) = ρuv for t ≥ diameter(G). Intuitively,

this means that the algorithm must run for a time sufficiently long to allow messages to

travel between any pair of vertices. When operated on loopy graphs, the beliefs do not

necessarily converge to the correct density operators. A good heuristic in that case is to

halt the algorithm when buv(t) become almost time independent, which also happens in a

time roughly equal to the graph’s diameter in all the models we have investigated.

A graphical model (G, ρ) is a quantum Markov network when the conditional indepen-

dence conditions I(U : (V − n(U) − U)|n(U)) = 0 are met for all U ⊂ V . The quantity

I(A : B|C) = S(AC) + S(BC) − S(C) − S(ABC) is the quantum conditional mutual
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information [29, 30], and S(A) = Tr{ρAlog2ρA} is the von Neumann entropy. As ex-

plained in [27, 31], the vanishing of I(A : C|B) is equivalent to the condition ρABC =

ρ−1
B � ρAB � ρBC . This equality is not verified in general, and the Kullback-Leibler dis-

tance between the right- and left-hand side is precisely the conditional mutual information

D(ρABC ||ρ−1
B � ρAB � ρBC) = I(A : C|B).

To understand the workings of QBP, consider a bifactor state ρuvw on the line u−v−w.

The reduced state on w is ρw ∝ Truv
{

(µuµvµw) ?(n) (νu:v � νv:w)
}

. When n = 1, basic

algebra implies that ρw ∝ Trv
{

(µvµw) ?(1)
(
Tru{µu ?(1) νu:v} � νv:w

)}
; the operations Tru

and ?(1) commute so to say. The computation of ρw can thus be broken into two steps: (i)

Compute mu→v = Tru{µu ?(1) νu:v}; (ii) compute ρw ∝ Trv
{

(µvµw) ?(1)
(
mu→v � νv:w

)}
.

When n → ∞ on the other hand, the operations Tru and � do not commute in general,

but they do precisely when I(u : w|v) = 0 [27]. QBP is based on a generalization of these

observations to arbitrary graphs.

QBP does not rely on the vanishing of the normalized connected correlation functions

C(σA, σC) = 〈σAσC〉−〈σA〉〈σC〉 [32], or equivalently [33, 34] on the vanishing of the mutual

information I(A : C) = S(A) + S(C) − S(AC). In many systems, the mutual information

is not a priori short range. For instance in the T → 0 limit, the thermal state of the

one-dimensional Ising model in zero transverse field is an equal mixture of all spins up

and all spins down, which has I(A : B) = 1 between any two disjoint regions, whereas

I(A : C|B) = 0 for any three disjoint regions. To compute thermodynamical quantities,

one generally introduces a symmetry-breaking field that randomly singles out either the

all-up or all-down state, which both have I(A : B) = 0. Symmetry-breaking can be a

delicate issue—for instance, on Cayley trees where a constant fraction of vertices live on

the boundary [24]—and is circumvented by QBP.

2.5 Quantum Belief Propagation for Quantum Many-Body

In the context of quantum many-body physics, the inference problem consists of computing

correlation functions for the thermal state of a system of interacting particles. Given a

graph G = (V,E), we consider the generic Hamiltonian

H =
∑
v∈V

hv +
∑

(u,v)∈E

huv . (2.16)



17

The thermal state at inverse temperature β = 1/T is given by ρ = 1
Z e
−βH where Z =

Tr{e−βH} is the partition function. Defining µv = e−βhv and νu:v = e−βhuv enables us to

express any such thermal state as an ∞-bifactor state, cf. (2.12).

Despite the fact that thermal states are bifactor states, the result from [27] cited above

does not imply that correlation functions can be evaluated exactly and efficiently with QBP.

This is primarily because G is not necessarily a tree, but also because thermal states are

neither 1-bifactor nor quantum Markov networks in general. There is no general remedy

to the first hurdle, unless the loops happen to be very small and can be eliminated by

merging some vertices. Thus, QBP will need to be executed on a loopy graph and it is the

primary goal of this chapter to determine the effects of such loops on the performance of

QBP. Two pragmatic solutions, named the replica method and sliding window QBP, have

been proposed to overcome the second set of obstacles [27].

2.5.1 Replica

The general idea of the replica method is to approximate the thermal state by a 1-bifactor

state on which QBP can be executed directly and is guaranteed to converge in the absence

of loops. In a first step, a Trotter-Suzuki (TS) decomposition is used to approximate a

thermal state by an Nτ -bifactor state with finite Nτ . This produces a systematic error that

scales as β/Nτ . Then, in a fashion reminiscent of the replica trick used in the study of spin

glass, the Nτ -bifactor state is replaced by a 1-bifactor state at the expense of substituting

the quantum system at each vertex by Nτ replicas:

µv →
(
µ

1
Nτ
v

)⊗Nτ
T (Nτ )
v and νu:v →

(
ν

1
Nτ
u:v

)⊗Nτ
, (2.17)

where T
(Nτ )
v is the operator that cyclicly permutes the Nτ replicas of v. The operators

νu:v = e−βhuv do not commute in general, but this can be fixed in practice on sparse graphs

by merging some vertices. On a tree, the TS decomposition is the only source of error,

so accuracy ε can be achieved at a computational cost that is exponential in β/ε. This

method is particularly useful as it allows for a direct computation of correlation functions

at arbitrary distances, see [27].
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2.5.2 Sliding Window

While all quantum Markov networks are thermal states of some local Hamiltonian on G

[27], the converse is not true in general. Sliding window QBP is motivated by the fact

that quantum Markov networks are fixed points of coarse-graining procedures. Thermal

states, regarded as ∞-bifactor states, are used directly to implement the message passing

rule in (2.14) with n = ∞, except that messages are computed not just using the nearest

neighbors but with all vertices within a distance ≤ `. On a line, for instance, vertex j

receives a message from (j−1, j−2, . . . , j− `) and one from (j+ 1, j+ 2, . . . , j+ `). In that

case, sliding window QBP produces the exact solution efficiently if the conditional mutual

information dies off at a finite distance.

As an example, consider a chain of qubits with Hamiltonian H =
∑
〈i,j〉 hi,j where hi,j

are Hermitian operators acting on site i and j of a chain. Using the �-product between

positive operators A�B = elog(A)+log(B), we can write the partition function in a form very

similar to (2.7)

Z(β) = Tr(e−βH) (2.18)

= Tr(e−βhN,N−1 � . . . e−βh3,2 � e−βh2,1) , (2.19)

with the sums replaced by traces and products by �-products. This expression cannot

be reorganized like its classical counterpart because—unlike ordinary products—the �-

product does not obey a distributive law in the sense that Tra(e
−βhc,b�e−βhb,a) 6= e−βhc,b�

Tra(e
−βhb,a).

However, the distributive law holds when the chain forms a quantum Markov network

[27], i.e., I(a : c|b) = 0 where the quantity I(a : c|b) = S(a, c) + S(b, c)− S(b)− S(a, b, c) is

known as the conditional mutual information and S is the von Neumann entropy. Intuitively,

this condition means that all correlations between a and c are mediated through b. This

does not prevent a and c from being correlated, but implies that all information learned

about a by measuring c can equivalently be obtained by measuring b instead. While this

condition does not hold for generic quantum interactions, it becomes approximately true

when the “Markov shield” b is sufficiently thick.

When the Markov shield is sufficiently thick, we can reorganize the sum of (2.19) as in

the classical case, but keeping an l-site Markov blanket between the traced-out site and the
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m3→4 = e−β
P3

i=1 hi,i+1

!e−βh4,5

Tr1

m4→5 = Tr1(m3→4e
−βh4,5)

Figure 2.2. Calculating m4→5 from m3→4 in an iteration of BP algorithm with l = 4. In

the first step eh4,5 is added to m3→4 using the �-product. Then, the first spin is traced out
yielding m4→5.

end of the cluster:

Z(β) = Tr1,...,N

(
e−βhN−1,N . . .� e−βh1,2

)
(2.20)

≈ Tr2,...,N

(
e−βhN−1,N . . .� e−βhl+1,l+2 � Tr1

(
e−βhl,l+1 � . . .� e−βh1,2

))
(2.21)

≈ Tr3,...,N

(
e−βhN−1,N . . .� e−βhl+2,l+3 � Tr2

(
e−βhl+1,l+2 �ml→l+1

))
(2.22)

≈ . . . (2.23)

≈ TrN−l,...,N

(
e−βhN−1,N �mN−1→N

)
, (2.24)

where we have defined mi→i+1 = Tri−l+1(e−βhi,i+1 �mi−1→i), which is an operator acting

on sites i− l + 2 to i + 1 (see figure 2.2). These equations require manipulating operators

on up to l + 1 spins, so their complexity increases exponentially with the window size l.

Like in the classical setting (2.9), these message passing rules can be generalized to

arbitrary graphs, enabling the computation of one- and two-body beliefs from which various

quantities of interest such as energy can be computed. The method can also be adapted to

estimate all correlation functions.
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2.6 Numerical Results

We have numerically implemented the QBP algorithm on various graphs for the Ising and

Heisenberg model whose Hamiltonians are

HI =
∑
v∈V

~g · ~σv +
∑

(u,v)∈E

Juvσ
z
uσ

z
v , and (2.25)

HH =
∑

(u,v)∈E

~σu · ~σv (2.26)

respectively, and ~σ = (σx, σy, σx) are the usual Pauli matrices normalized so that σ2 = 1l/4.

On a line, the homogeneous (Juv = 1) Ising model has a zero temperature phase transition

at the critical transverse field ~g = (1
2 , 0, 0). Most of our simulations were performed at this

critical value, as it is expected to represent the “hardest case.” Unless otherwise specified,

it is henceforth assumed that ~g = (1
2 , 0, 0) and Juv = 1.

We used QBP to compute the energy density of the Ising model on an infinite line.

This model can be solved exactly by means of a Jordan-Wigner transform that maps the

interacting spin chain to a collection of free fermions [35]. Figure 2.3 shows the difference

between the energy density computed with QBP and its exact value as a function of inverse

temperature. Also shown are results obtained from a superoperator version of time-evolving

block decimation (TEBD), which combines ideas from [14, 36]. Since a line is a tree, the error

in the results obtained from the replica method is entirely caused by the TS decomposition.

The results obtained for sliding window QBP are in remarkably good agreement with the

exact value, and can be systematically improved by increasing `. This reflects the fact that

correlations are short-ranged in finite-temperature one-dimensional models. As expected

the agreement improves for noncritical g. Results obtained for the Heisenberg model on the

infinite line (not shown) are similar in all aspects.

To characterize the performance of QBP on more general graphs, we restrict our atten-

tion to systems with less than 12 spins, allowing comparison to direct brute-force numerical

solutions. Figure 2.4 shows the correlation function C(0, j) = Tr{σz0σzj ρ} for HI on a frus-

trated 11-site circle. We assess the quality of the approximation C̃ to the exact correlation
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Figure 2.3. Critical Ising model on infinite line. Energy density estimate Ẽ using the
method of replicas with Nτ = 10, sliding window QBP with ` = 6, and TEBD with
χ = 150, compared to the exact energy density E obtained from fermionization.

C by the average relative error,

Error =

∑
j |C(0, j)− C̃(0, j)|∑

j |C(0, j)| . (2.27)

Sliding window is again in very good agreement with the exact value for a relatively small

window size. For the values of Nτ ≤ 10 accessible with modest computational resources, the

replica QBP reproduces the exact correlation function within a few percent at sufficiently

high temperatures β . 6, which is consistent with the systematic error due to the TS

decomposition.

Indeed, both the TS decomposition and the loopy QBP contribute to the total error,

(2.27). By brute-force computation, it is possible to determine exactly what fraction of the

error is caused by each of these approximations, and in almost all cases we have studied at

critical g, both contributions were comparable. Figure 2.5a shows each contribution to the

total error as a function of the transverse field ~g = (g, 0, 0).

The most successful applications of classical belief propagation algorithm are on graphs

whose typical loop size is very large. This is the case for instance of low density parity

check codes [21, 23] and spin glasses on Bethe lattices [24]. Intuitively, one expects a local

algorithm like belief propagation to be relatively insensitive to the large-scale structure of

the graph. We expect QBP to share this feature, and Figure 2.5b illustrates the effect

of the loop size on the average relative error of the correlation function. The oscillatory
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Figure 2.4. (Color online) Correlations for HI on an 11-site circle at β = 6. Exact numerical
solution (dash), sliding window with ` = 5 (dash-dot), and the replica method for various
values of Nτ (full). Left inset: Error (2.27) vs. the Nτ for different β.

behavior of the error is explained by the frustration present in odd-size circles. Save from

these oscillations, the results show a global improvement as the loop size increases. Errors

obtained from sliding window (not shown) also show a clear improvement as the loop size

increases, but tend to have higher errors on even-size loops.
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Figure 2.5. (Color online) Replica method with Nτ = 10. a) Different contributions to the
error (2.27) vs. transverse field for HI on an 11-site circle at β = 6. b) Error vs. loop size,
for β = 1, 2, . . . 10.

We have tested QBP on a variety of graphs depicted in figure 2.6 a)-d). The resulting

errors in the correlation functions are shown in figure 2.6. The computational cost is slightly
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Figure 2.6. (Color online) Error (2.27) for Ising and Heisenberg models on various loopy
graphs using the replica method. For the Ising model Nτ = 10 and for the Heisenberg
model Nτ = 4. [d) is a torus.]

higher for the Heisenberg model because huv do not mutually commute. This restricts the

computation to lower values of Nτ and consequently yields larger errors. Modulo this

difference, the error is most prominent for graphs c) and d) which contain loops of size 3.

In those cases, we found that the QBP algorithm was not converging: the magnitude of

the errors is consistent with the magnitude of the time fluctuations of buv(t), cf. (2.15).

As expected, the predicted correlation function is in much better agreement with its exact

value on graphs a) and b) that have only relatively large loops.

2.7 Conclusion

We have numerically characterized the performance of the recently proposed QBP algo-

rithm. In the high temperature phase, both the replica and the sliding window QBP

algorithms perform remarkably well on a tree with modest computational resources, cf.

figure 2.3, and offer performances similar to TEBD. On loopy graphs, we found that the

algorithm gives reliable approximations when the loop size is large. Most importantly, when

the results deviated from the exact value, e.g., in the presence of small loops, the algorithm

did not reach a steady state, i.e., the beliefs (2.15) were highly fluctuating as a function of

time. This provides an indirect way of assessing the validity of the results.

In [37], a technique similar to what we have called the replica method was used to
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investigate the phase diagram of quantum spin-glasses on Cayley trees. Based on the

results we have presented, QBP should be suitable to study this phase diagram for more

general Bethe lattices whose typical loop size scales as log|V |. In the classical setting, it has

been argued that the physics of random Bethe lattices and Cayley trees is greatly different

[24]. We note that the randomness in quenched disordered systems should not affect the

performences of QBP. In fact, our results obtained for random couplings Juv and random

local fields ~g are typically in better agreement than the ones we have presented.
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Chapter 3

Coarse-Grained Belief Propagation

3.1 Introduction

In chapter 2, we discussed the quantum belief propagation algorithm, which is a generaliza-

tion of the belief propagation algorithm to the quantum setting [1, 27, 28, 37]. The gist of

the method consists of solving the system exactly on a small cluster and using this solution

to compute effective thermal Hamiltonians on the neighboring clusters. This procedure is

repeated iteratively until it produces a correction to the bare Hamiltonian that accurately

mimics a system of infinite size. Numerical tests indicate that the method is very accurate

at high temperatures and on trees or graphs with only large loops [1]. However, BP becomes

unreliable at low temperatures because the clusters must be larger or equal to the range of

the effective Hamiltonian, which grows like the inverse of the temperature.

In this chapter, we describe how to quantify the errors accumulated at low temperatures.

Using this error measure, we extend the applicability of belief propagation to all temper-

atures by introducing coarse-grained belief propagation (CGBP). This algorithm combines

the strength of belief propagation from chapter 2 with entanglement renormalization (ER)

[38, 39], which is a refinement of real space renormalization [40] devised by Vidal. The

strength of entanglement renormalization comes from the realization that entanglement is

organized on different length-scales in the ground state of many systems of interest, in-

cluding critical systems [38, 41, 42] and systems with topological order [43, 44]. As a

consequence of this organization, entanglement can be efficiently removed from the state by

a sequence of local coarse-graining transformations. This leads to a very efficient scheme

for finding low-energy states of local Hamiltonians, making ER a very effective method for

low temperatures.
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Coarse-grained belief propagation combines the features of BP and ER. Starting at

high temperatures where plain BP is accurate, temperature is lowered until coarse-graining

the lattice by eliminating its shortest length-scale degrees of freedom becomes favorable.

Coarse-graining discards some high energy states, which results in a systematic error in the

thermal state. On the other hand, it increases the effective size of the clusters, making BP

more accurate. The coarse-graining procedure is continued as temperature is lowered to

zero where plain ER is accurate. An estimate of the error caused by BP can be used to

determine the temperatures at which each coarse-graining procedure should be performed.

In section 3.2, we review the BP method and describe how to estimate its accuracy.

Based on this technique, Section 3.3 presents results obtained for the transverse field quan-

tum Ising spin glass studied in [37]. Finally, in section 3.5 we introduce the CGBP algorithm,

and benchmark it using an infinite quantum Ising chain.

3.2 Errors in Belief Propagation Results

In this section, and in the rest of the chapter, we will be focusing on the version of the

belief propagation algorithm discussed in section 2.5.2 called sliding window belief prop-

agation. To understand the error behavior of the algorithm physically, we will consider

a one-dimensional chain with nearest neighbor interactions H =
∑

i hi,i+1. The thermal

Gibbs state at inverse temperature β is given by ρ = e−βH/Z(β). The reduced state of

spins 2, 3, . . . , N is obtained by tracing out the first spin of the chain, i.e.,

ρ2,...,N = Tr1(ρ). (3.1)

We can formally define the effective thermal Hamiltonian Heff acting on sites 2, . . . , N up

to normalization by

ρ2,...,N ∝ e−βHeff . (3.2)

In other words, Heff is the traceless part of − 1
βLog(ρ2,...N ) where Log is the principal matrix

logarithm. Similar effective Hamiltonians have also been studied in [45] in the context of

reduced density matrices of fermionic and bosonic ground states. We also define the effective
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thermal potential,

V = Heff −
N−1∑
i=2

hi,i+1 , (3.3)

as the term added to the bare Hamiltonian on sites 2 to N due to the presence of site 1.

At high temperatures, the effective thermal potential is short ranged. Consider for

instance the one-dimensional Ising model with transverse field on an infinite chain

H =
∞∑

i=−∞
σzi σ

z
i+1 +Bσxi . (3.4)

At zero temperature, this model exhibits a phase transition at the critical transverse field

value B = 1. Figure 3.1 shows the value of the effective potential,

Veff = − 1

β
LogTr−∞,...,0(e−βH)−Hbare , (3.5)
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obtained from cutting the critical Ising chain in half, i.e., tracing out spins −∞ to 0 from

the thermal state of an infinite chain. What is plotted is (an upper bound to) the operator

norm of the cumulants of Veff :

V j
eff = Trj+1,...,∞(Veff −

j−1∑
k=1

V k
eff) , (3.6)

with V 1
eff = Tr2,...,∞(Veff). We see that Veff has a very short range, in fact much shorter than

the correlation length in the system.

When the window size in the belief propagation algorithm is sufficiently large to support

the effective thermal potential, the messages contain all the information required to calculate

the states of the rest of the system. In this case, we can use the sliding window belief

propagation algorithm as discussed in section 2.5.2.

However, the effective thermal potential Veff cannot be computed exactly because of

computational limitations. Instead, we can only estimate its value on a cluster of finite size.

Thus, the main source of error in our method is due to the truncation of Veff . We can assess

the error by evaluating the portion of Veff we discard. On a chain for instance, the error

caused on the estimate of the beliefs is

1

Z(β)
(e−βHeff − e−β(Heff−

∑
j>l V

j
eff)) ≈ β

∑
j>l

〈V j
eff〉 (3.7)

for βV j
eff � 1. Making the assumption (see figure 3.1) that ‖V j

eff‖ decreases exponentially

with j, we estimate this quantity by

β〈V l+1
eff 〉 ≈ β〈V l

eff〉
(
〈V l

eff〉
〈V l−1

eff 〉

)
, (3.8)

which is our final error estimate. With the same reasoning, similar estimates can be derived

for the error associated with different observables.

Figure 3.2 compares this error estimate to the true error produced by BP for the eval-

uation of the energy density of the critical one-dimensional Ising chain. Clearly, the error

estimate accurately bounds the true error. This figure also illustrates the power of BP by

comparing the accuracy with which BP estimates the energy density of an infinite chain

to what is achieved by brute-force diagonalization with equivalent computational resources.
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BP largely outperforms diagonalization down to temperatures of order 0.1. This behavior is

expected because, as seen on figure 3.1 (red line), the range of the effective thermal potential

becomes larger than the window size (l = 10) at this temperature.

3.3 Disordered System Revisited

The use of belief propagation in physics originates in the study of disordered systems—spin

glasses—where it is more often referred to as the “cavity method” [24]. Along with the

sliding window algorithm outlined in the previous section, we presented in [1, 27] a second

distinct way to generalize BP to the quantum setting. This method, which we named

“replica BP,” maps the quantum system to a classical system with one additional spatial

dimension of length equal to the inverse temperature β. The edges of a graph become

ribbons on which classical BP can be employed for sufficiently low β. This technique was

independently introduced by Laumann et al. [37] for the study of the transverse field

quantum Ising spin glass. The continuous imaginary-time limit of this procedure was later

studied in [46].

The numerical results obtained in [1] suggest that, for a given amount of computational

power, sliding window BP is much more accurate than replica BP. In this section, we revisit
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Figure 3.3. Schematic illustration of the procedure to calculate the message from a node
to its parent. First, two messages from its children are merged using the �-product . The
bare Hamiltonian term relating the current node to its parent is also added. Tracing out
the leaves of this 8-spin message gives the message to the node’s parent.

the spin-glass model of [37] using sliding window BP, and apply the method outlined in the

previous section to estimate the accuracy of our results.

The spins are located at the vertices of a degree-3 Cayley tree. The Hamiltonian has

Ising coupling between neighboring spins and a transverse field B:

H =
∑
〈ij〉

σzi σ
z
j +B

∑
i

σxi +
∑

i∈Boundary

riσ
z
i . (3.9)

The last term is a random parallel boundary field introduced to create frustration in the

system. The strength of the boundary fields ri are chosen at random uniformly in [−1, 1].

The quantity of interest in this setting is the Edwards-Anderson order parameter qEA =

〈∑j〈σzj 〉2〉Q on the lattice at the thermodynamic limit, where 〈·〉Q refers to the quench

average over the random boundary field configurations. Note that this order parameter is

defined along the axis perpendicular to the applied external field B, but parallel to the

random boundary field. Hence, qEA is zero in the paramagnetic phase. It becomes nonzero

on the onset of the glassy phase where the system settles into one of many metastable

randomly polarized state.

Our numerical simulations are performed on a tree of depth 12. To further reduce the

finite-size effects, the EA order parameter is only evaluated on the central spin of the lattice,

away from the boundary. The order parameter can be computed from the single-body belief

bj obtained from BP. On a chain, we would start from one end and propagate messages to

the other end of the chain. On the tree, we start from the leaves, and propagate messages

towards the middle. The basic message passing step is demonstrated in figure 3.3. First,

two messages from the children of a given node are combined using the �-product . The
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bare Hamiltonian term relating the node to its parent is then added. Tracing out the leaves

of this 8-spin message gives the message to the node’s parent. This procedure is repeated

until the central site is reached where three messages are joined to produce the belief. The

quench average is obtained by repeating this procedure 100 times with different boundary

field configurations.

Because the graph contains no loops, the error estimate presented in the previous section

is reliable. However, note that the statistical fluctuations of the quench average are not

included in this error estimate. The statistical fluctuations of the average of qEA over the

many instances of boundary fields range from 2 percent at low temperatures to 14 percent

at high temperatures. Therefore, the main source of error in parts of figure 3.4 is the

statistical fluctuations, which are not shown in the plot, and can be systematically reduced

by increasing the sample size.

Fig 3.4 shows the EA order parameter qEA in the transverse field-temperature diagram,

along with the estimated BP error. The glassy/paramagnetic phase transition line agrees

with results of [37] up to the statistical fluctuations above T & 0.3. At low temperatures

(T . 0.3), our results indicate a phase transition line with a decreasing value of B as T is

lowered. We could not think of any physical mechanism that could explain this behavior.

Moreover, this happens in a region of the phase diagram where the BP error is high. Hence,

we suspect that the true phase transition line has a monotonous behavior in temperature

and that the glassy phase persists all the way to zero temperature for a transverse field

B . 1.65. This conclusion and, more generally, our entire phase diagram is in very good

agreement with that of [37].

3.4 Multiscale Entanglement Renormalization

We have seen that BP provides reliable estimates of thermal expectation values as long as

the effective thermal potential Veff is sufficiently short ranged to be tracked numerically. As

seen, e.g., in figure 3.1, the range of Veff grows linearly with β, so BP becomes unreliable

at low temperatures. To probe lower temperatures, one needs to increase the window size

l, which is not feasible because resources scale as O(2l). On the other hand, as we lower

the temperature, high energy excitations become increasingly irrelevant. This fact leads to

efficient algorithms for zero temperature simulations such as entanglement renormalization
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and DMRG. These algorithms become rapidly inaccurate at finite temperature because they

are only able to keep track of a small number of eigenstates. In this section, we will describe

a method that interpolates between BP at high T to ER at T = 0. Before we do so, we

briefly review ER, see [38, 39] for a detailed description.

Entanglement renormalization [38, 39] builds on the multiscale renormalization ansatz

(MERA), which asserts that certain degrees of freedom can be decoupled from the ground

state of local Hamiltonians by unitary transformations acting on small spatial regions. A

concrete example of this scheme is illustrated in figure 3.5 in the case of a one-dimensional

lattice. The lattice is first partitioned into clusters each containing 3 consecutive sites.

A disentangling transformation u (a unitary transformation on (Cd)⊗2) is applied on the

boundary of each cluster in order to minimize the correlations between neighboring clusters.

Finally, local degrees of freedom are discarded from each cluster by means of an isometry v

mapping (Cd)⊗3 to Cd.

This procedure is applied repeatedly. At each iteration, the disentanglers and isometries

transform the Hamiltonian Hi to a new Hamiltonian Hi+1 acting on a smaller lattice and

retaining only the lowest eigenstates of the previous Hamiltonian. ER is halted when only

a few sites remain in the lattice so it can be handled exactly numerically. The disentanglers
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Figure 3.5. Schematics of entanglement renormalization for a ternary MERA of a one-
dimensional lattice.

and isometries are chosen in such a way that the final state (or more generally subspace)

minimizes the energy of the initial Hamiltonian H0. This minimization problem is in general

hard, but good heuristics have been devised for it [38, 39].

It is convenient to use the diagrammatic formalism of tensor networks to describe the

unitaries and the local isometries constituting a MERA (the latter correspond to the elim-

ination of local degrees of freedom, but the division into “disentangling” unitaries and

isometries is often arbitrary). In this formalism, the identity on Cd is represented by a

single directed edge, and operators O : (Cd)⊗n → (Cd)⊗m are represented by shaded boxes

with n ingoing and m outgoing (ordered) edges. Labels on the edges from 1, . . . , d corre-

spond to the elements of a fixed orthonormal basis of Cd. Products of operators are taken

by connecting outgoing with ingoing edges, and summing over labels of edges with no free

ends. The trace of an operator on (Cd)⊗n is taken by connecting each outgoing strand with

the corresponding ingoing strand, and then contracting the tensor network (i.e., summing

over all edge labelings). Partial traces are computed analogously by connecting up subsets

of edges. Tensor products are obtained by placing diagrams next to each other.

With these conventions, the property W†W = I(Cd)⊗n of an isometry W : (Cd)⊗n →
(Cd)⊗m (for m ≥ n) takes the simple form,

W

W†

(n strands)

(m strands)

(n strands)

= . (3.10)

Identity in (3.10) is crucial for the definition of the MERA ansatz.

Consider a system of N qudits arranged on a line with periodic boundary condtions. For
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L4
〈ϕ|

W†

U†
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(b)

Figure 3.6. Two examples of MERA structures: For a periodic qudit chain (at the bottom
of the figure), a variational family of states is obtained by varying over the contents of the
boxes. In (a), these are (adjoints of) isometries W : (Cd)⊗2 → Cd, unitaries U : (Cd)⊗2 →
(Cd)⊗2 and (the adjoint of) a state |ϕ〉 ∈ Cd for the strip at the top. Tree-like structures
may also be considered, and lead to particularly simple expressions in the homogenous
case [47]. Note that we choose to represent the top tensor by a (periodic) strip; the reason
for this will become obvious once we move to the anyonic setting.

any tensor network as shown in figure 3.6, one obtains a variational family of states |Ψ〉 =

|Ψ|ϕ〉,{W}〉 ∈ (Cd)⊗N parametrized by the isometries {W} and the state |ϕ〉 ∈ Cd at the

top of the structure. This is the MERA ansatz. Figure 3.6 represents a map (Cd)⊗N → C,

which can be understood as the bra 〈Ψ| of the represented state. The fact that the recipe

specifies 〈Ψ| instead of |Ψ〉 is a matter of preference, but the chosen convention has a natural

operational interpretation: One may think of figure 3.6 as a renormalization prescription

by decomposing the tensor network along different horizontal cuts Li. The strips [Li, Li+1[

represent coarse-graining maps, which reduce the number of degrees of freedom at each

level.

Importantly, local expectation values and pair correlation functions can be computed

efficiently for such a state. This is because the expectation value of an observable O is

given by the contraction of the tensor network obtained by sandwiching O between the

MERA network and its adjoint as in figure 3.7 (b). (3.10) then allows to simplify the

network resulting in a significantly smaller network corresponding to the “causal cone” of

the operator, see figure 3.7 (c). This network can be efficiently contracted, as the number

of tensors scales logarithmically with the number of sites N . For example, for the case of
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O
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Figure 3.7. Tensor networks associated with the MERA of figure 3.6 (a). The network (a)
represents the projection |Ψ〉〈Ψ| onto the state described by the MERA. The contraction
of the network (b) gives the expectation value 〈Ψ|O|Ψ〉 of a local operator O. The tensor
network (c) gives the same value as (b), and is obtained from it by using (3.10) repeatedly.
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figure 3.7 (b), we get

〈Ψ|O|Ψ〉 = 〈ϕ|ELmax ◦ FLmax · · · EL0 ◦ FL0(O)|ϕ〉 , (3.11)

where Lmax = log2N − 1, and the superoperators {EL,FL} associated to a level L are

EL


O

 =
O

W†

W

, FL


O

 =
O

U†

U

(3.12)

for L < Lmax, and

ELmax


O

 =
O

W†

W

, FLmax


O

 =
O

U†

U

. (3.13)

In particular, the reduced two-site density operator of the state |Ψ〉 can be computed using

the adjoint superoperators as

trn−2 |Ψ〉〈Ψ| = F†1 ◦ E†1 · · · F†Lmax
◦ E†Lmax

(|ϕ〉〈ϕ|) .

Similar expressions can be obtained for translates as well as for pair correlation functions

evaluated at certain specific distances [47–49].

Given a MERA-structure as in figure 3.6, we have described a recipe giving a variational

family of states for a chain of N d-dimensional qudits parametrized by isometries of the

form W : (Cd)⊗n → (Cd)⊗m (the constants n ≥ m depend on the MERA-structure). There

is a natural way of enlarging this family: the edges (in higher levels of the network) may be

interpreted as corresponding to Cχ, where the refinement parameter χ > d is larger than

the dimension d of the physical qudits. Increasing this so-called bond dimension χ amounts

to using isometries W : (Cχ)⊗n → (Cχ)⊗m (and correspondingly a state |ϕ〉 ∈ Cχ at the

top). To motivate a similar refinement in the anyonic setting, we point out that if χ = ds is

an integer power of the physical qudit dimension d, then this enlargement of the variational
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family is equivalent to replacing each edge in the MERA-structure by s edges. Note also

that, since the number of isometries is of order O(N logN) and each isometry is described

by fewer than χn+m parameters, the total number of parameters describing a MERA is of

order O(poly(χ)N logN).

We conclude this short exposition by mentioning two subclasses of MERA-ansatz states,

which are of particular interest: a translation-invariant MERA has identical isometries

within every level. As a consequence, the number of parameters of such a MERA scales

as O(poly(χ)logN). A scale-invariant MERA is one where all isometries (with identical

domain and range) are chosen to be the same: Here the number of parameters is only

O(poly(χ)) independent of N (see [41] for a more detailed discussion of the complexity

of MERA and [39] for concrete examples). For a scale-invariant MERA, it is possible to

write down two-point and three-point correlators explicitly in terms of eigenvalues of a

certain coarse-graining superoperator defined in terms of the isometries as in (3.12). This

allows to numerically extract critical exponents and parameters from the associated CFT,

as described, e.g., in [47–49].

3.5 Coarse-Grained Belief Propagation

Both ER and BP revolve around the idea that some correlations are short range in the

state of interest. BP becomes exact when the conditional mutual information I([−∞, j] :

[j+l,∞]|[j+1, j+l−1]) vanishes for a sufficiently large window size l. In other words, BP can

work in the presence of arbitrary long range classical correlations but the purely quantum

correlations must be short ranged. These quantum correlations tend to increase like the

inverse temperature β (cf. figure 3.1), which limits BP to relatively high temperatures,

unless the window size l can somehow be increased while keeping computational cost low.

In contrast, ER makes use of disentanglers to eliminate short-range quantum correlations

in the system and coarse-grain the lattice. Because it only keeps a few low-energy states,

it is limited to very low temperatures.

Coarse-grained belief propagation interpolates between these two methods and provides

accurate thermal expectation values over a very large range of temperatures. At high

temperature, CGBP reduces to ordinary BP. As the temperature is lowered, the error

attributed to BP increases. At some temperature T1, it becomes favorable to coarse-grain
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Figure 3.8. (Color online) Energy vs. temperature for the one-dimensional critical quantum
Ising model. Presented are the plain BP results for l = 10 (dark blue), CGBP results
for various levels of coarse-graining with χ = 4 and l = 5 (various colors), the plain
ER result χ = 4 (light green) along with the exact result obtained from Jordan-Wigner
transformations (black). The labels on the temperature axis correspond to the switching
temperatures between various levels of coarse-graining in the CGBP algorithm. E.g., plain
BP is very accurate down to T1 ≈ 0.22, where BP combined with one level of coarse-graining
(red) becomes more accurate. The inset shows the absolute error in the combined CGBP
result with respect to the exact solution (blue), and the error estimate calculated using the
procedure given in section 3.5. While plain BP and plain ER are both very inaccurate for
temperature range 0.005 . T . 0.22, combining the two using CGBP yields very accurate
results.

the lattice using one step of ER. This procedure discards some high energy states, leading to

a systematic error, but it effectively increases the BP window length l by a constant factor

(3 in the ternary ER scheme illustrated in figure 3.5). This increase in the window length

improves the accuracy of BP and compensates for the loss of high energy states. As the

temperature is lowered, the lattice is further coarse-grained at T2, T3, etc. until the CGBP

reduces to ordinary ER. Figure 3.8 illustrates this behavior for the one-dimensional critical

quantum Ising model. Each coarse-graining level provides a reliable estimate only for a

small temperature range, but the union of these ranges cover the entire temperature domain.

Thus, CGBP provides accurate estimates of thermodynamical observables in temperature

ranges that are accessible to neither BP nor ER.

To calculate the optimal coarse-graining temperatures Ti, we would need independent

error assessments for ER and BP. Then, we could switch to a coarser lattice whenever the
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increase in window size compensates for the coarse-graining of the Hamiltonian. However,

we are not aware of a reliable method to estimate the error caused by ER. Instead of using

error estimates, we simultaneously perform BP on two different coarse-grained levels and

determine the switching temperatures by comparing the results.

More precisely, let xi(T ) be the expectation value of some observableX at temperature T

obtained by BP on the ith level of coarse-graining. To determine the switching temperature

Ti+1 from the ith level of coarse-graining to the (i+ 1)th, we calculate both xi and xi+1 as

we slowly lower the temperature. At high temperatures, the dominating error is attributed

to the discarded high energy states, so xi is more accurate than xi+1. On the other hand,

at low temperatures, as the range of the effective thermal potential gets larger than the BP

window, xi+1 becomes more accurate than xi. The two sources of errors are balanced when

|xi − xi+1| reaches a minimum (see figure 3.9), so Ti should be chosen at the position of

this minimum. There can be exceptions to this rule that result from accidental crossings of

xi+1 and xi. In that case, the error estimate for BP presented in section 3.2 can be used

to discriminate between the multiple minima. Indeed, the switching should occur when the

value of |xi−xi+1| is the closest to the error attributed to BP on the ith level because both

numbers are estimates of the BP error. The switching temperatures for figure 3.8 were

chosen following this method.

We can use the same reasoning to estimate the total error δx(t) on our final estimate

x(T ) obtained by joining the xi(T ) over their respective range. We define δxBP
i (T ) to be the

error attributed to BP on the ith level of coarse-graining. This quantity can be estimated as

described in section 3.2. For T > T1, we have δx(T ) = δxBP
0 (T ) since BP is the only source

of error. Between T1 and T2, there are two contributions to the error: the error δxBP
1 (T )

attributed to BP on the 1st coarse-grained level and the error attributed to ER caused by

discarding high energy states. This second error decreases as temperature is lowered, and

at T = T1 it is equal to the BP error (this is how T1 was defined). Thus, we obtain for

T2 ≤ T < T1 the bound δx(T ) ≤ δxBP
0 (T1) + δxBP

1 (T ). More generally, for Ti+1 ≤ T < Ti

we get δx(T ) ≤∑j≤i δx
BP
j−1(Tj) + δxBP

i (T ). See the inset of figure 3.8 for the error estimate

of CGBP with χ = 4 and l = 5.

In addition to CGBP with χ = 4 and l = 5, we have also investigated various other

combinations of χ and l. At equal computational costs—which are of O(χ3l)—the results

are qualitatively equivalent in the sense that they have roughly equivalent maximum error.
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Figure 3.9. The exact error in the energies calculated at the first and second levels of
coarse-graining, |E1−Eexact| and |E2−Eexact| are plotted along with |E1−E2|. Note that
for both |E1−Eexact| and |E2−Eexact|, MERA error dominates at high temperatures, and
BP error dominates at low temperatures. The minimum of their difference |E1−E2| occurs
when the BP error at level 1 of coarse-graining is equal to the MERA error at level 2 of
coarse-graining. Furthermore, the high temperature portion of |E1 − E2| is dominated by
the MERA error at level 2 and the low temperature portion of |E1 − E2| is dominated by
the BP error at level 1.

However, varying χ and l at fixed computational cost can improve the results for a given

temperature. For instance, at very low temperatures, the computations with a higher χ

yield results with better accuracy. On the other hand, larger l and smaller χ perform better

at high temperatures. Thus, the values of χ and l could also be varied dynamically in the

simulation, but we leave out this possibility for the moment.

The results we obtain with CGBP compare favorably with results obtained by other

methods using equivalent computational resources. This can be seen by comparing the

inset of figure 3.8 to the various curves shown on figure 3.2. The CGBP result with

χ = 4, l = 5 has at least four digits of accuracy for the entire temperature range. The

complexity of this simulation is equivalent to exact diagonalization of an 11-site chain, that

produces a result accurate to roughly three digits. Many methods rely on a Trotter-Suzuki

decomposition by discretizing imaginary time in intervals δT , which creates a systematic

bias O(δT 3) in the result. This is the case for instance of imaginary time dependent block

decimation [14]. This algorithm has complexity (χd2)3Tmin/δT where d = 2 for the Ising

model is the dimension of the spins. The parameters χ = 150 and δT = 0.001 yield the
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same complexity as the χ = 4 l = 5 CGBP algorithm, and produce an error of roughly 10−2

at sufficiently low temperatures.

3.6 Discussion

The concept of an effective thermal potential, obtained by tracing out sites from the thermal

Gibbs state, gives a clear physical picture of the workings of belief propagation. Adding

a site to a spin chain can modify the thermal state even far away from the added site,

as far as the correlation length of the system. However, this effect can be mimicked by

adding a short range thermal potential to the Hamiltonian of the original spin chain. At

finite temperature, we have seen that the range of this thermal potential can be much

shorter than the correlation length of the system, making it more suitable for numerical

simulations. This underlies the success of belief propagation and provides a means to assess

its accuracy. We have illustrated these concepts and methods on the critical quantum Ising

chain and the transverse field quantum Ising spin glass. For this last system, our findings

are, within estimated error bars, in agreement with those of [37] obtained from a different

belief propagation implementation.

At lower temperatures however, the range of the effective thermal potential becomes

too large to handle numerically. For these temperature ranges, we have introduced the

coarse-grained belief propagation algorithm by combining belief propagation with entangle-

ment renormalization. Coarse-graining discards some high-energy states, which leads to a

systematic error in the thermal states. On the other hand, it increases the accuracy of BP

by shortening the range of the effective thermal potential by a constant factor. CGBP seeks

an optimal compromise between these two effects in order to accurately probe temperature

regimes where neither ER nor BP are reliable. Thus, CGBP truly extends the domain

of applicability of the two underlying approaches. Moreover, results obtained by CGBP

compare favorably to other methods using equivalent computational resources.

The drawback of CGBP is that it inherits some intrinsic limitations of the underlying

approaches. For instance, ER is applicable only when there exists a coarse-graining method,

which preserves the locality of the Hamiltonian. For graphs with exponential spreading

structure, such as the Cayley tree studied in section 3.3, we are not aware of such coarse-

graining procedures. This is the reason we have not implemented CGBP on that system.
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Another limitation comes from the shortcoming of BP on graphs containing many small

loops such as two-dimensional lattices. Classically, this limitation can be alleviated using

generalized BP [15, 16]. Versions of generalized BP that incorporates the smallest loops into

messages can be used to reduce errors for loopy quantum many-body systems. However,

only very high temperatures can be probed with such methods, and it is difficult to analyze

the errors in their results.
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Chapter 4

Anyonic Entanglement
Renormalization

4.1 Introduction

Strongly correlated quantum many-body systems with topological order have been proposed

as a substrate for building fault-tolerant quantum computers [50–53]. Under this proposal,

logical information is stored within a subspace of a fixed number of quasi-particles (anyons).

Computation is performed by exploiting the nonabelian statistics obeyed by these anyons

under braiding. Compared to more conventional implementations of quantum computers,

this offers an intrinsic resilience to noise: local perturbations cannot decohere the stored

information because of the nonlocal nature of the encoding.

At present, perhaps the most promising candidate systems exhibiting nonabelian statis-

tics are fractional quantum Hall systems [54–56]. Some amount of experimental evidence is

already available in this setting [57–59]. Other proposed systems include topological insula-

tors [60–63] and lattice spin systems [50, 64, 65] whose local interactions could be engineered

artificially [66, 67]. Independently of the proposed physical realization, the stability of the

topologically ordered phase with respect to (local) perturbations is of great interest for

topological quantum computation. This presents a formidable theoretical challenge. Pos-

sible approaches range from the study of concrete physical models (see, e.g., [68–71]) or

bounds on the gap for general families of models [72–74] to the investigation of effective

Hamiltonians describing the interanyon interactions (see e.g., [75]). In the context of the

latter, it is natural to study paradigmatic models such as one-dimensional anyonic chains.

These are the natural counterpart of spin chains. The study of such systems has led, e.g.,
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to an exactly solved model called the golden chain [76], and novel realizations of infinite

randomness critical phases [77–79].

A peculiar aspect of anyonic systems is the structure of the Hilbert space of N anyons.

In contrast to the space of N qudits, this space does not decompose into an N -fold tensor

product. Instead, its dimension scales as dN , where the quantum dimension d is generally

not an integer. For analytical studies, it is sometimes convenient to embed this space into a

larger tensor product space. However, this approach is inconvenient when using variational

methods: with the most straightforward encoding, it may be unclear how to vary (numer-

ically) over the subset of physical states. Furthermore, this leads to a significant increase

in computational complexity, particularly because locality is only approximately preserved

by such an embedding. Even for one-dimensional anyonic systems, these issues complicate

the direct application numerical methods such as DMRG [5]. While such methods may

presently be the most powerful and successful tools available, these difficulties motivate the

search for alternative approaches.

There is another more profound reason why the näıve application of numerical methods

for qudits may be suboptimal: local anyonic operators preserve the total topological charge

in their support. Since a realistic Hamiltonian consists of locally acting terms, topological

charge conservation severely constrains the action of the Hamiltonian both at the local level

as well as on larger scales. Incorporating this fact into the method of study should therefore

be highly beneficial. With a qudit embedding, the meaning of this constraint is obscured

and may be hard to make use of.

In this chapter, we introduce a variational method for anyonic systems, which avoids

using unphysical additional states and optimally exploits the special structure of the Hilbert

space.1 This is motivated in part by the goal of facilitating numerical studies. Perhaps more

importantly, variational families of ansatz states can provide significant insight into the

nature of quantum correlations in a given system. Even in this regard, a qudit embedding

of anyons is generally undesirable, as a physically motivated ansatz for qudit systems may

lose its significance when applied directly to the anyonic setting.

Our scheme is inspired by renormalization group studies of anyonic chains [77–79],

composite anyon distillation [81] and the multiscale entanglement renormalization ansatz

1Shortly after posting this work to the arXiv, Pfeifer et al. have also presented work on the anyonic
MERA [80]. They use the scale-invariant MERA to numerically extract CFT data in the thermodynamic
limit, studying the Fibonacci golden chain at the AFM point.
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(MERA) [38, 41] for (nonanyonic) spin chains, which was discussed in section 3.4. In fact,

it can be understood as the natural anyonic counterpart of the latter and shares many of

its properties. In particular, it can be seen as a renormalization group scheme and is thus

especially suited for describing scale-invariant systems. The scheme allows—in principle—

to extract, e.g., critical exponents when considering fixed points of the renormalization

group flow. More generally, it provides procedures for computing parameters of the cor-

responding conformal field theory (CFT) in the continuum limit. While such procedures

are also available for other variational methods (e.g., matrix product states [9, 82–85], by

transfer matrix methods), they are particularly natural in the present context due to the

scale-invariant form of the ansatz.

We formulate our ansatz for one-dimensional (periodic) chains of anyons. This allows

us to numerically test its validity for the golden chain [76] and its relatives [86]. Ultimately,

though, it is desirable to find methods for two-dimensional systems. Our work makes some

progress toward this goal: the nonanyonic MERA extends naturally to two dimensions, and

this is also the case for its anyonic counterpart. We briefly comment on such generalizations.

Entanglement renormalization, while originally defined for qudit systems, has been ex-

tended to free bosons [87] and interacting fermions [88]. Anyonic statistics are peculiar

to two dimensions, encompassing both fermions and bosons (which are abelian) in addi-

tion to interesting nonabelian generalizations. Our ansatz applies to all such models, but

its use is especially suggestive in the nonabelian case. This is due to the special form of

the Hilbert space mentioned earlier. Interestingly, the exact details of the exchange statis-

tics play essentially no role in the definition of the ansatz, though they become important

when evaluating expectation values of local operators in the case of, e.g., two-dimensional

arrangements of anyons.

In a wider context, entanglement renormalization is a special instance of the class of

tensor network states, which also includes, e.g., MPS [9, 82–85], PEPS [89] as well as the

closely related TERG-states [90]. These have wide applicability beyond qudit systems. In

particular, a general framework for fermions has been developed [91–95]. Our focus is on

entanglement renormalization because of its unique operational interpretation, as well as

the possibility of efficiently computing expectation values without approximations, even

in two dimensions (in contrast to, e.g., PEPS [96]). Furthermore, anyonic entanglement

renormalization is conceptually related to previous analytical studies for anyonic chains [77–
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79]. However, our work suggests that anyonic generalizations of other tensor network states

should also be possible along similar lines, though further work may be needed to evaluate

their descriptive power.

The structure of this chapter is as follows. In section 4.2, we give some background

on anyonic systems and their description in terms of fusion diagrams. We then present

the anyonic entanglement renormalization ansatz in section 4.3 and show how to efficiently

evaluate expectation values of local observables and correlation functions. We also discuss

an operational interpretation in the context of composite anyon distillation. In section 4.4,

we apply the ansatz to the golden chain and identify a renormalization group fixed point.

We conclude in section 4.6.

4.2 Anyonic States and Operators

In this section, we provide a short introduction to anyons, emphasizing the aspects relevant

to the definition of the anyonic entanglement renormalization ansatz: the anyonic Hilbert

space and the isotopy-invariant formalism for describing states and operators. We also

discuss the origin of the dynamics, that is, the definition of Hamiltonians for anyons. For a

thorough and accessible introduction to anyons and topological quantum computation, we

recommend [51] (see also [53] for a recent review).

4.2.1 A Unified Treatment of Topological Order

Anyons arise as localized quasi-particle excitations in what can roughly be referred to as two-

dimensional topologically ordered quantum media, e.g., qudit lattice systems with certain

Hamiltonians [50, 64, 65], quantum Hall systems [54–56] or topological insulators [60–63].

Independently of their physical realization, their state space and exchange statistics are

described by the axioms of a topological quantum field theory (TQFT) (see, e.g., [97]).

This formalism is extraordinarily useful for studying low-energy processes [75] as well as for

the application to quantum computation [51], as it abstracts out the relevant physics: it

specifies the particle content, i.e., what particle types occur, describes what their internal

degrees of freedom are, and how they are affected by braiding (exchanges) and fusion (which

corresponds to bringing particles together). The relation between states of (and operations

on) the physical system and the abstract anyonic state space is discussed extensively in the
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literature; see, e.g., [50, 51, 55, 64, 65, 98].

The algebraic object underlying such an anyonic theory is a modular category. Roughly,

this consists of (i) a finite set of particle types Ω equipped with an involution ∗ : Ω → Ω

and containing a distinguished trivial particle 1 ∈ Ω, (ii) fusion rules, i.e., a set of allowed

triples of particles, (iii) a quantum dimension da > 0 associated to every particle a, (iv) a

tensor F indexed by 6 particles, and (v) a 3-index tensor R. These are required to satisfy

a number of consistency conditions (see, e.g., [51]) the most important of which express

associativity of fusion and compatibility of fusion with braiding.

In more physical terms, the involution associates an antiparticle a∗ to every particle a,

with 1∗ = 1 corresponding to the absence of a particle. The fusion rule summarizes the

possible outcomes when bringing two particles together. The quantum dimensions give a

rough measure of the growth of the anyonic state space when adding particles, and the

F -tensor relates different bases of this space (as explained below). Finally, the R-tensor

encodes braiding of pairs of particles. This will be mostly irrelevant for our discussion, but

becomes relevant for two-dimensional arrangements of anyons as explained in section 4.5.

4.2.2 The Anyonic Hilbert Space and Anyon Diagrams

We proceed by explaining the construction of the anyonic Hilbert space using the data (i)–

(iv) of a modular category. We will mostly follow the detailed exposition in [99], but will

require slightly more general definitions when dealing with operators (see, e.g., appendix

of [64] for more details).

The state space of a set of anyons depends on their types and on the surface the quantum

medium is embedded in. We will discuss two cases in detail below: anyons pinned to fixed

locations on a disc and on a torus. Usually, we assume that these are arranged on a

chain, though one may also consider, e.g., regular two-dimensional lattices; their particular

geometric arrangement only becomes important when considering Hamiltonians, but does

not affect the definition of the Hilbert space.

Starting point are certain trivalent graphs with directed edges. These correspond to

pants decomposition of the surface with punctures inserted at the anyons’ positions. Fixing

such a graph, a basis of the anyonic Hilbert space is given by all labelings of the edges

with particle labels from Ω satisfying the fusion rules at every vertex. We will give explicit

examples for the punctured sphere and the torus below.
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Labeled graphs related by reversing the direction of an edge and simultaneously replacing

its particle label by the associated antiparticle represent the same vectors. This is somewhat

analogous to the formalism of Feynman diagrams. Indeed, anyon diagrams may, to some

extent, be interpreted as particle world lines, though this analogy has its limitations. Note

also that in many anyon theories of interest, such as the Fibonacci category considered

below, every particle is its own antiparticle, a∗ = a, and it is sufficient to work with

undirected graphs.

Dividing up trivalent graphs into neighborhoods of their vertices, one arrives at the

following alternative description: the total anyonic Hilbert space is the direct sum of ten-

sor products of two-anyon fusion spaces V c
ab (respectively their dual splitting space V ab

c )

corresponding to every vertex, where a, b, c ∈ Ω, and where the sum is taken over all fusion-

consistent labelings (see below). The space V ab
c can be thought of as the internal degrees of

freedom of two anyons of type a and b whose combined topological charge is c. Equivalently,

it is the space of two anyons a and b on a disc with total topological charge c at the bound-

ary. The latter is—in principle—a measurable quantity. We assume for simplicity that

fusion is multiplicity-free, i.e., dimV c
ab ∈ {0, 1}, but our techniques directly generalize to

models with fusion multiplicities (see [99] for the necessary adaptations in the diagrammatic

calculus).

We pick a normalized vector |ab; c〉 ∈ V ab
c in each splitting space and represent it using

the isotopy-invariant formalism [99] as

|ab; c〉 =

(
dc
dadb

)1/4

c

a b
∈ V ab

c ,

〈ab; c| =
(

dc
dadb

)1/4

c
a b

∈ V c
ab ,

where a scalar da called quantum dimension is associated to every label a. More generally,

going from a vector to its dual vector corresponds to flipping the diagram along the hori-

zontal axis and reversing all the arrows. Isotopy invariance means that diagrams may be

continuously deformed as long as endpoints are held fixed and edges are not passed through

each other or around open endpoints.
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4.2.2.1 Anyons on a disc

Consider the space V ~ac of n anyons of types ~a ∈ Ωn pinned to fixed locations on a disc with

total charge c ∈ Ω at the boundary. For this space, we will often use the standard basis

given by the vectors

|~a,~b; c〉n =

(
dc∏
i dai

)1/4

a2a1 a3 an

b1

bn−2

c

, (4.1)

where ~b ∈ Ωn−1 is such that this diagram is fusion consistent. This corresponds to the

decomposition

V ~ac
∼=

⊕
~b∈Ωn−1

V a1a2
b1

⊗ V b1a3
b2
⊗ · · · ⊗ V bn−3an−1

bn−2
⊗ V bn−2an

c .

One may switch between different bases using the (unitary) F move, i.e., the isomorphism

between the two decompositions of

V abc
d
∼=
⊕
e

V ab
e ⊗ V ec

d
∼=
⊕
f

V bc
f ⊗ V af

d ,

which is specified by the coefficients [F abcd ]e,f in

a b c

d

e
=
∑
f

[F abcd ]e,f

a b c

d

f
. (4.2)

The matrices [F abcd ] collectively constitute the F -tensor of the modular category mentioned

earlier. Matrix elements of related isomorphisms such as

V ab
cd
∼=
⊕
e

V a
ce ⊗ V eb

d
∼=
⊕
f

V f
cd ⊗ V ab

f
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can be expressed as functions of these. Diagrammatically, all basis changes can be computed

using (4.2), the identity

a b

c

c′

= δcc′

√
dadb
dc

c , (4.3)

and the convention that lines with the trivial label may be added and removed arbitrarily,

i.e.,

a b =
a b

a b1 . (4.4)

An operator U
~a′
~a (c) : V ~ac → V ~a

′
c taking the fusion space ofm anyons of types ~a = (a1, . . . , am) ∈

Ωm with total charge c ∈ Ω to n anyons of types ~a′ = (a′1, . . . , a
′
n) ∈ Ωn with total charge c

can be represented as a linear combination of trivalent graphs with m ingoing edges and

n outgoing edges attached to open endpoints and carrying the corresponding labels. For

example, using the standard basis from (4.1), such an operators can be written as

U
~a′
~a (c) =

∑
~b,~b′

[U
~a′
~a (c)]~b′,~b|~a′, ~b′; c〉nm〈~a,~b; c| (4.5)

=
∑
~b,~b′

[U
~a′
~a (c)]~b′,~bα~a,~a′,c

a′
1 a′

2 a′
3 a′

n

b′
1

b′
n−2 c

a1 a2 a3 am

b1

bm−2

, (4.6)

with the normalization factor

α
~a,~a′,c

=
1√

dc(
∏
i dai)

1/4(
∏
j da′j )

1/4
.

Any operator U
~a′
~a :

⊕
V ~ac →

⊕
c′ V

~a′
c′ taking m anyons of types ~a = (a1, . . . , am) ∈ Ωm to n

anyons of type ~a′ = (a′1, . . . , a
′
n) ∈ Ωn can also be represented in this fashion if it conserves
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the total charge, i.e., if it has block-diagonal form

U~a
′

~a
∼=
⊕
c

(
U
~a′
~a (c) : V ~ac → V

~a′
c

)
. (4.7)

Such operators act locally on subsets of n anyons of specified types ~a ∈ Ωn and map them

to a state of anyons of specified types ~a′ ∈ Ωm. In fact, (4.6) (respectively (4.7)) represent

the most general locally acting operator, their single most important property being charge

preservation. Additional properties such as unitarity impose further conditions on the form

of the map/matrix U
~a′
~a (c) for each c.

More generally, we are interested in operators that act between spaces of the form⊕
c

(⊕
~a∈Γn

V ~ac
)
, where Γn ⊂ Ωn specifies a set of n-tuples of available (spatial) particle

configurations on a chain. A total charge-preserving operator of this kind takes the form

UΓn
Γm

=
⊕
c

UΓn
Γm

(c) , (4.8)

where UΓn
Γm

(c) ∈ End
(⊕

~a∈Γm
V ~ac ,

⊕
~a′∈Γn

V ~a
′

c

)
. This can be understood as the projection of

a general charge-preserving operator onto inputs and outputs from Γm and Γn, respectively.

More precisely, let

IΓn :
⊕
c

(⊕
~a∈Ωn

V ~ac

)
→
⊕
c

(⊕
~a∈Ωn

V ~ac

)

denote the projection onto the subset of states with anyon labels from Γn defined by

IΓn :=
∑
~a∈Γn

∑
c∈Ω

~b∈Ωn−1

|~a,~b; c〉nn〈~a,~b; c|

=
∑
~a∈Γn

a1 a2 a3 an .

Then

UΓm
Γn

= IΓmU
Γm
Γn

IΓn , (4.9)

which expresses the fact that the domain and range of the operator is restricted to states
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with certain particle configurations.

Similar to tensor network states, we represent charge-preserving operators of the form (4.8)

taking the space of m anyons to the space of n anyons by shaded boxes with m ingoing

and n outgoing (unlabeled) edges; summation over these edge labels is left implicit. It is

important to note, however, that such a box represents a different object compared to the

case of tensor networks: it is defined by a family of maps {UΓm
Γn

(c)}c∈Ω, which specify a

weighted superposition of certain labeled trivalent graphs embedded in the box, with m in-

and n outgoing edges as in (4.6).

The diagrammatic representation of anyonic operators and vectors satisfies simple rules

with respect to composition, tensor products and (partial) tracing. Adjoint operators are

obtained by flipping the diagram, reversing the arrows and complex conjugating all coeffi-

cients. Operators are multiplied or applied to vectors by stacking their representations on

top of each other and connecting up out- with ingoing edges. Tensor products are obtained

by placing diagrams next to each other.

Traces and partial traces corresponds to connecting up in- and outgoing strands of an

operator, while simultaneously inserting the operator

D = D = D =
∑
c

d−1
c |c〉〈c| (4.10)

into each line. (Here we use the convention that either input or output of an operator that

acts diagonally on anyon labels may be represented by an undirected edge.) For example,

the partial trace over the nth anyon for an operator U acting on n anyons takes the form

trn O
=

O

D
.

The (complete) trace is obtained by connecting up all the strands in this way and computing
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the vacuum coefficient, i.e.,

tr
O

=


O

D D

D


vac

. (4.11)

The diagram on the right hand side. in (4.11) is in fact proportional to the vacuum graph.

Using (4.3) repeatedly, it is straightforward to check that the states in (4.1) are orthonormal.

The rules for the diagrammatic representation of anyonic operators are remarkably sim-

ilar to the contraction of tensor networks, although their origin is distinct. In particular,

the notion of evaluating of a diagram is very different: A tensor network associates a scalar

quantity to every labeling of the edges. This means that contraction, i.e., summing over

all labelings, results in a scalar. In contrast, anyonic diagrams associate a trivalent graph

to every labeling, and the contraction results in a formal linear combination of equivalence

classes of labeled trivalent graphs. Equivalence is defined by isotopy and the local rules

from (4.2), (4.3) and (4.4).

4.2.2.2 Anyons on a torus

Here we are interested in periodic chains of anyons arranged on a line, and a few modifi-

cations of the above formalism are necessary. As in [76, 86, 100], we consider a chain of

anyons arranged on a topologically nontrivial cycle wrapping around a torus. We denote

the space of n anyons of types ~a = (a1, . . . , an) arranged on such a chain with periodic

boundary conditions by V ~aperiodic. This space does not naturally decompose into subspaces

with specified total charge. An orthonormal basis is given by the basis vectors

|~a,~b〉n =
1

(
∏
i dai)

1/4

a1 a2 an−1 an

b1 b2bn bn−1 bnbn−2

, (4.12)
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where ~b ∈ Ωn is such that each vertex satisfies the fusion rules. The basis specified by (4.12)

corresponds to a decomposition of the Hilbert space as

V ~aperiodic
∼=

⊕
~b=(b1,...,bN )

V a1b1
bN
⊗ V a1b2

b1
⊗ · · · ⊗ V aN bN

bN−1
.

The representation of the bra 〈~a,~b|n of the vector in (4.12) is again obtained by flipping the

diagram and reversing the arrows, i.e.,

〈~a,~b|n =
1

(
∏
i dai)

1/4

a1 a2 an−1 an

b1 b2bn bn−1 bnbn−2
. (4.13)

Local operators acting on a subset of the n anyons are represented as before by shaded

boxes, but global operators can not be represented as superpositions of graphs embedded in

such a planar surface. Instead, it is convenient to embed the chain and associated anyonic

diagrams along one of the fundamental nontrivial cycles of the torus. (This is already

implicit in (4.12).) A global operator O :
⊕

~a∈Ωm V
~a
periodic →

⊕
~a∈Ωn V

~a
periodic mapping

between periodic chains of (possibly different) lengths m and n is then represented by a

shaded strip parallel to the chain on the torus, with m ingoing and n outgoing edges, i.e.,

O
.

Application of such an operator is again equivalent to attaching it to a diagram. Finally,

(partial) traces are computed simply by connecting up edges. For example, for an opera-

tor O acting on
⊕

~a V
~a
periodic, the partial trace over the nth anyon is

trn O
=

O

.

Here we used isotopy on the torus to get a convenient expression on the right hand side.

The (complete) trace is the result of connecting up all strands, and then computing the
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coefficient of the emtpy graph, i.e.,

tr
O

=


O


vac

. (4.14)

Here we denote the coefficient of the empty graph in a formal superposition X by [X]vac.

That is, it is obtained by writing X as a superposition of states with flux a, i.e., with a line

labeled a going around the torus, and taking the coefficient for a = 1.

We can now show that the (partial) trace defined in this fashion is equivalent to the

orthonormality of the set of vectors from (4.12). That is, we now show that the basis states

{|~a,~b〉} of
⊕

~a V
~a
periodic (cf. (4.12)) are indeed orthonormal with respect to the Hilbert-

Schmidt inner product defined by the trace from (4.14). By definition, we have

|〈~a′, ~b′|~a,~b〉|2 =
∏
i

δai,a′i

d
1/2
ai

 a1 a2 an−1an

b1 b2bn bn−1 bnbn−2

b′
n b′

1 b′
2 b′

n−2 b′
n−1 b′

n


vac

.

Inserting the projection I{(e1,e2)} onto a pair of anyons (e1, e2) decomposed into total charge c

as

I{(e1,e2)} = e1 e2 =
∑
c

√
dc

de1de2

e1 e2

e1 e2

c

into the horizontal lines leads to

|〈~a′, ~b′|~a,~b〉|2 = δ
~a,~a′

∑
~c

(∏
i

1√
dai

)
[X]vac , (4.15)

where

X =
∑
~c

√√√√∏
j

dcj
dbjdb′j

a1 a2

b1

c1

bn

c2

b′
1

b2

b′
2 b′

3

b3

b′
n

cn .
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Since we are interested in the vacuum coefficient of X, we can set all ci = 1, getting

[X]vac =
∏
j

δbj ,b′j
dbj

 a1 a2b1bn b1 b2


vac

. (4.16)

But each θ-like graph on the right hand side is proportional to the empty graph, with scalar a bc


vac

=
√
dadbdc . (4.17)

This can be verified by applying (4.3) twice. Inserting (4.17) into (4.16) gives

[X]vac =
∏
j

δbj ,b′j

√
daj .

When combined with (4.15), this implies the claim.

4.2.3 Anyonic Hamiltonians: Long-range Effective Theories

A remarkable feature of the state space of anyons is its topological degeneracy: the Hamil-

tonian of the quantum medium assigns equal energy to each state. Furthermore, this degen-

eracy is stable under local perturbations, a feature that makes anyons particularly suited for

encoding and processing quantum information. These properties hold up to exponentially

small corrections in the interanyon distances.

If the interanyon separation falls below a certain length scale, the microscopic details

of the system become relevant and the topological degeneracy is generally lifted. Such a

degeneracy lifting has been examined in various quantum media [101–103]. In the system-

independent anyonic formalism, Bonderson [75] has shown that a general interaction be-

tween two anyons can be interpreted as tunneling of topological charge, and that generic

tunneling fully lifts the topological degeneracy.

Hamiltonian terms responsible for such tunneling and more generally arbitrary multi-

anyon interactions take the form of Hermitian operators as in (4.6) with m = n. The exact

form of the effective Hamiltonian governing the energy splitting depends on the geometric

arrangement of the anyons. In a regular lattice, nearest neighbor (m = 2) and next-

to-nearest neighbor (m = 3) interactions are most relevant physically as the interaction
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strength decays exponentially with distance. Latticelike arrangements of anyons arise when

certain spatial distributions are energetically favored, e.g., by inserting defects into the

quantum medium, which couple to additional quantum numbers (such as electric charge)

of the anyons.

Paradigmatic models of such effective Hamiltonians have been considered extensively in

the literature. They can be thought of as describing the dynamics of the internal degrees

of freedom of anyons pinned to fixed sites. We refer to [86] for an introductory discussion

of such models. We discuss explicit examples for Fibonacci anyon chains in section 4.4.

4.3 Anyonic Entanglement Renormalization

4.3.1 The Setting

We have described the origin of anyonic Hamiltonians as long-range effective descriptions

of quantum media in section 4.2.3. We now turn to the problem of defining a variational

ansatz for such systems. For concreteness, we restrict our attention to one-dimensional

chains of anyons, arranged in a periodic fashion along a topologically nontrivial cycle on

the torus. We discuss more general two-dimensional arrangements in section 4.5.

One may consider different spatial distributions of anyons on the chain. For example, in

a setting with several nontrivial anyon types, one may be interested in the effective behavior

of a staggered, i.e., alternating arrangement of anyons. While our ansatz could in principle

be adapted to such cases, here we consider the simplest nontrivial setting. We assume that

a subset Ωeff ⊂ Ω of anyons is allowed in each site. The Hilbert space of a (periodic) chain

of length n on the torus is then given by

Hchain,n
∼=
⊕
~a∈Ωneff

V ~aperiodic . (4.18)

The most commonly considered case (e.g., the golden chain [76]) is when Ωeff = {a} consists

of a single anyon a, that is, each site is occupied by a particle of type a. Our formulation

is slightly more general, as it allows to consider Hamiltonians that can create and destroy

particles on sites of the chain (resp. change particle types) when Ωeff = Ω. This is important

when the quantum medium assigns nearly degenerate energies to different distributions of

anyons. Further intermediate cases could be considered.



58

4.3.2 The Ansatz

Consider a MERA-structure for a periodic chain with N sites as in figure 3.6. We associate

to this structure a family of states in the anyon Hilbert space Hchain,N (cf. (4.18)) as follows:

1. To the strip at the top, associate the bra 〈ϕ| of a normalized state

|ϕ〉 ∈ Hchain,n , (4.19)

that is,

7→ 〈ϕ| , (4.20)

where n is the number of ingoing edges.

2. To every intermediate box with m ingoing and n outgoing strands (m ≥ n), associate

the adjoint W† of an isometric charge-conserving map

W ∈ End

 ⊕
~a∈Ωneff

V ~a,
⊕
~a′∈Ωmeff

V
~a′

 , (4.21)

that is,

(n strands)

(m strands)

7→W† .

3. Regard the state |ϕ〉 ((4.20)) and the family of maps {W} ((4.21)) as variational

parameters specifying a state |Ψ〉 = |Ψ|ϕ〉,{W}〉 ∈ Hchain,N of the chain. The state

is determined by the following recipe: in the MERA-structure of figure 3.6, replace

every box by the superposition of trivalent labeled graphs representing the associated

object (i.e., (4.20) and (4.21)). The result is a superposition of labeled graphs, each

with N ingoing edges. This superposition represents 〈Ψ|.
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More explicitly, the maps in (4.21) are of the form

W =
⊕
c

W(c) , (4.22)

with W(c) ∈ End(
⊕

~a∈Ωneff
V ~ac ,

⊕
~a′∈Ωmeff

V
~a′
c ) satisfying

W(c)†W(c) = I⊕
~a∈Ωn

eff
V ~ac

. (4.23)

Eqs. 4.22 and 4.23 severly constrain the set of allowed maps W for certain (m,n) and Ωeff.

This ansatz is clearly motivated by entanglement renormalization for qudits. In fact, it

has the same operational interpretation: the MERA-structure of figure 3.6, after replacing

each box by the superposition of graphs specified by {W}, is a procedure for successively

mapping the chain to a coarse-grained chain by local gates and isometries. Indeed, due

to charge conservation, boxes with the same number of in- and outgoing edges correspond

to local unitaries on the anyons, while boxes with fewer outputs than inputs correspond

to local isometries reducing the number of degrees of freedom. Such reductions preserve

the total charge in their support. Importantly, since the range of each operator W† is

contained in
⊕

~a∈Ωmeff
V ~a, states supported on Hchain,N are mapped to coarse-grained chains

of the same type at each level in Fig 3.6, i.e., with particles from the subset Ωeff ⊂ Ω on all

sites.

4.3.3 Efficient Evaluation of Physical Quantities

Having introduced a set of variational ansatz states parametrized by (|ϕ〉, {W}), we ar-

gue that quantities of physical interest such as expectation values of local observables and

correlation functions can be efficiently computed from these parameters. Here we use the

formal equivalence of the manipulation rules of anyonic states and operators with usual

tensor contractions.

The anyonic analog of (3.10) is

=

W

W†

(n strands)

(m strands)

(n strands)

, (4.24)
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for any operator W ∈ End
(⊕

~a∈Ωneff
V ~a,

⊕
~a′∈Ωmeff

V
~a′
)

with the required isometry property

(where m ≥ n). Each of the small dark boxes represents the projection IΩeff
onto the subset

of allowed anyon labels. Note that, if the edges on the left-hand side of (4.24) are connected

to an operator W′ as specified in the ansatz, these may be omitted. This is because both the

support and range of W′ are already restricted to the set of allowed anyons Ωeff (cf. (4.21)).

In particular, we formally recover the rule (3.10) in this case.

The second important ingredient is the formula in (4.14) for the trace of an operator on

the chain. (4.24) and (4.14) immediately imply that expectation values of local operators

can be efficiently evaluated for a state |Ψ〉 = |Ψ|ϕ〉,{W}〉 in essentially the same manner as

for MERA states of qudits. The same is true for two-point correlation functions for certain

distances of the points related to the MERA structure.

Consider for example a local observable O acting on two sites of the chain. The ex-

pectation value of this operator, given a density matrix ρ, is equal to the diagrammatic

expression

tr(Oρ) =

 O

ρ


vac

. (4.25)

If ρ = |Ψ〉〈Ψ| is an anyonic MERA-state corresponding, e.g., to the structure of figure 3.6 (a),

we conclude from (4.25) that

〈Ψ|O|Ψ〉 = [X]vac ,

where X is the superposition of trivalent labeled graphs specified by the diagram in fig-

ure 3.7 (b). Using (4.24), this immediately reduces to [X ′]vac, where X ′ is the superposition

in figure 3.7 (c). This can be efficiently evaluated using the superoperators defined in (3.12)

and (3.13) (again interpreted as anyonic expressions). Two-point correlations functions can

be computed analogously.

4.3.4 Computational Cost and Refinements of the Ansatz

To count the number of parameters needed to describe the anyonic ansatz states, let D =

maxa∈Ωeff
da be the maximal quantum dimension of the particles used. Since the number
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of states of the form in (4.1) can be upper bounded by O(Dn), a charge-conserving map as

in (4.21) is described by fewer than O(Dn+m) parameters. Similarly, a state |ϕ〉 as in (4.19)

is described by O(Dn) parameters.

As with the MERA for spin chains, the family of ansatz states may be enlarged by

replacing an edge by s > 1 edges; this is analogous to increasing the bond dimension. In

this case, isometries are described by O(Ds(n+m)) parameters as opposed to O(ds(n+m)) in

the qudit case. (Note that, by definition, D < d for any embedding of anyonic states into

qudits: for example, for the Fibonacci anyons considered below, D ≈ 1.618.) In summary,

a general anyonic MERA is described by O(poly(Ds)N logN) parameters, and translation-

invariant and scale-invariant MERAs by O(poly(Ds)logN) and O(poly(Ds)) parameters,

respectively.

The remainder of this story is the same as that of the MERA for spin chains, and we refer

to the extensive literature (e.g., [39]) on this subject. For example, the computational cost of

computing local expectation values is roughly the same as for qudit chains (with χ replaced

by Ds), and methods used, e.g., for varying over the isometries in figure 3.6 can directly

be adapted to the anyonic framework. Compared to the qudit chain setting, an additional

advantage stems from the fact that the isometries are charge preserving and thus take a

block-diagonal form. Therefore, matrix multiplication and singular value decompositions

can be performed on matrices whose dimensions are a constant factor smaller than with a

näıve qudit ansatz. Similarly, methods for extracting critical exponents from scale-invariant

MERA states [49, 104] may be applied in the anyonic setting.

4.3.5 Example: Fibonacci Anyons

The Fibonacci theory has one nontrivial particle τ with quantum dimension dτ = φ =
√

5+1
2

equal to the golden ratio and fusion rule τ × τ = 1 + τ . The F -matrix is given by

= 1
φ + 1√

φ
,

= 1√
φ

− 1
φ ,

(4.26)

where we use the convention that a solid line represents the τ -label, while a dotted line

represents the trivial label 1. Consider a periodic chain of τ -anyons. To get a corresponding

family of ansatz states, we set Ωeff = {τ}. Using the convention that a solid line represents
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an edge with label τ and a dotted line represents an edge with label 1, the Hilbert spaces

Hchain,n of a periodic chains with n ∈ {1, 2} particles are spanned by (cf. (4.12))

Hchain,1 = C =: C|τ〉 , (4.27)

Hchain,2 = span

{
, ,

}
=: span {|ττ〉, |1τ〉, |τ1〉} .

In general, the space Hchain,n is spanned by vectors corresponding to (periodic) sequences of

1s and τs, with the fusion constraint forbidding neighboring 1s (this defines an embedding

into a subspace of (C2)⊗n). This determines the form of the state |ϕn〉 ∈ Hchain,n corre-

sponding to the top box in structures as in figure 3.6 (a) and (b), respectively. Next, we

consider the constraints on the maps W = W(n,m) in (4.22) with n input and m output

anyons, for small (n,m). The standard form of charge preserving isometries/unitaries is

W(1,2) =
eiθ

φ1/4
, (4.28)

W(2,2) =
eiθ1

φ1/2
+
eiθ2

φ
, (4.29)

W(1,3) =
α

φ1/2
+

β

φ1/2
, (4.30)

W(2,3) =
eiθ

φ5/4
+

1

φ3/4

α + β

 , (4.31)

where θ ∈ [0, 2π[ and |α|2 + |β|2 = 1. In all these cases, the map is completely specified

by a phase and/or a qubit state. A less trivial case is W(3,3), which is equal to a phase

times the projection onto the span of plus a two-by-two unitary W(τ) on the span of

{ , }. For later reference, we also state the most general form of an isometry with
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two input and four output strands:

W(2,4) = 1
φ3/2

α + β


+ 1
φ

γ + δ + ε

 ,

(4.32)

where |α|2 + |β|2 + |γ|2 + |δ|2 + |ε|2 = 1.

From (4.27), (4.28) and (4.29), we conclude that the family of states associated with

figure 3.6 (a) is rather uninteresting as the variational parameters (|ϕ〉, {W}) are merely a

set of phases. In contrast, the structure in figure 3.6 (b) gives rise to a less trivial family of

states due to (4.30).

We will give additional nontrivial explicit examples in section 4.4.

4.3.6 Distillable States for Composite Anyon Coding

The MERA ansatz for qudits is motivated by quantum circuits. Indeed, a MERA-description

of a state provides a circuit preparing the state starting from the top-level state |ϕ〉. This

is achieved by realizing isometries using ancillae prepared in pure states; it corresponds to

running the coarse-graining procedure in reverse. This use of the MERA has been proposed

for example as a way of efficiently preparing topologically ordered states [43].

The one-to-one correspondence between preparation circuits of a certain form and states

described by the entanglement renormalization ansatz clearly extends to anyons. However,

there is an additional relation in the anyonic setting, which corresponds to running the

coarse-graining forwards (instead of backwards as in the qudit case): a subclass of the

anyonic ansatz is in one-to-one correspondence with distillation procedures preparing a

logical state |ϕ〉 of composite anyons. The anyonic renormalization ansatz therefore provides

an alternative characterization of “distillable” states in the framework of composite anyon

coding [81].

The goal of composite anyon coding is to prepare a suitable state for computation start-

ing from some unknown initial state, but without using measurements. In the terminology

of anyonic entanglement renormalization, composite anyons are anyons at higher levels in
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the coarse-graining scheme. Initial states that allow to prepare a given target state |ϕ〉
of composite anyons can be characterized as follows. They can be represented by an any-

onic renormalization ansatz (corresponding to the preparation scheme) with the following

properties: the state at the top is fixed to |ϕ〉, and all adjoints of isometries W† are im-

plementable by braiding and fusion. The latter condition means that the renormalization

scheme only consists of unitaries effected by braiding, and coarse-graining, that is, any re-

duction in the number of anyons, is achieved by bunching together some particles. Such

fusion-based coarse-graining is given by a product of the isometry

∑
c

|a, b; c〉〈c| =
∑
c

(
dc
dadb

)1/4

c

a b
a = a(c), b = b(c)

whose adjoint describes the fusion of a pair of particles. An anyonic renormalization ansatz

with these properties can directly be implemented using the operations commonly envi-

sioned to be available for manipulating anyons. Thus we can regard such schemes as state

preparation circuits for topological quantum computers.

4.4 Application to the Golden Chain and the Majumdar-

Ghosh Chain

4.4.1 The Model

In this section, we consider the use of the anyonic MERA ansatz in the context of the

golden chain [76] and its relatives. An introduction to these models can be found in [86].

Specifically, we consider the Fibonacci-anyonic analog of the Heisenberg and the Majumdar-

Ghosh (MG) spin chains. The former was introduced in [76] and consists of a uniform chain

of N Fibonacci anyons with Hamiltonian terms favoring one of either possible total charge

of two neighboring τ -particles. Concretely, the Hamiltonian is given by

J2 ·Hgolden = −J2

N∑
i=1

H i
2 , (4.33)

where each term H i
2 is a projection onto trivial charge of the anyons i and i+ 1, i.e., it has

the diagrammatic representation 1
φ . In analogy with the familiar SU(2) spin chains, the
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Figure 4.1. Phase diagram of the model in (4.35) as obtained in [106]. Phases I and II are
gapped, with the exact ground states known at the Majumdar-Ghosh (MG) point θ = 3π/2
(see Section 4.4.2) and at tan θ = φ/2. There are two extended critical phases for which an
exact mapping was established to the 3-state Potts and the tricritical Ising model at the
FM- and AFM-golden chain points, respectively [76]. A small sliver of an incommensurate
phase is found near θ = 1.075π next to a phase with Z4-symmetry; both these phases are
believed to be critical. See [106] for a detailed discussion.

case J2 > 0 energetically favoring trivial total charge is referred to as “antiferromagnetic”

(AFM) coupling, whereas J2 < 0 is called “ferromagnetic” (FM) coupling.

The Majumdar-Ghosh (MG) chain [105] is a model of SU(2) spin-1/2 particles arranged

on a chain, with three-particle interactions favoring either total spin 3/2 (called ferromag-

netic/FM) or 1/2 (called antiferromagnetic/AFM). Its anyonic analog [106] takes the form

J3 ·HMG = −J3

N∑
i=1

H i
3 , (4.34)

where H i
3 is the projection onto trivial charge of three neighboring anyons. Using the F-

matrix from (4.26), it is straightforward to rewrite the terms H i
2 and H i

3 in the standard

basis from (4.12). Corresponding expressions can be found in [106]. Expressed in the

standard embedding into (C2)⊗n, this leads to 3- and 4-qubit terms, respectively.

The Hamiltonian in (4.33) was studied in detail in [76]. Criticality and a two-dimensional

CFT description were established numerically. Furthermore, an exact mapping to a stan-

dard integrable two-dimensional classical lattice model [107] known as the RSOS model was

given. These studies were extended to the one-parameter family of Hamiltonians

Hθ := cos θ ·Hgolden + sin θ ·HMG , (4.35)
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which exhibits a rich phase diagram as discussed extensively in [106], see figure 4.1. Sub-

sequent work [100, 108] considered generalizations to su(2)k anyons and established a con-

nection between the gapless modes of these anyon chains to edge states of topological

liquids [100], which then provides some insight into the collective behavior of anyons in a

two-dimensional setting [100, 108]. We refer to these references for further details, and do

not attempt to give a complete account here. Instead, we restrict ourselves to a few example

computations illustrating the power of the anyonic MERA ansatz. Specifically, we consider

the model in (4.35).

4.4.2 Exact Renormalization Group Fixed Point at the Majumdar-Ghosh

Point

We first consider the FM (i.e., J3 < 0) case of the MG chain, the anyonic analog of the

Majumdar-Ghosh point of the spin-1/2 Heisenberg chain for the point θ = 3π/2 in (4.35).

This point lies in a gapped phase extending from θ ≈ 1.38π to θ ≈ 1.528π, with fourfold

degeneracy throughout the phase (for chains with even length) [106]. The ground space at

this point is spanned by the states

|1τ1τ1τ · · ·〉 ∝ ,

|ττxττxττx · · ·〉 ∝ ,
(4.36)

and their translates by one site. Here, a wiggly line denotes a superposition;

τx = =
1

φ
+

1√
φ

.

We will now argue that the two-dimensional subspace spanned by (4.36) is exactly described

by a scale-invariant anyonic MERA of a simple form. In other words, these states are

fixed points under the corresponding renormalization group procedure. This provides an

encoding of a subspace of the ground space, with the property that the identity of the

encoded state is revealed only at the top level in the MERA structure. This is analogous

to MERA-descriptions of topologically ordered systems, which are exact fixed points of

a renormalization group flow: information encoded in a topologically degenerate ground

space can be recovered at the top level of the MERA-hierarchy [43, 44]. However, in the

case considered here, there is a local order parameter given by the density of τ -labels on
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the chain.

To specify the scale-invariant MERA-ansatz describing the ground space from (4.36),

consider the MERA-structure of Figure 3.6(a) with refinement parameter s = 2, i.e., with

every strand replaced by two. Due to this doubling and scale invariance, the corresponding

ansatz then is described by an isometry W = W(2,4) of the form in (4.32) and a unitary U

acting on four τ -anyons. We set the unitary equal to the identity, and the isometry equal

to

W :=
1√
φ

, (4.37)

which corresponds to the parameters (α, β, γ, δ, ε) = ( 1
φ ,

1√
φ
, 0, 1

φ ,
1√
φ

) in (4.32). This com-

pletes the specification of the MERA up to translation (which we fix later), as the top-level

state |ϕ〉 depends on the actual state considered. Note that the MERA-structure of Fig-

ure 3.6(a) with unitaries equal to the identity is known as a tree-tensor network [109–111]

in the nonanyonic setting.

Let us argue that the renormalization group scheme has the ground states from (4.36)

as fixed points. This is most easily seen for the state |1τ1τ1τ · · ·〉 using the diagrammatic

calculus: applying a layer of (adjoints of) isometries corresponds to stacking N/4 parallel

copies of (4.37) on top of the state. We assume that the isometries are aligned in such as

way that this takes the form

∝

for the state |1τ1τ1τ · · ·〉, where we suppressed scalar factors. Here we used isotopy invari-

ance and (4.3). With (4.12), it is easy to verify that the operation (W†)⊗N/4 also preserves

the norm of the state. This establishes the claimed fixed-point property for |1τ1τ1τ · · ·〉.
To verify the claim for the second state |ττxττxττx · · ·〉, it suffices to observe that this state

is essentially equivalent to the former but with τ -flux, i.e.,

∝ ,
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because of the identity

= .

This immediately implies that this state is fixed by the same renormalization group scheme.

4.4.3 Numerical Variation over Ansatz States

To assess the suitability of the anyonic entanglement renormalization ansatz as a numeri-

cal method, we have implemented an algorithm for numerically minimizing the energy by

varying over the parameters of a translation-invariant ansatz. The algorithm is based on

iterative optimization of the (identical) isometries at each level and the top-level state. It

is described in detail in [39] for nonanyonic spin chains. For a fixed isometry, it proceeds

by computing its environment, that is, the contraction of the MERA-network with the

isometry omitted. The resulting tensor can be interpreted as a linear map whose singular

value decomposition dictates how the isometry is updated. Adapting this to the anyonic

setting is straightforward: here the environment always has a block-diagonal form with

respect to total charge. Compared to the algorithm of [39], the only significant difference

lies in the implementation of the ascending and descending superoperators (see, e.g., (3.12)

and (3.13)) used to compute the environments. As with all anyonic operations, they require

applying basis changes into compatible treelike bases (cf. (4.2)). These basis changes can

be precomputed.

This randomized optimization algorithm is susceptible to local minima, and its conver-

gence depends on the choice of initial points. In practice, these issues appear to be minor

and can be addressed by starting with a large number of initial points and postselecting

after a few iterations.

Ground state energy and correlation functions

We have applied the variational algorithm to periodic chains of 12 and 16 Fibonacci anyons

governed by the Hamiltonian in (4.35). These system sizes were chosen to allow for compari-

son with exact diagonalization data and to test the suitability of different MERA structures.
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(a) Ternary MERA structure applied to 12 anyons

 

 

                   exact
MERA

E0

θ

10−2

10−3

10−4

10−5

∆E

π/4 π/2 3π/4 π 3π/25π/4 7π/4

θ

0
−14

−12

−10

−8

−6

−4

−2

0

2

4

π 3π/2π/2

(b) Binary MERA structure applied to 16 anyons

Figure 4.2. Ground state energy approximated variationally by an anyonic entanglement
renormalization ansatz. The inset in each figure shows the relative error ∆E = (EMERA −
E0)/(Emax−E0). Panel (a) is based on a ternary anyonic MERA for a system of 12 anyons,
while panel (b) shows the result of a binary anyonic MERA for a chain of 16 anyons.
At the Majumdar-Ghosh point (θ = 3π/2), the variational procedure recovers the exact
fixed-point discussed in section 4.4.2 for the binary MERA. In (b), the approximation is
best around around the golden chain-point with AFM-couplings θ = 0. This is consistent
with the fact that the ground state has a Z2-sublattice ordering [76], which is compatible
with the coarse-graining structure of a binary MERA. For θ = π, the ground state has a
Z3-sublattice ordering for which the binary MERA structure is less suited. However, the
approximation is still better than in intermediate regions where the Hamiltonian has both
2-local and 3-local terms. Similarly, panel (a) shows that a ternary structure appears to be
suitable for capturing the Z3-sublattice ordering at the golden chain-FM-point θ = π.
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For the 12- and 16-anyon chains, we use the “ternary” and “binary” MERA-structures

, (4.38)

with s = 2 (i.e., every strand is doubled). The former consists of a single level of coarse-

graining isometries, while the latter has two such levels. The variationally obtained ground

state energy is compared to its exact value in figure 4.2. As shown, we find good agreement

between the variationally estimated ground state energy and its exact value, over a wide

range of values of the parameter θ.

Figure 4.3 shows that ground state energies computed using the binary MERA are

sufficient to obtain a rough estimate for the location of the phase boundaries.

To study whether the anyonic MERA correctly reproduces correlations in the ground

state, we have computed the (translation-averaged) two-point correlation functions

C(r) =
1

N

N∑
i=1

(
〈H i

2H
i+r
2 〉 − 〈H i

2〉 · 〈H i+r
2 〉

)
(4.39)

of the local topological charge density (as measured in terms of the local projection H i
2 onto

trivial charge for a pair). The result of this computation for the AFM-point θ = 0 and

the FM-point θ = π are shown in figure 4.4 and figure 4.5, respectively. They exhibit a

remarkably good agreement with the exact values.

In figure 4.6, we show the error when computing nearest-neighbor and long-range corre-

lations as a function of the Hamiltonian parameter θ. We observe good accuracy in regions

where the ground state energy is well approximated (compare figure 4.2). As expected,

the considered MERA-structures are less suited for describing ground state correlations at

intermediate values of θ, where the Hamiltonian has both 2-anyon and 3-anyon interactions.

We emphasize that the structures in (4.38) with s = 2 are two of the simplest possible

leading to nontrivial families of ansatz states for Fibonacci anyons. The support of the

unitaries/isometries (4 anyons) is only marginally larger than that of the terms in the

Hamiltonian from (4.35). This suggests that the approximation by such states may be
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Figure 4.3. The first and second (inset) derivative of the ground state energy with respect
to the parameter θ approximately reveals the location of the phase boundaries (red vertical
lines). This data was obtained from the binary MERA for 16 anyons used to produce
figure 4.2 (b). For each of the 40 points θ0 ∈ [0, 2π], the ground state energies E0(θ0 ±∆θ)
at two neighboring points at distance ∆θ = 10−3 were approximated using the MERA.
The plots show the corresponding discrete approximation to the first and second derivative
at each point. We stress that only limited information can be gained from this plot. In
particular, it does not reveal the nature of the phase transition. We refer to the detailed
discussion in [86], where, e.g., the CFT descriptions of the transitions out of the tricritial
Ising phase have been identified.
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(a) C(r) with the ternary MERA at the AFM-point

(b) C(r) with the binary MERA at the AFM-point

Figure 4.4. Two-point correlation function C(r) (cf. (4.39)) of the local topological charge
density at the AFM point. They reveal a Z2-sublattice ordering of the ground state wave
function. The inset shows the absolute error |δC(r)| = |CMERA(r)− Cexact(r)|.
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(a) C(r) with the ternary MERA at the FM-point

(b) C(r) with the binary MERA at the FM-point

Figure 4.5. Two-point correlation function C(r) (cf. (4.39)) of the local topological charge
density at the FM point. The inset shows the absolute error |δC(r)| = |CMERA(r) −
Cexact(r)|.
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(a) |δC(1)| and |δC(6)| for the ternary MERA

(b) |δC(1)| and |δC(8)| for the binary MERA

Figure 4.6. The absolute error |δC(r)| = |CMERA(r)−Cexact(r)| of the nearest-neighbor (r =
1) and long-range (r = 6 respectively r = 8) charge-charge correlation functions. Quali-
tatively, these deviations agree with the errors in the ground state energy (see figure 4.2).
Note that at the Majumdar-Ghosh point (θ = 3π/2), the plotted |δC| is large even though
the MERA accurately represents one of the ground states. This is because of the degeneracy
and the fact that Cexact is computed from the completely mixed state on the ground space.

rather coarse. Nevertheless, the ansatz provides reasonable approximations to the ground

state energies (for all θ), and correlation functions at the AFM- and FM-points where the

Hamiltonian consists of nearest-neighbor-terms. This illustrates that anyonic entanglement

renormalization successfully exploits the constraints imposed by conservation of topological

charge. Future work may go beyond this proof of principle by considering refined families

with parameters s > 2. This should lead to significant improvements as in the nonanyonic

setting: Here accurate results for correlation functions are usually obtained only for high

bond dimension (e.g., χ = 22 for Ising and Potts chains at criticality [39]).
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Larger systems

To test the scalability of the method, we have additionally computed the ground state

energy of chains of length N ∈ {32, 64, 128} using the binary MERA-structure (with s = 2)

obtained by adding levels to (4.38). Since this is beyond the reach of exact diagonalization,

we consider the AFM-point, which allows us to compare our results to the CFT-predictions

of [76].

Explicitly, we use the fact that the low-lying spectrum of a periodic one-dimensional

critical quantum systems of length N takes the form

E = εN +
2πv

N

(
hL + hR −

c

12

)
. (4.40)

Here ε and v are nonuniversal constants, c is the central charge of the CFT, and hL and hR

are the conformal weights of the holomorphic and antiholomorphic part of the local field

associated with the energy level. The latter parameters are defined in terms of a represen-

tation of the Virasoro algebra and are tabulated for unitary minimal CFTs. In [76], the

CFT corresponding to the AFM-point was unambiguously identified as that describing the

tricritical Ising model at its critical point, with central charge c = 7/10. The ground state

energy E0 corresponds to hL = hR = 0, whereas the first excited energy E1 is determined

by hL = hR = 3/80.

Using the exact values of E0 and E1 for N = 16, we determine the nonuniversal con-

stants in (4.40) (approximately). The resulting prediction for the ground state energy

density E0/N for system sizes N ≤ 16 differs by only 10−2% from that obtained in the

same way using the exact spectrum at N = 8. This suggest that finite-size effects are neg-

ligible, and we use the prediction from (4.40) obtained in this fashion to study the anyonic

MERA for larger systems.

Figure 4.7 shows the result of this computation. We find that the ground state energy

density is well approximated by the anyonic MERA ansatz even for larger systems.

Throughout this chapter, we have considered finite-size systems. A modification of the

optimization algorithm for scale-invariant qudit MERA allows to numerically estimate data

of the associated CFT in the continuum limit [47–49]. Adapting this to the anyonic setting,

this can provide an additional benchmark when comparing to the predictions of [76, 106].

Indeed, results of this kind were recently presented in [80] (see note below).
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Figure 4.7. Ground state energy per site obtained for N = 16, 32, 64 and 128 anyons at the
AFM-point using the anyonic MERA (blue crosses). The red line shows the CFT prediction
for the ground state energy obtained by extrapolating from N = 16 (as discussed in the
text). The dotted curves indicate the (modulus of the) deviation from this prediction when
using N = 8 instead. The inset illustrates the relative error of the MERA with respect to
the CFT prediction.

(a) (b)

Figure 4.8. Two-chain ladder arrangement of Fibonacci anyons as discussed in [86], with
nearest-neighbor interactions. We consider the ordering indicated in (b).

4.5 Braiding and More General Arrangements of Anyons

In the previous chapters, our focus has been on one-dimensional chains of anyons. Here we

briefly comment on the generalization of the anyonic entanglement renormalization ansatz

to systems of anyons arranged in a more general way (e.g., a regular lattice). Such systems

have been studied before (see [108]), and the modifications necessary to define corresponding

anyonic Hamiltonians are nicely explained in [86]. In fact, these modifications directly carry

over to anyonic entanglement renormalization when a linear ordering of the anyons at every

level is chosen. An analogous situation arises when considering fermionic tensor networks,

and corresponding techniques [94, 95] can thus be extended to anyons.

For concreteness, we first consider the example of the two-leg ladder model discussed

in [86], closely following that presentation. This is a system of two chains of m anyons

each placed next to each other as shown in figure 4.8(a) along a nontrivial cycle on the



77

torus. The figure also indicates two-anyon nearest neighbor interactions, which are, e.g.,

projections onto trivial charge as in the golden chain.

The Hilbert space of this system is V ~aperiodic with ~a = (τ, . . . , τ)︸ ︷︷ ︸
2m

, as this space depends

only on the topology of the surface (an n = 2m-punctured torus) and the boundary labels

(all equal to τ). However, the basis in (4.12) is now ambiguous, and we must choose a linear

ordering of the anyons. A convenient choice of an ordering is shown in figure 4.8(b).

Given this ordering, some of the nearest-neighbor terms in the Hamiltonian now act on

nonneighboring pairs (i, i+2) of strands in the diagrammatic representation. To make sense

of such terms, it is necessary to introduce an additional basis change corresponding to a

transposition (i, i+ 1) 7→ (i+ 1, i). Physically, such basis changes correspond to movements

of the anyons, and this is where the (nonabelian) braid group statistics appears: pairs of

neighboring anyons may be exchanged in either clockwise or anticlockwise fashion. Thus

there are two inequivalent ways of transposing neighboring pairs. It is natural to define the

Hamiltonian as the result of transposing, applying the charge projection, and undoing the

transposition, averaged over either version of exchanging.

In the diagrammatic formalism, clockwise- and anticlockwise exchanges of neighboring

anyons are represented by over- and undercrossings, respectively. The following computa-

tional rules involving the R-matrix of the modular category are then added to the isotopy-

invariant calculus:

b a

c
= Rabc

b a

c
,

b a

c
= Ra

∗b∗
c∗

b a

c
.

With (4.2)-(4.4), these rules imply that over- and undercrossings may be resolved according

to

b a
=
∑

c

√
dc
dadb

Rabc

b a

b a

c ,

b a
=
∑

c

√
dc
dadb

Ra
∗b∗
c∗

b a

b a

c ,

(4.41)

where the sums are restricted to fusion-compatible labels c. (4.41) gives the matrix ele-
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ments of the linear operators B1, B2 :
⊕

c V
ab
c →

⊕
V ba
c corresponding to the two types of

exchanges. They are unitary if a = b.

Given this definition, we can write down the interaction corresponding to preferred

trivial charge of a “horizontal” pair (2j, 2j + 2) of neighboring anyons on the bottom chain

in figure 4.8(a) as follows:

∑
a,b

a

a
b +

∑
a,b

a

a
b .

These are 3-anyon operators acting on the anyons indexed (2j, 2j + 1, 2j + 2). Analogous

expressions apply to pairs on the upper chain.

The two-chain ladder is one of the simplest examples where transpositions need to be

used to define physically interesting Hamiltonians. In a more generally arrangement of

anyons, such as a regular two-dimensional lattice, the same procedure applies. Depending

the chosen standard ordering, however, more transpositions may be required to apply a

local operator to a subset of anyons. For example, a projection onto trivial charge of two

anyons may take the form

∑
a

a

a

, (4.42)

where we sum over particles for undirected edges.

The fact that (4.42) is a multi-anyon nonlocal operator now appears to be an obstacle

to the use of the anyonic entanglement renormalization ansatz. But the special structure

of (4.42) allows to efficiently evaluate its expectation value for suitable MERA structures in

spite of this. This is because crossings can be pushed past isometries to higher levels using

the fact that

a

c

b

d
=

a

c

b

d

(and similarly for undercrossings), and be absorbed into the isometries/unitaries by applying
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the linear maps in (4.41) to their inputs and outputs, respectively. This eventually reduces

the evaluation to the expectation value of a local operator for a related anyonic MERA-

state. The efficiency of this procedure depends on the number of crossings that need to

be resolved, and therefore on a judicious choice of orderings. This feature is identical to

fermionic tensor networks/MERAs, where it is necessary to keep track of the number of

swaps.

4.6 Conclusions

We have proposed a variational ansatz for periodic chains of interacting anyons. It is the

natural counterpart of entanglement renormalization for spin chains. Based on the empirical

evidence for the numerical accuracy of the latter, it is reasonable to expect that the ansatz is

a powerful tool for describing critical anyonic systems. Indeed, we have obtained numerical

evidence for its suitability by comparing with exact diagonalization data in the case of (a

variation of) the golden chain.

Our ansatz makes optimal use of the anyonic structure of the Hilbert space by incor-

porating conservation of topological charge at different scales. We expect this to lead to

significant computational savings and improved accuracy compared to more conventional

methods based on embedding the anyons into qubits. It may be more pronounced for more

general anyon models than the Fibonacci anyon chains numerically studied here.

Beyond providing an efficient numerical tool, the proposed ansatz is a starting point

for interesting generalizations. For example, along the lines of [39], one may define a

Hamiltonian renormalization group flow based on the ansatz. This flow generalizes the

perturbative renormalization prescription analytically considered in [77–79] in the context

of random couplings. More importantly, the current work may serve as a stepping stone for

the development of variational methods for two-dimensional systems of interacting anyons.

We give a rough sketch of corresponding adaptations in section 4.5.

The transition from entanglement renormalization for qudits to anyons is remarkably

simple on a conceptual level: it boils down to the replacement of isometries by topological

charge-preserving isometries, and a reinterpretation of networks in terms of the isotopy-

invariant calculus. This suggest that more generally, tensor network states such as MPS or

PEPS may also be adapted to the anyonic setting using similar substitutions. This should
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add significantly to the repertoire of variational methods for topologically ordered systems.
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Chapter 5

Dimension Reduction

5.1 Introduction

Many open problems in condensed matter physics concern strongly correlated quantum

many-body systems. These are typically not solvable analytically, and we have to resort to

numerical simulations. We discussed several numerical methods in the previous three chap-

ters of this thesis. These methods were successful under certain the limits and geometric

restrictions. Unfortunately, there are no known numerical methods for general Hamiltonians

with no restrictions, due to the exponential scaling of the dimension of the corresponding

Hilbert space with system size. This problem is one of the main motivations for the quest

of quantum computers. Indeed, quantum computers can efficiently simulate unitary evolu-

tions of quantum many-body systems with local interactions [112, 113], because they can

inherently deal with exponentially large Hilbert spaces.

Nevertheless, the preparation of the desired initial state on a quantum computer is still

a difficult problem in general [13, 114–117]. In this chapter, we propose a new method for

thermal Gibbs state preparation that achieves an exponential speedup over other known

algorithms. Prior to our method, there have been several proposals to tackle this problem

[118–121]. Some significant alternatives have worse complexity scaling than ours [118, 121],

while others apply to a restricted set of systems [120]. The quantum metropolis algo-

rithm [119], in particular, would often be faster, but lacks complexity bounds. For one-

dimensional systems, the classical algorithm proposed in [11] can be turned into a quantum

one with only a polynomial time complexity overhead with respect to our method, but it

requires an exponentially higher number of bits than the number of qubits we use, and it

does not extend to higher-dimensional systems.
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The time complexity of our method for one-dimensional systems is dominated by the

quantity N‖h‖/T , where N is the number of subsystems, T is the temperature, and ‖h‖ is a

bound on the operator norm of the local terms of the Hamiltonian, the interaction strength.

Note that this scaling is polynomial in N . The memory of the quantum computer scales

simply with N , an exponential improvement over general classical algorithms. Our algo-

rithm can also be massively parallelized, and when run in a cellular automaton architecture

the memory scales as N‖h‖/T , but the total time would be linear in N (the total number

of steps would still be the same). In two and higher dimensions, our method lowers the

number of effective dimensions by one. This results in an exponential speedup, but the

exponential scaling with N remains.

The overall scaling appears to be optimal: the known complexity of thermalizing one-

dimensional quantum systems makes a guaranteed polynomial scaling with temperature

extremely unlikely [13, 117]. We also expect the grouping of ‖h‖/T in the exponent by

dimensional analysis. In other words, the relevant temperature scale is set by the Hamilto-

nian.

5.2 Thermalization Using Phase Estimation

It is easier to introduce this method by explaining the proposal in [121] first. In order to

prepare a thermal state of a given Hamiltonian, the probability of each eigenstate needs

to be set to the correct Gibbs probability. This can be done by first rotating an ancilla

conditioned on the energies of the eigenstates, then by projecting this ancilla to its original

state.

The energy of any given eigenstate, |ψa〉, can be measured using the quantum phase esti-

mation (QPE) procedure (followed by a quantum Fourier transform). Given a Hamiltonian

H =
∑

aEa|ψa〉〈ψa|, the QPE circuit measures and writes down the energy of any input

state |ψa〉 onto energy registers initialized to |0〉. That is, QPE(H) is the transformation:

QPE(H) ≡
∑
a

|ψa , Ea〉〈ψa , 0| . (5.1)

After QPE, we can rotate an ancilla initialized to |0〉 by arccos(e−βEa/2) using a condi-
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|ψa〉
QPE(H)

|ψa〉
|0〉 • |Ea〉

|0〉 U e−βEa/2|0〉+ · · · |1〉

Figure 5.1. QPE followed by a unitary rotation of an ancilla qubit by arccos(e−βEa/2),
where ψa is an eigenstate of the Hamiltonian H and Ea is the corresponding energy. This
is the basic procedure for preparing a thermal state ρ ∝ e−βH .

tional rotation as in figure 5.2. The resulting state from this circuit can be written as

e−βEa |ψa〉〈ψa| ⊗ |Ea〉〈Ea| ⊗ |0〉〈0|+ · · · , (5.2)

where the ellipsis corresponds to the other terms where the rotated ancilla is not in the

state |0〉〈0|.
Now, instead of a single eigenstate, |ψa〉, as input, if we use the maximally mixed state,

1l =
∑

a |ψa〉〈ψa|, the resulting density matrix after the circuit becomes

∑
a

e−βEa |ψa〉〈ψa| ⊗ |Ea〉〈Ea| ⊗ |0〉〈0|+ · · · . (5.3)

Projecting the ancilla to state |0〉 results in the density matrix:

(1/Z)
∑
a

e−βEa |ψa〉〈ψa| ⊗ |Ea〉〈Ea| ⊗ |0〉〈0| , (5.4)

where Z is the partition function. At this point, we can simply trace out the energy registers

and the ancilla to obtain the thermalized state, ρ = (1/Z)
∑

a e
−βEa |ψa〉〈ψa|.

The projection discussed above can be done by measuring the ancilla in the |0〉-|1〉 basis.

If the measurement outcome is the state |0〉, we have successfully performed the projection,

and we fail if we obtain the state |1〉. Before the projection, all eigenstates of the system,

|ψa〉, are equally likely. The unitary rotation conditioned on the energy registers ensures

that the probability of obtaining the outcome |0〉 is higher for lower-energy states. Because

of the precise rotation we chose, the probabilities of the eigenstates are updated to their

corresponding Gibbs weights conditioned on the successful projection.

The probability of a successful projection depends on the eigenvalues of the Hamiltonian,

H. Precisely, this probability is Z/dN , where d is the dimension of each local subsystem.
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If the projective measurement fails, i.e., we obtain the outcome |1〉, we need to restart the

whole procedure. As a result, the number of trials scales exponentially with the system

size. It is possible to obtain a quadratic speedup over this scaling using Grover’s amplitude

amplification [121], but the algorithm still scales exponentially with system size.

5.2.1 Dimension Reduction Overview

We overcome the problem of exponential time cost by dividing the overall procedure into a

sequence of projections and arranging them so that we only need to rebuild a small section

after most failures (see figure 5.2). We first thermalize small regions independently. Each

of these thermalization procedures require some projective measurements to be successful.

When these measurements fail, they only affect the state of the associated small region.

This forces a restart of the thermalization procedure of that region alone, which is not as

costly as the thermalization of the whole system. Once we have thermalized small regions,

we recursively merge them until we have the fully thermalized system as in figure 5.2.

There are very few projective measurements that require a restart of thermalization of

large portions of the system in this procedure. Most failed projective measurements destroy

the state of very small regions. This causes the running time to be only polynomial in

system size for one-dimensional systems. The method also trivially generalizes to higher

dimensions and reduces the scaling of the cost with the system dimension by one compared

to a direct projection.

k = 0

k = 1

k = 2

k = 3

Figure 5.2. The procedure to thermalize an 8-qubit chain. After thermalizing individual
qubits at level k = 0, we pair them up and merge them by adding the Hamiltonian that
connects the two qubits. This procedure is then repeated recursively as we merge two
already thermalized regions of size 2k at level k to obtain a thermalized chain of size 2k+1

at level k + 1.
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5.3 Perturbative Hamiltonian Update

The key technical ingredient for our method is a general procedure that, given sufficient

copies to a thermal state ρ(0) ∝ ε−βH (from previous steps), constructs the state ρ(1) ∝
ε−β(H+h) with high fidelity. This is depicted in figure 5.3, where Hamiltonian H corresponds

to the halves to be merged and h to the link between the two halves, but the procedure

is more general. This method will use controlled evolutions with the Hamiltonians H and

H + h. The final cost, quantified by the total evolution required, will be shown to be

O(eβ‖h‖). This is a probabilistic method and, when it field, we need to restart with a new

copy of ρ−βH . The number of initial copies required also scales like O(eβ‖h‖).

e−βH

e−β(H+h)

Figure 5.3. Merging separate thermal states is done with the general method that constructs

e−β(H+h) from copies of e−βH .

We implement the merging perturbatively. We will see how to generate (with high

probability) the state ρ(ε) ∝ e−β(H+εh) from sufficient copies of ρ(0). We then repeat the

same process to produce the sequence

ρ = ρ(0) → ρ(ε) → ρ(2ε) → · · · → ρ(1) . (5.5)

Every transformation in the sequence has some probability of failure, in which case we

restart. If all of the steps succeed, we approximate the state ρ(1) with an error of O(ε). It

is important to remark that all the errors in this chapter are in the trace norm. That is, in

this case, for input ρ, we build a state σ such that ‖σ − ρ(1)‖Tr ∈ O(ε).

We update the state ρ ∝ e−βH to ρ(ε) ∝ e−β(H+εh), to first order in ε, in two steps.

The first step is probabilistic and updates the probabilities of the Gibbs state through

postselection. If it fails, we will be forced to restart, and this will be the dominant part for

the cost of the algorithm. In the second step we update the eigenbasis to the eigenbasis of

ρ(ε). We now first perfect phase estimation and perfect dephasing, and later account for the
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cost and errors of these operations.

We first derive a perturbative expression for ρ(ε), which holds also for the degenerate

parts of the spectrum. For this, we introduce a parameter λ, formally just an inverse

temperature and use Dyson series in imaginary time.

Lemma 1. Let ρ denote the Gibbs state of H at temperature β, and ρ(ε) the Gibbs of H+εh

at the same temperature. Define J = ‖h‖ to be the coupling strength. Then,

ρ(ε) =

(
ρ− εβ

∑
lr

pl − pr
β(Er − El)

hlr

)
(1− εβTr(ρh))−1 .

with an error O((εβJ)2) in the trace norm. We define (pl − pr)/(β(Er − El)) = pl when

El = Er (this also makes the function continuous). This expression is valid when there are

degeneracies.

Proof. We derive a perturbative expansion for ρ(ε), which holds also for degenerate parts of

the spectrum. For this, we introduce a parameter λ, formally just an inverse temperature

and use Dyson series expansion in imaginary time. We write

∂λe
−β(H+εh)λ = −β(H + εh)e−β(H+εh)λ , (5.6)

which has the solution

(1/Z)e−β(H+εh)λ = (1/Z)e−βHλ − εβ/Z
∫ λ

0
dλ1 e

−βH(λ−λ1)he−β(H+εh)λ1 (5.7)

= (1/Z)e−βHλ − εβ/Z
∫ λ

0
dλ1 e

−βH(λ−λ1)he−βHλ1

+ (εβ)2/Z

∫ λ

0
dλ1

∫ λ1

0
dλ2 e

−βH(λ−λ1)he−βH(λ1−λ2)he−β(H+εh)λ2 . (5.8)

Note that this expansion is well behaved. Theorem 5.4.7 in [122] states that for all

unitarily invariant norms,

∥∥∥∫ 1

0
AtXB1−tdt

∥∥∥ ≤ 1/2‖AX +XB‖ . (5.9)

Using this, we can bound the trace-norm of the first order term in the expansion directly,
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and get

(1/Z)
∥∥∥εβ ∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1

∥∥∥
Tr
≤ (1/Z)εβ/2‖e−βHh+ he−βH‖Tr (5.10)

≤ εβ‖h‖‖e−βH‖Tr/Z ≤ εβ‖h‖ , (5.11)

where ‖h‖ is the operator norm of h.

In fact, the sum of all perturbation terms (first-order and higher) can be bounded by

εβ‖h‖ by applying (5.9) to (5.7), and using the bound Tr(e−β(H+εh)) = Tr(e−βH)(1 +O(ε))

from Ref. [121]. That is,

1

Z

∥∥∥εβ ∫ 1

0
dλ1 e

−βH(1−λ1)he−β(H+εh)λ1

∥∥∥
Tr
≤ 1

Z
εβ/2‖e−βHh+ he−β(H+εh)‖Tr (5.12)

≤ εβ/2 ‖h‖(‖e−βH‖Tr + ‖e−β(H+εh)‖Tr)/Z (5.13)

≤ εβ‖h‖(1 +O(εβ‖h‖)) . (5.14)

For sufficiently small εβ‖h‖, the first two terms of the Dyson expansion are the major

contribution, and we can use the bound on the whole series to write

∥∥εβ‖h‖A1(H̃, h̃) + (εβ‖h‖)2A2(H̃, h̃)
∥∥

Tr
≤ κ(εβ‖h‖) , (5.15)

where κ is a small constant, h̃ = h/‖h‖ and H̃ = βH are dimensionless matrices, and

A1(H̃, h̃) =
1

Z

∫ 1

0
dλ1 e

−H̃(1−λ1)h̃e−H̃λ1 (5.16)

A2(H̃, h̃) =
1

Z

∫ 1

0
dλ1

∫ λ1

0
dλ2 e

−H̃(1−λ1)h̃e−H̃(λ1−λ2)h̃e−H̃λ2 . (5.17)

We get

εβ‖h‖‖A2(H̃, h̃)‖Tr ≤ κ+ ‖A1(H̃, h̃)‖Tr (5.18)

But we have already shown that ‖A1(H̃, h̃)‖Tr ≤ 1, and so

εβ‖h‖‖A2(H̃, h̃)‖Tr ≤ κ+ 1 . (5.19)
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Because this bound holds for all H̃ and h̃, we get

‖A2(H̃, h̃)‖Tr ≤ κ2 . (5.20)

That is, if such a bound didn’t exist (for small, but fixed, εβ‖h‖), then the expression on

the left could not be bounded by the constant κ + 1. Therefore, we get a bound for the

second order contribution

(εβ‖h‖)2 1

Z

∥∥∥∥∫ 1

0
dλ1

∫ λ1

0
dλ2 e

−H̃(1−λ1)h̃e−H̃(λ1−λ2)h̃e−H̃λ2

∥∥∥∥
Tr

= O((εβ‖h‖)2) . (5.21)

We now rewrite the first order perturbation in terms of projectors onto the eigenstates

of ρ.

∑
l,r

∫ 1

0
e−βEl(1−λ1)−βErλ1dλ1 PlhPr/Z =

∑
l 6=r

pl − pr
β(Er − El)

PlhPr +
∑
k

pkPkhPk , (5.22)

where pl = e−βEl/Z. Notice that
∑

l pl = 1. Also notice that if El = Er + δ, then

pl − pr
β(Er − El)

= pl(1 +O(βδ)). (5.23)

That is, if the energies are sufficiently close, then their probabilities are similar, canceling

the gap dependence. Furthermore, writing p = max{pl, pr} and δ = |El − Er| we have

pl − pr
β(Er − El)

= p
1− e−βδ
βδ

≤ p . (5.24)

We have so far an unnormalized first order approximation:

ρ(ε) ∝ ρ− εβ
(∑

l 6=r

pl − pr
β(Er − El)

PlhPr +
∑
k

pkPkhPk

)
· · · . (5.25)

To simplify the notation, we will just write

ρ(ε) ∝ ρ− εβ
∑
lr

pl − pr
β(Er − El)

PlhPr , (5.26)

with the understanding that the fraction goes to pl when r = l.
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At this point it is useful to introduce some notation. We are interested in approximation

in the trace norm. This is justified because the trace norm bounds the probability of error,

over all measurements, when distinguishing two quantum states. With that in mind, we

denote ‖σ1 − σ2‖Tr ∈ O(f), for some function f , by σ1 = σ2 + O(f). We also say that σ1

is σ2 up to an error of order f .

To calculate the normalization, we take the trace of the expression on the previous

lemma to get

Tr

(
ρ− εβ pl − pr

β(Er − El)
PlhPr

)
= 1− εβTr

(∑
l

plPlhPl

)
= 1− εβTrρh . (5.27)

And then

ρ(ε) =

(
ρ− εβ pl − pr

β(Er − El)
PlhPr

)
/(1− εβTrρh) +O((εβJ)2) . (5.28)

5.3.1 Perturbative Update with Perfect Operations

We now give an algorithm that, assuming perfect phase estimation and perfect dephasing,

performs the update of the state ρ ∝ e−βH , to ρ(ε) ∝ e−β(H+εh) to first order in εβ‖h‖.
We present this subroutine in two steps. In the first step we implement, probabilistically,

a transformation, which is the exponential of εβh, to first order. We assume that h ≥ 0.

This step is probabilistic and updates the probabilities though postselection: if it succeeds,

we are projecting on the correct states with the correct probability. If it fails, we will be

forced to restart, and this will be the dominant part for the cost of the algorithm, which

we account for in the next section. In the second step we dephase in the eigenbasis of ρ(ε),

which corresponds to updating the eigenbasis.

The intuitive meaning of the next subroutine is that it implements, probabilistically, an

approximate conjugation σ → e−εβh/2σe−εβh/2.

Lemma 2. Assume perfect phase estimation of e2πiβht with 1/t > βh ≥ 0. Then we can

implement the map

Eβh,ε(σ) ∝ (1− εβh/2)σ(1− εβh/2) ,

with probability 1− εβTrσh. The cost is that of two phase estimation calls.
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Proof. We use phase estimation and postselection. The phase estimation with e2πiβht gives

the map

∑
a

Pa|Ea〉〈0| , (5.29)

where Pa is a projection onto the eigenspace of h with energy Ea. The correction for t and

β on the phase estimation is trivial. This energy gets written in an ancilla register, which

is initialized to |0〉. Now rotate a second ancilla to (1− εβEa/2)|0〉+ · · · |1〉, conditional on

the value of the previous ancilla register, to obtain

∑
a

(1− εβEa/2)Pa|Ea0〉〈00|+ · · · . (5.30)

We now undo the phase estimation to obtain

∑
a

(1− εβEa/2)Pa|00〉〈00|+ · · · = (1− εβh/2)|00〉〈00|+ · · · . (5.31)

Finally we measure the ancillae, and fail unless we obtain 0 for the second ancilla.

Let us consider what is the first order approximation to the updated probabilities of

ρ(ε). Denote the first order correction to the eigenvalues by −εβE(1)
k = −εβTrPkh. Then

the corrected probabilities are, up to normalization,

pke
−εβE(1)

k ≈ pk(1− εβTrPkh) . (5.32)

These are the probabilities of the result of the operation of the previous lemma with input

ρ, which we denote by ρprob,

ρprob = Eh,ε(ρ) ∝ ρ− εβ/2(hρ+ ρh) . (5.33)

In the previous expression, the error is bounded, in the trace norm, by O((εβ‖h‖)2). That

is, the map of Lemma 2 updates the probability correctly to first order.

We also need to change the eigenbasis of ρ, and not only the probabilities. The standard

procedure to evolve from the eigenbasis of some operator to the eigenbasis of a related

operator is the use of the adiabatic approximation. The adiabatic approximation can also
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be seen as a consequence of the Zeno effect, which can be achieved through measurements

or dephasing [123, 124]. Here we implement the Zeno effect directly, or, more specifically,

we assume access to pure dephasing in the eigenbasis of H+ εh (see [124]). Notice that this

could be implemented if we had access to perfect phase estimation.

Lemma 3. Assume access to a perfect dephasing operation in the eigenbasis of H + εh.

Then we can transform ρprob to ρ(ε) with an error O((εβJ)2) in the trace norm, where

J = ‖h‖. The cost is that of one dephasing operation.

Proof. For this proof, it is more convenient to work in the eigenbasis of the new Hamiltonian,

H + εh. Denote by {P (ε)
k } the projectors on the eigenstates of H + εh, and define {p(ε)

k }
and {E(ε)

k } to be the corresponding probabilities and energies in ρ(ε), such that ρ(ε) =∑
k p

(ε)
k P

(ε)
k . Using these projectors and the first order approximation above we can write

ρ = ρ(ε) + εβ
∑
lr

(p
(ε)
l − p

(ε)
r )P

(ε)
l hP

(ε)
r

β(E
(ε)
r − E(ε)

l )
+O((εβJ)2) . (5.34)

After the phase estimation subroutine, we obtained ρprob = (1 − εβh/2)ρ(1 − εβh/2).

Rewriting this in the new eigenbasis, we have

ρprob = ρ(ε) −
∑
k

p
(ε)
k εβhP

(ε)
k /2−

∑
p

(ε)
k εβP

(ε)
k h/2

+ εβ
∑
lr

(p
(ε)
l − p

(ε)
r )P

(ε)
l hP

(ε)
r

β(E
(ε)
r − E(ε)

l )

− ε2β2

2

∑
lr

(p
(ε)
l − p

(ε)
r )hP

(ε)
l hP

(ε)
r

β(E
(ε)
r − E(ε)

l )

− ε2β2

2

∑
lr

(p
(ε)
l − p

(ε)
r )P

(ε)
l hP

(ε)
r h

β(E
(ε)
r − E(ε)

l )
+O((εβJ)2) . (5.35)

Dephasing ρprob in the new basis, i.e., applying the map
∑

k,l:Ek=El
P

(ε)
k · P

(ε)
l , we get
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∑
k,l:Ek=El

P
(ε)
k ρprobP

(ε)
l =

∑
k

p
(ε)
k P

(ε)
k (5.36)

−
∑

k,l:Ek=El

εβ

2
p

(ε)
k P

(ε)
k hP

(ε)
l −

∑
k,l:Ek=El

εβ

2
p

(ε)
k P

(ε)
k hP

(ε)
l (5.37)

+ εβ
∑

k,l:Ek=El

p
(ε)
k P

(ε)
k hP

(ε)
l (5.38)

− ε2β2

2

∑
klm:Ek=Em

(p
(ε)
l − p

(ε)
k )P

(ε)
k hP

(ε)
l hP

(ε)
m

β(E
(ε)
k − E

(ε)
l )

(5.39)

− ε2β2

2

∑
klm:Ek=Em

(p
(ε)
k − p

(ε)
l )P

(ε)
k hP

(ε)
l hP

(ε)
m

β(E
(ε)
l − E

(ε)
k )

(5.40)

+ O((εβJ)2) . (5.41)

Simplifying the above expression, we get

∑
k

P
(ε)
k ρprobP

(ε)
k =

∑
k

p
(ε)
k P

(ε)
k (5.42)

− ε2β2
∑

klm:Ek=Em

(p
(ε)
l − p

(ε)
k )P

(ε)
k hP

(ε)
l hP

(ε)
m

β(E
(ε)
k − E

(ε)
l )

. (5.43)

The O(ε2) term can be rewritten as

ε2β2/2(1/Z)
∑

kl:Ek=El

Pk

(
h

∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1 (5.44)

+

∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1h
)
Pl . (5.45)

The norm of the expression before dephasing can be bounded using 5.11 as

(1/Z)(1/2)
∥∥∥h∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1 (5.46)

+

∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1h
∥∥∥

Tr
(5.47)

≤ (1/Z)(1/2)‖h‖
∥∥∥∫ 1

0
dλ1 e

−βH(1−λ1)he−βHλ1

∥∥∥
Tr
≤ ‖h‖2 . (5.48)

Since dephasing does not increase the trace-norm (dephasing can also be implemented

using phase randomization), we can bound the trace-norm of the higher-order terms by
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O((εβJ)2).

5.3.2 Concatenation

Putting it all together, and concatenating, we obtain the following corollary.

Lemma 4. Assume access to perfect phase estimation and dephasing operations, and to

copies of ρ ∝ e−βH . Then we can can transform e−βH/Tre−βH to e−β(H+h)/Tre−β(H+h).

For a target error in the trace norm O(εβ2‖h‖2), let p denote a lower bound for 1−εβTrρmεh,

where ρmε ∝ e−β(H+mh). An obvious choice is p = 1−εβ‖h‖. Define s = d1/εe. The number

of operations used is a random variable with mean µ bounded by

µ ≤ 1

(1− p)ps ∈ O(p−s) .

The probability that we are not successful after n trials can be bounded by e−p
sn/s/(1− ps)

(that is, the tail has an exponential decay rate). Note that p−s ∈ eβ‖h‖(1 + O(εβ2‖h‖2)).

We can use the same bounds for the number of initial states ρ used.

Proof. Fix ε according to the target error in the trace norm, O(εβ2‖h‖2). We concatenate

the procedures of Lemmas 2 and 3. We prepare an approximation to the target state if,

starting with ρ, we obtain a success run of length s, that is, all consecutive s concatenations

of operations are successful. The final error, in this case, is bounded as O(εβ2‖h‖2) by the

errors of Lemmas 2 and 3 and the triangle inequality of the trace norm.

The number of operations is random. We need a success run of size s, and we restart

with the state ρ after every failure. The distribution of the number of operations is known

in the theory of success runs. For the mean µ we refer to the literature (see, for instance,

[125] Eq. (7.7)). The tail probability is easy to bound using the worst case bound p [126].

For a sequence of random variables with Bernoulli distribution of probability p, define the

random variable Zj to denote the a success run of length s starting at j, that is, all the s

trails starting at j are successful. Denote by F (n) the probability that there is success run

in the first n trails. We have

F (n) = P (Zj = 0, j = 1, 2, . . . , n− s+ 1) ≤ P (Z1 = 0, Zs+1 = 0, . . . , Zbn/sc = 0) . (5.49)
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The random variables Z1, Zs+1, . . . , Zbn/sc are independent, so

F (n) ≤
bn/sc−1∏
k=0

P (Zks+1) = (1− ps)bn/sc ≤ e−p
sn/s

1− ps . (5.50)

5.3.3 Errors and Cost of Operations with Finite Precision

In the previous section we were considering the behavior of our algorithms assuming perfect

phase estimation, which is not realistic. We now assume access to the Hamiltonian H and

account for the effects of the errors inherent in the phase estimation algorithm.

Lemma 5. If we can perform controlled evolutions with h, we can implement the map

Eh,ε(σ) ∝ (1− εβh/2)σ(1− εβh/2) (5.51)

with probability 1− εβTrσh with error O(ε2β2‖h‖2) and cost (evolution time)

O(ε−1β−1‖h‖−2log(1/(εβ‖h‖))).

Proof. We use high precision phase estimation [121, 127–129]. The cost (evolution time

with h), for precision δ and error ε, scales as O(log(1/ε)/δ). We write, as in Lemma 2,

h =
∑
EaPa. High precision phase estimation implements the transformation

∑
a

Pa|0〉 →
∑
a

Pa

(∑
±
c±a |E±a 〉+ qa|ξa〉

)
(5.52)

with |Ea − E±a | ≤ δ and qa ≤ ε. We will follow the same steps as in Lemma 2.

First consider the effect of the error term
∑

a qaPa|ξa〉. All the manipulations conserve

the projectors Pa and do not increase the norm of |ξa〉, so the final error due to these

terms, on input σ, can be bounded with terms like ‖∑a qaPaσ‖tr ≤ ε. The final error can

increase as a result of the normalization when projecting onto the post-selected state, if the

preparation is successful. We will see that this effect is negligible.
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For the other term we get, before undoing the phase estimation

∑
a,±

c±a (1− εβE±a /2)Pa|E±a 0〉+ · · ·

=
∑
a,±

(1− εβEa/2)c±a Pa|E±a 0〉+
∑
a,±

εβ/2(Ea − E±a )c±a Pa|E±a 0〉+ · · · . (5.53)

The last term is again an error, which can be bounded by O(εβδ) in the trace norm.

We undo the phase estimation on
∑

a,±(1− εβEa/2)c±a Pa|E±a 0〉. This gives

∑
a

(1− εβEa/2)Pa|00〉+ · · · = (1− εβh/2)|00〉 , (5.54)

with corrections in O(ε), which we are not writing anymore. Finally we project to the

same as in Lemma 2. We see that the probability that the projection is successful (and the

normalization) is 1− εβTrσh+O(ε2β2‖h‖2 + ε+ εβδ). If we choose ε, εβδ ∈ O(ε2β2‖h‖2),

we obtain the lemma.

Finally, we deal with the errors related to imperfect dephasing. We can try to give some

intuition behind this method. There are two main cases: similar or dissimilar energies. For

similar energies, the previous map already does the proper update, including the update of

the eigenbasis. For dissimilar energies, the previous map updates the probabilities correctly,

to first order, but not the eigenbasis. If we now perform an imperfect phase estimation, the

problem will be corrected as long as the energies are dissimilar enough.

Theorem 1. If we can perform controlled evolutions with h, and evolutions with H+εh, we

can transform ρ to ρ(ε) with probability 1− εβTrρh, error O(ε2β2‖h‖2), and cost (evolution

time) O(log(1/(εβ‖h‖))/(ε‖h‖)).

Proof. We can implement dephasing using high-precision QPE with accuracy δ and precision

ε in time O(log(1/ε)/δ). We measure the energy using the Hamiltonian H + εh and forget

the result. Using high precision phase estimation, as in Eq. (5.52), we get

σ →
∑
ab

P (ε)
a σP

(ε)
b

(∑
±
c±a
(
c±b
)∗ |E(ε)±

a 〉〈E(ε)±
b |

)
+O(ε) . (5.55)

The states |E(ε)±
a 〉 are binary discretizations of the energy, as is standard on phase estima-

tion. If we now forget the result of the phase estimation, which amounts to a partial trace
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of the ancillae, we obtain

σ →
∑
a

P (ε)
a c+

a σ

 ∑
b:E

(ε) +
a =E

(ε) +
b

P
(ε)
b (c+

b )∗ +
∑

b:E
(ε) +
a =E

(ε)−
b

P
(ε)
b (c−b )∗

 (5.56)

+
∑
a

P (ε)
a c−a σ

 ∑
b:E

(ε)−
a =E

(ε) +
b

P
(ε)
b (c+

b )∗ +
∑

b:E
(ε)−
a =E

(ε)−
b

P
(ε)
b (c−b )∗

+O(ε) (5.57)

(5.58)

=
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ

wabP
(ε)
a σP

(ε)
b +O(ε) , (5.59)

where

wab = c+
a (c+

b )∗δ
E

(ε)+
a ,E

(ε)+
b

+ c+
a (c−b )∗δ

E
(ε)+
a ,E

(ε)−
b

+ c−a (c+
b )∗δ

E
(ε)−
a ,E

(ε)+
b

+ c−a (c−b )∗δ
E

(ε)−
a ,E

(ε)−
b

. (5.60)

Note that |wab| ≤ 1 and waa = 1 − O(ε). From now on we drop the O(ε) corrections for

simplicity of notation: they are made sufficiently small with respect to other errors with

only a logarithmic overhead.

We now apply the above map to ρprob from (5.35) to obtain

∑
a,b:|E(ε)

a −E
(ε)
b |≤2δ

wabP
(ε)
a ρprobP

(ε)
b =

∑
a

waaP
(ε)
a pa

− εβ/2
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ

wab(p
(ε)
a + p

(ε)
b )P (ε)

a hP
(ε)
b

+ εβ
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ

wab
(p

(ε)
a − p(ε)

b )

β(E
(ε)
b − E

(ε)
a )

P (ε)
a hP

(ε)
b . (5.61)

Now, we rewrite
(p

(ε)
a −p

(ε)
b )

β(E
(ε)
b −E

(ε)
a )

= p(eβ∆ab−1)
β∆ab

= p(1 + β∆ab/2 + O(β2∆2
ab)), where p =

min(p
(ε)
a , p

(ε)
b ) and ∆ab = |E(ε)

a − E(ε)
b |. From here on, we ignore the O(β2∆2

ab) terms, but

they can be treated in the same way as the O(β∆ab) terms to give a final O(εβ3‖h‖δ2)
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correction. Using this, we can rewrite (5.61) as

∑
a

waaP
(ε)
a pa − εβ/2

∑
a,b:|E(ε)

a −E
(ε)
b |≤2δ

wab(p
(ε)
a + p

(ε)
b )P (ε)

a hP
(ε)
b

+ εβ
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ,E

(ε)
a >E

(ε)
b

wabp
(ε)
a P (ε)

a hP
(ε)
b

+ εβ
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ,E

(ε)
a ≤E

(ε)
b

wabp
(ε)
b P (ε)

a hP
(ε)
b

+ εβ
∑

a,b:|E(ε)
a −E

(ε)
b |≤2δ

wab min(pa, pb)β∆abP
(ε)
a hP

(ε)
b +O(εβ3‖h‖δ2) . (5.62)

We want to rewrite wab as the inner product of two unit vectors. To this end, for each

energy Ea define

|fa〉 =
∑
E

(
c+
a δE,E(ε)+

a
+ c−a δE,E(ε)−

a

)
|E〉 . (5.63)

The vectors |E〉 are the binary energy representations contained in the ancillae of the high

precision phase estimation. Then wab = 〈fb|fa〉.
We can further rewrite ∆ab = |Ea − Eb| = 2δ − 2δ(1 − |Ea − Eb|/(2δ)). We also know

that the sum is over a, b such that |Ea − Eb| ≤ 2δ. We can absorb that condition into ∆ab

and write ∆ab = 2δ − 2δgab, where gab is 1 − |Ea − Eb|/(2δ). Using 5.2.13 from [122] and

|Ea − Eb| ≤ 2δ, we know that the matrix gab is positive definite.

Finally, we have that min(pa, pb) =
√
papb min(e−β(Ea−Eb)/2, e−β(Eb−Ea)/2) =

√
papbe

−β∆ab/2.

From 5.2.17 in [122], we know that e−β∆ab/2 is a positive definite matrix.

Combining everything together, we can bound the trace norm of the the last line of

(5.62):

∥∥∥2εβ2δ
∑
a,b

min(pa, pb)(1− gab)wabhab
∥∥∥

Tr
(5.64)

≤ 2εβ2δ
∥∥∥∑
a,b

√
pae
−∆ab(1− gab)wabhab

√
pb

∥∥∥
Tr

(5.65)

≤ 2εβ2δ
∥∥∥ρ̃ ◦ h ◦ w ◦ e−∆ − ρ̃ ◦ h ◦ w ◦ g ◦ e−∆

∥∥∥
Tr
, (5.66)

where ρ̃ is the density matrix corresponding to the pure state whose amplitudes are given
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by {√pa}. We can further replace h with (h+‖h‖1l)−‖h‖1l, where 1l is the identity matrix,

and (h+ ‖h‖1l) is a positive definite matrix whose norm is less than 2‖h‖. Using 3.4.3 and

2.7.12(iii) from [122] then gives us the bound

2εβ2δ
∥∥∥ρ̃ ◦ ((h+ ‖h‖1l)− ‖h‖1l) ◦ w ◦ e−∆ − ρ̃ ◦ ((h+ ‖h‖1l)− ‖h‖1l) ◦ w ◦ g ◦ e−∆

∥∥∥
Tr

(5.67)

≤ 2εβ2δ
∥∥∥ρ̃ ◦ (h+ ‖h‖1l) ◦ w ◦ e−∆

∥∥∥
Tr

+
∥∥∥ρ̃ ◦ (‖h‖1l) ◦ w ◦ e−∆

∥∥∥
Tr

(5.68)

+
∥∥∥ρ̃ ◦ (h+ ‖h‖1l) ◦ w ◦ g ◦ e−∆

∥∥∥
Tr

+
∥∥∥ρ̃ ◦ (‖h‖1l) ◦ w ◦ g ◦ e−∆

∥∥∥
Tr

(5.69)

≤ 12εβ2δ‖h‖‖ρ̃‖Tr ≤ 12εβ2δ‖h‖ . (5.70)

Simplifying the rest of the terms in (5.62) further gives:

∑
a

waaP
(ε)
a pa − εβ/2

∑
a,b:|E(ε)

a −E
(ε)
b |≤2δ

wab|p(ε)
b − p(ε)

a |P (ε)
a hP

(ε)
b +O(εβ2δ‖h‖) . (5.71)

We can use the same trick as before and write |pa − pb| =
√
papb|e−β(Ea−Eb)/2 −

e−β(Eb−Ea)/2| =
√
papb(β|Ea − Eb| + O(β2δ2)) =

√
papbβ(2δ − 2δgab) + O(β2δ2), where

g is defined above. Using the same procedure, the last error term is also bounded by

O(εβ2δ‖h‖).
Finally, choosing εβ2δ‖h‖ = ε = ε2β2‖h‖2 gives an overall error of O(β2ε2‖h‖2).

5.4 Time Requirements

We can merge two regions already thermalized into one large thermal region with the

two subroutines just described using a sequence of small perturbative steps. Each step

is successful with the probability p ≥ 1 − εβ‖h‖. The average number of steps until we

generate a complete sequence without failures is 〈m〉 ∈ O(eβ‖h‖).1 Each time that we fail

we need to produce two new thermal regions to be merged. The average number of failures

is 〈α〉 ∈ O(eβ‖h‖).

Now we analyze the average number of steps 〈τ(k)〉 required to prepare a thermalized

chain of length 2k at level k in figure 5.2. Since α and τ(k − 1) are independent random

1This is also known from the theory of success runs. We give the average cost, but the tail has an
exponential decay rate, so the worst case cost is similar (see, for instance [126]).
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variables, we can calculate the expectation value of τ(k) as

〈τ(k)〉 = 2〈α〉〈τ(k − 1)〉+ 〈m〉 . (5.72)

The cost of preparing the states at level 0 is smaller than the cost 〈m〉 of merging two

sections, so we get

〈τ(k)〉 ≤ 〈m〉
k∑
j=0

(2〈α〉)j = 〈m〉(2〈α〉)
k+1 − 1

2〈α〉 − 1
= O

(
〈m〉(2〈α〉)k

)
. (5.73)

For the full chain,

〈τ(log2N)〉 = O
(
eβ‖h‖

(
2eβ‖h‖

)log2N
)

= O (exp (logN(β‖h‖/log2 + 1))) . (5.74)

Now we bound the error. Each perturbative step as an error O(ε2β2‖h‖2), so adding a

link gives a total error O(εβ2‖h‖2). The error at level k, ε(k), is bounded by

ε(k) = 2ε(k − 1) +O(εβ2‖h‖2) = O(εβ2‖h‖22k+1) . (5.75)

The total error is O(Nεβ2‖h‖2). If we choose ε = ε̄/(Nβ2‖h‖2), we get a total error of O(ε̄)

in trace-norm. Finally, because the evolution time of each step is O(log(1/(εβ‖h‖))/(ε‖h‖)),
we obtain the dominant contribution to the total evolution time βNβ‖h‖/log2/ε̄.

Notice that 〈α〉 = 〈m〉, depending on the area that we are merging. For dimension D, at

level k, we are going to merge lower dimensional hypercubes of edge size 2k−1. To simplify

the calculations (even though it does not give an optimal scaling of D in the exponent), we

merge all the hypercubes at once. Then the area to merge is given by the surface of the face

of the hypercube, 2(k−1)(D−1), times the number of edges of the hypercube, 2D−1D. This

gives

〈α(k)〉 = eβ‖h‖D2k(D−1)
. (5.76)

After each failure we have to rebuild the 2D nodes of the hypercube, each with a cost
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〈τD(k − 1)〉. This gives

〈τ (D)(k)〉 = 〈α(k)〉(2D〈τ (D)(k − 1)〉+ 1) . (5.77)

We can write 〈τ(−1)〉 = 0. A close expression for 〈τ(k)〉 is

〈τ (D)(k)〉 =
k∑
j=0

j∏
i=0

2D〈α(k − i)〉 . (5.78)

We can bound

〈τ(logN)〉 ≤ log2N

log2N∏
i=0

2D〈α(log2N − i)〉 . (5.79)

The exponent from the multiplication of the α’s is

β‖h‖
log2N∑
i=0

2(D−1)i < β‖h‖2(log2N+1)(D−1)

2D−1 − 1
= β‖h‖2log2N(D−1) 2D−1

2D−1 − 1
≤ 2β‖h‖ND−1 ,

(5.80)

which gives the bound

〈τ(logN)〉 < log2N 2NDe2β‖h‖DND−1
. (5.81)

The dominant contribution is the term e2β‖h‖DND−1
.

The total time complexity and error can be analyzed by imagining that all the interac-

tions between each site are added sequentially and successfully. The number of interactions

is ND, so the total error is εDNDβ2‖h‖2. For a total error ε̄ we choose ε = ε̄/(DNDβ2‖h‖2).

We plug this into the running time of each elementary operation, as before, to obtain the

dominant term

β
e2β‖h‖DND−1

ε̄
. (5.82)
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5.5 Conclusion

We have presented an algorithm that prepares a thermal state of a one-dimensional quantum

system in time polynomial in the system size and exponential in the inverse temperature (as

required by the existence of QMA-complete ground state problems in one-dimension). This

algorithm can be trivially generalized into D dimensions, by dividing up the D-dimensional

system into many smaller pieces, and by combining these pieces recursively. This would

result in an exponential speedup by reducing the time requirements of the simulation from

exp(ND) to exp(ND−1), where N is the linear dimension of the system. We do not get

polynomial scaling with system size for D > 1 because the intersections of two neigh-

boring regions scale with ND−1. Note that this is to be expected because there exist

two-dimensional ground states with constant gap that encode the solution to NP-complete

problems.

There are also several possible improvements to the scaling of this algorithm. If one is

interested in thermalizing a classical system with a small quantum perturbation one can first

solve for the classical part of the Hamiltonian. Then, one would only need to use projections

for the quantum perturbation. Also, if one is interested in thermalizing a quantum system

with short-ranged quantum correlations, one can also use belief propagation [1, 2, 27, 28]

to reduce the storage requirements from O(N) qubits to O(l log(N)), where l is a constant

related to the quantum correlation length. This can be done by tracing out parts of the

blocks that do not share any entanglement with the boundary to be merged.
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Chapter 6

Conclusion

In this thesis, we discussed various classical and quantum algorithms to simulate static

properties of quantum many-body systems. We observed in chapter 1 that analytical solu-

tions for quantum many-body problems are very rare. If we want to extract any information

about these systems from the equations of quantum mechanics, we need to resort to numer-

ical calculations. As these calculations require exponential resources with system size, we

stressed the need to find approximating algorithms. Throughout the rest of this thesis, we

focused on alternative approximation schemes that improved the efficiency of the previously

known methods.

In chapter 2, we generalized the classical belief propagation algorithm to the quantum

setting. This algorithm allows us to solve for thermodynamic properties of certain quan-

tum many-body systems in the high temperature limit. In chapter 3, we combine belief

propagation with multiscale renormalization ansatz, which in return allows us to use belief

propagation algorithm from chapter 2 at all temperatures. In chapter 4, we introduced

anyonic multiscale renormalization ansatz, which solves for the ground state properties of

anyonic systems. Finally, in chapter 5, we described a quantum algorithm, which prepares

thermal states of any quantum many-body system on a quantum computer and achieves an

exponential speedup over previously known methods.

The common point of the algorithms discussed in this thesis is the fact that they exploit

the locality of physical Hamiltonians. Even though we need exponential resources to simu-

late the most general quantum many-body system, we can approximate solutions very well

for systems defined on physically motivated geometries. In nature, most interactions are

two-body and most Hamiltonians of interest have some local geometric structure. We have

demonstrated in this thesis that quantum many-body problems can be solved efficiently by



103

exploiting this structure. We described both classical and quantum algorithms for these

simulations, which have been more efficient than previously known methods.
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[93] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81, 165104 (2010).

[94] C. Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303 (2010).

http://dx.doi.org/10.1103/PhysRevB.79.033109
http://dx.doi.org/10.1103/PhysRevB.80.081104
http://dx.doi.org/DOI: 10.1016/j.aop.2010.05.002
http://dx.doi.org/10.1063/1.3490195
http://arxiv.org/abs/arXiv:1001.4363
http://dx.doi.org/10.1103/PhysRevLett.103.110403
http://dx.doi.org/10.1103/PhysRevLett.98.160409
http://dx.doi.org/10.1103/PhysRevLett.99.140405
http://dx.doi.org/10.1103/PhysRevB.78.224204
http://dx.doi.org/10.1103/PhysRevB.78.224204
http://dx.doi.org/ 10.1103/PhysRevB.79.155120
http://dx.doi.org/ 10.1103/PhysRevB.82.115126
http://dx.doi.org/10.1103/PhysRevA.81.052309
http://dx.doi.org/10.1103/PhysRevB.55.2164
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/ 10.1143/PTPS.176.384
http://dx.doi.org/ 10.1143/PTPS.176.384
http://dx.doi.org/10.1088/1367-2630/12/2/025007
http://dx.doi.org/10.1103/PhysRevB.80.165129
http://dx.doi.org/10.1103/PhysRevA.70.060302
http://dx.doi.org/10.1103/PhysRevB.78.205116
http://dx.doi.org/ 10.1103/PhysRevB.81.245110
http://dx.doi.org/10.1103/PhysRevA.81.052338
http://dx.doi.org/10.1103/PhysRevA.81.052338
http://dx.doi.org/ 10.1103/PhysRevB.81.165104
http://dx.doi.org/10.1103/PhysRevA.81.050303


108

[95] T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009).

[96] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 98, 140506
(2007).

[97] K. Walker, “On Witten’s 3-manifold invariants,” (1991), available at
http://canyon23.net/math/.

[98] R. Koenig, G. Kuperberg, and B. W. Reichardt, Ann. Phys. 325, 2707 (2010).

[99] P. Bonderson, M. Freedman, and C. Nayak, Ann. Phys. 324, 787 (2009).

[100] C. Gils, E. Ardonne, S. Trebst, A. W. W. Ludwig, M. Troyer, and Z. Wang, Phys.
Rev. Lett. 103, 070401 (2009).

[101] V. Lahtinen, G. Kells, A. Carollo, T. Stitt, J. Vala, and J. K. Pachos, Ann. Phys.
323, 2286 (2008).

[102] M. Baraban, G. Zikos, N. Bonesteel, and S. H. Simon, Phys. Rev. Lett. 103, 076801
(2009).

[103] M. Cheng, R. M. Lutchyn, V. Galitski, and S. Das Sarma, Phys. Rev. Lett. 103,
107001 (2009).

[104] S. Montangero, M. Rizzi, V. Giovannetti, and R. Fazio, Phys. Rev. B 80, 113103
(2009).

[105] C. K. Majumdar and D. K. Gosh, J. Math. Phys. 10, 1388 (1969).

[106] S. Trebst, E. Ardonne, A. Feiguin, D. A. Huse, A. W. W. Ludwig, and M. Troyer,
Phys. Rev. Lett. 101, 050401 (2008).

[107] G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Stat. Phys. 35, 193 (1984).

[108] A. W. W. Ludwig, D. Poilblanc, S. Trebst, and M. Troyer, “Two-dimensional quan-
tum liquids from interacting non-abelian anyons,” arXiv:1003.3453 .

[109] Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).

[110] L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80, 235127 (2009).

[111] V. Murg, F. Verstraete, O. Legeza, and R. M. Noack, Phys. Rev. B 82, 205105 (2010).

[112] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

[113] S. Lloyd, Science 273, 1073 (1996).

[114] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation
(Amer. Math. Soc., 2002).

[115] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070 (2006).

[116] R. Oliveira and B. M. Terhal, Quant. Inf. Comp. 8, 0900 (2008).

[117] D. Aharonov, D. Gottesman, S. Irani, and J. Kempe, Commun. Math. Phys. 287,
41 (2009).

http://dx.doi.org/10.1103/PhysRevA.80.042333
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1016/j.aop.2010.08.001
http://dx.doi.org/DOI: 10.1016/j.aop.2008.09.009
http://dx.doi.org/ 10.1103/PhysRevLett.103.070401
http://dx.doi.org/ 10.1103/PhysRevLett.103.070401
http://dx.doi.org/DOI: 10.1016/j.aop.2007.12.009
http://dx.doi.org/DOI: 10.1016/j.aop.2007.12.009
http://dx.doi.org/10.1103/PhysRevLett.103.076801
http://dx.doi.org/10.1103/PhysRevLett.103.076801
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevLett.103.107001
http://dx.doi.org/10.1103/PhysRevB.80.113103
http://dx.doi.org/10.1103/PhysRevB.80.113103
http://dx.doi.org/10.1063/1.1664978
http://dx.doi.org/ 10.1103/PhysRevLett.101.050401
http://dx.doi.org/10.1007/BF01014383
http://arxiv.org/abs/arXiv:1003.3453
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevB.80.235127
http://dx.doi.org/ 10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/ 10.1007/s00220-008-0710-3
http://dx.doi.org/ 10.1007/s00220-008-0710-3


109

[118] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 61, 022301 (2000).

[119] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Verstraete, Nature
471, 87 (2011).

[120] M. Cramer and J. Eisert, New J. Phys. 12, 055020 (2010).

[121] D. Poulin and P. Wocjan, Phys. Rev. Lett. 103, 220502 (2009).

[122] R. Bhatia, Positive Definite Matrices (Princeton University Press, Priceton, New
Jersey, 2007).

[123] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, and A. J. Landahl,
Phys. Rev. A 66, 032314 (2002).

[124] S. Boixo, E. Knill, and R. D. Somma, QIC 9, 833 (2009).

[125] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd
Edition, 3rd ed. (Wiley, 1968).

[126] N. Balakrishnan and M. V. Koutras, Runs and Scans with Applications, 1st ed. (Wiley-
Interscience, 2001).

[127] E. Knill, G. Ortiz, and R. D. Somma, Phys. Rev. A 75, 012328 (2007).

[128] R. D. Somma, S. Boixo, H. Barnum, and E. Knill, Phys. Rev. Lett. 101, 130504
(2008).

[129] C. Chiang and P. Wocjan, “Quantum algorithm for preparing thermal gibbs states -
detailed analysis,” (2010), arXiv:1001.1130 .

http://dx.doi.org/10.1103/PhysRevA.61.022301
http://dx.doi.org/ 10.1038/nature09770
http://dx.doi.org/ 10.1038/nature09770
http://dx.doi.org/10.1088/1367-2630/12/5/055020
http://dx.doi.org/10.1103/PhysRevLett.103.220502
http://dx.doi.org/ 10.1103/PhysRevA.66.032314
http://dx.doi.org/10.1103/PhysRevA.75.012328
http://dx.doi.org/ 10.1103/PhysRevLett.101.130504
http://dx.doi.org/ 10.1103/PhysRevLett.101.130504
http://arxiv.org/abs/1001.1130

	Acknowledgements
	Abstract
	Introduction
	Motivation and Overview
	The Quantum Many-Body Problem
	Exponential Scaling of Quantum Simulations
	Density Matrix
	Thermal Equilibrium


	Belief Propagation
	Introduction
	Classical Belief Propagation
	Sum-Product Algorithm
	Classical Hamiltonians

	Graphical models
	Quantum Belief Propagation Algorithm
	Convergence

	Quantum Belief Propagation for Quantum Many-Body
	Replica
	Sliding Window

	Numerical Results
	Conclusion

	Coarse-Grained Belief Propagation
	Introduction
	Errors in Belief Propagation Results
	Disordered System Revisited
	Multiscale Entanglement Renormalization
	Coarse-Grained Belief Propagation
	Discussion

	Anyonic Entanglement Renormalization
	Introduction
	Anyonic States and Operators
	A Unified Treatment of Topological Order
	The Anyonic Hilbert Space and Anyon Diagrams
	Anyons on a disc
	Anyons on a torus

	Anyonic Hamiltonians: Long-range Effective Theories

	Anyonic Entanglement Renormalization
	The Setting
	The Ansatz
	Efficient Evaluation of Physical Quantities
	Computational Cost and Refinements of the Ansatz
	Example: Fibonacci Anyons
	Distillable States for Composite Anyon Coding

	Application to the Golden Chain and the Majumdar-Ghosh Chain
	The Model
	Exact Renormalization Group Fixed Point at the Majumdar-Ghosh Point
	Numerical Variation over Ansatz States

	Braiding and More General Arrangements of Anyons
	Conclusions

	Dimension Reduction
	Introduction
	Thermalization Using Phase Estimation
	Dimension Reduction Overview

	Perturbative Hamiltonian Update
	Perturbative Update with Perfect Operations
	Concatenation
	Errors and Cost of Operations with Finite Precision

	Time Requirements
	Conclusion

	Conclusion
	Bibliography

