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Abstract

The rheological behavior of hard-sphere colloidal suspensions in simple shear flow
is examined theoretically and by dynamic simulation. The Stokesian Dynamics and
Brownian Dynamics simulation techniques are used to study suspensions with and
without many-body hydrodynamic interactions, respectively. Suspensions near equi-
librium, where Brownian motion dominates, and at high shear rates, where hydrody-
namic forces dominate, are examined. Steady-state simulations are performed using
both simulation algorithms. The Brownian Dynamics system is found to be shear-
thinning at low shear rates and undergoes a phase transition at high shear rates to
a phase of hexagonally-packed strings aligned in the flow direction. Inclusion of hy-
drodynamic interactions eliminates the phase transition at high shear rates. Instead,
the suspension is found to shear thicken due to a boundary layer of high particle
probability that forms near contact where convection balances Brownian diffusion.
This increases the role of strong hvdrodynamic lubrication forces. Shear thinning
and thickening data from many different volume fractions are collapsed using scaling
theories. A previous steadv-state theoretical analysis of the boundary layer at high
shear rates (Brady & Morris 1997) is extended to include unsteady flow conditions.
Theoretical results are found to be in agreement with start-up and flow-cessation
simulations. A relation between start-up flow at low shear rates and the relaxation
of equilibrium fluctuations is made. Equilibrium fluctuations are characterized using
the shear-stress autocorrelation function and Green-Kubo formulae. Behavior of this
function at short times is related to the behavior in an oscillatory shear flow at high
frequencies that is also well-described by a boundary layer where unsteady convection
balances Brownian diffusion. A new method for determining the components of the
long-time self-diffusion tensor is proposed. Self-diffusion is found to be a decreasing
function of volume fraction near equilibrium and an increasing function of volume

fraction at high shear rates. Data is in agreement with previous theory and experi-
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ment. Due to the buildup of particle probability along the compressional axis relative
to the extensional axis in simple shear flow, there is a nonzero off-diagonal component
to the long-time self-diffusion tensor which is proportional to the shear rate. This

component is positive near equilibrium and negative at high shear rates.
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This thesis concerns the behavior of colloidal dispersions at equilibrium and in simple
shear flow. A colloidal dispersion consists of particles in a suspending fluid such that
the particles are large enough to enable treatment of the solvent as a continuum. but
small enough to be affected by Brownian motion due to thermal fluctuations in the
solvent. Because of the small size of the particles, solvent-mediated low-Reynolds-
number hydrodynamic forces are present. Other colloidal forces of nonhydrodynamic
origin may also be present, such as gravitational. electrostatic, or repulsive and/or
attractive interparticle forces. In this work, we are concerned with dispersions of
monodisperse hard spheres suspended in a Newtonian solvent.

Although the body of this thesis is divided into four independent and self-contained
chapters, there is a common theme prevalent throughout: the effect of hydrody-
namic interactions on the rheology, diffusion, and microstructure of colloidal suspen-
sions. Hydrodynamic interactions consist of both many-body far-field interactions
and strong close-ranged pairwise-additive lubrication forces.

To study the behavior of these dispersions, we use two different simulation tech-
niques. The first technique is Brownian Dynamics which employs a simple and ef-
ficient algorithm to study colloidal dispersions under shear in the absence of hydro-
dynamic interactions. The second technique is Stokesian Dynamics which is com-
putationally intensive but includes full hydrodynamic interactions. Comparing and
contrasting results from each simulation technique provides insight into the mecha-
nisms involved in the behavior of colloidal dispersions.

In chapter 2, we examine the rheological behavior of hard-sphere dispersions in the
absence of hvdrodynamic interactions at steady state using the Brownian Dynamics
technique. At low shear rates, the suspensions are found to be well-dispersed and
disordered. As the shear rate is increased, the system undergoes a transition into
an ordered phase. Self-diffusivities are found to be increasing functions of shear rate
with the exception of a precitious decrease at the onset of the ordered phase. The
viscosity is found to be a decreasing function of shear rate — the suspension shear
thins — and the effects of density on this behavior are examined with the aid of recent

scaling theories. The behavior of the first and second normal stress differences are
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examined. The first normal stress difference is positive while the second normal stress
difference is negative. The magnitudes of each normal stress difference are found to
be zero at very low shear rates, rise to a maximum as the shear rate increases and
then decrease again. The osmotic pressure is also examined and is proportional to
the thermal energy of the system near equilibrium and to the imposed shear rate at
high shear rates.

The steady-state rheology of hard-sphere dispersions is also studied for the case
where hydrodynamic interactions are included in chapter 3. The Stokesian Dynam-
ics simulation technique is used limiting the size of the systems studied due to high
computational cost. The suspensions are found to be well-dispersed and disordered
at all shear rates — no ordered phase is found — in contrast to previously reported
results. Short-time self-diffusivities are found to be decreasing functions of shear rate.
Long-time self-diffusivities are found to be increasing functions of shear rate, scaling
as the single particle Stokes-Einstein diffusivity near equilibrium and proportional to
the shear rate at high shear rates. The separate hydrodynamic and Brownian con-
tributions to the suspension stress are determined. The behavior of the suspension
stress is dominated by the Brownian contribution at low shear rates and by the hy-
drodynamic contribution at high shear rates. The suspension shear thins at low shear
rates due to the decay of the Brownian contribution, while the hydrodynamic contri-
bution remains constant. At high shear rates, the viscosity increases with shear rate
— the suspension shear thickens — as a thin boundary layer near particle contact
of high particle probability forms increasing the role of strong hydrodynamic lubri-
cation forces. Simulation is found to be in good agreement with experiment. Recent
two particle scaling theories are employed to collapse the data. The normal stress
differences are also studied with quality data being limited to intermediate and high
shear rates. At low shear rates, the first normal stress difference is positive while the
second is negative. As the shear rate is increased the first normal stress difference
changes sign and both normal stress differences are negative at high shear rates.

The transient behavior of the stress and microstructure 1s examined in chapter 4

using both Brownian Dynamics and Stokesian Dynamics simulation techniques. Equi-
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librium fluctuations are characterized by the shear-stress autocorrelation function,
which can be related to linear viscoelastic behavior by well-established Green-Kubo
theories. Without hydrodynamic interactions, the shear-stress autocorrelation fune-
tion is found to diverge at short times as {~'/? indicating that the elastic modulus
diverges at high frequency in a small amplitude oscillatory shear flow. Inclusion of
hydrodynamic interactions produces different behavior. The shear-stress autocorrela-
tion function approaches a constant at short times indicating that the elastic modulus
approaches a finite limit at high frequencies. The high-frequency modulus is com-
pared to experiment. Transient behavior of the stress in nonequilibrium situations
is also analyzed. A previous steady-state theory for suspensions at high shear rate
is extended to start-up and flow-cessation situations. Start-up and flow-cessation
simulations are performed showing good agreement with the theoretic analysis. The
microstructure is also analyzed during start-up and flow-cessation providing further
evidence of the relaxation mechanisms proposed.

The behavior of the long-time self-diffusion tensor as a function of both density
and shear rate is examined in detail in chapter 5. A new method is employed to obtain
quality data for long-time self-diffusivities by averaging data from many short simu-
lations. Systems with and without hvdrodynamic interactions are examined. When
hydrodynamic interactions are included, rotational self-diffusion is studied and all
the diffusivities can be divided into their hydrodynamic and Brownian contributions.
Diffusivities are found to be decreasing functions of volume fraction near equilibrium
scaling as the single particle Stokes-Einstein diffusivity. At high shear rates, the dif-
fusivity is proportional to the shear rate and is found to be an increasing function
of volume fraction. Both translational and rotational self-diffusion tensors are found
to have one nonzero off-diagonal component in simple shear flow due to a buildup of
particles in the compressional zone. This component is proportional to the shear rate
for all shear rates. The translational off-diagonal component is positive near equilib-
rium and negative at high shear rates and the rotational off-diagonal self-diffusivity

is negative near equilibrium and positive at high shear rates.



Chapter 2
Brownian Dynamics simulation of

hard-sphere colloidal dispersions



2.1 Introduction

This paper addresses the structure, diffusion and rheology of colloidal dispersions
of hard spheres in the absence of hydrodynamic interactions. Colloidal dispersions
consist of small particles suspended in a Newtonian solvent. The particles are large
enough so that the suspending fluid can be treated as a continuum, yet small enough
that the particles are affected by Brownian motion, which arises from thermal fluctu-
ations in the surrounding fluid. Thus, the behavior of the particles in the dispersion
is governed by the many-body Langevin equation.

A method for simulating Brownian particles was first presented by Ermak & Me-
Cammon (1978) and Fixman (1978) in the same issue of the Journal of Chemical
Physics. Elimination of hvdrodynamic interactions between particles simplifies mat-
ter greatly and there has been extensive work utilizing Brownian Dynamics in this case
to simulate particles with many different interparticle potentials (Heyes 1988, Xue &
Grest 1990, Rastogi et al. 1996). Hard-sphere dispersions have proven difficult to
simulate, however, due to the singular and discontinuous nature of the hard-sphere
interparticle potential.

Cichocki & Hinsen (1992) first simulated hard-spheres at equilibrium in order
to measure the long-time self-diffusivity. In that work, interparticle collisions are
resolved by rejecting random Brownian steps that result in particle overlap. Later,
Heyes & Melrose (1993) and Schaert]l & Sillescu (1994) independently developed the
same method for simulation of hard spheres for measuring shear thinning and self-
diffusion, respectively. This method is used in this work and is described in the
following section. Here, we deviate from their method of calculation of the suspension
stress and provide a more detailed analysis of the rheology. including data on the
microstructure, self-diffusivities, shear viscosity, normal stress differences and osmotic
pressure.

Since the inception of this work, a new method for hard-sphere Brownian Dy-
namics simulation has been proposed which implements the hard-sphere potential by

treating the overlap of particles as elastic collisions (Strating 1999) — essentially a
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Molecular Dynamics simulation is performed within each individual time step of the
Brownian Dynamics simulation. While one can question if this is appropriate for
Brownian particles, it does eliminate all residual particle overlaps which are present
in other models. Strating presented results on the shear thinning of the viscosity, but
no results of normal stress differences, osmotic pressure, or long-time self-diffusion
were presented.

In the following section, we detail the Brownian Dynamics algorithm used in this
work and describe a new method for determining the pairwise interparticle forces
responsible for the hard-sphere-like behavior that facilitates calculation of “instanta-
neous’ values of all components of the particle contribution to the bulk stress tensor.
In section 2.3 we discuss the results of these simulations. The structure is disor-
dered at low shear rates and as the shear rate is increased, the suspension undergoes
a gradnal phase transition first to sliding-layers stacked in the velocity-gradient di-
rection and eventually to hexagonally packed strings aligned in the flow direction.
Self-diffusion is found to be an increasing function with shear rate with the exception
of a precipitous decrease where the ordered phase forms. The viscosity is found to
decrease with shear rate — or shear thin — and comparisons are made with two par-
ticle scaling theories based on various proposed characteristic relaxation time scales.
With consideration a finite high-shear limiting viscosity that would be present in the
absence of an ordered phase, we find that a characteristic relaxation time scale based
on the equilibrium long-time self-diffusivity collapse the viscosity data for all volume
fractions quite well. We finish with some concluding remarks and suggestions for

future studies in section 2.4.

2.2 Simulation method

Brownian Dynamics can be described as a simplification of Stokesian Dynamics
(Bossis & Brady 1987, 1989; Brady & Bossis 1988, Foss & Brady 1999b (ch. 3)) where
the hydrodynamic interactions between the particles are neglected. For N rigid par-

ticles suspended in an incompressible Newtonian fluid of viscosity n and density p,
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the particle motion is described by the coupled N-body Langevin equation:
dU

m— — FH FB F}
m 7 | -+

h
.

B

—

where m is the generalized mass/moment of inertia tensor, U is the particle trans-
lational /rotational velocity vector, and the force/torque vectors F represent: (i) the
hvdrodynamic forces F' exerted on the particles due to their motion relative to the
fluid, (ii) the deterministic non-hydrodynamic forces F¥'. which may be either in-
terparticle or external, and (iii) the stochastic forces F B that give rise to Brownian
motion.

Since hydrodynamic interactions are neglected, F' consists of only Stokes drag:
F - —6mna(U — (U)),

where (U) is the imposed flow evaluated at the particle center. For linear shear
flow, (U) = r @, where I' is the velocity gradient tensor of the bulk flow. The
deterministic, non-hydrodynamic force F¥' is arbitrary and may be any form of in-
terparticle or external force. The stochastic or Brownian force F? arises from the

thermal fluctuations in the fluid and is characterized by

FP=0 and FPO)FP(t) = 26T (67na)I5(1).

—_
N
o

—

In (2.2) the overbars denote an ensemble average over the thermal fluctuations in
the fluid, & is Boltzmann’s constant, 7" is the absolute temperature, 67nal is the
hydrodynamic resistance tensor (Rpp) in the absence of hydrodynamic interactions.
I is the unit isotropic tensor and §(¢) is the delta function. The amplitude of the
correlation between the Brownian forces at time 0 and at time ¢ results from the
fluctuation-dissipation theorem for the N-body system.

The deterministic nonhydrodynamic force F*' can be of any form (interparticle
or external); in this work it will be of hard-sphere form as discussed below.

The particle evolution equation is obtained by integrating (2.1) over a time step
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At that is large compared to 7, the inertial relaxation time (7, = m/67rna). but small
compared with the time over which the configuration changes. A second integration
in time produces the evolution equation for the particle positions with an error of
o( Al):

Az = Pe(UYA + FP A1+ X (A1),
X =0 and X(AHX(At) = 2IA¢. (2.3)

Here. A@ is the change in particle position during the time step, At, and X (At?) is
a random displacement due to Brownian motion that has zero mean and covariance
given by the short-time self-diffusion tensor, which in the absence of hydrodynamic
interactions is simply 2DI, where D = ET/67na is the diffusion coefficient of a
single isolated particle. Without hydrodynamic interactions, each particle rotates
freely with a diffusivity identically equal to the dilute limit Stokes-Einstein rotational
diffusivity, D" = kT /8wna®, and rotational motion is completely decoupled from
translational motion; with hydrodynamics rotational and translational motion are
coupled. The interparticle or external forces have been converted to velocities for the
purpose of calculating the particle trajectories by multiplication of the hydrodynamic
mobility, which for Brownian Dynamics is simply (6mna)~'1.

In (2.3), & has been nondimensionalized by the characteristic particle size «;
the time by the diffusive time scale a?/D; the imposed velocity (U) by va, where
v o= ]F1 is the magnitude of the shear rate; the shear forces by 67nya?; and the
interparticle forces by kT /a. The Péclet number, Pe = 4a*/D = 6mnya®/kT, mea-
sures the relative importance of shear and Brownian forces, and 4* = 6mnya®/|F| is
a nondimensional shear rate giving the relative importance of shear and interparticle
or externally imposed forces.

In this work, we are interested in a monodisperse suspension of hard spheres. In
the case where full hydrodynamic interactions are included, lubrication forces are
sufficient to prevent the particles from overlapping, and the hard-sphere force at
contact, FT' = %kT’;‘(s(T — 2a), has no dynamic consequence and none needs to be

imposed in simulation (Foss & Brady 1999b (ch. 3)). Here, however, the lubrication
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forces are absent and a force of hard-sphere type must be introduced. One option is to

.

choose a pairwise steep, but ‘soft’, repulsive interparticle repulsive force: F¥' ~ #p77,
where n is a parameter that determines the softness of the potential. The larger the
n, the closer the potential approximates the hard-sphere potential. These potentials
can be difficult to apply in practice as the time step must be set smaller as the
potential gets steeper in order to resolve the full dynamics of each particle-particle
collision. If the time step is too large, the interparticle separation could jump to a
distance where the magnitude of the force is extremely large generating an aphysically
large displacement in the following time step which often results in particle overlap.
Much more important, however, with a soft repulsive force, the effective hard-sphere
radius is a function of shear rate or Pe, as the interparticle separation where shear
forces balance a soft potential varies with Pe. A changing effective radius results in a
changing effective volume fraction, which is very inconvenient when trying to isolate
the shear-rate and volume-fraction dependences of various rheological quantities.

To overcome this limitation, we have emploved a ‘potential-free” algorithm devel-
oped by Heyes & Melrose (1993) (see also Schaertl & Sillescu (1994) for an application
to diffusion) in which the Brownian and affine displacements are made first, and then
the simulation checks for particle overlaps, and displaces the overlapping particles

along their lines of centers according to

1 ‘
Ae® = ST(Ar = 2a)H(2a — Ar), (2.4)

P

where Azf* is the hard-sphere displacement, Ar is the interparticle separation after

the affine and Brownian displacements. The Heaviside step function is included to
ensure that the displacement is only applied to overlapped particles, and the coef-
ficient % is chosen to return the particles back to contact. This algorithm cannot
resolve all the overlaps, as displacements are applied in a pairwise fashion. Thus, for

the ‘potential-free algorithm’, the particle evolution equation is:

Az = Pe(U) + Az + X (AL,
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X =0 and X(A)X(Al) = 2TAL (2.

[}
ot
R

At this point. Heves & Melrose (1993) determine the stress by calculating the pair-
distribution function, g(7), at contact and scaling the interparticle stress tensor with
the ## tensor so that an isotropic distribution returns the known theoretical value for
the equilibrium hard-sphere osmotic pressure, nkT(1 + 4¢g(2a)). Here, we deviate
from their method directly calculating pairwise interparticle forces that would have
result in the hard-sphere displacements during the course of a time step. This is done
by examining the original evolution equation (2.3) and equating the contribution due
to the interparticle force with the hard-sphere displacements; in dimensional form we

have:
AZBH S
At

F¥ = 6mna (2.6)

which is simply the average Stokes drag on the particle during the course the hard-
sphere displacement. Once the interparticle forces from each collision are known, they
can be used to calculate the stress without explicitly determining the pair-distribution
function at contact g(2a). The bulk stress is defined as the average stress over the
volume V containing the N particles and is given, in the absence of hydrodynamic

interactions, by

~

(2) = ~(p)T +20(1 + S0)(E) = nkTI = n(aF"). (

F

o
—

Here, (p) is the fluid pressure which is arbitrary for an incompressible fluid, —nAkTT is
the isotropic stress associated with the thermal energy of the Brownian particles, and

FT is determined by equation (2.6). The hydrodynamic contribution to the stress

reduces to the single-particle Newtonian Einstein correction. %C/D, and the so-called

direct Brownian contribution to the stress is zero without hydrodynamic interactions.

. - . . . . . 24 . .
All of the rheologically interesting behavior is contained in the (@ F Py contribution:
this is the sole contribution reported in this work.

We are also interested in the diffusive motion of the particles, and several ‘particle

diffusivities’ can be defined. The short-time self-diffusivity, Dy, measures the average



12
instantaneous particle mobility which, in the absence of hydrodynamics, is simply

DI and appears in the particle evolution equation as the variance of the random

s
oc?

Brownian step. The long-time self-diffusivity, D?_, measures the ability of a particle

to wander far from its starting point and is calculated from simulation as one-half

the time rate of mean-square particle displacement:

d 5 ,
D’ = lim l~—<(:c —x")%). (:

oo 2t

o
&s]
S

Here, the affine contribution, Aa® = (U)At, to the particle displacements from the
imposed simple shear flow is subtracted ofl at each instant in time when calculating the
mean-square displacements. When a particle diffuses in the velocity-gradient direc-
tion, its corresponding affine velocity also changes which causes a strong convectively-
enhanced contribution to mean-square displacements that grows as ¢ for (z(¢)x(t))
and t* for (x(t)y(t)). Subtraction of the affine contribution removes all of the strong
convectively-enhanced contributions to the diffusion allowing us to probe the under-
lyving diffusive behavior in which all of the different mean-square displacements grow
linearly at long times.

Due to the simplicity of this algorithm, the simulations can be performed efficiently
at a computational cost of O(N). For this reason, large numbers of particles —
up to 1331 in our case — can be studied in the same amount of time required for
conventional Stokesian Dynamics algorithms to analyze a much smaller systems. This
greatly reduces the amount of noise present in the system and results in quantitatively

more accurate rheological data.

2.3 Results

A large number of simulations have been performed over a range of volume fraction,
0.30 < ¢ < 0.55. and Péclet number, 0 < Pe < 10, in order to examine the Pe-
dependence of the rheological properties and the effects of the volume fraction on

this dependence in hopes of deducing the relevant diffusivity involved in determining
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the time scale for the suspension. For Pe < 1 time was non-dimensionalized by
a’?/D as in (2.3), while for Pe > 1 time was non-dimensionalized with the inverse
shear rate 1/4. All runs for all Péclet numbers were started from a random hard-
sphere configuration generated by allowing systems to equilibrate at Pe = 0 for
volume fractions below the hard sphere phase boundary ¢ = 0.494 or by a ‘density
quenching” technique (Rintoul & Torquato 1996, Clarke & Wiley 1987) for higher
volumer fractions. The averages reported are over all particles and over time. The
duration of the simulations was 1004t for Pe > 1 and 300 — 1000t D/a* for Pe < 1.
Systems were allowed to reach a steady-state — no residual transient due a phase
transition were included — before averaging was begun. The runs were divided up into
statistically independent subintervals in order to determine the statistical variation

in properties. The three axes (z,y,z) of the cubic unit cell represent the velocity,

velocity-gradient, and vorticity directions, respectively.

2.3.1 Structure

The suspension microstructure plays an important role in determining the other rheo-
logical properties and therefore will be discussed first. Figure 2.1 shows a projection of
the pair distribution function g(#) onto the flow—velocity-gradient plane for ¢ = 0.45.
N = 1331 at various Pe. At low Pe, the structure is nearly isotropic as denoted by
the lack of angular variation in the first and second nearest-neighbor rings. As the
Péclet number is increased, there is a buildup in particles in the compressional zone
and a depletion of particles in the extensional zones, as first predicted by Batchelor
(1977) and as evident by the oval pattern at Pe = 1. At higher Péclet numbers,
one sees horizontal lines which are indicative of a string-ordered phase that is widely
known to exist for systems where the effects of hydrodynamic lubrication interactions
are not present (Bossis & Brady 1984, Erpenbeck 1984, Heyes 1986, Xue & Grest
1990, Rastogi et al. 1996, Foss & Brady 1999b (ch. 3)).

The order is shown more clearly in figure 2.2 where g(v) has been projected

onto the vorticity-velocity-gradient plane. The formation of order appears to be
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gradual, occurring over a decade of Pe. At Pe = 10 and 30, layers of particle
probability which are stacked in the gradient- or y-direction become noticeable. By
Pe = 100, the pattern of peaks in g(r) indicative of the hexagonally-packed string
phase becomes apparent, though the order is fairly short-ranged. The peaks are seen
to first occur where the layers of probability in the y-direction intersect with the first
and second nearest-neighbor rings. At the largest shear rate, Pe = 1000, a longer-
ranged, but multiple hexagonal pattern is apparent. Figures 2.3-2.6 show snapshots of
the vorticity-velocity-gradient plane of the entire simulation cell. The transition from
a disordered microstructure to a layered structure to the hexagonal string phase is
clearly shown. At Pe = 1000, there is dramatic ordering of all the particles in the cell.
The hexagonal-string lattice is imperfect, with varying orientation in different regions
of the unit cell. This variation of orientation of the hexagonally-packed strings is what

causes the multiple-hexagonal pattern in the projections of g(r) seen in figure 2.2.

2.3.2 Diffusion

As noted in the previous section, the short-time self-diffusivity is simply the average
instantaneous particle mobility, which, in the absence of hydrodynamic interactions,
is simply DI and does not vary with ¢ or Pe. The long-time self-diffusivities are
defined by (2.8) and are calculated from mean-square displacement data monitored
during the simulation runs. Due the the large number of particles in the system,
the mean-square displacements are calculated internally in each run instead of being
reconstructed from stored particle locations.

At this point, we would like to note that long steady-state runs are not the best
way to obtain good mean-square displacement data. We have obtained data that
we feel is more accurate and internally consistent from large numbers of short start-
up flow simulations (Foss & Brady 1999a (ch. 5)) that probe only the disordered
microstructure, which in some flow regimes is not stable (e.g., figure 2.6). Since this
work deals with steady-state simulations run for long intervals, we will only present

the diffusion data obtained from these types of runs, including those in which an



ordered phase forms.

Typical mean-square displacement curves are shown in figure 2.7. Diffusivities
are calculated from these curves by discarding the first 20 time units of each curve
and fitting a line through the remaining portion of the curve. This is also done for
independent subsegments of the curve to measure the uncertainty in the diffusivity
calculation.

The diagonal components of the long-time self-diffusivity tensor plotted as a func-
tion of Pe for ¢ = 0.45 are shown in figure 2.8. At low Pe, all the diffusivities are
roughly equal and much less than the isolated particle value. As Pe is increased, the
diffusivities increase and start to show anisotropy as D?_ . is generally smaller than

D2 and D?

OC LT oo, YY"

At higher Pe, there is first a small decrease in D?_, ~at Pe ~ 30

o0, Yy

where the sliding layer phase is formed. The layers are stacked in the gradient- or
y-direction inhibiting particle motion from layer to layer. This is followed by a pre-

cipitous drop in both D at Pe =~ 100 owing to the formation of the

5

S
Sy and DI

strings that line up in the z-direction and pack in the zy-plane. Note that D? .
does not show the same decrease, which is indicative of imperfections in the string
structure and that particles are indeed moving, however rarely, from string to string.

String-to-string diffusion involves diffusion in the y— and z—directions and is mea-

5

sured by D2 . and D? . . which have decreased by an order of magnitude but are
still non-zero.

If we say that there is there is no movement {from string to string, then in order
for a particle to diffuse in the a-direction, it must push all the particles in that
string forward. In a periodic suspension, this is analagous to the diffusion of multiple
particles around a ring as illustrated in figure 2.9. The diffusivity in this case is
known to be D/N,. where N, is the number of particles in the ring, or periodic string
(Rallison 1988). For N = 1331, N, = 11, which would imply that D . should

be approximately 0.1D. The data in figure 2.8 does not show this; D?_,_ is much
larger and grows linearly with Pe indicating that particles must be diffusing laterally
from string to string. In fact, after the formation of the strings, all diffusivities grow

linearly with Pe indicating that the relevant scale for diffusion in this regime is Ya?,
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not kT /na. This is the same scaling found for high-Pe shear-induced diffusion in
disordered systems (Eckstein et al. 1977, Leighton & Acrivos 1987, Breedveld et al.
1998, Foss & Brady 1999a {ch. 5), 1999b (ch. 3)). The 4 ¢a? scaling for the diffusivity
arises from a new source of ‘noise’ in the system caused by multiple particle-particle
collisions. The diffusivity can be thought of as a velocity fluctuation times a particle
displacement. The velocity fluctuation is caused by the relative motion between
particles arrested by the hard-sphere force at contact in shear flow and is thus O(7y«a)
whereas the particle displacement is O(a) allowing the incident particles to avoid

particle overlap.

2.3.3 Rheology
When examining the suspension stress, all of the interesting nonNewtonian rheolog-

ical behavior is due to the contribution from the hard-sphere-like interparticle force

(xF P ). All results reported below are due solely to this contribution.

Viscosity

The suspension viscosity relative to that of the solvent is defined for simple shear flow

from the xy-components of the bulk stress and rate of strain:

First, we analyze the fluctuations in the stress and microstructure at equilibrium to
determine the zero-shear viscosity by the following dimensional Green-Ikubo formula
(Négele & Bergenholtz 1998):

I ‘
o=t ),

de'e}

(T2 (1) (0))d. (2.9)

Here, the high-frequency dynamic viscosity, 7., represents the viscous contribution
to the stress at equilibrium and is given by n(1 + 2¢) in the absence of hydrodynamic

interactions. The instantaneous stress — here, the stress due to the interparticle force
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— is denoted by ¢, (1). Although the time-average of o, (1) is zero, it fluctuates about
its average value along with the microstructure due to Brownian motion. The shear
stress autocorrelation function {,,(t)o,,(0)) analyzes the nature of the relaxation of
these fluctuations. Here, we use the subscript xy for ease of notation, but since there
are no preferred directions at equilibrium, we can also autocorrelate the xz- and yz-
components of the stress tensor and average the three functions to reduce statistical
noise. A more thorough analysis of the time-dependent behavior of the shear stress
autocorrelation function is contained in a related work (Foss & Brady 1999¢ (ch. 4)).
Here, we are interested in the determination of the low shear viscosity. Simulations
are performed at equilibrium (Pe = 0) using a time step of Al = 2.5 x 107*a*/D
for at least 400 000 steps for calculation of the shear-stress autocorrelation function.
Results for the zero-shear viscosity as a function of volume fraction are shown in
table 2.1 and figure 2.10.

Figure 2.11 shows results for the suspension viscosity as a function of Pe for
various N over a range of volume fraction between 0.30 < ¢ < 0.55. The curves
show shear thinning behavior that is characteristic of Brownian suspensions. For
¢ = 0.40, multiple N are used and show no N-dependence. providing confidence that
the results can be extrapolated to infinite V. Note that there is a discontinuous drop
in the viscosity for Pe ~ 100 that is coincident with the transition to an ordered
phase.

Now we turn our attention to collapsing the viscosity data for all ¢ with the aid
of scaling arguments based on two-particle theories and volume-fraction dependent
time scales. Shear thinning behavior in the absence of hydrodynamic interactions
occurs when the deformed microstructure that gives rise to large viscosities at very
low Pe is unable to keep up with the flow as the shear rate is increased — the same
reasons that it occurs when hydrodynamic interactions are included (Foss & Brady
1999b (ch. 3)). Shear thinning is a result of a decrease in the Brownian viscosity when
hydrodynamic interactions are included. Here, the sole contribution to the stress of
rheological interest is that due to the interparticle force. The stress due to a hard-

sphere interparticle force is analagous to the direct contribution due to Brownian
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motion when hydrodynamics interactions are included and stress can be written as

an integral of the pair-distribution function at contact,

1MmFP>:—4ﬂkTa/ Fig(r)ds, (2.10)
Jr=2a
where # = 7/r. The low-shear viscosity can be extracted from (2.10) by using

the first perturbation due to flow to the equilibrium structure, f(r), defined by
g(r) = °(7)[1 + f(r)], where ¢°(r) is the equilibrium pair-distribution function.
The equilibrium stress is simply the isotropic osmotic pressure, —I1°Z. The first con-
tribution to the viscosity is due to the O(Pe) correction to the microstructure and
results in a constant low-Pe Newtonian plateau with viscosity equal to the zero-shear

viscosity, no; thus we can write
flr) = Pef(r),

where f(?") is independent of the flow strength and Pe = ])C/ﬁ(@) Here, D{@)
is the characteristic diffusivity nondimensionalized by the Stokes-Einstein diffusivity,
D. Substituting the expression for f(7) into the contact integral in (2.10) gives the

following expression for the deviatoric part of the interparticle stress:

1S Yord

075, 4 .

27 . 5 9(2:0) .. 2 \ ,

n(xFTY + TI°T = — ——ni¢? J—L——-—z / 7 f(2:0,9)dA. (2.11)
2m D(¢) -

Here, # and o are the two angular variables in spherical coordinates and df) represents

the solid angle. In (2.11), the equilibrium contact value of the radial distribution

function can be approximated very well by the Carnahan-Starling equation of state:

1 -050

¢°(2:0) = T=op o < 0.50.

For higher volume fractions, Rintoul & Torquato (1996) have determined ¢%(2; ¢) for
metastable disordered hard spheres by molecular dynamics simulation (Rintoul &

Torquato 1996) and their results match the Carnahan-Starling equation of state at
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its boundary of validity, ¢ = 0.50. We have one volume fraction, ¢ = 0.55, from this
high-density regime for which we use ¢°(2) = 8.22.

The characteristic diffusivity is determined by the appropriate relaxation time
for rheological response: «?/ ]A7(O)D With this scaled Péclet number, all of the Pe-
dependence of the microstructure at all volume fractions is included in Pe. In the
dilute limit, all particle diffusivities are equal to the diffusivity of an isolated particle,
D. Thus, D =1 and (2.11) reduces to the interparticle (or Brownian) stress as
previously calculated by two-particle theories (Batchelor 1977, Brady & Viecic 1995,
Lionberger 1998, Vicic 1999).

The precise nature of the characteristic diffusivity, ﬁ((p) is not known, and sev-
eral quantities have been suggested. Brady (1993b) suggests using the equilibrium
short-time self-diffusivity, D(o) = D§(¢)/D, as this incorporates the effects of hy-
drodynamic interactions. Here, in the absence of hydrodynamic interactions, the
short-time self-diffusivity is equal to that of an isolated particle, D. Thus, D=1
and Pe = Pe. A plot of the viscosity using this scaling is shown in figure 2.12. This
collapse is reasonably successful at lower volume fractions, but fails for ¢ > 0.40.

Another possible choice for the characteristic diffusivity, f)(@) 1s the equilibrium
long-time self-diffusivity, D?_(¢)/D, as it incorporates multiple-particle effects even
in the absence of hydrodynamic interactions. A plot of the viscosity data using this
scaling is shown in figure 2.13. This collapse appears to be more successful in that
it correctly determines the shape of the shear thinning curves, but the data for each
volume fraction are far from being coincident.

Other values for the characteristic diffusivity have been proposed, such as the
collective diffusivity at the peak of the structure factor, D°(k,...) (Verberg et al.
1997, Pusey et al. 1997). Scaling of the data with this diffusivity is not currently
possible because we have not calculated it from simulation. A further discussion of
rheological scaling theories and the results of using them on systems containing full
hydrodynamic interactions is included in a related work (Foss & Brady 1999b (ch. 3)).

Thus far when collapsing the viscosity data, we have used the total interparticle

contribution to the stress without subtracting off any limiting value at high Pe that
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may be present. This is not neccesary when hydrodynamic interactions are included
as the Brownian stress — responsible for shear thinning in that case — vanishes like
Pe™'. Also, no subtraction appeared necessary in this work, as the order forma-
tion at high Pe results in very small values of the interparticle force contribution
to the viscosity. This negligibly small high-shear viscosity is not in agreement with
two-particle theoretical results where hard-spheres in the absence of hydrodynamic
interactions approach a finite high-Pe plateau that is equal one-half the low-shear
viscosity (Brady & Morris 1997, Vicic 1999). Of course, an ordered phase is not
present in a two-particle theory and the predictions of such a theory are only valid in
a disordered microstructure.

Despite the ordering that does occur in our steady-state Brownian Dynamics
simulations, there are reasons for studying the behavior in the absence of order. First,
a large portion of the shear thinning behavior occurs at low Pe where the string-
ordered phase is not present. The dynamic microstructure present at low Pe occurs
on time scales that do not appear related to the ordered structure that is present
at high Pe. Disordered shear thinning and the formation of the ordered phase are
independent physical processes. Another reason for studying the disordered regime 1s
for comparing results with and without hydrodynamic interactions. Shear thinning
occurs in both cases, but the system with hydrodynamic interactions included —
simulated by Stokesian Dynamics — shows no string-ordered phase (Foss & Brady
1999b (ch. 3)).

The disordered high-Pe behavior in the absence of hydrodynamic interactions
is evident in our related work (Foss & Brady 1999¢ (ch. 4)). Short start-up flow
simulations from equilibrium configurations show that the transient behavior of the
shear stress reaches a metastable plateau after approximately one strain. By contrast,
the formation of the ordered string phase occurs in approximately twenty strains at
¢ = 0.45. A comparison of the shear-rate dependent viscosity data obtained from
short start-up flow and long steady-state simulations for ¢ = 0.45 and N = 1331 is
shown in figure 2.14. The two sets of data are indistinguishable at low Pe as there 1s

no steady-state order present in that regime. At high Pe, one can see the effects of the



ordered phase. The steady-state data drops to near zero as the order forms while the
values obtained from the start-up flow simulations show that the viscosity approaches
a finite nonzero limit at high Pe. The high-shear limit, .., is approximately 25% of
the zero-shear limit in contrast to the 50% previously predicted in a dilute-limit two-
particle theory (Brady & Morris 1997). This quantitative change can be explained
by multiparticle interactions and the effects of volume fraction which are not present
in a two particle system. The important result here is that a significant high-shear
limit to the hard-sphere force contribution to the viscosity does exist in the absence
of order. High-Pe limits to the viscosity as a function of volume fraction are shown
in figure 2.15. As one would expect, the values are between the low-shear viscosities
and the single-particle Einstein values — where the interparticie force contribution is
zero.

Now that the disordered high-shear limits to the viscosity have been defined and
etermined, they can be subtracted off from the steady-state values in order to ob-
tain a collapse of the shear thinning data that would exist if the suspensions always
remained disordered. It is to these disordered suspensions that the scaling ideas
in eq. (2.11) apply. Figure 2.16 shows the uncollapsed viscosity data as a function
of Pe for various volume fractions. (Note the negative values obtained at high Pe
represent a suppression of the viscosity below the metastable disordered values due
to the string-ordered microstructure and can be ignored when examining the shear-
thinning behavior.) Figures 2.17 and 2.18 show collapses of the viscosity data using
the equilibrium short- and long-time self-diffusivities as the characteristic diffusivi-
ties, respectively. As before, the use of the short-time self-diffusivity works reasonably
well for the lower volume fractions and fails for ¢ > 0.45. Use of the long-time self-
diffusivity is quite successful. Again, the shape of the curve is correctly predicted, but
the shift in the curves observed in figure 2.13 is removed when the 1., is subtracted off
before performing the collapse. From these simulation results it appears that D?_(¢)
is the proper time scale for characterizing the shear thinning behavior in Brownian

suspensions.



Normal stress differences

The first and second normal stress differences are defined by

Ny = <Sal> <Syy>’ (2.12a)
17\22 - <'—1yy> <S:~> (2 121))
The normal stress differences are plotted as a function of Pe for N = 1331 and

¢ = 0.45 in figures 2.19 and 2.20. The large system sizes here aid in producing better
data. especially at low Pe, than has been obtained for smaller systems involving
hydrodynamic interactions (Foss & Brady 1999b (ch. 3)). Flow-reversal symmetry
arguments require that the normal stresses, when nondimensionalized by 77, vanish
when Pe — 0, which is evident in the figures. Here, N} increases with Pe achieves a
maximum at Pe &~ 1 and then decays back towards zero. Similar behavior is seen in
N,. but with the opposite sign. At around Pe a2 100 there is a discontinuous positive
jump in both N and N corresponding to the onset of the ordered phase. The jump
in Ny is related to a decrease in the amount of collisions in the flow direction relative
to the gradient direction in the ordered phase. Gradient-direction collisions remain
quite common as particles are kept in their strings by collisions with particles in
neighboring strings while flow-direction collisions decrease as this involves collisions
between particles within the same string. Unlike systems which include hydrodynamic
interactions (Foss & Brady 1999b (ch. 3)), N; does not change sign.

Like the viscosity, the normal stress differences can also be determined {rom the
full interparticle stress tensor given by (2.11). Thus, collapses of data for different
volume fractions can be examined to aid in the determination of D. For these col-
lapses we use only data obtained from simulations containing 1331 particles. Normal
stress differences are quite difficult to measure at low Pe and smaller systems exhibit
uncertainties too large to extract the underlying physical behavior.

The use of the short-time self-diffusivity as the characteristic diffusivity (ﬁ =1)
to collapse the normal stress difference data is show in figures 2.21 and 2.22. All

curves vanish as Pe — 0 increase in magnitude to a maximum and then decrease
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again. The scaling theory is not designed to collapse values of the stress at high Pe
due to the order present. The normal stress difference data is also collapsed using the
equilibrium long-time self-diffusivity as the characteristic diffusivity for rheological
response in figures 2.23 and 2.24. There are only three sets of data, so caution must

be used in drawing any firm conclusions, but using D(¢) = D2 (¢)/D does appear to

better locate the maximums of each normal stress difference curve.

Osmotic pressure

The osmotic pressure is given by

= "‘”(‘<LM> + <Syz/> + QS::\))

When nondimensionalized by nkT', the particle contribution to the osmotic pressure
at equilibrium is equal to 4¢g(2; @) (Brady 1993a) and arises from the (@ FF) term
in equation (2.7). Figure 2.25 shows the equilibrium osmotic pressure as a function
of ¢ showing that the simulation algorithm in this work underestimates the osmotic
pressure relative to the Carnahan-Starling values by five to ten percent which can be
accounted for by the small amount of ‘softness’ in the interparticle force caused by
unresolved particle overlaps.

The Pe-dependence of the osmotic pressure is shown in figure 2.26 for ¢ = 0.45
and N = 1331. The osmotic pressure remains roughly constant for low Pe and then
grows linearly with Pe at high Pe indicative of an 774 scaling at high shear rates. Like
all the other stresses, one can note a discontinuity in the data at Pe ~ 100 where the
disorder-order transistion occurs. Also on figure 2.26 is the osmotic pressure following
subtraction of its equilibrium value in order to determine the effect of the flow on the
pressure at low shear rates. Recent theoretical work (Brady & Vicic 1995) predicts
that this quantity scales like nkT Pe* at low shear rates — the same behavior as the

normal stress differences. This is in agreement with our data.
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2.4 Concluding remarks

The behavior of hard-sphere suspensions is analyzed in the absence of hydrodynamic
interactions using a Brownian Dynamics simulation technique, which involved manual
displacement of overlapped particle pairs along their lines of centers. The algorithm
is similar to that used previously by Heves & Melrose (1993) and Schaert] and Sillescu
(1994). Here, we extended their work to calculate the values of the interparticle forces
associated with each particle-particle interaction and from these forces determined the
shear and normal stresses.

Simulations are performed in simple shear flow with the strength of the flow deter-
mined by the Péclet number, Pe, which measures the relative size of the Brownian and
shear forces. Brownian motion dominates at low Pe as large viscosities are present
and shear thinning behavior is exhibited as the deformation of the microstructure
cannot keep up with the flow. Collapses of the viscosity data for all ¢ are performed
using scaling theories based on volume-fraction dependent characteristic time scales,
a*/ [)(()) Use of the short-time self-diffusivity for D(@) although adequate at lower
volume fractions, fails for ¢ > 0.40. The equilibrium long-time self-diffusivity for ﬁ(@)
corrected produces the shape, but not the location of the viscosity curve. A correct
collapse is obtained by subtracting off a high-shear limiting viscosity that would be
present if the suspension did not order as the further decrease in the viscosity due to
the formation of the ordered phase is not related to shear thinning.

The normal stress differences are found to vanish in the zero-shear-rate limit and
each grow in magnitude with Pe — Ny is positive while N, is negative — displaving
a maximum/minimum near Pe = 1. The signs persist through the ordered phase due
to a large amount of particles contacting in the gradient directions as the particles
are kept in the strings by collisions with neighboring strings and a small amount of
collisions in the flow direction as collisions between neighboring particles in a string
become rare. The osmotic pressure is small and scales as nkT'. The long-time self-
diffusivities are small and scale with the Stokes-Einstein diffusivity, D. Both the

osmotic pressure and the long-time self-diffusivities increase as Pe increases.
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At Pe ~ 100, the suspension undergoes a disorder-order transition to a hexagonally-
packed string-ordered phase. Accompanying this phase transition is a discontinuous
drop in the values of the viscosity, osmotic pressure, and long-time diffusivity. At
very large Pe, the interparticle force contribution to the viscosity is approximaﬁtely
zero due to the strong ordering of the particles. The osmotic pressure scales as 77.
The long-time self-diffusivities scale as ya? indicating string-to-string diffusion is oc-
curring.

The Brownian Dynamics algorithm used in this work is quite simple which enables
the study of very large systems which are often necessary in order to obtain meaningful
rheological data. The method can easily be modified to study a number of different
problems such as bidisperse suspensions and weakly flocculating dispersions in simple

shear or planar extensional flow.
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0] N f_fi.na[DQ/arz 77(;3
0.20 1331 1500 0.131

0.30 1331 500 0.414
0.35 1331 500 0.808
0.40 1331 100 1.25
0.45 1331 100 3.05
0.50 1331 1000 6.91
0.52 2000 300 12,7
0.525 1331 100 14.0

0.55 1331 1000 34.5

Table 2.1: Data for zero-shear viscoity, 7d’, as a function of ¢ from Brownian Dy-
namics, N = 1331,2000. The interparticle contribution, /', is calculated from a
Green-Kubo formula involving time-integration of the shear-stress autocorrelation
function, Eq. (2.9). The hydrodynamic contribution is the high frequency dynamic
viscosity, 1%, and is equal to (1 + 2¢) in the absence of hydrodynamic interactions.
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Figure 2.1: The pair-distribution function projected into the velocity—velocity-
gradient plane for N = 1331 and ¢ = 0.45.
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Figure 2.2: The pair-distribution function projected into the vorticity—velocity-
gradient plane for N = 1331 and ¢ = 0.45.
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Figure 2.3: A snapshot of the unit cell as viewed from the vorticity—velocity-gradient
plane for N = 1331, ¢ = 0.45, and Pe = 10. Little order is seen as the projections in
figures 2.1 and 2.2 confirm. The particles in the figure are shown with a radius of 3a
to afford visualization.
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Figure 2.4: A snapshot of the unit cell as viewed from the vorticity—velocity-gradient
plane for N = 1331, ¢ = 0.45, and Pe = 30. Sliding layers of particles are evident as
seen in figure 2.2. The particles in the figure are shown with a radius of 1a to afford
visualization.
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Figure 2.5: A snapshot of the unit cell as viewed from the vorticity-velocity-gradient
plane for N = 1331, ¢ = 0.45, and Pe = 100. Further ordering of the suspension into
hexagonally-packed strings within the sliding layers is evident. The particles in the
figure are shown with a radius of %a to afford visualization.
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Figure 2.6: A snapshot of the unit cell as viewed from the vorticity—velocity-gradient
plane for N = 1331, ¢ = 0.45, and Pe = 1000. The entire unit cell has ordered
into strings which are packed hexagonally with varying orientation in different re-
gions of the cell. The particles in the figure are shown with a radius of La to afford
visualization.
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Figure 2.7: Typical mean-square-displacement curves generated from the simulation
which are used in calculating the long-time self-diffusivities. Data shown here is for
N =1331, 0 = 0.45 and Pe = 10.
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Figure 2.8: Long-time self-diffusivities for NV = 1331 and o = 0.45.



Figure 2.9: Diffusion of particles aligned in strings in a periodic cell is analogous to
particle diffusion around a ring. In order for one particle to diffuse long distances in
a given direction, all of the particles in the ring (or string) must also move in that
same direction. resulting in a diffusivity of D/N,. where N, is the number of particles
in the ring (or string) and D is the diffusivity of an isolated particle (Rallison 1988).
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Figure 2.10: Zero shear relative viscosity, 10, as a function of volume fraction ¢ from
Brownian Dynamics simulation. Values are determined {rom an equilibrium Green-
Kubo analysis.
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Figure 2.12: The interparticle force contribution to the viscosity. n¥, scaled by ¢*¢°(2)
and plotted as a function of Pe for volume fractions 0.30 < ¢ < 0.55. Here, the
characteristic diffusivity, D, is simply equal to its dilute-limit Stokes Einstein value

D =kT/6mna.
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Figure 2.13: The interparticle force contribution to the viscosity., n’. scaled by

»*g°(2)/ ZA): and plotted as a function of rescaled Péclet number Pe/ bf\ for vol-
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Figure 2.14: The interparticle force contribution to the relative viscosity as a function
of Péclet number for N = 1331 and ¢ = 0.45. Data are shown from both the steady
state simulations of this work and the start-up flow simulations from equilibrium
configurations of a related work (Foss & Brady 1999c¢).
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Figure 2.15: The zero-shear viscosity, 7y. disordered high-shear limiting viscosity,
N~ . and the single-particle hydrodynamic Einstein viscosity 1 + gqé as functions of ¢
for N = 1331. Here, 1., values are determined from an average of 91 start-up flow
simulations from equilibrium configurations (Foss & Brady 1999¢) at Pe = 1000.
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Figure 2.16: The interparticle contribution to the relative viscosity following subtrac-
tion of 1ts limiting high-shear disordered values as a function of Pe for various volume
fractions.
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Figure 2.17: The interparticle force contribution to the viscosity following subtraction
& P (w]

of its limiting high shear disordered value, nI” — 5%, scaled by ¢?¢°(2) and plotted

as a function of Pe for volume fractions 0.30 < o < 0.55. Here, the characteristic

diffusivity, D, is the short-time self-diffusivity which is simply equal to its dilute-limit

Stokes Einstein value D = kT'/67na.
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Figure 2.18: The interparticle force contribution to the viscosity following subtraction
of its limiting high shear disordered value, n” —n” | scaled by @QQU(Z)/[A)[; and plotted
as a function of P(/]A)‘; for volume fractions 0.30 < ¢ < 0.55. Here, ]A); is the equi-
librium long-time self-diffusivity scaled by the Stokes Einstein value D = kT'/6mna.
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Figure 2.19: The first normal stress difference, nondimensionalized by 17, as a func-
tion of Péclet number for N = 1331 and ¢ = 0.45.
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tion of Péclet number for N = 1331 and ¢ = 0.45.
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Figure 2.21: The first normal stress difference, Ny, scaled by ¢?¢"(2)n+ and plotted
as a function of Pe for various volume fractions. Here. the characteristic diffusivity,
D, is simply equal to its dilute-limit Stokes Einstein value D = kT /6mna.
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Figure 2.22: The second normal stress difference, Ny, scaled by ¢?¢°(2)n% and plotted

as a [unction of Pe for various volume fractions. Here, the characteristic diffusivity,
D. is simply equal to its dilute-limit Stokes Einstein value D = kT'/67na.
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Figure 2.23: The first normal stress difference, Ny, scaled by ¢?¢°(2)n3/DZ, and
plotted as a function of rescaled Péclet number Pe/D?_ for various volume fractions.
Here. D?_ is the equilibrium long-time self-diffusivity scaled by the Stokes Einstein

value D = kT /6mna.
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Figure 2.24: The second normal stress difference, N;. scaled by &?¢°(2)n+ /D and

plotted as a function of rescaled Péclet number Pe/D?_ for various volume fractions.

Here. D?_ is the equilibrium long-time self~-diffusivity scaled by the Stokes Finstein
[o'] q < o o

value D = kT /67na.



20F | | | I | I T

Brownian Dynamics
18 @ N=1331 __
—— Carnahan-Starling

141 .

I1° / nkT
=
|

<o o £ @)} =0
|

| | | | 1 | in
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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& = 0.30

Pe N Al NSTEPS nr

0.1 339 5x10° 2000000 0.4015 % 0.0735
‘ 5x 1074 1200 000 0.4335 + 0.0595

1

0.3 339 25

1339 25x10™* 400 000 0.3905 £ 0.0195
3339 25 x107 400 000 0.3345 £ 0.0185
10 339 2.5 x107? 400 000 0.2620 £ 0.0040
30 339 2.5 %107 400 000 0.2080 £ 0.0100
100 339 2.5 x 1071 400 000 0.1370 £ 0.0075

N
«

300 339 2.5 x 107! 400 000 0.0565 £ 0.0065

[§

Table 2.2: Relative viscosity data as a function of Pe from Brownian Dynamics at

o = 0.30.

b = 0.30

Pe N N NFTns

01 339 0.0335+0.1595 —0.0795 =+ 0.2075
0.3 339 0.0005+0.0415 —0.0295 = 0.0480
1339 0.0615 4 0.0690 —0.0945 «+ 0.0375
3339 0.07754 0.0260 —0.0885 + 0.0105
10 339 0.0485 & 0.0225  —0.0963 + 0.0135
30 339 0.0305+0.0210  —0.0905 = 0.0080
1000 339 0.0495 & 0.0130  —0.0945 + 0.0085
300 339 0.0725 +0.0055 —0.0655 = 0.0060

Table 2.3: Normal stress difference data as a function of Pe from Brownian Dynamics
at ¢ = 0.30.
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=035

Pe N At NSTEPS nt

0.1 339 5x107* 2000000 0.7440 £ 0.0865
0.3 339 2.5x107* 1200000 0.7415 4 0.0490
1 339 25 x107 400 000 0.6975 + 0.0250
3339 25 x107 400 000 0.5830 £ 0.0070
10 339 25 x10 400 000 0.4220 £ 0.0065
30 339 25 x 1077 400 000 0.3255 +0.0105
100 339 2.5x 107 400 000 0.1810 £ 0.0125
300 339 2.5 x 107 400 000 0.0775 + 0.0060

Table 2.4: Relative viscosity data as a function of Pe from Brownian Dynamics at
o = 0.35.

$ = 0.35

Pe N Ny Ny [y

0.1 339 0.0335+£0.1595 —0.0795 £ 0.0415
0.3 339 0.1075+0.0655 —0.1695 £ 0.0510
1339 0.1070 4 0.0495 —0.0885 = 0.0260
3339 0.0730 £0.0305 —0.1380 + 0.0230
10 339 0.0515 4 0.0070  —0.1400 £ 0.0145
30 339 0.0145+0.0170 —0.1070 % 0.0110
100 339 0.0980 4 0.0180 —0.1265 = 0.0085
300 339 0.1045 £ 0.0065 —0.0770 % 0.0050

Table 2.5: Normal stress difference data as a function of Pe from Brownian Dynamics
at ¢ = 0.35.



&= 0.40
Pe N Al NSTEPS L
0.1 330 5x10-%7 2000 000

1
0.3 339 2.5 x10"% 1200000 1.3745+ 0.0555
1 339 25x107! 400 000 1.2020 £ 0.0215
3339 25x107 400 000 0.9360 £ 0.0175
10 339 2.5 x107* 400 000  0.6765 £ 0.0195
30 339 25x 107! 400 000  0.4780 £ 0.0265
100 339 2.5 x107? 400 000  0.1670 £ 0.0230
300 339 2.5 x 107 400 000  0.0605 = 0.0045

Table 2.6: Relative viscosity data as a function of Pe from Brownian Dynamics at

¢ = 0.40.

o = 0.40
Pe N NlF /7 *"“‘Tf /1y
0.1 339 —0.1280 £0.2915 —0.0755 £ 0.4105
0.3 339 0.15854+0.0470 —0.1285 £0.1170
1 339  0.2485 +0.0820 —0.1910 4 0.0380
3 339 0.0680 £0.0520 —0.1815 = 0.0460
10 339  0.0860 £0.0315  —0.2215 £ 0.0335
30 339 0.0185+£0.0225  —0.1915 £ 0.0345
100 339  0.1205£0.0120 —0.1135 £ 0.0155
300 339 0.1290 £0.0170  —0.0820 £ 0.0185

Table 2.7: Normal stress difference data as a function of Pe from Brownian Dynamics
at ¢ = 0.40.



¢ = 0.40

Pe N At NSTEPS nt
0.1 1331 5x10"" 2000000 1.3200 % 0.0620
0.3 1331 2.5x10"* 1000000 1.4015+0.0235
1 1331 2.5 x 107 400 000 1.2030 =+ 0.0085
: 1331 2.5 x 107 400 000 0.9510 £ 0.0090
10 1331 25 x 107 400 000 0.6770 £ 0.0150
30 1331 2.5 x 107 400 000 0.4840 £ 0.0090
100 1331 2.5 x 107 400 000 0.1695 £ 0.0105
300 1331 2.5 x 107! 400 000 0.0745 £ 0.0085
1000 1331 2.5 x 107 400 000 0.0525 £ 0.0090
3000 1331 2.5 x 1071 400 000 0.0350 £ 0.0065
10000 1331 2.5 x 107* 400 000 0.0440 £ 0.0085

Table 2.8: Relative viscosity data as a function of Pe from Brownian Dynamics at

o = 0.40.

o = 0.40

Pe N NE /n~ NI Ay
0.1 1331 0.0350 £0.0335 —0.0490 + 0.1070
0.3 1331 0.0875+£0.0795 —0.1695 4+ 0.0510
1331 0.1780 £0.0280 —0.2110 + 0.0480
: 1331 0.1365 £ 0.0300 —0.2285 4 0.0495
10 1331 0.0765 £0.0140 —0.2185 + 0.0250
30 1331 0.0455 £0.0175 —0.1975 = 0.0080
100 1331 0.1665 £ 0.0055 —0.1860 = 0.0145
300 1331 0.1300 £0.0130 —0.0855 4+ 0.0155
1000 1331 0.1210 £0.0100 —0.0500 £ 0.0130
3000 1331 0.0710 £0.0105 —0.0310 £ 0.0160
10000 1331 0.0945 £0.0120 —0.0505 4+ 0.0125

Table 2.9: Normal stress difference data as a function of Pe from Brownian Dynamics
at ¢ = 0.40.
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¢ = 0.40
Pe N At NSTEPS H/nkT /0%
0.0 1331 2.5 x 1071 400 000 5.4421 4 0.0091
0.1 1331 5 x107* 2 000 000 5.2585 94.653
0.3 1331 2.5 x107* 1000000 5.4389 4+ 0.0092 32.933 + 0.0550
1 1331 2.5 x 1071 400 000 5.7112 £ 0.0187 10.280 £ 0.0335
3 1331 2.5 x 107? 400 000 6.7958 4.0775
10 1331 2.5 x 1071 400 000 9.8840 1.7791
30 1331 2.5 x107* 400 000 16.592 0.9955
100 1331 2.5 x 107! 400 000 21.144 0.3806
300 1331 2.5 x 107 400 000 31.341 0.1887
1000 1331 2.5 x 1077 400 000 72977 0.1314
3000 1331 2.5 x 107 400 000 159.54 0.0957
10000 1331 2.5 x 1071 400 000 612.26 0.1102

Table 2.10: Osmotic pressure data as a function of Pe from Brownian Dynamics at

¢ = 0.40.

7

¢ = 0.40
Pe N D,. D,y D..

0.0 1331 3364+ 01635 3577 +.04977 2973 + .04913
0.1 1331 3851 4.02745 .3350 +£.02625 .3353 + .02062
0.3 1331 .3398 £ .03400 3346 & .02026 .3519 + 03408
1 1331 4167 +.03141 3879 £.04077 3143 + .03143
3 1331 5421 £ .05003 5624 £+ .08206 4556 + 05852
10 1331 8921 4+ .07279 9244 & .04438 7199 + 07141

30 1331 1.699 + 1754  1.593 £ .07620  1.243 £ .1497
100 1331  3.184 4+ .3979 4033 4+ 3581  .8796 £ .4192
300 1331 5.004 £1.000 1298 £.6455  .6591 £ .9285
1000 1331 1531 £2.564 3317 £1.937  .8538 £2.432
3000 1331 42,724+ 11.67 9689 £5.859  2.845 £ 7.878
10000 1331 156.3 £16.07 2347 £4.738  24.36 £ 16.89

Table 2.11: Long-time self-diffusivities,
diffusivity, Dg, as a function of Pe from Brownian Dynamics at o = 0.40.

nondimensionalized by the Stokes-Einstein
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6= 0.45
Pe N A NSTEPS nF
0.1 1331 25x 10" 4000000 2.9150 % 0.0370
0.3 1331 2.5 x 107" 1200000 2.7680 =+ 0.0525
1 1331 25x 107" 400 000 2.1835 = 0.0360
1331 2.5 x 107 400 000 1.6060 % 0.0330
10 1331 25 x 107" 400 000 1.0970 = 0.0205
30 1331 2.5 x 1071 400 000 0.6525 =+ 0.0195
100 1331 2.5 x107% 400 000 0.2255 =+ 0.0250

5x 107* 400 000  0.1050 £ 0.0130
5 % 107 400 000  0.0975 £ 0.0030
x 1074 400 000 0.0715 = 0.0055
x 1074 400 000 0.0455 £ 0.0100

300 1331
1000 1331
3000 1331 2.
10000 1331 =

b o N D
v O Ot

t O

'
(o

t

Table 2.12: Relative viscosity data as a function of Pe from Brownian Dynamics at
o = 0.45.

o = 0.45

Pe N NE /n~ NI /n~y
0.1 1331 0.0840 £0.1790 —0.0180 4 0.1820
0.3 1331 0.2435 £0.1025 —0.2095 4 0.1140
1 1331 0.2820 £0.0615 —0.3885 £ 0.0720
3 1331 0.2220 £0.0395 —0.4315 £ 0.0435
10 1331 0.0700 £ 0.0300 —0.3425 £ 0.0270
30 1331 0.0705 4+ 0.0390 —0.2420 £ 0.0310
100 1331 0.2110 £0.0380  —0.2020 £ 0.0205
300 1331 0.1595 £0.0135 —0.0870 £ 0.0200
1000 1331 0.2200 £0.0170 —0.1015 +£ 0.0140
3000 1331 0.1505 4+ 0.0150 —0.1535 £ 0.0040
10000 1331 0.1355 £0.0180 —0.0490 & 0.0260

Table 2.13: Normal stress difference data as a function of Pe from Brownian Dynamics
at ¢ = 0.45.



o =045
Pe N At NSTEPS /nkT I/n%
0.0 1331 2.5 x 1071 400 000 7.6131 + 0.0076
0.1 1331 2.5 x 1077 4000 000 7.6266 4 0.0050 154.44 £ 0.1013
0.3 1331 2.5 x 1071 1200 000 7 7092 £ 0.0081  52.037 £ 0.0547
1 1331 2.5 x 10~ 400 000 8.1728 £0.0245  16.550 £ 0.0496
3 1331 2.5 x 10~ 400 000 10.093 £0.0718  6.8128 £ 0.0485
10 1331 2.5 x 101 400 000 15.053 £ 0.1487 3.0482 £ 0.0301
30 1331 2.5 x 107 400 000 23.057 £0.4336 1.5563 4 0.0293
100 1331 2.5 x 1071 400 000  28.523 £ 2.3585 0.5776 &+ 0.0478
300 1331 2.5 x 107 400 000  42.759 4+ 3.8247  0.2886 £ 0.0258
1000 1331 2.5 x 107 400 000 122.21 £7.5935 0.2475 £ 0.0154
300 331 25 x 107 400 000  289.17 £ 15.710 0.1952 4+ 0.0106
10000 1331 2.5 x 1071 400 000  656.70 £ 77.503  0.1330 4+ 0.0157

Table 2.14:

& = 0.45.

Osmotic pressure data as a function of Pe from Brownian Dynamics at

¢ =045
Pe N Do Dy, D-.

0 1331 2331 & 02330 .2392 & .02274 .2350 + .02454
0.1 1331 .3183 4 .04684 .2585 4 .03605 2733 £ .03190
0.3 1331 .2663 +.01938 2791 £.03591 2439 + .02504
1 1331 3452+ .04065 3483 + .04085 3086 % .01442
3 1331 4961 £.01735 4866 & .04327 3904 + .01610
10 1331 .9089 = .1051 .8908 +.03322 .3921 + .06981
30 1331 1.680 £.1466  1.032 +.07532 1.175 &+ .05548
100 1331 3.815+.3318  .2540 + .3962  .6771 % .3209
300 1331 9.327 4 5325 1883 4 .6930 6835 £ 9032
1000 1331 2522 4£3.446  1.071+.4105  1.942 +2.765
3000 1331 7246 4+6.268  1.546+5.680  2.255 + 7.620
10000 1331  103.7+£46.66 3.935+£16.14  5.672 & 25.45

Table 2.15:

Long-time self-diffusivities, nondimensionalized by the Stokes-Einstein

diffusivity, Dg, as a function of Pe from Brownian Dynamics at ¢ = 0.45.
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b = 0.50

Pe N At NSTEPS 0T

0.1 1331 2.5x10~% 4000000 7.1010 % 0.1190
0.3 1331 2.5x107% 1200000 5.9550 & 0.1125
11331 25x 107" 400 000 4.0245 =+ 0.0290
31331 2.5% 107 400 000 2.8230 £ 0.0300
10 1331 2.5x107% 400 000 1.7990 =+ 0.0310
30 1331 2.5 x 1071 400 000 0.4185 £ 0.0115
100 1331 2.5x 107 400 000 0.1300 = 0.0090
300 1331 2.5 107% 400 000 0.1030 = 0.0060

1000 1331 2.5 % 107* 400 000 0.0825 = 0.0085

Table 2.16: Relative viscosity data as a function of Pe from Brownian Dynamics at
¢ = 0.50.

¢ = 0.50
Pe N NI sy NI nA
0.1 1331 0.4035£0.3220 —0.4175 £ 0.0825
0.3 1331 0.6370 £0.1695 —0.7235 £ 0.1245
1 1331 0.5830 £ 0.0980 —0.8345 £+ 0.1415
3 1331 0.3445 4+ 0.1175 —0.7445 £ 0.0775
10 1331 0.1890 4+ 0.0310 —0.5870 £ 0.0095
30 1331 0.0415 4+ 0.6535 —0.0545 £ 0.0890
100 1331 0.0195 £0.0085  0.0430 £ 0.0195
300 1331 0.1365 £ 0.0260 —0.0470 £ 0.0220
1000 1331 0.1220 £0.0116  0.0245 £ 0.0250

Table 2.17: Normal stress difference data as a function of Pe from Brownian Dynamics
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o = 0.50
Pe N At NSTEPS I/ nkT /05
0.0 1331 2.5x 107" 400 000 10.723 £ 0.0358
0.03 1331 2.5x 107" 400 000 10.726 £0.0345 804.45 £ 2.5875
0.1 1331 2.5x10"* 4000000 10.780 £ 0.0070 242.55 4+ 0.1575
0.3 1331 2.5x107* 1200000 11.077+0.0107 83.078 4 0.0303
1 1331 2.5 x 107 400 000 12,147 £0.0210  27.331 £0.0473
: 1331 2.5 x 107 400 000  15.837 £0.0659 11.878 £ 0.0494
10 1331 2.5 x 107 400 000 24.151 £ 0.3862  5.4340 £ 0.0869
30 1331 2.5 x 107 400 000  21.200 + 3.3560 1.5900 + 0.2517
100 1331 2.5 x 107 400 000 25.532 +1.3924  0.5745 £ 0.0313
300 1331 2.5x107* 400 000 49.537 £ 1.9817 0.3715 £ 0.0149
1000 1331 2.5 x 1071 400 000 132.11 £8.6106 0.2972 + 0.0194

Table 2.18: Osmotic pressure data as a function of Pe from Brownian Dynamics at

& = 0.50.

Pe N D, D,, D..

0.0 1331 .1283 + 01321 1297 £ 01146 1273 = 01411
0.03 1331 1313 4.02255 1475+ .02279 1235 4 .01262
0.1 1331 .2021 4+ .03306 1778+ .02945 .1364 & .02412
0.3 1331 .19554.02212 2085+ .01545 .1470 % .02459
1 1331 .2075£.02210 2893 +.02676 2464 & .03166
3 1331 4539 4+ .03789 4927 £ .05482 3617 4 .04079
10 1331 .9029 +.09924 8412 + .07044 .T422 £ 03608
30 1331 13114 .3018 3052+ .3046 3872 4 .2467
100 1331 2580 +.3074 0187 £.1753  .0712 2859
300 1331 7.3954.7426 1042+ 1.048 3371 & 1.414
1000 1331 24.51 £0.472  ATI5+1.335  1.022+ 1.644

Table 2.19: Long-time self-diffusivities, nondimensionalized by the Stokes-Einstein
diffusivity, Dy, as a function of Pe from Brownian Dynamics at ¢ = 0.50.
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¢ = 0.55
Pe N At NSTEPS nt

0.1 1331 2.5x 107" 4000 000 22.069 + 0.2580
0.3 1331 25x107* 1200000 13.821 4 0.3555
1 1331 2.5 x 10~ 400 000 7.9095 #£ 0.3560
: 1331 5% 1071 400 000 5.5090 £ 0.0630

10 1331 5% 1071 400 000 0.7365 £ 0.0890
30 1331 5x 1071 400 000  0.4465 £ 0.0205
100 1331 5x 1077 400 000 0.2743 = 0.0030

x 107 400 000  0.1297 £ 0.0050
x 1074 400 000 0.2407 £ 0.0216

300 1331
1000 1331 2.

I

O N o o DO
Qv Ov Ot

vl

Table 2.20: Relative viscosity data as a function of Pe from Brownian Dynamics at
¢ = 0.55.

=055
Pe N NE n~ NI A
0.1 1331 1.5360 &+ 0.6695  —2.3945 £ 0.4820
0.3 1331 1.3610£0.2315 —2.157540.2110
1 1331 1.0315 £ 0.1410  —1.9300 4 0.1910
: 1331 0.6920 £0.1360  —1.5750 £+ 0.0940
10 1331 0.3880 £0.2765  —0.5865 £ 0.1965
30 1331 0.4865 +0.0765 —0.0785+0.0775
100 1331 —0.1137 +0.0312 —0.0712 £0.0476
300 1331 —0.1971 £0.0169  0.1712 £0.0121
1000 1331  0.2142 4 0.0423 0.0173 = 0.0090

Table 2.21: Normal stress difference data as a function of Pe from Brownian Dynamics
at © = 0.55.
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Pe N Al NSTEPS Tkl /0

0.01 1331 2.5 x107* 400 000 15.388 £ 0.0590 3308.5 £ 723.24
0.03 1331 2.5 x 1077 400 000 15524 £0.0784  1280.7 £+ 6.4680
0.1 1331 2.5 x107" 4000000 15.97340.0180 395.33 £ 0.4455
0.3 1331 2.5 %107 1200000 17.01440.0242 140.37 £0.1997
1 1331 2.5 x 1071 400 000 19.612 +0.0466  48.540 £ 0.1153
3 1331 2.5 x 1071 400 000 28.076 £ 0.1225 23.163 £0.1011
10 1331 2.5 x 107 400 000 18.246 + 1.3438  4.5159 £ 0.3326
30 1331 25 x 107! 400 000 26.600 £ 1.2073  2.1945 =+ 0.0996
100 1331 2.5 x107? 400 000 52.880 £0.4735 1.3088 £0.0117
300 1331 2.5x 107! 400 000 86.880 £ 2.3673 0.7160 £ 0.0195
1000 1331 2.5 x 107* 400 000 353.68 £23.381 0.8754 £ 0.0579

Table 2.22: Osmotic pressure data as a function of Pe from Brownian Dynamics at
¢ = 0.55.

6=1055

Pe N D.. Dy, D-.

0.01 1331 .0489 & 00699 .0469 +.00784 .0462 £ .00414

0.03 1331 .0529 .01077 .0451 +£.00907 .0441 £ .00587
0.1 1331 .12394.02307 .1109 + .02387 .0676 + .00438
0.3 1331 1357+ .01211 .1396 +.02323 1202 £ .01356
1 1331 2577 £.01624 2553 £ .02680 .1996 + .02605
3 1331 4552 £ .03382 4246 £ 04841 3991 + 03713
10 1331 5859 £ .17841 1459 & 25064 .1832 & .26849
30 1331 1.019 £ .16500 0781 +.03605 .0847 + .05853
100 1331 4.904 £ .80276 -.0080 & .13396 0811 % .19684

300 1331 3.352£ 79880 0672+ 47447 0310 + .05853

1000 1331 59.51 £ 9.4779 2748 £ 1.3769 2643 + 1.6523

Table 2.23: Long-time self-diffusivities, nondimensionalized by the Stokes-Einstein
diffusivity, Dyg, as a function of Pe from Brownian Dynamics at ¢ = 0.55.
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Chapter 3
Structure, diffusion and rheology of
Brownian suspensions by Stokesian

Dynamics simulation



3.1 Introduction

Suspensions of small particles dispersed in a fluid occur in a wide variety of natural
and industrial settings, such as slurries, paints, pastes, dyes, polymers, proteins, many
foodstuffs, and ceramic sols. In these microstructured fluids the suspended particles
interact through hydrodynamic, interparticle, and Brownian (or thermal) forces. The
balance between thermal and interparticle forces determines the equilibrium behav-
ior. Under the action of an external driving force such as shear, hydrodynamic forces
come into play and compete with thermal and interparticle forces to set the structure
and determine properties. The understanding of colloidal dispersions has increased
dramatically in the last decade as a result of three parallel developments: (1) experi-
ments on well-characterized model hard-sphere systems (de Kruif et al. 1985, van der
Werff & de Kruif 1989, van der Werfl et al. 1989, Ackerson 1990, etc.), (2) scaling
theories for the behavior at high solids concentration (Brady 1993b, Brady & Morris
1997), and (3) Stokesian Dynamics simulations (Bossis & Brady 1984, 1987, 1989;
Brady & Bossis 1985, 1988; Phung & Brady 1992, Phung 1993, Phung et al. 1996,
Ball & Melrose 1995, Dratler & Schowalter 1996). Stokesian Dynamics, a general
molecular-dynamics-like method for simulating suspensions at low particle Reynolds
number, accurately calculates the many-body interactions necessary to capture the
hydrodynamic forces transmitted through the fluid.

In this work we report on simulation studies of rheology, diffusion, and structure of
concentrated monodisperse suspensions of hard spheres. In a hard-sphere suspension
particles interact through hydrodynamic and Brownian forces only. and the system
is described by the minimal number of parameters — the volume fraction ¢ and
the Péclet number, Pe. The Péclet number is the ratio of hydrodynamic shear to
thermal forces, or alternatively the ratio of Brownian and flow time scales and 1s given
by Pe = 4a*/ D, where % is the magnitude of the shear rate, and D = kT'/6mna is the
Stokes-Einstein diffusivity of an isolated spherical particle of radius « and thermal
energy kT in a fluid of viscosity 7.

As the Péclet number is varied, the simulations reveal two characteristic regimes



69

of suspension behavior. At low Péclet number (Pe < 10) the equilibrium structure is
distorted by the flow and the suspension viscosity shear thins. The shear thinning is
shown to be caused by the decrease of the direct Brownian contribution to the stress
as the deformation of the structure cannot keep up with the flow. The hydrodynamic
contribution to the stress remains constant and equal to the high-frequency dynamic
viscosity, 17, throughout the shear thinning process. The zero-shear rate viscosity is
determined both as the limiting value of the steady shear viscosity as the shear rate
vanishes and from the decay of the shear stress autocorrelation at equilibrium (Néagele
& Bergenholtz 1998). The simulation viscosities show no variation with the size of,
or the number of particles in, a unit cell (27 < N < 123) and compare well with
experiment (van der Werft & de Kruif 1989). Normal stress differences have proven
difficult to measure accurately at low Péclet number but are determined by the direct
Brownian contribution to the stress. The first normal stress difference is positive and
the second negative. Unlike polymer systems. however, both normal stress differences
are of comparable magnitude.

At high Péclet number the shearing forces overcome Brownian motion and push
particles into close contact where the short-range hydrodynamic lubrication forces
are important. The suspension exhibits shear thickening due to the increase in the
hydrodynamic contribution to the stress caused by the formation of clusters that
are bound by lubrication forces as first shown by Bossis & Brady (1989). The first
normal stress difference changes sign, and both normal stress differences are negative
and appear to approach an O(n¥) high Pe asymptote. The long-time self-diffusivity
also grows dramatically with Pe and reaches a purely hydrodynamic O(%a?) limit
at high Pe. The appearance of diffusive motion and normal stress differences in
the deterministic pure hydrodynamic limit is surprising. Recent theoretical work by
Brady & Morris (1997) has shown, however, that the high- Pe limit is singular, and the
residual effect of weak Brownian motion introduces irreversibility, which may result
in finite normal stress differences and diffusive motion.

An unfortunate error in the simulation code used in our previous work (Phung

& Brady 1992, Phung 1993, Phung et al. 1996) has been discovered and corrected
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for this paper (see §3.2 for details of this error). The main effect of this correction
is the absence of a flow-induced string-ordered phase at intermediate Péclet numbers
and high concentrations that was observed in the earlier work. The low-Péclet shear
thinning regime (Pe < 1) is not affected. The high-Péclet shear-thickening behavior
is changed (slightly) quantitatively, but not qualitatively.

In the next section we outline the Stokesian Dyvnamics simulation method. In
section 3.3 we present and discuss the simulation results for rheology, diffusion, and
structure in concentrated colloidal dispersions of Brownian hard spheres at volume

fractions in the range of 0.316 < ¢ < 0.49. Conclusions are given in section 3.4.

3.2 Simulation method

A detailed derivation of the simulation method can be found elsewhere (Durlofsky et
al. 1987; Bossis & Brady 1987; Brady & Bossis 1988; Brady et al. 1988; Bossis &
Brady 1989, Phung, et al. 1996); here, we shall proceed quickly. For V rigid particles
suspended in an incompressible Newtonian fluid of viscosity 1 and density p, the
fluid motion is governed by the Navier-Stokes equations, while the particle motion is
described by the coupled N-body Langevin equation:
mfi% = F" + F" + F5, (3.1)
In (3.1) m is the generalized mass/moment of inertia tensor, U is the particle trans-
lational /rotational velocity vector of dimension 6N, and the 6N force/torque vectors
F represent: (1) the hydrodynamic forces F H exerted on the particles due to their
motion relative to the fluid, (2) the deterministic non-hydrodynamic forces F P which
may be either interparticle or external, and (3) the stochastic forces F' B that give rise
to Brownian motion.
When the motion is such that the particle Reynolds number is small; i.e., Re =

pay/n < 1 for the shear flows considered here, the hydrodynamic force/torque



71

exerted on the particles in a suspension undergoing a bulk linear flow is

F'" = —Rp(U — (U)) + Rpp:(E). (3.2)

In (3.2), (U) = (I')-x is the imposed bulk flow evaluated at the particle centers,
(I'Y = (E) + (£2), and (E) and (§2) are the bulk rate of strain and vorticity ten-
sors, respectively, and are constant in space but may be arbitrary functions of time.
The configuration-dependent resistance tensors Rpp(®) and Rpp(a) give the hy-
drodynamic force/torque on the particles due to their motion relative to the fluid
and due to an imposed flow. respectively. The vector & represents the generalized
configuration vector specifying the location and orientation of all NV particles.

The deterministic, non-hydrodynamic force F¥' is arbitrary and may be any form
of interparticle or external force. In this work we shall consider hard spheres under
the action of hydrodynamic and Brownian forces only so that F© = 0. The stochas-

tic or Brownian force F7 arises from the thermal fluctuations in the fluid and is

characterized by

FP =0 and FP0)FP(t) = 2kT Rp6(1). (3.3)
In (3.3) the over bar denotes an average over the rapid fluctuations of the solvent
molecules, & is Boltzmann's constant, T is the absolute temperature, and 6(1) is the
delta function. The amplitude of the correlation between the Brownian forces at time
0 and at time ¢ results from the fluctuation-dissipation theorem.

The evolution equation for the particles is obtained by integrating (3.1) over a time
step At that is large compared with 7,. the inertial relaxation time (7, = m/6mna),
but small compared with the time over which the configuration changes. A second
integration in time produces the evolution equation for the particle positions (both
translational and orientational) with error of o( At):

Az = Pe{(U) + Rzt [Rpp:(E) + 5 ' FPYAL + V-RzHAL + X (A1)

7
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X =0 and X(A1)X(At) =2R;; Al (3.4)

Here, Aa is the change in particle position during the time step At, and X (A?) is
a random displacement due to Brownian motion that has zero mean and covariance
given by the inverse of the resistance tensor. In (3.4) & has been nondimensionalized
by the characteristic particle size a; the time by the diffusive time scale a*/ D, where
D = kT/67na is the diffusion coeflicient of a single isolated particle; the rate of
strain tensor <E> by 4. where 4 = [(I")] is the magnitude of the shear rate; the
shear forces by 6mna®y; and the interparticle forces by their magnitude |FF|. The
Péclet number, Pe = 4a*/ D = 6mna®y /KT, measures the relative importance of shear
and Brownian forces, and 4* = 67na®y/|F’| is a nondimensional shear rate giving
the relative importance of shear and interparticle or externally imposed forces. For
simulations where Pe > 1 it is convenient to non-dimensionalize the time step At
with the inverse shear rate 1/4. This is done by replacing At in (3.4) by At/Pe
producing an alternate form of the evolution equation:

. 1 1 ,
Aw = {(U) + Rpp-[Repi(B) + 377 F JAL 4 5o V-REEAL+ = X (A,

2
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X =0 and X(AHX(A?) =2R; At (3.5)

The high-Péclet form of the evolution equation was incorrect in the Stokesian
Dynamics code that was used for recently published results (Phung & Brady 1992,
Phung 1993 and Phung et al. 1996). The random displacement term, X (At?), had a
I/ Pe coefficient which is too small for Pe > 1 affecting the results of those simula-
tions. If we had simple diffusive motion in which the mobility was independent of the
configuration, then one could simply rescale the shear rate by Pel/? to convert the in-
correct (1/Pe) results to the correct behavior (1/ Pe'/?). However, the configuration-
dependent mobility gives rise to the deterministic displacement V-Ryj;At, which
acts like a repulsive force between particles, and this rescaling produces too large of
a repulsive force (1/Pe'/* instead of 1/Pe¢). It is well known that suspensions with

nonhyvdrodynamic repulsive forces order into string phases if the forces are strong
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enough and the volume fraction is high enough (Bossis & Brady 1984, Rastogi 1995).
Thus, the error in the earlier simulations acted to enhance this ‘repulsive’ force and
produce ordering where there should be none as we show in this work. Note, this
only affects the behavior for Pe > 1; the correct scaling for Pe < 1 is used in Phung
et al. (1996).

The macroscopic properties are found from appropriate definitions and averages
over particles and over time in a dynamic simulation. Here we shall be primarily
interested in diffusion and rheology. Several ‘particle diffusivities” may be defined.
The short-time sel{-diffusivity D, which measures the average instantaneous mobility
of a particle, is given by an average over all configurations: Df = (D;;), where the
subscript 2 (no sum on ) indicates that only the diagonal or self terms are included
in the sum, and the angle brackets denote an average over all configurations and all
identical particles. The N-particle diffusion tensor I is given by the Stokes-EFinstein
relation:

D = kTRz.,. (3.6)

The long-time self-diffusivity D?_. which measures the ability of a particle to wander
far from its starting point, is defined as the limit as time approaches infinity of one

half of the time rate of change of the mean-square position of a particle:

). (3.7)

For rheology. the bulk stress (&) is needed. This is defined as an average over the

volume V' containing the N particles and is given by

(Z) = —()I +20(E) +{Z,), (3.8)

where (p) is a constant setting the level of the pressure in the incompressible medium.

and 2n(E) is the deviatoric stress contribution from the fluid. The particle contribu-



tion to the stress (X,) is given by

(X, = —nkTT 4+ n{(S") + (8") + (8P} (3.9)

P/

Here, —nkTT is the isotropic stress associated with the thermal energy of the Brown-
ian particles, I is the isotropic tensor, and n is the number density of particles. There
are three contributions to the bulk stress; («) a mechanical or contract stress trans-
mitted by the fluid due to the shear flow. (§™); (1) a stress due to the interparticle

forces, (S”): and (¢) a direct contribution from Brownian (S); they are given by

($") = —(RerRypj-Rrp — Rsp)(E), (3.10a)
(") = —((Rsu-Rpy +aI)F"), (3.10b)
(§%) = —kT(V-(Rsi-Rpyr))- (3.10¢)

The configuration-dependent resistance tensors Rgy(#) and Rsp(@) are similar to
Ry and Rpp and relate the particle ‘stresslet” § to the particle velocities and to
the imposed rate of strain, respectively. The stresslet is the symmetric first moment
of the force distribution integrated over the particle surface.

The hydrodynamic resistance tensors Ry, Rpg, etc., that appear in the evolu-
tion equation and macroscopic stress are computed in the same manner as discussed
in Phung et al. (1996) and are not repeated here. Suffice it to say that the method
accurately accounts for the near-field lubrication effects and the dominant many-body
interactions. Periodic boundary conditions are used and all divergent and condition-
ally convergent hydrodynamic interactions are accelerated with the Ewald summa-
tion technique. As currently implemented, calculation of the hydrodynamic inter-
actions requires O(N?) operations and thus limits the simulations to small systems
(27 < N <123). The same time integration scheme used by Phung et al. (1996) is
emploved here.

The simulation results are for a monodisperse suspension of Brownian hard spheres.

FFor particles interacting as hard spheres the interparticle force is identically zero,
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F? = 0. The no-slip hydrodynamic boundary condition at particle surfaces guaran-
tees that the particles behave as hard spheres (Brady 1993a). This can be appreciated
by noting that an interparticle force of hard-sphere type at contact r = 2a between
two particles, FI' = %kT?‘(S('r — 2a), has no dynamical consequence. Since the rel-
ative mobility of two particles vanishes at contact as » — 2a due to the lubrication
interactions. the relative velocity caused by a hard-sphere force is proportional to
(r —2a)8(r — 2a) and vanishes. Simulations with FP =0 at Pe = 0 were shown by
Phung et al. (1996) to produce precisely the expected hard-sphere behavior. Simi-

larly, the stress contribution from hard-sphere forces at contact is zero (:SP =0).

3.3 Results

A large number of simulations were performed for a range in volume fraction of
0.316 < & < 0.49, Péclet numbers ranging from 0 to 10* and the number of particles
N in the unit cell ranging from 27 to 123. Many of the long runs were divided into
statistically independent subintervals in order to determine the statistical variation
in the properties. All runs for all Péclet numbers were started using hard-sphere
equilibrium configurations obtained from a Monte Carlo procedure. For each run, the
first 10 000 to 20 000 time steps were ignored when computing average properties.
The properties reported are averages over all particles and over time. All simulations
are for simple shear flow with the flow. velocity-gradient, and vorticity directions
along the three axes (z.y, z) of the cubic unit cell. The presentation below is divided

into three parts: rheology, diffusion and structure.
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3.3.1 Rheology

Shear viscosity

In steady simple shear flow the viscosity of a suspension is related to the (x,y) com-

ponents of the bulk stress and rate of strain in the following manner:

Xt

iy

U 5o "
20l
The individual Brownian (SB) and hydrodynamic (‘SH) contributions to the relative

viscosity are denoted as n® and n¥, respectively; hence

B, . H .
n, =1+n"4+n". (3.11)

where the 1 is the solvent contribution.
First, we can analyze the fluctuations in stress at equilibrium and extract the zero-

shear limiting viscosity from the following dimensional Green-Kubo formula (Nagele

& Bergenholtz 1998):

1,,’ o0 .
o =1+ = | {0y (1o, (0))dL. (3.12)
ET Jo
Here, n/_ is the high-frequency dynamic viscosity, which represents the viscous con-

tribution to the stress at equilibrum. and is easily calculated from simulation. The
instantaneous Brownian shear stress is given by o,,(t). Although its average over
long times is zero, the Brownian stress fluctuates along with the microstructure due
to Brownian motion. The shear stress autocorrelation function (o,,(t)o,,(0)) ana-
lyzes the nature of the relaxation of these fluctuations. Here, we use the subscript
ay for simplicity, but since there are no preferred directions at equilibrium, we can
also autocorrelate the xz- and yz-components of the Brownian stress tensor and av-
erage the three functions to reduce statistical noise. Simulations were run at Pe =0
-

using a time step of At = 5 x 107" for 400000 steps to calculate the shear-stress

autocorrelation function. A discussion of the time-dependent behavior of the auto-
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correlation function is presented elsewhere (Foss & Brady 1999b (ch. 4)). Here we
are only interested in the zero-shear viscosity 7.

The zero-shear rate viscosity from the Green-Kubo formula is shown in table 3.1
and compared with data from steady-shear simulation and experiment as a function
of volume fraction. ¢, in figure 3.1. The values calculated in this work from Green-
Kubo analysis are virtually indistinguishable from the previously reported viscosities
of Phung (1993) determined from steady-state averages at the lowest shear rate (Pe =
0.01). This gives us confidence that the simulations were indeed performed at low
enough Pe to measure the limiting zero-shear viscosity. General agreement is found
between the values obtained from Stokesian Dynamics and the experimental data.

We now turn our focus to the shear-rate dependence of the suspension stress. A
representative viscosity versus Péclet number curve (figure 3.2) for a volume fraction
of 0.45 and N = 27 shows the individual contributions to the viscosity as a function
of the Péclet number. The Brownian viscosity shear thins, becoming insignificant
compared to the hydrodynamic viscosity for Pe > 10. The hydrodynamic viscosity
remains roughly constant and equal to the high-frequency dynamic viscosity, 7.,
throughout the shear thinning process and then increases for Pe > 10. Thus, the
total viscosity goes through two regions of behavior, a shear thinning region at low
Pe and a shear thickening region at high Pe. The constancy of the hydrodynamic
viscosity and the shear thinning of the Brownian viscosity has been observed in the
stress jump experiments of Mackay and Kaffashi (1995) and the optical measurements
of Bender and Wagner (1996). The uncertainty in the viscosities is shown in table 3.2.

Shear thinning can be explained in the following manner: the Brownian stress
arises from the flow-induced deformation of the equilibrium structure — particles dif-
fuse against the flow towards their unstressed configuration and the resultant stress
is directly proportional to the deformation. This deformation is known to be linear
in the Péclet number for very small Péclet numbers. Since the viscosity of a sus-
pension is simply the stress non-dimensionalized by 17, the viscosity scales as the
‘deformation’/ Pe, hence nP ~ O(1) as Pe — 0. In order for the Brownian viscosity

to remain constant as Pe is increased, the flow-induced deformation must continue to
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increase linearly with Pe. However, the Péclet number is also the ratio of the relax-
ation time due to diffusion a*/D to the time scale of the flow 1/%, and as the Péclet
number increases the particle motion cannot keep up with the flow and the structural
deformation saturates. Hence the Brownian viscosity decreases as Pe — oo. Recent
theoretical work (Brady & Morris 1997) predicts the Brownian viscosity to decay as
1/ Pe, which is in fair agreement with the results of the simulations (cf. table 3.2).

The hydrodynamic stress arises because the particles are rigid and do not deform
as fluid elements. For the volume fractions studied here, 0.316 < ¢ < 0.49. the
hvdrodynamic viscosity varies little between a random and a regular array and is
roughly the same for any ‘well-dispersed’ structure. Although the structure evolves
quite significantly at low Péclet numbers (cf. figure 3.20), the suspension remains
‘well-dispersed” and the hydrodynamic viscosity is constant. In simple shear flow
particles are pushed together along the compressive axis of the flow, while the action
of Brownian motion is to keep particles apart and well dispersed. (In fact it is the
V-R5i term in (3.4)-(3.5) that acts as a repulsive radial force and balances the
hydrodynamic squeezing force along the compressive axis (Bossis & Brady 1989).)
At high Péclet numbers hydrodynamic forces dominate everywhere except in a thin
O(Pe™') boundary layer adjacent to particle surfaces where there is a balance of
hydrodynamic and Brownian forces (Brady & Morris 1997). Once the Péclet number
exceeds O(10) hydrodynamic forces are capable of pushing two particles close enough
together for the strong lubrication forces to come into play; lubrication forces are
singular near contact as 1/(r — 2a), with this singularity being felt when r — 2a <
107%a. As the Péclet number is increased, particles are progressively ‘stuck’ together
by the strong lubrication forces and form noncompact aggregates or clusters. As
shown in earlier work on monolayers (Bossis & Brady 1989), the cluster size grows as
the Péclet number increases. Associated with a growing cluster size is an increase in
the contact value of the pair-distribution function reported in table 3.4. The increased
contact value is also evident in the sharpening of the first nearest neighbor peak in
figure 3.20.

Although the stress is purely hydrodynamic at large Péclet number, this does not
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mean that Brownian motion does not play a role. The limit Pe — oo is singular
and the residual effect of Brownian motion at particle contact limits the ultimate
size of the clusters. The relative tangential motion of two particles is resisted by a
weak logarithmic dependence on particle separation and the small amount of Brow-
nian motion provides a means for two near touching particles to move relative to one
another and break the connectivity of the cluster dramatically affecting the viscosity
(Bossis, Meunier & Brady 1991). Previously reported results (Phung et «l. 1996) in
the pure hydrodynamic limit (Pe™' = 0) have not been affected by the nondimen-
sionalization error as they include no Brownian motion. These simulations in the
pure hydrodynamic limit failed to reach a steady state. A typical run in this regime
would proceed in time with the viscosity slowly increasing until suddenly a large
cell-spanning cluster would form jamming particles together, sending the viscosity to
enormous values, and halting the integration. Reducing the time step allowed only a
very small additional advance in time. Increasing the size of the unit cell delayed the
onset of the catastrophic shear thickening but did not eliminate it.

The problems with (Pe™* = 0) simulations have also been discussed by Ball &

Melrose (1995), Melrose & Ball (1995), and Dratler & Schowalter (1996). In fact,

a high-Péclet-number asymptote for the viscosity was not obtained for any of the
volume fractions studied here. The size of the time step, At, for the largest Péclet
(10%) runs for each volume fraction are 2.5 x 107* compared to 5 x 10™* for most of
the other runs. This is because Pe = 10* runs with At = 5 x 107* displayed the
same problems with growing clusters, diverging viscosities and halted integration as
the aforementioned (Pe™ = 0) runs. The most likely explanation for this is that
the larger time step is unable to properly resolve the Pe™' boundary layer as the
Péclet number gets large. One can see that as Pe — oo, the time step necessary
to capture the proper physics of the boundary layer would have to scale as Pe™!,
which becomes an unreasonable constraint numerically and is consistent with the
pathological behavior of simulations run in the pure hydrodynamic limit ( Pe™! = 0).
Previous simulations with the erroneous high-Pe evolution equation were able to run

at Péclet numbers as high as 10° (Phung, et /. 1996, Phung 1993). The random steps
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in those simulations were too small compared to the deterministic V-Ry{; term. The
relative ‘enhancement’ of the V-Ry{; term in those simulations caused the particles
to act as if there were an additional radially repulsive force acting between them. The
ability of those runs to achieve a steady state at higher Péclet numbers is consistent
with the increased robustness of Pe™' = 0 simulations with repulsive interparticle
forces (Brady & Bossis 1985, Dratler & Schowalter 1996, Yurkovetsky 1998).

This sensitivity to small scale surface interactions and the singular nature of the
Pe — oo limit have important implications for the interpretation of experimental
viscosity measurements at high concentrations and shear rates because seemingly
small factors can dramatically influence the results. It may also explain why mea-
surements of viscosity at high concentrations in the pure hydrodynamic limit show
a large amount of scatter (an order of magnitude) from one researcher to the next,
although the reproducibility for an individual researcher was good (Thomas 1965).
It also suggests that if short-range surface effects can be controlled and the Péclet
number is made large enough, the clusters should grow to the size of the experimental
apparatus and the measured viscosity should depend on the size of the measuring cell.

In figure 3.3 we compare the simulation viscosities with the experiments of van
der Werff & de Kruif (1989) on monodisperse spherical silica particles that have been
shown to behave to a very good approximation as hard spheres. The simulation and
experimental viscosities are in good quantitative agreement considering the strong
dependence of the viscosity on volume fraction at high volume fraction and the un-
certainty in precisely determining the experimental volume fraction. The experiments
do not show shear thickening as their Péclet numbers were too low. Additional exper-
iments by the same group up to Pe = 1200 did not display shear thickening. It may
be that shear thickening occurs at a slightly higher Péclet number in these systems,
possibly due to the fact that the silica particles are coated with short hydrocarbon
chains and therefore are weakly repulsive when brought into near contact. However,
shear thickening due solely to the growth of clusters as first predicted in the mono-
layer simulations has been observed experimentally (D'Haene, Mewis & Fuller 1993,

Bender & Wagner 1995, 1996).
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Figure 3.4 shows the total relative viscosity plotted as a function of Péclet number
for all volume fractions studied. More detailed figures showing the separate hydro-
dyvnamic and Brownian contributions for each volume fraction can be found in the
tables and figures at the end of this chapter; the trends are identical to those shown
in figure 3.2 for ¢ = 0.45. The uncertainty in the viscosities are comparable to
those shown in table 3.2 for ¢ = 0.45. To examine the shear thinning and thicken-
ing behavior and to compare with existing theories, it is important to separate out
the contribution to the viscosity resulting from the hydrodynamic interactions that
are present in the equilibrium configuration — the high-frequency dynamic viscosity
n'./n =1+ n(Pe = 0). The remaining viscosity. An/n = . — n’_/n. arises from
particle interactions (hydrodynamic and Brownian) in the nonequilibrium structure
induced by the flow. Theories have been advanced to predict An as a function of
concentration and shear rate which we now discuss.

Let us first examine the shear thickening regime Pe > O(10). Brady & Morris
(1997) showed that the limit of large Péclet number is singular with an O(Pe™") thin
boundary layer at particle-particle contact in which Brownian and hydrodynamic
forces balance. Brady & Morris also showed that the hydrodynamic contribution to
the stress from this boundary layer, which is the dominant contribution at high Pe,
scales as Sf ~ Anl_(0)6*¢g™(2: @), where g™ (2; &) is the pair-distribution function
just outside the boundary layer at the high Péclet number (o) and the concentration
of interest, and 5’_(¢) is the (dimensional) high frequency dynamic viscosity. A simple
physical explanation for this scaling is the following.

The stress from the boundary layer is a two-body effect and near contact the
hydrodynamic stress can be estimated from the moment of the hydrodynamic shear
force

SH 2 /bl r FS1e o) e (3.13)

The hydrodynamic shear force scales as F*°" ~ =3myl (d)a*y x (7 -E-#), where

7 1s the unit vector along the line of centers of the two particles, and the angle

brackets on E denoting a suspension average have been dropped. In a concentrated
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suspension the shear force is enhanced over that for two particles alone in the fluid in
essence because it acts through the suspension, while the resistance to this squeezing
force is through the solvent as only solvent can be in the gap between two near
touching particles. Stokesian Dynamics simulations at high Pe (Brady & Bossis 1985,
Bossis, Brady & Mathis 1988) bear this out and show that the relative velocity of
two particles near contact is enhanced in a concentrated suspension and an estimate
for the ¢-dependence of that enhancement is 1’ (o).

Although the boundary-layer thickness is small, O(Pe™"), and therefore one might
expect that the contribution in (3.13) would be small, along the compressive axes of
the flow, 7 E-# < 0 (cf. figure 3.20). the pair-distribution function within the bound-
ary layer is large. O(Pe¢). Brady & Morris (1997) show that along the compressive
axes g, (r) ~ Peg™(2;6)q(6, p), where ¢g*(2; ¢) is the value of the pair-distribution
function just outside the boundary layer, and g(6, ) is the O(1) angular variation
within the boundary layer. Thus, the integral (3.13) for the stress from the boundary
layer is

A

S~ (Vg (2:0) [ F(iE)g(0,0)d0, (3.14)

Ji B <o
where df) represents the solid angle and the limits of angular integration are restricted
to regimes where g(r) ~ O(Pe), i.e.. the compressive axes. For a simple radial-
balance approximation, Brady & Morris show that (6, ) = —p-B-#. The expression
for the boundary-layer stress (3.14) is only approximate due to the approximations
that have been made for the shear forces, etc. Further, there are other contributions
to the hydrodynamic stress from particle interactions outside the boundary layer
and along the extensional axes, but we expect these to be no larger and therefore
(3.14) to give a reasonable estimate of the hydrodynamic stress over and above the
high-frequency dynamic viscosity (which is associated with the disordered structure
outside the boundary layer).

In addition to an estimate of the hydrodynamic stress, the analysis of Brady &
Morris (1997) also shows that the Péclet number needs to be rescaled in the shear-

thickening regime. Since the Péclet number is the ratio of shear forces to Brownian
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forces, the rescaled Péclet number is simply Pe = 671/ (0)a>y/kT = Pen' (6)/7.
From figure 3.4 one sees that the higher the concentration, the earlier shear thickening
begins, in agreement with this rescaling.

The last item needed is the contact value of the pair-distribution function outside
the boundary layer ¢*°(2;@). On this the theory of Brady & Morris (1997) is silent.
We could use simulation results, but then that would not result in a predictive theory.
Instead, we have chosen to use the equilibrium pair distribution for hard spheres,
g"(2; &), which is a known function of ¢, for example from the Carnahan-Starling

equation of state:

, 1 - Ly
90(2?@) = (1_—?;;3, ¢ < 0.50.

This is, of course, not correct, but it should give a reasonable estimate over the
range of @ investigated here. Near close packing, this would not necessarily be a good
estimate as ¢°(2) diverges at random close packing ¢,. & 0.63 (not with the Carnahan-
Starling equation, however), while ¢*(2) may diverge in a different manner and at
different maximum concentration.

These arguments suggest that a plot of

(o]

N (0) 92g°(2:0) . (0)0?g°(2; )

Ay L nléiPe) =l (9)

versus Pe = Pe n'_(¢)/n should collapse the shear thickening behavior to a single
universal curve for all ¢. Figure 3.5 shows the data for all shear rates in figure 3.4
replotted according to this scaling estimate. The shear thickening data collapse quite
well, showing that Pe is the appropriate scale for the shear rate and that the bound-
ary layer scaling with the equilibrium pair-distribution function ¢°(2; ¢) collapse the
magnitude well.

Figure 3.5 also shows that the viscosity does not approach an assymptote as
Pe — oc. This is shown more clearly in figure 3.6 where only the scaled hydro-
dynamic viscosity (over and above the high frequency dynamic viscosity) is plotted
versus the scaled Péclet number. This behavior confirms the results of Ball & Mel-

rose (1995) and Dratler & Schowalter (1996) that in the pure hydrodynamic limit
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(Pe — oo for hard spheres) a steady shear viscosity does not exist because hydro-
dynamic clusters form whose size diverges as Pe — oo. The growth with Pe in
figure 3.6 is very weak, approximately as In Pe, although caution must be exercised
in drawing firm conclusions because the system sizes are small and the periodicity
would likely affect the detailed behavior. One would expect. for example, that there
would be a critical volume fraction below which infinite clusters would not form and
an asymptotic viscosity would exist.

In figure 3.5 we plotted the data for all shear rates according to the high-shear-
rate scaling behavior and, while the spread in the shear thinning data is reduced,
this scaling does not appear to completely collapse the shear thinning data. At low
shear rates it is the Brownian contribution to the stress that is responsible for shear
thinning. To obtain an estimate for the shear thinning behavior, we start by rewriting

the Brownian contribution to the stress in the equilivalent form

(8P = —n’kTa / #7g(r)dS + nkT(Rsy Ry -V In Py), (3.15)

Jr=2a

which can be obtained from (3.10¢) by introducing the probability density for the N-
particle configuration Py (@, t) and integrating by parts (Brady 1993a). This form for
(§F ) is particularly convenient in that is separates out the contribution for particles in
contact (the first integral), which is of exactly the same form as in atomic or molecular
hard spheres, from the remainder which is due to hydrodynamic interactions (Rsyr)
among particles.

Here, we focus on the contact integral which has been shown to give a good
estimate of the Brownian stress at high densities (Brady 1993b). The low-shear
viscosity can be extracted from this integral by using the first perturbation due to
flow to the equilibrium structure, f(), defined by g(r) = ¢°(v)[1 + f(r)]. The
equilibrium stress is just the isotropic osmotic pressure, —I1°7. The first contribution
to the viscosity is due to the O(Pe) correction to the microstructure and results in a

constant low-Pe Newtonian plateau with viscosity equal to the zero-shear viscosity,
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no; thus we can write

f(r) = Pef(r).

where j?(k'r,) is independent of the flow strength and Pe = Pe / ﬁ(cb) where ]j(o) is
the characteristic diffusivity nondimensionalized by the Stokes-Finstein diffusivity,
D. Substituting the expression for f(7) into the contact integral in (3.15) gives the

following expression for the deviatoric part of the Brownian stress:
2 “20) .. = ,
n(SP) + 11°I = —9—77j¢2M /rr‘f(Z;Hﬂp)dQ. (3.16)
s .

The characteristic diffusivity is determined by the appropriate relaxation time for
rheological response: az/ﬁ(O)D With this scaled Péclet number, all of the Pe-
dependence of the microstructure at all volume fractions is included in Pe. In the
dilute limit, all particle diffusivities are equal to the diffusivity of an isolated particle,
D. Thus, D =1 and (3.16) reduces to the the Brownian stress as previously calculated
by various two-particle theories (Batchelor 1977. Brady & Vicic 1995, Lionberger
1998, Vicic 1999).

The precise nature of D(o) is still an open question. Many quantities have been
suggested. Brady (1993b) suggests using the equilibrium short-time self-diffusivity,
f?(O) = Do)/ D ~ n/n. (@), as this incorporates the primary effect of the hydrody-
namic interactions. The shear thinning collapse from this scaling is the same as the
one used above to collapse the shear thickening data in figure 3.5. As noted before,
this scaling is effective in reducing the spread in the data, but a sufficient collapse is
not obtained. One can see this more clearly when the same scaling is used for only the
Brownian contribution to the stress in figure 3.7. Nevertheless, use of the short-time
self-diffusivity is successtul in removing all of the hydrodynamics, and thus data from
suspensions with and without hydrodynamic inferactions should be indistinguishable
with this scaling (Foss & Brady 4999¢ (ch. 2)).

Apparently, simply scaling out the hydrodynamics is not sufficient, and there
appears to be another contribution to ]j(@) from the relaxation of the dynamic

microstructure. A simple choice would be to use the equilibrium long-time self-
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diffusivity, D(o) = D (&)/D. A collapse of the viscosity data using this scaling is
shown in figure 3.8. We have used the values of ﬁi( @) obtained from these simula-
tions (cf. §3.3.2). This choice of D(0) arguably collapses the data somewhat better
than figure 3.5, especially at the higher volume fractions. Note that the collapse
of the shear thickening data is much worse than before as the arguments presented
here concern only the Brownian stress. A plot of the collapse of only the Brownian
contribrition to the viscosity is shown in figure 3.9.

Another diffusivity often suggested as a good candidate for I)(o) is the wavelength-
dependent collective diffusivity evaluated at the peak of the structure factor, D®(kyq.)/ D
(Verberg et al. 1997, Pusey el al. 1997), as this represents relaxation of the dom-
inant ‘cage’ structure and is also the slowest rate of structural decay present. No
plots of this possible collapse are shown as we have not calculated D (k0 )/ D in our
simulation.

There may be no simple relationship between D(qb) and a previously known dif-
fusivity. The aforementioned relationship between ﬁ(@) and D§(o)/ D was first sug-
gested by the experimental data of van der Werfl et al. (1989). Although, in general,
this collapse of our data is unsuccessful, it does appear valid for the lower volume frac-
tions (¢ < 0.40). Data from experiments by Shikata & Pearson (1994) show that the
relationship between ﬁ(cé) and Dg(¢)/ Dy holds up to ¢ = 0.50 before it breaks down.
They suggest that at higher volume fractions, other relaxation processes. perhaps
associated with a glass transition, become increasingly important at high densities.
Pusey et al. (1997) also note a particularly strong slowing down of the structural

relaxation for ¢ > 0.40.

Normal stress differences

The first and second normal stress differences are defined by

Nyo= (S = (Sy). (3.17a)

Ny o= (S,) — (5.2, (3.17b)
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and the individual Brownian and hydrodynamic contributions for ¢ = 0.45 are shown
in figures 3.10 and 3.11. Uncertainties for the normal stress differences are given in
table 3.3. Tables and figures for the other volume fractions are available at the end of
the chapter. Note that the hydrodynamic contributions are negative for all Pe while
the Brownian contribution is positive for Ny and negative for No.

Flow-reversal symmetry requires that both normal stress differences vanish as
Pe — 0. At low Péclet numbers, the normal stress differences are dominated by the
Brownian contributions resulting in a positive Ny and a negative N, (Brady & Vicic
1995). The quality of the data at low Pe in figures 3.10 and 3.11 is quite poor and
one cannot discern a trend towards zero for small Pe. It appears that the Brownian
noise at low Péclet numbers that makes low-shear viscosities difficult to measure
both in simulation and by experiment may be even worse for measuring normal stress
differences. The normal stress differences show much greater fluctuation from one
time step to the next requiring very long runs and perhaps large systems to obtain
meaningful averages. The signs of each of the normal stress differences, however, are
discernable and correct.

The sign of the Brownian contribution to each normal stress difference can be as-
certained by examining the microstructure and how it affects the integrand, —r#g(r),
of the contact integral for the Brownian stress in (3.15). Figure 3.12 shows two pro-
jections of the radial distribution function, ¢g(v) into the ay-plane. The projections
are divided into eight sections, each labelled with a plus or a minus. The signs cor-
respond to the effect that a particle in that region would have on the normal stress
differences given that the stress tensor is proportional to —##¢g(r). For determin-
ing the sign of the second normal stress difference, the microstructure is assumed
to be axisymmetric outside the plane of shear as is seen below to be the case (cf.
figure 3.21). The projections in figure 3.12 show that in addition to the buildup of
particle probability in the compressional zone, some of the this probability has been
convected downstream into the neighboring extensional zone creating an asymmetry
about the compressional axis. From the relative magnitudes of the probabilities in

the eight labelled sections of each projection, one can see that NP is positive and
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NPF is negative due to the deficit of particle pairs along the extensional axis where
Brownian motion pushes particles apart and hydrodynamic shear forces pull them
apart. Physically, NP is positive because Brownian motion acts like a repulsive force
between two particles and pushes them apart along the compressive and extensional
axes, which would then push apart the plates of a rheometer.

As the Péclet number increases from zero. the deformation, and thus the Brownian
contribution to the normal stress differences, also increases. A maximum is reached
near Pe ~ 1 as the deformation cannot keep up with the flow and the Brownian
contributions decay at high Péclet numbers like 1/Pe (Brady & Morris 1997) while
the hydrodynamic contributions take over.

The signs of the hydrodynamic normal stress differences can also be explained by
examining the suspension microstructure. At high Péclet number, the hydrodynamic
stress is dominated by the boundary layer and the normal stress differences can be
determined from (3.14) and thus the relevant tensor to examine is f’f(f‘-E-%)g(r).
Projections of the pair-distribution function into the shear plane, similar to those used
to explain the signs of the Brownian contribution, are shown in figure 3.13. Again,
the projections are divided into eight sections, but this time with signs corresponding
to the contribution to the normal stress differences given by the stress tensor that is
proportional to ##(#-E-#). Examining the relative magnitudes of the probabilities
in the eight labelled secitoned shows that both Nff and NI are negative. As is
the case at low Péclet numbers, the contribution from the first and second quadrant
spanning the compressional axes essentially cancel, leaving the dominant contribution
from the third quadrant above the extensional axes. Here, the hyvdrodynamic stress is
negative because the flow must pull apart the closely spaced particles stuck together
by the lubrication forces. This pulling apart would in turn pull together the plates of a
rheometer and hence give a negative first normal stress difference. The hydrodynamic
contribution to the normal stress differences is much smaller than the Brownian at
low Pe and increases in magnitude as the Péclet number is increased, resulting in a
sign change of N; for Pe near 10.

In the pure hydrodynamic limit (Pe™' = 0) the normal stress differences are ex-
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pected to vanish because of symmetry requirements. However, the singular boundary-
layer behavior as Pe — oo results in an asymmetric pair-distribution function at
contact, clearly seen in figure 3.20 for Pe = 10, and normal stress differences that
approach an O(n3) assymptote at very high Péclet numbers. Brady & Morris (1997)
show that for perfect hard spheres without interparticle forces. the asymmetry van-
ishes as Pe " as Pe — oo. Again. hard spheres in the limit of pure hydrodymamics
are singular. If a repulsive force is added, no matter how short-ranged, the asym-
metry will not vanish as Pe — oc resulting in finite normal stress differences. As
discussed earlier, it is numerically difficult to resolve the boundary layer at very high
Péclet numbers and this difficulty may result in the particles behaving as if there was
an interparticle force present and explain why the normal stress differences obtained
from simulation do not vanish at high Péclet numbers. Experimentally, perfect hard
spheres are difficult to achieve, and one should expect finite normal stress differences.
Unfortunately. no experimental data is available for normal stress differences on model
hard-sphere suspensions (or non-hard-sphere suspensions for that matter).

At high Péclet numbers the theory of Brady & Morris (1997) used to collapse the
shear thickening viscosity can also be used to collapse the first and second normal
stress differences. Figures 3.14 and 3.15 show N and N; scaled with n_(2)y¢*¢%(2: ¢)
as a function of the scaled Péclet number Pe = Pe ' (¢)/n. The data for all
concentration collapse reasonably well onto a single curve. The scaling theory with
D(¢) could also be used to scale the normal stress differences at low Péclet nubmer,
but the quality of the simulation data is too poor to draw any conclusions from the
comparison.

The particle contribution to the stress defined in (3.9) is not traceless and the
hydrodynamic functions necessary to compute the trace — the shear-rate dependent
osmotic pressure — were determined in Jeffrey, Morris & Brady (1993) and have
been used in recent non-Brownian simulations (Yurkovetsky 1998). The extension to

Brownian simulations has not yet been made and remains a goal for future work.
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3.3.2 Diffusion

In figures 3.16 and 3.17 we show the average translational and rotational mobilities of
a particle, Dj and Dy. respectively, as a function of Pe. At Pe = 0 these instantaneous
mobilities (multiplied by k7T') correspond to the short-time self-diffusion coefficients.
The mobilities have been normalized by the infinite dilution selt-diffusion coefficients
ET /6mna and kT /Swna®, respectively, and are averages of the separate xw-, yy- and
zz-components. The individual rotational mobilities are all identical to within the
statistical uncertainty, while the yy- and zz-components of the translation mobility
are identical and the zz-component is perhaps 10% larger. The local mobility is to
a very good approximation isotropic despite the structure formed during flow. The
most important feature to note is that the mobilities remain roughly constant until
the suspension starts to shear thicken, after which they decrease monotonically with
increasing Pe. This decrease is a manifestation of the closely touching particle clusters
that form hindering the local motion of a particle.

The long-time mean-square displacement of a Brownian particle is convectively
enhanced by the flow. For a simple shear flow the mean-square displacement is

expected to grow in time according to (Elrick 1962, Morris & Brady 1996)

(22(1)) = 2Dt + 2Dy t[1 + 1(Pe 1)?), (3.18a)
(2(1)) = 2Dyt, (3.18D)
(z2(1)) = 2D..1, (3.18¢)
(x()y(t)) = 2Dt + Dy t(Pet), (3.18d)

as t — oo. Because the z-displacement is dominated by the convective dispersion
growing as {*, it not possible to determine the D,, and D,, coefficients by simply
monitoring the displacements. An alternate method that removes the convectively-
enhanced dispersion and leaves the underlying diffusive motion is to subtract off
the contributions to the particle motion in (3.4)—(3.5) due to the affine flow, Az® =

(U)At, when calculating the mean-square displacements, which leads to the following
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temporal behavior

(& —a")(x —a")) = 2DL, (3.19)

&
(s w]

S
o0 0

as t — oo. All elements of the long-time self-diffusivity tensor, D?_, can be calculated
directly using this method. Apart from the xy-component, the other off-diagonal
components of D?_ were examined and found to be negligible. This method has been
particularly useful in calculating the diffusivities in planar extensionial flow (Sami
1996) where the affine flow has components in both the 2- and y- directions which
lead to exponential rather than algebraic growth of the convectively enhanced terms.

We present results from steady-shear simulations of this work by examining the
particle mean-square displacements for the small system at long times. Analysis
done here at quite long times (between 10 and 20 dimensionless time units) would
seem to be appropriate due to the infinite time limit in the definition of the long-
time diffusivity (3.7). however, the mean-square displacements are time-correlation
functions that relate particle positions from one time to another. Such correlation
functions are quite difficult to accurately measure at long times due to the growth of
statistical noise with time. In a related work (Foss & Brady 1999a (ch. 5)) we use
a different method that focuses on the behavior of the mean-square displacements
during many short simulations, but still long enough to have attained the long-time
assymptote which we believe produces more accurate and consistent data. We include
the long-time analysis in this work despite the increased noise in the data because it
is at long times and serves as a good comparison with our other work. The statistical
error on the long-time self-diffusivities is about 30%. For a more detailed discussion
of the long-time self~diffusivity in flow, see Foss & Brady (1999a) (ch. 5).

The Péclet-number dependence for ¢ = 0.45 of the za—., yy—, zz—components
of D?_ normalized by the diffusion coefficient of an isolated particle is shown in fig-
ure 3.18. Data for the other volume fractions can be found in tables and figures at
the end of this chapter. As Pe — 0 the diffusivities approach the long-time self-
diffusivities of equilibrium dispersions and agree well with the experimental measure-

ments of van Megen et al. (1986); a comparison of these data with experiment can be
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found in Brady (1994). The action of the flow is to enhance the self-diffusivity, with
the leading correction scaling as Pe¥? (Morris & Brady 1996). As the Péclet number
increases, the self-diffusivities continue to increase without the “dip” at intermediate
Péclet numbers that was present in the previous work (Phung et «/ 1996). The *dip’
was evidence of the formation of an ordered phase in this region of Péclet number
causing the diffusivities to plunge. The monotonically increasing behavior of the diffu-
sivites is an indication that no ordered phase is present in the current simulations (cf.
figure 3.20). As Pe — oo, the results show that the normalized sell-diffusivities grow
approximately linearly with Pe, or in dimensional terms D,, ~ 7a?, corresponding
to hydrodynamic diffusion. The simulation results for the shear-induced or hydrody-
namic diffusivities show quite a bit of scatter, but are in reasonable agreement (within
a factor of 2; see Foss & Brady 1999a) (ch. 5) with the experiments of Eckstein et al.
(1977), Leighton & Acrivos (1987) and Phan & Leighton (1993). Again, the singular
effect of Brownian motion is important in leading to diffusive behavior as Pe — oo.
A pure hydrodynamic system is completely deterministic and, although the evolution
equations for particle positions are highly nonlinear and give rise to deterministic
chaos, the small amount of Brownian motion (or surface roughness or interparticle
forces) provides the necessary irreversibility for the chaos to set in. We were not
able to determine long-time self-diffusivities from the simulations with N > 27 as the
runs were not long enough to reach the asymptotic temporal behavior; thus, we do
not know the effect of the size of the simulation cell on the diffusivities. The values
obtained here are in agreement with the monolayer results of Bossis & Brady (1987)
when allowance is made for converting area fraction to volume fraction.

The enhancement of the long-time self-diffusivity by flow is indicative of a com-
pletely new mechanism for creating diffusive motion in sheared suspensions. Direct
particle-particle ‘collisions’ induced by the shearing motion are responsible for the
random walk. The action of this new mechanism is seen in figure 3.19 where the
long-time self-diffusivities in the zz-direction at Pe = 0.01 and Pe = 1000 are shown
as a function of the volume fraction. At low Péclet numbers the long-time diffusivity

decreases with increasing concentration, while at high Péclet number it increases with
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increasing ¢. At low Pe particle interactions hinder the motion of a tagged particle,
while at high Pe they help. At intermediate Péclet numbers one should therefore find
the long-time diffusivities to be independent of ¢. Unfortunately, experimental data

are only available at zero and infinite Pe.

3.3.3 Structure

An analysis of the microstructure shows that no ordered phase is present for the full
range of Pe and volume fractions studied 0.316 < ¢ < 0.49. Figure 3.20 shows the
projection of the pair-distribution function into the plane of shear for ¢ = 0.45. Near
equilibrium, the flow provides a weak perturbation to the equilibrium behavior. The
hint of an eight-fold symmetry seen in figures 3.20 and 3.21 at small Pe is due to
the small size of the simulation cell. This structure is completely absent for larger
systems as seen in figure 3.22. As the Péclet number increases, the first nearest-
neighbor peak at contact becomes intensified along the compressive axes of the flow
and becomes less intense along the extensional axes. Physically, particles are being
convected together along the compressive axis (the upstream side), come into near
contact, rotate together as a doublet, and then depart on the downstream side where
Brownian motion and the shearing flow act together to separate the particles. The
intensification and sharpening of the nearest-neighbor peak as the Péclet number
increases is further qualitative evidence of the O(Pe™") boundary layer discussed by
Brady & Morris (1997).

It is important to note that in contrast to the earlier work (Phung & Brady
1992. Phung 1993, Phung et al 1996), no ordered structure is obtained using the
correct high-Pe evolution equation (3.5). Figure 3.21 shows the projection of the
pair-distribution function in the velocity-gradient—vorticity plane and no hexagonal
pattern typical of flow-induced string-ordering is evident. Analysis of larger sys-
tems (N = 123) has also failed to show any order (see figure 3.22). The ordering
in the earlier work can be directly attributed to the Y—R}g term in the evolution

equation which acts like a radially repulsive Brownian force (Bossis & Brady 1987).
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. 1 e . N 2
In the earlier work, this term is ‘enhanced’ by a factor of Pe!/

in comparison to
the other Brownian displacement term providing an additional repulsion between
particles. This repulsion prevents the the particles from getting close enough for the
singular hydrodynamic lubrication forces to come into play. These close-ranged forces
cause particles to form temporary doublets that rotate in shear flow and disrupt any
order that may form. A simulation performed with a pairwise-additive short-range
repulsive DLVO-type interparticle force also removes the lubrication forces and en-
ables the suspension to order (see figure 3.23). The form for the DLVO-type force
is for two constant-charge spheres immersed in an ionic solvent (Russel et al. 1989),
which is the same form used in previous Stokesian Dynamics simulations (Bossis &

Brady 1984, Yurkovetsky 1998), and is given by

6—7]7 .
_ 6—71’2. r,

F' = —|F"|
1

where, # is the unit vector along the line of centers of a pair of particles, h = (r—2a)/a
is nondimensional particle separation, and 7 = ka 1s the nondimensional inverse Debye
length (s~ is the Debye length). For this particular run, we use |F¥| = 200kT/a,
and 7 = 100.

Flow-induced ordering is commonly seen experimentally in electrostatically-stabilized
dispersions (Ackerson 1990, Laun et al. 1992, Chen et al. 1994) which utilize DLVO-
type repulsive forces between the particles to prevent flocculation. Evidently, these
repulsive forces are sufficiently long-ranged and strong enough to exclude the lubri-
cation forces and allow the string-ordered phase to form in certain ranges of shear
rate. Qur first paper on Stokesian Dynamics (Bossis & Brady 1984) showed order
for a suspension of non-Brownian particles interacting through hydrodynamic and
repulsive colloidal forces. Non-equilibrium molecular dynamics simulations have also
exhibited string formation (Erpenbeck 1984, Hess 1985, Heves 1986). as have Brow-
nian Dynamics simulations (Heyes 1988; Xue & Grest 1990, Rastogi 1995, Foss &
Brady 1999¢ (ch. 2)) where all hydrodynamic interactions are neglected, i.e., setting

Rpy =1, and Rpg = Rsy = Rsp = 0 in (3.2)—(3.10c). What the above examples
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all have in common is the absence of short-ranged lubrication forces that tend to
disrupt any order that may form. Interestingly, sterically stabilized colloidal disper-
sions in which short polymer chains are grafted onto particle surfaces have not been
observed to string order. Evidently, the steric layers do not prevent the lubrication
interactions.

There has been no evidence of any effect of system size for the simulations per-
formed for ¢ < 0.49. At ¢ = 0.49 and Pe = 100, some order was found for N = 27,
while a simulation with N = 63 shows no order (see figure 3.24); no noticeable change
is the viscosities was observed however. These finite-size effects become increasingly
important as the volume fraction is increased. N = 27 simulations for ¢ > 0.49 have
shown a strong tendency to order over the full range of Péclet numbers despite the
lack of order in the limited number of runs we have been able to perform for larger
systems where N = 123 and, unlike the case above, the effect of the order on the
viscosities was quite significant. Clearly, larger runs must be used to examine the
rheological behavior for these very dense suspensions.

The absence of string ordering for non-repulsive systems makes a strong argument
about the connection between shear thinning/thickening and flow-induced ordering.
It has often been stated that shear thinning is caused by the formation of an ordered
phase causing the suspension to flow more easily. Similarly, the onset of shear thick-
ening has often been connected with the melting of this order. Since no order has
been observed here, there is no necessary relationship between flow-induced order and

shear thinning/thickening.

3.4 Conclusions

In this paper we have investigated the nonequilibrium behavior of concentrated col-
loidal dispersions of hard spheres in simple shear flow by Stokesian Dynamics sim-
ulation. The suspension is governed by the competition between Brownian and hy-
drodynamic forces as measured by the Péclet number. At low Péclet number the

perturbation to the equilibrium structure is small. but the suspension shear thins



96
dramatically. This shear thinning results from the decrease of the direct Brownian
contribution to the stress as the structural deformation cannot keep up with the shear
flow. The hydrodynamic contribution to the viscosity remains constant and equal to
the high frequency dynamic viscosity throughout the shear thinning process.

At high Péclet numbers (Pe > 10), the effects of Brownian motion give way to
hydrodynamic forces which result in a thin boundary layer of high particle probability
near contact whose thickness scales as O(Pe™") where hydrodynamic and Brownian
forces balance (as shown by Brady & Morris 1997). More particle pairs near contact
increase the effects of lubrication forces causing the viscosity to increase. As the
Péclet number is increased, the boundary layer becomes thinner and the probability
density in the boundary layer increases, further enhancing the effects of lubrication,
and the suspension shear thickens.

In the infinite-Péclet-number limit a suspension of perfect hard spheres appears
to be singular in that a small amount of Brownian motion or interparticle forces has
a dramatic effect on structure and properties. The thin O(Pe™") boundary layer
leads to an asymmetry in the pair-distribution function and a loss of flow reversal
symmetry. This asymmetry produces O(57%) hydrodynamic normal stress differences
and O(~a?) shear-induced particle diffusivities in the infinite Pe limit.

No flow-induced ordering was observed over the range of volume fractions studied
here (0.316 < ¢ < 0.49) due to actions of close-ranged lubrication forces. Systems
with repulsive forces are known to exhibit this type of ordering due to the exclusion of
hydrodynamic lubrication. Otherwise, analogous behavior in terms of shear thinning
and thickening formartion has been seen in colloidal dispersions with repulsive forces.
Indeed, one can often scale the behavior of repulsive systems by using an equivalent
volume fraction that incorporates the short-range repulsion into an effective particle
radius (Ackerson 1990, Brady 1993b). Long-range repulsive forces are somewhat
different in that hydrodynamic interactions are minimized or absent. which results in
a different scaling for the dependence of the viscosity on concentration (Brady 1993h),
but the shear thinning and ordering phenomena are still present.

Although the results we have presented here are for small systems sizes, the vis-
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cosities appear to agree quantitatively with experiment. There are no measurements
of normal stresses or diffusivities, however. The results give confidence that Stokesian
Dynamics can be used to quantitatively study the behavior of colloidal dispersions
over a wide range of conditions.

The highest volume fraction studied in this work is ¢ = 0.49. It is well known that
monodisperse hard-spheres undergo an equilibrium phase transition at ¢ ~ 0.494 to a
crystalline structure. Suspensions above this transition exhibit shear-induced melting
upon inception of a simple shear flow. It is possible that hard-sphere suspensions at
these large densities may also exhibit a string-ordered microstructure at high shear
rates. Simulations of such dense suspensions require larger system sizes than are
currently practical using conventional Stokesian Dynamics. As simulation algorithms
improve and hardware computational speed increases, we look forward to studying

the behavior of very dense colloidal dispersions.
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o e e Mo
0.20 0.14 1.81 1.95
0.316 0.68 2.87 3.55
0.37 2.0 3.66 5.7
0.40 2.8 4.28 7.1
0.419 4.8 4.78 9.6
0.45 9.5 5.61 15.1
0.47 188 6.19 24.0
049 242 7.05 31.3

Table 3.1: Data for zero-shear viscoity, 19, and its different contributions as a func-
tion of ¢ from Stokesian Dynamics, N = 27. The Brownian contribution. nf, is
calculation from a Green-Kubo formula involving time-integration of the shear-stress
autocorrelation function, Eq. (3.12). The hydrodynamic contribution is the high fre-
quency dynamic viscosity, 7’_, and is determined by calculating 1+n in the Pe — 0
limit. All viscosities are nondimensionalized by the solvent viscosity, 1.
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Pe N At NSTEPS nH nb
0.01~ 27 5 x 107" 1000000 4.61 £0.01 9.0 £9.1
0.10 27 5 x 107" 1000000 4544005  7.00£1.11
0.30 27 5x 1071 200 000 4.604+0.16  5.79 + 0.69
1.00 27 5 x 1071 200 000 478 +0.13  3.70 £0.27
3.00 27 5 x 107 200 000 491 +£0.29  2.00 +0.27
5.00 27 5 x 107 200 000 507 £0.27 146 +0.21
7.00 27 5 x 107* 200 000 528 £0.18  1.234+0.07
10.00 27 5 x 107 200 000 5.59 £0.47  1.07+0.21
20.00 27 5 x 107 200 000 6.30 £0.30  0.76 = 0.09
102 27 5 x 107 200 000 7.56 £0.41  0.22+£0.03
2% 10 27 5x 107 200 000 8.024+0.28  0.1240.01

10° 27 5 x 107 200 000 9.254+0.59  0.029 + 0.004
10* 27 2.5 %1074 400 000 11.64 £1.11 0.004 £ 0.001
0.01" 63 5 x 1071 80 000 4.42 £0.01 10.2 £ 8.2
0.43* 63 1073 40 000 478 £0.02  6.48+0.13
10.0 63 5 x 1071 200 000 5.77 +£0.21 1.10 £ 0.10
10° 63  5x 1071 200 000 8.87 £ 0.18  0.026 £ 0.001
0.43* 123 5 x 10 80 000 1.65 5.454
10.0 123 107° 60 000 5.696 1.094

10° 123 1072 50 000 8.954 0.028

Table 3.2: Simulations data with ¢ = 0.45. Column (1) is the Peclet number and
column (2) is the number of particles. Columns (3) and (4) are the time step and
the total number of time steps. Columns (5) and (6) give the Brownian and hydro-
dynamic contributions to the shear viscosity (normalized by the solvent viscosity).
Initial particle configurations of all the runs are random. The error estimates were
determined by dividing a simulation run up into statistically independent subinter-
vals (5 - 10) and comparing the averages for each interval (see Phung 1993). *Data

obtained from Phung (1993).



105

Pe N At NSTEPS Ny/ny No/nA
0.01* 27 5 x 107" 1000000 20.7+149 —10.43+5.10
0.10 27 5x 107 1000000 4.13+3.08 —3.07+294
0.30 27 Hx 107t 200 000 5.01 £2.72 =341 £ 2.59
1.00 27 b x 107t 200 000 0.95£0.57 —2.1241.11
3.00 27 5 x 107t 200 000 —0.454+0.17 —1.2140.77
5.00 27 5 x 107! 200 000 —0.65£0.57 —1.13+0.33
7.00 27 5 x 107 200 000 —0.53£0.12 —-1.32£0.14
10.00 27 5 x 107 200 000 —0.25£0.76 —1.39£0.47
20.00 27 5 x 1071 200 000 —1.20£0.67 —1.43£0.34

10? 27 5x 1077 200 000 —1.37£0.38 —1.62+£0.56

2x10* 27 5 x 1071 200 000 —-1.09£0.41 —1.87+£0.36
10° 27 5 x 1071 200 000 —1.81£0.79 —1.61+£0.38

10 27 25 x107* 400 000 —1.124+1.27  —-2444+0.51
0.01~ 63 5x107* 80 000

0.43~ 63 107° 40 000 0.86 £0.10 —1.344+0.11

10.0 63 5 x107* 200 000 —042+£026 —1.30£0.31
10° 63 Hx107* 200 000  —1.66 £0.42 —1.63£0.27
0.43~ 123 5 x 107 80 000 1.043 -1.313
10.0 123 1072 60 000 -0.340 -1.146
10° 123 1073 50 000 -0.340 -1.683

Table 3.3: Simulations data with ¢ = 0.45. Column (1) is the Peclet number and
column (2) is the number of particles. Columns (3) and (4) are the time step and
the total number of time steps. Columns (5) and (6) give the first and second normal
stress differences. Initial particle configurations of all the runs are random. The
error estimates were determined by dividing a simulation run up into statistically
independent subintervals (5 - 10) and comparing the averages for each interval (see

Phung 1993). *Data obtained from Phung (1993).
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Pe N (g2)e Dy Dy D.. D, D..
0.00" 27 0.210 0.604 0.059 0.055
0.01* 27 4.20 0.172 0.553 0.068 0.058
0.10 27 4.47 0.177 0.554 0.069 0.096
0.30 27 4.82 0.174 0.549 0.115 0.083
1.00 27 5.80 0.168 0.534 0.146 0.151
3.00 27 7.73 0.159 0.514 0.311 0.257
5.00 27 9.22 0.154 0.503 0.636 0.425
7.00 27 10.9 0.149 0.492 0.846 0.405
10.00 27 13.6 0.140 0.473 0.658 0.452
20.00 27 20.8 0.129 0.446 1.247  0.885
102 27 39.0 0.105 0.383 2.349 5457
2 % 102 27 43.1 0.099 0.364 6.788 3.374
10° 27 49.9 0.088 0.321 47.27  22.58
101 27 59.2 0.069 0.256 644.5 230.6

0.01" 63 4.51 0.204 0.55
0.43" 63  4.46  0.184 0.541

o8]

0.43% 123 494  0.204 0.551
10.00 123 14.1 0.163 0.471
10° 123 503 0.101 0.317

Table 3.4: Same runs as in Table 1 but showing the angularly-averaged pair-
distribution function at contact and the self-diffusivities normalized by the isolated
particle Brownian diffusivities. The error on the short-time self-diffusivities is +1 in
the last digit, and for the long-time self-diffusivities, the error is about 30%. *Data
obtained from Phung (1993).
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work {rom an equilibrium Green-Kubo analysis.
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viscosity of hard-sphere suspensions at ¢ = 0.45 determined by Stokesian Dynam-
ics. The horizontal lines on the far left represent the Pe — 0 limits independently
determined by an equilibrium Green-IKubo analysis.
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Figure 3.3: Comparison of the relative viscosity of hard-sphere suspensions deter-
mined by Stokesian Dynamics as a function of the Péclet number Pe with the exper-
imental results (open symbols) of van der Werff & de Kruif (1989). The thick open

symbols on the far left represent the Pe — 0 limits independently determined by an
equilibrium Green-Kubo analysis.
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Figure 3.4: The relative viscosity, 1, = 1 + 72 + 7. as a function of Peclet number
Pe for the range of volume fraction, 0.316 < ¢ < 0.49 with N = 27. The open
symbols on the far left represent the Pe — 0 limits independently determined by an
equilibrium Green-Kubo analysis.
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Figure 3.5: The difference of the total viscosity, 1,., from its equilibrium hvdrodynamic
contribution, 7/_, scaled by n/_0?¢°(2) is plotted as a function of rescaled Péclet
number Pe = Pe n/_/n for volume fractions 0.316 < ¢ < 0.49 with N = 27. The
open symbols on the far left represent the Pe — 0 limits independently determined
by an equilibrium Green-lKubo analysis.
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Figure 3.7: The Brownian contribution to the viscosity, n?, scaled by n'_*¢°(2)/n
and plotted as a function of rescaled Péclet number Pe = Pe¢ ! /n for volume
{ractions 0.316 < ¢ < 0.49 with N = 27. The open symbols on the far left represent
the Pe — 0 limits independently determined by an equilibrium Green-IKubo analysis.
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Figure 3.8: The difference of the total viscosity, n,, from its equilibrium viscous
contribution, 1., scaled by ngO(Q‘)/lA)ZO and plotted as a function of rescaled Péclet
number P(/IA); for volume fractions 0.316 < ¢ < 0.49 with N = 27. ﬁi is the long-
time self-diffusivity scaled by the Stokes Einstein value D = kT /6mna. The open
symbols on the far left represent the Pe — 0 limits independently determined by an
equilibrium Green-Kubo analysis.
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Figure 3.9: The Brownian contribution to the viscosity, n?, scaled by ¢?¢°(2)/ Df\
and plotted as a function of rescaled Péclet number Pe/ ﬁ; for volume fractions
0.316 < ¢ < 0.49 with N = 27. ]A); is the long-time self-diffusivity scaled by the
Stokes Einstein value D = kT /6mna. The open symbols on the far left represent the
Pe — 0 limits independently determined by an equilibrium Green-Kubo analysis.
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Figure 3.10: The hydrodynamic and Brownian contributions to the first normal stress
difference for N = 27 and ¢ = 0.45 as a function of the Peclet number.
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Figure 3.11: The hydrodynamic and Brownian contributions to the second normal

stress difference for N = 27 and ¢ = 0.45 as a function of the Peclet number.
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Figure 3.12: Projections of the pair distribution function, ¢g(#), into the zy-plane
from N = 27, ¢ = 0.45, and Pe = 1. The projections are divided into eight sections
each denoting the sign of the contribution to the Brownian normal stress difference
from a particle in that region. The projections on the left and right are divided and
labelled for determining Ny and N,, respectively. The Brownian stress is assumed to
be proportional to —## and g(r) is assumed to be symmetric about the z-axis.
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Figure 3.13: Projections of the pair distribution function, ¢g(v), into the zy-plane
from N = 27, ¢ = 0.45, and Pe = 1000. The projections are divided into eight
sections each denoting the sign of the contribution to the hydrodynamic normal stress
difference from a particle in that region. The projections and on the left and right are
divided and labelled for determining Ny and Ny, respectively. The Brownian stress 1s
assumed to be proportional to f‘"f'(i‘-E-fﬁ) and ¢g(r) is assumed to be symmetric about

the z-axis.
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Figure 3.14: The first normal stress difference, Ny, scaled by 7. 30%¢%(2) and plotted
as a function of rescaled Péclet number Pe = Pe 1’ /n for volume fractions 0.316 <
¢ < 0.49 with N = 27,
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Figure 3.16: The average particle translational mobilities as a function of Pe for
volume fractions 0.316 < ¢ < 0.49. At Pe = 0 these instantaneous mobilities (mul-
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Figure 3.17: The average particle rotational mobilities as a function of Pe for volume
fractions 0.316 < ¢ < 0.49. At Pe = 0 these instantaneous mobilities (multiplied by
kT correspond to the short-time self-diffusion coeflicients. The mobilities have been
normalized by the diffusion coefficient of an isolated Brownian particle, kT /Smna”.
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Figure 3.18: The long-time self-diffusivities in the velocity, D,., velocity-gradient,
Dy, and vorticity, D.., directions for ¢ = 0.45 as a function of Pe. The diffusivities
have been normalized by the diffusion coefficient of an isolated Brownian particle,
ET[6mna. At large Pe the dimensional long-time diffusivities scale hydrodynamically
as ya?.
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Figure 3.19: The zz-component of the long-time self-diffusivity tensor as a function
of @ at both high and low Péclet numbers. The diffusivity is nondimensionalized by
the Stokes-Einstein value D = kT /67na for Pe = 0.01 and by 15a* for Pe = 1000.
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Figure 3.20: The pair-distribution function projected into the velocity—velocity-
gradient plane for N = 27 and ¢ = 0.45.
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Figure 3.21: The pair-distribution function projected into the velocity-gradient—
vorticity plane for NV = 27 and ¢ = 0.45.
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Figure 3.22: Projections of the pair-distribution function in all three planes for N =
123 at Pe = 0.43, 10, and 1000.
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Figure 3.23: Pair distribution functions for N = 27, ¢ = 0.40 and Pe = 100 for the
hard-sphere case (a)-(b) shows no flow-induced ordering while using a DLVO-type
repulsive force (¢)—(d), (* = 0.5, 7 = 100) shows hexagonally-packed string ordering.
The pair-distribution function is projected into the velocity-velocity-gradient plane
for (a), (¢) and the velocity-gradient-vorticity plane for (b), (d).
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N=63

Figure 3.24: Pair distribution functions for ¢ = 0.49 and Pe = 100 using N = 27
(a)-(b) shows hexagonally-packed string ordering while increasing the system size to
N =63 (¢)-(d), shows no flow-induced ordering hexagonally-packed string ordering.
The pair-distribution function is projected into the velocity—velocity-gradient plane
for (a), (¢) and the velocity-gradient—vorticity plane for (b), (d).
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o = 0.316

Pe N At NSTEPS n n? nt
0.01* 27 5x107* 200 000 1.87 +0.00 1.16 £ 0.67 4.03 £ 0.67
0.1+ 27 107* 200 000 1.87 £0.00 0.77 £ 0.09 3.63 +£0.09
1* 27 10-* 200 000 1.85+0.00 0.60 £ 0.01 3.45 4 0.01
3.00 27 5 x107* 200 000 1.93 +0.05 0.34 £+ 0.04 3.27+0.07
10.00 27 5 x107 200 000 2.02+0.05 0.16 £ 0.01 3.18 +0.06
30.00 27 5 x107? 200 000 2.154+0.07  0.0754+0.010  3.2240.08
102 27 5 x 107 200 000 226 £0.05  0.024 +£0.001  3.28 +0.05
3x10% 27 5 x 1074 200 000 2.33+£0.05 0.0075+0.0013 3.33 4 0.05
10° 27 5x 107 200 000 250 £0.04 0.0022 £ 0.0004 3.50 4 0.04
10 27 2.5 x 107 400 000 2.53 £0.06 0.0001 £0.0000 3.53+0.06

Table 3.5: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.316. *Data obtained from Phung (1993).

o = 0.316

Pe N N [y NP [ny N /3
0.01* 27 —0.024 +£0.004 1.6841.04 1.65 +£1.04
0.1~ 27 —0.027 £ 0.008 0.694+0.18 0.66 £ 0.18

17 27  —0.054 +0.003  0.134£0.02  0.076 & 0.036
3.00 27 —0.16 £ 0.03 0.24 +£0.05 0.07240.073
10.00 27 —0.21 £0.07  0.094 +0.077 —0.11+0.15
30,00 27 —0.33£0.08  0.057£0.033 —0.27+0.10

10° 27 —=030£0.05 0.027+£0.006 —0.27 4+ 0.06
3x 10 27 —0.3040.07  0.011 £0.003 —0.29 + 0.07
10° 27 —0.25+£0.11  0.005+0.001 —0.244£0.12
10 21 —0.19+£0.08 4.9 x 1071 —0.19 £ 0.08

Table 3.6: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.316. “Data obtained from Phung (1993).



o = 0.316

Pe N NI Iy NE /n5 N /A
0.01" 27 —0.008 4+ 0.001 —2.51 +£0.48 —2.5240.49
0.1 27 —0.016 £ 0.003 —0.79 &£ 0.18 —0.80 £ 0.18
1~ 27 —0.13£0.00 —0.27 £ 0.12 —0.40 £ 0.12
3.00 27  —0.12£0.04 —0.21 £ 0.05 —0.34 £+ 0.08
10.00 27  —0.23 £0.06 —0.082 £0.080 —0.31£0.13
30.00 27  —0.2040.13 —0.025 £0.075  —0.23£0.20
10? 27 —0.234£0.05 —0.009 £ 0.012 —0.24+0.06
3 %102 27 —0.17+0.06 ~0.001 = 0.005 —0.17 £ 0.06
103 27 —0.234+0.12  —0.0008 £ 0.0035 —0.23+0.12
10* 27 —0.11 £0.06 —7.6 x107° —0.11 £ 0.06

Table 3.7: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.316. *Data obtained from Phung (1993).

o = 0.316

Pe N {9(2))a Dg Dg" D.. Dy, D..
0.00* 27 0.304 0.717 0.160 0.158
0.01* 27 2.38 0.303 0.715 0.187 0.126
0.17 27 2.49 0.303 0.715 0.204 0.100
1* 27 2.71 0.301 0.710 0.326 0.179
3.00 27 3.64 0.296  0.692 0.600 0.191
10.00 27 5.78 0.282  0.662 0.774  0.425
30.00 27 11.0 0.266 0.630 1.181  0.353
10? 27 18.6 0.252  0.598 2.099 1.639
3 x10% 27 24.5 0.245 0.575 5.895  2.038
10° 27 27.7 0.239 0.562 21.84  6.651
10* 27 32.9 0.226 0.521 108.7  85.94

Table 3.8: Data for the contact values of the radial distribution function, short- and
long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.316. *Data obtained

from Phung (1993). Simulations performed before method for calculating 1?

ez WS

implemented into the code.
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¢ =0.37

Pe N At NSTEPS nH n? nt
0.01= 27 5x107* 400 000 2.66 £0.00 1.81 £0.67  5.47 +£0.67
0.1* 27 1072 60 000 2.67+0.01 1.70+£0.18 5.38£0.18
1" 27 1073 60 000 2.69+0.01 1.17+£0.01 4.86 £ 0.02
3.00 27 5x10™* 200 000 2.78 £0.06  0.724+0.04  4.51 +0.09
10.00 27 5x 107" 200 000 2.99 £0.04 0.37+0.04 4.37+0.08
30.00 27 5x 107 200 000 3.34+£0.13  0.18%+0.02 4.52+£0.15
10? 27 5% 1071 200 000 3.57 £0.09 0.062 £ 0.006 4.63 £ 0.09
3x10* 27T 5x 1074 200 000 3.80+£0.12 0.022 +£0.002 4.83+0.12
10° 27T 5x107* 200 000 3.91£0.27 0.006 £0.001 4.92 4 0.27
10t 27 25x1074 400 000 4.66 +0.48 0.001 £0.000 5.66 £ 0.48

Table 3.9: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.37. "Data obtained from Phung (1993). Simulations performed before method
for calculating D2,

OC, 2T

was implemented into the code.

o = 0.37

Pe N N NP i Ny
0.017 27 —0.083£0.002 24.2 +38.83 24.1 £8.85
0.1 27 —0.0324+0.012 0.84 £0.28 0.81 £0.28

1~ 27 —=0.11 +£0.01 0.79 +£0.04 0.68 £ 0.03
3.00 27 —0.28+0.11 0.23£0.29 —0.057 4+ 0.384
10.00 27 -0.46+£0.14 0.044+0.076 —0.41+0.21
30.00 27  —04840.05 0.0934+0.038  —0.39 £ 0.08
10? 27 —050+£0.12  0.049 +£0.012 —0.45+0.13

3x10° 27 —=0.5140.05 0.0234+0.003 —0.49 +£0.05

10° 27 —=0.50+£0.14  0.006 +0.003 —0.504+0.14
10 27 —=0.52+£0.28 0.001 £0.001  —0.5240.29

Table 3.10: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.37. *Data obtained from Phung (1993).
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o= 0.37

Pe N NI o5 NZ /n3 NL /ny
0.01* 27 —0.024 4 0.002 —23.3+£8.24 —23.31 £8.25
0.17 27 —0.021 +0.005 -1.02+£0.23 —1.04 £0.24
1~ 27 —0.2240.01 —0.64 & 0.05 —0.86 £ 0.05
3.00 27  —0.274+0.08 —~0.31 £ 0.16 —0.59 £ 0.20
10.00 27  —0.4240.07  —0.088 £0.067 —0.504+0.09
30.00 27 —0.52+£0.08  -0.0544+£0.035 —0.5834+0.10
102 27 =058 +£0.16  —0.0224+£0.027 —0.60 +£0.19
3x 107 27 —0.64+0.14 —0.010+0.005 —0.65+0.15
10° 27 =043 +£0.11  0.0007 £0.0048 —0.434+0.12
10% 27 —0.61 £0.15 3.1 x 1071 —0.61 £0.15

Table 3.11: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.37. *Data obtained from Phung (1993).

6 =037
Pe N (¢@%a D; Dy D.. D, D.
0.01° 27 3.02 0.250 0.653 0.105 0.114
0.1" 27  3.06 0.251 0.654 0.131 0.124
1" 27 354 0246 0.643 0.184 0.164
3.00 27 454 0.236 0.623 0.309 0.132
10.00 27 830  0.219 0.587 0.650 0.300
30.00 27 158 0.202 0.547 0.888 1.223
102 27 254 0.188 0.513 5.429  2.180

3x10% 27 326 0.177 0.482 8.296 7.431
10° 27 384 0.164 0.447 23.31 11.76
10 27 459 0.147 0.396 377.9  92.61

Table 3.12: Data for the contact values of the radial distribution function, short-
and long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.37. *Data obtained
from Phung (1993). Simulations performed before method for calculating D?_ .~ was
implemented into the code. /



o =0.40

Pe N At NSTEPS nt no nl
0.01~ 27 5Hx107? 220 000 3.284£0.01 322+ 1.13 7.514+1.13
0.1* 27 10-* 60 000 3.29+0.01 268+£0.12 6.97+0.12
1* 27 1072 60 000 3.30+£0.01 1.81+£0.01 6.11 £0.02
3.00 27 5x 10 200 000 3.454+0.10 1.10£0.09 555+£0.18
10.00 27  5x 107 200 000 3.78+£0.06 0.55£0.03  5.33£0.09
30.00 27 5 x 107! 200 000 4.16+£0.26 0.254+0.04 542+0.31
10? 27 5 x 1074 200 000 4.65+0.15 0.097 £0.009 5.74 +0.16
3x 10 27 5 x107* 200 000 5.13+£0.15 0.038 £0.003 6.17 £0.15
10° 27 5% 107! 200 000 5.59 £0.52 0.012+£0.003 6.61 +0.53
10 27 2.5 x 1074 400 000 5.90£0.24 0.001 £0.000 6.91 £0.24

Table 3.13: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.40. *Data obtained from Phung (1993).

b= 0.40
Pe N Ny NP [y N Iy
0.01° 27 —0.082=+0.011 384=+0633 35.3L6.0
0.1 27 —0.018+0.007 0.95+1.01  0.93+1.01
1 27T —0244001 0504007  0.26 4+ 0.08
3.00 27 —0.294013  0.33+028  0.04 4 0.40
10.00 27 —04240.13  025+009 —0.17 %+ 0.20
30.00 27 —0.64+0.16 0.094+0.083 —0.54+0.24
102 27 —0.65+£052  0.062+005 —0.5940.57
3% 10° 27 —0.74+021  0.030+£0.011 —0.71 4 0.22
10° 27 —0.67+0.15 001140003 —0.66=0.16
100 27 0714039 0.001 £0.000 —0.71 = 0.39

Table 3.14: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.40. “Data obtained from Phung (1993).
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o = 0.40

Pe N N5 NP n? NI /Ay
0.01* 27 —0.010+0.013 —26.2 +£1.53 —26.23 £+ 1.53
0.1* 27 —0.052 4+ 0.015 —1.89 +£1.49 —1.94 £ 1.50
1* 27 —0.28£0.01 —0.24 £0.04 —0.524+0.05
3.00 27  —0.4540.12 —0.37 £ 0.37 —0.82 4+ 0.49
10.00 27  —-0.5440.20 —0.17 £0.11 —0.71 +0.30
30.00 27 —-0.7040.16 —0.030 £ 0.084 —-0.73 4+ 0.21
102 27 —0.86 4 0.20 —0.039 £ 0.027 —0.90 £ 0.23
3 x 102 27 —0.8240.22 0.002 £ 0.025 ~0.82+£0.25
103 27 —0.964+0.30  —0.0006 £+ 0.0053 —0.96 4+ 0.30
10* 27 —1.024+0.09 —1.6 x 107 —1.02 +0.09

Table 3.15: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = (.40. *Data obtained from Phung (1993).

¢ = 0.40

Pe N (g(2))a D Dg" Dyw Dy, D..
0.00* 27 0.269 0.667 0.103  0.131
0.01* 27 3.70 0.221  0.618 0.115 0.101
0.17 27 3.55 0.222 0.616 0.120 0.104
1~ 27 4.06 0.216 0.604 0.135 0.144
3.00 27 5.56 0.205 0.582 0.444  0.162
10.00 27 9.76 0.188 0.546 0.805 0.616
30.00 27 18.4 0.170  0.503 0.837 1.475
102 27 29.6 0.155 0.463 5.065  2.270
3 x10% 27 38.2 0.140 0.424 6.245 9.709
10° 27 44.0 0.132 0.394 37.72  37.51
10 27 47.7 0.121 0.354 5724  180.7

Table 3.16: Data for the contact values of the radial distribution function, short-
and long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.40. *Data obtained
from Phung (1993). Simulations performed before method for calculating D?_ =~ was
implemented into the code. |
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o= 0.419

Pe A At NSTEPS 7'],{’1 77%3 77;,f
0.0l 27 5 x 1074 200000 3.78+£0.02 4.934+£3.92 9714392
0.1" 27 10-° 100 000 3.734+0.07 4244034 8.9640.35
1* 27 10— 100 600 3.824+0.01 2.404£0.01 7.23-4+0.02
3.00 27 5 x 1071 200 000 4.02+0.19 1.4640.15 6.494+0.34
10.00 27 5 x 1071 200 000 4.3840.29 0.68 +£0.12  6.06 & 0.42
30.00 27 5 x 107 200 000 5.054+0.22  0.37£0.04 641 4+£0.25
102 27 5 x 1071 200 000 5.36 +0.19  0.12+0.01 6.494+0.21
3x 10 27 5 x 107 200 000 6.06 +0.33 0.052 +0.006 7.11 +£0.33
10° 27 5 x 1071 200 000 6.70 £0.45 0.017 +£0.002 7.71 £0.46
104 27 2.5 x 107 400 000 7.35 =050 0.002+0.000 8.3540.50

Table 3.17: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.419. *Data obtained from Phung (1993).

¢ = 0.419
Pe N N N [ny NI [
0.01" 27 -0.1394£0.010 66.8+21.1 66.5 £ 21.1
0.1 27 —0.172£0.008 1.10+0.71 0.92£0.71
1~ 27 —0.284£0.01 0.74 £ 0.07 0.47 +£0.07
3.00 27 —-0.34+£0.10 0.41 £0.21 0.07 £0.22
10.00 27 —0.26 = 0.16 0.52£0.16 0.26 £0.30
30.00 27  —0.83+£0.35 0.12+0.14  —0.71 4+ 0.47
102 27 —0.88£0.15 0.0584+0.045 —0.82+£0.12
3x10* 27 —0.80£0.15 0.0394+0.011 —0.76 £0.15
107 27 —1.424£031  0.007 £0.006 —1.42+0.31
10 27 —1.08£0.37 0.001 £0.002 —1.08+0.37

Table 3.18: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.419. *Data obtained from Phung (1993).



%= 0419
Pe N J\TQH /n7y ;\e"v.f /3 \2] T /ny
0.01* 27 —0.109 £ 0.021 —72.9+27.0 —~73.01 £ 27.0
0.1* 27 —0.056 £0.015 —0.88£0.73 —0.93 £ 0.71
1~ 27 —0.29 £0.01 —0.63 4+ 0.06 —0.92 £+ 0.07
3.00 27 —0.58 £0.09 —0.534+£0.19 ~1.10 £ 0.26
10.00 27 —0.824+£0.29 —0.38 4+ 0.12 —1.21 +0.39
30.00 27  —0.85+£0.14 —0.0454+0.089 —0.894+0.21
10? 27 —1.04+0.12  —0.046 +£0.032 —1.09 &0.15
3x 107 27 —1.1740.38 —0.0094+0.023 —1.174+0.40
10° 27 —1.2940.49 —0.001 £0.009 —1.294£0.50
10" 27 —1.19£+0.21 —4.5 x 1074 —1.19 £0.21

Table 3.19: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.419. *Data obtained from Phung (1993).

6 =0.419
Pe N (9@ D; Dy D, D, D..
0.01° 27 381 0203 0.593 0.074 0.071
0.1 27 3.87  0.203 0.593 0.085 0.087
1* 27 457 0196 0.578 0.210 0.153
3.00 27 662  0.86 0.553 0.368 0.239
10.00 27 112 0.169 0517 0.394 0.522
30.00 27 216 0.150 0.472 1.543  0.514
102 27 321 0138 0.438 3.548  3.229
3x 102 27 413 0122 0.397 18.07  9.305
108 27 473 0.110 0.360 63.51 1222
10 27 530 0.098 0.313 6225 1715

Table 3.20: Data for the contact values of the radial distribution function, short- and
long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.419. *Data obtained
from Phung (1993). Simulations performed before method for calculating D?_ ~ was

implemented into the code.
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o =0.45

Pe N At NSTEPS nt n? nt
0.0~ 27 Hx107* 1 000 000  4.61 +0.01 9.0+£9.1 14.61 £9.11
0.10 27 5x107* 1 000 000  4.54+0.05 7.004+1.11 1254+ 1.12
030 27 5x10™* 200 000 4.60£0.16  5.79+0.69 11.39+0.76
.00 27 5x107? 200 000 4.78£0.13  3.70£0.27  9.4840.40
3.00 27 5x107? 200 000 4.91£0.29  2.00+£0.27  7.90 4+ 0.54
500 27 5 x 107 200 000 5.07+£0.27 1464+0.21  7.52£0.48
7.00 27 5x107! 200 000 528 4+0.18  1.234+0.07  7.51 £0.24
10.00 27 5 x 1071 200 000 5.59+£0.47  1.07£0.21  7.66 & 0.68
20.00 27  5x 107 200 000 6.30£0.30  0.76+£0.09  8.07+0.39
107 27 5 x 107t 200 000 7.56 £0.41  0.22+£0.03  8.78+0.44
2x10* 27 5x107* 200 000 8.02£0.28  0.124£0.01  9.144+0.29
10° 27 5 x 107t 200 000 9.254£0.59  0.029 +£0.004 10.28 £0.59
104 27 2.5 x 1074 400 000 11.64 £1.11 0.004 £0.001 12.64£1.11

Table 3.21: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.45. *Data obtained from Phung (1993).

o =0.45
Pe N NH [n& NE [n7y N{ /n7y
0.01* 27 —0.2044+0.009  20.9+14.9 20.7 £ 14.9
0.10 27 —0.161 £0.072  4.29 +3.04 4.13 4+ 3.08
030 27 —0.015+0.145  5.03 £2.65 5.01 £2.72
1.00 27 —=0.334+0.17 1.28 £ 0.51 0.95 + 0.57
3.00 27 —0.594+0.08 0.144+0.11  —0.45+0.17
5.00 27  —0.70£0.20 0.0424+£0.39  —0.65£0.57
7.00 27 —0.7440.08 0.21 £0.14  —0.534+0.12
10.00 27  —0.60 +£0.37 036 £0.40 —0.254+0.76
20.00 27  -1.16£0.47 —0.037 £0.21 —1.204+0.67
102 27 —1.43+034  0.062+0.055 —1.37+0.38
2x10% 27  —1.1740.37  0.087£0.048 —1.09+0.41
10° 27 —1.834+078  0.0194+0.013 —1.81+0.79
1o 27 —1.13+1.27  0.0034+0.001 —1.1241.27

Table 3.22: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.45. “Data obtained from Phung (1993).
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¢ = 0.45

Pe N Nt A N2 Iny NIy
0.01" 27 —0.092 £0.011 —-10.344+£5.11 —~10.43 +5.10
0.10 27 —0.041 £ 0.042 —3.03 £2.91 —3.07 + 2.94
0.30 27 —0.317 £ 0.991 —3.09 £+ 2.65 —3.41 £ 2.59
1.00 27 —0.54 £0.18 —1.59 £ 1.00 —2.124+1.11
3.00 27 —0.66 = 0.24 —0.55 £ 0.56 —1.21 +£0.77
500 27 —0.76 £0.18 —0.37 +£0.28 —1.13£0.33
7.00 27  —0.9240.14 —0.40 £0.13 —1.32 £0.14
10.00 27  —1.034£0.28 —0.36 £ 0.22 —1.39 £ 0.47
20.00 27 —1.25£0.19 —0.18 £ 0.16 ~1.43 +£0.34
102 27 —1.60+£0.50 —0.014 £0.065 —1.62+0.56
2x10% 27  —184+0.32 —0.038+0.048 —1.87+0.36
10° 27 —1.60+0.37 —0.003+£0.009 —1.61+0.3%
10* 27 —2.44 £0.51 —6.2 x 107* —2.44 £+ 0.51

Table 3.23: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.45. *Data obtained from Phung (1993).

¢ = 0.45

Pe N (9(2)e  Dj D" Dy Dy, D..
0.000 27 0.210  0.604 0.059 0.055
0.01* 27 420  0.172 0.553 0.068 0.058
0.10 27 447 0177 0.554 0.069 0.096
0.30 27 482  0.174 0.549 0.115 0.083
1.0 27 580  0.168 0.534 0.146 0.151
3.00 27 773 0.159 0.514 0.311  0.257
5.00 27 9.22  0.154 0.503 0.636 0.425
.00 27 10.9  0.149 0.492 0.846  0.405
10.00 27 13.6  0.140 0.473 0.688  0.452
20.00 27 20,8 0.129 0.446 1.247  0.885
102 27 39.0  0.105 0.383 2.349 5457
2x 107 27 43.1 0.099 0.364 6.788  3.374
10° 27 0 49.9  0.088 0.321 47.27  22.58
101 27 0 59.2  0.069 0.256 644.5  230.6

Table 3.24: Data for the contact values of the radial distribution function. short-
and long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.45. *Data obtained
from Phung (1993). Simulations performed before method for calculating D?

5 xr
e WAS

implemented into the code.
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¢ =0.47

Pe N At NSTEPS nH n? nt
0.01~ 27 5 x107% 400 000 5.19 £0.03 14.9 +10.2 21.1 +£10.2
0.1~ 27 5x10™* 200 000  5.16 4+ 0.01 14.24+3.06  20.4+3.10
1.00 27 1077 100 000 5.57+0.25 4.99+0.78  11.6 £1.03
3.00 27 5x107* 200 000 558 £0.58 236 £0.56  8.94+1.14
10.00 27 5 x107? 200 000 6.67 £0.46  1.43+£0.20  9.10 £0.65
30,00 27 5x 107 200 000 6.93+£0.34  0.59+£0.06 8.51 £0.40
102 27 5 x 1077 200 000 9.30 £0.45  0.32+£0.04 10.62+0.49
3x10% 27T 5x 107! 200 000 10.50 +0.39  0.124+£0.01  11.62 £0.40
10° 27 5 x 1077 200 000 11.13 4+0.49 0.040 £0.004 12.17 £ 0.50
101 27 2.5 x 1071 400 000 15.13 +£0.59 0.005 £ 0.000 16.13 +£0.59

Table 3.25: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.47. *Data obtained from Phung (1993).

Table 3.26: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.47. *Data obtained from Phung (1993).

&= 0.47
Pe N N NP Iy Ny
0.0~ 27 —0.044+0.001 103.2+21.2 1032+21.2
0.1 27 —0.1884£0.013 7474118 728+ 118
1.00 27 —0.3840.18  1.674+0.64  1.2040.74
3.00 27 —0574+020 0244058 —0.33+0.64
10.00 27 —1.064£0.25  0.18+0.29 —0.88+ 0.50
30.00 27  —0.974048 0214026 —0.77+0.72
102 27 —1.4940.65  0.10+0.14 —1.3940.79
3x 102 27T —1.2240.61 0.078+0.020 —1.15+ 0.63
10° 27 —1.9141.02 0.019+0.021 —1.89+1.04
104 27 —0.7940.96  0.002+0.001 —0.79 + 0.96




¢ = 0.47

Pe N NI /A NP /nA NI s
0.01 27 —0.027£0.013 —8.08+0.81 —8.10 £ 0.82
0.1* 27 —0.244+0.163 —=3.75+£0.8%8  —3.99 +0.89
1.00 27 —0.69=£0.10 —1.88£0.60 =257 +£0.67
3.00 27  —0.81 x=0.17 —0.74£0.72  —1.554+0.86
10.00 27  —1.03£0.25 —0.30£0.27 —1.344+047
30.00 27 —0.834+£0.52 0.022 £0.135  —0.81 £0.64
102 27 —1.90+0.66 —0.042+0.135 —1.94+0.79
3x 10 27 =2.654+0.57  —0.0394+0.028 —2.69 4+ 0.60
10° 27 —1.98+£0.62  0.0086 £ 0.0208 —1.98 + 0.64
10* 27 —3.03+0.96  0.0016 +0.0026 —3.03 £0.96

Table 3.27: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.47. *Data obtained from Phung (1993).

¢ =047

.01~ 27 479  0.162 0.531 0.042  0.043
0.1~ 20 476 0.161 0.530 0.078  0.040
1.00 27 6.58  0.150 0.506 0.150 0.097
3.00 27 846  0.144 0.490 0.276 0.093
10.00 27 165  0.123 0.443 0.650 0.200
30.00 27 26.3  0.109 0.408 0.386  0.621
107 27 418 0.091 0.357 4.722 3.451
3x10% 27 48.1 0.081 0.324 13.60 16.17
10° 27 53.9 0.072  0.292 42.61  24.86
10* 27 623 0.055 0.228 459.0  226.9

Table 3.28: Data for the contact values of the radial distribution function. short-
and long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.47. *Data obtained

from Phung (1993). Simulations performed before method for calculating D

implemented into the code.

s
00,1

was
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o =0.49

Pe N At NSTEPS n n? nl
0.01* 27 5x107* 280 000  6.05 £ 0.50 2271137 29.724+13.8
0.1* 27 5 x1074 100 000  6.01 £1.25 151501 22.12+£5.85
1~ 27 107° 100 000  6.25 4+ 0.03 595+ 0.07  13.19+0.10
3.00 27 5x 107 200 000 6.85+0.50  3.5240.67 11.37+=1.17
10.00 27 5x1074 200 000 6.53 £ 1.15 1.31 +£0.53 8.84 £1.68
50.00 27 5 x 107 200 000 9.60£0.28  0.65+0.04 11.254+0.32
107 27 5 x 107 200 000 10.50 +1.20  0.404+0.10  11.90 £1.29
2 %107 27 5 x 1071 200 000 11.4940.71  0.234+0.03 12.724£0.74
10° 27 5 x 1074 200 000 14.66 +1.25 0.063 +0.010 15.73 4 1.26
104 27 2.5 x 1074 400 000 20,17 £1.96 0.009 £0.002 21.1841.96

Table 3.29: Relative viscosity data as a function of Pe from Stokesian Dynamics at
¢ = 0.49. "Data obtained from Phung (1993).

b = 0.49
Pe N NI 5y NE 05 N /n3
0.0" 27 —0.189+0015 67.9+436 67.8+437
0.1 27 —0.212+40.018 1.30+£0.67  1.09+ 0.67
1 27 0514002 0544010  0.03+0.08
3.00 27 —0.88+0.35 0424083 —047+1.11
10.00 27 —082+4073 —0.3240.72 —1.14+1.36
50.00 27 —0.754+0.55 0374024 —0.384+0.79
102 27 —0494072 0334012 —0.16 =+ 0.82
2% 10° 2T  —1.46+0.69  0.15+0.05 —1.31+0.73
105 27 —21141.03  0.033 4 0.093 —2.08=+1.03
100 27 0294345  0.007 £0.005 0.30 + 3.46

Table 3.30: First normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.49. *Data obtained from Phung (1993).
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& = 0.4

Pe N N InAy NE n5 NE /A
0.01" 27 —0.133 £ 0.006 —75.549.31 —75.6 £9.31
0.1 27 —0.278 £0.006 —2.914+0.69 —3.194+0.69
1* 27 —0.77+£0.01 —0.69£0.09 —1.454+0.10
3.00 27 —1.02+£0.23 —0.534+1.00 —1.55+1.19
10.00 27 —1.01 £0.15 —0.124+0.74 —1.13 £0.76
50.00 27  —1.64+045 —0.0834+0.153 —1.724+0.55
10? 27 —1.07T £0.31 0.087 £ 0.065  —0.99 + 0.33
2x 10?2 27 —1.78+0.86 0.034 £0.085 —1.75+£0.93
103 27 =276 £0.91 0.011 £0.009 —2.7540.92
10* 27 —4.49+£2.05  0.0016 £ 0.0067 —4.49 4+ 2.06

Table 3.31: Second normal stress difference data as a function of Pe from Stokesian
Dynamics at ¢ = 0.49. *Data obtained from Phung (1993).

¢ = 0.49

Pe N (g(2)a Dg Dy" D,. Dy, D.
0.01~ 27 491  0.147 0.508 0.023  0.043
0.1 27 549 0.142  0.500 0.041 0.060
1* 27 725 0134 0478 0.160 0.089
3.00 27 105 0.124 0.457 0.361 0.311
10.00 27  15.0  0.122 0.442 0.403 0.378
50.00 27  36.6  0.086 0.359 1.107  1.449
102 27 452 0.074 0.326 2.510 1.638
2x10* 27 495 0.070 0.309 8187 4.880
10° 27 8.0  0.056 0.262 28.32  23.72
104 27 64.6  0.044 0.208 307.0 583.2

Table 3.32: Data for the contact values of the radial distribution function, short-
and long-time self-diffusivities from Stokesian Dynamics at ¢ = 0.49. *Data obtained
from Phung (1993). Simulations performed before method for calculating D?  _ was
implemented into the code. ’
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Figure 3.25: Hydrodynamic and Brownian contributions to the relative viscosity as a
function of Pe from Stokesian Dynamics for ¢ = 0.316, N = 27.
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function of Pe from Stokesian Dynamics for ¢ = 0.40, N = 27.
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Figure 3.32: Hydrodynamic and Brownian contributions to the first normal stress
difference, nondimensionalized by 1+, as a function of Pe from Stokesian Dynamics
for ¢ = 0.37. N = 27.
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Figure 3.34: Hydrodynamic and Brownian contributions to the first normal stress
difference, nondimensionalized by 14, as a function of Pe from Stokesian Dynamics
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Figure 3.37: Hydrodynamic and Brownian contributions to the second normal stress
difference, nondimensionalized by 1%, as a function of Pe from Stokesian Dynamics
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Figure 3.38: Hydrodynamic and Brownian contributions to the second normal stress
difference, nondimensionalized by 17, as a function of Pe from Stokesian Dynamics
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Chapter 4

Stress relaxation in colloidal dispersions



4.1 Introduction

This paper examines several different modes of stress relaxation that occur in a col-
loidal dispersion. The behavior of the stress responce in a colloidal dispersion can be
explained through an analysis of the dynamics of the microstructure — the spatial
distribution of the particles. The microstructure is affected by Brownian, hydrody-
namic and interparticle forces. Brownian forces originate from thermal fluctuations
in the solvent, give rise to the familiar phenomenon of Brownian motion, and act to
restore a distorted microstructure to equilibrium. Hydrodynamic forces arise from
the particles” motion through the fluid and can act to both deform the microstruc-
ture, for example, when an external shearing motion is imposed, and to set the rate
of microstructural relaxation through viscous damping. Other interparticle forces
of nonhydrodynamic origin may be attractive or repulsive, short- or long-ranged in
nature and due to a variety of effects, e.g., electrostatic. van der Waals. or even a
combination of multiple types of interactions. For simplicity, this work we are in-
terested in the the simplest dispersion — monodisperse hard spheres suspended in
a Newtonian solvent at low Reynolds number. Hard-sphere particles only have ex-
cluded volume interactions and then the essential generic elements of size and flow
can be studied.

Brownian forces are included in all the work performed here. For the hydro-
dynamic forces, we consider two cases. The first case is a suspension with no hy-
drodynamic interactions; single-body effects such as the stokes drag force and the
single-particle stresslet arve still present, but all two-particle and higher effects are
neglected. This case is associated with the Brownian Dynamics simulation technique.
The other case is a suspension with full hydrodynamic interactions, that is all of
the many-body far-field interactions as well as the pairwise additive lubrication in-
teractions are included which necessitates use of computationally-intensive Stokesian
Dynamics simulations.

In the absence of flow the stress and microstructure are isotropic, but the pres-

ence of Brownian motion results in temporary structural anisotropies that form and
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dissipate with time. These fluctuations have been extensively studied using stress
autocorrelation functions and related to near equilibrium quantities such as linear
viscoelastic behavior by way of Green-Kubo formulae. A review of these formulae
and how they relate to stress relaxation is presented in §4.3.

At nonequilibrium conditions, the structure is no longer isotropic. Fluctuations
around the steady-state microstructure are still present. In this work, we are inter-
ested in the larger responses due to step changes in the shear rate, i.c., start-up flow
and flow cessation.

Experimental work has recently been performed in the area ol transient nonequi-
librium rheology. Flow cessation experiments (Mackay & Kaflashi 1995, Kaffashi,
el al. 1997) have been able separate out the hydrodynamic contribution, which de-
cays ‘instantly’. and observe the decay of the Brownian stress towards equilibrium.
Some amount of data extrapolation is necessary due limitations in the ability of their
instrumentation to monitor the stress immediately following cessation. Both start-
up and cessation have also been studied experimentally by Watanabe et al. (1996,
1997, 1999) examining the effects of shear thinning as well as shear thickening on the
nonlinear time-dependent rheology.

In the next section we present the governing equations for the suspension mi-
crostructure. In section 4.3, we review previously published theories and their rel-
evance to Green-Kubo stress autocorrelations. In section 4.3, we repeat the non-
equilibrium steady-state boundary layer analysis of Brady & Morris (1997) and ex-
tend it to include transient start-up flow and flow cessation. The Brownian Dynamics
and Stokesian Dynamics simulation methods used in this work are outlined in §4.5.
Simulation results are presented in section 4.6 followed by a concluding remarks and

suggestions for further studies in §4.7.

4.2 Governing equations

We first start with a discussion of the equations governing the microstructure in

order to understand the types of relaxation behavior we may expect to see. Consider a
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suspension of N identical spheres homogeneously dispersed in a Newtonian fluid. The

suspension is subjected to a linear incompressible flow with constant velocity gradient

tensor (I7). so that the imposed flow (U} = (I')-@. The probability distribution for

N

the N-particle configuration. &, is denoted Py (@™ .t) and satisfies the Smoluchowski
equation
ap\v J\‘

- Vadg,=0. 4.1

a=1

with the flux of particle o given by

Jo=U.Py =3 DosPx-Vy(ln Py + V), (4.2)

J=1
where U, is the velocity of particle o, V' is the potential energy made dimensionless
by kT, and the relative Brownian diffusivity is given by D5 = kT'M .5, where M .5
is the hydrodynamic mobility of particle a due to a force exerted on particle 3. The

particle velocity is given by
U, =(I')x, + (Rp}-Rrp:(E))a,

where Ry and Rpp are the many-body hydrodynamic resistance tensors that give
the hydrodynamic force on a particle due to its motion relative to the fluid and due
to an imposed shear flow, respectively. Here, (E) is the rate of strain tensor of the
bulk linear flow. We take V' to be an interparticle potential depending only upon the
relative configuration of the particles.

Equation (4.1) can be integrated with respect to the center-of-mass coordinate of
a pair of particles and the positions of the remaining N — 2 particles to arrive at the
equation for Pyj;(7), the probability distribution for finding a particle at » given that
a particle lies at the origin:

o Vo (U, Pip) = Vi [Pip(D-V(In Py + V)]

=V, P /P:s|2(553|7°,)<(D13 ~ Do) Vy(In Py + V))zdzs = 0, (4.3)
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where V, = V, = =V, and Psp, is the probability of finding a third particle at
x; given the positions of two particles. In (4.3), the relative velocity and relative

diffusivity are given by
UZUZ*U], and D:Dll—Dlg—Dgl‘FDgg.‘ (44)

respectively, and { ), indicates a conditional average with two particles fixed.

Quantities are made dimensionless by scaling as
: ; 2 /e
r~a, U~%a, D~2Dy, and t~a*/2Dy.

where 4 is a characteristic magnitude of the velocity gradient tensor I', and the
scaling of the relative diffusivity is with the far-field asymptotic value for isolated
particles 2Dy, with Do = kT /6mna the diffusivity of an isolated particle of radius a
and thermal energy kT in a fluid of viscosity 1. The relative importance of shearing
flow and Brownian motion is given by the Péclet number

_ Aa? B 3mna’sy

P‘: =
= 9D, KT

(4.5)

The qualitative features of the suspension dynamics can be obtained from a dilute,

two-particle analysis and the dimensionless equation and associated boundary con-

ditions governing the pair-distribution function g(v), defined by Pi(r) = ng(r),
are
dg - !
5 + PeV-(Ug)—V-(D-Vg)=0, (4.6a)
r-D-Vg(r)=Pe vUg(r) at r=2, (4.6b)
g~1 as r— oo, (4.6¢)

where # = v /r is the unit vector projecting from particle 1 to particle 2. To simplify
notation in (4.6a) and hereafter, we write V for V, and the angle brackets indicating

averaging are not needed in the dilute limit.
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IFrom the microstructure, we can determine the particle contribution to the bulk

stress given by (Brady 1993a)
(2,) = —nkTI+n((S%) + (S") + (S")). (4.7)

where nkT'T is the kinetic contribution that yields the dilute osmotic pressure, and

(§P) = —kT(V(RsvRpp)), (4.8a)
(") = —((=I+ Rsu-Rpi;)-F"), (4.8b)
(§") = —(Rsv-RjiRrp — Rsp):(E), (4:8¢)

are, respectively, expressions for the Brownian, interparticle force, and hydrodynamic
stresslets. The particle stress may be rewritten as (Brady 1993a)

(X)) = —nkTI — n*kTa 7{ #eg(r)dS — n(xF")

— n(Rsy-Rej Rrp — Rsg):(E) + nkT{Rsi- Ryl V[V + In Py])- (4.9)

by decomposing (S§%) into the contact integral and the final term involving V In Py.
In (4.8) and (4.9). the subscripts on the configurationally dependent hydrodynamic
resistance tensors Ry and Rgsp denote the relation of force to velocity and stress to
rate of strain, respectively, and the others should be clear from these.

The bulk stress of the entire suspension — particles plus fluid — is simply
(X) = =(p)s I +29(E) + (X)), (4.10)

where (p); is the average pressure in the suspending fluid, which is arbitrary for an

incompressible fluid.
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4.3 Near-equilibrium Green-Kubo theory

We first consider the relaxation behavior at equilibrium through the decay of the
stress autocorrelation function. and in particular its behavior at short time both
with and without hydrodynamic interactions. The steady-state solution to (4.6) in
the absence of flow is simply ¢ = 1 everywhere. Thus. the sole contribution to the
particle stress is an isotropic contribution, the osmotic pressure. Although the time-
average structure at equilibrium is constant, Brownian motion produces fluctuations
that cause temporary deviations in the microstructure from isotropy. Thus, the shear
stress in the system at any specific instant in time is not necessarily zero, although
the time-average shear stress most certainly is due to the absence of an imposed shear
flow. The temporal behavior of these stress fluctuations at equilibrium is described

by the shear-stress autocorrelation function,

Cs(t) = {0y (1)02y(0)). (4.11)

Here, { ) denotes an ensemble average over all particles in suspension of volume,
V', and o, represents a shear stress due to an equilibrium fluctuation. We use the
subscript xy for clarity, but since there is no preferred direction at equilibrium, we
could also use zz, or yz or any other subscript that would represent a quadrupolar
stress. Note that in terms of the stresses in (4.8), o, could represent either the
interparticle force or Brownian contribution; the hydrodynamic contribution is strictly
proportional to an imposed rate of strain.

The relationship between the autocorrelation function in (4.11) and the suspension
rheology by Green-Kubo formulae are well established (Boon & Yip 1980, Hansen &
McDonald 1986). Specifically, the frequency-dependent complex viscosity due to an

oscillatory shear flow is related to C(t) by (Nagele & Bergenholtz, 1998)

v
ET

n(w) =n'(w) — i (w) =7, + /0 Cy(t)e ™ dt, (4.12)

where the real part corresponds to dissipation and the imaginary part corresponds to
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elasticity. Here. 5/ (¢) is the high-frequency dynamic viscosity, which is the hydro-
dynamic viscosity in an equilibrium microstructure. The complex modulus can also

be calculated from (4.12) by
G'w) =wn"(w) and G"(w) = wy'(w). (4.13)

Thus, the high-frequency elastic shear modulus, G/ = G'(w — o) is given by

V ‘
G = —C(0). 4.14
= =C(0) (4.14)
Other properties of C';(1) can be found by analyzing the microstructure in the pres-

ence of a small-amplitude oscillatory shear flow characterized by the time-dependent

rate of strain tensor

(E) = B,

where a = wa®/2Dy is the frequency nondimensionalized by the diffusive time. a*/2D,
and E is a constant tensor giving the type of linear flow. The resultant perturbation
to the equilibrium structure, f = g — 1, for small-oscillatory shear amplitudes, must

be linear in the tensor E-
f(rt) = —=Pef(r)e's-E-r, (4.15)

where Pe <1 due to the small amplitude of the shear. Substitution of (4.15) into

the (4.6) gives, to leading order in Pe, the following system

—iaf +V-D-Nf = V.(Ug). (4.16a)
#DN[=Pei-U(l+f) at r=2, (4.16b)
f~0 as r—oc, (4.16¢)

whose solution has been discussed at great length elsewhere (Brady 1993b, Cichocki

& Felderhof 1991). Here, we are interested in the short-time behavior of C's(t) which
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corresponds to the high-frequency behavior of f.

As o — oo, the solution is simply f = 0 as the frequency is so high and the
amplitude so small that the suspension is not disturbed from its equilibrium state.
The perturbation around infinite frequency is singular, however, with in a boundary
layer where unsteadiness balances diffusion in order to satisfy the no-flux boundary-
condition at contact. In the absence of hydrodynamic interactions, the relative dif-
fusivity between two particles is simply I in dimensionless form. Thus, at high fre-
quencies there is a balance between scaled frequency o and two spatial derivatives of
/., resulting in a balance between the scaled frequency, a, and two spatial derivatives
of f necessitating a boundary layer near contact that scales as aa~'/2. The result
of this thin boundary laver near the surface is a contact value of the perturbation
function f, and thus a complex viscosity, that decays at high frequencies as a™/2.
From (4.13), this results in an elastic modulus, G, that grows as a'/2 as a — oo as
widely reported in the literature (Brady 1993b, Lionberger & Russel 1994). Thus,
from (4.12) it can be determined that C's(#) diverges at short times like t='/2 (Cichocki
& Felderhof 1991).

Inclusion of hydrodynamic interactions produces a qualitatively different behavior.

There is still a boundary layer at contact in which frequency balances diffusion, but

since the relative diffusivity vanishes at contact as r —2a, the boundary layer thickness

i —1/2

now scales as aa™', rather than aa™"/*. The different scaling of the boundary layer
results in qualitatively different rheological behavior. Now the contact value of f and
the complex viscosity both decay at high frequencies as a=*. The stronger decay of the
complex viscosity means that the elastic modulus, G/, now approaches a constant,
G'_.as o — oc. And thus, C4(t) approaches a constant as ¢ — 0 and its initial
decay is linear with time as in the case with a soft, but steep, interaction potential
(Verberg et al. 1997). We will see in §4.6.1 that these scaling predictions are borne
out by dynamic simulations. The reader who is not interested in the details of the
simulation methods may skip to §4.6.1 now. As a final note, the long-time (or low
frequency) decay is predicted as t~7/? (Cichocki & Felderhof 1991) both with and

without hydrodynamic interactions; only the coefficent changes with hydrodynamics.
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This =7/ behavior is simply the diffusive decay of the quadrupolar (cf. eq. (4.15))

disturbance caused by the weak shear flow.

4.4 High shear rate boundary layer: no hydrody-
namics

We now turn our attention to the other limit of far from equilibrium behavior and
analyze the beahavior for large Pe., where another baoundary layer is present and
analytic progress is possible. We shall see in 4.6 that the behavior for all Pe can be

understood form these two limits of small and large Pe.

4.4.1 Steady-state analysis

We are interested in the behavior far from equilibrium where Pe >> 1 in the absence
of hydrodynamic interactions. In this regime the relative velocity is equal to that of
the imposed shear flow, U = I'r and the pair diffusivity is a constant equal to 2Dy;

thus equations (4.6a-4.6¢) reduce to

d . ‘ ,

5 — Vg +Pe Prvg =0, (4.17a)
5 |
_——g— =2Pe~.g at r=2, (4.17Db)
or

g~ 1 as r — oo. (4.17C)

As shown by Brady & Morris (1997), at large Péclet number and at steady state,
(4.17a) reduces to F-T-Vg = 0, 7.e., on a streamline g is a constant, which (4.17¢)
dictates to be unity. This constant solution does not satisfy the no-flux boundary
condition at contact, however, and there is a boundary layver in which the effects of
Brownian motion balance those of advection similar to the boundary layer at high
frequency considered in §4.3. The relevant length Scale is no longer the particle radius,
but the size of the boundary layer, § ~ aPe™!. Also, the time scale is shortened as

the proper diffusive time scale is based on the ability for a particle to diffuse the
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length of the boundary layer, §?/2Dg, rather than the particle size a?/2D,. Thus, we

stretch r and ¢ according to

y= Pe(r —2) and 1 =1tPc?, (4.18)

The governing equation and boundary conditions for ¢ in the stretched coordinates

are
dg % , 1 g 1. 99 | e Oy
L 29[l =P 1 —yy)]== = —Pe — O(Petd
or  O0y? + 2 ( 277‘( 7 yﬂ(’)y < "0 + sin 0 O J +O(Pet1ke)
0
;_g =2v9 at y=20, (4.19b)
Ay '
g~1 as y— oo, (4.19¢)

where 0 is the azimuthal angle measured from the z-axis, and ¢ is the polar angle

measured from the a-axis. In (4.17a)-(4.19b), 7., 74, and 7, are defined by
=i =#E+, v=0TI7% ~,=¢I%, (4.20)

where 8 and @ are the unit vectors in the #- and ¢-directions, respectively, and I'is
the non-dimensional velocity gradient tensor.

Brady & Morris (1997) show that terms of O(Pe™") must be retained in the
equation for ¢, and simplify the problem by keeping only those terms on the left-
hand side of (4.19a) in a ‘radial balance approximation’ as the competition between
radial advection and diffusion is what generates the large gradients in ¢ characteristic

of the boundary layer. The steady-state solution to the radial balance approximation

18
~ 1 + 2, ¥ es)dz
58 = 5 4.21
gss(y) = + 27, fo esEdz ( )
where s(z) is given by
f ) — 9 I—LP -1 EPQ—.]”Z A 99
() =21 = =P + 1P (122)
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Here, ¢,s(y) is valid only for v, < 0, i.e. in the compressional quadrants; in the
extensional quadrants, where 7, > 0, ¢ remains O(1) and there is no boundary layer.
Rewriting ¢ as

; o , Ve
gss(y) = 955(0)[1 + 2’)7« /0 e (ZZ].

with
g.s(0) = ——_/gPe'y,, +0(1) as Pe — (4.23)
shows that there is an O(Pe) excess of particles in the compressional quadrants.
Using this result for the pair-distribution function, the stress in the absence of
hydrodynamic interactions for a hard-sphere potential is just the contact integral in
(5.) = —nkTI + ig?> / P2 4 O(PeT). (4.24)
Vr

T

Even though the hard-sphere force is of magnitude kT, the large O(Pe) build up

of pair probability along the compressive axes results in a viscous (O(n7)) stress
independent of &7 as Pe — oc.

Although we have neglected O(Pe™") terms on the right-hand side of (4.19a) in

the radial balance approximation, these terms have only a slight quantitative effect

on the results (Bergenholtz, Vicic & Brady 1999).

4.4.2 Start-up flow

We now turn our attention to the unsteady boundary-layer problem, using the same
radial balance approximation as analytic progress is possible. We consider two cases:
(1) Start-up flow in which the quiescent suspension is suddenly subjected to a strong
steady shearing motion at large Pe. and (2) flow cessation in which a steady shear-
ing flow is suddenly stopped. One could consider other time-dependent behavior,
including an oscillating shearing motion superimposed on the steady motion, but the
analytical complexity increases. The basic physical aspects of structural development

and relaxation are captured by start-up and flow-cessation.

For start-up flow, the initial condition is the isotropic equilibrium structure, g = 1
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and it is useful to analyze the problem in terms of the deviation from this structure
denoted by f = ¢g—1. On taking Laplace transform, which we denote by ~, and with
s conjugate to 7, the problem becomes

D R R )
= =29 (1= —Pe '+ —Pely) - — sf =
()yz "‘,‘)7"<1 21/7’P6 + 2P6 y)ay '“JC 07 (42)1)
af L 2y,
_T"Z" " -2')7f = — at y = 07 (425]))
dy s ‘
f~0 as y— oc. (4.25¢)

The factor of 1/s in (4.25b) is a result of the Heaviside step function in time necessary
because v, = 0 before the inception of the flow. A change of variables transforms

(4.25) to

2(7: I ajF r 1 0
5’ + Z;tz‘,—x —of = (4.26a)
3f . SPe? 3241 ,
@—z +28f = — o at o =1y =- 7 (4.26b)
f~0 as - oc, (4.26¢)

where
B = (=2v,Pe)?,
, Loy
r=06(1- 5 Pe ' + 5P€' y),

‘_4'77» 4

and
B ’}ﬁerez
7= 32

This problem has two linearly independent solutions in terms of the confluent hyper-

geometric function (Abramowitz & Stegun):

-y a 3 2 ,7,‘—r2 - a 3 2 o
ve " M1 + T3¢ )oand  ae”™" U(1 + 73" ). (4.27)

For calculation of the rheological properties, only the value at contact, y = 0 or

a = Ig. 1s necessary and this simplifies the analysis. Once the boundary conditions



gl0.7) = 1+ L7'f(0.5)], (4.28)
2 32_'_ ) ]
(/

L/

32( 7 .

14 = 3’ — (3% + 1)2Q| o (4.28h)
U l@o

In (4.28), L7! represents an inverse Laplace Transform and the arguments of U7 are
the same as in {4.27) and are evaluated at 2 = o with the prime representing
differentiation with respect to the third argument. We have not been able to carry
out the inverse analytically for all times, but the short- and long-time asymptotic
behavior can be extracted.

A 4 D

At short times (4.28a) has the following assymptotic form

16

l
2

g(0.8) ~1— —3Per as =0, (4.29)

'

showing that the initial growth of the boundary-layer microstructure scales as 1‘,%,
similar to the behavior near equilibrium (cf. §4.3). The large exponent on Pe in
(4.29) indicates that this limit is only strictly valid at very short times, of O(tPe™*)
or smaller. We have not been able to determine whether the ¢> behavior persists to
longer more rheologically significant time scales.

At long times, the system reaches the steady-state solution (4.23) exponentially
as

4 ‘
g(0,t) ~ 1 — §%Pe(1 Py as t— o (4.30)

It is also evident from (4.30) that the appropriate time scale at long times is (a?/2D,) Pe™!,
or simply the flow time 47!, To determine the stress at long times, one simply replaces

Y in (4.24) with 4, (1 — e>7Fe 1),

4.4.3 Flow Cessation

Flow-cessation is a simpler calculation than start-up flow as the steady-state solution

decays in the absence of an imposed flow, i.e., v, is zero once the flow stops and only
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enters as a parameter in the initial condition. Diffusion is the mode of structural
decay, and the relevant time scale is the time it takes for a particle to diffuse the
length of the boundary layer. Thus, again we analyze the problem in terms of the

deviation from this structure denoted by f = ¢ — 1, which to leading order in Pe is

7f of N .
L L O(Pe ), 4.31a
R (Pe™) (1.31a)
ﬂ =0 at y=0, (4.31b)
dy
. N . 2 v = /
1o(9:0) = gusl) = 1 = 23,,,(0) [ ez, (4.31d)

On taking Laplace transform. which we denote by °, and with s conjugate to 7, the

problem becomes

.

5~ o] = —hv (4.32a)
dy

f~0 as y— oc. (4.32¢)

The solution of this problem is straightforward using variation of parameters. Due
to the delta-function nature of the hard-sphere interparticle force, we need only find

the contact value,

. 1 ’
f(0,s) = “st(o)m., (4.33)

to obtain the rheological behavior. The inverse Laplace transform of (4.33) can be
found for all time (Abramowitz & Stegun, chap. 29) and is given by

F0,7) = —gas(0)e Terfe(y/4y2T). (4.34)

Assymptotic analysis of (4.34) shows that at short times after cessation, the pair
distribution function in the boundary layer departs from its steady-shear value as

1 . . . : o
72 consistent with the start-up flow behavior as any flow transition starts at short
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times like an equilibrium fluctuation. The boundary-layer microstructure is far from
equilibrium. however, and the short-time behavior does not persist for long. At long

L
2

times. the structure decays as 772, consistent with boundary-layer relaxation being
a one dimensional diffusion problem. Also, the relavant time scale for structural
decay is 7 indicating the rescaling of time in (4.18) based on a particle’s ability
diffuse the width of the boundary layer, 4, instead of the particle radius, a, is indeed

appropriate. This simple temporal behavior will be seen to occur in the Brownian

Dynamics simulations discussed in §4.6.2 even for volume fractions as large as 45%.

4.5 Simulation method

The time-dependent behavior of the stress in a suspension with and without hydro-
dynamic interactoins is examined with Stokesian Dynamics and Brownian Dynamics
simulations, respectively. The details of these techniques can be found elsewhere; the
following is a brief overview of each. The theoretical results apply to any linear flow;
the simulations will be for simple shear flow.

The Brownian dynamics algorithm used here is based on the method of Heyes &
Melrose (1993) for simulation of hard spheres in the absence of hydrodynamic inter-
actions. Motion of the particles in this system is governed by the particle evolution
equation:

Az = UAL+ Az" + X (A1),
X =0, and X(AH)X(Al)=2DIAt. (4.35)

Here. A is the change in particle position during the time step At, UAt = [z Al =
YytAt for simple shear flow and X (A¢) is a random displacement due to Brownian
motion that has zero mean and covariance related to the Stokes-Einstein diffusivity
for a single particle alone in the fluid. After the Brownian and affine displacements

are applied, the simulation checks for particle overlaps and displaces them along their



lines of centers according to

—
b
(V]
]

——

- 1 .
Axfl® = S(AT —2ayr H(2a — Ar),

where Az is the hard-sphere displacement, and Ar is the interparticle separation
after the affine and Brownian displacements. The Heaviside step function is included
to ensure that the displacement is only applied to overlapping particle pairs and the
coeflicient 17 is chosen to return the particles back into contact. These displacements
are intended to duplicate the effects of a hard-sphere interparticle force. Due to the

pairwise fashion in which they applied, however, there are some residual overlaps that

cannot be resolved due to three particle effects. As shown bv the ter

poral decay of
the stress autocorrelation function, these residual overlaps do not contaminate the
hard-sphere behavior.

Heyes & Melrose (1993) proceed to determine the suspension stress tensor by cal-
culating (##¢g(7)) at contact over the course of a simulation as a way of measuring
the contact integral in (4.9). This method ensures that an equilibrium distribution
recovers the known theoretical value for the interparticle stress, —4og(2a)I. Here,
we use a different method that involves calculating pairwise interparticle forces, F,
that would result in the hard-sphere displacements in (4.36). In the absence of hy-

drodynamic interactions, the force associated with each displacement is given by

A(BHS

F? = 6mpa———,
ja "

(4.37)
which is simply the average Stokes drag on the particle over the course the hard-sphere
displacement.

After the interparticle forces have been calculated, it is straightforward to deter-
mine the bulk stress. In the absence of hydrodynamic interactions (4.10) reduces

to

-

() = ~(p) I = nkTI+2(1 + 20)(E) — n(xF"). (4.38)

L

Here, the Brownian contribution to the stress is zero, while the hydrodynamic contri-
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bution reduces to the dilute-limit Einstein correction to the viscosity, %@ This plus
the isotropic stresses represent a Newtonian rheology. All of the interesting rheolog-
ical behavior is due to the interparticle force contribution, 72<:cFP>. For simplicity,
only this contribution is included in all stress results presented for the Brownian Dy-
namics system. The simplicity of this algorithm enables large systems to be studied.
All Brownian Dynamics simulations in this work use the same number of particles,
N = 1331.

Inclusion of hydrodynamic interactions involves the many-body far-field interac-
tions and the pairwise additive lubrication forces present in the Stokesian Dynamics
algorithm. Details of this technique are described elsewhere (Bossis & Brady 1987,
Brady & Bossis 1988); here we proceed quickly. Conventional Stokesian Dynamics
requires the inversion of large hydrodynamic mobility and resistance matrices at a
high computational cost of O(N?), and thus we are limited to relatively small sys-
tem sizes. All Stokesian Dynamics simulations in this work use the same number of
particles, N = 27.

Dynamics of the simulation are governed by the particle-evolution equation,
Az = Ae® + Az’ + Az, (4.39)

where we have broken the evolution equation into its affine, hydrodynamic and Brow-

nian contributions. The affine displacement,
Az" = UAL = Yyt (4.40)

simply convects the particle along with the bulk shear flow. The hydrodynamic
displacement,

Az = Ry}, Rrp:(E)At, (4.41)

represents the deviation in particle trajectories from the affine flow due to hydro-

dynamic interactions. The third contribution is the Brownian displacement given



by

AxP = ETV-Ri{ AL+ X (A1),
X =0 and X(AHX(Al)=2kTR; AL (4.42)

which is similar to the Brownian contribution to (4.35) except that the short-time

self-diffusion tensor, kT Ry, is complicated by the introduction of hydrodynamic

interactions. A higher order deterministic term involving the spatial gradient of the
short-time diffusion tensor is also included to account for changes in the hydrodynamic
mobility in the course of a random step. This term acts as a radially repulsive term
that prevents particle overlaps due to the random displacements, and no hard-sphere
force or hard-sphere-like displacements are needed with hydrodynamics.

Both the hydrodynamic and Brownian contribution to the stress can be deter-
mined at each instant in time from the particle configuration using (4.8). Nondimen-
sionalizing @ by the particle radius a, the rate of strain tensor, (E), by its magnitude
~. the imposed velocity U by va and the hydrodynamic resistance tensors Ry and
Rpp by 6mna and 67na?, respectively, one finds two charactistic time scales. The
time scale for the hydrodynamic displacements in (4.41) is the flow time scale, 71,
whereas the relevant time scale for the Brownian displacements in (4.42) is the diffu-
sive time scale, a®/2Dy = 37mna®/kT. The ratio of the diffusive time scale to the flow
time scale is the Péclet number, Pe = 4a*/2Dy, which we use as the nondimensional
shear rate for this work for both the Brownian Dynamics and Stokesian Dynamics
systems. Note that this Péclet number has been chosen to match the accompanying
theoretical work and differs from that Péclet number used in the other chapters by a
factor of two.

Two types of simulations are performed for this work. The first type involves
performing a single simulation at equilibrium (Pe = 0) for a long period of time
in order to obtain the shear-stress autocorrelation function C,(¢). During this long
simulation, three independent stresses for the system are monitored: ¥,,, ¥,. and
Yy-. The time average of each is zero at equilibrium and fluctuations are measured

by the autocorrelation function C,(t). Because we are interested in the total system
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stress — and not the individual particle contributions, as is necessary for other cor-
relation functions, such as the mean-square displacements — it is straightforward to
keep a record of the values of the three shear stresses for all time to maximize the
data available for calculating C's(¢). From the data, three separate autocorrelation
functions are calculated for fluctuating shear stress which are simply averaged to ob-
tain the full function, C5(¢). Because the simulation is run at equilibrium, time is
nondimensionalized by the diffusive time, a?/Dy. The time step for the Brownian
dynamics system was set to be At = 2.5 x 107 and is set to be At = 5 x 10~ for the
Stokesian Dynamics system. Simulations are performed at several volume fractions,
¢. Because of the small system sizes (N = 27) involved in Stokesian Dynamics simu-
lations, we are limited to studying suspensions below the equilibrium phase boundary
at ¢ = 0.494. The large systems used in Brownian Dynamics enabled study at higher
densities. We are interested in studying suspensions in the metastable disordered
state at volume fractions above the phase boundary. Starting configurations of this
type are obtained using a density quenching technique (Rintoul & Torquato 1996.
Clarke & Wiley 1987). The osmotic pressure was monitored during the run to ensure
that crystallization does not occur.

The second type of simulation is used for monitoring the transient stress due to
an abrupt change in the flow conditions. Relatively short runs are needed as the time
it takes for the suspension to move from one steadv-state condition to the next scales
with the boundary-layer diffusion time and are therefore relatively small. For this
work, we are interested in studying the stress response during both start-up and flow
cessation. To do this, we start the simulation with an equilibrium configuration and
undergo a step increase in the shear rate, or Pe. The shear rate is held constant while
the stress response during start-up flow is monitored. At low shear rates, (Pe < 1),
the diffusive time, /Dy is used to scale time in the simulations, while at high
shear rates, the flow time. 37, is used. The time step for all Brownian Dynamics
simulations is At = 2.5 x 107* and the number of time steps the shear rate is held
constant is 4000. This sets the length of the start-up flow regime to be one particle

diffusive time at low shear rates and one strain at high shear rates. At this point,
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the flow is abruptly stopped by no longer including the affine displacements in the
evolution equation (4.35) for 4000 more time steps while the nondimensionalization of
time is not changed. At high shear rates, this continued nondimensionalization with
the flow time, 371 = (a?/Dy)Pe™!, despite the fact that it is diffusion that drives
particle motion following cessation, enables us to study the immediate post-cessation
behavior in greater detail. This technique is repeated 91 times and transient stress
data from each of the individual runs are averaged together to reduce statistical noise.

Start-up flow and flow cessation are also studied using Stokesian Dynamics in the
same manner, but with a few changes. Hydrodynamic interactions have the effect of
slowing down the dynamics of the system, thus a larger time step, At = 5 x 107*
can be used. The lengths of the flow regimes remain at 4000 time steps which sets
the length of the start-up regime to be two diffusive times near equilibrium and two
strains at high shear rates. With Stokesian Dynamics, both the affine (4.40) and
hydrodynamic (4.41) displacements are set to zero. Also, the technique is repeated

182 times instead of 91 times in an attempt to partly compensate for the much smaller

system sizes involved.

4.6 Results

4.6.1 Equilibrium Fluctuations: Green-Kubo

Relaxation behavior of equilibrium fluctuations, as measured by the shear-stress au-
tocorrelation function (), for the Brownian Dynamics system at various volume
fractions, ¢, is shown in figure 4.1. The decay of C,(¢) with time is strictly mono-
tonic. At short times, C(¢) apppears to be diverging like 71/2 in agreement with
the theoretical discussion in §4.3. The reason for the divergent behavior is due to the
delta-function nature of the hard-sphere interparticle force. The suspension stress
at any particular instant in time is either zero or infinite depending on whether or
not a particle-particle collision is occuring at that precise moment. The time average

of such a stress profile is finite (in this case, it is zero), but the variance, and thus
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the zero-value of the autocorrelation function, is infinite. This divergent behavior
implies that there is an infinite high freqency limit to the elastic modulus, G7_, also
as predicted by theory. In this work. the ‘instantaneous’ stress from the simulation is
actually a time-step-averaged stress, and thus the delta-function nature of the stress
is removed. Despite this, Cs(1) still appears divergent at times as short as one time
step, At = 2.5 x 107*. Examination of shorter times requires smaller time steps,
which one can see from (4.37) results in larger ‘instantaneous’ forces and stresses,
enabling C(t) to increase further at the shorter times being probed. The ¢t='/2 be-
havior of C,(?) serves as a good check of the hard-sphere interparticle force algorithm
used in this work. A soft interparticle potential would result in a finite modulus. The
long-time behavior of C,(t) is hard to discern from the data; it relaxes to zero. but
the precise form of the decay is not evident due to statistical noise. Theoretically,
the long-time decay should be as ¢~7/? coming from the three dimensional diffusive
response to a quadrupolar (E) forcing. Long-time autocorrelations in a complex sys-
tem such as this are very difficult to measure, as the system becomes more and more
uncorrelated as time progresses and it becomes increasingly difficult to measure such
small correlations.

Inclusion of hydrodynamic interactions produces qualitatively different behavior.
Figure 4.2 shows the time-dependent behavior of ('s(t) at various volume fractions
for the Stokesian Dynamics system. Again, relaxation of C,(#) is monotonic. Un-
like in the situation in the absence of hydrodynamic interactions, (';(t) approaches
a constant at short times, indicative of the existence of a finite high-frequency mod-
ulus, 7. The hard-sphere delta-function interparticle force is still present, but is
never implemented to keep the particles from overlapping as the strong lubrication
interactions between the particles are sufficient. The stress present at equilibrium is
no longer the interparticle stress, but the Brownian stress as defined by (4.8a). This
stress does have a finite instantaneous value associated with each particle configu-

ration. Therefore the variance of the stress. and thus also G’_. is finite. The value

oa?

of ('y(t) subtracted from its constant zero-time value is shown in figure 4.3. It is

clear from the figure that the initial decay is linear with time in agreement with the
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discussion in §4.3. As is the case with Brownian Dynamics, the precise nature of the
long-time decay cannot be extracted from the data due to statistical noise; theory
predicts t~7/2,

The values of the high-frequency modulus, /_, from Stokesian Dynamics are
shown as a function of ¢ in figure 4.4. Also on the figure are experimental data
on model hard-sphere systems by Shikata & Pearson (1994) showing some degree of
agreement. The experimental data are consistently larger than the simulation data
which could be due to some residual effect of the steric stabilization necessary in these
silica dispersions. The error in the simulation data is about 1%. The simulation re-
sults here are obtained from the zero-time value of the shear-stress autocorrelation
funtion. One could also obtain G’_ by calculating the variance of the stresses as-
sociated with numerous independent random configurations without evolving these

configurations over time.

4.6.2 Nonequilibrium Behavior: Start-up / Flow-Cessation
No hydrodynamic interactions: Brownian Dynamics
Start-up flow

At this point, we shift our focus toward the response of the stress to start-up and flow
cessation. Figure 4.5 shows the instantaneous stress during start-up flow at various
Pe for the Brownian Dynamics system at one volume fraction ¢ = 0.45. This plot
shows that nondimensionalizing the stress by % — plotting the viscosity — and
nondimensionalizing the time by the diffusive time a?/ Dy collapses the data for small
Pe. The viscosity is seen to grow as 1'/2 at short times as predicted in the theory in
64.4.2. At longer times. one can see the shear thinning behavior as the curves peel
off towards their steady-state values that are decreasing functions of Pe.

Also on the plot is the time integral of C';(¢) which is obtained by performing
the integral in (4.12) at zero frequency with ¢ used as the upper limit of integration
instead of oc. At short times, this integral increases like t'/2, corresponding to the

112 behavior at of (4(t) at short times. At long times, this integral asymptotes to
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the zero shear viscosity, 1. The agreement of the transient stress data with this time
integral is good, and to be expected in that at very low Pe or at short times at other
Pe the systems response to the step change in shear rate is indistinguishable from an
equilibrium fluctuation and should behave in the same manner.

At higher Pe, the system deviates from the near equilibrium behavior, particularly
at long times. There is still a discernable /2 growth at short times in the viscosity
for all Pe, but the curves appear to be shifting to the left with Pe on figure 4.5
indicating that the characteristic time scale at short times is changing to a smaller
time scale, perhaps the flow time 47!, but we cannot be sure from the data. The #1/2
behavior does not persist for very long at high Pe. It shifts to a more linear growth
behavior that scales with the flow time 4~%. This is more clearly seen in figure 4.6
which shows the same data as in figure 4.5 but the time is nondimensionalized by
the flow time, 47!, Here, the initial #/? behavior can barely be seen at high Pe and
is represented by a cusp near zero time. Viscosities for all Pe reach a plateau value
within one strain, which is in agreement with the theoretical development in §4.4.2
that shows that the structure during start-up flow reaches steady-state exponentially
on the time scale of 47! (Equation (4.30)). There appears to be an overshoot in the
viscosity with time at the higher shear rates. We do not expect such nonmonotonic
behavior to be present in the two-body analysis presented in §4.4.2 and is most likely
an effect of many-body interactions at high ¢.

Also one notes from the data that the response to start-up flow becomes indepen-
dent of Pe at the highest shear rates. The curves for the three highest Pe numbers

are all coincident when time is nondimensionalized by 471,

This is consistent with
the high-Pe assymptotic limit in (4.30) and also in Brady & Morris (1997). The fact
that the viscosity reaches a non-zero high-Pe plateau is also in agreement with Brady

& Morris (1997).

Flow cessation

The flow is abruptly stopped after 4000 time steps and the shear stress is monitored

as the structure relaxes back towards equilibrium. Figure 4.7 shows the stress as a



193

function of time after cessation from flows at various values of Pe (before cessation).
We choose a shear-rate independent nondimensionalization of the stress, nk7', in order
to measure the degree of deformation to the microstructure. Because of this, the stress
at the moment of cessation scales as Pe as all the pre-cessation viscosities are of the
same magnitude. After an initial decay, all the relaxation curves become coincident
at iIntermediate and long times. It is expected that relaxation to equilibrium from any
configuration should take place on an O(a*/Dy) time, as particles need to diffuse a
length on order of their size to completely relax the microstructure. Figure 4.7 makes a
stronger statement, however, showing that each nonequilibrium microstructure takes
the same relaxation path towards equilibrium. At intermediate times a region of #~'/2
decay is evident from the simulation data. The precise nature of the stronger terminal
decay is not evident due to statistical noise present and small magnitudes of the shear
stress; theory predicts ¢~ 7/2.

Figure 4.8 more closely examines the behavior immediately following cessation
of the flow. Here, we nondimensionalize the stress by the precessation value of 77.
Using this scaling is more appropriate for the short time behavior as the viscosi-
ties before the flow is stopped are roughly equal. Time has been nondimensional-
ized by the time necessary for a particle to diffuse the width of the boundary layer.
§?/Do = (a*/Dg)Pe™?. as this is the relevant time scale for the initial relaxation.
Our theoretical prediction, equation (4.34) is also shown on figure 4.8. Here, we use
Yy = ~3§ as this is the minimum value on the compressional axis and select g,,(0) to
match the pre-cessation value of the viscosity. Excellent agreement is found between
simulation data for Pe > 15 where the high-Pe boundary layer analysis is most ap-
propriate. The t='/2 decay present at intermediate times in figure 4.7 is present here
at long times. This represents a typical long-time tail in a one-dimensional diffusion
problem, such as diffusion out of a boundary layer. Relaxation behavior from lower
Pe show some deviation from the theory at longer times, but only after the stress
has dropped by an order of magnitude. The theoretical boundary-layer solution is
only supposed to be valid in the high-Pe limit and the mode of relaxation at low

Pe may have switched to its stronger terminal behavior, which involves decay of the
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microstructure outside the boundary layer.

We are able to analyze the microstructure during start-up and cessation directly
from the simulation data. Figure 4.9 shows projections of the pair-distribution func-
tion g(7) onto the plane of shear during eight points in the flow; four during start-up
and four during flow-cessation. Here. g(7) measures the probability of finding a par-
ticle at a point in the plane given that another particle in the center of the figure.
Figure 4.10 shows the corresponding plot of the instantaneous viscosity versus time
for this particular run performed at ¢ = 0.45 and Pe = 15. Point (1) shows the
equilibrium structure with isotropic first and second nearest-neighbor rings of high
probability around the test particle in the center. After the flow is turned on (2) we
see the rings appearing more like ovals, with the probability distribution narrowing
in the compressional quadrants and being convected away from the test particle in
the extensional quadrants. At (3), the maximum of the stress, a further thinning of
the boundary layer in the compressional zone is evident and one can see separation
of probability from particle contact in the extensional zone. At the moment of cessa-
tion (4), the thickness of the boundary layer has stabilized and there is evidence of a
trailing wake in the extensional zone.

Just after cessation, (5), one sees no noticeable change in the microstructre despite
the fact that figure 4.10 shows a precipitous drop in the suspension stress. All of the
relaxation of the microstructure occurs inside the small boundary layer region in the
compressional zones, which cannot be seen on this scale of resolution. The structure
at later times (6)-(8) bears this out. The boundary layer of particle probability in
the compressional zones continues to relax back to equilibrium (1) thickness. While
the structure of the boundary layer has completely relaxed — it requires only an
O([a*/ Do) Pe™?) time — there is still anisotropy outside the boundary layer as evident
in the depletion of particles near contact in the extensional zone. Structural relaxation
outside the boundary layer requires a longer O(a?/ Dy) time as particles need to diffuse
on order their size, a, rather than simply the boundary layer thickness, 8. Note that
this figure shows that the stress-optical rule will fail for these colloids, as the stress

has almost completely relaxed while the structure on the particle scale, which is what
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optical measurements would probe, has hardly relaxed by time (8).

Hydrodynamic interactions: Stokesian Dynamics

The transient behavior of the stress is also examined in suspensions with hydrody-
namic interactions. Using Stokesian Dynamics we monitor both the hydrodynamic
and Brownian stress during start-up and following cessation. The hard-sphere inter-
particle force is not necessary in this system and thus the contribution to the viscosity

due to interparticle forces is zero.

Start-up flow

The instantaneous Brownian stress during start-up flow in the Stokesian Dynamics
system at ¢ = 0.45 and various Pe is shown in figure 4.11. Due to the much smaller
sizes of the Stokesian Dynamics system, we have difficulties precisely measuring a zero
Brownian shear stress at equilibrium. The error was rather small — always less than
0.15nkT, or ahout 0.65%Pe™" — but even small errors tend to destroy the quality
of logarithmic plots. For this reason, the zero-time value of the Brownian stress is
subtracted from its instantaneous value in order to more closely examine the growth
of the stress during start-up. Here we only examine data from Pe > 1.5 as small
errors in the stress are quite significant at low shear rates. Figure 4.11 shows that the
growth of the viscosity from its zero-time value is clearly linear in time in contrast
with ¢'/? growth seen in the Brownian Dynamics system. Also shown in figure 4.11 is
the time-integral of the shear stress autocorrelation function, Cy(). As was the case
with the Brownian Dynamics system, this integral does an excellent job of predicting
the transient behavior of the viscosity during start-up. The agreement seems to hold
for the growth portion of the curves for all Pe. There is no leftward shift of the curves
at high Pe evident in the Brownian Dynamics system. The linear growth at short
times of the Brownian stress can thus be related to the high-frequency behavior at
equilibrium

At long times the Brownian viscosity curves peel off towards their steady-state

values in inverse order of shear rate. Fach data set contains 4000 times steps which
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translates to two strains, or 29¢. A steady-state is attained within each data set which
compares well with the values obtained from long time-averages during steady-state
simulations (Foss & Brady 1999 (ch. 3)). There is evidence of an overshoot in most
of the curves in figure 4.11, although the evidence is not conclusive as there is a fair
amount of noise present in this portion the data.

The hydrodynamic viscosity is also measured during start-up flow and shown in
figure 4.12. At zero time, the viscosity 1s non-zero and equal to the high-frequency
dynamic viscosity, ... The value of 1/ shown here agrees well with those obtained
from time averages of long steady-state simulations performed at or near equilibrium
(Foss & Brady 1999 (ch. 3)). The hydrodynamic viscosity grows with time indicative
of shear thickening behavior and, following what appears to be an overshoot in several
of the curves, reaches a fairly noisy steady-state within two strains.

In contrast to the Brownian viscosity, the growth of the hydrodynamic viscosity
does not appear to be linear at short times as is evident by the the zero slope of
the curve near t = 0. This is clearer in figure 4.13 where the zero-value of the
hydrodynamic viscosity has been subtracted. The data is quite noisy at very short
times, but starting at about ¢ = 0.059¢ one can discern algebraic growth that is
definitely stronger than linear, and perhaps quadratic in time. The slower growth
of the hydrodynamic viscosity compared to the Brownian viscosity is due perhaps to
the fact that the hydrodynamic viscosity is not as sensitive to small changes in the
microstructure as is evident by the fact that it is constant, and equal to »’_ during a
small-amplitude oscillatory shear flow. Also, in steady-shear flow, the hydrodynamic
viscosity 1s constant at low shear rates and shear thickening is not noticeable until
Péclet numbers of about 5. Behavior at short-times is not unlike behavior near

equilibrium and thus, the Brownian viscosity may react earlier start-up flow.

Flow cessation

Following cessation, the hydrodynamic stress vanishes ‘instantly’ as it is proportional
to E, which is zero in the absence of flow. Hydrodynamic stresses decay on the much

. . . . o) . . . . . .
faster inertial relaxation time, ¢” /v, where v is the kinematic viscosity of the solvent.
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Relaxation of the Brownian stress in the Stokesian Dynamics system as a function
of time is shown in figure 4.14. As with the case with no hydrodynamic interactions
(figure 4.7), we use a shear-rate independent nondimensionalization of the stress,
nkT', which gives a measure of the degree of the deformation of the microstructure.
From figure 4.14, it is clear that after an initial period of decay each nonequilibrium
microstructure follows the same path to equilibrium on the diffusive, a*/ Dy, time
scale.

Note that in figure 4.14, we are able to use a linear scale for the Brownian stress
as the pre-cessation values are not a strong function of Pe at high Pe. So far, we have
not been able to collapse of the data at short times following cessation as is done in the
case with no hydrodynamic interactions (figure 4.8). According to Brady & Morris
(1997), the microstructure at high Pe is still dominated by an O(Pe™") boundary
layer. However, the stress and microstructure are not as intimately connected as they
are without hyvdrodynamics, where all the stress is due to a delta-function force at
contact. With hydrodynamics. the Brownian stress is not singular at contact — as is
evident by the finite G’ — and the contribution to the stress from two particles not
in contact is nonzero. This may cause the stress to relax in a different manner than
the relaxation of microstructure. Also, one cannot rule out possible effects of system
size. The simulation size is quite small (N = 27) in the Stokesian Dynamics system
and although the results represent an average over many runs, there may be effects

due to the small size of the periodic cell.

4.7 Summary and concluding remarks

In this work, we examine the time-dependent stress behavior in hard-sphere colloidal
suspensions in both equilibrium and nonequilibrium situations theoretically and via
dynamic simulation. Suspensions with and without hydrodynamic interactions are
studied using Stokesian Dynamics and Brownian Dynamics, respectively. Relaxation
of microstructural fluctuations at equilibrium can be examined by analysis of the

shear-stress autocorrelation function C (7). A review of previous theoretical work
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relates this function directly to the linear viscoelastic complex viscosity, and thus
also the complex modulus. Short-time behavior of C4(¢) is analagous to the behavior
of the microstructure in oscillatory shear flow at high frequencies.

The behavior at high frequencies is singular with a boundary layer forming near
contact where frequency-dependent convection balances Brownian diffusion. This
boundary layer scales as w™/% in the absence of hvdrodynamic interactions. The
presence of hydrodynamic interactions, specifically lubrication forces. weakens the

effects of Brownian motion resulting in a thinner w=!

boundary layer near particle
contact. From this analysis, the behavior of C,(¢) at short times can be extracted:
Divergent t=/2 behavior is found in the absence of hydrodynamic interactions indicat-
ing an infinite high frequency limit to the elastic modulus, G/_. With hydrodynamic
interactions C's(1) assymptotes linearly at short times to a constant indicating a finite
G. Simulation results in this work show agreement with these previous theoretical
predictions. The divergent ¢~/2 behavior in the Brownian Dynamics system as well
as the linear decay from a constant zero-time value in the Stokesian Dynamic sys-
tem. Stokesian Dynamics results for G’ are reported showing fair agreement with
experiment.

Transient stress behavior i1s analyzed during nonequilibrium start-up and flow
cessation simulations with the Brownian Dynamics system. The viscosity is found to
grow at short times during start-up flow like #'/2. A stronger relationship between
the time integral of C(1) and the stress growth during start-up flow at all times for
low Pe is suggested by the simulation results.

At high Pe. behavior is dictated by a different boundary layer near contact where
convection balances diffusion than that present at equilibrium which scales as Pe™?.
Theoretical analysis is performed which extends the steady-state boundary layer anal-
vsis of Brady & Morris (1997) to include start-up and flow cessation. Formation of the
boundary layer during start-up flow is found to occur on the flow time scale, 47!, while
relaxation following cessation occurs on a shorter time scale, (a?/Dy)Pe™ = 6%/ Dy,
given by diffusion in the boundary layer.

Brownian Dynamics simulations verify the above theoretical claims. After the
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/% growth at very short times, start-up flow at high Pe approaches steady-state
on the flow time scale, 47!, Relaxation of the stress following cessation is found to
occur on the predicted time scale (a?/Dy)Pe™® = §%/Dy with excellent functional
agreement with the theoretical result. At long times, relaxation shifts to the regular
diffusive time scale, a*/Dy, for the final decay of anisotropies present outside the
boundary layer. Snapshots of the microstructure obtained from simulation at various
points during start-up and cessation are in agreement with the relaxation mechanisms
proposed from analysis of the stress data.

The behavior during start-up and following cessation is also examined with hydro-
dynamic interactions using Stokesian Dynamics. Both the Brownian and hydrody-
namic stress are monitored. The Brownian viscosity during start-up is found to grow
linearly at short times. The strong relationship between start-up flow at all times for
low Pe and the time integral of Cs(1) is also found for the Stokesian Dynamics system.
The hydrodynamic viscosity also increases with time. but with different functional
behavior. Steady-state for both stresses is attained with two strains.

Several questions remain. Although relaxation behavior at short times for both
C's(1) at equilibrium and the stress following cessation is quite clear, the precise long-
time decay of the functions could not be obtained due to statistical noise. Also. due
to the relation between (1) and the complex viscosity, a precise volume fraction
analysis of the relaxation of the function would provide insight into the relevant time

scales involved in various rheological theories such as those for the low-shear viscosity.
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Figure 4.1: Shear stress autocorrelation function, (',(¢), from the Brownian Dynamics
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by the diffusive time. a?/ Dy, for several values of volume fraction, ¢.
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Figure 4.5: Start-up flow: Instantaneous relative viscosity as a function of time,
nondimensionalized by a?/Dy, at various values of Pe for the Brownian Dynamics

system at ¢ = 0.45.
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Figure 4.6: Start-up flow: Instantaneous relative viscosity as a function of time,

nondimensionalized by 4!, at various values of Pe for the Brownian Dynamics system
at ¢ = 0.45.
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Figure 4.7: Flow cessation: Instantaneous suspension stress nondimensionalized by
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Figure 4.8: Flow cessation: Instantaneous suspension stress nondimensionalized by
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at various pre-cessation values of Pe for the Brownian Dynamics system at ¢ = 0.45.
The solid curve is the theoretical result (equation 4.34) using v, = ——%, its value on

the compressive axis, and fitting g,;(0) to the pre-cessation stress value.



Figure 4.9: Projection of the pair-distribution function g(r) into the zy-(velocity-
gradient)-plane at different times during start-up and flow cessation. Here, ¢ = 0.45
and Pe = 15. Times nondimensionalized by the pre-cessation 4! for the eight
projections are at 0, 0.25, 0.50, 0.75, 1.0, 1.05, 1.1, 1.2, 1.5, 1.9. Dark represents high
probability and light low.
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Figure 4.10: Plot of stress nondimensionalized by the pre-cessation 5% as a function
of time, nondimensionalized by precessation ¥~! for start-up and flow cessation at

¢ = 0.45 and Pe = 15 for the Brownian Dynamics system. Labels 1-8 show the times
of the eight projections of the pair distribution function in figure 4.9.
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Figure 4.11: The Brownian viscosity, after subtraction of its zero-time value, as a
function of time, nondimensionalized by the diffusive time, a?/Dy, during start-up
flow for the Stokesian Dynamics system with ¢ = 0.45 and various values of Pe.
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Figure 4.12: The hydrodynamic viscosity as a function of time, nondimensionalized
by the flow time 47!, during start-up flow for the Stokesian Dynamics system with
¢ = 0.45 and various values of Pe.
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Chapter 5
Self-diffusion in sheared suspensions by

dynamic simulation
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5.1 Introduction

This work addresses the problem of determining the long-time self-diffusivity in a
monodisperse low-Reynolds-number suspension of spherical particles at both equilib-
rium and steady shear conditions via dynamic simulation. Self-diffusion is one of the
most basic transport processes occurring in a suspension and is related to a num-
ber of tranport and relaxation mechanisms. There are three well-defined diffusive
processes in a colloidal suspension: the short-time self-diffusivity, Dj, the long-time
self-diffusivity, DZ_, and the gradient or collective diffusivity, D°. At infinite dilution
all three diffusivities are the same and equal to the Stokes-Einstein diffusivity of an
isolated particle: Dy = kT /6mna for translational self-diffusion and D}, = kT'/87na”
for its rotational analog. Here, & is Boltzmann’s constant, 7" is the absolute tempera-
ture, 1 is the viscosity of the continuum suspending fluid, and a is the characteristric
particle size, which for a monodisperse suspension of spheres is simply the particle
radius.

As the concentration is increased and the effects of particle interactions become im-
portant, the three diffusivities behave quite differently as they represent three distinct
physical processes. The short-time self-diffusivity measures the local particle mobility
on time-scales long compared to the momentum relaxation time, 7, = m/67na, but
small compared to the time it takes for a particle to move a fraction of its size, which
is the diffusive timescale, Tp = a*/Dy; here, m is the mass of the particle. The long-
time self-diffusivity is related to diffusion on times long compared to a?/Dy, so that
a particle has wandered far from its starting point. Finally, the gradient or collective
diffusivity results from a flux down a macroscopic concentration gradient. This work
focuses on the long-time self-diffusivity.

While the short-time self-diffusivity depends only on the particle mobility, which
is a purely time-independent hydrodynamic quantity, the long-time self-diffusivity is
affected by both the particle mobility and the dynamic microstucture of particles ex-
changing places with their neighbors. Often researchers have simplified the system by

excluding hydrodynamic interactions, which sets the mobility of each particle to unity
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and independent of microstuctural variations, effectively isolating the contribution of
the dynamic microstructure to the long-time self-diffusivity. A Brownian Dynamics
algorithm is employed for the simplified system of hard-spheres interacting in the
absence of hydrodynamic interactions. For the complete system, the computationally
intensive Stokesian Dynamics algorithm that includes the many-body hydrodynamic
interactions into the Brownian Dynamics framework is used. A goal of this work
is to compare and contrast results from these two systems to provide insight to the
relevant mechanisms for long-time self-diffusion.

Much work has been done on the long-time self-diffusivity at both equilibrium
and in the high-shear limit. Dynamic light scattering can be used to measure the
self-diffusivity at equilibrium, while tracer experiments, where a small {raction of the
particles are tagged and their motion monitored, can be used, in principle, at any
shear rate, although only experiments at high shear rates have been performed to
date. Out of equilibrium. structural anisotropies arise due to the shearing flow and
the long-time self-diffusivity is properly represented in full tensoral form, D?_, whose
components are defined using a cartesian coordinate system, (x,y, z), with principle
axes corresponding to the velocity, velocity-gradient, and vorticity directions in simple
shear flow, respectively.

Theoretical work on self-diffusion at high shear rates is complicated by the fact
that two particles acting solely under the influence of hydrodynamics exhibit no dif-
fusive behavior due to the symmetry properties of low-Reynolds number flow. Wang
el al. (1996) examined self-diffusion in dilute suspensions theoretically using three-
particle interactions. da Cunha & Hinch (1996) examined the two-particle problem,
adding surface roughness to create diffusive motion. Brady & Morris (1997) used
residual Brownian motion to break the symmetry of the pure hydrodynamic limit.
Effects of weak shear on self-diffusion were studied by Morris & Brady (1996). The
previous two studies are referred to many times throughout this paper and will be
discussed in more detail in §5.2. One interesting prediction of these works is the ap-
pearance of a non-zero xy-component of the long-time self-diffusivity tensor in shear

flow. This quantity is difficult to measure both experimentally and via simulation as it
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involves examining motion in the direction of the bulk flow. The current work makes
use of a method for calculating the diffusivity that enables us to obtain meaningful
results for this quantity.

We also present results for the long-time rotational diffusivity. Theoretical work
by Jones (1989) and Degiorgio et al. (1995) predict behaviour for dilute suspensions
at equilibrium considering two- and three-body hydrodynamic interactions. Short-
time rotational diffusivities at equilibrium for all volume fractions were determined
by Stokesian Dynamics simulations by Phillips, et al. (1988). Many advances have
been made recently in experimentally measuring rotational self-diffusion using tech-
niques ranging from dynamic depolarized light scattering (Degiorgio et al. 1995),
forced Rayleigh scattering (IKanetakis & Sillescu 1996), and nuclear magnetic reso-
nance spectroscopy (Barell et al. 1996, Kanetakis ef al. 1996). To date, work has
been performed at equilibrium with extensive focus on the behavior of the short-time
rotational self-diffusivity over a wide range of volume fraction, ¢.

In the next section we discuss the theoretical results of Morris & Brady (1996)
and Brady & Morris (1997), analyzing what behavior is to be expected in shear flow.
Section 5.3 outlines the simulation method, discussing the two simulation techniques
used. how the diffusion coefficients are calculated, and a new way of splitting the dif-
fusivity into its hydrodynamic and Brownian contributions. In section 5.4, results for
the diagonal components of the long-time self-diffusion tensor are presented showing
their dependence on both density and shear rate. The simulation results are shown
to compare well with experimental data. Section 5.5 is devoted to discussing the
off-diagonal components of the self-diffusion tensor and presenting possible physical
mechanisms for this mode of diffusion. Finally, we conclude in section 5.6 with a

summary and suggestions for future studies.

5.2 Theoretical background

According to the theoretical results of Morris & Brady (1996), at small shear rates

in the absence of hydrodynamic interactions, the long-time self-diffusion tensor of



220
colloidal suspensions has the following form

H(IPe)E + 0.650(1 Pe)**T + O(4, P?)]. (5.1)

where the Péclet number Pe = Ja?/Dy = 67na®y/ET and 4 is the shear rate. The
nondimensional rate of strain tensor is F = E/%. and I is the isotropic tensor. This
result is strictly valid to leading order in volume fraction, ¢, but the general form
may be applicable at higher concentrations. The O(Pe¢) contribution is valid for a
general linear flow and represents a correction to the diffusion due to a perturbed
microstructure. For weak flows, there is an O(Pe) deformation to the equilibrium
microstructure that scales as Pe . This perturbation causes a volume fraction fluctu-
ation of —¢PeE around a particle; there is a buildup of particles in the compressional
zones and a depletion of particles in the extensional zones (Batchelor 1977). For a
simple random walk in the perturbed microstructure, we obtain the ¢PeE correction
to the diffusivity. The O(PGB/ %) term for simple shear flow is isotropic, and represents
the first contribution to the normal components of the long-time self-diffusion ten-
sor. This term results from a singular effect of weak advection at large separations,
r/a ~ O(PeY?) (Leal 1973).

Morris & Brady (1996) also studied the effect of including hydrodynamic inter-
actions on diffusion. For small Pe, the long-time self-diffusion tensor in a dilute

suspension behaves as

D:. = Dol(1 = 2.076)I 4 0.30¢(L Pe) E + +Do(1Pe)®? 4 O(¢2, Pe*)]. (5.

(493
Q]
RN

where, for simple shear flow,

3.96 093 0
D=11093 1.87T 0
0 0  0.52

Equation (5.2) has the same general form as (5.1) with a few exceptions. The equi-
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librium isotropic term and the O(Pe) term valid for general linear flow have different
coefficients and show a hindrance of the diffusion process on the inclusion of hydro-
dynamic interactions. Also, the ()(]3cf:3/ *} contribution is no longer isotropic, not
only showing different contributions along the diagonal but also a significant positive
contribution to the off-diagonal xy component.

The behavior at high Pe has also been analyzed theoretically by Brady & Morris
(1997) and da Cunha & Hinch (1996). Brady & Morris (1997) find that the long-time
diffusivity for monodisperse hard-spheres in the absence of hydrodynamic interactions

is related to the particle contribution to the stress, X, by the following relation:

2 I
a1l 2
mys . - I = 2
A e = [y kO.J)
n QL

which agrees with the idea of self-diffusion being driven by the osmotic, or partial,
pressure: the self-diffusivity is the product of the particle mobility, which is O(1) in
the absence of hydrodynamic interactions, and the osmotic pressure gradient 93 /d¢.
The coefficent 2%, in (5.3) is strictly valid only for dilute suspensions, but the origin
of the asymmetry that gives rise to the diffusion process is in a singular boundary
layer at particle contact and thus the proportionality in (5.3) should be valid for all ¢.
From this relation we can come to several conclusions about the long-time diffusivity.

First, since all components of the stress tensor scale as 13 in the high shear limit,

all diffusivities scale as ¥a*, as simple dimensional reasoning would suggest. Second,

although the simple radial-balance approximation used by Brady & Morris (1997)
predicts a zero first normal stress difference, Ny = ¥, — ¥, | as well as a negative
second normal stress difference, Ny = ¥, —¥.,. The normal stress differences lead to

the inequality ¥.. > ¥, ~ X, which, due to the minus sign in (5.3), gives long-time

self-diffusivities of the following relative magnitudes, D, ~ D,, > D... Also, there
is a positive off-diagonal component to the stress tensor Y., — the shear stress is
nonzero — resulting in a negative value of D,,.

The inclusion of hydrodynamic interactions complicates matters in an important

way. The pure-hydrodynamic limit corresponding to hydrodynamic interaction only,
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no Brownian motion nor interparticle forces, is a singular limit and exhibits no diffu-
sion due to the symmetry and reversibility of low-Reynolds-number flow. The sym-
metry can easily be broken, however, by the presence of other forces, whether they
are due to Brownian motion or to a repulsive interparticle force of nonhydrodynamic
origin, no matter how small in magnitude. The simple relationship between diffusiv-
ity and stress in (5.3) no longer holds due to the complexity of the hydrodynamic
interactions. However, the diffusivity can still be thought of as a particle mobility
times an osmotic pressure gradient, but the particle mobility is no longer a constant
due to the presence of lubrication forces near contact. Apart from the special case of
the pure hydrodynamic limit where there is no diffusive motion, the principle effect
of hydrodynamic interactions is the quantitative dependence of the diffusivity on the
volume fraction ¢. The first normal stress difference, Ny, is no longer zero and has
been shown by simulation to be negative. This leads the inequality, .. > ¥, > Y.,
which results in diffusivities of the following magnitudes, D,, > Dy, > D... As be-

fore, the sole off-diagonal contribution is a negative D,,.

5.3 Simulation method

Long-time self-diffusivities were determined with and without hydrodynamics using
the aid of Stokesian Dynamics and Brownian Dynamics simulations, respectively.
Here we shall not focus on the details of these techniques, as they are found elsewhere,
but rather give a brief overview of each, and then discuss how they were implemented
to compute the long-time self-diffusivities.

The Brownian Dynamics algorithm used here is based on the method of Heves &
Melrose (1993) and Schaertl & Sillescu (1994). Measurement of the long-time self-
diffusivities involves calculation of the mean-square displacements of each particle over
time and are calculated from the individual particle trajectories. These trajectories

are governed by the particle evolution equation for this system:

Az = Azt+ Az 4 X (A1), (5.4a)
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X =0 and X(A)X(AL) = 2DIAL. (5.4b)

Here, Azx® = UAt is the affine contribution due to the bulk shear flow and is sim-
ply Jy2At for simple shear flow. The random Brownian step, X, has zero mean
(denoted by the overbar) and variance equal to the single-particle Stokes-Einstein
diffusivity, Do, in the absence of hydrodynamic interactions. After the affine and
Brownian contributions are added, the algorithm searches for particle pairs that have
overlapped during the time step At and displaces each particle Az® along their
line of centers returning the particles to contact in response to a hard-sphere-like
interparticle force. There is a small inherent ‘softness’ to the interparticle potential
due to three-body effects that are not resolved using this method, but these systems
have been shown to mimic the behavior of hard spheres in several regards. The shear
stress autocorrelation function is found to diverge at short times as t='/2, the osmotic
pressure as a function of ¢ shows good agreement with the hard-sphere equation of
state, and the equilibrium radial-distribution function agrees with the known form
for hard spheres. The simplicity of the algorithm used in this work allows for systems
with large numbers of particles (N = 1331, in this study) reducing the statistical
noise. Hard-sphere suspensions can also be approximated using a steep, continuous,

interparticle potential, such as ="

, where n is made very large. These algorithms
produce very large values of the interparticle force near contact which necessitates
the use of an extremely small time step in order to prevent an unrealistically large
particle displacement during a typical particle collision.

In simple-shear flow, the mean-square displacements are expected to grow with

time according to those for diffusion from a point source (Elrick 1962, Morris & Brady

1996):

(22(1)) = 2Dgut +2D,,t 1+ 1(51)%, (5.5a)
(VA1) = 2Dyt, (5.5b)
(2(t)) = 2D, (5.5¢)
(e(t)y(1)) = 2D,yt + Dy i(3), (5.5d)



as t — oo. Here the angle brackets ( ) denote an average over all particles in the
system. The diffusivity in the velocity-gradient direction, D,,, provides not only the
normal diffusive behavior in the y-direction, but also couples with the motion in the
a-direction, resulting in (x*(1)) growing cubically with time and (x(¢)y(t)) growing
quadratically in time, both with a proportionality constant given by D,,. The under-
lying linear growth represented by the presence of D,, and D,, is dominated by the
convectively enhanced stronger growths of the (2*(¢)) and (x(¢)y(t)) displacements,
making these diffusivities computationally difficult to measure. To circumvent this
problem, we can take advantage of the fact that in simulation we know precisely the
affine displacement at each time step, A@® in (5.4a). By subtracting off the affine
displacement at each instant as far as the mean square displacement is concerned, we
can remove this nonlinear temporal growth and extract all components, Dyy,‘ Do,
D.. and D,,. Note, as far as the suspension structure and dynamics are concerned,

the affine displacement is, of course, added; it is only removed to compute D?_. Thus,

the long-time self-diffusivity is given by

D2, = fim 5 ((a(t) — () (=(t) — (1)) (5.6)

o t—oo D dt

where (1) represents the affine contribution to a particle’s displacement. This
approach of subtracting off the affine displacement was also used successfully by Sami
(1996) in extensional flow, where the temporal growth of the convectively enhanced
dispersion is now exponential rather than a power law.

The inclusion of hydrodynamics, which include both the many-body far-field in-
teractions and the pairwise-additive lubrication forces between particles, necessitates
the use of the Stokesian Dynamics simulation technique described in detail elsewhere
(Bossis & Brady 1987, Brady & Bossis 1988). The computational cost of calculating
all the hydrodynamic interactions in conventional Stokesian Dynamics is O(N?), and
thus we are limited to relatively small system sizes (N = 27). As before, the particle-
evolution equation contains all the vital information for calculating the mean-square

displacements. Previously, the particle stress was shown to consist of both hydrody-
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namic and Brownian contributions (Bossis & Brady 1989), and the particle trajec-
tories are no different. For Stokesian Dynamics, it is useful to write the evolution

equation as

Az = Az" 4+ Azl + AP, (5.

[
-1
—

Here, we have broken the evolution equation into three contributions. The first is the
affine displacement:

Az’ = UAt = 3y, (5.

(&3
o0
p—

which simply convects the particle along with the bulk shear flow. The second con-

tribution, the hydrodynamic displacement, is given as
Az =RE -Rpp : EAL (5.9)

Here, Rpyr and Rpg are configuration-dependendent hydrodynamic resistance ten-
sors. These displacements describe the deviation in particle paths from the affine
motion solely due to hydrodynamic interactions. The remaining contribution to the
particle evolution equation is the Brownian displacement, originally given by Ermalk

& McCammon (1978) as
Ax? = KTV -RpLAt + X (A1),

X =0 and X(AHX(A?1) = 2kTREHAL (5.10)

Here, the short-time self-diffusion tensor enters as kTR, (which is just the Stokes-
Einstein diffusivity using the many-body hydrodynamic mobility, Rz{, instead of
the single-particle inverse Stokes drag) as the variance of the random step X. Also,
because the random step is large, O(AtY/2), compared to the O(At) size of the hydro-
dynamic and affine displacements, a higher order term including the spatial gradient
of the short-time diffusion tensor must be included to account for changes in the

particle mobility during the random step. This deterministic term acts as a radially

repulsive force and helps to prevent particles from overlapping during a random step.
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Nondimensionalizing @ by the particle radius «, the rate of strain tensor, E, by
its magnitude 4, the imposed velocity U by fa and the hydrodynamic resistance
tensors Rppr and Rypp by 67na and 6mna?, respectively, one finds two charactistic
time scales. The time scale for the hydrodynamic displa‘ceménts in (5.9) is the flow
time scale, 7!, whereas the relevant time scale for the Brownian displacements in
(5.10) is the diffusive time scale, a*/ Dy = 6mna®/kT. The ratio of the diffusive time
scale to the to the flow time scale is the Péclet number, Pe = ja®/Dy. Thus, one
can think of the Brownian displacements as those that are present at equilibrium in
the absence of flow (Pe = 0), and the hydrodynamic displacements as those that
accompany the affine flow in the pure hydrodynamic limit (Pe™" = 0). In each limit,
no interparticle forces of nonhydrodynamic origin are required in order to prevent
particle overlaps and no such forces are included in this work. The Péclet number is
also the appropriate nondimensional shear rate for the Brownian Dynamics system
(5.4a).

The pure hydrodynamic limit is singular and in order to resolve the strong lu-
brication forces between the particles an infinitessimally small time-step is required
resulting in prohibitive computational cost (Ball & Melrose 1995, Dratler & Schowal-
ter 1996). Inclusion of a nonhydrodynamic interparticle repulsive force is often used
to study non-Brownian suspensions (Yurkovetsky 1998); here, we shall limit ourselves
to large, but finite, Pe, where residual Brownian motion is sufficient in preventing
particle overlaps with a serviceably finite simulation time step. The fact that there
are no interparticle forces may have implications for the resulting diffusivity, however,
for as Pe — oc there should be no diffusive motion for pure hydrodynamics.

As with Brownian Dynamics, the particle mean-square displacements are calcu-
lated as a function of time ignoring the affine displacements to eliminate nonlinear
temporal behavior. Here, we have the advantage of separating the hydrodynamic and

Brownian contributions,

{(x —z%)(z —x)) = (zfz?) + (2P2P) + (A xB) + (xBzt)). (5.11)
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Uunlike the particle displacements, the square displacements are not additive and a
symmetric cross-correlation term between hydrodynamic and Brownian displacements

appears. Comparing (5.11) to (5.6) we can define

D =D, + D, + D (5.12)

o oc,b

providing useful knowledge of the individual contributions to the long-time self-
diffusion tensor. This division of diffusivities is not possible in Brownian Dynamics
due to the inclusion of the hard-sphere-like interparticle force which acts in the same
manner in response to both Brownian and affine motion and thus cannot itselfl be
separated into Brownian and nonBrownian components.

One might question the validity of dividing the displacements in such a manner.
In separating the hydrodynamic and Brownian displacements we do not claim that
each one is acting independent of the other. Clearly, the two are acting together to
create a dynamic microstructure that in turn affects the temporal behavior of the
trajectories of each particle. Separation of the displacements is a relatively simple
matter to do in the context of a computer simulation, however, and provides some
insight into the mechanisms for self-diffusion.

Calculation of the mean-square displacement curves for both Brownian Dynamics
and Stokesian Dynamics is done with the aid of a novel method. First, the simu-
lations are kept relatively short, that is, for a time sufficient enough for the system
to reach a steady state and for the mean-square displacements to enter the linear
regime for an appreciable length of time. Second, many of these short simulations are
performed independently from separate initial hard-sphere equilibrium configurations
creating a large number of mean-square displacement curves. All of these curves are
then averaged together point by point to form one smooth mean-square displacement
curve. This method works well for three reasons. First, averaging over many runs
effectively increases the size of the system and reduces the costly N~12 noise present
in random walk calculations. This is especially advantageous when using Stokesian

Dynamics as the cost of increasing the system size is high. Second, although averag-
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ing\over long times is useful in obtaining good data in finite systems for properties
with well-defined instantaneous values such as stresses and spatial distribution func-
tions, it often creates problems in time-dependent correlations such as Green-Kubo
auto-correlation functions and mean-square displacements. These quantities continue
to directly depend on — instead of becoming independent of — the initial condition
of the system. For this reason the statistical noise in these functions will grow with
time. More realizations, i.¢., averaging over many correlations from different starting
points, is used to obtain better quality autocorrelation functions, but the long-time
‘tails’ of these functions are very difficult to measure accurately. This is true with
mean-square displacements for the same physical reasons. As a particle has diffused
far from its starting point the instantaneous random fluctuations of the particle have
very little dependence on the initial particle position and thus show large fluctuations
in the mean-square displacement curve. The use of many realizations can delay the
onset of this noise, whether it be by frequently resetting the starting point, or by
increasing the number of particles, but the noise will always persist at long times.
This brings us to the third point, analysis of the mean-square displacement curves
at very long times is not necessary because it does not require a very long time for
the mean-square displacements to reach their linear, long-time assymptote. This may
seem counterintuitive due to the infinite time limit present in (5.6), but a particle
does not have to travel long distances in order to reach its long-time assymptote; it
simply has to encounter enough particle-particle interactions to sample the dynamic
microstructure present. In the familiar cage-diffusion model, the particle does not
have to leave the cage and travel far from its starting point, it simply has to interact
with enough of its neighboring cage members until all the information necessary for
long-time diffusion has been attained. This idea has been borne out by the recent
experimental work of Breedveld et al. (1998) who measured long-time diffusivities at
high Pe and found adequate agreement with previous measurements despite the fact
that their mean-square displacement data is limited to times less than 0.657'. (cf.
figures 5.17 & 5.18).

In the absence of hydrodynamic interactions, the rotation of the particles is not
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coﬁpled with the flow or the microstructure and each particle rotates freely under
the influence of rotary Brownian motion exhibiting isotropic rotational self-diffusion
governed by the Stokes-Einstein equation, D" = k7'/87n¢® for both short- and long-
time scales. Inclusion of hyvdrodynamic interactions couplés rotation and translation
resulting in a long-time rotational self-diffusion tensor that varies as a function of ¢
and Pe. Calculating this tensor is done in exactly the same manner as the trans-
lational self-diffusion tensor except the particle angular displacements are used in
lieu of the translational displacements. One notable difference is the affine angular
displacement, —%f;i{:.&l‘ is directed along the vorticity axis in simple shear flow and,
due to the fact that it has no spatial dependence, does not create any convectively
enhanced angular dispersion. For consistency, the affine angular displacements have

been subtracted off when calculating the mean square angular displacements.

5.4 Results

This work will focus on the equilibrium and non-equilibrium behavior of the long-time
self-diffusivity of a suspension of monodisperse spheres in the presence of Brownian
motion with and without hydrodynamic interactions. As discussed earlier, the Péclet
number, Pe, is the parameter we shall use to determine the relative magnitudes of
Brownian motion and the imposed shear flow. The other important parameter of
interest in a hard-sphere suspension is the volume frzictiOn, ¢, which is a measure
of the density of the suspension. In order to reduce the number of parameters in
the system, we limit our study in the following manner: To study the effects of
Pe, we focus on one volume fraction, ¢ = 0.45, and vary Pe from 0 to 1000 in
order to capture the full range of equilibrium and non-equilibrium behavior. This
volume fraction represents a relatively concentrated system, but remains below the
equilibrium phase transition at ¢ = 0.494. Then, to examine the role of the volume
fraction, we focus on two Péclet numbers, Pe = 0 and Pe = 1000, in order to examine
the equilibrium and high-shear limits, respectively.

As stated in the previous section, two separate simulation techniques were used
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in this work. For the Brownian Dynamics simulations, a large system was studied,
N = 1331, and the number of independent repetitions of each run from different
starting configurations was set to be 91. To explain the length of each run, we must
discuss the nondimensionalizations for time in the regimes being studied. At equi-
librium and low shear rates, (Pe < 1), the diffusive time, a®/ Dy, is used, while at
high shear rates, the flow time, 47!, is used. The time step for all the simulations is
At = 2.5 x 107" and the number of time steps used is 4000. This sets the length of
the simulation to be one particle diffusive time at low shear rates, and one strain at
high shear rates. At high shear rates, systems in the absence of hydrodynamics are
known to order into strings that are aligned in the flow direction which results in a
significant decrease in the diffusivities. While the mean-square displacements reach
their long-time linear assymptote in less than one strain, as shown in figure 5.1, the
disorder-order transition generally takes approximately twenty strains to form from
an equilibrium starting configuration. This allows us to examine the mechanisms
for diffusion in the intermediate disordered suspension that exists before the transi-
tion to the ordered phase. Although this disordered phase is unstable, it is worth
studying because it provides a simple, useful model to compare to the system with
hydrodynamic interactions, which does not exhibit order at high shear rates.

The Stokesian Dynamics simulations were performed in the same manner but with
a few changes. Computational costs limited us to a smaller system, N = 27. This was
partially compensated for by increasing the number of repetitions to 182. However,
for a given run the simulation cell with N = 27 is substantially smaller than a cell
from a run for Brownian Dynamics with N = 1331 and this finite simulation cell
may affect the final values for the diffusivities — the results may not give the large
N limit. The same nondimensionalizations for time are used, but the presence of
hydrodynamics has the effect of slowing down the dynamics of the system. For this
reason, we used a larger time step of Af = 5.0 x 107" while maintaining the total
number of steps used at 4000. This sets a longer simulation length of two particle
diffusive times near equilibrium, and two strains at high shear rates.

To give the reader an idea of the statistical noise in the results, the following
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process was performed wherever possible. Each of the 91 (or 182) simulations for
each system produces a mean-square displacement curve and a value for the long-
time self-diffusivity. These values can then be grouped into subsets of N, values and
averaged. The standard deviation of the subset averages can be used as a measure of
the amount of uncertainty in the data. Of course, the measured uncertainty decreases
as the number of values chosen to be in each subset, N,, increases. Figure 5.2 shows
the size of the uncertainty as a function of N, showing that the error decays like
N2 as one would expect from independent subsets of data. At first, the best
choice for N, would seem to be taking the standard deviation of the diffusivities
obtained from each individual simulation, N, = 1. This produces the largest error as
the uncertainty in each individual run is determined by the number of particles used
and does not take advantage of any averaging over independent realizations and often
results in large error bars on data with high internal consistency. In contrast, grouping
all of the realizations into one or two subsets might be construed as an attempt to
unfairly minimize the uncertainties. We choose an intermediate condition of 6 subsets
of 15 (or 30) simulations for use in determining the uncertainty represented by the
error bars on our graphs. For the Brownian Dynamics simulations. the error bars
are always less than the symbol size and are not shown. No attempt was made to
simulate systems with varying N in order to extrapolate for large N because of the
large computational cost. This should not be a problem for the Brownian Dynamics
system, but the Stokesian Dynamics results may be impacted by the small system

size used.

5.4.1 Shear-rate dependence of diffusivities

The Pe-dependence of the diagonal components of the long-time self-diffusivity from
the Brownian Dynamics simulations are shown in figure 5.3. The diffusivities tend to
their constant isotropic equilibrium values at low Pe, while they grow linearly with
Pe, indicating a Ya* scaling, at high shear rates. As predicted in §5.2, D.. is clearly

the smallest of the diagonal components. D,, and D,, are predicted to roughly
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equal due to a zero first normal stress difference, but the data in figure 5.3 appears
to show that D,, > D,,. Figure 5.4 represents the same data after subtraction
of the equilibrium values clearly showing that the first correction to the diagonal
components of the long-time diffusion tensor scales as Pe*? as predicted by theory.
The za- and yy-components are roughly equal at low Pe, both being greater than
the zz-component.

Inclusion of hydrodynamic interactions results in similar behavior. The Pe-
dependence of the normal components to the long-time self-diffusivity from the Stoke-
sian Dynamics simulations are shown in figure 5.5. Again, the diffusivities approach
their isotropic equilibrium values at low Pe and grow linearly with Pe at high shear
rates. The relative sizes of the normal components at high Pe is governed by the
same inequality, Dy, > Dy, > D.., as predicted in §5.2. Figure 5.6 shows the same
data after subtraction of the equilibrium diffusivities showing the enhancement to
the normal components of the long-time diffusion tensor by the flow. One can see
that the xz-component is clearly the largest of the three in agreement with (5.2),
with D,, being slightly larger than D... Unfortunately, the Pe®? scaling predicted
in section 5.2 is not evident as the quality of the data is not high enough. There are
several possible reasons for this. The addition of hydrodynamic interactions slows
the system down, the diffusivities are smaller, which necessitates a higher degree of
accuracy in the measurement. The mean-square-displacements require a longer time
to reach their long-time assymptote increasing the effect of the noise that enters at
long times. Also, the characteristic Péclet number for systems involving hydrody-
namic interactions is Pe = Pe/D$(¢), which necessitates the use of even smaller Pe
when examining the near equilibrium behavior. Moreover, one cannot stress enough
the difference in the sizes of the systems. Multiplying the number of particles in the
system by the number of independent realizations gives an effective system size of
4914 particles for the Stokesian Dynamics system compared to 121,121 particles for
the Brownian Dynamics system. Random noise scales with the system size as N~1/2
showing the advantages of the larger Brownian Dynamics systems. In addition to

reducing the statistical noise, larger systems reduce the effects of the periodic unit
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It is very interesting to note that the shear-induced diffusivities with and without
hydrodynamics at high Péclet number are very comparable in magnitude, in agree-
ment with the prediction of Brady & Morris (1997).

The different contributions to the diffusivities with hydrodynamic interactions
are examined in figures 5.7-5.9 for the axa-, yy-, and zz-components, respectively.
At equilibrium, the only displacements present are Brownian and the long-time self-
diffusivity is solely defined by its Brownian contribution, D?_ ,. Here, it is useful
to subtract the equilibrium value from the Brownian contribution in order to study
the effects of the flow on diffusion. D2 , — DI . represents the enhancement to

the random-walk-type diffusion due to the presence of the imposed flow. At low-Pe

the main enhancement to the diffusivity is from D?_,, which indicates that the first

b
correction is due to random-walk-type diffusion that is facilitated by the external
flow. We propose the following mechanism for the enhancement of the Brownian
contribution to the diffusivity. Imagine the particles in the suspension occupying
sites on a lattice. In a Brownian random walk a particle moves from one site to
a neighboring unoccupied site. In the dilute limit, the particle is free to step in
any direction at any time because none of the other sites are occupied. As the
concentration is increased, the chances of a neighboring site being occupied increase,
reducing the ability of a particle to make a step. The number of occupied neighbor
sites 1s not a constant with time as all particles are undergoing the same random-walk
process producing local density fluctuations. A particle diffusing over long distances
in a dense suspension will often be trapped in a region of high density and be forced
to wait until that fluctuation dissipates, resulting in a low value of the diffusivity.
Now, apply a shear flow to the lattice. Particles are still confined to the lattice sites,
but these sites are convected along with the flow. All motion in the velocity-gradient
direction is still caused by the random walk, but the neighboring sites are changing
with time due to the shear flow. The effect of this is that a high density fluctuation
hindering the motion of a tagged particle can — in addition to dissipating as a

result of random-walk-type diffusion — be convected away from the tagged particle
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enabling random-walk motion in the velocity-gradient direction. This results in a
larger value of D7, relative to equilibrium. Note that D2, is never greater than its
dilute-limit value, Dy, as the easiest random walk is one in the absence of any other
particles. The shearing motion simply lessens the hindering effects of neighboring
particles to random-walk diffusion. This effect increases as the shear rate increases
and ultimately saturates. At high Pe particles are driven into near contact by the
shearing motion and the lubrication forces reduce the particle mobility. or short-time
self-diffusivity. At smaller Pe, the reduction is rather small, but for Pe > 10 this
clustering intensifies, the hydrodynamic viscosity increases and the drop in particle
mobility becomes quite significant resulting in smaller random displacements and a
decrease in D?_,. Indeed, our results show that D?_, reaches at maximum at Pe ~ 10
where the effects of decreased mobility begin to cancel the effects of the enhanced
random walk in a shearing microstructure.

The hydrodynamic diffusivity D?_,, also shown in figure 5.8, is the dominant

2

contribution at high Pe and grows linearly with Pe, or in dimensional form as a2,

the shear-induced diffusivity scaling. At low Pe, this contribution is very small,
apparently vanishing as Pe®. The behavior of the hydrodynamic diffusivity can be
explained by noting that the diffusion constant can be defined as a time integral
of the velocity autocorrelation function. Fluctuations in the hydrodynamic velocity
scale like Ya: thus, the velocity autocorrelation scales as 42a*. Near equilibrium the
correlation time for the velocity fluctuation is the diffusive time, a*/ Dy, resulting in
an O(DyPe?) hydrodynamic contribution. At high shear rates, the correlation time

is the flow time 47", giving a hydrodynamic diffusivity of O(DgPe¢). It should be
noted that the behavior at high Pe is qualitatively different than the behavior in
the pure hydrodynamic limit (Pe™* = 0). The pure hydrodynamic limit exhibits
no self-diffusion due to symmetry properties present in the low-Reynolds-number
microstructure. The Brownian displacements do more than produce D? , which,
by itself, is a negligible part of the total diffusivity. The Brownian displacements

break the symmetry producing a microstructure suitable for hydrodynamic diffusion

to occur.
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The cross-correlation between the hydrodynamic and Brownian displacements,

D?_ ;. 1s also shown in figure 5.8. 1t is slightly less than the geometric mean of
D¢, and D?_, at intermediate Péclet numbers indicating a strong cross-correlation

5

and less at extreme values of Pe. It is important to note that D?_,,

1s greater than
zero for all Pe indicating that the total diffusivity is always greater than the sum
of the Brownian and hydrodynamic contributions, and that at no point are the two
displacements negatively correlated and act against each other.

Results for the diagonal components of the rotational long-time self-diffusion ten-
sor with hydrodynamics are shown in figure 5.10. As is the case with the translational
analogs, the rotational diffusivities, when nondimensionalized by the Stokes-Einstein
rotational diffusion coefficient, D;", approach their constant equilibrium value at
low Pe and grow linearly, indicating a + scaling, at high shear rates. The largest
of the three diagonal components is D_. for the entire range of Pe. The difference
is small near equilibrium as the suspension microstructure is close to isotropic, and
quite large at high Pe where the zz-component is over three times greater than the
other two components as this is the direction of the affine angular displacements.
One intriguing difference in the rotational diffusivities as compared to their trans-
lational counterparts is that there is a slight decrease in the diffusivity with Pe at
low Pe. Figure 5.11 for the Brownian contribution to the diffusivity shows that DI,
clearly has its maximum at equilibrium and there is no evidence of any enhancement
of ‘random-spin-type’ diffusion in nonequilibrium configurations. The hydrodynamic
contribution to the diffusivities in figure 5.12 is scaled by ¥ showing linear growth ( Pe?
growth when scaled by D{") at low Pe, and approaching a constant at high Pe quite

similar to the translational counterparts. The transition from low-shear to high-shear

G,

-, contribution

behavior occurs at higher Pe for the rotational diffusivities. The D
(not shown) to the diffusivity is small for all Pe indicating little correlation between

the hydrodynamic and Brownian angular displacements.
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5.4.2 Volume-fraction dependence of the diffusivities

We now turn our discussion to the effects of volume fraction ¢ on the high- and
low-Pe limits of the diagonal components of the long-time self-diffusion tensor. At
Pe = 0, the suspension is isotropic and all the diagonal components are equal; thus,
all the components can be averaged together effectively tripling the amount of data
and decreasing the amount of noise present in the results. Iigure 5.13 shows the long-
time diffusivity at equilibrium as a function of ¢ with and without hydrodynamics.
Also in the figure are previous simulation results of hard spheres in the absence of
hydrodynamic interactions. Schaertl & Sillescu (1994) employed the same simulation
method used in this work and studied only the equilibrium behavior. This method
allows for some particle overlap due to a finite-size time step and thus exhibits a
diffusivity that may be slightly larger than the true hard-sphere value. Cichocki &
Hinsen (1992) used a method in which particles take small random steps and if an
overlap occurs, the steps leading to the overlap are rejected and another random step
is chosen. This method should produce a diffusivity slightly smaller than the true
hard-sphere diffusivity. Nonetheless, the three sets of data are in good agreement with
each other suggesting that errors due to finite-size time steps are small. The diffusivity
with hydrodynamics is smaller due to the decrease in the short-time diffusivity from
a reduced particle mobility which decreases the size of the random Brownian steps.
The mode of diffusion at equilibrium is of random-walk type, which is hindered by the
presence ol other particles causing the diffusion constant to decrease monotonically as
¢ is increased. Indeed, Brady (1994) showed that the long-time self-diffusivities with
and without hydrodynamics are simply related by the hydrodynamically-determined
short-time self-diffusion cofficient; (D?_)pyaro = D5(D) (D2 Vnohyaro: the data in figure
5.13 agree with this scaling behavior. Brady (1994) showed that Stokesian Dynamics
results agree very well with experimental data.

Rotational self-diffusivities are plotted in figure 5.14 along with their short-time
counterparts, which are simply the particles’ average instantaneous hydrodynamic

rotational mobility. Unlike tranlational diffusion, there is no hindrance to rotational
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diffusion without the presence of hydrodynamic lubrication forces, which are also less
singular at contact than their translational lubrication counterparts. This results in
rotational self-diffusivities that are much larger in comparison to their translational
counterparts. Also, the long-time rotational diffusivities are only slightly less than
their short-time counterparts indicating that the dynamic microstructure plays only a
small role in the diffusive behavior. The experimental results of Digiorgio el al. (1995)
for the rotational short-time self-diffusivities are also included in figure 5.14 for com-
parison with the simulation data. There are no corresponding results for Brownian
Dynamics simulation because in the absence of hydrodynamic interactions particle
rotational mobility is unity and unaffected by the dynamics of the microstructure and
the long- and short-time rotational self-diffusivities are equal to each other and equal
to the dilute limit Stokes-Einstein diffusivity Dy”".

At high Pe, the mechanisms for diffusion are markedly different from those at
equilibrium. Diffusion is driven by particle-particle interactions that prevent coin-
cident particles on neighboring streamlines in shear flow from passing through one
another. The frequency of these interactions increases with volume fraction. Data
was not available at dilute volume fractions as particle collisions are so infrequent that
the mean-square displacements do not reach their long-time assymptote in the time of
the simulation runs. The normal components of D?_ at Pe = 1000, scaled by va?, the
appropriate scale for high- Pe diffusion, are shown for the Brownian Dynamics system
in figure 5.15 and the Stokesian Dynamics system in figure 5.16. For the Brownian
Dynamics system, all three diffusivities are monotonic increasing functions of ¢; D.. is
clearly the smallest of the three diffusivities with D, slightly greater than D, for all
except for the highest volume fraction where D, is larger. The Stokesian Dynamics
results show somewhat different behavior. As before, the inequality D, > Dy, > D..

holds for all @, but only D.. clearly appears to be monotonically increasing in this

range of ¢. Of the other terms. D, increases at first and reaches a plateau, and D,
appears to be constant over the entire range studied here. This differs from the Brow-

nian Dynamics result and is not in agreement with the theoretical results of Brady

& Morris (1997) who predict that all components are strictly increasing functions of



@, with and without hydrodynamic interactions. Due to system size constraints. we
were not able to study larger and more dense systems to validate these behaviors.
It should be noted that for the Stokesian Dynamics system, the characteristic Péclet
number is Pe = Pe/Dg(#), and since D3 is a monotonically decreasing function of
&. Pe = 1000 represents a different Pe for each value of ¢, which may lead to the
nonmonotonic behavior. A more accurate study would be to fix Pe, which would in-
volve knowing D} a priori. The high shear values of the yy- and zz-components of the
long-time sell-diffusion tensor are compared with the experimental data of Eckstein et
al. (1977), Leighton & Acrivos (1987), Phan & Leighton (1993) and Breedveld et al.
(1998) in figures 5.17 and 5.18, respectively. Note that the shear-induced diffusivities
with and without hydrodynamics are of roughly the same magnitude in keeping with
the theory of Brady & Morris (1997).

Although the diffusivity at high Pe is dominated by its hydrodynamic contri-
bution, there is a small Brownian contribution that scales like Dy and is shown in
figure 5.19. This contribution is a monotonically decreasing function of ¢, exhibiting
the same qualitative behavior at both high and low Pe as random walks are always
hindered by the presence of other particles. The magnitudes are the same as at
equilibrium.

Rotational self-diffusities are shown in figure 5.20. Again, there appears to be an
increase in the values of the diffusivity at lower ¢ which reaches a plateau at higher ¢.
The zz-component is by far the largest of the three diagonal components, with D,, >
D, being true at the lower volume fractions and those two components being roughly
equal at higher ¢. Rotational diffusion is dominated by its hydrodynamic contribution
at high Pe. The Brownian contributions in figure 5.21 show similar magnitudes and
behavior to the equilibrium rotational diffusivities as Brownian diffusion is hindered

as the concentration is increased.
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5.5 Off-diagonal components of the self-diffusion

tensor

The long-time self-diffusion tensor. being symmetric, has six independent components.
The three diagonal components have been discussed in the previous section. Of the
three off-diagonal components all are zero with the exception of D,, = D,, for both
translational and rotational diffusion in simple shear flow. Here, we shall discuss
the results for this interesting component and also possible physical mechanisms for
off-diagonal diffusion.

The diagonal components of D?  are straightforward to interpret in terms of the
macroscopic flux of tagged particles given by Fick’s law; D,, represents a particles
ability to diffuse in the z-direction and so forth. To understand the D,, component
requires examination of its corresponding mean-square displacement. (x(¢)y(¢)). As
shown in figure 5.22, the positive and negative xy-axes correspond to the extensional
and compressional directions in shear flow, respectively. Motion in the extensional
direction. whether it be outward or inward, results in positive xy-displacements and
diffusivities. Similarly, motion in the compressional direction results in negative zy-
displacements and diffusivities. Therefore, the sign and magnitude of D,., show which
direction is more conducive to diffusion and by how much.

The Pe-dependence of D, at ¢ = 0.45 in the absence of hydrodynamic interactions
is shown in figure 5.23. At low shear rates, the diffusivity is positive and grows linearly
with Pe. The diffusivity reaches a maximum at Pe = 10 followed by an abrupt
decrease and sign change. At high Pe, D,, is negative and its absolute value grows
linearly with Pe. All of this behavior is in agreement with the theoretical predictions
of Morris & Brady (1996) and Brady & Morris (1997).

According to (5.1), at low Pe the first correction to the diffusivity is O(PGE)

resulting in a [,, that grows linearly with Pe. Morris & Brady (1996) show two
contributions to this term. The first comes from random-walk, equilibrium-type dif-
fusion occuring in the O(Pe ) deformed microstructure first calculated by Batchelor

(1977). The pair probability, and therefore effectively the volume fraction, in the
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compressional zones is higher than in the extensional zones due the perturbation of
the structure by the flow. Since long-time self-diffusion at equilibrium is a strictly
decreasing function of volume fraction, there is greater diffusion along the extensional
axis than the compressional axis, resulting in a positive D,,. The second contribution
involves examining the O(Pe) effects of the flow on the diffusion process in an equi-
librium microstructure (noted by the function &y in Morris & Brady (1996)). Motion
of a tagged particle in the compressional direction will increase the probability that a
particle-particle collision, which hinders random-walk-type diffusion, will take place
due to the relative motion of the other particles in the shear flow. Conversely, par-
ticles in the extensional zone are being convected away from a marked particle and
motion along the extensional axis is less likely to result in a particle-particle collision.
This facilitates motion in the extensional direction compared to the compressional
direction. Thus, each process scales as Pe and results in a positive contribution to
D,y.

The behavior of D,, at high shear rates in the absence of hydrodynamic interac-
tions can be explained by the relationship between diffusion and stress given in (5.3).
In contrast to the behavior at low shear rates where particle-particle collisions are a
hindrance to random walks. collisions are the principal mechanism producing diffu-
sion at high Pe. The arrows in figure 5.22 show the effects of these collisions on the
motion of the test particle in the center of the figure. There is a high probability of
particles near contact in the compressional zone at high shear rates (Brady & Morris
1997), as shown by our simulations in figure 5.24. This high probability density in a
boundary layer at contact is the origin of the O(n7) stresses seen in these systems, and
increases the number of collisions — and therefore the particle motion — along the
compressional axis resulting in a negative value of D,,. Inclusion of hydrodynamic
interactions produces qualitatively similar behavior.

Figure 5.25 shows D, and its main contributions as a function of Pe for the
Stokesian Dynamics system. As with the diagonal components. the data is best at
higher Pe where negative diffusivities of magnitude Ja* are clearly seen in agree-

ment with the theoretical work of Brady & Morris (1997). Near equilibrium, where
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D,, i1s predicted to vanish linearly with Pe, the small Stokesian Dynamics system
proves unable to resolve the behavior. What is clear from the data, however, is that
D,y is indeed positive and dominated by the Brownian contribution validating the
mechanism proposed above.
The collective or Fickian diffusion coefficient measures a particles ability to diffuse

down a concentration gradient and is determined from Fick’s law,

j=-D-Vn. (5.13)

where j is the particle flux and n is the particle concentration. Self-diffusion, which
we have studied here, corresponds to the Fickian flux of a tracer or tagged particle as
it diffuses down its (weak) concentration gradient. From this perspective of flux down
a concentration gradient, what do off-diagonal terms in the diffusion tensor mean?
Can a gradient in one direction cause a flux in another? To analyze this, we will look
at high-Pe simple shear flow with the cases of a concentration gradient in either the
a- or y-directions.

The case of a positive concentration gradient in the x-direction is shown in figure
5.26. At large Pe, the diffusive motion of particles is driven by the formation of
particle doublets that exhibit solid-body-like clockwise rotation with the vorticity of
the simple shear flow. In the absence of lubrication interactions, these doublets do
not form and the the suspension orders (Bossis & Brady 1984, Dratler et al. 1997).
(Note we have specifically limited the Brownian Dynamics simulations to times before
ordering to probe the diffusive behavior in the disordered microstructure.) For the
doublet in figure 5.26, the particle on the left is in a region of lower concentration and
therefore rotates more easily than the particle to its right. The net result is a flux of
particles in the positive y-direction, and from (5.13) a negative D,,.

The other case of a positive concentration gradient in the y-direction is shown in
figure 5.27. Here. the particle on the right is ‘freer’ to rotate because it is moving
into a region of lower concentration, causing a flux downward into a leftward-moving

streamline. At first glance this would appear to result in flux in the negative a-
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direction, but when the affine motion is taken into account, this is not the case. As
the doublet is rotating downward, the leftward motion of the particle on the right
is impeded by the presence of the other particle in its compressional zone. This
causes a ‘lag’ in the particle’s leftward motion resulting in a net flux in the positive
a-direction. To show this more explicitly, one can take the time dependent positions
of the particle, (x(¢),y(t)), and calculate the affine displacements along the path to

calculate the affine contribution:

z.(t) = [ 5u(tyt

Since the pariticle is hindered by its contacting neighbor on the compressional axis, the
actual z-displacement is less than the affine displacement resulting in a net positive
a-displacement. From Fick’s law (5.13) we have D,, < 0.

This gradient or Fickian diffusion can also be approached by looking at relative
displacements of particles in the different quadrants of the xy-plane. Figure 5.28 is
similar to figure 5.22 except the arrows have been made larger on the side of the
test-particle with higher concentration. This is done intuitively on the basis that the
the higher concentration of particles causes a larger impact on the test pariticle in
the center of the figure due to a relative increase in the number of particle-particle
collisions in these regions compared to the regions of lower concentration. Noting
again the boundary layer in the compressional zones in figure 5.24, one can see the
positive y- and a-fluxes that will result from positive z- and y-gradients, respectively.

The long-time rotational self-diffusivity also has a non-zero off-diagonal compo-

nent, D7

o> 10 the presence of hydrodynamic interactions. Values of D7, as a function

xy
of Pe in figure 5.29 show behavior that is quite similar to the translational case except
each contribution has the opposite sign. At high Pe, the hydrodynamic contribution
dominates showing a positive contribution that grows linearly with Pe. Near equi-
librium, the negative Brownian contribution dominates, but the data is too noisy to

obtain a definitive low-Pe assymptote.

The mechanisms for off-diagonal rotational diffusion are related to those of the
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translational case in that they are dependent on a higher probability of a tagged
particle having a neighbor in the compressional, rather the than extensional, zones.
Consider first the near equilibrium case where Brownian motion dominates. For
two particles near contact with each other, the ability to rotate is easiest along an
axis of rotation coincident with the center-to-center vector between the particles and
is most hindered along any direction perpendicular to this vector. In a shearing
suspension, there is a surplus of particles in the compressional zones, thus the favored
axis for rotational diffusion is the compressional axis, while unfavored axes lie in
the extensional-vorticity plane. The preference for rotation along the compressional
rather than extensional axis results in a negative Brownian contribution to D7, .

At high Pe, the hydrodynamic contribution dominates. Hydrodynamic rotations
are caused by a rolling motion that neighboring particles exhibit as they are convect-
ing past each other in the flow. Most of the rotation occurs in the plane of shear,
explaining the much larger values of D’ compared to the other diagonal components.
But, when particles convecting past each other have an offset in the z-direction, hy-
drodynamic rotations occur on other axes. Particles translating in the compressional
direction with an offset in the z-direction would rotate along the extensional axis,
while similar particles translating along the extensional axis would rotate along the
compressional axis. The surplus of particles in the compressional zone causes more
particles to translate in the compressional direction — as noted by the negative sign
of the translational D, in this regime — resulting in preferred rotation along the ex-
tensional axis, or a positive hydrodynamic contribution to D7 . This is an important
observation as it verifies the results for the translational D,, with an argument that
does not involve exclusion of the affine motion which is unimportant for rotational

motion and occurs along the z-axis in shear flow.

5.6 Summary and concluding remarks

Results for the long-time self-diffusivity have been presented with and without hydro-

dynamic interactions. Without hydrodynamic interactions, large systems were used
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enabling accurate results to be obtained for all values of Pe. including verification
of the O(Pe) and O(P613/2) corrections to the equilibrium long-time self-diffusivity
predicted by Morris & Brady (1996). Qualitative agreement with the theoretical work
of Brady & Morris (1997) was achieved at high Pe, with diffusivities scaling like 4«
The ¢-dependence of the diffusivity was also examined. Equilibrium self-diffusivities
are decreasing functions of ¢ and agree with the previous results of Cichocki & Hinsen
(1992) and Schaertl & Sillescu (1994). Diffusivities at Pe = 1000 were found to be
strictly increasing functions of ¢ with relative sizes of the diagonal components con-
sistent with the analogy that diffusion is directly related to the stress in this regime.

Inclusion of hydrodynamic interactions adds a configurational- and concentration-
dependent particle mobility. We examined the diffusive behavior in the presence of
hydrodynamic interactions, in which we were able to split the diffusivity into its
Brownian and hydrodynamic contributions giving insight into the mechanisms for
diffusion over the full range of Pe. Brownian diffusion, dominant at low Pe, is a
random walk process that is hindered by the presence of other particles. At high
shear rates, the prevalent diffusive mechanism is hydrodynamic in origin consisting of
displacements due to interactions between neighboring particles and is thus enhanced
by the presence of other particles. Thus, near equilibrium, the diffusivity, scaled
by D, is found to be a monotonically decreasing function of ¢, with lower values
than in the Brownian Dynamics system. At high Pe, each diagonal component of
the diffusivity, scaled by {a®, grows with @ up to a point and then appears to reach
a plateau near ¢ =~ 0.50. It is unclear how this property will behave at higher
volume fractions. We were limited to ¢ < 0.50 due to system size restraints imposed
by the computationally intensive Stokesian Dynamics algorithm. Note that the size
limitations may affect the values of the diffusivities due to issues associated with fitting
the proper microstructure in the small periodic cell even if a very large number of
independent runs reduces the statistical noise to near zero.

For the Pe-dependence in the Stokesian Dynamic system, very good data was
obtained at high shear rates, but we were unable to obtain a good measure of the

first correction of the self-diffusivity from equilibrium due to shear. The diffusivity
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is enhanced by the flow at low Pe mainly due to an increase in Brownian diffusion.
The hydrodynamic contribution clearly vanishes like Pe? at low Pe in contrast to the
predicted Pe®? scaling.

Rotational self-diffusivites are also reported in this work showing similar behavior
to the translational self-diffusivities. The zz-component is much larger than the other
two components as rotation along the z-axis represents rotation in the plane of shear.
Another notable exception is an initial decrease from its equilibrium value at low shear
before the linear growth at high shear due to hydrodynamic interactions. Unlike the
translational diffusivity, the Brownian rotational diffusivity is never enhanced by the
flow, being a decreasing function of Pe for all Pe.

This work presents the first known data for colloidal suspensions on the zy-
component to the long-time self-diffusion tensor. Two underlying factors dictate
the behavior of this component. First, in shear flow there is a build-up of parti-
cles in the compressional zone relative to the extensional zone. Second. as discussed
before, Brownian diffusion is hindered by the presence of other particles whereas
hydrodynamic diffusion is enhanced. Thus, at low Pe both translation along the
compressional axis and rotation around the extensional axis are relatively hindered
leading to a positive D, and a negative D} , respectively. At high Pe, hydrodynamic
diffusion takes over but the surplus in the compressional zone remains, thus reversing
the signs of both D, and D7 .

The data for the Brownian Dynamics system is of higher quality and more in-
ternally consistent than the Stokesian Dynamics system particularly at high volume
fractions and low shear rates. The main reason for this is the size limitations put on
the Stokesian Dynamics system due to the high computational cost of this algorithm.
In the future, as hardware computational speed increases and Stokesian Dynamics al-
gorithms are improved, it would be interesting to apply the method used to this work
to study larger systems at high ¢ and/or low Pe in the presence of hydrodynamic

interactions to clarify some issues raised here.
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Figure 5.22: The xy-plane in simple shear flow with one particle at the origin. Arrows
show impact on the motion of of the center particle due to collisions with other
particles.
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for the Brownian Dynamics system.



272

Figure 5.24: Projection of the pair-distribution function into the the zy-plane ob-
tained from Stokesian Dynamics simulation, ¢ = 0.45, Pe = 1000. High probability
is represented by light shades, low probabilty by dark shades. Note the thin arcs of
high probability near contact in each compressional zone characteristic of the bound-
ary laver.
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contributions as a function of Pe for the Stokesian Dynamics system.
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Figure 5.26: Configuration of particles with a concentration gradient in the positive
r-direction showing a possible mechanism for a flux in the positive y-direction.



Figure 5.27: Configuration of particles with a concentration gradient in the positive
y-direction showing a possible mechanism for a flux in the positive z-direction. Note
that the darker particle shows where the particle would have been if it had precisely
followed its affine x-displacements. Although the particle is convected to the left by
the flow, there is a lag which is indicative of a postive x-flux.



Figure 5.28: The xy-plane in simple shear flow with one particle at the origin. Arrows
showing impact on the motion of the center particle due to collisions with other
particles are altered by the presence of a concentration gradient. Larger arrows are
drawn on the side with higher concentration due to an increase in the number of

collisions in this region.
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Figure 5.29: The xy-values of the rotational long-time self-diffusion tensor and their
different contributions as a function of Pe for the Stokesian Dynamics system.
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Brownian Dynamics, o = 0.45

Pe D, D,, D, D,
0.1 0.22990 0.23111 0.23365 0.0013276
0.3 0.24644 0.24613  0.24357 0.0070871
0.5 0.26816 0.26340 0.26211  0.0081458
0.7 0.28969 0.28946 0.27820 0.0116890
1 0.33018  0.33017 0.30990 0.0167672
3 0.49862  0.50966 0.44557  0.0330602
10 0.93003 0.94378 0.76159 0.0371206
30 1.89718 1.82687 1.44107 -0.0510344
100 4.84273 4.47138 3.50798  -0.531988
300 12,9640 11.5822 9.14422  -2.12405
9

4
1000 41.3292  36.0604 28.5020  -7.98406

Table 5.1: Values of the long-time self-diffusivity nondimensionalized by the Stokes-
Einstein diffusivity, Dg. as a function of Pe for the Brownian Dynamics system. Data
obtained from 91 simulations of N = 1331 at ¢ = 0.45.

Brownian Dynamics, Pe = 0
0.20 1331 0.66871
0.30 1331 0.50960
0.35 1331 0.40384
0.40 1331 0.32828
0.45 1331 0.23037
0.50 1331 0.13195
0.55 1331 0.04730

Table 5.2: Values of the long-time self-diffusivity nondimensionalized by the Stokes-
Einstein diffusivity, Dy, as a function of ¢ for the Brownian Dynamics system. Data
obtained from 91 simulations of N = 1331 at Pe = 0.



Do
~J
Nej

Brownian Dynamics, Pe = 1000
10 D, Dy, D.. Dy
0.30 0.02014 0.01834 0.01227 -0.010836
0.35 0.02620 0.02274 0.01701 -0.011454
0.40 0.03339 0.02856 0.02251 -0.010656
0.45 0.04202 0.03623 0.02881 -0.008132
0.50 0.05254 0.04743 0.03582 -0.004267
0.55 0.07118 0.07435 0.05356 -0.000864

Table 5.3: Values of the long-time self-diffusivity, nondimensionalized by +a?, as a
function of ¢ for the Brownian Dynamics system. Data obtained from 91 simulations
of N =1331 at Pe = 1000.



[
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Stokesian Dynamics, ¢ = 0.45

Pe Do D,y D-. Duy
0.03 0.0708 £0.0142 0.0632 & 0.0268 0.0600 £ 0.0071  0.009271 = 0.012981
0.1  0.0805+0.0174 0.0710 £ 0.0225 0.0708 £ 0.0130  0.001458 < 0.011230
0.3 0.1105+0.0140 0.0820 + 0.0167 0.0750 = 0.0295 —0.000319 + 0.014583
1 0.1925+0.0274  0.1672 +0.0201  0.1525 £ 0.0086 —0.004491 + 0.009286
3 03783 £0.0429 0.2670 = 0.0674 0.2575 4 0.0263 —0.012375 + 0.024016
10 0.9134 +0.1175  0.5535 £ 0.0708  0.5169 £ 0.0831  —0.152322 + 0.045060
30 2.2422 402694 1.2767 +£0.1422  1.2602 + 0.2905  —0.669959 + 0.11388
100 7.0614 +0.7832  4.5410 +0.8919 3.7744 £ 0.5016 —2.924991 + 0.39717
300 2035442801  14.079 £2.036 10410 £ 1.019  —8.608622 + 1.31423
1000 65.669 + 7.698  48.470 £7.135  34.706 £3.091  —32.53325 + 4.70285
3000 214.44 £24.66  164.60 £14.36  101.08 £ 13.57  —96.90744 + 9.03423

Table 5.4: Values of the long-time self-diffusivity nondimensionalized by the Stokes-
Einstein diffusivity, Dy, as a function of Pe for the Stokesian Dynamics system. Data
obtained from 182 simulations of N = 27 at ¢ = 0.45.

Stokesian Dynamics, ¢ = 0.45
Pe Disp Dyys D.., Dyys
0.03  0.0708 £ 0.0142 0.0631 £0.0270 0.0600 + 0.0070  0.00926 +0.01259
0.1 0.0794 4+ 0.0167 0.0693 £+ 0.0220 0.0702 +0.0133  0.00160 £ 0.01110
0.3  0.1025 +£0.0113 0.0715 +£0.0164 0.0709 £ 0.0285 —0.00180 & 0.01397
1 0.1361 £0.0228 0.1249 +0.0265 0.1274 £ 0.0065  0.00153 =+ 0.00699
; 0.1861 + 0.0260 0.1376 +0.0345 0.1656 £0.0137  0.01957 £ 0.02230
10 0.2243 £0.0303 0.1656 +0.0227  0.1852 £ 0.0380  0.02467 &£ 0.02862
30 0.1974 £0.0335 0.1484 £ 0.0253  0.1597 = 0.0246  0.02257 £ 0.01565
100 0.1608 +0.0269 0.1263 £0.0225 0.1404 £ 0.0192  0.02233 £ 0.00956
300 0.1253 £0.0333  0.1215 4+ 0.0118  0.1241 £0.0174  0.01196 &£ 0.00941
1000 0.1066 + 0.0193  0.1054 +0.0167 0.1097 £ 0.0158  0.01068 = 0.00880
3000 0.0984 4+ 0.0288  0.1054 £0.0186  0.1190 & 0.0135  0.00867 4 0.00709

Table 5.5: Values of the Brownian contribution to the long-time self-diffusivity nondi-
mensionalized by the Stokes-Einstein diffusivity, Dy, as a function of Pe for the Stoke-
sian Dynamics system. Data obtained from 182 simulations of N = 27 at ¢ = 0.45.



Stokesian Dynamics, ¢ = 0.45

Pe Do i Doy
0.03  0.00001926 4+ 0.00000203 0.00001760 £ 0.00000253
0.1 0.0001944 + 0.0000128 0.0001857 + 0.0000226
0.3 0.00193 £ 0.00018 0.00155 4+ 0.00021

1 0.01614 4 0.00309 0.01222 +0.00138

3 0.08562 4+ 0.0128 0.05560 + 0.0120

10 0.42380 4+ 0.0485 0.22663 + 0.0225
30 1.56963 £ 0.2416 0.92126 +0.1239
100 6.29475 4+ 0.6811 4.02388 £ 0.7280
300 19.4258 + 2.4973 13.3708 4 1.9147
1000 64.3753 4+ 7.3686 47.8289 + 7.2248
3000 213.004 £ 27.250 164.234 £+ 13.797

Table 5.6: Values of the hydrodynamic contribution to the long-time self-diffusivity
nondimensionalized by the Stokes-Einstein diffusivity, Dy, as a function of Pe for
the Stokesian Dynamics system. Data obtained from 182 simulations of N = 27 at
o = 0.45.

Stokesian Dynamics, ¢ = 0.45

Pe DZ:’]; Dmy,h
0.03  0.00000544 + 0.00000040 —0.000000260 + 0.000000333
0.1 0.0000681 =+ 0.0000072 —0.00001266 + 0.00000702
0.3 0.00065 + 0.00008 0.000152 + 0.000078

1 0.00567 £+ 0.00081 —0.001284 £+ 0.000450

3 0.03136 + 0.0064 —0.015449 + 0.05045
10 0.16029 + 0.0105 —0.118214 £ 0.01863
30 0.79173 £ 0.4158 —0.577886 £ 0.05480
100 3.06428 + 0.5035 —2.741777 £ 0.37372
300 9.67562 4+ 0.9119 —8.429976 £ 1.26264
1000 33.7080 + 3.2696 —32.23402 £+ 4.53759
3000 100.580 4+ 13.579 —96.46280 + 9.00549

Table 5.7: Values of the hydrodynamic contribution to the long-time self-diffusivity
nondimensionalized by the Stokes-Einstein diffusivity, Dy, as a function of Pe for
the Stokesian Dynamics system. Data obtained from 182 simulations of N = 27 at
o = 0.45.



)
oo
O]

Stokesian Dynamics, ¢ = (.45
Pe D D, D Dy,
0.03 0.5367 4+ 0.0727 0.5574 £0.0477 0.5392 £0.0973 —0.01719 = 0.05674
0.1 0.5449 4+ 0.0550 0.5360 = 0.0909 0.5431 £ 0.0814 —0.04391 £ 0.05502
0.3 0.5345 +0.0819 0.5233 £0.0559  0.5446 £+ 0.0559 —0.01541 = 0.02867
1 0.5193 4£0.1104 0.4930 £0.0863 0.5352 £0.0752  —0.03477 £ 0.05296
3 0.5181 +£0.1106 0.4988 +0.0707 0.5692 £ 0.1027 —0.02084 £ 0.05119
10 0.5775 £0.0616 0.5312 £0.0757 0.6878 £0.0726 —0.01130 £ 0.04395
30 0.7683 4+ 0.0834 0.8295 +0.1040 1.4453 £0.1251  0.07680 £ 0.09152
100 1.6305 +£0.0552 1.7128 £0.0878 4.2627 £ 0.3705  0.13209 £ 0.11020
300 4.2781 £0.2825 4.4144 +0.5931  14.108 £ 0.9088  0.59823 & 0.44364
1000 14.221 £0.9395 16.056 + 1.5627 51.212 £ 4.8166  2.48665 &£ 0.54856
3000 47.072 4+ 3.8545 50.041 £5.7648 168.69 + 15.185  8.18160 & 1.44213

Table 5.8: Values of the rotational long-time self-diffusivity nondimensionalized by
the Stokes-Einstein diffusivity, Dj, as a function of Pe for the Stokesian Dynamics
system. Data obtained from 182 simulations of N = 27 at ¢ = 0.45.

Stokesian Dynamics, ¢ = 0.45
Dy DL, Dy
0.03  0.5366 £ 0.0726 0.5572 £0.0477 0.5392 £ 0.0971 —0.01718 £ 0.05666
0.1  0.5448 +0.0549 0.5364 £ 0.0909 0.5425 +0.0811 —0.04417 £ 0.05521
0.3  0.53354 +0.0827 0.5216 +£0.0562 0.5425 +0.0559 —0.01629 £ 0.02940
1 0.5154 £ 0.1070 0.4962 4 0.0847 0.5238 £ 0.0726 —0.03409 £ 0.05090
3 0.4994 4+ 0.1063  0.4770 £0.0663  0.5241 +0.0892  —0.02757 £ 0.05004
10 0.4914 +0.0556  0.4425 £0.0613  0.4727 +£0.0911 —0.02591 £ 0.03793
30 0.4382 £0.0854 0.4702 £0.0574 0.4486 4+ 0.0531  0.02058 £0.05174
100 0.4081 £0.0576  0.4321 £0.0656 0.3807 £ 0.0668 —0.04341 £ 0.05043
300 0.3513 +£0.0417 0.3754 £0.0488  0.3741 £ 0.0518 —0.04363 £ 0.04975
1000 0.3365 4+ 0.0584  0.3175 £ 0.0719  0.3203 £ 0.0381 —0.03806 £ 0.05672
3000 0.3547 £ 0.0340 0.3348 +0.0699 0.2961 £ 0.0254 —0.03749 £ 0.01396

Pe Dr

za,b

Table 5.9: Values of the Brownian contribution to the rotational long-time self-
diffusivity nondimensionalized by the Stokes-Einstein diffusivity, Dj. as a function
of Pe for the Stokesian Dynamics system. Data obtained from 182 simulations of
N =27 at ¢ = 0.45.



Stokesian Dynamics, ¢ = 0.45

1 0.00186 =+ 0.00025

3 0.01057 4 0.00144
10 0.05413 £ 0.00032
30 0.23967 £ 0.01154
100 1.09378 £ 0.0772
300 3.94997 + 0.1966

1000 13.5859 £ 0.9325
3000 46.7306 £ 4.0167

Pe D;I./l ]);:/y‘/‘z,

0.03 0.00000184 £ 0.000000148 0.00000175 4 0.000000139
0.1 0.0000198 4 0.0000022 0.00002078 4 0.00000337
0.3 0.0002008 4 0.0000162 0.0002035 =+ 0.0000237

0.00176 4 0.00017
0.01014 4 0.00145
0.05904 4 0.00053
0.28560 4 0.01952
1.17571 £ 0.1360
4.26774 £ 0.4484
15.5347 £ 1.6502
48.9376 £ 5.5407

Table 5.10: Values of the hydrodynamic contribution to the rotational long-time self-
diffusivity nondimensionalized by the Stokes-Einstein diffusivity, D}, as a function
of Pe for the Stokesian Dynamics system. Data obtained from 182 simulations of
N =27 at ¢ = 0.45.

Stokesian Dynamics, ¢ = 0.45

Pe Di:h

D

xy.h

0.1  0.00006783 £ 0.00000527
0.3 0.0007071 £ 0.0000914
1 0.00582 £+ 0.00077

3 0.03371 4+ 0.00197
10 0.19690 £+ 0.01339
30 0.90084 £ 0.03541
100 3.75231 £ 0.29881
300 13.4367 £ 0.9035

1000 50.6239 4 4.5473
3000 168.326 £+ 14.495

0.03  0.00000646 £ 0.000000244  0.0000000349 + 0.0000000965
0.000001915 £ 0.000001034
—0.000006099 + 0.000009119

0.000075 £ 0.000131
0.000810 £ 0.000967
0.006110 £ 0.023486
0.051181 £ 0.009789
0.193350 +£ 0.062583
0.622698 + 0.241088
2.542069 £ 0.476957
8.353264 £ 1.423328

Table 5.11: Values of the hydrodynamic contribution to the rotational long-time self-
diffusivity nondimensionalized by the Stokes-Einstein diffusivity, Dj,
of Pe for the Stokesian Dynamics system. Data obtained from 182 simulations of

N =27 at ¢ = 0.45.

as a function



o
o0
s

Stokesian Dynamics, Pe = 0
o N DZ,

0.20 27 0.39490 £+ 0.07068
0.316 27 0.21430 £ 0.02654
0.37 27 0.13263 £ 0.02184
0.40 27 0.10972 £ 0.01999
0.45 27 0.06151 4 0.01675
0.49 27 0.04579 £ 0.01530

Table 5.12: Values of the long-time self-diffusivity nondimensionalized by the Stokes-
Einstein diffusivity, Dy, as a function of ¢ for the Stokesian Dynamics system. Data

obtained from 182 simulations of N = 27 at Pe = 0.

Stokesian Dynamics, Pe = 0
10 N D

0.20 27 0.78311 4+ 0.12839
0.316 27 0.64759 £ 0.14221
0.37 27 0.62275 £ 0.07644
0.40 27 0.59390 £ 0.09329
0.45 27 0.52372 £ 0.03488
0.49 27 0.47733 £ 0.05833

Table 5.13: Values of the rotational long-time self-diffusivity nondimensionalized by
the Stokes-Einstein diffusivity, Dy, as a function of ¢ for the Stokesian Dynamics
syvstem. Data obtained from 182 simulations of N = 27 at Pe = 0.



Stokesian Dynamics, Pe = 1000
o Do D Yy D.. D xy
0.20  0.0793 £0.0074 0.0169 £+ 0.0035 0.0078 £ 0.0014 —0.01441 £ 0.00271
0.316 0.0677 £0.0063 0.0381 £+ 0.0038 0.0186 £ 0.0040 —0.02628 £ 0.00532
0.37  0.0659 £ 0.0082  0.0456 £ 0.0048  0.0240 £ 0.0054 —0.03054 +£ 0.00276
0.40  0.0661 £ 0.0059 0.0445 4+ 0.0079  0.0279 £ 0.0040 —0.03199 + 0.00389
0.45  0.0657 £ 0.0077 0.0485 £0.0071 0.0347 £ 0.0031 —0.03253 £ 0.00470
0.47  0.0687 £ 0.0056 0.0535 £+ 0.0050 0.0393 £ 0.0075 —0.03243 £ 0.00430
0.49  0.0719 £ 0.0051 0.0463 +0.0016 0.0425 £ 0.0071 —0.02470 + 0.00233

Table 5.14: Values of the long-time self-diffusivity, nondimensionalized by va?, as a
function of ¢ for the Stokesian Dynamics system. Data obtained from 182 simulations
of N =27 at Pe = 1000.

Stokesian Dynamics, Pe = 1000
o Doy Dyys Doy Dy
0.20  0.4282 £0.0819 0.4024 £0.0635 0.3262 £ 0.0917 0.00283 £ 0.0540
0.316  0.2596 £ 0.0479 0.2174 £ 0.0671 0.2535 £ 0.0476 0.01579 £ 0.0291
0.37  0.1950 £0.0247  0.1738 £0.0434 0.1750 £ 0.0138 0.01278 £ 0.0317
0.40 0.1530 £0.0317 0.1422 £0.0206 0.1311 £0.0232 0.02336 +0.0152
0.45  0.1066 £ 0.0193  0.1054 £ 0.0167 0.1097 £ 0.0157 0.01068 4 0.0088
0.47  0.1028 £0.0240 0.0831 £0.0219 0.0890 £ 0.0137 0.01192 4 0.0030
0.49  0.0705 4 0.0054 0.0611 £0.0113 0.0608 - 0.0164 0.01439 4 0.0087

Table 5.15: Values of the Brownian contribution to the long-time self-diffusivity
nondimensionalized by the Stokes-Einstein diffusivity, Dg, as a function of ¢ for
the Stokesian Dynamics system. Data obtained from 182 simulations of N = 27

at Pe = 1000.



Stokesian Dynamics, Pe = 1000
O D;m:‘/z Dy@/,/z D::, D.Ty,h
0.20 0.0793 £ 0.0066 0.0163 4+ 0.0034 0.0072 £ 0.0014 —0.01440 + 0.00261
0.316 0.0669 £ 0.0062 0.0373 £0.0034 0.0182 £ 0.0040 —0.02587 £ 0.00521
0.37  0.0654 £ 0.0082  0.0450 4+ 0.0049 0.0231 £ 0.0053 —0.03033 £ 0.00303
0.40  0.0664 £ 0.0057 0.0437 £ 0.0076  0.0272 £ 0.0038 —0.03168 £ 0.00405
0.45 0.0644 £0.0074 0.0478 £ 0.0072 0.0337 £ 0.0033 —0.03223 + 0.00454
0.47  0.0677 £ 0.0060 0.0526 4+ 0.0048 0.0386 £ 0.0073 —0.03217 £ 0.00459
0.49 0.0712 £0.0047 0.0454 = 0.0014 0.0415 + 0.0071 —0.02440 + 0.00227

Table 5.16: Values of the hydrodynamic contribution to the long-time self-diffusivity,
nondimensionalized by Ya?, as a function of ¢ for the Stokesian Dynamics system.
Data obtained from 182 simulations of N = 27 at Pe = 1000.

] Stokesian Dynamics, Pe = 1000 }

s Dy, Dy, DL, Dy,

0.20  0.0051 £ 0.0006 0.0079 £ 0.0008 0.0190 £ 0.0020 0.00156 4 0.0002
0.316 0.0075 £ 0.0010 0.0101 £ 0.0009 0.0311 £+ 0.0012 0.00226 -+ 0.0007
0.37  0.0096 £ 0.0010 0.0117 4 0.0007 0.0383 £ 0.0024 0.00291 4+ 0.0007
0.40 0.0090 £ 0.0009 0.0118 £0.0014 0.0419 4+ 0.0021 0.00260 £+ 0.0007
0.45 0.0107 £ 0.0007 0.0120 £ 0.0012 0.0384 £0.0036 0.00187 4+ 0.0004
0.47  0.01134£0.0014 0.0123 £0.0001 0.0391 £0.0037 0.00110 4+0.0010
0.49  0.0117 £ 0.0006 0.0104 £0.0012 0.0349 £0.0009 0.00110 4+ 0.0004

Table 5.17: Values of the long-time rotational self-diffusivity, nondimensionalized by
v, as a function of ¢ for the Stokesian Dynamics system. Data obtained from 182

simulations of N = 27 at Pe = 1000.
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Stokesian Dynamics, Pe = 1000
@ D;r,b ])i/.z/,b Dgz,b
0.20  0.6960 + 0.1668 0.7849 £0.1671 0.6852 £ 0.1350
0.316

0.4892 £ 0.1426  0.6169 £ 0.0838  0.5786 + 0.0620

7
DQ’,y,b

0.05075 £ 0.1637
—0.01410 £ 0.7855

0.37  0.4584 £0.0245 0.4309 = 0.0741 0.4875 £ 0.1062 —0.05683 £ 0.0694
0.40  0.3765 £0.0470 0.3624 £ 0.0807 0.4054 +0.0557  0.00675 £+ 0.0310
0.45 0.3365 £0.0584 0.3175 £0.0719 0.3203 £ 0.0381 —0.03806 £ 0.0567
0.47  0.2797 £ 0.0619 0.2794 £0.0390 0.3039 £ 0.0421  0.02466 £ 0.0337
0.49  0.2871 £0.0891 0.2679 £0.0391 0.2920 4+ 0.0305 —0.04215 £ 0.0165

Table 5.18: Values of the Brownian contribution to the long-time rotational self-
diffusivity nondimensionalized by the Stokes-Einstein diffusivity, Dy, as a function of
@ for the Stokesian Dynamics system. Data obtained from 182 simulations of N = 27
at Pe = 1000.

Stokesian Dynamics, Pe = 1000
P Dy Dy D2 ryh
0.20  0.0044 4+ 0.00050 0.0076 £ 0.0007 0.0185 £ 0.0020 0.00153 =+ 0.0002
0.316 0.0071 £0.00112 0.0099 £ 0.0008 0.0301 4 0.0011 0.00241 £ 0.0008
0.37  0.0090 4+ 0.60099 0.0114 + 0.0006 0.0378 £ 0.0026 0.00283 = 0.0007
0.40  0.0087 4 0.00088 0.0115+0.0012 0.0415 £0.0019 0.00254 = 0.0006
0.45 0.0102 £ 0.00070 0.0117 +0.0012 0.0380 £ 0.0034 0.00191 = 0.0004
0.47  0.0108 £ 0.00160 0.0119 +0.0010 0.0384 £ 0.0034 0.00100 =+ 0.0012
0.49 0.0114 £ 0.00046 0.0101 +0.0011 0.0349 £ 0.0008 0.00116 + 0.0006

Table 5.19: Values of the hydrodynamic contribution to the long-time rotational self-
diffusivity, nondimensionalized by the 4, as a function of ¢ for the Stokesian Dynamics

system. Data obtained from 182 simulations of N = 27 at Pe = 1000.




Chapter 6

Concluding Remarks
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The behavior of concentrated colloidal suspensions is examined theoretically and with
the use of dynamic simulation. The steady-state behavior is examined using both
Brownian Dynamics and Stokesian Dynamics simulation techniques. Regardless of
whether hydrodynamic interactions are included or not, the suspension exhibits shear
thinning at low shear rates. At high shear rates, the suspension orders in the absence
of hydrodynamic interactions and remains well-dispersed and shear thickens in the
presence of hydrodynamic interactions.

Steady state Stokesian Dynamics simulations have been previously performed in
planar extensional flow (Sami 1996) showing behavior that is similar to that of simple
shear flow. It would be of interest and relatively straightforward to perform Brownian

Dynamics simulations with this type of flow to see what type of order — if any

is present at high shear rates. Strongly ordered phases are quite interesting in their
own right, but cause difficulties when making comparisions with the system where
hydrodynamic interactions are included and the suspensions show no order. If the
suspension remains well-dispersed at high shear rates in planar extensional flow. more
useful comparisons with the Stokesian Dynamics system can be made.

Extension of this work may also be made to bidisperse suspensions. Bidisperse

suspensions are of interest in that they pack more efficently — smaller particles can
occupy the voids between larger particles — and larger volume fractions can be stud-
ied. Bidisperse suspensions may also provide insight into the behavior of polyvdisperse
suspensions which are prevalent in industrial applications. The particle size is in-
cluded in numerous dimensionless variables and scale factors throughout the previous
chapters. How does one account for the presence of two particle sizes in the system
for each of these quantities? Two new axes in parameter space are added with the
introduction of a second particle size: the ratio of the two sizes and the ratio of the
volume fractions occupied by particles of each size. Thus, even a simple method to
incorporate a second size produces a wide range of flow regimes to study.

The Brownian Dynamics algorithm used in this work is extremely simple. Al-
though some approximation is necessary in hard-sphere Brownian Dynamics algo-

rithms due to the singular nature of the hard-sphere potential coupled with the
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dampening nature of low-Reynolds-number flow, it is forseeable that more detailed
algorithms may arise to more accurately describe particle-particle collisions. These
algorithms may be of use in studying the behavior of suspensions near close packing,
where particle-particle collisions are much more common, and to determine whether
or not there is a glass transition present in these systems.

The high computational cost of Stokesian Dynamics simulations limits the study
in the previous chapters to small systems. Larger systems are necessary in order
to obtain quality data at low shear rates or high densities. Improved simulation
algorithms and faster computer chips are becoming available which may enable large-
scale Stokesian Dynamics simulations to be performed.

Finally, the nonzero off-diagonal component to the self-diffusion tensor was dis-
cussed in the previous chapter. The mechanism for this mode of diffusion is due to
a buildup of particles in the compressional zone and a depletion of particles in the
extensional zone. Such conditions are usually present in any well-dispersed medium
undergoing a simple shear flow. It would be quite interesting to see if there is an
off-diagonal component to the self-diffusion tensor in molecular liquids, emulsions,
polymer solutions, fiber suspensions, liquid crystals, etc. It would be interesting to

try and measure the off-diagonal component experimentally.



