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SUMMARY

The following pages Trepresent an investigation of sound
absorption by small spherical cbstaecles to which we attribute,
in different sections, the properties of rigid bedles, visccus
fluids, =nd elastic solids. Both viscosity and thermal con-
ductivity are taken into account. The general equations are
derived, subject to the assumption that the size of the obsta-
cles is small compared to the wave length, and are applied to
the special cases of water drops in air, air bubbles in water,
and to suspensions of elastic solid particles. The theoreti-
cal results are compared with the experimental measurements
in the case of fogs and found {0 agree very well within the

accuracy to which these measurements can be made.
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LISTOF SYMBOLS

The following symbeols are used to indicate elementary

quantities:

éi='veotor potential

C = velocity of sound
Cy,=specific heat

X = isothermal bulk modulus

h = number of obstacles/unit vol.
P = hydrostatic pressure

Pij =

A =

stress tensor
radial coordinate
R = radius of obstacle

displacenment

I

surface

absclute temperature

time

H]

volume

4

R < ~+ ~ W

veloclity

of{= extinction per unit length
« =coeff. of volume expansion
Xa ratio of spec. heats.

¢, ¢
d/u

= goeff. of visceosity
(4

scalar potentials

H]

elastic constants

w=angular frequency

f= density

o = thermal conductivity

o, = absorption cross-section
% = viscous or elastic stress
tensor

g = polar angle

¢ =~ azimuth angle

( )= quentities pertaining to
obstaele

( ) = unperturbed quantities
o

( fieomplex conjugate

The follewing symbeols are used to indicate compound

quantities:

a, =?&I [5-": (’H' 31’/“)"(»*
o, = RE, 5~ p/p’
I" *’RK X= 5/6"
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I. INTRODUCTION

The first investigation of the effect of small spherical
obstacles on the propagation of sound was performed by Lord
Rayleigh (1). He calculated the scattering effect of the par-
ticles in a non-viscous atmosphere and showed that the effect
depends upon the ratio of the diameter of the particles to the
wave length of sound.

Some time later, Sewell (R) took viscosity into account
and calculated the scattering and additional absorption due to
a number of randomly distributed cylindrical and spherieal ob-
staeles for the case that the wave length was sufficiently
long, or the obstacles sufficiently small, so that the phase
variation over the obstacle could be neglected. He assumed
the suspended particles to be perfectly rough at the surface,
perfecily rigid, and fixed in space, i.e. they did not partake
of the motion of the surrounding medium. The resulting equa-
tions were applied to the particular case of the absorption of
sound in fogs.

The assumption of stationary obstacles proved to be quite
a bothersome point particularly since Sewell's result yielded
a finite attenuation at zero frequency, and in an important
paper in 1941, Epstein (3) extended Sewell's theory by employ-

ing a method which automatically included the oscillations of

the particles in the acoustic field due to their finite density.

This step was paritly necessitated by the experimental work of

Hariman and Fecke (4) on agueous suspensions, since in their
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case the density ratio was close to unity and Sewell's theory
was not at all velid. Epstein considered spherical obstacles
and assumed them to be: (a) rigid, (b) viscous fluids, (c) e-
lastic solids, and showed that for the case of fogs, and suf-
ficiently high frequencies so that the oscillations of the
drops could be neglected, Sewell's equation was a very close
first approximation.

Recent measurements on the absorption of sound in fogs by
Knudson (5), using the reverberation chamber technique, indi-
cated, however, that Bewell's formula gives an absorpition whigh
is too low but of the right order of magnitude.

Sewell considered the effects of viscesity alone but did
not take into account thermal conduction. The same must be
said about Epstein's paper referred to above. In a later paper
Epstein took heat conduction into account by an indirect and
not very accurate method.

Kirchhoff.was first to point out in 1868 that the influ-
ence of heat conduction is of the same order of magnitude as
that of viscosity so that for an accurate solution {or shall
we say a moré accurate solution) both factors must be taken im-
$0 account. This was done in the plane wave sclubion of
Xirchhoff (8), and as expected gave a more strongly damped wave
thabh that calculated by Stokes using viscesity alone.

With this in mind, Dr. Epstein suggested to me to try to
extend his method as used in (3) so aé»%o include any tempera-
ture effects. The fact that the available experimental dats

gave a greater absorption thah that calculated by Sewell's
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equation had been for some time interpreted as due to heat con-
duction, and as the results of this essay will show, this in-
terpretation was entirely justified.

A great deal of mathematical detail had te¢ be gone through
in order to arrive at the final results. For this reason this
paper is divided into two parts: The first part is mainly de-
scriptive in character, containing only the final results and 2
mninimum of mathematics, execept for the derivation of fundamental
relations {such as II). The second part in the form of appen-
dices contains most of the algebra, and references will be made

to0 them as the need arises.
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I1. THE BASIC EQUATIONS

{2) Viscous Fluid

The edguation of motion of a viscous fluid is given by:

oV oV; op;: p A
- vlt o SR . - R ]
P ot 7Y bﬁ 3%; axi*' aﬁ (2.01)
Where Tb is the viscosity stress tensor with components:
ovp Oy L
Tﬁ~ (8&4-3&) ’ L*f

(2.08)
Ty~ 2y g%i ~ $yvev

It can be shown (7) that (8.08) is amctuslly only a first approx-

imation which neglects additional terms depending on the square

of the coefficient of viscosity. These extra terms contain, a-

mong otaher quantities, the thermal stresses which may exist due

to inequalities of temperature. The kinetic theory of gases,

as developed by 3. Chapman and D. Ewskog, shows, however, thab

if the nunmber of gas molecules contained in a cube of dimen-

sions intriansic to the problem, such as the wave length of sound

propagation,is large, then (2.02) is a sufficiently close approx-

imation. Since in our case we shall not be dealing with rarified

gases, bul gases under ordinary conditions of pressure and tenm-

perature, and shall furtherlore be concerned with frequencies

up to only about one megacycle, we sha%} sdbress the additional

terms in the stress tensor and adopt (2.03) throughout our whole

investigation.
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In the‘aeoustic case with which we shall be concerned,
the velocities will be rather small so that we can keep only
linear terms. This means that we can delete the second tern
on the left of (2.01) and substituting the expressions for the
stress tensor from {(2.03), we obitain the usual form of %he

Navier-8tokes Equation:
K 2 1
Pyf = VPV 37V(7y)

which can be transformed inio:

Qv

4

P3 = —VP~yVxvxY + 2y V(vsy) (2.05)

An additional egquation is furnished by the eguation of continu-

ity

%19_: + v (pm)¥ L+ ovey = O (2.04)

where again we have discarded second order terms.

The third eguation which we need for the mathematical for-
mulation of the problem will pertain to the conduction of heat.
Let us consider at first a unit mass of fluid. If the tempera~-
ture is changed by dT and the volume by dV, then the internal

energy will be changed by:

dif = (%?_)VdT-c- (57) av

Making use of the two well known thermodynamic relations:

-

(#) - G)=-reT(3)
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we obtain for the change in internal energy:?

= ¢ dT-pdV+ T(28) dy
dit = ¢ dT-p (58)
By the First Law, the quantity of heat abseorbed will be:

DQ = du+ pdV = ¢, dT + T ($R) df =

T
= C,l,dT'-— 3;2(%7&)10,?

Hence, the amount of heat absorbed per unit time by a unit vol-

ume of fluid will be:!

This heat must come from two sources:

(a) heat will be conducted into the volume element from
outside,

(b) heat will be produced inside the volume element due
10 viscosity. Denote this rate of production of heat inside

per unit veolume by F. Then, for energy dvalance we must have?

per G - ()92 = ow TR
Ve can write this as!
%(PQ’T)“ [ch‘*”%"(%@){] %tg =cv'T+ F (2.05)
But since:
Levpry |, E= gy



=
we can bring (2.05) into the form:
0 3 2
S?(chT)-i—V-(PC,,T“I{)-I-T(Sg)vvng = ov‘T + F (2.08)
We shall show later in VIII that:
' ~
FI= 5" ZT'J L
50 that it consists of terms quadratic in the velocities.

Hence, if we consistently neglect second order temms, we can

‘write (2.08) as:
3T d . /3 D2
e, + oL S+ pGTver+ ¥ V(g T )+ JO(SF;,)yv.K = V3T

But the fourth term vanishes, and from (2.04) the second and

third terms cancel, so that:

L = RAT - To (

T - - L (H)u

where we have let:

&
%= foCr

Equ. (23.07) gives us the relation between the temperature
and the acoustic field. The system of equations which we must
now solve simultaneously is given by (2.03) (2.04) and (2.07).

If we differentiate (2.03) with respect to the time and
make use of the fact that the pressure is a funetion of both

9 and T so that:

S

vp= ( )vT

L]

)TvaL(



then we obtain:

dU r ’ d BQ dp
and eliminating %% by (2.04):
Oy ) op) o OT
—_— . ‘I‘- —'—b t —.E » —_ —f — (2'08)
] RIXTRY NAL LA ap)f"v ver)— [ aT),V St

We now express the velosity in terms of a scalar potential4>
and a vector potential A by the relations:

V= ~v+ VxA veA=0 (3.09)

1 v

¢ representing the longitudinal vibrations and:ﬂ the transverse
ones. Substituting (2.09) into (3.08) and (3.07) we obtain the

three equations:

Let us now assume a periodic state with time dependence e-ivt,

Then the three equations above become (1§)<# and T now refer

to the space dependent part only):
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P = [y (2.10)

P’ = %Lw;zvlcp— (%%)Tg%vz(?-f LW (gi;);r (2.11)
. _ 27 To 73

—iwT = GPVT+CVPO(3$2V1¢ (2.12)

From (2.11) we obtain:

- igwb [ F ()]
%),

and substituting this into (2.12):

(2.13)

ﬁ.[%?ﬁ‘ %(g?);]v#q) + [%iw?— 5)0 %);;)?-i- Lfoﬂf.’w -~ j—"—-—(d )v

Cyfo 19
~pw'p = O (3.14)
But:
Cp=Cy = T(S‘ITJ‘),, (ﬂ){ T(g*r): (%:),
so that:

and hence:

-0 (38)- o (3] =~ B () 5 55)
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But since:?

Substituting this into (2.14), introducing the kinematic vis-

cosity ¥ by V=7A% and letting:
J a
$EE) = c

(the longitudinal veloecity of sound), we can bring (2.14) into

the form:

#[g-y-i- %]r/‘ﬁ;-{. giwv+ {iwdf - clj]vzci)-— we =0 (2.14)
We can write this as:

(v*+ k) (v A2) = O (2.15)
so thet 1f A'# & a solution of (2.15) will be

9= ¢+ 4n

where:

v, + &d = O (2.18)
V2¢z + /%:C?_q_ = 0
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also, from (2.10):

VA+KA=0 K= ‘—)‘3’ (2.17)

We have thus reduced the problem to the solution of two scalar
--and one vector wave equation, subject to certain bounday con-
ditions.

In this form the problem was presented by Professor Epsiein

in his lectures on "Mechanics of the Continuum” in the fall term

of 19486.

(b) Elastic Solid.

The equation of - wmotion of an elastic solid is given by:

3 U BT,J

P35t 31; = PV 3 7,%“. (2.18)

where Tﬁ is the elastic stress tensor with componentis

(25,3
Ty= M 2% * axt)
EEN
ng—"“ o? > -+ AV-
/A axl. (2.19)

These expressions for the stress tensor components neglect any
additional thermal stresses which maj exist due to inequalities
in temperature. In the previous case, these could be neglected,
since they were very small compared to the viscous stresses.

In the case of a s0lid, however, this may not be the case and

we shall not be able to neglect them. It can be shown (8) that
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if temperature effects are taken into account, the normal

stresses become?

Pii %ﬁ 5’-‘1 -+ /\Vﬂ {3T Ty — ﬂT (2.20)

where

p= (M g/u)o/v

and oy 1is the coefficient of volume expansion. The shearing
stresses are not effeected by temperature differences. BSub-
stituting (2.19) and {2.20) into (2.18) and again neglecting
sscond order terms in the dependent variable, we obtain for the

equation of motion:

0o = H7%Ss + (MW (o-5) ~ v T
oxr:
o 3% < ponvxs + (13u)y(mg) - frT (2.21)

Since the derivation of (2.07) applies to a soclid as well as to

a fluid, we can write:

T _ 2 T (9 o3
Elakd T- PoCir (ﬁ)yv'b_t' (2.22)

Again, let us introduce a scalar--and vectar potential (for the
longitudinal and transverse vibrations respectively) by the re-

lation:
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o

§=-v¢+vxpA , viA=0

Substituting this into (2.21) and (2.22) we obtain the three

equations:

A .

fost, = mVA
29 ,

Po g = (h+;u)v¢+[37'
ar 2 T /9 2
2 o d
= AV T+focu- (51@)‘,‘7 o

Assuming a periodic state with time dependence e~i¥h, these
equations becone (‘Q,cp and T now refer to the spacially de-

pendent part only):

'ﬂwlﬁ =/“sz‘i (2.23)
_Fow1¢ = (A+&k)\72¢+ﬁﬂ‘ (2.24)
~wT = PyiT— }7‘% (§~$)va¢ (2.25)

Solving (2.24) for T and substituting into (2.25) we obtain:

F{+ v + [:JPsnow1+ (w (r\-}-%u‘i“ H)]qui + ngﬁ,(j) =0 (2.28)

where!

M= P (3] = 35T ()
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We can again factor this into:
(v &) v+ &)= ©

so that if /ﬁf#l&f a solution will be as before:

¢h= ¢1+“?1

where!
Vi, + P, = 0
(2.237)
V3, + z&jcp,, = 0
also, from (2.23):
2
VA+ K*A =0 Ki= P (2.28)

! P

Thus we see that the equations which we must solve in the
case of a viscous fluid or an elastic scolid are identical in
form, differing only in the constant coefficients.

We note from (2.14) and (2.28) that if we had not taken
thermal conduction into account (which corresponds to letting
# —>0) then we would have come out with only a single scalar
potential. The existence of the second scalar potential is
something new and must be due to the effects of thermal conduc-
tivity. The deeper physical significance of the second scalar

potential will become clearer later.,
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I1I.CALCULATION OF k3 AND ki

(a) Viscous Fiuid

From (2.15) we gets
Vi + (Al+ A2 )7+ A A= O

and comparing this with (2.14) we obtain the two equations:

4 . - 2
2 2 Tilwy +wi- C w (3.01)
k= 3211? iyt i A= *®(4y+ i)

(3v+ “’d’) 3T

2
Solving for /&f and-&; » we see that they will be the two solu-

tions of the equation:
O 8
’ﬁa/‘)f(%y"'%)“ A& (§EWV+ wi — C")- w? = 0 (3.03)

It is shown in Appendix I that for frequencles up to about
one megacycle, we can write with accuracy sufficiesnt for our

purposes:?

/iz,’—z-‘g[m- _iiﬂ.(.si_y+ (- ,h))] (5.03)

heOfEF (5.08)

We see that except for the case of zero frequency, kj is
far from being equal to kg so that no degeneracy exists and our

two solutions of {2.15) will be independent.
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(b) BElastic Solid

In this case we obtain from (2.28) the two equations:

1, ga_ Hpwttiw(d+24+ M) 22 _igw? (3.05)
K+ &, R0 2 AR, %20

so that &* and 4 will be the two solutions of:

A% (A+;k)_/@z[a?§>,wn+ gw(m}“ M)]+ L'Ppwsz 0 (3.08)

It is shown in Appendix II that for frequencies up to a-

bout 100 megacycles, we have with sufficient acouracy:

o o ﬁajﬁﬂ ’ .
k= w e (H» ‘i(rH;«)‘} (3.07)

’5;.; (J+L)Y§;; (3-08)

Again we see that except for the ease of zero frequency,
no degeneracy will exist so that our two solutions to (2.28)
will be independent.

The values of k3, ks and K completely specify the nature
of the potential functions. The physical significance of the
results obtained in this paragraph will be discussed in the

next section.
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1V _PLANE WAVE SOLUTION

(a) Viscous Fluid

For the case of a plane wave moving in the positive x di-
rection the longitudinal waves are expressed by ¢=Ae"’ﬂ"‘+Be" X
wnere A, B are constants, since we have the possibility of two
different longitudinal waves and the general solution will be
a linear combination of them. 8ince ky and kg are complex,
the amplitude of the two waves will decline exponentially. In
order to get a quantitative measure of the rapidity of absorp-
tion, let us define the quantity 1 to be the distance in which
the amplitude declines to l/e of its initial value. Then, from
(3.03) and (3.04), we obtaini

3

L = & (4.01)
L w* [+ ?i_e(lvé)]

(4.02)
4 = F__zf

where the subscripts Ly and Ly refer to the two different lon-

<

gitudinal waves. We see that the absorption increases with in-
creasing frequency, but not quite as rapidly for ¢, as for ¢, .
The guantities lLI and lh. are tabulated in Table II as a fune-
tion of fredquency for air and water, and it is evident that they
are of entirely different orders of magnitude, @ being damped
only slightly but for qg the damping is appreciable.

In the absence of conduction effects, we let ®—>0 and ob-

tain:
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3
L) -0 ifﬁ; : '4135:? 0

so that in this case we get only one longitudinal wave instead
of two, since ¢, suffers infinite absorption and hence does not
exist. 1, agrees with equ. (9) of (3) in the limit as ®—>0,
as it should, because conduction effects were there neglected.
Equ. {4.01) is identical with the result of Kirchhoff (8) who
used a2 slightly different method of attack.

For the case of air, V and # are about equal, so that,
from (4.01), the additional abscrption of ¢, due to thermal con-
duction is of tﬁe same order of magnitude as that due to vis-
‘cosity alone, a result which was already anticipated by Kirchhoff.

But in either case, whether conduction is taken into account
or not, the absorption for ¢, is small, so small that the damping
taking place in distances comparable to the sizes of the obstruct-
iﬁg spheres we shall consider in the later sections is negligible.
The absorption of ¢ and, in face, the existence of ¢, is due
entirely to the effects of thermal conduction, and it would fhere-
fore seem appropriate to call ¢, the "conduction wave'. We shall
denote ¢, by "longitudinal wave'. We see from Table II that the
conduction wave is very strongly absorbed in distances comparable
to the sizes of the spheres we shall consider, and we shall not
be able to neglect this.

We note from (2.17) that the inclusion of thermal conduc-

tion does not affect the transverse component. We obtain:

17_ = |2¥ (4.03)
W
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Thus the absorption of the transverse-- and the conduction wave
are of the same order of magnitude.

It therefore appears that the main energy loss occuﬁ&ng in
the diffraction of acoustic waves by small obstacles is due not
only to the partial conversion of the incident longitudinal
wave inte a transverse wave which is quickly absorbed, but also
to the partial conversion into & longitudinal conduction wave

which also suffers a strong absorption.

(b) Elastic Solid

ik x R, X
As before we have 4) = Ae "+ Be ? , and since ky
and kg are complex, the two waves will again be exponentially
danped. Defining 1 in the same manner as before, we obtain

from (3.07) and (3.08):

4 = 49 (_":ﬁ)% (4.04)

] wide M f
(4.05)
A, = @

Again the absorption increases with increasing fredquency but
not quite as rapidly fer 45 as for 4% » From Appendix II we
gee that 1Ll is very large, indicating a very slight absorption
of ¢, , while the absorption of 4;1 will not be negligible. The
absorption of ¢, is due entirely to the effects of thermal con-
duction. For zere thermal conductivity the longitudinal wave
is not absorbed at all while the conduétion wave undergoes in-
finite absorption and will hence not exist.

The essential difference between the case of a viscous
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fluid and an elastic solid appears in the transverse component.
Whereas in the former case the transverse wave was strongly ab-
sorbed, in the latter case it will not be absorbed at all, since
from {2.28) X is real. Furthermore we see from (3.07) and (2.28
that in an elastic solid the wave lengths of the longitudinal--
and transverse waves are of the same order while for a viscous
fluid the wave length of the transverse component is very much
smaller than that of the longitudinal one.

Summarizing we may say that for either an slastic solid or
a viscous fluid, the absorption of the lengitudinal wave is very
small and in all our later applications we shall be able to ne-
glect it. In either case the absorption of the conduction waTe
is appreciable and must be taken into account. TFor the trans-
verse component we have strong absorption in a viscous fluid
and no absorption at all in an elastic solid. To our degree of
approximation, the velocity of propagation of an acoustic dis-
turbance is not effected by the inclusion of viscosity or ther-

mal conduction.,
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V. RIGID, ROUGH SPHERE WITH ZERQ THERMAL CONDUCTIVITY

Before tackling the more cowmplicated situations, it will
be instructive to consider at first the simplest of all pos-
sible cases. Consider a plane wave, propagating in a viscous
fluid and impinging on a spherical obstacle. We shall assume
the obstacle to be heavy and rigid, and rough at the surface
and composed of heat insulating material. The surrounding
fluid, however, has a finite thermal conductivity, and our prob-
lem will be to determine the acoustic field. Since the obstacle
is assumed to be rigid, we can say immediately that inside the
obstacle, all the potentials will vanish. Outside the obstruct-
ing sphere we have the incident wave, represented by a potential
¢iand the scattered wave represented by the scalor potentials
?,and qh and by the vector potential;& . Adopt a spherical
coordinate system (I,Q,q ) and let the incident plane wave travel
in the direction of the positive polar axis. We see from sym-
metry that we shall have an A? component only and that there
will be no dependence on W + Bince 4% and ¢1 will be solutions
of (2.18) and AT will be a solution of (2.17), we can write down
the following exXpansions for the potentials (9):

i 100 &

¢ = ¢ Z UL(JM-H)J,L(&A {cwg)
4’ iL“ Zh-}l)B /fm ) (#2)F (09»59)

(]

1 =z i 2M+l h/ﬁ,{:) (%,1) T (¢ 6)
A= D0 () D, AL (K1) T (eor6)

1

{5.01)
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where, from (3.04) (3.03) (2.1%):

A=Z A= k=

: (
jnbo and /ﬁx(ﬁ) are the spherical Bessel and Hankel functions
defined by:

ps BT 00, A= [EHw= [T (T m+ iy, )

2

Where ]'w(;«) and ):Hi{x) are the two ordinary Bessel functions. Some
of the i;portant properties ofJ; andlﬁf)are listed in Appendix
III. We use,ﬁy and not,&f)since our time dependence was e-iwh
and we desire an expanding wave. In all that is to follow, %he
superscript on‘i:)will be omitted. Bp, Cy and D, are constants
which have to be determined from the boundary conditions.

Since the sphere is heavy, rigid, and rough at the surface,
and has zerc thermal conductivity, the velocity must vanish at
the boundary of the sphere and so must the normal component of
the temperature gradient.

Let the radius of the obstacle be R. Then the boundary

conditions become:!

) =0, (%).z0 (%hgo., |

= I’*=R—‘

= ) =0 (5.02)
R 2

From (5.01), U% is identically zero everywhere. Thus, we have
three equations from which the three unknown coefficients By,
Cn, and D, can be determined.

We must now eXpress T in terms 6f the potentials. From



R

(2.11) we have:

T(38) = - igw (g 9u) — (8590 1+ )

But since the scalar potentials are solutions of (2.18), this

becomes:

T(2) =~ iguolberden )+ (0 ) v 0280 0, K]

s0 that
T = o, ($i+ 4’1)’*‘ 0(247:_ (5.03)
wherse!
—LPLU'f' %FZ _l_ﬁl)’&)z
dhl 3
($2),
Now
Y - (P (I - 2/ 01wy Rl
) -GG FGLE) -y (F- A e
so that:
% ES
o= 85 [ (3R
Hence:

Bince we are neglecting the absorption'bf the longitudinal
wave, we are neglecting terms of order“”?%‘anﬁ hence we must

also neglect them here. BSo that we can write with sufficlent
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accuracy:

o~ ""‘"Y (r-1) (5.05)

Also:

w oo, .
a;::ai— Gw%-%rzi-— £

- ~_. L (5.08)
CO",/

We see that:

-—..

=_j£_h .07
2= 2 (-3)< (5.07)

for the frequency range we are interested in, and we shall make
use of this fact later on.

Using (2.09) and (5.03), the boundary conditions (5.02)
now beconme:

~2 (b 9 )+ s S (s B Ay) = O

N

-ﬁ-%(%**‘i’n‘*fi’z)—i‘%(’m) raf a=TR

d\fi(‘h‘i‘ ¢l)+ Ay %?% = 0 J

Making use of the fact that:

2 [smB P = n(n ok, 1
simeas(sw" SARICOLS 36" o

indicating differentiation with respect to the argument by a

prinme, omitting the superscript on,ﬁi)and letting:
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g (5.08)

b
=
A
)
Ko
Al
i
2
A
-
I

we obtain, using (5.01):

o, hn(a)B, + 64 (a)C, ~n(nt)h (B)D, = ~gq jrla)
/g‘n(a’) Bh + /ﬁ'h (4,) Cn - [j/ﬁi(»@)'ﬁ/ﬁ,h(‘g)]])h = "jh{at) (5.09)
"(1‘7'1";{’;1}(‘-'3:)-B,,L + "(J.Qz’ﬁhl{ﬂz)cn + O'ph. = ‘D(‘a'j'dm‘)

This holds for n > 0. If n = O, only the first and third equa-
tions are to be used. The second equation does not exist.
Let us now examine the arguments of the Bessel Functions

a little more closely. We have:

0= 28, aROE L dere0)fE

A
Since i§=.3§§ » Where ﬂL is the wave length of the longitudinal

wave, we see that aj represents the ratio of the circumference
of the obstacle teo the wave length of the incident wave. In
211 that is to follow we shall consider this ratio to be small,
(In the case of fog particles, R is about 10-3 cm, so that even
for w as high as 10° sec T, a1 for air would be of order 1078).
The assumption that 5%5 <& | imposes an upper limit on the
frequency beyond which our approximation will not hold. The
quantities ag and b may not be small so-we cannot make any ap-
proximations there.

It is shown in Appendix IV that subject to the assumption



26—

that a3 < 1, and alsq making use of the fact that }gL{<<l s
2
the coefficiente turn out to bhe:
o
. C 2! A B) 2401
B =23 B o=~ = i 5.10
4] 3 Lar l n (2H+2)!(2h—‘)! /K“-l ('e) ] ( )
n I n
¢, = 0 , G = AL A®a (5.11)

" o, (4 “)1 [(V"f")f%h (a,) - Qz’g‘h-n {az)]'gj’n-u (&)

2! a”

Bo= ") T

(5.13)

Equs. (5.10) and (6.12) are identical with the solutions
obtained in (3). This is of course as it should be since to
our approximation Bp and Dn are independent of the fthermal
conductivity, so that as far as these two coefficients are con-
cerned, it should not make any difference whether thermal con-
ductivity is included or not. What is essentially new is Oy
pertaining to the conduction wave. Since ¢3 is strongly damped
we see that at points far away from the obstacle, the acoustic
field is essentially the same as the one we would have obtained
if thermal effects had been neglected. As —>0, Cn does not
go to zero butb ¢a will and we are then left with the solution
given in (3). Since aj; is assumed to be small, the series for
the potentials will converge rapidly and it will be sufficient
within the accuracy at which we aspire to maintain only the
terms with n= 0O and n = 1.

Equs. (5.10)-{5.12) coupled with (%.01) completely describe

the acoustic field and represent the solution of the problem.
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VI. VISCOUS FLUID SPHERE

We shall now assume the obstacle to be composed of a vis-
cous fluid of finite thermal conductivity. The outer medium
is the same as before. Here we shall have to deal with seven
different waves! four waves outside the obstacle and three
waves inside. If primed letters pertain to the medium inside
the sphere and unprimed oneées to the medium outside, then the

expansions for the potentials take the following form:

¢; = il,h 2ns1) ) fn(R2)E (c656)
9 =

P, =
A=

(" (an+1)B, A (A1) (cos8)
(2041) C, A, (A1) P (c226)

Lhuh+01%lﬁw{bﬂ7i(mw9) (6.01)

g—[\javajaoijse

CPl) Zl“ ,2n+l)B J (/FU). P(Cwﬁ)

[

3 = D" ) G (A1) (eos )

o

&

A‘; = Z”: i’.’(2n+ 1) :Dy: jh (K]f?.)ﬁi(CMQJ

Sinece the Hankel function diverges at the origin, we must use
jﬂ inside the sphere (standing waves).

We now must determine six unknown coefficients instead of
only three, as in the previous paragraph, and this will make
matters a little more complicated.

The boundary conditions we must satisfy are that across

the boundary of the obstacle the velocity, the temperature, the



-28-

heat flow, and the siresses ppp, DPpp and Pry must be continuous.
It can be shown that in our case, where there is no depend-
ence on ¢ and only an ALf component, these stresses are given

by:

| g . 1 A
popeal-Regp et - 24l

fag= ©
The stress condition thus gives u® two equations, so that we
shall get 2 total of six equations to solve fbor the sixX unknown
coefficients appearing in (8.01).

The term p in (8.02) is the hydrostatic pressure and we
must now express it in terms of the potentials. In view of the

reriodicity, we have:

p= E:L" BE’E (6.04)
But:
dp _ () D dpY) 3T > d
B (538 (LT - Glpren ()3
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and using {2.11), this becomes:
P Lt S
> = TR b+ tuoyvih
so that from (8.04):
= ._‘_l!_ y]
P==ipwd = 3yv%
Since: rp= ¢;+¢1 then from {(2.18):

p= (314 w)o,+ (4 4= ipw)s,

Now:

bydi= g = —ige (14 § £ K) =Ky (14 422

80 that we can write!

==Ky (B Pags)

where:!

.

ot

S

<
R

ﬂf=l‘+

- - A
ﬁﬁ" 3

sg}ag‘?.

(8.05)

(6.08)

(6.07)

Using (6.03) (6.03) (6.07) and (5.03), the boundary conditions

vield the following six equations (outéide the obstacle we must

again identify (}J, with cpﬁq\ )3
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Bq/g\) ) (a,)~ B’ Q]Jh a)+ C an\:’(ﬂ;) Cnazjh(“) D, nn+;)/Kh[f)+

+:D,fn(h+1)jn(@!)= ““R,Jh a,) (6.08)
Byh,(0)~ B, f(a)+ C, 4, (a,)~ C fo(83) = 2, [84) ()4 A, )]+
D) R+ u(8)] = ~fu(a) (8.089)

B, M;/g',, ('a’)"':gr:"‘ul‘jh(a.))'*c o, o, (8,) - C"’/z’fn (a)) = -_O(Ifh (a,) (8.10)
B,X 0,4, [8,)~B)a o'6)jy @)+ C,xw, a4 (a,)-C “}“ijh)(“z) =

== X8, (a,) (6.11)
Boe[ahlm)- 4 [a,)] [a j,,(a') f;,[a’)]-r ¢ e[a Alla)- A, (ﬂzﬂ"

)
n[zp,{ﬂ) jnla})] - Dhs[ b, (6)+ n+h~2)/&,,($’)]+

+4) [B5080+ (ron-2) o 8)] = - €[aa)- ul0)]

(6.12)

B¢ [8fh(0)- 2040 )]~ B] [, (8)-2 ) o)+ G (8.t 2628 o] -
—C,: [ﬂ'lfsjjn(“-{) QQAJ,, (a) ]+Dsn(»+n) [ﬂi (4)- 4 (6’)]

B 2nfo) (8] (1, 8)]= ~ € [ Bijpla)-2650 )] (6:15)

where:
€= )2/,2’ x= 070-}

We shall solve these equations subject to the same approx-

-

imations we made before, namely that:

o<l | d«l J:—;]«J ,

)
ol
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Bince we have seen in the previous section that the ex-
pansions for the potentials counverge rather rapidly, it will
be sufficient to evaluate only the coefficients for n = O and
n=1. If n= 0 the second and fifth equation do not exist
and in the remaining equations the terms involving D, and D}
do not appear.

The solution is indicated in Appendix V and the results

are as follows:

B, =~3ia(1- Slg?) (6.14)

5 o 0 4,08)

B,=38](3) Gy, = 3100(=8) 22 (6.25)
2. G, (8)7(8) o414, 14)
ZB:,= ) (8.18)
Bl= 26, - 382G, (6.17)
}
= % (Sg”:'")“if"ﬂi) (6.18)

RREATCHENCVEY SARIP IS

o [SH)(- 3 5“::63.; +.2{l-X)(l-3)G:a]jl (a)+ [%‘;Ggg‘l‘ (1~ S)GBJQU"(RJI) (6

2 19)
% 2@ )+ 4o} A, (0,)~ X 8 Aila) i (a7)

0‘)
Cle % )((857?")9;1.(0;)
SBCHACHERCVRS CYACHENCY

[('-*2)():1‘4‘,] Gy~ 3x] A, (0:) + X [14(1-8)Gp - :‘-ﬁ:Gg.,] 8,4, (4,) (6.21)
-Z(X")fr (az')ﬂ,,[n,,)+ ajj;(aj)/ﬂ, (az)“Xaz’go[az)fl {azl)

(6.20)
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Bl
where G, and G,y are abbreviations for the following quantities:

Gomlme, G'=3(e-)- €45, Go'=3(e-1)+ 247, G- 9(1-)+2.8%(8-)
G, = (-&)(2+8), G, = 98(e-)- %@’(&z) | G,= 3fe-)(8+2)+ £ (342

G, = 278(1-€)+ 2e 8(8~) (6.23)

where:!
£==19}’

It is shown in Appendix VI that these equations reduce
to the results of V when €=3= 0, x=00 » because there we
essentially considered an infinitely heavy and infinitely vis-
cous sphere of zero thermal conductivity. This serves as a
useful check.

Since we shall not need D, and D} in our later applicatiwns,
these coefficients were not evaluated.

It can be shown that (8.14)-(8.17) are identical with Ep-
stein's results (3) which is as it should be because these co-
efficients are independent of the thermal conductivity of either
medium (b0 within our approximation), and it may be safe to say
that the same applies to the coefficients in the vector poten-
tial, As before, the only essential difference between our re-
sults and Epstein's lies in the existence of the second scalar
potential, or the conduction wave. But, again, since the con-
duction wave is strongly damped, we see-that at points far away
from the obstacle, the acoustic field is essentially unchanged

by the inclusion of thermal effects.
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VII. ELASTIC SOLID SPHERE

Consider now the case where the diffracting obstacle is a
sphere composed of an elastic solid, and let it be embedded in
a2 viscous fluid. Again we shall have to deal with seven dif-
ferent waves, and from II and III the expansions for the poten~-
tials assume the following form:

-7

= Z i (2""“")].)1 (‘ﬁy’t)ﬁ (2 8)

g

¢, = f: " (20+1)B, A, (A2) T, (c0s8)

2

D= 3 (") Gk, (2)T, (e96)

Alf i (2041) D, A, (X2)F, (e8)

= _J._i i zym)B,,’ fn(fﬁ,”l)'f; (f:oo&?) (7.01)

mTo

_ Z P (ane) € (hin) T (6356)

L

A{fz--j? ZL" 1h+)):Dj (kn)F ( (e B)

where:

AT YGRS TG

b <ol % A= [0, K’=wf/.<’:5

The reason for introducing-ﬁ; into the primed potentials will

become clear later. We must remember that ¢ and A?are poten-
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tial functions for the velocity in the viscous fluid while ¢)
and.A; are potential functions for the displacement in the elastic
so0lid,

We must again satisfy the same bounday conditions as before,
nanely vy, Va, T,Gggj, Drrs and Prg must be continuous.

As before T has to be expressed in terms of the potentials.
This was done in V for a viscous fluid and we must now do the
‘same for the case of an elastic solid.

From (3.24) we obtain:
BT == gt (44 ¢l) — (A+26) 92 (3)+ §3) =
= [—- gyw'+ (A+97¢,.)/le”’]¢,’ + [- oo™+ (A+}u),ﬁf"]¢;
and using (3.07) and (3.08):

_ o ow XM w* w4
BT = 20 Gy g O R (920 ]0) -

~tos . Bo ¥W}4

= %zw (;:%“)1 ) 7&4’1

A+3
since -?E4L2> gﬁwr for the frequency range in which we are

interested. Thus, we can write:

Te = iw (o) + o/d)) (7.03)

where:

Pt A+2 N T A
ol )= L5 o(;=——7f,‘- , % ﬁ—-—g-é(f (7.03)
o 2p(aau)? p o 2(A+)
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Again, the reason for leaving -iw outside will become clear
later.

The stresses Ppp and ppy for an elastic solid differ from
the ones for a viscous flui, (8.03) (6.03), in the following
respects: (1) ¥ is replaced by § , (B) -p in ppp is replaced
by Ay.s , (3) y is replaced by « , (4) There appears an extra

term -'PT in ppp due to the thermal stress. We therefore obtain:
171)
= MAGl+ Ky)+ piw (49l oz;(p;)+%a(— 9..(‘§r':¢i)+
3

g 3 [0l 3 )]

Sim® 389 DTS
But:
Afﬂ.ﬂ-# {iimd" = AB" [1-. l'mgf,”&”M ]g A«ﬁ{"
' AlA+3n)
YL T N
1 ] Iy " , . , ) LAl
,-'ﬁ,\_'—‘-l)‘a, -}wﬁ 4> +2/a{ 3(4’- ¢1 5;"‘9 5%[,5;“8(3%’%_ EA?)]}('?«-OM

If we now define:

X = 6‘/r £ == w
oy ?%L

and set up the continuity conditions for vy, Vg, T, Ggl and
Prg (remember that v' = -iw§) we see that we obtain equations
which are identical in form with (8.08)-(8.12). This was the

reason for defining the primed potentials and a’", 0"1) in the way
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that we have done. The continuity condition for pr, becomes:

By [ h, 0)-20°4"0)] - B) [ 8w~ 267w |+
+C, & [43"@&{%)- 274, [az)] -+ C,,’ [an’zf;, (%) +2a) '}},” fn,’)]-}-
+ D ednln+)) [@zg: (%) -xf,,/ﬂ)] - 2'-.2}1[“'*')[#]}/{,”) '“jn (@')] -

=_¢ [@"[5, folo)~ Za,“f;," (a, )]

(7.05)

The definition of the primed arguments is in the present

case:

Q,":R _£'_ ) /2 H 2 '}z !
W 2, R(HL),; , £ Kw[ﬁf

)

The expressions iﬁ% and /zg’ are simply the longitu-
dinal- and transverse velocitiesj;f propagation of sound in an
elastic medium. Since they are of the same order or even great-
er that the longitudinal velepcity of sound in a fluid, then if
we assume, as before, that a1 is small, then this implies that
a] and b' will be small alsc. We also see that € as defined
in this section is an extremely small number {for the frequency

. o !

range we are concerned with), and, as before, }ZF’ and E%
Z

2

are << | . The evaluation of the six coefficients therefore
proceeds along identical lines as in VI except now we have the
additional simplification that not only a; and ai are small

but also b' and € . The solution is indicated in Appendix VII
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and the results are:

[<]

B = - é—iq?[,-—- _329.’;]

3&45%;
B, = =w3(1-8 4y (4)
=zl ) 304, (6)+2(8=1) £,(4)
B/ = 3§04
3A+§M
5. & 384.(8)
b 384,(8)+ 2(8-1)4,(8)

C = 5’; 8, f,{a)[%: £:§,u -1]

aj (a]) 0y~ X8, Al ) jo (4)

o Xﬂz’z MZ){BS oy SrH J

)=.
=% 1 (@) 4y ()~ X, () o(4])

0, and C] are identical in form with (6.19) and (8.21).

(7.08)

(7.07)

(7.08)

(7.09)

(7.10)

(7.11)

'We

see that By, By, BJ » B{ are identical with Epstein's result

so that here again the only new thing is the presence of the

conduction wave.
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VIII. ENERGY RELATIONS

Since the primary object of this investigation is to cal-
culate the energy loss, or extinction, due to small spherical
obstacles in the path of a sound wave, we must now turn our at-

tention %o energy considerations.

(a) Viscous Fluid

Assume at first that the obstacle is not present, so that
we have a homogeneous fluid and consider a2 volume V of the fluid.
Let us multiply (R.05) by 4V and integrate over the volume of

interest. Then:

d - T 9y d 2
b‘; (pc,T)dV = H(Tcﬁ 7 S_Fi)-d—f + oV T+ F]dv’
v

and using Gauss's Theorem and the Equation of continuity, this

becomes:

fﬁ; (pesT )dV = f["(?cu‘*' §$)Tv:}{+ FJdV"' #o’%{ oS {8.01)

Y v ]

where B is the surface enclosing V. In II we neglected second

order terms. This accuracy was sufficient for the equations

of motion but is evidently inadequate when energy relations are

0 be considered, and we therefore cannot make the same approxi-

mations here. |
If we now consider a periodic state and average (8.01) over

‘ é period, then the conduction term on the right will give no
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E
contribution. Writing {}E- for the average of the left side,

we obtain:

[- [ (pe,+ %)Tv.g dv]mf [ [ de] (8.03)

ay.
Y

We must now turn our attention to the quantity F which
represents the rate at which energy is dissipatdd per unit vol-
ume due to viscosity. Multiply (2.01) by vidV and (3.04) by

%vgdv, add and integrate over V. Then:

ﬂ:f" 3% +9v. (Vs V)v-i- >U a?+~v v.(yv)+v.v,o Zvv L,Jdv 0

v
which can be transformed into:

IJ;%(P”HV"' [H-deV - Z;wvj'njdv-a —é{pv"w, ds (8.03)
y 5

Y Y

Let us now define the quantity f by:

pe férz
9
Then!
vp= PVF
8o that:

[H'VF dV = (?H'V‘de.—. ﬂ (gu#)- %V'(yz)]dt/:-

< pbucs+ [s2ai e
S Y
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Por the viscous term we obtain:

fu;,’t;,,,ds [ZT oY W~ [Z'T T dV (8.05)

§

where we have used (2.02). Bub, again using (2.03):

2T [ (Z)- 0% |- 2 =Mt 2)- 3otm)

Z e Z[Q(%E)*?,‘z(‘?v)am.;.lf ’-‘717)]-

- IV 2>
=4g"Z () = i (w7)
L
50 thats

Z i ‘9—)( = ZT;IT'"

i
and substituting this inte (8.05) we obtain:?
(8.08)

-

VT df = - T
yz,v.v:,‘r, fm’t,.,.ds 3 ,%:T”T’] dy
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Substituting (8.04) and (8.08) into (8.03), there results:

iaé.t(yv’“d\/-#a%{ﬂad\/ 3 fZ'q -jdv = %('ﬁrf*‘"%f”’%ds
¥ v s

"'J

Again considering a periodic state and averaging over = period,
the first two terms on the left will give no contribution and

we are left with:
512554 = | ot-gt=ip)ndS]  e.on
b3

This represents the rate at which energy is dissipated due 1o

viscosity, so that we can identify:

Z’r't F

Substituting, therefore, (8.07) into (8.023) we obtain:

av,

[ e, e

For the acoustic case, the velocities, condensations, and cou-
pressions are so small that their squares may be neglected.

Hence!
tan*PF~i?Vzg Tow™ P= f)rm
so that:

. {8.09)

= [fl"nnl’?, dS - j(f)ﬁ,,-l- %};‘%)TV'}Z dV:]
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This equation represents the energy loss per unit time in-
pide the volume V. If now, the system is inhomogeneous with
surfaces of discontinuity between its homogeneous parts, (such
as we have for the case of an obstacle) then the surface S will
be the outer boundary surface enclosing the whole system since
from the boundary conditions, Pan and v, are continuocus. The
volume integral must be evaluated over both the inner and the
outer medium. We shall see in the next section that if thermal
effects had been neglected, the volume integral would vanish,
leaving a result identical with Epstein's (Equ. (59) of (3)).
The volume inbtegral in (8.09) thus represents the additional

absorption due to thermal conduction.

(b) _Elastic Solid

From (2.18) and (2.20) the equation of motion is:
oV;
bt VYV = VT - T
S & A Tl

Multiply this by v;dV and the equation of contimuity by 3vadv,
add and integrate. Then:
v 2L + o (Vi¥)U + Nk A 1y Y () —
Pt TPENRTTL T gl 4 g -
Y
—Zwvn-}-[&v:v‘l‘]w-‘: 0
™ Y ~
'S
which we can bring into the form:

i%ﬁm—dv-— [(%ngjtj“ﬁy'f]’)d\/ = -‘_Z’,T(fw‘”l);‘ ds (8.10)
Y 5

¥
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Now, using Gauss's Theorem, we can write:

f%”"?f'} v = %T"“"‘S - [%'“5‘?"&"”/
y b s y

Let us define the following qguantities:

Then, since ‘Tﬁ is symmetric, we have:
3€;:
T-%0 = P T =2
%‘ J 4t ‘Zjl J ot
Consider now the function W, defined by:
2 2 2 2 2 2 Z
N = i"A (exx+ 835+ e;g) +/{4 (e:u"' 833 + eﬁ)"' ;l'/“ (exm(}"' eaa."'exa)

Then, we easily see from (8.11) and (2.18) that:

W
XA T
;!
85 J
80 that:
o s
?3'75‘72 T 4= Jes 3t 3t
) hj i
Henee:

f_ZV:z-t;dw %wf,,"rm,d - 5 [ay
v s
go that (8.10) becomes:

§Yffv1av+§tfwv - [/ATv'ng = f(%-,ﬁ - 397 )7, 45

Ll
L
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Considering, as before, a periodic state and averaging over a
period, the first two terms on the left will not contribute.
8ince, for the acoustie case the velocities will be small we
obtain:
[_ [ﬁTV.y.dl/:l = [%(Tmhp'r)v;’ OIS] (8.13)
) v A av.

This equation states that the average rate at which work
is done on the boundary {right term) is equal to the average
rate of production of heat inside. If we had not taken tempera-
ture effects into account, then the left side of (8.12) would
have vanished and the ternm ﬁTvH would not have asppeared on the
right, giving us the result that no energy is dissipated.

We can identify (8.123) with ”Fdl’]av, of (8.02) so
that (8.02) becomes:

dE _ - - 2
4t [fm Frit [“’ o BITeg ] (8.13)

This equation represents the energy loss per unit time in-
side the volume V. Let the system now be inhomogensous and con-
sider the case of an elastic solid sphere embedded in a viscous
fluid. The energy loss inside the obstacle will then be given
by (8.13) where the surface integral is taken over the surface
of the obstacle. The energy less in the fluid will be given by
(8.,08) which will now, however, involve two surface integrals:

one integral over the surface of the obstacle and a second in-
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tegral over a surface surrounding the whole system. The total
energy loss will be given by the sum of (8.09) and (8.13).

But since, from the boundary conditions, 7;;'IKTL=PN) on
the boundary, the two integrals over the surface of the obstacle

will cancel and we are left with

dE
i rmv;\‘ds- [ Cy EE ’
it [f’o ,(? ‘*DT)TVEWJW (8.14)

where the surface integral is taken over the boundary of the
whele system and the volume integral is evaluated over beth
the inner and the outer medium. We see that (8.14) is identical
in form with (8.09). The various coefficients involved, however,
are of course quite different.

Equs. (8.09) and (8.14) are the expressions we desired to
obtain, since they will enable us to calculate the extinction

of the incident sound wave.
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IX. CALCULATION OF THE EXTINCTION

{a) Viscous fluid sphere

We must keep in mind that p,,, T, and vn in (8.09) stand
for complex quantities, supplied with the time factor e-iwh,
In actually evaluating (8.09) we must replace these terms by
their real parts.

Consider now two functions, f and g, both of which having

an exponential time dependence. Then we can write:

Ref. R = 3Re(fq'
[e ag,]w, 3 Re (497)
Applying this to (8.09) we have:

oo Lz %,, v¥ds ~ 3Re f[?f-* EJvrd oo
Y

We now take as our surface a sphere of radius large com-
pared to the obstacle, and concentric with it so that the nor-
mal components become the radial components. We saw in VI that
both the transverse wave (described by the vector potentialiﬁ )
and the conduction wave (described by the scalar potential ¢, )
are absorbed very quickly. Henece, since the radius of our sur-
face is large, we can in +the surface integral of (9.01) neglect
any terms which are due to eitherii or ﬂh. » Then, from (6.03)

and (8.05):

~ az¢) 2 91 Y A
le - p-2 3 - Ky pdi-2 10 iwpd,



-47=

since the second term is negligible compared to the first.

80 that:

c§pm, XS = —twp,,fcp,—i dS

{9.02)

For the volume integral, we obtain from (5.04) and (5.03):

A ( [gerr (2) Jroe "o = = (B 15 ) ( (o o+ v Y =

outside
(5 )R [kl ks ol g

2
But «, and ﬁf are imaginary while ¢{ and ,% are real. Thus,
the first and last term are imaginary and will not contribute.

Henoce:

ke ffs)fﬁ ) Fromgavs (£ ege) ke k) Re [ogtar

3

But:
2 «* w2
“’1%1 ‘)‘d‘agz = — %{T
s0 that:
0.0 g 4__
ovtside
Similazrly:

Reﬂ?c +{ ]Tv-v dy = --f-—i- )+ otvt"‘ 23[4: (P*dV (9.04)

msife
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Substituting (9.02) (9.03) and (9.04) into (9.01) we obtain:

g-i- =2 wﬁwf%w,)_@ B )ds + ‘j‘;;‘ ji:; fm v +

msldﬁ

Lo X
+ 298 1+ )R (g7 (309
oviside
since outside the obstacle, we must identify ¢] with 4¢+4ﬁ
Let n be the number of cbstacles per unit volume. Then

the total energy loss per unit time per unit volume will be

E
h-%%- » 1f the obstacles take up only a small fraction of the
total volume. The relative energy loss or the extinction per
unit length of path will be ‘f‘fﬁi where E, is the average
0

energy which the incident wave carries across unit area per

unit time.

From (9.01) we obtain:
X
) XK ) . a i }
Denoting the extinction by o we then obtain from (9.05):

I

_h e,
«= - I+%& (+ 38T, + 4 (14 42)7, (5.06)

ol ¢

where?!

Iﬁ&i%{rpﬁ@) ¢l+¢)ds ) Ly Pe{cM; dV, L= @efc}m})%d\r’ (9.07)
5
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These integrals are evaluated in Appendix VIII. It is also shown
there that the result for the first approximation to the extinc-
tion (9.08), neglecting terms of order af and tﬂl compared 1o
unity is as follows:

3
o = ZIT/EIR {,a)ga(s”s,)-f -%’% l+éi-€£)l?e S BC) )=

—%;‘—’-(l M,)!Ze_ C»ﬁ[az)} (9.08)

S8ince we have neglected the absorption of 4{ and % , & then
represents the additional extinection due to the presence of the
obstacles. The first term in (9.08) is identical with Epstein's
result and represents the extinction due to viscosity alone.
The remaining two terms come from the additional absorption dus
to thermal conduction.

We shall apply (9.08) to a few special cases in ‘the next

section.

(b) Elastic solid sphere

The only difference between this case and the one just con-
sidered lies in the volume integral over the obstacle, as can
be seen from (8.14). Using {(2.87) and (7.02) we obtain, omitting

the primes:
Re fTv.g* dV = Re [Tu‘w Vs g*dl/=

wside

s fe (At g A o
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2.
Since &, o, and kj are real while k, is imaginary, the last

term will give no contribution, so that:

Re ( Ty ¥dy = w Re. ([o!,ﬁ,z S+ (o{,_ﬁ,zq-ol,zzf‘?')(j;,cff]d 4

But:

2

dz’ﬁlz"' 51' ﬁj‘z ,-'?"' 1%3%

since for the frequency range we are inberested in, the second

term is very much smallex thah the first. Also:

ol b=~ b B
oy ﬂgf
80 that:
Re [Trnar =~ L fcpfp a1+ Re [pgtav
|%§1dﬁ

and hence we obtain by similarity with (9.05):

.._.. ---fwﬁ@n é(lh-&-fp) (1# ¢)9{§+ PWJ’ (H ¥y )6?2 [@"‘P )LP*dV-}-
2 ae;(f'f’ “’K ] fw*dm Pe[¢’¢ dV] (9.09

where we have written dJIC for (%ﬁ) ) KX  being the iso-
y

thé:mal bulk modulus-
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Defining the extinction in the same manner as before,

there results:

h L
= ;%—[ Is—i- %’g(ﬁ”i— )I ‘i"%;"(f’kuj*"(vlz)( y‘f' Iv)] {9.10)

where Ig, Ivl, and IVg have been defined by (9.07) and:

It is shown in Appendix IX that the first approximation
to the extinction, neglecting terms of order a2 and a2  com-

pared to unity is as follows:

o= MZ ﬁa(33)+ = (e +okX (“’"B’+ Re — B \(4))~
& ﬁ g )52 oo

- B L)t L A

(9.123)

Since we have again neglected the absorption of ¢; and ¢,,
{ will represent the additional extinction due to the presence
of the obstacles.

We shall apply (9.12) to a few special cases in the nexit

section.
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X. APPLICATIONS

Since equs. (9.08) and (9.13) are still rather complicated
formulas when the expressions for the coefficients are substitu-
ted, it is best to consider a few special cases whigh are of
practical importance, and for which some further simplifications

can be made.

(a) Water drops in air

This case is evidently of great importance in connection
with the absorption of sound in fogs. Since the average radius
of the water drops in fogs is about 10~° cm (10), we see that
our assumption of o= %5 & | will permit us to go up to
w‘\-lﬁssec'l Without violating any of our approximations.

The primed guantities will pertain to water and the un-
primed ones to air. BSince water is much more viscous, much
heavier and a much better thermal conductor than air, the para-

meters ¢ § and Y will be very small. The actual values are!

€ = .067 3=.mm7} X = .04

Under these conditions we obtain!

a.alfi (all)
%[\ 0)) A, ()~ Xy, (a]) A (a,)

o
e
|

RSEN

) (10.01)

Llm ~o Lt g 8, (4)
0 In!t ) .
G iyls i la) Ay(4,)~ Xajo(8]) 4, ()
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Even though X 1is small, we cannot neglect the second term in
the denominator of Cp and 65 because for very low frequencies,
when ag and a} are also small, we can see from Appendix III
that the first term will be proportional to Jw while the
second term will be proportional to }ﬁ; so that as w— 0,
the second term will eventually predominate even though X<<) »
Substituting (10.01) into (2.08) we obtain, after some

slight rearranging:

X = 4TnR? {__ﬂ_i ?Q( G;;)

[a’ir( £ y%te g B
45&3 1 dvc)’—

®’ ddk’ ﬁﬁ

.. 8 4,(%,)(,(4)
“L(H f,%)] aze!,. 8, [, (8) b l8,)~ X4, W8, (4,) }

But:
Il

$L a0y 4o
o/ e "ot 3

Hence, we can approximate the bracketed factor in the second

term by:
M[ ] .J_C_"' }’;" — W G
LS - (R -4 i)
C \*
since g E,) <) ,» in our case. This essentially means that

we could have neglected the term arising from the integration

inside the drop. Using (5.07) we then obtain:



ae IR { - (i) +

' ! (a)) A (8,)
+ (3~ H“X'&,L e L RZI,[R,) 118,
(3 )( o(,rC) e B, aij}(a;{)/ﬁo[aa)_ )(alj'g(qli)/g' (4,) (10.02)

We must now investigate what happens to GBl if ¢ and.g

are small. Under these conditions, (8.22) becoumes:!

'B, B B ‘B) 1t
Gal?= } ) Gﬂl ==-3 ; Grﬂ =_2.l({_. 'g'z) ; Gm = é(&-,@)

A
Gao=' 2, Gm:-‘}g ) G;pa"g'-‘é / Gu= 275

Here, again, we must keep Gpy and Gy even though 8<<J_ » be-
cause for very low frequencies, b and b' will both be small, so
that the first and third term in the denominator of (8.15) will
be proportional to fo' while the second and fourth term {those
involving Go1 and Gll) will be proportional to Dﬁ;’ » So that
as w—>0, the Gp3 and (71 terms will eventually predominate
even though §<<| . Using Appendix III and the calculations of

Appendix VI we obtain, for the case that € and 5 are small:

4 |
6o =~ 2w T Y (10-03)

274000 2418)-p(8)

The difference between this and the result of Appendix VI con-

sists of the fact that here g is small whereas in Appendix VI



it was identically zero since we wanted to go back to the case
c¢onsidered in V.
Substituting (10.03) into (10.03) we obtain the rather

complicated expression!

dnkw [~ . AL) )
=——{-Re (=
¢ {1 A8 1y 93 A8 i) *
=TAAM) 185060~ o)

c ,,g[ﬂ;) l
+ (y-1) |+ == Re - (=
) ( ,,1,&1) 8, by a;) [— y fel8) B ()

Jiw) " hula) (10.04)

It would be very cumbersome to evaluate these real parts exactly,
but fortunately this is not necessary in our case. Due to the
smallness of & and X we see that the second term in each de-
nominator will be of importance only when b2 is smaller or of
the same order as § , and when a.” is smeller or of the same or-
der as X . We can therefore replace the second term in the de-
nominators by their assympibotic expressions for the case of b,
b?!, ag, aé small. This will of course not hold for intermedi-
ate or high fredquenciés, but then the whole second term is so
small anyway, that it is immaterial what form we assume for it.

Subject to these approximations, the real parts in (10.04) ean

then be easily evaluated and the calculations are indicated in
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Appendix X. The resulting expression for (10.04) is:

\ L
dtﬂ'gﬂ{ ?ﬁg H+FE}+ (d“')(’jdw’c*j [f—-%@} (10.05)
+ (3B R A

The first term represents the extinction due to viscosity
and the second term is the additional extinction due to thermal
conduction. As ®—0, only the first term remains and our re-
sult becomes identical with Epsteinls®., If in addition, the
frequency is high enough so that (%§£)1<<] » then we are left
with Sewell's result. We see that (10.05) gives zero extinction
for zero frequency which eliminates a bothersome point in SeT
well's theory. Since in Sewell’'s case, S was not small, bub
identically zero, the denominator of the viscous bterm was unity
and hence Sewell came out with a finite attenuation at zero fre-
quency. This difference in behavior, as pointed out by Epstein,
is due to the oscillations of the droplets, which were not taken
into account by Sewell. These oscillations will become more im-
portant at the low frequency end, and less important the heavier
the droplets are compared to the surrounding medium. These con-
clusions are borne out by (10.05). Since x#’=-ﬂ8£% we see
that the deonominator of the conduction term in (10.05) is also

due to the finite density of drops and is therefore connected

with their oscillations rather than with thermal conduction.

#Epstein considered frequencies that were high enough so thatb
(3v/p%)*<<] , in obtaining his equ. (89) from (80), and thus
came out with Sewell's result for the special case of fogs.
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We note that %%m has the dimensions of an areaz, and it
represents the absorption cross-section per drop. Denoting

it by o, we obtain from (10.05):

GA*AZR[HZSV (+W} . I)HM‘L{(J @E)J (10.08)

R’w R"w,y

If we now plot against R3w we obtain a uniyersal

%R
plot for all R, which is quite an advantage. This is done on
Graph I, where we have also plotted Sewell's and Epstein's re-
sults for comparison. We see that for Rw ¥ 10 Scm®sec™l, the
inclusion of thermal effects just about doubles the extinciion
that would have been obitained if viscosity alone had been taken
into acoount. We also observe that for ng’f 10-3 (which cox-
responds to w& 10%sec™! if R~ 10"%cm) the absorption is much
more strongly frequency dependent than would appear from Se-
well's result.

We shall compare (10.05) with experimental findings in

the next section.

(b) Air bubbles in water

A great deal of experimental work was done during the war
in connection with the absorption of sound in water due to air
bubbles because of its bearing on submarine detection. Recent-
ly, a paper by Loye and Arndt appeared on the acoustical insu-

lation of a submarine repair dock by an air bubble screen a-
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cross the open end of the dock (11), and it was found to be
extremely effective. It would therefore be of interest to ap-
ply our equations to this particular case.

Here we have the opposite situation to the one just con-
gidered. The primed quantities refer to air and the unprimed

ones to water. If E,S and X become large then, from (6.33):

oo }

B,
Cu=-6, Gr=5(-8) | 6/=3 , 6<-%(-g)

G""a‘ESJ Go:.ass(?‘:gz)/ GI.D: 358; G "3(9&(9")

Substituting this into {6.15) and using the relations of Appen-
dix III, we obtain:
~ A () 44.(4)

BE - .
(-ﬂ* 6) A8 - &4, (8) (10-07)

Also from (8.16) (8.18) and (8.20) we obtain, if § and X are

.S  la_d S ¢ ook byt __ali(%) (10.8)
B=8, L2 R 4 230 MDA )

If we now substitute (10.07) and (10.08) into (9.08) and make
use of the fact that 3:?3?&%91' , 1t can be shown that the
term in (9.08) arising from the volume integral over the outer
region is negligible. We then obtain:
4Tk (a?e-i 264 19)-44,6) (ST Je )e f};(a:)]

2 H-Oh1)-4419) & ¢ aljle)

“ﬂ
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Closer analysis reveals that for the case we are consider-
ing, the first term is negligible compared to the second, since
SG%f)?l . This essentially means that the main energy loss
occurs inside the bubble and is due to thermal conduction. We

tThen obtain:

A= 47-an S( N :+#—f;’—z)ﬁeﬂi1{;‘3 (10.09)

The real part is evaluated in Appendix XI and the final result

is:
ITRRE'S ey 1 1] sinh22+5ind2 )
= —E-—-. S(C,) (} J‘XH j;l_cl—") (2 cgshlé—COS"i 2 (10.10)
wheTe! 1
R= R ."'Z.d’_
4

Thus, the absorption cross-section per bubble turns out o be:

2R
5= ZR A Fl2) (10.11)
wherea:

. J[)

- w85 [EV ) L 2
A= RS (50 a,,)(l-i- f,c,z) (10.12)

sinhlz + Sindz

Fla)= 2 cash"z- cos*2 2 (10.13)

so that if we plot G —+ :mQA against 2 we obtain again a uni-
versal curve for all R. This is done on Graph II. It can be
shown that for i’Z‘z' , F(2) is proportional to wz while for
233 , F(2) is proportional %o Jn . ‘Thus, as in the previous

case, we have a strong frequency dependence for low frequencies.
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Whereas in the case of fogs, the extinction due to vis-
cosity and thermal conduction are of the same order of magni-
tude, for the case of air bubbles in water the exftinetion due
to thermal conduction is the dominant term, which is a very
interesting result.

Assuming reasonable values for R, we see that the extinc-
tion calculated by (10.10) will be very large, indicating that
an air bubble screen for purposes of acoustic insulation would
be very effective.

| We shall compare {10.10) with experimental measurements

in the next section.

&92 FElastic solid obstzgcles suspended in air.

In this case 8 will be evidently small, and since mosi
solids are much better thermal conductors than air, X will al-
$0 be small. By analogy with part (a) of this section, the
second term in (9.13) (arising from the integral over the wol-
ume of the obstacle) will be negligible, so that we come out
with a result identical with (10.05). Hence, to omr approxima-

tion, the influence of elasticity is imperceptible.
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XI., COMPARISON WITH EXPERIMENT

The absorption of sound in fogs has been determined by
many observers, but in most cases an analysis of the water drops
as to distribution in éize and number was not attempted. This,
of course, makes it very difficult to compare the measurements
with theory. Recently, however, Knudsen (5) made some new
measurenents, using the reverberation chamber technigue and he
also determined the size-number relationship for the droplets
used.

If V, represents the total volume occupied by the obstacles

per unit volume C% is thus dimensionless) then (10.05) becomes:

.‘Y&
B _3_\4_ 3/a 2, (8")(14 o(fcf') & YrRw kK
o= cR“[ e () i+ (L (}*}3;) -01)

m sz‘yl

Now, Knudsen split his drops into five groups according to
size and determined the number of drops in each group. The
quantity V(pertaining to all the drops) was also determined,

We can then calculate the extinction for each of the five radii
with the same ¥, for each and then take a weighted average ac-
cording te volume. The resuliting curve is shown on Graph III
where we have plotted the extinction (in db/m) against frequency
{(in cycles per second). Knudsen's experimental values are also
indieated. We see that the agreement i® rather good at the
higher frequencies, but the points for frequencies of 500 and

1000 cps fall slightly below the calculated curve. This may be
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due to the fact that at the low frequency end the errors in
measurement tend to increase. The dotted curve on Graph III
indicates the extinction we would have obtained if thermal ef-
fects had been neglected, which would give values btoo small Dby
about a factor of two. Thus, the inclusion of thermal conduc-
tion seems definitely to be a step in the right direction towanl
a2 better understanding of the absorption of sound in fogs.

The data taken by Loye and Arndt (11) does not lend it-
self readily to comparison with our theory since no analysis
of the bubbles as to size and number was made; The bubbles were
produced by compressed air being passed through a2 hollow pipe
with holes drilled in it at regular intervals. If tahe airilow
is kept fixed then n will be roughly inversely proportidnal to
RS go that the factor in front of F(2) in (10.10) will be in-
versely proportional to RS. Now if 2~ 3 or greater, F(2) is
proportional to R so that the extinction will decrease inversely
as R. It would thus be advanitageocus for purposes of acoustic
insulation to use a larger number of small holes, rather than
s smaller number of big ones. This effect was actually observed,
but undoubtedly it was also partly due to the fact that the bub-
bles made less noise upon emergence wnen they were small. On
the other hand, when %~ % or less, then F(z) is proportional
to R% so that the extinction will be proportional to RS, It
therefore appears that for a given air flow there exists an op-
timum size for the holes for maximum abéorption.

Hartmann and Fecke (4) measured the extinction of super-
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sonics in aqueous suspensions of lycopodium particles of den-
sity 9‘ = 1.00 gr/cmg. In this case 8 = 1 so that from (7.07)
Bl = O and thus the first order extinction due to viscosity
will vanish, but the extinction due to0 thermal conductivity
will not. Bince in Epstein's case the additional term due to
thermal conductivity did not appear, he calculated the second
order terms in the extinction due to viscosity and added the
additional energy loss due to scattering but came out with a
Tesult that was still about 10 times too small., Since in our
case the first order extinction due to thermal conduction still
remains, it may be that this additional term will increase the
caloulated values by about the right amount. Unfortunately,
however, certain constantis of lycopodium which we must know
for numerical computation have not been determined, so that it
is not possible to compare our results with these particular

measurenents.
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PART II

This part contains the various mathematical appendices
referred to in part I. We shall here adopt the same system
for numbering equations. If reference is made to an equation
of part II, the number will be followed by the letter A (such
as8 3.044). If the letter A does not appear, it is to be un-

derstood that the reference is made to an equation in part I.
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APPENDIX I

The solution of (3.03) is:

4wy +wd-c % [(é‘w" + (Wi~ Cz) + qa‘{’w éﬂy.’- )J

A= (1.01)
29 (4v+ 7)
wy
Let:
A= Fwv+wk | B=c?
c=bday , =ik we* (1.02)

J

Then we can write (1.02A) as follows:

A= 22 (iA=B) [}i—(H— _éj_l_?_)'/z]

C+1ID (fA—jB)"
It turns out that as long as w < 107sec'1, then we can write

with sufficient accuracy:

Q1£23 =2 «)
(iA-B) B*

since A & B, 0 K D. (8ee Table I for actual values in the
case of air and water). Since in our later applications we
shall not go to fredquencies beyond w = 106599'1, we can ex=-

pand the square rooct and, taking the lower sign, we obtain:

ry WL Hex?) (13 14-i2)) (1.05)
T UASB T4 B Byt

using (1.02A) this becomes:

%la- [P+ E’( Vﬁ*ﬁ“———)}



-87-

Since the imaginary term is small, we have:

iy

cl

he [+ BB+ 20-p)] (08

Combining (1.03A) with (3.01) there results

2n w*
2 L DI A (2
joles D)L [J+L,_B_lﬁ1)
= 4B (D L&A
= {I-H('%l—} > "’15“)]

In (1.034) we had to keep terms of order 4é and ?ﬁ§-since they
were the only imaginary terms we had (indicating absorption)

but for k; this is not necessary. Hence:

Bz Aiw'B _ wy
2 '7_' - 4

80 that:

A, = ("”)g (1.05)

(1.04A) and (1.054) are the desired equations.
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APPENDIX II

The solution of (3.08) is:

T h
A= Fpu + (M 20+ M) % {fﬁ?fow1+fw(r\-@u+m)] - 4;,'&?9“,‘:(,3.,%)}
24 (A+3M)

This can be written as:
2% 2

. . 2w, (P+2u) 2wo,M R pw Ja.
/ﬁz?__ ﬂ{ppuﬂ%ih][f)-l'l%u—i- M) T (f“*‘;‘k-}'ﬁ){}"' (A+~’3a+m’)a_ ..(I)'I‘IA&—*JPH)L (ﬂ"'ﬁ/k""ﬁ)l}

2R (A-}}u)

{2.01)

We can estimate the magnitude of M in the following way:

we know that:

%) 3./
(sg;’v-:“ V(g)r'v ?’;—)Tf- K

where X is the isothermal bulk modulus. For most solids:

- 7

O(Y,»)o‘s "c"} _'J_Z_mfr;>”'z;l;.:m.as-m'ﬁ:‘L » 80 that (gg |~ 0
Since for most solids A and i are of order 1011, and Cy is
of order 10° ergs - ¢t - gr‘l we see from the definition of

¥ that M is of order 107, so that M K\ or M4 . Now consider
the terms inside the square root. Since # and .P are of order
1 for most solids, then at w = 106 the terms inside the sqQuare
root are of order 10"5, 10-9, 1010 respectively, so that we

can expand the square root. Then, (2.01A) becomes:?
-1 , : L Wi, (A7)
e [2;;((,“;«)] [ﬂfpw"'ﬂ- iw (d+§a+ M)x lw(A-i-}a-a, MF _H;_Zﬁ:f_
£ WHPM R Rl )
A+2u+M 2(A+}4,.+M) 2(,”}“_)_”)3

{2.082)
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Taking the lower sign, this becomes:

_ A, ay MZueM W (B ]
A= [za'e(,igu)] [Hfﬁ,w (H f\+/}“ M )'*‘ 2(A1§,,’+M) (] (A+}u+H) )
Since M <<A o%/u > W& have:!

A+26-M [ +;7m)?“ ~ 2M
+ o> )— = -
| A+ 2urH / (A+304M)"  A4du
so0 that: 302
w 0, M
e f+3 (d+2m)

! A+}m

Since the imaginary term is small, we obtain:
~ I( (wﬂ? M
/&'—w JJ{A+ )
}” )

which is (3.07). Taking the upper sign in (3.024), we get:

i 33{*2',, (A42 )
Tty g S5 O LT

= al,. WM
—[23?({\"’%11‘)] [ﬂlw ((H‘,;/IA‘}-M)‘I‘ /\f}“ ({H,}ga)" ]

Bince the second and third terms are negligible compared to the

jLQ?[b+i)ﬂg%;

first, we obtain:

whickh is (3.08).
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APPENDIX 1I1

We shall find the following properties of the spanerical

Bessel and Hankel Functions very useful:

e !-5---X-h(2m+l) (}qz{zfs) Yy (2)4-}):;(2?1-#5) T ) (3,01)

b=t (1L )

[ Z (ntn)]i*
(r-r) 12 (25" (3.02)
Also:

Xfa 9= o) = Xfom (%) (3.03)
xj}f (x) == {41 X)+ Xfue (x) (3.04)
(2n+1)j',,(x)-—~ Xfom () X (x) (3.05)
J o () ~2x o (K) = -Xj,,(x) n(h—l)J,, | (3.08)

and identical expressions in which j;hd is replaced by dﬂﬂv

If x is small, so that we can neglect X3 compared to unity,
then:
OS nfulx)  (n#0) (3.07)
Al s~
Ko () S~ (n+1) 4, 0 (3.08)
~ 2 nl h
X .
j{) ﬁn+0' (8.09)
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hoe 2 xe)

T (5.10)

In the following appendices we shall find occasion to use the

two relations above very frequently.
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APPENDIX IV

The coefficient B is given by:

A‘B
B -

where, from {5.09):

~afule) o hl(a)  -n(e) A (8)
Ay = - jula) A, (a,) _AR)- A 14)
d'a'ﬁ" o) "‘/laz’g»l (a,) 0 J

qlzﬁg(al) 0[3: (a,) ~wlna1) Ay (4)
A= A la) Afa)  ~AR)E)- 4 18)

h

Lah(a)  wa hlls,) 0

Hence:

by = wfo) A1) [ o utar o) - 0,fil0)Aule)] ~
- () a6 R ) [ 84 (0)]
and using (3.07A) and (3.08A) this beconmes:

8 & wlns1) o (6) [,xzai“,. ()4 (1) = i (3) (ﬂz)]“

~(o4,) 8, "f." (a) b (5,) [Mh)_{*@) +4, [£)]
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The two terms in the first bracket are of the same order ex-

o,
cept for o« and qg » But since };~Fx| ¢+, we have very nearly:
2

ABhg n(zﬂxj.ﬂ[al)’gh (g)/g”]{ﬂz) (hlh'}’) - lgjﬁy{{j}) i h)

and using (3.03A) this becomes:

by & 40,6, 00) 4 10) 4, (6) (4.01)

h}

For A we obtain:

A= "h(h-i- |)/£”/»g) [’(zaz’gh[al) ’&,’ {ﬂz) - p(,ﬁ}j:(ﬂ,)/% (QZ)J+

+ (oot 00, 0004 0) [ 402 10)+ A, 9)]

Again neglecting o compared to a; and using (3.08.A), we get:

AS o 0, 4) ()4, (@){ (w4 1), (8,3 + (n). 4, ’“J[H Zj’fff”

and using (3.044):

AT oy 8, A (ns)) 4] /dz)j,, (a,)j,,_, i£) (4.02)

Cowbining (4.014) and (4.024), B, becomes:

. h[;,m,pé’,ﬂ, (8)

= -~

()4, (44, 19)

and from (3.094) (3.104):
~ ‘ 2 h. n’ /f;”(g) 2na)

-

=~ (4.03)
[2n+.’2) [.?b 1)‘ ,,2“['8) :
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For Cn we have:?

where:
ahla)  ~4 fplay - n(na1} A, (8)
Cp ’Rh (2,) - fh(al) N 'g'gnj (€) '/g”/'g) -

28
)

Ay ) g

~ nos)e o (9) [l R, (0) - 0,200 )fu(o)]

and using {3.034):

A, X (har) o, 0,5, (8) I (83 A8 = fn (0) A, (a.b]

But from {3.09A) and (3.10A) we see that the first term is of
order }éf and the second of order unity so that we can retain

enly the first term. Hence:

C =~ ol o [4) _”mﬁmJ&ﬂmJ
" b A )AL 4 ()

Using (3.094), (3.10A) and (3.04A) this becomes:

[ - §:2hwn! A18) a"
&, 2h). [(h-n),gh[gl)_ az,ﬂn_‘(ai)] ,gj,h_l (,g) (4.04)

Also:
a\ ,K: ( ﬂ,) az.’ﬂh’ (al) - a}]h’ ( ar)

o= | A (a) A, (a;) - [o(@)

by ()8, oy AlMn) -, j,.’ (a)
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making the same approximations as before; we obitain:
e ) -
A'_l)” = - d‘kalﬂ;/gﬂ {al)Jh[nl )’gn“ [RI)

Hence

Ap ~ Bla)hen(a) ) ~ 2! G,
D w === -—.;(-———-i—— —
"oA Aoy 42k (m)! 4R (8) (4.05)

B

When n = O we must solve the following set of equations:

a4 (0B, + 0,4/,)C, = - a jd(@)
o8 A (0B, + o84 (,)C, = ~ 48,(5(a)

from which:

A= (ol=d) 8,04, 4 )4, (a;)
dg = ~ () a,alf,’[a,),ﬂ,‘ (ﬂ;)

A, = 0

go that:
BT~ 30, (4.08)
(=0 (4.07)

Equs. (4.03A)-(4.07A) are the desired solutions.
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APPENDIX V

Consider at first the case when n = 1. We shall have 1o

evaluate determinants of the form::

{This notation will cause no confusion with the coefficients
in the expansions of the potentials).

Let us now investigate the determinant of the coefficients
of the unknown in equs. (8.08)-(6.13). Since aj and al are
small we obitain, using the relations of Appendix III:
Ax-2he) ,  As—pl)  Ays=adklle) | As-aji)

As=-24(8) , A= 2, ()

’B): ng(ﬁl ) ’Blz-j,(a,) , /Bb’ /ﬁ,(ﬂ,) ) §q=-f|[ﬂ21)
B~ kRO~ A1) Bk 8) 45 14)

C1= dl’zl[“‘) ; = 0/;)];(“:') ; C}.: "(1‘%{'32) , Cq = “’(1{: [“z’)
?12“2)(0"]'&/13,] ; —Dz_g—o‘lljfl{aly ; —D3= XD/J_Q)_’Z:{QZ) f ,Pl,- = “ﬂ(z)ﬂ;fnl{'ai)

£ -3hia), E* 0, E3=~saz/&{n;), Ey= 8] fu(1])

=-£8U)8) £ - ’zﬂ ()



Frehndn) , R¥-47w) K= el8hh)-24"0]

=4 )+ 2000y | Fom e [4R00)~A (8] F =4[5 (8)-506)]

ﬁ(i d]l
Since ,;(;}«I and };Jal we can, in view of the results of Ap-
2

pendix IV, neglect all terms involving «, or ﬂq in the deter-

minant. This means that we can set G = C3 = D1 = Dg = 0. TUn-

der these conditions the determinant becomes:
A= (C;’D,,~ C"’D“’)[(%Afﬂf"‘ﬂ )E) At (AﬁEs“A:Ez)(’Br F-BF) -
-(ASFL - Ang.)'BzE, + {‘35E6 ’/B;E:r) (’41}3 - AJF;)— ('B.':F; _',Bth-)AzEJ +

. +(£5§-E£F;)(A,’BZ—A,_’B,):{ o

Now:
EF, = 3ebhuphla) . BE-BF = [e(f-n)- 4" ] @IAIG)
BE = 3efla)h) | AR-AF < [e(f-n)+28%] ) ,)

AE = 35};@:)}./;:,) , AB-AS = 3084 )

BA- A = 2 [(10084,18) - A1) 18]

sk, = [6-4" e(6-4%)] A,6);.(8) z-[eef’, (4)4,(8)- 44, /i)f',,wﬂ

AE-AF. = & [3(5-,) UIA) (8B4 18)- ¢ («%’Wﬂ)]
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BE,-BE, = i[é-z'z—s(é-«zz)] i ()h02) + (:—e)fe'ﬁ,{é)f, (4)+
4 [£16-8)~114,18)81,(8) + [e~4(-47)] [ (8)84,14)
BB, = 4635004 4+ fe- ) £ U044 16)+ (1-30) 4 P D+
H5-e)bhy ) 4)]
EF-EF =2¢ { 3(8-87)A,4)518) + 48' [ 44, @)i(4)- 4, ré’%{#)]}

Substituting these expressions into (5.01A) and collecting the

different combinations of Bessel functions, we obtain:
A=p (4)A(a) (¢3-¢,D,) IA,,O 44 'J;,(s'),é’, [8Y+ A, 4 'f',,(g))z, (4)+

A, 5 (I B, (A m] (5.02)

where:
A, = (¢) (85247
By = €8 [3fe1)- 3476 47
A, = €82 [3(e=1)+ 1 47 [+ 42 (8% 6)+ bed™
A, = 38 f§0-€)s 3 (e~ 4]

{5.03)

The coefficient By is given by %gz where Ag, is the determinant
obtained by replacing the first column of A by the terms on the
right sides of (8.08)-(8.13). Hence, now:

AJ";-—J',{a,) ) By= "fl{ﬂ') , == %0 , F¥~ e'gz",/ﬂ;)
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and all other elements are the same, so that (5.01) becomes:

by = (£52, - 625) (‘4555 ~ Ak, BE - @,,EJ (’O’E—AJE)

where we have made use of the fact that Ay = By, Ag = Bg.
Again collecting the different combinations of Bessel funciions,

we obtain:

Ag,= )N~ C,) (6% 8) [Afl’ LA+ 8, 8 (00A16)+

sty 8O A B+ A (8 (e)] (5.04)
where:

. 3 ? 2(6- 4"
A<, py=£(6-43)-3 4= - 5(6-47)

ay= 3[6- 47 e (- £)] (5.05)

Dividing (5.04A) by (5.024), dividing numerator and dgnominamor
by v* | and making use of the fact that 34’= ¢4* ana 5'(23 [A)?ginf
we obbain (8.15) and (8.33). -

To solve for B{ we must evaluate ‘AE} which is the deter-
minant obtained by replacing the second column of A with the
right hand terms of (8.08)-(8.13). Comparing AB# with 4 we
see that to our approximation they differ only in so far as Rﬂ
in A ie replaced by & in Ay , and that the b in the F, ele-
ment of A is replaced by £6* in the Fo element of Aﬁ’ » Hence,

we obtain:

EF = 347, A(8) , BE-BE =- 2, fa,) 4
BE = 3ef(n)him) , AR-AR = 3¢(8-4)0)h0,)
A2E| = ?)Ej){ﬂn)oﬁ, (ﬂ.) ; A,@l‘ A{B} = 3‘(‘ (ql)/ﬂ' (a')
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Otherwise everything is the same as in the calculation of A

and we obtain:?

81 = (1 )k (2) (3 - ¢;3,) [ i j,,w')ﬂ,(é )+ A?]’)«,”’ W[8)4(8) +

7 AR (6187 )4 w (.00
where:
82=36010-6), A2 effle-)- 3eb] | A% efi[fes 3]
A’f@ cé [27(f-s)+ 2 [ef>- 45")] (5.07)

2

Dividing (5.08A) by (5.02A), factoring out a b in the numera-
: 2

tor and denominator, and making use of the fact that o4 =€f -
l a, oo ' 3 x

and that fK %&Mﬂ‘" ﬂ/&; we obtain (8.17).

Having found B, and B}, we can determine Cj and ¢{ from

'
1

tions. We can write (6.10) and (8.11) in the form:

(68.10) and 6.11) since D; and D, do not appear in those equa-

C.-D‘z.’ﬁl[az)— C:]"(:z’f'(aﬁi) ”='/P| (5.08)
€ X la) ~ Clalalf) = &, (5.09)
where:
P = /f,llo(jj‘[a,' ~ o ()(&,) =B, A (@) (5.10)
(Q| = /B,)ol\)fl(ﬁf) - XG{)S‘) [ﬁ.,) ‘}'2‘81}(0(\ ‘ﬁl [al) (5. 11)

Uaking use of the fact that the arguments are small, we obbain,

using (8.15) and (8.17):

Te sa, [5;‘1 bgy =1~ ["5)631]
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Q__": éﬂvldl[:‘ G"Bl X+ 27((1—3)&3,]

Hence, making use of (3.04A) we obtain:
Y O NAERE TR ICIECIE

= =syol, [2()(-1)]1(&;’)/2,[0,,)-}- a:go (“z,)/gl(ﬂ;)‘ Xﬂz‘go(az)_(» {ﬁi)J

{5.12)

AC)= -7'012)“;)1‘)][“){,)+ Q}D‘;.{) (ﬂ;) =

==Zolply i};{nz)[zm—sd'éﬁ,u[l -00-8)6, ]sz (a;)L‘ .B]‘) (-8)G J} (5.13)
Acy= Ry b fa) =7, xot, B (4,) =

-~ ;'nz.aza,{,ﬁ, ) [(23)% €5, -3x]+ achola)x {"*("5)6%'2'}!%:]] (5.14)
Combining (5.124) (5.13A) and (5.144A), we obtain (6.19) and
(6.21). Since we are not interested in Dy and Di, this com-
pletes the case for n = 1.

When n = 0, we must solve the following set of equations
(where we have already Simplified the terms, due to the smallness
of aj and ai):

~“B,a/,/6)+B] &)~ C,auill)+ (4] ()= o j}(a,) (5.15)
3,,0{,%,(:1,) - ’B,,‘d,’j,,{a:) + C,,ozzxg,(az) ~ () f” (a}) = =4, 5;, (2,) (5.18)
DX &)+ Bl a)fat) - Coet Ay lny+ Gl el ) <xfiln)  (5-17)

e [H, (a,)~4a,£,fa,)]- B4 pla)T G [62pA)-2074) ;)] -
-4 [ﬂ'zﬁ.—f 5;(a,1)~2afjl."la;)] =~ egzjb{a,) (5.18)
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Labeling the elements of the determinant as before, we obtain

(since }%{J;}«l} Ii—‘;)«) ):
A= (A?-Dz hA?-‘Dl) (®3C9 - 134@) =

= [a,»ﬂ. (,) @rlj',, (a)~ &)fi(a))€ ( 824, (a) -4 A, (ql))]'(rgsq’_f% ¢,)=
= 'gla(ﬂsql -’&!’CS) Ia\'al(al)fﬂ [ﬂl') - 30-:*%0(“,)5., {ﬁf )] =

= 'glz(%ach‘fgaca) By, [ﬁ;)jp (a)) (5.19)

2
since the second term is of order aﬂ compared to the first.

Making the same approximations in 4,

and A.1 we obtain:
? ‘80

A'so = -~ ’gll[ﬂlf' (R-)fo (a')~ Aﬂfj;,fﬂ-)f: ("‘:)] {1334: ‘3(;{‘3) (5.20)

by a,e8*A )50 (BC,-BC,) (5.21)
so Fhat: .

’Bo's—g’ia?(l-g.g;) (5.22)

B) =~ 5 (5.23)

which are equs. (6.14) and (8i18) respectively.
From {5.18A) and (5.174) we obtain:

CoctyAolar) CJM},J',, (a)="T (5.24)

~Coxoty 0, 4, (8,) + )t ) !', m)= & (5.25)
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where:

Ty= —dhyfola) ~ Bocd, g (8)+ &, B,) . ()
By = Xty (1(&) + B x & A fa) - Booa) ja)

Making use of the fact that the arguments are small, and using

(5.223A) and (5.33A) we obtain:
e dl’ ~ 1 2 !
Ja=%(afd)i o’E*&S&"%)

g0 that, from (5.244) and (5.264):

A= ey’ [ Q) [', (02)4,1a,)~ X0 fo (a) 4, (a;)] (5.28)
& % ol 4], (a]) (5:’7:'-:) (5.27)
Bgy iy a, A (1) ( 3’*3 -1) (5.28)

Dividing (5.237A) and (5.28A) by (5.28A) we obtain (8.18) and
(6.80) respectively.
This completes the calculations for the viscous fluid

sphere.,
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APPENDIX VI

To compare the results of VI with those of V we must con-
sider the case when €-&= 0, x=c°
When & = 0, we have from (8.14):

3-—-‘,~—3~m

2 fa0

which is identical with (5.10).

Also, when £=-8==O wé get from (8.223):

B, , 2 B, 2
@=1, Pem3, Quniled), S 3H)

1

Cp=2 , G,= 0 G}oz‘gll" 6/ Gn" &

o ]

so that, from (8.15):
G, —~— 841, 8)4,18) - 38, (8)8.10+ 1 (- &) [-4,8)4,8)+ 3,804 18)] )
' edo 248 () hol8) + (8- 6) B, [8) A (8)

(s14) [4,6)-3408)]+ 3 (¢-2%) () [-Lh8+344)]
284,18) [Bolb)~35, 80+ 4747, (8)4,(8)

B LB+ 3 -34%.8)]
'2-8‘2 g)[ 'gjz[g')"' ',g'j;[é')]

_hwlepe-2850] 4w
24,(8) [-%mf)+ 14 ] 24,14)

so that:

3 A [3)
’B‘e,s-ﬂ) ,g ﬁ)

which is identical with (5.10) specialized for the case of n = 1.

e see immediately from (8.18) and (8.17) that if d=10 )
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! ! . -
then BO = 0 and also By = 0, since Gﬁg 386%} and GBl Te-
mains finite.

It is also evident from (8.18), that if 3=‘0:X’=°0 ;
then Cp = O because of the presence of X in the denominator.

For Gl we obtain:

fal8 ))

c 1, (.(ﬂ;.) (?f'* XD
g30 37a, @xﬂ o) ~ XA, (a;)) fi(a:)

K~>o0

-
-

g A9+ A ()
d (Qf(ﬂz) Raﬁa(“z))/ﬂ {5)

Ni

=g % A (4)
% (thin)~ ahie)) $4,08)

where we have used (3.05A). This is idenbtical with (5.11)
specialized for the case of n = 1.
Also, from (B.20) and (B.21):

() % XA ot 1
615-:3 cy -){R,_j‘,[azf),ﬁ'[ag ‘7{{ Jo(“z.)

")(-45
Au(8)
C, - s aﬂf’ -sﬂ(a,,)-i-aff(az)[ ﬂ:ﬁ)]
D20 T ) [1hm)~ g, huln)]

But from (5.08) we have!

A A o iyl S
NJ{ 012. o()_’ 0{2 a(fJ,Cl; X

so that both 05 and Gi will go to zero as 520 and X—=0 .

This agrees with V where the acoustic field inside the obstacle

vanished.
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APPENDIX VII

From (7.05), the coefficient of By can be put into the

following form:
At 2 2, ;. )2 -
/7a3 J,(a,)- 28, j,’/ai) = /_“’1 &) ()~ da, (@) +20] (fa,) =
= I)+ Y - ), —
77%6?, j)(ﬂ,) 4“,}1[“3)"

= g*‘f,(a;) - 4a) (2)) (7.01)

If we now again set up the six equations, then, as was pointed
out in VII, the first five equations are identical with the
ones of VI. The sixth equation (continuity of Prr) differs
only in the coefficients of Bi and Gi. But to our approxima-
tion the coefficient of Gi ( which is the F, element in the
determinants) does not appear when the determinants are evalu-
ated, so that this difference is immaterial., We see from (7.01A)
that as far as the preseht coefficient of Bi is congerned, it
differs from the one in VI by the additional term-- ..J/a,’j’z(a,;).
But since this term is of order a%r , it will, as can be seen
from {5.01A), give us additional terms of order a{y while the
other terms will be of order ai and we can thus neglect it.

It is true that the first term in (7.0lA) is of the same order
as the second (since b! is of the same order as 2'), but we
shall retain it temporarily because then, in order to evaluate
"By and B{, 211 that we have to do is to take over the resulis
for By and B;:_ from Appé:ndix V and let & and ‘;o‘;‘1 become small.
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Hence, neglecting terms involving & and “b’:L we oblain

from (6.22):

Ga’ogl‘lj Gf’t-%, Q?=-3; Gl?l&qn Goo-"_‘s*zl G:m:—?gl Gﬂ’:_}(&*z)téll 275
so ‘that:
- M’(,(@Uﬂp[é’) 34 {,(K'),A’ (8) ~ 36, (£)4,08) + ?r,[é)ﬁ ()
"B 8L) [0)-358)] - qs,m[z.,@) 3,61
_ 2, 8)188,(8)- 34.8)] - 3,180 [44,6)-3.4,(8)]
B42) 84,8 [4,18)-3,8)] - 484.(6) [485.18)~ 3, (8)]
N -.gf,(gm (431064, 18). 44:(6)
~(8+2)84,16) 8, (8) + 484 (G bpi)  95h08) - (3+2)44,(8)
R hid)
304,(8) +2[6-1)4,(8)
so that?

Aaf4)
380,08) + 2(8-1) A,(6)

which is (7.07). Since! G,B', =38§31 , we also obtain (7.09).

B, = 3ia(1~§) (7.02)

We cannot use the same method for By, B;, Cp: and G; since
& and bﬁ‘ do not appear in the equations of VI for these quan-
tities.

If n= 0, then in view of what was said before, we must

solve the following four equations:
Bl h (&) + ’B;afj',[a,’) - Lt 4 (a) + Co’a;j,(az’) = &,(8) (7.03)

By o hola) = BJot) f;(a,') +Caa,~,£o(qz) _ Co]"’z)j; () = ~a, J'D () (7.04)
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“Bxe B h(a) + B 'l (a)) = Coxehtuh (8:)+ 0l fifaf) = (7.05)
=Xe,1/8,)
B (Bhta-daha)) ~ B (87ta 40l )+ G (838, ula)-2 4+

+( (Ja j» +29210'{a')) = —¢d%,(a) (7.08)

LabelZing the elements in the determinant as before, then

sinoce ]d'

|« & '«] > we obtain:

]

zﬁg‘(Aﬁa‘¢H3J(fEQF'i%c;)=

= (3~ By 5) [ﬂ.ﬂ.m,) (5"}, (a;)- im,’j.(a.')) - a,f:la))e (M,(a,)-éa,ﬁ, (n,))}-

¢ (B4~B0) 2 2 (1- "2‘)

since 3y al, b! and &€ are small. Making the same approxima-

tions for AB and AB’ , there results:
ABO = (@569"/&f63> [_ Q)II {ﬂ,) ('gllj‘o {“:)"lms}fl (qj)) + a,]fl (ﬂ{)E'@pr (al):) =

¥ - (Bl.-BC) 4 ,:_(1_ 48 )
LIRLIOF 3 5 ga,

5 = (B;€,3,C5) [R.»g](a,)e@‘f;/a. )= &la)€ (@%{a,)- bah, /a,))_] =
¥ - (3,6,-B,6,) é— 54"

so that: .-
4 ¢

A : e
’Bg"-' -..E"_-:-—i;,ﬂ?’ -"——a‘--;;_—

A 3 J— 4 8y



° A I~ 4 &7
3 2
But: e ; 2 o
—_ = -72‘—- - =
1 .;.3,“ ] ﬂ?’ /\'l‘}“
and hence:

) o A+
B> 38 3—#‘“ 2

Prom (7.044) and (7.05A) we obtain:

Cotts Ao(0:) = Coet) s (1) =T,

= Coxdetad (0) + CJola) o) = &,

where!

/Po = - D(')jl (ﬂ\) - @00‘\‘%0 {a*) + @01 n{‘]‘(o (a'l)

d, = X8, f’ (a,) +’3>oxo<,a,/g,[a.) -"Bet'n) f- (a))

(7.07)

(7.08)

]
Using (7.07A) and (7.08A), we easily obtain (since a;, a; are

small):

so that:
&= it (0] (@) f82)~ XA ) o o)

, & XK1 (03) ( 3::‘ g’f}%—!)-

ch- Xoded, 4 'K{a,, [580“%—*%%-})
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Consequently:
AL
(s o _alil) (3555
d). “:ijl[“,:')'zi:{“z)"X“J;fﬂ;.)jpfﬂj)

oo 8 (o) Mafag) = X az’g;/(ﬂz)ﬁ) [a])

which are (7.10) and (7.11) of part I.

(7.09)

(7.10)
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APPENDIX VIII

From (9.07), we have:

cloi l(ben )2 0% 0P e = ot | (0. BB o o 2F L b, 20 N
Ismﬂex!(th B2 00 4218 = ke j(@:’;-»q‘%wgw,%g )3

Bince kq is real, the first term will give no contribution.

For large r, we get!

j"(") —_ 3'5 £os [x- (n+ 1)"—{-]
oy el

Then, since the radius of our sphere is large, we obtain from

(8.01):

ISQZ Rai[{ (Zhﬂ)lml)?/f) [ 15/:. l{&l 8)“.(&,1 3 )_.

1

- 1B, itha-3,) ‘3 X .
}ﬂz @ s(#,zz-Sm)- L,ﬁ?,,}m :, AT sus B A

But:

f%’? S Bplf = S
2H+l
so that:

j:z > (tn+)Re [— i 'Bhei a-d)g, (£2-5,)+B) ¢ 4

L

n

pb, )cas (kr-8,) BB ] =



-G -

HDS(&‘A_B“)(%:Q-;(&A %), e ilha- 5))+ 1%*}

= 2/%.1" Z(znafa)['ghe;m'a-gn) (— (sua (2-8,)+ cos (fﬁ\?z'—&,))‘*"
18 ¢ s h0-5,)+ s ldn-8)) s 28,87

A ) [ BB 73 )

80 that:
I,- —-—Qaz (ans+1) (B,+ BB )

Keeping only the term for n= 0 and 1, we get:

Ls

su

I:r (3 +B, /5*-+ 3B+ 3@,’%*)
But B, is imaginary and BOBg, B1BY are negligible compared to

By1.- Hence:

T, = L Re (3B,) (8.01)

Also!
R T

IV, = R [ {4’1}4’1,*' 2T sin 8 dn ol =

RT

= Re S i (@nn)(ams )R] c’ [ ( DR BT, 2misiu o 6=

b, T

R
=1ﬂff€.Z (2n+!)'13,,, C;*[J‘u['ﬁ.lﬁjjf(&ifz)/zldll
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Since:

[ = o (%)

we Can write:

R
- ar> 1 : .

For Iy, we obtain:

Iy, =4T QLZ (,me)[ J (,“)_*,3/% [h)] *}e‘* (k) Kool =

- %0
= fe 7 H)%Z (JM’)[IJ};&{‘&,&)-’-%” Hmé[ﬁ.ﬂ)]f.;* H:; (,ﬁz,z)/;_d;zg

(,3 A*)/ Z[Z”'“)f[(” ) (4,/1)-%3”1)’ («Eg)]cx[ﬂ;,%[ﬁffz)-' f):_%{ﬁfh):[&d&
(8.03)

In order to evaluate these integrals, consider the follow-

ing! let u and v be two solutions of Bessel's equation such that:
£ )+ (s 0
ﬂ;d + U
LA [, dv
ﬂdh[iz a)-l-(/ﬁv. ﬂ,‘)lf 0

Multiply the first equation by v and the second by u, subtracd

and integrate from, say a to b:

¢

g
(ﬁu”‘/ﬁ;)aﬂwdl = - [[v%(a %)“Bjé (A%)] oln.

a
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Integrating the right side by parts we obtain:
4

[)‘mwﬂt =

23

&

[/11{ v _py ;’Z L (8.04)

JEZ

This does not make use of the form of u and v. They can be
any solutions of Bessel'!s equations, in particular u and v
can be linear combinations of Jyn and Y, »

Applying (8.04A) 1o (8.08A), we getb:
R

fﬂﬁ,[& )7 (2’* rdh =

| ) K |
Jg:z_’&,:z (’al Jh&i[n'):]’;i’i(ﬂf) Q :];, (9;),) h;{ﬂ,’)=

15'2 'ﬁ’” ( J; 3 () ];m (o}")~ a'i*Jn;?. %) s (q’]))

where we have used (3.034). Substituting this into (8.02A) we

get:

3 Z (Zl't-rl.)"ﬂ"ﬁmt o % ¥ *
-217' a7 a,_*)/"(ﬂ' ﬁ’*‘) J;_,_a( ) Jl-w,{[al )“ﬁ,’. 3;_,;(“; )q:ﬁ(ﬂ,l) =

1&7-

- lﬂrﬁsﬁl Z (Z)HI)IB Cu (A’IJ.M‘ {a:)ﬁ’ {ﬁ’)‘:k)_ a}.*jn.n(ﬂzl-*)fﬂ (ﬂ‘l))

It will be sufficient for our purposes to maintain only the

n =0 term. Then:

)
I, = 474&32& C‘,,@ (a,’j ’)f,, [a)¥)~ a’j{n'*)f,(af))
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The first term is negligible compared to the second so that:
/5] C )*' . 1
I\/ ’5 ‘Z)TTR3 & 2= j) (“.,z*)]o[ﬂ\)
i 1
@
But since jﬂhﬂgﬁ and Bé is real, we have:

Iytém?’r?zz Bl [1(%) (8.05)

;.

Using (8.04A) in (8.03A), we obtain:

T, == ;ZTL " Xk
I, =-R Ty Z (2n4)C, {a,. [(1+?ix,)3;§(a,)+E’th\ﬁ(a,)]x

*[:);;(af)-iﬁi(@)]”“ [J (a*)-t)/ [ )][(1—»3 )3'7 [ﬁ,]-ri'B,,};:%(n.)]}:

X
= ~4TR ﬁZeZ % {uf ,ﬁ:" (4.) [ fin (8,)+3, 4, /“:)J“
~a 4w o)+ 3,4 o )]}

Using (3.03A) and neglecting af gpupared to agz in the denon-

inator, there results:

= /rd 241)G, ¥
Ty, & 4mR ) P2 {ﬂ/ﬁ (az)bh,.(n )+ B4 /a,)]
~a2A ) ) + B A )]}
Again, retaining only the n = O term, we get:

, 5 AT R3g S {ﬂ A (az)[fl (8,) +Boh 4 )1-
w218 [ 2,4, ]
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The first, second and fourth term are of order a? compared to

the third and can hence be discarded. What remains, yields:

'ﬂyz’;—lnmsﬁz %/ﬁ,(a,) (8.08)

Substituting (8.014), (8.05A) and (8.084) into (9.08) we obtain:

Q"Z;THH ,C’ /Bo,c‘o I
o« 4 [M Resn)+ £ £ ) i) )

- B (n ) /fim,J]

which is equ. {9.08).
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APPENDIX IX

In this case Ig and IV3 are identical with (8.01A) and
(8.08A). In view of the definition of the primed potentials,

we see from (7.01) and (8.05A) that now:
e—;z,-j;iﬂz) {9.01)
and furthermore:

£
I,- f{ %i‘“ (sz)(zw)ﬁ;?f [ f ];, (&;,1)}',,, [ﬁ,*i)’ﬁ,’fm.ru-/fsanaa’n,dt?-a
' »

R
— 4T 1| s Z
= a2 [ [ [l el
* )
Neglecting terms of order afl compared to one, this becomes:!

R
IVs T} j [291,7_ = ‘5”“? ]’B’) (9.02)

>
w A 3w

Substituting (8.014), (8.084), (9.014) and (9.02A) into (9.10),

)__

there results!

NQM <L) —-L + ol 'd’
7 {M&( )+ pree (p'c; aK)(

% et

L fur (H— f)’i")g?e %‘Z_,&)(ﬂz) }

which is (9.12).
' /ﬁ) 2.- N .
We were able to replage Iyp(,ki] in (9.02A) by unity
since the argument of the Bessel function was small over the

entire range of integration.
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APPENDIX X

In view of the discussiocn in X we can in the second term
of the denominator of the first real part consider b and b' to
pe small. Then:

2
) . £

l
(Y = Il ! P 3-
) -py T 6 L E

LN e
Ly AV AT
so0 that:
2 | Rl) l & pe.  tE) v
A8 |+ 2540 D) " Ae(6) 138
K8y 34(8) - (o (#) p2
Now, let:
ﬁ:g(l-ﬁﬂ)zﬁg(“c)
Then:
M8 g 3 Y 37 ix ofra 3
(‘—‘-—Jg.(g) = -i+Eﬂ'+"gT = - 5—— ]*—-{) =-"-. 2—5(}45)- ‘(;+.2-v-)=
Ay
< 3123
f;“+3)(J LI+§ )
and henceg:
j | [r+§?
R iml®) 1 By, ayg, A Itx
A8 1438 2y ( +b)& |- 38

.gz.
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The real part differs appreciably from unity only when y < 1,

so that we can write:

KL 1, N )i ,
ket 42(3) J+38 fgﬁ EW}_"".“ = _5;—'[145)”?@

-y
(2 P ;-

i}
Mim
—
4

as o
N
-
C*: g ol
[]
Nlm
"S’s
"E
7.5
Nl
<
\-_I
]

)

Similarly, in the second term of the denominator of the second

I
real part we can consider ap and ag to be small. So that:

.f-g(azl.) _ ﬁ;_-g./az) ~ 3

- =~ =] . 1+ J..‘ = -}—.
5 §1(83) Bola) Uy | ﬂz) &-
Hence:
- 4 (z) } A
o 1 —= . S R
Ghofay) | Y ) ) Rhofa) 1= 3X
Wfia)  Aula) a{
Let:
=£UH)=£@§”*O
a) =3/ (i) = 6’3%(’* )
Then: )
" 'gl (a,,) ! It .

=-.-..+..-.,—,_..'_..]-.'-_ -.-. < “-—-—-
ﬂzﬂgla,) 4 ay '22'[ L) ) [I +z )
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and hence: )
(2
‘-‘g[qz) ) 1 } - 753
QL T () e —2%
az’zo[a;.) I~ 3X 2z ( 2) | ~p :3_2(‘_
8 22>

Now, when e' is small, 2 is even smaller, so that since the
real part differs appreciably from unity only when z’ is small,

we obtain:

A o [Regy
Qq.i.g(&) ! ;:-L(FLiJRQ #i ='L(££"hlﬂ£zj (3%4) _
azﬁom;) 1~ 3% 22 24 A 2 gﬂ“(f R wy E‘._p‘fz 9.2
%" i (zw) 3
=% (= ) !
R (“”5‘+ % ” (2&91‘)* (10.02)
Rﬂma.l

Substituting (10.014) and (10.084) into (10.04), we get:

e
og:lrml[ 3/15._(.;1-} w)+ﬁ’)(!+f’%,zl (3‘1+PE)
¢ L (aey 2 )+ (.3,5_‘&)1 12
R'w R‘Lug'

which is (10.05).
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APPENDIX XI

We have:
)
S 4
J [q sma,L ] Jl(“ )_ 1 ﬂ-,\ COSI A
.Z &A
so that:
tjl(a;.) _ L LCO‘J‘R
alf() o 0
Let:
] .
=2(l+i) = Ryi"d_ (1+1)
yed
Then:

qﬂhﬂ I { cvszU+J n Jai c0S 2C0sha — ( SINZSinh 2

a;’,_ja(a;{) P 2("“:) Smi(H- l.) 2%" Az Sf"i‘CDS]’)E*{—iCOSZ'ﬁi‘Y}h;}

and taking the real part we obtain:

% ey _ L L () (cosa coshz - ;sma-Sm)a%)(Smacosh%—Lcosismhi)
GPNJ 2% 2 Sin2 Cosh'2 + €082 Sinh*2

N sinz cos2cosh a — Sina C0S2Sinh2 + sin'2 Sinhacosh +os*2 sinh2 cosha

S,

2 2 Sinzcoshiz + (1~ sin’2 ) (coshe~1) )
_ 1 _ 1 SinklzHsinZi =__L( Sih2assinZz (11.01)
28 42 egghte ~C05'2 42\ rpshta —Cos'2

Substituting this into (10.09) we obtain!

L= TnRE ¢ ey 2\ (1 u'["')(z sinh22+5in22 )
C (S(C') ( 3|)(l Ly & cosh*2 - cos*2 2
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which is (10.10).

If 24| , then we can write:

(220, (& (), ("

> ! ] -
Coshta - costz (l+_%.2+2_1'+ %f )1__ (;._ - T
20 4T gl ST a!)
J+ =gl
2 5 ~ 2 4 _4
RE—— =z 2104
2 ]+ & 34 5'-'(] 45%)
45
so that:
F(z) — £ 33
(2) o st (11.02)
If 23] , then:
sinh22+5n2 ;,."E.ze 2
cosh?z- cos*z 2o -
4
so that:
Fla)— 2(2-1) (11.03)
2-»c0

We see from Graph II that (11.02) is actually vdid up to 2~3
and (11.03) begins to hold beyond 2~3 .
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TABLE I
Air Water
¥ seo=] 105 10° 107 10° 105 107
C cm sec'l :5.30104 1.45105
p cm~o 1.2910~9 1.00
-1
g cm
sec—1 1.8210~% 1.1010-8
y cmisec—l .141 .011
o cal cm1
sec~ldeg™1 5.8010~9 1.4510°9
# omPsec— 1 . 204 1.4310~3
A cmlsec-l 3.921028 5.9210%° 3.92108 18.1 1.6110° 1.8110°

emPsec~2 1.0910° 1.0910° 2.1010%° 2.10101° 2.101020 32.101010

4sec~% 1.5310° 1.5310° 1.53101° 83.8 8.3810° 8.3810°

D cmisec—4 6.3510;1

B

2 cnm
6.361013 5.3610%5 1.20101t 1.201013 1.201015
D/B? 5.3710-7 5.3710° 5.3710-3 2.7210%Y 2.7210-8 2.7210-6
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TABLE _II
Air Watex
w sec=l  10% 105 107 105 105 107
1y, om 2.4110% 3.4110% 2.41 42.151011 4.15107 4.1510°
1y, om 1.7110~% 1.711073 1.7110~% 1.8910"% 1.8910-% 1.8910~5
1r om  1.8810-% 1.68105 1.6810"% 4.6910"% 4.6910"% 4.6910-5




Graph I

| Plot of ac/avr vs. R
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