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Chapter 5 
 
Protein Signaling Networks from Single-Cell 
Fluctuations and Information Theory Profiling 
 
 
5.1 Introduction 

 
Protein signaling pathways play important roles in tissue processes ranging from 

tumorigenesis to wound healing.1–5 Elucidation of these signaling pathways is challenging, 

in large part, because of the heterogeneous nature of tissues.6 Such heterogeneity makes it 

difficult to separate cell-autonomous alterations in function from alterations that are 

triggered via paracrine signaling, and it can mask the cellular origins of paracrine signaling. 

Intracellular signaling pathways can be resolved via multiplex protein measurements at the 

single-cell level.7 For secreted protein signaling, there are additional experimental 

challenges. Intracellular staining flow cytometry (ICS-FC) requires the use of protein 

transport inhibitors which can influence the measurements.8 In addition, the largest number 

of cytokines simultaneously assayed in single cells by ICS-FC is only 5.9 Finally, certain 

biological perturbations, such as the influence of one cell on another, are difficult to 

decipher using ICS-FC. Other methods, such as multiplex fluorospot assays,10 have even 

more significant limitations. 

We describe here an experimental/theoretical approach designed to unravel the 

coordinated relationships between secreted proteins, and to understand how molecular and 

cellular perturbations can influence those relationships. Our starting points are single, 
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lipopolysaccharide-(LPS)-stimulated, human macrophage cells.11, 12 LPS stimulation 

activates the toll-like receptor-4 (TLR-4), and emulates the innate immune response to 

Gram-negative bacteria. We characterize the secretome, at the single-cell level, through the 

use of a microchip platform in which single, stimulated macrophage cells are isolated into 3 

nanoliter (nl) volume microchambers, with ~ 1000 microchambers per chip. Each 

microchamber permits duplicate assays for each of a dozen proteins that are secreted over 

the course of a several-hour incubation period following cell stimulation. The barcode 

assays are developed using detection antibodies and fluorescent labels, and then converted 

into numbers of molecules detected. We demonstrate that the observed spread in protein 

levels is dominated by the cellular behaviors (the biological fluctuations), rather than the 

experimental error. These fluctuations are utilized to compute a covariance matrix linking 

the different proteins. This matrix is analyzed at both coarse and fine levels to extract the 

protein–protein interactions. We demonstrate that our system has the stability properties 

requisite for the application of a quantitative version of a Le Chatelier-like principle, which 

permits a description of the response of the system to a perturbation. This is a prediction in 

the strict thermodynamic sense. The fluctuations, as assessed from the multiplexed protein 

assays from unperturbed single cells, are used to predict the results when the cells are 

perturbed by the presence of other cells, or through molecular (antibody) perturbations. 
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5.2 Methods 

 
5.2.1 Experimental Methods 
 

The experimental platform is the single-cell barcode chip (SCBC) (Fig. 5.1).  A SCBC 

contains 80 microchannels into which cells are introduced. Valves13 are closed to separate 

each microchannel into 12 individual (for 960 total) ~ 3-nanoliter-volume microchambers, 

each of which contains between 0 and a few cells. Cell numbers are recorded by imaging 

through the transparent chip. Each microchamber contains two copies of an antibody 

barcode array. Each barcode stripe corresponds to a given antibody; a full barcode 

 

 

Figure 5.1 Single-cell barcode chips for protein secretion profiling. (A) Optical micrograph 

showing macrophage cells loaded into microchambers. (B) Scanned image showing the result of 

secretion profiling from small numbers of cells. The area flanked by two green bars corresponds 

to a microchamber, each of which contains two full barcodes.  Each barcode represents the 

whole panel of assayed proteins. The barcode fluorescence image has been uniformly contrast 

enhanced to highlight the detected proteins. 
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represents the panel of assayed proteins. Once the cells are loaded, the chip is placed into a 

CO2 incubator for 24 h, during which secreted proteins are captured at the barcode stripes 

by their cognate antibodies. The cells are removed, and the antibody barcodes are 

developed using secondary antibodies and fluorophore labels. The fluorescence levels are 

quantified, and then converted into numbers of molecules detected using calibration curves. 

We reported on a related SCBC device for assaying phosphoproteins from single lysed 

cancer cells (see Chapter 3).14 In that work, we described the flow patterning approach for 

the production of the high-quality antibody barcode arrays used here. Each barcode array 

contains 13 20-µm-wide stripes, at a pitch of 50 µm. The barcodes are initially patterned as 

 
 

Figure 5.2 Design of integrated microchip for single-cell protein secretome analysis. (A) CAD 

design of a microchip in which flow channels are shown in red and the control channels are 

shown in green. (B) Schematic drawing of cells loaded in the microchambers and 

compartmentalized with the valves pressurized. (C) Schematic illustration of the antibody 

barcode array used for multiplexed immunoassay of single-cell secreted proteins 
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DNA stripes. Following SCBC assembly, the DNA array is converted, using DNA-

hybridization, into an antibody array using a DNA-encoded antibody library15, 16 (Fig. 5.2). 

All DNA oligomers and antibody reagents are listed in Tables 5.1 and 5.2. The 12 proteins 

assayed were: interleukin (IL)-2, monocyte chemotactic protein (MCP)-1, IL-6, 

granulocyte-macrophage colony stimulating factor (GMCSF), macrophage migration 

inhibitory factor (MIF), interferon (IFN)-γ, vascular endothelial growth factor (VEGF), IL-

1β, IL-10, IL-8, matrix metallopeptidase (MMP) 9, and tumor necrosis factor (TNF)-α. 

The barcode assays were calibrated through the use of standard proteins spiked in buffer 

 
Figure 5.3 Cross-reactivity check and calibration curves. (A) Scanned image showing cross-

reactivity check for all 12 proteins. The green bars represent the reference stripe, sequence M. 

Each protein can be readily identified by its distance from the reference. In each channel, a 

standard protein (indicated on the left) was added to the buffer solution and assayed using the 

DEAL barcode method. For GMCSF, MIF, IFN-γ, IL-10, MMP9, and TNF-α, biotin-labeled 2° 

anti IL-2 antibody conjugated to DNA sequence A’ was used as a control. (B) Quantitation of 

fluorescence intensity vs. concentration for all 12 proteins. Error bars: 1 SD. The variability 

(defined as the standard deviation divided by the average in percentage) is less than 10% for the 

signals in detectable range. 
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Figure 5.4 PMA and LPS activation and kinetics of protein secretion from activated 

macrophage cells. (A) Bulk secretion profiles from THP-1 cells under different conditions. 

PMA treatment induces THP-1 cells to macrophages and LPS treatment emulates innate 

immune responses against Gram-negative bacteria. (B) Quantitation of bulk secretion intensities 

for the eight selected proteins over 24 h. The samples were collected at 2, 4, 6, 8, 10, and 24 h 

after incubation of PMA/LPS treated cells. The cell density was 0.3×106 cells/mL, which is a 

comparable density to a single cell in a chamber of an SCBC device. Note that the secretion 

levels of TNF-α and MIF are oscillatory and anti-correlated.  (C) MIF secretion rate based on 

the assumption of linear time dependence from (B). The secretion rate from the bulk experiment 

is about 11 pg/mL per min which is about twofold higher than the single-cell secretion data from 

the SCBC device (4.84 pg/mL per min).    
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 (Fig. 5.3). IL-2 is not expected to be secreted by macrophages, and so the anti-IL-2 

barcode stripe was utilized to measure the background. 

For the macrophage secretome experiments, cells from the human monocyte cell line, 

THP-1 were differentiated into macrophage lineage using phorbol 12-myristate 13-acetate 

(PMA), stimulated with LPS and then loaded into the device. LPS activates the TLR-4 on 

the cell surface17, 18 and stimulates the secretion of a spectrum of cytokines (Fig. 5.4). 

Signal-to-noise Calculations and Experimental Error. An Axon GenePix 4400A 

scanner coupled with a custom algorithm was used to quantify the fluorescence intensities 

of each protein from each microchamber (Fig 5.1B). Certain proteins were positively 

detected based upon signal-to-noise (S/N) > 4. S/N was calculated as follows: Each protein 

was measured twice per microchamber. The averaged fluorescence values from the two 

barcode stripes for all proteins were used as signals from each chamber. The ratio of the 

averaged signal over all single-cell experiments for a specific protein to IL-2 yields the S/N. 

The following eight proteins were detected (S/N is indicated after the protein name): MCP-

1 (4.7), MIF (1380), IFN-γ (4.3), VEGF (77), IL-1β (95), IL-8 (2620), MMP9 (120), and 

TNF-α (411).  

Macrophages are highly responsive to their environment, and so experimental 

conditions can influence macrophage behavior. Thus, we sought confirmation that our 

protocols could lead to reproducible results. We executed identical sets of experiments on 

different SCBCs and showed that the distributions of the unambiguously detected proteins 

(Fig. 5.5) were effectively identical (p-value > 0.25). The results presented here do depend 

on the amount of PMA or LPS used and, to a lesser extent, the passage number of THP-1 

http://www.alomone.com/system/UpLoadFiles/DGallery/Docs/P-800.pdf
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cells. In addition, a solvent extraction of the PDMS improves the SCBC biocompatibility 

and the assay reproducibility.19 

 

 
Figure 5.5 Comparison of two data sets from two experiments performed in parallel. All the 

conditions such as barcode patterning, PDMS-based microfluidic device fabrication, and cell 

preparation, etc., for the two devices were the same. (A) Heat maps of the single-cell data sets 

from two devices. Based on the same S/N ratio (4), 9 proteins were detected. It should be noted 

that the protein profiles are different from the data set used in the main text, which originated 

from the non-extracted PDMS device. PDMS is known to leach out toxic material to the 

solution and this can affect the cell condition or protein secretion because macrophages are, by 

nature, highly responsive to their environment. For the main experiment, solvent-extracted 

PDMS was used to avoid such effects. For some proteins, the signal values are multiplied by 10 

(*) and 100 (**) for the visualization. (B) Dot plots for three major proteins. Based on p-values, 

both experimental data sets are statistically close to each other.   
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 Levels of proteins secreted from single cells can exhibit a variability that reflects the 

stochastic nature of biology20 and, in fact, represents biological fluctuations. The SCBC 

 

 

Figure 5.6 Experimental and simulation results for extracting the experimental error 

contribution to the SCBC protein assays. (A) Representative histogram of signal measured from 

individual barcode stripes for assaying a 5 ng/ml solution of recombinant MIF protein, 

representing a Gaussian distribution with a coefficient of variation (CV) near 7%. (B) Monte-

Carlo simulated barcode intensity (corresponding to MIF) vs. cell location in three single-cell 

chambers. Yellow dots represent cell locations, and the brightness of the red stripes reflects the 

simulated signal level. The cell-location effect is minimized by averaging the signals from both 

barcodes. (C) Histogram from simulations of 5000 single-cell experiments. For this simulation, 

the diffusion equation was solved with a randomly located, continuously secreting cell. The 

histogram represents the averaged intensities over both barcodes, and includes the 

experimentally determined barcode variability. 



 145 

experimental error must be compared against the measured variations for extracting the 

true macrophage fluctuations. One contribution to the experimental error arises from the 

variability of the flow-patterned antibody barcodes. We characterized that variability via 

protein assays executed within a complex biological environment (serum), and within the 

microchambers of an SCBC, but using cocktails spiked with known quantities of standard 

proteins. In both cases, we found a variability of < 10% 21 (reference 21 and Fig. 5.3), 

depending upon the protein. Averaging the two identical protein assays per microchamber 

lowers the variability within a microchamber by a factor of 2½. A second experimental 

error arises from the competition between protein capture by surface-bound antibody, and 

protein diffusion. When a cell is proximal to a barcode, that barcode may exhibit higher 

signal intensity than a more distant barcode. A Monte Carlo calculation allowed for an 

estimation of the total system error by simulating the location-dependent experimental 

variation. Using MIF as a representative protein for the simulation (it has a barcode 

variability of 7.3%; Fig 5.6A) the experimental error of the system is estimated to be 5.1% 

(Fig. 5.6B,C and Data Analysis Methods in Appendix A, Section 5.6.2). For the worst case 

of a 10% barcode variability, the total experimental error is estimated to be ~ 7% (Table 5.7 

and Fig. 5.7). Based upon these results, we can calculate the biological coefficient of 

variation ( biologicalCV ) from 2/1
biological

2
system

2
assay )( CVCVCV += , where assayCV  is the 

measured spread in secretion levels for a given protein across all measurements for a given 

number of cells. For IL-8, the biological CV was only ~twofold larger than the 

experimental CV, but for the other 7 detected proteins, the biological CV was 7–50× larger 

than the experimental CV (Table 5.7). Thus, the fluctuation extracted from our single-cell 

experiments reflects the cellular behaviors.  
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The individual protein assays were evaluated for cross-reactivity and calibrated using 

standard proteins (Fig. 5.3). Calibration curves were fitted by a four-parameter logistic 

model.22 The SCBC assay sensitivities are comparable to commercial ELISAs (e.g., a few 

measured limits-of-detection are MIF ~ 100 pg/ml, IL-8 ~ 50 pg/ml, IL-1β ~ 

20 pg/ml, and VEGF ~ 2.5 pg/ml), with each exhibiting a ~ 103 linear detection range. The 

SCBC barcode assay results can be translated into numbers of detected molecules using the 

molecular weight of the standard proteins and the microchamber volume (Fig. 5.3 and 

 
 

Figure 5.7 Simulated histograms of average intensity from multiple DNA barcode loctions. The 

signal intensities for 5000 single-cell data sets were obtained by solving a diffusion equation for 

a randomly located cell. For the barcode variability, the value of 10% was used. The blue curves 

are the Gaussian fitting of the histogram with sample mean and sample standard deviation from 

the simulation. 
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Table 5.4). This quantitative representation of the data is used for the calculations described 

below. However, the standard proteins may differ from the proteins secreted by the 

macrophages (for example, glycosylation patterns may vary). Such variations can translate 

into differences in molecular weight, as well as differences in assay sensitivity. 

 

Figure 5.8 Protein secretion heat maps for different colony sizes of LPS-stimulated 

macrophages. Each row represents one microchamber assay, and each column represents protein 

level, as measured in copy numbers of each protein. The zero-cell heat map is the background 

signal. Signals are decreased and amplified 10× for * and **, respectively. 
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The experimental results, presented as the number of cells per experiment, are shown in 

the heat maps of Fig. 5.8, and reveal the transition from single-cell characteristics to bulk 

behavior (see Fig. 5.4A for protein assay results from large numbers of cells). The 

experimental methods and results are further discussed in Appendix A: Supplementary 

Experimental Methods (SI.I). 

 

5.2.2 Theoretical Methods 
 

The Fluctuations in the Secretome. The calibrated experimental data can be 

organized into digital tables of twelve columns, each representing a different protein, with 

different tables representing different numbers of cells in the microchamber. For a given 

table, each row represents the copy numbers of the twelve proteins for a single cell or small 

cell colony. For a given table, if the number of measurements is large enough we can bin 

the data for each individual protein into a histogram, with each bin representing a defined 

range of measured levels (Fig. 5.9). With even more measurements one could generate 

joint distributions between two proteins, etc. However, we first confine our attention to the 

individual protein histograms because they provide a natural meeting place for experiment 

and theory. The theoretical prediction is made by seeking that distribution of copy numbers 

that is of maximal entropy, meaning that the distribution is as uniform as possible, subject 

to a given mean number of copies.23–26 As discussed in detail in Appendix B: 

Supplementary Theory Methods (SI.II), we use the distribution of maximal physical 

entropy. This means that at the very global maximum of the entropy, the probabilities of 

the different proteins are not equal. Rather, as in any multi-component system at thermal 

equilibrium, each protein will be present in proportion to its partition function,27 where the 
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partition function is the effective thermodynamic weight of a species at thermal equilibrium. 

We show below that in our system there is a network structure that imposes (at least) two 

overriding constraints that preclude the system from being in thermal equilibrium. 

 

The Theoretical Approach. The essence of our approach is to regard the system, a 

single cell (or a small colony), as not being in an equilibrium state because it is under the 

action of constraints. When the constraints are present the system is in that state of 

equilibrium that is possible under the constraints. This allows us to derive a quantitative 

version of the principle of Le Chatelier. Thereby we can quantitatively predict the response 

 

Figure 5.9 Fluctuations in the numbers of secreted IL-8 proteins for all single-cell experiments. 

The fit to the theoretical distribution is shown as the continuous curve. Even for one cell there 

can be deviations from the bell-shaped theoretical functional form in the higher tail of the 

histogram due to autocrine signaling. 
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of the system to a (small) perturbation. Early on, mathematical biologists expressed caution 

about the application of the Le Chatelier’s principle to biological systems.28 It is possible to 

directly use the measured experimental results to validate our point of view. The qualitative 

reasoning is straightforward and so we give it here. It is valid to apply the principle of Le 

Chatelier when the system is in a stable equilibrium. When is the system in a stable 

equilibrium? when under a small perturbation it returns to its equilibrium state. In 

Appendix B, we make a quantitative version of this statement. Here we simply state that if 

the observed fluctuations in protein copy number are about a stable state then we can apply 

the principle of Le Chatelier. The stability of the state is decided by the experimental 

measurements. Both the notion of stability and the response to perturbations, as quantified 

in the principle of Le Chatelier, require that the departure from equilibrium be small. 

Neither textbook equilibrium thermodynamics applied to a macroscopic system nor the 

extended theory used here to describe one or a few cells implies that under a ‘large’ 

perturbation it should be possible to displace a cell to a new stable state that is distinct from 

its unperturbed state. For a single cell or small cell colony the experiments reveal that cell–

cell perturbations are indeed small. For larger cell colonies the statistics are not secure 

enough to make a clear-cut statement. We have, however, numerical indications that the 

unperturbed state of the single cell is possibly unstable in the presence of many other cells. 

 

Theory of Fluctuations. We begin by considering a compartment containing a single 

cell secreting different proteins. For different compartments the experiment shows a 

possibly different number of secreted proteins of a given type. We denote the 

experimentally measured copy number of protein i in a given microchamber by . We Ni
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impose the constraints that the distribution for each protein is characterized by the mean 

number of its molecules. Then the distribution, P(Ni )  of copy number fluctuations of a 

protein i that is of maximal physical entropy (= the distribution at physical equilibrium 

subject to constraints) is derived in Appendix B, eq. S5.2. It is a bell-shaped function of Ni  

with a single maximum. 

In seeking the maximum of the entropy we require that the energy is conserved. This 

constraint is imposed by the method discussed in Appendix B. This method introduces 

parameters into the distribution. β is determined by the constraint of conservation of energy 

and, as usual, is related to the temperature T as , where k is Boltzmann’s constant. 

The are analogs of the chemical potentials as introduced in the thermodynamics of 

systems of more than one component. Here, however, we are dealing with many replicas of 

a single cell isolated within a microchamber. Even though we deal with just a single cell, 

the  will be shown in eq. 5.1 below to also play the role of potentials. This means, for 

example, that the mean copy number  of protein i increases when its potential  is 

increased. The mean number, , is the average computed over the 

distribution. In operational terms this is an average computed over the different 

microchamber assays of protein i. We take it that the copy number distribution is 

normalized, meaning that P(Nii∑ ) = 1. 

We next discuss the effect of perturbations on the distribution for a single cell in the 

compartment. The regime of small perturbations is one in which the distribution, although 

perhaps distorted from a simple bell-shaped curve, still exhibits only a single maximum. 

β = 1 kT

µi 's

µi 's

Ni µi

Ni = NiP Ni( )i∑
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The signature of large perturbations is that secondary maxima appear. When these become 

dominant, a new state of the cell is prevailing. 

To theoretically characterize the response of the cellular secretion to a perturbation we 

compute first the change in the distribution for the special case in which a perturbation 

changes the potential of protein i from , where is a small increment. We 

show (eq. S5.2 in Appendix B, Section 5.7.3) that, to first order in the change of the 

potential, the distribution changes by . The result for  

has two immediate implications. One is that a perturbation will distort the shape of the 

distribution of the copy numbers of a given protein. Specifically, the change is proportional 

to the unperturbed distribution but its magnitude is weighted by the factor  so as 

to favor higher values of protein numbers. Thus, it is the high-end tail of the distribution 

that is most strongly influenced by the perturbation (see Fig. 5.9, for example).  

The other immediate implication of the change in the distribution is that the mean 

values will change. Specifically the updated mean value of the copy number of protein i, 

when we change from , is . A technical 

point is that because the distribution needs to be normalized we must have . 

Using the result above, that the change  in the distribution is proportional to the 

unperturbed distribution and the normalization, we arrive at the explicit result for the 

change in the mean copy number under a small disturbance. 

δ Ni = NiδP Ni( )i∑ = βδµi Ni Ni − Ni( )P Ni( )i∑ = βδµi Ni − Ni( )2  (5.1) 

This equality states that because the variance is positive, a change in the mean copy 

number of protein i when its own potential is changed from  is always in the 

µi  to µi +δµi δµi

δP Ni( )= β Ni − Ni( )P Ni( )δµi δP

Ni − Ni( )

µi  to µi +δµi Ni + δ Ni = Ni P Ni( )+ δP Ni( ) i∑

δP Ni( )= 0i∑

δP Ni( )

µi  to µi +δµi
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same direction (positive or negative) as  itself. It is in this sense that we refer to as 

the potential of protein i.  

The key point that carries into the general case, is that, to linear order in the 

perturbation, the change in the mean number of proteins due to a perturbation can be 

computed as an average over the unperturbed distribution of copy numbers. The change in 

the mean is the variance of the distribution of fluctuations. Therefore, the lesser the 

fluctuations (i.e., the narrower the histogram), the more resilient to change is the 

distribution. As an example, IL-8 (Fig. 5.9) will be shown below to be a very strongly 

coupled protein. IL-8 also has a particularly large variance as compared to the other 

proteins. Therefore there is some perturbation via autocrine signaling, as seen in the hump 

in the higher tail of the histogram. 

 

A Quantitative Le Chatelier Equation. With good measurement statistics one can 

examine the histogram for a joint distribution of two proteins and verify that pairs of 

proteins are correlated. Therefore the mean value (and other averages) of a protein i will 

change when protein j is perturbed. In the linear regime the result (see Appendix B, section 

5.7.4) is 

 (5.2) 

where the covariance is computed over the unperturbed distribution. eq. 5.2 is valid in the 

linear regime of small perturbations, and indicates that the contributions of different 

perturbations add up. The covariance matrix Σ , whose elements are 

δµi µi  

δ Ni = β Ni − Ni( ) N j − N j( )



j∑ δµ j
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Σij = N j − N j( ) Ni − Ni( ), is what is called in matrix algebra a positive matrix.29 The 

implications of positivity are explored in Section 5.7.5. 

We prove in Section 5.7.4 that eq. 5.2 is a quantitative statement of the principle of Le 

Chatelier in the sense that a response to a perturbation changes the system in the direction 

of restoring a stable equilibrium. This is the analogue of the observation that when we add 

energy (i.e., heat the system) the temperature goes up (rather than down). By equilibrium 

we mean a state of maximal entropy subject to the current value of all the constraints 

operating on the system. A system can therefore be maintained at equilibrium by imposing 

constraints such as keeping a gas under higher pressure at a fraction of the available 

volume of a cylinder. When these constraints are changed the system can move to a new 

equilibrium. 

The covariance matrix is used in statistics as input in such methods of data analysis as 

principal component analysis.30, 31 We emphasize that for us the covariance matrix is 

derived by physical considerations leading to eq. 5.2. We can thereby state that  is 

quantitatively the change in the number of copies of protein i when protein j is perturbed. 

Note that while the covariance is a positive matrix, individual off-diagonal elements can be 

negative, signifying inhibition. The covariance matrix in digital form is provided in 

Appendix C (Table 5.8). 

To summarize, the result for the distribution of protein copy numbers for the strongly 

interacting protein IL-8 (Fig. 5.9) has just one maximum. The noticeable deviations in the 

tail of the distribution are likely due to autocrine signaling, because the correlation of IL-8 

with itself is only comparable in magnitude to the correlation of MIF with itself.  Those 

two correlations are larger than any other variance or covariance. As discussed below, IL-8 

Σij
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is also strongly correlated with other proteins. For n ≥ 3 cells in the microchamber, there is 

numerical evidence for a second maximum in the distribution of IL-8 fluctuations. For 

other proteins, six or more cells per chamber are required before a second maximum is 

resolved.   

We can draw two conclusions from the fit of Fig. 5.9, between observed fluctuations 

and the theoretical result. First, the experimental distribution has but one maximum, and so 

the state is stable. Second, the theory accounts for the shape of the experimental 

distribution. This implies that we have correctly identified the important constraints on the 

system. Therefore we have Eq. 5.1 for the change of the distribution and eq. 5.2 as the 

quantitative statement of the Le Chatelier’s theorem. If there are additional constraints one 

can still derive a quantitative Le Chatelier’s theorem, but there will be additional terms 

beyond those shown explicitly in eq. 5.2. We reiterate that eq. 5.2 is the covariance 

computed from the experiments for an unperturbed cell. In our work below we use eq. 5.2 

to predict the effect of perturbation (see Fig. 5.14 in particular).  

 

5.3 Results and Discussion 

 
5.3.1 Computing the covariance matrix  
 

The single-cell data (the heat map of Fig. 5.8) can be regarded as a rectangular matrix 

X where each row is a separate measurement and each column contains the copy number of 

a particular protein. For our convenience we mean center each column. When the number 

of measurements (= number of rows of X) is not small (and is ≥ than the number of 

columns) the covariance matrix can be immediately computed as Σij = Xki Xkjk = 1
K∑ K  
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where k runs over all measurements, k =1,2,..,K. By construction of the matrix X, the 

matrix element  is the number recorded in the kth measurement for protein i minus the 

mean number  for that protein. We divide XT X  by the number, K, of measurements so 

that the covariance is the mean value. The covariance is a product of the measured numbers, 

so the coefficient of variation of the covariance is, for small variations, twice the coefficient 

of variation of the measurements. An upper estimate, see Table 5.7 and Fig. 5.7, is 14% 

when the covariance is computed from the fluorescence intensities. The conversion from 

the fluorescence intensity to the number of molecules does not change the coefficient of 

variation when we are in the linear regime of the calibration curve (see Fig. 5.3). However 

at very low or high intensities the calibration curve is non-linear, so that small changes in 

fluorescence intensity are amplified to larger differences in the number of molecules, and 

thus large values of the variance. Out of K = 129 single-cell experiments, we therefore 

eliminated four outliers. These corresponded to one instance each for which the 

fluorescence levels of TNF-α, IL-1β, MIF, or IL-6 were very high. We thus used K = 125 

values to compute the covariance matrix. The elimination of these four outliers brings the 

error of reading the number of molecules to be more comparable to the error in reading the 

fluorescence intensity. 

 

5.3.2 The network  
 

We analyze the covariance matrix in two stages. The first stage yields a quick (but 

correct and reliable) ‘global’ summary of the network, meaning which protein is coupled 

with which other proteins. There is finer structure, discussed below, that is not resolved in 

this first stage. To obtain the global network we begin by noting that the covariance matrix 

Xki

Ni
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is symmetrical, so that protein i is correlated with protein j just as much as protein j is 

correlated with protein i, Σij = Σ ji . This means that although both positive and inhibitory 

couplings can be extracted from the network, the direction of those couplings (i.e., protein i 

inhibits protein j, rather than vice-versa) is not resolved. The results for the overall network 

are shown in Fig. 5.10. Panel A is the raw data for plotting the network and panel B is the 

network itself. The protein most strongly coupled to all others is MIF, and it is primarily 

anti-correlated with the other proteins. Next in strength of coupling is IL-8. Note that the 

symmetry between any two proteins is limited; proteins 1 and 2 may be coupled to each 

 
 
 Figure 5.10 The summary network derived from the information theory treatment of the data. 

(A) It is these interdependencies, as revealed by the columns of the covariance matrix, that 

provide the prediction of the connectivity in the network (part B). Shown are the columns for the 

two most connected proteins, MIF and IL-8. The entries are the covariances of the indicated 

protein with the other proteins listed in the abscissa. Self-correlations are not shown. (B) The 

protein correlation network hypothesis. The thickness of an arrow is an indication of correlation 

strength. Arrows indicate a positive correlation; bars indicate inhibition. 
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other, but protein 1 may be coupled to protein 3, while proteins 2 and 3 are uncorrelated. 

Mathematically this is possible because the total coupling strength of protein i, sum of Σij  

over all j, can be quite different from the total coupling strength of protein j that is given as 

the sum of Σ ji  over all possible proteins i. 

The covariance matrix shows the quantitative extent to which the fluctuations in any 

two proteins i and j are covarying. As discussed, about 14% of the value is due to noise. In 

 

 

 

Figure 5.11 Protein–protein interactions via the quantitative Le Chatelier’s theorem. Shown is 

the covariance matrix as a heat map for the single cell, n = 1 data (left) and the resolution of the 

matrix into the two most important tiers (right). Note the strong correlation of MIF and of IL-8 

with the other proteins. Red implies inhibition and blue implies activation. The range is [-4e+11, 

4e+11] for the covariance matrix shown in the left panel. This range is chosen to attenuate the 

high reading of the self-correlations in the covariance matrix. This heat map also provides a 

graphic representation of the protein interaction network. The ranges shown on the right-hand 

side are, respectively top [-1.5e12, 1.5e12] and bottom [-2.9e10, 2.9e10]. 
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the network we want to compare the relative importance of the covariance of proteins i and 

j to the covariance of proteins l and m. We take it that the covariance of proteins l and m 

should not be regarded as comparable to the covariance of i and j when the measured 

covariance of l and m is below the uncertainty due to noise of the covariance of i and j. We 

construct a graphical global summary of the interaction network by retaining only those 

proteins that are covarying with one or more other proteins above the noise level of the 

highest covarying pair of proteins. Below we discuss the components of the covariance 

matrix. Thereby we will have a measure of uncertainty for the entire matrix. It turns out 

that the criterion we use above is consistent with this measure. 

The largest covariance, 4×1011 is between MIF and IL-8. This sets a boundary of 

6×1010 on the covariances of pairs that we show as connected in the network. The large and 

positive magnitude of the covariance of MIF and IL-8 is shown as a double-headed arrow. 

The arrow is double headed to denote the joint activation of one by the other. In the 

diagram, inhibition is indicated, as usual, by a bar at the end of the connector. The dashed 

line correlations of MIF with IFN-γ are of magnitude 2×1010, and so may be corrupted by 

noise. The dashed line correlations between MIF and both MCP-1 and IL-1β are even 

weaker (about 1010). The more refined analysis presented in Fig. 5.11 shows, however, that 

these two correlations are likely real and above the noise level. 

Macrophages are an important source of IL-8 and MIF,32–34 and IL-8 is secreted by the 

macrophages without LPS stimulation, while MIF is secreted upon LPS stimulation (Fig. 

5.4A). Our derived network model indicates the MIF is inhibited by IL-8, and MIF, in turn, 

inhibits three other proteins, including TNF-α, while it promotes the production of IL-1β. 

These predictions are consistent with the time-dependent measurements of secreted 
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proteins (Fig. 5.4B). From those measurements, we find that the levels of three proteins 

(MIF, TNF-α, and IL-1β) that are secreted upon LPS stimulation, exhibit fluctuations over 

time. The MIF and TNF-α temporal fluctuations are anti-correlated, consistent with the 

network hypothesis. A detailed elucidation of the underlying mechanism for these 

dynamics will require additional experiments. However, it is encouraging that a network 

hypothesis derived from single-time-point, single-cell data does provide consistent insight 

into the dynamical responses of the macrophages to stimulation.  

 

5.3.3 The composite networks  
 

In the second stage in our analysis of the covariance matrix we aim to show a more 

resolved structure and thereby note features that are glossed over in the global network of 

Fig. 5.10B. We will show that there are several independent networks operating together to 

globally represent Fig. 5.10B. The detailed analysis also provides a more robust error 

estimate. To resolve independent inherent structures within the covariance matrix we 

consider what is known in matrix algebra as the spectral representation (See Section 5.7.6 

and 5.7.7 for more details). Technically this is a ranking of the eigenvectors as also carried 

out in principal component analysis. We suggest, however, that for our system specifically 

this ranking allows an examination of tiers in the cell–cell signaling. The tiers are 

independent, meaning that they govern independent fluctuations. The proteins that are 

members of a given tier respond collectively to a perturbation. 

The spectral theorem 29 allows us to rank the contributions according to the decreasing 

magnitude of the eigenvalues. At the bottom are the smallest eigenvalues and these are 

attributed to experimental noise rather than to real biological information. For the single 
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cell in the compartment we find, as expected for the linear regime, that the dominant 

eigenvectors are each localized around a particular protein. As shown in Fig. 5.11, the two 

largest are localized on MIF and IL-8. The leading eigenvalue = tier 1, is only about 30% 

bigger than the second one, m = 2. The third eigenvalue (not shown) is smaller by almost 

two orders of magnitude. Fig. 5.12 is a plot on a logarithmic scale of all non-zero 

eigenvalues. There are only two eigenvectors that, judging by the value of their 

corresponding eigenvalues, are definitely above the noise. 

In drawing Fig. 5.10B we could not state definitely that the correlations of MIF with 

IFN-γ, MCP-1, and IL-1β, are above the noise level. The more refined spectral anlysis 

 

 

Figure 5.12 The dependence of the dominant eigenvalues of the covariance matrix on the 

number of cells in the sample. The result for n = 0, the backgound, is included to show the 

influence of the noise. The dashed lines, the fifth and higher eigenvalues are more corrupted by 

noise. 
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shows that all these correlations are clearly evident in the second tier (Fig. 5.11) and so are 

secure. The Fig. 5.11 results are the fluctuations measured for single-cell experiments. (See 

Fig. 5.13 for similar results but for n = 3 cells per microchamber).  

 

5.3.4 The number-based network  
 

The network presented in Figs. 5.10 and 5.11 is based upon experimental 

measurements in which raw fluorescence intensities are converted into numbers of 

molecules. We do this conversion because it is the numbers of molecules that are secreted 

 

Figure 5.13  Heat map of the covariance matrix (left) and of the contributions to the first two 

tiers of the network (right) for measurements on chambers containing three cells. Similar to the 

single-cell case (Fig. 5.11), the entries in the tiers are scaled by the size of the eigenvalues. See 

the spectral representation of the covariance matrix, Eq. S5.11. The plot at left is the covariance 

matrix computed from the observed fluctuations in the hree-cell data. The color code is -8e+10 

(red) to 0 (white) to +8e+10 (blue). The range is fixed so as to attenuate the effect of the self 

terms in the covariance matrix. For tier 1 and tier 2, the ranges are [-4.3e-12, 4.3e+12] and [-

7e+10,7e+10], respectively. Note that when the numbers of cells per chamber increases, anti-

correlations can get washed out. 
 



 163 

by the cells, or to which the cells respond, that ultimately reflects the true biology. 

However, this conversion seemingly introduces an additional source of noise, especially 

when the measured fluorescence intensity is away from the linear regime of the calibration 

curves. However, this conversion yields an accurate reflection of the true measurements, 

and the accruing benefit is worthwhile. Specifically, the number of secreted proteins is 

independent of the very complicated experimental response function that depends upon the 

fluorescence detection methods, the various capture and detection antibodies used, and the 

fluorescence vs. concentration profiles that characterize calibration assays. We are thus 

able to apply the fundamental theory to quantitative molecular measurements, and so the 

resultant network is a more secure representation of the true cell biology, even if the 

accompanying experimental uncertainties are large relative to what would be estimated 

from pure fluorescence measurements.  

 

Antibody Perturbations. We performed an inter-cellular signaling perturbation study 

by adding neutralizing antibodies to eliminate specific secreted cytokines. For these 

experiments, four groups of microchambers within each SCBC chip were operated 

independently. Three neutralizing antibodies (anti-VEGF, anti-IL-8, and anti-TNF-α) were 

added to the cells, with one antibody per microchamber group. A control experiment was 

performed without any neutralizing antibody. As shown in Fig. 5.14, the removal of IL-8 

markedly increased the production of MIF, slightly increased IL-1β, and slightly decreased 

TNF-α. The results are in agreement with the network hypothesis, Fig. 5.10B.  

Using the theorem of Le Chatelier we quantitatively predict the effect of the antibody 

perturbations using eq. 5.2. Here, the input for the prediction is the covariance matrix for 
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the unperturbed cells. To compute the predicted mean number of protein i after an antibody 

for protein j is applied we need to know the change in chemical potential of protein j. We 

take it that an antibody for a protein lowers its chemical potential. We determine the 

magnitude of that reduction by requiring that the decrease in the copy number of the 

directly perturbed protein is reproduced. Additional details are provided in section 5.7.9. 

The quality of the prediction in the perturbation experiments of IL-8 and VEGF is excellent, 

as shown in Fig. 5.14. The prediction of the results for the perturbation by anti-TNF-α is 

not in accord, likely because the change in the mean copy number of the proteins is smaller 

by about an order of magnitude, and so is close to the noise level.  

 

 

Figure 5.14 Perturbation of protein networks using neutralizing antibodies. The measured 

change in the mean number of eight proteins is compared against the predicted change, as 

computed from the fluctuations observed in the unperturbed single-cell data.   
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5.4 Conclusions 

 
The multiplexed measurements of secreted proteins by single cells and defined, few- 

cell colonies provide a unique opportunity to capture the fluctuations of individual cells. An 

information theoretic, maximal entropy analysis can be applied to reproduce the observed 

fluctuations in the levels of the different assayed proteins. The theoretical analysis can also 

account for why for some proteins exhibit broad fluctuations, while others exhibit narrow 

fluctuations. The experimental approach permits observations of the covariance in the 

fluctuations of different proteins, and how those fluctuations evolve as a single cell is 

perturbed by the presence of 1, 2, 3, etc., other cells. Again, with the information theory, 

these covariances can be analyzed to extract hypotheses about the network of interacting 

proteins. Measuring the role of antibodies for specific proteins provides a test of that 

network hypothesis, and demonstrates that the theory is able to quantitatively predict the 

results of the molecular perturbation experiments using only data obtained for the 

unperturbed cells. This demonstration of the Le Chatelier’s principle appears to be general, 

and we are currently exploring how it can be applied towards understanding the role of 

other perturbations (such as hypoxia, genetic modifications, etc.). The long-term goal is to 

extend this approach towards understanding the various protein-signaling networks that 

operate within complex microenvironments, such as tumors.  
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5.6 Appendix A: Supplementary Experimental Methods (SI.I) 

 
5.6.1 Experimental procedure 
 

Microchip Fabrication. The SCBCs were assembled from a DNA barcode microarray 

glass slide and a PDMS slab containing a microfluidic circuit.14, 35 The DNA barcode array 

was created with microchannel-guided flow patterning technique.14 Each barcode was 
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comprised of thirteen stripes of uniquely designed ssDNA molecules. The PDMS 

microfluidic chip was fabricated using a two-layer soft lithography approach.13 The control 

layer was molded from a SU8 2010 negative photoresist (~ 20 µm in thickness) silicon 

master using a mixture of GE RTV 615 PDMS prepolymer part A and part B (5:1). The 

flow layer was fabricated by spin-casting the pre-polymer of GE RTV 615 PDMS part A 

and part B (20:1) onto a SPR 220 positive photoresist master at ~ 2000 rpm for 1 min. The 

SPR 220 mold was ~ 18 µm in height after rounding via thermal treatment. The control 

layer PDMS chip was then carefully aligned and placed onto the flow layer, which was still 

situated on its silicon master mold, and an additional 60 min thermal treatment at 80°C was 

performed to enable bonding. Afterward, this two-layer PDMS chip was cut off and access 

holes drilled. In order to improve the biocompatibility of PDMS, we performed a solvent 

extraction step, which removes uncrosslinked oligomers, solvent, and residues of the curing 

agent through serial extractions/washes of PDMS with several solvents.19, 36 We noticed 

that this step significantly improves the biocompatibility and the reproducible protein 

detection. Finally, the microfluidic-containing PDMS slab was thermally bonded onto the 

barcode-patterned glass slide to give a fully assembled microchip.  

 

Barcode Arrays. The barcode array initially consists of 13 uniquely designed DNA 

strands labeled in order as A through M. Prior to loading cells, a cocktail containing all 

capture antibodies conjugated to different complementary DNA strands (A’–L’) is flowed 

through the chambers, thus transforming, via DNA-hybridization, the DNA barcode into an 

antibody array. These dozen proteins that comprised the panel used here were encoded by 

the DNA strands A through L, respectively. Calibration and cross reactivity curves for each 
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protein assay are in Fig. 5.3: The DNA oligomer sequences and the antibody pairs used are 

listed in Tables 5.1 and 5.2.   

 

Culture and Stimulation of THP-1 Cells. We cultured human monocyte THP-1 cells 

(clone TIB 202) in RPMI-1640 (ATCC) medium supplemented with 10% fetal bovine 

serum and 10 μM 2-mercaptoethanol. Cells grown close to the maximum density (0.8×106 

cells/mL) were chosen for the experiment. Cells were first treated with 100 ng/mL 

phorbol 12-myristate 13-acetate (PMA) for 12 h during which a characteristic 

morphological change was noticed as an indication of the induction to the macrophages 

(Fig. 5.15). Cells were washed with fresh media and resuspended in media with PMA (100 

ng/mL) and lipopolysaccharide (LPS, 200 ng/mL) at 0.5×106 cells/mL for the further 

differentiation and the TLR-4 activation.  

 
 

 
 

Figure 5.15 Morphology change of THP-1 cells upon PMA/LPS activation for 24 h. (A) 

monocytic THP-1 cells without induction, (B) macrophage-like THP-1 cells after PMA/LPS 

treatment. The morphological change from non-adherent to adherent phenotypes was observed 

upon PMA/LPS treatment. 

 

http://www.alomone.com/system/UpLoadFiles/DGallery/Docs/P-800.pdf
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On-chip Secretion Profiling. Prior to loading cells on the chip, the DNA barcode array 

was transformed into an antibody microarray through the following steps. First, 1% bovine 

serum albumin (BSA) in phosphate buffered saline (PBS) was flowed and dead-end filled 

into the chip to block non-specific binding. Second, a 200 µl cocktail containing all 12 

DNA-antibody conjugates at 1.25 µg/mL in 1% BSA/PBS buffer was flowed through all 

microfluidic channels for a period of 1 h. Then, 100 µl of fresh buffer was flowed into the 

device to replace DNA conjugated primary antibody solutions. The chip was then ready for 

use. Cells stimulated with PMA/LPS were loaded into the SCBC chip within 10 min in 

order to minimize pre-loading secretion. Then, the pneumatic valves were pressed down by 

applying 15–20 psi constant pressure to divide 80 microfluidic channels into 960 isolated 

microchammbers. Next, the cells in every microchamber were imaged under a Nikon 

LV100 microscope and their numbers were counted. Afterwards the chip was placed in a 

cell incubator (~ 37°C and 5% CO2) for 24 h to perform on chip secretion. The chip was 

removed from the incubator and a 200 µl cocktail containing all detection antibodies (each 

at 0.5 µg/mL concentration) tagged with biotin was flowed through the microchannels by 

releasing the valves. Then, 200 µl of the fluorescent probe solution (1 µg/ml Cy5-labeled 

streptavidin and 25 nM Cy3-labeled M’ ssDNA) was flowed through to complete the 

immuno-sandwich assay. Finally, the PDMS slab was peeled off and the microarray slide 

was rinsed with 1×PBS, 0.5×PBS, and DI water twice, sequentially, and spin-dried.   

 

Bulk Secretion Profiling. Bulk measurements on the same panel of secreted proteins 

as were assessed within the SCBC microchambers were also carried out for the THP-1 cells 

with no stimulation, PMA stimulation, and PMA+LPS stimulation. Cells were cultured at 
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0.3×106 cells/mL, a comparable density to a single cell in a chamber. The media were 

collected after 24 h and the secreted proteins were detected as described below. For the 

PMA+LPS stimulation condition, the media were collected at multiple time points (2, 4, 6, 

8, and 10 h) for the time-dependent analysis. For the bulk test, a SCBC chip was utilized 

without using valves for the microchannel to microchamber conversion. The same 

conditions as for the on-chip secretion profiling were applied except for the cell incubation 

step. Instead, the collected media was introduced to the channel sets and incubated for 3 h 

in the incubator. 

 

Quantification and Statistics. All the barcode array slides used for quantification were 

scanned using an Axon Genepix 4400A two-color laser microarray scanner at the same 

instrumental settings—50% and 15% for the laser power of 635 nm and 532 nm, 

respectively. Optical gains were 500 and 450 for 635 nm and 532 nm fluorescence signals, 

respectively. The brightness and contrast were set at 90 and 93. The averaged fluorescence 

intensities for all barcodes in each chamber were obtained and matched to the cell number 

by custom-developed MATLAB (The MathWorks, Natick, MA) codes. Heat maps were 

generated using Cluster 3.0 and Java treeview (http://rana.lbl.gov/EisenSoftware.htm).  

 

5.6.2 Experimental data analysis methods 
 

Conversion to the Number of Molecules. The collected raw data is based on the 

fluorescence. In order to convert the fluorescence to the number of protein molecules, we 

used the calibration curves (Fig. 5.3). We used the four-parameter logistic model which is 

http://rana.lbl.gov/EisenSoftware.htm
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commonly used for fitting an ELISA calibration curve. The fitting parameters can be found 

in Table 5.5. 

  

Signal-to-Noise Calculations. Since the signal range highly depends on the activities 

of the antibodies as well as the cell biology, it is necessary to decide if the signal is real and 

reliable. Certain assayed proteins were identified as positively detected from single cells 

based upon signal-to-noise ratio (S/N), which was measured as follows: For each 

microchamber, the averaged fluorescence from the two barcode stripes used to capture and 

detect a given protein and  the averaged fluorescence from the barcode stripes designed to 

capture and detect IL-2 were obtained. The ratio of the averaged values over all single-cell 

experiments (specific protein to IL-2) yields a S/N value. An S/N of 4 was utilized as a 

minimum for positive detection. Eight secreted proteins were thus identified from the 

single-cell measurements.  Those proteins were (with S/N included in the parenthesis after 

the protein name): MCP-1 (4.65), MIF (1381.13), IFN-γ (4.33), VEGF (77.32), IL-

1β (94.70), IL-8 (2622.40), MMP9 (119.50), and TNF-α (410.74). 

 

Analysis of Experimental and Biological Variation from SCBC-Based Single Cell 

Measurement. One of the major characteristics of SCBC analysis is the heterogeneous 

cellular behavior at the single-cell level. The experimental variation of the SCBC platform 

which reflects the system error as well as the biological variation due to the cellular 

heterogeneity is contributing to the fluctuation of the total signal. Thus, we need to check 

whether the heterogeneous signal responses are from the cells or the device itself.  
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The experimental error mainly includes the variation from non-uniform DNA barcode 

patterns and the variation due to the randomly distributed cell location in the chamber. The 

former can be estimated by the histogram of the fluorescence intensity from the calibration 

experiment with recombinant proteins. Since the recombinant protein has fixed 

concentration over the entire channel, it represents a uniform protein level without any 

heterogeneity or location dependence. As a result, the distribution of the fluorescence 

intensity of a specific recombinant reflects the detection profile of the DNA barcode. 

Fig. 5.6A shows a representative histogram of signal derived from recombinant MIF 

protein at 5 ng/ml. The histogram shows a nice Gaussian distribution with a coefficient of 

variation (CV) around 7%. In the calibration experiment, basically the intensities of all the 

recombinant proteins at detectable concentrations follow a Gaussian distribution with CVs 

typically lower than 10%. 

The cell location is another important factor for system error. Even though the chamber 

size is small, it is still big for a single cell. So the protein signal is dependent on diffusion 

and that is why the cell location can be a source of the variation. In order to minimize this 

effect, we utilized two sets of barcodes in a chamber and used the averaged signal intensity 

from two barcodes as the final signal value. However, the barcode close to the cell will 

undergo a higher local protein concentration than its counterpart and the different 

intensities of two sets of barcodes are amplified during the long incubation time. The 

diffusion process will lead the system close to the equilibrium but the cell that keeps 

secreting proteins with different kinetics makes it difficult for the chamber to reach its full 

equilibrium. In that sense, the randomly located cells can add an extra uncertainty to the 

SCBC system.  
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Because it is difficult to isolate the system error (especially for the cell location effect) 

from the heterogeneous cell response experimentally, we performed a Monte Carlo 

simulation by R (R Foundation for Statistical Computing, version 2.10.1). First of all, we 

investigated MIF as a representative case. We assumed one chamber had two sets of 13 

barcodes such that each of them has MIF antibodies. By randomly positioning a cell with a 

fixed protein secretion rate and getting the protein concentration at specific barcode 

positions, we can find out what variation depends purely on the cell location and barcode 

non-uniformity. The total amount of secreted MIF during 24 h was estimated based on our 

experimental result. The secretion rate was 4.84 pg/mL per min from the SCBC (used for 

the simulation) and 11 pg/mL per min from the bulk condition. The corresponding 

secretion rate of a single cell, back-calculated based on the chamber and cell size (10 µm3), 

was 0.065 nM/min. Values of parameters used in simulation can be found in Table 5.6. 

5000 data sets for the protein concentration distributions from randomly located single cells 

were generated by solving a diffusion equation with a custom made MATLAB code and 

the results were analyzed with R. The parameters used in the simulation are exactly the 

same as our experimental environment. The chamber is 2000 µm in length and 100 µm in 

width with two sets of DNA barcodes M-A and A-M from left to right. Each barcode is 20 

µm in width and 50 µm in pitch (30 µm gap between barcodes). The detection variation of 

the MIF protein due to the DNA uniformity obtained from the histogram of the calibration 

data set was incorporated to the analysis. Fig. 5.2C shows the histogram of the average 

fluorescence intensity from DNA sequence E (corresponding to MIF in the actual 

experiment) for 5000 single-cell cases. For the barcode variability, the actual value of 7.3% 
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was used. The final system error was 5.1% which is much smaller than the assay error from 

the experimental data sets, 55.2 %. 

In order to consider the worst case, we used a barcode variability of 10% for the rest of 

the analysis. If the cell location effect is significant, we are supposed to see different errors 

on different barcode positions. Fig. 5.7 illustrates the histograms of average intensities from 

multiple barcode locations. The blue curves are line profiles of Gaussian distribution fitted 

with the mean and the standard deviation obtained from the corresponding simulation. The 

nice fitting between the Gaussian curves and the histogram indicates that the average 

intensity per chamber follows a Gaussian distribution with a predictable mean and CV. The 

CVs from this simulation represent the distribution of our measurements for single-cell 

chambers without considering the cellular heterogeneity, i.e., the system error. The 

experimental CVs for different barcode locations based on the system error were quite 

similar to one another (~ 7%).    

We can define CVsystem as the system error estimated by the simulation. We can also 

calculate the assay error from our experimental data set such that CVassay refers to the total 

CV of our experimental data. Consequently, the biological variation for a single-cell 

experiment can be quantitatively estimated by the formula below: 

2/1
biological

2
system

2
assay )( CVCVCV += . 

An estimation of biological variations of proteins for different barcode locations are 

shown in Table 5.7. It can be seen that the biological variation is dominant in the total error 

of the assay. This analysis verifies that the signal fluctuation that we can see from the 

single-cell experiment is a better representation for the single-cell heterogeneity than the 

systemic error from our platform. 
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5.7 Appendix B: Supplementary Theory Methods (SI.II) 

 
5.7.1 Introduction to theoretical supplementary methods 
 

We show how to characterize protein–protein interactions. Specifically we show that 

the different tiers of a signaling network can be quantitatively determined from the 

measured fluctuations in the concentrations of signaling proteins, and that the measured 

fluctuations in the concentrations of signaling proteins for the unperturbed cell can be used 

to predict the effect of introducing perturbations such as neutralizing antibodies. The 

approach is developed from an information theoretic perspective and it is related to the 

specification of the direction of change when a system responds to a perturbation, known as 

the principle of Le Chatelier. The corresponding result here is that we predict the sequence 

of tiers in the network (see Fig. 5.10). In addition we specify which signaling proteins are 

at a given tier of the network and their mutual influence, including inhibition (see Fig. 5.11). 

Experimental measurements of the fluctuation of concentrations in samples with nanoliter 

volume containing n cells, n = 0,1,2,..(see Fig. 5.12 below) are used to validate the 

signaling protein network. Finally we use the protein-protein interaction as determined for 

the unperturbed cell to quantitatively predict (Fig. 5.14) the effect of perturbations. 

The approach we propose provides an analogue and an extension of the statement that 

heat is transferred from a warmer to a colder body. We can understand this statement as a 

statement about the direction of a process between two equilibrium states, meaning that it is 

a static principle. We can also think of it as a statement about dynamics, meaning that it 

specifies the rate of change. We will here develop the formalism for the static interpretation. 
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The explicit introduction of time is possible and we have the required formalism at hand, 

but it requires a more elaborate theoretical foundation and so will be given elsewhere. 

 

5.7.2 The ensemble: A basis for making predictions 
 

The system we consider is many independent replicas of a compartment containing a 

single cell in a nutrient solution at thermal equilibrium. Because the system is not large, 

different replicas of it can differ in the number, iN , of secreted proteins of kind i. We seek 

to represent these fluctuations by taking the different replicas as different samples from an 

ensemble of single-cell compartments where the mean number iN  of proteins of kind i 

over the ensemble is given. Another given quantity is energy (and volume, which we do not 

indicate explicitly). We now seek the most probable distribution of protein numbers in 

different compartments. The solution is well known because if many compartments are 

measured then the required distribution is the one whose entropy is maximal. In textbooks 

of statistical mechanics this search for the most probable distribution is sometime called the 

Boltzmann approach. It is possible to show 37 that this approach does not require the system 

to be macroscopic in size. It is sufficient if we measure enough replicas so that the 

distribution of proteins does not significantly change as we add more measurements. If 

each replica is macroscopic, the fluctuations will be small and rare. Repeated 

measurements will give the same results. If each replica is small we can observe the 

fluctuations, which is the experiment described in the main text. 

The key point is that even if the fluctuations are not small it is possible to make 

predictions.  We discuss three types of predictions in the paper, with more details given in 

this section. We predict the distribution of fluctuations, we predict the tiers in the network, 
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and, in particular and as shown in Fig. 5.14 of the main text, we predict the response of a 

system to a perturbation. For these first and last predictions, we compare directly with 

experimental results. We emphasize that the prediction is made strictly independently of 

the experiment to which it is compared.  

The probability of a system in a particular composition can be shown to be given by 

( ) ( ){ }1 2, ,.. exp i iiP N N N Eβ µ= − Ξ∑ .
 (S5.1) 

This straightforward result is perhaps misleading in its simplicity. It is most directly 

derived by the method of Lagrange undetermined multipliers. The numerical value of these 

multipliers is determined at the final stage by imposing the condition that the distribution 

(Eq. S5.1) reproduces the given values of the means. There are as many multipliers as 

conditions. 

β is the Lagrange multiplier that is determined by the mean value of the energy and, as 

usual, is related to the temperature T as 1 kTβ = , where k is Boltzmann’s constant. The 

'siµ  are the chemical potentials as introduced in the thermodynamics of systems of more 

than one component.27, 38 The Lagrange multipliers that correspond to the given (mean) 

number of species i are known as the Planck potentials and denoted as iα . It is often more 

convenient to work with ,i i iµ α β µ= . If our system were macroscopic in size we would 

call iµ  ‘the chemical potential of protein i’. For convenience we retain the designation 

‘potential’ because, as we shall show, iµ  retains essential properties of the chemical 

potential even when fluctuations are finite.  Ξ  is a function of all the Lagrange multipliers 

and its role is to insure that the sum of the probability over all possible compositions yields 

one.  
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There are at least two points where important details are not revealed by the notation 

used in eq. S5.1. Both are relevant in what follows. First is the condition that the numerical 

values of the chemical potentials are determined by the given mean numbers, the siN , of 

the proteins. Strictly speaking, we should write the chemical potentials as functions of the 

siN . The other point arises when we want to treat the actual numbers siN  of the different 

proteins as continuous variables. This is needed, for example, to compute averages, 

normalize the distribution (eq. S5.1), etc. The integration for each protein is over !dN N  

where N!, the factorial of N, arises to account for the Gibb’s paradox. Therefore, as a 

function of the continuous variable N the distribution for, say, one protein is  

( )( ) ! exp( )NP N Q N Nβµ∝ −
.
 (S5.2) 

Here Q is the factor that arises by summing over all the internal states of the protein 

that are occupied at the temperature T. This result is used in the main text to fit the 

observed distribution for a single protein (Fig. 5.9). 

 

5.7.3 Fluctuations describe the response to small perturbations 
 

We show that by measuring the fluctuations in the unperturbed system we can predict 

how the system responds to small perturbations.38 Proof: Say that we make a small change 

in the value of the chemical potential iµ  from its current equilibrium value to some new 

value i iµ δ µ+ . We do so isothermally. This change in µi potentially changes the 

equilibrium mean concentration of all species from jN  to j jN Nδ+ , for all j. To compute 

the change in concentrations we need to consider the change in the ensemble as represented 
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by Eq. S5.1. In the algebraic developments in eq. S5.4 below we make use of the definition 

of the mean concentration  

( )1 2, ,..j jN N P N N= ∑ .
 (S5.3) 

The summation in eq. S5.3 is over all the possible compositions, each weighted by its 

probability ( )1 2, ,..P N N  computed as the distribution of maximal entropy. The same 

meaning for the summation is used also in eq. S5.4 below. We denote this averaging by an 

overbar. From eq. S5.1, the variation of the distribution that occurs when a particular 

chemical potential is changed by a small amount is 

( ) ( )1 2 1 2, ,.. , ,..iiP N N N P N Nδ β δ µ= . Note that it is in using this lowest term in the 

Taylor series that we assume that the change is small. It follows that on the average the 

proteins respond to the change as: 

( )

( ) ( )

( ) ( )

( )( ) ( )

( )( )

1 2

1 2

1 2

1 2

, ,..

, ,..

, ,..

, ,..

 .

j j

j j

j j ii

j j i ii

j j i ii

N N P N N

N N P N N

N N N P N N

N N N N P N N

N N N N

δ δ

δ

β δ µ

β δ µ

β δ µ

= ∑

= −∑

= −∑

= − −∑

= − −

 (S5.4) 

Note that the conservation of normalization implies that the average change in the 

probability must be zero, ( )1 20 , ,..P N Nδ= ∑ , and we have used this result in the 

derivation above. In the last line in eq. S5.4 we have avoided writing the summation over 

all compositions by the use of the over bar to designate an average over the probability 

( )1 2, ,..P N N , which is the notation introduced in eq. S5.3. 
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Taylor theorem states that, in the leading order, the change of a function is the sum of 

the changes. Therefore the expression for an isothermal variation in all the chemical 

potentials leads to a change of the distribution of the form:  

( ) ( )1 2 1 2, ,.. , ,..ii iP N N N P N Nδ β δ µ= ∑ . (S5.5) 

The summation in eq. S5.5 is an ordinary sum over the finite number S of signaling 

proteins, 1, 2,..,i S= . Then we have the general equation of change that is an extended 

form of eq. S5.4 valid for all possible small isothermal changes in the chemical potentials 

( )( )j j j i i iiN N N N Nδ β δ µ= − −∑ .
 (S5.6) 

This is the result that we use in this paper. 

 

5.7.4 The principle of Le Chatelier 
 

The principle in its simplistic statement claims that the system responds to a 

perturbation in a direction that restores equilibrium. For example, when the temperature of 

a heat bath is increased the mean energy of an immersed system goes up so that the 

distribution remains canonical. The proof for our case starts from eq. S5.3. When the 

chemical potential of protein i is changed, for an ensemble at maximal entropy the mean 

value of protein j changes by 

( )1 2, ,..j
j

i i

N P N N
N

µ µ
=

∂ ∂
∑

∂ ∂ .
 (S5.7) 

where, as emphasized in eq. S5.3, the distribution ( )1 2, ,..P N N  is not arbitrary but is the 

one of maximal entropy as exhibited in eq. S5.1. Eq. S5.4 is recovered when the derivative 

in eq. S5.7 is evaluated. The reader may feel that this is a triviality but it is not without 
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meaning. What we have proven is that computing a small change in the distribution 

( )1 2, ,..P N N  when a particular chemical potential is changed from the value iµ  to a new 

value i iµ δµ+  is the same as computing the derivative of the distribution ( )1 2, ,..P N N  at 

the point where the value of the chemical potential is iµ . Then the change in the 

distribution is ( )( )1 2, ,.. i iP N N µ δµ∂ ∂ . Of course, this is what differential calculus is 

about. Yet the result is not pure mathematics. It shows that the new distribution is a 

distribution of maximal entropy of the functional form eq. S5.1, as otherwise the result will 

not hold. It says that a small change in the chemical potential iµ , and no other change, 

leads to a new distribution which is also one of maximal entropy. 

Typically we do not see the theorem of Le Chatelier stated as in eq. S5.6. This is 

because of the practical point that the number fluctuations are typically not easy to observe 

in a macroscopic system. Here however we deal with secretion of proteins by a single cell 

and, as shown in the main text and particularly in the histogram in Fig. 5.9, the distribution 

is clearly observed and the covariance can be computed from the experimental data as long 

as the number of replicas is not small. 

 

5.7.5 The equation for the direction of change 
 

The (symmetric) square matrix ( )( )j j i iN N N N− −  is the covariance matrix of the 

(equilibrium) fluctuations in the (equilibrium) concentrations, the sjN . It is an equilibrium 

average because, as explicitly shown in eq. S5.4, it is an expectation over the equilibrium 

distribution as given in eq. S5.3. The covariance matrix has the dimensions of S by S where 

S is the number of signaling molecules that take part. In practice we have to compromise on 
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this definition, meaning that S is the number of signaling molecules that can be detected. If 

an important protein is not detected then the network that we infer will be incomplete.  

A covariance matrix can be shown to be a non-negative matrix, also called semipositive 

definite, meaning that its eigenvalues are zero or positive. If the concentrations of the 

signaling proteins can in principle be varied independently, which is definitely not 

necessarily the case, then the covariance matrix ( )( )j j i iN N N N− −  is a positive matrix 

with positive eigenvalues. We will discuss below why it will often be the case that for 

reasons of both principle and practice (e.g., experimental noise) there will be eigenvalues 

that are effectively zero. In that case, technically, the covariance matrix is positive 

semidefinite.39 

Eq. S5.6 specifies how the concentration of the jth signaling molecule varies when the 

ith chemical potential is changed. In general the correlation coefficient 

( )( )j j i iN N N N− −  between the signaling molecules i and j can be either positive or 

negative. Therefore, in general the change j iNδ δ µ  is not necessarily of the same 

direction for all proteins j. This obvious result will be important for us below. Using the 

observation that the covariance matrix is semipositive definite, it is however possible to 

determine the direction of change by first diagonalizing the covariance matrix. This means 

that we can determine S distinct linear combinations of signaling molecules, where (a) each 

such set of molecules changes in a given direction and (b) we can order the different sets in 

terms of the extent of their response such that the first set is the most changing, the second 

set changes to a lesser extent, etc. In the time-dependent formalism, not presented here, we 

can outright say that the first set is the fastest changing and therefore it is the first to change. 
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Then there follow changes in the second set, etc. It is clearly our intention to identify each 

set of signaling molecules as the set of molecules in a given tier in the network. 

 

5.7.6 Tiers of the network are eigenvectors of the correlation matrix 
 

Our next purpose is to define the tiers of the network. The set of proteins that 

participate in the m’th tier is determined as follows. Let  designate the m’th eigenvector 

of the covariance matrix where the eigenvectors are listed in order of decreasing magnitude 

of the corresponding eigenvalue. The largest eigenvalue is m =1. Each eigenvector  is a 

(column) vector of S components and it is determined by the matrix equation 

 (S5.8) 

where  is the S-by-S symmetric covariance matrix whose elements are 

, and we explicitly indicated that the eigenvalues are positive or 

zero but not negative (which defines a positive semidefinite matrix). The eigenvectors of 

the symmetric covariance matrix are orthogonal to one another and can be chosen to be 

normalized 

. (S5.9) 

Here the superscript T designates the transpose so that is a row vector and eq. S5.9 

is the scalar product. 

mS

mS

2 , 1, 2,.m m m mσ= =S SΣ

Σ

( )( )ij j j i iN N N N= − −Σ

'
0, '
1, '

T
m m

m m
m m

≠
⋅ =  =

S S

'
T
mS
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 For each value of the number of cells, n, in the compartment the eigenvalues are 

arranged in order of decreasing magnitude, the largest eigenvalue being labeled as m = 1 

and the smallest as m = 12, and the results are shown for n = 1 in Fig. 5.16. See Fig. 5.12 

for the dependence of the largest eigenvalues vs. cell number. 

 

5.7.7 The spectral representation of the covariance matrix 
 

Fig. 5.11 of the text shows the covariance matrix computed for experiments with one 

cell in the compartment. Table 5.8 is a digital representation of the same matrix. 

 
 

Figure 5.16 The eigenvalues of the covariance matrix, for the experimental data of the main 

text, in order of decreasing magnitude for samples containing n = 1 cells 
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Also shown in Fig. 5.11 is the resolution of the covariance matrix into tiers defined as 

follows: From each eigenvector mS we can define an S by S symmetric matrix mP as 

follows 

T
m m m= ⋅P S S . (S5.10) 

The spectral theorem 29 is the result that the covariance matrix Σ can be resolved into 

tiers as 

2
m mmσ∑ PΣ = . (S5.11) 

The eigenvalues 2
mσ  are arranged in a decreasing order so that each subsequent tier 

makes a smaller contribution. Fig. 5.16 shows that the eigenvalues decrease quite rapidly 

with increasing value of m. The very dominant contribution is from m = 1 The leading 

eigenvalue = tier 1, is only about 30% bigger than the second one, m = 2. The third 

eigenvalue is smaller by almost two orders of magnitude. Fig. 5.12 is a plot on a 

logarithmic scale of all non-zero eigenvalues. There are only two eigenvectors that, judging 

by the value of their corresponding eigenvalues are definitely above the noise. The 

dominant (m = 1) and the m = 2 eigenvectors for single cell measurements are shown in Fig. 

5.11 of the text and for three cells in Fig. 5.13. 

 

5.7.8 The role of the number of cells in the sample 
 

It was possible to make repeated measurements of the protein concentrations for 

different values of the number of cells in the sample. In this section we argue that the 

direction of increasing n can be semi-quantitatively regarded as a direction of increasing 

time. Therefore by examining how the eigenvectors of the covariance matrix change with n 
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we have an independent determination of the direction of the dynamic response of the 

system. 

Fig. 5.12 shows the largest eigenvalues for n = 0, 1, 2, 3 and 4 cells. 

To interpret Fig. 5.12 within the point of view used in this paper we argue as follows: A 

single cell secretes a number of different signaling proteins and therefore even the data 

measured for a single cell can show the role of protein–protein interactions. If two cells are 

in the sample these interactions increase in importance. If we think of n as a measure of 

concentrations of proteins then N n∝ , but to compute the covariance we need to divide by 

the number of protein molecules. So for both paracrine and endocrine signaling we expect 

the covariance to increase with n. When n becomes high there may be three or more cells 

interacting and the simple considerations break down. 

 

5.7.9 Antibody perturbations 
 

Fig. 5.14 shows a quantitative comparison of the measured results as compared to the 

purely theoretical prediction when neutralizing antibodies for specific proteins are added. 

We emphasize that it is a prediction because the results shown are based on using eq. S5.4 

that we repeat here:  

( )( )j j j i i jii iN N N N Nδ β δ µ β δ µ= − − = Σ  

The addition of a neutralizing antibody for protein i means that iδ µ is negative. The 

entries for the matrix Σ are given in Table 5.3. This matrix is computed for the unperturbed 

data. It is the matrix given in the table above that gives rise to the theoretical results shown 

in Fig. 5.14. We emphasize that the experimental results shown in Fig. 5.14 are for single 
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cells in the compartment. This means (see Fig. 5.12) that the largest eigenvalue, 2
1mσ = , of 

the covariance matrix is large indeed. Then, from eq. S5.11, the contribution from the first 

tier dominates. It is the two proteins in this tier that are shown in the panel. There are 

bigger discrepancies between theory and experiment for tiers 2 or 3 for which the 

experimental signal is weak. 

 

5.8 Appendix C: Supplementary Tables 
 

Table 5.1 Sequences and terminal functionalization of oligonucleotides* 

 

Name Sequence 
A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 
A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 
B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 
C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 
I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 
I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 
J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 
K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 
L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 
L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 
M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 
M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 
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* All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and purified via 

high-performance liquid chromatography (HPLC).  

 

Table 5.2 Summary of antibodies used for macrophage experiments 

 

DNA 
label 

primary antibody (vendor) secondary antibody (vendor) 
 

A’ mouse anti-hu IL-2 (BD Biosciences) biotin-labeled mouse anti-hu IL-2(BD Bioscience) 
B’ mouse anti-hu MCP-1 (eBioscience) biotin-labeled armenian hamster anti-hu MCP-1 

(eBioscience) 
C’ rat anti-hu IL-6 (eBioscience ) biotin-labeled rat anti-hu IL-6 (eBioscience ) 
D’ rat anti-hu GMCSF (Biolegend ) biotin-labeled rat anti-hu GMCSF (Biolegend ) 
E’ goat anti-hu MIF (R&D systems) biotin-labeled goat anti-hu MIF (R&D systems) 
F’ mouse anti-hu IFN-γ (eBioscience) biotin-labeled mouse anti-hu IFN-γ (eBioscience) 
G’ mouse anti-hu VEGF (R&D systems) biotin-labeled goat anti-hu VEGF (R&D systems) 
H’ mouse anti-hu IL-1β (eBioscience) biotin-labeled mouse anti-hu IL-1β (eBioscience) 
I’ rat anti-hu IL-10 (eBioscience) biotin-labeled rat anti-hu IL-10 (eBioscience) 
J’ mouse anti-hu IL-8 (R&D systems) biotin-labeled mouse anti-hu IL-8 (R&D systems) 
K’ mouse anti-hu MMP9 (R&D systems) biotin-labeled goat anti-hu MMP9 (R&D systems) 
L’ mouse anti-hu TNF-α (eBioscience) biotin-labeled mouse anti-hu TNF-α (eBioscience) 

 
 

Table 5.3 Digital data for the fluctuation in protein copy numbers for experiments with single cell 

in the chamber 

 

IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

3735.412 217395.9 13953.23 557.1622 3809515 13624.74 201.4036 8376.421 0 1454177 3205.591 152586.1 

1665.362 27307.83 104.8926 1517.076 2820595 53647.16 22.99382 30393.38 2225.058 1549870 8513.336 139044.8 

0 0 5.688741 983.9779 2039581 51073.18 5.659558 397.6828 1712.567 1556202 75864.65 105209.4 

0 0 4.782456 0 442693.6 0 0.336728 0 0 341176.1 10460.81 39.82124 

0 0 4.782456 0 394608.6 7158.123 0.336728 83.72112 0 1049468 5786.696 112.4533 

0 9036.275 4.782456 315.5414 1182371 15521.45 2510.404 164.3377 0 2078531 530.3467 98.55574 

0 8562.464 22.67125 1973.092 2340711 50886.57 0 8659.165 386.6576 1825752 3484.746 225206 

972.853 5136.066 45.69175 0 2903862 30000.8 1.655758 1627.437 678.766 1357052 1609.678 487.7715 

0 4625.892 5.688741 162.2633 515603.5 12411.14 258.1623 2951.517 1069.252 2085364 18909.8 95984.22 

1115.354 5639.942 25.6359 0 3794851 59631.05 5.955249 75.74618 644.1138 829791.9 1197.849 9267.078 

367.32 8562.464 0.620442 0 404940.8 0 5342.374 170.0894 425.4534 4964304 181518.4 2001.962 

0 40152.21 47.5241 1517.076 3743529 8249.956 643.5375 2935.413 1281.727 5149720 38060.09 1084.421 

876.3752 20185.95 28.71536 1658.653 665589.7 17294.07 4591.031 732.1417 1221.906 4543300 36619.56 127154.3 

0 0 0 0 638485.4 0 0 2173.854 0 2932515 408789.6 64138.92 

1068.126 0 13.28018 632.2731 438114.6 0 119.5423 102.6353 0 1034324 592.5651 4161.334 
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1575.52 19329.17 47.5241 961.4889 1217737 21180.92 2.07053 5.38982 813.5973 1055366 2244.563 1780.287 

827.633 26895.82 175.1502 2258.346 5831647 64318.4 2721.671 3362.146 4140.063 3606621 5461.672 75502.9 

0 4625.892 4.782456 256.7672 6562935 0 1.756733 8524.752 0 174775 2301.694 98.55574 

0 0 18.45094 286.4852 359371.4 0 572.8267 52.38082 0 3107306 65788.63 25235.97 

0 5136.066 0 371.9954 5772999 7715.093 0.919755 952.1023 125.4948 589949.5 3484.746 8.587119 

577.7165 27307.83 7.645797 256.7672 481179.4 11991.4 5.082496 91.7772 1221.906 954720.5 1434.076 159.007 

0 11362.51 218.9126 681.2702 3668936 35507.47 4.254203 3813.608 4117.263 2589890 42622.04 86305.23 

474.0248 21038.24 6.64407 505.8466 396657.3 7715.093 1.859546 205.0206 0 8685444 1667.948 155173.2 

0 0 336.0215 0 365278.4 0 0.606097 1608.84 174.4034 2065560 1138.365 3733.989 

0 0 0 0 328035.4 7715.093 159.1543 138.7292 425.4534 1067345 3484.746 95.81771 

0 0 58.9922 961.4889 300360.2 34353.44 0 54.93063 746.8858 1817495 2358.739 23134.31 

0 0 4.782456 0 425186.2 7715.093 613.1612 99.90882 386.6576 4683202 3037.413 46.89755 

0 0 3.928359 0 445991.3 7715.093 402.2585 0 975.2311 523909.4 6326.138 1054.297 

2236.04 33403.67 476.1208 870.3418 435981.4 74992.86 23.9095 3930.914 1986.093 11697012 9358.114 8317287 

0 8085.346 36.88775 453.3645 332604.1 11991.4 86.2306 113.6166 1370.279 1559706 7130.545 1958.179 

1620.52 9974.818 0 286.4852 362920.9 7158.123 0.336728 42.31677 713.014 1569342 22053.76 23001.06 

198.7022 28129.56 104.8926 582.4318 5431280 38632.32 0.534271 503.3473 746.8858 1414076 3818.009 82.34883 

0 0 13.28018 0 294489.8 0 278.2761 39.8375 0 96873.01 181570.6 0 

0 15851.76 13.28018 0 569708.6 11125.54 2369.121 328.8863 386.6576 1292647 23316.12 12607.48 

1843.259 8562.464 86.41712 194.848 775007.6 19615.08 0.336728 4396.839 0 2386454 56608.75 570.4367 

474.0248 16291.26 84.19013 870.3418 3567046 57034.26 44.96208 112244.6 1130.88 3238520 3707.119 85922.27 

0 12275.83 14.52122 681.2702 446942.7 8249.956 3059.87 44.81139 425.4534 3127064 270629.6 16913.92 

0 5639.942 65.01849 0 362459.2 0 0 16.1095 0 2971267 3429.024 115.2728 

0 34605.82 175.1502 286.4852 499008.3 18309.28 152.4368 184.5588 425.4534 1011213 135792.6 1097.382 

526.1976 584810 13.28018 0 308498.5 9264.625 483.3776 0 0 1509316 1052286 49352.54 

421.1059 4625.892 0 531.6397 277526.7 17636.16 295.7684 824.1178 1684.681 1979177 42077.15 14565.16 

924.7744 12275.83 114.5543 479.7625 451511.5 25255.09 1990.09 196.223 573.4616 2977232 121849.1 29473.5 

0 0 5.688741 286.4852 1616413 24415.08 53.64644 21718.77 0 1961863 5948.816 16.0508 

0 1935.839 22.67125 162.2633 537180.3 0 1.556662 426.2234 678.766 1662376 3928.711 1846405 

4097.416 15410.74 6.64407 916.1621 627149.3 15153.07 950.0875 661.5037 911.38 4734071 15793.97 633893.1 

0 5639.942 18.45094 0 3734680 19933.81 71.75808 611.5641 1877.786 1963379 160882.2 12793.76 

0 0 45.69175 286.4852 472151 7715.093 188.2966 86.39776 0 2563383 70281.5 27115.65 

138.713 12729.29 27.16157 128.1625 510521.3 9748.657 0.534271 363.1055 713.014 7637057 22154.85 306664.8 

526.1976 14077.98 47.5241 753.3682 385982.2 17636.16 9497.397 81.05349 713.014 1650511 36569.86 69227.5 

0 0 3.928359 505.8466 4597800 21486.18 55.44104 378.7795 0 4705311 1492.748 4042.245 

474.0248 8562.464 13.28018 286.4852 415863.4 7158.123 0 304.2398 1656.69 6712149 124417.6 104764.8 

0 4625.892 49.37952 870.3418 3610659 11125.54 308.8587 335.0802 1543.606 1731368 67269.56 273.0328 

0 0 0 0 497690.4 12411.14 1.964157 57.49294 0 1609086 450905.5 109102.7 

2149.562 10439.91 5.688741 286.4852 493432.2 0 95.38698 800.1525 0 2319845 933080.9 468816.9 

0 2499.366 0 0 1938229 11563.1 15.08493 167.2109 1486.351 1882943 6809.424 1024.341 

421.1059 260961.8 27.16157 1028.626 631535.9 0 297.85 213.8589 537.3803 1335228 1018.815 12.21319 
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0 7604.672 47.5241 194.848 414552.4 20562.75 3358.884 267.679 1656.69 4826026 12493.18 65787.75 

778.5221 27307.83 339.5008 1638.592 3964841 84043.16 10.19566 170693.7 3082.111 4250173 17635.86 346394 

0 4625.892 0 315.5414 480143.5 15521.45 401.1044 196.223 2225.058 3515798 580887 11928.38 

0 8562.464 18.45094 286.4852 658884.1 7158.123 1.179999 150.0535 537.3803 1652656 454906.5 113008.1 

474.0248 48688.48 15.79737 777.063 479056.9 15153.07 11.81997 621.5163 2039.74 4603005 201019.8 340191.5 

474.0248 20612.64 6.64407 286.4852 436080.6 0 1.859546 234.6332 2012.957 6917958 11296.85 215980.3 

0 0 768.0874 286.4852 373315 26079.52 1437.645 199.1509 678.766 2261670 2130.037 10466.12 

0 0 0 0 426020.1 7158.123 2.743952 161.4698 0 3933389 4369.751 49058.97 

0 0 189.3848 557.1622 494271.9 15521.45 494.498 127.5026 71.49773 3800164 477015.4 103268.1 

1068.126 42500.29 5.688741 0 443142.7 0 2610.429 135.9132 220.2761 2342101 688400.6 12.21319 

0 6631.472 19.82653 0 574020.6 12822.93 10.3724 175.8619 879.0676 4074696 105807.8 1513.189 

972.853 10439.91 10.90809 729.5097 284256.4 18640.59 2235.697 133.1033 0 1470217 53399.89 4002.718 

0 0 13.28018 0 597667.5 0 2019.485 264.6556 306.1297 1194410 29141.91 480.3807 

0 51365.65 145.1361 1246.065 405806.5 32699.9 856.1518 113.6166 1959.145 1258039 183346.9 1417.034 

0 729.7022 0 256.7672 602511.6 31733.5 0 234.6332 0 1122269 898.3988 400.546 

1485.024 41719.38 139.8782 453.3645 444591 7158.123 885.0224 138.7292 1628.589 2793823 3540.416 27481.96 

526.1976 6138.223 27.16157 0 465292.2 14400.48 1403.802 102.6353 746.8858 1844275 18451.63 97125.55 

2192.854 60050.81 285.2598 557.1622 3976269 52552.65 235.1851 12868.12 1486.351 2056078 6272.314 6856.5 

0 10439.91 0 128.1625 5629496 8249.956 0.399418 1762.11 678.766 813978.6 163717.2 92940.02 

2535.544 14523.91 114.5543 344.0223 1484329 26621.01 8678.123 8057.573 2661.458 1986914 525123.6 889781.5 

0 4108.532 0 557.1622 443841.6 7715.093 1.179999 216.8138 1281.727 1438747 72010.22 3496.753 

421.1059 4625.892 55.08115 453.3645 533679.1 45692.16 1450.532 385.0693 463.4456 1859549 8089.271 175397.8 

924.7744 0 27.16157 681.2702 2819971 22977.18 25.30396 258.6201 2836.369 2894811 40590.36 774.8536 

1439.516 5136.066 47.5241 0 2087753 52000.61 0.399418 7422.418 879.0676 3000134 5786.696 97961.85 

526.1976 0 0 162.2633 528450.2 11991.4 59.08624 22.98716 463.4456 1749215 3596.034 624.2794 

577.7165 9506.996 49.37952 0 503131.4 15521.45 116.0933 837.8488 220.2761 1903608 164594.6 2006.839 

577.7165 0 5.688741 453.3645 6660777 58080.71 120.3132 404.0062 0 1578115 1078.692 323.6175 

0 11362.51 0 128.1625 440302 9264.625 114.9509 273.7368 813.5973 1578115 12129.72 1040989 

1575.52 19329.17 325.6539 1638.592 4924300 64154.29 340.5053 1318.723 2861.155 2672000 23366.56 306.578 

0 0 24.13892 0 6851805 53465.61 5.513485 638.1433 0 1028638 127948.9 12200.28 

474.0248 9036.275 221.941 286.4852 458783.7 20873.14 49.24328 322.7051 1850.488 2457942 22811.51 822556.8 

3613.793 57047.96 172.3469 938.885 406672.9 47264.38 865.9889 1690.864 2172.481 3502255 843555.9 353763.6 

0 22308.79 60.97992 0 369312.3 19933.81 814.9924 119.1506 975.2311 2229100 92908.36 75331.28 

2062.643 5639.942 0 194.848 828096.2 7715.093 3451.146 105.3695 463.4456 2062203 2529.389 49.30233 

0 4625.892 150.4565 194.848 606027.9 15521.45 48.08955 732.1417 644.1138 2205137 44305.43 112117.4 

876.3752 109736.4 15.79737 656.8714 4333366 13227.3 9.498279 3109.17 2910.581 1557792 40044.93 8399.296 

474.0248 14077.98 58.9922 1050.792 4158207 40779.49 0.837598 2139.122 713.014 1602325 18247.85 13988.05 

0 4625.892 9.77966 938.885 427984.9 28984.83 2539.309 133.1033 813.5973 3538045 6056.756 99712.96 

474.0248 15851.76 97.82923 315.5414 3058525 52552.65 5.224942 344.3945 678.766 1596288 1434.076 17010.92 

1620.52 30983.19 164.0253 2444.257 3783288 27421.74 8.150933 20591.01 713.014 1238515 126636.5 294604.8 

0 5639.942 6.64407 0 4829314 14779.51 0 438.9771 0 8394607 1375.257 12.21319 
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0 9036.275 86.41712 1718.527 699222.5 0 0 8090.773 0 946538.8 1018.815 246.7378 

421.1059 29356.69 57.02586 656.8714 427051.1 49758.73 5895.509 7.430834 713.014 855150.1 715.8439 12943.31 

972.853 16729.29 124.4873 557.1622 3157311 24131.41 26.96196 2270.716 125.4948 1429803 10251.26 2675.917 

474.0248 0 27.16157 344.0223 421026.8 33885.67 0.336728 158.6074 813.5973 4493846 3205.591 4785.501 

0 0 4.782456 0 1735160 0 0 1064.458 1600.377 491041.6 56904.9 28.54088 

924.7744 21462.78 329.098 1797.669 10572470 36640.69 87.27182 951072.8 2012.957 717967.5 5786.696 50463.01 

1255.571 16729.29 36.88775 916.1621 387730.2 35507.47 12.37785 172.9731 943.4302 3107306 9305.439 99116.28 

0 3047.191 0 0 601108.5 0 1098.532 62.65337 346.9365 1429264 2015.138 0 

827.633 1935.839 22.67125 0 609026.5 16243.7 3776.053 49.844 644.1138 2839583 5948.816 10466.12 

0 0 45.69175 0 529102.3 7715.093 148.7002 164.3377 0 2739500 135792.6 454.6833 

0 5639.942 19.82653 800.6015 399905.3 11125.54 61.55719 99.90882 1069.252 3152475 3484.746 192.6131 

1975.261 17165.9 322.2216 1203.28 10565748 90563.8 9.155434 41511.63 2959.817 2157535 136249.1 5338.093 

0 0 18.45094 1246.065 476216.6 0 0.399418 1553.213 0 1844720 82939.55 2389.394 

0 0 17.10759 531.6397 3728800 39283.39 2566.026 1008.095 0 747662.7 1667.948 230.5624 

628.6544 9974.818 15.79737 426.6258 488669.7 30997.64 130.4801 65.2507 1038.132 4037787 39400.11 71229.18 

924.7744 0 5.688741 0 1560874 36640.69 4.801319 54.93063 0 1778135 8724.937 77056.37 

0 0 27.16157 0 382589.2 5961.002 1493.194 347.5054 0 1500979 607501.3 327.046 

972.853 0 0 226.2736 441546.9 7715.093 786.2589 110.8603 678.766 7130236 167126.3 55851.67 

526.1976 11362.51 3.130261 1203.28 1356636 21180.92 2759.997 3129.465 975.2311 2758719 3818.009 146319.6 

577.7165 6631.472 19.82653 2201.941 5878268 13624.74 3241.913 37543.28 1221.906 1173170 13477.1 220.957 

0 11362.51 0 315.5414 486844 27948.27 0 255.6081 463.4456 1388172 522389.9 78625.91 

0 635058.1 6.64407 0 545876.8 7715.093 1100.19 190.3813 0 1518652 28391.09 109.6469 

256.4187 46379.67 53.15834 729.5097 3301742 32699.9 4.389042 359.9795 1006.795 1864545 5353.088 227.3521 

577.7165 13630.28 14.52122 2107.237 3806473 22683.47 121.4725 96650.04 1543.606 1174095 9252.748 26620.53 

924.7744 10439.91 47.5241 453.3645 3281029 44088.98 0.016533 477.4821 346.9365 1063941 2812.305 447.3908 

5587.157 5136.066 24.13892 681.2702 3016496 29240.69 47.22998 5719.854 425.4534 105126.8 6056.756 0 

474.0248 8562.464 36.88775 1895.558 4112702 22683.47 3.224364 87695.31 644.1138 3622850 18094.94 112883.1 

2955.955 18035.05 57.02586 2088.188 3559334 27421.74 17.95405 37266.68 1656.69 2244932 5786.696 952.3013 

5355.51 8562.464 0 0 2892800 14015.67 128.5041 1271.685 0 1603673 9884.013 30912.89 

0 0 14.52122 52.05951 831973.3 8249.956 518.8942 141.5514 0 1042440 1609.678 306814.1 

0 4625.892 67.06888 557.1622 3166646 20249.67 2.288425 18257.35 71.49773 462439.1 2130.037 187929.7 

5970.693 18035.05 90.92703 1160.163 2856820 31244.01 23.67953 522.8445 1795.612 215604.4 14560.51 4241.145 

 
 

Table 5.4 Signal-to-noise ratio (S/N) for single cells in SCBC measurements 

 

IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

1.0 4.7 3.6 1.4 1381.1 4.3 77.3 94.7 1.8 2622.4 119.5 410.7 
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Table 5.5 Parameters utilized for the protein assay calibration curve 

1 2
2

01 ( / ) p

A Ay A
x x
−

= +
+

 

  A1 A2 x0 p Statistics 

  Value Error Value Error Value Error Value Error Reduced 
Chi-Sqr 

Adj. R-
Square 

IL-2 0 0 256 0 7659.58168 973.0838 1.12824 0.16788 91.39131 0.99224 
MCP-1 0 0 256 0 65733.51686 4770.5 1.12607 0.09607 29.62623 0.99578 

IL-6 0 0 256 0 16231.59942 4515.94 0.67887 0.12265 243.09932 0.95697 
GMCSF 0 0 256 0 2451.99685 295.3281 1.2195 0.13013 72.59138 0.99458 

MIF 0 0 256 0 7892.74068 483.8218 1.14428 0.07578 20.31714 0.99821 
IFN-γ 0 0 256 0 14549.5316 2773.804 1.57222 0.26181 172.2368 0.98713 
VEGF 0 0 256 0 1687.9445 225.4782 0.69008 0.05631 58.49911 0.99513 
IL-1β 0 0 256 0 2137.44388 208.9672 0.89593 0.07185 41.21361 0.99694 
IL-10 0 0 256 0 3961.03661 328.4038 1.23209 0.08611 33.93572 0.99669 
IL-8 0 0 256 0 1255.89317 225.9207 1.23262 0.19534 161.8703 0.98686 

MMP9 0 0 256 0 70537.40022 1584.696 1.062 0.02495 2.60945 0.99961 
TNF-α 0 0 256 0 4126.15703 661.2747 0.81683 0.09483 99.72583 0.99185 

 

 

Table 5.6 Values of parameters used in simulation 

 

Chamber size 2000 µm × 100 µm  × 18 µm 

Cell diameter 10 µm 

Diffusion coefficient 10-6 cm2/sec 

Protein secretion rate (MIF) 0.065 nM/min 

Molecular weight 12500 Da 

 

Table 5.7 The coefficients of variation for each of the assayed proteins from single-cell experiments. 

The experimental CVs are estimated from the Monte Carlo simulations. The biological CVs, which 

clearly dominate the experiment, are calculated from 2/1
biological

2
system

2
assay )( CVCVCV += . 

Barcode/Protein Experimental CV (%)  Assay CV (%) Biological CV 
(%) 

B / MCP-1 7.12  380.4 380.3 
E / MIF 7.05  55.2 54.7 
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F / IFN-γ 7.04  131.5 131.3 
G / VEGF 7.03  149.7 149.5 
H / IL-1β 7.02  300.6 300.5 
J / IL-8 7.00  14.4 12.6 
K / MMP9 6.98  192.6 192.5 
L / TNF-α 6.97  132.9 132.7 

 

 

Table 5.8 Digital representation of the covariance matrix for single cell measurements 

 

COV IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

IL-2 1.18E+06 -27830 7966.7 1.34E+05 2.30E+08 4.10E+06 85756 1.27E+06 1.60E+05 -1.06E+08 1.50E+07 2.31E+07 

MCP-1 -27830 6.34E+09 -1.83E+05 -1.14E+06 -9.54E+09 -9.51E+07 6.10E+05 -3.31E+07 -2.52E+06 -8.51E+09 4.21E+09 -7.34E+08 

IL-6 7966.7 -1.83E+05 9050.5 11507 1.56E+07 5.89E+05 734.25 4.20E+05 24714 -81623 -7.38E+05 1.04E+06 

GMCSF 1.34E+05 -1.14E+06 11507 3.39E+05 3.75E+08 3.97E+06 53462 5.71E+06 2.07E+05 1.05E+07 -1.66E+07 1.75E+06 

MIF 2.30E+08 -9.54E+09 1.56E+07 3.75E+08 3.12E+12 1.48E+10 -4.32E+08 1.19E+10 3.35E+08 -4.33E+11 -7.53E+10 -5.22E+10 

IFN-γ 4.10E+06 -9.51E+07 5.89E+05 3.97E+06 1.48E+10 3.09E+08 -2.28E+05 1.40E+08 5.83E+06 -1.70E+09 -5.01E+08 -1.00E+08 

VEGF 85756 6.10E+05 734.25 53462 -4.32E+08 -2.28E+05 2.48E+06 -2.65E+06 1.04E+05 9.34E+07 2.92E+07 2.59E+07 

IL-1β 1.27E+06 -3.31E+07 4.20E+05 5.71E+06 1.19E+10 1.40E+08 -2.65E+06 4.78E+08 4.46E+06 1.86E+09 -4.08E+08 3.16E+08 

IL-10 1.60E+05 -2.52E+06 24714 2.07E+05 3.35E+08 5.83E+06 1.04E+05 4.46E+06 7.39E+05 2.20E+08 -5.64E+06 2.92E+07 

IL-8 -1.06E+08 -8.51E+09 -81623 1.05E+07 -4.33E+11 -1.70E+09 9.34E+07 1.86E+09 2.20E+08 2.73E+12 7.05E+09 3.56E+10 

MMP9 1.50E+07 4.21E+09 -7.38E+05 -1.66E+07 -7.53E+10 -5.01E+08 2.92E+07 -4.08E+08 -5.64E+06 7.05E+09 3.70E+10 5.25E+09 

TNF-α 2.31E+07 -7.34E+08 1.04E+06 1.75E+06 -5.22E+10 -1.00E+08 2.59E+07 3.16E+08 2.92E+07 3.56E+10 5.25E+09 5.26E+10 


