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Abstract 
 
 

This thesis describes technology platforms for various biological applications at nano- 

and microscale. The first platform is the silicon nanowire (SiNW) field-effect-transistor 

(FET)-based biosensor. SiNW FETs have unique features such as label-free, real-time, and 

electrical measurement, which will be demonstrated with DNA and protein sensing. We 

further demonstrate that using different surface chemistry can modulate the sensitivity and 

dynamic range of the sensor. Debye screening, one of the major bottlenecks of the 

technology, is shown to be circumvented by using electrostatically immobilized capture 

DNA for DNA sensing and a small synthetic capture agent, peptide, for protein sensing. A 

model for the detection of analyte by SiNW sensors is also developed and utilized to 

extract DNA binding kinetic parameters, which shows the potential of the platform as a 

more sensitive version of surface plasmon resonance (SPR). 

The second part of this thesis focuses on a more practical and easily expandable 

technology, the microfluidics-based platform, to perform a single-cell-based protein 

analysis. We develop a flow patterning technology to generate highly parallel DNA 

barcodes that can be further utilized as a handle to immobilize protein capture agents, such 

as antibodies. As a first step, a protocol to make high-quality DNA micro-barcodes with an 

excellent uniformity is introduced. The uniform DNA barcode patterns enable us to 

perform protein detection from single cells in a microfluidic device that spans the whole 

glass microscope slide. A data set from about thousand experiments can be collected from a 

single test with the developed microfluidic device, owing to the good quality of DNA 
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barcodes and DNA Encoded Antibody Libraries (DEAL) technology. This platform further 

demonstrates that multi-parameter protein detection at the single-cell level presents cellular 

heterogeneity which leads to new findings in biology. A quantitative version of the Le 

Chatelier’s principle, as derived using information theory, is applied to analyze a large 

amount of data from this platform. This principle provides a quantitative prediction of the 

role of perturbations and allows a characterization of a protein–protein interaction network.  

Lastly, another application of microfluidics is demonstrated for studying interfacial 

chemistry on lung surfactant systems under oxidative stress, along with mass spectrometry 

(MS) and molecular dynamic (MD) simulation results. The findings from the MS and MD 

simulations provide mechanistic details for the reaction of ozone with unsaturated 

phospholipids, leading to possible damage of the pulmonary system by ROS or direct 

ozone exposure. These investigations focus on molecular transformations that occur as a 

result of oxidative stress. Such molecular transformations can have a strong influence on 

the physical properties of the pulmonary surfactant (PS) system (i.e., the surface tension 

and elasticity of the interface), and therefore understanding how chemical transformations 

influence such physical properties can provide key insights into how the PS system 

responds to environmental challenges. Thus, we also propose utilizing microbubbles as a 

model system for investigating the physical transformations of the PS system when 

exposed to environmental challenges. The chemical composition change, along with 

physical property change, is analyzed by altered bubble size and oscillatory behavior which 

can provide an improved understanding of the physics of a PS system when it is subjected 

to oxidative stress.       
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Chapter 1 
 
 
Introduction 
 

 

1.1 Micro- and nanotechnologies in biology 

 
Microtechnology or nanotechnology is no longer a scientific jargon used solely in 

science or engineering society. Now we can easily find examples that utilize such up-to-

date technologies everywhere in daily life, and biology is one of the fields actively adapting 

such a paradigm change originated by the size.1, 2 Size, in itself, is an important 

characteristic factor for us to use to define and describe an object. Viruses, for example, are 

the smallest living organism. They are so small that they are able to live inside other cells 

undetected. Thus ‘small’ can be one of the first characteristic descriptions of virus. 

However, if we think about the ‘small’ in depth, we can easily encounter a lot of interesting 

questions: How do they move? What would be the resistance (or drag force) that they feel 

when they move? How about their energy utilization (metabolism)? Is that related to their 

size? Size indeed relates to functions. The new physical and chemical property changes 

introduced by accessing the extremely small scale can open up a new angle on things that is 

related to function.  

When it comes to biology or medicine, scaling down of tools introduces advantages in 

terms of small sample amount, fast reaction, multi-parameter analysis, and integration. 

Early on, microfluidics brought miniaturization and integration together and such efforts 
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gave birth to micro devices for PCR,3 capillary electrophoresis (CE),4 cell 

counting/sorting,4 protein crystallization,5 and integrated devices of multiple 

functionalities.6, 7 CE especially shows the power of scaling by accelerating the human 

genome project.8 Recently, microfluidics has been actively used in sequencing, which is 

expected to enable personalized medicine at a reasonable price and timescale.9 

Nanotechnology also shows its potential in multiple applications. Nanovectors such as 

liposomes10 or nanoparticles11 for drug-delivery, nanoparticle-based identification labeling 

like ‘bio-barcode’12 or ‘chemical nose’13, and silicon nanowire (SiNW)-based biosensors14 

are good examples of nanotechnology applied to biology. 

Scaling is an important as well as interesting topic in physics. It is impressive how 

much progress we’ve made in understanding new physics at nanoscale since Richard 

Feynman introduced the concept of nanotechnology in his famous lecture, ‘There’s Plenty 

of Room at the Bottom’ in 1959.  However, it will be more exciting to see how the deep 

understanding of scale and the wide application of the understandings change the world. 

Biology and medicine are actively adapting this trend and we will see the outcomes soon in 

a better quality of life. 

 

1.2 How to study biology: Top-down vs. bottom-up 

 
About two decades ago, there was a huge debate introduced by Eric Drexler in a book 

entitled Nanosystems15–17 about whether the molecular nanotechnology (MNT) driven by 

an ‘assembler’ he proposed can be realized or not. This debate paralleled the discussion on 

the two major approaches in nanotechnology, top-down or bottom-up (because the concept 
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of MNT is based on a bottom-up approach). It is still an on-going debate. However, the true 

meaning of this debate, at least I think, is that people started to think about the way they 

study and look at things. They started to think about whether they could build up and 

control at the molecular level. Thus the scope of people’s interests has changed. We can 

find a similar concept in biology as well. Single-cell-based studies are a good example of 

this. Instead of looking at tissue samples consisting of millions of cells, people become 

interested in a single cell and its heterogeneous characteristics. Systems biology is also 

closely related to this paradigm change because it approaches biology with a systemic view, 

and cells or genes are basic components of the system.18, 19 The focus of biology moves 

toward smaller and smaller components, while maintaining its interest in conventional, 

bulk targets. Now we can categorize the methodologies for biological study into either top-

down or bottom-up approaches. Most clinical studies can be categorized as top-down, 

while rather recent researches–such as on tumor microenvironment or single cells–can be 

recognized as bottom-up. Categorizing them might be meaningless in itself. However, if it 

reflects that people start to adopt new way of thinking and analysis, it becomes very 

important. 

We are already seeing the success of the single-cell-based bottom-up approach in 

biology and medicine.20–23 Lahav et al. reported that p53 shows pulsed responses to 

radiation damage at the single-cell level, but not in population measurements.21 Cohen and 

coworkers studied the heterogeneous response of human cancer cells to chemotherapy drug 

by monitoring the levels and locations of ~ 1000 endogenously tagged proteins.22 Tay et al. 

also showed that the activation of TNF-α-induced NF-κB signaling is heterogeneous and 

has a digital response at the single-cell level, which is different from population-level 
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studies with bulk assays.20 The most interesting common fact in those studies is that the 

single-cell-based approaches, which we can call the biological version of the bottom-up 

approach, illuminate hidden, heterogeneous characteristics of cells that are in contrast to 

what we have seen in conventional bulk assays. This new set of information will broaden 

our understanding in biology and will guide us in our fight against diseases in novel and 

creative ways.  

As we have seen from the micro- and nanotechnology fields, there is no reason that 

either the top-down or the bottom-up approach should lead the studies.24–26 Combined 

together, both approaches will open up new feasibility in biology and medicine through a 

series of breakthroughs, and the micro- and nanotechnologies will play an important role in 

that. In this thesis, some of those examples will be presented by introducing new 

technology, device platforms, and analysis schemes. 

 

1.3 Complexity of biology and multi-parameter analysis 

 
Biological systems are complex.27–29 Even a cell, one of the most basic units of life, can 

be seen to have extremely complex components under microscopy. It is amazing how all 

the components are packed into a ~ 10-µm-length scale. And those components are 

functional: moving, binding, pulling, and replicating. Cancer is another good example of 

the complexity of biology. Difficulties in cancer treatment arise from the complexity of 

cancer pathophysiology. The concept of cancer is changing from that of a homogeneous 

disease to that of stratified heterogeneous diseases, each with its own biological 
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characteristics, each requiring a specified therapeutic approach. Thus, we need a more 

effective solution to deal with biology, especially cancer diagnosis and treatment.  

Multi-parameter analysis is an effective solution for such needs, and systems biology 

can be a powerful approach towards predictive, preventative, and personalized medical care. 

18, 30 The importance of this approach can be found in many examples. Current clinical 

treatments are based on monitoring only a few biomarkers, such as prostate-specific 

antigen (PSA) for prostate cancer, CA125 for ovarian cancer, and HER2 for breast cancer. 

However, these biomarker tests frequently fail to identify early stages of cancer and allow 

the tumor to transform to a malignant phenotype before a proper treatment can be instituted. 

For example, mutation in the KIT receptor tyrosine kinase is the major cause of most 

gastrointestinal stromal tumors (GISTs). That is why Gleevec, a KIT inhibitor, works well 

in most patients with GISTs. However Fletcher et al. reported that mutations of KIT or 

platelet-derived growth factor receptor (PDGFRA) are mutually exclusive oncogenic 

mechanisms in GISTs and that these mutations induce similar downstream signaling 

pathways of tumor progression. Actually, about 35% of GISTs have intragenic activation 

mutations in the PDGFRA, even though they don’t have KIT mutations.31 The global 

profiling of the molecular signature at a genomic level32, 33 or proteomic level34, 35 shows its 

potential in a number of studies reported in the literature as well. Multi-parameter analysis 

not only allows a more accurate diagnosis, but also enables early-stage cancer detection. 

An increased number of biomarkers will lead to a more informative diagnosis, which raises 

the possibility for the right clinical decision. Earlier disease detection makes proper 

treatment more likely and improves the survival rate.36  
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However, there are still challenges before multi-parameter analysis will be practical. 

The first challenge is non-specific binding. Most multi-parameter analysis for biological 

applications utilizes fluorescence, absorbance, or electrical signals, and for accurate, 

sensitive measurement the signal-to-noise ratio should be maximized. Looking at multiple 

targets means a higher chance of non-specific adsorption of target biomolecules on the 

surface of sensing component, which is known as biofouling. It makes it difficult to 

deconvolute the real signal from noise. In making the analysis quantitative, this issue 

becomes more significant. 

Another limiting factor is the need to detect small quantities of biomarkers in a small 

volume, which requires extremely sensitive and fast sensors.37 This factor has attracted 

significant interest in rapid measurement of a panel of plasma proteins from quantities of 

whole blood as small as those obtained by a finger prick.38–40  

The third challenge is the capture agent. Currently, the antibody is the most commonly 

used capture agent.41 High-quality antibodies show good specificity and affinity for the 

target protein. However, they are expensive and unstable under various experimental 

conditions such as pH, dehydration, and temperature.42 This makes it difficult to 

incorporate them into common fabrication steps for microfluidics or micro-

/nanotechnologies. Thus, it is necessary to refine our approach to finding biomolecule 

capture agents that exhibit a high level of chemical and biochemical stability. 43–46 

While there are still challenges to address, the multi-parameter analysis approach shows 

its potential in new platforms and is creating a new paradigm. The multi-parameter analysis 

will be one of the major topics discussed throughout this thesis. 
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1.4 Thesis overview 
 

This thesis presents the development of chip-based test platforms that utilize nano- and 

microtechnologies and their biological applications. The scope of the technologies 

introduced here is broad. It covers the fabrication of nano/microscale devices, efforts to 

perform multi-parameter analysis experimentally, analyzing data in a quantitative manner, 

and possible new applications of those technologies. In Chapter 2, I will begin with the 

nanotechnology-based platform silicon nanowire (SiNW) field-effect transistor (FET). In 

addition to showing the advantages of label-free, real-time, and electrical measurement, the 

quantitative detection of single-stranded oligonucleotides with SiNWs in physiologically 

relevant electrolyte solution is demonstrated. The efforts are further extended to protein 

sensing as well. Debye screening is one of the major bottlenecks of electrical measurement 

in solution. To circumvent this problem we utilized electrostatically adsorbed primary 

DNA on an amine-terminated NW surface for DNA detection, and synthetic peptide as a 

capture agent for protein sensing. The surface state is important when it comes to smaller, 

nanostructures, and SiNW is not an exception. In order to look into the surface-state effect 

on the electrical measurement, two surface functionalization chemistries are compared:  an 

amine-terminated siloxane monolayer on the native SiO2 surface of the SiNW, and an 

amine-terminated alkyl monolayer grown directly on a hydrogen-terminated SiNW surface. 

The SiNWs without the native oxide exhibit improved solution-gated field-effect transistor 

characteristics and a significantly enhanced sensitivity to single-stranded DNA detection, 

with an accompanying two orders of magnitude improvement in the dynamic range of 

sensing.  A model for the detection of analyte by SiNW sensors is developed and utilized to 
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extract DNA binding kinetic parameters. Those values are directly compared with values 

obtained by the standard method of surface plasmon resonance (SPR), and demonstrated to 

be similar. The nanowires, however, are characterized by higher detection sensitivity.  The 

implication is that SiNWs can be utilized to quantitate the solution phase concentration of 

biomolecules at low concentrations. This work also demonstrates the importance of surface 

chemistry for optimizing biomolecular sensing with silicon nanowires. (Chapter 2 has been 

taken in part from Journal of the American Chemical Society 2006, 128, 16323–16331). 

Chapter 3 to 5 introduce a microfluidics-based platform for performing a single-cell-

based protein analysis. A SiNW-based biosensor has some advantages, but is complicated 

to fabricate and difficult to apply to multi-parameter analysis. Thus, these three chapters 

present a more simple and practical strategy to study biology in a multi-parameter manner. 

The technologies introduced in these chapters are relatively simple but highly optimized, 

and still present new biological findings because they enable analysis of multiple proteins 

at the isolated, single-cell level, which is difficult to achieve with conventional, bulk 

analysis. As a starting point of this effort, Chapter 3 presents a method to make high-

quality DNA micro-barcodes. To detect proteins, we utilize an approach called DNA-

Encoded Antibody Libraries (DEAL) developed in our lab several years ago.39, 47 DEAL 

technique is based on orthogonal ssDNAs conjugated to an antibody library where every 

antibody- specificity is uniquely encoded with a distinct ssDNA sequence. We then can use 

a more robust biomolecule, as a handle to convert a DNA microarray to a protein 

microarray. It is a simple but powerful technique, since we can perform multi-parameter 

protein analysis only if we can find orthogonal DNA pairs (which can be done 

computationally) and pattern complimentary DNAs on a substrate. We described this in 
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Chapter 3. We have identified a protocol for generating high-quality, high-density DNA 

barcode patterns by comparing three microfluidics-based patterning schemes. We find, 

through both experiment and theory, that the electrostatic attractions between the positively 

charged PLL substrates and the negatively charged DNA backbone induces significant 

non-uniformity in the patterning process, but that those electrostatic interactions may be 

mediated by adding DMSO to the solution, resulting in uniform and highly reproducible 

barcodes patterned using ~ 55-cm-long channels that template barcodes across an entire 

2.5-cm-wide glass slide. Dendrimer-based covalent immobilization also yields good 

ultimate uniformity, but is hampered by a relatively unstable chemistry that limits run-to-

run reproducibility. The potential of this approach has been further demonstrated by 

assaying cytoplasm proteins from single and lysed U87 model cancer cells. Successful 

detection of a panel of such proteins represents the potential of our platform to be applied 

to various biological and, perhaps, clinical applications. (Chapter 3 has been taken in part 

from ChemPhysChem 2010, 11(14), 3063–3069). 

Chapter 4 extends and develops the single cell-based protein detection with DNA 

micro-barcodes and DEAL technique. We take an approach that integrates microfluidic cell 

handling and in situ protein secretion profiling to assess the functional heterogeneity of 

single cells, with extensions to small cell colonies. We measured a dozen proteins secreted 

from cells for the most aggressive type of primary brain tumor, glioblastoma multiforme 

(GBM). We observed functional phenotypes in terms of secreted proteins with profound 

cellular heterogeneity but still in a statistically meaningful manner. The unique features that 

we confirmed from single-cell analysis can present additional useful information to the 

conventional bulk analysis. Combining physical status of the system (such as cell–cell 
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distance) and the protein secretion profiles enables study of the tumor microenvironment. 

We further demonstrate the potential clinical application of this platform by analyzing solid 

tumor cells derived from a GBM patient. This platform is inexpensive, requires minute 

amounts of cells and yields a large volume of molecular information, showing great 

potential for clinical assessment of cellular characteristics in human disease lesions, such as 

a tumor microenvironment. 

One of the challenges that we have noticed from the approach introduced in Chapter 4 

is how to analyze the sheer amount of information. By utilizing a microfluidic device with 

~ 1000 isolated chambers, we can collect ~ 1000 data sets with a single experiment, and 

each data set represents highly heterogeneous cellular activity. Thus, we should come up 

with a good strategy to identify the meaningful information by looking at the 

heterogeneous data set as a whole. In Chapter 5, I will present an approach that integrates 

microfluidic cell handling, in situ protein secretion profiling, and information theory to 

determine the extracellular protein-signaling network and the role of perturbations. Protein-

signaling networks among cells in a disease lesion play critical roles in a host of 

pathophysiological processes, from inflammation to tumorigenesis. We assayed 12 proteins 

secreted from human macrophages that were subjected to lipopolysaccharide challenge, 

which activates the Toll-like receptor-4 signaling pathway. This process emulates the 

macrophage-based innate immune responses against Gram-negative bacteria. We 

characterize the fluctuations in protein secretion of single cells, and of small cell colonies 

(n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation 

of the conditions required for the application of a quantitative version of the Le Chatelier’s 

principle, as derived using information theory. This principle provides a quantitative 
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prediction of the role of perturbations and allows a characterization of a protein–protein 

interaction network.  

In Chapter 6, another application of microfluidics will be demonstrated in studying 

interfacial chemistry for a lung surfactant system. The motivation for this study is to 

understand the interfacial structure and chemistry of a surfactant layer system when 

subjected to oxidative stress. In order to achieve that, we combined experimental 

observations based on field-induced droplet ionization mass spectrometry (FIDI-MS) with 

computational analysis. FIDI-MS comprises a soft ionization method to sample ions from 

the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they 

develop dual Taylor cones, emitting streams of positively and negatively charged 

submicron droplets in opposite directions, with the desired polarity being directed into a 

mass spectrometer for analysis. This methodology is employed to study the heterogeneous 

ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid 

interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate 

unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe 

the hydroxyhydroperoxide and the secondary ozonide as major products of POPG 

ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe 

in the bulk phase using standard electrospray ionization (ESI) for mass spectrometric 

analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated 

and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated 

phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is 

investigated in negative ion mode using FIDI-MS, while a mixture of 1,2-dipalmitoyl-sn-

phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) 
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surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and 

unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated 

phospholipid reacts with ozone, forming products that are more hydrophilic than the 

saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains 

at the droplet surface. Later we confirm this finding with a microfluidics-based bubble 

generator with a model pulmonary surfactant composed of two major phospholipids: DPPC 

and POPG. With fluorescence imaging, we observe the ozone-induced chemical 

modification of the unsaturated lipid component of the lipid mixture, POPG. This chemical 

change due to the oxidative stress was further utilized to study the physical characteristics 

of the interface through the bubble formation process. The physical property change was 

evaluated through the oscillatory behavior of the monolayer as well as the bubble size and 

formation time. Results presented demonstrate the potential of this platform to study 

interfacial physics of a lung surfactant system under various environmental challenges both 

qualitatively and quantitatively. (Chapter 6 has been taken in part from Journal of Physical 

Chemistry C 2010, 114, (29), 9496–9503). 
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Chapter 2 
 
Silicon Nanowires for Real-Time, Label-Free 
Biological Sensing 
 

 

2.1 Introduction 

 
Over the past few years a number of new biomolecular sensors have been reported.1–5 

The development of these devices is in part driven by the emerging needs of both systems 

biology6, 7 and personalized and predictive medicine8—both of which are increasingly 

requiring quantitative, rapid, and multiparameter measurement capabilities on ever smaller 

amounts of tissues, cells, serum, etc. To meet these needs, many groups have focused their 

attention on developing real-time, highly sensitive, and potentially scalable tools for 

detecting nucleic acids and proteins. One-dimensional nanostructures such as nanotubes,9–

12 semiconductors,13–15 metal oxide nanowires (NWs),16 and conducting polymer 

nanofilaments17 have all been demonstrated as capable of the label-free detection of small 

molecules, nucleic acids, and proteins.  

Silicon nanowire (SiNW) biosensors are promising label-free, electronic-based 

detectors of biomolecules.2 However, significant scientific challenges remain before SiNW 

sensors can be viewed as a realistic technology. One challenge relates to the use of these 

devices in biologically relevant media, which is typically a 0.14 M electrolyte. NW sensors 

detect the local change in charge density (and the accompanying change in local chemical 

potential) that characterizes a target/capture agent binding event. That changing chemical 
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potential is detected as a ‘gating’ voltage by the NW, and so, at a given voltage, affects the 

source (S)  drain (D) current value, or ISD. However, that change is screened (via Debye 

screening) from the NW by the solution in which the sensing takes place.18, 19 Debye 

screening is a function of electrolyte concentration, and in a 0.14 M electrolyte (which 

represents physiological environments such as serum) the screening length is about 1 nm.20 

Because of this, all reports on SiNW sensors for proteins or DNA have been carried out in 

low-ionic-strength solutions.14, 15, 21 In this chapter, we demonstrate that a single-stranded 

complementary oligonucleotide is able to significantly change the conductance of a group 

of 20-nm-diameter SiNWs (p-doped at ~ 1019 cm-3) in 0.165 M solution by hybridizing to a 

primary DNA strand that has been electrostatically adsorbed onto an amine-terminated 

organic monolayer atop the NWs. This intimate contact of the primary strand with the 

amine groups of the NW surface brings the binding event close enough to the NW to be 

electronically detected. In addition, within a 0.165 M ionic-strength solution the DNA 

hybridization is more efficient.10, 22 However, we further demonstrate that the sensing of 

proteins in physiological conditions is fundamentally limited by the size of the antibodies, 

which, at the moment, remain the most widely used high-affinity probes for most proteins. 

This problem may be circumvented by utilizing alternative probes, which have smaller 

physical size, to circumvent the Debye screening issue. In this chapter, we also propose to 

use small peptides as a capture agent for protein sensing with NWs.  

Synthetic capture agents such as peptides have advantages over macrobiomolecules 

including antibodies, nucleic acid aptamers, and protein aptamers.23, 24 They are robust in 

terms of maintaining their structure and can be easier to produce and purify in bulk than 

antibodies or aptamers. Especially for NW-FETs, their small size enables detection of the 
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presence of target molecules in high-ionic-strength solution which has a short Debye 

screening length. Synthetic capture agents can also be immobilized on the surface in a 

defined manner, which means we can control the orientation of the capture agents in 

solution based on the reaction chemistries implemented. Recently, Heather et al. reported a 

methodology to find peptide-based protein-capture agents through iterative in situ click 

chemistry and one-bead-one-compound method.25 Their approach has a high impact since 

it can be expected to create cheap but highly stable synthetic capture agents that have the 

potential to take the place of the antibodies.  

To immobilize the peptide, we utilized the CuI-catalyzed alkyne-azide ‘click’ 

cycloaddition. Thus, we can expect all the peptides to be fully exposed to the solution in the 

same manner. Since the click reaction is defined by a set of stringent criteria such as 

selectivity, wide scope, high yields, and inoffensive by-products, it can easily serve as a 

general chemical method for biological applications.26 As a demonstration of this approach, 

we used the FLAG system: FLAG peptides and monoclonal anti-FLAG M2 antibodies. 

The FLAG peptides are modified at the N-terminus with the alkyne and two spacer amino 

acids, SG, to increase accessibility of the target molecules.24 

 A second challenge involves demonstrating reproducible and high-throughput 

nanofabrication methods that can produce nearly identical NW sensors time and time again, 

and that allow for multiple measurements to be executed in parallel. Based on electrostatic 

considerations, it is well known that nanowires are more sensitive to surface charges than 

planar ion-sensitive field-effect transistors (ISFET) or chemical field-effect transistors 

(CHEMFET). Such dimensional arguments27 imply that nontraditional methods must be 

utilized to fabricate the NWs.28, 29 While biological sensing with silicon produced by wet 
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etch30 or dry oxidation31 was reported, to date, most reports of NW sensors have utilized 

semiconductor NWs grown as bulk materials32 using the vapor-liquid-solid (VLS) 

technique.33 This method produces high quality NWs, but they are characterized by a 

distribution of lengths and diameters, and they also must be assembled into the appropriate 

device structure (or the device structure must be constructed around the nanowire34). In this 

study we utilize the Superlattice Nanowire Pattern Transfer (SNAP) method35 to produce 

highly aligned array of 400 SiNWs, each 20 nm wide and ~ 2 millimeters long. Standard 

semiconductor processing techniques are utilized to control the NW doping level,36 to 

section the NWs into several individual sensor arrays, to establish electrical contacts to the 

NW sensors, and to integrate each array into a microfluidic channel. Such integration is 

rather challenging in itself;37 however, it is extremely important for obtaining low-noise, 

reproducible measurements. The resulting NWs exhibit excellent, controllable, and 

reproducible electrical characteristics from device to device and across fabrication runs. 

The sensor platforms may also be fabricated in reasonably high throughput. A key 

advantage, which is provided by the top-down approach of SNAP vs. the bottom-up VLS 

technique, is the precise control of doping level of the nanowires. We utilize diffusion 

doping technique to create nanowires with well-characterized doping levels ranging from 

1017 to 1020 cm-3. We demonstrate that the doping level profoundly affects the limit of 

detection of both DNA and protein; therefore, nanowires can be tuned to a specific 

dynamic range window with an appropriate concentration of impurities.  

A third challenge involves the SiNW surface. The effectiveness of SiNWs for 

biomolecular sensing arises in part because of their high surface-to-volume ratio. The 

native (1–2 nm thick) surface oxide on a SiNW may limit sensor performance due to the 
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presence of interfacial electronic states.38, 39 In addition, the oxide surface of SiNWs acts as 

a dielectric which can screen the NW from the chemical event to be sensed. Covalent alkyl 

passivation of Si(111) surfaces can render those surfaces resistant to oxidation in air40 and 

under oxidative potentials.41, 42 Recently, methyl-passivated SiNWs were shown to exhibit 

improved field-effect transistor characteristics.43 More complex molecules, such as amine-

terminated alkyl groups, can be covalently attached to H-terminated Si surfaces (including 

SiNWs) via UV-initiated radical chemistry.44–47 Such chemistry has been used for a 

covalent attachment of DNA to VLS-grown SiNWs.48 DNA may also be immobilized on 

amine-terminated surfaces via electrostatic interactions. In this work, we explore how the 

characteristics of SiNW sensors vary as the nature of the inorganic/organic interface is 

varied. We find that SiNW sensors in which the native oxide provides the interface for 

organic functionalization are significantly inferior in terms of both sensitivity and dynamic 

range when compared with SiNW sensors that are directly passivated with an alkyl 

monolayer.  

A final challenge is actually an opportunity that is provided by the intrinsic nature of a 

label-free, real-time sensor. The standard such sensing technique is surface plasmon 

resonance (SPR).49 SPR is utilized to determine the κon and κoff rates, and hence the 

equilibrium binding affinities, of complementary DNA strands or antibody–protein pairs. 

The capture agent (single stranded DNA or an antibody) is typically surface-bound, and so 

the key experimental variables are the analyte (complementary DNA strand or a protein), 

concentration, and time. If kon and koff are both known, then SPR can be utilized to 

quantitate the analyte concentration. Very few biomolecular sensing techniques are 

quantitative. In this work, we dope the NW sensors so that their sensing dynamic range is 
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optimized to match that of SPR for the detection of DNA hybridization or protein binding 

to an antibody. We demonstrate the equivalence of these two methods, and thus 

demonstrate the potential use of SiNW sensors for quantitating analyte concentrations. 

SiNW sensors can be optimized for significantly higher sensitivity than SPR by an 

appropriate surface modification and doping, and thus can potentially be utilized to 

quantitate the concentrations of specific biomolecules at very low concentrations. That 

would constitute a unique application of these devices.  

 

2.2 Experimental Methods 

 
2.2.1 Nanowire sensor fabrication  
 

The SiNW arrays were fabricated as previously described,50 and all fabrication was 

done within a class 1000 or class 100 clean room environment. A typical NW sensor device 

employed in this work for DNA sensing is shown in Fig. 2.1. The starting material for the 

SNAP process was an intrinsic, 320 Å thick silicon-on-insulator (SOI) substrate with (100) 

orientation (Ibis Technology Inc., Danvers, MA) and a 1500 Å buried oxide. Cleaned 

substrates were coated with either p-type (Boron A, Filmtronics, Inc. Bulter, PA) or n-type 

(Phosphorosilica, Emulsitone, Inc., Whippany, NJ) spin-on-dopants (SODs). SODs were 

thermally diffused into the SOI film. We reproducibly controlled the resulting substrate 

doping concentration, as quantified by 4-point resistivity measurements on the SOI film, by 

varying the diffusion temperature. For this study, a 3 min, 850°C (875oC) rapid thermal 

anneal was used to generate p (n) dopant levels of ~ 8×1018/cm3.  The p-type substrates 
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were thermally oxidized in O2 for 1 min at 850°C, which was necessary to  

remove the organic SOD residue. The SOD films were removed by brief immersion in 

piranha (70% H2SO4, 30% H2O2), followed by a water rinse, and immersion in buffered 

oxide etchant (BOE; General Chemical, Parcippany, NJ).  

The SNAP method for NW array fabrication translates the atomic control achievable 

over the individual layer thicknesses within an MBE-grown GaAs/AlxGa(1-x)As superlattice 

into an identical level of control over NW width, length, and spacing. This method has 

been described in some detail elsewhere,35, 50 and will not be described here. We utilized 

 
 

Figure 2.1 A diagram (A) and an SEM image (B) of a single device section containing three 

groups of ~ 10 SiNWs in a microfluidics channel. The wafer is covered with Si3N4 except for 

an exposed active region with SiNWs (A, inset; B). B, inset: High-resolution SEM image of 20 

nm SiNWs 
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the SNAP process to produce a 2-mm-long array of 400 SiNWs, each of 20 nm width and 

patterned at 35 nm pitch (Fig. 2.1B, inset).  

The SiNWs were sectioned into ~ 30-µm-long segments using e-beam lithography 

(EBL) and SF6 RIE etching, producing groups of ~ 10 SiNWs with a diameter of 20 nm. 

Six identical sections from a single imprint, each containing 3 NW segments, were 

produced. One such section is shown in Fig. 2.1. When fully integrated with the 

microfluidics channels, this allowed for six separate measurements, with three independent 

NW segments per measurement. Source (S) and drain (D) electrical contacts, ~ 500 nm 

wide and separated by 10–15 µm, were patterned using electron beam lithography (EBL) 

on each section of SiNWs. Prior to metallization, the native oxide of the SiNWs over the 

contacts was removed with BOE to promote the formation of ohmic contacts. Finally, 400 

Å Ti and 500 Å Pt were evaporated to form S/D contacts. Immediately after the lift-off, the 

devices were annealed in 95% N2, 5% H2 at 475oC for 5 min. This step greatly improves 

the characteristics of SNAP SiNW FETs. To provide room for a 1 cm by 1.5 cm PDMS 

chip with microchannels for analyte delivery to each section of the SiNWs (Fig. 2.1A and 

2.2), the electrical contacts were extended to the edges of the substrate using standard 

photolithography techniques followed by evaporation of 200 Å Ti and 1500 Å Au. To 

eliminate parasitic current between metal contacts in solution, approximately 70 nm of 

Si3N4 was deposited using plasma-enhanced chemical vapor deposition (PECVD) 

everywhere on the chip except in 5 µm by 20 µm regions over the NWs and the outer tips 

of the Au contacts. Briefly, 100 nm of chromium was deposited over an active region of the 

NWs. PECVD was used to deposit Si3N4 film at 300°C (900 mT, 20 W, 13.5 MHz) from 

N2 (1960 sccm), NH3 (55 sccm), and SiH4 (40 sccm) gases. The nitride film was selectively 
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etched with CHF3/O2 plasma over the protected NW region using PMMA as a mask, 

followed by the removal of chromium with CR-7C (Cyantek Corp., Fremont, CA). 

Microfluidics Fabrication. The soft lithography microfluidics chips were fabricated as 

described by others.51 We observed that manual introduction/changing of solutions caused 

serious noise, capacitive currents, and baseline shifts in real-time recordings. Thus, for low 

noise, stable, real-time electronic measurements, we found it necessary to automate fluid 

injection and solution switching by using PDMS multilayer, integrated elastomeric 

microfluidics chips of the type developed by the Quake and Scherer groups.52 The size of 

the wafer containing SiNWs did not permit the inclusion of all necessary flow and control 

lines necessary for the fluidic handling chip, and so that was fabricated as a separate chip. 

Such PDMS chip was fabricated using a standard photolithography: mixed PDMS (Dow 

Corning, Inc., Midland, MI) was applied over a pre-made photoresist (Shipley SPR 220-7) 

molding on silicon wafer and incompletely cured at 80°C for 30 min. The chip containing 

microchannels was cut out of the PDMS layer and 0.5-mm-diameter holes were punctured 

to serve as microchannel inlets and outlets. The fluidic chip and the device containing 

SiNWs were then brought into contact, with the 100-μm-wide microchannels aligned over 

the individual nanowire sections. The assembled device was cured to completion overnight 

at 80°C.  

To automate an injection/changing of analyte solutions, we also introduced a second 

PDMS chip which can sequentially inject four different solutions into one of six 

microchannels on the silicon wafer. Such sample injection chip is composed of two layers, 
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a control layer and a flow layer (Fig. 2.2A). For the fabrication of the flow layer, mixed  

PDMS was spin coated on a photoresist mold at 2500 rpm for 50 sec and incompletely 

cured at 80°C for 30 min. The control layer was fabricated by applying mixed PDMS over 

a photoresist mold directly and incompletely curing at 80°C, followed by the puncturing of 

 
 
Figure 2.2 Sensing device and fluidics device for sample handling. (A) Fabrication and 

assembly of the two-layer PDMS chip for solution injection (top) with the sensing device 

composed of SOI wafer and a single-layer PDMS chip with six separate microchannels 

(bottom). (B) A photograph of a sensing device with PDMS chip containing six microchannels. 

The chip is fixed onto a chip carrier and the gold pads on the device are wirebonded to the gold 

pads of the chip carrier. (C) The sensing device with the PDMS chip on a chip carrier (B) is 

fixed into a chip carrier socket, and the PDMS chip for solution injection (A, top) is shown 

connected to one of the six microchannels of the sensing device, as outlined in schematic (A). 

The tubing with different solutions is feeding into the solution injection chip.  
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holes for inlets and outlets. The two layers were aligned together and the inlets/outlets for 

the flow layer were created. After two hours at 80°C, the two-layer PDMS chip was 

bonded to a glass slide via an O2 plasma treatment. By utilizing such sample injection chip, 

we were able to control the injection and solution changing processes without disturbing 

the measurement, while maintaining the sensing device in an electrically isolated chamber 

at all times. The valves of the sample injection chip were actuated with the Labview 

program by means of the BOB3 Microfluidic Valve Manifold Controller and solenoid 

cluster manifolds (Fluidigm, Inc.). By introducing a waste outlet into the sample injection 

chip, we were able to remove any bubbles arising from switching between different 

solutions, which also helped in maintaining a stable baseline reading. 

 

2.2.2 Surface functionalization and characterization for DNA sensing and antibody-
based protein sensing 

 
Synthesis of tert-Butyl allylcarbamate. To a solution of allylamine (2.27 g, 39.8 

mmol) in THF (20 ml) was added N,N-diisopropylethylamine (13 ml, 80.0 mmol) followed 

by di-tert-butyl dicarbonate (8.7 g, 39.9 mmol). After 1 hr, the organic solvent was 

evaporated under reduced pressure, and the residue was purified by silica gel 

chromatography (Hex : EtOAc = 9 : 1) to give 6.6 g (93%) of a product as a clear oil. 1H 

NMR 300 MHz (CDCl3) δ 5.82 (m, 1H), 5.12 (m, 2H), 3.74 (bm, 2H), 1.45 (s, 9H). 

Surface Functionalization. The two procedures used to functionalize SiNWs with and 

without oxide layer are shown in Schemes 2.1 and 2.2, respectively. Both procedures 

resulted in an amine terminated organic monolayer atop SiNWs. For the oxide surface 

functionalization, cleaned SiNWs were treated with 2% (v/v) 3-
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aminopropyldimethylethoxysilane (Gelest, Inc., Morrisville, PA) in toluene for 2 hr. The 

wafers were then rinsed in toluene and methanol and incubated at 100°C for 1 hr.  

The procedure described previously 42, 48 was used to functionalize hydrogen-

terminated SiNWs with tert-Butyl allylcarbamate (Scheme 2.2). SiNWs were immersed in 

2% HF solution for 3 s, washed with Millipore water and blow dried under N2 stream. The 

wafer was immediately placed in a custom-made quartz container which was then pumped 

down to ~ 2×10-5 Torr, followed by an argon purge. Under positive argon pressure, a 

mixture of 1:2 tert-Butyl allylcarbamate:methanol (v/v) was applied to the wafer, 

completely covering the SiNWs. The wafer was illuminated with UV (254 nm, 9 mW/cm2 

at 10 cm) for 3 h. SiNWs were then rinsed in methylene chloride and methanol. The 

deprotection of t-Boc amine was carried out in a solution of TFA in methanol (1:4 v/v) for 

4 h, followed by extensive methanol washing. In the case of antibody attachment, the 

amine-terminated surfaces were reacted with water-soluble homobifunctional N-

hydroxysuccinimide ester (NHS ester), followed by the introduction of 50 µg/ml of 

 
 
 
Schemes 2.1 and 2.2 Surface functionalization schemes 
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monoclonal anti-human IL-2 antibodies. The unreacted amines were quenched with 

ethanolamine (100 mM in 1×PBS).  

 
X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy (XPS) was 

utilized to quantify the amount of oxide on Si(100) wafers after surface treatments outlined 

in Schemes 2.1 and 2.2. XPS was also used to follow the attachment of antibodies to silicon 

surfaces. All XPS measurements were performed in an ultrahigh vacuum chamber of an M-

probe surface spectrometer that has been previously described.53 Experiments were 

performed at room temperature, with 1486.6 eV X-ray from the Al Kα line and a 35° 

incident angle measured from the sample surface. ESCA-2000 software was used to collect 

the data. An approach described elsewhere 40, 53 was used to fit the Si 2p peaks and quantify 

the amount of surface SiOx, assuming that the oxide layer was very thin. Any peak between 

100 eV and 104 eV was assigned to Si+-Si4+ and fitted as described in the literature.54 

SiOx:Si 2p peak ratio was divided by a normalization constant of 0.17 for Si(100) surfaces. 

Contact Angle Measurements. The sessile contact angle of water on the 

functionalized Si(100) surface was used to check the fidelity of surface chemistry as 

described in Schemes 2.1 and 2.2. Contact angle measurements were obtained with an NRL 

C.A. Goniometer Model #100-00 (Rame-Hart, Inc., Netcong, NJ) at room temperature. All 

measurements were repeated three times and averaged to obtain the contact angle θ for the 

surface.  

 

2.2.3. Surface functionalization and characterization for peptide-based protein 
sensing 
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Peptide Synthesis and Purification. The FLAG peptide was synthesized on Fmoc-

Rink Amide MBHA resin (0.67 mmol/g, Anaspec, San Jose, CA) using conventional solid-

phase synthesis strategy with Fmoc protection chemistry. To prepare the peptide for click 

conjugation, a terminal alkyne was introduced by adding Fmoc-L-propargylglycine (Chem-

Impex International, Wood Dale, IL), X, to the N-terminus to yield the sequence 

 

Figure 2.3 Surface treatment scheme for peptide functionalization on a Si (100) substrate and 

XPS data. (A) Amide coupling between a protected n-azidoalkyl amino acid and the APMES-

treated surface, (1). Cu(I)-catalyzed click conjugation of the FLAG peptide 

(XSGDYKDDDDK) to the azide-modified surface, (2). The FLAG sequence contains an XSG 

spacer (X = L-propargylglycine). The spacer serves to introduce a terminal alkyne for the click 

reaction, and it enhances the accessibility of the FLAG binding motif presented by the surface. 

(Inset) Scheme for the four-step synthesis of the azide-containing unnatural amino acid used for 

surface modifications. (B) Monitoring the peptide functionalization by XPS. (Left) N 1s. (Right) 

C 1s 
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XSGDYKDDDDK. The FLAG sequence also contains an SG spacer, to enhance the 

accessibility of the FLAG binding motif. The deprotected FLAG peptide was purified by 

HPLC on a C18 reversed phase column (Varian Dynamax semi-preparative column, 25 cm 

× 2.15 cm). The column was eluted with 0.1% trifluoroacetic acid and a two-step linear 

gradient of acetonitrile/water (3/2), rising from 0–25% over 30 min and 25–100% over 30 

min. The pure FLAG peptide eluted at 41 min. The purified peptide product was verified to 

have the correct molecular weight as determined by mass spectrometry. 

Synthesis of Azide-Containing Unnatural Amino Acid. The azide-containing 

unnatural amino acid used for surface modifications is synthesized by the following four 

steps. 

Azidobutylbromide (1). To a solution of 1,4-dibromobutane (123 mmol), sodium 

azide (61.5 mmol) was added. The reaction mixture was stirred overnight at 50 °C, washed 

with water and brine, and dried over MgSO4. The organic layer was concentrated and 

purified by silica gel chromatography (100% Hex) to give a product (80%) as clear oil. 

Diethyl 2-acetamido-2-(4-azidobutyl)malonate (2). To a solution of 0.598 g (0.026 

mol) sodium metal in 25 ml absolute EtOH was added 5.65 g diethyl acetamidomalonate 

(0.026 mol), following previously described procedures.55 The mixture was stirred for 30 

min at room temperature. By dropwise addition, azidobutylbromide 1 (4.82 g, 0.027 mol) 

was added with stirring. The reaction mixture was stirred for 2 h at room temperature and 

for 6 h at reflux. After cooling and standing for 14 h, the reaction mixture was concentrated 

to dryness, and the residue was extracted with ether. The combined ether extracts were 

washed with water, sat. NaHCO3, and water, and were dried over MgSO4 and then 
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concentrated. Silica gel chromatography (Hex:EtOAc = 1:1) gave a product (63%) as a 

clear oil. 

2-Azidobutyl Amino Acid (3). Following standard methods,56 the diester 2 (2.8 mmol) 

in 25 ml of 10% NaOH solution was heated to reflux for 4 h. The solution was then 

neutralized with concentrated HCl and evaporated. The residue was dissolved in 25 ml of 1 

M HCl and heated to reflux for 3 h. The solvent was reduced and extraction with MeOH 

afforded amino acid 3 as a foamy solid (85%). 

Fmoc-2-Azidobutyl Amino Acid (4). The amino acid 3 (26.3 mmol) was dissolved in 

0.45:0.55 H2O/THF (150 ml), and NaHCO3 (22.1 g, 263 mmol) was added, following 

published methods.57 After the mixture was cooled to 0°C, Fmoc-OSu (9.7 g, 28.9 mmol) 

was added dropwise over 5 min. The reaction mixture was allowed to come to room 

temperature and stirred overnight. The THF was evaporated in vacuo and the aqueous 

residue was washed with ether (2 x 200 ml). The aqueous layer was collected, acidified 

with concentrated HCl to pH 2 and extracted with ethyl acetate (4 x 100 ml). The combined 

organic layers were washed with brine, dried over MgSO4, filtered, and concentrated. The 

organic residue was purified by column chromatography (2% MeOH in dichloromethane) 

to give a foamy solid. After recrystallization from EtOAc/Hex, a pure white powder was 

obtained (25% yield). 

 Surface Treatment. The cleaned silicon (100) surface was treated with 2% (v/v) 3-

aminopropyldimethylethoxysilane (Gelest, Inc., Morrisville, PA) in toluene for 2 h 

followed by rinsing with toluene and isopropanol (IPA). The wafer was then incubated at 

120°C for 15 min (APMES-treated surface in Fig. 2.3A). The amine-terminated surface 

was converted into an azide-terminated one through the conjugation of the azide-containing 
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unnatural amino acid (synthesized following the scheme in Fig. 2.3A, inset). A solution of 

20 mM azide-containing unnatural amino acid in DMF was prepared to contain 8 equiv 

HATU, 4 equiv HOAt, and 24 equiv DIEA (relative to the azide). This coupling solution 

was incubated with the surface for 2 h at room temperature, followed by rinsing with IPA 

and water. The N-terminal Fmoc protecting group was removed by treatment with 20% 

piperidine in DMF for 30 min. After cleaning the device with IPA and water, a PDMS chip 

with microfluidics channel was bonded to the device. The PDMS chip was fabricated by 

the soft lithography technique described by others.51 The channel was 150 µm wide and 20 

µm high. The Cu(I)-catalyzed click conjugation of the FLAG peptide (XSGDYKDDDDK) 

to the azide-modified surface was performed. 20 equiv CuSO4·5H2O and 40 equiv sodium 

ascorbate (relative to the peptide) were mixed with a solution of 1 mM FLAG peptide in 

water and incubated over the device for 12 h in the prepared solution. Unreacted peptides 

and catalysts were rinsed away by flowing water through the channels. The FLAG 

sequence contains an XSG spacer (X = L-propargylglycine). The spacer serves to introduce 

a terminal alkyne for the click reaction, and it enhances the accessibility of the FLAG 

binding motif presented by the surface. 

X-Ray Photoelectron Spectroscopy. X-ray photoelectron spectroscopy (XPS) was 

utilized to evaluate the surfaces at each step of the functionalization on Si (100) wafers. All 

XPS measurements were performed in an ultra-high vacuum chamber of an M-probe 

surface spectrometer that has been previously described.53 Monochromatic Al KX-rays 

(1486.6 eV) were used to irradiate the sample incident at 35° from the surface. ESCA-2000 

software was used to collect and analyze the data. To gain an overview of the species 

present in the sample, survey scans were run from 0 to 1000 binding eV (BeV). The Si 2p 
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(95.5–107.5 BeV), C 1s (281–293 BeV), and N 1s (396–410 BeV) regions were 

investigated in detail. 

Contact Angle Measurements. The sessile contact angle of water on the 

functionalized Si(100) surface was used to check the fidelity of surface chemistry. Contact 

angle measurements were obtained with an NRL C.A. Goniometer Model #100-00 (Rame-

Hart, Inc., Netcong, NJ) at room temperature. All measurements were repeated ten times 

and averaged to obtain the contact angle for the surface.  

 

2.2.4 SPR and electronic measurements  
 

Surface Plasmon Resonance (SPR). All SPR experiments were performed on the 

Biacore 3000 with carboxylic-acid-terminated Biacore CM5 chips. The active flow cells 

were first primed in 1×SSC (15 mM NaCitrate, 150 mM NaCl, pH 7.5). To generate an 

amine surface, the carboxylic acid groups were converted to succinimide esters by flowing 

EDC/NHS prior to exposure of a 1 mg/ml solution of polylysine (Sigma-Aldrich, St. Louis, 

MO). Single-stranded DNA (5’TGGACGCATTGCACAT3’, Midland Certified, Ind., 

Midland, TX) was electrostatically absorbed unto the polylysine matrix. Complementary 

DNA was then immediately introduced and allowed to hybridize to the active surface. The 

flow cell was regenerated with two 1-min pulses of 50 mM NaOH, after which ssDNA was 

reabsorbed electrostatically before another cDNA pulse was introduced for hybridization. 

The antibodies in acetate buffer (pH 5.5) were attached directly immediately following the 

surface treatment with EDC/NHS, and the remaining esters were reacted with ethanolamine. 

The antigen was introduced at various concentrations in 1×PBS buffer at the flow rate of 30 
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µl/min. Between each addition, the surface was regenerated with glycine/HCl buffer (pH 

3.0). 

Electronic Measurements. The 4-point resistivity of silicon film as well as SiNW 

resistances and solution gating were measured with a Keithley 2400 Source Meter 

(Keithley Instruments, Inc., Cleveland, OH). The sensing experiments were performed with 

a SR830 DSP Lock-in Amplifier (Stanford Research Systems, Inc., Sunnyvale, CA). Fig. 

2.4 shows the experimental setup for the electronic measurements. A 50 mVrms at 13 Hz 

voltage source (VSD) was applied to one terminal of the nanowire, with the amplifier input 

operating in the current-measure mode. For the DNA sensing experiments, platinum wire 

was inserted into the microchannel and used as a solution gate, while it was kept at a 

ground potential throughout the real-time measurements to reduce the noise in the system 

(Fig. 2.1A). In the case of protein sensing, the handle of the wafer (backside Si) was held at 

a ground potential instead of the platinum electrode in solution. The devices were 

functionalized and assembled as described above. Single-stranded 10 µM DNA (same as in 

SPR experiments) in 1×SSC buffer was flowed through the microchannel for 1 hr and 

allowed to electrostatically adsorb to the amine-terminated surface of SiNWs. The non-

bound DNA was washed thoroughly with 1×SSC buffer. Complementary DNA 

(5’ATGTGCAATGCGTCCA3’
, Midland Certified, Ind., Midland, TX) of varying 

concentrations in 1×SSC buffer was sequentially injected from the injection PDMS chip 

into the microchannel containing SiNWs at a flow rate of 2.0 µl/min as the resistance of the 

NWs was recorded in real time. Noncomplementary DNA (noncomp. DNA) 

(5’CATGCATGATGTCACG3’) was used as a control. In general, a different SiNW sensor 
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was utilized for each of the measurements described here. Similar procedure was followed  

for protein sensing. The surface functionalized with capture antibodies was subjected to the 

10 µM PBS solution containing various antigen concentrations (1 pM to 100 nM). After the 

introduction of a particular concentration, the surface was completely regenerated with 10 

µM PBS, followed by the introduction of the next antigen concentration in the same 

microchannel. 

 

2.3 Results and Discussion 

 
2.3.1 DNA sensing 
 

 
 

Figure 2.4 Experimental setup for biological sensing with silicon nanowires. The sensing 

devices (Figure 2.2C) are placed inside an electrically isolated box, which also contains solenoid 

manifolds that actuate microfluidic valves. The nanowire resistance is recorded in real-time with 

lock-in amplifiers. 
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Surface Characterization. We used contact angle measurements to follow the 

functionalization processes of various surfaces. Table 2.1 presents the data for both 

Schemes 2.1 and 2.2. The procedure in Scheme 2.1 generates a large increase in contact 

angle. Similarly, large changes in contact angles are observed for photochemically treated 

Si surface before and after t-Boc deprotection. The resulting contact angle of ~ 60° is 

observed for surfaces prepared by Scheme 2.1 and 2.2, arguing for the existence of 

chemically similar, amine-terminated monolayers on these surfaces. 

Quantifying the amount of oxide on the SOI NWs is extremely challenging. Therefore, 

we used Si(100) bulk surfaces to approximate the amount of surface oxide remaining after 

photochemical functionalization. Fig. 2.5A shows XPS scan in the Si/SiOx region. The 

Si(100) surface with native oxide exhibited approximately 1.9 equivalent monolayers of 

 

SiOx. In contrast, the Si(100) surface treated according to Scheme 2.2 contained 0.08 

equivalent monolayers of SiOx prior to TFA deprotection and 0.3 monolayers of SiOx after 

the deprotection step and a 10 h exposure to 1×SSC buffer. The roughness of a SiNW 

surface may cause a more extensive oxidation than the one observed on the bulk surface, 

but the data in Fig. 2.5A does demonstrate a significant reduction in oxide thickness after 

photochemical treatment. Furthermore, we used XPS to determine the presence of amine-

terminated monolayer on bulk Si(100) surfaces post functionalization with two different 

Table 2.1 Measured contact angles for various Si(100) surfaces 

Si(100) surface contact angle 

  With nonfunctionalized oxide 11 1 
 Scheme 2.1: amine terminated  61 1 
 Scheme 2.2: t-Boc protected 81 1 
 Scheme 2.2: deprotected, amine terminated 60 1 
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Figure 2.5 Surface analysis with XPS and SiNW response to pH. (A) XPS of Si 2p region of 

Si(100) surface functionalized as in Scheme 2.2 before (dark grey) and after (light grey) TFA 

deprotection and 10 hrs in 1×SSC buffer. Nonfunctionalized Si(100) surface with native oxide 

(black). Inset: N 1s region of nonfunctionalized Si(100) surface (black), Si(100) functionalized 

by Scheme 2.1 (light grey) and Scheme 2.2 (dark grey). (B) Current-voltage (IV) graphs of 

SiNWs functionalized by Scheme 2.1 in solutions of varying pH. Inset: Solution-gated (VSG) n-

type hydroxyl terminated SiNW in solutions of varying pH 
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schemes. The Fig. 2.5A inset demonstrates the XPS scans of N 1s region. Nitrogen peak is 

clearly visible for surfaces functionalized by Schemes 2.1 and 2.2, while no peak is present 

for the nonfunctionalized Si. 

Scheme 2.1 functionalized SiNWs demonstrate a sensitivity to pH which is different 

than for native oxide-passivated NWs.13 The isoelectric point of silica is ~ 2,58 implying 

that for hydroxyl-terminated, non-functionalized SiNWs at low pH, the SiOH groups are 

largely protonated. At high pH, negative charges on SiO- should deplete carriers in the n-

type SiNWs, causing a decrease in IDS (Fig. 2.5B, inset). Above pH 4 the conductance is no 

longer modulated by increasing the pH, as most of the hydroxyl groups are deprotonated. 

When the surface is functionalized with amine (pKa ~ 9–10), the opposite trend is expected. 

At low pH, the amine is protonated, causing carrier depletion or increased resistance in p-

type SiNW. This trend is observed in Fig. 2.5B, where the sharpest transition in resistance 

occurs between pH 9 and 10. The observation of the correct pH effects on the resistance of 

the SiNWs serves as a confirmation of the presence of surface functional groups: amine in 

this case.  

As shown in Fig. 2.6, oxide-covered SiNWs in 1×SSC buffer (0.165 M, pH 7.2) 

respond weakly to the applied solution gate voltage, VSG, showing no significant on–off 

current transition between 0.8 and -0.8 volts. In contrast, directly passivated SiNWs 

(Scheme 2.2) exhibit on–off current ratios of ~ 102. Fig. 2.6 strongly suggests that directly 

passivated SiNWs exhibit an enhanced response to surface charges and should therefore 

serve as superior NW sensors compared with similarly functionalized, but oxide-passivated 

SiNWs.  
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The Scheme 2.2 procedure does involve an HF etch step, which can be potentially 

detrimental to the device conductance. We thus checked the conductivity of SiNWs before 

and after photochemical treatment. Lightly doped SiNWs provide for superior FET 

properties,59 and, in fact, we have reported that lightly doped (1017 cm-3) p- or n-type 

SiNWs are more sensitive biomolecular sensors than those reported here.60 Our doping 

process preferentially dopes the top few nanometers of the SiNWs.61 Thus, if the HF 

etching of the Si surface was extensive enough, we could expect an enhancement in SiNW 

current modulation by VSG to be entirely due to the decrease in carrier concentration and 

not the removal of surface oxide. The Fig. 2.6 insets demonstrate that the NW resistance 

 
 

Figure 2.6 Solution gating of SiNWs functionalized by Scheme 2.1 (grey) and by Scheme 2.2 

(black) (VSD was 50 mV). (Right inset) IV curves of SiNWs in air with (black) and without 

(grey) oxide. (Left inset) Resistances in air of SiNWs functionalized by Scheme 2.1 (left) and 

Scheme 2.2 (right) 
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increased only, on average, by a factor of 2 following the HF treatment. This relatively 

negligible resistance increase indicates that the major reason that the SiNWs prepared by 

Scheme 2.2 exhibit an improved solution FET performance originates from the elimination 

of oxide via direct silicon passivation. This result is consistent with the recent 

demonstration that, for VLS-grown SiNWs, direct methylation of the SiNW surface leads 

to a 103–104-fold enhancement in the on–off conductance of the FETs made from those 

nanowires.43 

 
Nanowire Sensing Measurements. Fig. 2.7 shows SiNW real-time detection of the 

electrostatic adsorption of 10 µM ssDNA, followed by the hybridization in 1×SSC buffer 

of 100 nM complementary DNA strand. As expected, the resistance of p-type SiNWs is 

decreased with the addition of negative surface charges. The metal contacts to NWs have 

 

 
 

Figure 2.7 Real-time response of SiNWs functionalized as in Scheme 2.1 to the addition of (a) 

10 µM ssDNA and (b) 100 nM complementary DNA. Right top inset: Real-time SiNW response 

to the sequential addition of (a) 0.165 M SSC, (b) 0.0165 M SSC, and (c) 0.00165 M SSC 

buffers. Left inset: SPR measurement demonstrating the addition of 10 µM ssDNA to poly-L-

lysine coated CM5 sensor chip. VSD = 50 mV. 
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been covered with a Si3N4 layer, and there is no background conductance through the 

solution. We have observed an insignificant change in the resistance of the NWs upon 

switching from dry environment to buffer solution (data not shown). Moreover, as Fig. 2.7 

(right inset) shows, changing the ionic strength of the solution does not affect the resistance. 

In addition, the automated solution injection removes any baseline shifts or transient 

changes in the resistance. SPR was also utilized in parallel to SiNWs in order to validate 

the surface chemistry and to obtain kinetic parameters such as kon, koff, and affinity constant 

KA for this particular DNA pair. Poly-L-lysine was covalently attached to the SPR sensor 

chips, mimicking the amine-terminated monolayer of SiNWs. Fig. 2.7 (left inset) shows the 

SPR response to the electrostatic adsorption of a 10 µM primary DNA strand. The surface 

density of adsorbed DNA was estimated as 2.5×1013 cm-2, using the conversion factor of 

1000 RU = 100 ng cm-2
 from the literature.62 The surface density is approximately an order 

of magnitude higher than the average surface density of 1012 cm-2 obtained when localizing 

biotinylated DNA on a streptavidin-covered surface.63 Such high surface density of primary 

DNA is expected because the poly-L-lysine-treated surface is positively charged. It is likely 

that the amine-terminated SiNW surface has less surface charge than the poly-L-lysine-

covered surface and thus contains fewer sites for electrostatic adsorption of 

oligonucleotides.  

Fig. 2.8 demonstrates real-time label-free detection of ssDNA by SiNWs and by SPR. 

In either case, the primary DNA strand was electrostatically immobilized on the sensor 

surface. Known DNA concentrations were injected after a stable reading with 1×SSC 

buffer was obtained and the flow was maintained throughout the experiment. Different 

concentrations were detected with different groups of SiNWs. We observed that the 
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Figure 2.8 Concentration-dependent, real-time sensing of complementary DNA by SiNWs and 

by SPR in 0.165 M electrolyte. (A) Real-time responses of SiNWs that were surface 

functionalized according to Scheme 2.1 and coated with electrostatically adsorbed primary 

DNA. The black trace represents exposure of the SiNW sensors to 100 nM non-complementary 

ssDNA. Each curve represents measurements from a different set of NWs. Inset: Fluorescence 

image of Si(100) surface (with overlaying PDMS microfluidics chip) treated as in Scheme 2.1 

followed by 10 µM primary DNA addition and addition of (microchannel a) 100 nM 

noncomplementary fluorescent DNA and (microchannel b) 100 nM complemenatary fluorescent 

DNA. PDMS chip was removed before the image was collected. (B) As in (A), except the 

SiNWs were functionalized according to Scheme 2.2. Inset: Same as in A inset, but Si(100) 

surface was treated as in Scheme 2.2. (C) SPR measurement of the hybridization of 

complementary DNA to electrostatically adsorbed primary DNA on a poly-L-lysine surface. (D) 

Normalized SiNW responses for Scheme 2.1 (black dots) and Scheme 2.2 (red dots) surface 

preparations, as a function of the log of DNA concentration. For all measurements, VSD = 50 

mV. 
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hybridization on SiNWs is essentially irreversible on the relevant time scales when the 

analyte DNA was being washed away with the buffer solution. Such behavior is in contrast 

to SPR measurements, where the slow reversal of hybridization was observed (Fig. 2.8C). 

The performance of the NWs surface functionalized according to Scheme 2.1 (Fig. 2.8A) 

was compared to SiNW sensors prepared according to Scheme 2.2 (Fig. 2.8B). The SPR 

experiments, although carried out on Au substrates, also utilized primary ssDNA that was 

electrostatically adsorbed onto an amine-terminated surface. The intention here was to find 

experimental conditions that could serve to validate the NW experiments by obtaining 

kinetic parameters for these particular DNA strands under specific experimental conditions. 

Control experiments with non-complementary DNA yielded no response for either SiNWs 

or SPR measurements (black traces of Figs. 2.8A and 2.8C). These negative controls were 

also independently validated via fluorescent detection in microfluidic channels on two 

different (Schemes 2.1 and 2.2) Si surfaces (Figs. 2.8A and 2.8B, insets). Fig. 2.8D 

demonstrates that the NW response (∆R/Ro) varies as log[DNA]. Such a logarithmic 

dependence has been previously reported.21 As demonstrated in Fig. 2.8D, the dynamic 

range of SiNWs is increased by 100 after the removal of oxide and UV-initiated chemical 

passivation; the limit of detection (LOD) increased from 1 nM to 10 pM.  

Nanowires as Quantitative Biomolecular Sensors. SiNW sensors can potentially be 

utilized to quantitate analyte concentration and binding constants. In order to explore this 

possibility, the SiNW sensing response must be compared with other label-free, real-time 

methods such as SPR. It is also critical to design experimental parameters for both sensing 

modalities that are as similar as possible, as was described above. In this section, we first 

discuss the use of electrostatically adsorbed primary DNA for detecting complementary 
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DNA analyte. We then discuss the development of a self-consistent model that allows for 

the direct comparison of SPR measurements with nanowire sensing data. Finally, we test 

that model by utilizing the nanowire sensing data to calculate 16-mer DNA binding 

constants and analyte concentrations.  

Previous studies have demonstrated that the Langmuir model can be applied for 

parameterization of the hybridization processes of short oligonucleotides.22, 63 We used the 

Langmuir model to calculate kinetic parameters from the SPR hybridization measurements 

(Fig. 2.8C) and obtained kon=1×105, koff=2×10-2, KA=5×106 (Table 2.2). This KA value is 

between 10 and 100 times smaller than that reported for similar length DNA measured with 

a quartz crystal microbalance, SPR,22 and surface plasmon diffraction sensors (SPDS).63 

The average primary DNA surface coverage in those studies was ~ 5×1012 molecules/cm2. 

As stated above, the electrostatically adsorbed DNA coverage in our SPR experiments was 

approximately 10 times higher, at 2.5×1013 cm-2. This difference in coverage likely arises 

from the differing methods of DNA immobilization; while in our system the DNA is 

electrostatically adsorbed, other studies utilized a streptavidin-biotinylated DNA linkage 

for surface immobilization.22, 63 High surface coverage of primary DNA significantly 

reduces the efficiency of hybridization.63, 64 In addition, the hybridized duplex of 

electrostatically adsorbed and covalently bound DNA may be structurally and energetically 

different. It has been proposed that a preferred structural isomer of an oligonucleotide pair 

on a positively charged surface is a highly asymmetrical and unwound duplex.65 We 

believe that such non-helical nature of DNA duplex, together with steric effects of highly 

packed surface play major roles in the reduced affinity for the 15mer pair used in this study.  
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 We now turn toward developing a model for using SiNW sensors to quantitate 

complementary DNA pair-binding constants, and, if those numbers are known, to 

determine the solution concentration of the analyte. A discussion of the kinetics of a 

surface binding assay, as measured within flowing microfluidics environments, is required. 

Zimmermann and coworkers modeled the kinetics of surface immunoassays in 

microfluidics environments.66 Their model was based on four differential equations: the 

two Navier-Stokes partial differential equations, the Convection-Diffusion equation, and 

the ordinary differential equation resulting from the Langmuir binding model (i.e., the 

binding/hybridization equilibrium). A key result was that in the limit of high analyte flow 

speeds (> 0.5 mm/sec) (which is the case for all the experiments here) the amount of 

 

 
 

Figure 2.9 Comparison of SPR-derived hybridization kinetic parameters with NW sensing data. 

The black line represents eq. 5 plotted using kon and koff obtained from SPR measurements, 

β =(konC+koff)t. The grey trace is obtained from SiNW resistance vs. time data, . C 

= 10 nM.  



 49 

analyte that is captured and ready for detection can be described by the ordinary differential 

equation resulting from the Langmuir binding model: 

( ) toffton
t kCk

dt
d

Θ−Θ−Θ=
Θ

max  . (2.1)  

Here, tΘ = surface density of bound analyte molecules; onk = rate constant for 

association; offk = rate constant for dissociation; C = solution concentration of analyte (a 

constant under flowing conditions); maxΘ =  maximum number of binding sites available 

per surface area. Eq. 2.1 can be solved analytically: 

( )( )tkCk

offon

on
t

offone
kCk
Ck +−−

+
Θ

=Θ 1max

.
 (2.2) 

The challenge is to translate from the resistance change of a SiNW sensor to the analyte 

concentration, C. However, the exact relationship between a measured resistance change 

and the surface density of bound analyte molecules is not intuitively clear. Here we attempt 

to determine the nature of that relationship. 

We demonstrated above (Fig. 2.8D) that the cumulative change in SiNW sensor 

resistance arising from the binding of a charged analyte (ssDNA) at a concentration-

dependent saturation was linearly proportional to the log[DNA], similar to what has been 

reported for VLS SiNW detection of prostate-specific antigen (PSA).21 In mathematical 

terms, this means that as we approach saturation for a given concentration: 

 
0R
R∆ = α lnC  (2.3) 

where α is a constant, ∆R = R-Ro, R is resistance at time t, and Ro is the resistance at t = 0. 

At saturation levels eq. 2.2 reduces to 
1
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affinity
off

on
A k

kK = ). In the limit where 1<<CK A  (which is usually the case with values of 

C ≤ 10-9 and values of KA < 810 ), this reduces to CK At maxΘ=Θ . Therefore, at saturation, 

and with 1<<CK A , tΘ  scales linearly with C. From our previous discussion, this implies 

that at saturation 
0R
R∆  scales logarithmically with tΘ  (or equivalently that tΘ  is an 

exponential function of 
0R
R∆ at saturation). In estimating the relationship between resistance 

changes at all times (not just at saturation) and the surface density of bound analyte 

molecules at all corresponding times, we start by assuming the same functional relationship 

that we experimentally observe at saturation. We also impose two boundary conditions. (1) 

When the measured resistance reaches its saturation level we would expect the maximum 

number of binding events to have taken place and for that number to be consistent with the 

prediction from the Langmuir binding model (eq. 2.2). (2) When the measured resistance is 

unchanged from its starting level we expect zero binding events (again consistent with the 

Langmuir model at time = 0). Based on these assumptions and boundary conditions we can 

thus estimate that the surface density of bound analyte molecules as a function of resistance 

change has the form: 











−

+
Θ

=Θ −
∆−

RR
R

offon

on
t e

kCk
Ck

max1max
 ; (R max =R at saturation). (2.4) 

The validity of eq. 2.4 can be tested by considering the following expression that is 

derived from eq. 2.4 and comparing it to the same expression derived from eq. 2.2: 
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 (2.5) 

Note that eq. 2.5 is expressing the fraction of bound analyte molecules at time t relative 

to the level at saturation in terms of ∆R (first term in brackets) and in terms of binding 

constants (second term in brackets). Time appears explicitly in the second term in brackets, 

while it is implicit in the first term in brackets (i.e., at a given time t there is a given R and 

R∆ ). If we plot the first term in brackets in eq. 2.5 (the term containing ∆R) against the 

second term in brackets (using kon and koff values from an SPR analysis), we find that the 

two curves are similar (Fig. 2.9). 

 A second test of eq. 2.4 is to utilize it to extract binding kinetics. As we can infer from 

eq. 2.5, if eq. 2.4 is equivalent to the Langmuir binding model (eq. 2.2), then: 

 ( )tkCk
RR

R
offon +=

−
∆

max .
   (2.6) 

We can thus extract kon and koff values from measured resistance data. We can select R 

vs. time traces at any two concentration values. Taking R and ∆R at an arbitrary point in 

time and noting R max (the resistance at saturation), we have two equations (one for each 

concentration C) and two unknowns. We thus solve for kon and koff and compare directly 

with kinetic parameters obtained from SPR experiments. The kon, koff, and KA values are 

summarized in Table 2.2. The kon constants determined from the SiNW experiments are 3–

5 times larger than kon obtained with SPR experiments. The nanowire-measured koff values, 

however, are consistently quite close to those measured with SPR. As stated above, the 

variation in kon values may be a reflection of steric affects that arise from the unusually 

high surface density of primary DNA adsorbed onto the poly-L-lysine surfaces that were 
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used for the SPR experiments.63, 64 

Further work has to be done to ground this translation from nanowire-resistant readings 

to the Langmuir binding model (or equivalently from resistance readings to number of 

bound analyte molecules) on firm theoretical grounds. It is encouraging, however, that with 

our resistance data we can extract useful binding kinetics. The most useful application of 

our model would be in extracting otherwise unknown concentration values once kon and koff 

values are known. As demonstrated here and elsewhere, SiNW sensors can be used for 

label-free biomolecule detection at concentrations significantly below the limits of 

detection for SPR. Thus, the potential for SiNW sensors to quantitate analyte 

concentrations when the concentrations are below 10 nM represents a nontrivial application. 

The consistency of the SiNW measurements that is reflected in the Table 2.2 values is 

worth noting, especially since each measurement was carried out using a different SiNW 

 
SiNWs–concentration pair: SPR (this work) 

(poly-L-lysine 
surface, 16-mer 
DNA) 

SPDS (ref. 63) 
(avidin-biotin linkage, 

 15-mer DNA) 10 nM 
100 nM 

1 nM 
100 nM 

1 nM 
10 nM 

kon  
(M-1 s-1) 3.5(3.4) × 105 4.2(2.4) × 

105 
6.2(9.6) × 

105 1.01 × 105 6.58 × 104 

koff (s-1) 3.1 (0.5) × 10-2 2.4 (0.8) × 
10-2 

2.4 (0.9) × 
10-2 2.01 × 10-2 1.32 × 10-4 

KA (M-1) 1.1 × 107 1.8 × 107 2.6 × 107 5.02 × 106 4.98 × 108 

[DNA] 100 nM (actual); 68(52) nM calculated 
10 nM (actual); 14(9) nM calculated 

 
Table 2.2 Kinetic parameters estimated from SiNW biosensors for the hybridization of 16-mer 

DNA and corresponding comparisons with analogous SPR and SPDS (surface plasmon 

diffraction sensor).63 The calculated concentrations (bottom row) were estimated with eq. 6, by 

using the pair of SiNW measurements that did not include the concentration to be determined. 

For example, the 1 nM and 100 nM measurements were used to determine the concentration at 

10 nM. Standard deviations are given in parentheses. 
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sensor. This provides validation that the nanofabrication techniques that were utilized to 

prepare the NW sensing devices are highly reproducible. 

 

2.3.2 Protein sensing with antibodies 
 

Robust label-free detection of proteins below the concentration of ~ 10 pM is of 

considerable importance in rapid clinical evaluation, cancer marker detection, disease 

staging, etc. The real-time nature of electronic label-free detection also offers additional 

 

benefits such as characterization of new affinity probes, drug screening, and could, 

therefore, be potentially useful in basic research as well as in clinical practice. For these 

reasons, we have extended the above study to the detection of proteins. Such endeavor, 

however, faces a fundamental challenge, owing to the significant charge screening in the 

solution of high ionic strength. The extent of such screening may be characterized by the 

Debye length, 1/κ,20 which describes a distance from a point charge at which the potential 

 
 
Scheme 2.3 The binding of proteins to antibodies at a distance ~ 10 nm from the surface of 

silicon nanowires results in an approximately homogeneous change in charge density, ∆σ, 

which is smeared over a distance b. The accompanying change in chemical potential, Ψ, drops 

off exponentially, with a characteristic Debye length, 1/κ. 
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due to that charge drops off to ~ e-1 of its value. Scheme 2.3 demonstrates the relevance of 

Debye screening to the electrical detection of biomolecules in solution. Here, we assume 

that the antibodies, which serve as capture probes for proteins, are approximately 10 nm 

long, and are randomly oriented on the surface of the nanowire. The change in charge 

density, ∆σ, due to the equilibrium binding of proteins is smeared over a distance b, which 

is a distance d away from the NW surface. The change in chemical potential per area at the 

surface of the nanowire may be described by the Debye-Hückel equation,18, 20 

     
[ ]

2
0

)(

κεε
σ κκ

w

bdd ee
b

+−− −∆
=∆Ψ                                     (2.7) 

where ε0 is the dielectric constant, εw is the permittivity of water and κ-1 is the Debye 

screening length. As is readily noticeable from eq. 2.7, the larger the 1/κ (smaller κ), the 

more pronounced will be the surface potential change for a given change in the charge 

density. Surface potential and the distance from the surface at which the binding takes 

place are intimately coupled. If the screening length is much smaller than d, κ−1<<d, then 

the potential due to protein binding will be completely screened from the surface of the 

nanowire. Therefore, the condition κ−1≥d must be met in order to detect charged species in 

the solution a distance d away from the surface. In the case of DNA sensing (Section 2.3.1), 

the capture probe single-stranded DNA was electrostatically adsorbed on the NW surface, 

and the hybridization was taking place very close, ~ 1 nm from the surface, allowing us to 

carry out sensing in high ionic strength conditions of 0.165 M. The antibodies, however, 

are fairly large biomolecules (Scheme 2.3). At 25°C the Debye length of aqueous solution 

is20  
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for 1:1 electrolytes such as NaCl.  

As Table 2.3 demonstrates, the size of the antibodies dictates the ionic strength of the 

solution in which the electronic detection may take place. This is a serious limitation if the 

physiological medium such as serium (0.14 M) must be used to detect low abundance 

proteins, without the possibility of appropriate dilutions. To circumvent this problem, new 

high-affinity probes, such as aptamers, small molecules, and short peptides, must be 

developed, all of which are significantly smaller than the antibodies.  

 
SiNW surfaces for protein sensing were functionalized in a similar manner to the 

experiments with DNA. Native oxide of silicon was functionalized with an amine-

terminating monolayer. A bifunctional crosslinker, with an NHS ester on either end, was 

coupled to the primary amines on the surface, followed by the coupling of antibodies to the 

other end of the linker. This chemistry may potentially involve any of the primary amines 

of the antibody, and, therefore, probably results in a random orientation of the antibodies 

on the surface (Scheme 2.3). Since the surface area of a nanowire is rather small, ~ 10-13 m2, 

this may result in the broadening of the distribution of the responses from the identical 

 

[NaCl] 1/κ 

100 mM 1 nm 

1 mM 10 nm 

10 µM 100 nm 

 

Table 2.3 Debye length at different salt concentrations 
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nanowires. Measuring the response of a larger array of nanowires, therefore, may lead to a 

smaller variance in the response.  

XPS scans of the carbon 1s region from the silicon surface treated as described above 

are presented in Fig. 2.10. Clear emergence of the C=O and C-O/C-N bonds is visible, 

suggesting that the antibodies are successfully attached to the surface. The doping level was 

chosen as the one which reproducibly yields wires with resistances of ~ 1 MΩ, ohmic 

contacts, and good solution transconductance behavior (Fig. 2.11A). Wires with higher 

doping are not as sensitive to proteins and those with lower doping yield fewer functional 

devices.  

 

 
 

Figure 2.10 XPS of carbon 1s region, followed through the process of nanowire 

functionalization with antibodies. Starting with bare silicon-on-insulator (SOI) substrate (dark 

grey), the wafer is functionalized with 3-aminopropyldimethylethoxysilane (APMES) as 

described in the Experimental Methods Section (light grey). Bifunctional cross-linker (NHS 

ester) is then attached to the surface amines (grey), followed by the covalent attachment of 

antibodies (black).  



 57 

The attachment of antibodies was further verified by monitoring the resistance of the 

nanowires during the functionalization process. Fig. 2.11B shows IV curves of the 

nanowires in air, in solution, and after the attachment of the antibodies. The resistance of 

 

 

 
 
 

Figure 2.11 Solution gating responses. (A) SiNW (~ 1018 cm-3) response to the application of 

solution gate voltage in 10 µM PBS solution. (B) Current-voltage traces of SiNW (~ 1018 cm-3) 

(a) with surface amine in air, (b) with surface amine in10µM PBS solution, (c) after antibody 

attachment in 10 µM PBS solution 
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the amine-terminated nanowires drops significantly after immersion in solution and yet 

further after the attachment of the antibodies. The pH of the 10 µM PBS is approximately 

6.0, which may account for the increase in the resistance in the solution. It is also possible 

that pH 6.0 is below the isoelectric point of the particular antibody used here, and the 

excess positive charges on the antibody surface lead to the further increase in the resistance.  

 

 

 
Figure 2.12 IL-2 sensing. (A) Real-time sensing of human IL-2 with SiNWs doped at 10-18 cm-3. 

The nanowires were functionalized with 3-aminopropyltriethoxysilane (APTES), followed by 

the attachment of anti-human IL-2 antibodies. Human IL-2 in 1.5 µM PBS at different 

concentrations (1 nM, 10 nM, and 100 nM) was introduced, each time followed by the removal 

of bound IL-2 with 1.5 µM PBS. (B) Normalized resistance of nanowires (R0 is an initial 

resistance) as a function of time and IL-2 concentration. (C) Normalized change in resistance 

{∆R/R0=(Rsat-R0)/R0} as a function of protein concentration 
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 Real-time detection of proteins with SiNWs is demonstrated in Figs. 2.13 and 2.15. In 

each case, the same microchannel (the same SiNWs) was used for introducing antigen at 

various concentrations. After the saturation of the signal, phosphate buffer was used to 

remove bound human interleukin-2 (IL-2). This process was repeated several times with 

different IL-2 concentrations, and as Figs. 2.12A and 2.14A demonstrate, the antigen-

antibody binding is fully reversible. SiNWs can, therefore, similarly to the SPR chip, be 

reused multiple times for protein detection. The data in Fig. 2.12 was collected in 1.5 µM 

PBS using the chip which was functionalized with 3-aminopropyltriethoxysilane (APTES). 

 
 

Figure 2.13 Schematic of the microfluidic PDMS chip overlaying a nanowire sensor device for 

differential measurements. A single microchannel bifurcates into two channels, each delivering 

solution to a separate sensor region with SiNWs (inset). One of the two sensor regions is 

functionalized with antibodies (left channel), while the other serves as a reference (right 

channel), accounting for the signal due to non-specific binding. The analyte solution is flown 

over both regions simultaneously (arrow), and the real-time resistance of the two regions is 

subtracted. 
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APTES forms multilayers on the surface due to intermolecular polymerization. After the 

data in Fig. 2.12 was collected, the chip was cleaned in organic solvents and briefly in O2 

plasma. The surface of the SiNWs was then functionalized with 3-

aminopropyldimethylethoxysilane (APMES), which forms a monolayer on silicon oxide 

surface. Subsequent protein sensing was carried out in 10 µM PBS. For this time, devices 

were modified (original devices as in Fig. 2.1) to include a control channel for each 

measurement (Fig. 2.13), which contained nonfunctionalized SiNWs. It is expected that 

such bare SiNWs provide a measure of nonspecific protein binding to the surface; therefore, 

a differential measurement taking biofouling and random drift into account is more 

accurate.  

As evident from comparing Figs. 2.12 and 2.14, while the same SiNW device was used 

for protein sensing, the changes in resistance corresponding to the same concentrations of 

IL-2 are markedly different. The reason for this difference is difficult to pinpoint exactly. In 

Fig. 2.12, the functionalization with APTES may have resulted in a higher density of 

surface amines, which translated to a higher surface density of anti-IL-2 antibodies, and, 

therefore, to a larger saturation signal. Also, longer Debye screening length, corresponding 

to the detection in 1.5 µM PBS (Fig. 2.12), vs. 10 µM PBS (Fig. 2.14), may have also 

contributed to higher signals. Finally, O2 treatment may have oxidized the surface, leading 

to a drop in sensitivity. Regardless of the exact reason, it is evident that the sensing devices 

may be reused multiple times for protein detection. Fig. 2.14 demonstrates that the increase 

in resistance is specific to antibody-IL-2 binding. When the antibodies are absent from the 

SiNW surface, no changes in the resistance are observed, meaning that the nonspecific 

binding of the antigen is below the detection threshold. In addition, the response of the 
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Figure 2.14 IL-2 sensing with dual channel device. (A) Real-time, differential sensing of human 

IL-2 in 10 µM PBS. The solutions containing IL-2 at different concentrations (100 nM, 10 nM, 

1 nM, and 100 pM) were flowed sequentially over an active region of SiNWs which were 

functionalized with anti-human IL-2 antibodies (black curve), with the addition of 10 µM PBS 

after each IL-2 concentration to wash away bound proteins. Simultaneously, the same solutions 

were also introduced into a separate channel (Figure 2.13) containing SiNWs without antibodies 

on the surface (grey curve). (B) SPR of IL-2-anti IL-2 antibody interaction at different 

concentrations of IL-2. The flow rate was 30 µl/min.  
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nanowires to the binding of IL-2 is consistent with the majority surface charge of the 

protein. The isoelectric point of recombinant human IL-2 is between pH 6.5 and 7.5. 

Therefore in dilute PBS, pH ~ 6.0, there should be a prevalence of positive surface charges 

on the protein, leading to an increase in resistance of p-type silicon nanowires (Figs. 2.12 

and 2.14).  

The above protein-sensing experiments demonstrate that it is possible to engineer 

silicon nanowires to detect protein concentrations below the detection limit of other label-

free methods, such as SPR (Fig. 2.14B). The detection of IL-2, which is a crucial cytokine 

of the immune system, is demonstrated. For more practical application of this technique, 

such as detecting low levels of cancer markers in the serum, it is necessary to address the 

Debye length issue. In the next section, we will discuss a method of utilizing peptides to 

detect proteins in higher ionic strength solution.  

 
2.3.3 Protein sensing with peptide 
 

As a first step, we showed the efficient immobilization of the FLAG peptide on the 

bulk silicon (100) surface by using X-ray photoelectron spectroscopy (XPS) (Fig. 2.3). A 

cleaned silicon (100) surface was treated with 2% (v/v) APMES to generate the amine-

terminated surface (Surface 1 in Fig. 2.3A). Surface 1 was converted into an azide-

terminated one through the coupling between an azide-containing unnatural amino acid and 

the amine on the surface (Surface 2 in Fig. 2.3A). Finally, the FLAG peptide was 

immobilized by alkyne-azide “click” cycloaddition (Surface 3 in Fig. 2.3A). The contact 

angles for amine, azide, and FLAG peptide surfaces were 72°, 73°, and 35° respectively. 

The significant decrease in contact angle after the click reaction suggests efficient peptide 

coupling to the surface. The presence of the azide group on Surface 2 can be identified 
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Figure 2.15 High-resolution XPS 

spectra of Surfaces 2 (A) and 3 (B and C), illustrating the coupling of the azide-containing 

unnatural amino acid and subsequently the FLAG peptide. A) N 1s region revealing the 

presence of azide on the surface by a growth of a small peak at 405 eV due to the central 

electron-withdrawing nitrogen atom. (B) N 1s region following the click reaction suggesting 

incorporation of the FLAG peptide on the azide-modified surface. The disappearance of the 

azide peak at 405 eV suggests that the click reaction has gone to completion. (C) C ls region 

displaying prominent C-N, C-O, and C=O peaks, compatible with peptide attachment to the 

surface 
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from the peak at 405 eV in the N 1s spectra of XPS, which is attributed to the central, 

electron-deficient nitrogen in the azide group (Fig. 2.3B). The disappearance of the same 

peak on Surface 3 explains ~ 100% conversion to the peptide-modified surface (Fig. 2.3B). 

By analyzing the ratio of the 400 eV and 405 eV peak areas in N 1s spectra, azide amino 

acid coverage in Surface 2 can be estimated as 73%, assuming 100% of APMES coverage, 

and the conversion to the peptide can be estimated as 100% 67 (Fig. 2.15). The growth of 

the 289 eV peak in C 1s spectra, which corresponds to C=O, a signature of peptides by 

XPS, also proves that the click reaction has proceeded (Fig. 2.15C). 

 
To demonstrate the functionality of the peptide immobilized by click chemistry on 

silicon, a fluorescence-based bioassay in microfluidic channels was performed (Fig. 2.15). 

The amine-terminated surface was treated with azide-containing amino acid. Then a PDMS 

chip was bonded, and click reaction with the FLAG peptide was allowed to proceed in the 

microfluidic channel. As a control, channels 1 and 4 were filled with peptide solution 

without CuI catalyst and channels 2 and 5 were left as the azide-terminated surface. 

Channels 3 and 6 were treated with the FLAG peptide in the presence of the CuI catalysts. 

After the surface treatment in the microfluidic channels, anti-FLAG M2 antibodies and 

anti-human INFγ antibodies were filled into channels 1 to 3 and channels 4 to 6, 

respectively. After 1 h of incubation, secondary anti-mouse antibodies tagged with biotin 

were introduced into all channels and incubated for 1 hour. Then streptavidin coujugated 

with a Cy-5 fluorescence tag was reacted with the bound secondary anti-mouse antibodies. 

For all solutions containing antibodies, 1% BSA was included to prevent non-specific 

binding. Only channel 3, which was treated with FLAG peptide under the proper click 

condition and reacted with anti-FLAG M2 antibodies, showed fluorescence (Fig. 2.15A). 
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From this result, it can be noticed that the presented surface treatment scheme works for 

efficient immobilization of synthetic capture agents on a silicon surface. Although the size 

of the FLAG peptide is small enough for the SiNW-FETs sensing in high ionic strength 

solution, non-specific binding of the large BSA molecules can significantly lower the 

accessibility of binding antibodies to the peptide on the surface of NWs due to steric effects. 

To prevent that problem, 0.1% Tween 20 was tested as an alternative blocking agent. The 

surface was treated as described above but only channels 1 and 2 were left as azide-

terminated surface whereas all the other channels were treated with FLAG peptide. The 

result shows that Tween 20 can also minimize the non-specific binding as effectively as 

BSA (Fig. 2.15B).  

 

Figure 2.16 Fluorescence-based bioassay with FLAG peptides in microfluidic channels. (A) 

Assay result illustrating the immobilization of the FLAG peptides on a silicon surface by click 

chemistry. The amine-terminated silicon surface was converted into the azide-terminated surface 

before the PDMS chip was bonded. Only channels 3 and 6 were treated with the proper 

conditions for click chemistry. Anti-FLAG antibodies and anti-human INFγ antibodies were 

flowed through channels 1 to 3 and channels 4 to 6, respectively. 1% BSA was used as a 

blocking agent. (B) Assay result comparing the effect of 1% BSA and 0.1% Tween 20 as 

blocking agents. The surface was prepared as (A) but channels 3 to 6 were treated with the 

proper click chemistry condition. 
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     By utilizing peptides as a capture agent and click chemistry as a surface treatment 

method, we can sense anti-FLAG antibodies with SiNW-FETs in 0.1×PBS, which is 15 

mM solution (Fig. 2.17). The Debye screening length of this high ionic strength solution is 

about 2.3 nm.68 The SiNWs were fabricated by the superlattice nanowire pattern transfer 

(SNAP) method.35 Then the SiNWs were sectioned into about 65 NWs and metal 

electrodes were patterned by photolithography technique (Fig. 2.17A). Up to 0.1 µg/mL  (~ 

666 pM) of anti-FLAG M2 antibody was clearly sensed whereas 100 µg/mL (~ 666 nM) of 

anti-human INFγantibody did not give any noticable signal (Fig. 2.17B). Although the 

sensitivity of the device was not that high, it can be enhanced by optimizing fabrication 

 

 

Figure 2.17 Scanning electron micrograph (SEM) image of the NW-FET device and sensing 

result. A) An SEM image of the SiNWs-based FET biosensor. One set of sensors is placed in a 

microfluidic channel. (Inset) Zoomed-in image of the NWs. Each sensing component is 

composed of about 65 NWs. B) NWs sensing results with anti-FLAG antibodies at different 

concentrations. 100 µg/mL of anti-human INFγ antibodies were also tested as a reference and 

showed negligible change of the resistance. All samples started to react with the actual sensing 

component at t = 0. For all experiments, 0.1 % Tween 20 was used as a blocking agent. 
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conditions such as the doping concentration. Detection of target proteins in fM sensitivity is 

reported from other groups 21, 30 and further work is in progress to achieve high sensitivity.  

Because high-salt buffer solution provides a better condition for the activity of 

biomolecules, and considering the efforts on developing synthetic capture agents such as 

peptides, peptoid and small molecules,25, 69–71 these data suggest that the peptide 

immobilization via click chemistry may offer more practical applications of the SiNW-

FETs in basic studies of biological reaction as well as detection. 

 

2.4 Conclusions 
 

Real-time label-free detection of DNA and proteins with SiNWs was performed. 

Primary DNA was electrostatically adsorbed onto an amine-terminated SiNW surface and 

hybridized to the complementary strand in a microfluidics channel under flow. Electrostatic 

adsorption of single-stranded DNA to poly-L-lysine-coated surface has previously been 

electronically detected at nanomolar concentrations with capacitive methods on lowly 

doped Si electrodes in 0.015 M solution.72 The ability to detect DNA under physiological 

conditions, as demonstrated in this work, is of significance, as it may allow the direct use of 

biological samples such as serum or tissue culture media. It is likely that because the 

primary DNA is electrostatically bound and hybridization occurs very close to NW surface, 

Debye screening does not prevent SiNW-based detection.  

SiNWs with significantly reduced oxide coverage exhibited enhanced solution FET 

characteristics (Fig. 2.6) when compared to SiNWs characterized by a native SiO2 surface 

passivation. Oxide-covered, highly doped SiNWs were designed to exhibit a similar 
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dynamic range of DNA detection as the best near-infrared imaging SPR technique73(–10 

nM for 18 mer, corresponding to ~ 1011 molecules/cm2). When identical nanowires were 

functionalized by the UV-initiated radical chemistry method, resulting in near-elimination 

of the Si-SiO2 interface, the limit of detection was increased by two orders of magnitude, 

with an accompanying increase in the dynamic range. This result highlights the importance 

of controlling surface chemistry of SiNWs for their optimization as biological sensors. In 

the future, surface chemistries yielding higher coverage than UV-initiated alkylation may 

be utilized to passivate and electrochemically convert SiNWs into arrays for 

multiparameter analysis.42, 74 

Sensing of an important cytokine, interleukin-2, has also been performed. Protein 

detection is significantly limited by the size of the capture agent. Using antibodies poses a 

limitation on the ionic strength of the buffer containing the analyte. To circumvent this 

limitation, we propose using peptide as alternative high-affinity protein probes. The 

application demonstrated in this chapter, detecting FLAG antibody with FLAG peptide, is a 

well-known system and just shows the feasibility for now. Thus a general scheme to screen 

and make synthetic capture agents on demand must be developed.25 However, a 

combination of an appropriate doping level and surface chemistry will undoubtedly allow 

the detection down to a sub-picomolar regime, which is more than sufficient for most 

relevant clinical applications.  

A model that is consistent with both the standard Langmuir binding model and with the 

fundamentals of semiconductor physics is developed. Kinetic parameters and analyte 

concentrations that are consistent with SPR values may be extracted from the silicon 

nanowire experiments. The potential for SiNW sensors to quantitate the concentrations of 
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low-abundance biomolecules within physiologically relevant environments is an intriguing 

one, and it is worth vigorously pursuing this possibility. The most useful application of our 

model would be in extracting otherwise unknown concentration values once kon and koff 

values are known. As demonstrated here, SiNW sensors can be used for label-free 

biomolecule detection at concentrations significantly below the limits of detection for SPR. 

The robustness of the fabrication technique (SNAP) employed here, which yields nanowire 

sensors that exhibit reproducible and highly tunable behavior, holds a promise for the 

future integration of this technology within the clinical setting.  
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Chapter 3 
 
Chemistries for Patterning Robust DNA 
Microbarcodes Enable Multiplex Assays of 
Cytoplasm Proteins from Single Cancer Cells 
 

3.1 Introduction 

 
The demand for parallel, multiplex analysis of protein biomarkers from ever smaller 

biospecimens is an increasing trend for both fundamental biology and clinical 

diagnostics.1–3 The most highly multiplex protein assays rely on spatially encoded antibody 

microarrays,4–6 and small biospecimen samples are now routinely manipulated using 

microfluidics approaches. The integration of antibody microarray techniques with 

microfluidic chips has only been explored relatively recently. One challenge arises from the 

relative instability of antibodies to microfluidics fabrication conditions. In recent years, 

several groups have devised methods to transform standard DNA microarrays in situ into 

protein microarrays and cell-capture platforms.7–13 These approaches capitalize on the 

chemical robustness of DNA oligomers, and the reliable assembly of DNA-labeled 

structures via complementary hybridization. Recently, Fan et al. utilized a microfluidics-

based flow patterning technique to generate DNA barcode-type arrays at 10× higher 

density than standard, spotted microarrays.15 The DNA barcodes were converted into 

antibody arrays using the DNA-Encoded Antibody Library (DEAL) technique, and then 

applied towards the measurement of a highly multiplex panel of proteins from a pinprick of 

whole blood.  
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A second challenge involves scaling such miniaturized DNA microarrays so that a 

large surface area can be encoded.  This problem is non-trivial, as it involves identifying 

chemistries for patterning 10-5-m-wide, 1-m-long strips of biomolecules with a uniformity 

that permits those patterns to be utilized in hundreds to thousands of quantitative protein 

assays per chip.  Here, we explore the surface chemistry associated with a microfluidics-

based flow patterning of DNA barcodes, with an eye towards producing highly 

reproducible and robust barcodes. We then apply the optimized chemistry towards assaying 

a panel of cytoplasmic proteins from single cells.  

 

3.2 Experimental Methods 

 
3.2.1 Microfluidic chip fabrication for DNA patterning 
 

Microfluidic-patterning PDMS chips were fabricated by soft lithography. The master 

mold was prepared using either a negative photoresist, SU8 2010, with photolithography, 

or an etched silicon mold generated by a deep reactive ion etching (DRIE) process. The 

mold has long meandering channels with a 20×20 µm cross section. The distance from 

channel to channel is also 20 µm, which generates 10× higher density than standard, 

spotted microarrays. Sylgard PDMS (Corning) prepolymer and curing agent were mixed in 

a 10:1 ratio (w/w), poured onto the mold, and cured (80°, 1 h). The cured PDMS slab was 

released from the mold, inlet/outlet holes were punched, and the device was bonded onto a 

PLL coated (C40-5257-M20, Thermo scientific) or aminated glass slide (48382-220, VWR) 

to form enclosed channels. The number of microfluidic channels determines the size of the 

microarray; 13 parallel microchannels were used in this study. 
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3.2.2 Patterning of DNA barcode arrays 
 

For the DNA filling test, a 30 mer DNA oligomer labeled with Cy3 fluorescence tag on 

the 5’ end (5’-/Cy3/-AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT - 3') in a 1:1 

 

 

 
 
Figure 3.1 (a) Surface treatment schemes. (b) Design of the DNA patterning device (top) and 

fluorescence image of DNAs filled into the channel (still in solution). Outer five channels are 

filled with DNAs in 1:1 mixture of PBS and water (Scheme 1). Inner five channels are filled 

with DNAs in 1:1 mixture of PBS and DMSO (Scheme 2). Three channels in between are left 

empty for visualization. (c) Fluorescence images of patterned DNAs by three schemes  
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mixture (v/v) of 1×PBS buffer and DMSO or a 1:1 mixture (v/v) of 1×PBS buffer and 

deionized (DI) water was used. The final DNA concentration was 2.5 µM. DNA solution 

was pushed into the channel under a constant pressure (2.5 psi). Immediately after the 

channels were fully filled, fluorescence images were obtained by confocal microscopy.  

Dendrimer-based microarrays were prepared using aminated substrates. Generation 4.5 

Poly(amidoamine) (PAMAM) dendrimers (470457-2.5G, Aldrich), 5% wt in MeOH, were 

mixed 1:1 (v/v) with EDC/NHS (0.2 M) in MES buffer (0.1 M, pH 6.0). After 5 minutes of 

incubation, the activated dendrimers were introduced to the microfluidic channels, and 

allowed to flow (2 h). Following a brief MeOH rinse to remove unbound dendrimers, the 

channels were filled with EDC/NHS (0.2 M) in MES (0.1 M, pH 5.3) with NaCl (0.5 M). 

After 0.5 h, 5’ aminated DNA sequences in 1×PBS (200 µM) were introduced to the 

channels and allowed to flow (2 h). Thereafter, the microfluidic device was removed from 

the substrate, and the latter was rinsed copiously with DI water. Prepared substrates that 

were not used immediately were stored in a desiccator. 

To generate the DNA barcode array for multi-protein detection and single cell lysis test, 

13 orthogonal DNA oligomer solutions (sequences are provided in Table 3.1) in 1×PBS 

buffer (400 µM) were mixed with DMSO (in 1:2 ratio, v/v) and flowed into each of the 

microfluidic channels (Scheme 3.2). For Scheme 3.1, DNA solutions in 1×PBS buffer were 

used. The DNA-filled chip was placed in a desiccator until the solvent evaporated 

completely, leaving only DNA molecules behind. Finally, the PDMS elastomer was 

removed from the glass substrate and the microarray-patterned DNAs were cross-linked to 

the PLL by thermal treatment (80 °C, 4 h). The slide was gently rinsed with DI water prior 

to use in order to remove salt crystals remaining from the solution evaporation step.  
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3.2.3 Microfluidic chip fabrication for multi-protein detection 
 

The PDMS microfluidic chip for the cell experiment was fabricated by two-layer soft 

lithography.16 A push-down valve configuration was utilized with a thick control layer 

bonded together with a thin flow layer. The molds for the control layer and the flow layer 

were fabricated with SU8 2010 negative photoresist (~ 20 µm thickness) and SPR 220 

Table 3.1 Sequences and terminal functionalization of oligonucleotides: All oligonucleotides 

were synthesized by Integrated DNA Technology (IDT) and purified via high-performance 

liquid chromatography (HPLC). The DNA coding oligomers were pre-tested for orthogonality 

to ensure that cross-hybridization between non-complementary oligomer strands was negligible 

(< 1% in photon counts).  

  
  
Name                                 Sequence                      Melting Point 
 
A 5'- AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA-3' 57.9 
A' 5' NH3- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT-3' 57.2 
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 57.4 
B' 5' NH3AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 55.9 
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 57.6 
C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 56.2 
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 56.5 
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 55.7 
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 55.7 
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 54.7 
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 56.9 
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 56.1 
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 59.3 
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 58.6 
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 59.9 
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 60.8 
I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 60.1 
I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 60.1 
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 56.5 
J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 57.5 
K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 55.4 
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 56.3 
L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 57.2 
L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 57.2 
M 5'-Cy3-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 57.6 
M' 5' NH3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 56.9 
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positive photoresist (~ 18 µm), respectively. The photoresist patterns for the flow layer 

were rounded via thermal treatment. The thick control layer was molded with a 5:1 mixture 

of GE RTV 615 PDMS prepolymer part A and part B (w/w) and the flow layer was formed 

by spin-coating a 20:1 mixture of GE RTV 615 part A and part B (w/w) on the flow layer 

mold (2000 rpm, 60 sec). Both layers were cured (80°C, 1 h), whereupon the control layer 

was cut from its mold and aligned to the flow layer. An additional thermal treatment (80°C, 

1 h) ensured that the two layers bonded into a monolithic device, which was then peeled 

from its mold and punched to create appropriate access holes. Finally, the PDMS chip was 

thermally bonded to the DNA microbarcodes-patterned glass slide to form the working 

device.  

 

3.2.4 Cell culture 
 

The human GBM cell line U87 was cultured in DMEM (American Type Culture 

Collection, ATCC) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich). U87 

cells were serum-starved for 1 day and then stimulated by EGF (50 ng/ml, 10 min) before 

they were introduced into the device. 

 

3.2.5 Multi-protein detection 
 

Protein detection assays were initiated by blocking the chip with 3% bovine serum 

albumin (BSA) in PBS to prevent non-specific binding. This 3% BSA/PBS solution was 

used as a working buffer for most subsequent steps. After blocking, a cocktail containing 

all 11 (Scheme 3.2) or 3 (Scheme 3.3) DNA-antibody conjugates (~ 0.5 µg/ml, 100 µl) in 

working buffer was flowed through the micro channels for 1 h. The unbound DNA-
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antibody conjugates were washed away with fresh buffer. Then, target proteins were 

flowed through the microfluidic channels for 1 h. These were followed by a 200 µl cocktail 

containing biotin-labeled detection antibodies (~ 0.5 µg/ml) in working buffer, and 

thereafter a 200 µl mixture of 1 µg/ml Cy5-labeled streptavidin and 25 nM Cy3-labeled M’ 

ssDNA in working buffer to complete the immune sandwich assay. DNA sequence M is 

used for a location reference. The microchannels were rinsed with working buffer once 

more before the PDMS chip was removed; the bare microarray slide was rinsed 

sequentially with 1×PBS, 0.5×PBS, DI water, and was finally subjected to spin-drying. 

 

3.2.6 On-chip cell lysis and mulplexed intracellular protein profiling from single cells 
 

The multi-protein detection procedure described above was slightly modified for 

intracellular protein profiling experiments. Again, the chip was initially blocked with a 3% 

BSA/PBS working buffer, followed by a 200 µl cocktail containing all 11 DNA-antibody 

conjugates (~ 0.5 µg/ml, Table 3.2) in working buffer (continuously flowed for 1 h). 

Unbound DNA-antibody conjugates were washed off with fresh buffer. The lysis buffer 

(Cell Signaling) was loaded into the lysis buffer channels while the valve 1 (V1 in Fig. 3.9a) 

was kept closed by applying 15–20 psi constant pressure. Then cells were introduced to the 

cell loading channels and microfluidic valves (V2 in Fig. 3.9a) were closed by applying 

15–20 psi constant pressure; this converts the 8 channels into 120 isolated microchamber 

sets. After cell numbers were counted under microscope, V1 valves were released to allow 

diffusion of lysis buffer to the neighboring microchamber containing different numbers of 

cells. The cell lysis was performed on ice for two h. After that, the V2 valves were 
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released and the unbound cell lysate was quickly removed by flowing the fresh buffer. 

Then, a cocktail containing biotin-labeled detection antibodies (~ 0.5 µg/ml, 200 µl) in 

working buffer was flowed into the chip for 1 h on ice, followed by flowing a 200 µl 

mixture of Cy5-labeled straptavidin (1 µg/ml) and Cy3-labeled M’ ssDNA (25 nM) in 

working buffer to complete the sandwich immunoassay. Finally, the microchannels were 

Table 3.2 Summary of antibodies used for cell lysis experiments: All antibody pairs except p-

VEGFR2 were purchased as ELISA kits of R&D systems (DuoSet® Elisa Development 

Reagents) containing capture antibodies, biotinylated detection antibodies, and standard 

proteins. Capture antibodies bind both phosphorylated and unphosphorylated proteins. The 

biotinylated detection antibodies detect only the phosphorylated variants of the proteins. 

VEGFR2 capture antibody, and p-VEGFR2 (Y1214) detection antibodies were purchased from 

Abcam. 

 

DNA label Antibody Source 

A’ Human p-PDGFR (Y751) kit R&D 
DYC3096 

B’ Human p-Src (Y419) kit R&D 
DYC2685 

C’ Human p-mTOR (S2448) kit R&D 
DYC1665 

D’ Human p-p70S6K (T389) kit R&D DYC896 

E’ Human p-GSK3α/β (S21/S9) kit R&D 
DYC2630 

G’ Human p-p38 α  (T180/Y182) kit R&D DYC869 

H’ Human p-ERK (T202/Y204) kit R&D 
DYC1825 

I’ Human p-JNK2 (T183/Y185) kit R&D 
DYC2236 

K’ Human total EGFR kit R&D 
DYC1854 

L’ Human total P53 kit R&D 
DYC1043 

J’ 

Capture antibody: rabbit anti-human p-VEGFR2 
(Y1214) 

Abcam 
ab31480 

Detection antibody: biotin-labeled mouse anti-human 
VEGFR2 

Abcam 
ab10975 

 



 88 

rinsed with working buffer, the PDMS chip was removed, and the bare microarray slide 

was rinsed sequentially with 1×PBS, 0.5×PBS, and DI water, before spin-drying. The 

layout of the chip and used inlets for different solutions are described in Fig. 3.2.  

 
 
 
3.2.7 Data analysis 
 

The microarray slide was scanned with the GenePix 200B (Axon Instruments) to obtain 

a fluorescence image of both Cy3 and Cy5 channels. All scans were performed with the 

same setting of 50% (635 nm) and 15% (532 nm) laser power, 500 (635 nm) and 450 (532 

 

 
 
Figure 3.2 The Single-Cell Barcode Chip (SCBC) utilized for on-chip cell lysis and multiplex 

intracellular protein detection. V1 to V6 represent valves. V1 is used to control the diffusion of 

the cell lysis buffer to the cell lysis chamber, and closure of V2 results in the formation of 

isolated chambers from the long channels. V3, V4, V5, and V6 are utilized to control solution 

flows in the microchannels. Food dyes are used here to visualize the flow channels and control 

valves. The volume of each microchamber is ~ 2 nL.  
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nm) optical gain. The averaged fluorescence intensities for all barcodes in each chamber 

were obtained and matched to the cell number by custom-developed Excel or MATLAB 

codes.  

 

3.2.8 Molecular dynamic simulation 
 

The MD simulations were performed with the all-atom AMBER2003 force field17, 18 

using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code.19 

As an initial structure, a single-strand DNA (5'-ACCCATGGAGCATTCCGGG-3') whose 

base pairs are randomly chosen was built using the Namot2 program.20 Near the DNA 

strand, 19 sodium counter ions were included to neutralize the negatively charged 19 

phosphate groups on the DNA backbone. Then this was immersed in a solvation box 

composed of either 1) 5206 water molecules + 106 DMSO molecules or 2) only 5206 water 

molecules. We used a TIP4P model to describe the water interactions.21 We performed 3 ns 

NPT MD simulations using Nose-Hoover thermostat with a damping relaxation time of 0.1 

ps and Andersen-Hoover barostat with a dimensionless cell mass factor of 1.0. The last 1 ns 

trajectory is employed for the analysis. To compute the electrostatic interactions, the 

particle-particle particle-mesh method22 was employed using an accuracy criterion of 10-4. 

 

3.2.9 Modeling of electrostatic adsorption of DNA to poly-L-lysine (PLL) surface 
 

This modeling follows the approach used in reference 22. 23 

The following assumptions are used for the simulation: 

—Nonspecific DNA adhesion to the PDMS surface is insignificant compared with the 

adhesion to the PLL surface 
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—DNAs are instantaneously and irreversibly captured to the PLL surface when they 

are transported to the surface. 

We start with the following mass transport equation, 

vx
∂C
∂x

= D
∂2C
∂y2

 

where vx is the fluid velocity along the channel and y is the channel height.  We can apply 

boundary conditions such that at the top and side walls, there are no concentration gradients. 

In a rectangular channel the mass diffusion coefficient can be approximated by 

hdiff = 3.81
D
dh

 

where  hdiff is the hydraulic channel diameter, 4 [cross−section area]
[perimeter]

 . 

As DNA flows down the channel during the initial filling step, DNA is electrostatically 

captured by PLL on the surface, causing a concentration gradient. Thus, the mean 

concentration of the sample at position x, Cx can be expressed as 

Cx = Cie−hdiff w x/Q 

where Ci is the sample concentration at the channel entrance. 

We are interested in how Cx changes as the sample flows along the channel and we can 

simply apply the parameters of our system. 

It has been reported that the diffusion coefficients of labeled single-strand DNA are 

predicted by: 

Dlabel = 4 × 10−6B−0.539 

where B is the number of bases.24, 25 

In order to calculate Cx, we need the flow velocity. We measured the DNA sample 

filling speed (Fig. 3.6a) and used 536 µm/sec for simulation. 
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3.3 Results and Discussion 

 
The microfluidics flow patterning chip is comprised of a patterned 

polydimethylsiloxane  (PDMS) layer adhered to an aminated or PLL-coated glass substrate 

that provides the base surface for the microchannels. The microchannels are long (about 55 

cm), meandering channels that span ~ 1.5 in2 of our substrate, and are used to pattern a 

 
 

Figure 3.3 The microfluidic flow-patterning process to form the DNA barcodes.   As the solvent 

evaporates through the PDMS elastomer, the concentration of the DNA oligomer solution 

increases. The oligomers are eventually deposited on the microchannel surfaces. (a) 

Fluorescence images of DNA solutions during the drying process for Schemes 1 and 2, in the 

region of the receding meniscus, and near the outlet (left) and inlet (right) sides of the 

microchannel. Note that, at the inlet side, the fluorescence intensity near the receding meniscus 

is very high – evidence of the high local concentration of DNA due to solvent evaporation. The 

channel filled according to Scheme 1 exhibits no significant DNA near the channel outlet due to 

excessive electrostatically-driven depletion near the inlet side. The red arrow indicates the 

location of the meniscus. (b) Schematics for the drying process with different local 

concentrations. A high local concentration is required to achieve suitable DNA loading on the 

substrate. 
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DNA barcode over most of the glass surface (Fig. 3.1b). After the flow patterning is 

completed, the PDMS layer is replaced with a second micropatterned PDMS layer that is 

designed to support a biological assay, such as the previously reported blood proteomics 

chip,15 or the single-cell proteomics chips utilized here. For the microfluidic patterning 

method to be useful, it must generate a DNA barcode that exhibits high and uniform DNA 

loading over the entire substrate. We evaluated the patterning chemistries illustrated in Fig. 

3.1a, Schemes 1-3. Schemes 3.1 and 3.2 are drawn from the conventional protocol for pin-

spotted microarrays— a solution containing the DNA is introduced, the solvent is 

evaporated, and subsequent thermal or UV treatment is employed to cross-link the 

deposited DNA to the substrate. Scheme 3.1 utilizes ssDNA oligomers dissolved in 

phosphate buffered saline (PBS), whereas Scheme 3.2 employs ssDNAs in a 1:1 mixture of 

1×PBS and dimethyl sulfoxide (DMSO). DMSO is used in conventional microarray 

preparation to improve feature consistency by reducing the rate of solvent evaporation and 

by denaturing the DNA26 although, as described below, its role in this process is different. 

Scheme 3.3 utilizes a covalent immobilization method based upon a dendrimer scaffold.27 

Poly(amidoamine) (PAMAM) dendrimers (generation 4.5, carboxylate surface) have 

previously shown promise as DNA and protein microarray substrates. Dendrimers do not 

form entangled chains28 and because harsh crosslinking procedures are avoided, dendrimer-

immobilized DNA retains high accessibility and activity in microarray applications. 

Moreover, the highly branched structure of the dendrimers provides a high density of 

reactive sites for surface attachment and for DNA coupling, thus leading to a high overall 

binding capacity. For all cases, a high level of DNA loading has been shown to decrease 

non-specific binding when compared to standard microarray substrates.11, 29–31 
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Fig. 3.1b (top) shows the PDMS chip design used for barcode patterning; 13 discrete 

channels (for a 13-element barcode) allow for a multiplex microarray. We loaded five 

adjacent channels according to Scheme 3.1, skipped three channels, and then loaded the 

remaining five channels according to Scheme 3.2. The use of fluorescently-tagged DNA 

permitted measurements of the DNA distribution within each individual channel 

immediately after introducing the solutions. Fig. 3.1b demonstrates a clear difference in 

aqueous DNA distribution across the chip: DNA loaded according to Scheme 3.1 (outer 5 

channels) is notably lower in concentration near the middle of the chip (Fig. 3.1b, Region 2) 

and is barely detectable near the channel exit (Fig. 3.1b, Region 1). Conversely, DNA 

loaded according to Scheme 3.2 (inner 5 channels) presents an even, consistent distribution 

across the entire chip. Notably, Scheme 3.1 yields a relatively higher fluorescence intensity 

at the input side of the chip. These results clearly indicate that, for Scheme 3.1, the ssDNA 

oligomers are accumulating upstream during the early stages of flow, and so are depleted 

from the advancing solution by the time it reaches mid-chip. The actual patterning of the 

 
 

Figure 3.4 Line profiles for the DNAs patterned by Scheme 1 (a), Scheme 2 (b), and Scheme 3 

(c).  Y-axis is the intensity of the signal and x-axis is the pixel numbers. One pixel corresponds 

to 5 µm. 
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glass substrate occurs when solvent is evaporated (Fig. 3.3). Indeed, the final patterning 

results after solvent evaporation and cross-linking (Fig. 3.1c, top) reflect the trend 

established by the aqueous fluorescence images; Scheme 3.2 produces uniform DNA 

barcodes across the substrate, while Scheme 3.1 does not. Line profiles corresponding to 

Fig 3.1c. can be found in Fig. 3.4 

In order to understand the difference in patterning uniformity between Schemes 3.1 and 

3.2, we considered the electrostatic environment for each case. As depicted in Fig. 3.5a, the 

PDMS side walls carry a slightly negative zeta potential, whereas the PLL surface has a 

strong positive zeta potential.32 When the ssDNA solution in Scheme 3.1 is introduced to 

 
 

Figure 3.5 Electrostatic adsorption of DNAs on PLL surface and DMSO effect. (a) Schematic 

figure of the filling step. (b) Simulation result of electrostatic adsorption of DNAs to PLL 

surface. (c) Molecular simulation of DMSO effect: the radial distribution function of P atom of 

the phosphate group and the sodium ions. The presence of DMSO pumps sodium ions from the 

2nd shell to the 1st shell (arrow). (d) Schematics for DMSO effect. Green circles represent 

sodium ions. 
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the channel, ssDNA near the PLL matrix is electrostatically immobilized, thereby 

generating a concentration gradient.23 As the solution flows towards the channel exit, the 

ssDNA oligomers are continually depleted via deposition onto the PLL surface. Fig. 3.5b 

shows the results from a rough simulation designed to capture the mean concentration of 

aqueous ssDNA as the solution traverses a channel. The simulation implies that the effect 

of electrostatic adsorption proves dominant even at high DNA concentration, a result that 

agrees well with the observed behavior for Scheme 3.1 in Fig. 3.1b. A detailed description 

 
Figure 3.6 Results from experiments designed to more fully understand the effect of 

electrostatic adsorption of DNA within the microchannels during flow patterning. (a) 

Measurements of the flow speed of PBS solution of DNA oligomers (Scheme 1) and 

PBS/DMSO solution (Scheme 2) in the microfluidic channels. The filling process was optically 

monitored and recorded as a movie. The speed was calculated when the flow makes the fifth 

turn in the channel. The filling speed for Scheme 2 was less than that of Scheme 1, an 

observation that is attributable to the differential channel wetting between the two schemes 

(inset). The wetting of the PBS/DMSO Scheme 2 fluid was significantly better, a factor that 

minimizes bubble formation in the channel during the drying step. (b) Fluorescence images of 

DNA patterned within the microchannels of an O2-plasma-treated bare glass/PDMS device. The 

highly negative surface induced by plasma treatment minimizes electrostatic adsorption of 

DNA, resulting in uniform DNA distribution for both Scheme 1 and Scheme 2. The PDMS was 

solvent extracted just prior to bonding in order to prolong its hydrophilicity following plasma 

treatment.14 Panels 1, 2, and 3 represent different locations in the flow patterning device.  
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of the model and assumptions employed can be found in Section 3.2.9. We tested this 

model via the strong negative charging of all four channel surfaces via O2 plasma treatment. 

Consistent with the model, both Scheme 3.1 and Scheme 3.2 exhibited equivalently 

uniform distribution of fluorescence intensity across the chip (Fig. 3.6b). We note that lack 

of the positive charges on the bottom surface failed to hold DNAs during the drying 

procedure and the plasma treatment induces the irreversible bonding of PDMS and glass, 

which limits further use beyond this experimental test.  

Scheme 3.1 and 3.2 results imply that DMSO alleviates the electrostatic adsorption 

effect. In order to more fully understand this, we performed molecular dynamics (MD) 

simulations of DNA in PBS and PBS/DMSO solutions; 3 ns of NPT (NPT is a simulation 

in which moles (N), pressure and temperature are held constant) MD simulations were 

performed, with the last 1 ns trajectory being employed for analysis. We examined the 

 

 
 

Figure 3.7 Molecular simulation resulting from the influence of DMSO in the Scheme 3.2 

process. The radial distribution function of the P atom of the phosphate group of the DNA 

backbone and O atom of the water molecule is not influenced by the presence of DMSO.  
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radial distribution function of phosphorous atoms in the DNA backbone with respect to 

various elements of the surrounding solvent. For example, the radial distribution function 

of P and the O atom of a water molecule is virtually unperturbed by the addition of DMSO    

(Fig. 3.7). Consequently, it is unsurprising that the radial distribution function of P and the 

S atom of DMSO (Fig. 3.5c, black solid line) reveals that DMSO is not forming a solvation 

structure with the DNA backbone. However, Figure 3.5c demonstrates a clear interaction 

between P and Na+ ions which delineates into two well-defined shell structures: the first is 

located at r<4.3Å while the second is located at 4.3Å<r<6.6Å; these are similar to the 

locations of the first and the second water solvation structures. By integrating the radial 

distribution functions, we determined the number of molecules per phosphate in the first 

and second shells for both PBS and PBS/DMSO solutions. Although the number of H2Os 

per shell is virtually independent of DMSO, DMSO does significantly increase the number 

of Na+ ions in the first shell (from 0.14 to 0.24), and it decreases the number of Na+ ions in 

the second shell (from 0.61 to 0.34). Conversely, the number of DMSO molecules is almost 

zero in the first shell (0.01) but becomes significant in the second shell (0.20). Thus, we 

conclude that DMSO, with a lower dielectric constant relative to water (47.2 vs. 80), 

destabilizes the solvation energy of Na+ in the second shell. This thermodynamic change 

prompts the sodium ions to move to the first shell where they are stabilized by electrostatic 

interactions with the negatively charged phosphate groups. The increased number of 

sodium ions near the DNA backbone more efficiently screens the negative charges of 

phosphate groups, thereby reducing electrostatic interactions of the DNA with the PLL 

surface, resulting in uniform DNA distribution throughout the channels. Although the 

addition of DMSO to DNA patterning solutions yields the same ultimate effect for both 
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traditional spotted arrays and microfluidics-patterned barcodes, the underlying mechanisms 

are completely different. We conclude that Scheme 3.2 is intrinsically superior relative to 

Scheme 3.1.  

We now turn towards analyzing Scheme 3.3, and comparing it against Scheme 3.2. For 

this scheme, the PAMAM dendrimers are first covalently attached to the aminated glass 

surface, and then (aminated) ssDNA oligomers are covalently attached to the dendrimers. 

The lack of a solvent evaporation step makes Scheme 3.3 significantly more rapid than 

Scheme 3.2. We flowed activated PAMAM dendrimers, followed by aminated ssDNA, 

through ten microfluidic channels (Fig. 3.1b). Note that the aqueous DNA distribution is 

expected to be uniform because the substrate surface is comprised of charge-neutral N-

hydroxysuccinimide (NHS)-modified carboxylates which minimize electrostatic 

interactions. The resulting DNA microarray was assayed for uniformity with 

complementary DNAs labeled with Cy3-fluorophores. Visual analysis indicates good 

uniformity across the chip (Fig. 3.1c, bottom). In order to quantitate the patterning quality 

for all three schemes, we obtained signal intensities for each channel at sixteen locations 

within the patterning region and calculated the coefficient of variation (CV). CV is defined 

as the standard deviation divided by the mean and expressed as a percentage. CVs for 

Schemes 3.1, 3.2, and 3.3 registered 69.8%, 10.5%, and 10.9%, respectively. Thus, we 

conclude that Schemes 3.2 and 3.3 offer consistent DNA loading across the entire substrate. 

   Having established that Scheme 2 and 3 produce consistent, large-scale DNA 

barcodes, we then extended our analysis of array consistency to protein measurements. We 

previously demonstrated that, when using the DEAL platform for multiplex protein sensing 

in microfluidics channels, the sensitivities of the assays directly correlate with the amount 
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of immobilized DNA,15 up to the point where the DNA coverage is saturated. We 

performed multiple protein assays along the length of our DNA stripes to ensure that the 

above described results would translate into stable and sensitive barcodes for protein 

sensing. All protein assays were performed in microfluidic channels that were oriented 

perpendicular to the patterned barcodes (five channels for Scheme 3.2 and four channels 

for Scheme 3.3). This allowed us to test distal microarray repeats with a single small 

analyte volume. For barcodes prepared using Scheme 3.2, we utilized the DEAL technique 

to convert them into antibody barcodes designed to assay the following proteins: 

phosphorylated (phospho)-steroid receptor coactivator (Src), phospho-mammalian target of 

rapamycin (mTOR), phospho-p70 S6 kinase (S6K), phospho-glycogen synthase kinase 

(GSK)-3α/β, phospho-p38α, phospho-extracellular signal-regulated kinase (ERK), and total 

epidermal growth factor receptor (EGFR) at 10 ng/ml and 1 ng/ml concentrations. This 

panel samples key nodes of the phosphoinositide 3-kinase (PI3K) signaling pathway within 

GBM, and are used below for single-cell assays.33 For barcodes prepared using Scheme 3.3, 

we similarly converted the DNA barcodes into antibody barcodes designed to detect the 

three proteins (interferon (IFN)-γ, tumor necrosis factor (TNF)α, and interleukin (IL)-2) at 

100 ng/ml and 10 ng/ml. All the DNAs used were pre-validated for the orthogonality in 

order to avoid cross-hybridization and the sequences can be found in Table 3.1. The 

detection scheme is similar to a sandwich immunoassay. Captured proteins from primary 

antibodies were fluorescently visualized by biotin-labeled secondary antibodies and Cy5-

labeled streptavidin. For both cases, data averaged from multiple DNA repeats across the 

chip yielded CVs that were commensurate with those of the underlying DNA barcodes 

(from 10 ng/ml concentration, 7% for Scheme 3.2 and 17% for Scheme 3.3, respectively). 
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Fig. 3.8 shows line profiles of the signal intensities along with the raw data, and 

demonstrate a better uniformity for barcodes prepared according to Scheme 3.2. While we 

found that Scheme 3.3 could produce barcodes that were close in quality to those of 

Scheme 3.2, the absolute (chip-to-chip) consistency of Scheme 3.3 is hard to guarantee due 

to its use of the unstable coupling reagents 1-ethyl-3-(3-dimethylaminopropyl) 

 
 
Figure 3.8 Contrast-enhanced raw data extracted from multi-protein calibration experiments 

performed on a substrate prepared by Scheme 2 (a) and Scheme 3 (b).  Each red bar represents a 

unique protein measurement, and is clustered with up to ten additional proteins (for Scheme 

2).  The clusters become symmetrical due to the winding nature of the barcode pattern, so that 

each cluster actually contains two measurements of each protein. Clustering is less evident in (b) 

because a lower-density barcode pattern was employed. Recombinant proteins were analyzed 

across five discrete channels per concentration for (a) and four discrete channels per 

concentration for (b); quantitative data for statistical analysis was extracted from all the repeats 

in each of the channels. By utilizing identical DEAL cocktails followed by identical standard 

protein cocktails, the reproducibility was also checked. The identical signal patterns within 

individual channels and between channels of similar concentrations demonstrate the good 

uniformity and quality of DNA barcodes. Signal intensity profiles sampled from one analysis 

channel per concentration are quantified in white. Scale bar: 2 mm 
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carbodiimide (EDC) and NHS.34 Moreover, although Scheme 3.3 is faster, the detailed 

procedure itself is more labor intensive; Scheme 3.2 can potentially be automated. Thus, 

we chose Scheme 3.2 as the preferred barcode patterning method. With Scheme 3.2, over 

90% of the patterned slides showed good quality for the test.  

We validated the use of the antibody barcodes by applying them towards the multiplex 

assay of cytoplasmic proteins from single cells. There is a significant body of evidence 

which demonstrates that genetically identical cells can exhibit significant functional 

heterogeneity—behavior that cannot be captured by proteomics techniques that average 

data across a population.35 We therefore designed a highly parallel microfluidic device 

capable of isolating single/few numbers of cells in chambers with a full complement of 

antibody barcodes designed to detect intracellular proteins (Fig. 3.2). Fig. 3.9a shows a 

schematic of the device and the DEAL-based protein detection scheme. The small chamber 

size keeps the finite number of protein molecules concentrated, thereby enhancing 

sensitivity. Assaying such a panel of proteins would not be possible without a high-density 

antibody array, such as the barcodes utilized here, for the following reasons: First, all the 

barcodes should fit into such a small chamber for multiplexing. Second, since data 

averaging in such a spatially-constrained scheme is impractical, it is critical to have 

consistent DNA loading across the microrarray if data comparisons are to be meaningful.  

We chose the U87 GBM cell line as a model system for our platform. GBM is the most 

common malignant brain tumor found in adults, and is the most lethal of all cancers. As the 

name implies, GBM exhibits extensive biological variability and heterogeneous clinical 

behavior.36 EGFR is an important GBM oncogene and therapeutic target.37 Thus, we 

assayed for eleven intracellular proteins associated with the EGFR-activated PI3K 
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signaling pathway. We provide representative sets of data for protein detection from the 

lysate of 1 to 5 cells (Fig. 3.9b and 3.9c). Eight proteins were detected from single-cell 

lysate and up to nine proteins were detected from five cells when using barcodes patterned 

by Scheme 3.2 (Fig. 3.9b and Fig. 3.9d), whereas only one protein could be detected from 

 
 

Figure 3.9 (a) A schematic representation of the single-cell, intracellular protein analysis device. 

Single or few cells are incubated in an isolated chamber under varying stimuli. Intracellular 

proteins are assayed by introducing a pre-aliquoted lysis buffer, whereupon the released proteins 

bind to the DEAL (DNA-labeled antibody) barcode within the chamber. V1: valve for lysis 

buffer control, V2: valve for isolated chamber formation, and R1: DNA barcode array converted 

into DEAL antibody array. (b) Contrast-enhanced images of developed barcode assays highlight 

the benefits of using Scheme 2 (b) vs. Scheme 3.1 (c). Protein names listed in red font 

correspond to those which were detected using Scheme 3.2 barcodes. (d) Representative 

fluorescence intensity profile from the single cell lysate of (b) 
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barcodes prepared by Scheme 3.1 (Fig. 3.9c). All the separate protein assays were screened 

for cross-reactivity (Fig. 3.10), and, for the cases where recombinant proteins were 

available, quantitation curves for each protein assay were measured (Fig 3.11). More 

detailed statistical analysis of these cells, as well as genetic variants thereof, is currently 

being investigated. 

 
 

 

 

 
 

Figure 3.10 Antibody cross-reactivity tests. All antibodies were pre-selected based on such 

cross-reactivity tests. A pin-spotted DNA microarray was used for a DEAL-based protein 

detection approach—similar to the assays used within the SCBC microfluidic devices for single-

cell proteomics. Each row shows the results from different conditions. For all conditions, the 

same cocktail of DEAL conjugates was used, and included one conjugate for each of the 11 

proteins assayed. For each row, only one target recombinant protein was tested. The target 

proteins were introduced at concentrations between 5–50 ng/mL, depending on the sensitivity of 

each antibody pair.  Red spots are signals from the target proteins and the green spots are 

reference signals from Cy3-labeled DNA sequence M‘. Phospho-VEGFR2 was not validated 

because the recombinant protein is not commercially available.  
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Figure 3.11 Calibration data for proteins in the panel. (a) Representative scanned images 

showing serial dilution measurements of selected proteins. Recombinant proteins were serially 

diluted (50 ng/mL, 10 ng/mL, 1 ng/mL, 100 pg/mL, 10 pg/mL, and 0 pg/mL) in 1X PBS and 

flowed into the different microchannels of the microfluidic device for cell lysis analysis. Valves 

were immediately closed to compartmentalize standard proteins into microchambers followed 

by on-chip lysis buffer diffusion on ice for 2 hr. (b) Calibration curves of EGFR, p-ERK, p-

p38α, p-GSK3α/β, p-p70S6K, p-mTOR, and p-Src are plotted based on the results from a) to 

demonstrate the quantitative characteristics of the analysis. The sensitivities identified from the 

calibration curves are similar to standard ELISA sensitivities (e.g., EGFR: ~ 10 pg/mL, p-

p70S6K: ~ 100 pg/mL, p-mTOR: ~ 200 pg/mL).  
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3.4 Conclusions 
 

We have identified a protocol for generating high-quality, high-density DNA barcode 

patterns by comparing three microfluidics-based patterning schemes. We find, through both 

experiment and theory, that the electrostatic attractions between positively charged PLL 

substrates and the negatively-charged DNA backbone induces significant non-uniformity in 

the patterning process, but that those electrostatic interactions may be mediated by adding 

DMSO to the solution, resulting in uniform and highly reproducible barcodes patterned 

using ~ 55-cm-long channels that template barcodes across an entire 2.5-cm-wide glass 

slide. Dendrimer-based covalent immobilization also yields good ultimate uniformity, but 

is hampered by a relatively unstable chemistry that limits run-to-run reproducibility. DNA 

barcodes were coupled with the DEAL technique to generate antibody barcodes, and then 

integrated into specifically designed microfluidic chips for assaying cytoplasm proteins 

from single and few lysed U87 model cancer cells. Successful detection of a panel of such 

proteins represents the potential of our platform to be applied to various biological and, 

perhaps, clinical applications. 
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Chapter 4 
 
Multiple Protein Secretion Profiling Analysis of 
Single Cells and Small Cell Colonies with 
Integrated Barcode Chip 
 
 

4.1 Introduction 

 
One of the major barriers in cancer research is the complexity. All cancers such as 

breast, prostate, lung, and brain cancer, etc., can be identified as multiple diseases with 

different genetic and environmental mutations. The complexity and heterogeneity of cancer 

require a systemic approach for diagnosis as well as treatment, aiming to find key elements 

responsible for the emergent properties of cancer.1–3 Those elements include individual 

biomolecules such as DNAs, RNAs, and proteins with specific mutations and networks 

modulating a series of biological process that leads to cancerous properties such as 

metastatic potential, immortality, and resistance to therapies. Especially, secreted proteins 

are an attractive target for cancer research because they can define cell characteristics and 

they are active agents to interact with the environment including other cells, the so-called 

tumor microenvironment. Cancer cells can induce adjacent stroma cells and extracellular 

matrix (ECM) to form a supportive microenvironment by producing stroma-modulating 

growth factors.4 Immune cells such as macrophages and neutrophils can also contribute to 

tumor progression by expressing proteases or pro-angiogenic factors. Thus, monitoring 

secreted proteins in a multiplexed manner from individual cells is a useful tool for the basic 
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research as well as the clinical diagnosis and treatment. Heterogeneity of tumor 

microenvironment also requires comprehensive characterization of functional phenotypes 

at the single cell level. 

Representative techniques for single-cell functional assay are fluorescence-activated 

cell sorting (FACS)5 and ELISpot,6 a variant of the Enzyme-Linked Immunosorbent Assay 

(ELISA). FACS is commonly utilized to detect and sort cells via their surface markers. 

However, by blocking vesicle transport followed by staining of proteins in the cytoplasm, 

FACS can extend its use for the detection of protein secretion. An ELISpot test can indicate 

the footprint of single-cell secretion by capturing secreted proteins located proximal to the 

cells. Both of the techniques are currently used in clinical application but sensitivity, 

limited multiplexing capability, high cost, and the requirement of a large amount of sample 

limits their widespread use. Therefore, a new platform for the multiplexed protein detection 

is needed which is simple, fast, and easily expandable, at low cost.  

Here, we report on an integrated barcode chip that enables high-content assessment of 

glioblastoma (GBM) brain tumor cells. GBM is the most common malignant brain tumor 

in adults, and is the most lethal of all cancers. As the name of the tumor indicates, GBM 

has extensive genetic and biological variability, heterogeneous clinical behavior, and 

accordingly unpredictable, poor prognostics7. Thus, studying GBM requires dealing with 

the heterogeneous and complex characteristics, which is a good target for our platform 

equipped with the capability of multiplexing analysis. The integrated barcode chip is 

comprised of 360 microchambers in which an antibody barcode array for the measurement 

of a dozen proteins is patterned. In this study, we measured protein secretion profiles from 

four GBM cell lines, each with specific mutation, and observed profound cellular 
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heterogeneity, along with unique features only available at the single-cell level. We found 

anti-correlations between two proteins, MIF and VEGF, which couldn’t be identified with 

conventional, bulk analysis. We also confirmed the tumor-suppressing activity of PTEN in 

GBM cell lines by comparing the protein secretion profiles of two cell lines, one with 

PTEN and the other without PTEN. The optical transparency of our platform enabled us to 

monitor the physical characteristics of the system, which were matched up with the 

secretion profile later and presented the cell–cell communication effect through epithermal 

growth factor receptor (EGFR). We further demonstrate that this platform can be extended 

to the analysis of solid tumors by measuring secreted proteins from single cells and small 

cell colonies derived from the tumor of a patient. Even though there is heterogeneity in 

cellular functions, as we confirmed with our platform, we can also attain statistically 

meaningful analysis owing to the large amount of data sets that we can obtain from a single 

experiment.     

 

4.2 Experimental Methods 

 
4.2.1 Patterning of DNA barcode arrays 
 

The DNA barcode array was prepared by microfluidic flow patterning and the 

microfludic-patterning PDMS chips were fabricated by soft lithography. The master mold 

for the PDMS was prepared by either a negative photoresist, SU8 2010 with 

photolithography or a silicon hard mold with a deep reactive ion etching (DRIE) process. 

The mold has long meandering channel lines with 20 µm in width and height, respectively. 

The mixture of Sylgard PDMS (Corning) prepolymer and curing agent in 10:1 ratio (v/v) 
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was poured onto the mold and cured at 80°C for 1 h. The cured PDMS slab was released 

from the mold, inlet/outlet holes punched, and bonded onto a poly-L-lysine-(PLL)-coated 

glass slide (Thermo scientific) to form enclosed channels. The number of microfluidic 

channels determines the size of the barcode array and 13 parallel microchannels were used 

in this study.  

 Once the channels are formed, 13 orthogonal DNA oligomer solutions (sequences are 

provided in Table 3.1) in a 1:2 mixture (v/v) of 1xPBS buffer and dimethyl sulfoxide 

(DMSO) were flowed into each of the microfluidic channels. Then the DNA-solution-filled 

chip was placed in desiccators until the solvent was evaporated completely, leaving the 

DNA molecules behind. As the last step, the PDMS elastomer was removed from the glass 

substrate, and the barcode-patterned DNAs were cross-linked to the PLL by thermal 

treatment at 80 °C for 4 hours. The slide was gently rinsed with deionized water right 

before use in order to remove salt crystals formed during the solution evaporation step. 

 

4.2.2 Microfluidic chip fabrication for the detection of protein secretion 
 

The PDMS microfluidic chip for the cell experiment was fabricated by two-layer soft 

lithography8. The push-down valve configuration was utilized with a thick control layer 

bonded together with a thin flow layer. The molds for the control layer and the flow layer 

were fabricated with SU8 2010 negative photoresist (~ 20 µm thickness) and SPR 220 

positive photoresist (~ 18 µm), respectively. The photoresist patterns for the flow layer 

were rounded via thermal treatment. The thick control layer was molded with a 5:1 mixture 

of GE RTV 615 PDMS prepolymer part A and part B (w/w) and the flow layer was formed 

by spin-coating a 20:1 mixture of GE RTV 615 part A and part B (w/w) on the flow layer 
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mold at 2000 rpm for 60 sec. Both layers were cured at 80°C for 1 h, followed by aligning 

the control layer to the flow layer, which was still on its silicon mold. Through an 

additional 60 min of thermal treatment at 80°C, the two layers were bonded. Afterward, the 

two-layer PDMS chip was peeled off, cut, and access holes punched. As a final step, the 

two-layer PDMS chip was thermally bonded to the barcode-patterned glass slide, forming 

the working device.  

 

4.2.3 Cell culture 
 

Human GBM cell lines were cultured in DMEM (American Type Culture Collection, 

ATCC) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich). Human 

U87MG (U87) GBM cells were purchased from ATCC. The U87EGFR and U87EGFRvIII 

cell lines were kindly provided by Dr. Paul Mischel (Department of Pathology, University 

of California at Los Angeles, Los Angeles, CA). For the GBM1600 cell experiments, a low 

passage primary cell line was established from tumor tissue obtained from a GBM patient. 

Briefly, the tumor was diagnosed intraoperatively by a board-certified neuropathologist, 

finely minced with scalpels and resuspended in complete Iscove’s modified Dulbecco’s 

medium, supplemented with 20% FBS, 2 mM glutamine, 5 micrograms/ml of insulin and 

transferrin and 5 ng/ml selenium and a cell line was established in accordance with UCLA-

IRB approved human subjects protocol 04-07-020-11.  

 

4.2.4 On-chip secretion profiling 
 

As a first step, the DNA barcode array was transformed into an antibody microarray. 

The chip was treated with fibronectin (1 µg/mL in phosphate buffered saline (PBS)) by 
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flow, followed by blocking with 1% bovine serum albumin (BSA) in PBS to prevent non-

specific binding. This 1% BSA/PBS solution was used as a working buffer for most of the 

steps. After blocking, a 200 µl cocktail containing all 12 DNA-antibody conjugates at 30 

ng/ml in working buffer was flowed through the micro channels for 1 h. The unbound 

DNA-antibody conjugates were washed off with 100 µl of fresh buffer. Then, cells were 

introduced to the microfluidic channels and microfluidic valves were closed by applying 

15–20 psi constant pressure to convert 30 microfluidic channels to the 360 isolated 

microchambers. The chip was incubated in a cell incubator (37°C, 5% CO2) for 24 h. After 

the incubation, the chip was removed from the incubator, valves were released, and a 200 

µl cocktail containing all biotin-labeled detection antibodies (~ 30 ng/ml) in working buffer 

was flowed through the microchannels. Next, a 200 µl mixture of 100 ng/ml Cy5-labeled 

straptavidin and 20 ng/ml Cy3-labeled M’ ss DNA in working buffer were flowed through 

the microchannels, which completed the immune-sandwich assay. Finally, the 

microchannels were rinsed by flowing working buffer, followed by peeling off the PDMS 

chip, rinsing the microarray slide with 1×PBS, 0.5×PBS, and deionized water, sequentially, 

and spin-drying. 

 

4.2.5 Data analysis 
  

The microarray slide was scanned with the GenePix 200B (Axon Instruments) for the 

fluorescence image of both Cy3 and Cy5 channels. All scans were performed with the 

same setting of 50% (635 nm) and 15% (532 nm) laser power, 500 (635 nm) and 450 (532 

nm) optical gain. Line profiles for the fluorescence intensity of each channel were obtained 

with the ImageJ software (NIH) and a home-developed Excel macro was employed to 
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match averaged fluorescence signals for all the barcodes in each chamber to the cell 

number. The collected data were clustered by Cluster 3.0 and all the heat maps were 

generated by Java Treeview (http://rana.lbl.gov/EisenSoftware.htm). The bulk secretion 

data were analyzed by ImageJ.  

 

4.3 Results and Discussion 

 
4.3.1 Multiple-protein secretion profiling from single cells and small cell colonies with 

integrated microchip 
 
 

We developed an integrated microfluidic chip to measure proteins from single cells or 

small cell colonies. The chip is composed of two layers. The lower layer (flow layer) has 

30 parallel channels 200 µm in width and 18 µm in height. The top layer (control layer) 

also has 12 channels perpendicular to the channels in the lower layer which function as 

valves. When pressure is applied to the channels in the control layer, 360 isolated chambers 

are formed from the 30 parallel channels. The length of each chamber is 1.8 mm, yielding ~ 

6.5 nl of volume per chamber. Owing to this small volume, the secreted protein 

concentration built up during the incubation time reaches a high enough level to be 

quantitatively measured even from a single cell. 

We utilized a miniaturized antibody barcode array based on the DNA-encoded antibody 

library (DEAL) approach9 to detect secreted proteins. First, DNA barcode array in the form 

of parallel stripes with 20 µm and 40 µm in width and pitch, respectively, is generated 

based on the microchannel-guided flow patterning technology. The DNA barcode array is 

transformed to the antibody barcode array by hybridizing DEAL conjugates (antibodies 

http://rana.lbl.gov/EisenSoftware.htm
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conjugated to the complementary DNAs)10. The array for this study is designed for 13 

stripes: 12 stripes for proteins and 1 stripe for an alignment reference.  

Cells are randomly loaded into the large array of microchambers, which results in one 

or a small number of cells per chamber. The loaded cells can be imaged owing to the 

transparency of the chip. The schematics of the chip platform and the protein detection 

scheme are illustrated in Figs. 4.1a and 4.1b, respectively. The 12 proteins used for this 

study are as follows: interleukin (IL)-2, monocyte chemotactic protein (MCP)-1, IL-6, 

granulocyte-colony stimulating factor (G-CSF), macrophage inhibitory factor (MIF), 

epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-

derived growth factor (PDGF-AB), transforming growth factor (TGF)-α, IL-8, IL-1ra, and 

hepatocyte growth factor (HGF). For some experiments EGF and PDGF-AB are replaced 

with matrix metallo-proteases (MMP) 3 and IL-1β.  Fig. 4.1c shows representative 

microchambers loaded with four, three, and two U87 cells, along with the scanned images. 

The device presents a good signal-to-noise ratio for the detection of multiple secreted 

proteins. 

 

4.3.2 Secretion profile from integrated barcode chip vs. bulk experiment 
 

Our integrated barcode chip platform allows high-content analysis on many cell 

secretion events per chip. Fig. 4.2a shows three heat maps generated from on-chip 

experiments with U87, U87EGFR, and U87EGFRvIII GBM cell lines, respectively. 

Signals from single cells to ~ 20 cells were obtained and the secretion of 6 proteins was 

clearly identified from all cell lines. There are slightly different trends in terms of secretion 

profile among the three cell lines, even though they are from the same lineage. The major 
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difference among the three cell lines is the epidermal growth factor receptor (EGFR) 

activity; U87EGFR cells have amplified EGFRs and U87EGFRvIII cells have ligand-

independent, constitutively activated EGFR. Thus, different secretion profiles may reflect 

the effect of EGFR activity on these cells. The bulk secretion measurements for U87 and 

U87EGFRvIII cells were also performed with a conventional microarray. Similar profiles 

of secreted proteins to the on-chip experiments were obtained (Fig. 4.2c). However, it was 

difficult to resolve the difference between two cell types. In order to quantitatively compare 

 
 

Figure 4.1 Integrated barcode chip for secreted protein profiling from single cells and small cell 

colonies. (a) Schematic drawing of the major components of the device. Each microchamber has 

two repeats of 13 barcode patterns for antibody array converted from DNA array. (b) The 

mechanism of detection for the secreted proteins from cells. Secreted proteins are captured by 

capture antibodies patterned on the substrate and visualized by a sandwich assay with biotin-

labeled detection antibodies and cy5-labeled streptavidin. (c) Representative microchambers 

with four, three, and two cells, along with scanned fluorescence images of barcode signals. Red 

bars represent protein signal and green bars represent signals for the position reference. (d) 

Optical image of cells in the device after 24 h of incubation. Fibronectin coating allows cells to 

stay alive in a healthy condition. Cells even move, grow, and divide in the chamber during 

incubation. 
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the differences, letter maps based on the signal intensities were generated in Fig. 4.2b and 

4.2d. The relative signal intensities of each protein to the reference signal were calculated 

and the values were used as a font size. In Fig. 4.2d, U87 and U87EGFRvIII from the bulk 

experiments show almost identical letter maps. In contrast, letter maps of three cell lines 

from on-chip experiments show differences in terms of signal intensities for major proteins 

secreted. Most proteins including IL-6, MIF, VEGF, and IL-8 tend to be secreted more as 

the EGFR activity is stronger. HGF signal was weaker for U87EGFRvIII cells than others. 

This letter map analysis reveals that we can get more information from the on-chip 

experiment, information that is difficult to resolve from the conventional bulk experiment. 

The information from single cells or small colonies of cells, when combined together with 

the bulk experimental results, can lead us to understand the biology of cells more clearly.   

 

4.3.3 Single-cell protein secretion profiling of GBM cell line: U87 cells 
 

For comparison, the data from a single cell, three cells, and many cells (more than 6 

cells) were extracted and analyzed with an unsupervised clustering by Cluster 3.0 software  

(Fig. 4.3a). Each row in the heat map represents the data from a single chamber. Here 70 

single cell data sets were collected and several notable features can be extracted from this 

analysis. The most striking observation is the anti-correlation between MIF and VEGF / IL-

8. This anti-correlation can be found from the single-cell data and the effect becomes 

weaker as the cell number increases (Fig. 4.3a). It is difficult to identify this relationship 

from even three-cell data. To quantitatively analyze this, we plotted the scattered plots for 

single cell and three cells which show the correlation among MIF, VEGF, and IL-
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8. The data from the chambers with zero cells were used as a gate for the background 

reference (black rectangles) and the data from the single cell or three cells were plotted 

with red circles in Figs. 4.3b and 4.3c. The circles in each quadrant were counted and 

 
 

Figure 4.2 Secretion profiles from GBM cell lines: integrated barcode chip vs. bulk experiment. 

(a) Heat maps showing the fluorescence intensities of barcodes corresponding to the 

measurement of 12 proteins as the cell number increases from one to ~ 20 for U87, U87EGFR, 

and U87EGFRvIII cells. (b) Letter maps generated based on the relative fluorescence intensities 

of proteins to the reference signal intensity from the on-chip experimental data. The font size 

represents the relative signal intensity. (c) Scanned images showing the secretion profiles of U87 

and U87EGFRvIII cells cultured in a petri dish for 24 h. Conventional pit-spotted DNA 

microarray along with DEAL technique was used for the bulk measurement. (d) Letter maps 

generated from bulk experimental data 
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Figure 4.3 Single-cell secretion profiles for U87 cells. (a) Heat maps from clustered data sets of 

single cells, three cells, and many cells (more than 6). Data for specific number of cells are 

collected and clustered with an unsupervised method. (b) Scatter plots of MIF, VEGF, and IL-8 

for single cells. (c) Scatter plots of MIF, VEGF, and IL-8 for three cells. 
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represented to quantitatively identify the relationships between two proteins. We found 13% 

MIF+|VEGF- and 66% MIF-|VEGF+ events from the single cell and only 4% of single-cell 

events showed MIF+|VEGF+, which confirms the anti-correlations between MIF and VEGF. 

Interestingly, from three-cell data, only 3% MIF+|VEGF- events were found and 27% of the 

events showed MIF+|VEGF+. Thus, we can identify the transition from the anti-correlation 

to the positive correlation as the cell number increases. This is an interesting observation 

because it was reported that there is a positive correlation between MIF and VEGF 

expression with a bulk scale analysis in GBM11 and we also noticed a similar trend in the 

bulk analysis. The unique feature of an anti-correlation at the single-cell level can offer us 

another opportunity to find out unknown pathways related to the two potent angiogenic 

factors in GBM, VEGF and MIF.11, 12 IL-8 shows positive correlation with VEGF and thus 

anti-correlation with MIF.  

Another interesting feature can be found from the columns of the heat map. For the 

clustering, we also included the correlations among proteins, which clusters the proteins as 

well. In the single-cell heat map, there are two major clusters, one with MIF and the other 

with VEGF and IL-8, and this can represent the anti-correlation among them again. 

However, in the heat map for many cells, they are in the same cluster, which represents the 

transition from the anti-correlation to the positive correlation. IL-6 can also be found in the 

heat map for many cells and this may reflect a possible paracrine signal for IL-6 secretion, 

which will be discussed below. 
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4.3.4 Cell–cell communication effect 
 

Owing to the transparency of PDMS, we can monitor the experimental process 

optically and this feature also enables us to connect physical properties of cells or 

microenvironment to the cell physiology. Many different factors such as oxygen level13, 

cell morphology including size and shape,14 temperature,15 and cell–cell interaction16 are 

correlated to cell behavior. Therefore it is useful to be able to monitor the cell morphology 

or the environment and to match them with the protein-secretion profiles. As an example, 

we measured the distance between two cells and analyzed the protein-secretion profiles 

based on the information. In Fig. 4.4a, representative data sets from the U87EGFR 

experiment for the chambers with two cells and three cells are presented. Cells secrete 

more proteins as they are located closer. It can be easily seen that IL-6 and VEGF signals 

are stronger for the chambers with closely located cells. To analyze this effect 

quantitatively, scatter plots for protein-secretion level and cell–cell distance were generated 

based on 34 data sets and 52 data sets from U87 and U87EGFR cells, respectively (Figs. 

4.4b and 4.4c). U87EGFR cells show stronger secretion levels for IL-6 and VEGF when 

cells are closely located, which represents a possible paracrine effect for the secretion of 

these two proteins. Interestingly, the cell–cell communication effect is not seen in the case 

of U87 cells. Based on this observation, we can conclude that there exists a paracrine 

signaling for IL-6 and VEGF secretion and it is related to the EGFR activity. This cell–cell 

communication effect presents another useful application of this device to study tumor 

microenvironment systemically. Even though we used the cell–cell distance as a 

representative parameter in this study, we can also monitor the cell morphology, 
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proliferation rate, motility, and size, etc., with the current design or a slightly modified 

design. 

 

 

Figure 4.4 Distance effect for cell–cell communication. (a) Representative optical images for 

U87EGFR cells in microchambers along with the secretion profile. Closely located cells show 

high level of secretion especially for VEGF and IL-6. (b) Scatter plots of signal intensity vs. 

cell–cell distance for U87EGFR cells. (c) Scatter plots of signal intensity vs. cell–cell distance 

for U87 cells 
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4.3.5 PTEN activity on GBM cell line: U87EGFRvIII vs. U87EGFRvIII/PTEN 
 

Studying major pathways related to cancer is useful in understanding basic cancer 

biology as well as in finding new treatment of the disease. Many drugs are inhibitors of 

specific proteins that play important roles to maintain unique features of cancer such as 

angiogenesis, immortality, and metastasis. Therefore monitoring secreted proteins, 

combined with the knowledge of the related signaling pathways, can offer another way of 

understanding cancer and finding treatment. We further interrogate PTEN, a protein 

 

Figure 4.5 PTEN activity in U87EGFRvIII cells revealed by protein secretion profiling. (a) 

Heat maps derived from single-cell secretion data of U87EGFRvIII and U87EGFRvIII/PTEN 

cells. (b) Heat maps derived from two-cell secretion data of U87EGFRvIII and 

U87EGFRvIII/PTEN cells. (c) Relative intensities of MIF, MMP3, VEGF, and IL-8 signals to 

the reference signal for U87EGFRvIII and U87EGFRvIII/PTEN cells 
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encoded by a tumor-suppressor gene, PTEN, and its effect on U87EGFRvIII cells as an 

example. PTEN is known to negatively regulate intracellular levels of phosphatidylinositol-

3,4,5-triphosphate which is in upstream of Akt/PKB signaling pathway. Also in GBM cells, 

it was reported that PTEN mutation can cooperate with EGFR activation to increase VEGF 

mRNA levels via PI3K/AKT pathway.17 U87 cells have a PTEN mutation17 and so do 

U87EGFRvIII cells, because they have been derived by retroviral transduction of U87 cells 

with pLPCX constructs that contain EGFRvIII cDNA.18 Thus, U87EGFRvIII cells have a 

sufficient condition for the up-regulation of VEGF, which can be identified from Figs. 4.5a 

and 4.5b. Figs. 4.5a and 4.5b show heat maps for secreted proteins from U87EGFRvIII and 

U87EGFRvIII/PTEN, respectively, at the single-cell and two-cell level. Here the protein 

panel is slightly modified by replacing EGF and PDGF-AB with MMP3 and IL-1β, 

respectively. U87EGFRvIII/PTEN cells show very weak VEGF signal, as expected. In Fig. 

4.5c, the relative signal intensities to the reference signal for the four major proteins, 

including VEGF, are plotted. It can be easily seen that VEGF, MMP3, and IL-8 are 

positively correlated and U87EGFRvIII/PTEN cells show a much lower signal intensity of 

them. On the other hand, the MIF signal is stronger for U87EGFRvIII/PTEN cells, and this 

observation is supported by the anti-correlation between MIF and VEGF found in Figs. 

4.3a and 4.3b. The results obtained from U87EGFRvIII and U87EGFRvIII/PTEN reveal 

the tumor suppressing effect of PTEN by down-regulating pro-angiogenic factors, 

including VEGF, MMP3, and IL-8, which might be related to the PI3K/Akt pathway.  
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4.3.6 Toward clinical sample: analysis on GBM primary tumor cells 
 

To demonstrate the utility of our device for analyzing clinical specimens and for 

probing the molecular heterogeneity of pathogenesis, we performed an on-chip secretion 

profiling of solid tumor cells at the single-cell level. A low-passage primary GBM culture 

(GBM 1600 cells) was established from a surgically resected GBM tumor.19 (The tumor 

was diagnosed intraoperatively by a board-certified neuropathologist.) Tumor-secreted 

 

Figure 4.6 Profiling of tumor-secreted proteins at the single cell level. (a) Heat map showing 

secretion profiles versus number of GBM 1600 cells measured using the integrated barcode 

chip. (b) Heat map for a subset of data corresponding to all single cell secretion events after 

unsupervised clustering. (c) Scanned image showing the secretion profile of GBM 1600 cells 

cultured in a petri dish for 24 hours measured in a bulk experimental procedure. 
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 soluble factors play a critical role in shaping the tumor microenvironment and inducing 

metastasis.20 Thus, analysis of protein-secretion profiles at the single-cell level from small 

amounts of clinical specimens, e.g., tumor tissues, has important implication in cancer 

diagnosis and sub-typing. 

Results from a single microchip (Fig. 4.6a) revealed the secretion of at least six proteins 

(MCP-1, IL-6, MIF, VEGF, IL-8, and HGF), while the negative control, IL-2, did not show 

any appreciable signal. We further analyzed the single-cell secretion events with clustering 

(Fig. 4.6b). It is interesting that the major secreted proteins are very similar to those from 

U87 cell lines. The GBM 1600 cells displayed highly heterogeneous activities, which can 

provide insight into the heterotypic nature of tumor cells, as we also noticed from the cell 

line. This experiment demonstrated the utility of this approach for the multifunctional 

profiling of cells harvested from clinical specimens such as tumor tissues. 

 
4.4 Conclusions 
 

Traditional assays for cellular functions provide averaged information from a large 

population of cells. This information alone, however, cannot represent the real biology of a 

complex, heterogeneous system such as a tumor. Most of time we can miss the hidden 

players or pathways that are critical to understanding the phenomena. The anti-correlation 

between MIF and VEGF that we observed with our integrated barcode chip is a good 

example of that. Previous reports based on a conventional approach showed only a positive 

correlation. We further identified the transition from the anti-correlation to the positive 

correlation as the cell number increases. More in-depth study is required to find the 

mechanism for the anti-correlation. This observation, however, still reflects that there might 
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be some facts that we are missing by making conclusions solely based on the conventional, 

bulk experimental data. We noticed highly heterogeneous functions even from the same 

lineage of cells at the single-cell level. This might be just an intrinsic complexity of 

biological processes such as cell–cell interaction and stochastic gene expression. But it is 

also true that the heterogeneity plays important roles in human health, whose outcome is 

the collective phenomena that we can observe with the bulk analysis. By analyzing 

heterogeneous but large amounts of data from single cells or small cell colonies, we can 

add an additional technique that can change our way of looking at diseases or basic biology. 

Our integrated barcode chip platform can help to disentangle at least some aspects of 

heterogeneous cellular responses. 

Complexity is the major bottleneck for attacking cancer. That is why we need to use a 

tool for multi-parameter analysis and an approach to systemically study the collected 

information.2 However, the single-parameter assay is still used in clinics because of the 

lack of a simple and inexpensive multi-parameter analysis tool. The recent failure of an 

HIV vaccine clinical trial by Merck can be a good example of the importance of a multi-

parameter-based approach. Furthermore, the examination of cellular functions in a 

heterogeneous lesion is critical for the accurate diagnosis of complex human diseases such 

as cancer.21  Our integrated barcode chip platform offers a functionality of multi-parameter 

analysis not only from the secreted protein profiling but also from the combined analysis of 

physical characteristics of cells and the environment. Through the cell–cell interaction 

study, we confirmed that VEGF and IL-6 are secreted in a paracrine manner through EGFR. 

This is a simple example of what we can find out by adding information from a different 

angle. By utilizing small chambers with status that we can easily track during the 
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experiment, we can study the effect of physical, environmental factors such as temperature, 

geometry, oxygen level, and drugs on cells. Ease of fabrication is a major advantage of a 

PDMS-based platform, as is the optical transparency. Therefore we can easily modify the 

design and expand the scope of what we can study, especially for the tumor 

microenvironment. 

From the experiments with U87 cell lines, we noticed the heterogeneity of cell behavior 

at the single-cell level, which might present clues for understanding deep biology. Through 

perturbation tests, such as neutralization of specific cytokines or growth factors and drug 

treatment, we can study the network of signaling pathways and apply the findings to 

disease diagnostics or treatment. Studying cell lines with a different set of mutations or 

characteristics enables us to build up an informative database as well. As an example, we 

confirmed PI3K/Akt-dependent PTEN activity by testing U87EGFRvIII cells and 

U87EGFRvIII/PTEN cells with our platform. If we collect data sets from many different 

cell lines for a specific cancer, it can provide a good reference for systemic analysis 

towards personalized diagnostics and treatments. We also applied the integrated barcode 

chip platform to perform multiplexed secreted-protein profiling of primary tumor cells. The 

response was also heterogeneous and complex. However, by combining these results with 

conventional diagnostic tests, we can use our platform for clinical applications, especially 

when we have a library of data sets for specific mutations related to cancer. Kotecha et al. 

showed the existence of unique cellular signatures of tumors that are useful for patient 

stratification with flow cytometry as well.22 Recently Kwong et al. reported cell sorting 

with DEAL and Nucleic Acid Cell Sorting (NACS) technologies.23 If we combine these 

technologies with our platform, we can sort specific cell types from a cancer patient’s 
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tissue sample and characterize them based on protein-secretion profiling. The integrated 

barcode chip represents a highly multiplexed, sensitive, and inexpensive platform that 

offers potential use in assessing functional heterogeneity of cells in complex disease lesions 

by examining clinical samples (e.g., skinny-needle-biopsied tissue). It also has the potential 

to analyze a disease-associated signaling network from individual patients for use in 

differential diagnosis and personalized treatment. 
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Chapter 5 
 
Protein Signaling Networks from Single-Cell 
Fluctuations and Information Theory Profiling 
 
 
5.1 Introduction 

 
Protein signaling pathways play important roles in tissue processes ranging from 

tumorigenesis to wound healing.1–5 Elucidation of these signaling pathways is challenging, 

in large part, because of the heterogeneous nature of tissues.6 Such heterogeneity makes it 

difficult to separate cell-autonomous alterations in function from alterations that are 

triggered via paracrine signaling, and it can mask the cellular origins of paracrine signaling. 

Intracellular signaling pathways can be resolved via multiplex protein measurements at the 

single-cell level.7 For secreted protein signaling, there are additional experimental 

challenges. Intracellular staining flow cytometry (ICS-FC) requires the use of protein 

transport inhibitors which can influence the measurements.8 In addition, the largest number 

of cytokines simultaneously assayed in single cells by ICS-FC is only 5.9 Finally, certain 

biological perturbations, such as the influence of one cell on another, are difficult to 

decipher using ICS-FC. Other methods, such as multiplex fluorospot assays,10 have even 

more significant limitations. 

We describe here an experimental/theoretical approach designed to unravel the 

coordinated relationships between secreted proteins, and to understand how molecular and 

cellular perturbations can influence those relationships. Our starting points are single, 
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lipopolysaccharide-(LPS)-stimulated, human macrophage cells.11, 12 LPS stimulation 

activates the toll-like receptor-4 (TLR-4), and emulates the innate immune response to 

Gram-negative bacteria. We characterize the secretome, at the single-cell level, through the 

use of a microchip platform in which single, stimulated macrophage cells are isolated into 3 

nanoliter (nl) volume microchambers, with ~ 1000 microchambers per chip. Each 

microchamber permits duplicate assays for each of a dozen proteins that are secreted over 

the course of a several-hour incubation period following cell stimulation. The barcode 

assays are developed using detection antibodies and fluorescent labels, and then converted 

into numbers of molecules detected. We demonstrate that the observed spread in protein 

levels is dominated by the cellular behaviors (the biological fluctuations), rather than the 

experimental error. These fluctuations are utilized to compute a covariance matrix linking 

the different proteins. This matrix is analyzed at both coarse and fine levels to extract the 

protein–protein interactions. We demonstrate that our system has the stability properties 

requisite for the application of a quantitative version of a Le Chatelier-like principle, which 

permits a description of the response of the system to a perturbation. This is a prediction in 

the strict thermodynamic sense. The fluctuations, as assessed from the multiplexed protein 

assays from unperturbed single cells, are used to predict the results when the cells are 

perturbed by the presence of other cells, or through molecular (antibody) perturbations. 
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5.2 Methods 

 
5.2.1 Experimental Methods 
 

The experimental platform is the single-cell barcode chip (SCBC) (Fig. 5.1).  A SCBC 

contains 80 microchannels into which cells are introduced. Valves13 are closed to separate 

each microchannel into 12 individual (for 960 total) ~ 3-nanoliter-volume microchambers, 

each of which contains between 0 and a few cells. Cell numbers are recorded by imaging 

through the transparent chip. Each microchamber contains two copies of an antibody 

barcode array. Each barcode stripe corresponds to a given antibody; a full barcode 

 

 

Figure 5.1 Single-cell barcode chips for protein secretion profiling. (A) Optical micrograph 

showing macrophage cells loaded into microchambers. (B) Scanned image showing the result of 

secretion profiling from small numbers of cells. The area flanked by two green bars corresponds 

to a microchamber, each of which contains two full barcodes.  Each barcode represents the 

whole panel of assayed proteins. The barcode fluorescence image has been uniformly contrast 

enhanced to highlight the detected proteins. 
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represents the panel of assayed proteins. Once the cells are loaded, the chip is placed into a 

CO2 incubator for 24 h, during which secreted proteins are captured at the barcode stripes 

by their cognate antibodies. The cells are removed, and the antibody barcodes are 

developed using secondary antibodies and fluorophore labels. The fluorescence levels are 

quantified, and then converted into numbers of molecules detected using calibration curves. 

We reported on a related SCBC device for assaying phosphoproteins from single lysed 

cancer cells (see Chapter 3).14 In that work, we described the flow patterning approach for 

the production of the high-quality antibody barcode arrays used here. Each barcode array 

contains 13 20-µm-wide stripes, at a pitch of 50 µm. The barcodes are initially patterned as 

 
 

Figure 5.2 Design of integrated microchip for single-cell protein secretome analysis. (A) CAD 

design of a microchip in which flow channels are shown in red and the control channels are 

shown in green. (B) Schematic drawing of cells loaded in the microchambers and 

compartmentalized with the valves pressurized. (C) Schematic illustration of the antibody 

barcode array used for multiplexed immunoassay of single-cell secreted proteins 
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DNA stripes. Following SCBC assembly, the DNA array is converted, using DNA-

hybridization, into an antibody array using a DNA-encoded antibody library15, 16 (Fig. 5.2). 

All DNA oligomers and antibody reagents are listed in Tables 5.1 and 5.2. The 12 proteins 

assayed were: interleukin (IL)-2, monocyte chemotactic protein (MCP)-1, IL-6, 

granulocyte-macrophage colony stimulating factor (GMCSF), macrophage migration 

inhibitory factor (MIF), interferon (IFN)-γ, vascular endothelial growth factor (VEGF), IL-

1β, IL-10, IL-8, matrix metallopeptidase (MMP) 9, and tumor necrosis factor (TNF)-α. 

The barcode assays were calibrated through the use of standard proteins spiked in buffer 

 
Figure 5.3 Cross-reactivity check and calibration curves. (A) Scanned image showing cross-

reactivity check for all 12 proteins. The green bars represent the reference stripe, sequence M. 

Each protein can be readily identified by its distance from the reference. In each channel, a 

standard protein (indicated on the left) was added to the buffer solution and assayed using the 

DEAL barcode method. For GMCSF, MIF, IFN-γ, IL-10, MMP9, and TNF-α, biotin-labeled 2° 

anti IL-2 antibody conjugated to DNA sequence A’ was used as a control. (B) Quantitation of 

fluorescence intensity vs. concentration for all 12 proteins. Error bars: 1 SD. The variability 

(defined as the standard deviation divided by the average in percentage) is less than 10% for the 

signals in detectable range. 
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Figure 5.4 PMA and LPS activation and kinetics of protein secretion from activated 

macrophage cells. (A) Bulk secretion profiles from THP-1 cells under different conditions. 

PMA treatment induces THP-1 cells to macrophages and LPS treatment emulates innate 

immune responses against Gram-negative bacteria. (B) Quantitation of bulk secretion intensities 

for the eight selected proteins over 24 h. The samples were collected at 2, 4, 6, 8, 10, and 24 h 

after incubation of PMA/LPS treated cells. The cell density was 0.3×106 cells/mL, which is a 

comparable density to a single cell in a chamber of an SCBC device. Note that the secretion 

levels of TNF-α and MIF are oscillatory and anti-correlated.  (C) MIF secretion rate based on 

the assumption of linear time dependence from (B). The secretion rate from the bulk experiment 

is about 11 pg/mL per min which is about twofold higher than the single-cell secretion data from 

the SCBC device (4.84 pg/mL per min).    



 142 

 (Fig. 5.3). IL-2 is not expected to be secreted by macrophages, and so the anti-IL-2 

barcode stripe was utilized to measure the background. 

For the macrophage secretome experiments, cells from the human monocyte cell line, 

THP-1 were differentiated into macrophage lineage using phorbol 12-myristate 13-acetate 

(PMA), stimulated with LPS and then loaded into the device. LPS activates the TLR-4 on 

the cell surface17, 18 and stimulates the secretion of a spectrum of cytokines (Fig. 5.4). 

Signal-to-noise Calculations and Experimental Error. An Axon GenePix 4400A 

scanner coupled with a custom algorithm was used to quantify the fluorescence intensities 

of each protein from each microchamber (Fig 5.1B). Certain proteins were positively 

detected based upon signal-to-noise (S/N) > 4. S/N was calculated as follows: Each protein 

was measured twice per microchamber. The averaged fluorescence values from the two 

barcode stripes for all proteins were used as signals from each chamber. The ratio of the 

averaged signal over all single-cell experiments for a specific protein to IL-2 yields the S/N. 

The following eight proteins were detected (S/N is indicated after the protein name): MCP-

1 (4.7), MIF (1380), IFN-γ (4.3), VEGF (77), IL-1β (95), IL-8 (2620), MMP9 (120), and 

TNF-α (411).  

Macrophages are highly responsive to their environment, and so experimental 

conditions can influence macrophage behavior. Thus, we sought confirmation that our 

protocols could lead to reproducible results. We executed identical sets of experiments on 

different SCBCs and showed that the distributions of the unambiguously detected proteins 

(Fig. 5.5) were effectively identical (p-value > 0.25). The results presented here do depend 

on the amount of PMA or LPS used and, to a lesser extent, the passage number of THP-1 

http://www.alomone.com/system/UpLoadFiles/DGallery/Docs/P-800.pdf
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cells. In addition, a solvent extraction of the PDMS improves the SCBC biocompatibility 

and the assay reproducibility.19 

 

 
Figure 5.5 Comparison of two data sets from two experiments performed in parallel. All the 

conditions such as barcode patterning, PDMS-based microfluidic device fabrication, and cell 

preparation, etc., for the two devices were the same. (A) Heat maps of the single-cell data sets 

from two devices. Based on the same S/N ratio (4), 9 proteins were detected. It should be noted 

that the protein profiles are different from the data set used in the main text, which originated 

from the non-extracted PDMS device. PDMS is known to leach out toxic material to the 

solution and this can affect the cell condition or protein secretion because macrophages are, by 

nature, highly responsive to their environment. For the main experiment, solvent-extracted 

PDMS was used to avoid such effects. For some proteins, the signal values are multiplied by 10 

(*) and 100 (**) for the visualization. (B) Dot plots for three major proteins. Based on p-values, 

both experimental data sets are statistically close to each other.   
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 Levels of proteins secreted from single cells can exhibit a variability that reflects the 

stochastic nature of biology20 and, in fact, represents biological fluctuations. The SCBC 

 

 

Figure 5.6 Experimental and simulation results for extracting the experimental error 

contribution to the SCBC protein assays. (A) Representative histogram of signal measured from 

individual barcode stripes for assaying a 5 ng/ml solution of recombinant MIF protein, 

representing a Gaussian distribution with a coefficient of variation (CV) near 7%. (B) Monte-

Carlo simulated barcode intensity (corresponding to MIF) vs. cell location in three single-cell 

chambers. Yellow dots represent cell locations, and the brightness of the red stripes reflects the 

simulated signal level. The cell-location effect is minimized by averaging the signals from both 

barcodes. (C) Histogram from simulations of 5000 single-cell experiments. For this simulation, 

the diffusion equation was solved with a randomly located, continuously secreting cell. The 

histogram represents the averaged intensities over both barcodes, and includes the 

experimentally determined barcode variability. 
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experimental error must be compared against the measured variations for extracting the 

true macrophage fluctuations. One contribution to the experimental error arises from the 

variability of the flow-patterned antibody barcodes. We characterized that variability via 

protein assays executed within a complex biological environment (serum), and within the 

microchambers of an SCBC, but using cocktails spiked with known quantities of standard 

proteins. In both cases, we found a variability of < 10% 21 (reference 21 and Fig. 5.3), 

depending upon the protein. Averaging the two identical protein assays per microchamber 

lowers the variability within a microchamber by a factor of 2½. A second experimental 

error arises from the competition between protein capture by surface-bound antibody, and 

protein diffusion. When a cell is proximal to a barcode, that barcode may exhibit higher 

signal intensity than a more distant barcode. A Monte Carlo calculation allowed for an 

estimation of the total system error by simulating the location-dependent experimental 

variation. Using MIF as a representative protein for the simulation (it has a barcode 

variability of 7.3%; Fig 5.6A) the experimental error of the system is estimated to be 5.1% 

(Fig. 5.6B,C and Data Analysis Methods in Appendix A, Section 5.6.2). For the worst case 

of a 10% barcode variability, the total experimental error is estimated to be ~ 7% (Table 5.7 

and Fig. 5.7). Based upon these results, we can calculate the biological coefficient of 

variation ( biologicalCV ) from 2/1
biological

2
system

2
assay )( CVCVCV += , where assayCV  is the 

measured spread in secretion levels for a given protein across all measurements for a given 

number of cells. For IL-8, the biological CV was only ~twofold larger than the 

experimental CV, but for the other 7 detected proteins, the biological CV was 7–50× larger 

than the experimental CV (Table 5.7). Thus, the fluctuation extracted from our single-cell 

experiments reflects the cellular behaviors.  
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The individual protein assays were evaluated for cross-reactivity and calibrated using 

standard proteins (Fig. 5.3). Calibration curves were fitted by a four-parameter logistic 

model.22 The SCBC assay sensitivities are comparable to commercial ELISAs (e.g., a few 

measured limits-of-detection are MIF ~ 100 pg/ml, IL-8 ~ 50 pg/ml, IL-1β ~ 

20 pg/ml, and VEGF ~ 2.5 pg/ml), with each exhibiting a ~ 103 linear detection range. The 

SCBC barcode assay results can be translated into numbers of detected molecules using the 

molecular weight of the standard proteins and the microchamber volume (Fig. 5.3 and 

 
 

Figure 5.7 Simulated histograms of average intensity from multiple DNA barcode loctions. The 

signal intensities for 5000 single-cell data sets were obtained by solving a diffusion equation for 

a randomly located cell. For the barcode variability, the value of 10% was used. The blue curves 

are the Gaussian fitting of the histogram with sample mean and sample standard deviation from 

the simulation. 
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Table 5.4). This quantitative representation of the data is used for the calculations described 

below. However, the standard proteins may differ from the proteins secreted by the 

macrophages (for example, glycosylation patterns may vary). Such variations can translate 

into differences in molecular weight, as well as differences in assay sensitivity. 

 

Figure 5.8 Protein secretion heat maps for different colony sizes of LPS-stimulated 

macrophages. Each row represents one microchamber assay, and each column represents protein 

level, as measured in copy numbers of each protein. The zero-cell heat map is the background 

signal. Signals are decreased and amplified 10× for * and **, respectively. 
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The experimental results, presented as the number of cells per experiment, are shown in 

the heat maps of Fig. 5.8, and reveal the transition from single-cell characteristics to bulk 

behavior (see Fig. 5.4A for protein assay results from large numbers of cells). The 

experimental methods and results are further discussed in Appendix A: Supplementary 

Experimental Methods (SI.I). 

 

5.2.2 Theoretical Methods 
 

The Fluctuations in the Secretome. The calibrated experimental data can be 

organized into digital tables of twelve columns, each representing a different protein, with 

different tables representing different numbers of cells in the microchamber. For a given 

table, each row represents the copy numbers of the twelve proteins for a single cell or small 

cell colony. For a given table, if the number of measurements is large enough we can bin 

the data for each individual protein into a histogram, with each bin representing a defined 

range of measured levels (Fig. 5.9). With even more measurements one could generate 

joint distributions between two proteins, etc. However, we first confine our attention to the 

individual protein histograms because they provide a natural meeting place for experiment 

and theory. The theoretical prediction is made by seeking that distribution of copy numbers 

that is of maximal entropy, meaning that the distribution is as uniform as possible, subject 

to a given mean number of copies.23–26 As discussed in detail in Appendix B: 

Supplementary Theory Methods (SI.II), we use the distribution of maximal physical 

entropy. This means that at the very global maximum of the entropy, the probabilities of 

the different proteins are not equal. Rather, as in any multi-component system at thermal 

equilibrium, each protein will be present in proportion to its partition function,27 where the 
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partition function is the effective thermodynamic weight of a species at thermal equilibrium. 

We show below that in our system there is a network structure that imposes (at least) two 

overriding constraints that preclude the system from being in thermal equilibrium. 

 

The Theoretical Approach. The essence of our approach is to regard the system, a 

single cell (or a small colony), as not being in an equilibrium state because it is under the 

action of constraints. When the constraints are present the system is in that state of 

equilibrium that is possible under the constraints. This allows us to derive a quantitative 

version of the principle of Le Chatelier. Thereby we can quantitatively predict the response 

 

Figure 5.9 Fluctuations in the numbers of secreted IL-8 proteins for all single-cell experiments. 

The fit to the theoretical distribution is shown as the continuous curve. Even for one cell there 

can be deviations from the bell-shaped theoretical functional form in the higher tail of the 

histogram due to autocrine signaling. 
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of the system to a (small) perturbation. Early on, mathematical biologists expressed caution 

about the application of the Le Chatelier’s principle to biological systems.28 It is possible to 

directly use the measured experimental results to validate our point of view. The qualitative 

reasoning is straightforward and so we give it here. It is valid to apply the principle of Le 

Chatelier when the system is in a stable equilibrium. When is the system in a stable 

equilibrium? when under a small perturbation it returns to its equilibrium state. In 

Appendix B, we make a quantitative version of this statement. Here we simply state that if 

the observed fluctuations in protein copy number are about a stable state then we can apply 

the principle of Le Chatelier. The stability of the state is decided by the experimental 

measurements. Both the notion of stability and the response to perturbations, as quantified 

in the principle of Le Chatelier, require that the departure from equilibrium be small. 

Neither textbook equilibrium thermodynamics applied to a macroscopic system nor the 

extended theory used here to describe one or a few cells implies that under a ‘large’ 

perturbation it should be possible to displace a cell to a new stable state that is distinct from 

its unperturbed state. For a single cell or small cell colony the experiments reveal that cell–

cell perturbations are indeed small. For larger cell colonies the statistics are not secure 

enough to make a clear-cut statement. We have, however, numerical indications that the 

unperturbed state of the single cell is possibly unstable in the presence of many other cells. 

 

Theory of Fluctuations. We begin by considering a compartment containing a single 

cell secreting different proteins. For different compartments the experiment shows a 

possibly different number of secreted proteins of a given type. We denote the 

experimentally measured copy number of protein i in a given microchamber by . We Ni
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impose the constraints that the distribution for each protein is characterized by the mean 

number of its molecules. Then the distribution, P(Ni )  of copy number fluctuations of a 

protein i that is of maximal physical entropy (= the distribution at physical equilibrium 

subject to constraints) is derived in Appendix B, eq. S5.2. It is a bell-shaped function of Ni  

with a single maximum. 

In seeking the maximum of the entropy we require that the energy is conserved. This 

constraint is imposed by the method discussed in Appendix B. This method introduces 

parameters into the distribution. β is determined by the constraint of conservation of energy 

and, as usual, is related to the temperature T as , where k is Boltzmann’s constant. 

The are analogs of the chemical potentials as introduced in the thermodynamics of 

systems of more than one component. Here, however, we are dealing with many replicas of 

a single cell isolated within a microchamber. Even though we deal with just a single cell, 

the  will be shown in eq. 5.1 below to also play the role of potentials. This means, for 

example, that the mean copy number  of protein i increases when its potential  is 

increased. The mean number, , is the average computed over the 

distribution. In operational terms this is an average computed over the different 

microchamber assays of protein i. We take it that the copy number distribution is 

normalized, meaning that P(Nii∑ ) = 1. 

We next discuss the effect of perturbations on the distribution for a single cell in the 

compartment. The regime of small perturbations is one in which the distribution, although 

perhaps distorted from a simple bell-shaped curve, still exhibits only a single maximum. 

β = 1 kT

µi 's

µi 's

Ni µi

Ni = NiP Ni( )i∑
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The signature of large perturbations is that secondary maxima appear. When these become 

dominant, a new state of the cell is prevailing. 

To theoretically characterize the response of the cellular secretion to a perturbation we 

compute first the change in the distribution for the special case in which a perturbation 

changes the potential of protein i from , where is a small increment. We 

show (eq. S5.2 in Appendix B, Section 5.7.3) that, to first order in the change of the 

potential, the distribution changes by . The result for  

has two immediate implications. One is that a perturbation will distort the shape of the 

distribution of the copy numbers of a given protein. Specifically, the change is proportional 

to the unperturbed distribution but its magnitude is weighted by the factor  so as 

to favor higher values of protein numbers. Thus, it is the high-end tail of the distribution 

that is most strongly influenced by the perturbation (see Fig. 5.9, for example).  

The other immediate implication of the change in the distribution is that the mean 

values will change. Specifically the updated mean value of the copy number of protein i, 

when we change from , is . A technical 

point is that because the distribution needs to be normalized we must have . 

Using the result above, that the change  in the distribution is proportional to the 

unperturbed distribution and the normalization, we arrive at the explicit result for the 

change in the mean copy number under a small disturbance. 

δ Ni = NiδP Ni( )i∑ = βδµi Ni Ni − Ni( )P Ni( )i∑ = βδµi Ni − Ni( )2  (5.1) 

This equality states that because the variance is positive, a change in the mean copy 

number of protein i when its own potential is changed from  is always in the 

µi  to µi +δµi δµi

δP Ni( )= β Ni − Ni( )P Ni( )δµi δP

Ni − Ni( )

µi  to µi +δµi Ni + δ Ni = Ni P Ni( )+ δP Ni( ) i∑

δP Ni( )= 0i∑

δP Ni( )

µi  to µi +δµi
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same direction (positive or negative) as  itself. It is in this sense that we refer to as 

the potential of protein i.  

The key point that carries into the general case, is that, to linear order in the 

perturbation, the change in the mean number of proteins due to a perturbation can be 

computed as an average over the unperturbed distribution of copy numbers. The change in 

the mean is the variance of the distribution of fluctuations. Therefore, the lesser the 

fluctuations (i.e., the narrower the histogram), the more resilient to change is the 

distribution. As an example, IL-8 (Fig. 5.9) will be shown below to be a very strongly 

coupled protein. IL-8 also has a particularly large variance as compared to the other 

proteins. Therefore there is some perturbation via autocrine signaling, as seen in the hump 

in the higher tail of the histogram. 

 

A Quantitative Le Chatelier Equation. With good measurement statistics one can 

examine the histogram for a joint distribution of two proteins and verify that pairs of 

proteins are correlated. Therefore the mean value (and other averages) of a protein i will 

change when protein j is perturbed. In the linear regime the result (see Appendix B, section 

5.7.4) is 

 (5.2) 

where the covariance is computed over the unperturbed distribution. eq. 5.2 is valid in the 

linear regime of small perturbations, and indicates that the contributions of different 

perturbations add up. The covariance matrix Σ , whose elements are 

δµi µi  

δ Ni = β Ni − Ni( ) N j − N j( )



j∑ δµ j
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Σij = N j − N j( ) Ni − Ni( ), is what is called in matrix algebra a positive matrix.29 The 

implications of positivity are explored in Section 5.7.5. 

We prove in Section 5.7.4 that eq. 5.2 is a quantitative statement of the principle of Le 

Chatelier in the sense that a response to a perturbation changes the system in the direction 

of restoring a stable equilibrium. This is the analogue of the observation that when we add 

energy (i.e., heat the system) the temperature goes up (rather than down). By equilibrium 

we mean a state of maximal entropy subject to the current value of all the constraints 

operating on the system. A system can therefore be maintained at equilibrium by imposing 

constraints such as keeping a gas under higher pressure at a fraction of the available 

volume of a cylinder. When these constraints are changed the system can move to a new 

equilibrium. 

The covariance matrix is used in statistics as input in such methods of data analysis as 

principal component analysis.30, 31 We emphasize that for us the covariance matrix is 

derived by physical considerations leading to eq. 5.2. We can thereby state that  is 

quantitatively the change in the number of copies of protein i when protein j is perturbed. 

Note that while the covariance is a positive matrix, individual off-diagonal elements can be 

negative, signifying inhibition. The covariance matrix in digital form is provided in 

Appendix C (Table 5.8). 

To summarize, the result for the distribution of protein copy numbers for the strongly 

interacting protein IL-8 (Fig. 5.9) has just one maximum. The noticeable deviations in the 

tail of the distribution are likely due to autocrine signaling, because the correlation of IL-8 

with itself is only comparable in magnitude to the correlation of MIF with itself.  Those 

two correlations are larger than any other variance or covariance. As discussed below, IL-8 

Σij
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is also strongly correlated with other proteins. For n ≥ 3 cells in the microchamber, there is 

numerical evidence for a second maximum in the distribution of IL-8 fluctuations. For 

other proteins, six or more cells per chamber are required before a second maximum is 

resolved.   

We can draw two conclusions from the fit of Fig. 5.9, between observed fluctuations 

and the theoretical result. First, the experimental distribution has but one maximum, and so 

the state is stable. Second, the theory accounts for the shape of the experimental 

distribution. This implies that we have correctly identified the important constraints on the 

system. Therefore we have Eq. 5.1 for the change of the distribution and eq. 5.2 as the 

quantitative statement of the Le Chatelier’s theorem. If there are additional constraints one 

can still derive a quantitative Le Chatelier’s theorem, but there will be additional terms 

beyond those shown explicitly in eq. 5.2. We reiterate that eq. 5.2 is the covariance 

computed from the experiments for an unperturbed cell. In our work below we use eq. 5.2 

to predict the effect of perturbation (see Fig. 5.14 in particular).  

 

5.3 Results and Discussion 

 
5.3.1 Computing the covariance matrix  
 

The single-cell data (the heat map of Fig. 5.8) can be regarded as a rectangular matrix 

X where each row is a separate measurement and each column contains the copy number of 

a particular protein. For our convenience we mean center each column. When the number 

of measurements (= number of rows of X) is not small (and is ≥ than the number of 

columns) the covariance matrix can be immediately computed as Σij = Xki Xkjk = 1
K∑ K  
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where k runs over all measurements, k =1,2,..,K. By construction of the matrix X, the 

matrix element  is the number recorded in the kth measurement for protein i minus the 

mean number  for that protein. We divide XT X  by the number, K, of measurements so 

that the covariance is the mean value. The covariance is a product of the measured numbers, 

so the coefficient of variation of the covariance is, for small variations, twice the coefficient 

of variation of the measurements. An upper estimate, see Table 5.7 and Fig. 5.7, is 14% 

when the covariance is computed from the fluorescence intensities. The conversion from 

the fluorescence intensity to the number of molecules does not change the coefficient of 

variation when we are in the linear regime of the calibration curve (see Fig. 5.3). However 

at very low or high intensities the calibration curve is non-linear, so that small changes in 

fluorescence intensity are amplified to larger differences in the number of molecules, and 

thus large values of the variance. Out of K = 129 single-cell experiments, we therefore 

eliminated four outliers. These corresponded to one instance each for which the 

fluorescence levels of TNF-α, IL-1β, MIF, or IL-6 were very high. We thus used K = 125 

values to compute the covariance matrix. The elimination of these four outliers brings the 

error of reading the number of molecules to be more comparable to the error in reading the 

fluorescence intensity. 

 

5.3.2 The network  
 

We analyze the covariance matrix in two stages. The first stage yields a quick (but 

correct and reliable) ‘global’ summary of the network, meaning which protein is coupled 

with which other proteins. There is finer structure, discussed below, that is not resolved in 

this first stage. To obtain the global network we begin by noting that the covariance matrix 

Xki

Ni
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is symmetrical, so that protein i is correlated with protein j just as much as protein j is 

correlated with protein i, Σij = Σ ji . This means that although both positive and inhibitory 

couplings can be extracted from the network, the direction of those couplings (i.e., protein i 

inhibits protein j, rather than vice-versa) is not resolved. The results for the overall network 

are shown in Fig. 5.10. Panel A is the raw data for plotting the network and panel B is the 

network itself. The protein most strongly coupled to all others is MIF, and it is primarily 

anti-correlated with the other proteins. Next in strength of coupling is IL-8. Note that the 

symmetry between any two proteins is limited; proteins 1 and 2 may be coupled to each 

 
 
 Figure 5.10 The summary network derived from the information theory treatment of the data. 

(A) It is these interdependencies, as revealed by the columns of the covariance matrix, that 

provide the prediction of the connectivity in the network (part B). Shown are the columns for the 

two most connected proteins, MIF and IL-8. The entries are the covariances of the indicated 

protein with the other proteins listed in the abscissa. Self-correlations are not shown. (B) The 

protein correlation network hypothesis. The thickness of an arrow is an indication of correlation 

strength. Arrows indicate a positive correlation; bars indicate inhibition. 
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other, but protein 1 may be coupled to protein 3, while proteins 2 and 3 are uncorrelated. 

Mathematically this is possible because the total coupling strength of protein i, sum of Σij  

over all j, can be quite different from the total coupling strength of protein j that is given as 

the sum of Σ ji  over all possible proteins i. 

The covariance matrix shows the quantitative extent to which the fluctuations in any 

two proteins i and j are covarying. As discussed, about 14% of the value is due to noise. In 

 

 

 

Figure 5.11 Protein–protein interactions via the quantitative Le Chatelier’s theorem. Shown is 

the covariance matrix as a heat map for the single cell, n = 1 data (left) and the resolution of the 

matrix into the two most important tiers (right). Note the strong correlation of MIF and of IL-8 

with the other proteins. Red implies inhibition and blue implies activation. The range is [-4e+11, 

4e+11] for the covariance matrix shown in the left panel. This range is chosen to attenuate the 

high reading of the self-correlations in the covariance matrix. This heat map also provides a 

graphic representation of the protein interaction network. The ranges shown on the right-hand 

side are, respectively top [-1.5e12, 1.5e12] and bottom [-2.9e10, 2.9e10]. 
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the network we want to compare the relative importance of the covariance of proteins i and 

j to the covariance of proteins l and m. We take it that the covariance of proteins l and m 

should not be regarded as comparable to the covariance of i and j when the measured 

covariance of l and m is below the uncertainty due to noise of the covariance of i and j. We 

construct a graphical global summary of the interaction network by retaining only those 

proteins that are covarying with one or more other proteins above the noise level of the 

highest covarying pair of proteins. Below we discuss the components of the covariance 

matrix. Thereby we will have a measure of uncertainty for the entire matrix. It turns out 

that the criterion we use above is consistent with this measure. 

The largest covariance, 4×1011 is between MIF and IL-8. This sets a boundary of 

6×1010 on the covariances of pairs that we show as connected in the network. The large and 

positive magnitude of the covariance of MIF and IL-8 is shown as a double-headed arrow. 

The arrow is double headed to denote the joint activation of one by the other. In the 

diagram, inhibition is indicated, as usual, by a bar at the end of the connector. The dashed 

line correlations of MIF with IFN-γ are of magnitude 2×1010, and so may be corrupted by 

noise. The dashed line correlations between MIF and both MCP-1 and IL-1β are even 

weaker (about 1010). The more refined analysis presented in Fig. 5.11 shows, however, that 

these two correlations are likely real and above the noise level. 

Macrophages are an important source of IL-8 and MIF,32–34 and IL-8 is secreted by the 

macrophages without LPS stimulation, while MIF is secreted upon LPS stimulation (Fig. 

5.4A). Our derived network model indicates the MIF is inhibited by IL-8, and MIF, in turn, 

inhibits three other proteins, including TNF-α, while it promotes the production of IL-1β. 

These predictions are consistent with the time-dependent measurements of secreted 
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proteins (Fig. 5.4B). From those measurements, we find that the levels of three proteins 

(MIF, TNF-α, and IL-1β) that are secreted upon LPS stimulation, exhibit fluctuations over 

time. The MIF and TNF-α temporal fluctuations are anti-correlated, consistent with the 

network hypothesis. A detailed elucidation of the underlying mechanism for these 

dynamics will require additional experiments. However, it is encouraging that a network 

hypothesis derived from single-time-point, single-cell data does provide consistent insight 

into the dynamical responses of the macrophages to stimulation.  

 

5.3.3 The composite networks  
 

In the second stage in our analysis of the covariance matrix we aim to show a more 

resolved structure and thereby note features that are glossed over in the global network of 

Fig. 5.10B. We will show that there are several independent networks operating together to 

globally represent Fig. 5.10B. The detailed analysis also provides a more robust error 

estimate. To resolve independent inherent structures within the covariance matrix we 

consider what is known in matrix algebra as the spectral representation (See Section 5.7.6 

and 5.7.7 for more details). Technically this is a ranking of the eigenvectors as also carried 

out in principal component analysis. We suggest, however, that for our system specifically 

this ranking allows an examination of tiers in the cell–cell signaling. The tiers are 

independent, meaning that they govern independent fluctuations. The proteins that are 

members of a given tier respond collectively to a perturbation. 

The spectral theorem 29 allows us to rank the contributions according to the decreasing 

magnitude of the eigenvalues. At the bottom are the smallest eigenvalues and these are 

attributed to experimental noise rather than to real biological information. For the single 
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cell in the compartment we find, as expected for the linear regime, that the dominant 

eigenvectors are each localized around a particular protein. As shown in Fig. 5.11, the two 

largest are localized on MIF and IL-8. The leading eigenvalue = tier 1, is only about 30% 

bigger than the second one, m = 2. The third eigenvalue (not shown) is smaller by almost 

two orders of magnitude. Fig. 5.12 is a plot on a logarithmic scale of all non-zero 

eigenvalues. There are only two eigenvectors that, judging by the value of their 

corresponding eigenvalues, are definitely above the noise. 

In drawing Fig. 5.10B we could not state definitely that the correlations of MIF with 

IFN-γ, MCP-1, and IL-1β, are above the noise level. The more refined spectral anlysis 

 

 

Figure 5.12 The dependence of the dominant eigenvalues of the covariance matrix on the 

number of cells in the sample. The result for n = 0, the backgound, is included to show the 

influence of the noise. The dashed lines, the fifth and higher eigenvalues are more corrupted by 

noise. 
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shows that all these correlations are clearly evident in the second tier (Fig. 5.11) and so are 

secure. The Fig. 5.11 results are the fluctuations measured for single-cell experiments. (See 

Fig. 5.13 for similar results but for n = 3 cells per microchamber).  

 

5.3.4 The number-based network  
 

The network presented in Figs. 5.10 and 5.11 is based upon experimental 

measurements in which raw fluorescence intensities are converted into numbers of 

molecules. We do this conversion because it is the numbers of molecules that are secreted 

 

Figure 5.13  Heat map of the covariance matrix (left) and of the contributions to the first two 

tiers of the network (right) for measurements on chambers containing three cells. Similar to the 

single-cell case (Fig. 5.11), the entries in the tiers are scaled by the size of the eigenvalues. See 

the spectral representation of the covariance matrix, Eq. S5.11. The plot at left is the covariance 

matrix computed from the observed fluctuations in the hree-cell data. The color code is -8e+10 

(red) to 0 (white) to +8e+10 (blue). The range is fixed so as to attenuate the effect of the self 

terms in the covariance matrix. For tier 1 and tier 2, the ranges are [-4.3e-12, 4.3e+12] and [-

7e+10,7e+10], respectively. Note that when the numbers of cells per chamber increases, anti-

correlations can get washed out. 
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by the cells, or to which the cells respond, that ultimately reflects the true biology. 

However, this conversion seemingly introduces an additional source of noise, especially 

when the measured fluorescence intensity is away from the linear regime of the calibration 

curves. However, this conversion yields an accurate reflection of the true measurements, 

and the accruing benefit is worthwhile. Specifically, the number of secreted proteins is 

independent of the very complicated experimental response function that depends upon the 

fluorescence detection methods, the various capture and detection antibodies used, and the 

fluorescence vs. concentration profiles that characterize calibration assays. We are thus 

able to apply the fundamental theory to quantitative molecular measurements, and so the 

resultant network is a more secure representation of the true cell biology, even if the 

accompanying experimental uncertainties are large relative to what would be estimated 

from pure fluorescence measurements.  

 

Antibody Perturbations. We performed an inter-cellular signaling perturbation study 

by adding neutralizing antibodies to eliminate specific secreted cytokines. For these 

experiments, four groups of microchambers within each SCBC chip were operated 

independently. Three neutralizing antibodies (anti-VEGF, anti-IL-8, and anti-TNF-α) were 

added to the cells, with one antibody per microchamber group. A control experiment was 

performed without any neutralizing antibody. As shown in Fig. 5.14, the removal of IL-8 

markedly increased the production of MIF, slightly increased IL-1β, and slightly decreased 

TNF-α. The results are in agreement with the network hypothesis, Fig. 5.10B.  

Using the theorem of Le Chatelier we quantitatively predict the effect of the antibody 

perturbations using eq. 5.2. Here, the input for the prediction is the covariance matrix for 
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the unperturbed cells. To compute the predicted mean number of protein i after an antibody 

for protein j is applied we need to know the change in chemical potential of protein j. We 

take it that an antibody for a protein lowers its chemical potential. We determine the 

magnitude of that reduction by requiring that the decrease in the copy number of the 

directly perturbed protein is reproduced. Additional details are provided in section 5.7.9. 

The quality of the prediction in the perturbation experiments of IL-8 and VEGF is excellent, 

as shown in Fig. 5.14. The prediction of the results for the perturbation by anti-TNF-α is 

not in accord, likely because the change in the mean copy number of the proteins is smaller 

by about an order of magnitude, and so is close to the noise level.  

 

 

Figure 5.14 Perturbation of protein networks using neutralizing antibodies. The measured 

change in the mean number of eight proteins is compared against the predicted change, as 

computed from the fluctuations observed in the unperturbed single-cell data.   
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5.4 Conclusions 

 
The multiplexed measurements of secreted proteins by single cells and defined, few- 

cell colonies provide a unique opportunity to capture the fluctuations of individual cells. An 

information theoretic, maximal entropy analysis can be applied to reproduce the observed 

fluctuations in the levels of the different assayed proteins. The theoretical analysis can also 

account for why for some proteins exhibit broad fluctuations, while others exhibit narrow 

fluctuations. The experimental approach permits observations of the covariance in the 

fluctuations of different proteins, and how those fluctuations evolve as a single cell is 

perturbed by the presence of 1, 2, 3, etc., other cells. Again, with the information theory, 

these covariances can be analyzed to extract hypotheses about the network of interacting 

proteins. Measuring the role of antibodies for specific proteins provides a test of that 

network hypothesis, and demonstrates that the theory is able to quantitatively predict the 

results of the molecular perturbation experiments using only data obtained for the 

unperturbed cells. This demonstration of the Le Chatelier’s principle appears to be general, 

and we are currently exploring how it can be applied towards understanding the role of 

other perturbations (such as hypoxia, genetic modifications, etc.). The long-term goal is to 

extend this approach towards understanding the various protein-signaling networks that 

operate within complex microenvironments, such as tumors.  
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5.6 Appendix A: Supplementary Experimental Methods (SI.I) 

 
5.6.1 Experimental procedure 
 

Microchip Fabrication. The SCBCs were assembled from a DNA barcode microarray 

glass slide and a PDMS slab containing a microfluidic circuit.14, 35 The DNA barcode array 

was created with microchannel-guided flow patterning technique.14 Each barcode was 
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comprised of thirteen stripes of uniquely designed ssDNA molecules. The PDMS 

microfluidic chip was fabricated using a two-layer soft lithography approach.13 The control 

layer was molded from a SU8 2010 negative photoresist (~ 20 µm in thickness) silicon 

master using a mixture of GE RTV 615 PDMS prepolymer part A and part B (5:1). The 

flow layer was fabricated by spin-casting the pre-polymer of GE RTV 615 PDMS part A 

and part B (20:1) onto a SPR 220 positive photoresist master at ~ 2000 rpm for 1 min. The 

SPR 220 mold was ~ 18 µm in height after rounding via thermal treatment. The control 

layer PDMS chip was then carefully aligned and placed onto the flow layer, which was still 

situated on its silicon master mold, and an additional 60 min thermal treatment at 80°C was 

performed to enable bonding. Afterward, this two-layer PDMS chip was cut off and access 

holes drilled. In order to improve the biocompatibility of PDMS, we performed a solvent 

extraction step, which removes uncrosslinked oligomers, solvent, and residues of the curing 

agent through serial extractions/washes of PDMS with several solvents.19, 36 We noticed 

that this step significantly improves the biocompatibility and the reproducible protein 

detection. Finally, the microfluidic-containing PDMS slab was thermally bonded onto the 

barcode-patterned glass slide to give a fully assembled microchip.  

 

Barcode Arrays. The barcode array initially consists of 13 uniquely designed DNA 

strands labeled in order as A through M. Prior to loading cells, a cocktail containing all 

capture antibodies conjugated to different complementary DNA strands (A’–L’) is flowed 

through the chambers, thus transforming, via DNA-hybridization, the DNA barcode into an 

antibody array. These dozen proteins that comprised the panel used here were encoded by 

the DNA strands A through L, respectively. Calibration and cross reactivity curves for each 
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protein assay are in Fig. 5.3: The DNA oligomer sequences and the antibody pairs used are 

listed in Tables 5.1 and 5.2.   

 

Culture and Stimulation of THP-1 Cells. We cultured human monocyte THP-1 cells 

(clone TIB 202) in RPMI-1640 (ATCC) medium supplemented with 10% fetal bovine 

serum and 10 μM 2-mercaptoethanol. Cells grown close to the maximum density (0.8×106 

cells/mL) were chosen for the experiment. Cells were first treated with 100 ng/mL 

phorbol 12-myristate 13-acetate (PMA) for 12 h during which a characteristic 

morphological change was noticed as an indication of the induction to the macrophages 

(Fig. 5.15). Cells were washed with fresh media and resuspended in media with PMA (100 

ng/mL) and lipopolysaccharide (LPS, 200 ng/mL) at 0.5×106 cells/mL for the further 

differentiation and the TLR-4 activation.  

 
 

 
 

Figure 5.15 Morphology change of THP-1 cells upon PMA/LPS activation for 24 h. (A) 

monocytic THP-1 cells without induction, (B) macrophage-like THP-1 cells after PMA/LPS 

treatment. The morphological change from non-adherent to adherent phenotypes was observed 

upon PMA/LPS treatment. 

 

http://www.alomone.com/system/UpLoadFiles/DGallery/Docs/P-800.pdf
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On-chip Secretion Profiling. Prior to loading cells on the chip, the DNA barcode array 

was transformed into an antibody microarray through the following steps. First, 1% bovine 

serum albumin (BSA) in phosphate buffered saline (PBS) was flowed and dead-end filled 

into the chip to block non-specific binding. Second, a 200 µl cocktail containing all 12 

DNA-antibody conjugates at 1.25 µg/mL in 1% BSA/PBS buffer was flowed through all 

microfluidic channels for a period of 1 h. Then, 100 µl of fresh buffer was flowed into the 

device to replace DNA conjugated primary antibody solutions. The chip was then ready for 

use. Cells stimulated with PMA/LPS were loaded into the SCBC chip within 10 min in 

order to minimize pre-loading secretion. Then, the pneumatic valves were pressed down by 

applying 15–20 psi constant pressure to divide 80 microfluidic channels into 960 isolated 

microchammbers. Next, the cells in every microchamber were imaged under a Nikon 

LV100 microscope and their numbers were counted. Afterwards the chip was placed in a 

cell incubator (~ 37°C and 5% CO2) for 24 h to perform on chip secretion. The chip was 

removed from the incubator and a 200 µl cocktail containing all detection antibodies (each 

at 0.5 µg/mL concentration) tagged with biotin was flowed through the microchannels by 

releasing the valves. Then, 200 µl of the fluorescent probe solution (1 µg/ml Cy5-labeled 

streptavidin and 25 nM Cy3-labeled M’ ssDNA) was flowed through to complete the 

immuno-sandwich assay. Finally, the PDMS slab was peeled off and the microarray slide 

was rinsed with 1×PBS, 0.5×PBS, and DI water twice, sequentially, and spin-dried.   

 

Bulk Secretion Profiling. Bulk measurements on the same panel of secreted proteins 

as were assessed within the SCBC microchambers were also carried out for the THP-1 cells 

with no stimulation, PMA stimulation, and PMA+LPS stimulation. Cells were cultured at 
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0.3×106 cells/mL, a comparable density to a single cell in a chamber. The media were 

collected after 24 h and the secreted proteins were detected as described below. For the 

PMA+LPS stimulation condition, the media were collected at multiple time points (2, 4, 6, 

8, and 10 h) for the time-dependent analysis. For the bulk test, a SCBC chip was utilized 

without using valves for the microchannel to microchamber conversion. The same 

conditions as for the on-chip secretion profiling were applied except for the cell incubation 

step. Instead, the collected media was introduced to the channel sets and incubated for 3 h 

in the incubator. 

 

Quantification and Statistics. All the barcode array slides used for quantification were 

scanned using an Axon Genepix 4400A two-color laser microarray scanner at the same 

instrumental settings—50% and 15% for the laser power of 635 nm and 532 nm, 

respectively. Optical gains were 500 and 450 for 635 nm and 532 nm fluorescence signals, 

respectively. The brightness and contrast were set at 90 and 93. The averaged fluorescence 

intensities for all barcodes in each chamber were obtained and matched to the cell number 

by custom-developed MATLAB (The MathWorks, Natick, MA) codes. Heat maps were 

generated using Cluster 3.0 and Java treeview (http://rana.lbl.gov/EisenSoftware.htm).  

 

5.6.2 Experimental data analysis methods 
 

Conversion to the Number of Molecules. The collected raw data is based on the 

fluorescence. In order to convert the fluorescence to the number of protein molecules, we 

used the calibration curves (Fig. 5.3). We used the four-parameter logistic model which is 

http://rana.lbl.gov/EisenSoftware.htm
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commonly used for fitting an ELISA calibration curve. The fitting parameters can be found 

in Table 5.5. 

  

Signal-to-Noise Calculations. Since the signal range highly depends on the activities 

of the antibodies as well as the cell biology, it is necessary to decide if the signal is real and 

reliable. Certain assayed proteins were identified as positively detected from single cells 

based upon signal-to-noise ratio (S/N), which was measured as follows: For each 

microchamber, the averaged fluorescence from the two barcode stripes used to capture and 

detect a given protein and  the averaged fluorescence from the barcode stripes designed to 

capture and detect IL-2 were obtained. The ratio of the averaged values over all single-cell 

experiments (specific protein to IL-2) yields a S/N value. An S/N of 4 was utilized as a 

minimum for positive detection. Eight secreted proteins were thus identified from the 

single-cell measurements.  Those proteins were (with S/N included in the parenthesis after 

the protein name): MCP-1 (4.65), MIF (1381.13), IFN-γ (4.33), VEGF (77.32), IL-

1β (94.70), IL-8 (2622.40), MMP9 (119.50), and TNF-α (410.74). 

 

Analysis of Experimental and Biological Variation from SCBC-Based Single Cell 

Measurement. One of the major characteristics of SCBC analysis is the heterogeneous 

cellular behavior at the single-cell level. The experimental variation of the SCBC platform 

which reflects the system error as well as the biological variation due to the cellular 

heterogeneity is contributing to the fluctuation of the total signal. Thus, we need to check 

whether the heterogeneous signal responses are from the cells or the device itself.  
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The experimental error mainly includes the variation from non-uniform DNA barcode 

patterns and the variation due to the randomly distributed cell location in the chamber. The 

former can be estimated by the histogram of the fluorescence intensity from the calibration 

experiment with recombinant proteins. Since the recombinant protein has fixed 

concentration over the entire channel, it represents a uniform protein level without any 

heterogeneity or location dependence. As a result, the distribution of the fluorescence 

intensity of a specific recombinant reflects the detection profile of the DNA barcode. 

Fig. 5.6A shows a representative histogram of signal derived from recombinant MIF 

protein at 5 ng/ml. The histogram shows a nice Gaussian distribution with a coefficient of 

variation (CV) around 7%. In the calibration experiment, basically the intensities of all the 

recombinant proteins at detectable concentrations follow a Gaussian distribution with CVs 

typically lower than 10%. 

The cell location is another important factor for system error. Even though the chamber 

size is small, it is still big for a single cell. So the protein signal is dependent on diffusion 

and that is why the cell location can be a source of the variation. In order to minimize this 

effect, we utilized two sets of barcodes in a chamber and used the averaged signal intensity 

from two barcodes as the final signal value. However, the barcode close to the cell will 

undergo a higher local protein concentration than its counterpart and the different 

intensities of two sets of barcodes are amplified during the long incubation time. The 

diffusion process will lead the system close to the equilibrium but the cell that keeps 

secreting proteins with different kinetics makes it difficult for the chamber to reach its full 

equilibrium. In that sense, the randomly located cells can add an extra uncertainty to the 

SCBC system.  
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Because it is difficult to isolate the system error (especially for the cell location effect) 

from the heterogeneous cell response experimentally, we performed a Monte Carlo 

simulation by R (R Foundation for Statistical Computing, version 2.10.1). First of all, we 

investigated MIF as a representative case. We assumed one chamber had two sets of 13 

barcodes such that each of them has MIF antibodies. By randomly positioning a cell with a 

fixed protein secretion rate and getting the protein concentration at specific barcode 

positions, we can find out what variation depends purely on the cell location and barcode 

non-uniformity. The total amount of secreted MIF during 24 h was estimated based on our 

experimental result. The secretion rate was 4.84 pg/mL per min from the SCBC (used for 

the simulation) and 11 pg/mL per min from the bulk condition. The corresponding 

secretion rate of a single cell, back-calculated based on the chamber and cell size (10 µm3), 

was 0.065 nM/min. Values of parameters used in simulation can be found in Table 5.6. 

5000 data sets for the protein concentration distributions from randomly located single cells 

were generated by solving a diffusion equation with a custom made MATLAB code and 

the results were analyzed with R. The parameters used in the simulation are exactly the 

same as our experimental environment. The chamber is 2000 µm in length and 100 µm in 

width with two sets of DNA barcodes M-A and A-M from left to right. Each barcode is 20 

µm in width and 50 µm in pitch (30 µm gap between barcodes). The detection variation of 

the MIF protein due to the DNA uniformity obtained from the histogram of the calibration 

data set was incorporated to the analysis. Fig. 5.2C shows the histogram of the average 

fluorescence intensity from DNA sequence E (corresponding to MIF in the actual 

experiment) for 5000 single-cell cases. For the barcode variability, the actual value of 7.3% 
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was used. The final system error was 5.1% which is much smaller than the assay error from 

the experimental data sets, 55.2 %. 

In order to consider the worst case, we used a barcode variability of 10% for the rest of 

the analysis. If the cell location effect is significant, we are supposed to see different errors 

on different barcode positions. Fig. 5.7 illustrates the histograms of average intensities from 

multiple barcode locations. The blue curves are line profiles of Gaussian distribution fitted 

with the mean and the standard deviation obtained from the corresponding simulation. The 

nice fitting between the Gaussian curves and the histogram indicates that the average 

intensity per chamber follows a Gaussian distribution with a predictable mean and CV. The 

CVs from this simulation represent the distribution of our measurements for single-cell 

chambers without considering the cellular heterogeneity, i.e., the system error. The 

experimental CVs for different barcode locations based on the system error were quite 

similar to one another (~ 7%).    

We can define CVsystem as the system error estimated by the simulation. We can also 

calculate the assay error from our experimental data set such that CVassay refers to the total 

CV of our experimental data. Consequently, the biological variation for a single-cell 

experiment can be quantitatively estimated by the formula below: 

2/1
biological

2
system

2
assay )( CVCVCV += . 

An estimation of biological variations of proteins for different barcode locations are 

shown in Table 5.7. It can be seen that the biological variation is dominant in the total error 

of the assay. This analysis verifies that the signal fluctuation that we can see from the 

single-cell experiment is a better representation for the single-cell heterogeneity than the 

systemic error from our platform. 
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5.7 Appendix B: Supplementary Theory Methods (SI.II) 

 
5.7.1 Introduction to theoretical supplementary methods 
 

We show how to characterize protein–protein interactions. Specifically we show that 

the different tiers of a signaling network can be quantitatively determined from the 

measured fluctuations in the concentrations of signaling proteins, and that the measured 

fluctuations in the concentrations of signaling proteins for the unperturbed cell can be used 

to predict the effect of introducing perturbations such as neutralizing antibodies. The 

approach is developed from an information theoretic perspective and it is related to the 

specification of the direction of change when a system responds to a perturbation, known as 

the principle of Le Chatelier. The corresponding result here is that we predict the sequence 

of tiers in the network (see Fig. 5.10). In addition we specify which signaling proteins are 

at a given tier of the network and their mutual influence, including inhibition (see Fig. 5.11). 

Experimental measurements of the fluctuation of concentrations in samples with nanoliter 

volume containing n cells, n = 0,1,2,..(see Fig. 5.12 below) are used to validate the 

signaling protein network. Finally we use the protein-protein interaction as determined for 

the unperturbed cell to quantitatively predict (Fig. 5.14) the effect of perturbations. 

The approach we propose provides an analogue and an extension of the statement that 

heat is transferred from a warmer to a colder body. We can understand this statement as a 

statement about the direction of a process between two equilibrium states, meaning that it is 

a static principle. We can also think of it as a statement about dynamics, meaning that it 

specifies the rate of change. We will here develop the formalism for the static interpretation. 
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The explicit introduction of time is possible and we have the required formalism at hand, 

but it requires a more elaborate theoretical foundation and so will be given elsewhere. 

 

5.7.2 The ensemble: A basis for making predictions 
 

The system we consider is many independent replicas of a compartment containing a 

single cell in a nutrient solution at thermal equilibrium. Because the system is not large, 

different replicas of it can differ in the number, iN , of secreted proteins of kind i. We seek 

to represent these fluctuations by taking the different replicas as different samples from an 

ensemble of single-cell compartments where the mean number iN  of proteins of kind i 

over the ensemble is given. Another given quantity is energy (and volume, which we do not 

indicate explicitly). We now seek the most probable distribution of protein numbers in 

different compartments. The solution is well known because if many compartments are 

measured then the required distribution is the one whose entropy is maximal. In textbooks 

of statistical mechanics this search for the most probable distribution is sometime called the 

Boltzmann approach. It is possible to show 37 that this approach does not require the system 

to be macroscopic in size. It is sufficient if we measure enough replicas so that the 

distribution of proteins does not significantly change as we add more measurements. If 

each replica is macroscopic, the fluctuations will be small and rare. Repeated 

measurements will give the same results. If each replica is small we can observe the 

fluctuations, which is the experiment described in the main text. 

The key point is that even if the fluctuations are not small it is possible to make 

predictions.  We discuss three types of predictions in the paper, with more details given in 

this section. We predict the distribution of fluctuations, we predict the tiers in the network, 
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and, in particular and as shown in Fig. 5.14 of the main text, we predict the response of a 

system to a perturbation. For these first and last predictions, we compare directly with 

experimental results. We emphasize that the prediction is made strictly independently of 

the experiment to which it is compared.  

The probability of a system in a particular composition can be shown to be given by 

( ) ( ){ }1 2, ,.. exp i iiP N N N Eβ µ= − Ξ∑ .
 (S5.1) 

This straightforward result is perhaps misleading in its simplicity. It is most directly 

derived by the method of Lagrange undetermined multipliers. The numerical value of these 

multipliers is determined at the final stage by imposing the condition that the distribution 

(Eq. S5.1) reproduces the given values of the means. There are as many multipliers as 

conditions. 

β is the Lagrange multiplier that is determined by the mean value of the energy and, as 

usual, is related to the temperature T as 1 kTβ = , where k is Boltzmann’s constant. The 

'siµ  are the chemical potentials as introduced in the thermodynamics of systems of more 

than one component.27, 38 The Lagrange multipliers that correspond to the given (mean) 

number of species i are known as the Planck potentials and denoted as iα . It is often more 

convenient to work with ,i i iµ α β µ= . If our system were macroscopic in size we would 

call iµ  ‘the chemical potential of protein i’. For convenience we retain the designation 

‘potential’ because, as we shall show, iµ  retains essential properties of the chemical 

potential even when fluctuations are finite.  Ξ  is a function of all the Lagrange multipliers 

and its role is to insure that the sum of the probability over all possible compositions yields 

one.  
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There are at least two points where important details are not revealed by the notation 

used in eq. S5.1. Both are relevant in what follows. First is the condition that the numerical 

values of the chemical potentials are determined by the given mean numbers, the siN , of 

the proteins. Strictly speaking, we should write the chemical potentials as functions of the 

siN . The other point arises when we want to treat the actual numbers siN  of the different 

proteins as continuous variables. This is needed, for example, to compute averages, 

normalize the distribution (eq. S5.1), etc. The integration for each protein is over !dN N  

where N!, the factorial of N, arises to account for the Gibb’s paradox. Therefore, as a 

function of the continuous variable N the distribution for, say, one protein is  

( )( ) ! exp( )NP N Q N Nβµ∝ −
.
 (S5.2) 

Here Q is the factor that arises by summing over all the internal states of the protein 

that are occupied at the temperature T. This result is used in the main text to fit the 

observed distribution for a single protein (Fig. 5.9). 

 

5.7.3 Fluctuations describe the response to small perturbations 
 

We show that by measuring the fluctuations in the unperturbed system we can predict 

how the system responds to small perturbations.38 Proof: Say that we make a small change 

in the value of the chemical potential iµ  from its current equilibrium value to some new 

value i iµ δ µ+ . We do so isothermally. This change in µi potentially changes the 

equilibrium mean concentration of all species from jN  to j jN Nδ+ , for all j. To compute 

the change in concentrations we need to consider the change in the ensemble as represented 
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by Eq. S5.1. In the algebraic developments in eq. S5.4 below we make use of the definition 

of the mean concentration  

( )1 2, ,..j jN N P N N= ∑ .
 (S5.3) 

The summation in eq. S5.3 is over all the possible compositions, each weighted by its 

probability ( )1 2, ,..P N N  computed as the distribution of maximal entropy. The same 

meaning for the summation is used also in eq. S5.4 below. We denote this averaging by an 

overbar. From eq. S5.1, the variation of the distribution that occurs when a particular 

chemical potential is changed by a small amount is 

( ) ( )1 2 1 2, ,.. , ,..iiP N N N P N Nδ β δ µ= . Note that it is in using this lowest term in the 

Taylor series that we assume that the change is small. It follows that on the average the 

proteins respond to the change as: 

( )

( ) ( )

( ) ( )

( )( ) ( )

( )( )

1 2

1 2

1 2

1 2

, ,..

, ,..

, ,..

, ,..

 .

j j

j j

j j ii

j j i ii

j j i ii

N N P N N

N N P N N

N N N P N N

N N N N P N N

N N N N

δ δ

δ

β δ µ

β δ µ

β δ µ

= ∑

= −∑

= −∑

= − −∑

= − −

 (S5.4) 

Note that the conservation of normalization implies that the average change in the 

probability must be zero, ( )1 20 , ,..P N Nδ= ∑ , and we have used this result in the 

derivation above. In the last line in eq. S5.4 we have avoided writing the summation over 

all compositions by the use of the over bar to designate an average over the probability 

( )1 2, ,..P N N , which is the notation introduced in eq. S5.3. 
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Taylor theorem states that, in the leading order, the change of a function is the sum of 

the changes. Therefore the expression for an isothermal variation in all the chemical 

potentials leads to a change of the distribution of the form:  

( ) ( )1 2 1 2, ,.. , ,..ii iP N N N P N Nδ β δ µ= ∑ . (S5.5) 

The summation in eq. S5.5 is an ordinary sum over the finite number S of signaling 

proteins, 1, 2,..,i S= . Then we have the general equation of change that is an extended 

form of eq. S5.4 valid for all possible small isothermal changes in the chemical potentials 

( )( )j j j i i iiN N N N Nδ β δ µ= − −∑ .
 (S5.6) 

This is the result that we use in this paper. 

 

5.7.4 The principle of Le Chatelier 
 

The principle in its simplistic statement claims that the system responds to a 

perturbation in a direction that restores equilibrium. For example, when the temperature of 

a heat bath is increased the mean energy of an immersed system goes up so that the 

distribution remains canonical. The proof for our case starts from eq. S5.3. When the 

chemical potential of protein i is changed, for an ensemble at maximal entropy the mean 

value of protein j changes by 

( )1 2, ,..j
j

i i

N P N N
N

µ µ
=

∂ ∂
∑

∂ ∂ .
 (S5.7) 

where, as emphasized in eq. S5.3, the distribution ( )1 2, ,..P N N  is not arbitrary but is the 

one of maximal entropy as exhibited in eq. S5.1. Eq. S5.4 is recovered when the derivative 

in eq. S5.7 is evaluated. The reader may feel that this is a triviality but it is not without 
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meaning. What we have proven is that computing a small change in the distribution 

( )1 2, ,..P N N  when a particular chemical potential is changed from the value iµ  to a new 

value i iµ δµ+  is the same as computing the derivative of the distribution ( )1 2, ,..P N N  at 

the point where the value of the chemical potential is iµ . Then the change in the 

distribution is ( )( )1 2, ,.. i iP N N µ δµ∂ ∂ . Of course, this is what differential calculus is 

about. Yet the result is not pure mathematics. It shows that the new distribution is a 

distribution of maximal entropy of the functional form eq. S5.1, as otherwise the result will 

not hold. It says that a small change in the chemical potential iµ , and no other change, 

leads to a new distribution which is also one of maximal entropy. 

Typically we do not see the theorem of Le Chatelier stated as in eq. S5.6. This is 

because of the practical point that the number fluctuations are typically not easy to observe 

in a macroscopic system. Here however we deal with secretion of proteins by a single cell 

and, as shown in the main text and particularly in the histogram in Fig. 5.9, the distribution 

is clearly observed and the covariance can be computed from the experimental data as long 

as the number of replicas is not small. 

 

5.7.5 The equation for the direction of change 
 

The (symmetric) square matrix ( )( )j j i iN N N N− −  is the covariance matrix of the 

(equilibrium) fluctuations in the (equilibrium) concentrations, the sjN . It is an equilibrium 

average because, as explicitly shown in eq. S5.4, it is an expectation over the equilibrium 

distribution as given in eq. S5.3. The covariance matrix has the dimensions of S by S where 

S is the number of signaling molecules that take part. In practice we have to compromise on 
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this definition, meaning that S is the number of signaling molecules that can be detected. If 

an important protein is not detected then the network that we infer will be incomplete.  

A covariance matrix can be shown to be a non-negative matrix, also called semipositive 

definite, meaning that its eigenvalues are zero or positive. If the concentrations of the 

signaling proteins can in principle be varied independently, which is definitely not 

necessarily the case, then the covariance matrix ( )( )j j i iN N N N− −  is a positive matrix 

with positive eigenvalues. We will discuss below why it will often be the case that for 

reasons of both principle and practice (e.g., experimental noise) there will be eigenvalues 

that are effectively zero. In that case, technically, the covariance matrix is positive 

semidefinite.39 

Eq. S5.6 specifies how the concentration of the jth signaling molecule varies when the 

ith chemical potential is changed. In general the correlation coefficient 

( )( )j j i iN N N N− −  between the signaling molecules i and j can be either positive or 

negative. Therefore, in general the change j iNδ δ µ  is not necessarily of the same 

direction for all proteins j. This obvious result will be important for us below. Using the 

observation that the covariance matrix is semipositive definite, it is however possible to 

determine the direction of change by first diagonalizing the covariance matrix. This means 

that we can determine S distinct linear combinations of signaling molecules, where (a) each 

such set of molecules changes in a given direction and (b) we can order the different sets in 

terms of the extent of their response such that the first set is the most changing, the second 

set changes to a lesser extent, etc. In the time-dependent formalism, not presented here, we 

can outright say that the first set is the fastest changing and therefore it is the first to change. 
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Then there follow changes in the second set, etc. It is clearly our intention to identify each 

set of signaling molecules as the set of molecules in a given tier in the network. 

 

5.7.6 Tiers of the network are eigenvectors of the correlation matrix 
 

Our next purpose is to define the tiers of the network. The set of proteins that 

participate in the m’th tier is determined as follows. Let  designate the m’th eigenvector 

of the covariance matrix where the eigenvectors are listed in order of decreasing magnitude 

of the corresponding eigenvalue. The largest eigenvalue is m =1. Each eigenvector  is a 

(column) vector of S components and it is determined by the matrix equation 

 (S5.8) 

where  is the S-by-S symmetric covariance matrix whose elements are 

, and we explicitly indicated that the eigenvalues are positive or 

zero but not negative (which defines a positive semidefinite matrix). The eigenvectors of 

the symmetric covariance matrix are orthogonal to one another and can be chosen to be 

normalized 

. (S5.9) 

Here the superscript T designates the transpose so that is a row vector and eq. S5.9 

is the scalar product. 

mS

mS

2 , 1, 2,.m m m mσ= =S SΣ

Σ

( )( )ij j j i iN N N N= − −Σ

'
0, '
1, '

T
m m

m m
m m

≠
⋅ =  =

S S

'
T
mS
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 For each value of the number of cells, n, in the compartment the eigenvalues are 

arranged in order of decreasing magnitude, the largest eigenvalue being labeled as m = 1 

and the smallest as m = 12, and the results are shown for n = 1 in Fig. 5.16. See Fig. 5.12 

for the dependence of the largest eigenvalues vs. cell number. 

 

5.7.7 The spectral representation of the covariance matrix 
 

Fig. 5.11 of the text shows the covariance matrix computed for experiments with one 

cell in the compartment. Table 5.8 is a digital representation of the same matrix. 

 
 

Figure 5.16 The eigenvalues of the covariance matrix, for the experimental data of the main 

text, in order of decreasing magnitude for samples containing n = 1 cells 
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Also shown in Fig. 5.11 is the resolution of the covariance matrix into tiers defined as 

follows: From each eigenvector mS we can define an S by S symmetric matrix mP as 

follows 

T
m m m= ⋅P S S . (S5.10) 

The spectral theorem 29 is the result that the covariance matrix Σ can be resolved into 

tiers as 

2
m mmσ∑ PΣ = . (S5.11) 

The eigenvalues 2
mσ  are arranged in a decreasing order so that each subsequent tier 

makes a smaller contribution. Fig. 5.16 shows that the eigenvalues decrease quite rapidly 

with increasing value of m. The very dominant contribution is from m = 1 The leading 

eigenvalue = tier 1, is only about 30% bigger than the second one, m = 2. The third 

eigenvalue is smaller by almost two orders of magnitude. Fig. 5.12 is a plot on a 

logarithmic scale of all non-zero eigenvalues. There are only two eigenvectors that, judging 

by the value of their corresponding eigenvalues are definitely above the noise. The 

dominant (m = 1) and the m = 2 eigenvectors for single cell measurements are shown in Fig. 

5.11 of the text and for three cells in Fig. 5.13. 

 

5.7.8 The role of the number of cells in the sample 
 

It was possible to make repeated measurements of the protein concentrations for 

different values of the number of cells in the sample. In this section we argue that the 

direction of increasing n can be semi-quantitatively regarded as a direction of increasing 

time. Therefore by examining how the eigenvectors of the covariance matrix change with n 
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we have an independent determination of the direction of the dynamic response of the 

system. 

Fig. 5.12 shows the largest eigenvalues for n = 0, 1, 2, 3 and 4 cells. 

To interpret Fig. 5.12 within the point of view used in this paper we argue as follows: A 

single cell secretes a number of different signaling proteins and therefore even the data 

measured for a single cell can show the role of protein–protein interactions. If two cells are 

in the sample these interactions increase in importance. If we think of n as a measure of 

concentrations of proteins then N n∝ , but to compute the covariance we need to divide by 

the number of protein molecules. So for both paracrine and endocrine signaling we expect 

the covariance to increase with n. When n becomes high there may be three or more cells 

interacting and the simple considerations break down. 

 

5.7.9 Antibody perturbations 
 

Fig. 5.14 shows a quantitative comparison of the measured results as compared to the 

purely theoretical prediction when neutralizing antibodies for specific proteins are added. 

We emphasize that it is a prediction because the results shown are based on using eq. S5.4 

that we repeat here:  

( )( )j j j i i jii iN N N N Nδ β δ µ β δ µ= − − = Σ  

The addition of a neutralizing antibody for protein i means that iδ µ is negative. The 

entries for the matrix Σ are given in Table 5.3. This matrix is computed for the unperturbed 

data. It is the matrix given in the table above that gives rise to the theoretical results shown 

in Fig. 5.14. We emphasize that the experimental results shown in Fig. 5.14 are for single 
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cells in the compartment. This means (see Fig. 5.12) that the largest eigenvalue, 2
1mσ = , of 

the covariance matrix is large indeed. Then, from eq. S5.11, the contribution from the first 

tier dominates. It is the two proteins in this tier that are shown in the panel. There are 

bigger discrepancies between theory and experiment for tiers 2 or 3 for which the 

experimental signal is weak. 

 

5.8 Appendix C: Supplementary Tables 
 

Table 5.1 Sequences and terminal functionalization of oligonucleotides* 

 

Name Sequence 
A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 
A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 
B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 
B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 
C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 
C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 
D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 
D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 
E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 
E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 
F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 
F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 
G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 
G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 
H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 
H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 
I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 
I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 
J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 
J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 
K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 
K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 
L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 
L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 
M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 
M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 
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* All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and purified via 

high-performance liquid chromatography (HPLC).  

 

Table 5.2 Summary of antibodies used for macrophage experiments 

 

DNA 
label 

primary antibody (vendor) secondary antibody (vendor) 
 

A’ mouse anti-hu IL-2 (BD Biosciences) biotin-labeled mouse anti-hu IL-2(BD Bioscience) 
B’ mouse anti-hu MCP-1 (eBioscience) biotin-labeled armenian hamster anti-hu MCP-1 

(eBioscience) 
C’ rat anti-hu IL-6 (eBioscience ) biotin-labeled rat anti-hu IL-6 (eBioscience ) 
D’ rat anti-hu GMCSF (Biolegend ) biotin-labeled rat anti-hu GMCSF (Biolegend ) 
E’ goat anti-hu MIF (R&D systems) biotin-labeled goat anti-hu MIF (R&D systems) 
F’ mouse anti-hu IFN-γ (eBioscience) biotin-labeled mouse anti-hu IFN-γ (eBioscience) 
G’ mouse anti-hu VEGF (R&D systems) biotin-labeled goat anti-hu VEGF (R&D systems) 
H’ mouse anti-hu IL-1β (eBioscience) biotin-labeled mouse anti-hu IL-1β (eBioscience) 
I’ rat anti-hu IL-10 (eBioscience) biotin-labeled rat anti-hu IL-10 (eBioscience) 
J’ mouse anti-hu IL-8 (R&D systems) biotin-labeled mouse anti-hu IL-8 (R&D systems) 
K’ mouse anti-hu MMP9 (R&D systems) biotin-labeled goat anti-hu MMP9 (R&D systems) 
L’ mouse anti-hu TNF-α (eBioscience) biotin-labeled mouse anti-hu TNF-α (eBioscience) 

 
 

Table 5.3 Digital data for the fluctuation in protein copy numbers for experiments with single cell 

in the chamber 

 

IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

3735.412 217395.9 13953.23 557.1622 3809515 13624.74 201.4036 8376.421 0 1454177 3205.591 152586.1 

1665.362 27307.83 104.8926 1517.076 2820595 53647.16 22.99382 30393.38 2225.058 1549870 8513.336 139044.8 

0 0 5.688741 983.9779 2039581 51073.18 5.659558 397.6828 1712.567 1556202 75864.65 105209.4 

0 0 4.782456 0 442693.6 0 0.336728 0 0 341176.1 10460.81 39.82124 

0 0 4.782456 0 394608.6 7158.123 0.336728 83.72112 0 1049468 5786.696 112.4533 

0 9036.275 4.782456 315.5414 1182371 15521.45 2510.404 164.3377 0 2078531 530.3467 98.55574 

0 8562.464 22.67125 1973.092 2340711 50886.57 0 8659.165 386.6576 1825752 3484.746 225206 

972.853 5136.066 45.69175 0 2903862 30000.8 1.655758 1627.437 678.766 1357052 1609.678 487.7715 

0 4625.892 5.688741 162.2633 515603.5 12411.14 258.1623 2951.517 1069.252 2085364 18909.8 95984.22 

1115.354 5639.942 25.6359 0 3794851 59631.05 5.955249 75.74618 644.1138 829791.9 1197.849 9267.078 

367.32 8562.464 0.620442 0 404940.8 0 5342.374 170.0894 425.4534 4964304 181518.4 2001.962 

0 40152.21 47.5241 1517.076 3743529 8249.956 643.5375 2935.413 1281.727 5149720 38060.09 1084.421 

876.3752 20185.95 28.71536 1658.653 665589.7 17294.07 4591.031 732.1417 1221.906 4543300 36619.56 127154.3 

0 0 0 0 638485.4 0 0 2173.854 0 2932515 408789.6 64138.92 

1068.126 0 13.28018 632.2731 438114.6 0 119.5423 102.6353 0 1034324 592.5651 4161.334 
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1575.52 19329.17 47.5241 961.4889 1217737 21180.92 2.07053 5.38982 813.5973 1055366 2244.563 1780.287 

827.633 26895.82 175.1502 2258.346 5831647 64318.4 2721.671 3362.146 4140.063 3606621 5461.672 75502.9 

0 4625.892 4.782456 256.7672 6562935 0 1.756733 8524.752 0 174775 2301.694 98.55574 

0 0 18.45094 286.4852 359371.4 0 572.8267 52.38082 0 3107306 65788.63 25235.97 

0 5136.066 0 371.9954 5772999 7715.093 0.919755 952.1023 125.4948 589949.5 3484.746 8.587119 

577.7165 27307.83 7.645797 256.7672 481179.4 11991.4 5.082496 91.7772 1221.906 954720.5 1434.076 159.007 

0 11362.51 218.9126 681.2702 3668936 35507.47 4.254203 3813.608 4117.263 2589890 42622.04 86305.23 

474.0248 21038.24 6.64407 505.8466 396657.3 7715.093 1.859546 205.0206 0 8685444 1667.948 155173.2 

0 0 336.0215 0 365278.4 0 0.606097 1608.84 174.4034 2065560 1138.365 3733.989 

0 0 0 0 328035.4 7715.093 159.1543 138.7292 425.4534 1067345 3484.746 95.81771 

0 0 58.9922 961.4889 300360.2 34353.44 0 54.93063 746.8858 1817495 2358.739 23134.31 

0 0 4.782456 0 425186.2 7715.093 613.1612 99.90882 386.6576 4683202 3037.413 46.89755 

0 0 3.928359 0 445991.3 7715.093 402.2585 0 975.2311 523909.4 6326.138 1054.297 

2236.04 33403.67 476.1208 870.3418 435981.4 74992.86 23.9095 3930.914 1986.093 11697012 9358.114 8317287 

0 8085.346 36.88775 453.3645 332604.1 11991.4 86.2306 113.6166 1370.279 1559706 7130.545 1958.179 

1620.52 9974.818 0 286.4852 362920.9 7158.123 0.336728 42.31677 713.014 1569342 22053.76 23001.06 

198.7022 28129.56 104.8926 582.4318 5431280 38632.32 0.534271 503.3473 746.8858 1414076 3818.009 82.34883 

0 0 13.28018 0 294489.8 0 278.2761 39.8375 0 96873.01 181570.6 0 

0 15851.76 13.28018 0 569708.6 11125.54 2369.121 328.8863 386.6576 1292647 23316.12 12607.48 

1843.259 8562.464 86.41712 194.848 775007.6 19615.08 0.336728 4396.839 0 2386454 56608.75 570.4367 

474.0248 16291.26 84.19013 870.3418 3567046 57034.26 44.96208 112244.6 1130.88 3238520 3707.119 85922.27 

0 12275.83 14.52122 681.2702 446942.7 8249.956 3059.87 44.81139 425.4534 3127064 270629.6 16913.92 

0 5639.942 65.01849 0 362459.2 0 0 16.1095 0 2971267 3429.024 115.2728 

0 34605.82 175.1502 286.4852 499008.3 18309.28 152.4368 184.5588 425.4534 1011213 135792.6 1097.382 

526.1976 584810 13.28018 0 308498.5 9264.625 483.3776 0 0 1509316 1052286 49352.54 

421.1059 4625.892 0 531.6397 277526.7 17636.16 295.7684 824.1178 1684.681 1979177 42077.15 14565.16 

924.7744 12275.83 114.5543 479.7625 451511.5 25255.09 1990.09 196.223 573.4616 2977232 121849.1 29473.5 

0 0 5.688741 286.4852 1616413 24415.08 53.64644 21718.77 0 1961863 5948.816 16.0508 

0 1935.839 22.67125 162.2633 537180.3 0 1.556662 426.2234 678.766 1662376 3928.711 1846405 

4097.416 15410.74 6.64407 916.1621 627149.3 15153.07 950.0875 661.5037 911.38 4734071 15793.97 633893.1 

0 5639.942 18.45094 0 3734680 19933.81 71.75808 611.5641 1877.786 1963379 160882.2 12793.76 

0 0 45.69175 286.4852 472151 7715.093 188.2966 86.39776 0 2563383 70281.5 27115.65 

138.713 12729.29 27.16157 128.1625 510521.3 9748.657 0.534271 363.1055 713.014 7637057 22154.85 306664.8 

526.1976 14077.98 47.5241 753.3682 385982.2 17636.16 9497.397 81.05349 713.014 1650511 36569.86 69227.5 

0 0 3.928359 505.8466 4597800 21486.18 55.44104 378.7795 0 4705311 1492.748 4042.245 

474.0248 8562.464 13.28018 286.4852 415863.4 7158.123 0 304.2398 1656.69 6712149 124417.6 104764.8 

0 4625.892 49.37952 870.3418 3610659 11125.54 308.8587 335.0802 1543.606 1731368 67269.56 273.0328 

0 0 0 0 497690.4 12411.14 1.964157 57.49294 0 1609086 450905.5 109102.7 

2149.562 10439.91 5.688741 286.4852 493432.2 0 95.38698 800.1525 0 2319845 933080.9 468816.9 

0 2499.366 0 0 1938229 11563.1 15.08493 167.2109 1486.351 1882943 6809.424 1024.341 

421.1059 260961.8 27.16157 1028.626 631535.9 0 297.85 213.8589 537.3803 1335228 1018.815 12.21319 
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0 7604.672 47.5241 194.848 414552.4 20562.75 3358.884 267.679 1656.69 4826026 12493.18 65787.75 

778.5221 27307.83 339.5008 1638.592 3964841 84043.16 10.19566 170693.7 3082.111 4250173 17635.86 346394 

0 4625.892 0 315.5414 480143.5 15521.45 401.1044 196.223 2225.058 3515798 580887 11928.38 

0 8562.464 18.45094 286.4852 658884.1 7158.123 1.179999 150.0535 537.3803 1652656 454906.5 113008.1 

474.0248 48688.48 15.79737 777.063 479056.9 15153.07 11.81997 621.5163 2039.74 4603005 201019.8 340191.5 

474.0248 20612.64 6.64407 286.4852 436080.6 0 1.859546 234.6332 2012.957 6917958 11296.85 215980.3 

0 0 768.0874 286.4852 373315 26079.52 1437.645 199.1509 678.766 2261670 2130.037 10466.12 

0 0 0 0 426020.1 7158.123 2.743952 161.4698 0 3933389 4369.751 49058.97 

0 0 189.3848 557.1622 494271.9 15521.45 494.498 127.5026 71.49773 3800164 477015.4 103268.1 

1068.126 42500.29 5.688741 0 443142.7 0 2610.429 135.9132 220.2761 2342101 688400.6 12.21319 

0 6631.472 19.82653 0 574020.6 12822.93 10.3724 175.8619 879.0676 4074696 105807.8 1513.189 

972.853 10439.91 10.90809 729.5097 284256.4 18640.59 2235.697 133.1033 0 1470217 53399.89 4002.718 

0 0 13.28018 0 597667.5 0 2019.485 264.6556 306.1297 1194410 29141.91 480.3807 

0 51365.65 145.1361 1246.065 405806.5 32699.9 856.1518 113.6166 1959.145 1258039 183346.9 1417.034 

0 729.7022 0 256.7672 602511.6 31733.5 0 234.6332 0 1122269 898.3988 400.546 

1485.024 41719.38 139.8782 453.3645 444591 7158.123 885.0224 138.7292 1628.589 2793823 3540.416 27481.96 

526.1976 6138.223 27.16157 0 465292.2 14400.48 1403.802 102.6353 746.8858 1844275 18451.63 97125.55 

2192.854 60050.81 285.2598 557.1622 3976269 52552.65 235.1851 12868.12 1486.351 2056078 6272.314 6856.5 

0 10439.91 0 128.1625 5629496 8249.956 0.399418 1762.11 678.766 813978.6 163717.2 92940.02 

2535.544 14523.91 114.5543 344.0223 1484329 26621.01 8678.123 8057.573 2661.458 1986914 525123.6 889781.5 

0 4108.532 0 557.1622 443841.6 7715.093 1.179999 216.8138 1281.727 1438747 72010.22 3496.753 

421.1059 4625.892 55.08115 453.3645 533679.1 45692.16 1450.532 385.0693 463.4456 1859549 8089.271 175397.8 

924.7744 0 27.16157 681.2702 2819971 22977.18 25.30396 258.6201 2836.369 2894811 40590.36 774.8536 

1439.516 5136.066 47.5241 0 2087753 52000.61 0.399418 7422.418 879.0676 3000134 5786.696 97961.85 

526.1976 0 0 162.2633 528450.2 11991.4 59.08624 22.98716 463.4456 1749215 3596.034 624.2794 

577.7165 9506.996 49.37952 0 503131.4 15521.45 116.0933 837.8488 220.2761 1903608 164594.6 2006.839 

577.7165 0 5.688741 453.3645 6660777 58080.71 120.3132 404.0062 0 1578115 1078.692 323.6175 

0 11362.51 0 128.1625 440302 9264.625 114.9509 273.7368 813.5973 1578115 12129.72 1040989 

1575.52 19329.17 325.6539 1638.592 4924300 64154.29 340.5053 1318.723 2861.155 2672000 23366.56 306.578 

0 0 24.13892 0 6851805 53465.61 5.513485 638.1433 0 1028638 127948.9 12200.28 

474.0248 9036.275 221.941 286.4852 458783.7 20873.14 49.24328 322.7051 1850.488 2457942 22811.51 822556.8 

3613.793 57047.96 172.3469 938.885 406672.9 47264.38 865.9889 1690.864 2172.481 3502255 843555.9 353763.6 

0 22308.79 60.97992 0 369312.3 19933.81 814.9924 119.1506 975.2311 2229100 92908.36 75331.28 

2062.643 5639.942 0 194.848 828096.2 7715.093 3451.146 105.3695 463.4456 2062203 2529.389 49.30233 

0 4625.892 150.4565 194.848 606027.9 15521.45 48.08955 732.1417 644.1138 2205137 44305.43 112117.4 

876.3752 109736.4 15.79737 656.8714 4333366 13227.3 9.498279 3109.17 2910.581 1557792 40044.93 8399.296 

474.0248 14077.98 58.9922 1050.792 4158207 40779.49 0.837598 2139.122 713.014 1602325 18247.85 13988.05 

0 4625.892 9.77966 938.885 427984.9 28984.83 2539.309 133.1033 813.5973 3538045 6056.756 99712.96 

474.0248 15851.76 97.82923 315.5414 3058525 52552.65 5.224942 344.3945 678.766 1596288 1434.076 17010.92 

1620.52 30983.19 164.0253 2444.257 3783288 27421.74 8.150933 20591.01 713.014 1238515 126636.5 294604.8 

0 5639.942 6.64407 0 4829314 14779.51 0 438.9771 0 8394607 1375.257 12.21319 
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0 9036.275 86.41712 1718.527 699222.5 0 0 8090.773 0 946538.8 1018.815 246.7378 

421.1059 29356.69 57.02586 656.8714 427051.1 49758.73 5895.509 7.430834 713.014 855150.1 715.8439 12943.31 

972.853 16729.29 124.4873 557.1622 3157311 24131.41 26.96196 2270.716 125.4948 1429803 10251.26 2675.917 

474.0248 0 27.16157 344.0223 421026.8 33885.67 0.336728 158.6074 813.5973 4493846 3205.591 4785.501 

0 0 4.782456 0 1735160 0 0 1064.458 1600.377 491041.6 56904.9 28.54088 

924.7744 21462.78 329.098 1797.669 10572470 36640.69 87.27182 951072.8 2012.957 717967.5 5786.696 50463.01 

1255.571 16729.29 36.88775 916.1621 387730.2 35507.47 12.37785 172.9731 943.4302 3107306 9305.439 99116.28 

0 3047.191 0 0 601108.5 0 1098.532 62.65337 346.9365 1429264 2015.138 0 

827.633 1935.839 22.67125 0 609026.5 16243.7 3776.053 49.844 644.1138 2839583 5948.816 10466.12 

0 0 45.69175 0 529102.3 7715.093 148.7002 164.3377 0 2739500 135792.6 454.6833 

0 5639.942 19.82653 800.6015 399905.3 11125.54 61.55719 99.90882 1069.252 3152475 3484.746 192.6131 

1975.261 17165.9 322.2216 1203.28 10565748 90563.8 9.155434 41511.63 2959.817 2157535 136249.1 5338.093 

0 0 18.45094 1246.065 476216.6 0 0.399418 1553.213 0 1844720 82939.55 2389.394 

0 0 17.10759 531.6397 3728800 39283.39 2566.026 1008.095 0 747662.7 1667.948 230.5624 

628.6544 9974.818 15.79737 426.6258 488669.7 30997.64 130.4801 65.2507 1038.132 4037787 39400.11 71229.18 

924.7744 0 5.688741 0 1560874 36640.69 4.801319 54.93063 0 1778135 8724.937 77056.37 

0 0 27.16157 0 382589.2 5961.002 1493.194 347.5054 0 1500979 607501.3 327.046 

972.853 0 0 226.2736 441546.9 7715.093 786.2589 110.8603 678.766 7130236 167126.3 55851.67 

526.1976 11362.51 3.130261 1203.28 1356636 21180.92 2759.997 3129.465 975.2311 2758719 3818.009 146319.6 

577.7165 6631.472 19.82653 2201.941 5878268 13624.74 3241.913 37543.28 1221.906 1173170 13477.1 220.957 

0 11362.51 0 315.5414 486844 27948.27 0 255.6081 463.4456 1388172 522389.9 78625.91 

0 635058.1 6.64407 0 545876.8 7715.093 1100.19 190.3813 0 1518652 28391.09 109.6469 

256.4187 46379.67 53.15834 729.5097 3301742 32699.9 4.389042 359.9795 1006.795 1864545 5353.088 227.3521 

577.7165 13630.28 14.52122 2107.237 3806473 22683.47 121.4725 96650.04 1543.606 1174095 9252.748 26620.53 

924.7744 10439.91 47.5241 453.3645 3281029 44088.98 0.016533 477.4821 346.9365 1063941 2812.305 447.3908 

5587.157 5136.066 24.13892 681.2702 3016496 29240.69 47.22998 5719.854 425.4534 105126.8 6056.756 0 

474.0248 8562.464 36.88775 1895.558 4112702 22683.47 3.224364 87695.31 644.1138 3622850 18094.94 112883.1 

2955.955 18035.05 57.02586 2088.188 3559334 27421.74 17.95405 37266.68 1656.69 2244932 5786.696 952.3013 

5355.51 8562.464 0 0 2892800 14015.67 128.5041 1271.685 0 1603673 9884.013 30912.89 

0 0 14.52122 52.05951 831973.3 8249.956 518.8942 141.5514 0 1042440 1609.678 306814.1 

0 4625.892 67.06888 557.1622 3166646 20249.67 2.288425 18257.35 71.49773 462439.1 2130.037 187929.7 

5970.693 18035.05 90.92703 1160.163 2856820 31244.01 23.67953 522.8445 1795.612 215604.4 14560.51 4241.145 

 
 

Table 5.4 Signal-to-noise ratio (S/N) for single cells in SCBC measurements 

 

IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

1.0 4.7 3.6 1.4 1381.1 4.3 77.3 94.7 1.8 2622.4 119.5 410.7 
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Table 5.5 Parameters utilized for the protein assay calibration curve 

1 2
2

01 ( / ) p

A Ay A
x x
−

= +
+

 

  A1 A2 x0 p Statistics 

  Value Error Value Error Value Error Value Error Reduced 
Chi-Sqr 

Adj. R-
Square 

IL-2 0 0 256 0 7659.58168 973.0838 1.12824 0.16788 91.39131 0.99224 
MCP-1 0 0 256 0 65733.51686 4770.5 1.12607 0.09607 29.62623 0.99578 

IL-6 0 0 256 0 16231.59942 4515.94 0.67887 0.12265 243.09932 0.95697 
GMCSF 0 0 256 0 2451.99685 295.3281 1.2195 0.13013 72.59138 0.99458 

MIF 0 0 256 0 7892.74068 483.8218 1.14428 0.07578 20.31714 0.99821 
IFN-γ 0 0 256 0 14549.5316 2773.804 1.57222 0.26181 172.2368 0.98713 
VEGF 0 0 256 0 1687.9445 225.4782 0.69008 0.05631 58.49911 0.99513 
IL-1β 0 0 256 0 2137.44388 208.9672 0.89593 0.07185 41.21361 0.99694 
IL-10 0 0 256 0 3961.03661 328.4038 1.23209 0.08611 33.93572 0.99669 
IL-8 0 0 256 0 1255.89317 225.9207 1.23262 0.19534 161.8703 0.98686 

MMP9 0 0 256 0 70537.40022 1584.696 1.062 0.02495 2.60945 0.99961 
TNF-α 0 0 256 0 4126.15703 661.2747 0.81683 0.09483 99.72583 0.99185 

 

 

Table 5.6 Values of parameters used in simulation 

 

Chamber size 2000 µm × 100 µm  × 18 µm 

Cell diameter 10 µm 

Diffusion coefficient 10-6 cm2/sec 

Protein secretion rate (MIF) 0.065 nM/min 

Molecular weight 12500 Da 

 

Table 5.7 The coefficients of variation for each of the assayed proteins from single-cell experiments. 

The experimental CVs are estimated from the Monte Carlo simulations. The biological CVs, which 

clearly dominate the experiment, are calculated from 2/1
biological

2
system

2
assay )( CVCVCV += . 

Barcode/Protein Experimental CV (%)  Assay CV (%) Biological CV 
(%) 

B / MCP-1 7.12  380.4 380.3 
E / MIF 7.05  55.2 54.7 
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F / IFN-γ 7.04  131.5 131.3 
G / VEGF 7.03  149.7 149.5 
H / IL-1β 7.02  300.6 300.5 
J / IL-8 7.00  14.4 12.6 
K / MMP9 6.98  192.6 192.5 
L / TNF-α 6.97  132.9 132.7 

 

 

Table 5.8 Digital representation of the covariance matrix for single cell measurements 

 

COV IL-2 MCP-1 IL-6 GMCSF MIF IFN-γ VEGF IL-1β IL-10 IL-8 MMP9 TNF-α 

IL-2 1.18E+06 -27830 7966.7 1.34E+05 2.30E+08 4.10E+06 85756 1.27E+06 1.60E+05 -1.06E+08 1.50E+07 2.31E+07 

MCP-1 -27830 6.34E+09 -1.83E+05 -1.14E+06 -9.54E+09 -9.51E+07 6.10E+05 -3.31E+07 -2.52E+06 -8.51E+09 4.21E+09 -7.34E+08 

IL-6 7966.7 -1.83E+05 9050.5 11507 1.56E+07 5.89E+05 734.25 4.20E+05 24714 -81623 -7.38E+05 1.04E+06 

GMCSF 1.34E+05 -1.14E+06 11507 3.39E+05 3.75E+08 3.97E+06 53462 5.71E+06 2.07E+05 1.05E+07 -1.66E+07 1.75E+06 

MIF 2.30E+08 -9.54E+09 1.56E+07 3.75E+08 3.12E+12 1.48E+10 -4.32E+08 1.19E+10 3.35E+08 -4.33E+11 -7.53E+10 -5.22E+10 

IFN-γ 4.10E+06 -9.51E+07 5.89E+05 3.97E+06 1.48E+10 3.09E+08 -2.28E+05 1.40E+08 5.83E+06 -1.70E+09 -5.01E+08 -1.00E+08 

VEGF 85756 6.10E+05 734.25 53462 -4.32E+08 -2.28E+05 2.48E+06 -2.65E+06 1.04E+05 9.34E+07 2.92E+07 2.59E+07 

IL-1β 1.27E+06 -3.31E+07 4.20E+05 5.71E+06 1.19E+10 1.40E+08 -2.65E+06 4.78E+08 4.46E+06 1.86E+09 -4.08E+08 3.16E+08 

IL-10 1.60E+05 -2.52E+06 24714 2.07E+05 3.35E+08 5.83E+06 1.04E+05 4.46E+06 7.39E+05 2.20E+08 -5.64E+06 2.92E+07 

IL-8 -1.06E+08 -8.51E+09 -81623 1.05E+07 -4.33E+11 -1.70E+09 9.34E+07 1.86E+09 2.20E+08 2.73E+12 7.05E+09 3.56E+10 

MMP9 1.50E+07 4.21E+09 -7.38E+05 -1.66E+07 -7.53E+10 -5.01E+08 2.92E+07 -4.08E+08 -5.64E+06 7.05E+09 3.70E+10 5.25E+09 

TNF-α 2.31E+07 -7.34E+08 1.04E+06 1.75E+06 -5.22E+10 -1.00E+08 2.59E+07 3.16E+08 2.92E+07 3.56E+10 5.25E+09 5.26E+10 
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Chapter 6 
 
Probing Chemical and Physical Property Changes 
of Pulmonary Phospholipid Surfactants by 
Interfacial Ozone Reactions with Field-Induced 
Droplet Ionization Mass Spectrometry and 
Microfluidic-Based Bubble Analysis 
 
 
6.1 Introduction 

 
Lung disease is the third leading cause of death in the United States and lung disease 

death rates are still increasing.1 A unique feature of the lungs is that they are constantly 

exposed to airborne environmental insults. Both short- and long-term exposure of lungs to 

pathogens, air pollutants, and other irritants can be a major cause of acute distress and 

contribute to chronic injuries such as cardiopulmonary mortality and lung cancer.1–3 

Recently, Jerret et al. reported a significant increase in the risk of death from respiratory 

causes in association with air pollution which includes an increase in ozone (O3) 

concentration.4  

Pulmonary surfactant (PS) is a lipid-protein mixture that lines the air-liquid interface of 

alveolae.5, 6 The pulmonary surfactant comprises ~ 90% phospholipids and ~ 10% 

apoproteins by mass.6 Dipalmitoylphosphatidylcholine (DPPC) is the principal 

phospholipid component, which achieves very low surface tension (~ 0 mN/m) upon 

compression.7, 8 However, it adsorbs and spreads at the air-liquid interface very slowly (0.5 
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µm2/s) at the physiological temperature (37°C), which is below the temperature (Tm) for its 

gel-to-liquid crystalline phase transition (41°C).7, 8 Unsaturated phospholipids, owing to 

their higher fluidity, improve adsorption and spreading properties of surfactant at the air-

liquid interface.8, 9 However, they cannot produce sufficiently low surface tensions when 

surfactant layers are compressed.8, 10 

An increasing number of studies have focused on the heterogeneous chemistry of small 

molecules at the air-liquid interface, mainly using mass spectrometric11 and spectroscopic12 

techniques, as well as theoretical methods.13 Recently, real-time monitoring of surface 

activity of fatty acids has been reported by two research groups.12, 14 Voss et al. have 

reported competitive air/liquid interfacial activities involving palmitic acid and oleic acid 

utilizing broad-bandwidth, sum frequency generation spectroscopy.12 They observed that a 

mixed monolayer of the fatty acids was dominated by oleic acid, with palmitic acid 

becoming predominant when exposure to ozone results in oxidation of the oleic acid to 

more hydrophilic products. Using a single droplet, Gonzalez-Labrada et al. also reported a 

decrease in air liquid interface activity of oleic acid after exposure to a monolayer to 

ozone.14 Related studies of biologically relevant systems have only just begun, despite their 

importance. For example, Colussi and co-workers recently reported heterogeneous 

reactions of O3 with ascorbic acid15 and uric acid,16 which are components of the 

pulmonary epithelial lining fluid, using ESI mass spectrometry.  

Field-induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft 

ionization method to sample ions from the surface of microliter droplets. FIDI-MS subjects 

neutral droplets to a strong electric field, leading to formation of dual Taylor cones in 

which streams of positively and negatively charged submicron droplets are emitted in 
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opposite directions, forming what is essentially a dual electrospray ion source.11, 17–19 It is 

ideally suited to monitor time-dependent heterogeneous reactions at the air-liquid interface. 

Previously, we demonstrated probing time-resolved ozonolysis of oleic acid and oleoyl-L-

 

Figure 6.1 (a) Schematic illustration of FIDI-MS setup for heterogeneous reaction study. (b) A 

quiescent hanging droplet of analyte-containing solution on the end of a capillary is exposed to 

gas-phase reactants for a variable period of time. (c) After a suitable reaction time, a pulsed 

electric field stretches neutral droplets until they emit streams of positively and negatively 

charged submicron droplets in opposite directions. The reactants and product ions of 

heterogeneous reactions enter the capillary inlet of the mass analyzer. 
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α-lysophosphatidic acid using FIDI-MS.11 In practice, a quiescent hanging droplet is 

formed on the end of a capillary and then exposed to gas-phase reactants for a variable 

period of time, followed by FIDI-MS sampling of molecular species present in the 

interfacial layer (Fig. 6.1).  

In this study, we utilize FIDI-MS for probing air-liquid interfacial oxidation by O3 of 1-

palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG), representative of the major 

unsaturated anionic lipids in lung surfactant. Sampling droplets with an interfacial layer of 

POPG exposed to O3 gas over a range of reaction times reveals the progress of distinct air-

liquid interfacial chemistry. The competition of phospholipids subjected to a heterogeneous 

ozonolysis at the air-liquid interface is also studied using FIDI-MS. A mixture of the 

saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated 

POPG is investigated in negative ion mode using FIDI-MS. A mixture of 1,2-dipalmitoyl-

sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) 

surfactant is also studied to understand the air-liquid interfacial competition of 

phospholipids with different polar head groups in positive ion mode. Our results 

demonstrate that the relatively more hydrophilic products formed by oxidation of the 

unsaturated phospholipid dissolve back in the aqueous phase, leaving only saturated lipids 

at the interface. A detailed picture of the interfacial oxidation of unsaturated lipids by O3 is 

provided by molecular dynamic (MD) simulations to support our interpretation of the 

experimental results. Solvation energetics of reactants and products are also evaluated by 

means of computational modeling. Structures of phospholipids investigated in this study 

are shown in Scheme 6.1. 
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Since the chemical modifications in those components will introduce a significant 

change in the physical characteristics of PS, it is necessary to understand how physical 

properties at the air-liquid interface will be altered by the chemical changes. 

The above-mentioned investigations focused on molecular transformations that occur 

as a result of oxidative stress. Such molecular transformations can have a strong influence 

on the physical properties of the PS system (i.e., the surface tension and elasticity of the PS 

 
 

Scheme 6.1 Structures of POPG, DPPG, SOPC, and DPPC investigated in this study 
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interface), and so understanding how chemical transformations influence such physical 

properties can provide key insights into how the PS system responds to environmental 

challenges. Thus, in the second part of this chapter, we propose to utilize microbubbles as 

model system for investigating the physical transformations of the PS system when 

exposed to environmental challenges. Microbubbles have a potential for the interfacial 

physics study. They have the air-liquid interface and the composition of the interface can 

be easily modified by utilizing different components in solvent and gas. Interfacial 

dynamics can be further analyzed in microfluidic systems owing to their small 

characteristic size and high controllability. 20–23 Especially, the breakup process of bubbles 

has been intensively studied with various flow parameters and compositions of gas as well 

as liquid. Prakash et al. showed another feasibility of bubbles in microfluidics by reporting 

on microfluidic bubble logic.24 Their results indicate that the bubbles in microfluidic 

channel can deliver information based on a simplified dynamic flow resistance model. As 

demonstrated in previous studies, microbubbles in microfluidics impose rich information in 

their formation process and their behavior in a fluidic channel, which can provide us a 

comprehensive understanding of the interfacial physics. 

In Section 6.3.2, we demonstrate an application of the bubble generation process in 

microfluidic system to the physical property analysis of lipid surfactant layer at the air-

liquid interface as a model of alveolar sacs under oxidative stress condition. As 

characteristic analysis parameters, size and oscillatory behavior are studied under different 

conditions: normal air and air with ~ 20 ppm ozone exposures are used. Chemical 

composition change in a lipid monolayer under ozone exposure is observed by monitoring 

fluorescence-labeled unsaturated phospolipids at the air-liquid interface. This chemical 
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composition change, along with physical property change, induces altered bubble size and 

oscillatory behavior which can provide an improved understanding of the physics of the PS 

system when it is subjected to oxidative stress.       

 

6.2 Experimental Methods 

 
6.2.1 Chemicals and reagents  
 

Sodium salts of DPPC, DPPG, POPG, SOPC, and NBD-PG (1-oleoyl-2-[12-[(7-nitro-

2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycerol-3-[phospho-rac-(1-glycerol)])  

were purchased from Avanti Polar Lipid (Alabaster, AL). All solvents (water and methanol) 

were purchased from EMD Chemicals, Inc. (Gibbstown, NJ).  

 

6.2.2 Online FIDI-MS technique and heterogeneous oxidation by O3  
 

The FIDI-MS instrument used in this investigation was based on the design previously 

described by Grimm et al.11 An ~ 2 mm o.d. droplet of analyte solution is suspended from 

the end of a 28 gauge stainless steel capillary (Small Parts, Inc.), which is located between 

the atmospheric sampling inlet of a Thermo Finnigan LCQ Deca mass spectrometer and a 

parallel plate electrode. The droplet is centered between the plate electrode and the MS 

inlet, which are separated by 6 mm. A flow of air containing O3 is directed at both sides of 

the droplet by paired ~ 1.6 mm (0.063”) id pyrex tubes located 1 mm from the droplet. 

Ozonolysis reactions occur between 0 and 30 s after a quiescent droplet is achieved (~ 1–2 

s). Sampling is affected by pulsed voltages of 4 kV and 2 kV applied to the parallel plate 

electrode and supporting capillary, respectively. These voltages are tuned to be just above 
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threshold for initiating FIDI. The high-voltage initiates FIDI and directs submicron-sized 

charged progeny droplets into the LCQ for mass analysis. POPG and DPPG are monitored 

in negative ion mode and DPPC and SOPC are monitored in positive ion mode. The FIDI-

MS spectra reported in this study were obtained by averaging five to ten individually 

acquired spectra from separately prepared droplets. 

A pencil-style UV calibration lamp (model 6035, Oriel) generates ~ 20 ppm O3, 

measured spectrophotometrically using an absorption cell with 10 cm path length and 

calculated with Beer’s Law using the molar absorption coefficient of 1.15 × 10-17 cm2 

molecule-1, in air that continually bathes the droplet at 1500 mL min-1. 100 µM POPG or 

mixtures of 50 µM unsaturated phospholipid (POPG or SOPC) and 50 µM saturated 

phospholipid (DPPG or DPPC) in 1:1 (by volume) water and methanol feed the droplet 

source. A recent study of DPPC monolayer on the surface of a water-methanol mixture 

reported a decrease of the lipid density in the monolayer due to the gradual incorporation of 

methanol molecules in the monolayer without significant difference of structural and 

electrical property of the monolayer.25 In our study, we assume that the structures of the 

lipid surfactant layers on water-methanol mixtures are similar to their structures on water 

by itself.  

 

6.2.3 Computational modeling 
 

The MD simulations were performed with the all-atom CHARMM PARAM27 26 force 

field using the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 

code.27 To describe water, we used a flexible TIP3P potential, which incorporates 

additional Hooke’s constants, K, of 900 kcal/mol/Å2 for the OH bond and 110 
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kcal/mol/rad2 for the HOH angle to improve the three site rigid TIP3P model.26 The 

particle–particle particle–mesh method28 was employed to compute the electrostatic 

interactions using an accuracy criterion of 10-4. 

The initial structures for the lipid monolayer-water systems were prepared with 48 

hexagonally-packed lipids on the 3168, 3264, 3744, and 4464 water molecules for the 55, 

60, 65, and 70 Å2/Lipid surface densities, respectively. A potential of the form, E =  ε[2/15 

(σ/r)9 – (σ/r)3], where ε = 0.1521 kcal/mol and σ = 3.1538 Å with cut-off distance of 

2.7071 Å, was applied at z = 0 to prevent water from diffusing in the negative z-direction. 

The dimensions of the simulation cells used were (55.21 × 47.82 × 200.0 Å) for the 55 

Å2/Lipid, (57.67 × 49.94 × 200.0 Å) for the 60 Å2/Lipid, (60.02 × 51.98 × 200.0 Å) for 

the 65 Å2/Lipid, and (62.28 × 53.94 × 200.0 Å) for the 70 Å2/Lipid surface densities. The 

systems were equilibrated for 0.5 ns using 300 K NVT MD simulations by applying Nose-

Hoover thermostat with a temperature damping relaxation time of 0.1 ps. Then, 2.0 ns NVT 

MD simulations were performed, and these trajectories were employed for the analysis of 

the atomic profiles. 

The solvation energy, ∆Esolv, of the DPPG, POPG, and oxidative products of POPG 

(aldehyde and carboxylic acid) were evaluated using the Poisson-Boltzmann model,29, 30 

which is implemented in the Jaguar V 7.5 package (Schrödinger, Inc., Portland, OR). In 

order to simplify considerations of the effect of functional groups on the solvation energies, 

analogous extended conformations of all species were employed for the calculations. DFT 

calculations were performed with the Becke three-parameter functional (B3)31 combined 

with the correlation functional of Lee, Yang, and Parr (LYP),32 using the 6-31G** basis set. 
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In order to describe the water solvation, solvent probe radius and solvent dielectric constant 

were set as 1.4 Å and 80.4, respectively. 

 

6.2.4 Design and fabrication of microfluidic device 
 

The microfluidic device was fabricated with PDMS (polydimethylsiloxane, Silgard 184, 

Dow Chemical, MI, USA) by standard soft lithography.33 Standard photolithography 

techniques were utilized to create patterns in SU-8 (MicroChem, MA, USA) photoresist, 

supported on a Si wafer. The patterned SU-8 film was then used as a mold to cast a PDMS 

microfluidics chip. The design of the microfluidics was based on a flow focusing device 

(FFD),34 combined with a straight microchannel oriented perpendicular to the bubble 

formation component. The height and width of the main channel was 200 µm, while the 

height and width of the narrower (bubble generation) channel was 60 µm. Detailed design 

parameters can be found in Fig. 6.2. The patterned, elastomeric PDMS layer was treated in 

oxygen plasma, and then bonded to a bare glass slide to form a closed microfluidic channel. 

Such plasma treatments make the PDMS surface hydropilic and that hydrophilicity was 

maintained by filling the microchannels with water immediately after the chip was 

assembled.34   

  

6.2.5 Bubble formation tests and analysis 
 

The lipid sample was prepared by mixing 20 µM DPPC and 20 µM POPG in 1×PBS 

solution. The condition for the bubble generation was optimized for the air condition. The 

lipid sample flowed at a constant flow rate, 7 µl/min by a syringe pump and either air or 

ozone was injected at a constant pressure, 0.42 psi. Ozone was generated by a pencil-style 
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UV calibration lamp (model 6035, Oriel) that was placed upstream of the pressure 

regulator. By turning on the UV lamp, air flow was converted to ozone flow. Ozone 

concentration was measured spectrophotometrically and maintained as 20 ppm. 

The bubble formation process was monitored by a microscope throughout the 

experiments and recorded as a movie at 30 frames/sec by a CCD camera. All the images 

were extracted from the movie by DVDVideoSoft (DVDVideoSoft.com) and analyzed 

 
 
Figure 6.2 Design of the microfluidic device for bubble generation. (A) AutoCAD drawing for 

the bubble generation component. Either air or ozone is introduced from the center channel and 

the lipid sample flows in from the outer two channels. Lipid sample flow pinches off the gas to 

form bubbles. The hole in the left is used to introduce water right after plasma-based bonding 

for the hydrophilicity of the channel and remains blocked with a pin-plug for the rest of the 

process. (B) Zoomed-in image of the main components of the bubble formation with dimensions 
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with ImageJ (NIH) for the size and the generation time for the bubbles. The formation 

times for the first thirteen bubbles were measured for the analysis. For the bubble size 

analysis, the lengths of twenty bubbles were measured and 10% sample trimmed mean was 

obtained for the analysis.  

 

6.2.6. Analysis and imaging of the ozone effect 
 

To visualize the ozone effect at the interface, fluorescence-labeled PG lipid was added 

to the lipid sample. The lipid sample composition was 20 µM DPPC, 10 µM POPG, and 10 

µM NBD-PG in 1×PBS solution. The same flow condition as for the bubble formation test 

was used while monitoring the fluorescence. Fluorescence images were taken by a 

fluorescence confocal microscopy for the air as well as the ozone conditions. 10 frames 

averaged image with the exposure of 7.2 µs and the gain of 7.7 was taken for visualization. 

Gray value intensity was measured with ImageJ. 

 
6.3 Results and Discussion 

 
6.3.1 Probing chemical property changes by FIDI 
 

Interfacial Reaction of POPG with O3. The cis-double bond of an unsaturated 

phospholipid reacts with O3, yielding aldehyde and carboxylic acid products directly from 

primary ozonide (POZ) or through energetic Criegee intermediates (CI), while saturated 

phospholipids such as DPPG and DPPC remain intact. In this study we have investigated 

the heterogeneous reaction of O3 with POPG as a representative unsaturated phospholipid 

in the PS system.  
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The negative ion FIDI-MS spectra for ozonolysis of POPG in a water/methanol (1:1 by 

volume) droplet are shown in Figure 6.3. Singly deprotonated POPG, observed at m/z 747, 

is seen as a dominant species in the FIDI-MS spectrum before O3 application. Products 

resulting from ozonolysis of POPG appear at least as early as 5 s after exposing the droplet 

to O3. The aldehyde and carboxylic acid products are observed at m/z 637 and m/z 653, 

respectively. In addition, hydroxyhydroperoxide (HHP), methoxyhydroperoxide (MHP), 

and what we assume to be the secondary ozonide (SOZ) are also observed as products of 

POPG ozonolysis at m/z 671, m/z 685, and m/z 795, respectively. The relative abundance 

of the reactant POPG decreases dramatically after 15 s of exposure, and the FIDI-MS 

spectrum is dominated by ozonolysis products after 30 s.  

The formation of primary ozonide (POZ), which is the first step in the ozonolysis of 

POPG at the air-liquid interface, is described as 

POZPOPGO k→+ 1
3 . (6.1) 

The ozone concentration is assumed to be constant during the reaction, which allows 

calculating the reaction rate using the pseudo-first-order rate constant k2= k1[O3], where k1 

= 4.5 × 10-16 cm3 molecule-1 s-1 adopted from ozonolysis of OPPC on NaCl.35 The applied 

ozone concentration is ~ 5 × 1014 molecule cm-3 (20 ppm). The reaction rate is expressed as 

0 ,2 ][
][

surf
surf POPGk

dt
POPGd

=−
.
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 For 90% and 99% depletion of POPG at the air-liquid interface, it takes ~ 10 s and ~ 20 

s, respectively. This agrees well with the experimental observation of this study.  

It is noteworthy that hydroxyhydroperoxide (HHP), methoxyhydroperoxide (MHP), 

and the SOZ, which are known to be metastable species in the bulk phase, are observed as 

major products of POPG ozonolysis in the FIDI-MS spectra (Figure 6.3).35 In order to yield 

HHP, a Criegee intermediate (CI) or a POZ is required to react with a water molecule.35, 36 

Rapid decomposition of HHP through proton transfers from water molecules yields  

 

Figure 6.3 Heterogeneous reaction of POPG with O3 as a function of time. In the absence of 

ozone, the negative ion FIDI-MS spectrum of POPG is dominated by the singly deprotonated 

POPG peak at m/z 747. POPG is depleted after 15 s of exposure, and oxidation products are 

dominated by deprotonated HHP at m/z 671. The aldehyde, carboxylic acid, and 

methoxyhydroperoxide products are observed at m/z 637, m/z 653, and m/z 685, respectively. 

The SOZ and sodiated alcohol products show up in the spectra at m/z 795 and m/z 661, 

respectively. The structure of each product is shown in Scheme 6.2. 
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ROS,36 which makes it difficult to observe HHP directly in the bulk-phase. The water 

density at the air-liquid interfacial region is significantly lower than in the bulk-phase.37 In 

addition, water molecules in a lipid layer at the air-liquid interface are observed to be 

localized within the lipid head group region due to the strong interactions with polar head 

 
 

Scheme 6.2 Summary of heterogeneous oxidation of POPG with O3 at the air-liquid interface. 

R′ is H for water and CH3 for methanol. 
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groups.38 These conditions allow HHP to be abundant in the lipid layer at the air-liquid 

interface, which is a characteristic of the heterogeneous reaction of POPG compared to the 

homogeneous reaction.36 The observed MHP originates from the reaction of a CI or POZ 

with a methanol molecule in the droplet. The proposed reaction mechanisms are shown in 

Scheme 6.2. 

A significant abundance of SOZ is observed in the FIDI-MS spectra after exposing the 

droplet to O3 for 15 s. The structure of SOZ (m/z 795) is confirmed by low-energy-

collision induced dissociation (CID), which yields the aldehyde (m/z 637) and carboxylic 

acid (m/z 653) fragments (Fig. 6.4). The peak corresponding to SOZ continues to build up 

 

 
 

Figure 6.4 The FIDI-MS2 spectrum of SOZ at m/z 795 showing two competitive products at 

m/z 637 and at m/z 653, which correspond to the aldehyde and carboxylic acid fragments, 

respectively 
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in the spectrum as the POPG lipid is depleted. We infer that the observed SOZ is not 

formed by direct rearrangement of POZ but rather by recombination of the CI with 

aldehydes (Scheme 6.2).35, 39 In the bulk-phase, however, faster reaction with water 

molecules prevents the CI from reacting with aldehyde to form SOZ.40 A significant 

amount of the sodiated alcohol product (m/z 661) is observed after exposing the droplet to 

O3 for 30 s. This product is due to the dissociation of SOZ followed by the association with 

sodium cation. This suggests that after SOZ is produced in an anhydrous environment, the 

newly formed hydrophilic molecule interacts with sodium cation in the liquid-phase to 

yield the sodiated alcohol product. These SOZ and sodiated alcohol products are 

characteristic of specific air-liquid interface chemistry during POPG ozonolysis. 

Interfacial Reaction of a POPG and DPPG Mixture with O3. Figure 6.5 shows 

negative ion FIDI-MS spectra for the heterogeneous ozonolysis at several reaction times of 

a mixture of DPPG and POPG at the air-liquid interface. Conditions employed are identical 

to those used to obtain the data shown in Figure 6.3. Singly deprotonated DPPG and POPG, 

observed at m/z 721 and m/z 747, respectively, dominate the FIDI-MS spectrum before O3 

application, suggesting that the pulmonary surfactants DPPG and POPG form a mixed 

interfacial layer.  The products resulting from the ozonolysis of POPG appear at least as 

early as 5 s after exposing the droplet to O3. All products, including aldehyde (m/z 637), 

carboxylic acid (m/z 653), HHP (m/z 671), and MHP (m/z 685), are observed to result 

from ozonolysis of POPG in the mixed surfactant system. The relative abundance of the 

reactant POPG decreases by half after 15 s of exposure, while the product abundance 

continues to increase after up to 30 s of exposure. The FIDI-MS spectrum is dominated by 

DPPG after 45 s.  



 215 

The absence of any ozonolysis products from the saturated lipid DPPG indicates that only 

the unsaturated lipid POPG reacts with ozone. Several differences are observed from the 

heterogeneous ozonolysis of the DPPG and POPG mixture compared to the ozonolysis of 

POPG alone. First, with extensive ozonolysis, the products disappear from the surface of 

the droplet, leaving only DPPG at the interface. The ozonolysis products of POPG are 

expected to be more hydrophilic than the precursor (Scheme 6.2). The data in Fig. 6.5 

suggest that these hydrophilic products diffuse into the aqueous droplet, leaving only 

hydrophobic DPPG in the interfacial surfactant layer. Comparison of the results in Figs. 6.3 

 

Figure 6.5 Heterogeneous reaction of a 1:1 mixture of POPG and DPPG with O3 as a function 

of time. In the absence of ozone, the negative ion FIDI-MS spectrum is dominated by singly 

deprotonated POPG and DPPG at m/z 747 and m/z 721, respectively. The oxidation products of 

POPG—including aldehyde (m/z 637), carboxylic acid (m/z 653), HHP (m/z 671), and MHP 

(m/z 685)—are observed after 5 s of O3 exposure. Singly deprotonated DPPG dominates the 

FIDI-MS spectrum after 45 s. 
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and 6.5 indicate that the overall ozonolysis reaction of POPG, including the depletion of 

POPG on the surface of the droplet, is slower in a mixture with DPPG.  

The lipid tails of DPPG adopt a highly ordered arrangement in a surfactant 

monolayer.41 In the mixture of a DPPG and POPG, the saturated acyl chains of DPPG may 

act to shield POPG, limiting the approach of O3 to the unsaturated carbons of POPG, with a 

corresponding slower reaction compared to POPG alone. Note also that a significant 

abundance of SOZ is not observed in the FIDI-MS spectrum of a mixture of DPPG and 

POPG (Fig. 6.5). As discussed earlier, SOZ is formed by the recombination of the CI with 

aldehyde under an anhydrous environment (Scheme 6.2).35, 39 In the mixed surfactant layer, 

competition on the droplet surface is expected between hydrophobic DPPG and the 

relatively hydrophilic nascent products of POPG ozonolysis. This accounts for the 

observed predominance of DPPG in the FIDI-MS data at long times. 

  Interfacial Reaction of a SOPC and DPPC Mixture with O3. We also investigated 

the heterogeneous reaction of O3 with a mixture of saturated and unsaturated lipids using 

SOPC and DPPC in the positive ion mode (Fig. 6.6). In contrast to phosphatidylglycerol 

(PG), the positive ion mode FIDI-MS spectra of phosphatidylcholine (PC) show additional 

dimeric complexes along with monomers as sodiated species. The sodiated DPPC and 

SOPC monomers are observed at m/z 756 and m/z 810, respectively. The sodiated 

complexes at m/z 1489 and m/z 1597 are DPPC dimer and SOPC dimer, respectively. The 

heterogeneous dimeric complex of DPPC and SOPC is observed at m/z 1543. The 

measured intensity of the homogeneous and heterogeneous dimeric complexes are not very 

different from the statistical ratio (1:2:1) indicating that DPPC and SOPC form a well-

mixed interfacial layer. The FIDI-MS spectrum reveals the ozonolysis products after 5 s of 
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O3 exposure. The product at m/z 700 corresponds to the sodiated aldehyde product of 

SOPC. The sodiated complex of intact SOPC and the aldehyde product of SOPC are 

observed at m/z 1543. With extensive ozonolysis (15 s), SOPC is depleted, and eventually 

the aldehyde products also disappear from the spectrum, suggesting that only DPPC 

remains in the surfactant layer. 

In contrast to the negative FIDI-MS spectra of POPG, only aldehyde products are 

observed from the ozonolysis of SOPC. The only significant difference between the two 

 

Figure 6.6 Heterogeneous reaction of a 1:1 mixture of SOPC and DPPC with O3 as a function 

of time. In the absence of ozone, the positive ion FIDI-MS spectrum shows the singly charged 

sodiated DPPC and SOPC monomoers at m/z 756 and m/z 810, respectively. The singly charged 

mono-sodiated DPPC and SOPC homodimers are observed at m/z 1489 and m/z 1597, 

respectively. The singly sodiated heterogeneous dimer of DPPC and SOPC appears at m/z 1543. 

The oxidation products of SOPC, including monomeric aldehyde product (m/z 700) and the 

complex of DPPC and aldehyde product (m/z 1433), are observed after 5 s of O3 exposure. 

Sodiated DPPC monomers and dimmers of DPPC dominate the FIDI-MS spectrum after 30 s. 
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lipids is the nature of the polar head group, which is acidic in the case of the 

phosphatidylglycerol lipid and amphoteric (zwitterionic) in the case of the 

phosphatidylcholine lipid. However, it is not obvious how this might influence the 

observed difference in ozonolysis products. The two mixtures are similar in that at long 

times the more hydrophilic oxidation products disappear from the spectra as they are 

dissolved into the aqueous phase. 

Note also that depletion of SOPC oxidation products occurs more rapidly from 

ozonolysis of the mixture of SOPC and DPPC compared to ozonolysis of the POPG and 

DPPG mixture. In forming a surfactant layer the fatty acid chains of the saturated 

phospholipid DPPC exhibit less-orderly packing compared to those of DPPG.41 More 

random orientation of DPPC fatty acid chains may cover unsaturated carbons of SOPC less 

effectively compared to DPPG, allowing SOPC to react with ozone more easily. 

Water Density at the Position of Unsaturated Carbons in a Lipid Monolayer. As 

discussed above, the unique low water density environment of the air-liquid interface may 

allow us to observe metastable HHP and POZ in the heterogeneous ozonolysis of POPG. In 

order to develop a more detailed picture of the interfacial environmental, we carried out 

MD simulations for the POPG monolayer in a water box for 2.0 ns with four different 

surface densities (55, 60, 65, and 70 Å2/lipid). These surface densities are reported as a 

proper density range for pulmonary surfactant function from previous theoretical studies.41–

43 The final snapshot in Fig. 6.7a shows the POPG monolayer at the air-liquid interface 

monolayer with 60 Å2/lipid surface density as a representative case. Fig. 6.7b shows the 

atomic density profiles of oxygen atoms of water molecules, saturated carbon atoms, and 

unsaturated carbon atoms of lipid acyl chains along ±∆z, which is z-direction relative to the 
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averaged position of the phosphorous atom of POPG. The interaction between POPG and 

water occurs in the region of overlapping density. The lipid head group is solvated, 

reflecting the strong ion-dipole interactions between the POPG phosphate group and water 

molecules. However, the water density at the double bond of POPG (5–20 Å) is ~ 0.0005 

atom/Å3, which is ~ 70 times less dense than in the bulk-phase (~ 0.035 atom/Å3) when the 

POPG monolayer has 60 Å2/lipid surface density. This indicates that a limited number of 

water molecules are involved when ozone interacts with the double bond of POPG. A 

single water molecule is required to form a HHP from a CI or a POZ.35, 36 Further reactions 

with water molecules result in formation of ROS (Scheme 6.2).36 The low water 

 

Figure 6.7 (a) Final snapshot after 2.0 ns of MD simulation of a POPG monolayer at 60 

Å2/lipid. Water molecules and chloride ions are shown in cyan and purple, respectively. (b) 

Atomic density profiles of POPG monolayer systems as a function of ∆z, where the air/liquid 

interface is 0 (negative values are toward the water layer, and positive values are toward the 

lipid). The lipid surface densities are 55 Å2/lipid, 60 Å2/lipid, 65 Å2/lipid, and 70 Å2/lipid. Red 

solid lines denote that of unsaturated carbons of lipid acyl chains, black dashed lines denote that 

of saturated carbons of lipid acyl chains, and blue dotted lines denote the density profiles of 

oxygen atoms of water molecules. 
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concentrations around the double bond allow HHP to survive sufficiently long to be 

observed in the FIDI-MS spectra. It is noteworthy that SOZ appears after POPG is depleted 

on the surface of the droplet (Fig. 6.3). The fast reaction with water inhibits formation of 

SOZ from CI when water molecules are accessible.40 Depletion of the limited number of 

water molecules in the hydrophobic portion of the ordered lipid allows SOZ to form and 

accumulate in the surfactant layer. 

Solvation Energy of Phospholipids and Ozonolysis Products. We observe 

composition changes in the lipid surfactant layer resulting from ozonolysis of saturated and 

unsaturated phospholipid mixtures using time-resolved FIDI-MS (Fig. 6.5 and 6.6). To 

understand the surface activity of phospholipids and their oxidized products, DFT 

calculations were performed to compute the solvation energy, ∆Esolv, for DPPG, POPG, 

and two products (carboxylate and aldehyde) from the ozonolysis of POPG. The calculated 

∆Esolv indicates the energy difference between the gas phase and the solution phase. Lower 

values of ∆Esolv would be expected to correlate with higher surface activity of molecules at 

the air-liquid interface. In addition, ∆Esolv provides a measure of the relative 

hydrophobicities of similar molecules.  These results provide a reasonable explanation of 

the observed disappearance of the ozonolysis products from the surface of the droplet over 

time. Calculations were performed for both neutral and anionic states of the 

phosphatidylglycerol group. Table 6.1 lists the calculated ∆Esolv values of DPPG, POPG, 

and the ozonolysis products of POPG. The solvation of a singly charged anion is 

energetically favored compared to the corresponding neutral lipid by ~ 58 kcal/mol. Both 

anionic and neutral DPPG and POPG exhibit similar stability in the solution phase. This 

supports our hypothesis, based on the observed lipid distribution in the FIDI-MS spectrum 
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shown in Fig. 6.5, that both DPPG and POPG are co-located at the surface of the droplet. 

Carboxylic acid products are more stable in the solution phase compared to intact DPPG 

and POPG by ~ 8 kcal/mol. Once the carboxylic acid dissolves in the solution phase, 

further stability can be achieved by deprotonation of carboxyl group. The ∆Esolv of an 

aldehyde product is calculated as ~ 4.5 kcal/mol less than that of an intact POPG. However, 

it is ~ 3.7 kcal/mol higher than the ∆Esolv of a carboxylic acid product. This indicates that 

aldehyde products have higher surface activity than carboxylic acid products at the surface 

of the droplet. This agrees well with the positive ion mode FIDI-MS spectra, in which 

aldehyde is the predominant observed product from the ozonolysis of unsaturated 

phospholipids (Fig.6.6).  

 
 

6.3.2 Probing physical property changes by microfluidic bubble generator 
 

Bubble Formation in a Microfluidic Device. The size of bubbles and the frequency of 

bubble generation were monitored to study physical characteristics induced by the change 

Table 6.1 Calculated solvation energies of phospholipids and ozonolysis products 

 

Lipid 
Solvation Energy (kcal/mol) 

Neutral Anionic 

DPPG -32.9 -91.5a 

POPG -33.6 -91.7a 

Aldehyde product -38.3 -96.2a 

Carboxylate product -41.8 -100a, -184b 

 
aSingly charged anion with deprotonated phosphatidylglycerol group. bDoubly charged anion 

with deprotonated phosphatidylglycerol and carboxylate groups 
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of chemical properties in the lipid layer. The experimental setup, device designs and bubble 

formation process are shown in Fig. 6.8. The bubble generation device comprises three 

 
 
Figure 6.8 (a) Experimental setup for the bubble generation and ozone effect test. (b) 

Microfluidic device design for bubble generation and zoomed-in image of the bubble formation 

component. Air or ozone was injected from the center channel and lipid mixture was flowed 

from the outer two channels. The width of the narrow thread channel is 60 µm and the main 

flow channel for bubbles is 200 µm. (c) Representative pictures of the bubble formation process. 

Bubbles are generated through a pinch-off process in a reproducible manner. All scale bars: 200 

µm  
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inlet channels: a center channel supplying gas and two outer channels supplying lipid 

mixture in solution. There is a constant inflow of lipids mixture and gas-generated bubbles 

in a highly reproducible manner through a pinch-off process (Fig. 6.8c). Bubbles were 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎𝑎𝑎𝑎
× 100 

Table 6.2 Bubble size (in pixel) and the polydispersity index 

 

 Air Ozone 

Average 64.43244 61.72388 

Standard deviation 0.672664 1.125165 

Polydispersity Index 1.043983 1.8229 

 

 

 
 

Figure 6.9 (a) Major force components for bubble generation on the lipid monolayer in the 

narrow channel region. Elastic force of the phospholipid monolayer at the air-liquid interface 

counteract the pressure force from the gas and the shear force from the bulk lipid flow. Since the 

pressure for the gas and the flow rate for the bulk lipid flow are fixed, the physical 

characteristics of the lipid monolayer plays a major role in the bubble formation process. (b) 

Free body diagram for the force balance. The interface in the thread (the narrow channel region) 

is assumed to be a cylinder. 



 224 

generated with a polydispersity index of ~ 1% (Table 6.2). The polydispersity index is 

defined as the standard deviation of the length of the bubble divided by the mean length of 

the bubble in percentage. Low polydispersity index indicates that our device enables 

making uniform bubbles, which leads to a statistically meaningful analysis on the interface.  

Most commonly used microfluidic devices for bubble generation are based on two 

geometries: T junction 22, 44 and FFD.23, 34 Our design is mostly based on FFD but also has a 

T-junction-like characteristic due to the perpendicular main flow channel to the bubble 

formation components. Thus, we can think of three major factors dominant for the bubble 

formation: pressure force from gas, shear stress induced by flow, and the elastic property of 

the monolayer thin film (Fig. 6.9).45 Since we fix the pressure of gas and the flow rate, the 

characteristic change in the bubble is induced by a physical property change of the lipid 

monolayer, such as the interfacial tension or elasticity that will be discussed below. 

 

Ozone Effect on the Air-Liquid Interface. In previous section (6.3.1), we 

demonstrated the heterogeneous ozonolysis of a mixture of saturated and unsaturated 

phospholipids at the air-liquid interface by field-induced droplet ionization mass 

spectrometry (FIDI-MS).46 We found that only the unsaturated phospholipids react with 

ozone and form relatively hydrophilic products such as aldehyde and carboxylic acid which 

dissolve into the bulk phase leaving only saturated phospholipid on the surface of the 

droplet at ~ 30 s of time scale. In order to visualize this chemistry in our system, we used 

fluorescence-labeled unsaturated lipids, NBD-PG. NBD-PG has the same structure as 

POPG except for the fluorescence tag on the saturated acyl chain. Constant flow of lipid 

mixture of DPPC, POPG, and NBD-PG was maintained and either air or ozone was 
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introduced to generate bubbles. Stronger fluorescence was observed at the interface near 

liquid phase when ozone was introduced (Fig. 6.10). The stronger fluorescence is induced 

by the hydrophilic products (aldehyde and carboxylate) of NBD-PG that are dissolved into 

the bulk phase and accumulated near the interface. This indicates that we can visually 

detect the chemical change of the unsaturated lipid components induced by ozonolysis, 

which further supports our previous finding.46  

Since DPPC and POPG represent major components of saturated and unsaturated 

 
Figure 6.10 Ozone effect on the chemical composition change in the interface. (a) 10 frames 

averaged fluorescence images for air (left) and ozone (right) conditions. When ozone is the 

working gas, accumulated hydrophilic products of NBD-PG showed stronger fluorescence at the 

interface near bulk phase. Scale bar: 100 µm. (b) Line profile of the gray scale intensity along 

the yellow lines in (a). Fluorescence intensity of the ozone condition showed about a twofold 

increased value near the interface. 
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phospholipds, respectively, in our lung pulmonary surfactant system, it is interesting to see 

physical as well as chemical property change of the air-liquid interface induced by 

environmental stress such as ozone. Especially, DPPC is known as the principal 

phospholipid component with very low surface tension upon compression 8, 47 and POPG is 

known to improve the adsorption and spreading of surfactant owing to its higher fluidity.48 

Thus, dissolving POPG into the bulk solution from the interface can change the physical 

characteristics of the interface, which relates to lung physiology and disease. It is also 

notable that the increase in ozone concentration is associated with the high risk of death 

from respiratory causes.4 In that sense, it is necessary to study the physical characteristics 

of our lung surfactant system under the environmental challenge, and microbubble can be a 

good model for a more in-depth understanding of the system owing to its air-liquid 

interface nature and similar size to the alveoli (100–300 µm).        

 

Elastic Property of the Lipid Monolayer. We investigated the change of bubble 

formation processes caused by the chemical compostion alteration in a mixed lipid 

surfactant layer of DPPC and POPG due to the oxidative stress by ozone. In both cases, the 

tip of the interface near the bubble formation region oscillated significantly until the bubble 

was ejected to the flow (Fig. 6.11a and b). However, a significant difference was observed 

in a bubble formation process with ozone compared to air. In Fig. 6.11b we plotted the 

time-lapsed trajectories of the lower tip of the interface until bubbles were formed. Stronger 

oscillation was observed for the case of air compared to the case of ozone. The oscillatory 

characteristic indicates that the elastic property of the interface is different between air and 

ozone conditions. To further analyze this, we can consider the effective elastic modulus 

(Eeff) defined as 
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𝐸𝑒𝑓𝑓 =
𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑠𝑝𝑖

.          (6.4) 

Under the assumption that the interface near the bubble formation region (in the thread) 

can be simplified as a cylinder (Fig. 6.9), we can expect the following force balance at 

equilibrium based on the free body diagram (Fig. 6.9b), 

𝐹𝑝 + 𝐹𝑠 = 𝐹𝑘  .         (6.5) 

where Fp, Fs, and Fk are pressure force, shear force and restoring elastic force, respectively. 

By using Fp=pπr2 and Fk=k∆x, eq. 6.5 becomes, 

𝐹𝑠 = 𝑘∆𝑖 − 𝑝𝜋𝑝2.          (6.6) 

where k is the spring constant of the monolayer, ∆x is tranverse displacement, p is the 

applied pressure, and r is the radius of the cylinder. Then, 

𝐸𝑒𝑓𝑓 =
𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑠𝑝𝑖

=
𝑝 + 𝐹𝑠/2𝜋𝑝𝐿

∆𝑖/𝐿
 .         (6.7) 

where L is the initial length of the cylinder in the thread. In equilibrium condition, we can 

assume a harmonic oscillatory motion and the harmonic approximation leads to Fk = k∆x = 

m(2πf)2∆x, where m is the mass of the oscillating body, and f is the oscillation frequency. 

From eqs. (6.6) and (6.7), the effective elastic modulus can be expressed as 

𝐸𝑒𝑓𝑓 =
𝑃𝐿
∆𝑖

�1 −
𝑝

2𝐿
�+

2𝜋𝑚𝑓2

𝑝
 .         (6.8) 

Assuming that low concentration of ozone (~ 20 ppm) does not change the density of 

working gas, Eeff becomes a function of the oscillation amplitude and the frequency. 

Analysis on our data in Fig. 6.11b  shows that Eeff at the interface when ozone is applied is 

~ 28% higher compared to the case of air. Numerical values used for the calculation can be 

found in Table 6.3. As discussed earlier, once the mixture is exposed to the ozone, POPG 

reacts with ozone and the products dissolve into the bulk phase: This leads to the higher 



 228 

concentration of DPPC at the interfacial surfactant layer, which yields a more elastic 

interface (primarily due to less fluidity of the saturated lipids compared to the unsaturated 

ones). 

 
 
Figure 6.11 (a) Snapshots of the bubble formation component after 10 frames (0.33 s) from the 

previous bubble formation. (b) Time-lapsed trajectories of the lower end point of the interface. 

Stronger oscillation for a shorter time period was observed when air was the working gas. (c) 

Required time for the bubble formation 
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Another interesting factor to look at is the time required for the bubble formation (Fig. 

6.11c). Obviously longer time was required for a bubble to be generated in the ozone 

condition. In our cylinder-shaped harmonic oscillator model, we can use an analogy 

between the bubble formation process and a deformation process of a material under 

increasing tensile stress. Assuming that the yield strain is similar for both air and ozone 

cases, the longer bubble formation time (i.e., higher yield stress) means that the system is 

more elastic (i.e., steeper slope in the stress-strain curve). Thus, the observed longer bubble 

formation time when ozone is introduced also indicates the higher Eeff value resulted from 

the low POPG content at the interface.  

 

Ozone Effect on Bubble Size. Bubble size is another metric for the physical property 

of the lipid surfactant layer. In Fig. 6.12, representative pictures of bubbles (a) and the 

averaged bubble sizes (b) are presented. The bubble size is smaller when ozone is the 

working gas. We can think of a simple scaling of the bubble size as Garstecki et al. has 

reported previously 34, 45 : 𝑉𝑏 ∝ 𝑞𝑔𝜏, where Vb is the volume of bubble, 𝑞𝑔 is the rate of 

inflow gas, and τ is the time that the thread stays open until bubble is ejected to the flow. 

Table 6.3 Parameters for the effective elastic modulus calculation 

 Air Ozone 
p 0.42 psi 
L 75 µm 
r 30 µm 
Δx 4.575 µm 3.575 µm 
f* 3.48 Hz 3.52 Hz 
m 1.68×10-14 kg 1.31×10-14 kg 

Eeff 37973.5 Pa 48595.5 Pa 
 

* Frequency was obtained from the stable region in oscillation: for the air condition, 1.25 ~ 3.55 

s and for the ozone condition, 13.75 ~ 17.30 sec regions were chosen to obtain the frequency. 
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Since τ is inversely proportional to the elasticity, we can expect that high elasticity induces 

a shorter τ that reduces the volume of the bubble. This agrees well with our observation of 

increased Eeff and reduced size resulting from the increase of DPPC mole fraction in the 

surfactant layer following the heterogeneous ozonolysis of POPG. In addition to the effect 

of the elasticity of the surfactant layer, we can also examine the dynamic viscosity of the 

interface when the surfactant composition changes. The Hagen-Poiseuille relation, 

𝑞𝑔 ∝ 𝑝/𝜇 and 𝜏 ∝ 1/𝑞, leads to 𝑉𝑏 ∝ 𝑝/𝑞𝜇, where µ is the dynamic viscosity and q is the 

volume flow rate of the solution. Since p and q are fixed in our experiment, we can 

compare the dynamic viscosity for both conditions simply by measuring bubble size. From 

the measured bubble scale, we found that the dynamic viscosity of the surfactant layer was 

increased by ~ 4.4% when ozone was used compared to pure air for bubble formation. We 

 
 

Figure 6.12 Bubble size analysis. (a) Representative images of the bubbles in different 

conditions. Pictures were taken when bubbles had flowed 20 mm downstream from the bubble 

formation component. Scale bar: 200 µm. (b) Bubble length in different conditions. The length 

of the bubble was measured from twenty bubbles and 10% sample trimmed mean was obtained 

for the analysis.  
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found that the bubble formation process is very sensitive to the alterations of the lipid 

compositions in the surfactant layers and has a potential for being an analytical tool for 

studying interface physics. 

 

6.4 Conclusions 

 
The FIDI-MS technique is well suited to analyze chemical reactions of phospholipids at 

the air-liquid interface. In FIDI-MS spectra, ozonolysis products distinct from those formed 

in both the bulk-phase and the gas-phase are observed from an interfacial phospholipid 

surfactant layer. MD simulations correlate well with experimental observations and provide 

additional insights into the interactions between lipids and water molecules in the 

interfacial region. In these simulations the low water density around unsaturated carbons of 

the lipid acyl chain provides a rationalization for the experimental observation of 

metastable products resulting from ozonolysis of unsaturated phospholipids.  

In the lung, oxidation of pulmonary surfactant causes surfactant dysfunction in 

adsorption and respreading process, as well as reduction of surface tension.49, 50 Once O3 

traverses the air-liquid interface, it decays rapidly concomitant with the formation of ROS 

in regions with high water densities.51  However, due to the high reactivity with PS at the 

interface, it has been thought that little or none of the O3 can penetrate the PS monolayer to 

attack the epithelium cells below.52 Instead of direct attack by O3 and its derivative ROS, 

secondary oxidized products of PS, such as HHP, have been expected to yield cellular 

damage.52 Our FIDI-MS data indicate that more than 60% of the heterogeneous oxidation 

products of POPG by O3 are peroxides. These products, which are more water soluble than 
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the lipid precursors, eventually dissolve into the bulk liquid where they form ROS36 that 

can lead to cellular damage. 

These findings provide mechanistic details for the reaction of ozone with unsaturated 

phospholipids, leading to possible damage of the pulmonary system by ROS or direct 

ozone exposure. Further studies with more elaborate model systems comprising surfactant 

proteins and various lipids could further clarify the effect of environmental exposures on 

the lung surfactant system. We have reported one such study, demonstrating that 

phospholipid surfactants have a profound effect in moderating the reactions of the 

important surfactant protein B with ozone.19  

We also have developed a microfluidic bubble generator that enables the analysis of 

physical property changes in a model pulmonary surfactant layer at the air-liquid interface 

under oxidative stress condition. The bubble formation process was very sensitive to the 

surfactant composition. Chemical composition change of the phospholipid mixture under 

oxidative stress in the air-liquid interface was identified visually through fluorescence 

monitoring. Our platform was further validated for its potential use in studying the physical 

characteristics of the interface resulting from chemical reactions at the interface. 

Heterogeneous reactions followed by chemical composition changes have been studied as 

important parameters on the physics of the lipid surfactant, and we were able to observe 

their effects in terms of the bubble size and the formation process, especially oscillatory 

behavior. Owing to the sensitive response, reproducibility for good statistics, and the ease 

of manipulation/analysis, we believe that microbubbles in microfluidics have potential in 

understanding the interfacial physics as well as chemistry of the various surfactant systems.  
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