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ABSTRACT

We say that two lattice points are visible from one another if
theré is no lattice point on the open line segment joining them. If
() 18 & subset of the n-dimensional integer lattice L®, we write VO
for the set of points which can see every point of , and we call a
set S a set of visible points if S = VQ for some set Q.

In the first section we study the elementary properties of the
operator V and of certain associated operators. A typical result is
that ¢ is a set of visible points if and only if Q = V{VQ). In the
second and third gections we study sets of visible points in greater
detail. In particular we show that if Q is a finite subset of L?, then

VO has a “density” which iz given by the Euler product
p pn

where the numbers rp(Q) are certain integers determined by the set Q
and the primes p. And if Q is an infinite subset of L?, we give
necessary and sufficient conditions on the set Q such that VQ has
a density which is given by this or other related products.

In the final section we compute the average values of a certain
class of functions defined on LP, and we show that the resulting
formula may be used to compute the density of a set of visible points

VO generated by a finite set Q.



B 1. lefinitions and tlementary Properties of fets of Visible Points.

Let L? be the n-cimensional integer lattice consisting of points
of the form x = (x1 eXya eee ,xn) with integer coordinates. If x and y

are points of L™ and if m is a positive integer, we write
(1.1) x=y (m)

to indicate that x; = y; (m) for1=1,2, ... ,n. In other words the
points x and y are congruent modulo m i{f and only if m divides cach
component of the vector x - y.

We say that two distinct points of LP are mutually visible if there
is no point of LM on the open line segment joining them. If x and y are
mutually visible,we say that "x can see y" or "y can see x", and we
stipulate that a point can pot see itself.

It was proved in (Zl that two points are mutually visible if and
only if the greateat common divisor of the components of the vector
connecting them is one. For our purpose it will be more convenient to
use a condition stated in terms of the congruence relation (i.1).

Theorem 1,1, Lét x and y be two points of LP, Then x and y
are mutually visible if and only if the congruence x = y (p) is false for
all primes p.

Proof: Since the theorem {8 evident if x = y, we assume that x

and y are distinct points. VWe prove the theorem by showing that there
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is a point of L® on the open line segment joining x and y if and only if

x =y (p) for some prime p. Assume that z is any point on this line seg~-
ment,; then we can write z = y + t{x - v) for some 0 < t < 1. If z is also

a point of Ln. then t must be a ratfonal number, and we can writs t = a/b
where a and b are relatively prime integers. 2ut if p is any prime which
divides b, then it is clear that p must divide each component of the vector
X =yithatis x = y (p). Conversely, if we assume x = y (p) for some prime
p, then z = y + (x - y)/p 1= a point of L” on the open line segment joining
x and y. This completes the proof.

In view of Theorem 1.1 it is convenient to extend our concept of
mutual visibility. Thus, if p is any prime, we say two points x and y
are mutually visible modulo p if x ¢ y (p). If x and y are mutually visible
modulo p, we say that "x can see y modulo p* and "y can see x modulo p”.
Theorem 1.1 can be restated as follows:

Two points x and y are mutually visible if and only if x can see y
modulo p for all primes p.

If O {8 & subset of L™ (O S LM and x a point of L7 (x € LP), we say
that x can see Q if x can see every point of ;. We write VO {or the set of
all points which can see Q, and we say that @ set S {8 a “set of visible
points™ if there is a set ¢ such that € = V<, Similarly, we write VpQ for
the set of pointe which can see C modulo p. Using Theorem 1.1, we

have
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(1.2) ve = N\ V0
P

where the intersection is over all primes p.

Symbolically we can represent the set VPQ as follows:
(1.3) Vp-Qr:ixaL“\xa!y © forallyaO}.

This construction i3 rather awkward, therefore we introduce the sets
xpfg which are defined to be the complements of the sets Vp'::*. We

have
(1.4) XpQ = Wp(:‘)' = {x e LR \x =y (p) for some y E.Q\_g.

Example 1, Let Q be the subset of L% consisting of the points
(k,0) for k =0,%1,£2, ... « Writing Cp for the set of least positive

reaidues® modulo p generated by the points of ©, we have
’:\P = {(Uoo)o(luo)o sae a‘P o 110)3 .
Therefore xp(‘) = zxe Le \(xl.xz) = (r,0) (p) for some 0 < r < p}.
= i_x&:Lz (ngﬁ (p)g "

In other words, the points that can not see ¢ modulo p are just the lattice

points on the lines X, = jp where § is an integer. Ve compute VpQ

* If x 18 a point of LM and m a positive integer, we say that y is the
least positive residue of x modulo m {f y = x (i) and 0 < Yy < m for
l = 1.2. LN ) .no



as follows:
VDQ = (xp(;.)' = {LxELZ \ %, # 0 (p)} .
Using (1.2) we find

vo= [ Vo= {x&Lz\xzz'D {p) for all primes p}
p

= ix ‘ X, = '.’.'.li .

Therefore the points that can see § are just the lattice points directly
above and directly below the x,-axds. Wa might also ask for the sst
of points that can see V(. From the definition of VO it is evident that
any point of C cen see V{; end in this example we can show, quite
easily, that the only points which can see V( are those of ¢. There~-
fore, writing VZQ for VVQ), we have VZQ = Q, and Q itself is a set of
visible pointa. V/e shall see later that the equation VZQ =Q is a
necessary and sufficient condition that a set ¢ be a set of visible points.

txample 2, Let O be as in Example 1 and let R be any subset of
O of the form R = {_(!c,O)} where k > m for gome fixed integer m,
Writing Rp for the set of least positive residues modulo p generated by

R, we see that
Rp= {(r,(})j where r=0,1, oos ,p ~ 1,

Therefore Rp = Qp and it follows that the sets R and © have the same



get of visible points.

Exampla 3, Let & be the set of points {(q.qz)} where q ranges
over the set of primes., To compute Sp {defined as above) we note that
if p is a fixed prime, the set of all primes, {q} . generates a complete

residue system modulo p by Dirichlet's theorem. Thus
Sp = i(r.rz))} whare r= 0,1, ... ,p~1,
and }%S = {x \xl =T (;:’).x2 =ré(p) for somer=0,1, « « » ,p=1 i.
= {x \xz = xf (p)g .

The points that can ot see © modulo p are, therefore, just the lattice
points on the parabolas x; = x‘} + jp whera j 18 an integer. By & com=-

putation similar to the one used in Example 1, we have
VS = {x sz = xi il‘} '
VZS & 2}:\::2 &= xf %)S
and v3s = vv2s) = vs.

These examples illustrate that sets of the form xp(} are fqnda-
mental to the study of sets of visible points. To further our understanding
of such sets we make the following definitions:

Definition 1.1, Let Q be a subset of L™ and let m be a positive

integer. We define the sets O, and X, 0 as follows:
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Qm-{xaL“\osxt< mfori=1,2, +e. ,n; @and x = y (m)

for some y <& Q‘i
(1.5) XmQ'i" aL“\x-_uy(m) foraomeyCQmB.

In addition, we define r;,(Q) to be the number of points in Qp,.

In other words, Qp 18 the get of least positive residues modulo
m generated by the points of Q; and r,(Q) is the pumber of distinct,
least positive residues module m generated by Q. The sets O, are
generalizations of the sets Qp. Rp and Sp which we used in Examples
l, 2 and 3. It is clear, from these same examples, that when m i a
prime, the definition of the set X, © is consistent with the definition
of the sets X,Q given by (1.4).

It is convenient to have a name for sets which are constructed
in the manner indicated by (1.5). Thus, we say that a set S is
"periodic with period m" if we can write § = X, for some Q < L.
We can eliminate the set Q which occurs in this statement by writing
8 = X,5 which will hold if and only if S is a perlodic set with period m.
The reason for the name "periodic” is that if £ {8 a periodic set with
period m, then the characteristic function of S i{s a periodic function
with period m in each of the components of its argument,

It is clear from (1.5) that the complement of a pericdic set is

periodic. Thus, for example, the sets Vp(.} = (}%Q)‘ are periodic; and



we compute®
mp? - ) = n - ).
(1.6) rp(VpQ) P -r, (Xp ) =p rp(w)
Example 4, Let C be the set {(2,4).(6.0)} . “We have

Cnh = 1(000)3
{x|x= (0,0 (]
[x \x# (0,0) (2)3

o {x \ x=(1,0),(0,1) or (1,1) modulo 23_

<
)
)

Therafore rzcizQ) =2 l’z‘f}z) = l’z(Q) = 1 and fzw‘z{}) =3,

In the iollowing theorem we state an important property which will
enable us to approximate sets of visible points with periodic sets by

using the identity VO = { | v,Q.

P
Theorem 1,2, Let £,,8,, ... ,8, be periodic subsets of LP with
periods my,mg, ... ,mp tespectively. Then, if the my's are coprime
in pairs, the set S = i\l Sy is periodic with perfod m = mymgz** "my and
]
Ty, (3) uﬂ Ty (39

{=1

Proof: ‘e prove the theorem for the case of two periodic sets
A and B with relatively prime periods & and b; the general resgult then

follows by the obvious induction argument. Let S = AnB, then we have

* Using the fact that there are axactly p" least positive residues
modulo p.



by a simple computation

8= ixé‘_L“ \xau (a) for some uc Ay; and

x = v (b) for some veBb)} .
For a fixed u and v the system of congruences

(1.7 xzu (a)

xa v (b)

has, by the Chinese Remainder Theorem [ 1], a solution which is
unique modulo m = ab. In other words, if we denote the least positive

solution of (1.7) by x{u,v), then x is a root of (1.7) if and only if
b EX(UJV) (m) °

It is apparent from this that S is a periodic set with period m. To
compute 1, (S), we need to count the number of distinct velues that
x(u,v) can assume. 3ut by definition there are exactly raU!J choices
for the potnt u e 2, and rb(B) cholces for v € By,. A simple argumant
shows that eaach choice of u and v leads to a distinct value for x(u,v).
Therefore ry, (3) = r, (A)r; (B) which completes the proof of the theorem.

In the iollowing theorem we list the properties of sets of

visible points which we use in our subgsegquent analysis.
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Theorem 1,3. If Q is a subset of L™ then

(1.8) vz N %02 Q,
P
(1.9) vio=vo= Nx,(va),
P

(1.10) © is a set of visible points if and only if vig = Q.

Proof: First we show that V,(VQ) 2 X,C. Assume x X,Q, then
x = u (p) for some point uc Q. This point u can clearly see VQ and
in particular u can gsee VQ modulo p. But since x and u are congruent
modulo p, it follows that x can also see V(Q modulo p. This proves

Vp(VQ) 2 X,0. To prove the first part of (1.8), we write
2 3 ~
VEQ = V(VQ) = vawce) 2 prw-

The second part of {1.8) is obvious since ue Q implies u e X0 for
all primes p.

Applying (1.8) to the set VQ, we see that vig 2 VQ. To prove
the inequality goes the other way, assume x¢ VaQ. Then x can see
V20 which implies by (1.8) that x can see Q. Therefore x e VQ which
proves the first part of (1.9). The second part follows from another
application of {1.8) to the set VQ.

To prove (1.10), we observe that if VZQ = Q, then ¢ is clearly

a set of visible points (Q = V(VQ)). Conversely, assume Q is a set of
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visible points. Then { = VS for gome set S. But by (1.8) we have
vio=y35 =ys =0,

which completes the proof of the theorem.

An important consequence of this theorem is that sets of
visible points ocour in conjugate pajrs. That is, if C is a set of
visible points, then the set VC is at once the set of points that can

see O and the set of points which O can ses (O = V{VQ)).
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B 2. Sats of Visible Points Generated by Finite Sets,

In the preceeding section we discovered some of the combin~
atorial properties of sets of visible points and of perfodic sets. In
this section we probe more deeply into the nature of sets of visible
points, Our principal tool will be the fdea of thedensity” cf a set.
However, even without a formal definition of density, we can make
many plausible statements about sets of visible points.

(Consider, for example, the guestion: What is the probability#
that a point x £ LP can see a fixed point be L®7 To answer this
question we ask first for the probability that x can. see b modulo p for
some fixed prime p. To compute this probability, we note that there
are exactly pn least positive residuaes modulo p. It saems reasonable
to assign each of these residues the same probability, Therefore,
since the event "x can see b modulo p” is equivalent to the event
x £ b (p), we could assign the probability (1 = p~ ™) to the event
"% can see b modulo p" . It algo seems reasonable that the events
"x can see b modulc p" should be independent for aistinct primes p.

Thus we are tempted to write

* We make no attempt to justify the use of the language of probability
theory. However, all the statements made in this intraduction can be
formulated in terms of the concept of the dansity of a set (Def. 2.1),
and most of them will be proved in cur subsequent analysis.
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(2.1) Pr {x can see b) -Tf&bccan see b modulo p)
. P

= [ [(1=p™
p

We might also ask for the probability that a point x can see a
given subset Q of L". An argument much like the one used to obtain
(2.1) indicates that the following expression is a plausible answer:

(2.2) Pr (x can see Q) = ( { Pr (x can see Q modulo p)
P

- r
= ;U (- -%%1).

Various forms of (2.1) have been proved in the literature [1,3] .
Rearick [2) has also derived (2.2) in the special cases where Q is a
sat consisting of two points of L” or where Q consists of k mutually
visible points of L®, The methods used by these ressarchers are those
of Analytic Number Theory, involving the application of limiting processes
to finite sums which are used for counting visible points in certain
regions. In this section we shall prove that {2.2) is valid for all sets
Q<L" which contain at most a finite number of points. The methods
we use are combinatorial in nature and are motivated by our preceding
discussion of probabilities, though we shall make no attempt to point
out the probabilistic interpretation of each of our results. In B 3 we
apply these same methods to sets Q containing an infinite number of

points; however in this case we shall sse that the problem is much more



difijcult.

e begin with a definition of the density of a set Q< 1", The
usual definition of density is made in terms of rectangular solids
“expanding to cover L%, Thus, to define the density of Q, we com=

pute the density of O In a rectangular solid of the form
Ra,b" ixaLn\as X < bi *

and let”a -»> =c andb —» +o ", TFor the time being we shall restrict
cur considerations to such rectangular sets, but we shall examine the
quastion of more general regions once we have obtatned some results
for rectangular solids. The following definition is made with these more
general regions in mind.

Definition 2.1. Let S be a subset of L™ and let R be a set
selected from a certain family of bounded subsets of L? (for example
the sets Ra,b’ . ‘We define the density of £ in R as the ratio of the
number of points in S R to the number of points in R. If we indicate
the density of 5 in R by DR(S) and use N(?) to indicate the number of

points in the set A, this definition becomes

Dpi{s) = N(3nR) / N(R).

* Ve write 8 < x < b to indicate the insqualities a; < xy < by where
fi=1,2, ... ,n., Ve write a — = o= to indicate sach component of a
tends to = -« , and gimflarly forb — + oo ,



If it is possible to let R "expand to cover L™ in some manner,
we define D(S), the density of 8, as the limit of DR(S) as R expands
to cover L, This limit may not always exist, but we have recourse
to the "upper density” and “lower density” of 5 by considering the
limit guperior and limit inferior of DR(S) . Therefore we introduce the
followﬁxg notation:

D(B) = nl—i«x»nl.“ Dn (5)

IS) = Mm = Dp(s)
R—L

M8) = lim Bp(®) (if it exists),
R—LD

It iz easy to verify that the density function D satisiies the
following properties of a general measure: If A and B are disjoint sets

with densities in Ln, then

0 <) <1
DY) = 1 = D(A) and

{r uB) = D(a) + D(B).

The proof of these properties follows immeadiately from the fact that they
are satisiied by the function Dyp.
We now prove the following theorem which refers to the regtangular

density of periodic sets.
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Theogem 2,1. If S is a periodic set with period m, the density

of S exists and is given by
D(8) = £, (8) / m".

Proof: It is clear from the definition of a periodic set that the
number of points of S in any n-cube of side m is just r; (5). Let R be
one of the rectangular solids Ra.b' 1f we cover R by n-cubes of side
m, it is easily seen that the number of points in SAR can be estimated

by the inequalities

r,m(s)]:j1 L_L__l] < N(SAR) € (8) E( _.L_.l] +1

Dividing by N@R) = | |(by = a,) , we obtain

b -a -ga
(2.3) rme)TT —iﬂ—mg(s)« rm(s)\ E E ]“

f=] %

Letting b-— +o- and a — =o , it {5 clear that
\-—L——“ 'a]/(bg"q)—"’ —
m m

Therefore D(S) = r,,(S) / m" as stated.

Applying this result to the periodic sets pr and VpQ. we find
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(2.4) DL Q) = 1p(Q) / "
(2.5) DO, Q) = 1 = r,(Q) / p".

If 51,82, oes »S are periodic sets with relatively prime periods,
then & simple application of Theorem 1.2 gives
R k
(2.0) DO\ 8) = | [ DIsp.
i=1 =1
We retufn now to our discussion of sets of visible points.
Iheorep 2,2, Let O be any subset of L™ and let G be a collection
of distinct primes. Let V, be the sst of points which can see 0 modulo

all the primes 1n ©, 1.e. V, = [\ V,0. Then we have

pe®
@n Bw) <l pvar=] | 1-242, ,
Dl o Tp;? L)
and 1f ¢ {s a finite collection V, has & density which is given by
(2.8) Btvgl= | | DV Q).
pe®

Proof: Equation {2.8) is a special case of (2.6). The second
part of (2.7) follows from (2.5) and the fact that the infinite product
appearing there 1s either absolutely convergent or else it diverges to
zero. We have only to prove the first past of (2.7) in the case where
® s an infinite collection of primes. Let @ 'be any finjte subset of

(P . It is clear that V s & Vg and therefore we have for any bounded
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set RS I.n
DRN@) é DR(VO") [
Letting R "expand to LT, we obtain

D(V,) < D) =TT DIV,Q).
pef
The first part of (2.7) then follows by allowing "sto tend to®*.
Probabilistically we can interpret (2.8) as saying that the events
“x can see Q modulo p" are independent in finite collections. We do
not yet know whether this is true for infinite collections of primes.
However we can write by (2.7)

(2.9) DY) s 1T DIV Q).
p

In the remaining portions of this section we shall restrict our-
selves to finite sets Q in order to improve (2.9) as much as possible.
We begin with the following definition:

Definition 2.2, Let Q be a finite subset of L” and let x be a point

of L. The function p Q(x) which we abreviate p(x) is defined by

1 if x can see

p(x) =
p if p is the smallest prime such
that x can not see Q modulo p.

If p i8 a prime, we define the set Ap by



Ap = A (0) = {x | ptd =p}.
We can write the set Ap in the form

A=\ VG A XQ
P q<p q P
which is evident fromn the fact that p{x) = p {f and only if x can see Q
modulo all primes g< p and x can not see { modulo p. An elementary
computation shows that

(2.10) (U Apr = [ VoQ
p<P p<P

for any prime P.

We may now state the fundamental theorem of this section as
follows:

Theorem 2.3, (Density Theorem) If G is a finite subset of L",

then VG has a density which is given by the Euler procuct

(2.11) DWQ)wTTDNﬁMwWTTI-%ga)-
P P

Proofi: We prove this theorem for rectangular densities and then
we display a larger class of regions for which the theorem is true. We

begin by representing VQ in terms of the sets Ap

VQe (x| ptd =1} =17« (x| pta > 1]
= L% - UA,.
P
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Therefore if R is any bounded subset of L, we have
lthQ) = 1= DR( UAp)
p
= 1= Dpla)
P
since the sets A, are disjoint. Now we assume thatR =Ry , 18 2

rectangular set which is large enough to contain all the points of Q.

We write r = min 0"1 - ‘51) and without loss of generality we assume
1<i<n

r= bl - 383, Letting P be a fixed prime smaller than r, we can write

B0+ 1= T o) - S Dy - T Dydy

P<p«r
(2.12) = Do (N VpQ) = D, Dpla) ~ Dplx | pld > ).
p<P P«psr

We estimate the size of the terms Dp(A)) as follows:
foby-ay
DpAp) < D (45Q) < rplQ) TT b <5 by (2.3))

Q)
é—P—-—pn E(x b———-ﬂ-——i_ai)

< ® f%%?l (stnce p <min (by - ay)).

* That is Dp ({x | p()>¢}).
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To estimate Dp(x | p(x) > r), we note that if p(x) = p > r, then

x = y (p) for some ye Q. Therefore p must divide [x; - y;| . But
since © < R, we have |x) -y;| < b -a; =r, which mplies

A =0, Itis easily seen that the set of points that satisfy this
condition has a density in R which is at most equal to N(Q) / r.
Substituting theee results in (2.12), we find

(2.13) Q) 2 Dpl M) vp) =20 > B MO
D Dg QP P p<p$;p5‘r— —_—

We may assume that the series Z rp(Q) converges, since other-~
P

wige the product in (2.11) diverges to zero and the theorem is evident
from (2.9). Therefore we may allow R to expand to LP in (2.13) and

obtain

RvQ) > Dl () vpQ) - 2° Z t%(Q)

p<P p>P
= | |owe) - 2 Z ol
p<P pop P '

Letting P tend to infinity, we find

pova) > | [ptvpQ)
p

which when coupled with (2.9) proves the theorem for rectangular
densities.

It would be futile to attempt to characterize, in a meaningful
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way, all those families of sets {R} for which the Density Theorem is
true. We shall content ourselves with the following sufficient con-
dition which includes a large class of sets. Let S = (81’82’ & &g

be a sequence of subsets of L™ which satisfy lim S, = L". Then

fo=
the Density Theorem will hold if: (1) S assigns the "proper density"
{as given in Theorem 2.1) to periodic sets and {2) each set 8, can be

covered by a rectangular set Ry in such a way that Um N Rg)/N(S))

1500

is bounded. We omit the details of the proof that these conditions
are sufficient for (2.11) to hold. The idea of the proof is to use the
sets of S in computing the first term of (2.12) and to use the rec=~
tangular sets to estimate the other two terms.

'l_'he following examples {llustrate the types of sets that satisfy
conditions (1) and (2) and those that do not.

Emm_h' Let S be any bounded region of E” which has Jordan
content. If X, is any point in the interior, we can “magnify” 8 about
Xo by using the mapping £ = xg + tle = x) defined for x< E", It

is easy to verify that the sets
Sy = {xel?| x=f{y) for some y¢ 8]}

satisfy properties {1) and (2).

Example 2. Let S be the set defined by
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2

Sln {xELn\ (x%#- cees ¥ xn) 612

sor 0 s x;< 1£ and x2=X3...=0}_

Not only do the sets S; not satisfy property (2), they do not satisfy

property (1) for the periodic set
T= ixaLn | xy=21(2) andx =0(2) fori=2, ... .n}.

In the following theorem we show that a finite number of the sets
VpC can be perturbed in the intersection N VpQ without affecting the
truth of (2.11). d

Theorem 2,4, Let Q be a finite subset of L" and let
894834854 -0 48p be an arbitrary collection of periodic sets with
prime periods 2,3,5, ... ,P respectively. Then the set
s= /) Sp A N VpQ has a density given by

ps<P p>P

D) = |1 pisy - | | pEvpo.
p<P p>P
Proof: The proof of this theorem is essentially the same as
that of Theorem 2.3. In fact we can make the same estimates of the
error terms in the equation (2.12). The details of the proof are omitted.
Using Theorems 2.3 and 2.4 , we can say a great deal about the
structure of VQ for finite sets Q. Before proceeding to these remarks,

we give the following theorem which characterizes sequences of the

form {r_(Q)] .



Ibgorgm 2,3, Let ty,ty, «.. tp .. be a sequence of integers
(indexed by the primes) which satisfies the inequalities 0 < t< p?
for all p. Then a necessary and sufficient condition that there exists
a finite get Q< L® with the property that ™ (Q) = tp for all p is that

lim tp exist and
p-’ooo

(2.14) lim tp=maxt, |
P»oe Y
Proof: The necessity of the conditions is apparent, for let Q be

a finite subset of L. Then rp,(Q) < N(Q) for all p, while lm rp(Q)=N(Q)

Poe
since for sufficiently large p all ths points of Q are distinct modulo p.
The sufficiency can be proved by constructing a set which satisfies

the requirements. Write lim tp = t, then we must choose t points
P

which satisfy rplxl.xz, W5 i ,x‘) = tp for all p. We choose x;
arbitrarily, then we define the sequence (x3,x3, ... ,X) recursively
as follows: Having selected X1eXs see oXyoq. WE choose X to
satisfy
(1)  x§ =2 (p) for all primes p such that rplx, <. Xjay)=t,
(2) Xy can Bee X; X3, «+. , 8nd Xj_; for all other primes.
The existence of such a point % is guaranteed by Theorem 2.4 in the
case n > 2 since the set specified by conditions (1) and (2) has a

positive density. For the case n= 1 a separate proof can be given by
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ordinary congruence methods. The set © = ("1"‘2' T .xt) is
seen to satisfy r,(Q) = t, since for each p x3,%x2, «.. WXy, are
distinct modulo p and all the remaining points of ¢ ({f any) are con~
gruent to x; modulo p. This completes the proof.

This theorem will be extended to the case of infinite sets in
the next section.

If Q is a finite subset of L™, we have seen that the density
of VOO is given by ﬁ (1~ :;P%Q—) ). This product will converge

P

absolutely for n> 2 since 'ﬁ'}r converges and the rp(Q) are
p

bounded. Therefore, in the case n > 2, the only way VQ can have

zaro density is for one or more of the factors 1 - E%(qu to
5(Q)
vanish., If D(VPQ.) =] - -R—-n is zero for some prime p, then V,Q
P

must be empty in which case VO = ﬂ XpQ is 2ls0 enmpty. Therefore
P .

VC either has a positive density or it is empty. If VQ is not empty,we

may prove
(2.15) v2Q = Q (Q 13 & set of visible points) and
o n -
rp V) = p= - r (Q).

From Theorem 1.3 we have V2Q > Q which implies rp(vzo) > r.(Q).

p

Therefore we have
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2
by =TT -2 ) (TTa -2 o pva.
P pn p p

But since VaQ = V(Q, we must have equality and it follows that
£, V%) = 1. (0) for &ll primes p. This is possible only 1f V20 = ©;
for if VZQ were larger than C,

14m rpwz(}) = N(Vz(:}) > N(Q) = lim rp(C‘) . To prove the second

p—l—)oe p—’oﬂ

part of (2.15) we note that rp(VQ) T p(Q) < p? since VQ = V.0
p

and Q= [ xpc_:—. From Theorem 1.3 we have VQ = [\ XPCVQ).
P P

Applying Theorem 2.2 we see that

Tvay < 11 VA
p PY

Therefore if rp(VQ)< pn - rp(Q) for some p, we have the contradiction

B r,(Q) -~ T g ()
[T -22=) =Dve) ST Tl bk 5,
P P p P" P ph
We summarize these results in the following:

Theorem 2,6, Let Q© be a finite subset of L" forn>2. Then
either VO has positive density or V() 18 empty, and the second
poasibility can arise only if VpQ is empty for some prime p. If VQ

is non=-empty, then O is a set of visible points (C=V(VQ)) and we have
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(2.16) xp(vc;) uvpc;.

Proof: The proof of {2.16) is immediate from {2.15) and the

fact that X_(VO)S V_O.
P p
Equation (2. 16) may be interpreted as follows: Let %, be any

point of L%, Then for a fixed prime p we can always solve the con~

gruence x = x, (p) subject to the condition that x£Q or x¢ VO.
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8 3. The Infinite Case.

In this section we extend some of the results of the last
section to the case where Q is an infinite set. We begin with a
theorem which strongly indicates the need for some modification of
our previous results.

Iheorem 3,1, Lett,,tq, ... ,t, , .. be a sequence of integers

P
(indexed by the primes) satisfying the conditions

0<ty< p® forallp.

Then a necessary and sufficient condition that there exist a set Q such

that rp(Q) =t, for all p is that t = lim t, exist (we allow t = + oo )
p—-ano

and that t = sup tp . In addition, if t is infinite, the set Q may be
P

selected so that VQ is empty.

Proof: The portions of this theorem dealing with a finite set Q
and a finite limit t were proved in Theorem 2.5. Therefore we need only
consider the case where t = o or where Q i8 an infinite set. If we
recall that rp(Q) is at least as large as the number of points of Q
contained in any n-cube of dimension p, it follows that whenevar Q is
an infinite set

lim rp(Q) = co = gup rp(Q).
Poe P



All that remains to prove is that if we have a sequence satisf{ying
lim tp = o, then there exists a set Q such that rp(Q) = t;, for all p
and VO is empty.

We shall construct such a set recursively. Let bl.bz, cos

be the set of integers defined by

b1< bz‘ba see

{Pyebys o3 = (t0ta, 0} s

In other words the b's are just the integers which ocour in the sequence
(tz,ts . ««s) amranged in ascending order without repetition. Let
(ey.€5, ...) =L be a linear ordering of L™, We define

Qe (’"‘1"‘2' ...) as follows: Choose x) =e; . Choose x for k > 2
by solving the congruences

xx = X1 (p) for those primes p such that
rpb‘lo LI ] |xk_1) = tp

(3.1)
X = e, (p)  for those primes p such that

rp(Xl, e s e 'XR-I) < tpé bk L]
To prove that the congruences (3.1) actually serve to define a set, we
need only show that there are a finite number of conditions imposed on
the selection of each Xy« To prove this, notice that, since
lim tp =, there can be only a finite number of primes such that

tp < by for any partioular k, and that
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rp(xl, wee ¥ 1)<k = 1< Dby . Therefore a sequence of points may
be selected which satisfies (3.1). Writing Q = (x,,%;, ... ), we
must show that rp(Q) = tp and VO is empty. The fact that VQ is
empty is immediate; for if e is any point of L?, then e = 8y for some 1,
and e can not see % modulo those primes p for which ty =b; . To
prove that rp(Q) =t,, we note that if rp(xl. cee oXy) = t, for some
k, then x; = x, (p) for 1 > k, and no new residues modulo p are
introduced by X, ;4% . 5 .. . Therefore rp(C})é t, . However it is
impossible that rp(Q)< t, because this would imply that the prime p
occurs in all but a finite number of the congruences X =9, (p). But
since (e;,e; ... ) = L, the set {x;,x; ... ) would contain all possible
residues modulo p which contradicts rp(Q)< tps p" .

Theorem 3.1 indicates that there can be no immediate extension
of the " Density Theorem" for finite sets to iniinite sets. For if Q is

any infinite subset of L™ with the properties listed {in Theorem 3.1,

then we clearly can not prove

svo)y=T1 Q1 —%‘;9’-’-)
P

except in the trivial case where the product is zero. However, we can

easily improve the estimate (2.9) by writing

2
(3.2 DvQ) = Svevion < T o vian =TT (1 - R ;‘!" Q.
P p



This is a better result than the one stated in (2.9) since VZQ 2Q
which implies D(przQ)) < D(VPQ) . It should be noted that Thecrem
3.1 in no way excludes the possibility that gquality holds in (3.2).
For the sets Q discussed in the theorem we have VZQ « L, and

the equation

(3.3) DIVQ) = T | DV, (v2Q))
P

holds trivially since both sides are zero.

We can refine (3.2) further if we write VQ = [\ X,(VQ) and use
P

a slight modification of the proof of Theorem 2.2 to show that

_ Q)
(.9 Dva) < T[pogvan =TT e .
P txp P

This result i{s stronger than (3.2) since we have trivially
r,0V0) + r,v%Q) < p°,

One might reasonably ask, “Why even mention (3.2) when the
stronger version given by {(3.4) exists 7" The reason for doing so {s that
if we can prove that equality holds in (3.2) for some class of sets,
then equality must also hold in (3.4) for this same class. And {f the
infinite products involved in (3.2) and (3.4) are positive, it follows

that

(3.5) £, (VQ) + £y (v2Q) = p"



B

‘We shall return to these matters after we obtain some more information.
However we mention in passing 8 nice interpretation of (3.5):

Equation (3.5) holds for the prime p if and only if the congruence

x = a (p) has a solution, for any a ¢ Ln, which also satisfies x ¢ VQ or
X E-VZQ. When (3.4) does not hold, these last conditions can not be
met for some residues a modulo p.

We now extend the definition of the function p(x) and the sets Ap
to enable us to handle the representations indicated by (3.2) and
(3.4).

Definition 3.1, Let Q be a subset of L and let p be a fixed
prime. We define the sets Ap. Bp and Cp as follows:

Ap=A Q)= M\ V0 n X,Q
q<p

B, = qf(\p Vo) o xvi)

Cp= [\ XgVQ) a VL VQ)

a<p

where the intersections are over all primes q < p and are defined to be

L if p= 2. We define the function pA(X) as follows:

P 1fx£Ap
pAbd n
1 x4 A, for all p.

The functions m (x) and pc(x) are similarly defined in terms of



B, and Cp'

P
It should be noted that the function pA(x) is well defined since
the sets Az Bas e .%. .+ 8re clearly disjoint, and similarly
pp and po are well defined.
In Theorem 3.2 we shall demonstrate how the sets Ap, Bp and Cp
are used to represent VQ, but first we compare the sets with one another.
It is evident from their definitions that the sets Ap and Bp aré con~

structed in assentially the same manner; in fact B = A p(\1‘2(;1) . The

p
construction of the sets Cp is essentially different since it makes
reference to the set VO rather than Q or V2G. However, if (3.5) holds,
we have Cp = Bp for all primes p; and in the case of a finite set Q

with a non-empty set of visible points 2ll three collections become
identical. In fact, let Q be a finite subset of L™ and assume VQ is non=~
empty. Then we have V2C = Q which implies A, = B, and from

Theorem 2.6 we have X'p(VQ) = V,Q which implies Cj, = A, . In the

case where Q ig finite and VQ is empty (VQ = ¢) we easily verify that

(1) A= ¢ for all sufficiently large primes p
(2) Bz = Cz = Ln

Bp-Cp-gb for p> 2,

If we merely assume that VQ = ¢ then (2) obviously remains valid;

however there is no guarantee that (1) holds as is illustrated by the
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following:
Example. Let Q= ‘xzoxsa soe oxpa «+s) be the infinite set

(indexed by the primes) defined by

(1) Xg = ey
(2) { X, =€) (q) for all primes q<p

X, = e (p)

where x, 18 any root of the congruences (2) and (e,.e5, +.o e v J=Ll
is a linear ordering of L™ (also indexed by the primes).

It is evident that VQ is empty; for if e, 1s any point of LM then
ep can not see Xp modulo p. To prove that Ap ¥ @, let p be any prime.

We compute
£, Q) =1, (Q) & T )

where TU(p) is the number of primes less that or equal to p. But since
TT{p) clearly satisflies 0 < T(p)< p?, neither X,Q nor V,,Q can be
empty. It follows that Ap, being a finite intersection of non-empty,
independent, periodic sets, is itself non-empty.
The set Q constructed in this example can be used as another
example for which the Density Theorem does not hold. We have

D(VQ) = 0 and

1Ta -'-%%Q—’)a Tla -:5[}‘2_)_ ).



This last product is clearly pot zero for n > 3. However forn = 2

the factors in this product are asymptotic to those in the product

ET - opdes)
which diverges to zero.
Although our discussion has shown that there need be no intimate
relation between Ap, Bp and Cp, the following theorem shows how
Ap. Bp and Cp may be used to represent VO. It also gives arelation
between the functions Ppe Py and PG which is valid in all cases.
Theorem 3,2. Let Q be any subset of L. Then the sets

Ap. Bp and '.'.’:p are periodic and have densities given by

po Q< ¢®
e (v2Q) v (v2Q)
ooy - 352 [T -3

VQ) , —+ 1,(VQ)
o {1 =sB L bl
DiCp) = (1 =-B2—) L\; i

Furthermotre we may represent VQ in terms of these sets as follows:

m-ﬂ-u%-ﬂ-u%uﬁ-Uc
p p )

p L)

The functions pA. R and P are related by
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(3.6) P69 > P69 > PG

for all x£ 1",

Proof: The fact that Ap, Bp and cp are periodic sets with
densities as indicated follows immediately from their definitions and
equation (2.6). To prove the second assertion, we write

(Ua) = Nayt = f\va-VQ
p ) p

(U = Vtv°Q) = VQ and
p

(Uc)'= Nc_'=s MNX (VQ) = VQ.
p
P P F P xp
It follows from these equations that p, () = 1 if and only if xe VQ,
and similarly for ps(x) = 1 and pc(x) = 1, We now show that
pB(x) = p ¥ 1 implies that p, (x) > p; the proof relating ps and py is
similar and will not be given. Let xe¢ L™ and assume pB(x) = p for
some prime p. Then we have
xeBy < (1 votvia) < (Mvga.
q<p q<p
This implies that x ¢ A, for all q < p. Therefore, since pA(,x) #1

(because x{ V), we must have pA(x) = pgix) .

As we shall see in Theorem 3.3 the inequalities (3.86) confirm



our observaticns on the relative strengths of (2.9), (3.2) and (3.4).
This theorem is the first extension of the Density Theorem to infinite

sets (). Before stating the theorem, we insert the following definition.

Definition 3,2, We define the sat A(X) by
A(K) = {xal.n l Pald = Kix( > 03
where x s the "sup. norm"” of x defined by
1% = (0630 eoo o%,)| = max (kg0 4 oen .1:;,‘);

We make analogous definitione for the sets B(K) and C(K) in terms of
Py and P respectively.

It should be noted that by (3.6) we have
(3.7) AlK) = B(K) =2 CK).

Theorem 3,3, Let Q be an infinite subset of L™. Then a

necessary and sufficient condition that VQ have a density* given by

(3.9) DVQ) = T [DV,Q)
P

* We shall prove the sufficiency only for rectangular regions with
uniform dimensions (n-cubes). The proof can be easily modified to
include a rectangular solid expanding to L™ {n such a manner that
the ratio between the longest side and the shortest side remains
bounded.



w37 -

is that
(3.9) lim D(A(L) = 0.
Ko
Similarly
(3.10) BVC) = lp(vp(vzq)) if and only if
ol
(3.11) lim DE(K)) =0, and
Ku)m
(3.12) DVQ) = | [D(X,(VQ))  if and only if
P
(3.13) lim D(G(K) = 0.
Koo

Proof: We shall prove only the sscond of these statements.
The proofs for the other two are essentially a matter of replacing "B"
with “A" or "C" throughout the proof which is given here.
We first prove that (3.10) implies (3.11). We have
B = {x|pyla 2Kixi> 0}
x| g > K5

W B,=(OQ. L/ B)
szp p<‘£{p "

b0y

Therefore if R is any rectangular subset*, we have

* Or any subset of L® which is being used to compute the density of VQ.
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DpB) £ 1 = DRvVQ) - p}(i DR{Bp) .

Letting R expand to cover L, we find by a simple computation that

DEE) < 1-RVY) - 5 DB
p<K

(3.14) - =71 Dv,v2Q) - Dva),
p<K
from which (3.11) follows by assuming (3.10) and allowing K to tend
to infinity.
To prove that (3.11) implies (3.10), we assume that the
recotangular sets R used to compute D(VQ) are equilateral, We mite
Re= a,b and we set d = by - a, (the length of a side of R). Using

Theorem 3.2 and the fact that the Bp's are disjoint, we may write

DREVQ) = 1= ) Dp(Bp).
P

Let P be any prime, let K be any positive number, and choose d so
that dK > P, Then by a computation similar to that used in the proof
of Theorem 2.3, we can write
” 209 =
(3.1 DtvQ) = Dl (N Vo (vZa) - . DylBy)
psP P<p<Kd

= Dplx | pgl) > Kd).



To estimate DR(Bp), we write

Dpl,) < Drixpv2Q)).

Then we cover R by n-cubes of dimension p and use the same argument

used in proving Theorem 2.3 to show that

2
DRm)sczzonEzS’n..Ql :

To estimate the last term in {3.15), we assume that R has been chosen

large enough to contain the origin. We have then
Dplx | pglx) > Kd) < Dgp(B(X)

since Kd = K \x| for all xcR. Combining these results in (3.15),
we conclude that
2 n £, (V2Q)
(3.16) DpivQ) > Dyl N Vpvia) = (20" 0. B2
p<P P<«p<Kd po

- DpB(K) .

We may assume that Z rp(ng) / p® converges since otherwise there
is nothing to prove. If we let R expand to cover L™ in (3.16), we
obtain

I
pwa) > T owywveon - ao® > 252 - Bewm).
ps p>P
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If we allow P to tend to infinity, this becomes

(3.17) ovo) > 11 D(vptsz)) - DK .
P

Equation (3.10) follows by letting K tend to infinity and using (3.11).
We have the following corollary (to the proof of the theorem)
which again refers to the "equilateral" density.
Corollary, Let Q be an infinite subset of L", Then we can make

the following estimates on the size of VQ:

V) — — (V)
TTi’?;a—-c < DWVQ) < DWVQ) < TT-EL:,V,-?—-Q '
P P
where
C = lim Dlx | pc(x) > K\xl) and
‘am
(3.18)

C=Um Dix | p5bd > KIx) .
Lo

The proof of this result follows from the analogues of (3.14) and
(3.17) for the case of C(K) rather than B(£). The limits defining C and
G exist, of course, since the functions of K involved are both mono=
tonically decreasing and bounded below by zero.

The following corollary i8 evident from (3.18).

Corollary. Let Q be an infinite subset of L™, Then if

S =C =C , VQ has a density given by



' T
DVQ) = ﬂ _R.(_VE). -
p po
In particular, if the sets C(K) have densities for sufficliently large K,

then
DEVQ) = TTI%"@- m DICE)).
p

K- oo

Both of the above corollaries may also be stated in terms of the
sets A(K) and B(K).
We now return to our discussion of the relative merits of our

three representations of VQ, namely

VQuLt - UAy=ll = UBy=Ltl = UC, .
P p P

Each of thege expregsions leads to a different product for computing
the density of VO ((3.8), (3.10) or (3.12)). We have discussed the
relations between these products, but it is interesting to see what
they become in terms of the sets A(K), B(K) and C(K). From (3.7)
we have

lim DAK) > lim DE(K) = lim DICR).

Koo K- oo K—Poa
This relation shows us again that (3.8) fmplies {3.10) which in turn

implies (3.12). The sets given in Theorem 3.1 may be taken for

examples in which (3.8) does not hold, but for which (3.10) and (3.12)
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are valid. As ] stated earlier, 1 have no examples in which (3.12)
holds and (3.10) does not. In fact, I have no examples for which
(3.10) does not hold.

In order to prove that (3.10) or (3.12) holds in general we
must analyze the sets B(K) or C(K) in greater detail. The crux of
the whole problem of the density of VQ for infinite sets Q seems to
be in a deeper understanding of these sets or, equally, in a deeper
analysis of the functions Py and Pc e The sets themselves are very
difficult to handle directly. The functions are only defined by implicit
relations on the sets xp(VZQ} and Xp(VQ) which are not so easy to work

with. As an alternative approach we might try to prove the relation
2 n
+ =
rp(VQ) rp(V Q =p

which, as mentioned earlier, would at least show that (3.10) and
(3.12) are identical. However this problem appears to be more |
complicated than a direct attack on (3.10) or (3.12).

It should not be thought from the above discussion that Theorem
3.3 gives us no direct information on the validity of (3.8), (3.10) or
(3.12). As a matter of fact, we can use the theorem to show, for a
large class of infinite sets Q, that VQ does have a density which is
given by (3.8). In order to simplify the notation, we write

Pl = p,(x) and
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{ plr) /x| ifx ¥ (0,0, ... ,0)
P(x) =
0 HX'(0,0. hew 00)

To show that (3.8) holds, we must show that

lm Dx | P(x) > K = 0.
K-oo

3

We first consider a simple example in L™. Let Q be an

infinite subset of La which lies entirely in the (xl.xz)-plane. 1f

xe L3 18 such that p(x) = p for some prime p, then
xedy € %0
Therefore we must have
x = x* (p) for some x'c Q.
But looking at the last components of x and x' we have
plxg=xym=xg
Thus if x3 ¥ 0 we have
pld =p < \xg\ < \x|

which also holds if p{x) = 1 and Xq ¥ 0., Therefore we have P(x) < 1
for all points x except possibly some in the (x;,x 7)=plane. This last

set obviously has zero density and therefore
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DAE)) =0 for K> 1.

Thus we have proven (3.8) for any set ¢ which lies entirely in the
(xl ,xz) plane. It is evident that this result may be extended to

any set lying entirely in a subset of L” of the form
Xy = constant forsome §{=1, ... ,01.

If Q is the finite union of such sets, it is equally clear that the same
argument will be valid. “We may, in fact, prove the following theorem.

Theorem 3,4, Leta = (a 1e seo .8,) be a vector with rational
components and let < and A be real numbers., We gay that a set
Qg is subdimensional (with respect to L™ if for some a, o and 23

we can write

; n
G %xeL'w ots%ajx,g ﬁ} .

Let Q be a subset of L™ which can be repregented as a {inite union of

subdimensional sets, say

o= Ug .
i

Then ¢ has a density which is given by
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: p(Q)
DVQ) = | [ DV,Q) = T | (1 --B5=).
P p
Proof: Let x¢ LM and let p(x) = p (we allow p = 1 in this case).
Then either p{x) = Ll or x ¢ X,Q and in either case we have
(3.19) x = x' (p) for some x'= Q.

By the hypothesis of the theorem, x' must satisfy a releation of the

form
§ 8 3 ot
LS BIXY F oo o FB X <P for some a, < and 2.

1

We may assume without loss of generality that A1,82, «se 43,

« and @ are integerg. Then by (3.19) we have

p|ajlxy =xy) + ...+ a0, =xp) =D,

Therefore efther D = 0, which can happen only for a set of zero density,

or

p <|D| ¢ @ylgl+ ooe +lagl|xy +]alx1+ cee ¥ anxn\

< lagl+ ooe +hap)) [x] + max (14, [8]).
Thus, except for a set of zero density, we have
Pe) = p/ixi<lag] + oo + lag + max (14, 16]).

Since there are only a finite number of possible values for



w 4B w

@34 +ee s 8, and B ,P(x) is 2 bounded function of x except
pogsibly on a set of density zero, and the result follows by Theorem
3.3,

This theorem demonstrates the possibility of obtaining definite
resuits from Theorem 3.3. The following theorem, though not quite
as explicit, gives an interesting condition for (3.8), (3.10), or
(2.12) to hold.

Theorem 3.5, Let © be an infinite subset of Ln. and define

the function P(x) by

px)/ x| ifix| # 0
P(x) =

0 ifxl =0

where p(x) is efther pA(x), pg(x) or pC(x) « Then if

(3.20) Um —ﬁ; >, P(®

R-LD XeR

is finite, VC has a density given by equation (3.8), (3.10), or
(3.12) respectively.
Proof: The theorem states that if P{x) is “averagable" (more

properly has an "upper average”) then

m Dlx | P(x)> K) = 0.

Koo

‘We assume that this last condition dees not hold and show that (3.20)



is infinite. Assume that

lim B(X | PR2K) =g>0.

K—oo

Then for a fixed K there exist "arbitrarily large” R such that
D lx | P >K) > g/2.

For such an R we have

?4-1@-)- 2~ Plx) 2 KDp(x | PG >K) > Kg/2.
XER
Therefore the expression in (3.20) is at least as large as Kg/2, and
since we can take K as large as we please (3.20) is infinite.

YWe close this section with an elementary but interesting result
which shows that “at least half" of the sets of visible points have
zero density.

Theorem 3,6. Let ¢ and VQ be conjugate pairs of sets of
visible points (VZQ = (7). Then at least one of them must have zearo
density .

Proof: Ve may assume that one of the sets has a positive
upper density, since otherwise there is nothing to prove. By

symmetry we may take B(VQ) > 8, This implies
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TTa -Eg_:?.’.) > 0.
p

Therefore rp(Q)/p" tends to zero as p increases without bound.
But we clearly have
Q¢ pr for all p.
It follows that
Dla) < Do) =2
Letting p tend to infinity, we obtain

D) < 0.

This completes the proof of the theorem,



8 4. The Average Values of a Class of Functions in LP,

in this section we prove an identity which contains the
Density Theorem for finite sets as a special case. As will be seen,
the techniques we use have no obvious extension to infinite sets Q.
We begin with the definition of the average of a function in
£,
‘ Pefinjtion 4,1, Let f be a real valued function defined on .
The average value of f on L” is defined by the following limit (if it

axists)
w6y 2 £
R—*L“ ®) xR
where R—L" 18 defined as in Definition 2.1.

For convenience we restriot ourselves to uniform rectangular
sets R =Ry ., and we write r = b, ~ a; for the common dimension
of R.

We now define two functions which will play a basic role in our
subsequent analysis.

Defjnition 4,2, Let Q be a finite subset of L™ and let x be a
point of L®., We define the functions d(x) and F(x) as follows: |
ged (%)%, oee oX,) £ x#(0,0,...,0)

460 = {
0 uxﬂ(D.OQQOQJO)



- 80 -

F(x) = lem dx-y).
YEQ

It 18 easy to see how we can relate the functions d{x)} and
F(x) to visibility problems. For example, two points x and y are
mutually visible if and only if d(x-y) = 1. And the point x can see
¢ if and only if F{x) = 1. In fact, it is proved in [2] that the censity
of VO is the average value of the function >, M(d) where X is the

. d|F &9

Mobius function.

We now state the fundamental result of this section as follows:

Theorem 4,1, Let  be a finite set consisting of k points of L®,
n>2, Let g(m) and G(m) be multiplicative arithmetic functions which
are related by the equation

Glm) = ) gld),
dim

and define G(0) = 0. Assume that g{m) satisfies a relation of the form
(4.1) \glm)| ¢ 2m®
for some constants A and a. Then, if the inequality®

(4.2) n>1+ kza

* Note that if a<0, this condition is automatically satisfied.
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holds, the function G(F(x)) has an average value in L™ which s given
b{r the absolutely convergent Euler product

(4.3) ﬂ( }4 1(Q)0(P‘)>

i=1

.

Proof: The fact that the product converges absolutely
follows from the inequalities {4.1), (4.2) and rpl(Q) < k. We
begin our proof of the theorem by expressing the sum for computing
the average of G(F(x)) in terms of the function g{(d). We then break
‘this sum into three pieces which we call §, , S, and 83. We handle
each of these pleces separately.

We may neglect those x for which F(x) = 0 and then we have

ke B (rbo)--L—Z > gld)

NQR) xer R) xR P )
o gld) + g(d)
N‘R’xen dlzr(x) N‘“’xan dF )
d<D D<d<r

+ Z z g ()

xeR diF(x)
dzr

==81+Sz+83 i

say, where D is & positive constant smaller than r.

We can rearrange the sum Sl as follows:
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(4.4 §, = Z g(u) | ). 1= L gld) Dp G | alFG).

®eR

al P i
Now we prove that the sets A, = §x | ci\F(x)j are pariodic end we
conmpute their densities. First assume that d is a power of & prime.
Then the condition dlF(x) is equivalent to the condition that d divides

dlx~-y) for some point v e C. We can write this as follows:

A - (x|x=y(d forsomeyac} .

Therefore Ad is a periodic set and we have
D(Ad) =14 (O)/dn

But if d 18 a composite number, the condition d(F(x) is equivalent

to the condition that each prime pbwer appearing in the prime power
factorization of d ghould divide F(x). Therefore we can write A, as

the intersection of independent periodic sets, and a simple application
of equation (2.6) shows that the density of Ad,DtAd) is a
multiplicative function of d. Returning to (4.4), we can write

Um 8y= 2 gldD@).
R-LD dsD

If we allow D to tend to infinity, we obtain
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Um lim §) = lq(d) D(Ag) .

Do R-LP
This series is absolutely convergent and, in fact, has the Euler
product given by (4.3). Therefore to complete the proof, it suffices

to ahow that

(4.5) Um Um |S,\=0 and
L= R0

(4.6) Im [S5|= 0.
R-LM

First we turn to the sum S,. We have, by analogy with (4.4),

= 2 gld) Dglay).

D<d«<r

We can estimate the size of the factors Dp(A,) as we did in the proof

of the Density Theorem for finite sets. We find that
n
0 ‘-DR(Ad) < 2 D(Ad)-

Therefore

|85l € 2" D g(d) DAY,
D<d<r

from which (4.5) is evident.
To prove (4.6), notice that if R is large enough to enciose the

origin as well as all the points of Q then d(x-y) < r for all points



xeR and ye Q. Therefore, under these conditions, we have

F{x) = lom d{x-y) < ¥ ,
yeQ

We can then write

85l s D Zq(d)
NR) v R diF()

r<d<rk

<> ) Ak
NR) R alF ()
rsP(x)<rk

It 48 well known (see [1]) that the divisor function d(m) = ) 1 {s
tim

of smaller order than m‘5 for any positive powere . Therefore we can

write

4. S 4 ' k+€k_}_% 1

(4.7) \ 3 A8 N(R)ELR
F(x)>r¢

= A K Do P0) 2 1),

where A' 18 a positive constant depending on € and A. To estimate the

density in R of the set {x |F{x)> r} we observe that



= \Fed 2 o) < {x | dbe-y) > 1/ for some yaQ}

g x | dlx-y) = d
v\eJQ d\‘a/r‘/" |

x \x=my(@3 .
yLé)Q dgl/kk }

Therefore

Dglx | P62 1) € ,Za%;vk"“"‘ x=y (@),

But since these last sets ars periodic, we may use equation 2.3 to

write

Dplx [x=y (d) < 2"Dlx | x =y (d)
< n/an,
Returning to (4.7), we have

|8 <A.rak+c—kz Z 2R /gt
3 yeQ darl/k

< Ny ae ak+ek { g&
< 27kA'Y : /i th

(4.8) < _2_‘_'_‘5%1. ruk-;—ek-ﬂk—-'l
ne- y

But by condition (4.2) it follows that ak = Bi-l- < 0, and if we take €

sufficiently small in (4.8),we can guarantee that the coefficient of
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r is negative, Therefore, letting r tend to infinity, equatjon (4.6)
is evident. This completes the proof of the theorem.

In the proof of this theorem we only used the condition that
n>1+ kza in showing that the product {4.3) was convergent and in
estimating S3. e could have proved the theorem under the
alternative assumptions that n > k(a+1) and the product (4.3) is
absolutely convergent. Neither of the conditions n>1 + kza or
n > k{a+1) is "best possible"; however we have proved the following:

Corollary. Let Q be a finite subset of L”,n > 2, Then VQ has

a8 density which is given by

(4.9) Do) = T - iR
P ph

Proof: Take gfm) =xr{m).

As we mentioned earlier, Rearick (2] has proved this result
for a set Q consisting of two points of Lt §r of k mutually visible
points of L. Itis interesting to see how the Density Theorem may
be stated in these cases. First we let Q be a subset of L” which
consists of k mutually visible points. Then each point of Q leaves
a distinct least positive residue module p for any fixed prime p.

Thersfore rp(Q) = k for all primes p* and equation (4.9) becomes

* We must have k < 21, since there are at most 2 points of LB
which are mutually visible in pairs.
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(4.10) Dva) = | (1 --gﬁ).
P

In the case where Q consists of two points x,y ¢L", a simple

computation shows that

2 if p {dilx-y)
r (Q) =
p 1 if p | dlx~y) .

Therefore, in this case, we may express the density of VQ as follows:

pv)= | | (-4) T a-%)
p | dlx-y) B% p { dix=y) pn

(4.11) =c | | E:LL
p | dlx=-y)P" =2

where C is the constant given by the infinite product
c=T{0-4).
p

Equations (4.10) and (4.11) are the expressions of the Density

Theorem which were obtained by Rearick.



REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory
of Numberg, Third Edition, Oxford (1954).

D. F. Rearick, Some Yigibility Problems in Point Lattices,
Ph.D. Thesis, California Institute of Technology (1960).

J. Christopher, Am. Math. Monthly, 63, No. 6, 389-401
(1956).



