Mechanics of thin carbon fiber composites with a
silicone matrix

Thesis by

Francisco Lépez Jiménez

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011
(Defended January 7, 2011)



i

© 2011
Francisco Lopez Jiménez

All Rights Reserved



1l

A mis abuelos, que no pudieron estudiar,

pero para los que la educacion de sus hijos fue lo primero.



v

Acknowledgements

This section is nothing but a brief, scarce summary: the people I need to thank are too
many, the list of debts I have is too long to detail.

The work presented in this thesis would not have been possible without the guidance
and support of my advisor, Professor Sergio Pellegrino. It has been honor to be his first
Caltech student. I have been always particularly impressed by his willingness to spend
as much time as iwas required (sometimes more than two hours) discussing a problem.
Looking back, those meetings were some of the most enjoyable parts of my stay at Caltech.

I also need to extend my deepest gratitude to the members of my both my thesis
defense and candidacy examination committees, Professors Michael Ortiz, Guruswami
“Ravi” Ravichandran, Kaushik Bhattacharya and Chiara Daraio, and Dr. Mark Thomp-
son. Their support and advice, both scientific and personal, was key during several points
of my Ph.D. I am particularly grateful to Professor Ortiz, who is the main responsible,
along with Professor Pilar Ariza from the University of Seville, for my involvement with
Caltech. T will never forget the opportunity they gave me. Finally, I want to acknowledge
the support and inspiration of Professors Jaime Dominguez Abascal and José Dominguez
Abascal.

Besides my advisor and committee members, several other people have provided sug-
gestions or help at one point or another. Dr. Leri Datashvili, Dr. Julidn Santiago-Prowald,
Professor Wolgang Knauss, Professor Mathieu Desbrun, Dr. Abha Misra, Jingqing Huang,
Dr. Laurence Bodelot, Dr. Daniel Balzani, all of them were more than eager to give me
a hand when in need.

I want to thank the sponsorship of the Keck Institute of Space Studies at Caltech, and
the Earl K. Sears fellowship, which allowed me to focus on my research without having
to worry about funding.

Caltech would be a much less nice place if it weren’t for the people who make everything



A%
easy. From the administrative stuff, to the catering, to the several labs, everybody works
make the lives of the students easier and more pleasant. I need to particularly thank John
Van Deusen from the Mechanical Engineering Machine Shop, for his mentoring, advice,
and his inhuman patience while explaining me how to change the tool in the lathe for the
n-th time.

My work conditions would have been substantially more miserable without the great
interaction with the rest of the members in Professor Pellegrino’s research group. You
guys have greatly contributed to both my research and personal life. I need to mention
particularly the two people with whom I worked more closely, my office mate Chinthaka,
who many times acted as a postdoc, helping everybody in the group, and Kawai, partner
in many night discussions, due to our common (and late) timetables.

All my friends at Caltech have been essential for my happiness. Celia, Olive, Yacine,
the Spanish crowd, Pia, Greg, Andreas, Dev, Phil, Jim, Flora, Daniel and family, and
many others, from getting a coke and taking a walk to sharing the madness of the first
year, you were always there. As a more gifted writer said once, “defeats are softened and
victories are sweeter because we did them together”.

Everybody involved in the Caltech Classroom Connection, the people coming to movie
night, my Erasmus friends, everybody in Seville (Maria, Mercedes, all my high school and
college friends) and all my family (both the very small one I was born with, and the larger
one I found on the way here; you all know who you are), you all helped me at looking
at things with a little bit of perspective and distance, and putting, even if briefly, the
research problems aside.

Finally, nothing would have happened without the support and love of my parents and
sister, who inspired me with their integrity and work ethics, and who always encouraged
me to follow my dreams, even if that involved moving to the other side of the world. You
made me who I am.

Gracias a todos.



vi

Abstract

This thesis presents an experimental, numerical and analytical study of the behavior of
thin fiber composites with a silicone matrix. The main difference with respect to tra-
ditional composites with epoxy matrix is the fact that the soft matrix allows the fibers
to microbuckle without breaking. This process acts as a stress relief mechanism during
folding, and allows the material to reach very high curvatures, which makes them partic-
ularly interesting as components of space deployable structures. The goal of this study is
to characterize the behavior and understand the mechanics of this type of composite.

Experimental testing of the bending behavior of unidirectional composites with a
silicone matrix shows a highly non-linear moment vs. curvature relationship, as well as
strain softening under cyclic loading. These effects are not usually observed in composites
with an epoxy matrix. In the case of tension in the direction transverse to the fibers, the
behavior shows again non-linearity and strain softening, as well as an initial stiffness
much higher than what would be expected based on the traditional estimates for fiber
composites.

The micro mechanics of the material have been studied with a finite element model.
It uses solid elements and a random fiber arrangement produced with a reconstruction
process based on micrographs of the material cross section. The simulations capture
the macroscopic non-linear response, as well as the fiber microbuckling, and show how
microbuckling reduces the strain in the fibers. The model shows good agreement for
the bending stiffness of specimens with low fiber volume fraction, but it overestimates
the effect of the matrix for more densely packed fibers. This is due to the high matrix
strain that derives from the assumption of perfect bonding between fiber and matrix. In
the case of tension transverse to the fibers, the model shows a much better agreement
with experiments than traditional composite theory, and shows that the reason for the

observed high stiffness is the incompressibility of the matrix. In order to capture the
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strain softening due to fiber debonding, cohesive elements have been introduced between
the fibers and the matrix. This allows the model to capture quantitatively the non-linear
behavior in the case of loading transverse to the fibers, and the damage due to cyclic
loading. A single set of parameters for the cohesive elements produce good agreement
with the experimental results for very different values of the fiber volume fraction, and
could also be used in the analysis of more complicated loading cases, such as bending or
biaxial tension.

In addition to the simulations, a homogenized analytical model has also been created.
It extends previous analysis of composites with a soft matrix to the case of very thin
composites. It provides a good qualitative description of the material behavior, and it
helps understand the mechanics that take place within the material, such as the equilib-
rium of energy terms leading to a finite wave length, as opposed to microbuckling under

compression.
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Chapter 1

Introduction

1.1 Composite materials in deployable space struc-
tures

Composite materials are defined as those made from at least two or more constitutive
materials which remain distinct at the microscopic level, as opposed to homogeneous
combinations, such as alloys. The constituents are usually chosen so that the composite
exhibits the best quality of each one. In practice, composite materials usually consist of a
soft constituent, known as matrix or binder, and a reinforcement material which increases
the overall stiffness of the composite.

Several materials found in nature are in fact composites. Wood, composed of cellulose
fibers in a matrix of lignin, is probably the best known example, and many biological
tissues consist of collagen fibrils embedded in a very soft hydrated-matrix. Man-made
composite materials are also common in engineering applications. Examples of composite
materials used in industrial applications include: concrete, the graphite-reinforced rubbers
used to make tyres, and fiber composites, which are possibly the most widely used form
of composite materials.

Fiber composites are composite materials in which the reinforcement component are
fibers, embedded in a matrix of polymer, usually epoxy. Several type of fibers are used,
the most common one being carbon fibers. The strength-to-weight and stiffness-to-weight
ratio of carbon fiber composites make them very attractive to aerospace applications, to
the point that the fuselage of the new Boeing 787 Dreamliner and Airbus A350 XWB will

be mainly made of composites. Besides being used as rigid structural components, fiber
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composites also play an important role in the design of deployable space structures.
Most space structures include elements that are deployed after launching. This can
be achieved with two different types of architecture. The first one is based around stiff
structural members connected by mechanical joints to allow their relative motion. An
example of this approach is the deployable mast in Figure 1.1. The main limitations to
these structures are their complexity, weight, and the fact that they need to be externally

actuated.

Detectors

Figure 1.1: An artist’s concept of the NuSTAR telescope showing the deployed mast,
taken from NASA Science News (January 7 2010)

More recently, joint-less architectures have been proposed. In this case large relative
motions between different parts of a structure are achieved by allowing the connecting
elements to deform elastically. These designs are comparatively lighter, simpler, and do
not require external actuation, since they use the stored strain energy of the structure to
activate deployment. Some examples can be seen in Figure 1.2.

In this type of architecture it is common to use very thin elements, such as tape
springs, working as hinges. These components become highly compliant when folded, and
much stiffer when they are deployed. The maximum curvature of the folded hinge cannot
exceed a limiting value that is related to the failure strain of the material. This is the main
limitation on how tightly one can package structures based on this type of architecture.
New designs have appeared in recent years for structures that require hinges that can
achieve high curvatures and recover elastically (Mejia-Ariza et al., 2006; Rehnmark et al.,

2007; Mejia-Ariza et al., 2010b). A possibility is the use of fiber composites with a very



Figure 1.2: Examples of deployable space structures: (a) DLR-CFRP boom, German
Aerospace Center (Leipold et al., 2005), (b) Northrop Grumman Astro Aerospace Flat-
tenable Foldable Tubes for the Mars Express (Adams and Mobrem, 2009), and (c¢) Boeing
springback reflectors on the Mobile Satellite System (Tan and Pellegrino, 2006)

soft hyperelastic matrix, such as silicone or rubber. These composites can be folded to very
high curvatures while retaining their high tensile stiffness. The plot in Figure 1.3 shows the
areal density vs. failure curvature for thin shells of different materials, usually considered
in the design of deployable structures Mejia-Ariza et al. (2010b). The thickness of each
shell is calculated so that all of them have the same stiffness under tension, 10 kN/mm.
It must be noted that Figure 1.3 does not present a complete characterization of
the materials. The analysis only considers unidirectional stiffness, while considering an
isotropic shell would benefit alloys over composites. Also, important aspects such as
compression stiffness are omitted, and would greatly depend on the geometry of the
complete structure. However, it shows the potential of deployable structures based on

fiber composites with a soft hyperelastic matrix.

1.2 Motivation

This thesis focuses on the mechanics of composites made with carbon fibers embedded
in a silicone matrix. Fiber composite materials in which the fibers are bonded by a

soft hyperelastic matrix, such as silicones and elastomers, are an attractive alternative
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Figure 1.3: Areal density vs. failure curvature for thin shells with 10 kN/mm tensile
stiffness: Torayca M60J carbon fiber composite, Hexcel IM7 carbon fiber composite,
Hexcel AS4 carbon fibers in vinyl-ester resin at 50% fiber volume fraction, AGY S2
glass fiber composite, spring steel (ASTM A228), 304 stainless steel, superelastic nickel-
titanium, HT'S40 carbon fiber in epoxy at 60% fiber volume fraction, HTS40 carbon fiber
in silicone at 30% fiber volume fraction. Material data taken from Mejia-Ariza et al.
(2010b), except carbon fiber in silicone, for which the model in Chapter 6 has been used
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for the design of deployable structures. Such materials can be folded to a much higher
curvature than composites made with traditional epoxy. The reason is the capability of
the fibers to move within the matrix. In particular, the fibers in the compression side of
the material can buckle without breaking (see Figure 1.4). This process acts as a stress
relief mechanism during folding (Campbell et al., 2004; Murphey et al., 2001; Francis
et al., 2006; Francis, 2008).

Figure 1.4: Bent elastic memory composite sample showing microbuckling of initially

straight fibers. Taken from Francis (2008)

This new type of composite has already been used to build models showing excep-
tional folding capabilities (Datashvili et al., 2010; Mejia-Ariza et al., 2010a), such as the
reflector shown in Figure 1.5. However, the micromechanics of the fibers are not properly
understood yet. There are no numerical or analytical models able to predict the strain
in the fibers, and therefore estimate the failure curvature. The mechanical response of
the material has also not been studied. There is a particular need to analyze the bending
stiffness, and the nonlinearities due to fiber microbuckling. Finally, even if these compos-
ites are able to undergo extreme folding deformations without catastrophic failure, some
non-critical damage might be taking place in the material. These questions need to be

addressed before this type of composite can be used in the design of space structures.



Figure 1.5: SMART demonstrator with an umbrella-like deployment scheme, folded and
deployed (Datashvili et al., 2010)

1.3 Outline

The layout of the thesis is as follows. Chapter 2 reviews the relevant background to the
problem studied. Special attention is paid to three different topics: mechanics of fibers
in a hyperelastic matrix, fiber microbuckling, and stress softening of filled rubbers. The
most relevant theories are presented, and their relation to the present work addressed.

Chapter 3 describes the materials used in this study, and the specimen fabrication
techniques. Special care is taken to produce a proper characterization of the fiber dis-
tribution within the material, since it will be used to build the finite element model of
Chapter 4. The experimental results are then presented. The response to tension in the
direction along the fibers is dominated by the fiber’s properties, and does not differ from
traditional composites with epoxy matrix. The situation is different when bending or
tension perpendicular to the fiber direction is applied. In this case, the material shows a
highly nonlinear behavior, as well as stress softening.

Chapter 4 presents the finite element models used to study the micromechanics in the
material: a three-dimensional model for folding, and a two-dimensional model to study the
loading transverse to the fibers. Both of them use representative volume elements (RVEs)
with periodic boundary conditions. Three different types of fiber arrangements have been
used: a hexagonal lattice, a purely random arrangement, and a random arrangement

based on the fiber distribution observed in micrographs of the material, created with a
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reconstruction algorithm. A parametric study of parameters such as the size of the RVE
and the mesh refinement is also presented.

Chapter 5 contains the numerical results. In the case of bending, the material presents
a good quantitative prediction in the case of low fiber volume fractions. When the vol-
ume fraction is high the model captures the qualitative behavior, but overestimates the
stiffness. The two-dimensional predictions for loading transverse to the fibers provide a
good approximation of the linear stiffness. Cohesive elements are introduced to capture
the strain softening due to fiber debonding. This makes it possible to model also the
nonlinear response after the initial regimen.

Chapter 6 presents an analytical study of the bending properties of the material. This
work extends some of the results presented in Chapter 2 to the particular case of very
thin fiber-reinforced hyperelastic solids.

Chapter 7 presents a discussion on the results, as well as concluding remarks. Finally,
Appendix A details some of the options used in the numerical simulations, and Appendix B

contains a detailed analysis of the fiber folding test in Section 3.1.1.



Chapter 2

Background

There are three main differences between epoxy and silicone fiber-reinforced composites
that will be addressed in this work. This chapter will provide a review of relevant studies
regarding the three of them.

The first difference is the nonlinear behavior of finitely deformed fiber composites. Sev-
eral large strain models have been used to study the mechanics and stability of composites
under large deformations.

The second one is the fact that the low elastic modulus of the silicone allows the fibers
to microbuckle without breaking, as they do with epoxy matrix. In particular, the fibers
are able to buckle when the material is folded. This stress relief process has been studied
in the case of elastic memory composites, but the mechanics are not properly understood
yet, especially regarding the nonlinear post-buckling behavior.

Finally, fiber-reinforced rubbers present stress softening, commonly known as Mullins
effect. This is a progressive damage process typical of particle-reinforced rubbers, which

reduces the stiffness of the material as the applied strain is increased.

2.1 Large strain mechanics of fiber-reinforced com-
posites

There are several large strain formulations for fiber reinforced composites. Several of
them make use of the work of Spencer (1972), who showed that for an elastic material
without internal constraints the most general strain-energy function for a homogenized

transversely isotropic nonlinear elastic solid depends only on the first five invariants. The
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first three, I, I5, and I3, are the usual invariants of C = F”F, where F is the deformation

gradient

12 = Igt?"(c_l) (22)

The other two invariants, I, and I5, are defined using the unit vector A, which defines
the direction of anisotropy given by the fiber reinforcement in the undeformed configura-

tion

I1 =A(CA) = aa (2.4)
Is = A(C?A) = aBa (2.5)

where a = FA, that is, the direction of fiber reinforcement in the deformed configuration.
It is clear from the definition that I is the square of the deformation in the direction
of the fiber, i.e., the stretch of the fibers. I5 does not have a clear physical meaning, but

it can be shown that

where C* = I3C~! is the adjugate of C. The final term in the equation can be interpreted
as the square of the ratio of deformed to undeformed surface area, for an area element
normal to A.

This formulation was used by Triantafyllidis and Abeyaratne (1983) to study the ma-
terial and geometric instabilities of unidirectional fiber-reinforced elastic materials under
large deformations. In order to do so, the energy of the material was defined as the sum

of an isotropic component and an anisotropic term taking into account the contribution
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of the fibers

W = ‘/Viso(llu [27 [3) + Wam’so([4) . (27)

The fiber contribution is modeled with the so-called standard reinforcing model

Waniso(Is) = a (I — 1)™ (2.8)

where the anisotropy parameter « is positive, and the exponent m is usually particularized
to 2.

This model was used to predict surface bifurcations due to compression in plane strain
conditions, and it showed that the presence of fibers can weaken the material with respect
to its stability. However, some of the results are not applicable to carbon fiber composites,
since the values of the stretch used are well beyond the critical elongation of the fibers.

A similar approach was used by Merodio and Ogden (2002) to extend the analysis to
instabilities different from fiber kinking, such as debonding, splitting, and matrix failure,
using the result of Geymonat et al. (1993) relating macroscopic instabilities to the loss of
ellipticity of the homogenized constitutive relationships. Two different ways to model the
effect of the fibers were used by Merodio and Ogden: the standard reinforcing model, as
well as an energy term function of I;. The matrix was modeled as incompressible, which
allowed simplification of the kinematics of the material. The work was extended to the
case of a compressible matrix in Merodio and Ogden (2003).

Several biological materials fit the description of stiff fibers in a very soft matrix,
and several models have appeared based on Spencer’s approach. Holzapfel et al. (2000)
modeled arterial walls as a combination of layers, each of them with two different sets of
fibers, with initial direction given by the unit vectors A; and A,. For this reason, the set

of additional invariants required is now
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I, =A:(CA,y)
Is = A (C°Ay)
Is = A3(CAy)
I; = Ay (C?A,)
Is = (A; - Ay)A, - CA,

Iy = (A1 - Ap)?

where the Iy is a constant defining the initial geometry, and C is obtained through the

multiplicative decomposition into volumetric and deviatoric components

F = (J%I> F (2.15)
C=F"F=JiC=JiF'F. (2.16)

In this case the energy term due to the presence of the fibers is

Waniso(j47j6> = 2]{:—];2 Z <6k2(fi*1)2 . ].) (217)

where k; > 0 is a stress-like material parameter and ky > 0 is a dimensionless parameter.
The same procedure has been applied to model the cornea (Pandolfi and Manganiello,
2006), and modified to include the spatial dispersion of collagen fibril orientations (Pan-

dolfi and Holzapfel, 2008) by defining the energy as

= 7 ki (T4 (1—3m0 T —1)2
Waniso<[47[6) —= Z _1 <€k21(5111+(1 3!‘111)[1 1) _ 1) (218)

i=4,6

where k; € [O, %} is a parameter modeling the dispersion, and ky; > 0 and ky; > 0 are

dimensionless and stress-like parameters, respectively, to be determined from mechanical
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tests.

A different approach used to study fiber-reinforced hyperelastic materials is based on
the second-order homogenization theory developed by Ponte Castaneda (2002). The re-
sults are still in development, see for example Lopez-Pamies and Ponte Castaneda (2006),
Agoras et al. (2009), and Lopez-Pamies and Idiart (2010). This theory has been compared
with numerical results in Moraleda et al. (2009a).

In all these studies, the loading is two dimensional, usually under the assumption of
plane strain. This is due not only to the extreme complexity of the models, but also to
the intended applications, mainly filled rubbers such as tires and biological materials. In

particular, there is no analysis of behavior under bending.

2.2 Fiber microbuckling

The first analysis of fiber microbuckling is due to Rosen (1965), who used Timoshenko
and Gere’s solution for the buckling under compression of a beam on an elastic foundation
(Timoshenko and Gere, 1936). It models the composite as a two-dimensional succession
of fibers of thickness d at a distance 2c from each other. The analysis equates the change

of strain energy of the material, AU, with the external work, AT

AU = AU; + AU, = AT (2.19)

where AUy and AU, are the strain energies per unit width in the fibers and the matrix.
Each fiber is assumed to buckle in a sinusoidal pattern. The deflection v in the y

direction, defined in the centroid of a fiber, is expressed as

v = asin (%) (2.20)

where \ is the wavelength.

Neglecting the shear and normal terms, the strain energy of the fibers can be expressed
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as

7rEfd3a2

JSY (2.21)

AU; =

where E is the elastic modulus of the fibers and the second moment of area of the fibers
have been calculated per unit width.

Regarding the matrix, Rosen considered two options, the so called extension mode, in
which the fibers buckle alternatively out of phase, with the matrix deforming in extension,
and the shear mode, in which the fibers buckle in phase, shearing the matrix between them,

see Figure 2.1.

7

a b
Figure 2.1: Schematic of fiber microbuckling: (a) extension mode and (b) shear mode

The shear mode is the one that requires lower energy, and so it is the one detailed
here. The shear is assumed to depend only on the longitudinal coordinate x, which gives

the form
ov Ou d\ dv
v du ) de 2.22
Tou 8x+8y <+20)daj (222)

where the factor 2—’2 takes into account the thickness of the fibers in the shearing deforma-
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tion of the matrix, and the derivative g—; is again taken in the axis of the fiber.

The strain energy of the matrix is therefore equal to

AU, _]}/ v —Gpe(1y L) ™ (2.23)

where (5, is the shear modulus of the matrix.
Finally, the external work can be expressed as a function of the load carried by every

fiber, of, and the fiber deflection as

1 Aav\? opdma®

Combining the three equations together, the critical stress is equal to

G, Ed?
U =V 1=V, | 1202
7 ( )

(2.25)

where V; is the fiber volume fraction, Vy = ﬁ.

The critical stress is minimized then the wavelength A is much larger than the fiber

diameter d, with an asymptotic value of

G
o, = . (2.26)
Fr TV (=)
The homogenized critical load for the material as a whole is then equal to
Gm
cr — . 2.27

In his extensive work on composite failure, Fleck (1997) gives a value of the critical

stress equal to

m2d*E
3\

O =G+ (2.28)

where F and G are the axial an in-plane shear moduli of the composite.
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Fleck also establishes that the experimentally observed compressive strength is ap-

proximately equal to 0., = €. The reduction is due to imperfections, pre-existing fiber

e
waviness, and plastic kinking.

The approach of treating the fibers as beams on an elastic foundation has been used in
several other works that refined the approach of Rosen, studying the effect of factors such
as material thickness, fiber volume fraction, and the type of load applied to the material
(Drapier et al., 1996 1999 2001; Parnes and Chiskis, 2002).

The influence of fiber microbuckling for the flexural properties of a composite was stud-
ied by Marissen and Brouwer (1999). They calculated the reduction of flexural strength as
a function of the ratio of tensile strength to critical buckling stress in the composite. Their

work focuses only on the ultimate strength, since microbuckling is a failure mechanism in

traditional composites, see Figure 2.2.

Figure 2.2: Micrograph of a unidirectional polyamide 66 glass-fiber composite, exposed to
flexural creep load at enhanced temperature and humidity, provided by Jan van Lochem
from KEMA Inspection Technology. Taken from Marissen and Brouwer (1999)

The situation is different if the matrix is soft and elastic enough to allow the fibers
to deflect without breaking. Microbuckling can then act as a stress relieving mechanism,
as it has been shown for the case of thermoplastic and elastic memory composites (Gall
et al., 2000; Murphey et al., 2001; Campbell et al., 2004; Lan et al., 2009). Figure 2.3
shows a sketch of the process. When the folding starts, the bending stiffness is constant
throughout the thickness of the material, and the neutral axis lies in the middle plane.
As the fibers in the compression side reach the critical buckling load, their stiffness is

reduced, according to the post-buckling mechanics of the fibers. This produces a bilinear
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constitutive model, shifting the neutral axis from the middle surface to the tensile side of
the laminate. This effect reduces considerably the maximum strain in the fibers, allowing
for a much smaller radius of curvature. It should be noted that the buckling deflection has
been depicted as out of plane for a better visualization. Experimental observations show

that it occurs within the plane of the material, that is, parallel to the axis of rotation.

Stress Profile
I =m(r+t/2) Tensile
Stresses
N
[ -1, mw@+t/2)-mw(r—t/2) t S t

)

&= _
/ r r + [=nr ‘ ())I %\
Compressive Neutral
Stresses Axis
L =n(r—t/2)

Figure 2.3: Fibre microbuckling and stress profile in a heavily bent laminate, taken from
Murphey et al. (2001)

This effect has been studied by Francis (Francis et al., 2006; Francis, 2008), with
an analysis similar to that of Rosen. The main difference is that the fiber deflection is
not uniform through the material. Instead, it depends on the position of the fiber with
respect to z, defined as the coordinate through the thickness. In order to calculate this
dependence, it is assumed that the homogenized strain along the direction of the fibers, €,,
varies linearly through the composite thickness as a function of distance from the neutral
surface according to Kirchoff’s hypothesis. It can therefore be calculated with the usual

expression

€ = —k(z — zp) (2.29)

where k is the applied curvature and z, the position of the neutral strain surface.
It is then assumed that the fibers stretch in the tensile side, while on the compression
side the homogenized strain is accommodated by the fiber purely by microbuckling, with

no fiber extension or compression. In this case, the strain needs to be expressed as
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a function of the end shortening of a sinusoidal wave with constant arc length. The
calculation involves an elliptic function of second order, but a good approximation is
given by
. Ta\2
& = — (ﬁ> . (2.30)
Assuming that the wavelength A is constant through the material, the sine amplitude

a can be expressed as

a= %\/—_ﬁ:x = %\/,‘1(2 — Zn) . (2.31)

The dependence of a with respect to z introduces a new shear component in the
matrix, 7,.. This deformation is produced by the difference in deflection of fibers with

two different values of the z coordinate, and it can be approximated as

v KA . [T
Vyz = & = W\/ﬁsm (X) . (232)

The total strain energy in the material can now be expressed as

AU = AU, + AU,y + AU, + AUy (2.33)

where AU, is the strain energy of the unbuckled material (fibers and matrix), AU,, and
AU, are the strain energy terms of the matrix, and AUy is the strain energy of the
buckled fibers. Every energy term has a different dependence with respect to the buckle

wavelength A

AU,. x A (2.35)
1
AU o 55 - (2.36)

Following the procedure of Rosen, the critical buckling stress will have, as before, a



18
constant component (due to AU,,) and a component proportional to 55 (due to AUy),
but also a term proportional to A? (due to AU,,).
Therefore the case of non-homogeneous buckling differs from that studied by Rosen in
the presence of an additional term in the expression of the critical stress, which increases

with the fiber wavelength. The wavelength will be the value that minimizes the sum of

all the terms, which is now finite. The value given by Francis is

m 9Vft2d2Ef

A=2
|V

where t is the thickness of composite plate being bent. Once the wave-length has been

(2.37)

calculated, the amplitude of the buckled fibers can be calculated using Equation 2.31.

The strain in the fibers can then be approximated as

d d dar?
Ef = §f€f = 51)” = 2)\2 (238)

where € is given as an absolute value.

Similar studies have been performed with composite materials in which the matrix
is silicone or very soft epoxy (Lopez Jimenez and Pellegrino, 2009; Mejia-Ariza et al.,
2010a), always under the assumptions of linearized kinematics and linearly elastic material

behavior for both fiber and matrix.

2.3 Stress softening in filled rubber

Experimental observations show that when a rubber filled with reinforcing particles is
loaded in simple tension, unloaded, and then loaded again, the stress required on reload-
ing is lower than that required on the initial loading. This stress softening is usually
called Mullins effect, due to the extensive early measurements by Mullins. It is shown
schematically in Figure 2.4. If a virgin material sample is loaded to the strain level (1),

it follows the path (a), known as the primary loading curve. Subsequent unloading and
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loading to state (1) will follow the path (b). The material has been weakened by the
initial loading process, and its stiffness is reduced. If the strain exceeds (1), path (a) is
followed again. If unloading from a higher strain level (2) occurs, it will create a new path

(c) with a greater loss of stiffness.

Model for carbon-filled rubbers

Stress

D

(0) Strain

Figure 2.4: Typical schematic of cyclic tension demonstrating Mullin’s effect. Taken from

Govindjee and Simo (1991)

The process described above is the usual idealization of the phenomena observed ex-
perimentally, in which a reduction of stress takes place on each successive loading and
unloading cycle. The reduction is largest between the first and second cycle, and it be-
comes very small after a few cycles, a process known as preconditioning. After those initial
cycles, the stress-strain response is essentially repeatable. Representing the loading and
unloading path as the same is also an idealization. There are large differences in the stress
in both states, even in rubbers not showing hysteresis before being reinforced. All these
phenomena depend on the concentration of particles in the rubber. In particular, both
the softening and the hysteresis increase with the filler content. The experimental data
in Figure 2.5 shows all these effects. Stress softening is not exclusive of rubbers, and can
be found in other applications in which a reinforced matrix undergoes large deformations,

such as discontinously reinforced metal-matrix composites and rocket solid fuel.
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Figure 2.5: Periodic uniaxial extension tests of a particle-reinforced dumbbell specimen
with 60 phr of carbon black with maximum stretches of A = 1.5, A = 2, and A = 2.5.
Taken from Dorfmann and Odgen (2004)

Several physical explanations have been proposed, including debonding, molecules slip-
ping, rupture in the filler particles, disentanglement of polymer chains, or crystallization
of rubber due to stress concentrations. See Diani et al. (2009) for a review on different
failure mechanisms, as well as the types of model proposed, some of which are presented
here.

Govindjee and Simo (1991) presented a homogenized model in which damage is incor-
porated through statistical mechanics of polymer networks, applied in this case to carbon
black filled rubbers. It makes use of the phenomenological damage models proposed by
Simo (1987), and shows good agreement with experiments.

Ogden and Roxburgh (1999) proposed a pseudo-elastic model in which the potential
energy of the rubber, which is usually defined as a function of only two of the three

principal stretches, A1, Ay, with the third stretch expressed in terms of the other two due
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to incompressibility, is now given by:

W (A1, A2,m) = W (A1, A2) + ¢ () (2.39)

where W is the potential of the virgin material, 7 is a scalar variable that keeps track of
the damage in the material, and ¢, known as the damage function, is a correction to the
potential.

In a primary loading, that is, when the applied strain is increasing, n = 1 and ¢(1) = 0.

Otherwise 0 <7 < 1 and ¢ needs to satisfy the conditions:

¢ (n) =W (2.40)
¢ (1) < 0. (2.41)

The functions chosen by Ogden and Roxburgh are:

n=1- Lot (i (Wm - W)) (2.42)

r m

and

~¢(n) = mert™ (r (n — 1)) + Wy, (2.43)

which does not need to be integrated explicitly, and where m and r are positive parameters,
and W,, is the maximum value of W, that is, the value for which n = 1. The values of
m and r do not have a physical interpretation, and should be obtained by fitting to
experimental data.

This model is implemented in Abaqus as one of the available hyperelastic potentials.
It was modified by Dorfmann and Odgen (2004) to include permanent deformation, in-
troducing an additional scalar ny. This approach is similar to the one followed by Beatty

and Krishnaswamy (2000).
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Bergstrom and Boyce (1998) provided test of filled rubbers in compression, in which
the time-dependent behavior of the material was studied combining loading tests with
different strain rates, and stress relaxation tests. The tests showed a clear viscoelastic
behavior. They also presented a large strain model in which a decomposition analogous
to the Standard Linear Solid is used. The model provides good agreement with the
experimental data. However, the test showed that the behavior is also present in unfilled
rubber, so it is not clear if the observations would apply to rubbers whose unfilled behavior
is closer to the hyperelastic idealization. The time-dependency is usually neglected in
other works.

Even if there is extensive work on the subject, the case of filled silicone rubbers has
barely been addressed. Machado et al. (2010) presents experimental testing, as well as
an analysis on the ability of different models to describe the materials’ behavior. The
work shows how models based on strain energy produce better results than those using
elongations as variables to model the damage evolution. It should be noted that silicone
rubber often does not show hysteresis or softening in the unfilled state (Meunier et al.,
2008), and so some of the physical explanations proposed for the Mullins effect could not
apply in this case.

Stress softening is observed in other materials with two or more components, such as bi-
ological tissue, particle-reinforced polymers, or pocket solid fuel. Tong and Ravichandran
(1994) and Ravichandran and Liu (1995) provide expressions for the elastic properties
of particle composites undergoing damage by dewetting. The results are in those cases
limited to the linear response of the material.

Debonding has also been introduced in finite element analysis of the micromechanics of
elastomeres reinforced with particles (Zhong and Knauss, 1997 2000) and fibers (Moraleda
et al., 2009b). The results show good qualitative agreement with the behavior observed
experimentally.

Stress softening is also common in biological materials (Fung, 1972). It has been
observed in different kind of tissues, such as blood vessels (Holzapfel et al., 2000) and
the mussel byssus (Bertoldi and Boyce, 2007), which can be described as fiber-reinforced
composites. This effect is attributed to a change of properties in the material when it

is prepared for testing, and it is often eliminated by preconditioning the material, in an
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attempt to reproduce the behavior the material would exhibit in vivo.

There are differences with engineering materials. While the response of fiber compos-
ites in the direction along the fiber is dominated by the fiber behavior and does not show
stress softening, this is not the case in the case of biological materials, where the fibers
can undergo much larger deformation. Several causes have been proposed to explain this
effect, from plastic deformation of the fibers to the effect of the fiber microstructure, none

of them applicable to carbon fiber composites.
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Chapter 3

Experiments

There are not many experimental studies of carbon fiber composites embedded in a hyper-
elastic matrix. The few works providing quantitative results focused on the capabilities
of the material to be folded without catastrophic failure, as well as small strain testing of
the tension and bending stiffness (Francis et al., 2006; Francis, 2008; Mejia-Ariza et al.,
2010a).

This chapter presents experimental testing of a composite material consisting of uni-
directional carbon fibers embedded in a silicone matrix. The specimen fabrication and
characterization process is detailed. The tests study the large strain behavior of the com-
posite material under bending and tension, both along and transverse to the fibers. The
response to tension in the direction along the fibers is dominated by the fiber’s properties,
and does not differ from traditional composites with epoxy matrix. In the other two cases
the properties of the composite are dominated by the matrix (tension perpendicular to the
fibers) or the interaction between fiber and matrix (bending). The behavior is then very
different from that traditionally observed in fiber composites. In particular, the material
shows a highly nonlinear behavior, as well as stress softening. This is in contrast with the

linear behavior of traditional composites.

3.1 Materials

This section provides a description of the materials used during this study. The silicone
has been characterized experimentally, while in the case of the fibers the only property

calculated experimentally has been the failure curvature.
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3.1.1 Fibers

The fibers used in this study are HTS40-12K, produced by Toho Tenax (retrieved Au-
gust 2010). They were provided by Itochu Corporation, which processed the initial tows
(bundles of continuous filaments) by spreading them. This produces a continuous layer
of unidirectional fibers, called a ply, that is then rolled around a cylinder, from which it
can be unrolled and cut in the required size. The surface density of the ply is equal to
40 g/m?. This implies that the fibers corresponding to the original tows are spread on
a region of approximately 20 mm width, although after the spreading the original tows
cannot be distinguished. The properties of the fibers provided by the manufacturer are
summarized in Table 3.1. No value was specified for the transverse elastic modulus or the

Poisson’s ratio of the fibers.

Fiber properties

Diameter 7 pm
Tensile modulus 240 GPa
Density 1.77 g/cm?
Failure strain 1.8 %

Matrix properties

Viscosity (part A) 1300 mPa s
Viscosity (part B) 800 mPa s
Density 0.96 g/cm?
Tensile modulus 0.8 MPa
Elongation at failure 100%

Table 3.1: Material properties according to the suppliers

The failure properties of carbon fibers are highly dependent on the existence of flaws
(Donnet et al., 1998). The tensile strength shows variation along and between different
filaments, and it is usually described with a Weibull distribution. The value of 1.8% for the
critical elongation should only be used in the case of pure tension. In the case of bending,
brittle materials can achieve higher maximum strains than in pure tension (Ashby and
Jones, 1986). In order to characterize the failure curvature, tests were performed using the
rig in Figure 3.1. A loop is formed with a bundle of about ten fibers, and then attached to
the rig. The glass covering the fibers ensures that the loops do not transform. Rotating
the screw increases the curvature in the fibers, until they break. The test is performed

under a Nikon Eclipse LV100 microscope with a Nikon DS-Fil digital camera. A video of
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the process is recorded, and then used to calculate the curvature of the fibers before they

break.

Bundle of fibers Glass cover

Figure 3.1: Rig used to measure the fiber curvature failure. The tape on the sides prevents
the covering glass from touching the bottom surface, therefore allows the fibers to move
freely

Figure 3.2 shows one of the frames recorded during the test. The portion of the fiber
between Points A and B is assumed to be a cylindrical helix. The different out-of-plane
coordinate at both points can be calculated by focusing the microscope at each point.

The resulting geometry is a helix, with curvature

R

- o @7 (3.1)

K

where R is the curvature of the projected helix, and H the difference in height between

points A and B. There is also a torsion component, given by

(%)

T=—T.
B (2)

™

(3.2)

The torsion is at least one order of magnitude lower than the curvature in the fibers

considered, and it is neglected.



Figure 3.2: Bundle of looped fibers under the microscope, showing the two points A and
B limiting the portion of the fibers considered in the analysis

An analysis of the stress conditions in the fiber has been performed using Euler’s
elastica theory, and can be found in Appendix B. It shows that the average axial strain
is less than 0.002%, and so the fibers can be considered as being loaded in pure bending.
The effect of friction can be neglected, since the region of the fiber with highest curvature
is not touching the surfaces constraining it.

The test has been performed in several bundles, for a total of 105 fibers. The resulting
curvatures are plotted in Figure 3.3. The vertical lines in the plot show the curvature
for given maximum strains in the fibers. This result is important in cases when the fiber

strain is mainly due to bending, such as fiber microbuckling.

3.1.2 Matrix

The matrix used is CF19-2615, produced by NuSil Silicone Technology (March 2007).
It is a two-part, optically clear silicone. It has low viscosity (see Table 3.1), which fa-
cilitates its flow within the fibers. The modulus and elongation properties provided by
the manufacturer were verified experimentally through uniaxial testing in a Instron 5569
testing machine with a 10 N load cell. The specimens were cut with a dog-bone shape to
ensure that failure occurs away from the grips. The strain was measured with an Epsilon
LEOL1 laser extensometer. Two different sets of values were found (see Figure 3.4). For

specimens cured in the autoclave, failure typically occurs at stretches A = 2.2 — 2.4, with
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Figure 3.3: Probability of fiber failure as a function of curvature

a value of the Cauchy stress of approximately 1.25 MPa. For specimens cured in an oven,
the values are A = 2 — 2.2 and 1.7 — 2 MPa, respectively. There are several factors that
could affect or even poison the curing of the silicone. It is believed that in this case the
reason for the difference in stiffness is the presence of epoxy residue in the autoclave,
where traditional composites are often cured.

Figure 3.5 and Figure 3.6 show the results of a test conducted on two different sets
of silicone, with the stress plotted as a function of stretch and time. The tests are a
combination of cyclic and relaxation loading, showing negligible hysteresis or viscoelastic
effects. This agrees with testing results of silicone rubber found in the literature (Meunier
et al., 2008).

No failure criteria for silicone rubber under multi-axial loading conditions has been
developed yet. There is also no information about cavitation, a failure process consisting
of the sudden appearance of internal flaws, first described by Gent and Lindley (1959),
which has been extensively studied in the case of filled rubbers (Gent, 1980; Gent and
Park, 1984; Cho et al., 1987; Cho and Gent, 1988). For this reason, the value of the
stretch at failure can not be readily applied to other loading conditio