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ABSTRACT

The first chapter describes our theoretical investigation of
the potential energy surface of the difluoromethane molecule. The
Hartree-Fock (HF) method, with a 73/3 gaussian basis contracted
to the double-zeta level, was used, and in many cases, CNDO/2
calculations were included for comparison.

The optimum HF geometry is found to be closer to experi-
ment than that reported by other workers using a minimum (STO-3G)
basis set, but it appears that our more flexible basis does little to
improve the computed general harmonic force constants, the complete
set of which is considered. The stretching constants are found to be
in error by +20% to +35%, the bending constants by -4% to +45%.

In comparison with HF, the CNDO/2 method grossly overestimates

the stretching constants, but mimics rather well the bending and
interaction constants.

The theoretical (HF) normal modes and observed vibration
frequencies are combined to give a set of semi-empirical force
constants (SEFC's) which are used to predict the vibration frequencies
of the deuterated difluoromethanes. The synthesis and IR spectrum
analysis of these compounds is described, and the SEFC predictions
are found to be superior to ones appearing previously in the literature.

The Urey-Bradley potential (UBP) model, with 1/r° steric
terms, is fit to the HF constants and SEFC's. A comparison of the

two UBP models indicates that the HF method consistently over-



estimates all parameters but the F-F steric term, which it under-
estimates.

Anharmonicity in the angular coordinates for large molecular
distortions is investigated, and it is found that CNDO/2 mimics HF
quite well, except that CNDO/2 unde&stimates the anharmonicity
when the fluorines are quite close together. The UBP model derived
from the HF force constants is found to account for most of the
anharmonicity in the HF energy variation.

The second chapter describes our investigation of the electronic
structure of difluoromethane. The HF method, with the basis set
discussed above, and certain configuration-interaction methods, were
used.

The localized (HF) molecular orbitals (LMO's) were obtained
for the equilibrium geometry using a new, quadratically convergent
approach which is useful for cases in which convergence of the
Edmiston-Ruedenberg ""two-by-two' method is slow. The LMO's are
examined in detail, and several methods are used to show that the
fluorine lone pairs are delocalized toward carbon, a delocalization
which represents an important stabilization in the molecule, 1t is
noted that this effect, which is most pronounced for lone pairs lying
in the F-C-F plane, may be the molecular-orbital equivalent of the
""double bond-no bond' resonance of valence-bond theory.

An analysis of the LMO's for distorted geometries indicates
that the "orbital following' concept does not apply to difluoromethane
as the F-C-F angle is altered.
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An economical approximation to the generalized valence-bond
(GVB) method is developed and is used to give a more detailed picture
of the electron pairs in the molecule. The GVB-like pairs are
localized, but in this case the localization is a result of the variation
principle rather than a physically meaningless localization criterion.
They are used to define (in an approximate fashion) ""naturally”
localized Hartree-Fock orbitals (NLMO's) qualitatively similar to

the LMO's.

An analysis of the NLMO's supports the conclusions drawn
from the LMO analysis concerning lone-pair delocalization and

"orbital following''.
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Chapter 1
THE POTENTIAL ENERGY SURFACE OF DIFLUOROMETHANE

A. Introduction

The difluoromethane molecules, with 26 electrons, is small
enough to be within reach of moderately sophisticated quantum
mechanical techniques, yet only a small amount of work on this
molecule has been reported (1-3). In none of these investigations
has the potential energy surface been considered explicitly, and so
we have undertaken such a study using both the semi-empirical
CNDO/2 (4) and the ab initio Hartree-Fock-Roothaan (5) methods.
There were two major goals in this study: The first was to deter-
mine the complete harmonic potential around the theoretical equili-
brium geometry; the second was to investigate the molecular energy
variation as a function of large changes in the angular coordinates,
particularly the F-C-F and H-C-~H angles. Several lesser points
of interest were also involved, including an investigation of the
Urey-Bradley potential model (6), a comparison of the Hartree-Fock
and CNDO/2 methods, and the "semi-empirical" prediction of
accurate force constants.

In recent years, there has been a great deal of interest in the
calculation of molecular geometries and harmonic force constants
using ab initio quantum mechanical methods. As noted by Newton et

al. (3), the general trend appears to be that the Hartree-Fock



approximation leads to good calculated geometries* and moderately
accurate calculated force constants, even when rather small basis
sets of atomic orbitals are employed. In general, stretching
constants are ovex:: estimated by roughly 20%, bending constants can
be either high or low, often in error by 30%, while interaction
constants are predicted rather erratically. In much of the work which
has been done, only the force constants for symmetric deformation
modes have been calculated, although the full set is needed for the
prediction of the molecular vibration spectrum and for the testing of
various model force fields. The few cases in which a full analysis
has been carried out are restricted to molecules of the XHn type (7)
where X is a first- or second-row atom and n is 2, 3 or 4. Thus, in
studying the full potential of CH,F,, we have extended the range of
available data to include other than hydrides. In addition, we have
used an atomic basis set substantially more flexible than that of
Newton et al. (3) (a ""double-zeta' rather than a minimum basis set)
and have thus been able to verify the basis-set independence of their
observations.

As a test of overall accuracy, we have compared the harmonic
vibration frequencies derived from these constants with the experi-

mental values. Unfortunately, no reliable force constants are

* The fact that good geometries can be obtained from minimum
basis set calculations may be due, in part, to a cancellation of errors.
Dunning et al. (39), for example, find that the optimum geometry of
H,0O is rather sensitive to the nature of the basis.



available for direct comparison (8), but we have used the calculated
constants in combination with the observed frequencies to give a set
of semi-empirical force constants. We have found these to yield
good predictions for the vibration frequencies of CHDF, and CD,F,,
demonstrating that such theoretical calculations can be of value in
obtaining true force constants.

In a recent theoretical study of the water molecule, Pitzer
and Merrifield found the molecular energy to vary as an essentially
parabolic function of the H-O-H angle over a 30° range near the
minimum (9). This is reasonable if we assume that the major
deviations from parabolicity are due to H~H steric interactions,
which should be small. The situation should be quite different in
CH,F, for two reasons: First, the fluorines are somewhat larger and
should show a marked steric effect as the F-C-F angle is varied;
second, the tetrahedrally bonded central carbon would be expected to
react differently to geometrical changes than would the dihedrally
bonded oxygen in H,O. In order to assess the magnitudes of these
effects, we have examined the energy variation as a function of
various angular coordinates in difluoromethane. The comparison
between Hartree-Fock and CNDO/2 energies is most interesting,
giving some indication of the nature of the errors inherent to the
CNDO/2 MO method. Also, we have examined the ability of a Urey-
Bradley model (6) to account for the Hartree-Fock energy changes,

and have found rather good agreement.



Because a large number of individual Hartree-Fock calcu-
lations is necessary in a study of this nature, we have chosen to use
a small but flexible basis set of gaussian atomic orbitals, a 73/3 set
contracted to the double-zeta level. Details of the basis set and of
the calculations themselves are included in section F of this chapter.
In all cases, sufficient SCF iterations were undertaken to give
energies precise to 1 X 107% a. u. or better. All CNDO/2 calculations
were carried out using program CNINDO, obtained from the Quantum

Chemistry Program Exchange (10).



B. Geometry Optimization

The initial problem in this investigation was the determination
of the Hartree-Fock equilibrium geometry for difluoromethane.
Newton et al. (3) have done this, but with a basis set substantially
different from ours, and our results match the experimental geometry
more closely than theirs. They have used an optimization technique
which concentrates on only one symmetrized valence coordinate (SVC)
at a time; this coordinate is increased and decreased by some small
amount and the resulting energy change is fit to a parabolic function.
The minimum of this function defines the new value for the coordi-
nate. The SVC's are processed in a cyclic manner until none change
by a significant amount, Bratoz and Allavena have criticized this
numerical type of approach (7d), advocating instead an analytical
evaluation of the curvature of the energy surface, but the method is
extremely complex for molecules as large as difluoromethane. Thus
we have used a method similar to Newton's, with modifications to be
discussed below.

During preliminary CNDO/2 calculations, we found that the
above method can, during the first few cycles, lead to unreasonable
predictions if the starting geometry is very different from the final
one, In such cases, the procedure, though convergent, requires
many energy evaluations before the solution is reached. The method
does not attempt to account for the couplings between SVC's, which

is the cause of the problem. In an effort to economize on the number



of Hartree-Fock calculations, we have developed the following rapidly
convergent approach. The idea, basically, is to expand the energy
as a multidimensional quadratic function of the SVC's and to use the
minimum of this function to define the new geometry. Starting from
some ''guess'' geometry, we may expand the energy as a function of
small displacements (Aq,, AqQ,, ---, Aq,) in the SVC's via a Taylor
series:
n
E ZJ

9E ZJ Z) I
3‘(’1— i’ i=1 j=1 6q18q] B389 - )

For convenience, we make the substitutions:

E 3’E
A, = JE d B. - B.. - : 1
i 3q; an ij jii = 9q;9q; (1)

And we may express equation (I) concisely in matrix notation as:

E = E, + ALAq +

Aql B Aq. (111)

——. N

[

Here, as throughout this thesis, the underline denotes a column
vector, the wavy line denotes a matrix and the superscript T indi-
cates 'transpose'. We mention in passing that if the ''guess"”
geometry is in fact the equilibrium one, then the vector of first
derivatives (A) is zero and the matrix B represents a portion of the
force constant matrix for the molecule. If A and B are known, then
we may solve directly for the vector of corrections (_A_cl) to the SVC's

by differentiating (III) with respect to each of the Ag;'s and setting



the result to zero. This simply locates the minimum of the quadratic

function (III). The resulting equations, in matrix form, are:

A+ BAq = 0 (0 is the zero vector) (Iv)
This yields:

Aq =-B'A. (V)

We evaluate the quantities Ai and Bij numerically. To begin,
we increase and decrease one of the coordinates (say qm) by some
small amount §, then we evaluate the resulting energies, which we

+6 -6

call Em and E.>» respectively. In this case, Aq; = 0 for i#m

and Aq . =06, Formulae (I) and (II) give:

+0 o 1 2
E, = E +A 6+ 2B 50

(VI)
and E° = E, -A_6+LB__6
m m 2 "mm

These equations may be solved for Am and B mm to give:
_ES_g-O _EX® L E% g
A= —m—z—é——m— and B = -m m 5 o (VII)

To this point, our method is equivalent to the usual one; A m and
Bm define a parabolic function of Aq,, which could be used to
generate a new value for q,,- However, we do not to this yet, but
rather we evaluate Am and B mm for each of the SVC's without

changing the reference geometry. Next, we simultaneously increase



a pair of SVC's (say Ay and qn) by 6m and Gn, respectively and we

0

evaluate the energy, which we call Emn'

In this case, Ag; = 0 for

i=mnandAq, =96 and Aq =6 . Formulae (I) and (II) give:

m

0
mn

- 1 2,1 2
E —E0+Am5m+An6n+zBmm6m+2Bnn5n+ B n®mbn

(VII)

This equation may be solved for an (= Bnm) because all other
values are known. In this way, we evaluate all off-diagonal elements
of the matrix B, these elements representing couplings between the
SVC's. At this point, we have fixed all variables necessary for the
solution of equation (V) to give the vector Aq, the corrections to be
applied to the SVC's. These corrections define a new guess for the
optimum geometry. A second cycle of refinement leads to a better
guess, and so on,

For a molecule with n SVC's defining the equilibrium
geometry, the above method requires 1 + (n® + 3n)/2 energy evalu-
ations per cycle, while the usual method needs only 3n. We have
assumed that the CH,F, molecule has C,y symmetry, so only four
SVC's are required (two bond lengths and two bond angles) to define
the geometry. Thus, with n = 4, our optimization technique uses
fifteen separate energies per cycle, as compared to twelve in the
usual method. For much larger molecules, our procedure would not
be as useful because the number of individual energy calculations

increases rapidly as a function of n,



The geometry optimization for difluoromethane was carried
out first using CNDO/2 energies, beginning .from the experimental
geometry (see Table 1). The parameter increments were taken as
5° and 0.05A for the angular and distance coordinates, respectively.
After two cycles, the geometry given in Table 1 was obtained, and a
third cycle produced negligible changes. An attempt was made to
further refine these values on a "grid" level of 1 and 0. OIA, but at
this level, the numerical inaccuracy in A and B is rather large due
to the small energy variations involved. The results indicate that
changing the grid size alters the bond lengths by less than .003A and
the angles by less than 0.2°, As a test of our optimization procedure,
we have carried out similar calculations using INDO (11) energies,
the results of which are given in Table 1. The INDO geometry differs
from that quoted by Pople (12) by about 0. 005A and 0. 2° in the bond
lengths and angles, respectively, and these differences most probably
arise from our larger grid size (again, 5° and 0.05A as opposed to
1° and 0.014).

For the Hartree-Fock optimization, three starting points were
considered. These were: a) the optimum CNDO/2 geometry on the
5°, 0.05A level; b) the experimental geometry (see Table 1); and
c) the optimum Hartree-Fock geometry of Newton et al. (3). Of
these, the experimental geometry gave the lowest energy, about
4,4x107%a.u. lower than a) and 1.4 X 107% a.u. lower than c).

Thus, with b) as the starting point, we carried out one cycle of

optimization using increments of 0. 02A for the bond lengths, 2° for
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Table 1. - Equilibrium Geometries of Difluoromethane
(Coy symmetry ).

Case R(C-F) R(C-H) O(F-C-F) 0(H-C-H)
Experimental® (13) 1.358% 1.0918 108.2° 112,1°
CNDO/ 2 1.3458 1.1242 106.2° 110.7°
INDO 1.3488 1.1258 105.9° 110.9°
Hartree-Fock (3) 1.3788 1.1098 108.7° 108.8°

Hartree-Fock (this work) 1.374% 1.0708 109.0° 112.2°

%) more recent experimental study (14) has yielded virtu-
ally the same geometry, except for the H-C-H angle, which
is reported to be 113.70.
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the F-C-F angle and 4° for the H-C-H angle. These increments
provided energy changes on the order of 5 X 107" a. u. , Substantially
above the convergence criterion of 10"%a,u. The predicted param-
eter changes were on the order of 0. 02A and 1°, though the H-C-H
angle changed by only 0.1°. A subsequent cycle was undertaken with
increments of 0.02A for the bond lengths and 2° and 3° for the
F-C-F and H-C-H angles, respectively. In calculating the off-
diagonal elements of the B matrix, we used increments of 0. 014A
for the bond lengths, 1.4° for the F-C-~F angle and 2° for the H-C-H
angle., These smaller increments were used so that the energy change
resulting from the simultaneous alteration of two coordinates would
roughly match that resulting from the larger alteration of single
coordinates. The second cycle showed negligible parameter correc-
tions (on the order of 0.001A and 0, 05°), Thus, the first-cycle
geometry, given in Table 1, was taken as the Hartree-Fock equili-
brium geometry for all subsequent studies. |

Examining the data in Table 1, we find that our CNDO/2 and
INDO results are within 0.003 A and 0. 3° of one another. Both
methods predict the C-H bond length to be quite high, and the C~-F
bond length to be a bit low, The F-C-F and H-C-H angles are both
too low by about 2° and 1° (3° based on the geometry given in ref. 14)
respectively. More interesting is the comparison between our
Hartree-Fock geometry and that obtained by Newton et al. (3) using
the STO-3G minimum basis set. The two methods yield basically the

same description of the F-C~F fragment (the C-F distance and
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F-C-F angle differ by only 0,002 A and 0. 3°) while the H-C-H
fragment shows substantial change (the distance and angle differ by
0.039 A and 3.6°, respectively). The minimum basis set is expected
to give a rather poor description of the fluorine atom because nearly
all of the fluorine basis functions are fully occupied. Our more
flexible double-zeta set might be expected to describe the ¥F-C-F
fragment rather differently than the STO-3G basis for this reason,
and it is surprising to find most of the change at the "other end" of
the molecule. We have no explanation for this, but it may be related
to the fact that a double-zeta set, with its greater flexibility, is
capable of describing types of intra-molecular charge transfer which
a minimum basis cannot. We note, finally, that our Hartree-Fock
geometry gives the best overall agreement with experiment of any of

the theoretical geometries in Table 1.
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C. Quadratic Force Constants

As noted in the previous section, the energy, E, of a molecule
may be approximated as a second-order function of small displace-
ments (Aq,, Aq, -~ -, Aq) of the internal coordinates (q,, Qs, -- -,
qn) which define some reference geometry. These internal coordi-
nates may be any linearly independent set of geometric parameters
which define the molecular shape, without reference to its orientation
or position in space. A general molecule of N atoms has 3N-6 such
parameters (3N-5 for linear molecules). In the event that the refer-
ence geometry corresponds to equilibrium, then the linear terms

vanish and the energy may be approximated by:

E = Ey,+

[X]E

n n
F.. Aq; Ag, . X
o By A Ay (IX)

i=1j

The symmetric matrix E is the quadratic (or harmonic) force constant

matrix for the molecule. It is related to the B matrix of equation (III),
but E refers to all internal coordinates while B refers only to those
required to define the equilibrium geometry. If a molecule has no
symmetry, then E and B are equivalent, but for symmetrical mole-

cules, B is a sub-block of . We shall refer to the diagonal element

Fii as the major force constant (or simply force constant when the

context removes ambiguity) for coordinate q; while the off-diagonal

element Fij will be referred to as the interaction constant between

coordinates 9 and qj. Also, we shall abbreviate "force constant”
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as FC and "interaction constant' as IC.

The numerical values of the FC's depend, of course, upon the
coordinates used, but the transformation between different sets of
internal coordinates is straightforward: If (p, p,, ---, p,)
represents a new set of coordinates, then F', the FC matrix for the

p's, is related to E by

E'=Q EQ (X)
where the matrix Q is defined by

o (XT)

i = 99/99;| e quitibrium *
The Q matrix will generally depend upon the gedmetry of the mole-
cule as well as the nature of the p's and q's.

The difluoromethane molecule has five atoms and nine
degrees of geometric freedom. Many different coordinate systems
are possible, though the set of irrotational, non-translational
parameters suggested by Shaffer and Herman (15) are quite useful in
the analysis of molecular vibrations. These are rather difficult to
picture, however, and do not correspond to ''pure' motions such as
bond bending and stretching, so we have chosen to use the set of
symmetrized valence coordinates described in Table 2 and Figure 1.
These are divided into symmetry types according to whether they are

totally symmetric (a,), antisymmetric with respect to the F~C-F or

H-C-H planes alone (b, and b, respectively), or antisymmetric with



Table 2.
methane.

Coord. Symbol Formula®
a Ry (a,+4,)/2
qp Ry (r1+r2)/2
Qs OS¢ 4’1 +¢2
Qy ©h Wyt
dg D (d1—d2)/2
% e (4,-¢1)/2
97 Dy (3472
% P (wpmeq)/2
a4 . 90°%-¢-

15

Symmetrized Valence Coordinates for Difluoro-

Degsceription Symmetry
symmetric C-F sitretch ay
symmetric C~H stretch a,
¥-C-F angle bend ay
H-C-H angle bend ay
antisymmetric C-IF b2
stretch
F-C-F rock b2
antisymmetric C-H b1
stretch
H-C-H rock b1
twisting of F-~C-F plane a,

relative to H-C~H plane

8For definition of symbols, see Figure 1.

Figure 1.

Definition of symbols
used in the formulas

of Table 2.
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respect to both planes (a,).

It can be shown (16) that the interaction constants between
coordinates of different symmetry types must be zero, and thus the
E matrix has block-diagonal form with many zero elements. The a,
block is identical to the matrix B of equation (III) for the equilibrium
geometry, and may thus be obtained directly from the final cycle of
geometry optimization. Only seven force constants remain, two
major FC's and one IC for each b-type symmetry block and one major
FC for the a, "block'. These may be evaluated in the same numerical
manner as the B matrix elements (see equations VII and VIII).

Table 3 presents the Hartree-Fock force constants from our
calculations. The totally symmetric FC's were obtained from the
second cycle of geometry optimization, while the others were evalu-
ated using distance and angle increments of 0.02 A and 2°. The
errors given for these constants reflect the basic uncertainty in the
Hartree-Fock energies (+1 X107 a,u,), and fof some of the IC's
this error is a substantial fraction of the constant itself. There are
two other sources of error which have not been explicitly evaluated.
First, the geometry differs slightly from the true equilibrium one,
so the anharmonic terms in the total molecular potential might
contribute some small amount to the FC's, Judging from the changes
in the B matrix from the first to the second optimization cycles and
from the small corrections given by the second cycle, we estimate
that this source should give errors somewhat less than those quoted

for the IC's and major angular FC's, and perhaps two or three times
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Table 3. Theoretical Force Constants for CH2F2

o b Fij i P 02

Hartree-Fock CNDO/2 Hartree-Fock CNDO/2
1 1 14.875+0.044 49.782 2 4  0.270+0.042 0.147
2 2 12.086+0.044 23.422 5 5 12.674+0.044 45.066
1 2 1.15540.109 1.665 6 6 1.004+0.014 1.027
3 3 1.621+0.014 1,758 5 6  1.099+0.037 1.079
4 4 0.941+0.006 0.939 7 7 11.803+0.044 22.324
3 4 0,093+0.024 0.127 8 8 1.334+0,014 1,355
1 3 0.272+0.060 0.462 1 8 0.25040.037 0.699
1 4 -0.484+0.042 -0.607 9 9 1.770+0.014 1.873
2 3 -0.145+0.060 -0.290

%0he units are md/& (= 0.22945 a.u./ﬁz), md-X/radian2

(= 6.9895 x 10~° a.u./degree?) and md/radian (= 4.0047

b'd 10-3 a.u./ﬁ—degree) for distance-distance, angle-angle
and distance-angle constants respectively. The error
ranges do not warrant the number of significant figures
given, but the constants as written are consistent with

the frequencies in Table 4. bFor a description of the
coordinates, see Table 2.

Table 4. Vibration Frequencies for CH,F, (in cm-1).

Sym. Experi-~ Hartree- Sym. Experi- Hartree-—

type mental Fock Error type mental Fock Error
a, 532 522+ 5 -=1.9% b1 1173 1268+10 8.1%
a, 1078 1175+ 8 9.0% Py 3030 3324+ 9 10.8%

a, 1508 1729420 14.7% Db, 1089 1228+ 4 12.8%
a, 2963 3254+ 9 9.8% Pp 1435 1656423 15.4%
1262 1398+ 9 10.8%
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those quoted for the major stretching constants. The second possible
error source traces to the fact that our parameter increments were
not infinitesimal, so again the anharmonic terms could introduce
some error, in this case a basic error in the numerical nature of the
FC evaluation. We have tested this to some extent using a Morse
potential model (17) for bond stretching and using the actual anhar-
monic terms for H-C-H and F-C-~F angle bending (see section D of
this chapter) and have estimated that this error source is negligible.
Table 3 also gives the FC's from our CNDO/2 calculations, evaluated
using 5° and 0. 05 A increments for angular and distance parameters,
respectively. Error estimates are not included, but the errors
should not be too different from those for the Hartree-Fock FC's.

With the exception of the stretching constants, we find a good
overall parallel between the two methods, particularly for the major
angular FC's. All IC's are of the same sign and general magnitude,
though in a few cases the CNDO/2 IC's are greater in magnitude by
a factor of two., The stretching constants are substantially larger in
the CNDO/2 approximation, which agrees with the observation by
Segal and Pople (4, 18) that this method often leads to unrealistically
high stretching FC's.

In Table 4 we present the harmonic vibration frequencies
derived from the Hartree-Fock geometry and FC's, along with the
experimental values collected by Meister et al. (19) from a variety
of different studies. The classical vibration problem was solved

according to the method of Tyson, Claas:en and Kim (20). Formally,
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the method amounts to solving the necessary matrix equations in the
cartesian basis of 3N coordinates (N is the number of atoms in the
molecule). The result is 3N "vibration' frequencies, six of which
(five for linear molecules) have zero wavenumber and correspond to
the six (five) translations and rotations. It is necessary in this
method to express the FC's in terms of cartesian displacement
coordinates of the atoms. To do this, we have appended to our list
of nine symmetrized valence coordinates a set of six new coordinates
corresponding to three rotations and three translations. These are
given force and interaction constants of zero since they do not
influence the molecular potential energy. Equations (X) and (XI) are
applicable in this case with the q; as the "appended' valence coordi-
nates and the p; as the cartesian coordinates. To carry out the
transformation, we need the matrix Q, which may be viewed as the
matrix which expresses first-order changes in the q; in terms of o}

displacements. That is, to first order,

n n
Aq, = 9q./3p;)Ap. = 2. O.. Ap; .
%= (99;/9p;)Ap; & Oy AD; (X11)
This matrix is difficult to evaluate analytically, but its inverse,

whose elements are simply geometrical parameters representing the
changes in cartesian coordinates which result from small changes in
valence coordinates, is easy to calculate once the molecular geometry

is known. That is, to first order,
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n
Ap; = 22 (3p;/3q;) Aq, (X11)
j=1 ) ]
but from (XII),
L 1
. = : .. . X1V
Ap, j§1 Q7 Agy (XIV)
so we have
—1 _ _
Q) = (api/aq]-) = Ty (XV)

and T is easily obtained from the molecular geometry. It is inverted
to give Q, which in turn is used to carry out the transformation of
formula (X).

We have written a FORTRAN IV program to carry out the
necessary calculations. The error values for the Hartree-Fock
vibration frequencies in Table 4 were obtained by summing the
absolute values of the individual frequency changes which took place
as each of the Hartree-Fock FC's was allowed to vary over its error
range.

The theoretical vibration frequencies are not directly compa-
rable to the experimental values because we have treated only the
harmonic portion of the molecular potential. Anharmonicity correc-
tions to the observed frequencies can be made using Dennison's rules,
but the application of these is a complex task requiring a detailed

knowledge of the fine structure of the molecular vibration
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spectrum (21). Such corrections are not available for CH,F,, but
based on those for CH,F (22) and CH, (23) we estimate that the errors
involved in neglecting anharmonicity are on the order of 5% for C-H
stretching modes and about 3% maximum for other modes, with the
corrected frequencies higher than the observed ones.

With this in mind, we may examine the values in Table 4.
We see that the predicted frequencies are 9-16% higher than the
observed, with the exception of the lowest (F-C-F bending mode)
which is about 2% low. These errors are outside the range attribut-
able to anharmonicity and we may conclude that, with the exception
of F-C-F bending, our Hartree-Fock model describes a molecule
which is generally "tighter'' than the actual one. * The vibration
frequencies depend roughly on the square roots of the force constants,
so we estimate an average error of about +20% to +30% in the major
FC's, with perhaps a -4% error in the F-C-F bending constant.
Anharmonicity correction would be expected to lower these ranges

somewhat, but the general picture would remain the same.

*This is as expected, at least for the stretching modes,
because Hartree-Fock wavefunctions do not dissociate properly as
bonds are broken, which leads to dissociation energies which are
much too high. This is expected to add to the curvature of the
energy with respect to bond stretching at equilibrium, and hence a
force constant which is too large is obtained.
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Similar results for other molecules were obtained by Newton
et al. (3) using 2 minimum basis set. Thus, although our double-zeta
set gives a much better equilibrium geometry than Newton's, the
general force constant picture does not seem greatly improved.

Ideally, we would like to compare our Hartree-Fock FC's
directly with the experimental values, but such values are not avail-
able. Meister et al. (19) have given a set of 22 FC's and IC's defined
over the set of ten redundant internal valence coordinates, but these
were rather arbitrarily determined and certainly do not represent
unique values. Most of the constants were transferred from other
molecules while only eight IC's were varied to fit the calculated to
the observed frequencies. Finally, some of the other constants were
varied to improve the fit, but no indication was given as to which
constants or how they were varied. Such a procedure is not a
reliable one, because even a 1% error in one of the transferred
major FC's could lead to substantial errors in the IC's. In addition,
the geometry used by Meister was significantly different from the
more accurate recent values (13, 14), and this renders their results
even more uncertain. We have transformed their values to corres-
pond to our coordinate system using formula (X), which is valid even
if the 9 represent a redundant set of parameters. The Q matrix
depends upon the molecular geometry, and for consistency we have
used Meister's geometry even though it is incorrect. The resulting

transformed "'experimental’ ¥C's are given in Table 5.
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Empirical Values.

j&

PP,
“~d

Hartree-Fock FC's vs. Experimental and Semi-

Experimentalc Hartree-¥Yock Semi-kmpirical

11 13,752 14.875+40.044  12.924+0.131
2 2 9.822 12.086+0.044  10.024+0.020
1 2 1.012 1.155+0.109  0.951+0.083
3 3 1.688 1.62140.014  1.649+0.015
4 4 0.676 0.941+0.006  0.719+0.012
3 4 -0.128 0.093+0,024  0.090+0.022
1 3 0.616 0.27240.060  0.570+0.044
1 4 -0.220 -0.484+0.042  =0.403+0.042
2 3 0.647 -0.14540,060 =0.133+0.043
2 4 0.300 0.27040.042  0.219+0.046
5 5 10.734 12.674+0.044  9,971+0.024
6 6 0.885 1.004+0,014  0.757+0.009
5 6 1.390 1.099+0.037  0.858+0.034
7 1 10.094 11.803+0.044  9.807+0.016
8 8 1.193 1.334+0.014  1.142+0,006
7 8 0.916 0.250+0.037  0.215+0.035
9 9 1.456 1.77040.014  1,443+0.007

8For a description of the coordinates, see Table 2.

bSee
the

footnote a of Table 3 for units and a discussion of
number of significalt digits in the constants.

Cc

See discussion, p. 22. These are not reliable values.
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This situation gives theory a chance to make a few verifiable
predictions. In view of the fact that the Hartree-Fock molecule, as
noted above, seems to be generally "tighter' than the actual one, we

might expect the normal vibration modes to be fairly accurate even

though the calculated vibration frequencies are generally about 12%
too high. It is possible to determine the FC set which leads to the
theoretical modes and the observed frequencies. If the modes are
accurate, then this set (which we dub '"'semi-empirical' force con-
stants, or SEFC's) should represent a good estimate of the actual
FC's. The method for calculating SEFC's is given below.

We adopt the notation of Tyson et al. (20), in which X repre-
sents a vector of the 3N displacement coordinates (N is the number
of atoms in the molecule), A represents the corresponding FC
matrix and M represents the diagonal ""mass matrix" (Mi is the mass
of the atom associated with cartesian displacement X;). HAand M
are known, the vibration problem is solved by diagonalizing the matrix

1

1 _1
M 2AM 2, that is, by finding an orthogonal matrix J such that

uTMTEAMTEY = A = 0 (XVT)
Ay '

0 A3N

1
The matrix M~ 2 U has, as its columns, vectors representing the

relative displacements of the atoms for the normal modes, and the
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Ay are related to the vibration frequencies v, by

Ay = 472 o2 uiz (c = speed of light) (XVII)

Now, in our case, A was obtained from the Hartree-Fock FC's in
Table 3 and yielded incorrect vibration frequencies, that is, the
"wrong' diagonal matrix A. The "right" A matrix has diagonal
elements given by (XVII), where the v; are the correct frequencies.
This corrected matrix, which we call ', may be substituted onto
equation (XVT), which may be solved for A’', the SEFC matrix, to

give

A - MEgauT e, (XVI)

This matrix A' gives the same normal modes as did A, but it also
yields the correct vibration frequencies. It may be transformed
from the cartesian basis to the SVC basis using formula (X) with the
transformation matrix Q taken as the T matrix of equation (XV).

If the molecule is not an ideal harmonic oscillator, as is
usually the case, then this method should technically be applied to
the harmonic rather than the observed frequencies. Anharmonicity
corrections on the order of 2%-5% are not uncommon (22, 23), so we
might expect force constant errors on the order of 4%-109% if
anharmonicity is neglected.

The SEFC's derived from the Hartree-Fock FC's and

geometry are given in Table 5, We obtained the error values by
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varying each FC over its error range (see Table 3) and summing the
absolute values of the SEFC changes thus produced. We have also
included, in like manner, terms related to the estimated error in the
Hartree-Fock geometry, which we have taken as +0.1° and +0. 002 A
for the a,-type angle and distance coordinates, respectively. In
order to test the accuracy of the SEFC's, we have used them,
together with the Hartree-Fock geometry, to predict the vibration
frequencies of CHDF, and CD,F,. We have also synthesized these
and assigned their IR spectra (see section F of this chapter). Tables
6 and 7 give the experimental frequencies together with the predic-
tions given by Meister et al. (19) and our SECF predictions. Our
predictions are almost invariably better, with average and maximum
errors of 1.9% and 6.0%, respectively as compared to 3. 4% and
9.8% for Meister's values. We feel that the SEFC's in Table 5
represent the best current estimates of the force constants for
difluoromethane.

Table 5 also gives the Hartree-Fock FC's for comparison
with the "experimental” FC's and SEFC's. T he major Hartree-Fock
FC's are higher than the experimental ones by 10%-25% with the
exception of the F-C-F bending constant which is about 4% low and
the H-C-H constant which is about 40% too high. Using the STO-3G
minimum basis, Newton et al. (3) have found that the Hartree-Fock
method predicts stretching constants typically 20%-30% higher than
experimental values and bending constants typically 15%-70% higher.
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Calculated and Observed Vibration Frequencies

Sym. Designation Obs% Calc? Irror Calc. (Ref. 19) Error
a' 2, - 529 - 529 -
a! 25 991 971 =2.0% 954 ~3.7%
a' 2 1030 1092 +6.0% 1112 +8.0%
a’ 2 1367 1379 +0.9% 1402 +2 6%
a' % 2230 2199 -1.4% 2197 -1.5%
at Vg 2987 2999 +0.4% 2996 +0.3%
an vy 943 940 =0.3% 966 +2.4%
a" Yy 1103 1113 +0.9% 1090 ~-1.2%
a" Vg - 1372 -~ 1366 -

®In cn”!, estimated accuracy +3 cm™'. PFrom SEFC's and

the Hartree~Fock geometry.

Teble T.

Calculated and Observed Vibration Frequencies
for CD2F2. (footnotes as in Table 6)

Sym. Designation Obs® Calc? irror Calc. (Ref. 19) Error

- 525
1032 989
- 1174
2128 2142
- 907
2284 2259
9632 953
1159 1186
1003 971

-4.2%

+0.7%

-1,.0%
~-1.0%
+2.%%
~3.2%

520
931
1254
2170
908
2222
979
1099
1050

-9.8%

+2.0%

~2.T%
+1.7%
+345%
+4.7%
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Notable exceptions are CHF;, NF, and CO, which give bending con-
stants 10%=30% too low. Our results support these conclusions,
suggesting that the greater flexibility of a double-zeta basis does not
substantially influence the trends observed in the STO-3G calculations.
The agreement between the experimental and Hartree-Fock IC's is
fair-to-poor, with two of these IC's showing sign reversal., The IC's
are the most questionable of the experimental values though, so it
seems meaningless to carry out the comparison at all.

Not surprisingly, there is a better parallel between the SEFC's
and the Hartree-Fock FC's, the former being obtained indirectly from
the latter. All major Hartree-Fock FC's are in the range of 17%-33%
higher than the corresponding SEFC values, except for the F-C-F
constant which is about 2% lower. The IC's show a good parallel in
both magnitude and sign, with the Hartree-Fock values 5%-30%
higher in absolute value. The only exception here is the IC between
Rf and 6; where the Hartree-Fock value is roughly half the SEFC
value. It is interesting that the only Hartree-Fock FC;s which are
lower than their analogous SEFC's involve only the F-C-F fragment.
It may be that electron correlation, which the Hartree-Fock method
largely ignores and which might be expected to be especially
important in the electron-rich F-C-F fragment, plays a significant
role in altering these values. On the other hand, it may simply be
an artifact of our basis set.

So far, we have considered FC's defined for the SVC's in

Table 3. Though these completely specify the harmonic component
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of the energy near the equilibrium geometry, they are not directly
comparable to FC's in related molecules of different symmetry.
We would like to believe that the energy behavior of molecules can be
understood in terms of some relatively simple model which refers to
bond angles and interatomic distances, and that the parameters for
such a model are equal, or at least of comparable magnitude, for
similar interactions in chemically different molecules. Several such
models have been proposed (24), and one of the most successful has
been that suggested by Urey and Bradley (6a) and further investigated
by Shimanouchi (6b). It is assumed, using this model, that the
energy varies as an independent parabolic function of each bond length
and angle, but is augmented by steric terms between non-bonded
pairs of atoms. As originally proposed (6a), the model steric terms
were approximated by repulsive potentials of the form

Ei?teric -k /ri? (XIX)
where ri]. is the distance between atoms i and j. It was found that a
value of about n = 6 lead to fairly good overall molecular potentials
for a variety of molecules. This is the form of the Urey-Bradley
potential which we have investigated, though in its more recent
modification (6b), the nature of the steric term is not considered
explicitly. Rather, only the first- and second-derivative portions of
each interaction with respect to the interatomic distance are consid-

ered, and these derivatives are not assumed to be related as they
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must be for the steric term given in equation (XIX).
Figure 2 gives the description of the coordinates we have used
in defining the model. The energy, U, is approximated by the

following formula,
2U = 2U, + 2sp(rpy + Tpy) + fF(rf;.1 + r%z)

2 2
+ 2sH(rHl + er) + fH(rHl + er)

62 6., + fo. B

2
+ 28 6. + f F+2SHHH ul %H

FF"F FF

+ ZSFH(d)l + ¢y + D, + D) (XX)
+ fFH(d)f + ¢22 + ¢32 + ¢42)
+ 2kyp/dy + 2kpgp/dg

+ 2kgp(l/d] + 1/d7 + 1/d5 + 1/4;)

It should be noted that the model is not stated in terms of displace-
ment coordinates, as is usually the case. The transformation to
displacement coordinates involves nothing more than replacing terms

of the form

6
kX/dX

by
(21ky/dy o)ady)® - (12K, /dy o) Ady

where d, is the equilibrium value of cg{, and by replacing terms of

the form
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Figure 2. Description of Coordinates used in the Urey-
2

Bradley model for CH Fz
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2

28, Py + I, P (P represents r, © or ¢)

2
2(sX + fx Px, 0) APx + fx(APX)

where Px 0 is the equilibrium value of Px. The transformed formula

’

agrees to second order with (XX), and hence will yield the same
results for harmonic force constants, but (XX) is in a form which
will be quite useful in the subsequent section on large molecular
distortions.

The thirteen parameters of the Urey-Bradley potential (UBP)
model are not independent, because we require that the force on each
atom be zero in the equilibrium geometry. Mathematically, this may

be stated as

o0U/aq,

1‘equilibrium =0 i=1,2-

9 (XXI)

where the qi's are the nine SVC's of Table 3. Our model has an
inherent symmetry which guarantees the above condition for the five
SVC's which are not totally symmetric, but we are left with four
conditions upon the thirteen UBP parameters. For q,, which is R,

equation (XXI) gives
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0 = JU/3R Sp(drp /@R, + 3rpo/3Ry) (XXII)

eq.
+ fF[ rFl(arFl/aRf) + er(arFZ/aRf)]
- (6kpp/dg)(2dg/9Ry)

- (6kyp/d)(9d, /3R + 3d,/3Ry + 3d,/0R, + 3d,/0Ry)

where all quantities are to be evaluated at equilibrium and where we
have made use of the equilibrium relationship d, = d, = d, = d,. A bit

of trigonometry and calculus gives
E)rFl/aRf = aer/aRf =1

3d./0R, = 2sin(6./2)
Fo F (XXTII)

3d,/0R; = 0d,/0R; = 3d,/0R; = 0d,/dR;

Il

2Rf + ZRh cos(OF/z) cos(BH/Z)

where we have used the fact that, at equilibrium, ey =Tpg = Rf and
Tyl = T2 = Rh’ Substituting the expressions (XXIII) into (XXII) and
solving for Sp we obtain
S = -Ref + 6Key sin (6 /2)/dr
F f'F FF F F (XXIV)
+ 24k R+ Ry cos (85/2) cos (6y/2)]/4d; .

Relationships similar to (XXIV) may be derived for Sy SEF and SHH
by differentiating (XX) with respect to q,, q; and q, (that is, Ry, 6

and eh), respectively. The nine remaining UBP constants (fH, fF,
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f f f

HH’ 'FF’ SHF’ 'HF
dent parameters of the model.

kFF’ kHH and kHF) are thus the truly indepen-

Now, the force constant related to a4 and q]. is Fij’ and is

defined by

_ 2
Fyj = 9°U/dq;9q;. (XXV)

The second partial derivatives with respect to q's may be evaluated
explicitly beginning from formula (XX), though quite a bit of involved
manipulation is necessary. The net result is that each of the seven-
teen unique nonzero SVC force constants can be expressed in terms

of the nine independent model parameters. That is,

F.. = 20 T.. I (XXVT)

where fk is a generic symbol for one of the nine UBP constants and

each Ti' Kk is a function of the equilibrium geometry of the molecule.
b

If we consider ij to be a single index, say £, running from 1 to 17

(the number of SVC FC's), we have

= 27 Taf (XXVII)

or, in matrix notation,

F = Tf (XXVIII)
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We wish to fit the UBP model to some set of known FC's,
which means we wish to find { such that F is as close as possible to
the actual vector of FC's, which we call F,. This is a standard
problem in least-squares analysis (25) and the f which gives the best

rms fit between F and F, is

=@ DIt E, (XXIX)

Some care must be exercised here, though, because the resulting f
may depend upon the units used for F;,. For example, if two FC sets
differ in the units of the angle constants only, one having units of
md-A/deg’ and the other having units of md-A/rad’, the first will
have numeric values roughly 3300 times smaller than the second.
Clearly, the simple rms criterion will weight the angle constants
quite differently in the two cases. To overcome this, one may either
weight the rms fit appropriately or one may choose units which put
the various FC's on a fairly uniform numerical level. The units
used in Table 5 give constants whose absolute errors are comparable,
so0 we have used these units and an unweighted rms fit in the current
work.,

We have written a FORTRAN IV program to calculate the T
matrix of equation (XXVIII) from the molecular geometry and to
carry out the least-squares analysis. The nine independent UBP

parameters thus obtained are used in the program to calculate the

four dependent constants. Table 8 gives the 'best-fit'" UBP
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Urey-Bradley Model Parameters Derived from

Force Constants.

wWoOR O H M M
hjtﬁﬁhj:ﬁ"d
o> T+ =

ool
o

Parameter Value obtained from least-squares fit
Using Hartree-Fock FC's Using SEFC's Units

-8.005 -6.244 md

-5.748 -4.780 md

-1.492 -1.139  md-R/rad

-1.290 -0.957 md-&/rad

-1.371 -1.106  md-%/rad
6.127  (4.376)*  4.864  ma/fR
5.594  (4.298)%  4.649  ma/R
0.776  (0.484)%  0.647  md-%/raa®
0.565  (0.380)%  0.416  md-£/rad?
0.663 0.539 md-R/rad2
10.475  (19.99)% 14.302  ma-R7
0.382  (0.802)%  0.303  ma-R'
2.821 2.325  ma-R/

<)
e
=

87he values in parentheses were derived from the experi-

mental UBP constants for CH

text.

4 and CF4 in ref.

26.

See
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parameters derived from the Hartree-Fock FC's and SEFC's.

Table 9 shows these sets of constants in comparison to those given
by the UBP models. In both cases, the Hartree-Fock geometry was
used in the calculation of T.

Table 9 shows that the UBP model is capable of duplicating
the actual FC's fairly well, with most errors less than 0. 3 units.
The worst errors occur in F,, F,, (the only constant showing the
wrong sign) and, for the SECF's, F,,, which correspond to the
(Df, P¢)s (Rh, 6,) and (Rf, 6¢) IC's, respectively. Of the major FC's,
the rocking coordinates Pp and Ps show the greatest errors, with both
roughly 10% off but in opposite directions. These two motions
involve much the same relative H-F displacements and H-C-F angle
changes, and the model thus predicts similar FC's for the two.

They are, in fact, rather different, which points up the necessity of
including, in a truly accurate model, hybridization parameters such
as occur in the HOFF method (27). Considering the simplicity of the
UBP model, we believe that the overall agreement in Table 9 is
quite good.

In Table 8 we see that there is a good overall parallel
between the model parameters derived from the Hartree-Fock FC's
and those derived from the SEFC's. In every case but one, the
Hartree-Fock values are 20%-35% higher in absolute value, the
exception being the F-F steric constant, which is about 26% lower.
This is a most interesting result, for it implies that the anomalously

low value for F,,, the major force constant for Gf, in the
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Table 9. Comparison of UBP Model Force Constants with
Actual Values.
a a b
i 3 Fij

- W &~ U

-

W O = v o NN

1

2
2
3
4
4
3
4
3
4
5
6
6
7
8
9

Hartree-Fock values

Semi-empirical values

Actual Best UBP fit

Actual Best UBP fit

14.9
12.1
1.2
1.6
0.9
0.1
0.3
-0.5

11.8

1.3
1.8

14.8
12.2
1.4
1.6
0.9
0.0
0.5
-0.3
-0.2

0.5
11.7
1.2
1.8

12.9
10.0
1.0
1.6
0.7
0.1
0.6
-0.4
-0.1
0.2
10.0
0.8
0.9
9.8
1.1
1.4

12.8
10.1
1.1
1.6
0.7
0.0
0.9
-0.2
-0.2
-0.1
10.1
0.9
0.4
9.7
1.0
1.5

8Por a description of the coordinates, see table 2.

b

See footnote a of table 3 for the units., The FC's have
rounded to facilitate comparison.
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Hartree-Fock set is caused by an underestimation of the F- F steric
repulsion rather than by anything unusual in the F-C-F fragment.
Shimanouchi et al. (26) have obtained the stretching, bending and
steric constants for the UBP model of CH, and CF,. They have used
a somewhat different formula for the steric term, and their derived
constants are defined slightly differently than ours: Their angle
constants are scaled by the bond lengths included in the angle, and
their steric constants refer to the second derivative of the steric
term.. We have transformed their values to conform to our nomen-

clature using the formulas

fox = r2 H (XXIX)

and

ke = (A7, /42)F (XXX)

where H and F are Shimanouchi's angle and steric terms, respective-
ly, ry is the C-X distance and d,, is the X-X distance. These
values appear in Table 8, and we see that our UBP constants derived
from SEFC's are of quite reasonable magnitude in comparison with
them. The differences may be due to non-transferability, but we
think it more likely that they arise either from the differences
between Shimanouchi's model and our own or from inherent errors in

the SEFC's.



40

D. Energy Variation for Gross Angular Distortions

The difluoromethane molecule is the simplest saturated
aliphatic molecule in which a geminal steric interaction between
first-row atoms is possible, We would expect the F—F interaction
to show up most dramatically in the energy curve which results from
the variation of the F-C-~F angle, because this motion substantially
alters the F-F distance. Figure 3 shows the Hartree-Fock energy
of CH,F, as a function of the F-C-F angle (the molecule is distorted
from the Hartree-Fock equilibrium geometry), and we can see that
there is indeed a marked asymmetry in the curve. As the angle is
decreased by 30°, the energy increase is about 0.037 a.u. larger
than it is when the angle is increased by a like amount. This is a
chemically significant quantity, over 22 kcal/mole, and the asymme-
try is consistent with the concept of F-F steric repulsion., We shall
investigate this asymmetry, then, in an effort to learn a bit about
this repulsion within the Hartree-Fock framework.

Initially, however, we must consider another possible
contribution to the noted anharmonicity. As the F-C-F angle is
changed, the carbon hybridization must change, and we have no
guarantee that this will contribute only harmonic terms to the energy
variation. Interms of a "ball-and-spring' model, for example, the
F-C-H angle does not change proportionately to the F-C-F angle,
so that quadratic terms from the former may contribute anharmo-

nicity to the latter. Using reasonable values for the F-C-H force
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Figure 3. Hartree-Fock energy of
CH2F2 as a function of

the F-C-F angle.
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constant, for example fHF from Table 8, we have found that this
source should not affect the asymmetry of Figure 3 very much, but
is of sufficient magnitude to warrant consideration.

If we assume that steric terms involving hydrogen are small,
then we may estimate the magnitude of this "'rehybridization
anharmonicity' by investigating the energy variation as a function of
the H-C-H angle. We have calculated the CNDO/2 energy of CH,F,
as a function of this angle over a 60° range symmetric about the
CNDO/2 equilibrium value, using 5° increments. Figure 4 shows
the deviation of this curve from a parabola fit to the three lowest
values (Aeh =+5%, 0°, -5°), though the parabolic portion of a fourth-
order polynomial fit to the five lowest values yields the same results.
Such a curve will be called a DFP (deviation-from-parabolicity)
curve. We see that the deviations are quite modest, less than 2
kcal/mole at the worst. The Hartree-Fock energies for the Aeh =
+30° and -30° cases (measured from the Hartree-Fock equilibrium
geometry) have also been obtained, and the endpoints of the Hartree-
Fock DFP curve calculated. The parabola in this case was fit to the
Ay = +3°, 0°, -3° energies used in the computation of the H-C-H
force constant. We note that the two MO methods give nearly
identical results at these endpoints, and we have drawn an approximate
Hartree-Fock DFP curve in Figure 4 assuming that this parallel holds
over the entire range. Figure 5 shows the DFP curve for H,O
derived from the calculations of Pitzer and Merrifield (9) though

their energy values were quoted to only five decimal places, which
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Figure 4. Hartree-Fock and CNDO/2 deviation-from-parabol-
icity (DFP) curves for CH,F,; H-C-H bending.
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Ficgure 5. Hartree-Fock DFP curve for H20; H-O-H bending.,
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renders the curve somewhat imprecise.* We see that the energy
variation in our case shows greater harmonicity, which may be due
in part to the greater flexibility of our basis set,

Figure 6 shows the DFP curve for the F—~C-F angle variation,
using both Hartree-Fock and CNDO/2 energies. In these calculations,
the angle was varied from its equilibrium value in 5° increments up
to a total distortion of +30° and -30°, The comparison between the
two MO methods is most interesting. Qualitativel'y, the Hartree-Fock
curve is similar to that for CNDO/2, with both methods giving a
positive deviation as the F-C-F angle is closed and a negative one
when it is opened. For Aef > 0, they yield almost identical results,
but in the region A9f< 0, the Hartree-Fock values are considerably
larger. This is most likely due to the approximate manner in which
CNDO/2 treats the two-centered integrals, the net effect of which
appears to be an underestimation of the F-F repulsion for small
values of 6;. The fact that CNDO/2 predicts an F-C-F angle which
is too small by a few degrees is consistent with this notion that

CNDO/2 underestimates the F~F steric repulsion.

*Using a substantially larger and more flexible basis,
Ermler and Kern (40) have computed the cubic term in the H-O-H
anharmonicity. Their value suggests that the deviations in Figure 5
are too large by a factor of about two.
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trce-Fock and CuDO/2 DFP curves for
; ¥=C-} bending.
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Comparing Figures 4 and 6, we see that the F-C-F
anharmonicity is greater than the H-C-H anharmonicity by an order
of magnitude, which suggests that the F-F interaction is almost
entirely responsible for the shape of the F—-C-F DFP curve. If we
assume, as we did in the Urey-Bradley potential model, that this

interaction is a repulsive one of the form

_ 6
EF—F, steric k/rFF

then we may estimate the a value for k by scaling the DFP curve for
l/ri‘;‘F (expressed as a function of AOF) so that it matches the
Hartree-Fock curve at Afy, = -30°. We have done this, obtaining a
scaling factor (k) of 2.91 a.u.-A° or 12.7 md-A", which is only about
20% higher than the value we obtained from the UBP fit of the
Hartree-Fock FC's. In view of the fact that these values were obtained
using quite different methods, the agreement is surprisingly good.

The above suggests that the UBP model of equation (XX) might
be rather accurate in accounting for the anharmonicity in the F—C—F
curve, and we have found this to be the case. Figure 7 shows the
deviation of the Hartree-Fock energy from the UBP model defined by
the Hartree-Fock parameters in Table 8. We see that 80% of the
DFP curve in Figure 6 has been accounted for, and that the remaining
deviation, little more than 3 kcal/mole at worst, shows up only when
the fluorines are rather close together. The H-C-H angle fares

rather well, too, giving deviations from the UBP model of 1. 31 and
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Deviation of the Hartree-Foci energy from
the UBP model as a function of e,
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-1.85 % 107" a.u. (0.82 and -1.16 kcal/mole) for A6 = +30° and
-30°, respectively.

We have not investigated the non-totally symmetric angular
coordinates extensively using the Hartree-Fock method, but we have
carried out several CNDO/2 calculations. All three of these coordi-
nates (ph, Pg and 7) show very little deviation from parabolic energy
behavior as they are varied from 0° to 30°. As we have noted above,
DFP curves derived from CNDO/2 energies match those from
Hartree-Fock energies quite well except when the F-F distance is
small, so we would expect the Hartree-Fock energy to vary as an
essentially parabolic function of these three coordinates. We have
tested this for the coordinate p,, finding that the energy at p; = 30°
differs by 0.43 X 107° a.u. (0.27 kcal/mole) from the value predicted
by the harmonic Hartree-Fock force constant, an error on the order
of only 1%. The UBP model predicts that these coordinates should
be quite harmonic, but we recall that the model has some difficulty
in duplicating their force constants. Thus, we find the Hartree-Fock
energy at p; = 30° to be 3,37 X 107° a.u. (2.12 kecal/mole) below the
model value, an error of about 11%. Assuming parabolicity for Py
and 7, we estimate the energies at 30° to be about 0.004 a.u. above
and 0.001 a.u. below the model values, respectively. These

correspond to respective errors of about 10% and 2%.
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We conclude that the UBP model mimics rather well the
Hartree-Fock energy variation in difluoromethane as the angular
coordinates are distorted up to 30° from their equilibrium values,

with maximum errors on the order of 3 kcal/mole and 10%.
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E. Summary

The following six points summarize the findings we have
obtained in the study of the potential energy surface of difluoro-
methane:

1) The flexibility of a double-zeta basis set over a minimum
basis set improves the calculated Hartree-Fock geometry,
with the major differences between our calculations and
those of Newton et al. (3) appearing in the H-C-H frag-
ment.

2) This same flexibility does little to improve the accuracy
of the calculated FC's, judging either from the predicted
vibration frequencies or from a comparison of the
theoretical with the (somewhat dubious) experimental or
semi-empirical values. The calculated major FC's are
roughly 20%-35% too large except for the F~C-F angle
constant, which is a few per cent low. Newton et al. (3)
have found similar errors for the totally symmetric
coordinates in other molecules, though our results refer
to all coordinates.

3) In spite of these FC errors, useful semi-empirical
constants derived from observed frequencies and calcu-
lated normal modes may be obtained. These SEFC's
predict the observed frequencies for the deuterated

difluoromethanes rather well, and give UBP parameters
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reasonably close to those in CH, and CF,.

4) Within the framework of the UBP model, the Hartree-Fock

method appears to consistently overestimate all param-
eters except for the F-F steric repulsion, which it under-
estimates. This leads to the anomalously low value for the
F-C-F angle constant, and in view of the fact that Newton
et al, (3) calculate a low symmetric bending constant for
CHF,, we suspect that this effect may apply to other
molecules as well.

The CNDO/2 method gives FC's and IC's which parallel
rather well the Hartree-Fock values, except for the major
stretching constants, which are much too large. As the
F-C-F angle is decreased, CNDO/2 appears to under-
estimate the anharmonicity due to F—F steric interaction.
The UBP model, using k/r° steric terms, is capable of
fitting the Hartree-Fock FC's and SEFC's fairly well, and
it forms a good model for the Hartree-Fock energy
variation in difluoromethane as the angular coordinates
are grossly altered. Particularly, the model accounts for

80% of the marked anharmonicity in the F—C-F angle.
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F. Experimental

Details of calculations

All CNDO/2 calculations were done using program CNINDO
(10) on the IBM 360/75 and 370/155 computers. To facilitate the
large number of calculations, a subroutine was included which read
in the SVC's of Table 2 and computed the cartesian coordinates for
CH,F,.

The Hartree-Fock calculations were done using the CIT
modification (28) of the POLYATOM program package (29) on the IBM
360/75 and 370/155 computers. Here, as in the CNDO/2 case, a
subroutine was included to compute the cartesian coordinates (in a.u.)
from the SVC's of Table 2, The SVC distance coordinates are given
in angstroms, and the conversion to a.u. was accomplished using a
value of 0.529167A for the Bohr radius. The current accepted value
(30) of 0.52917715 (+1.5 ppm) A differs negligibly from this.

The basis set of atomic orbitals consisted of seven s-type
gaussians and, for each axis, three p-type gaussians on each first-
row atom, and three s-type gaussians on each hydrogen. The orbital
exponents for C and F were obtained from Whitman and Hornback's
recent study (31), while those for hydrogen were obtained via an
Huzinaga fit (32) of a 1s Slater function with an orbital exponent of
1.2, This basis set was contracted (i. e., some of the gaussians
were combined in fixed linear combinations) to a ""double-zeta' set,

which is a set containing four s-type and two p-type functions on each
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first-row atom and two s-type functions on hydrogen. The Dunning
criteria (33) were used in choosing the sets of gaussians to be
combined, and the contraction coefficients were obtained from
Whitman and Hornback's atomic calculations (31) and from the above-
mentioned Huzinaga fit. Table 10 summarizes our orbital exponents
and contraction coefficients,

Unland et al. (1), using a very similar but uncontracted basis
and a very slightly different experimental geometry , obtained a
molecular energy of -237.54 a.u. as compared to our value of
-237.52 a.u., indicating that the contraction of the basis set influ-
ences the energy very little. As noted by them, this energy is at
least 0.4 a,u. above the (sp) Hartree-Fock limit,

Three geometries were treated initially, corresponding to the
experimental, CNDO/2 and previous Hartree-Fock (3) geometries of
Table 1. Energies of -237,52292849, -237.51866426 and
-237.52168377 were obtained, respectively, and the energy change
during the last SCF cycle was less than 9 X 10™® in each case. The
energies obtained during the first geometry optimization cycle are
summarized in Table 11, Table 12 gives the analogous values for the
second cycle, along with the energies used in computing the non-
totally symmetric FC's and in investigating the gross angular
distortions of the molecule,

The calculation of molecular vibration frequencies was carried
out using a double-precision program (FIBBER) written in FORTRAN
IV for the IBM 360/75 and 370/155 computers. This program is
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Table 10. Orbital Ixponents and Contraction Coefficients

Atom Type Grouping Exponent Con. coeff.® Con. coeff.b

F s 2723. 0.0059 0.0094676
F s 416.4 0.0420 0.0673966
F s 97.73 0.1792 0.2875587
F s 27.87 0.4544 0.7291666
F s 8.712 1.0000 1.0000000
F 8 1.396 1.0000 1.0000000
F s .4209 1.0000 1.0000000
F P 10.53% 0.1270 0.229905%
F p 2.188 0.4784 0.8660371
F P .4785 1.0000 1.0000000
C s 994.7 0.0072 0.0115293
C s 160.0 0.0473 0.0757411
c s 39.91 0.1819 0.2912750
C s 11.82 0.4474 0.7164181
C S 3.698 1.0000 1.0000000
C 8 .6026 1.0000 1.0000000
c s .1817 1.0000 1.0000000
C P 4.279 0.109% 0.2095240
C P .8699 0.4597 0.8812276
C P .20%6 1.0000 1.0000000
H s 6.481 0.0705 0.1563558
H s _; .9810 0.4079 0.9046456
H B J .2180 1.0000 1.0000000

aRaw. bAfter basis function normalization.
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Table 11, Hartrece-Fock Energiés Used in the First
Geometry Optimization Cycle.
(E+237) (E-E.)P Convergence®
a a -a ~a 3 3 0

Re Ry _E£F _©p x10 (a.u.) x107°(a.u,) (a.u,)
1.358%1.,091%108.2%112.19-522, 92849 0 8 x 1078
1.358 1.091 110.2 112.1 -522.93392 0.0054 2 x 107°
1.358 1.091 106.2 112.1 -522.43915 -0.4893 1 x 107°
1.358 1.091 108.2 116.1 ~522.24214 -0.6864 1 x 1072
1.358 1.091 108.2 108.1 =522.56375 -0.3647 1 x 1072
1.358 1,111 108.2 112.1 =521.46738 -1.4611 2 x 107°
1.358 1.071 108.2 112.1 =523.41947 0.4910 1 x 107°
1,378 1.091 108.2 112.1 -523.30435 0.3759 1x 1070
1,338 1.091 108.2 112.1 =521.05131 -1.8772 8 x 1077
1,338 1,071 108.2 112.1 =523.86940 0.9409 5 x 107°
1.358 1.091 110.2 108.1 -522.62935 -0.3045 2 x 1070
1,378 1.091 110.2 112.1 =523.25138 0.3229 3 x 1070
1.358 1,071 110.2 112.1 -523.41419 0.4857 3 x 107°
1,378 1.091 108.2 108.1 =522.76391 =0.1646 9 x 1077
1.%58 1.071 108.2 108.1 ~522.98415 0.0567 8 x 1077

&por description of coordinates, see Table 2,
angstroms for R, degrees foreo.
ordinates which are changed from experimental wvalues,

bHere, E

cEnergy change during the final SCF iteration.

d

Experimental geometry from ref. 13.

Units are
Underlined are the co-

0 is the energy of the experimental geometry.
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Table 12, Hartree-Fock Encrgics for Distortions Ifrom

First Cycle Equilibrium Geometry.

Magnitude and (¥ +237) (E-E ) Convergence®
type of distortion® x10° (a.u.) x10° (a u. ) (2.u.)
none? ~52%.92501 0 5 x 1075
£0=-2° -523.70300 0.2210 2 x 108
£0p=+2° ~52%.69305 0.2%320 2 x 10°°
pey=+3° ~523.63139  0.2963 5 x 107°
(6, =~ ~523.62603  0.2990 1 x 10~8
oR,=+0.028 ~523.42807 0.4969 2 x 107/
(R, ==0.028 -523.31273  0.6123 1 x 10!
AR =+0.028 -523.27877 0.6462 1 x 107!
LR ==0.028 ~523.20604 0.7190 1 x 107!

26, =+2°,0R =+0.0148 ~523.54052  0.3845 8 x 107
oR,=+0.014%,6R =+0.0148 ~523.33273  0.5923 6 x 107°

28, =+2°, 4R =+0.0148 ~523.53%46  0.3915 6 x 107°
06.==1.4%,6R=+0.0148  -523.53028 0.3947 2 x 107!
pO==1,4°,00, =+2° -523.70620 0.2188 2 x 1077
£B,==1.4°, R, =+0.014%  -523.57519  0.3498 2 x 1077
D, =0.028 -523.38341 0.5416 2 x 1077
0p=2° -523,73859  0.1864 1 x 107°
D, =0.028,0 =2° -523.15692 0.7681 1 x 1075
D.=0,02% -523,34337 0.5816 8 x 107C
0=2° -523,78461 0.1404 3 x 1077
D=0.028,0 = -2° -523.37906  0.5460 9 x 107>

(continued)
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Table 12. (continued)

Nagnitude and . (§+237) (g'Eo)b Convergence®
type of distortion x107(a.u.) x10°(a.u.) (a.u.)
7=2° -523.67768 0.2473 2 x 10°°
10p==5° ~522.46939  1.4556 4 x 107°
£.0p=+5° -522.53677 1.3882 4 x 107°
¢8==10° -517.72199  6.2030 1 x 10~ ¢
£6,=+10° ~518.56832  5.3567 1 x 107!
16p==15° -508.94045 14.9846 1 x 107!
b€,=4+15° ~512.17620 11.7488 1 x 107/
£0,=-20° ~494,93016 28.9948 1 x 107/
£6,=+20° ~503.46086 20.4641 1 x 107/
06 =-25° -473.80603 50.1190 2 x 107!
£E.=+25° -492.49889 31,4261 1 x 1077
£6 ==30° ~442.60119 81.3238 4 x 1077
56,=+30° -479.36148 44.5635 2 x 107!
1€, =-30° -490,96280 32,9622 1 x 107°
16, =+30° -496.63400 27.9210 8 x 107/
0p=30° ~492.77198 31.1530 9 x 107°

8por a description of the coordinates, see Table 2.

b

cEnergy change during the final SCF cycle.

d

"Hartree-Fock (this work)."

Here, EO is the energy of the undistorted geometry.

The undistorted geometry is given in Table 3 as the

entry
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specific for tetrahedral molecules with C,, symmetry and includes
options for isotopic substitution and SEFC computation. A single-

precision FORTRAN IV program (UBP) was written for the PDP-10
time-sharing computer to carry out the fitting of the Urey-Bradley
potential model to a set of FC's for a tetrahedral C,; molecule.

Synthesis of CH,F,; synthesis and IR spectrum analysis of

CHDF, and CD,F,

Difluoromethane, -- Under nitrogen, 7.5 g (0.0314 moles)

AN A AN

of mercuric fluoride (Ozark-Mahoning, 98, 5%) was placed in a 50 ml
round-bottomed flask. To this was added 5 g (0.0187 moles) of
methylene iodide dissolved in 15 g of carbon tetrachloride, The flask
was equipped with a reflux condenser topped with a T-joint which
carried a slow flow of dry nitrogen from the condenser to a trap
cooled in liquid nitrogen. The outlet of the trap was attached to a
calcium chloride drying tube. The reaction mixture was heated under
reflux with magnetic stirring in a 100° oil bathfor two hours, and the
product was collected as a white solid in the trap. The cold trap was
connected to the top of an inverted wide-diameter burette filled with
mineral oil and suspended so that its mouth was beneath the surface
of an o0il reservoir. The trap was evacuated, then warmed slowly
until a slight positive gas pressure developed, at which time the
burette was opened. In this way, 67 ml of gas were collected,
corresponding to about 2.5 mmoles at standard temperature and

pressure (13% yield based on CH,I, used). The product was then
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condensed into an NMR tube (or, for the deuterated compounds, was
allowed to escape into an evacuated vapor-phase IR cell), and the
low-temperature NMR showed no proton- or fluorine-containing
impurities.

P}QB?&‘BESEE%&%;% -- The above procedure was repeated
using CD,l, in place of CH,I,. The deuterated diiodomethane was
obtained via an H-D exchange reaction on CH,I, according to the
method of Winstein et al. (34). Deuteration is not quantitative in this
reaction, and the vapor-phase IR of the CD,F, product thus showed
the presence of a modest amount of CHDF,.

Difluoromethane-d, -- Dichloromethane-d, obtained from the
reduction of deuteriochloroform with tri-n-butyltin hydride (35),
was treated with sodium iodide in refluxing 2-butanone according to
the method of Perkin and Scarborough (36) to give diiodomethane-d.
This was treated with HgF, as above, and the vapor-phase IR of the
product showed virtually no CD,F, or CH,F, impurity.

All vapor-phase IR spectra were run on the Perkin- Elmer
225 Grating Infrared Spectrometer using a cell with 6 mm KBr
windows and a path length of 4 cm. A slow scan speed was used to
give maximum resolution. The gas pressure was measured only
approximately upon filling the cell, and was initially about 100 mm
Hg for each of the deuterated difluoromethanes. Subsequent spectra
were taken after reducing the cell pressure by a factor of about ten.

Some air was present in the cell due to a slight leak, so an air

spectrum was run to help in the identification of impurities from this
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source. Little rotational fine structure was apparent in the bands
because of pressure broadening, but this was actually an asset
because the band envelopes could be easily seen.

In the spectrum of CD,F,, only seven of the nine vibrations
were potentially observable, because the a, mode is IR-inactive while
the lowest a, band undoubtedly fell below the cutoff of the cell,
Stewart and Nielsen (37) have pointed out that the difluoromethane
molecule is nearly a symmetric top (about the F-F axis), and thus
the bands of the three IR-active symmetry types have three distinctive
band envelopes. The same is true for CD,F,, so we may obtain not
only the frequency but also the symmetry of each vibration band.
Figure 8 shows the general shape we expect for each of the symmetry
types, and all three were found in the spectrum. In assigning the
following peaks, the apparent band centers were used to define the
observed frequencies, because without the rotational fine structure,
combination rules (37) could not be used. Thus, we estimate an
accuracy of about +3 cm™" in the assignments. The following spectral
regions contain peaks not attributable to CHDF, or air impurities.

4,0-5,0 p region (Figure 9)

Two strong peaks occur in this region, one of symmetry b, at
2284 cm™" and one of symmetry a, at 2128 cm~'. A smaller a,-type
peak at about 2348 cm” ' is an air impurity, while a small well-formed
b, peak at 2030 cm™' seems too weak to be a fundamental, and
qualitatively one expects to find only two peaks (symmetric and anti-

symmetric C-D stretching) in this region.
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Figure 8. Expected band envelopes for the three IR-active
symmetry types of vibrations of CD2F2.

7
ARV

a1-type vibrations: perpendicular, no Q branch

(%

b1-type vibrations: perpendicular, strong
*@j ("gathered") Q branch

bz-type vibrations : parallel, PQR structure

*The arrow indicates the approximate band center.
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8.0-10.0 p region (Figure 10)

Four very strong peaks occur in this region, three of b,
symmetry at 1159, 1103 and 1003 cm™’ and one of a, symmetry at
1032 em™'. The latter is somewhat obscured by the 1003 peak, but
it shows the strong central depression surrounded by two "'shoulders"
characteristic of a, peaks. The 1103 peak was later identified as
belonging to CHDF, and is, in fact, the strongest pzak in the spectrum
of that molecule,

10.0-11,0 p region (Figure 11)

There is one fairly strong peak in this range with a maximum
at 963 cm'l, but its envelope does not seem to correspond to any of
the "'standard'' types. It has a single strong maximum and is thus
probably a b-type peak. The molecule can, by symmetry, have only
two b, and two b, fundamentals, and both of the b, bands are elsewhere
and quite strong. We have thus tentatively assigned this as a b,-type
peak.

The above assignments are summarized in Table 7, The only
potentially observable peak not found was predicted to lie at 1174 cm™"
by us, 1254 em”™' by Meister et al. (19). Stewart and Nielsen (37)
failed to observe the analogous peak in the CH,F, spectrum and
concluded that it was weak, We believe this to be true in our case,
too, and if our prediction for this frequency is correct, then even a

moderately strong peak would be overshadowed by the intense b, peak

at 1159 cm™ !,
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The CHDF, spectrum is somewhat more difficult to analyze.
Replacing one of the protons on CH,F, by a deuterium destroys the
nearly symmetric rotor qualities of the spectrum. The molecule
still has two nearly equal moments of inertia, but the dipole moment
changes produced by the normal vibrations no longer lie along the
principal axes of inertia, which is a requirement for the character-
istic band envelopes (38). The three a” modes are pure "par-
allel" vibrations analogous to the b,-type bands is CD,F,, but the
a’ vibrations have no special symmetry with respect to the "ﬁnique"
(i.e., F-F) axis and thus should have envelopes which are combi-
nations of the three shown in Figure 8. The following spectral
regions contain peaks not attributable to air impurities.

3.0-4.0 pu region (Figure 12)

This region contains only one strong peak and the band
envelope resembles the b, contour of Figure 8. Thus, this is an a’
peak, and its maximum is at 2987 cm™'.

4,0-5.0 p region (Figure 13)

Two peaks occur in this region, one of which is also seen in
the air spectrum. The other appears to be a hybrid of the a, and b,
envelopes in Figure 8 with a small central peak at 2230 em™,
We assign this as an a’ band.

7.0-8.0 p region (Figure 14)

Only one peak, resembling the b, type in Figure 8, occurs

here. It is an a’ peak, and its maximum occurs at 1367 cm™".
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8.0-10.0 p region (Figure 15)

The most prominent feature of this region is the very strong
a”-type peak at 1103 cm™". A smaller a’ peak appears at 1030 cm™ .
The area around 1000 cm™" contains the exceptionally clear rotational
structure of the band at 991 cm™" (see below).

10.0-11.0 p region (Figure 16)

The above-mentioned band at 991 em™', of a’ symmetry,
appears here and some of the rotational structure shows up vaguely
in the region 970-980 ecm”™' on the shoulder of a larger a” band
centered at 943 cm ™',

The above assignments are summarized in Table 6. Only two
fundamentals were not found, one of which is predicted to fall below
the cell cutoff and the other of which is predicted to fall close to, and

1

is probably obscured by, the strong peak at 1367 cm™ ",
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Chapter 2
THE ELECTRONIC STRUCTURE OF DIFLUOROMETHANE

A. Introduction

In the first chapter, we investigated the potential energy
surface of the difluoromethane molecule. Although the molecular
energy is an important result of any theoretical calculation, there is
a great deal of other information contained in the wavefunction,

If such information is properly extracted, we can gain some insight
into the general electronic structure of the molecule, and in this
chapter, we undertake such an analysis in an effort to learn about
the bonding in difluoromethane and about the orbital changes which
take place as the molecule is distorted.

The anomalous nature of the C-F bond has long been
recognized, and Sheppard and Sharts (1) have recently presented a
good review and discussion of its unusual features. One of the most
controversial points has been the possibility of ""double bond-no

bond'' resonance in saturated polyfluoro compounds as shown below,

F

|
T

R

+

e
F > R—C=—F
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Such resonance was originally proposed by Brockway (2) to explain
the marked shortening of the C-F bond in the series CH,F, CH,F,,
CHF,, CF,. The currently accepted C~F bond lengths are 1, 385,
1.358, 1.332 and 1.317A (3), respectively, and the total shortening
through the series amounts to nearly 0. 07 A, a significant quantity.
Pauling (4) supports such a view, though Peters (5) has given an
alternative explanation based on hybridization changes of the central
carbon. In Peters’view, the bonding orbitals on carbon take on an
increased s character as the number of strongly electron-withdrawing
fluorines is increased, which rationalizes the shortening of the bonds
but not their simultaneous strengthening (1). Indeed, one would
expect a weakening of the C-F bonds due to the decreased overlap of
the carbon and fluorine orbitals, Streitwieser (6) has challenged the
view that double bond—no bond resonance is important in determining
the relative stabilities of polyfluoro anions (7), presenting as

evidence the fact that compound I has slightly higher kinetic acidity

I: I: (CF,),CH

than compound II. The bridgehead in I should destabilize the doubly
bonded resonance structure and should thus lead to a much lower

acidity if the proposed resonance is an important stabilizing factor.
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Both Hine (8) and Lucken (9), however, present evidence that this
kind of resonance is important not only in fluorocarbons but also in
nitrogen- and oxygen-containing molecules. Hine (8) has evén
estimated the stability resulting from this source, obtaining a value
of about 3.2 kcal/mole for each double bond—no bond resonance
structure involving fluorines.,

One purpose of this study, then, is to gain a greater under-
standing of the theoretical aspects of C—F bonding in difluoromethane.
An important question to consider, however, is whether we can
reasonably expect to find evidence for double bond—no bond hyper-
conjugation within the framework of Hartree-Fock theory. The
valence-bond (VB) description of resonance interactions (10) involves
a configuration interaction (CI) analysis using formally bonded
structures as the individual configurations. The Hartree-Fock
approach (11) considers only one configuration with optimized
(molecular) orbitals. Delocalization of these orbitals can describe
resonance effects, as for example in the pi-electron system of
benzene (12), but it is possible that certain types of resonance would
need additional Hartree-Fock configurations for proper description.
There are two bits of evidence which suggest that some type of
unusual C-F bonding is indeed present in the Hartree~Fock descrip-
tion of fluorocarbons. First, Newton et al. (13) have carried out
geometry optimizations on a variety of small organic molecules

using the Hartree-Fock method with a minimum ("STO-3G") basis set.
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They found that, in the series of fluorinated methanes, the experi-
mental trend in C-F bond lengths could be duplicated theoretically,
albeit to a much smaller extent, with a theoretical shortening of about
0.024 through the series as compared to the experimental value of
0.07A. The failure to duplicate the trend quantitatively may be due to
the absence of CI terms or to the small size and relative inflexibility
of the basis set. Using a basis of about the same size but with greater
flexibility, we have found (see Chapter 1) a C~F bond length about

0. 004A shorter than theirs, suggesting that a better basis set would
improve the trend in calculated distances. In any event, the Hartree-
Fock calculations mimic the C-F bond shortening which originally led
to the double bond-no bond resonance hypothesis. Secondly, Unland
et al. (14) have analyzed the canonical Hartree-Fock MO's of CH,F,
using Mulliken population analysis (15) and have found that the two
orbitals antisymmetric with respect to the F-C-F plane combine to
give a positive contribution to the C-F overlap populations. Because
these orbitals cannot be involved in the C-~F sigma bonds, this result
suggests a pi-pi bonding interaction of some sort between the fluorines
and the carbon.

There has been a great deal of interest recently in the use of
localized orbitals (16) and bond-function models (17) as theoretical
tools. They can aid greatly the interpretation of electronic wave-
functions by providing descriptions which are in accord with the usual
chemical concepts of bonds, lone pairs, etc. Also, the use of bond-

function models is an economical alternative to the full ab initio study
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of molecular electronics, because the number of variables needed to
define the wavefunction for such a model is relatively small. In fact,
if transferability is assumed for similar bonds in different molecules,
an entire molecular wavefunction could be generated by taking
functions from appropriate reference cases. Such methods have
already been used successfully to calculate the rotation barriers in
some small hydrocarbons (17a, 17b), and they may eventually provide
a means of greatly extending the range of molecules which can be
investigated theoretically. Thequestion of how bond functions change
as molecules are distorted from their equilibrium geometries is an
interesting one, and is particularly important in the generalization of
the bond-function approach, but it has received relatively little
attention. Therefore, the second purpose of the current study has
been the investigation of the orbital changes in difluoromethane as the

F~-C-F angle is grossly distorted.
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B. Localized Hartree-Fock Orbitals

The closed-shell Hartree-Fock SCF-MO method (11), though
fairly accurate, has the drawback that the canonical molecular
orbitals are generally distributed over the entire molecule. This
somewhat obscures the qualitative interpretation of the wavefunction,
because these delocalized orbitals do not correspond to the intuitive
concepts of bonding, lone and core pairs of electrons, and it also
makes difficult the comparison of wavefunctions of chemically
related molecules whose symmetries differ.

Fortunately, there is a way around this problem. The orbitals
which are solutions of the Hartree-Fock equations are not unique in
their description of the total antisymmetric wavefunction, and in fact,
any non-singular transformation of these canonical orbitals yields a
new set which describes, to within a normalization constant, the same
total wavefunction (11). It is possible, then, that the canonical
orbitals might be "untangled' (i.e., localized) through such a trans-
formation to give a set of orbitals conforming more closely to the
intuitive models. The interpretation of the wavefunction is greatly
simplified if the transformation is chosen to retain the orthonormality
of the orbitals, and although other types of transformations are
possible, they are usually not considered.

Currently, the most widely used criterion for localization is
the one suggested by Lennard-Jones and Pople (16a) and implemented
by Prtzer (16d) anct
by Edmiston and Ruedenberg (16b). It involves the minimization of

the total electrostatic repulsion between the transformed orbitals,
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which effectively places them "as far apart' as possible. This is
equivalent to maximizing the total self-repulsion of the orbitals,
making them as ''compact’ as possible, and to minimizing the "odd"
part of the Hartree-Fock energy, the sum of the two-electron
exchange terms between the various orbitals., Edmiston and
Ruedenberg (16b, 18) have discussed this criterion at some length and
have presented a general iterative procedure for finding the localizing
transformation, Newton and co-workers (16¢) have reviewed and
reported a variety of studies based on this criterion, and have found
it to provide a good, unbiased method for analyzing Hartree-Fock
wavefunctions. In addition, they have defined two useful concepts
which yield information about the nature of the localized orbitals, the
first of which gives a measure of the "'strength' of localization and
the second of which gives a measure of the departure of the localized
orbitals from pure one-, two- or three-centeredness. We will
discuss these concepts a bit later, but first we will describe the
various localization schemes currently available, including our own.
The iterative procedure of Edmiston and Ruedenberg (16b, 18)
is one of successive two-by-two transformations of the Hartree-Fock
orbitals, each of which increases the sum of the orbital self-repul-
sions as much as possible. At each stage, the new set of orbitals is
formed by "mixing" just two of the old orbitals. If {\ } represents

the new set and {$, } represents the old, then
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N = P kK # i,j
A = d)i cos (8) + ¢]. sin (6) (1)
A =

-¢i sin () + d)]. cos (6)

This is a two-by-two "rotation" of orbitals ¢; and qu by an angle 6,

Now, in general, the sum of the self-repulsions, given by

n ,
J\) = g:lff)\f((l) xk(z)/rmd-rldr2 (1I1)

(n is the number of Hartree-Fock orbitals and
each )‘k is assumed to be real)

will change during this rotation. It is possible to calculate analytically
the optimum 0 for any particular i and j as long as the set of two-
electron integrals for the {d)k} is known, and the values of i and j
which yield the greatest increase in J can be found. The above
transformation is then performed on the orbitals and on the set of
two-electron integrals, and this transformed set is used as the '"'old"
set in the subsequent cycle. Convergence is achieved when no rotation
produces an increase in J(A) of more than a present threshold value,
taken as 107" a.u. in our application.

When this method was applied to the orbitals of the difluoro-
methane molecule in its Hartree-Fock equilibrium geometry (see
Table 1 of Chapter 1), the convergence was disappointingly slow.

After about 100 cycles involving several different orbital paris,



85

the program (19) settled into a pattern of slightly intermixing the lone
pair orbitals on each fluorine, the net result of these transformations
being a slow rotation of the lone pairs about the C-F axis. Sucha
rotation necessarily involves three orbitals at a time, and the slow
convergence was apparently a result of the fact that a general three-
by-three transformation is not easily expressable as the product of
a small number of two-by-two rotations. In all, 600 cycles were
completed before we began the search for a more efficient method.
Two localization schemes have been suggested (20, 21) in
which the restriction to two-by-two rotations is lifted. Edmiston and
Ruedenberg (20) have presented a method in which the transformation

matrix O, which relates the A's to the ¢'s as follows

i : i

n
A, = ]_‘1 O;; ¢ (I11)

is given the form

O = "exp(-€A)" = 1 + €A + (€/21)A% + (¢'/31)A% + ...
av)

where A is a skew-symmetric matrix chosen so that the change in
J(1) with respect to an infinitesimal € is a maximum. This effectively
locates the path of steepest ascent in the space of variables which

define the orthogonal matrix O, and it can be shown that
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Aji = 'Aij = [¢i¢i|¢i¢j] - [d’j ¢j|¢j ;1. (V)

Here, we use the abbreviation [ ¢, d)bl ¢ ®q] to represent the

integral

flﬁ Pa(l) dp(l) de(2) Pg(2)/r,, dr, dr,

(all ¢'s are assumed to be real)

Once A is evaluated, O may be calculated for any particular value of
€ using (IV), and J(A) may thus be found. Numerical variation of €
leads eventually to the highest J(A) along the path. At this point, the
A's are formed using (III), the two-electron integrals are transformed
to correspond to these new orbitals, and if convergence has not been
attained, a new steepest-ascent path is found starting from the A's.
Taylor (21) has improved upon this method by deriving expressions
for the curvature of J(A) along the steepest-ascent path. If J is
assumed to vary parabolically as a function of €, a value for the
optimum € may be predicted from the slope and curvature along the
path, and thus the numerical search for this optimum value is
bypassed. These methods have the advantage that they involve all
orbitals simultaneously and may thus be well suited to cases in which
the "two-by-two'" method converges slowly.

We have taken a somewhat different tack (22) which partially
accounts for the quadratic behavior of J() with respect to all
transformations, not just those along the path of steepest ascent.

At the maximum, the gradient of J(A) with respect to any
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transformation must be zero, which leads to the n(n-1)/2 conditions:
[xilexjxj] - [ijihixi] =0 all j> i (VI)

a result which was originally derived by Edmiston and Ruedenberg
(16b, 18). Now suppose we have a set of nearly localized orbitals
{¢x}. Equation (VI) will not quite be true, and so we seek to carry
out a slight transformation upon the orbitals so that it will be true,

at least to first order. Let us define the matrix of "errors", §¢, by

x§ = [0 0,05] - [o;0;]0; ;] (V)

and carry out a slight transformation (Q) upon the ¢'s as in equation
(IIT), the purpose being to reduce these errors to zero. Now, O is

supposed to be nearly unity
0O =1+A4A (A small) (V)

and if we require that O be orthogonal only to first order, we may
take A to be skew-symmetric (23). Thus, we effectively isolate the
n(n-1)/2 degrees of freedom of O in the upper triangle of A. For a
general, small A, the error matrix for the A's may be expanded to

first order in the elements of A to give
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Y
X5y = [xj Il - Iy A lx (IX)
~ x']?i+?ap?;ququpq([xx|x [)\)\ AJ)\J])

= X+ %p>q pq{[( - )¢ |4; ¢] [d)j (-a%%)\%%]
+2 [%"’i'(a?i )"’i]'[ a? Joyleye ]

pq Pq

Q¥ oA,
- [¢i(ﬁ;—)l¢j ¢j] -2{¢i¢jl(ﬁ;)¢jj}

But, from (III) we have

oA4

= 27 ¢;00;4/0A o (X)
aqu

]

and using equation (VIII) and the fact that A is skew-symmetric,

we may obtain

ani/aqu = ijéiq - quﬁpi. (XT1)

Substituting (XI) into (X) and summing over j, we get

axi 5 5

35— = %iq®p " %ipPq )
Using this, we may rewrite (IX) as

A s x® >
in XJI * Zcfp>'q ququ,Jl (XTII)
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where

B = 6, Y -6, Y. .+0

pq, ji ipYjq,i "~ “jpiq, ] - %4qY (XIV)

ja¥ip,j ~ %iq Y ip, i

in which

Yap, o = [920,1030p) - [0,0,10.0.) - 20,0 00,1 (XV)

Thus, we may evaluate the supermatrix B directly from the set of
two-electron integrals over the ¢'s. Now, we wish to find the matrix
A which will cause the skew-symmetric ;(h matrix to vanish.

Setting the left-hand side of (XIII) to zero for all unique elements
A

X]. p we obtain n(n-1)/2 equations for the n(n-1)/2 unique A elements:
Y oA B .= -xP  aun (i) with j> i (XVT)
4 p>q P PY i i

Both B and ¥¢ are defined by the two-electron integrals over the
¢'s, and thus we may solve the linear equations (XVI) for the desired
A values. To simplify the solution, we consider (j, i) with j> i to be
a single index, say k, and (p, q) with p > q to be a second index, say
1. Now (XVI) can be written in a much more familiar form; a

simple matrix equation. We have

41‘3 AB , = -XP all k (XVII)

or, considering B to be a simple "matrix" and A to be a "'vector",

we have, in matrix form
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BT A = -x% (XV1ID)

which we may solve straightforwardly for the "vector" A, obtaining

A = -81)"'x? (XIX)

The values in the "vector" A thus obtained define the A matrix, and
thus we may compute the transformation matrix Q using equation
(VIII). Because A is not vanishingly small, O will not be a truly
orthogonal matrix, but we can rectify this by symmetrically
orthogonalizing the columns of O (24). Then, O can be used to form
the new localized orbitals Ak using (I1I). These should constitute a
better guess than the ¢'s for the actual localized orbitals, and may
be used as the starting point for another cycle of refinement.

The above constitutes a pseudo-second-order approach to the
localization problem, since it deals with the first-order changes in
the first-order conditions of equation (VI). After we had imple-
mented the method, we learned of the work of Newton et al. (16c¢)
and noted the close relationship between our supermatrix B and the
supermatrix of theirs which gives the second derivatives of J(A) with
respect to the n(n-1)/2 unique orthogonal transformations. Their
supermatrix has the same form as ours, except that the term

Y of equation (XV) is defined by

ab, c

Yav,e = Ypa,c = [¢a¢b|¢b¢b] + [¢b¢al¢a¢a]
(XX)

-2l o 0pl0.0.) -4l 0. |0p 0]
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At the maximum, the first two terms on the right-hand side are
equivalent via (VI), which yields an expression identical to ours
except for a factor of two. They have not used B in the localization
procedure, but they find that its eigenvalues provide a measure of
the "'strength' of localization [i.e., the sensitivity of J(A) toward
various orbital mixings] and can be used to verify that the localized
orbitals correspond to a true local maximum in J(A). It is possible
to derive a truly second-order approach to localization in much the
same way as we have derived our method. In this case, the O

matrix is written as
O=1+A+ -;-éz (A is small and skew-symmetric) (XXI)

which makes it orthogonal through second order in the elements of A.
Expanding J(A) through second order and solving for the local
quadratic extremum gives equations nearly identical to ours, the only

difference being in the definition of Yab, c (equation XV). The term
[¢,0,]¢,0,]

simply needs to be replaced by
(Lo 0,1 0,01 + (o0, 1 ¢,0,1).

This makes our supermatrix B proportional to the second-derivative

matrix of Newton and co-workers (16c).
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Only four cycles of pseudo-second-order (PSO) localization
were needed to obtain the final localized orbitals for difluoromethane,
starting from the partially localized orbitals obtained after 600 two-
by-two rotations. Each cycle of the PSO method is considerably more
costly than a two-by-two rotation, because the full set of two-electron
integrals must be transformed each time in the former, while the
latter alters only a small subset of them. With our case, involving
thirteen orbitals, we found a cost factor of about forty between the
two, but in view of the fact that the PSO method converged so rapidly,
we feel that an overall savings was realized.

The localized molecular orbitals (LMOQO's) thus obtained were
readily identifiable as core, bonding and lone pair orbitals. The
core orbitals are somewhat less compact than the canonical cores,
but are still concentrated in small regions about the C and F nuclei.

The two symmetrically related C-F bonds are, as expected,
quite polar, and the fluorine contribution contains little s character.
Figure 1 shows a plot of the amplitude, in the F-C-F plane, of one
of these bonding orbitals, We may divide each such orbital into a
carbon hybrid, composed of the contributions from the carbon AO's,
and a similarly defined fluorine hybrid, but we must keep in mind
that hybrids derived from doubly occupied LMO's may not be as
meaningful as, nor comparable to, hybrids obtained in the usual way
from singly occupied valence-bond orbitals. The hybrids show 74%
and 85% p-character for carbon and fluorine, respectively, based on

a population analysis (15) over the pertinent AO's. These values
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Figure 1.

Orbital amplitude plot, in the F-C-F plane, of
one of the two C~F bonding IMO's in difluoro-
methane (Hartree-Fock equilibrium geometry),

The dotted, dashed and solid lines are negative,
zero and positive contours, respectively. ‘The
contour closest to the node represents an ab-
solute value of 0.05 a.u., and the ratio between
successive contours is 1.7.
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correspond to sp’® and sp**” hybridization, respectively. The
"direction' of each hybrid is difficult to define precisely because of
the nature of our basis set. For the C hybrids, the coefficients of
the inner (i.e., smaller) p orbitals indicate an angle between the
carbon hybrids of the two C—F bonds of about 101°, while for the
outer p orbitals, the value is roughly 94°, Both are substantially
below the actual F-C-F angle of 109°, a result which supports the
view (25) that fluorine induces extra p-character in the C hybrids,
thus reducing the inter-hybrid angle below its natural tetrahedral
value. These C hybrids show a bending which cannot be described
in terms of simple hybridization parameters, but we may define an
"average' hybrid direction by grouping together the inner and outer
p orbitals of each type (x,y and z) and carrying out a population
analysis (15) over these groups. We thus obtain gross x, y and z
populations reduced to a minimum basis level, By taking the square
roots of these and appending the appropriate signs, we generate
minimum basis coefficients which yield the correct populations and
which may be used to define the average hybrid direction. In this
manner, we obtain an average angle between the carbon hybrids} of
99.4°. Each fluorine hybrid points in a direction which is only about
1° away from the pertinent C~F axis so that the two fluorine hybrids
intersect with an angle of 111,2°, The inner and outer p-contribu-
tions are quite similar in this case, giving angles of 111.6° and
111.0°, respectively. If each bonding orbital is expressed as a

linear combination of normalized hybrids, the fluorine coefficient is
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nearly 2. 2 times as large as the carbon coefficient, which points up
the polar nature of the bond.

The carbon hybrids of the two symmetrically related C-H
bonding orbitals contain 57% p-character, corresponding to hybrid-
ization of sp' **. The average angle between the carbon hybrids of the
two C—H bonds is 117.8°, with inner and outer p contributions of
119.0° and 115.8°, respectively. The coefficient of the normalized
carbon hybrid is about 35% larger than the coefficient of the normal-
ized hydrogen hybrid in the bond, indicaring the presence of a slight
polarity in the direction C H'. Figure 2 shows an orbital-amplitude
plot of one of the C-H bonds in the H-C-H plane.

It is interesting to note that the overall carbon hybridization is
not at all consistent with the usual relationships (26). For example,
the average angle of nearly 120° between the C hybrids of the C-H
bonds is consistent with roughly sp2 hybridization, but we found it to
be spl' . Similarly, for the C-F bonds the angle suggests about sp’
hybridization, but we obtained sp’*®. The equations relating angles to
hybridization (26) are derived from the assumption that all hybrids on
a given center are orthogonal, though, and this is where the discrep-
ancy arises; the fact that the localized molecular orbitals must be
orthogonal does not imply that the individual hybrids must be. All we
can really say about the bonding orbitals, aside from the above-men-
tioned bond polarities, is that the carbon contribution to the C—F bond
contains substantially more p-character than its contribution to the

C-H bond.
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Figure 2. Orbital amplitude plot, in the H-C-H plane, of
one of the two C-~-H bonding LMO's. See Figure
1 for contour values.
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There are, in addition to the bonding and core orbitals, six
lone pair orbitals. Each fluorine carries three, and the two sets are
related by a reflection through the H-C-H plane. The lone pairs are
distributed much as are the hydrogens on the terminal carbons in
propane; they are staggered with respect to the bonding orbitals on
the neighboring carbon. Figure 3 shows an orbital amplitude plot of
one of the two lone pairs lying in the F-C-F plane. The most
interesting feature of this plot is the marked "'smearing' of the orbital
toward carbon, an effect which is also seen in Figure 4, which is a
plot of one of the other four pairs in the pertinent F—-C-H plane.

A similar effect has been noted by Newton et al.(27) in the oxygen lone
pairs of formaldehyde, and we will discuss this delocalization shortly.
As to the gross structure of these pairs, we find that the

fluorine contribution in each case contains 69%-70% p-character,

23724 hybridization. The average angle between

corresponding to sp
hybrids on a given fluorine is 113.6°+0.70°, which is consistent with
sp®*® hybridization. In this case, the angles are well-defined, because
the inner and outer p contributions point in almost exactly the same
directions. The angle between the lone pairs and the fluorine hybrid
of the C-F bond is 105.10°+0.1°, which agrees well with the
prediction of 105° based on spz‘5 hybridization of the lone pairs. The
fluorine hybrid of the C-F bond is similarly predicted to have sp5‘8
hybridization, which agrees well with the value of sp5‘7 which we

obtained above. We conclude that the usual hybridization concepts

(26) apply quite well to the fluorines.
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Figure 3. Orbital amplitude plot, in the F-C-F plane, of
one of the two fluoriné lone pair LMO's which

lie in that plane. See Figure 1 for contour
values.
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Figure 4.

Orbital amplitude plot, in one of the four
F-C-H planes, of the fluorine lone pair LMO
lying in that plane. There are three other
such pairs, symmetrically related to this one.
See Figure 1 for contour values,
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As noted above, all of the lone pairs show an apparent
delocalization toward carbon in what appears to be a slightly bonding
interaction. Examining Figure 3, we see that, in addition to this
bonding, the delocalization introduces some electron density onto the
other fluorine and some antibonding character into the other C~F
bond, which gives it all the earmarks of the double bond-no bond
resonance structure discussed in the introduction. Figure 4 shows
a similar situation for the lone pairs in the F-C—-H planes, although
the nodal structure is somewhat different and the amount of charge-
transfer to hydrogen is less than the analogous charge-transfer to
fluorine in Figure 3. We would like to study these effects in more
quantitative detail, but there is a notable lack of tools with which to
do so. We discuss our approach to this problem below.

There are two major problems in the quantitative analysis of
delocalization effects. First, we must consider the very definition of
delocalization, which is quite evasive because it is not possible to
identify uniquely those portions of an orbital which "belong' to a
particular atom. Most current theoretical calculations use atom-
centered basis functions, and it has become customary to dissect the
orbitals into atomic contributions using the MO expansion coefficients.
Such a dissection may lose its meaning, though, if each AO basis is
very complete, if one-centered expansion methods are used, or if
functions other than atom-centered ones are used. In spite of this,
the method has proven quite useful, particularly in connection with

Mulliken population analysis (15), and we shall rely upon it, keeping
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in mind that our results can be, at best, only semi-quantitative.

The second problem involves the use of LMO's. Because these must
be mutually orthogonal, a certain amount of natural delocalization
must be present, and it is not possible at present to separate such
"orthogonality delocalization' from ''real delocalization', assuming
the latter exists.

Newton and co-workers (16c) have dealt with the problem of
delocalization using a simple truncation procedure. Bond functions
are derived from the LMO's by simply setting to zero those coeffi-
cients which do not "belong'. Once an LMO has been identified as,
say, an A-B bond, the corresponding bond function is obtained by
retaining only those AO coefficients pertaining to A- or B-centered
basis functions. Nonbonding orbitals and three-centered bonds may
be treated analogously. Using such bond functions, which they call
TLMO's (for truncated LMO's), they have defined a parameter, the

percent delocalization, to measure the extent to which an LMO and

its corresponding TLMO differ. 1If ¢ represents an LMO and cpT

represents the corresponding TLMO, both normalized, then

1

2
percent delocalization = [%f(d)-qu)zd*r] X 100%. (XXII)

Carrying out the integration and letting S be the overlap of ¢ with

cpT, we obtain

1
percent delocalization = 100% X (1 - S)2, (XXT1II)
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We have calculated these values for our LMO's in difluoromethane,

obtaining the following:

F core ...... . 0.9% C-H bond ...... 12.6%
Ccore ....... 3. 2% F lone pair ..... 7.3%
C-Fbond ..... 6.5%

which are generally consistent with the results of Newton and co-
workers (16c¢). They find typical values of 10% for C-H bonds in
methyl or methylene groups, about 4% for C-X sigma bonds where

X is a first-row heteroatom, about 4,5% for carbon cores and about
1% for heteroatom cores. The lone pair delocalization appears
usually low when compared to the values for O (13%) and N (19%) lone
pairs in H,CO and HCN, but we note that these are unsaturated systems
with substantially shorter C-X bonds, so we might expect generally
greater delocalization effects for them. Using Newton's delocalization
criterion, we must conclude that the fluorine lone pairs in difluoro-
methane are somewhat delocalized, though the effect is by no means a
large one,

Newton's criterion, though, may be criticized on several
counts. First, the method does not attempt to account for delocali-
zation resulting from orthogonality, which, we have found, can be
quite substantial. To show this, we have symmetrically orthogonalized
(28) the TLMO's to give a set of orbitals resembling the LMO's, and
presumably containing about the same amount of "orthogonality

delocalization', We then truncated these approximate LMO's just as
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we did the actual ones, and computed the resulting delocalization

percentages, obtaining

F core ....... 0.3% C-Hbond ...... 7.4%
Ccore ....... 1.1% F lone pair ..... 3.2%
C-F bond ..... 4,29

Comparing these to the previous values, we find that, in all cases,

a substantial fraction of the original delocalization could arise from
orthogonality. Thus, if we are interested in ''real’ delocalization,
whatever it might be, then the parameter defined by Newton does not
seem to be particularly useful.

The only reliable way we can see to surmount this problem
would be to develop a localization scheme which lifts the orthogonality
restriction. Short of this, we may take a more approximate approach
in which we make the following three assumptions: a) There exists
a well-defined and meaningful set of non-orthogonal, localized
Hartree-Fock orbitals (NLO's); b) These NLO's, when symmetrically
orthogonalized (28), yield the LMO's; and c) The overlap matrix for
the NLO's is approximately the same as that for the TLMO's. If
{2} is the set of NLO's and {¢, } is the set of LMO's, then the

second assumption leads to

|

i (XXIV)

X, = 22 (S
1 ] ~

1
where S? is the symmetric "square root" (29) of S, the matrix of
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overlaps between the NLO's. The third assumption allows us to
evaluate S, at least approximately, and thus to obtain approximate
NLO's. The NLO's thus obtained bear the same relationship to the
LMO's as the TLMO's bear to their symmetrically orthogonalized
counterparts, and the NLO's represent orbitals which are, at least
partially, corrected for orthogonality delocalization. We may truncate
these to give TNLO's, and compute the percent delocalization of the

TNLO's relative to the NLO's using (XXIII). We have done this,

obtaining
F core ....... 0.6% C-Hbond ...... 6.0%
Ccore ....... 2.3% F lone pair ..... 6.9%, 6.3%
C-F bond ..... 2.8%

where the higher value for the lone pairs corresponds to the orbital in
the F-C-F plane, These values, which hopefully express mostly
real delocalization, are seen to be generally lower than the analogous
values for the LMO's, and they indicate that the lone pairs are the
most highly delocalized of the orbitals. Interestingly, the lone pairs
which lie in the F-C-F plane are substantially more delocalized than
the out-of-plane pairs.

A second criticism which may be applied to Newton's
delocalization criterion, as well as to the one we have given above,
is that they refer to overlap quantities rather than energy quantities.
The delocalization energy of a single-determinant MO wavefunction

can be straightforwardly defined as the energy increase which results
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from replacing the actual MO's by orbitals which are localized in
some fashion. In simple Hiickel theory (30), for example, the
localized orbitals for a hydrocarbon pi system are considered to be
simple ethylenic bonds between neighboring carbons. For more
general types of wavefunctions, a good definition of '"localized" is
needed, and it seems reasonable to rely upon some form of bond-
function model. Newton et al. (16c) find that replacing LMO's by
TLMO's increases the energy of a variety of small molecules by
30-100 mh (we use the symbol mh, "milli-Hartree'", to represent
107 a.u., which is about 0.6 kcal/mole). We obtain 121.5 mh for the
delocalization energy of difluoromethane, defined in this way. If,
instead, we replace the NLO's by their truncated counterparts, the
energy increase is only 99. 7 mh, indicating that the TNLO's are
better bond functions than the TLMO's. This seems reasonable
because, to obtain the approximate Hartree-Fock orbitals, the bond
functions must be orthogonalized; the TNLO's partially account for
this while the TLMO's do not.

A logical way to extend the above method is to consider the
energy increase which results from replacing each individual orbital
by its localized counterpart, a process which gives the delocalization
energies (DE's) for these orbitals. If we are using TLMO's as the
localized functions, the DE for an orbital is obtained by calculating
the energy of a wavefunction in which only that orbital is truncated
and subtracting from it the Hartree-Fock energy. If we are using

TNLO's, we go through the same process, but replace an NLO by its
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TNLO. Generally, the sum of the individual DE's will not quite
match the total DE because of the nonlinearity of the orthonormali-
zation procedure which precedes the energy evaluation, and for
meaningful DE's, this error should be small. Table 1 gives the DE's
we have obtained for the orbitals in difluoromethane, based on both
TLMO and TNLO bond functions. In view of the fact that the latter
show a smaller overall DE, better DE additivity and more reasonable
description of the C core, we will concentrate mainly on them, though
our conclusions apply fairly well to the TLMO values, too.
Examining the TNLO values in Table 1, we find that the lone
pairs account for about 80% of the total DE of the molecule, and that
they have by far the highest individual DE's. The total stabilization
from this source amounts to about 80 mh (50 kcal/mole), or about
25 keal/mole for each C—F bond. We note that the DE of the lone
pairs which lie in the ¥F-C~F plane is greater by about 4 mh (2.5
kcal/mole) than the DE for the out-of-plane pairs, and that this value
is not sensitive to the nature of the bond-function model. This is a
very interesting result, implying that delocalization is more efficient
(from an energy standpoint) when a fluorine lone pair opposes a C-F
bond than when it opposes a C—H bond. We may view this extra
stability as a fluorine-fluorine interaction of sorts, and counting
2.5 kcal/mole for each in-plane pair, we calculate a total F-F
stabilization of about 5 kcal/mole. In a study of the thermodynamic
stabilities of the fluorinated methanes, Hine (8) has estimated that

each such interaction is "worth' 6.5 kcal/mole, which is in
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Table 1. Delocalization Energies (in mH) for the
Localized Orbvitals of Difluoromethane.
Orbital Number Delocalization energy (mh)
From TLMO's From TNLO's
Sum over Sum over
Per related Per related
orbital orbitals orbital orbitals
All 13 - 121.55% - 99.68%
F core 2 0.79 1.58 0.79 1.58
C core 1 10.37 10.37 6.27 6.27
C-F bond 2 2.45 4.90 0.62 1.24
C-H bond 2 T7.23% 14.46 5.22 10.44
F lone pair
in F-C-F plane 2 17.27 %4 .54 16.03 32.06
F lone pair
out of plane 4 13.28 _53.12 11.94 _47.76
sum = 118.97b sum = 99.35b
error = 2.58° error = O.33°

8actual total DE.

b

Sum of individual orbital DE's.

cNon—additivity error, the difference of the above.
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surprisingly (and perhaps fortuitously) good agreement with our
theoretical value.

Thus, if we consider the delocalization percentages and DE's
for the TNLO's, we conclude that the fluorine lone pairs are substan-
tially delocalized in difluoromethane, that this delocalization
represents a marked stabilization of the molecule and that the effect
is most pronounced for the pairs which lie in the F-C-F plane.
These conclusions, though, may be criticized on the grounds that the
TNLO concept is a new one which has not been tested on other mole-
cules, so we have no guidelines by which we can judge the reliability
or our results, We believe that these results represent real effects,
but that it would be wise to look at the problem from a different, and
somewhat more soundly established viewpoint, that of Mulliken
population analysis (15).

Table 2 gives the overlap populations (OP's) and gross
populations (GP's) for each of the six different types of LMO's, for
certain groups of orbitals, and for the total Hartree-Fock wave-
function. In Table 3 are the analogous populations for the symmet-
rically orthogonalized TNLO's which show only orthogonality
delocalization because the original non-orthogonal functions are fully
localized. We have included these so that we may see the general
pattern of populations which results from such delocalization, a

pattern which is the same whether we start from TNLO's or TLMO's.
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First, we note that the cores show virtually quantitative GP's
on their respective centers. The carbon core shows a very slight
negative contribution to the OP's of the directly bonded atom pairs,
an effect which is duplicated by the bond-function model.

The bonding LMO's show a regular pattern of populations
which is present in the TNLO model as well: The atoms included in
the bond, of course, have a large positive OP; each atom which is
not in the bond shows a negative OP with each atom in the bond; and
the OP between two atoms which are not in the bond is positive. This
pattern is a logical result of the orthogonality restriction. To
illustrate this, we consider an idealized system of three C—H bonds
in a plane, each of which is completely localized. These bonds, shown
schematically in Figure 5a, will have a slight positive mutual overlap
because .of the positive amplitudes on the hydrogens. Upon symmetric
orthogonalization, each bond will have subtracted from it a small
amount of each other bond, as shown in Figure 5b. We see that the
result is a pattern of bonding and antibonding character which agrees
with the noted population pattern in difluoromethane. Both the LMO's
and the TNLO model show that the sum of the GP's for the atoms in a
bond is greater than 2.0, which can be traced to the fact that most of
the OP's to other atoms are negative. This tends to induce negative
GP's upon these nonbonded atoms, and to compensate for this, the
bonded atoms must contain an excess of electrons. Based on the
population analysis, then, we find nothing particularly unusual about

the C-F or C-H bonding LMO's; the populations may be understood
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on the basis of orthogonality restrictions alone,

The situation is quite different for the lone pairs, though.
We note that the GP on fluorine for each type of lone pair LMO is
less than 2.0, with most of the remaining population residing on the
carbon. This is in contrast to the TNLO model, which shows exactly
the opposite behavior. The lone pair LMO's contribute a positive OP
to the adjacent C-F bond and a negative OP to the bond which is trans
to the pair. The remaining OP's do not seem to show a consistent
pattern, though we note that the major interactions are negative ones
between the fluorine carrying the pair and atoms which are not
bonded to that fluorine, The TNLO model shows that each lone pair
contributes a negative OP to the adjacent C—F bond, and virtually no
OP's to any other interactions., Thus, the lone pair LMO's do not
give a pattern of populations which can be understood on the basis of
orthogonality restrictions, and we take this as evidence that they
possess ''real' delocalization. Finally, we note that the lone pair
LMO's which lie in the F-C-F plane contribute more C-F bonding
character, and give a greater charge-transfer to carbon, than the
out-of-plane pairs do, which leads us once again to the conclusion
that delocalization is most efficient when the lone pair opposes a
C~F bond.

In order to see the overall effects of the lone pairs more
clearly, we have partitioned the thirteen orbitals into three groups,
one containing the three cores, one containing the four bonding

orbitals, and the last containing the six lone pairs. Table 2 shows
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that the effect of the LMO lone pair group on the GP's is a transfer

of 0.14 electrons from the two fluorines to the carbon, while its
effect on the OP's is a 9% ''strengthening' of the C-F bonds, an 8%
"weakening'' of the C-H bonds, and a fairly large antibonding contri-
bution to all other interactions., Table 3 shows that the lone pair
group in the TNLO model gives almost exactly the opposite effects,

so that although the bond groups of the two models show a good
parallel, the total populations for the TNLO wavefunction agree rather
poorly with the LMO values.

Thus we have looked at the "'fine structure' of the localized
orbitals in difluoromethane from three different viewpoints. Our
percent delocalization criterion suggested that substantial lone pair
delocalization is present, the DE's indicated that it is energetically
significant, and the population analysis pointed out that it is respon-
sible for a charge-transfer to carbon, an increase in the C-F overlap
population and a decrease in the C-H overlap population. Together
with the visual evidence of Figures 3 and 4, these results constitute
what we believe to be a strong argument that our Hartree-Fock
wavefunction contains features which cannot be adequately described
by a single valence-bond configuration. At this point we can say
little about the nature of the VB resonance structures which would be
needed to describe these features, but it seems likely that inclusion

of structures such as
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H—C=F"

and structures such as

F
-
H—C=F"

H

would capture the main effects. The latter would be necessary to
account for the delocalization of the lone pairs which are trans to the
C-H bonds.

We turn now to the question of how the LMO's of difluoro-
methane change as the F-C-F angle is altered. We consider two
cases in addition to the equilibrium geometry; those in which the
F-C-F angle is increased and decreased by 30° from its equilibrium
value. For conciseness, we will refer to the three geometries as
the +30°, 0° and -30° cases, indicating the distortion of the F~-C-F
angle. The localizations for the +30° and -30° cases were carried
out as described previously for the 0° case. Several hundred two-by-
two transformations were completed to obtain an approximate
localization, and these were followed by a few PSO cycles to complete
the process. Again, the LMO's could readily be identified as bonds,
lone pairs and cores. The cores are virtually the same in the +30°

and -30° cases as they were for the 0° one, and they will not be
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discussed further. The remaining LMO's will be examined in some-
what less detail than we have previously considered because we are
interested only in the overall orbital changes which result from the
F-C-F angle variation,

The greatest single change appears in the -30° case, where
we find that the sets of lone pairs on the two fluorines are no longer
related by a reflection through the H-C-H plane. Rather, the pairs
on one fluorine, which we arbitrarily call F,, are rotated by 60°
about the C-F axis so that they eclipse the bonds to the adjacent
carbon. Thus, the lone pairs exhibit a '""cogwheel" effect which is
understandable because the electrostatic repulsion between the lone
pairs above and below the F-C-F plane would be quite large if one
set was not rotated. Of course, this does not mean that the molecular
wavefunction has lost symmetry, only that this unsymmetrical
description of it has a lower total inter-orbital repulsion than any
symmetrical description. In the +30° case, the lone pairs have the
same symmetry and "'staggered" orientation that we found in the 0°
case,

Table 4 summarizes the most important features of the LMO
hybrids in the three cases. As before, we consider an A-B bond to
be composed primarily of two hybrids. The A hybrid is the contri-
bution to the bonding LMO from all A-centered basis functions and
the B hybrid is similarly defined using the B-centered basis functions.
In the case of lone pairs, only one hybrid is present, and it is defined

in an analogous manner. For the purpose of discussion, it is useful
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Table 4. Geometry variation of Difluoromethane:
Hybrid Analysis of LMO's.

Parameter® Value

+30° case 0° case -30° caseb
xp,C*F 90.9° 99.5°  105.6°
O*T.C¥F  106.8°  101.4° 98.2°
G G 47.8° 93.6°  123.7°

Coxm,o*H 117.1° 117.7°  118.2°
eﬁﬁﬁfg*n 119.1° 118.0° 119.6°
E%EE?E*H 114.0°  115.8°  115.9°
Rp-0,IP-0 115.0°  114.3°  113.3°(112.7°)
Op-1,LP-0 113.1°  113.0°  114.5°(114.7°)
OLP-0,CF*  105.2°  105.1°  103.3°(105.7°)

4 p-i,cF* 103.8° 105.3° 106.4°(102.0°)

¢ 9.0° 1.2° -8.1°%( -9.3°)
Noxp 2.39 2.82 2.90 ( 2.91 )
Doy 1.46 1.34 1.31
. 5.66 5.70 6.28 ( 6.14 )
- 2.39 2.35 2.53 ( 2.03 )
Do 2.24 2.25 2.14 ( 2.41 )

83ee text for a description of the parameters.
Prhe values in parentheses are those unique to
F2' whose lone pairs eclipse the carbon bonds,

All other- values involving fluorine refer to

F1, which has the normal staggered configuration.
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to "name" the hybrids. The carbon and fluorine hybrids of a C~F
bond are symbolized by C*F and CF*, respectively, the carbon
hybrid of a C-H bond is given the symbol C*H, while LP-i and LP -0
stand for lone pairs which are in and out of the F-C~F plane,
respectively. The symbol GAB in Table 4 represents the angle
between two different hybrids A and B which reside upon the same
atom, If OAB does not carry a superscript, it refers to the angle
between the average directions (as defined previously in terms of
populations) of A and B, but if a superscript appears, the angle is
determined by the relative coefficients of the inner p-type AO's
(superscript = inner) or by the relative coefficients of the outer
p-type AO's (superscript = outer). This distinction is important only
in the hybrids C*F and C*H in which a fair amount of ""hybrid bending"
takes place. The amount of p-character in a hybrid A is given by

Ny, which stands for the "x" in "spx". Finally, the angle ¢ measures

the degree to which the average direction of the F hybrid departs from

the C-F axis. The sign of ¢ is illustrated below:

.
b
F\C/./JF F\C /\/ositive

P

negative
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Now, with our terminology defined, we may examine the
values in Table 4. We note, first of all, that the H-C-H fragment of
the molecule remains remarkably constant as the F-C-F angle is
changed. There is only about a 1° change in GC*H, Cxjg Over the
whole range, while the hybridization of C*H varies from sp'-®
(+30° case) to sp'*® (-30° case). We expect carbon to rehybridize in
some way to maintain high overlap with the fluorine, but we find that
the hybrid C*H does not reflect this. A second point we notice is that
the fluorines tend to react as relatively rigid units: The angles
between lone pair hybrids are, in all cases, within 1.3° of 114°,
while the angle between the hybrid CF* and the lone pairs remains
within about 2° of 104°; the lone pair hybridizations are only modestly
variable, ranging from sp’*®® (67% p-character) to sp”**® (72% p-
character), while the hybridization of CF* is quite constant (the
extremes of sp®*” and sp®*® correspond, respectively, to 85% and 86%
p-character). The fluorine units tend to "rock' as the F-C-F angle
is changed, so that the CF* hybrid does not remain pointed toward
carbon. The deviation (¢) is substantial, about 9° for each distorted
case,” which means that the CF* hybrids on the two fluorines

intersect in an angle which ranges from 158° (+30° case) to 62°

(-30° case).

*
We note that, because ¢ is measured from the C-F axis,
and because this axis varies in direction by 15° in each distorted
case, the direction of CF* changes by 9°+15° = 24° for each case.
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Not surprisingly, the C hybrids show the greatest effects of
the angle bending. At the extremes, boxp. C*F differs by +6° (-30°
)
case) and -9° (+30° case) from its equilibrium value, rather small
changes when we consider that the F-C-F angle covers a 60° range.
Most importantly, though, we note that the ec*F C*F changes are
’

in the "'wrong" direction. We would expect, on the basis of orbital

following (31), that the inter-hybrid angle g C*F would parallel
?

the F—-C-F angle, but it decreases as the F~C-F angle increases

and vice versa. Examining the inner and outer contributions to this

angle, we see that Géllri;?rc*F does follow the F—-C-F angle to a
’

slight extent, but that Oglig?’rc*F strongly opposes this trend. We
recall, of course, that the carbon contribution to the C~F bond is
small, so these hybridization changes do not have as large an effect
as they would in a more homopolar bond, and we also recall that the
very definition of hybridization is somewhat clouded by the nature of
our basis set; nonetheless, we must conclude that as the F-C~F
angle in difluoromethane is distorted, there is no evidence for orbital
following on the part of carbon. Rather, the fluorine atoms 'pivot"
to maintain high bonding overlaps with the relatively static C*F
hybrids,

We may verify these effects visually by examining Figure 6,
which shows the orbital amplitude plots of one C-F bonding LMO for
the three geometries we have treated. The plots are nearly super-

imposable near the carbon "'end" of the bond, while the fluorine "end"

undergoes a rotation which is almost solely responsible for the bond
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case

o
+30
case

Figure 6. Orbital amplitude plots of the C-F bonding IMO
for the equilibrium and two distorted geomet-

ries of difluoromethane. The plots are in the
F=-C-F plane. For contour values, see Figure 1.
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bending.

There is the possibility that part of the noted effect is due to
the orthogonality restriction rather than to 'real" changes in the
LMO's. To test this, we have carried out the hybrid analysis of the
NLO's (see equation XXIV), which are partially corrected for
orthogonality delocalization. Table 5 gives the results, and we see

that the conclusions drawn above apply equally well here.
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Table 5. Geometry Variation of Difluoromethane:
Hybrid analysis of NLO's.

Parameter? Value
+30o case O0 case ~30° caseb

Bcnp oxp 96.6°  104.0°  106.9°
eéﬁgfg*F 111.8°  104.6° 97.8°
eﬁﬁng*F 53.4°  101.8°  130.0°
A 112.6° 112.6° 113%.6°
eéﬁgfg*ﬁ 115.0° 114.3°  115.4°
Eun oy 10937 110.0° 110.9°
6, p o, 1p0 115.8° 115.0°  112.7°(113.19)
8poo. 1pmi 113.3° 113.2° 115.5°(115.2°)
BLp o, cr 104.5°  104.3°  101.5°(106.2°)
- 103.8°  105.5°  107.8°( 99.0°)
¢ | 9.2° 1.6° ~7.7%( -6.4°)
D 1.14 1.39 1.52 ( 1.53 )
- 1.02 0.92 0.88

Nopx 4.40 4.39 4.56 ( 4.47 )
- 2.16 2.09 2.34 ( 1.80 )
Ao 2.02 2.00 1.89 ( 2.16 )

8s5ee text for a description of the parameters.
bThe values in parentheses are those unique to

F2, whose lone pairs eclipse the carbon bonds.

All other values involving fluorine refer to
F1, which has the normal staggered configuration.
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C. Approximate Generalized-Valence-Bond (GVB) Orbitals

In the previous section, we drew certain conclusions about
the electronic structure of difluoromethane from an analysis of the
localized Hartree-Fock (HF)orbitals. These conclusions rest upon
the assumption that the LMO's are meaningful, but even though they
provide a description of this and other molecules which is intuitively
correct, we must realize that they are not unique in their represen-
tation of the total wavefunction. The localization criterion does not
relate to any physical observable, and we must thus question whether
an analysis of LMO's can ever lead to '"'real" conclusions. In order
to develop a criterion which is physically meaningful, we must
consider the relationship between the HF method and other, more
general techniques.

The Generalized Valence-Bond (GVB) method, recently
developed by Goddard and co-workers (32), provides us with the
necessary generality. In contrast to the HF method, in which each
electron pair is described as a doubly-occupied (molecular) orbital

of the form

ll/};fir(i,ﬂ = o) o al) 8(G) - BG) a())) (XXV)

the GVB approach assumes each pair to be a valence-bond type of

singlet pairfunction:



125

Vo 9 = [xa® xp + xp® x,(0)]

(XXVI)
x[a (i) 8G) - A1) a(j)]

In either method, the 2N-electron closed-shell wavefunction is taken
to be the normalized, antisymmetrized product of N pairfunctions,
with the assumption that the orbitals of each pair are orthogonal to
the orbitals of every other pair (this is a constraint in the GVB method
but not in the HF approach), and in either case, the orbitals of all
pairs are variationally optimized. We see that setting Xa = Xp in
(XXVI) gives the GVB pairfunction the same form as the HF one in
(XXV), and thus the GVB method may be viewed as an extension of the
HF technique. The optimum GVB pairfunctions turn out to be
localized bonding pairs, core pairs and lone pairs, so the GVB
method, in addition to giving energies lower than HF, gives an
intuitively pleasing description of molecular electronics. We should
emphasize, though, that this localization is not a result of any
arbitrary scheme; it is a result of the variational principle.

Hurley et al. (33) have shownthat a pairfunction of the type in
equation (XXVI) may be written as a two-electron CI wavefunction
whose component configurations are doubly-occupied, orthogonal

orbitals called natural orbitals (NO's):

wﬁa‘i?m = [e, () ¢(§) + ¢y ¢’ () ¢’ ()]

(XXVII)
x[ a(i) B() - B@) a(j)]
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where
¢ = first natural orbital
= (Xg * Xp)/ (2 + 28) (S = (X, |Xy,), assumed
positive)
¢’ = second natural orbital (XXVII)
= (x, - xp)/(@ - z§>%
c, = (8+1)/(2 +28)2
¢, = (S-1)/@ +28)2
(¢l¢7) = 0
c+ct =1

With the GVB wavefunction expressed in terms of NO's, it is possible
to derive equations (32a) for self-consistently optimizing the orbitals
and CI coefficients. These are roughly analogous to the HF equations,
except that each NO has a different hamiltonian, and of course, HF
involves no CI coefficients.

Now, in the event that all pairs in the molecule are strongly
overlapping (S close to unity), we see from (XXVIII) that ¢, will be
much larger than c, for each pair, and thus the set of first NO's will
dominate the total wavefunction. We expect this to be the case for
typical molecules near the equilibrium geometry, and in view of the
fact that the Hartree-Fock configuration is the major contributor to
general CI wavefunctions in such cases (32b, 34), it is reasonable to
assume that the set of first NO's will correspond closely to a set of

transformed HF orbitals. But these first NO's, like the GVB orbitals
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which define them, are localized into bonds, cores and lone pairs,
and it should be possible to relate them to localized Hartree-Fock
orbitals, orbitals with the conceptual advantages of the LMO's but
which are defined by a physically meaningful criterion.

We see from the above that it should not be a severe restric-
tion to constrain the set of first NO's to span the Hartree-Fock space
of functions. This constraint, together with the normal GVB

assumption, forms the basis for what we will call the Hartree-Fock

projected GVB (PGVB) method. The optimum first NO's in the PGVB

wavefunction are naturally localized molecular orbitals (NLMO's).

They should be good approximations to the corresponding GVB NO's,
and within the PGVB context, they have a well-defined physical
meaning.

In principle, then, we see that meaningful localized HF
orbitals can be defined. There are several practical difficulties
which render the exact NLMO's in difluoromethane unattainable for
the present, but we have developed an approximate approach which
we describe below. The most serious problem relates to the fact
that, in any GVB-like method, each NO has its own hamiltonian (32a),
so for a 2N electron system, 2N separate hamiltonians must be
generated and diagonalized. In the HF method, only one is needed,
and because hamiltonian formation and diagonalization is the most
time-consuming part of such SCF calculations, a full GVB (or PGVB)
solution would require about 2N times as much work as the

corresponding HF calculation. Difluoromethane has 26 electrons,
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so it is clear that a complete treatment using GVB or PGVB techniques
would be far too costly. We may simplify the problem somewhat by
neglecting the three core pairs (35), but we are still left with 20
valence electrons, toomany for a full analysis. To surmount this
problem, we have developed a method of optimizing just one PGVB
pair at a time, and we have assumed that the orbitals thus obtained
are quite similar to those which would result from a more complete
treatment. The accuracy of this assumption is difficult to assess
because no direct comparison of full versus partial GVB calculations
has appeared in the literature. Goddard and co-workers (37) have
used the working assumption that one can concentrate on only a few
pairs, leaving the others doubly occupied in the HF sense, and they
have obtained reasonable results for a variety of molecules. We have
certain results for difluoromethane which suggest that our assumption
is a good one, at least for bonding orbitals, and we shall discuss
these a bit later.

We now develop the PGVB method for splitting one pair,
starting from the Hartree-Fock solution. We begin by writing our

wavefunction in the form
¥ = A[ (cl ¢)1$1 +Cy ¢1’ 51’)¢2 (—pz ¢363' o ¢NEN] (XXIX)

We assume that the ¢'s together with ¢, form an orthonormal set,
and we use A to represent the normalized antisymmetrizer. We also

indicate the spin associated with a particular orbital by an overscore,
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"_" (p spin), or lack thereof (a spin). The first pair in (XXIX) is
split into a first NO (¢,) and a second NO (¢1' ), while all other pairs
(¢3, ¢3, - - -, ¢py) are doubly occupied in the Hartree-Fock sense.

The PGVB assumptions in this case are simply that ¢, ---, cpN are
related by an orthogonal transformation (T) to the canonical HF
orbitals, which we callo, ---, oON? while ¢>1' can be written as a

normalized linear combination of the canonical virtuals, which we

callv,, ---, VM (N + M = number of basis functions). That is,
N
(bi = j§1 o]. Tji (i=1,---,N; T orthogonal)
and
> >
! = . . .2 -
b, j:lb] v; (i=1b1 1) (XXX)

In the subsequent development, it will not be necessary to consider
the full T matrix, and we find it convenient to express ¢, as a

normalized linear combination of the 0;'s without explicitly expanding

¢2’ ) ¢N

N
4= Dajo;  (Zai- (XXXT)

Now, we rewrite ¥ as

1 c, Al ¢, 6,00, - - - (’bN?ﬁN] + CA[ ¢1'$1'¢252 to ¢>N$N]

C, ¥, + Coy (XXXI11)
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where ¥, and ¥, are two normalized, mutually orthogonal configu-

rations. The energy of ¥ may be evaluated in the usual way to give

(Cleu +2c CH, + c22 sz)/(c12 + sz)

E = {lily)

H,+[2¢cH,+ czz(sz'H11)]/(C12+czz)

1l

H,, + (2¢c,c; A + ¢/B)/(c] + ¢f) (XXXIIT)

where
Hy, = W, l%y,)
Hy, = W,|%lY,) (XXXIV)

H, = W IRy,) = @iy,
and where
A = H, and B = H,, - H, (XXXV)

We have assumed here that ¢, {,, ¢, and c, are all real quantities.
Now, H,, is just the Hartree-Fock energy because the ¢'s are just
transformed HF orbitals, and such transformations do not influence
the total energy of the HF wavefunction (y,). Thus, we obtain for the

CI energy lowering (AE) beyond the HF energy,
AE = E - H,, = (2¢,CA + ¢ B)/c’ + ¢f) (XXXVI)

We now seek to eliminate ¢, and ¢, by minimizing AE with respect to

them. We have the two conditions
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dAE/dc, = 0 and dAE/dc, = 0O (XXXVII)
which, using (XXXVI), yield two equations;

c,A - ¢,(AE) = 0 (XXXVIII)
and

c,A + ¢c,B - c,(AE) = 0

These may be written in matrix form as

[ -AE A c, 0
( ) ( ) = ( ) (XXXIX)
A (B-AE)/ \ c, 0

which implies that, because ¢, and ¢, cannot both be zero, the

determinant of the above matrix must be zero. Thus

(AE)®> - B(AE) - A? = 0 (XL)
or

1
AE = 1B 1 1(B? + 4A%)2 (XLI)

and so, taking the negative root to give the most negative value for

AE, we have

i
2

AE = 1B - 1(B?+ 4A% (XLII)

This is the basic energy expression from which we shall work.
1t has the advantage that it does not involve the CI coefficients ¢, and

c,, and the disadvantage that it is not a linear expression in A and B.
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The latter adds only a slight amount of complexity to the optimization
of ¢, and ¢, .
Now, in order to optimize the two NO's, we must consider
the derivative of AE with respect to the expansion coefficients
by (i=1,.--, M)anda; (i=1, ..., N) of equations (XXX) and (XXXI).

If X represents any variable upon which A and B depend, we have,

from (XLII):

0AE/9X 1(B/3X) - 1 (B® + 4A2)'%[2B(8B/8X) + 8A(3A/0X)]

1l

= k,(3B/3X) + k,(0A/9X) (XLIII)

where it can be shown that
_1
-AE(B® + 4A%)72

K, AE/(2AE - B)

I
1}

(XLIV)

1
k, = -2A(B® + 4A%) 72 2A/(2AE - B)

We shall use these equations in a moment, but while we are at this
point, we will write down the formula for the second derivative of AE
with respect to two variables, X and Y, upon which A and B depend.
We will require these in the subsequent discussion of the quadratically
convergent approach to the PGVB solution. Differentiating (XLIII)
with respect to Y gives a rather complicated expression which may be
simplified by the substitution of various identities derived from

(XLII) and (XLIV). There are several alternative forms for the

simplified equation, and we have chosen the following:
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3%(AE)/9X0Y = Kk,(3°B/2X3Y) + k,(9°A/0XdY)
+ k,(3A/9Y)(0A/3X)
+ k[ (0A/9Y)(AE/9X) + (BAE/3Y)(3A/0X) ]

+ k (3AE/9Y)(3AE/0X)
where k, and k, are as in (XLIV) and
k, = 2k,/AE, k,=-Ak,/AE and k; = -Ak,/AE (XLVT)

Now, in order to evaluate the derivatives of AE with respect
to the expansion coefficients of (XXX) and (XXXI), we must consider
the explicit form of the quantities A and B. Using the properties of

the antisymmetrizer A (37), it can be shown that

A = (¢)1$1 ¢252¢353 o |3%|P(¢1’¢1’¢2$2¢3$3 cc )> (XLVH)

where P = [(2N)!]%A is the "ordinary" (unnormalized) anti-
symmetrizer. We note that because the hamiltonian contains, at
most, two-electron operators, any permutation in P other than the
interchange of ¢, and @,’ will give a term which does not contribute
to A. Indeed, any such permutation will leave more than two orbitals
in the right-hand side of the integral orthogonal to their left-hand
side counterparts, and we will thus always be able to separate out a
term which is zero due to this orthogonality. Furthermore, the

(¢, ®,') interchange gives zero due to spin orthogonality. Thus, only

the "unit" permutation in P needs be considered. Because of the
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orthogonality of ¢, and ¢,", only the operator in #% which couples
electrons 1 and 2 will give a nonzero contribution, and this term is

simply 1/r,,. Thus we have

A

(0,3111/1151 6,0 (a1 020 (P 1 Do) (P31 9 (P, 1 D) -
($,0:11/r 21 0./0 Y ala)plp) (1)(Q)A)1) - - -

(0,0,11/r,1¢,/0.) (XL VIII)
[fo*x(1) p¥(2) ¢; (1) ¢, (2)/1,, dr, dT,

Il

This is similar to the exchange integral

Kpor = "K' = [[0F(1) 6:(2) {7 (1) §{ (2)/ 1, o7 dr,
(XLIX)
except for the position of the complex conjugation. But we have
assumed that ¢, and ¢, are real, and thus the two are identical, so

we have
A =K (L)

The evaluation of the B term is somewhat more complex.
1t is the difference in energy of two Hartree-Fock-like wavefunctions
which differ in only one orbital, the first. The energy H,, of ¥, is

given by

N
A E - Ky) (LD

MZ

N
2 El #‘ii

[
1
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where hii is the expectation value of the one-electron portion of 3 for
¢i and where J ij and Kij are the usual coulomb and exchange integrals.
The analogous expression for H,, contains many identical terms, the
only differences occurring in the values which involve ¢,. Thus, the

difference H,,~-H,, will give cancellation for all terms not related to

¢, and ¢, and we obtain

B = H,-H, =2h/,/ -2h, +Jyrys - Jy,
N

+ 2 ‘Z;[(ZJlri - Ky - (23, - Kyl @i
1=

The summation runs from 2 to N, but by adding and subtracting the

analogous term for i = 1, we may complete the range, obtaining

B = 2hy - 2h, +Jdyn - Jy, - 40, + 2K

N (L.III)
+4J,, - 2K,, + 2 231(2J1ri - Kjry - 2345 + Kyj)
1=

or, combining like terms and recalling that J i = Kii’

B = 2h1'1’—2h11+J1,11+J11-4J1I1+2K1I1
N (LIV)

+27 (23,44 - Kpof - 2d,4 + Kyy)
i=1

We now make use of the identities
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hyrr = {d{thld]) h,, = (¢, hl¢,)
Joio= (@I 1) Ji = (&,13;16) (LV)
K,y = (/1K) K = (9,110,

where h is the one-electron portion of 7 and where ‘fi and Ki are the
coulomb and exchange operators for qbi. Substituting these into the

expression for B and combining terms, we have

N
1=
~ N" o)
- 2(¢,|h+ Ll(zJi-Ri)l¢1> (LVI)
1=

+ I+ Iy - 43,4 + 2K,

But the operator within the brackets is simply the Hartree-Fock

operator (F) defined by ¢y, -+, ¢N- Thus,
B = 2F1/1/-2F11+J11+J1r1r-4J1/1+2K111 (LVII)

The usefulness of this expression is apparent when we consider that
it depends only on orbitals ¢, and ¢/. If we had considered a more
general form for the orbitals in the CI wavefunction of equation
(XXIX), then B would contain terms depending upon ¢,, - - -, -
These orbitals are included, above, but only in an implicit sense

through the operator f‘, which is invariant to transformations among

by -y Oy
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We are now in a position to derive the necessary conditions

for optimum ¢, and ¢;. We recall the expansions (XXX) and (XXXI):

N

¢, = 771 a;04 (a normalized)
j=
M

¢, = -Elblvl (b normalized)
1=

where the oi's are the canonical, occupied Hartree-Fock orbitals and
the vi's are the canonical virtuals. The CI energy lowering depends
upon a and b through ¢, and ¢, and thus, the conditions necessary for

a minimum AE are:

B(AE)/aai - 27\aai =0 i=1, , N
(LVIIID)
and  5AE)/3b, - 2. b, = 0 i=1,..., M
1 b1
where the Lagrange multipliers Ka and Ab result from the two
restrictions
N
2
Ra = Z‘ a; - 1 =0
i=1
M (LIX)
2
and Rb:iZ:,lbl-l:O

We have given, in equation (XLIT), the expression for the derivative
of AE in terms of A and B derivatives. We may expand (L) to give an

expression for A which depends only on a, b and integrals over the
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oi's and vi's, and differentiation of this expression gives

N M
9A/0a; = 2 21 40;1K,, lo)ay = 2 L Kyi* %ay = 2(K" a)
]:.1 J=1

(LX)
M
0A/3b, = 2 25 (v.IK,lv.)b, = 2>
i i=1 i i’ :
Here, Ig\l" © is the exchange matrix for ¢, defined over the occupied
orbitals and IS" V is the exchange matrix for ¢, defined over the
virtuals. We may similarly expand (LVII) and differentiate it, which
gives, for the derivatives of B,

aB/aai = (-4EO§+ 4{1, OE‘ 8J_1,’O§_+ 41/(\1,’ Og—)i
(LX)

H

aB/abi (4§v-9-+ 4{1” VE_ 8{1, v?_+ 41’{\1y Vl_).)i

where each J indicates a coulomb matrix for either ¢, or ¢,
(superscripts 1 and 1’, respectively) defined over either the occupied
or virtual orbitals (superscripts o and v, respectively). The Iio |
matrix is the Hartree-Fock matrix defined over the occupied orbitals
and E‘V is the same thing, but defined over the virtuals. These F
matrices are diagonal because we have used the canonical occupied
and virtual Hartree-Fock orbitals as the bases for expanding ¢, and
b, -

We now have all the information needed to set up the matrix

equations which must be satisfied if ¢, and ¢, are optimum.
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Combining (LX) and (LX) with (XLIIT) gives us the derivatives of AE

we need in (LXUI), which becomes:

Hpa = 23,23
(LXII)
Hyb = 2, b
where
H, = ky(-4F° + 4779 - 87" %+ (4 Kk + 2k,)K' " °
(LXTII)
Ho o= k,(F' -83"Y+47'"Y) + 4k + 2k)K" 7

In practice, we have found it convenient to divide both sides of

equations (LXII) by 4k, which gives us equations of the same from

14

but with new hamiltonians H,‘; and H, defined by

H, = (1/4k)H, = -F°+J"°-27'""°+ 1+A/aE)K+°
(LXTV)
H) = (1/4k)H, = FY-27"V 43" Ve (1+A/AEKDY

where we have used the relation, derived from (XLIV), that
k,/2k, = A/AE. Thus we see that the condition for an energy minimum
is that a and b be eigenvectors of their respective hamiltonians.

These eigenvalue equations can be used in the usual way to
define a method of solving for the optimum a and b self-consistently.
We begin by choosing starting guesses for a and b, forming the two
hamiltonians according to (LXIV) and diagonalizing them to obtain the

eigenvectors. The eigenvector of I:\Ia which has the highest overlap



140

with a is chosen as the new guess for a, and a new b is similarly
obtained. These eigenvectors have proven to be the ones with lowest
eigenvalues in all cases we have considered. The new guesses for a
and b are then used to generate new hamiltonians and the process is
continued until the vectors do not change significantly from one cycle
to the next, that is, until self-consistency is reached.

It is fortunate that this procedure does not always converge
to the best ¢, and ¢;. If this were the case, then the solution would
always correspond to splitting the pair which gives the best CI energy
lowering, which in most cases would be a core pair. We have found
that, if the starting vectors are properly chosen, the method will
converge upon a local minimum corresponding to the splitting of some
other pair. Thus it is possible to use this method to investigate
several pairs in the same molecule as long as starting guesses are
used which are reasonable approximations to the local solutions.

The above method shows the linear convergence (38) typical
of SCF methods based on this type of linear matrix equation.
Convergence may be hastened by the use of various extrapolation
techniques (39) but it can still be fairly slow. In order to speed the
optimization of the orbitals, we have developed a quadratically
convergent approach (40) which takes into account the second-order
changes in the energy with respect to the ai's and bi's while applying
the constraints to these variables to second order. The quadratic
method is not only faster than the linear method, but also more

informative, because it can distinguish between solutions which are

true local minima and those which correspond to
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maxima or "'saddle-points'. This is important because the linear
equations could, in principle, converge to such non-minimum
stationary points without any indication.

The first step involves obtaining the second derivatives of AE
with respect to the ai's and bi's. Examining equation (XLV), we see
that to obtain these, we must evaluate the corresponding second
derivatives of A and B, along with the first derivatives of A and AE.
These first-derivative terms have already been considered, above,
and the second-derivative terms may be obtained by the expansion (L)
and (LVII) as functions of a and b followed by differentiation of the

resulting expressions. After quite a bit of involved manipulation,

we obtain:
0*(AE)/day, 8a, = (Hy) -+ 8k (K" _+kp p,
+ k(P 9 *+ U Pr) + B 9y 9y
8*(AE)/ab_3b_ = (H) _+ 8k, (K"’ V) * Ko T T
+k4(rmsn+ Sy T + ks S, S (LXV)

o*(AE)/da ab, = 4kfo &, |v o!] + (4K, + 2k) o v [9,¢!]
+ (4K, + 2K)[0 ¢/ |v #.] + kep T
+ Ky(Pp, Sy + Ay Tp) + B 9 Sy

where, in the third expression, we have used the symbol for the two-
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electron integrals defined following equation (V). All of the matrices
above have been defined except I’{f” 0, which is the exchange matrix
for ¢, defined over the occupied orbitals, and Ifl’ V, the exchange

matrix for ¢, defined over the virtuals. The vectors p, g, r and s are

defined by
p; = 9A/da; = (K'’%a); ¢ = (BE)/da; = (H,a);
(LXVI)
r, = 39A/db; = (Ig""lg)i s; = (9E)/3b; = (H b),

and the values of k; to k; have been given in equations (XLIV) and
(XL VI).

Now, the derivatives of equations (LXV) together with the
vectors q and s give us a complete description of the local quadratic
behavior of E about the "point” defined by a and b, the best current
guesses for the coefficients of the first and second NO's. We could

solve directly for the new '"point" representing the local
minimum (or other stationary point) of this quadratic function, thus
obtaining new guesses for a and b. The solution is not that easy,
though, because the variation of a and b cannot be perfectly general:
they must both remain normalized according to the restrictions in
equations (LIX), and the straightforward solution suggested above will
not account for this restriction. We must thus isolate the actual
degrees of freedom in a and b, and we must carry out the solution

using these proper variables.
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Various methods of isolating the proper variables may be

used, and we have chosen the following. The restriction on a is
2ial =1 (LXVII)

which means that any particular a element, say ay., may be

considered a dependent variable, related to the remaining a elements

via
N
ag = 1- 77 a’ (LXVIII)
i=1 !
(i=k)
Thus, the proper variables area, a,, - - -, A _p A, AN while

a, may be obtained (to within a sign - see below) from them. The
elements of b may be similarly treated, leaving us with N+M-2
proper variables in all. For definiteness, we shall take a, and b, as
the dependent variables, though it does not matter which we pick and
the equations below are easily generalized to other choices. We
shall distinguish the set of proper variables from the improper set
by giving the former the superscript '"p'. We have:

1

X py212
a, = tll-iA:z (a;)] ay

i}

aP (=2, M)

(LXIX)

M 3
+[1- % )]
i=2

A
1
=2
I

bP (1=2, .-, M)
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We have considered AE as a function of a2 and b, which in turn are
functions of "gp " and "gp ", To obtain the needed derivatives with
respect to these proper variables, we apply the usual techniques (41)
of differential calculus relating to the differentiation of composite
functions. We thus obtain

N

3(AE)/9af = _Z)l[a(AE)/aaj](aaj/aag’)

- (LXX)

=

“
+

| 3(AE)/db; ] (3b./2aP)
j=1 J ] 1

[

The second summation, above, vanishes because b is independent of
the aip 's, and the first summation is simplified by the substitution of

the expression, derived from (LXIX):

61., j=1
aaj/aaip =] Y (LXXI)

-a;/a, j=1
We find, making this substitution,
3(AE)/3aP = 3(AE)3a; - (a;/a)3(AE)/da, (LXXII)
Similarly, we may derive
3(AE)/3bP = 3(AE)/db; - (by/b,) 3(AE)/b, (LXXIII)

The above expressions for the proper first derivatives may be

differentiated again using the same procedure. We wi11‘ not give the
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details, but the resulting formulas for the proper second derivatives

are:

9*(AE)/0af aa].p = 3%(AE)/da, oa; - (aj/al)[az(AE)/aal da,]

- (ay/2,)[%°(AE)/22, 23|
+ (ay aj/alz)[ o*(AE)/0a, 0a,]
- (aiaj/af + éij/af)[a(AE)/aal]

BZ(AE)/abipabjp = BZ(AE)/abiabj - (b]./bl)[az(AE)/abiabl]
- (by/b))[ 3°(AE)/2b, 3b,]
(LXXIV)
+ (byby/b)[3°(AE)/2b, 2b,]

- (byby/b; + 64;/b1)[A(AE)/ b, ]

o°(AE)/2ap abjp = BZ(AE)/aaiabj - (bj/bl)[az(AE)/aaiabl]
- (ai/al)ﬂ BZ(AE)/ab]. GEW

+ (aib]./al b,)[8°(AE)/2a, ab, ]

Thus, we have everything we need to transform the improper first
and second derivatives into proper ones.
Now let us suppose that the energy varies approximately as a

quadratic function of the proper variables near the initial guess point:
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AE = AEO + E(APi)[a(AE)/aPi]
1
(LXXV)

+3 21 (AP;)(aP;)| 9*(AE)/aP; OP;]

P

-
Cnnd

)

where P is a single vector composed of all proper variables, that is
where P = (azp, agp, e alg, bzp, b3p, ‘e, bp). This can be written

in matrix form as

T

AE = AE_ + (aP)'V + 1 (ap)T D(aP) (LXXVT)

o
where

V; = 3(AE)/3P; and Dj; = BZ(AE)/EBPian (LXXVII)

The vector AP which corresponds to the minimum (or other stationary

point) of this quadratic function is simply

aP = -D'V (LXXVIII)

The derivatives in D and V have been considered, and can be
computed once initial guesses for a and b have been made. Equation
(LXXVIII) gives us the corrections which must be applied to the
proper variables to correspond to the (approximate) local energy
minimum. The corrected proper variables (azp', aap', s, alg') and
P, bP’, .. bIEI') can then be used to evaluate the new improper
variables using (LXIX). The only difficulty here is the choice of
sign for a;, and b,. Now, as long as a, and b, are originally fairly

large, while the correction vector AP is fairly small, then we
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expect, on the basis of continuity, that the new a, and b, will carry the
same signs as the old values. In practice, we have insured this by
choosing the largest element of a and of b as the dependent variables,
while limiting the length of AP to some small value (currently 0. 25).
If the actual length is greater than this, AP is scaled down by an
appropriate amount.

The eigenvalues of D at the point of convergence indicate the
curvature of the energy surface in various orthogonal "directions' in
the space of proper variables. If they are all positive, then a true
local minimum has been reached, while one or more negative values
indicates that convergence has occurred upon a saddle-point. If all
are negative, a maximum has been found.

So far, we have discussed the one-pair PGVB method for a
rather restricted sort of wavefunction, one in which all other orbitals
are doubly occupied. We now consider the generalization of these
results to other types of wavefunctions. Instead of taking, as our
starting point, the closed-shell Hartree-Fock solution, let us

consider a wavefunction of the form

ll/l = A[Ol 6-1 02 0—2 A On an f(0n+1, 6n+1, ctcy ON’BN)] (LXXIX)

where o, 0,, - - -, 0, represent the doubly-occupied "first shell"
orbitals which may be transformed among themselves without
altering ¢,. The function f depends upon the spin state or other

characteristic of y,, but it is assumed that o 0 5 ON cannot

n+’ 2



148

be mixed with o), 0,, - - -, o, without changing the total wavefunction.
It is also assumed that the former are orthogonal to the latter. We
wish to split one of the doubly-occupied orbitals, say o,, into a GVB-
like pair, and to retain the simplifications involved in the closed-shell

PGVB method, we must require that o "y Oy remain frozen,

n+t’
that the first natural orbital be a normalized linear combination of
the first-shell orbitals and that the second natural orbital be a
normalized linear combination of the "virtuals", that is a set of
functions orthogonal to o, through OpN- The first assumption implies
that we may treat the non-doubly-occupied orbitals as a fixed "'core"
which has a particular core energy and which adds a fixed-field term
to the one-electron operator of the doubly-occupied orbitals and
virtuals. We may carry out the PGVB analysis exactly as before,

the only modification being that the one-electron portion, fl, of the

hamiltonian for these orbitals is replaced by

-~ A~ ~ ~

h’ = h + h(o_ ) + h(o

e oo+ hloy) (LXXX)

where fl(oi) is the field term due to 0;. To consider a concrete

example, let us suppose that the wavefunction of (LXXIX) represents
an open-shell Hartree-Fock solution of spin state 2S+1, in which

o -, O, g are singly-occupied orbitals which all have the same

net’ .

spin. In this case, each singly-occupied orbital o; adds a term of

ji—f{i to h’' (42), so we have
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(S

n+1 n+z 7 n+S
(LXXXTI)

-~

- Ko " Kpe =0 - Kyis

Another important case is the one in which the last (N-n)/2

pairs are split into first and second NO's. In this case we may write

f(o c

“ee © = o_. 0 + o_ .0
n+1’ 0n+1’ ’ 0N’ ON) (cn+1 n+1 °n+1 n+2 n+2 n+2)

o . +c_ .0 O )

(cn+3 on+3 n+s N+4 N+4 N+4
y _ _
(eN-, ON-; ON-1 * NONON)

and it can be shown (43) that

N
R’ = h+ 2 . (23, - K;) (LXXXIII)
i=n+

Thus, if we want to investigate several pairs simultaneously within
a particular molecule, we may split the first pair using the PGVB
technique outlined above, modify h according to (LXXXIII) and split
a second pair in this new field while fixing the first and holding it
orthogonal to the second. This procedure has the drawback that it
does not allow the first PGVB pair to readjust as the second is split,
so the pairs thus obtained are only approximate PGVB solutions.

We have written a FORTRAN IV program to carry out the
calculations necessary for this approximate PGVB method. It uses,

as its starting point, a converged HF solution, and it has options for
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"freezing'' any canonical orbitals and for splitting a number of pairs
sequentially as described in the above paragraph. The first option is
useful when, for example, open-shell or core orbitals are to be
excluded from the PGVB solution orbitals. The second option can be
used to test the effect of splitting one pair upon the solution of another,
and as will be discussed below, it provides the only means of obtaining
reasonable lone pairs in difluoromethane.

We now discuss the results we have obtained for CH,F,. The
appropriate HF calculations have been described in the first chapter,
which includes a description of the double-zeta basis set we have used.
The starting guesses for the first and second NO's were derived, in
most cases, from either the LMO's or from closely related PGVB
solutions, and in all cases, sufficient SCF iterations were undertaken
so that the sum of the squares of the changes in the elements of the
a and b vectors was less than 10™° from one cycle to the next (this
leads to energy convergence well beyond the sixth decimal place).
Unless otherwise noted, the quadratic PGVB method was used, and
the solutions correspond to the splitting of a single orbital from the
HF solution to give a true local minimum in AE.

We consider first our HF equilibrium geometry of difluoro-
methane (see Chapter 1). The purposes here are two: First, we
wish to gain a more detailed picture of the electronic structure of the

molecule by examining the VB-like orbitals (hereafter called "the VB
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orbitals'™ which make up each pair; second, we hope to obtain an
approximate set of naturally localized MO's (NLMO's) to assist us in
the interpretation of the HF wavefunction just as the LMO's did.

Initially, the core pairs were considered. Splitting energies
of -12. 2 and -12.5 mh were obtained for C and F, respectively.

The first NO for the carbon core pair gives an overlap of 0. 97 with
the canonical carbon core, while the analogous value for fluorine is
0.95. The VB orbitals for each pair overlap strongly (S = .98 for
fluorine, .97 for carbon), indicating that each core may be viewed
as basically a doubly-occupied orbital.

The C-F bonding orbital was the next to be considered, and
in this case, a direct comparison between the GVB and PGVB
methods was made. The PGVB solution gives a CI energy lowering
of 24.1 mh, the greatest of any pair in the molecule. The converged
PGVB vectors were used as the starting point for a full, one-pair
GVB calculation which was done with the CIT GVB program written
by Drs. W. J. Hunt and P. J. Hay. The GVB solution gives an
energy which is 24.6 mh below the HF value, only 0.5 mh lower than
the PGVB energy. Thus, constraining the first NO of this pair to be
a linear combination of HF orbitals increases the molecular energy

by only 0.5 mh, a small amount indeed. The first and second PGVB

*We note that this term, ''VB orbitals', is usually reserved
for purely atom-centered VB orbitals, not variationally optimized
GVB or PGVB orbitals. We use the term here for conciseness.
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NO's both show overlaps of 0.9998 with their GVB counterparts, while
the full, many-electron wavefunctions have an overlap of 0.99973.
Thus, it is clear that the PGVB method is a very good approximation
to the GVB technique in this case, and we should point out that the
former requires about 1/3 as much time per cycle of refinement.

We have also tested the assumption that the core pairs can be
neglected in the splitting of the C-F pair. We have carried out a
PGVB calculation in which the canonical HF cores (which we found,
above, to be quite similar to the .PGVB cores) were "frozen', that is,
not allowed to participate in the description of the first NO. We find
that the CI energy lowering and NO coefficients differ negligibly from
those in the unfrozen case. In view of the fact that neglecting the
cores simplifies the calculations slightly, we have frozen the cores
in all subsequent calculations.

Figure 7 shows the orbital amplitude plots of the first NO of
the C—F bond pair (cores frozen) and, for comparison, the corres-
ponding LMO. The two are qualitatively similar, though we note that
the LMO contains less p-character on both bonded atoms, and a lower
amplitude on the non-bonded fluorine. The NO may be analyzed in
terms of C and F hybrids just as the LMO was (see section B). The
F hybrid contains 98. 6% p-character and is directed only 0. 2° away
from the C-F axis, pointing slightly to the inside of the F-C-F
triangle. The analogous hybrid of the LMO has only 85. 1% p-character,

deviating in the same direction, but by about 1°, from the C-F axis.
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The C hybrid of the NO has 85. 1% p-character (sp’ 72) as compared
to the LMO value of 73. 8% (sz, 82). If we construct another NO (for
the other C-F bond) by simply reflecting this one through the H-C-H
plane, then we find that the average angle between the C hybrids of
the two is 95. 6° (inner and outer contributions of 98.1° and 88. 2°),
This is somewhat less than the corresponding LMO value of 99.5°
(inner and outer contributions of 101.4° and 93. 6°) which, in turn,

is smaller than the actual F~-C-F angle (109.0°).

The structure of the C-F bonding pair may be seen in more
detail if we look at the VB orbitals which contribute to it, plots of
which are included in Figure 7. One of these is essentially a pure p
orbital on fluorine (95. 7% p-character) which deviates, in its average
direction, by only 0. 3° from the C~F axis. The other is shared
almost equally by the two atoms. The F hybrid of this shared pair
has 99. 7% p-character and lies right along the C—F axis, while the
C hybrid has 77.6% p-character (spa' 46) and gives an average angle of
97.4° (inner and outer contributions of 99.3° and 91. 4°) between itself
and a symmetrically related hybrid for the other C-F bond.

Figure 8 shows the GVB orbital amplitude plots for one of the
two C~-F bond pairs in CF, (singlet ground state, geometry nearly
optimum) obtained by Dunning (44) using a high-quality double-zeta
basis set. Only the two C-F bonds and the non-bonding C pair were
split in this calculation. We note a marked similarity between these

GVB orbitals and the ones we have obtained for the C-F bond in CH,F,.



Jipure 8.

GVB orbitals for one of

the two C~F bonding pairs
in difluorocarbene (singlet
ground state, ncarly opti=-
mum geometry) obtained by
Dunning (44) wsing a high-
quality double-zeta basis.
The dotted, dashed and
solid lines represent nega-—
tive, zero and positive
contours, respectively,

The interval between
contours is 0.05 a.u.

Figure 11,

The doubly-occupied (un-
split) lone pairs for one
fluorine in difluorocar-
bene (singlet ground state,
nearly optimwn geometry)
obtained by Dunning (44).
See figure 8 for contour
values,
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a) The 2p
pair which
lies in the
F~C~F planc.

b) The 2p
pair per-
rendicular
to the
F~C-¥ plane.

¢) The 2s~
like pair,
plotted in
the F~C-TF

plane..
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The C-H bonding orbital of CH,F, was the next to be considered.
It gives a splitting energy of -16. 4 mh. To test the assumption that
the splitting of one valence pair does not greatly influence the splitting
of other valence pairs, we have carried out a PGVB calculation in
which the C-H bond pair was split in the field of the above C-F pair,
and we find in this case that the C-H splitting energy increases by
only 0.8 mh to -15.7 mh. The orbitals are quite similar in the two
cases, giving overlaps of 0.995 between corresponding first NO's,
0.994 between corresponding second NO's. The C-H pairfunctions
from the two cases show a two-electron overlap of 0.990. Thus, the
assumption appears to be a good one.

Considering the unconstrained C-H solution, Figure 9 shows
the first NO of the pair in comparison with the corresponding LMO.
The two appear to be quite similar, but again the LMO shows less p-
character on the carbon. The C hybrid of the NO has 66.3% p-
character (sp'*®") as compared to the LMO value of 57.2% (sp'- *%).
The average angle between this hybrid and the C hybrid of "the other"
C-H bond's first NO is 123. 7° (inner and outer contributions of
124.8° and 122, 0°), a few degrees larger than the analogous LMO
value of 117.7° (inner and outer contributions of 119, 0° and 115. 8°),
which in turn is larger than the actual H-C-H angle (112, 2°),

Figure 9 also shows the GVB orbitals which make up the C-H
pair. One of these is essentially a hydrogen 1s function with a small
contribution from the carbon. The other is nearly a pure C-centered

lobe, the C hybrid of which contains 60.7% p-character (sp*°°).
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This hybrid gives an average angle of 123.0° (inner and outer contri-
butions of 123. 6° and 121. 6°) between itself and a symmetrically
related hybrid for the other C-H bond.

The lone pair which lies in the F-C~F plane was investigated
next. Initial attempts to obtain this pair using the linear PGVB
method failed because apparently there is no local minimum in AE
corresponding to this pair. Upon each SCF cycle, the pair rotated a
little further toward the C-F axis and aquired a bit more C~F bonding
character until finally it became a C-F bonding pair. It seems that
the C-F pair has such a large splitting energy that it overshadows
other local features of the AE variation, and the lone pairs are thus
not directly obtainable. The quadratic PGVB method does yield a
solution, but this corresponds to a saddle-point solution (one negative
eigenvalue in the D matrix of LXXVII), and the physical meaning of
such a solution is difficult to assess. It was found necessary, then,
to hold the lone pair orthogonal to the C-F bond pair (which it "wants"
to become) by splitting the former in the field of the latter. This
process yields a reasonable lone pair with a splitting energy of -11.1
mh, 1.3 mh below the splitting energy of a 2p lone pair on an isolated
fluorine atom with the same basis set.

Figure 10 shows the orbital amplitude plot, in the F-C-F
plane, of the first NO of this pair, together with the corresponding
LMO for comparison. We see that the NO is nearly a pure p orbital
on fluorine which does show a slight bit of ""smearing' toward carbon,

though this effect is more pronounced in the LMO. We see also that
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the NO shows a greater admixture of "C-F " anti-bonding

other
character than the LMO does. A population analysis of the F hybrid
of the NO gives a hybridization of sp’* ' (85.2% p-character) and an
average angle with the C-F axis of 94.5° as compared to the LMO
values of sp°* % (70.2% p-character) and 111.8°. Here, as in all

lone pairs which we will consider, the VB orbitals which make up the
pair are quite similar in hybridization and direction to the NO, but
one is smaller (greater contribution from the inner orbitals of the
double-zeta set) and one is larger (greater contribution from the outer
orbitals) than the NO. Figure 10 includes plots of these, and we see
that the outer GVB orbital appears to be delocalized in a bonding
fashion toward carbon. Goddard and co-workers (45) have observed

a similar but more pronounced lone-pair delocalization in the *z and
%" states of the C—F molecule. Dunning (44) has found, in the
above-mentioned calculations on the sihglet state of CF,, a delocali-
zation of the (unsplit) lone-pair orbitals which lie in the F-C-F plane
and which correspond to our solution for CH,F,. Figure 11 shows a
plot of one of these CF, lone-pair orbitals, and we see that again the
effect is more pronounced than in CH,F,.

The search for the lone pairs which are out of the F-C~F
plane met with the same sort of difficulties that the in-plane solution
did. In this case, freezing the C-F bond pair was not sufficient
because the out-of-plane pair "wants' to become not only the C-F

bond but also the in-plane pair (both of which have more negative

splitting energies). Thus, to obtain a solution corresponding to a



161

local minimum, it was necessary to freeze both of these other pairs.
The first NO of this pair contains a great deal of p-character (82.5%,
corresponding to sp* ™ hybridization) and is nearly perpendicular to
the C-F axis (average angle = 84.7°) and the F-C-F plane (average
angle = 78.0°). This solution is, however, difficult to accept as a
reasonable one. To see this, we recall that the first NO's for the
C-F bond pair and in-plane lone pair are both, as far as fluorine is
concerned, nearly pure p orbitals. Based on the usual hybridization
arguments, which we found to apply rather well to the F-centered
LMO's (see section B), we thus have roughly one 2s and one 2p

orbital "left over' to describe the first NO's of the remaining two

lone pairs. Now, the F-C-F plane is a symmetry element for the
molecule, and we expect the exact, fully split PGVB wavefunction to
describe each fluorine as having some well-defined symmetry with
respect to this plane. The "left over' orbitals may be combined in
two ways to yield such symmetry: a) one pure 2p orbital perpendicular
to the F—~C~-F plane and one 2s orbital in the plane; or b) two sp-
hybridized lobes extending to either side of the plane. However, the
first NO of the pair we are considering corresponds to neither of these
two cases: It is far from sp hybridization and, in fact, gives an overlap
of -. 60 with a similar orbital reflected through the F-C-F plane;
neither is it a pure out-of-plane 2p orbital. It most closely resembles
the latter, though, so we decided that it was most realistic to search
for a lone pair which was antisymmetric with respect to the F~C-F

plane. The solution might not correspond to a true local minimum in
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AE, but the resulting set of lone pairs would have the right symmetry,
and would have the same general structure as the F lone pairs found
by Goddard and co-workers (45) in the CF molecule. As will be
discussed below, this lone-pair structure is, in fact, not appropriate
for CH,F,. Possibility b), above, is actually better than a), but the
necessity for considering a) first will become apparent.

Thus, we considered next the 2p-like lone pair perpendicular
to the F—C-F plane. The pair was split in the field of the C-F bond
pair and in-plane lone pair, with starting guesses derived from the
above out-of-plane solution. The quadratic PGVB method rapidly
converged upon a saddle-point solution, which is as expected because
the splitting energy of this pair (-10.3 mh) is slightly higher than that
of the "best" out-of-plane solution discussed above (~10. 8 mh).
Figure 12 shows the amplitude plot for the first NO of this pair in the
plane which contains the C-F axis and is perpendicular to the F-C-F
plane. We see that it is almost exactly a pure fluorine 2p orbital
which shows little bonding delocalization toward carbon. Also shown
are the VB orbitals which make up the pair, and we see that here,
in contrast to the in-plane pair, the outer VB orbital does not show
any of this C-F bonding delocalization. Figure 11b shows the
analogous (unsplit) pair in CF,, where we see a substantial amount of
such delocalization.

The only remaining lone pair is the 2s-like one. Starting
guesses for the first and second NO's were derived from the plus and

minus linear combinations of the outer two s-type AO's on fluorine.
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Figure 12,

The ¥ lone pair in
difluoromethane which
is perpendicular to
the F-C-F plane (eq.
geom.). See Figure 1
for contour values.

b) The smaller VB orbital. ¢) The larger VB orbital.
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This pair was split in the fields of the C-F bond pair, in-plane lone
pair and 2p-like lone pair so that the final set of four pairfunctions
would be mutually orthogonal. The converged solution has a splitting
energy of -5. 678 mh. A plot of the first NO in the F-C-F plane is
shown in Figure 13. A population of the F hybrid of this NO yields a
value of only 16. 8% p-character (sp’ %°), and the average angle
between the positive lobe of the pair and the C-F axis is 116.5°.
Figure 13 also shows the VB orbitals for the pair, and we see little
tendency for either to delocalize in a bonding fashion toward carbon.
We now reconsider the question of the general lone-pair
structure in difluoromethane. So far, we have investigated one possible
lone-pair set which conforms to the molecular symmetry, but as noted
above, there is another possibility: Instead of one 2s-like pair and one
out-of-plane 2p pair, we may have two symmetrically related, and
nearly sp-hybridized, pairs extending above and below the F-C-F
plane. In searching for such a solution, though, we are faced with the
problem that the one-pair PGVB approach has no means of treating,
in a consistent fashion, the simultaneous splitting of two such symmet-
rically related pairs. If we attempt to solve for just one of these,
we obtain the 'best' out-of-plane pair discussed above, which has far
too much p-character, and consequently far too large an overlap with
its symmetrically related counterpart, to give a reasonable lone-pair
description. The only alternative we see is to assume that the two
sp-like pairs are well approximated by the appropriate linear

combinations of the 2s-like and out-of-plane 2p orbitals which we
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have already obtained. This is analogous to forming atomic sp
hybrids from one s and one p function, but in our case the "basis
functions' are PGVB pairs rather than AO's. Thus, we have formed
the normalized sum and difference of the first NO's of these "basis"
pairs to obtain two new NO's corresponding to the desired lone-pair
structure. The second NO's were treated similarly, and after
optimization of the CI coefficients, these new pairs each gave a
splitting energy of -9.85 mh, or -19, 7 mh for the two. This is 3.7
mh below the sum of the AE’'s for the 2s-like pair (-5.7 mh) and the
out-of-plane 2p pair (-10.3 mh), which is actually rather remarkable
when we consider that these sp-like pairs have not been variationally
optimized. The indication is, then, that the '"2p-2s'' lone-pair
structure is definitely inferior to the ''sp-sp'' description.

We are not in a position to simultaneously optimize these sp
pairs, but at least we can freeze one of the "constructed' pairs and
solve for the second in the first pair's field (the C~F bond pair and
in-plane lone pair being fixed also). This process improved the
splitting energy of the second pair by only 0.1 mh and gave a solution
quite similar to the initial guess (two-electron overlap = 0. 99994),
with most of the differences appearing in the second NO's (overlap =
0.9974). The first NO of this optimized pair is an F-centered
function with sp'* * hybridization (57. 4% p-character). Its average
direction is such that it makes an angle of 100. 0° with the C-F axis,
109. 4° with the in-plane lone pair and 135, 0° with its own symmetri-

cally related counterpart. This pair, together with its counterpart,
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will be taken as good approximations to the actual out-of-plane lone
pairs in all subsequent work.

Figure 14 shows plots, in the plane which contains both the
C-F axis and the lone pair itself, of the first NO and the VB orbitals
for the pair. The outer VB orbital is the only one which even hints
of a C-F bonding delocalization, but the effect is by no means
pronounced.

So far, we have considered only a portion of the molecule;
one C-H bond and the C-F bond pair and F lone pairs associated with
one fluorine. By suitably reflecting these orbitals through the H-C-H
or F-C-F planes, we may generate an approximate, complete PGVB
description of the valence shell of the molecule. The resulting set of
first NO's, together with the canonical cores are hopefully similar to
the set of naturally localized MO's (NLMO's) which we are ultimately
seeking. However, these NLMO's are supposed to be orthogonal, and
we have found hat the first NO's, as obtained above, show some non-
negligible overlaps, the largest (0. 20) occurring between the two C-H
bonding NO's. In order to obtain properly orthogonal approximations
to the NLMO's, we have symmetrically orthogonalized the '"raw'" set.
The approximation may be a rough one, but at least we have managed
to obtain localized orbitals which are tied in some fashion to a
physically meaningful criterion. We seek now to apply the tools of
delocalization energy analysis and population analysis used in the
previous section to investigate the NLMO description of the HF

wavefunction of difluoromethane,
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Table 6 gives the delocalization energies of the NLMO's, which
are analogous to the LMO values given in Table 1. We see that the
total DE for the NLMO's is substantially smaller than the LMO value,
and in fact, the truncated NLMO's represent the best bond functions
we have yet obtained for this molecule. The core NLMO's are seen
to have much smaller DE's than their LMO counterparts, which traces
to the fact that we have taken the former to be the well-localized
canonical cores. The bonding pairs show very similar values between
the two descriptions, while the total lone-pair contribution has dropped
by almost a factor of two in the NLMO case. We see that the lone pair
NLMO in the F-C-F plane has by far the greatest DE, followed by the
out-of-plane pair. Once again, we draw the conclusion that lone-pair
delocalization is an important stabilizing factor in the difluoromethane
molecule, and that this delocalization is more efficient when the lone
pair opposes a C-F bond than when it does not.

We may define NLO's (which are partially corrected for the
effects of orthogonality) from the NLMO's just as we did from the
LMO's (see equation XXIV). Table 6 includes the DE's for these,
and we see that the only major differences between these and the
NLMO values appear as lower DE's for the bonding orbitals. We note
that, for both sets in Table 6, the non-additivity is substantial.

Table 7 gives the gross and overlap populations for the various
NLMO's, for groups thereof and for the entire HF wave function.

This is analogous to Table 2, which gives the populations for the

LMO's. The core and bond pairs show an excellent parallel between
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Table 6., Delocalization Energies for the Naturally
lLocalized Orbitals of Difluoromethane,
Orbital Number Delocalization energy (mh)
From truncated From 'NLO's de-
NLLO 's fined by HLMO's
Sum over sum over
Per related Per related
orbital orbitals orbital orbitals
A1l 13 - 63.922 - 62.08%
F core 2 0.47 0.93 0.40 0.81
C core 1 0.24 0.24 0.37 0.37
C-H bond 2 6.88 13,75 5.25 10.51
F lone pair
F lone pair
out of plane 4 7.39 29.57 T.07 28,28
sum = 77.95b sum = 69.51b
error = —9..03c error = —7.43c

@aActual total DE.

bSum of individual orbital DE's,

cNon—additivity error, the difference of the above.

the two descriptions, the only significant difference being that

the C~F bonding NLMO gives a much lower C-F OP than the

corresponding LMO does. There is also a good parallel between
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the LMO and NLMO lone pairs which lie in the F-C~F plane except
that the NLMO shows substantially more C-F bonding character than
the LMO. The parallel between the out-of-plane pairs is fairly good,
though the relative magnitudes of several of the populations differ
between the NLMO and the LMO. The total lone pair groups compare
very favorably between the two descriptions, except that the NLMO
set gives a larger bonding contribution to the C~F OP's.

Thus, the population analysis of the NLMO's supports the
conclusions drawn in the previous section that the fluorine lone-pair
delocalization ""strengthens' the C-F bonds, ''weakens'' the C-H
bonds and causes a charge-transfer from the fluorines to the carbon.

To complete our investigation of the electronic structure of
difluoromethane, we now consider the changes which take place in
the PGVB orbitals as the F-C-F angle is increased and decreased
by 30° from its equilibrium value. We will not analyze the wave-
functions in the same detail we used in the equilibrium case, but
rather we will concentrate upon the bonding pairs only. For each
distorted geometry, the C-F and C—H bonds were split independently,
with the canonical cores frozen as they were in the equilibrium
geometry. The splitting energies for these pairs proved to vary only
modestly as functions of the F—C-F angle. For the C-F bond pair,
the AE values are -25.4, -24.1 and -25.3 mh for the -30°, 0° and
+30° distortions, respectively, while the corresponding values for

the C-H bond pair are -16.3, -16.5 and -16. 7 mh.
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Figure 15 shows the first NO and the VB orbitals for the C=-F
bond pair in the three geometries, and Figure 16 gives the analogous
plots for the C-H bond pair. The latter shows rather small changes,
most of which involve the "other H'" contribution to the pair. The
C-F pair, on the other hand, shows substantial bond-bending effects,
and we note here, in both the first NO and the VB orbitals, the same
sort of fluorine "'pivoting'' about a relatively static carbon hybrid
which we found in the LMO's (see Figure 6).

To make a more quantitative comparison, we may analyze
these orbitals in terms of hybridization and direction just as we did
the LMO's (see Table 4). Table 8 presents such analyses for the C
and F hybrids of the first NO and "'shared" VB orbital in the C~F
pair, for the F hybrid of the F-centered VB orbital in this pair, and
for the C hybrids of the first NO and C-centered VB orbital in the
C-H pair. We see by examining these values that the conclusions
we drew in the analysis of the LMO's apply well here: The C~H
orbitals show relatively little change as the F-C-F angle is altered;
the C-F orbitals show a pivoting of the fluorine hybrids while the
carbon hybrids tend not to follow the fluorines, but rather to move in
the opposite direction. We have not obtained the lone pairs for the
distorted geometries, so we cannot verify that the fluorines move as
rigid units, but at least we see that the PGVB orbitals, like the
LMO's, tend to discount the concept of ""orbital following' in the

F-C-F angle variation.
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Table 8. Geometry Variation of Difluoromethane:
Hybrid Analysis of the Bonding PGVB Orbitals.

F-C-F a b Hybridigation®

Orbital angle 6 ¢ C hybrld F hybrid

79° 125°%(126°,122°) - 2.0(67%) -
C-H bond, o o] o] o] _ o _
first N 109° 124°(125°,122°) 2.0(66%)

139° 122°(124°,119%) - 2.1(68%) -

79° 125°(125°,123°) - 1.6(61%) -
C~H bond, o ° o o
C-centered 109~ 1237 (1247,1227) - 1.6(61%) -
VB orbital o o o

139  120°(122°,116°) - 1.6(62%) -

79° 107°(100°,122°) -10.2° 5.5(85%) a4 (100%)
C-F bond, 0 0 o 0 o . y o
first NO 109 96°( 98%, 88%)  0.2° 5.7(85%) 4 (99%)

139° 81°( 98°, 37°) 11.2° 4.8(8%%) d (99%)

79° 106°(101°,118°) -9.8° 3.6(78%) a4 (98%)
C-F baend, o o o o o
shared 109 97°( 997, 91%) 0.0° 3.5(78%) 4 (100%)
VB orbital o o o o o

139°  86°( 99°, 52°) 11.3° 2.9(74%) 4 (100%)

79° - -10.5° - d (97%)
C~F bond, o o
F~-centered 109 - 0.4 - a (96%)
VB orbital o o

139 - 11.1 - d (96%)

8rhis is the angle between the C hybrid of the orbital and
the similar hybrid of the symmetrically related bond pair.
The value given is based on the average hybrid direction
as defined in section B+ In parentheses are, respecw
tively, the inner and outer p-contributions to this angle.

bThis is the average angle hetween thef%jmybrid of th%

orbital and the C-F axis., See p. 118 for "sign convention.

Cphe "x" in "spx." Parentheses contain the % p-character.

dGreater than 10.0.
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D. Summary

The following eight points summarize the major topics

covered in this chapter:

1)

2)

A quadratically convergent approach to molecular orbital
localization using the Edmiston-Ruedenberg criterion

has been developed and has been shown to work satis-
factorily for difluoromethane, which gives very slow
convergence using the usual two-by-two rotation method.
An analysis of the localized molecular orbitals for the
equilibrium geometry of difluoromethane indicates that
the fluorine lone pairs are delocalized in a bonding
fashion toward carbon, that this delocalization represents
a strong stabilizing influence in the molecule, and that
this delocalization is most efficient for those lone pairs
which lie in the F-C-F plane. These effects may
represent the MO equivalent of the ""double bond-no bond"
resonance of VB theory.

The LMO changes which result from the distortion of

the F-C-TF angle in difluoromethane tend to discount the
concept of "orbital following' on the part of carbon.
Rather, each fluorine atom appears to '"'pivot' to maintain

high bonding overlap with a relatively static carbon hybrid.
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4) The Hartree-Fock projected GVB (PGVB) method for
splitting one doubly-occupied orbital into a VB-like pair
of (optimized) orbitals has been developed in both linearly
and quadratically convergent forms. It has been shown
to be a very good approximation to the GVB method
(though much less time-consuming) in the splitting of the
C-F bonding pair of difluoromethane (equilibrium
geometry).

5) 1t has been shown that the PGVB solution for the above
C-F bond pair is insensitive to the "'freezing" of the
canonical Hartree-Fock core orbitals. Also, it has been
shown that, in the equilibrium geometry of difluoro-
methane, splitting the C~F bond pair using the PGVB
method has little influence upon the optimum C-H bond
pair.

6) The one-pair PGVB method has been used to give a
detailed picture of the electronic structure of each of
the unique electron pairs in the equilibrium geometry of
difluoromethane.

7) The PGVB method has led to an approximate set of
naturally localized molecular orbitals which are similar
to the LMO's but are tied to a physically meaningful
localization criterion. Ananalysis of these orbitals

supports conclusion 2), above, drawn from the LMO's.
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8) An analysis of the PGVB solutions for the C-F and C-H
bond pairs for the geometries of difluoromethane in
which the F-C-F angle is distorted supports conclusion

3), above, drawn from the LMO's.
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