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ABSTRACT 

The first chapter describes our theoretical investigation of 

the potential energy surface of the difluoromethane molecule. The 

Hartree-Fock (HF) method, with a 73/3 gaussian basis contracted 

to the double-zeta level, was used, and in many cases, CNOO/2 

calculations were included for comparison. 

The optimum HF geometry is found to be closer to experi­

ment than that reported by other workers using a minimum (STO-3G) 

basis set, but it appears that our more flexible basis does little to 

improve the computed general harmonic force constants, the complete 

set of which is considered. The stretching constants are found to be 

in error by +20% to +35%, the bending constants by -4% to +45%. 

In comparison with HF, the CNOO/2 method grossly overestimates 

the stretching constants, but mimics rather well the bending and 

interaction constants. 

The theoretical (HF) normal modes and observed vibration 

frequencies are combined to give a set of semi-empirical force 

constants (SEFC's) which are used to predict the vibration frequencies 

of the deuterated difluoromethanes. The synthesis and IR spectrum 

analysis of these compounds is described, and the SEFC predictions 

are found to be superior to ones appearing previously in the literature. 

The Urey-Bradley potential (UBP) model, with 1/r6 steric 

terms, is fit to the HF constants and SEFC's. A comparison of the 

two UBP models indicates that the HF method consistently over-
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estimates all parameters but the F-F steric term, which it under­

estimates. 

Anharmonicity in the angular coordinates for large molecular 

distortions is investigated, and it is found that CNOO/2 mimics HF 

quite well, except that CNOO/2 undevstimates the anharmonicity 

when the fluorines are quite close together. The UBP model derived 

from the HF force constants is found to account for most of the 

anharmonicity in the HF energy variation. 

The second chapter describes our investigation of the electronic 

structure of difluoromethane. The HF method, with the basis set 

discussed above, and certain configuration-interaction methods, were 

used. 

The localized (HF) molecular orbitals (LMO's) were obtained 

for the equilibrium geometry using a new, quadratically convergent 

approach which is useful for cases in which convergence of the 

Edmiston-Ruedenberg "two-by-two" method is slow. The LMO's are 

examined in detail, and several methods are used to show that the 

fluorine lone pairs are delocalized toward carbon, a delocalization 

which represents an important stabilization in the molecule. It is 

noted that this effect, which is most pronounced for lone pairs lying 

in the F-C-F plane, may be the molecular-orbital equivalent of the 

"double bond-no bond" resonance of valence-bond theory. 

An analysis of the LMO's for distorted geometries indicates 

that the "orbital following" concept does not apply to difluoromethane 

as the F-C-F angle is altered. 
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An economical approximation to the generalized valence-bond 

(GVB) method is developed and is used to give a more detailed picture 

of the electron pairs in the molecule. The GVB-like pairs are 

localized, but in this case the localization is a result of the variation 

principle rather than a physically meaningless localization criterion. 

They are used to define (in an apprOXimate fashion) "naturally" 

localized Hartree- Fock orbitals (NLMO's) qualitatively similar to 

the LMO's. 

An analysis of the NLMO's supports the conclusions drawn 

from the LMO analysis concerning lone-pair delocalization and 

"orbital following". 
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Chapter 1 

THE POTENTIAL ENERGY SURFACE OF DIFLUOROMETHANE 

A. Introduction 

The difluoromethane molecules, with 26 electrons, is small 

enough to be within reach of moderately sophisticated quantum 

mechanical techniques, yet only a small amount of work on this 

molecule has been reported (1-3). In none of these investigations 

has the potential energy surface been considered explicitly, and so 

we have undertaken such a study using both the semi-empirical 

CNOO/2 (4) and the ab initio Hartree-Fock-Roothaan (5) methods. 

There were two major goals in this study: The first was to deter­

mine the complete harmonic potential around the theoretical equili­

brium geometry; the second was to investigate the molecular energy 

variation as a function of large changes in the angular coordinates, 

particularly the F-C-F and H-C-H angles. Several lesser points 

of interest were also involved, including an investigation of the 

Urey-Bradley potential model (6), a comparison of the Hartree-Fock 

and CNOO/2 methods, and the "semi-empirical" prediction of 

accurate force constants. 

In recent years, there has been a great deal of interest in the 

calculation of molecular geometries and harmonic force constants 

using ab initio quantum mechanical methods. As noted by Newton et 

ale (3), the general trend appears to be that the Hartree-Fock 
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approximation leads to good calculated geometries* and moderately 

accurate calculated force constants, even when rather small basis 

sets of atomic orbitals are employed. In general, stretching 

constants are overestimated by roughly 20%, bending constants can -
be either high or low, often in error by 30%, while interaction 

constants are predicted rather erratically. In much of the work which 

has been done, only the force constants for symmetric deformation 

modes have been calculated, although the full set is needed for the 

prediction of the molecular vibration spectrum and for the testing of 

various model force fields. The few cases in which a full analysis 

has been carried out are restricted to molecules of the XHn type (7) 

where X is a first- or second-row atom and n is 2, 3 or 4. Thus, in 

studying the full potential of CH2F 2, we have extended the range of 

available data to include other than hydrides. In addition, we have 

used an atomic basis set substantially more flexible than that of 

Newton et al. (3) (a "double-zeta" rather than a minimum basis set) 

and have thus been able to verify the basis-set independence of their 

observations. 

As a test of overall accuracy, we have compared the harmonic 

vibration frequencies derived from these constants with the experi­

mental values. Unfortunately, no reliable force constants are 

* The fact that good geometries can be obtained from minimum 
basis set calculations may be due, in part, to a cancellation of errors. 

Dunning et al. (39), for example, find that the optimum geometry of 

H20 is rather sensitive to the nature of the basis. 
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available for direct comparison (8), but we have used the calculated 

constants in combination with the observed frequencies to give a set 

of semi-empirical force constants. We have found these to yield 

good predictions for the vibration frequencies of CHDF2 and CD2 F2 , 

demonstrating that such theoretical calculations can be of value in 

obtaining true force constants. 

In a recent theoretical study of the water molecule, Pitzer 

and Merrifield found the molecular energy to vary as an essentially 

parabolic function of the H-O-H angle over a 30° range near the 

minimum (9). This is reasonable if we assume that the major 

deviations from parabolicity are due to H-H steric interactions, 

which should be small. The situation soould be quite different in 

CH2 F2 for two reasons: First, the fluorines are somewhat larger and 

should show a marked steric effect as the F-C-F angle is varied; 

second, the tetrahedrally bonded central carbon would be expected to 

react differently to geometrical changes than would the dihedrally 

bonded oxygen in H20. In order to assess the magnitudes of these 

effects, we have examined the energy variation as a function of 

various angular coordinates in difluoromethane. The comparison 

between Hartree- Fock and CNOO /2 energies is most interesting, 

giving some indication of the nature of the errors inherent to the 

CNOO/2 MO method. Also, we have examined the ability of a Urey­

Bradley model (6) to account for the Hartree-Fock energy changes, 

and have found rather good agreemenL 
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Because a large number of individual Hartree-Fock calcu­

lations is necessary in a study of this nature, we have chosen to use 

a small but flexible basis set of gaussian atomic orbitals, a 73/3 set 

contracted to the double-zeta level. Details of the basis set and of 

the calculations themselves are included in section F of this chapter. 

In all cases, sufficient SCF iterations were undertaken to give 

energies precise to 1 x 10-6 a. u. or better. All CNOO/2 calculations 

were carried out using program CNINOO, obtained from the Quantum 

Chemistry Program Exchange (10). 
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B. Geometry Optimization 

The initial problem in this investigation was the determination 

of the Hartree- Fock equilibrium geometry for difluoromethane. 

Newton et al. (3) have done this, but with a basis set substantially 

different from ours, and our results match the experimental geometry 

more closely than theirs. They have used an optimization technique 

which concentrates on only one symmetrized valence coordinate (SVC) 

at a time; this coordinate is increased and decreased by some small 

amount and the resulting energy change is fit to a parabolic functiono 

The minimum of this function defines the new value for the coordi­

nateo The SVC's are processed in a cyclic manner until none change 

by a significant amounL Bratoz and Allavena have criticized this 

numerical type of approach (7d), advocating instead an analytical 

evaluation of the curvature of the energy surface, but the method is 

extremely complex for molecules as large as difluoromethane. Thus 

we have used a method similar to Newton's, with modifications to be 

discussed below. 

During preliminary CNOO/2 calculations, we found that the 

above method can, during the first few cycles, lead to unreasonable 

predictions if the starting geometry is very different from the final 

oneo In such cases, the procedure, though convergent, requires 

many energy evaluations before the solution is reached. The method 

does not attempt to account for the couplings between SVC's, which 

is the cause of the problemo In an effort to economize on the number 
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of Hartree- Fock calculations, we have developed the following rapidly 

convergent approach. The idea, basically, is to expand the energy 

as a multidimensional quadratic function of the SVC's and to use the 

minimum of this function to define the new geometry. Starting from 

some "guess" geometry, we may expand the energy as a function of 

small displacements (6.ql1 6.%, ... , 6.qn) in the SVC's via a Taylor 

series: 

For convenience, we make the substitutions: 

A. = 
1 

and B ... = 
1J 

B.. 
J1 

And we may express equation (I) concisely in matrix notation as: 

Here, as throughout this thesis, the underline denotes a column 

(I) 

(II) 

(III) 

vector, the wavy line denotes a matrix and the superscript T indi-

cates "transpose". We mention in passing that if the "guess" 

geometry is in fact the equilibrium one, then the vector of first 

derivatives (A) is zero and the matrix ~ represents a portion of the 

force constant matrix for the molecule. If!!. and ~ are known, then 

we may solve directly for the vector of corrections (6.q) to the SVC's 

by differentiating (III) with respect to each of the 6.qi's and setting 
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the result to zero. This simply locates the minimum of the quadratic 

function (III). The resulting equations, in matrix form, are: 

(2. is the zero vector) (IV) 

This yields: 

(V) 

We evaluate the quantities Ai and Bij numerically. To begin, 

we increase and decrease one of the coordinates (say qm) by some 

small amount 0, then we evaluate the resulting energies, which we 

call E~O and E~O, respectively. In this case, aqi = 0 for i ~ m 

and ~qm = 00 Formulae (I) and (II) give: 

E+O '" Eo + Amo + .! B 02 

m 2 mm 

(VI) 

and -0 Eo - Amo + .! B 02 
Em - 2 mm 

These equations may be solved for Am and Bmm to give: 

and 
E+O + E -0 _ 2E 

= -m--m 0 
02 

(VIT) 

To this point, our method is equivalent to the usual one; Am and 

Bmm define a parabolic function of ~qm which could be used to 

generate a new value for qm 0 However, we do not to this yet, but 

rather we evaluate Am and Bmm for each of the SVC's without 

changing the reference geometry. Next, we simultaneously increase 
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a pair of SVC's (say qm and qn) by om and on' respectively and we 

evaluate the energy, which we call E~ln. In this case, A-qi -'- 0 for 

i ;z! m, nand A-qm = om and aqn = on. Formulae (I) and (II) give: 

(VIII) 

This equation may be solved for Bmn (= Bnm) because all other 

values are known. In this way, we evaluate all off-diagonal elements 

of the matrix;{3, these elements representing couplings between the 

SVC's. At this point, we have fixed all variables necessary for the 

solution of equation (V) to give the vector A-q, the corrections to be 

applied to the SVC's. These corrections define a new guess for the 

optimum geometry. A second cycle of refinement leads to a better 

guess, and so on. 

For a molecule with n SVC's defining the equilibrium 

geometry, the above method requires 1 + (n2 + 3n)/2 energy evalu­

ations per cycle, while the usual method needs only 3n. We have 

assumed that the CH2 F2 molecule has C2V symmetry, so only four 

SVC's are required (two bond lengths and two bond angles) to define 

the geometry. Thus, with n = 4, our optimization technique uses 

fifteen separate energies per cycle, as compared to twelve in the 

usual method. For much larger molecules, our procedure would not 

be as useful because the number of individual energy calculations 

increases rapidly as a function of no 
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The geometry optimization for difluoromethane was carried 

out first using CNDO/2 energies, beginning from the experimental 

geometry (see Table 1). The parameter increments were taken as 

50 and O. 05.A for the angular and distance coordinates, respectively. 

After two cycles, the geometry given in Table 1 was obtained, and a 

third cycle produced negligible changes. An attempt was made to 
o 

further refine these values on a "grid" level of 1" and O. 01A, but at 

this level, the numerical inaccuracy in ~ and ~ is rather large due 

to the small energy variations involved. The results indicate that 

changing the grid size alters the bond lengths by less than • 003A and 

the angles by less than 0.2°. As a test of our optimization procedure, 

we have carried out similar calculations using INDO (11) energies, 

the results of which are given in Table 1. The INDO geometry differs 

from that quoted by Pople (12) by about 0.005.A and 0.2° in the bond 

lengths and angles, respectively, and these differences most probably 

arise from our larger grid size (again, 5 ° and O. 05.A as opposed to 

1 ° and O. 01A). 

For the Hartree-Fock optimization, three starting points were 

considered. These were: a) the optimum CNDO/2 geometry on the 

° 0 5 , O. 05A level; b) the experimental geometry (see Table 1); and 

c) the optimum Hartree-Fock geometry of Newton et al. (3). Of 

these, the experimental geometry gave the lowest energy, about 

4.4 x 10- 3 a. u. lower than a) and 1. 4 x 10-3 a. u. lower than c). 

Thus, with b) as the starting point, we carried out one cycle of 

optimization using increments of O. 02.A for the bond lengths, 2° for 
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Table 1. - Equilibrium Geometries of Difluoromethane 
(C 2v symmetry). 

~ R(C-F) RCC-H) O(F-C-F) O{H-C-H2 

Experimentala (13 ) 1.358~ 1.091~ 108.2° 112.1° 

CNDO/2 1 .34 5j 1.124~ 106.2° 110.7° 

INDO 1.348j( 1.125j( 105.9° 110.9° 

Hartree-Fock (3) 1 • 378~ 1.109j( 108.7° 108.8° 

Hartree-Fock (this work) 1.374j 1.070i 109.0° 112.2° 

aA more recent experimental study (14) has yielded virtu­

ally the same geometry, except for the H-C-H angle, which 

is reported to be 113.7°. 
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the F-C-F angle and 4° for the H-C-H angle. These increments 

provided energy changes on the order of 5 x 10- 4 a. u., substantially 

above the convergence criterion of 10- 6 a. u. The predicted param­

eter changes were on the order of O. 02A. and 1 0, though the H-C-H 

angle changed by only 0.1 0. A subsequent cycle was undertaken with 

increments of O. 02A. for the bond lengths and 2° and 3° for the 

F-C-F and H-C-H angles, respectively. In calculating the off­

diagonal elements of the .§ matrix, we used increments of O. 014A. 

for the bond lengths, 1. 4° for the F-C-F angle and 2° for the H-C-H 

angle. These smaller increments were used so that the energy change 

resulting from the simultaneous alteration of two coordinates would 

roughly match that resulting from the larger alteration of single 

coordinates. The second cycle showed negligible parameter correc­

tions (on the order of O. 001A. and 0.05 0). Thus, the first-cycle 

geometry, given in Table 1, was taken as the Hartree-Fock equili­

brium geometry for all subsequent studies. 

Examining the data in Table 1, we find that our CNDO/2 and 

INDO results are within 0.003 A and 0.3° of one another. Both 

methods predict the C-H bond length to be quite high, and the C-F 

bond length to be a bit low. The F-C-F and H-C-H angles are both 

too low by about 2° and 1 ° (3° based on the geometry given in ref. 14) 

respectively. More interesting is the comparison between our 

Hartree-Fock geometry and that obtained by Newton et al. (3) using 

the STO-3G minimum basis set. The two methods yield basically the 

same description of the F-C-F fragment (the C-F distance and 
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F-C-F angle differ by only O. 002 A. and 0.3°) while the H-C-H 

fragment shows substantial change (the distance and angle differ by 

0.039 A and 3.6°, respectively). The minimum basis set is expected 

to give a rather poor description of the fluorine atom because nearly 

all of the fluorine basis functions are fully occupied. Our more 

flexible double-zeta set might be expected to describe the F-C-F 

fragment rather differently than the STO- 3G basis for this reason, 

and it is surprising to find most of the change at the "other end" of 

the molecule. We have no explanation for this, but it may be related 

to the fact that a double-zeta set, with its greater flexibility, is 

capable of describing types of intra-molecular charge transfer which 

a minimum basis cannot. We note, finally, that our Hartree- Fock 

geometry gives the best overall agreement with experiment of any of 

the theoretical geometries in Table 1. 
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C. Quadratic Force Constants 

As noted in the previous section, the energy, E, of a molecule 

may be approximated as a second-order function of small displace­

ments (~ql' .6.'12. "', .6.qn) of the internal coordinates (qu '12, "', 

q ) which define some reference geometry. These internal coordi-
n 

nates may be any linearly independent set of geometric parameters 

which define the molecular shape, without reference to its orientation 

or position in space. A general molecule of N atoms has 3N -6 such 

parameters (3N-5 for linear molecules). In the event that the refer­

ence geometry corresponds to equilibrium, then the linear terms 

vanish and the energy may be approximated by: 

n n 
E = Eo + ~ L; E F .. .6.q . .6.q .• 

i=l j=l 1J 1 J 
(IX) 

The symmetric matrix ;E is the quadratic (or harmonic) force constant 

matrix for the molecule. It is related to the ;ij matrix of equation (III), 

but [ refers to all internal coordinates while ;ij refers only to those 

required to define the equilibrium geometry. If a molecule has no 

symmetry, then f and ~ are equivalent, but for symmetrical mole­

cules, ;e is a sub-block of ;e. We shall refer to the diagonal element 

F ii as the major force constant (or simply force constant when the 

context removes ambiguity) for coordinate qi' while the off-diagonal 

element F ij will be referred to as the interaction constant between 

coordinates qi and qr Also, we shall abbreviate "force constant" 
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as FC and "interaction constant" as IC. 

The numerical values of the FC's depend, of course, upon the 

coordinates used, but the transformation between different sets of 

internal coordinates is straightforward: If (PH P2, "', Pn) 

represents a new set of coordinates, then Ji:', the FC matrix for the 

p's, is related to r by 

(X) 

where the matrix Q is defined by 

(XI) 

The Q matrix will generally depend upon the geometry of the mole­

cule as well as the nature of the p's and q's. 

The difluoromethane molecule has five atoms and nine 

degrees of geometric freedom. Many different coordinate systems 

are possible, though the set of irrotational, non-translational 

parameters suggested by Shaffer and Herman (15) are qUite useful in 

the analysis of molecular vibrations. These are rather difficult to 

picture, however, and do not correspond to "pure" motions such as 

bond bending and stretching, so we have chosen to use the set of 

symmetrized valence coordinates described in Table 2 and Figure 1. 

These are divided into symmetry types according to whether they are 

totally symmetric (a l ), antisymmetric with respect to the F-C-F or 

H-C-H planes alone (b i and b2 respectively), or antisymmetric with 
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Tahle 2. Symmetrized Valence Coordinates for Difluoro-
methane. 

Coord. Szmbol l·'ormula a 
Deacri12tJon 

q1 Rf (d 1+d2 )/2 symmetric C-l!' stretch 

q2 Rh (r 1+r2 )/2 symmetric C-H stretch 

q3 9 f <?1 +'?2 }'-C-F angle bend 

q4 6h (,..)1+(.....2 H-C-H angle bend 

q5 Df (d1-d2 )/2 antisymmetri.c C-F 
stretch 

q6 ~:f (42-4-1 )/2 F-C-F rock 

q7 ~ (r 1-r 2 )/2 antisymmetric C-H 
stretch 

qa Ph (CJ2-w, )/2 H-C-H rock 
0 twisting of F-C-F plane q9 1'" 90 -(T 

relative to H-C-H plane 

aFor definition of symbols, see Figure 1. 

Figure 1. 

Definition of symbols 
used in the formulas 
of Table 2. 

S,y:mmetr,y: 

a 1 

a 1 
a 1 

a 1 

b2 

b2 
b1 

b1 

a 2 

I 
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respect to both planes (a2 ). 

It can be shown (16) that the interaction constants between 

coo rdinates of different symmetry types must be zero, and thus the 

r matrix has block-diagonal form with many zero elements. The at 

block is identical to the matrix ;6 of equation (III) for the equilibrium 

geometry, and may thus be obtained directly from the final cycle of 

geometry optimization. Only seven force constants remain, two 

major Fe's and one Ie for each b-type symmetry block and one major 

Fe for the a 2 "block". These may be evaluated in the same numerical 

manner as the ;6 matrix elements (see equations VII and VIII). 

Table 3 presents the Hartree-Fock force constants from our 

calculations. The totally symmetric Fe's were obtained from the 

second cycle of geometry optimization, while the others were evalu­

ated using distance and angle increments of 0.02 A and 2°. The 

errors given for these constants reflect the basic uncertainty in the 

Hartree-Fock energies (±1 x 10-6 aouo), and for some of the Ie's 

this error is a substantial fraction of the constant itself. There are 

two other sources of error which have not been explicitly evaluated. 

First, the geometry differs slightly from the true equilibrium one, 

so the anharmonic terms in the total molecular potential might 

contribute some small amount to the Fe's. Judging from the changes 

in the ;6 matrix from the first to the second optimization cycles and 

from the small corrections given by the second cycle, we estimate 

that this source should give errors somewhat less than those quoted 

for the Ie's and major angular Fe's, and perhaps two or three times 
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Table 3. Theoretical Force Constants for CII 2F2 

L 2 ____ F~j_-_-

1 

2 

1 

3 

4 

3 

1 

1 

Hartrec-Fock CNDO/2 

1 14.875~O.044 49.782 

2 12.086~0.044 23.422 

2 

3 

4-

4 

3 

1.155~0.109 1.665 

1.621~0.014 1.758 

0.941±0.006 0.939 

0.093±0.024 0.127 

0.272±0.060 0.462 

4 -0.484±0.042 -0.607 

2 3 -0.145±0.060 -0.290 

i b i b ______ ~F~ 
-.IL- i j----

Hartree-Fock CNDO/2 

4 0.270±0.042 0.147 2 

5 

6 

5 

7 

5 12.674±0.044 45.066 

6 

6 

1.004±0.014 1.027 

1.099±0.037 1.079 

7 11.803±0.044 22.324 

8 8 

7 8 

9 9 

1.334±0.014 1.355 

0.250±0.037 0.699 

1.770~0.014 1.873 

a~he units are md/~ (= 0.22945 a.u./R2), md-R/radian2 

(= 6.9895 x 10-5 a.u./degree2 ) and md/radian (= 4.0047 
x 10-3 a.u./~-degree) for distance-distance, angle-angle 
and distance-angle constants respectively. The error 
ranges do not warrant the number of significant figures 
given, but the constants as written are consistent with 
the frequencies in Table 4. bFor a description of the 
coordinates, see Table 2. 

Table 4. Vibration Frequencies for CH2F2 
-1 (in cm ). 

Sym. Experi- Hartree- Sym. Experi- Hartree-
!:a?!:. mental Fock: Error ~ mental li'ock Error ---

a 1 532 522± 5 -1.9% b1 1173 1268+10 8. 1?~ 

a 1 1078 1175± 8 9.0% b1 3030 3324±. 9 10.8% 

a 1 1508 1729±20 14.7% b2 1089 1228± 4 12.8% 

a 1 2963 3254.:!:. 9 9.8% b2 1435 1656±23 15.4% 

a 2 1262 1398±. 9 10.8% 
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those quoted for the major stretching constants. The second possible 

error source traces to the fact that our parameter increments were 

not infinitesimal, so again the anharmonic terms could introduce 

some error, in this case a basic error in the numerical nature of the 

FC evaluation. We have tested this to some extent using a Morse 

potential model (17) for bond stretching and using the actual anhar­

monic terms for H-C-H and F-C-F angle bending (see section D of 

this chapter) and have estimated that this error source is negligible. 

Table 3 also gives the FC's from our CNOO/2 calculations, evaluated 

using 50 and 0.05 'A increments for angular and distance parameters, 

respectively. Error estimates are not included, but the errors 

should not be too different from those for the Hartree-Fock FC's. 

With the exception of the stretching constants, we find a good 

overall parallel between the two methods, particularly for the major 

angular FC's. All IC's are of the same sign and general magnitude, 

though in a few cases the CNOO/2 IC's are greater in magnitude by 

a factor of two. The stretching constants are substantially larger in 

the CNOO/2 approximation, which agrees with the observation by 

Segal and Pople (4, 18) that this method often leads to unrealistically 

high stretching FC's. 

In Table 4 we present the harmonic vibration frequencies 

derived from the Hartree-Fock geometry and FC's, along with the 

experimental values collected by Meister et al. (19) from a variety 

of different studies. The classical vibration problem was solved 

according to the method of Tyson, Claa~en and Kim (20). Formally, 
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the method amounts to solving the necessary matrix equations in the 

cartesian basis of 3N coordinates (N is the number of atoms in the 

molecule). The result is 3N "vibration" frequencies, six of which 

(five for linear molecules) have zero wavenumber and correspond to 

the six (five) translations and rotations o It is necessary in this 

method to express the Fe's in terms of cartesian displacement 

coordinates of the atoms. To do this, we have appended to our list 

of nine symmetrized valence coordinates a set of six new coordinates 

corresponding to three rotations and three translations. These are 

given for ce and interaction constants of zero since they do not 

influence the molecular potential energy. Equations (X) and (XI) are 

applicable in this case with the qi as the "appended" valence coordi­

nates and the Pi as the cartesian coordinates. To carry out the 

transformation, we need the matrix Q, which may be viewed as the 

matrix which expresses first-order changes in the qi in terms of Pi 

displacementso That is, to first order, 

n n 
= ~ (oq./op. )Ap. 

j=1 1 ] ] 
= l, 0 .. Ap .• 

j =1 1] ] 
(XII) 

This matrix is difficult to evaluate analytically, but its inverse, 

whose elements are simply geometrical parameters representing the 

changes in cartesian coordinates which result from small changes in 

valence coordinates, is easy to calculate once the molecular geometry 

is known. That is, to first order, 



~p. 
1 

n 
= ~ (ap./aq.) ~q. 

j=l 1 J J 

but from (XII), 

~p. 
1 

so we have 

n 
= L (Q-1) .. Aq. 

j =1 1]] 

(Q -1).. = (ap./aq.) = T .. 
~ 1] ~ 
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(XIII) 

(XIV) 

(XV) 

and l: is easily obtained from the molecular geometry. It is inverted 

to give Q, which in turn is used to carry out the transformation of 

formula (X). 

We have written a FORTRAN IV program to carry out the 

necessary calculations. The error values for the Hartree- Fock 

vibration frequencies in Table 4 were obtained by summing the 

absolute values of the individual frequency changes which took place 

as each of the Hartree-.Fock Fe's was allowed to vary over its error 

range. 

The theoretical vibration frequencies are not directly compa­

rable to the experimental values because we have treated only the 

harmonic portion of the molecular potential. Anharmonicity correc-

tions to the observed frequencies can be made using Dennison's rules, 

but the application of these is a complex task requiring a detailed 

knowledge of the fine structure of the molecular vibration 
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spectrum (21). Such corrections are not available for C~F2' but 

based on those for CH3F (22) and CH4 (23) we estimate that the errors 

involved in neglecting anharmonicity are on the order of 5% for C-H 

stretching modes and about 3% maximum for other modes, with the 

corrected frequencies higher than the observed ones. 

With this in mind, we may examine the values in Table 4. 

We see that the predicted frequencies are 9-16% higher than the 

observed, with the exception of the lowest (F-C-F bending mode) 

which is about 2% low. These errors are outside the range attribut­

able to anharmonicity and we may conclude that, with the exception 

of F-C-F bending, our Hartree-Fock model describes a molecule 

which is generally "tighter" than the actual one. * The vibration 

frequencies depend roughly on the square roots of the force constants, 

so we estimate an average error of about +20% to +30% in the major 

FC's, with perhaps a -4% error in the F-C-F bending constant. 

Anharmonicity correction would be expected to lower these ranges 

somewhat, but the general picture would remain the same. 

* This is as expected, at least for the stretching modes, 

because Hartree- Fock wavefunctions do not dissociate properly as 
bonds are broken, which leads to dissociation energies which are 
much too high. This is expected to add to the curvature of the 
energy with respect to bond stretching at equilibrium, and hence a 
force constant which is too large is obtained. 
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Similar results for other molecules were obtained by Newton 

et al. (3) using a minimum basis set. Thus, although our double-zeta 

set gives a much better equilibrium geometry than Newton's, the 

general force constant picture does not seem greatly improved. 

Ideally, we would like to compare our Hartree-Fock Fe's 

directly with the experimental values, but such values are not avail­

able. Meister et al. (19) have given a set of 22 Fe's and Ie's defined 

over the set of ten redundant internal valence coordinates, but these 

were rather arbitrarily determined and certainly do not represent 

unique values. Most of the constants were transferred from other 

molecules while only eight Ie's were varied to fit the calculated to 

the observed frequencies. Finally, some of the other constants were 

varied to improve the fit, but no indication was given as to which 

constants or how they were varied. Such a procedure is not a 

reliable one, because even a 1 % error in one of the transferred 

major Fe's could lead to substantial errors in the Ie's. In addition, 

the geometry used by Meister was significantly different from the 

more accurate recent values (13, 14), and this renders their results 

even more uncertain. We have transformed their values to corres­

pond to our coordinate system using formula (X), which is valid even 

if the qi represent a redundant set of parameters. The Q matrix 

depends upon the molecular geometry, and for consistency we have 

used Meister's geometry even though it is incorrect. The resulting 

transformed "experimental" Fe's are given in Table 5. 
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Table 5. Hartrce-Fock }'C' s vs. Experimental and Semi­
Bmpirical Values. 

a 

b 

i a ;a Fb 
~ ------------------~;~-----------------

1 1 

2 2 

1 2 

3 3 

4 4 

3 4 

1 3 

1 4 

2 3 

2 4 

5 5 

6 6 

5 6 

7 7 

8 8 

7 8 

9 9 

........ 
Experimental c Hartree-}'ock Semi-IGmpir ical 

13.752 

9.822 

1.012 

1.688 

0.676 

-0.128 

0.616 

-0.220 

0.647 

0.300 

10.734 

0.885 

1.390 

10.094 

1.193 

0.916 

1.456 

14.875±0.044 12.924±0.131 

12.086±O.044 10.024±0.020 

1.155±0.109 0.951±O.083 

1.621±0.014 1.649~0.015 

0.941±0.006 0.719±0.012 

0.093+0.024 0.090±0.022 

0.272±0.060 0. 570±0.044 

-0.484±0.042 -0.403±0.042 

-0.145±0.060 -0.133±0.043 

0.270±0.042 0.219±0.046 

12.674±0.044 9.971±0.024 

1.004±0.014 0.757±0.009 

1.099±0.037 0.858±0.034 

11.803±0.044 9.807±0.016 

1.334±0.014 1.142±0.006 

0.250±0.037 0.215±0.035 

1.770±0.014 1.443±0.007 

For a description of the coordinates, see Table 2. 

Sec footnote a of Table 3 for units and a discussion of 
the number of significalt digits in the constants. 

cSee discussion, p. 22. These are not reliable values. 
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This situation gives theory a chance to make a few verifiable 

predictions. In view of the fact that the Hartree-Fock molecule, as 

noted above, seems to be generally "tighter" than the actual one, we 

might expect the normal vibration modes to be fairly accurate even 

though the calculated vibration frequencies are generally about 12% 

too high. It is possible to determine the FC set which leads to the 

theoretical modes and the observed frequencies. If the modes are 

accurate, then this set (which we dub "semi-empirical" force con-

stants, or SEFC's) should represent a good estimate of the actual 

FC's. The method for calculating SEFC's is given below. 

We adopt the notation of Tyson et al. (20), in which X repre­

sents a vector of the 3N displacement coordinates (N is the number 

of atoms in the molecule), A represents the corresponding FC 

matrix and ~ represents the diagonal "mass matrix" (Mi is the mass 

of the atom associated with cartesian displacement Xi)o If A and M 

are known, the vibration problem is solved by diagonalizing the matrix 
1 1 

~r2 ~~:(2, that is, by finding an orthogonal matrix Q such that 

~1 o (XVI) 

o ~3N 

1 

The matrix M- 2 U has, as its columns, vectors representing the 

relative displacements of the atoms for the normal modes, and the 
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\ are related to the vibration frequencies vi by 

(c = speed of light) (XVII) 

Now, in our case, A was obtained from the Hartree-Fock FC's in 

Table 3 and yielded incorrect vibration frequencies, that is, the 

"wrong" diagonal matrix~. The "right" ~ matrix has diagonal 

elements given by (XVII), where the v. are the correct frequencies. 
1 

This corrected matrix, which we call ~', may be substituted onto 

equation (XVII), which may be solved for A', the SEFC matrix, to 

give 

(XVIII) 

This matrix A' gives the same normal modes as did A, but it also 

yields the correct vibration frequencies. It may be transformed 

from the cartesian basis to the SVC basis using formula (X) with the 

transformation matrix Q taken as the I matrix of equation (XV). 

If the molecule is not an ideal harmonic oscillator, as is 

usually the case, then this method should technically be applied to 

the harmonic rather than the observed frequencies. Anharmonicity 

corrections on the order of 2%-5% are not uncommon (22,23), so we 

might expect force constant errors on the order of 4%-10% if 

anharmonicity is neglected. 

The SEFC's derived from the Hartree-Fock FC's and 

geometry are given in Table 5. We obtained the error values by 
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varying each FC over its error range (see Table 3) and summing the 

absolute values of the SEFC changes thus produced. We have also 

included, in like manner, terms related to the estimated error in the 

Hartree- Fock geometry, which we have taken as ±O. 1 0 and ±O. 002 A 
for the aI-type angle and distance coordinates, respectively. In 

order to test the accuracy of the SEFC's, we have used them, 

together with the Hartree- Fock geometry, to predict the vibration 

frequencies of CHDF2 and CD2 F2 • We have also synthesized these 

and assigned their IR spectra (see section F of this chapter). Tables 

6 and 7 give the experimental frequencies together with the predic­

tions given by Meister et al. (19) and our SECF predictions. Our 

predictions are almost invariably better, with average and maximum 

errors of 1. 9% and 6.0%, respectively as comp:lred to 3.4% and 

9.8% for Meister's values. We feel that the SEFC's in Table 5 

represent the best current estimates of the force constants for 

difluoromethaneo 

Table 5 also gives the Hartree- Fock FC's for comparison 

with the "experimental" FC's and SEFC's. T he major Hartree-Fock 

FC's are higher than the experimental ones by 10%-25% with the 

exception of the F-C-F bending constant which is about 4% low and 

the H-C-H constant which is about 40% too high. Using the STO-3G 

minimum basis, Newton et al. (3) have found that the Hartree-Fock 

method predicts stretching constants typically 20%-30% higher than 

experimental values and bending constants typically 15%-70% higher. 
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Tnhle 6. C~lculatcd and Observed Vibration Frequencies 
for CIIDP2. 

Sym. DesiGnation Obs:;' enl c ~ lzror Calc. (Ref. 19) Error 

a f 

a' 

a' 

a' 

a' 

a' 

a" 

a" 

a" 

529 

991 971 -2.0% 

1030 1092 +6.0% 

1367 1379 +0.9% 

2230 2199 -1.4% 

2987 2999 +0.4% 

943 940 -0.3% 

1103 1113 +0.9% 

1372 

529 

954 

1112 

1402 

2191 

2996 

966 

1090 

1366 

-3.7% 

+8.0% 

+2.6% 

-1.5% 

+0.3% 

+2.4% 

-1.2% 

a -1 1 In cm ~ estimated accuracy i3 cm- • bFrom SEFC's and 
the Hartree-Fock geometry. 

Table 7. Calculated and Observed Vibration Frequencies 
for CD2F2 • (footnotes as in Table 6) 

Sym. Designation Obs~ Calc~ ~ror Calc. (Ref. 19) Error 

a
1 

V 1 525 520 

a
1 

'1 1032 989 -4.2% 931 -9.8% 

a 1 7.J 3 1174 1254 

2128 2142 +0.7% 

907 

2284 2259 -1.0% 

963? 953 -1.0% 

1159 1186 +2.3% 

1003 971 -3.2% 

2170 

908 

2222 

979 

1099 

1050 

+2.0% 

-2.7'10 

+1.7% 

+3.5~ 

+4.7"/0 
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Notable exceptions are CHF 3' NF 3 and CO2 which give bending con­

stants 10%-30% too low. Our results support these conclusions, 

suggesting that the greater flexibility of a double-zeta basis does not 

substantially influence the trends observed in the STO-3G calculations. 

The agreement between the experimental and Hartree-Fock IC's is 

fair-to-poor, with two of these IC's showing sign reversal. The IC's 

are the most questionable of the experimental values though, so it 

seems meaningless to carry out the comparison at all. 

Not surprisingly, there is a better parallel between the SEFC's 

and the Hartree-Fock FC's, the former being obtained indirectly from 

the latter. All major Hartree-Fock FC's are in the range of 17%-33% 

higher than the corresponding SEFC values, except for the F-C-F 

constant which is about 2% lower. The IC's show a good parallel in 

both magnitude and sign, with the Hartree-Fock values 5%-30% 

higher in absolute value. The only exception here is the IC between 

Rf and f) f' where the Hartree- Fock value is roughly half the SEFC 

value. It is interesting that the only Hartree- Fock FC's which are 

lower than their analogous SEFC's involve only the F-C-F fragment. 

It may be that electron correlation, which the Hartree- Fock method 

largely ignores and which might be expected to be especially 

important in the electron-rich F-C-F fragment, plays a Significant 

role in altering these values. On the other hand, it may simply be 

an artifact of our basis set. 

So far, we have considered FC's defined for the SVC's in 

Table 3. Though these completely specify the harmonic component 
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of the energy near the equilibrium geometry, they are not directly 

comparable to Fe's in related molecules of different symmetry. 

We would like to believe that the energy behavior of molecules can be 

understood in terms of some relatively simple model which refers to 

bond angles and interatomic distances, and that the parameters for 

such a model are equal, or at least of comparable magnitude, for 

similar interactions in chemically different molecules. Several such 

models have been proposed (24), and one of the most successful has 

been that suggested by Urey and Bradley (6a) and further investigated 

by Shimanouchi (6b). It is assumed, using this model, that the 

energy varies as an independent parabolic function of each bond length 

and angle, but is augmented by steric terms between non-bonded 

pairs of atoms. As originally proposed (6a), the model steric terms 

were approximated by repulsive potentials of the form 

E.~teric = k/r.~ 
IJ IJ 

(XIX) 

where r.. is the distance between atoms i and j. It was found that a 
IJ 

value of about n = 6 lead to fairly good overall molecular potentials 

for a variety of molecules. This is the form of the Urey-Bradley 

potential which we have investigated, though in its more recent 

modification (6b), the nature of the steric term is not considered 

explicitly. Rather, only the first- and second-derivative portions of 

each interaction with respect to the interatomic distance are consid-

ered, and these derivatives are not assumed to be related as they 
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must be for the steric term given in equation (XIX). 

Figure 2 gives the description of the coordinates we have used 

in defining the model. The energy, U, is approximated by the 

following formula. 

2U = 2Uo + 2 sF(rFl + r F 2) + fF(r;l + r~2) 

( ) (
22 

+ 2 sH rHl + r H2 + fH rHl + r H2) 

+ 2 sFF eF + fFF e; + 2 sHH eH + fHH e~ 

+ 2 sFH( <Pi + <P2 + <P3 + <P4) 

+ f FH( <P: + <P22 + <P32 + <P 42) 

+ 2kHH/dir + 2kFF/d~ 

+ 2kHF(l/d1
6 

+ l/~6 + 1/d3
6 

+ lid:) 

(XX) 

It should be noted that the model is not stated in terms of displace­

ment coordinates, as is usually the case. The transformation to 

displacement coordinates involves nothing more than replacing terms 

of the form 

by 

where dx, 0 is the equilibrium value of d,c, and by replacing terms of 

the form 



Figure 2. 
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Description of Coordinates used in the Urey­
Bradley model for CH 21"2 
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(P represents r, e or 1» 

by 

where P 0 is the equilibrium value of P. The transformed formula x, x 

agrees to second order with (XX), and hence will yield the same 

results for harmonic force constants, but (XX) is in a form which 

will be quite useful in the subsequent section on large molecular 

distortions. 

The thirteen parameters of the Urey-Bradley potential (UBP) 

model are not independent, because we require that the force on each 

atom be zero in the equilibrium geometry. Mathematically, this may 

be stated as 

au/aqil equilibrium = 0 i = 1, 2, 9 (XXI) 

where the qi's are the nine SVC's of Table 3. Our model has an 

inherent symmetry which guarantees the above condition for the five 

SVC's which are not totally symmetric, but we are left with four 

conditions upon the thirteen UBP parameters. For qu which is Rf , 

equation (XXI) gives 
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o = au/aRfl eq. = sF(orFl/oRf + orF2/aRf) 

+ fF [ r Fl (arFl/aRf) + r F 2(arF2/aRf)] 

- (6 kFF/ dF)(odF/oRf) 

(XXII) 

- (6 kHF/dtHad/oRf + a~/aRf + ad/aRf + ad4/oRf) 

where all quantities are to be evaluated at equilibrium and where we 

have made use of the equilibrium relationship d1 = ~ = d3 = d40 A bit 

of trigonometry and calculus gives 

(XXllI) 

ad/aRf = a~/aRf = ad/aRf = ad4/aRf 

= 2Rf + 2Rh cos(BF/2) cos (8 H/2) 

where we have used the fact that, at equilibrium, r Fl = r F2 = Rf and 

rHl = r H2 = Rh· Substituting the expressions (XXIII) into (XXII) and 

solving for sF we obtain 

sF = - Rf fF + 6 kFF sin (8 F/2)/ d; 
(XXIV) 

+ 24 kHF[Rf + Rh cos (9F/2) cos (8H/2)]/d: . 

Relationships similar to (XXIV) may be derived for sH' sFF and sHH 

by differentiating (XX) with respect to Ch, q3 and q4 (that is, Rh, 9f 

and 8h), respectivelyo The nine remaining UBP constants (fH, fF' 
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fHH' fFF' sHF' fHF' kFF' kHH and kHF ) are thus the truly indepen­

dent parameters of the model. 

Now, the force constant related to qi and qj is F ij' and is 

defined by 

(XXV) 

The second partial derivatives with respect to q's may be evaluated 

explicitly beginning from formula (XX), though quite a bit of involved 

manipulation is necessary. The net result is that each of the seven­

teen unique nonzero SVC force constants can be expressed in terms 

of the nine independent model parameters. That is, 

9 
F .. = ~ T .. kfk 

1J k=1 1J, 
(XXVI) 

where fk is a generic symbol for one of the nine UBP constants and 

each T .. k is a function of the equilibrium geometry of the mOlecule. 
1J, 

If we consider ij to be a single index, say 1., running from 1 to 17 

(the number of SVC FC's), we have 

(XXVII) 

or, in matrix notation, 

F = XL (XXVllI) 
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We wish to fit the UBP model to some set of known FC's, 

which means we wish to find.! such that F is as close as possible to 

the actual vector of FC's, which we call Ko. This is a standard 

problem in least-squares analysis (25) and the.! which gives the best 

rms fit between F and Io is 

(XXIX) 

Some care must be exercised here, though, because the resulting.! 

may depend upon the units used for !p. For example, if two FC sets 

differ in the units of the angle constants only, one having units of 

md-A./deg2 and the other having units of md-A./rad2
, the first will 

have numeric values roughly 3300 times smaller than the second. 

Clearly, the simple rms criterion will weight the angle constants 

quite differently in the two cases. To overcome this, one may either 

weight the rms fit appropriately or one may choose units which put 

the various FC's on a fairly uniform numerical level. The units 

used in Table 5 give constants whose absolute errors are comparable, 

so we have used these units and an unweighted rms fit in the current 

work. 

We have written a FORTRAN IV program to calculate the 1: 

matrix of equation (XXVIII) from the molecu1a r geometry and to 

carry out the least-squares analysis. The nine independent UBP 

parameters thus obtained are used in the program to calculate the 

four dependent constants. Table 8 gives the ''best-fit'' UBP 
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Table 8. Urey-Bradley 1iodel Parameters Derived from 
Force Constants. 

Parameter Value obtained from least-squares fit 

Using Hartree-Fock }'C's Usine SEFC's Units 

sF -8.005 -6.244- rnd 

sH -5.748 -4.7eO md 

sFF -1.492 -1.139 rnd-i/rad 

sHH -1.290 -0.957 rnd-i/rad 

sHF -1.371 -1 .106 rnd-R/rad 

fF 6.127 (4.376)a 4.864 md/i 

iH 5.594 (4.298)a 4.649 md/i 

iFF 0.776 (0.484)a 0.647 md-i/rad 2 

iHH 0.565 (0.380)a 0.416 md-)(/rad2 

fHF 0.663 0.539 md-)(/rad2 

kFF 10.475 (19.99)a 14.302 md-R1 

kHH . 0.382 (0.802)a 0.303 rnd_~7 

kHF 2.821 2.325 md-27 

aThe values in parentheses were derived from the experi-
mental UBP constants for CH4 and CF4 in ref. 26. See 
text. 
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parameters derived from the Hartree-Fock FC's and SEFC's. 

Table 9 shows these sets of constants in comparison to those given 

by the UBP models. In both cases, the Hartree-Fock geometry was 

used in the calculation of r. 
Table 9 shows that the UBP model is capable of duplicating 

the actual FC's fairly well, with most errors less than 0.3 units. 

The worst errors occur in F56 , F24 (the only constant showing the 

wrong sign) and, for the SECF's, F 13' which correspond to the 

(Df' Pf)' (Rh, 8h) and (Rf, 8f ) IC's, respectively. Of the major FC's, 

the rocking coordinates Ph and Pf show the greatest errors, with both 

roughly 10% off but in opposite directions. These two motions 

involve much the same relative H-F displacements and H-C-F angle 

changes, and the model thus predicts similar FC's for the two. 

They are, in fact, rather different, which points up the necessity of 

including, in a truly accurate model, hybridization parameters such 

as occur in the HOFF method (27). Considering the simplicity of the 

UBP model, we believe that the overall agreement in Table 9 is 

quite good. 

In Table 8 we see that there is a good overall parallel 

between the model parameters derived from the Hartree-Fock FC's 

and those derived from the SEFC's. In every case but one, the 

Hartree- Fock values are 20%- 35 % higher in absolute value, the 

exception being the F - F steric constant, which is about 26% lower. 

This is a most interesting result, for it implies that the anomalously 

low value for F 33, the major force constant for a f, in the 
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Comparison of UBP Model Force Constants with 
Actual Values. 

i
a ;a Fb 
~ --------------------ij------------------

1 1 

2 2 

1 2 

3 3 

4 4 

3 4 

1 :; 

1 4 

2 3 

2 4 

5 5 

6 6 

5 6 

7 7 

8 8 

9 9 

Hartree-Fock values Semi-empirical values 

Actual Best UBP fit Actua~ Best UBP fit 

14.9 

12.1 

1.2 

1 .6 

0.9 

0.1 

0.3 

-0.5 

-0.1 

0.3 

12.7 

1.0 

1 .1 

11.8 

1 .3 

1.8 

14.8 

12.2 

1 .4 

1.6 

0.9 

0.0 

0.5 

-0.3 

-0.2 

-0.1 

12.8 

1 .1 

0.5 

11 .7 

1 .2 

1.8 

12.9 

10.0 

1.0 

1.6 

0.7 

0.1 

0.6 

-0.4 

-0.1 

0.2 

10.0 

0.8 

0.9 

9.8 

1 • 1 

1.4 

12.8 

10.1 

1.1 

1.6 

0.7 

0.0 

0.9 

-0.2 

-0.2 

-0.1 

10.1 

0.9 

0.4 

9.7 

1.0 

1.5 

a For a description of the coordinates, see tab~e 2. 

b See footnote a of tab~e 3 for the units. The FC's have 
rounded to facilitate comparison. 
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Hartree- Fock set is caused by an underestimation of the F - F steric 

repulsion rather than by anything unusual in the F-C-F fragment. 

Shimanouchi et aL (26) have obtained the stretching, bending and 

steric constants for the UBP model of CH4 and CF4 • They have used 

a somewhat different formula for the steric term, and their derived 

constants are defined slightly differently than ours: Their angle 

constants are scaled by the bond lengths included in the angle, and 

their steric constants refer to the second derivative of the steric 

term. We have transformed their values to conform to our nomen­

clature using the formulas 

(XXIX) 

and 

(XXX) 

where Hand Fare Shimanouchi's angle and steric terms, respective­

ly, rx is the C-X distance and ~ is the X-X distance. These 

values appear in Table 8, and we see that our UBP constants derived 

from SEFC's are of quite reasonable magnitude in comparison with 

them. The differences may be due to non-transferability, but we 

think it more likely that they arise either from the differences 

between Shimanouchi's model and our own or from inherent errors in 

the SEFC's. 
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D. Energy Variation for Gross Angular Distortions 

The difluoromethane molecule is the simplest saturated 

aliphatic molecule in which a geminal steric interaction between 

first-row atoms is possible. We would expect the F-F interaction 

to show up most dramatically in the energy curve which results from 

the variation of the F-C-F angle, because this motion substantially 

alters the F-F distance. Figure 3 shows the Hartree-Fock energy 

of CH2 F2 as a function of the F-C-F angle (the molecule is distorted 

from the Hartree-Fock equilibrium geometry), and we can see that 

there is indeed a marked asymmetry in the curveo As the angle is 

decreased by 30 0
, the energy increase is about 00037 a o U o larger 

than it is when the angle is increased by a like amount. This is a 

chemically significant quantity, over 22 kcal/mole, and the asymme­

try is consistent with the concept of F-F steric repulsion. We shall 

investigate this asymmetry, then, in an effort to learn a bit about 

this repulsion within the Hartree- Fock framework. 

Initially, however, we must consider another possible 

contribution to the noted anharmonicity. As the F - C - F angle is 

changed, the carbon hybridization must change, and we have no 

guarantee that this will contribute only harmonic terms to the energy 

variation. In terms of a "ball-and- spring" model, for example, the 

F-C-H angle does not change proportionately to the F-C-F angle, 

so that quadratic terms from the former may contribute anharmo­

nicity to the latter. Using reasonable values for the F-C-H force 
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Fieure 3. Hartree-Fock enereY of 
CH
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constant, for example fHF from Table 8, we have found that this 

source should not affect the asymmetry of Figure 3 very much, but 

is of sufficient magnitude to warrant consideration. 

If we assume that steric terms involving hydrogen are small, 

then we may estimate the magnitude of this "rehybridization 

anharmonicity" by investigating the energy variation as a function of 

the H-C-H angleo We have calculated the CNOO/2 energy of CH2 F2 

as a function of this angle over a 60 ° range symmetric about the 

CNOO/2 equilibrium value, using 5° increments. Figure 4 shows 

the deviation of this curve from a parabola fit to the three lowest 

values (~Bh == +5°, 0°, _5°), though the parabOlic portion of a fourth­

order polynomial fit to the five lowest values yields the same results. 

Such a curve will be called a DFP (~eviation-irom-.E3-rabolicity) 

curve. We see that the deviations are quite modest, less than 2 

kcal/mole at the worst. The Hartree-Fock energies for the ABh == 

+30° and _30° cases (measured from the Hartree-Fock equilibrium 

geometry) have also been obtained, and the endpoints of the Hartree­

Fock DFP curve calculated. The parabola in this case was fit to the 

AOh == +3°, 0°, _3° energies used in the computation of the H-C-H 

force constanL We note that the two MO methods give nearly 

identical results at these endpoints, and we have drawn an approximate 

Hartree-Fock DFP curve in Figure 4 assuming that this parallel holds 

over the entire range. Figure 5 shows the DFP curve for H20 

derived from the calculations of Pitzer and Merrifield (9) though 

their energy values were quoted to only five decimal places, which 
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FiGure 5. Hartree-Fock ])FP curve for H20; H-O-H bending. 
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renders the curve somewhat imprecise. * We see that the energy 

variation in our case shows greater harmonicity, which may be due 

in part to the greater flexibility of our basis set. 

Figure 6 shows the DFP curve for the F-C-F angle variation, 

using both Hartree-Fock and CNOO/2 energies. In these calculations, 

the angle was varied from its equilibrium value in 50 increments up 

to a total distortion of +30 0 and _30 0
• The comparison between the 

two MO methods is most interesting. Qualitatively, the Hartree- Fock 

curve is similar to that for CNOO/2, with both methods giving a 

positive deviation as the F-C-F angle is closed and a negative one 

when it is opened. For a6f > 0, they yield almost identical results, 

but in the region a8f < 0, the Hartree-Fock values are considerably 

larger 0 This is most likely due to the approximate manner in which 

CNOO /2 treats the two- centered integrals, the net effect of which 

appears to be an underestimation of the F-F repulsion for small 

values of 6r The fact that CNOO/2 predicts an F-C-F angle which 

is too small by a few degrees is consistent with this notion that 

CNOO/2 underestimates the F-F steric repulsion. 

* Using a substantially larger and more flexible basis, 
Ermler and Kern (40) have computed the cubic term in the H-O-H 

anharmonicity. Their value suggests that the deviations in Figure 5 

are too large by a factor of about two. 
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~'iGure 6. J:Clrtrce-Pock and C:';DO/2 DI"}> curves :for 
CH 2F?; F-C-F bendinG_ 

(.) ... 
30 ....;' 

! 

I 

25 ~ 



47 

Comparing Figures 4 and 6, we see that the F-C-F 

anharmonicity is greater than the H-C-H anharmonicity by an order 

of magnitude, which suggests that the F-F interaction is almost 

entirely responsible for the shape of the F-C-F DFP curve. If we 

assume, as we did in the Urey-Bradley potential model, that this 

interaction is a repulsive one of the form 

E F _ F , steric = k/r~F 

then we may estimate the a value for k by scaling the DFP curve for 

1/rFF (expressed as a function of ~eF) so that it matches the 

Hartree- Fock curve at A8F = _30 0
• We have done this, obtaining a 

scaling factor (k) of 2.91 a. u._.A6 or 12.7 md-A?, which is only about 

20% higher than the value we obtained from the UBP fit of the 

Hartree-Fock FC's. In view of the fact that these values were obtained 

using quite different methods, the agreement is surprisingly good. 

The above suggests that the UBP model of equation (XX) might 

be rather accurate in accounting for the anharmonicity in the F-C-F 

curve, and we have found this to be the case. Figure 7 shows the 

deviation of the Hartree-Fock energy from the UBP model defined by 

the Hartree-Fock parameters in Table 8. We see that 80% of the 

DFP curve in Figure 6 has been accounted for, and that the remaining 

deviation, little more than 3 kcal/mole at worst, shows up only when 

the fluorines are rather close together. The H-C-H angle fares 

rather well, too, giving deviations from the UBP model of 1. 31 and 



48 

Figure 7. Deviation of the Hartree-}'aclc energy from 
the UBP model as a function of Gfe 

6 

e 
p 

e 5 
<IS 

s:::: 
• ..,f 

c<'\ 
0 4 
~ 

>< -~ 
rs? 3 

~ 
0 

3 kcal/mole 0 
2 ~ 

I 
Q.) 
Q.) 

F-I 
of-:> 

~ 
~ 1 
....., 

o +-----r----~)'~-.0""'"· --r..--0--<i>-~ 
-300 _200 _10° 0° 10° 20° 30° 

~ef' measured from equilibrium 



49 

-1. 85 x 10-
3 

a. u. (0.82 and -1.16 kcal/mole) for ~eh == +30° and 

_ 30 0, respectively. 

We have not investigated the non-totally symmetric angular 

coordinates extensively using the Hartree- Fock method, but we have 

carried out several CNOO/2 calculations. All three of these coordi­

nates (Ph' Pf and T) show very little deviation from parabolic energy 

behavior as they are varied from 0° to 30°. As we have noted above, 

DFP curves derived from CNOO/2 energies match those from 

Hartree- Fock energies quite well except when the F - F distance is 

small, so we would expect the Hartree-Fock energy to vary as an 

essentially parabolic function of these three coordinates. We have 

tested this for the coordinate Pf' finding that the energy at Pf == 30° 

differs by 0.43 X 10- 3 a. u. (0.27 kcal/mole) from the value predicted 

by the harmonic Hartree- Fock force constant, an error on the order 

of only 1 %. The UBP model predicts that these coordinates should 

be quite harmoniC, but we recall that the model has some difficulty 

in duplicating their force constants. Thus, we find the Hartree-Fock 

energy at Pf == 30° to be 3.37 x 10-3 a. u. (2. 12 kcal/mole) below the 

model value, an error of about 11%. Assuming parabolicity for Ph 

and T, we estimate the energies at 30° to be about 0.004 a. u. above 

and 0.001 a o u. below the model values, respectively. These 

correspond to respective errors of about 10% and 2%. 



50 

We conclude that the UBP model mimics rather well the 

Hartree- Fock energy variation in difluoromethane as the angular 

coordinates are distorted up to 30 0 from their equilibrium values, 

with maximum errors on the order of 3 kcal/mole and 10%. 
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E. Summary 

The following six points summarize the findings we have 

obtained in the study of the potential energy surface of difluoro­

methane: 

1) The flexibility of a double-zeta basis set over a minimum 

basis set improves the calculated Hartree- Fock geometry, 

with the major differences between our calculations and 

those of Newton et al. (3) appearing in the H-C-H frag­

ment. 

2) This same flexibility does little to improve the accuracy 

of the calculated FC's, judging either from the predicted 

vibration frequencies or from a comparison of the 

theoretical with the (somewhat dubious) experimental or 

semi-empirical values. The calculated major FC's are 

roughly 20%-35% too large except for the F-C-F angle 

constant, which is a few per cent low. Newton et al. (3) 

have found similar errors for the totally symmetric 

coordinates in other molecules, though our results refer 

to all coordinates. 

3) In spite of these FC errors, useful semi-empirical 

constants derived from observed frequencies and calcu­

lated normal modes may be obtained. These SEFC's 

predict the observed frequencies for the deuterated 

difluoromethanes rather well, and give UBP parameters 
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reasonably close to those in CH4 and CF4 • 

4) Within the framework of the UBP model, the Hartree- Fock 

method appears to consistently overestimate all param­

eters except for the F - F steric repulsion, which it under­

estimates 0 This leads to the anomalously low value for the 

F-C-F angle constant, and in view of the fact that Newton 

et ale (3) calculate a low symmetric bending constant for 

CHF 3' we suspect that this effect may apply to other 

molecules as well. 

5) The CNDO/2 method gives FC's and IC's which parallel 

rather well the Hartree- Fock values, except for the major 

stretching constants, which are much too large. As the 

F-C-F angle is decreased, CNOO/2 appears to under­

estimate the anharmonicity due to F - F steric interaction. 

6) The UBP model, using k/r6 steric terms, is capable of 

fitting the Hartree-Fock FC's and SEFC's fairly well, and 

it forms a good model for the Hartree- Fock energy 

variation in difluoromethane as the angular coordinates 

are grossly alteredo Particularly, the model accounts for 

80% of the marked anharmonicity in the F-C-F angle. 
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F. Experimental 

Details of calculations 

All CNOO/2 calculations were done using program CNINOO 

(10) on the IBM 360/75 and 370/155 computers. To facilitate the 

large number of calculations, a subroutine was included which read 

in the SVC's of Table 2 and computed the cartesian coordinates for 

CH2 F2 • 

The Hartree- Fock calculations were done using the CIT 

modification (28) of the POLYATOM program package (29) on the IBM 

360/75 and 370/155 computers. Here, as in the CNOO/2 case, a 

subroutine was included to compute the cartesian coordinates (in a. u. ) 

from the SVC's of Table 2. The SVC distance coordinates are given 

in angstroms, and the conversion to a. u. was accomplished using a 

value of O. 529167.A for the Bohr radius. The current accepted value 
o 

(30) of 0.52917715 (± 1. 5 ppm) A differs negligibly from this. 

The basis set of atomic orbitals consisted of seven s-type 

gaussians and, for each aXis, three p-type gaussians on each first­

row atom, and three s-type gaussians on each hydrogen. The orbital 

exponents for C and F were obtained from Whitman and Hornback's 

recent study (31), while those for hydrogen were obtained via an 

Huzinaga fit (32) of a ls Slater function with an orbital exponent of 

1. 2. This basis set was contracted (i. e., some of the gaussians 

were combined in fixed linear combinations) to a "double-zeta" set, 

which is a set containing four s-type and two p-type functions on each 
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first-row atom and two s-type functions on hydrogen. The Dunning 

criteria (33) were used in choosing the sets of gaussians to be 

combined, and the contraction coefficients were obtained from 

Whitman and Hornback's atomic calculations (31) and from the above­

mentioned Huzinaga fit. Table 10 summarizes our orbital exponents 

and contraction coefficients o 

Unland et al. (1), using a very similar but uncontracted basis 

and a very slightly different experimental geometry , obtained a 

molecular energy of -237.54 a o u o as compared to our value of 

-237 0 52 a. u o , indicating that the contraction of the basis set influ­

ences the energy very little. As noted by them, this energy is at 

least 0.4 a. u. above the (sp) Hartree- Fock limit. 

Three geometries were treated initially, corresponding to the 

experimental, CNOO/2 and previous Hartree-Fock (3) geometries of 

Table 1. Energies of -237.52292849, -237.51866426 and 

-237.52168377 were obtained., respectively, and the energy change 

during the last SCF cycle was less than 9 X 10-8 in each case. The 

energies obtained during the first geometry optimization cycle are 

summarized in Table 11. Table 12 gives the analogous values for the 

second cycle, along with the energies used in computing the non­

totally symmetric Fe's and in investigating the gross angular 

distortions of the molecule. 

The calculation of molecular vibration frequencies was carried 

out using a double-precision program (FIBBER) written in FORTRAN 

IV for the IBM 360/75 and 370/155 computers. This program is 
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'j'nhle 10. Orbital ExponentR and Contraction Coefficients 

Atom ~ Groupint5 Exronent Con. coeff. a Con. coeff. b 

F s 

~ 
2723. 0.0059 0.0094676 

F s 416.4 0.0420 0.0673966 

F s 97.73 0.1792 0.2875587 

F s 27.87 0.4544 0.7291666 

F s 8.712 1 .0000 1.0000000 

F 8 1.396 1.0000 1.0000000 

F s .4209 1.0000 1.0000000 

F P 10.53 0.1270 0.2299053 

F P 2.188 0.4784 0.8660371 

F p .4785 1.0000 1.0000000 

C s 994.7 0.0072 0.0115293 

C s 160.0 0.0473 0.0757411 

c s 39.91 0.1819 0.2912750 

c s 11.82 0.4474 0.7164181 

c s 3.698 1.0000 1.0000000 

C 8 .6026 1.0000 1.0000000 

C s .1817 1.0000 1.0000000 

C p 4.279 0.1093 0.2095240 

C P .8699 0.4597 0.8812276 

C P .2036 1.0000 1.0000000 

H s 

~ 
6.481 0.0705 0.1563558 

H s .9810 0.4079 0.9046456 
~ 

H g r .2180 1.0000 1.0000000 '-
~aw. bAfter basis function normalization. 
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Table 11. Hartrce-Fock EnerGies Used in the First 
Geometry Optimization Cycle. 

(E+237) . (~-EO)b ConverGence c 

na Ra ,a ·,a 103 ( ) x10'(a.u.) (a.u. ) -f- -' h- -tf- t:;'h_ xa.u. 

1.358d1.091 d108.2d112.1 d-522.92849 0 8 x 10-8 

1.358 1.091 110.2 112.1 -522.93392 0.0054 2 x 10-8 

1.358 1.091 106.2 112.1 -522.43915 -0.4893 1 x 10-8 

1.358 1.091 108.2 116.1 -522.24214 -0.6864 1 x 10-9 

1.358 1.091 108.2 108.1 -522.56375 -0.3647 1 x 10-9 

1.358 1 ! 111 108.2 112.1 -521.46738 -1.4611 2 x 10-8 

1.358 1.071 108.2 112.1 -523.41947 0.4910 1 x 10-8 

1.218 1.091 108.2 112.1 -523.30435 0.3759 1 x 10-8 

1.2:28 1.091 108.2 112.1 -521.05131 -1.8772 8 x 10-9 

1!228 1.011 108.2 112.1 -523.86940 0.9409 5 x 10-8 

1.358 1.091 110.2 108.1 -522.62935 -0.3045 2 x 10-8 

1.:218 1.091 110.2 112.1 -523.25138 0.3229 3 x 10-8 

1.358 1 ! 011 110.2 112.1 -523.41419 0.4857 3 x 10-8 

1 1 Yl8 1.091 108.2 108.1 -522.76391 -0.1646 9 x 10-9 

1 .358 1.011 108.2 108.1 -522.98415 0.0567 8 x 10-9 

a For description of coordinates, see Table 2. Units are 
angstroms for R, degrees for e . Underlined are the co-
ordinates which are changed from experimental values. 

bHere, EO is the energy of the experimental geometry. 

cEnergy change during the final SCF iteration. 

dExperimental geometry from ref. 13. 
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Table 1~. Hartrec-Pock EncrC;lcD for Distortions from 
Firr,t Cycle Equilibrium Geometry. 

i\lacni tude and 
type of d1stort1ona 

noned 

o 
hOf =-2 

o 
LJ8f =+2 

o 
~=+3 

L~=-3 ° 
M h=+O.02R 

~=-0.02R 

AR f =+0.02R 

Lilif =-0.02R 

6eh=+2o,~Rf=+0.014R 

ARh=+0.014R,ARf=+0.014~ 

,.J8h=+20 ,Mh=+O. 014R 

Def=-1.4°,ARf=+0.014~ 
o Df) 0 

t..:>ef =-1 • 4, h =+2 

6ef =-1.4°,6Rh=+0.014R 

Dh=0.02~ 

~h=2 
o 

Dh=0.02R,t'h=2o 

Df=0.02~ 

E>f=2
o 

D f= 0 .0 2R , ~ f= - 2 ° 

(E+237) (E-E
O

) b 
3 3 x10 (a.u.) x10 (a.u.) 

-523.92501 

-523.70300 

-523.69305 

-523.63139 

-523.62603 

-523.42807 

-523.31273 

-523.27877 

-523.20604 

-523.54052 

-523.33273 

-523.53346 

-523.53028 

-523.70620 

-523.57519 

-523.38341 

-523.73859 

-523.15692 

-523.34337 

-523.78461 

-523.37906 

(continued) 

o 

0.2210 

0.2320 

0.2963 

0.2990 

0.4969 

0.6123 

0.6462 

0.7190 

0.3845 

0.5923 

0.3915 

0.3947 

0.2188 

0.3498 

0.5416 

0.1864 

0.7681 

0.5816 

0.1404 

0.5460 

Convereencec 

(a.u. ) 

5 x 10-8 

2 x 10-8 

2 x 10-8 

5 x 10-8 

1 x 10-8 

2 x 10-7 

1 x 10-7 

1 x 10-7 

1 x 10-7 

8 x 10-8 

6 x 10-8 

6 x 10-8 

2 x 10-7 

2 x 10-7 

2 x 10-7 

2 x 10-9 

1 x 10-8 

1 x 10-8 

8 x 10-8 

3 x 10-9 

9 x 10-8 
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~'nble 12. (continued) 

(E+237) (E-E )b Convereence !.:at;ni tude and a 3 3 0 
t~£e of distortion x10 {a.u.2 x10 {a.u.2 {a.u·2 

1=2 0 -523.67768 0.2473 2 x 10-8 

j,Of=-5 
0 -522.46939 1.4556 4 x 10-8 

c..Of=+5 
0 -522.53677 1 .3882 4 x 10-8 

L-. .t7
f
=-10 0 -517.72199 6.2030 1 x 10-7' 

['Of=+10
0 -518.56832 5.3567 1 x 10-7 

0 -508.94045 14.9846 1 10-7 
l .. E:'f=-15 x 

L,E-
f

=+15 0 -512.17620 11.7488 1 x 10-7 

De
f
=-200 -494.93016 28.9948 1 x 10-7 

l--°f =+20 
0 -503.46086 20.4641 1 x 10-7 

0 -473.80603 50.1190 2 10-7 .08f =-25 x 
0 -492.49889 31.4261 1 10-7 Def =+25 x 

6ef =-30 0 -442.60119 81.3238 4 x 10-7 

tEf =+30 0 -479.36148 44.5635 2 x 10-7 

bB
h
=-30 

0 -490.96280 32.9622 1 x 10-6 

lPh=+30 
0 -496.63400 27.9210 8 x 10-7 

. 0 
~f=30 -492.77198 31.1530 9 x 10-6 

aFor a description of the coordinates, see Table 2. 

bHere , EO is the energy of the undistorted geometry. 

CEnergy change during the final SCF cycle. 

c 

dThe undistorted geometry is given in Table 3 as the entry 
"Hartree-Fock (this work). It 
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specific for tetrahedral molecules with C2V symmetry and includes 

options for isotopic substitution and SEFC computation. A single­

precision FORTRAN IV program (UBP) was written for the PDP-10 

time-sharing computer to carry out the fitting of the Urey-Bradley 

potential model to a set of FC's for a tetrahedral C2V molecule o 

Synthesis of CH2F2; synthesis and IR spectrum analysis of 

CHDF2 and CD2F2 

Difluoromethane. -- Under nitrogen, 7.5 g (0.0314 moles) 
~,...,""~,.....-......"~ 

of mercuric fluoride (Ozark-Mahoning, 98.5%) was placed in a 50 ml 

round-bottomed flask. To this was added 5 g (0.0187 moles) of 

methylene iodide dissolved in 15 g of carbon tetrachloride. The flask 

was equipped with a reflux condenser topped with a T-joint which 

carried a slow flow of dry nitrogen from the condenser to a trap 

cooled in liquid nitrogen. The outlet of the trap was attached to a 

calcium chloride drying tube. The reaction mixture was heated under 

reflux with magnetic stirring in a 100 0 oil bathfor two hours, and the 

product was collected as a white solid in the trap. The cold trap was 

connected to the top of an inverted wide-diameter burette filled with 

mineral oil and suspended so that its mouth was beneath the surface 

of an oil reservoir. The trap was evacuated, then warmed slowly 

until a slight positive gas pressure developed, at which time the 

burette was opened. In this way, 67 ml of gas were collected, 

corresponding to about 2. 5 mmoles at standard temperature and 

pressure (13% yield based on CH2~ used). The product was then 
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condensed into an NMR tube (or, for the deuterated compounds, was 

allowed to escape into an evacuated vapor-phase IR cell), and the 

low-temperature NMR showed no proton- or fluorine-containing 

impurities. 

Difluoromethane-~. -- The above procedure was repeated 
........ -~/"'.""""~,......,...."....- ........ ~ ....... --.,,-.... 

using CD212 in place of CH2I2. The deuterated diiodomethane was 

obtained via an H-D exchange reaction on CH212 according to the 

method of Winstein et ale (34). Deuteration is not quantitative in this 

reaction, and the vapor-phase IR of the CD2F 2 product thus showed 

the presence of a modest amount of CHDF 2. 

Difluoromethane-d. -- Dichloromethane-d, obtained from the 
......... ~,......,..... ......... ~~.,.....,..... 

reduction of deuteriochloroform with tri-!!.-butyltin hydride (35), 

was treated with sodium iodide in refluxing 2-butanone according to 

the method of Perkin and Scarborough (36) to give diiodomethane-d. 

This was treated with HgF2 as above, and the vapor-phase IR of the 

product showed virtually no CD2F2 or CH2F2 impurity. 

All vapor-phase IR spectra were run on the Perkin-Elmer 

225 Grating Infrared Spectrometer using a cell with 6 mm KBr 

windows and a path length of 4 cm. A slow scan speed was used to 

give maximum resolution. The gas pressure was measured only 

apprOXimately upon filling the cell, and was initially about 100 mm 

Hg for each of the deuterated difluoromethanes. Subsequent spectra 

were taken after reducing the cell pressure by a factor of about ten. 

Some air was present in the cell due to a slight leak, so an air 

spectrum was run to help in the identification of impurities from this 
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source. Little rotational fine structure was apparent in the bands 

because of pressure broadening, but this was actually an asset 

because the band envelopes could be easily seen. 

In the spectrum of CD2 F 2, only seven of the nine vibrations 

were potentially observable, because the a 2 mode is IR- inactive while 

the lowest a l band undoubtedly fell below the cutoff of the celL 

Stewart and Nielsen (37) have pointed out that the difluoromethane 

molecule is nearly a symmetric top (about the F-Faxis), and thus 

the bands of the three IR-active symmetry types have three distinctive 

band envelopes. The same is true for CD2 F2 , so we may obtain not 

only the frequency but also the symmetry of each vibration band. 

Figure 8 shows the general shape we expect for each of the symmetry 

types, and all three were found in the spectrum. In assigning the 

following peaks, the apparent band centers were used to define the 

observed frequencies, because without the rotational fine structure, 

combination rules (37) could not be used. Thus, we estimate an 

accuracy of about ±3 cm -1 in the assignments. The following spectral 

regions contain peaks not attributable to CHDF2 or air impurities. 

4.0- 5.0 J1. region (Figure 9) 

Two strong peaks occur in this region, one of symmetry b1 at 

2284 cm -1 and one of symmetry a 1 at 2128 cm -1. A smaller aI-type 

peak at about 2348 cm -1 is an air impurity, while a small well-formed 
-1 

b1 peak at 2030 cm seems too weak to be a fundamental, and 

qualitatively one expects to find only two peaks (symmetric and anti­

symmetric C-D stretching) in this region. 
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Expected band envelopes for the three IR-active 
symmetry types of vibrations of CD2F2 -

a 1-type vibrations: perpendicular, no Q branch 

b1-type v~brations: perpendicular, strong 
("gathered") Q branch 

b2-type vibrations: parallel, PQR structure 

*The arrow indicates the approximate band center. 
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8.0-10.0 f.L region (Figure 10) 

Four very strong peaks occur in this region, three of b2 

symmetry at 1159, 1103 and 1003 cm- I and one of a 1 symmetry at 

1032 cm -1. The latter is somewhat obscured by the 1003 peak, but 

it shows the strong central depression surrounded by two "shoulders" 

characteristic of a l peaks. The 1103 peak was later identified as 

belonging to CHDF 2 and is, in fact, the strongest peak in the spectrum 

of that molecule. 

10.0-11. 0 11 region (Figure 11) 

There is one fairly strong peak in this range with a maximum 
-1 

at 963 cm , but its envelope does not seem to correspond to any of 

the "standard" typeso It has a single strong maximum and is thus 

probably a b-type peak. The molecule can, by symmetry, have only 

two b1 and two b2 fundamentals, and both of the b2 bands are elsewhere 

and quite strong. We have thus tentatively assigned this as a b 1-type 

peako 

The above assignments are summarized in Table 7. The only 

potentially observable peak not found was predicted to lie at 1174 cm- 1 

by us, 1254 cm -1 by Meister et al. (19). stewart and Nielsen (37) 

failed to observe the analogous peak in the CH2 F 2 spectrum and 

concluded that it was weak. We believe this to be true in our case, 

too, and if our prediction for this frequency is correct, then even a 

moderately strong peak would be overshadowed by the intense b2 peak 

at 1159 cm- 1
• 
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The CHDF 2 spectrum is somewhat more difficult to analyze. 

Replacing one of the protons on CH2 F2 by a deuterium destroys the 

nearly symmetric rotor qualities of the spectrum. The molecule 

still has two nearly equal moments of inertia, but the dipole moment 

changes produced by the normal vibrations no longer lie along the 

principal axes of inertia, which is a requirement for the character­

istic band envelopes (38). The three an modes are pure "par-

allel" vibrations analogous to the b2 -type bands is CD2 F2 , but the 

a' vibrations have no special symmetry with respect to the "unique" 

(i. e., F-F) axis and thus should have envelopes which are combi­

nations of the three shown in Figure 8. The following spectral 

regions contain peaks not attributable to air impurities. 

3.0-4.0 f.L region (Figure 12) 

This region contains only one strong peak and the band 

envelope resembles the b1 contour of Figure 8. Thus, this is an a' 

peak, and its maximum is at 2987 cm- l
• 

4.0- 5.0 Il region (Figure 13) 

Two peaks occur in this region, one of which is also seen in 

the air spectrum. The other appears to be a hybrid of the a l and b l 

envelopes in Figure 8 with a small central peak at 2230 cm -1. 

We assign this as an a' band. 

7.0- 8.0 f.L region (Figure 14) 

Only one peak, resembling the b l type in Figure 8, occurs 

here. It is an a' peak, and its maximum occurs at 1367 cm -1. 



- --
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-r l

 0
%

 

I I 

II 
~ 

J 

I 
;t:;

 
, 

,
~
 

'I,'
,.':

,; 
\
':

.
:
\
 

~ 
,
.
,
 

I 
a 

/'~
:87

 \\
 

i 
a

t 
j(

')
 

\ 
~ 

~
l
 I I I 

10
0%

 
~~

~-
~~

~~
~~

~~
~~

~.
~~

,~
1~

~~
~~

~~
~~

~~
3~

1~
00

 
27

00
 

2
9

0
0

 
3

0
0

0
 

2
8

0
0

 

W
av

en
lli

nb
er

 
(c

m
-1

) 

F
ig

u
re

 
1

2
. 

T
he

 
3

.0
-4

.0
.4

.(
. 
re

g
io

n
 o

f 
th

e
 v

ap
o

r-
p

h
as

e 
IR

 
sp

ec
tr

u
m

 
o

f 
d

if
lu

o
ro

m
et

h
an

e-
d

. 

~
 



I I 

20
00

 

\ 

~ "r,
Y,:

, /
,\ 

1
:1

 
'\

;
':

 "
'.

 
'I

 
I 

'\
j 

I" 

;JJ
 

j 
\
'
\
 

.I
 

t 
/
-

22
30

 
J
r
' 

' 
\ 

Vo
"'..

.;""
\ 

-.
J\

~'
-'

-~
~ 

a
t 

\...
....

_ ..
 ".

,'.
/ 

V
 

\ 
23

48
 

(a
ir

 
im

p
.)

 

21
00

 
22

00
 

23
00

 

W
av

en
um

be
r 

(c
m

-1
) 

24
00

 

F
ig

u
re

 1
3

. 
T

he
 

4
.0

-5
.0

 M
. 
re

g
io

n
 o

f 
th

e
 v

ap
o

r-
p

h
as

e 
IR

 
sp

ec
tr

u
m

 
o

f 
d

if
lu

o
ro

m
et

h
an

e-
d

. 

0%
 

I :
~
 

1
8

 
,
~
 !g 'm
 

Is
 

I 
~.

 
le

t 
le

t 
IP

J !::s
 

'0
 

!~
 

0
')

 

I 
(
0

 

-
'"" I i I 

, -
~'
 -
-
~
-
~
 1

 00
;h

 

25
00

 



12
00

 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
,
 0

%
 

I~
 

~ 
I§ 

1\ 
CJ

) 

'\ 
f\ 

,~ 
1/

 \
 

~ 
\J 

l 
~ 

~ 
I~ 

~. 
I 

i 
13

67
 

I, 
\ 

..
 

,!
 

' 
II

 
A

 

~
 ~I

\ __
 / 

''-
--

--
-/

' ..
. 

a
' 

! 1
00

%
 

I 
I I 

1
4

0
0

 
i 

13
00

 

W
av

en
um

be
r 

(c
m

-1
) 

F
ig

u
re

 
1

4
. 

T
he

 
7

.0
-8

.0
 .M

.. 
re

g
io

n
 o

f 
th

e
 v

ap
o

r-
p

h
as

e 
IR

 
sp

ec
tr

u
m

 
o

f 
d

if
lu

o
ro

m
et

h
an

e-
d

. 

-.
']

 
o 



71 

8.0-10.0 J1 region (Figure 15) 

The most prominent feature of this region is the very strong 

a"-type peak at 1103 cm- 1
• A smaller a' peak appears at 1030 cm-

1
• 

The area around 1000 cm -1 contains the exceptionally clear rotational 

structure of the band at 991 cm -1 (see below). 

10.0-11. 0 Il region (Figure 16) 

The above-mentioned band at 991 cm -\ of a' symmetry, 

appears here and some of the rotational structure shows up vaguely 

in the region 970-980 cm -Ion the shoulder of a larger a" band 

centered at 943 cm- I. 

The above assignments are summarized in Table 6. Only two 

fundamentals were not found, one of which is predicted to fall below 

the cell cutoff and the other of which is predicted to fall close to, and 

is probably obscured by, the strong peak at 1367 cm- l
o 
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Chapter 2 

THE ELECTRONIC STRUCTURE OF DIFL UOROMETHANE 

A. Introduction 

In the first chapter, we investigated the potential energy 

surface of the difluoromethane molecule. Although the molecular 

energy is an important result of any theoretical calculation, there is 

a great deal of other information contained in the wavefunction. 

If such information is properly extracted, we can gain some insight 

into the general electronic structure of the molecule, and in this 

chapter, we undertake such an analysis in an effort to learn about 

the bonding in difluoromethane and about the orbital changes which 

take place as the molecule is distorted. 

The anomalous nature of the C-F bond has long been 

recognized, and Sheppard and Sharts (1) have recently presented a 

good review and discussion of its unusual features. One of the most 

controversial points has been the possibility of "double bond-no 

bond" resonance in saturated polyfluoro compounds as shown below 0 

F F 

I 
F-C-F R-C=F+ 

I , 
R 

I 
R' 
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Such resonance was originally proposed by Brockway (2) to explain 

the marked shortening of the C-F bond in the series CH3F, CH2 F2 , 

CHF3 , CF4 " The currently accepted C-F bond lengths are 1.385, 

1. 358, 1. 332 and 1. 317 A (3), respectively, and the total shortening 

through the series amounts to nearly 0.07 A, a significant quantity. 

Pauling (4) supports such a view, though Peters (5) has given an 

alternative explanation based on hybridization changes of the central 

carbon. In Peters'view, the bonding orbitals on carbon take on an 

increased s character as the number of strongly electron-withdrawing 

fluorines is increased, which rationalizes the shortening of the bonds 

but not their simultaneous strengthening (1). Indeed, one would 

expect a weakening of the C-F bonds due to the decreased overlap of 

the carbon and fluorine orbitals. Streitwieser (6) has challenged the 

view that double bond-no bond resonance is important in determining 

the relative stabilities of polyfluoro anions (7), presenting as 

evidence the fact that compound I has slightly higher kinetic acidity 

I: II: 

than compound II. The bridgehead in I should destabilize the doubly 

bonded resonance structure and should thus lead to a much lower 

acidity if the proposed resonance is an important stabilizing factor. 
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Both Hine (8) and Lucken (9), however, present evidence that this 

kind of resonance is important not only in fluorocarbons but also in 

nitrogen- and oxygen-containing molecules. Hine (8) has even 

estimated the stability resulting from this source, obtaining a value 

of about 3.2 kcal/mole for each double bond-no bond resonance 

structure involving fluorines. 

One purpose of this study, then, is to gain a greater under­

standing of the theoretical aspects of C - F bonding in difluoromethane. 

An important question to consider, however, is whether we can 

reasonably expect to find evidence for double bond- no bond hyper­

conjugation within the framework of Hartree- Fock theory. The 

valence-bond (VB) description of resonance interactions (10) involves 

a configuration interaction (CI) analysis using formally bonded 

structures as the individual configurations. The Hartree-Fock 

approach (11) considers only one configuration with optimized 

(molecular) orbitalso Delocalization of these orbitals can describe 

resonance effects, as for example in the J2!.-electron system of 

benzene (12), but it is possible that certain types of resonance would 

need additional Hartree-Fock configurations for proper description. 

There are two bits of evidence which suggest that some type of 

unusual C-F bonding is indeed present in the Hartree-Fock descrip­

tion of fluorocarbons. First, Newton et al. (13) have carried out 

geometry optimizations on a variety of small organiC molecules 

using the Hartree- Fock method with a minimum ("STO-3G") basis set. 
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They found that, in the series of fluorinated methanes, the experi­

mental trend in C-F bond lengths could be duplicated theoretically, 

albeit to a much smaller extent, with a theoretical shortening of about 

0.02A through the series as compared to the experimental value of 
.. 

0.07A. The failure to duplicate the trend quantitatively may be due to 

the absence of CI terms or to the small size and relative inflexibility 

of the basis set. Using a basis of about the same size but with greater 

flexibility, we have found (see Chapter 1) a C-F bond length about 

O. 004A shorter than theirs, suggesting that a better basis set would 

improve the trend in calculated distances. In any event, the Hartree­

Fock calculations mimic the C-F bond shortening which originally led 

to the double bond-no bond resonance hypothesis. Secondly, Unland 

et al. (14) have analyzed the canonical Hartree-Fock MO's of CH2 F 2 

using Mulliken population analysis (15) and have found that the two 

orbitals antisymmetric with respect to the F-C-F plane combine to 

give a positive contribution to the C-F overlap populations. Because 

these orbitals cannot be involved in the C-F sigma bonds, this result 

suggests a pi-pi bonding interaction of some sort between the fluorines 

and the carbon. 

There has been a great deal of interest recently in the use of 

localized orbitals (16) and bond-function models (17) as theoretical 

tools. They can aid greatly the interpretation of electronic wave­

functions by providing descriptions which are in accord with the usual 

chemical concepts of bonds, lone pairs, etc. Also, the use of bond­

function models is an economical alternative to the full ab initio study 
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of molecular electronics, because the number of variables needed to 

define the wavefunction for such a model is relatively small. In fact, 

if transferability is assumed for similar bonds in different molecules, 

an entire molecular wavefunction could be generated by taking 

functions from appropriate reference cases. Such methods have 

already been used successfully to calculate the rotation barriers in 

some small hydrocarbons (17a, 17b), and they may eventually provide 

a means of greatly extending the range of molecules which can be 

investigated theoretically. The question of how bond functions change 

as molecules are distorted from their equilibrium geometries is an 

interesting one, and is particularly important in the generalization of 

the bond-function approach, but it has received relatively little 

attention. Therefore, the second purpose of the current study has 

been the investigation of the orbital changes in difluoromethane as the 

F-C-F angle is grossly distorted. 
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B. Localized Hartree-Fock Orbitals 

The closed-shell Hartree-Fock SCF-MO method (11), though 

fairly accurate, has the drawback that the canonical molecular 

orbitals are generally distributed over the entire molecule. This 

somewhat obscures the qualitative interpretation of the wavefunction, 

because these delocalized orbitals do not correspond to the intuitive 

concepts of bonding, lone and core pairs of electrons, and it also 

makes difficult the comparison of wavefunctions of chemically 

related molecules whose symmetries differ. 

Fortunately, there is a way around this problem. The orbitals 

which are solutions of the Hartree-Fock equations are not unique in 

their description of the total antisymmetric wavefunction, and in fact, 

any non-singular transformation of these canonical orbitals yields a 

new set which describes, to within a normalization constant, the same 

total wavefunction (11). It is possible, then, that the canonical 

orbitals might be "untangled" (i. e., localized) through such a trans­

formation to give a set of orbitals conforming more closely to the 

intuitive models. The interpretation of the wavefunction is greatly 

simplified if the transformation is chosen to retain the orthonormality 

of the orbitals, and although other types of transformations are 

possible, they are usually not considered. 

Currently, the most widely used criterion for localization is 

the one suggested by Lennard-Jones and Pople (l6a) and implemented 
by Prrz.er ([6d..) <Ll'ld 

by Edmiston and Ruedenberg (l6b). It involves the minimization of 

the total electrostatic repulsion between the transformed orbitals, 
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which effectively places them "as far apart" as possible. This is 

equivalent to maximizing the total self-repulsion of the orbitals, 

making them as "compact" as possible, and to minimizing the Iloddll 

part of the Hartree-Fock energy, the sum of the two-electron 

exchange terms between the various orbitals. Edmiston and 

Ruedenberg (16b, 18) have discussed this criterion at some length and 

have presented a general iterative procedure for finding the localizing 

transformation. Newton and co-workers (16c) have reviewed and 

reported a variety of studies based on this criterion, and have found 

it to provide a good, unbiased method for analyzing Hartree-Fock 

wavefunctions. In addition, they have defined two useful concepts 

which yield information about the nature of the localized orbitals, the 

first of which gives a measure of the Ilstrengthll of localization and 

the second of which gives a measure of the departure of the localized 

orbitals from pure one-, two- or three-centeredness. We will 

discuss these concepts a bit later, but first we will describe the 

various localization schemes currently available, including our own. 

The iterative procedure of Edmiston and Ruedenberg (16b, 18) 

is one of successive two-by-two transformations of the Hartree-Fock 

orbitals, each of which increases the sum of the orbital self-repul­

sions as much as possible. At each stage, the new set of orbitals is 

formed by 11m ixingll just two of the old orbitals. If {Ak} represents 

the new set and {<Pk} represents the old, then 
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Ak = <Pk k :;t. i, j 

Ai = <p. cos (8) + <P j sin (8) (1) 
1 

A. = -<p. sin (8) + <p. cos (8) 
J 1 J 

This is a two-by-two "rotation" of orbitals <Pi and ¢j by an angle 8. 

Now, in general, the sum of the self-repulsions, given by 

(n is the number of Hartree-Fock orbitals and 

each Ak is assumed to be real) 

(II) 

will change during this rotation. It is possible to calculate analytically 

the optimum 8 for any particular i and j as long as the set of two­

electron integrals for the { CPk} is known, and the values of i and j 

which yield the greatest increase in J can be found. The above 

transformation is then performed on the orbitals and on the set of 

two-electron integrals, and this transformed set is used as the "old" 

set in the subsequent cycleo Convergence is achieved when no rotation 

produces an increase in J(A) of more than a present threshold value, 

taken as 10-15 a. u. in our applicationo 

When this method was applied to the orbitals of the difluoro­

methane molecule in its Hartree- Fock equilibrium geometry (see 

Table 1 of Chapter 1), the convergence was disappointingly slow. 

After about 100 cycles involving several different orbital paris, 
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the program (19) settled into a pattern of slightly intermixing the lone 

pair orbitals on each fluorine, the net result of these transformations 

being a slow rotation of the lone pairs about the C-Faxis. Such a 

rotation necessarily involves three orbitals at a time, and the slow 

convergence was apparently a result of the fact that a general three­

by-three transformation is not easily expressable as the product of 

a small number of two-by-two rotations. In all, 600 cycles were 

completed before we began the search for a more efficient method. 

Two localization schemes have been suggested (20, 21) in 

which the restriction to two-by-two rotations is lifted. Edmiston and 

Ruedenberg (20) have presented a method in which the transformation 

matrix Q., which r elates the A'S to the cp' s as follows 

n 
A. = L.; 0 .. cpo 

1 j=l Jl J 
(III) 

is given the form 

(IV) 

where ~ is a skew-symmetric matrix chosen so that the change in 

J(A) with respect to an infinitesimal E is a maximum. This effectively 

locates the path of steepest ascent in the space of variables which 

define the orthogonal matrix 0, and it can be shown that ,. 
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A.. = -A.. = [<f>. <f>·l <f>. <f>.] - [<f>. <f>·l <p. <f>.] • 
J 1 IJ 1 1 1 J J J J 1 

Here, we use the abbreviation [<pa <f>b I <Pc <f>d] to represent the 

integral 

;:~ <Pa(l) <Pb(l) <Pc(2) <Pd(2)/r12 dTl dT2 

(all <p's are assumed to be real) 

(V) 

Once A is evaluated, 0 may be calculated for any particular value of 
" " 

€ using (IV), and J(A) may thus be found. Numerical variation of € 

leads eventually to the highest J(A) along the path. At this point, the 

A'S are formed using (III), the two-electron integrals are transformed 

to correspond to these new orbitals, and if convergence has not been 

attained, a new steepest-ascent path is found starting from the A'so 

Taylor (21) has improved upon this method by deriving expressions 

for the curvature of J(A) along the steepest-ascent path. If J is 

assumed to vary parabolically as a function of €, a value for the 

optimum € may be predicted from the slope and curvature along the 

path, and thus the numerical search for this optimum value is 

bypassed. These methods have the advantage that they involve all 

orbitals simultaneously and may thus be well suited to cases in which 

the "two-by-two" method converges slowly. 

We have taken a somewhat different tack (22) which partially 

accounts for the quadratic behavior of J(A) with respect to all 

transformations, not just those along the path of steepest ascent. 

At the maximum, the gradient of J(A) with respect to any 
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transformation must be zero, which leads to the n(n-1)/2 conditions: 

[ ~.A.\A.A.] - [A.A·IA.A.] = 0 1J JJ J111 all j > i (VI) 

a result which was originally derived by Edmiston and Ruedenberg 

(16b, 18). Now suppose we have a set of nearly localized orbitals 

{<1>k}. Equation (VI) will not quite be true, and so we seek to carry 

out a slight transformation upon the orbitals so that it will be true, 

at least to first order. Let us define the matrix of "errors ", ?f<1>, by 

x~ = [<1>.<1>.\<1>.<1>.] - [<1>.<1>.\<1>.<1>.] 
J1 J 1 1 1 1 J J J 

(VII) 

and carry out a slight transformation (Q) upon the <1>'s as in equation 

(m), the purpose being to reduce these errors to zero. Now, Q is 

supposed to be nearly unity 

(A small) ,.. (VIII) 

and if we require that Q be orthogonal only to first order, we may 

take ~ to be skew-symmetric (23). Thus, we effectively isolate the 

n(n-1)/2 degrees of freedom of 0 in the upper triangle of A. For a ,.. ,.. 

general, small A, the error matrix for the A'S may be expanded to ,... 

first order in the elements of A to give ,... 
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X~o = [;\0;\01;\0;\0] - [;\0;\01;\0;\.] 
Jl J 1 1 1 1 J J J 

But, from (III) we have 

a;\i ~, 
-- = L.I cpo ao. o/aA 
aApq j ] ]1 pq 

and using equation (VIII) and the fact that ~ is skew-symmetric, 

we may obtain 

Substituting (XI) into (X) and summing over j, we get 

Using this, we may rewrite (IX) as 

(IX) 

(X) 

(XI) 

(XII) 

;\ 
X .. 

]1 
,+. "'~' 

I"J X:+-: + L.J LI A B .. 
]1 q P>q pq pq,]1 

(XIII) 
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where 

(XIV) 

in which 

Thus, we may evaluate the supermatrix B directly from the set of ,.. 

two-electron integrals over the <p's. Now, we wish to find the matrix 

A which will cause the skew-symmetric x:X matrix to vanish. ,.. ,.. 

Setting the left-hand side of (XIII) to zero for all unique elements 

x~, we obtain n(n-1)/2 equations for the n(n-1)/2 unique A elements: 

all (j, i) with j > i (XVI) 

Both Band X<P are defined by the two- electron integrals over the 
" " 

<p's, and thus we may solve the linear equations (XVI) for the desired 

~ values. To simplify the solution, we consider (j, i) with j> i to be 

a single index, say k, and (p, q) with P > q to be a second index, say 

1. Now (XVI) can be written in a much more familiar form; a 

simple matrix equation. We have 

all k (XVII) 

or, considering B to be a simple "matrix" and A to be a "vector", ,.. ,.. 

we have, in matrix form 
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(XVIII) 

which we may solve straightforwardly for the "vector" A, obtaining 

(XIX) 

The values in the "vector" ~ thus obtained define the ~ matrix, and 

thus we may compute the transformation matrix 0 using equation 
. ~ 

(VIII). Because A is not vanishingly small, 0 will not be a truly 
~ ~ 

orthogonal matrix, but we ~an rectify this by symmetrically 

orthogonalizing the columns of Q (24). Then, Q can be used to form 

the new localized orbitals Ak using (III). These should constitute a 

better guess than the ¢ 's for the actual localized orbitals, and may 

be used as the starting point for another cycle of refinement. 

The above constitutes a pseudo-second-order approach to the 

localization problem, since it deals with the first-order changes in 

the first-order conditions of equation (VI). After we had imple­

mented the method, we learned of the work of Newton et al. (16c) 

and noted the close relationship between our super matrix B and the . ...... 

supermatrix of theirs which gives the second derivatives of J(A) with 

respect to the n(n-l)/2 unique orthogonal transformations. Their 

supermatrix has the same form as ours, except that the term 

Yab c of equation (XV) is defined by , 

(XX) 
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At the maximum, the first two terms on the right-hand side are 

equivalent via (VI), which yields an expression identical to ours 

except for a factor of two. They have not used!? in the localization 

procedure, but they find that its eigenvalues provide a measure of 

the "strength" of localization [i. e., the sensitivity of J(A) toward 

various orbital mixings] and can be used to verify that the localized 

orbitals correspond to a true local maximum in J(A). It is possible 

to derive a truly second-order approach to localization in much the 

same way as we have derived our method. In this case, the Q 
matrix is written as 

o = 1 + A + iA2 
,...... "'" "'" " 

(A is small and skew-symmetric) (XXI) ...... 

which makes it orthogonal through second order in the elements of A. 
~ 

Expanding J(A) through second order and solving for the local 

quadratic extremum gives equations nearly identical to ours, the only 

difference being in the definition of Y b (equation XV)o The term a ,c 

simply needs to be replaced by 

This makes our supermatrix B proportional to the second-derivative ...... 

matrix of Newton and co-workers (16c). 
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Only four cycles of pseudo-second-order (PSO) localization 

were needed to obtain the final localized orbitals for difluoromethane, 

starting from the partially localized orbitals obtained after 600 two­

by-two rotations. Each cycle of the PSO method is considerably more 

costly than a two-by-two rotation, because the full set of two-electron 

integrals must be transformed each time in the former, while the 

latter alters only a small subset of them. With our case, involving 

thirteen orbitals, we found a cost factor of about forty between the 

two, but in view of the fact that the PSO method converged so rapidly, 

we feel that an overall savings was realized. 

The localized molecular orbitals (LMO's) thus obtained were 

readily identifiable as core, bonding and lone pair orbitals. The 

core orbitals are somewhat less compact than the canonical cores, 

but are still concentrated in small regions about the C and F nuclei. 

The two symmetrically related C- F bonds are, as expected, 

quite polar, and the fluorine contribution contains little s character. 

Figure 1 shows a plot of the amplitude, in the F-C-F plane, of one 

of these bonding orbitals. We may divide each such orbital into a 

carbon hybrid, composed of the contributions from the carbon AO's, 

and a similarly defined fluorine hybrid, but we must keep in mind 

that hybrids derived from doubly occupied LMO's may not be as 

meaningful as, nor comparable to, hybrids obtained in the usual way 

from singly occupied valence-bond orbitals. The hybrids show 74% 

and 85% p-character for carbon and fluorine, respectively, based on 

a population analysis (15) over the pertinent AO's. These values 
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Orbital amplitude plot, in the F-C-F plane, of 
one of the two C-F bonding LMO's in difluoro­
methane (Hartree-Fock equilibrium geometry). 
The dotted, dashed and solid lines are negative, 
zero and positive contours, respectively. ~he 
contour closest to the node represents an ab­
solute value of 0.05 a.u., and the ratio between 
successive contours is 1.7. 
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correspond to Sp2.8 and SpS.7 hybridization, respectively. The 

"direction" of each hybrid is difficult to define precisely because of 

the nature of our basis set. For the C hybrids, the coefficients of 

the inner (L e., smaller) p orbitals indicate an angle between the 

carbon hybrids of the two C-F bonds of about 1010, while for the 

outer p orbitals, the value is roughly 94 0
• Both are substantially 

below the actual F-C-F angle of 109 0
, a result which supports the 

view (25) that fluorine induces extra p- character in the C hybrids, 

thus reducing the inter- hybrid angle below its natural tetrahedral 

value. These C hybrids show a bending which cannot be described 

in terms of simple hybridization parameters, but we may define an 

"average" hybrid direction by grouping together the inner and outer 

p orbitals of each type (x, y and z) and carrying out a population 

analysis (15) over these groups. We thus obtain gross x, y and z 

populations reduced to a minimum basis level. By taking the square 

roots of these and appending the appropriate signs, we generate 

minimum basis coefficients which yield the correct populations and 

which may be used to define the average hybrid direction. In this 

manner, we obtain an average angle between the carbon hybrids of 

99.4 0
• Each fluorine hybrid points in a direction which is only about 

1 0 away from the pertinent C-Faxis so that the two fluorine hybrids 

intersect with an angle of 1110 2 0 
0 The inner and outer p-contribu­

tions are quite similar in this case, giving angles of 111. 60 and 

111. 0 0
, respectively. If each bonding orbital is expressed as a 

linear combination of normalized hybrids, the fluorine coefficient is 
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nearly 2.2 times as large as the carbon coefficient, which points up 

the polar nature of the bond. 

The carbon hybrids of the two symmetrically related C-H 

bonding orbitals contain 57% p-character, corresponding to hybrid­

ization of Spl.3. The average angle between the carbon hybrids of the 

two C-H bonds is 117.8°, with inner and outer p contributions of 

119.0° and 115.8°, respectively. The coefficient of the normalized 

carbon hybrid is about 35% larger than the coefficient of the normal­

ized hydrogen hybrid in the bond, indicaring the presence of a slight 

polarity in the direction C-H+. Figure 2 shows an orbital-amplitude 

plot of one of the C-H bonds in the H-C-H plane. 

It is interesting to note that the overall carbon hybridization is 

not at all consistent with the usual relationships (26). For example, 

the average angle of nearly 120° between the C hybrids of the C-H 

bonds is consistent with roughly Sp2 hybridization, but we found it to 

be Spl. 3. Similarly, for the C-F bonds the angle suggests about Sp5 

hybridization, but we obtained Sp2. 8. The equations relating angles to 

hybridization (26) are derived from the assumption that all hybrids on 

a given center are orthogonal, though, and this is where the discrep­

ancy arises; the fact that the localized molecular orbitals must be 

orthogonal does not imply that the individual hybrids must be. All we 

can really say about the bonding orbitals, aside from the above-men­

tioned bond polarities, is that the carbon contribution to the C-F bond 

contains substantially more p- character than its contribution to the 

C-H bond. 
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Orbital amplitude plot, in the H-C-H plane, of 
one of the two C-H bonding LMO·s. See Figure 
1 for contour values. 
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There are, in addition to the bonding and core orbitals, six 

lone pair orbitals. Each fluorine carries three, and the two sets are 

related by a reflection through the H-C-H plane. The lone pairs are 

distributed much as are the hydrogens on the terminal carbons in 

propane; they are staggered with respect to the bonding orbitals on 

the neighboring carbon. Figure 3 shows an orbital amplitude plot of 

one of the two lone pairs lying in the F-C-F plane. The most 

interesting feature of this plot is the marked "smearing" of the orbital 

toward carbon, an effect which is also seen in Figure 4, which is a 

plot of one of the other four pairs in the pertinent F-C-H plane. 

A similar effect has been noted by Newton et al.(27) in the oxygen lone 

pairs of formaldehyde, and we will discuss this delocalization shortly. 

As to the gross structure of these pairs, we find that the 

fluorine contribution in each case contains 69%-70% p-character, 

corresponding to Sp2.3-204 hybridization. The average angle between 

hybrids on a given fluorine is 113.6°±Oo 70°, which is consistent with 

Sp2.5 hybridization. In this case, the angles are well-defined, because 

the inner and outer p contributions point in almost exactly the same 

directions. The angle between the lone pairs and the fluorine hybrid 

of the C-F bond is 105. 10° ± 0.10, which agrees well with the 

prediction of 105 ° based on Sp2.5 hybridization of the lone pairs. The 

fluorine hybrid of the C-F bond is Similarly predicted to have Sp5.S 

hybridization, which agrees well with the value of Sp5. 7 which we 

obtained above. We conclude that the usual hybridization concepts 

(26) apply quite well to the fluorines o 
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Orbital amplitude plot, in the F-C-F plane, of 
one of the two fluorine lone pair LMO's which 
lie in that plane. See Figure 1 for contour 
values. 
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Orbital amplitude plot, in one of the four 
F-C-H planes, of the fluorine lone pair LMO 
lying in that plane. There are three other 
such pairs, symmetrically related to this one. 
See Figure 1 for contour values. 
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As noted above, all of the lone pairs show an apparent 

delocalization toward carbon in what appears to be a slightly bonding 

interaction. Examining Figure 3, we see that, in addition to this 

bonding, the delocalization introduces some electron density onto the 

other fluorine and some antibonding character into the other C-F 

bond, which gives it all the earmarks of the double bond- no bond 

resonance structure discussed in the introductiono Figure 4 shows 

a similar situation for the lone pairs in the F-C-H planes, although 

the nodal structure is somewhat different and the amount of charge­

transfer to hydrogen is less than the analogous charge-transfer to 

fluorine in Figure 3. We would like to study these effects in more 

quantitative detail, but there is a notable lack of tools with which to 

do so. We discuss our approach to this problem below. 

There are two major problems in the quantitative analysis of 

delocalization effects. First, we must consider the very definition of 

delocalization, which is quite evasive because it is not possible to 

identify uniquely those portions of an orbital which "belong" to a 

particular atom. Most current theoretical calculations use atom­

centered basis functions, and it has become customary to dissect the 

orbitals into atomic contributions using the MO expansion coefficients. 

Such a dissection may lose its meaning, though, if each AO basis is 

very complete, if one-centered expansion methods are used, or if 

functions other than atom-centered ones are used. In spite of this, 

the method has proven quite useful, particularly in connection with 

Mulliken population analysis (15), and we shall rely upon it, keeping 
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in mind that our results can be, at best, only semi-quantitative. 

The second problem involves the use of LMO's. Because these must 

be mutually orthogonal, a certain amount of natural delocalization 

must be present, and it is not possible at present to separate such 

"orthogonality delocalization" from "real delocalization", assuming 

the latter exists. 

Newton and co-workers (16c) have dealt with the problem of 

delocalization using a simple truncation procedure. Bond functions 

are derived from the LMO's by simply setting to zero those coeffi­

cients which do not ''belong''. Once an LMO has been identified as, 

say, an A-B bond, the corresponding bond function is obtained by 

retaining only those AO coefficients pertaining to A- or B-centered 

basis functions. Nonbonding orbitals and three-centered bonds may 

be treated analogously. Using such bond functions, which they call 

TLMO's (for truncated LMO's), they have defined a parameter, the 

percent delocalization, to measure the extent to which an LMO and 

its corresponding TLMO differ. If <p represents an LMO and ¢ T 

represents the corresponding TLMO, both normalized, then 

1 

percent delocalization = [~f( ¢ - <p T)2 dT J2 X 100%. (XXII) 

Carrying out the integration and letting S be the overlap of ¢ with 

¢ T, we obtain 

1 

percent delocalization = 100% x (1 - S) 2 • (XXIII) 
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We have calculated these values for our LMO's in difluoromethane, 

obtaining the following: 

F core 

C core 

....... 0.9% 

3.2% 

C-F bond ..... 6.5% 

C-H bond .••.•. 12.6% 

F lone pair.. .. . 7.3% 

which are generally consistent with the results of Newton and co­

workers (16c). They find typical values of 10% for C-H bonds in 

methyl or methylene groups, about 4% for C-X sigma bonds where 

X is a first- row heteroatom, about 4. 5% for carbon cores and about 

1 % for heteroatom cores. The lone pair delocalization appears 

usually low when compared to the values for 0 (13%) and N (19%) lone 

pairs in H2CO and HCN, but we note that these are unsaturated systems 

with substantially shorter C-X bonds, so we might expect generally 

greater delocalization effects for them. Using Newton's delocalization 

criterion, we must conclude that the fluorine lone pairs in difluoro­

methane are somewhat delocalized, though the effect is by no means a 

large one. 

Newton's criterion, though, may be criticized on several 

counts. First, the method does not attempt to account for delocali­

zation resulting from orthogonality, which, we have found, can be 

quite substantial. To show this, we have symmetrically orthogonalized 

(28) the TLMO's to give a set of orbitals resembling the LMO's, and 

presumably containing about the same amount of "orthogonality 

delocalization". We then truncated these approximate LMO's just as 
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we did the actual ones, and computed the resulting delocalization 

percentages, obtaining 

F core 

C core 

0.3% 

1.1% 

C-F bond ..... 4.2% 

C-H bond ...... 7.4% 

F lone pair ..... 3.2% 

Comparing these to the previous values, we find that, in all cases, 

a substantial fraction of the original delocalization could arise from 

orthogonality. Thus, if we are interested in "real" delocalization, 

whatever it might be, then the parameter defined by Newton does not 

seem to be particularly usefuL 

The only reliable way we can see to surmount this problem 

would be to develop a localization scheme which lifts the orthogonality 

restriction. Short of this, we may take a more approximate approach 

in which we make the following three assumptions: a) There exists 

a well-defined and meaningful set of non-orthogonal, localized 

Hartree-Fock orbitals (NLO's); b) These NLO's, when symmetrically 

orthogonalized (28), yield the LMO's; and c) The overlap matrix for 

the NLO's is approximately the same as that for the TLMO's. If 

{Ak} is the set of NLO's and {¢k} is the set of LMO's, then the 

second assumption leads to 

1 

A. = r; (S2) .. ¢. 
1 j ~ IJ J 

(XXIV) 

1 

where S2 is the symmetric "square root" (29) of S, the matrix of 
~ ~ 
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overlaps between the NLO's. The third assumption allows us to 

evaluate S, at least approximately, and thus to obtain approximate ,... 

NLO's. The NLO's thus obtained bear the same relationship to the 

LMO's as the TLMO's bear to their symmetrically orthogonalized 

counterparts, and the NLO's represent orbitals which are, at least 

partially, corrected for orthogonality delocalization. We may truncate 

these to give TNLO's, and compute the percent delocalization of the 

TNLO's relative to the NLO's using (XXIII). We have done this, 

obtaining 

F core 

C core 

....... 

....... 
0.6% 

2.3% 

C-F bond ..•.. 2.8% 

C-H bond ...... 6.0% 

F lone pair ..... 6. 9%, 6.3% 

where the higher value for the lone pairs corresponds to the orbital in 

the F-C-F plane. These values, which hopefully express mostly 

real delocalization, are seen to be generally lower than the analogous 

values for the LMO's, and they indicate that the lone pairs are the 

most highly delocalized of the orbitals. Interestingly, the lone pairs 

which lie in the F-C-F plane are substantially more delocalized than 

the out-of-plane pairs. 

A second criticism which may be applied to Newton's 

delocalization criterion, as well as to the one we have given above, 

is that they refer to overlap quantities rather than energy quantities. 

The delocalization energy of a single-determinant MO wavefunction 

can be straightforwardly defined as the energy increase which results 
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from replacing the actual MO's by orbitals which are localized in 

some fashion. In simple Huckel theory (30), for example, the 

localized orbitals for a hydrocarbon pi system are considered to be 

simple ethylenic bonds between neighboring carbons. For more 

general types of wavefunctions, a good definition of "localized" is 

needed, and it seems reasonable to rely upon some form 0 f bond­

function model. Newton et al. (16c) find that replacing LMO's by 

TLMO's increases the energy of a variety of small molecules by 

30-100 mh (we use the symbol mh, "milli-Hartree", to represent 

10- 3 a. u., which is about 0.6 kcal/mole). We obtain 121. 5 mh for the 

delocalization energy of difluoromethane, defined in this way. If, 

instead, we replace the NLO' s by their truncated counterparts, the 

energy increase is only 99 0 7 mh, indicating that the TNLO' s are 

better bond functions than the TLMO's. This seems reasonable 

because, to obtain the apprOXimate Hartree- Fock orbitals, the bond 

functions must be orthogonalized; the TNLO's partially account for 

this while the TLMO's do not. 

A logical way to extend the above method is to consider the 

energy increase which results from replaCing each individual orbital 

by its localized counterpart, a process which gives the delocalization 

energies (DE's) for these orbitals. If we are using TLMO's as the 

localized functions, the DE for an orbital is obtained by calculating 

the energy of a wavefunction in which only that orbital is truncated 

and subtracting from it the Hartree-Fock energy. If we are using 

TNLO's, we go through the same process, but replace an NLO by its 
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TNLO. Generally, the sum of the individual DE's will not quite 

match the total DE because of the nonlinearity of the orthonormali­

zation procedure which precedes the energy evaluation, and for 

meaningful DE's, this error should be small. Table 1 gives the DE's 

we have obtained for the orbitals in difluoromethane, based on both 

TLMO and TNLO bond functions. In view of the fact that the latter 

show a smaller overall DE, better DE additivity and more reasonable 

description of the C core, we will concentrate mainly on them, though 

our conclusions apply fairly well to the TLMO values, too. 

Examining the TNLO values in Table 1, we find that the lone 

pairs account for about 80% of the total DE of the molecule, and that 

they have by far the highest individual DE's. The total stabilization 

from this source amounts to about 80 mh (50 kcal/mole), or about 

25 kcal/mole for each C-F bond. We note that the DE of the lone 

pairs which lie in the F-C-F plane is greater by about 4 mh (2.5 

kcal/mole) than the DE for the out-of-plane pairs, and that this value 

is not sensitive to the nature of the bond-function model. This is a 

very interesting result, implying that delocalization is more efficient 

(from an energy standpoint) when a fluorine lone pair opposes a C-F 

bond than when it opposes a C-H bond. We may view this extra 

stability as a fluorine-fluorine interaction of sorts, and counting 

2.5 kcal/mole for each in-plane pair, we calculate a total F-F 

stabilization of about 5 kcal/mole. In a study of the thermodynamic 

stabilities of the fluorinated methanes, Hine (8) has estimated that 

each such interaction is "worth" 6. 5 kcal/mole, which is in 



107 

Table 1. Delocalization Energies (in mH) for the 
Localized Orbitals of Difluoromethane. 

~O~r~b=i~t=a=l _______ Number 

All 

F core 

C core 

C-F bond 

C-H bond 

F lone pair 
in F-C-F plane 
F lone pair 
out of plane 

aActual total DE. 

13 

2 

1 

2 

2 

2 

4 

Delocalization energy (mh) 

From TLMO's J<'rom TNLO' 8 

Sum over 
Per 

orbital 
related Per 

Sum over 
related 
orbi tals orbitals orbital 

0.79 1.58 

10.37 10.37 

2.45 4.90 

7.23 14.46 

17.27 34.54 

13.28 53.12 
• p 

sum = 118.97 b 

error = 2.58c 

0.79 1.58 

6.27 6.27 

0.62 1.24 

5.22 10.44 

16.03 32.06 

11.94 47.76 

sum = 99.35b 

O.33c error = 

bSum of individual orbital DE's. 

cNon-additivity error, the difference of the above. 
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surprisingly (and perhaps fortuitously) good agreement with our 

theoretical value. 

Thus, if we consider the delocalization percentages and DE's 

for the TNLO's, we conclude that the fluorine lone pairs are substan­

tially delocalized in difluoromethane, that this delocalization 

represents a marked stabilization of the molecule and that the effect 

is most pronounced for the pairs which lie in the F-C-F plane. 

These conclusions, though, may be criticized on the grounds that the 

TNLO concept is a new one which has not been tested on other mole­

cules, so we have no guidelines by which we can judge the reliability 

or our results. We believe that these results represent real effects, 

but that it would be wise to look at the problem from a different, and 

somewhat more soundly established viewpoint, that of Mulliken 

population analysis (15). 

Table 2 gives the overlap populations (OP's) and gross 

populations (GP's) for each of the six different types of LMO's, for 

certain groups of orbitals, and for the total Hartree- Fock wave­

function. In Table 3 are the analogous populations for the symmet­

rically orthogonalized TNLO's which show only orthogonality 

delocalization because the original non-orthogonal functions are fully 

localized. We have included these so that we may see the general 

pattern of populations which results from such delocalization, a 

pattern which is the same whether we start from TNLO's or TLMO's. 
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First, we note that the cores show virtually quantitative GP's 

on their respective centers. The carbon core shows a very slight 

negative contribution to the OP's of the directly bonded atom pairs, 

an effect which is duplicated by the bond-function model. 

The bonding LMO's show a regular pattern of populations 

which is present in the TNLO model as well: The atoms included in 

the bond, of course, have a large positive OP; each atom which is 

not in the bond shows a negative OP with each atom in the bond; and 

the OP between two atoms which are not in the bond is positive. This 

pattern is a logical result of the orthogonality restriction. To 

illustrate this, we consider an idealized system of three C-H bonds 

in a plane, each of which is completely localized. These bonds, shown 

schematically in Figure 5a, will have a slight positive mutual overlap 

because of the positive amplitudes on the hydrogens. Upon symmetric 

orthogonalization, each bond will have subtracted from it a small 

amount of each other bond, as shown in Figure 5b. We see that the 

result is a pattern of bonding and antibonding character which agrees 

with the noted population pattern in difluoromethane. Both the LMO's 

and the TNLO model show that the sum of the GP's for the atoms in a 

bond is greater than 2.0, which can be traced to the fact that most of 

the OP's to other atoms are negative. This tends to induce negative 

GP's upon these nonbonded atoms, and to compensate for this, the 

bonded atoms must contain an excess of electrons. Based on the 

population analysis, then, we find nothing particularly unusual about 

the C-F or C-H bonding LMO's; the populations may be understood 



F
ig

u
re

 
5

. 
S

ch
em

at
ic

 
il

lu
s
tr

a
ti

o
n

 
o

f 
th

e 
e
ff

e
c
ts

 
o

f 
sy

m
m

et
ri

c 
o

rt
h

o
g

­
o

n
a
li

z
a
ti

o
n

 o
n 

b
o

n
d

in
g

 
o

rb
it

a
ls

. 

5 
(a

l.
 

T
h

re
e 

fu
ll

y
 
lo

c
a
li

z
e
d

 C
-H

 
bo

nd
s 

in
 a

 
p

la
n

e 

sy
m

m
et

ri
c 

) 
o

rt
h

o
g

o
n

a
li

z
a
ti

o
n

 

:
'\

 a
n

ti
­

lb
o

n
d

in
g 

,
~
 
.. 

" 
" 

I 
• 

, 
, 

" 
\ 

\ 
-,

 
'-

,
 

,
.
.
 

.. 
... ,

. 
~
.
.
.
;
;
,
 

.... 
.-

" 

b
o

n
d

in
g

 

? 
(b

).
 

E
ff

e
c
t 

o
f 

sy
m

m
et

ri
c 

o
rt

h
o

g
o

n
a
li

z
a
ti

o
n

 
on

 
on

e 
C

-H
 

bo
nd

 

-
~ 

o 
.... .... ~ 



113 

on the basis of orthogonality restrictions alone. 

The situation is quite different for the lone pairs, though. 

We note that the GP on fluorine for each type of lone pair LMO is 

less than 2.0, with most of the remaining population residing on the 

carbon. This is in contrast to the TNLO model, which shows exactly 

the opposite behavior. The lone pair LMO's contribute a positive OP 

to the adjacent C-F bond and a negative OP to the bond which is trans 

to the pair. The remaining OpTS do not seem to show a consistent 

pattern, though we note that the major interactions are negative ones 

between the fluorine carrying the pair and atoms which are not 

bonded to that fluorine. The TNLO model shows that each lone pair 

contributes a negative OP to the adjacent C-F bond, and virtually no 

OpTS to any other interactions. Thus, the lone pair LMO's do not 

give a pattern of populations which can be understood on the basis of 

orthogonality restrictions, and we take this as evidence that they 

possess "real" delocalization. Finally, we note that the lone pair 

LMO's which lie in the F-C-F plane contribute more C-F bonding 

character, and give a greater charge-transfer to carbon, than the 

out-of-plane pairs do, which leads us once again to the conclusion 

that delocalization is most efficient when the lone pair opposes a 

C-F bondo 

In order to see the overall effects of the lone pairs more 

clearly, we have partitioned the thirteen orbitals into three groups, 

one containing the three cores, one containing the four bonding 

orbitals, and the last containing the six lone pairs. Table 2 shows 
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that the effect of the LMO lone pair group on the GP's is a transfer 

of 0.14 electrons from the two fluorines to the carbon, while its 

effect on the OP's is a 9% "strengthening" of the C-F bonds, an 8% 

"weakening" of the C-H bonds, and a fairly large antibonding contri­

bution to all other interactions. Table 3 shows that the lone pair 

group in the TNLO model gives almost exactly the opposite effects, 

so that although the bond groups of the two models show a good 

parallel, the total populations for the TNLO wavefunction agree rather 

poorly with the LMO values. 

Thus we have looked at the "fine structure" of the localized 

orbitals in difluoromethane from three different viewpoints. Our 

percent delocalization criterion suggested that substantial lone pair 

delocalization is present, the DE's indicated that it is energetically 

significant, and the population analysis pointed out that it is respon­

sible for a charge-transfer to carbon, an increase in the C-F overlap 

population and a decrease in the C-H overlap population. Together 

with the visual evidence of Figures 3 and 4, these results constitute 

what we believe to be a strong argument that our Hartree-Fock 

wavefunction contains features which cannot be adequately described 

by a single valence-bond configuration. At this point we can say 

little about the nature of the VB resonance structures which would be 

needed to describe these features, but it seems likely that inclusion 

of structures such as 
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+ H-C=F 
I 
H 

would capture the main effects. The latter would be necessary to 

account for the delocalization of the lone pairs which are trans to the 

C-H bondso 

We turn now to the question of how the LMO's of difluoro­

methane change as the F-C-F angle is altered. We consider two 

cases in addition to the equilibrium geometry; those in which the 

F-C-F angle is increased and decreased by 30° from its equilibrium 

value. For conciseness, we will refer to the three geometries as 

the +30°, 0° and _30° cases, indicating the distortion of the F-C-F 

angle. The localizations for the +30 0 and _30° cases were carried 

out as described previously for the 0° case. Several hundred two-by­

two transformations were completed to obtain an approximate 

localization, and these were followed by a few PSO cycles to complete 

the process. Again, the LMO's could readily be identified as bonds, 

lone pairs and cores. The cores are virtually the same in the +30° 

and _30° cases as they were for the 0° one, and they will not be 
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discussed further. The remaining LMO's will be examined in some­

what less detail than we have previously considered because we are 

interested only in the overall orbital changes which result from the 

F-C-F angle variation. 

The greatest single change appears in the - 30 C case, where 

we find that the sets of lone pairs on the two fluorines are no longer 

related by a reflection through the H-C-H planeo Rather, the pairs 

on one fluorine, which we arbitrarily call F 2, are rotated by 60 ° 

about the C-Faxis so that they eclipse the bonds to the adjacent 

carbon. Thus, the lone pairs exhibit a "cogwheel" effect which is 

understandable because the electrostatic repulsion between the lone 

pairs above and below the F-C-F plane would be quite large if one 

set was not rotated. Of course, this does not mean that the molecular 

wavefunction has lost symmetry, only that this unsymmetrical 

description of it has a lower total inter-orbital repulsion than any 

symmetrical description. In the +30 ° case, the lone pairs have the 

same symmetry and "staggered" orientation that we found in the 0° 

case. 

Table 4 summarizes the most important features of the LMO 

hybrids in the three cases. As before, we consider an A-B bond to 

be composed primarily of two hybrids. The A hybrid is the contri­

bution to the bonding LMO from aU A-centered basis functions and 

the B hybrid is similarly defined using the B-centered basis functions. 

In the case of lone pairs, only one hybrid is present, and it is defined 

in an analogous manner. For the purpose of discussion, it is useful 
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Table 4. Geometry variation of Difluoromethane: 
Hybrid Analysis of. LMO's. 

Parametera Value 
+30 0 case 00 case -300 b case 

eC*F ,C*F 90.9° 99.5° 105.6° 
Einner 
C*F,C*F 106.80 101.40 98.2° 
outer 

eC*F ,C*F 47.8° 93.6° 123.7° 

eC*H,C*H 117.1° 117.7° 118.2° 
ei:nner 

C*H,C*H 119.1° 118.0° 119.6° 
outer 

eC*H,C*H 114.0° 115.8° 115.9° 

EtP-o,LP-O 1.15.0 ° 1.14.3 ° 113.3°(112.7°) 

8:LP-i ,LP-o 113.1° 113.0° 114.5°(114.7°) 

8LP- o ,CF* 105.2° 105.1° 103.3°(105.7°) 

CLP-i,CF* 103.8° 105.3° 106.4°(102.0°) 

4> 9.00 1.2° ° -8.1 ( -9.3°) 

nC*F 2.39 2.82 2.90 ( 2.91 ) 

nC*H 1.46 1.34 1.31 

nCF* 5.66 5.70 6.28 ( 6.14 ) 

~P-i 2.39 2.35 2.53 ( 2.03 ) 

~-o 2.24 2.25 2.14 ( 2.41 ) 

asee text for a description of the parameters. 

bThe values in parentheses are those unique to 
F2 , whose lone pairs eclipse the carbon bonds. 
All other-values involving fluorine refer to 
F1 , which has the normal staggered configuration. 
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to "name" the hybrids. The carbon and fluorine hybrids of a C-F 

bond are symbolized by C*F and CF*, respectively, the carbon 

hybrid of a C-H bond is given the symbol C*H, while LP-i and LP-o 

stand for lone pairs which are in and out of the F-C-F plane, 

respectively. The symbol e AB in Table 4 represents the angle 

between two different hybrids A and B which reside upon the same 

atom. If (] AB does not carry a superscript, 'it refers to the angle 

between the average directions (as defined previously in terms of 

populations) of A and B, but if a superscript appears, the angle is 

determined by the relative coefficients of the inner p-type AO's 

(superscript = inner) or by the relative coefficients of the outer 

p-type AO's (superscript = outer). This distinction is important only 

in the hybrids C *F and C *H in which a fair amount of "hybrid bending" 

takes place. The amount of p-character in a hybrid A is given by 

n
A

, which stands for the "x" in "spx". Finally, the angle ¢ measures 

the degree to which the average direction of the F hybrid departs from 

the C-Faxis. The sign of ¢ is illustrated below: 

F'-.. .~F "'C/! 
negative 
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Now, with our terminology defined, we may examine the 

values in Table 4. We note, first of all, that the H-C-H fragment of 

the molecule remains remarkably constant as the F-C-F angle is 

changed. There is only about a 1 ° change in 8C*H C*H over the , 
whole range, while the hybridization of C*H varies from SpI.5 

(+30° case) to SpI.3 (_30° case). We expect carbon to rehybridize in 

some way to maintain high overlap with the fluorine, but we find that 

the hybrid C*H does not reflect thiso A second pOint we notice is that 

the fluorines tend to react as relatively rigid units: The angles 

between lone pair hybrids are, in all cases, within 1. 3 ° of 114 ° , 

while the angle between the hybrid CF* and the lone pairs remains 

within about 2° of 104°; the lone pair hybridizations are only modestly 

variable, ranging from Sp2.03 (67% p-character) to Sp2.53 (72% p­

character), while the hybridization of CF* is quite constant (the 

extremes of Sp5.7 and Sp6.3 correspond, respectively, to 85% and 86% 

p-character). The fluorine units tend to "rock" as the F-C-F angle 

is changed, so that the CF* hybrid does not remain pointed toward 

carbon. The deviation (cf» is substantial, about 9 ° for each distorted 

case, * which means that the CF* hybrids on the two fluorines 

intersect in an angle which ranges from 158° (+30° case) to 62° 

(_30° case). 

* We note that, because cf> is measured from the C-Faxis, 
and because this axis varies in direction by 15 ° in each distorted 

case, the direction of CF* changes by 9°+15° = 24° for each case o 
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Not surprisingly, the C hybrids show the greatest effects of 

the angle bending. At the extremes, (}C*F C*F differs by +6° (_30° , 
case) and _9° (+30° case) from its equilibrium value, rather small 

changes when we consider that the F-C-F angle covers a 60° range. 

Most importantly, though, we note that the (}C*F C*F changes are , 
in the "wrong" direction. We would expect, on the basis of orbital 

following (31), that the inter-hybrid angle (}C*F C*F would parallel , 
the F-C-F angle, but it decreases as the F-C-F angle increases 

and vice versa. Examining the inner and outer contributions to this 

angle, we see that (}~~~rC*F does follow the F-C-F angle to a , 
slight extent, but that (}~~~rC*F strongly opposes this trend. We , 
recall, of course, that the carbon contribution to the C-F bond is 

small, so these hybridization changes do not have as large an effect 

as they would in a more homopolar bond, and we also recall that the 

very definition of hybridization is somewhat clouded by the nature of 

our basis set; nonetheless, we must conclude that as the F-C-F 

angle in difluoromethane is distorted, there is no evidence for orbital 

following on the part of carbon. Rather, the fluorine atoms "pivot" 

to maintain high bonding overlaps with the relatively static C*F 

hybrids. 

We may verify these effects visually by examining Figure 6, 

which shows the orbital amplitude plots of one C - F bonding LMO for 

the three geometries we have treated. The plots are nearly super-

imposable near the carbon "end" of the bond, while the fluorine "end" 

undergoes a rotation which is almost solely responsible for the bond 
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bending. 

There is the possibility that part of the noted effect is due to 

the orthogonality restriction rather than to "real" changes in the 

LMO's. To test this, we have carried out the hybrid analysis of the 

NLO's (see equation XXIV), which are partially corrected for 

orthogonality delocalization. Table 5 gives the results, and we see 

that the conclusions drawn above apply equally well here. 
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Table 5. Geometry Variation of Difluoromethane: 
Hybrid analysis of NLO's. 

Parametera Value 
--~--------~~~~----~~--~b---

9C*F,C*F 
inner 

8 C i(-}t' , C*F 
outer 

eC*F, C*}' 

eC*H,C*H 
I'loinner 
C7C*H,C*H 

outer 
eC*H,C*H 
a 

LP-o,LP-o 

~P-o,LP-i 
BLP-o,CF* 

8.LP-i,CF* 

tP 

n LP-o 

+300 case 0° case _30 0 case 

96.60 

111.8° 

53.4° 

112.6° 

115.0° 

109.3° 

115.8° 

113.3° 

104.5° 

103.8° 

9.2° 

1.14 

1.02 

4.40 

2.16 

2.02 

104.0° 

104.6° 

101.80 

112.6° 

114.3° 

110.0° 

115.0° 

113.2° 

104.3° 

105.5° 

1.6° 

1.39 

0.92 

4.39 

2.09 

2.00 

106.9° 

97.8° 

130.0° 

113.6° 

115.4° 

110.9° 

112.7°(113.1°) 

115.5°(115.2°) 

101.5°(106.2°) 

107.80
( 99.0°) 

_7.7°( _6.4°) 

1.52 ( 1.53 ) 

0.88 

4.56 ( 4.47 ) 

2.34 ( 1.80 ) 

1.89 ( 2.16 ) 

aS ee text for a description of the parameters. 

bThe values in parentheses are those unique to 
F2 , whose lone pairs eclipse the carbon bonds. 
All other values involving fluorine refer to 
F1 , which has the normal staggered configuration. 
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c. Approximate Generalized-Valence-Bond (GVB) Orbitals 

In the previous section, we drew certain conclusions about 

the electronic structure of difluoromethane from an analysis of the 

localized Hartree-Fock (HF)orbitals. These conclusions rest upon 

the assumption that the LMO's are meaningful, but even though they 

provide a description of this and other molecules which is intuitively 

correct, we must realize that they are not unique in their represen­

tation of the total wavefunction. The localization criterion does not 

relate to any physical observable, and we must thus question whether 

an analysis of LMO's can ever lead to "real" conclusions. In order 

to develop a criterion which is physically meaningful, we must 

consider the relationship between the HF method and other, more 

general techniques. 

The Generalized Valence-Bond (GVB) method, recently 

developed by Goddard and co-workers (32), provides us with the 

necessary generality. In contrast to the HF method, in which each 

electron pair is described as a doubly-occupied (molecular) orbital 

of the form 

"J!F (. ") ~pair 1, J = 1>(i) 1>0)[ a(i) B(j) - (3(i) a(j)] (XXV) 

the GVB approach assumes each pair to be a valence-bond type of 

singlet pairfunction: 
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t/I~~~{i, j) = [X a (i) Xb{j) + Xb (i) Xa (j)] 

xl a{i) B{j) - A{i) a(j) 1 

(XXVI) 

In either method, the 2N-electron closed-shell wavefunction is taken 

to be the normalized, antisymmetrized product of N pairfunctions, 

with the assumption that the orbitals of each pair are orthogonal to 

the orbitals of every other pair (this is a constraint in the GVB method 

but not in the HF approach), and in either case, the orbitals of all 

pairs are variationally optimized. We see that setting Xa = Xb in 

(XXVI) gives the GVB pairfunction the same form as the HF one in 

(XXV), and thus the GVB method may be viewed as an extension of the 

HF technique. The optimum GVB pairfunctions turn out to be 

localized bonding pairs, core pairs and lone pairs, so the GVB 

method, in addition to giving energies lower than HF, gives an 

intuitively pleasing description of molecular electronics. We should 

emphasize, though, that this localization is not a result of any 

arbitrary scheme; it is a result of the variational principle. 

Hurley et al. (33) have shown that a pairfunction of the type in 

equation (XXVI) may be written as a two-electron CI wavefunction 

whose component configurations are doubly-occupied, orthogonal 

orbitals called natural orbitals (NO's): 

t/I~~~(i, j) = [c1 <1> (i) <1>(j) + c2 <1>' (i) <1>' (j)] 

x[ a{i) /3{j) - /3(i) a(j)] 
(XXVII) 
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where 

</> = first natural orbital 
1 

(8 ;;:: (X a I Xb) , :::: (X a + Xb)/(2 + 28) 2" assumed 

positive) 
(XXVIII) 

</>' = second natural orbital 
1 

= (X a - Xb)/(2 - 28)2" 
1 

c 1 
;;:: (S + 1)/(2 + 2~)2 

1 

c2 = (8 - 1)/(2 + 2SZ)2" 

(</>1</>') = 0 

c2 + c2 
1 2 = 1 

With the GVB wavefunction expressed in terms of NO's, it is possible 

to derive equations (32a) for self-consistently optimizing the orbitals 

and CI coefficients. These are roughly analogous to the HF equations, 

except that each NO has a different hamiltonian, and of course, HF 

involves no CI coefficients. 

Now, in the event that all pairs in the molecule are strongly 

overlapping (S close to unity), we see from (XXVIII) that c 1 will be 

much larger than c2 for each pair, and thus the set of first NO's will 

dominate the total wavefunction. We expect this to be the case for 

typical molecules near the equilibrium geometry, and in view of the 

fact that the Hartree- Fock configuration is the major contributor to 

general CI wavefunctions in such cases (32b, 34), it is reasonable to 

assume that the set of first NO's will correspond closely to a set of 

transformed HF orbitals. But these first NO's, like the GVB orbitals 
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which define them, are localized into bonds, cores and lone pairs, 

and it should be possible to relate them to localized Hartree-Fock 

orbitals, orbitals with the conceptual advantages of the LMO's but 

which are defined by a physically meaningful criterion. 

We see from the above that it should not be a severe restric­

tion to constrain the set of first NO's to span the Hartree-Fock space 

of functions. This constraint, together with the normal GVB 

assumption, forms the basis for what we will call the Hartree-Fock 

projected GVB (PGVB) method. The optimum first NO's in the PGVB 

wavefunction are naturally localized molecular orbitals (NLMO's). 

They should be good approximations to the corresponding GVB NO's, 

and within the PGVB context, they have a well-defined physical 

meaning. 

In principle, then, we see that meaningful localized HF 

orbitals can be defined. There are several practical difficulties 

which render the exact NLMO's in difluoromethane unattainable for 

the present, but we have developed an approximate approach which 

we describe below. The most serious problem relates to the fact 

that, in any GVB-like method, each NO has its own hamiltonian (32a), 

so for a 2N electron system, 2N separate hamiltonians must be 

generated and diagonalized. In the HF method, only one is needed, 

and because hamiltonian formation and diagonaUzation is the most 

time-consuming part of such SCF calculations, a full GVB (or PGVB) 

solution would require about 2N times as much work as the 

corresponding HF calculation. Difluoromethane has 26 electrons, 
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so it is clear that a complete treatment using GVB or PGVB techniques 

would be far too costly. We may simplify the problem somewhat by 

neglecting the three core pairs (35), but we are still left with 20 

valence electrons, too many for a full analysis. To surmount this 

problem, we have developed a method of optimizing just one PGVB 

pair at a time, and we have assumed that the orbitals thus obtained 

are quite similar to those which would result from a more complete 

treatment. The accuracy of this assumption is difficult to assess 

because no direct comparison of full versus partial GVB calculations 

has appeared in the literature. Goddard and co-workers (37) have 

used the working assumption that one can concentrate on only a few 

pairs, leaving the others doubly occupied in the HF sense, and they 

have obtained reasonable results for a variety of molecules. We have 

certain results for difluoromethane which suggest that our assumption 

is a good one, at least for bonding orbitals, and we shall discuss 

these a bit later. 

We now develop the PGVB method for splitting one pair, 

starting from the Hartree-Fock solution. We begin by writing our 

wavefunction in the form 

(XXIX) 

We assume that the ¢' s together with ¢: form an orthonormal set, 

and we use A to represent the normalized antisymmetrizer. We also 

indicate the spin associated with a particular orbital by an overscore, 
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"- II (p spin), or lack thereof (0. spin). The first pair in (XXIX) is 

split into a first NO ((h) and a second NO (1)/), while all other pairs 

(1)2' ¢3' ... , 1>N) are doubly occupied in the Hartree-Fock sense. 

The PGVB assumptions in this case are simply that 1>1' ... , 1>N are 

related by an orthogonal transformation (1') to the canonical HF 

orbitals, which we call 0u ... , oN' while 1>/ can be written as a 

normalized linear combination of the canonical virtuals, which we 

call v u ... , vM (N + M = number of basis functions). T hat is, 

N 
1>. = L; o.T .. (i = 1 ... N' l' orthogonal) 

1 ] ]1 ' " j=1 

and 

M M 

1>/ = Eb.v. (Eb.2 = 1) (XXX) 
j=1 ] ] . 1 1 1= 

In the subsequent development, it will not be necessary to consider 

the full l' matrix, and we find it convenient to express 1>1 as a 

normalized linear combination of the 0i's without explicitly expanding 

1>2' ... , 1>N: 

N 
CP1 = L; a· o. 

j=1 J ] 

NOW, we rewrite t/J as 

N 
(L; a~ = 1) 
. 1 1 1= 

(XXXI) 

(XXXII) 
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where 1./1 1 and 1./12 are two normalized, mutually orthogonal configu­

rations. The energy of 1./1 may be evaluated in the usual way to give 

(XXXIII) 

where 
,. 

HII = ( 1./1 I I JCI1./I I ) 
A 

H22 = (~2 I JCI1./I2 ) (XXXIV) 

A 

H12 = (1./11 ~ JCI1./I2 ) = (1./12 i JCI1./I1 ) 

and where 

(XXXV) 

We have assumed here that 1./Iu 1./12' c1 and c2 are all real quantities. 

Now, HI 1 is just the Hartree-Fock energy because the CP' s are just 

transformed HF orbitals, and such transformations do not influence 

the total energy of the HF wavefunction ("'I). Thus, we obtain for the 

CI energy lowering (LlE) beyond the HF energy, 

(XXXVI) 

We now seek to eliminate c1 and c2 by minimizing LlE with respect to 

them. We have the two conditions 
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and (XXXVII) 

which, using (XXXVI), yield two equations; 

(XXXVIII) 

and 

These may be written in matrix form as 

'( -~E A ) ( c 1
) = (0) 

A (B-AE) c2 0 
(XXXIX) 

which implies that, because c1 and C2 cannot both be zero, the 

determinant of the above matrix must be zero. Thus 

(XL) 

or 
1 

1 1(2 2-2 AE = "2 B ± "2 B + 4A ) (XLI) 

and so, taking the negative root to give the most negative value for 

AE, we have 

1 

AE = ~ B _ ~ (B2 + 4A2 )"2 (XLII) 

This is the basic energy expression from which we shall work. 

It has the advantage that it does not involve the CI coefficients c1 and 

c2, and the disadvantage that it is not a linear expression in A and B. 
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The latter adds only a slight amount of complexity to the optimization 

of CPl and CPl' • 

Now, in order to optimize the two NO's, we must consider 

the derivative of ~E with respect to the expansion coefficients 

b i (i = 1, ... , M) and a i (i = 1, ... , N) of equations (XXX) and (XXXI). 

If X represents any variable upon which A and B depend, we have, 

from (XL II) : 

1 

a AE/ax = ! (aB/aX) - t (B2 + 4A
2(2( 2B(aB/aX) + 8A(aA/aX)] 

= kl (aB/aX) + ~(aA/aX) (XLIII) 

where it can be shown that 

1 

kl = _~E(B2 + 4A2f2 = ~E/(2AE - B) 

1 
(XLIV) 

k2 = - 2A(B2 + 4A2) -2 = 2A/(2~E - B) 

We shall use these equations in a moment, but while we are at this 

point, we will write down the formula for the second derivative of aE 

with respect to two variables, X and Y, upon which A and B depend. 

We will require these in the subsequent discussion of the quadratically 

convergent approach to the PGVB solution. Differentiating (XLIII) 

with respect to Y gives a rather complicated expression which may be 

simplified by the substitution of various identities derived from 

(XLII) and (XLIV). There are several alternative forms for the 

simplified equation, and we have chosen the following: 
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+ k 3 (aA/ay)(aA/aX) 

+ k 4 [ (aA/aY)(aAE/aX) + (aAE/aY)(aA/a X)] 

+ ks(a6.E/ay)(aAE/aX) 

where kl and k2 are as in (XLIV) and 

(XLVI) 

Now, in order to evaluate the derivatives of AE with respect 

to the expansion coefficients of (XXX) and (XXXI), we must consider 

the explicit form of the quantities A and B. Using the properties of 

the antisymmetrizer A (37), it can be shown that 

(XLVII) 

1 

where P = [(2N)!] 2A is the "ordinary" (unnormalized) anti-

symmetrizer. We note that because the hamiltonian contains, at 

most, two-electron operators, any permutation in P other than the 

interchange of 1>/ and CPt' will give a term which does not contribute 

to A. Indeed, any such permutation will leave more than two orbitals 

in the right-hand side of the integral orthogonal to their left-hand 

side counterparts, and we will thus always be able to separate out a 

term which is zero due to this orthogonality. Furthermore, the 

(1)1', 7[>1') interchange gives zero due to spin orthogonality. Thus, only 

the "unit" permutation in P needs be considered. Because of the 
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orthogonality of <PI and <Pt', only the operator in 3C which couples 

electrons 1 and 2 will give a nonzero contribution, and this term is 

simply 1/rI2 • Thus we have 

(XLVIII) 

This is similar to the exchange integral 

K<PI<P: = "Kll/" = jj<Pi(1) <PI(2) <P;*(1) <p;(2)/r I2 dTI dT2 

(XLIX) 

except for the position of the complex conjugation. But we have 

assumed that <PI and <P; are real, and thus the two are identical, so 

we have 

(L) 

The evaluation of the B term is somewhat more complex. 

It is the difference in energy of two Hartree- Fock-like wavefunctions 

which differ in only one orbital, the first. The energy HII of 1/11 is 

given by 

N N N 
= 2 L: h .. + L; 6 (2J .. - K .. ) 

i=1 11 i=1 j=1 1] 1] 
(LI) 
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where hii is the expectation value of the one- electron portion of JC for 

CPi and where J ij and Kij are the usual coulomb and exchange integrals. 

The analogous expression for H22 contains many identical terms, the 

only differences occurring in the values which involve cp;. Thus, the 

difference H2 2-HII will give cancellation for all terms not related to 

CPI and cp{, and we obtain 

B = H2 2 - HI I = 2 hI ' l' - 2 hl 1 + J 1 ' l' - J 1 1 

N 
+ 2 2 ~ [ (2 J l' i - Kl , i) - (2 J Ii - Kli)] (LII) 

i=2 

The summation runs from 2 to N, but by adding and subtracting the 

analogous term for i = 1, we may complete the range, obtaining 

B = 2 hI' l' - 2 hii + J 1'1 - J 11 - 4 J 1'1 + 2 K1 '1 

N 
+ 4J11 - 2Kli + 2.6 (2J1 'i - Ki'i - 2Jli + Kli) 

1=1 

or, combining like terms and recalling that J ii = Kii' 

B = 2 hI' l' - 2 hI 1 + J 1 '1' + J 1 1 - 4 J 1'1 + 2 KI '1 

N 

+ 2 l' (2 J l'i - K1 'i - 2 J Ii + Kli) 
i~1 

We now make use of the identities 

(LUI) 

(LIV) 
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" 
<<Pl lhl (Pt> hI '1 ' = <<P{lhl<p{) hll = 

" A 

J '0 t 1 = <<P{lJ i ' <P:> ,T ti = <<P1IJi l <Pt> (LV) 

K1'i = <<P: I Ki I ¢;> Kti = < ¢ 1 I Ki I <P 1 > 

where h is the one-electron portion of JC and where Ji and Ki are the 

coulomb and exchange operators for <Pi' Substituting these into the 

expression for B and combining terms, we have 

+ J 1 1 + J 1 '1' - 4 J 1 '1 + 2 Kl '1 

But the operator within the brackets is simply the Hartree-Fock 

operator CF) defined by <PH "', <PN' Thus, 

(LVI) 

B = 2 F 1 '1' - 2 F t 1 + J 11 + J 1 '1' - 4J 1'1 + 2 K1 '1 (LVIT) 

The usefulness of this expression is apparent when we consider that 

it depends onl~ on orbitals <P1 and <P{. If we had considered a more 

general form for the orbitals in the CI wavefunction of equation 

(XXIX), then B would contain terms depending upon <P2' ••• , <PN ' 

These orbitals are included, above, but only in an implicit sense 

through the operator F, which is invariant to transformations among 

<PH "', ¢N' 
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We are now in a position to derive the necessary conditions 

for optimum </>1 and </>;. We recall the expansions (XXX) and (XXXI): 

N 

</>1 = ~ a.o. 
. "1 1 1 
1= 

(~ normalized) 

M 
</>{ = 6 b.v. 

. 1 1 1 
1= 

(2. normalized) 

where the 0i's are the canonical, occupied Hartree-Fock orbitals and 

the vi's are the canonical virtuals. The CI energy lowering depends 

upon ~ and 2. through </>1 and </>{ and thus, the conditions necessary for 

a minimum ~E are: 

o(~E)/oai 2A a· = 0 i - 1 N a 1 - , 
(LVIII) 

and o(aE)/obi - 2Ab bi 0 i - 1 M = - , 

where the Lagrange multipliers Aa and Ab result from the two 

restrictions 

N 

Ra = L- a.2 - 1 = 0 
i=1 1 

M (LIX) 

and Rb = B b~ - 1 = 0 
. -1 1 
1= 

We have given, in equation (XLIU), the expression for the derivative 

of ~E in terms of A and B derivatives. We may expand (L) to give an 

expression for A which depends only on ~ ~ and integrals over the 
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0i's and vi's, and differentiation of this expression gives 

N M 
aA/aai 2 .r; (oi I Kl , IOj ) a j 

>' 11 0 2(Kl, o~. = = 2 t-J K .. ' a. = 
]=1 j=l 1) ) '" 1 

M 
(LX) 

M 
aA/abi = 20 (v.IKllv. )b. = 2 >' K~! vb. = 2(Kl, V b). 

j=l 1 )] 
• _..1 1] ] ~ -1 
]=1 

Here, 151
' ,0 is the exchange matrix for cp{ defined over the occupied 

orbitals and !Sl, v is the exchange matrix for CPl defined over the 

virtuals. We may similarly expand (LVII) and differentiate it, which 

gives, for the derivatives of B, 

(LXI) 

where each.r. indicates a coulomb matrix for either CPl or cP; 

(superscripts 1 and 1', respectively) defined over either the occupied 

or virtual orbitals (superscripts 0 and v, respectively). The ~o 

matrix is the Hartree- Fock matrix defined over the occupied orbitals 

and F V is the same thing, but defined over the virtuals. These F 
~ ~ 

matrices are diagonal because we have used the canonical occupied 

and virtual Hartree-Fock orbitals as the bases for expanding CPl and 

cP; . 

We now have aU the information needed to set up the matrix 

equations which must be satisfied if CPl and cP; are optimum. 
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Combining (LX) and (LXI) with (XLIIT) gives us the derivatives of .!lE 

we need in (LXITl), which becomes: 

(LXII) 

where 

(LXIII) 

In practice, we have found it convenient to divide both sides of 

equations (LXII) by 4kl1 which gives us equations of the same from 

but with new hamiltonians H~ and Hb defined by 

= _!'o + -II, 0 _ 2~1', 0 + (1 +A/aE)~I', 0 

(LXIV) 
= F V _ 2,J I,v +JI',v + (1+A/aE)KI,v 

.- .-. "'" """-

where we have used the relation, derived from (XLIV), that 

~/2kl = A/ .!lE. Thus we see that the condition for an energy minimum 

is that ~ and ~ be eigenvectors of their respective hamiltonians. 

These eigenvalue equations can be used in the usual way to 

define a method of solving for the optimum ~ and ~ self-consistently. 

We begin by choosing starting guesses for ~ and ~ forming the two 

hamiltonians according to (LXIV) and diagonalizing them to obtain the 

eigenvectors. The eigenvector of !!a which has the highest overlap 
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with ~ is chosen as the new guess for ~ and a new ~ is similarly 

obtained. These eigenvectors have proven to be the ones with lowest 

eigenvalues in all cases we have considered. The new guesses for ~ 

and ~ are then used to generate new hamiltonians and the process is 

continued until the vectors do not change significantly from one cycle 

to the next, that is, until self-consistency is reached. 

It is fortunate that this procedure does not always converge 

to the best ¢1 and ¢{. If this were the case, then the solution would 

always correspond to splitting the pair which gives the best CI energy 

lowering, which in most cases would be a core pair. We have found 

that, if the starting vectors are properly chosen, the method will 

converge upon a local minimum corresponding to the splitting of some 

other pair. Thus it is possible to use this method to investigate 

several pairs in the same molecule as long as starting guesses are 

used which are reasonable approximations to the local solutions. 

The above method shows the linear convergence (38) typical 

of SCF methods based on this type of linear matrix equation. 

Convergence may be hastened by the use of various extrapolation 

techniques (39) but it can still be fairly slow. In order to speed the 

optimization of the orbitals, we have developed a quadratically 

convergent approach (40) which takes into account the second-order 

changes in the energy with respect to the ai's and bi's while applying 

the constraints to these variables to second order. The quadratic 

method is not only faster than the linear method, but also more 

informative, because it can distinguish between solutions which are 

true local minima and those which correspond to 
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maxima or "saddle-points". This is important because the linear 

equations could, in principle, converge to such non-minimum 

stationary points without any indication. 

The first step involves obtaining the second derivatives of ~E 

with respect to the ai's and bi's. Examining equation (XLV), we see 

that to obtain these, we must evaluate the corresponding second 

derivatives of A and B, along with the first derivatives of A and ~E. 

These first-derivative terms have already been conSidered, above, 

and the second-derivative terms may be obtained by the expansion (L) 

and (LVII) as functions of ~ and ~ followed by differentiation of the 

resulting expressions. After quite a bit of involved manipulation, 

we obtain: 

(LXV) 

where, in the third expression, we have used the symbol for the two-
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electron integrals defined following equation (V). All of the matrices 

above have been defined except Iff,O, which is the exchange matrix 

for CP1 defined over the occupied orbitals, and ~1, v, the exchange 

matrix for cP; defined over the virtuals. The vectors B ~ !:. and ~ are 

defined by 

p. = 3A/3ai = (K1', o~. qi = (3E)/3ai = (!ia~i 1 " 1 

(LXVI) 
r i = 3A/3bi = (K1, v~. S. = (3E)/3bi = (!ib !Vi " 1 1 

and the values of kl to ks have been given in equations (XLIV) and 

(XLVI). 

Now, the derivatives of equations (LXV) together with the 

vectors g, and ~ give us a complete description of the local quadratic 

behavior of E about the "point" defined by ~ and ~ the best current 

guesses for the coefficients of the first and second NO's. We could 

solve directly for the new "point" representing the local 

minimum (or other stationary point) of this quadratic function, thus 

obtaining new guesses for ~ and~. The solution is not that easy, 

though, because the variation of ~ and £ cannot be perfectly general: 

they must both remain normalized according to the restrictions in 

equations (LIX), and the straightforward solution suggested above will 

not account for this restriction. We must thus isolate the actual 

degrees of freedom in ~ and!?, and we must carry out the solution 

using these proper variables. 
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Various methods of isolating the proper variables may be 

used, and we have chosen the following. The restriction on a is 

N 
6 a~ = 1 (LXVII) 
. 1 1 1= 

which means that any particular ~ element, say~, may be 

considered a dependent variable, related to the remaining ~ elements 

via 

N 
'); 2 
, I a. 
.1 1 
1= 
(i~k) 

Thus, the proper variables are al' ~, 

(LXVIII) 

ak may be obtained (to within a sign - see below) from them. The 

elements of ~ may be similarly treated, leaving us with N+M-2 

proper variables in all. For definiteness, we shall take a l and b i as 

the dependent variables, though it does not matter which we pick and 

the equations below are easily generalized to other choices. We 

shall distinguish the set of proper variables from the improper set 

by giving the former the superscript "p". We have: 

N ~ 
aP a l = ±[ 1 - LJ (af)2] a i = (i = 2, N) 

i=2 1 

(LXIX) 
M 1 

b i = ±[ 1 _ 0 (bP)2] 2" b. = bP (i - 2 M) 
. 2 1 1 1 

- , 
1= 
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We have considered AE as a function of ~ and!?, which in turn are 

functions of "aP" and ''bP''. To obtain the needed derivatives with 

respect to these proper variables, we apply the usual techniques (41) 

of differential calculus relating to the differentiation of composite 

functions. We thus obtain 

N 
a(6.E)/aaf = >] [a(~E)/aa.] (aa./aa.p) 

j=l J 1 1 
(LXX) 

M 
+ 6. l a (AE)/ab

J
. ] (ab./aaP) 

j=1 J 1 

The second summation, above, vanishes because ~ is independent of 

the arts, and the first summation is simplified by the substitution of 

the expreSSion, derived from (LXIX): 

aa./aaP = IJ 
1 

0 .. , j ~ 1 

J 1 -a./a, j = 1 
1 1 

(LXXI) 

We find, making this substitution, 

o(AE)/aaP = a(AE)aa. - (a./a) a(AE)/oa1 1 1 1 1 
(LXXII) 

Similarly, we may derive 

(LXXIII) 

The above expressions for the proper first derivatives may be 

differentiated again using the same procedure. We will not give the 
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details, but the resulting formulas for the proper second derivatives 

are: 

a
2
(AE)/aaF aar = a2(aE)/aai aaj - (aj/alH a2

(AE)/aa l aai] 

- (alal)[ a2(~E)/aal aaj] 

+ (ai aj/a:H a2(~E)/aal aal] 

- (ai a/a1
3 + c5 ij /a1

2)[ a(aE)/aaIJ 

a2(~E)/abP abP = a2(~E)/abi abj - (bj/b1 )[ a2(~E)/abi abl] 
1 J 

- (blbl)( a2(~E)/abj abl] 
(LXXIV) 

+ (bi b/bI
2) [a

2
(aE)/abl abJ 

- (bi b/bl
3 + c5 ij /bI

2)[ a(AE)/ab1 ] 

a2(AE)/aaP ab.P = a2(~E)/aai abj - (bj/bl)[ a
2(aE)/aai abJ 

1 J 

- (alal)~ a2(~E)/abj aaJ 

+ (ai bj/a1 b1)[ a2(~E)/aal obJ 

Thus, we have everything we need to transform the improper first 

and second derivatives into proper ones. 

Now let us suppose that the energy varies apprOXimately as a 

quadratic function of the proper variables near the initial guess point: 
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~E ':::/ ~Eo + 0 (~Pi)[ a(AE)/aPi ] 
1 

+ ~:E (APi)(APj)l a
2
(AE)/api aPj ] 

i, j 

(LXXV) 

where E is a single vector composed of all proper variables, that is 

where E = (ap, aF, 

in matrix form as 

where 

V. = a(AE)/ap. 
1 1 

(LXXVI) 

and (LXXVII) 

The vector AE which corresponds to the minimum (or other stationary 

point) of this quadratic function is simply 

-1 
~P = -D V 

" -
(LXXVIII) 

The derivatives in D and V have been considered, and can be 
" -

computed once initial guesses for ~ and ~ have been made. Equation 

(LXXVITI) gives us the corrections which must be applied to the 

proper variables to correspond to the (approximate) local energy 

minimum. The corrected proper variables (aP', aF', .. " a~') and 

(bP', bF', .. " b:tt1') can then be used to evaluate the new improper 

variables using (LXIX). The only difficulty here is the choice of 

sign for a l and b l . NOW, as long as at and b i are originally fairly 

large, while the correction vector AE is fairly small, then we 
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expect, on the basis of continuity, that the new a l and b i will carry the 

same signs as the old values. In practice, we have insured this by 

choosing the largest element of ~ and of ~ as the dependent variables, 

while limiting the length of ~R to some small value (currently 0.25). 

If the actual length is greater than this, ~E is scaled down by an 

appropriate amount. 

The eigenvalues of D at the point of convergence indicate the 
" 

curvature of the energy surface in various orthogonal "directions" in 

the space of proper variables_ If they are all positive, then a true 

local minimum has been reached, while one or more negative values 

indicates that convergence has occurred upon a saddle-point. If all 

are negative, a maximum has been found. 

So far, we have discussed the one-pair PGVB method for a 

rather restricted sort of wavefunction, one in which all other orbitals 

are doubly occupied. We now consider the generalization of these 

results to other types of wavefunctions. Instead of taking, as our 

starting point, the closed- shell Hartree- Fock solution, let us 

consider a wavefunction of the form 

where 0 11 O2 , ••• ,on represent the doubly-occupied "first shell" 

orbitals which may be transformed among themselves without 

altering t/ll- The function f depends upon the spin state or other 

characteristic of t/lH but it is assumed that 0 ,0 2' - - -, ON cannot n+l n+ 
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be mixed with 011 O2 , "', 0 without changing the total wavefunction. n 

It is also assumed that the former are orthogonal to the latter. We 

wish to split one of the doubly-occupied orbitals, say 01' into a GVB­

like pair, and to retain the simplifications involved in the closed-shell 

PGVB method, we must require that 0n+1' "', ON remain frozen, 

that the first natural orbital be a normalized linear combination of 

the first-shell orbitals and that the second natural orbital be a 

normalized linear combination of the "virtuals", that is a set of 

functions orthogonal to 01 through ON' The first assumption implies 

that we may treat the non-doubly-occupied orbitals as a fixed "core" 

which has a particular core energy and which adds a fixed-field term 

to the one-electron operator of the doubly-occupied orbitals and 

virtuals. We may carry out the PGVB analysis exactly as before, 
'" the only modification being that the one-electron portion, h, of the 

hamiltonian for these orbitals is replaced by 

(LXXX) 

where h(oi) is the field term due to 0t To consider a concrete 

example, let us suppose that the wavefunction of (LXXIX) represents 

an open-shell Hartree-Fock solution of spin state 2S+1, in which 

0n+1' .. " 0n+S are singly-occupied orbitals which all have the same 

spin. In this case, each singly-occupied orbital 0i adds a term of 
'" '" 
J i-Ki to h' (42), so we have 
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fi' = h + j n+1 + J n+2 + ... 
A 

+ I n+S 

... 
- K n+1 - K n+2 

(LXXXI) 

Another important case is the one in which the last (N-n)/2 

pairs are split into first and second NO's. In this case we may write 

( - - ) o ... 0 0 = f 0n+1' n+1' 'N' N ( - - ) o 0 +c 0 0 cn+1 n+1 n+1 n+2 n+2 n+2 

x (c 0 -0 + c .0 0 ) n+3 n+3 n+3 n+4 n+4 n+4 

and it can be shown (43) that 

N 
... .... ~ 2'" ... 
h' = h + LJ c.(2J. - K.) . 1 1 1 1 

(LXXXIII) 
1=n+ 

Thus, if we want to investigate several pairs simultaneously within 

a particular molecule, we may split the first pair using the PGVB 

technique outlined above, modify h according to (LXXXIII) and split· 

a second pair in this new field while fixing the first and holding it 

orthogonal to the second. This procedure has the drawback that it 

does not allow the first PGVB pair to readjust as the second is split, 

so the pairs thus obtained are only approximate PGVB solutions. 

We have written a FORTRAN IV program to carry out the 

calculations necessary for this approximate PGVB method. It uses, 

as its starting point, a converged HF solution, and it has options for 



150 

"freezing" any canonical orbitals and for splitting a number of pairs 

sequentially as described in the above paragraph. The first option is 

useful when, for example, open-shell or core orbitals are to be 

excluded from the PGVB solution orbitals. The second option can be 

used to test the effect of splitting one pair upon the solution of another, 

and as will be discussed below, it provides the only means of obtaining 

reasonable lone pairs in difluoromethane. 

We now discuss the results we have obtained for CH2 F2 • The 

appropriate HF calculations have been described in the first chapter, 

which includes a description of the double-zeta basis set we have used. 

The starting guesses for the first and second NO's were derived, in 

most cases, from either the LMO's or from closely related PGVB 

solutions, and in all cases, sufficient SCF iterations were undertaken 

so that the sum of the squares of the changes in the elements of the 

-8 
~ and b vectors was less than 10 from one cycle to the next (this 

leads to energy convergence well beyond the sixth decimal place). 

Unless otherwise noted, the quadratic PGVB method was used, and 

the solutions correspond to the splitting of a single orbital from the 

HF solution to give a true local minimum in AE. 

We consider first our HF equilibrium geometry of difluoro­

methane (see Chapter 1). The purposes here are two: First, we 

wish to gain a more detailed picture of the electronic structure of the 

molecule by examining the VB-like orbitals (hereafter called "the VB 
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orbitals""') which make up each pair; second, we hope to obtain an 

approximate set of naturally localized MO's (NLMO's) to assist us in 

the interpretation of the HF wavefunction just as the LMO's did. 

Initially, the core pairs were considered. Splitting energies 

of -12.2 and -12.5 mh were obtained for C and F, respectively_ 

The first NO for the carbon core pair gives an overlap of 0.97 with 

the canonical carbon core, while the analogous value for fluorine is 

0.95. The VB orbitals for each pair overlap strongly (S = .98 for 

fluorine, .97 for carbon), indicating that each core may be viewed 

as basically a doubly-occupied orbital. 

The C- F bonding orbital was the next to be considered, and 

in this case, a direct comparison between the GVB and PGVB 

methods was made. The PGVB solution gives a CI energy lowering 

of 24. 1 mh, the greatest of any pair in the molecule. The converged 

PGVB vectors were used as the starting point for a full, one-pair 

GVB calculation which was done with the CIT GVB program written 

by Drs. W. J. Hunt and P. J. Hay. The GVB solution gives an 

energy which is 24.6 mh below the HF value, only 0.5 mh lower than 

the PGVB energy. Thus, constraining the first NO of this pair to be 

a linear combination of HF orbitals increases the molecular energy 

by only 0.5 mh, a small amount indeed. The first and second PGVB 

* We note that this term, ''VB orbitals", is usually reserved 

for purely atom-centered VB orbitals, not variationally optimized 

GVB or PGVB orbitals. We use the term here for conciseness. 
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NO's both show overlaps of 0.9998 with their GVB counterparts, while 

the full, many-electron wavefunctions have an overlap of 0.99973. 

Thus, it is clear that the PGVB method is a very good approximation 

to the GVB technique in this case, and we should point out that the 

former requires about 1/3 as much time per cycle of refinement. 

We have also tested the assumption that the core pairs can be 

neglected in the splitting of the C-F pair. We have carried out a 

PGVB calculation in which the canonical HF cores (which we found, 

above, to be quite similar to the PGVB cores) were "frozen", that is, 

not allowed to participate in the description of the first NO. We find 

that the CI energy lowering and NO coefficients differ negligibly from 

those in the unfrozen case. In view of the fact that neglecting the 

cores simplifies the calculations slightly, we have frozen the cores 

in all subsequent calculations. 

Figure 7 shows the orbital amplitude plots of the first NO of 

the C-F bond pair (cores frozen) and, for comparison, the corres­

ponding LMO. The two are qualitatively Similar, though we note that 

the LMO contains less p-character on both bonded atoms, and a lower 

amplitude on the non-bonded fluorine. The NO may be analyzed in 

terms of C and F hybrids just as the LMO was (see section B). The 

F hybrid contains 98.6% p-character and is directed only 0.2° away 

from the C-Faxis, pointing slightly to the inside of the F-C-F 

triangle. The analogous hybrid of the LMO has only 85. 1 % p- character, 

deviating in the same direction, but by about 1 0, from the C - Faxis . 
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The C hybrid of the NO has 85. 1 % p-character (Sp5. 72) as compared 
2 82 

to the LMO value of 73. 8% (sp· ). If we construct another NO (for 

the other C-F bond) by simply reflecting this one through the H-C-H 

plane, then we find that the average angle between the C hybrids of 

the two is 95.6° (inner and outer contributions of 98. 1 ° and 88.2°). 

This is somewhat less than the corresponding LMO value of 99. 5 ° 

(inner and outer contributions of 101. 4° and 93.6°) which, in turn, 

is smaller than the actual F-C-F angle (109.0°). 

The structure of the C-F bonding pair may be seen in more 

detail if we look at the VB orbitals which contribute to it, plots of 

which are included in Figure 7. One of these is essentially a pure p 

orbital on fluorine (95.7% p-character) which deviates, in its average 

direction, by only 0.3° from the C-Faxis. The other is shared 

almost equally by the two atoms. The F hybrid of this shared pair 

has 99.7% p-character and lies right along the C-Faxis, while the 

C hybrid has 77.6% p-character (Sp3.46) and gives an average angle of 

97.4° (inner and outer contributions of 99.3° and 91. 4°) between itself 

and a symmetrically related hybrid for the other C-F bond. 

Figure 8 shows the GVB orbital amplitude plots for one of the 

two C-F bond pairs in CF2 (singlet ground state, geometry nearly 

optimum) obtained by Dunning (44) using a high-quality double-zeta 

basis set. Only the two C-F bonds and the non-bonding C pair were 

split in this calculation. We note a marked similarity between these 

GVB orbitals and the ones we have obtained for the C-F bond in C~F2. 
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in d.i.fluoroca:rhenc (singlet,---__ 
ground state, nearly opti-
mum geometry) obtained by 
DunninG (44) usj,nc; a high­
qual.ity double-zeta basis. 
The dotted, dashed and 
solid lines represent nega­
tive, zero Rnd positive 
contourf:l, rel:Jpoctively. 
The interval between 
contours is 0.05 a.u. 

F :!1~t:t;T ~_..:!_!.!. ( 
The doubly-occupied un-
split) lone pairs for one 
fl nor inc in difluoro CDX­

bene (singlet ground state, 
nearly optimum geometry) 
obta.tned by:Uunning (44·). 
See figure 8 for contour 
values. 
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The C-H bonding orbital of CH2 F 2 was the next to be considered. 

It gives a splitting energy of -16.4 mho To test the assumption that 

the splitting of one valence pair does not greatly influence the splitting 

of other valence pairs, we have carried out a PGVB calculation in 

which the C-H bond pair was split in the field of the above C-F pair, 

and we find in this case that the C-H splitting energy increases by 

only 0.8 mh to -15.7 mho The orbitals are quite similar in the two 

cases, giving overlaps of 0.995 between corresponding first NO's, 

0.994 between corresponding second NO's. The C-H pairfunctions 

from the two cases show a two-electron overlap of 0.990. Thus, the 

assumption appears to be a good one. 

Considering the unconstrained C-H solution, Figure 9 shows 

the first NO of the pair in comparison with the corresponding LMO. 

The two appear to be quite similar, but again the LMO shows less p­

character on the carbon. The C hybrid of the NO has 66.3% p­

character (spI. 97) as compared to the LMO value of 57.2% (spi. 34). 

The average angle between this hybrid and the C hybrid of "the other" 

C-H bond's first NO is 123.7° (inner and outer contributions of 

124.8° and 122.0°), a few degrees larger than the analogous LMO 

value of 117.7° (inner and outer contributions of 119.0° and 115.8°), 

which in turn is larger than the actual H-C-H angle (112.2°). 

Figure 9 also shows the GVB orbitals which make up the C-H 

pair. One of these is essentially a hydrogen 1s function with a small 

contribution from the carbon. The other is nearly a pure C-centered 

lobe, the C hybrid of which contains 60.7% p-character (Sp I.55). 
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This hybrid gives an average angle of 123.0 0 (inner and outer contri­

butions of 123.6 0 and 121. 6 0
) between itself and a symmetrically 

related hybrid for the other C-H bond. 

The lone pair which lies in the F-C-F plane was investigated 

next. Initial attempts to obtain this pair using the linear PGVB 

method failed because apparently there is no local minimum in ~E 

corresponding to this pair. Upon each SCF cycle, the pair rotated a 

little further toward the C-Faxis and aquired a bit more C-F bonding 

character until finally it became a C-F bonding pair. It seems that 

the C- F pair has such a large splitting energy that it overshadows 

other local features of the ~E variation, and the lone pairs are thus 

not directly obtainable. The quadratic PGVB method does yield a 

solution, but this corresponds to a saddle-point solution (one negative 

eigenvalue in the D matrix of LXXVII), and the physical meaning of 

such a solution is difficult to assess. It was found necessary, then, 

to hold the lone pair orthogonal to the C - F bond pair (which it "wants" 

to become) by splitting the former in the field of the latter. This 

process yields a reasonable lone pair with a splitting energy of -11. 1 

mh, 1. 3 mh below the splitting energy of a 2p lone pair on an isolated 

fluorine atom with the same basis set. 

Figure 10 shows the orbital amplitude plot, in the F-C-F 

plane, of the first NO of this pair, together with the corresponding 

LMO for comparison. We see that the NO is nearly a pure p orbital 

on fluorine which does show a slight bit of "smearing" toward carbon, 

though this effect is more pronounced in the LMO. We see also that 
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the NO shows a greater admixture of "C-F other" anti-bonding 

character than the LMO does. A population analysis of the F hybrid 

of the NO gives a hybridization of Sp5. 7 (85.2% p-character) and an 

average angle with the C-Faxis of 94.5° as compared to the LMO 

values of Sp2. 35 (70.2% p-character) and 111. 8°. Here, as in all 

lone pairs which we will consider, the VB orbitals which make up the 

pair are quite similar in hybridization and direction to the NO, but 

one is smaller (greater contribution from the inner orbitals of the 

double-zeta set) and one is larger (greater contribution from the outer 

orbitals) than the NO. Figure 10 includes plots of these, and we see 

that the outer GVB orbital appears to be delocalized in a bonding 

fashion toward carbon. Goddard and co-workers (45) have observed 

a similar but more pronounced lone-pair delocalization in the 211 and 

4~_ states of the C-F molecule. Dunning (44) has found, in the 

above-mentioned calculations on the Singlet state of CF2, a delocali­

zation of the (unsplit) lone-pair orbitals which lie in the F-C-F plane 

and which correspond to our solution for CH2F2. Figure 11 shows a 

plot of one of these CF2 lone-pair orbitals, and we see that again the 

effect is more pronounced than in CH2F2. 

The search for the lone pairs which are out of the F-C-F 

plane met with the same sort of difficulties that the in-plane solution 

did. In this case, freezing the C-F bond pair was not sufficient 

because the out-of-plane pair "wants" to become not only the C-F 

bond but also the in-plane pair (both of which have more negative 

splitting energies). Thus, to obtain a solution corresponding to a 
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local minimum, it was necessary to freeze both of these other pairs. 

The first NO of this pair contains a great deal of p-character (82.5%, 

corresponding to Sp4.75 hybridization) and is nearly perpendicular to 

the C-Faxis (average angle = 84.7°) and the F-C-F plane (average 

angle = 78.0°). This solution is, however, difficult to accept as a 

reasonable one. To see this, we recall that the first NO's for the 

C-F bond pair and in-plane lone pair are both, as far as fluorine is 

concerned, nearly pure p orbitals. Based on the usual hybridization 

arguments, which we found to apply rather well to the F-centered 

LMO's (see section B), we thus have roughly one 2s and one 2p 

orbital "left over" to describe the first NO's of the remaining two 

lone pairs. Now, the F-C-F plane is a symmetry element for the 

molecule, and we expect the exact, fully split PGVB wavefunction to 

describe each fluorine as having some well-defined symmetry with 

respect to this plane. The "left over" orbitals may be combined in 

two ways to yield such symmetry: a) one pure 2p orbital perpendicular 

to the F-C-F plane and one 2s orbital in the plane; or b) two sp­

hybridized lobes extending to either side of the plane. However, the 

first NO of the pair we are conSidering corresponds to neither of these 

two cases: It is far from sp hybridization and, in fact, gives an overlap 

of -.60 with a similar orbital reflected through the F-C-F plane; 

neither is it a pure out-of-plane 2p orbital. It most closely resembles 

the latter, though, so we decided that it was most realistic to search 

for a lone pair which was antisymmetric with respect to the F-C-F 

plane. The solution might not correspond to a true local minimum in 
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6.E, but the resulting set of lone pairs would have the right symmetry, 

and would have the same general structure as the F lone pairs found 

by Goddard and co-workers (45) in the CF molecule. As will be 

discussed below, this lone-pair structure is, in fact, not appropriate 

for CH2 F 2' Possibility b), above, is actually better than a), but the 

necessity for considering a) first will become apparent. 

Thus, we considered next the 2p-like lone pair perpendicular 

to the F-C-F plane. The pair was split in the field of the C-F bond 

pair and in-plane lone pair, with starting guesses derived from the 

above out-of-plane solution. The quadratic PGVB method rapidly 

converged upon a saddle-point solution, which is as expected because 

the splitting energy of this pair (-10. 3 mh) is slightly higher than that 

of the ''best'' out-of-plane solution discussed above (-10. 8 mh). 

Figure 12 shows the amplitude plot for the first NO of this pair in the 

plane which contains the C-Faxis and is perpendicular to the F-C-F 

plane. We see that it is almost exactly a pure fluorine 2p orbital 

which shows little bonding delocalization toward carbon. Also shown 

are the VB orbitals which make up the pair, and we see that here, 

in contrast to the in-plane pair, the outer VB orbital does not show 

any of this C-F bonding delocalization. Figure 11b shows the 

analogous (unsplit) pair in CF 2, where we see a substantial amount of 

such delocalization. 

The only remaining lone pair is the 2s-like one. starting 

guesses for the first and second NO's were derived from the plus and 

minus linear combinations of the outer two s-type AO's on fluorine. 
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Figure 12. 
The F lone pair in 
difluoromethane which 
is perpendicular to 
the F-C-F plane (eq. 
geom.). See Figure 1 
for contour values. 

a) The first NO of the PGVB pair. 

b) The smaller VB orbital. c) The larger VB orbital. 



164 

This pair was split in the fields of the C-F bond pair, in-plane lone 

pair and 2p-like lone pair so that the final set of four pairfunctions 

would be mutually orthogonal. The converged solution has a splitting 

energy of -5.678 mho A plot of the first NO in the F-C-F plane is 

shown in Figure 13. A population of the F hybrid of this NO yields a 

value of only 16.8% p-character (spo. 20), and the average angle 

between the positive lobe of the pair and the C-Faxis is 116.5°. 

Figure 13 also shows the VB orbitals for the pair, and we see little 

tendency for either to delocalize in a bonding fashion toward carbon. 

We now reconsider the question of the general lone-pair 

structure in difluoromethane. So far, we have investigated one possible 

lone-pair set which conforms to the molecular symmetry, but as noted 

above, there is another possibility: Instead of one 2s-like pair and one 

out-of-plane 2p pair, we may have two symmetrically related, and 

nearly sp-hybridized, pairs extending above and below the F-C-F 

plane. In searching for such a solUtion, though, we are faced with the 

problem that the one-pair PGVB approach has no means of treating, 

in a consistent fashion, the simultaneous splitting of two such symmet-

rically related pairs. If we attempt to solve for just one of these, 

we obtain the ''best'' out-of-plane pair discussed above, which has far 

too much p- character, and consequently far too large an overlap with 

its symmetrically related counterpart, to give a reasonable lone-pair 

description. The only alternative we see is to assume that the two 

sp-like pairs are well apprOXimated by the appropriate linear 

combinations of the 2s-like and out-of-plane 2p orbitals which we 
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have already obtained. This is analogous to forming atomic sp 

hybrids from one s and one p function, but in our case the "basis 

functions" are PGVB pairs rather than AO's. Thus, we have formed 

the normalized sum and difference of the first NO's of these "basis" 

pairs to obtain two new NO's corresponding to the desired lone-pair 

structure. The second NO's were treated similarly, and after 

optimization of the CI coefficients, these new pairs each gave a 

splitting energy of -9.85 mh, or -19. 7 mh for the two. This is 3. 7 

mh below the sum of the ~E 's for the 2s-like pair (-5. 7 mh) and the 

out-of-plane 2p pair (-10.3 mh), which is actually rather remarkable 

when we consider that these sp-like pairs have not been variationally 

optimized. The indication is, then, that the "2p-2s" lone-pair 

structure is definitely inferior to the "sp-sp" description. 

We are not in a position to simultaneously optimize these sp 

pairs, but at least we can freeze one of the "constructed" pairs and 

solve for the second in the first pair's field (the C-F bond pair and 

in-plane lone pair being fixed also). This process improved the 

splitting energy of the second pair by only O. 1 mh and gave a solution 

quite similar to the initial guess (two-electron overlap = O. 99994), 

with most of the differences appearing in the second NO's (overlap = 

0.9974). The first NO of this optimized pair is an F-centered 

function with spI. 35 hybridization (57.4% p-character). Its average 

direction is such that it makes an angle of 100.0° with the C-Faxis, 

109.4° with the in-plane lone pair and 135.0° with its own symmetri­

cally related counterpart. This pair, together with its counterpart, 
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will be taken as good approximations to the actual out-of-plane lone 

pairs in all subsequent work. 

Figure 14 shows plots, in the plane which contains both the 

C-Faxis and the lone pair itself, of the first NO and the VB orbitals 

for the pair. The outer VB orbital is the only one which even hints 

of a C-F bonding delocalization, but the effect is by no means 

pronounced. 

So far, we have considered only a portion of the molecule; 

one C-H bond and the C-F bond pair and F lone pairs associated with 

one fluorine. By suitably reflecting these orbitals through the H-C-H 

or F-C-F planes, we may generate an approximate, complete PGVB 

description of the valence shell of the molecule. The resulting set of 

first NO's, together with the canonical cores are hopefully similar to 

the set of naturally localized MO's (NLMO's) which we are ultimately 

seeking. However, these NLMO's are supposed to be orthogonal, and 

we have found bat the first NO's, as obtained above, show some non­

negligible overlaps, the largest (0.20) occurring between the two C-H 

bonding NO's. In order to obtain properly orthogonal approximations 

to the NLMO's, we have symmetrically orthogonalized the "raw" set. 

The approximation may be a rough one, but at least we have managed 

to obtain localized orbitals which are tied in some fashion to a 

physically meaningful criterion. We seek now to apply the tools of 

delocalization energy analysis and population analysis used in the 

previous section to investigate the NLMO description of the HF 

wavefunction of difluoromethane. 
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Table 6 gives the delocalization energies of the NLMO's, which 

are analogous to the LMO values given in Table 1. We see that the 

total DE for the NLMO's is substantially smaller than the LMO value, 

and in fact, the truncated NLMO's represent the best bond functions 

we have yet obtained for this molecule. The core NLMO's are seen 

to have much smaller DE's than their LMO counterparts, which traces 

to the fact that we have taken the former to be the well-localized 

canonical cores. The bonding pairs show very similar values between 

the two descriptions, while the total lone-pair contribution has dropped 

by almost a factor of two in the NLMO case. We see that the lone pair 

NLMO in the F-C-F plane has by far the greatest DE, followed by the 

out-of-plane pair. Once again, we draw the conclusion that lone-pair 

delocalization is an important stabilizing factor in the difluoromethane 

molecule, and that this delocalization is more efficient when the lone 

pair opposes a C-F bond than when it does not. 

We may define NLO's (which are partially corrected for the 

effects of orthogonality) from the NLMO's just as we did from the 

LMO's (see equation XXIV). Table 6 includes the DE's for these, 

and we see that the only major differences between these and the 

NLMO values appear as lower DE's for the bonding orbitals. We note 

that, for both sets in Table 6, the non-additivity is substantial. 

Table 7 gives the gross and overlap populations for the various 

NLMO's, for groups thereof and for the entire HF wave function. 

This is analogous to Table 2, which gives the populations for the 

LMO's. The core and bond pairs show an excellent parallel between 
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Table 6. Delocalization Energies for the Naturally 
Localized Orbitals of Difluoromethane. 

Orbital Number Delocalization energy (mh) 
From truncated Hrom TNLO's de-

NL!.~O I s fined~ ~'JLMO' s 
Sum over Sum over 

Per related Per related 
orbital orbitals orbital orbitals 

All 13 68.92a 62.08a 

F core 2 0.47 0.93 0.40 0.81 

C core 1 0.24 0.24 0.37 0.37 

C-F bond 2 2.41 4.82 0.72 1.44 

C-H bond 2 6.88 13.75 5.25 10.51 

F lone pair 2 14.32 28.63 14.05 28.11 in F-C-F plane 

F lone pair 4 7.39 29.57 7.07 28.28 out of plane 
sum = 77.95b sum = 69.51 b 

c -7.43c error = -9 •. 03 error = 

aActual total DE. 

bSum of individual orbital DE's. 

cNon-additivity error, the difference of the above. 

the two descriptions, the only significant difference being that 

the C-F bonding NLMO gives a much lower C-F OP than the 

corresponding LMO does. There is also a good parallel between 
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the LMO and NLMO lone pairs which lie in the F-C-F plane except 

that the NLMO shows substantially more C-F bonding character than 

the LMO. The parallel between the out-of-plane pairs is fairly good, 

though the relative magnitudes of several of the populations differ 

between the NLMO and the LMO. The total lone pair groups compare 

very favorably between the two descriptions, except that the NLMO 

set gives a larger bonding contribution to the C-F OP's. 

Thus, the population analysis of the NLMO's supports the 

conclusions drawn in the previous section that the fluorine lone-pair 

delocalization "strengthens" the C-F bonds, "weakens" the C-H 

bonds and causes a charge-transfer from the fluorines to the carbon. 

To complete our investigation of the electronic structure of 

difluoromethane, we now consider the changes which take place in 

the PGVB orbitals as the F-C-F angle is increased and decreased 

by 30° from its equilibrium value. We will not analyze the wave­

functions in the same detail we used in the equilibrium case, but 

rather we will concentrate upon the bonding pairs only. For each 

distorted geometry, the C-F and C-H bonds were split independently, 

with the canonical cores frozen as they were in the equilibrium 

geometry. The splitting energies for these pairs proved to vary only 

modestly as functions of the F-C-F angle. For the C-F bond pair, 

the aE values are -25.4, -24. 1 and -25.3 mh for the -30°, 0° and 

+30 ° distortions, respectively, while the corresponding values for 

the C-H bond pair are -16.3, -16.5 and -16. 7 mho 
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Figure 15 shows the first NO and the VB orbitals for the C-F 

bond pair in the three geometries, and Figure 16 gives the analogous 

plots for the C-H bond pair. The latter shows rather small changes, 

most of which involve the "other H" contribution to the pair. The 

C-F pair, on the other hand, shows substantial bond-bending effects, 

and we note here, in both the first NO and the VB orbitals, the same 

sort of fluorine "pivoting" about a relatively static carbon hybrid 

which we found in the LMO's (see Figure 6). 

To make a more quantitative comparison, we may analyze 

these orbitals in terms of hybridization and direction just as we did 

the LMO's (see Table 4). Table 8 presents such analyses for the C 

and F hybrids of the first NO and "shared" VB orbital in the C-F 

pair, for the F hybrid of the F - centered VB orbital in this pair, and 

for the C hybrids of the first NO and C-centered VB orbital in the 

C-H pair. We see by examining these values that the conclusions 

we drew in the analysis of the LMO's apply well here: The C-H 

orbitals show relatively little change as the F-C-F angle is altered; 

the C- F orbitals show a pivoting of the fluorine hybrids while the 

carbon hybrids tend not to follow the fluorines, but rather to move in 

the opposite direction. We have not obtained the lone pairs for the 

distorted geometries, so we cannot verify that the fluorines move as 

rigid units, but at least we see that the PGVB orbitals, like the 

LMO's, tend to discount the concept of "orbital following" in the 

F - C- F angle variation. 
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Table 8. Geometry Variation of Difluoromethane: 

Orbital 

C-H bond, 
first NO 

C-H bond, 
C-centered 
VB orbital 

C-F bond, 
first NO 

C-F bond, 
shared 
VB orbital 

C-F bond, 
F-centered 
VB orbital 

Hybrid Analysis of the Bonding PGVB Orbitals. 

F-C-}<' 
angl e __ -"9--.a____ __«t.:.-b_ 

Hybridizationc 

C hybrid F hybrid 

2.0(67%) 79° 125°(126°,122°) 

109° 124°(125°,122°) 

139° 122°(124°,119°) 

79° 125°(125°,123°) 

109° 123°(124°,122°) 

139 120°(122°,116°) 

107°(100°,122°) 

96 0
( 98°, 88°) 

81 ° ( 98 0 , 37°) 

106°(101°,118°) 

97 0
( 99°, 91°) 

86° ( 99°, 52°) 

2.0(66%) 

2.1 (681~) 

1.6(61r~) 

1.6(611) 

1.6(62%) 

-10.2° 5.5(85%) 

o • 2 ° 5. 7 ( 8 5% ) 

11 • 2 ° 4. 8 ( 8 3~~ ) 

-9.8° 3.6(7810) 

0.0° 3.5(78%) 

11.3° 2.9(74%) 

d (100%) 

d (99'f~) 

d (99%) 

d (98%) 

d (100%) 

d (100%) 

d (97%) 

d (96%) 

d (96%) 

a This is the angle between the C hybrid of the orbital and 
the similar hybrid of the symmetrically related bond pair. 
The value given is based on the average hybrid direction 
as defined in section B. In parentheses are, respec-

tively, the inner and outer p-contributions to this angle. 

bThis is the average an~le between the F ~Qrid of the 
orbital and the C-Fax~s. See p. 118 ror s~gn convention. 

cThe "x" in "spx." Parentheses contain the % p-character. 

d Greater than 10.0. 



177 

D. Summary 

The following eight points summarize the major topics 

covered in this chapter: 

1) A quadratically convergent approach to molecular orbital 

localization using the Edmiston-Ruedenberg criterion 

has been developed and has been shown to work satis­

factorily for difluoromethane, which gives very slow 

convergence using the usual two-by-two rotation method. 

2) An analysis of the localized molecular orbitals for the 

equilibrium geometry of difluoromethane indicat es that 

the fluorine lone pairs are delocalized in a bonding 

fashion toward carbon, that this delocalization represents 

a strong stabilizing influence in the molecule, and that 

this delocalization is most efficient for those lone pairs 

which lie in the F-C-F plane. These effects may 

represent the MO equivalent of the "double bond-no bond" 

resonance of VB theory. 

3) The LMO changes which result from the distortion of 

the F-C-F angle in difluoromethane tend to discount the 

concept of "orbital following" on the part of carbon. 

Rather, each fluorine atom appears to "pivot" to maintain 

high bonding overlap with a relatively static carbon hybrid. 
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4) The Hartree-Fock projected GVB (PGVB) method for 

splitting one doubly-occupied orbital into a VB-like pair 

of (optimized) orbitals has been developed in both linearly 

and quadratically convergent forms. It has been shown 

to be a very good approximation to the GVB method 

(though much less time-consuming) in the splitting of the 

C-F bonding pair of difluoromethane (equilibrium 

geometry). 

5) It has been shown that the PGVB solution for the above 

C - F bond pair is insensitive to the "freezing" of the 

canonical Hartree-Fock core orbitals. Also, it has been 

shown that, in the equilibrium geometry of difluoro­

methane, splitting the C-F bond pair using the PGVB 

method has little influence upon the optimum C-H bond 

pair. 

6) The one-pair PGVB method has been used to give a 

detailed picture of the electronic structure of each of 

the unique electron pairs in the equilibrium geometry of 

difluoromethane. 

7) The PGVB method has led to an apprOXimate set of 

naturally localized molecular orbitals which are similar 

to the LMO's but are tied to a phYSically meaningful 

localization criterion. An analysis of these orbitals 

supports conclusion 2), above, drawn from the LMO's. 
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8) An analysis of the PGVB solutions for the C-F and C-H 

bond pairs for the geometries of difluoromethane in 

which the F-C-F angle is distorted supports conclusion 

3), above, drawn from the LMO's. 
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