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Abstract

In this thesis, a circuit-level theory of energy-delay complexity is developed for asyn-
chronous circuits. The energy-delay efficiency of a circuit is characterized using the
metric £1", where E is the energy consumed by the computation, ¢ is the delay of
the computation, and n is a positive number that reflects a chosen trade-off between
energy and delay. Based on theoretical and experimental evidence, it is argued that
for a circuit optimized for minimal £t", the consumed energy is independent, in first
approximation, of the types of gates (NAND, NOR, etc.) used by the circuit and is
solely dependent on n and the total amount of wiring capacitance switched during
computation. Conversely, the circuit speed is independent, in first approximation, of

the wiring capacitance and depends only on n and the types of gates used.

The complexity model allows us to compare the energy-delay efficiency of two
circuits implementing the same computation. On the other hand, the complexity
model itself does not say much about the actual transistor sizes that achieve the
optimum. For this reason, the problem of transistor sizing of circuits optimized for
Et™ is investigated, as well. A set of analytical formulas that closely approximate the
optimal transistor sizes are explored. An efficient iteration procedure that can further
improve the original analytical solution is then studied. Based on these results, a novel

transistor-sizing algorithm for energy-delay efficiency is introduced.

It is shown that the F't" mctric for the energy-delay efficiency index n > 0 charac-
terizes any optimal trade-off between the energy and the delay of a computation. For
example, any problem of minimizing the energy of a system for a given target delay
can be restated as minimizing Et" for a certain n. The notion of minimum-energy

function is developed and applied to the parallel and sequential composition of cir-



Vi
cuits in general and, in particular, to circuits optimized through transistor sizing and
voltage scaling. Bounds on the energy and delay of the optimized circuits are com-
puted, and necessary and sufficient conditions are given under which these bounds are
reached. Necessary and sufficient conditions are also given under which components
of a design can be optimized independently so as to yield a global optimum when
composed. Through these applications, the utility of the minimum-energy function is
demonstrated. The use of this minimum-energy function yields practical insight into

ways of improving the overall energy-delay efficiency of circuits.
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Chapter 1

Introduction

1.1 Motivation and Goals

One of the main motivations for originally introducing CMOS technology was its low
power consumption. CMOS circuits were the first digital components that did not
consume static power. Power was only consumed when the circuits were operating.
By using CMOS, it was believed that the power-consumption problem was solved.
Since then, both the speed and the complexity of digital circuits have increased ex-
ponentially. As a consequence, power is often the limit to circuit size or speed.

Power consumption has become a major concern in VLSI design for several rea-
sons. First, it is hard to supplv integrated circuits with substantial amounts of cur-
rent. Providing enough current to the chip requires many dedicated pins that increase
both the size and the cost of the design. Second, it is hard to extract the heat re-
sulting from the power dissipation of the integrated circuit. Hot chips require not
only costly cooling devices but possibly also more expensive packages. Third, today’s
widespread portable digital devices have available limited amount of energy. While
power consumption can be traded for operating frequency, the total available energy,
i.e., the power-delay product, remains limited. Improvements in battery technology
are easily offset by the increasing complexity and performance of these devices. As a
consequence, without proper attention to power management, the historical perfor-
mance trend in CMOS VLSI design is not sustainable.

To help find methods that alleviate power consumption on the architectural /micro-
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architectural level, we first need a metric that allows us to compare two designs to see
which is more efficient. The obvious choice for a low-power metric is the consumed
power itself. However, this metric has a serious flaw. Given that energy is consumed
mostly when circuit gates switch their outputs, one can always reduce the power by
reducing the operating frequency, which is not a useful result.

An alternative metric could be the consumed energy, also called power-delay prod-
uct, per operation. While this metric does not depend directly on the operating
frequency, reducing the supply voltage reduces the required energy per operation.
However, the lower supply voltage dramatically increases the delay of the operation,
as well. As a consequence, the lowest-energy solution will also run very slowly.

To avoid these problems we need a metric that combines both the energy and
the delay of the computation. Such a metric will help us optimize a VLSI system
for energy-delay efficiency at several levels: architecture, circuit implementation, or
physical realization. The goal of this work is to focus on the circuit implementation
and to develop a circuit-level theory of energy-delay complezity. This theory will allow
us to make accurate estimates of circuit performance and will facilitate a compari-
son of circuit-design choices at an alkstract level, without going through the costly
implementation steps of transistor sizing, layout, and electrical simulation.

Asynchronous circnits are particularly well fitted for energy-delay efficient design,
since they are fast and use little energy. Asynchronous circuits do not use clocks.
Communication and synchronization among circuit blocks are implemented by hand-
shake protocols. The particular type of asynchronous circuits we are interested in are
called quasi delay-insensitive, or QDI [30]. QDI circuits use no timing assumptions
on the delays of the operators and wires, with the exception of some forks, called
1sochronic forks, in which the delays on the different branches of the fork are assumed
to be similar. QDI circuits are the most conservative asynchronous circuits in terms
of the use of delays. As a consequence, they are also the most robust to physical
parameter variations. QDI circuits are interesting in the context of energy-delay ef-
ficient design because, first, they are inherently energy efficient owing to the absence

of a global clock, locality of activity, automatic shutoff of inactive parts, absence
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of spurious transitions (glitches); and second, they exhibit an average-case delay of
operation, as opposed to the worst-case delay experienced in synchronous circuits.
The latter property eliminates timing margins and superfluous synchronizations and

allows the circuit to run at its highest speed.

1.2 Contributions of this Thesis

This thesis makes the following contributions:

e [t introduces and motivates a general Ft" metric for energy-delay efficiency.

e It develops an energy-delay complexity model for Et" optimal circuits.

e [t provides a set of transistor-sizing formulas for circuits optimized for energy-
delay efficiency.

e [t introduces the minimum-energy function as an abstract approach to energy-
delay efficiency.

o It applies the concept of uunimum-energy function to system-level design.

1.3 Organization of this Thesis

This thesis is organized as follows. Chapter 2 describes the electrical model used to
characterize the energy consumption and delay of circuits. Chapter 3 introduces an
energy-delay efficiency metric that combines the energy F and the delay ¢ of a com-
putation in the form Et". Chapter 4, defines the energy-delay complexity model for
Et"-optimal circuits. Theoretical and experimental evidence is presented in support
of this complexity model. The same chapter explores a set of analytical formulas
that closely approximate the ontimal transistor sizes of an Et"-optimal circuit. An
efficient iteration procedure that can further improve the original analytical transistor
sizing solution is studied. Based on these results, a novel transistor sizing algorithm
for energy-delay efficiency is introduced. In Chapter 5, it is shown that the Et™ metric
for the energy-delay efficiency index n > 0 characterizes any optimal trade-off between

the energy and the delay of a computation. For example, any problem of minimizing
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the energy of a system for a given target delay can be restated as minimizing Et" for
a certain n. In the same chapter, the notion of minimum-energy function is developed
and applied to the parallel and sequential composition of circuits in general and in
particular to circuits optimized through transistor sizing and voltage scaling. Chap-
ter 6 sums up the main results, makes some concluding remarks about the thesis,
and suggests possible future extensions. Finally, the Appendix presents an energy
estimation method for asynchronous circuits with application to an asynchronous

microprocessor.
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Chapter 2

Energy and Delay in CMOS
Circuits

Our goal is to develop a circuit-level theory of energy-delay complexity. We want to
introduce a theory that enables an abstract view on energy-delay-optimal circuits.
As we will see in the next chapter, energy-delay optimality is defined in terms of the
energy consumption and speed of the circuit. In this chapter, we describe the sources
of energy consumption and delay in CMOS circuits. At the same time, we present

the electrical model we will use to formalize the energy-delay optimization problem.

The most accurate way to compute the energy consumption E and delay ¢ of
a circuit is to solve the characteristic nonlinear equations of each transistor, e.g.,
with hspice [49]. However, this approach is computationally very expensive even for
small circuits. Furthermore, building a simple abstraction of circuit level energy-delay

optimality based on such a complicated model seems impossible.

The increased accuracy of transistor equations does not necessarily yield an in-
creased prediction accuracy about the circuit. This is because more precise equations
rely on a large set of process-dependent parameters that might not be known at the

time of design or might have large variations at fabrication.

The results to be developed in this thesis are intended to be simple and easily
usable by a circuit designer. This way, these results can be applied early on in the
design process to reduce the space he has to search to find the optimal circuit solution.

As a consequence, several simplifying assumptions will be made about the behavior
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of CMOS gates, resulting in a simple mathematical description of circuits.

2.1 Energy Dissipation in CMOS Circuits

CMOS circuits have three main sources of energy dissipation: dynamic currents (due
to the charging and discharging of capacitors), short-circuit currents, and leakage

currents. The total energy dissipated during operation can be written as follows:
E= Edyn(uniu oo Boohynd Eleaka.gﬁ-

In a CMOS logic gate, short-circuit current is present when a direct path from
the power supply to ground exists. In a static CMOS inverter, there is no short-
circuit current flow during the absence of transients on the input; however, during
a transient on the input, there will be a time period during which both the nMOS
and the pMOS transistors will conduct (if Vyq > Vi, + |V, |, where Vg, is the supply
voltage, Vp, and Vr, are the corresponding nMOS and pMOS threshold voltages),
causing a short-circuit current to flow from the power supply to the ground. This
current flows as long as Vy,, < Vi, < Vyg — |V, |, where Vj,, is the voltage on the input
signal.

Veendrick {23] has shown that, under some simplifying assumptions about the
shape of the input signal, the power dissipation of a symmetric inverter (equal gain
factors 3, = B, = B and equal threshold voltages V;,, = =V, = V) with no output
capacitance is

.

B oz 3
Ps hort — T V(,(, - 2Vp) g
short 12( ld ‘T) T

where 7 is the rise and fall time of the input signal and T is the time period on which
the power is measured.

More recently, several researchers [24, 26, 27, 28] have extended Veendrick’s work
to account for carrier velocity saturation and gate-to-drain coupling. While Veen-
drick’s work estimated the maximum <hort-circuit power dissipation to be up to 20%

of the total power consumption, the more recent works place the average short-circuit
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contribution to about 1%. Based on these, for the purpose of this work, we will con-

sider the energy contribution of short-circuit currents zero, i.e., Egpore = 0.

There are two types of leakage currents: reverse-bias diode leakage on the tran-
sistor drains, and sub-threshold leakage through the channel of an “off” device. The
magnitude of these currents is determined by the various fabrication-technology pa-
rameters. Diode leakage occurs when a transistor is turned off, and another active
transistor charges up/down the drain with respect to the bulk potential of the first

transistor. The leakage current is

where i, is the reverse saturation current, V is the diode voltage, ¢ is the electron
charge. k is Boltzmann’s constant and 7T is the temperature [57]. The magnitude of
the sub-threshold current is a function of fabrication technology, device sizing, and is

. (Vgs—V) R
proportional to e* %7, where Vys is the gate-to-source voltage [56].

In the past, energy dissipation due to leakage currents represented a small fraction
of the total energy consumption of a CMOS circuit. In today’s submicron technolo-
gies, the relative importance of leakage currents has increased, particularly in the
case of technologies with lowered threshold voltages targeted for high-speed devices.
On the other hand, in low-power fabrication technologies that keep a relatively high
threshold voltage, leakage currents can still be considered negligible. For the purpose
of this work, we assume a low-power fabrication technology and ignore the energy

contribution of leakage currents, i.e., Ejeqrage = 0.

The largest contribution to the energy consumption of a CMOS circuit is due to
the dynamic currents charging and discharging the capacitive nodes of the circuit.

This energy dissipation has the form

1 .m
Edy'n,a.mic - 5‘/(12(1 Z Cini (21)

=

where Cj is the total capacitance of node #, m is the number of energy consuming
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Figure 2.1: Capacitance of a CMOS circuit node.

nodes, and n; is the transition count of node i during the measured time period.

I have shown that the dynamic energy is responsible for more than 90% of the total
energy consumption of a wide class of CMOS circuits [50], including a two-million-
transistor asynchronous MIPS microprocessor [33]. Other researchers have arrived at
similar conclusions [17, 18, 19, 20]. Therefore, for the purpose of this work, we focus

our attention on the dynamic energy consumption of CMOS circuits.

Assume, without loss of generality, that during the operation of an asynchronous
circuit each of its nodes makes exactly two transitions, i.e., n; = 2 (this is equivalent
to “renaming” or “unrolling” nodes that see more than two transitions and ignoring
the ones that never transition). Based on this assumption, the energy consumption

given by Equation 2.1 can be written as

m

E=V,> C. (2.3)

1=l

As shown in Figure 2.1, the capacitance C; of node i can be written as C; = Cy; +
Cui + Cgi + Cy;, where Cy; is the gate capacitance of the transistors that are driven
by node i, Cy; is the wiring capacitance on node i, Cy; is the source/drain diffusion

capacitance of the logic gates driving node i, and C; is the capacitance due to the
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staticizer in case node i is state holding. Given the relatively small contribution of
Cy; and Cy; to C; [50], for the purpose of this work, we assume for all circuit nodes %

that Cdi =0 and Csi =

There are other capacitive nodes present in the actual circuit. They are mainly
internal nodes of transistor chains. We choose to ignore the energy dissipated in
charging and discharging these internal nodes. We do this because, on the one hand,
their capacitance is usually negligible compared to the other capacitive terms and,
on the other hand, because these internal nodes do not always do full swings between

the power rails.

If we assume node ¢ is driving transistors of minimum length [,,,;, that have total
gate width 3w, then Cy; = Coplyin X w, where the oxide capacitance Coy = €og/tos
with €,, the permittivity of the gate insulator and £,, the thickness of the gate in-
sulator (See Figure 2.2). The minimum-length assumption is reasonable, since there
is usually no reason to set the lengths of transistors in a digital circuit to anything
other than the minimum allowed by the fabrication technology: increasing the length
increases both the resistance and the capacitance and hence worsens both the energy
and delay. Only for special circuits, such as staticizers or pad drivers, devices might
not have minimal length. Let us define p; as the wire capacitance of node 7 normalized
in transistor widths units, i.e., p; = Cyu;i/(Corlimin). With these assumptions, we can

write the total capacitance on node 7 as
Ci = Cgi + C’wi = C{)mlmin<z w + pl) g (23)

With Kg = Coplmin V3, Equation 2.2 becomes

m

E=Kg Z(Z w ~+ pi). (2.4)

i=1

Equation 2.4 expresses, under our assumptions, the total energy consumption of a

CMQS circuit as a function of the transistor widths w and wire parasitics p;.
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source channel l drain

substrate

Figure 2.2: A MOFSET.
2.2 Delay in CMOS Circuits

Delay in a CMOS circuit results from two sources: first, the delay taken by logic
gates to switch their outputs, i.e., to charge or discharge their output capacitance;
and second, the delay taken by signals (waveforms) to propagate through the wires
connecting the logic gates of the circuit. For the purpose of this work, we focus on
the logic gate delays and ignore the propagation delay through wires, by assuming
that wire resistance and time-of-flight are zero.

A CMOS transistor uses the charge on its gate to control the movement of the
charge carriers (electrons or holes) between source and drain through the channel
under the gate (See Figure 2.2). For small drain-to-source voltage Vy,, the time it
takes for a carrier, traveling at an average velocity v, to get through the channel of
length [ is given by [56]

T = —. (2.5)

The velocity v is proportional to the electric field E' driving the carrier:

7

v= gl =y 7”, (2.6)

where the proportionality constant p is the mobility of the charge carrier under the
given electric field in the conducting material of the channel region. Combining

Equations 2.5 and 2.6, we get
[ &

F == = :
v pVas

(2.7)
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Figure 2.3: One transistor driving another transistor.

Equation 2.7 provides, under the stated assumptions, the delay 7 of a one-square
transistor charging or discharging another one-square transistor. Assume now, as
shown in Figure 2.3, that a transistor T1 charges or discharges not only a one-square
transistor but an output load capacitance C;. Let us define the rise time ¢, as the
time it takes for a node to rise from 10% to 90% of its steady-state value and the fall
time ¢; as the time it takes for a node to fall from 90% to 10% of its steady-state
value. When both the linear and the saturation operating regions of a transistor are

taken into consideration, it can be shown that [57]

ok wEE = Mnc,,l.'l;’—", (2.8)
n Vdd n
C; , w
ty = b= with @ = p@,Co=—, 2.9
BpVad = Wy by L

where £ is a constant that dependents on the threshold voltage and the supply voltage
Vdd, tn, 1p are the effective surface mobilities of electrons and holes in the channel.
The length and width of transistor T1 are [,,, w,, in case T1 is an nMOS transistor

(as shown in Figure 2.3) or [,, w, in case T1 is a pMOS transistor.

Based on Equation 2.3, the output load C; has two components: the load due
to the gate capacitances of output transistors such as T2, and the wire capacitance
connecting the source/drain of transistor T1 to the gate of output transistors such as

T2. If we assume that transistor T2, and all other transistors connected to the output
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of T1 have length [ = [,;, and total widths 3w, we can write C; = C,oplpmin S w +
Cozlminpi, where p; is the wire capacitance at node ¢ normalized in transistor widths
units. If we further assume that transistor T1 has length /,, = I, = l;i, Equations 2.8

and 2.9 become

t; = ]X't_z__/{f_ﬂ’i, (2.10)
Wy,
L2 WA p;
ty = Kt =, (2.11)

1
where K; = kiZ,. /(1. Vaq) and p = p,/p, is the ratio of electron mobility to hole
mobility.

The delay of a simple logic gate may be approximated by constructing an “equiv-
alent” inverter [57]. This is an inverter whose pull-down nMOS and pull-up pMOS
transistors have sizes that reflect the effective strength of the real pull-up and pull-
down of the logic gate. If we assume that the resistance of a transistor channel is
inversely proportional to the channel widths, one way to construct the equivalent
inverter is to consider its nMOS and pMOS channel resistance equal to the corre-
sponding sum of channel resistances i the puli-down or pull-up of the original gate.
For example, if a logic gate has a pull-down composed of k,, transistors of widths wp;,
and a pull-up composed of k, transistors of widths w,;, then the equivalent inverter

has the nMOS transistor of widths

w! = 55 e [2.12]
=1 s
and the pMOS transistor of widths
1

=1 g,

If all transistors in the pull-down of a logic gate are assumed to be equal to w,,, and all
transistors in the pull-up of a logic gate are assume to be equal to wy,, Equations 2.12

and 2.13 simplify to
] Wy

W, = — 2.14
w,, P ( )
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w, = 2p. (2.15)

Pk
Using Equations 2.14 and 2.15, Equations 2.10 and 2.11 generalize to simple logic-

gates as

t = Ky =0 TP (2.16)

Wn,

Yow 4 p;
Iy

t, = Kk, (2.17)

where the logic gate driving the output load is assumed to have a pull-down composed
of a chain of k, transistors of identical widths w,, and a pull-up composed of a chain
of k, transistors of identical widths w,. We will also refer to k, and k, as logic-gate
topologies, since they determine the connectivity of the given logic gate to the rest
of the gate network. Further theoretical and experimental evidence in support of

Equations 2.16 and 2.17 can be found in [25, 54].

Another way to determine the k, and k, of a logic gate is through electrical
simulation. One can setup an hspice simulation in which the delay of different length
pull-down and pull-ups is compared with the delay of the pull-down and pull-up of a

single gate for various transistor widths and output loads.

The operation of an asynchronous circuit, i.e., of an asynchronous logic-gate net-
work, can be represented as a directed graph in which each rising and falling transition
of a logic gate has a corresponding vertex and each input of a logic gate has a corre-
sponding edge [7, 8]. The vertex corresponding to the rising transition of a logic-gate
output represents the pull-up of the logic gate, while the vertex corresponding to the
falling transition represents the pull-down of the logic gate. In such a graph, a path
corresponds to the sequence of switched logic-gate outputs in a given execution and
a closed path forms a cycle. What the total delay of a CMOS circuit is, depends
on how delay is measured. If we are interested in a repetitive system, the measure
of delay is the cycle time of the circuit [7], i.e., the time between two consecutive
rising or falling transitions of a given node on the critical cycle. On the other hand,
if we are interested in a non-repetitive system, the measure of delay is latency, i.e.,

the time taken by the circuit from input arrival to output generation. In either case,
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the delay of the logic-gate network is given by the maximum sum of gate delays over
all relevant cycles or paths of the circuit, depending on the chosen measure of delay:

cycle time or latency.

In order to avoid ambiguity between the measure of delay (cycle time or latency),
we will state our results in the context of repetitive systems in which the relevant
measure of delay is cycle time. However, our arguments extend, unless stated other-
wise, to nonrepetitive systems where the measure of delay is latency. The difference
is that instead of analyzing the cycles of a circuit, one has to consider the relevant

paths of the circuit.

In writing the energy consumption and delay equations, we have made several
simplifying assumptions. In particular, we have assumed that all transistors in a
given pull-up/pull-down have the same widths. The great benefit of this assumption
is that it significantly reduces the parameter space. Furthermore, the energy and delay
equations now become posynomsial functions of the transistor widths. A posynomial in
variables w; is a function of the form f(wq, wy, ..., wn_1) = Xocicq ai'wg?wf}...wg{i_ll
where «; > 0. A posynomial problem is the minimization of one posynomial while
simultaneously satisfying a set of upper-bound constraints on other posynomials.
With the substitution w; = €%, a posynomial can be transformed into a convex
function. A convex function has the property that a local minimum must necessarily
be a global minimum. This property greatly simplifies the task of finding energy-

delay-optimal circuits.

Figure 2.4 illustrates a circuit fragment in which a Muller C-element is driving an
inverter. Based on Equation 2.4, the energy consumed in charging and discharging
node ¢ is

E = Kg(Wpout + Wnou + P);

based on Equation 2.16, the time it takes to discharge node 7 is

Wyout + Whout + P .

tr = K,2
i . Wy,
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Figure 2.4: CMOS circuit fragm

and based on Equation 2.17, the time it takes to charge

wpout + Wnout + b
Wy i
I

tr - I(f?

where w,, Wy, Wpout, Wnowr are the corresponding transistor widths and p is the wire

capacitance normalized in tiawistor widths units.

As we will see in Chapter 3, we combine F and ¢ into a single energy-delay effi-
ciency metric. When minimizing such a metric, the technology-dependent constants

K and K, drop out of the optimization. As a consequence, without loss of generality

we assume Krp = K; = 1.

In this context, based on Equations 2.4, 2.16, 2.17, and the argument about the

total circuit delay, we formalize the energy consumption E and delay ¢t of a CMOS

circuit:

wpoul

—iL %amm

ent.

node 7 is

E = Z ( Z w; +pi),

all nodes © all gates j
connected to ¢
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with p; the wire capacitance on node i;

b=  mmw i, (2.19)

all cycles k

tk: = Z ty, (220)

all gates g

of cycle k
with ¢, given by Equation 2.16 or 2.17.

Clearly, a simple transistor mode: like the one just described does not capture all
the details of the nonlinear behavior of transistors. Nor does it capture the issues
related to the specific fabrication technology in which a circuit is eventually im-
plemented. However, based on [55, 56, 57|, we believe that such a simple model still
constitutes a good basis for making relevant predictions about the future performance

of the scrutinized circuit.
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Chapter 3

An Energy-Delay Efficiency Metric

In an ideal world, an energy-delay efficient VLSI computation would have both the
optimal energy consumption E and the optimal delay ¢t. This is never the case in
reality. There exists a trade-off between the speed of the computation and its energy
consumption; i.e., the best energy consumption and the best delay are not achievable
at the same time. For the purpose of this work, we shall combine the two figures of
merit of a computation—F and t—into a single metric. There are many ways E and

t can be combined. In this chapter we look at several of these possibilities.

3.1 The Et? Metric

The first optimization metric that we consider combines energy and delay in a way
that is independent of voltage. It has been argued in [1, 33] that the best such
metric has the form © = Et?. The argument goes as follows. Consider a node 4 of
a circuit having capacitance C;. The energy spent to charge node ¢ is approximately

GV

12
E; = =54, where Vyq is the power-supply voltage. The delay to switch node 4, given

that the transistor behavior 1s aominated by the saturation regime, is approximately
b = k%ﬂ’ where K is a constant that depends on the structure of the gate operating
on node 7. The energy consumed by a circuit can be seen as the sum of the energies
consumed by each individual circuit node. Similarly, the delay of a circuit can be

seen as the sum of the delays of individual circuit nodes on the critical path. As a
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consequence, the total energy can now be written as

while the delay can be written as
k’f
b= — .2
Via’ (3.2)

where kg and k; are voltage-independent quantities. If we combine these last two
equations we get

© = Et* = kgk?, (3.3)

which is independent of the supply voltage.

There are several simplifying assumptions made in writing the previous equations.
There are several operating modes for the CMOS transistor, each with a very differ-
ent relation between current aud volitage. In particular, at high electric fields, the
carrier velocity saturates and becomes constant; the delay becomes independent of
the voltage, and © = Et? becomes quadratic in the voltage. Short-circuit and leakage
currents—ignored for now—could potentially affect both E and ¢. It is then natural

to ask how constant Et? really is in reality.

Figure 3.1 shows the measured © = Et? for the two-million—transistor asyn-
chronous MIPS R3000 microprocessor designed at Caltech between 1995 and 1998.
It was fabricated in 0.6-um CMOS and was entirely functional on first silicon [33].
(Measurements on other fabricated chips give similar results.) The behavior below
1.3 V shows the effect of approaching the threshold voltage; in our calculations we
have assumed that the threshold voitage would scale with V4, but we obviously can-
not enforce this for HP’s 0.6-pm process, whose threshold voltage is fixed at 0.8 V.
The positive slope from 3 V and up shows the onset of velocity saturation. The nom-
inal voltage of this process is 3.3 V; the graph shows that Et? varies only about 20%

around its average when Vy, is in the range 1.5-4.9 V.

With the metric © at hand, if we desire to change to a particular delay target ¢, we

adjust the voltage to meet it, and a circuit optimized for © would have the best E for
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Figure 3.1: Measured E't? for a two-million-transistor asynchronous microprocessor.

that t. Likewise, we may choose an energy target F and get the best ¢ instead. Thus,
a voltage-independent metric © could express the voltage scaling trade-off between

E and ¢

3.2 Why FEt is not the Right Metric

Several researchers [3, 4] use the energy-delay product Et as a measure of energy-delay
efficiency. Given the voltage dependence of this metric, comparing designs using Ft
yields misleading results, as Martin has pointed out [1].

Assume the same computation can be implemented by two different circuits A and
B. Furthermore, assume that F4 = 2Ep and t4 = ’7 Using the Ft metric, circuit A
is as energy-delay efficient as circuit B. If we now reduce the supply voltage of circuit
A by half, the new energy consumption of circuit A is %i (given that energy scales
quadratically with supply voltage as in Equation 3.1), while the new delay is ¢/, = 2t4

(given that delay is inversely proportional to supply voltage as in Equation 3.2). As
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a consequence, B = £ while t/; = t5.

This calculation shows that circuit A consumes only half the energy of circuit B
when both circuits run with the same delay. This holds for any delay. Therefore, cir-
cuit A is clearly a more energy-delay efficient implementation than circuit B, contrary

to what the Et metric indicates.

The results suggested by the previous calculation have been checked in practice.
In Table 2.1, we see the results of simulating with hspice two different 0.6-um imple-
mentations of an 8-bit comparator. In each case, eight single-bit comparators perform
the comparison: in the “linear” comparator, the results of the single-bit comparators
are merged in a linear chain; in the “log” comparator, in a binary tree. Comparing
the performance of the comparators at 3.3-V Vj,, we see that the linear comparator
is slower than the log comparator, but using the Et metric, we find that it more than
makes up for its sluggishness with its lower energy consumption. On the other hand,

using the Ft? metric, we find that the log comparator is better. Which is it?

8-bit comparator | E/[J - 107 | t/[s-107% | Et/[Js-1072°) | Et%/[Js? - 107%]
Linear (3.3V) 25.24 3.93 99.21 389.97
Log (3.3V) 44.97 2.35 105.52 247.57
Log (2.15V) 16.52 I 3.93 64.97 255.59

Table 2.1: Comparison of E, t, Et, and Et? of two kinds of 8-bit comparators.

If we adjust the supply voltage on the log comparator down to 2.15 V, we see
that we can match the delay of the linear comparator while using less energy; thus,
the log comparator outperforms the linear one in both speed and energy if we are
allowed to adjust the supply voltage. Even over this relatively wide range of supply
voltages, Et? changes only by an insignificant 3.2%. This example illustrates that the
E't? metric is more trustworthy for circuit comparisons when we are allowed to adjust

the supply voltage.
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3.3 The Et" Metric

We have seen theoretical and experimental motivation for Et2. At this point we
introduce a more general energy-delay efficiency metric: Et"™ with n > 0. There are
many reasons why we wish to study this more general metric over Et?, despite the
voltage independence of Et? over a wide range. Of course, any result obtained for
Et" applies to Et? by simply substituting n = 2—nothing relevant about Et? would

be missed by studying the metric Ft".

We have seen in Figure 3.1 that sub-threshold current and velocity saturation
cause Et? to be voltage dependent for extremely high and low supply voltages. If a
circuit were optimized to operate near sub-threshold or velocity saturation, one might
consider expending more energy for a given speed than suggested by the Et? metric.
By the same token, sometimes we wish to optimize a circuit for speed with little
regard for energy; this would correspond to our optimizing Et", for n much greater
than two. It should be noted that optimizing entirely for speed is not possible because
the wire parasitics cannot be fully overcome without using infinitely large transistors
(as will be shown in Chapter 4). Similarly, if we are interested in optimizing a circuit

for energy with little regard for speed, we should choose n smaller than two.

If the only available design parameter should be supply voltage and if we could
adjust it up or down without bound, and the transistors should maintain the sim-
ple first-order behavior we used for justifying the Et? metric—that is to say, if the
applicability of the Et? metric were perfect—then we should need no metric other
than Et?, because Et", for all n, would be optimized by optimizing Et? (as will be
shown in Chapter 5). Furthermore, all components of the original system would be
Et? optimal. However, neither of these assumptions is true. First, we know that the
applicability of Et? is unfortunately not perfect; it is sometimes better to use Et™
with n different from 2 as the metric when the target we are striving for would make
us operate an Et?-optimal circuit outside the practically allowable and convenient
range of supply voltages. Second, there are other design parameters besides supply

voltage (such as micro-architecture or transistor sizing) that, even though chosen so
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as to globally optimize a system for Ft?, would not imply the Et?-optimality of the
system’s components. Conversely, the Et?-optimality of the components would not
imply the Et?-optimality of the whole (as will be shown in Chapter 5). In other
words, it is clearly feasible to have a globally Et?-optimal system with components
optimized for Et™ with n # 2. We will explore this possibility in detail in Chapter 5.

Intuitively, the metric Et" implies that a 1% improvement in speed is worth
roughly an n% increase in energy consumption. If one values the computation de-
lay without regard to the consumed energy, the efficiency metric index n should be
increased without bound. Conversely, if one values the energy consumed by the com-
putation without regard to the computation delay, one should let the efficiency metric
index be n = 0. As a consequence, the metric Et" quantifies—through the single pa-
rameter n—the entire range of optimal preferences in the trade-off between energy
and delay.

Even if one were to care only about n = 2, working out the formulas in terms
of Et"™ offers a deeper insight into the mathematical structure of the expressions for
energy and delay. Furthermore, some results are entirely independent of n, a very
useful property that allows certain Et" problems to be treated the same way as their

simpler counterparts with n = 0 or n infinitely large, which are often easier to analyze.
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Chapter 4

Transistor Sizing for Optimal Et"

4.1 Introduction

In this chapter we study the problem of transistor sizing for optimal Et". Transistor
sizing is the next step in the design process after netlist generation; given a netlist,
we must choose transistor sizes that ensure correct functionality and optimal perfor-
mance. More precisely, given a transistor netlist where each transistor ¢ has width
w; and length [;, transistor sizing finds the values of w; and I; that minimize Et",
with the constraints w; > wmpin, l; > L. While it is true that most layout systems
demand that transistor sizes be quantized to some grid, we ignore this constraint.

Also, we can set all I;s to l,,;, and remove them from consideration since there
is usually no reason to set the lengths of transistors in a digital circuit to anything
other than the minimum allowed by the fabrication technology: increasing the length
increases both the resistance and the capacitance and hence worsens both the energy
and delay. Furthermore, we assume w,,;, = 0; in other words, we assume that the
positive transistor widths can be made arbitrarily small.

The sized transistors of a circuit are connected to each other through wires. The
capacitance of these wires leads to additional energy and delay. For delay-only op-
timization, which can be phrased as the minimization of the metric Et" for very
large n, the wire capacitance can be overcome by increasing transistor sizes where
appropriate. One might worry that this could lead to a vicious cycle in which wires

must get longer in order to go past the larger transistors. The following argument
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shows that this is not the case: assume that cach device in the circuit is increased by
a factor K by increasing its channel width by /K and by replicating it in parallel
V'K times. This process would increase the wiring cost by v/K while the device drive
increased K times. In this way, for large enough K, the delay due to wiring could
be made arbitrarily small. Conversely, for energy-only optimization, when n = 0, the
transistor widths can be chosen to be minimum size, independently of the wire capac-
itance. In contrast to these special cases, for n small but nonzero, wire capacitance
cannot be ignored or overcome in a straightforward way, and the optimal transistor
sizes depend strongly on this capacitance.

Classical numerical methods, such as the conjugate gradient descent method, have
been applied to the transistor-sizing problem: there exist several transistor-sizing
programs that minimize power consumption while maintaining performance specifi-
cations [34, 35, 36]. While these tools can be used successfully for small circuits, they
tend to be inadequate for large circuits owing to their O(N3) (or worse) runtime.
Part of the problem is the size of the circuits: today’s large VLSI systems have tens
of millions of devices; the optimization space has a similar number of dimensions.
Classical numerical methods that do not make use of special properties of CMOS
circuits might not converge, or their convergence might be very much dependent on
the initial values. For large problems, such as VLSI transistor sizing, an algorithm’s
polynomial runtime is no guarantee of usability. Techniques for reducing the solution
search space and improving the initial values could potentially greatly extend the
power of numerical methods for energy-delay optimization.

In the VLSI design flow, it is important to be able to assess the energy-delay
performance of a circuit as early as possible, so as to avoid costly redesign. While
numerical methods could ultimately yield the Ft"-optimal transistor sizes once these
practical difficulties are overcome, the methods still lack the potential to assist design-
ers in selecting among alternative circuit solutions prior to sizing or to give insight
into ways to change the original circuit so as to improve the achievable optimum.
For instance, a designer that wants to choose one implementation out of a family

of possible ones would rather use a roughly correct analytic expression than a more
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accurate numerical solution, especially if the analytic expression could be parame-
terized so that one expression is valid for the entire family. For this reason, we first
propose a simple energy-delay complexity model that abstracts transistor sizing and
allows a circuit level comparison of design choices. Later in the chapter, we develop
a set of analytical formulas that closely approximate the transistor sizes of a system
optimized for Et™. If the approximate solution is acceptable for the given application,
the formula can be used as is (no numerical optimization is then needed); however, if
more accuracy is required the formula can be used to provide a good starting point for
numerical optimization. Later in the chapter, we propose an efficient iteration proce-
dure that can further improve the accuracy of the original analytical solution. Based
on these results, we introduce a novel transistor-sizing algorithm for energy-delay

efficient circuits.

Transistor sizing that considers wire parasitics can be studied with the above men-
tioned classical numerical approaches. More recently, several specialized numerical
techniques have been proposed [37, 38, 39]. On the analytical side, Cong and Koh
have studied the related problem of simultaneous gate and wire optimization for opti-
mal delay and power [41]. Cong and Koh'’s solution space and optimization metric are
different from what we shall see in the present chapter. A different analytic approach
to the transistor sizing problem, for the performance metric Et, is given by Hu [40]
and another by Horowitz, Indermaur, and Gonzalez [5]. Both Hu and Horowitz et
al. present qualitative results; they only analyze basic inverter gates. To the best of
our knowledge, the present work is the first one that goes beyond such a qualitative
approach, both in terms of the generality of the optimization metric and in terms of
the generality of the considered circuits. A subset of the results to be presented here

have been published in [43, 44, 52].

To give a concrete example of the transistor-sizing problem, let us consider a five-
stage ring oscillator, as shown in Figure 4.1. The delay of this circuit is assumed to
be the delay between two consecutive falling or rising transitions of a given node, i.e.,

using Equations 2.16, 2.17 and 2.20 of the model introduced in Chapter 2, this delay
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Figure 4.1: Simple example of energy-delay sizing problem.
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The energy consumption can be written, using Equation 2.18 of the same model, as
E = (wno +wpo + Po + Wn1 + Wp1 + P1 + Wna + Wyz + P2+ Wn3 + Wp3 + D3 + Wya + Wpa + Pa).

Let us now assume, for the sake of the argument, that py =1, py =4, po =3, p3 =7,

and py = 2.

When optimized for delay only, i.e.. min Et" with very large n, the circuit is
sized with little regard to the wire capacitances p; [11]. The transistor widths are
Vi wp = of(1 4+ /1), wp; = ay/ii/(1 + /i), where « is a constant large enough
to wash away the delay contribution of the parasitics p;. The basic principle behind
such a sizing method is that the optimal delay is achieved when the sum of the falling
and rising delays of all stages are equal [11]. In our case, this means sy + tro=ts +
tr1=tg2 + trg=tps + tra=tss +t,y=(1 4 /;1)* and t,, = 5(1 + \/f)?, independently of

the p;s.

If the circuit is optimized for energy only, i.e., min £t" with n = 0, the circuit
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is sized with little regard to the type of logic gates. The transistor widths are Vi :
Wni = Win, Wpi = Wpin, 1.€., minimum transistor widths for all devices. In this case
tri+tri = (1+ p)(2 4 pit1/Wimin) and Egp = (3 pi + 5Winin). When wy,, approaches

zero, ty; + ty; increases without bound and E,,; approaches 3 p;.

Finally, if the circuit is optimized for Et*, the resulting widths are wy,o = 6.52/(1+
VE), Weo = 6.52,/F/ (1 + /), w1 = 6.82/(1 + \/72), wp1 = 6.82,/F/(1 + /i), Wnz =
7.67/(14+\/11), wpe = T.67\ /1) (1+/11), wnz = 6.07/(14+ /1), wpz = 6.07/1/ (14+/1),
Wne = 5.59/(1 + /p), and wys = 5.59./1/(1 + /;). The energy consumption is
Eopt = 49.67, and the delay is ¢,,, = 7.52(1 + \/;7)2, with the corresponding delays at
each stage tyo+tro = 1.66(1+/1)%, ty1 4+t = 1.56(1+\/0)?, tyo+t0 = L70(1+ /1),
tps +t,3 = 1.25(1 4+ /I0)%, and 4 + t,4 = 1.35(1 + \/;). In this case, the transistor
sizes depend both on the parasitics p; and on the type of the logic gates. Now
it becomes clear that neither the equal stage delay assumption nor the minimum
transistor widths assignment yield an Et"-optimal circuit. As a consequence, a new
theory is needed to relate the energy and the delay of the optimally sized circuit to
the topology of the logic gates, to the wire parasitics and to the optimization index

n in the Et" metric.

4.2 Et"-Optimal Circuits

We would like to analyze a transistor netlist as a collection of cycles—one of which is
the critical cycle. Let ¢ be the cycle time of a critical cycle. After transistor sizing is
complete, as stated by Corollary 1 (to be presented later), we know that all minimal
cycle times are equal, i.e., ali «,ules are critical. This is true for any optimally sized
circuit in the absence of additional constraints (minimum-size or slew-rate constraints)
on transistor sizes. Let E be the energy consumption of a chosen critical cycle. Let
us further assume that F is a constant proportion of the total energy consumption;
in this case, optimizing the energy F of the critical cycle optimizes the total energy

of the circuit, and vice versa.
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4.2.1 Properties of Circuits Optimally Sized for Et"

4.2.1.1 Synchronization Points

In Chapter 2 we have mentioned that the operation of a logic-gate network can be
represented by a directed graph. In this context, a synchronization point of a logic-
gate network is any vertex with more than one incoming edge. Such a vertex has the
property that the rising or falling transition it corresponds to will not happen until
all corresponding input signals are present. In this sense, a synchronization point
effectively waits for the arrival of all input signals of the corresponding pull-up/pull-

down of the logic-gate. In this context, we can state the following:

Theorem 1 In a logic-gate network optimally sized for Et", each synchronization

point enabled to switch non-vacuously has its input signals arriving simultaneously.

Proof. By contradiction. Assume that the sizing is Et"-optimal, but there exists a
logic gate that is enabled to switch non-vacuously and has different arrival times for
its inputs. By slowing down the faster input signal, through size reduction on the
paths containing it, ¢ will not change, since the faster signal was not on the critical
path. However, F will decrease resulting in a better Ft". This is in contradiction
with the optimality of Et". O

Theorem 1 suggests a practical way to achieve an Et" optimum: identify all
synchronization points with unequal arrival times and slow down the fast transitions
by shrinking the corresponding transistors on the noncritical paths. Theorem 1 is
only a necessary, not a sufficient, condition for Et"-optimality. More precisely, the
abovementioned method to reach an optimum by slowing down fast transitions does
not guarantee that the resulting system is optimal for the n we were optimizing for;
instead, it only guarantees the existence of an n for which the resulting system is
Et"-optimal.

We define the minimal cycle time to be the cycle time of a cycle in the absence
of all delay constraints imposed by the other cycles of the circuit. In other words,

the minimal cycle time is the delay the given cycle would have if at each of its
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synchronization points the other participating signals would arrive early. In this

context, we can state the following:

Corollary 1 In a logic-gate network optimally sized for Et™, all minimal cycle times

are equal.

Proof. By contradiction. Assume cycle C| has a shorter minimal cycle time than
all other cycles. Cycle C, should have at least one synchronization point in common
with one other cycle of the circuit, say C. At this synchronization point, the input
signal belonging to C; arrives earlier than the input signal belonging to Cy. However,
this violates the simultaneous input arrival condition, stated by Theorem 1; and as a
consequence, it leads to a conuradiction. O

Since the cycle time of a circuit is given by the largest minimal cycle time [7], when
all minimal cycle times are equal, they are also equal to the cycle time of the circuit,

i.e., all cycles are critical.

4.2.1.2 Properties of Transistor Sizes in Ft"-Optimal Circuits

Property 1 If w; are the transistor widths that minimize Et" for a given set of wire
parasitics p; and logic-gate topologies k;, then cw;, o« > 0 are the widths that minimize

Et" for the set of wire parasitics ap; and operator topologies k;.

Proof. Let us recall Equations 2.18 and 2.20 that define the energy E and delay ¢
given w;, k; and p;. The energy £7 of an equivalent system with transistor widths cw;
and parasitics ap; is E' = «F, since « factors out in the expression of the energy both
in terms of the transistor widths and in terms of the parasitics. Similarly, the delay '
of an equivalent system with transistor widths cw; and parasitics ap; is t' = ¢, since
a cancels out for each rising and falling delay. Because minimizing Et" is equivalent
to minimizing aFEt", it follows that if the w;s minimize Et", then the cw;s minimize
E't" = aEt". O

Property 2 Ifw,; are the transistor widths that minimize Et" for a given set of wire
parasitics p; and logic-gate topologies k;, then w,,; also minimize Et" for the set of

wire parasitics p; and logic-gate topologies ak;.
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Proof. Similarly to what we did in the proof of Property 1, let us call E the energy
and ¢ the delay of a system that has transistor widths w;, logic-gate topologies k; and
parasitics p;. The energy E’ of an equivalent system with logic-gate topologies ak; is
E' = E, since the logic-gate topologies k; do not appear directly in the expression of
the energy. Similarly, the delay ¢’ of an equivalent system with logic-gate topologies
ak; is t' = at, since « factors out in the expression of each rising and falling delay.
Because minimizing Et" is equivalent to minimizing «FEt", it follows that if the w;s

minimize Et" then the w;s also minimize E't'" = o Et". O

Properties 1 and 2 will be used to motivate and prove some of the results to be

presented later on in this chapter.

The next property states that there exists a general relationship, when optimizing
for Et", between the width of the nMOS transistors and the width of the pMOS

transistors of the same operator.

Property 3 Consider a cycle of a circuit that contains both the rising and the falling
transitions of a logic gate ©. Assuming that logic gate i has ky,; nMOS transistors
of width w,,; wn series, and ky, pMOS transistors of width wy; in series, then when
optimized for Et":

-

; Y P
Wps = WpiA [ 4 —-
ne

Proof. Using Equation 2.18, the consumed energy E of the chosen cycle can be

written as

m—1

E= Z (U)'H,i + Wayyg + [)71)7 (41)
=0

and using Equation 2.20, the delay of the cycle can be written as

T Tnil knz‘.fi+1(’wn,(«,:+1) + Wpeit1) + [)1:+1)
i=0 Wny

Z Mkm Firil lUn (i-+1) T+ Wp(i+1) +[)z+1)
Wy

; (4.2)
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where p;.1 > 0 represents the wire parasitics at the output of logic gate i; fiy; > 0
is the fanout of logic gate 7; u is the ratio of electron mobility to hole mobility; m is

the length of the cycle, and ¢ € 0..rn — 1 with all indices modulo m.

The optimal solution is reached when the partial derivatives of Et™ in terms of

Wyi and wy; are zero, i.e.,

oEt"  OEt" 0
ow,,; Oy e
It follows that
Jikn@-1) n plikpi-1) . Ky fi1 (Wngiv1) +z Wy(it1) + Pit1) _ _ (4.3)
Wn(i—1) Wp(i—1) Wy, nk
fikn(i-1) + pfikpa-1)  pkpifisr (Wna+n) + Wp(itn) tPin) b (4.4)
Wni—1) Wp(i—1) ’IUIZ”: nk

Equalizing the left-hand side of (4.3) and (4.4), we get the relationship between the

pMOS transistor and nMOS transistors of a given operator:

k 7
Wpi = w,,,,iv i e O (4-5)

kni

Equation 4.5 is a local relationship; it does not depend on either E or ¢, and is inde-
pendent of n—-the optimization index. In other words, the ratio of pMOS transistor
to nMOS transistor is independent of the exact value of n: it is the same for the

entire class of energy-delay optimizations considered here.

There exist circuits with cycles that do not contain both the rising and the falling
transition of their component logic gates. However, even for any of these gates there
exists some other cycle in the QDI circuit that contains their rising and falling transi-
tion. In consequence, even for logic gates on cycles that Property 3 does not directly
apply to, Equation 4.5 constitutes a good approximation.

Property 3 eases the way to a transistor sizing abstraction. One important con-
sequence of Property 3 is that the number of free variables in the search space for
optimum transistor sizing could be reduced roughly by half, by eliminating the free

variables corresponding to either the nMOS transistors or the pMOS transistors. In
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particular, by eliminating the pMOS transistors from Equation 4.2 we get

,uk
t = me( m)(’wn(m)+U’p(z‘+1)+m+1)

W W

m' kpz' ) k p(i+1) .
o (1 + \//1, krn) (11)7, HT) (1 + _k—/n—(:t_‘f:—) + pl+1). (4.6)

Let us define

W; = Wy; + Wpi = Wy <1 oG (47)
and
1k i
ki = fiv1kni (1 + %fgf (4.8)
Equation 4.6 becomes
m—-1 5
Y the (49)
i=0 i

Similarly, the expression of the enerev consumption given by Equation 4.1 simplifies

to

|
E =" (w;+p) (4.10)
=0
For the rest of this chapter we will use these simpler formulas of £ and ¢ in the

expression for Et™.

4.2.2 Preliminaries for Ft"-Optimal Transistor Sizing

Based on Equations 4.9 and 4.10, we formalize the sizing problem of a transistor

netlist for minimal Et™ as the minimization, over the w;s, of

i1 m—1 w; +pz
f:Ry™ = Ry, flwo,wr,...,Wy_1) = (Z (w; + p; )(Z ki_q ) , (4.11)

i=0 i=0 Wi—1

where n > 0, p; > 0, k; > 0 with ¢ € 0..m — 1, m € N, and all indices modulo m.
Equation 4.11 holds not only for a ring, but also for a chain of operators, as long as
the parameters for the input of the chain are equal to the parameters for the output

of the chain (since in this case the F and t for a chain have the same form as the ones



33
for a ring). This is an important observation, as it makes our results for transistor
sizing applicable to circuit delays both in terms of latency and cycle time. Whenever
we use latency as the measure of delay, we make the assumption that the scrutinized
component has its input “drive” equal to its output “drive” (i.e., no amplification).
This is a reasonable assumption since most logic-gate chains are part of closed ring

topologies.

We can show that the unique optimum of f is achieved when

of _

Yir =—— =1,
ow;
or equivalently
. ki——l ]{Ii(’wi+1 + ]),j+]) 1 Z:Z—Ol k;i—llz)iili 11
Vi : s 7 = ———7 = ey (412)
Wi—1 WS n s (w; + pi) n P

where P = E/t is the power consumption of the chosen cycle. If Vi : p; = 0 (no wire

parasitics) and n very large (delay-only optimization), Equation 4.12 reduces to

Wi Wy
k’i — k’i‘l )

w; W;_1

which is the known condition of equal stage delays for delay-only transistor sizing [56].
If we were able to solve Equation 4.12 analytically for any p;s and k;s, we could
compute the optimal w;s directly and our transistor-sizing problem would be solved.
Unfortunately, this is not the case. We can compute an exact analytical solution of
Equation 4.12 only for a restricted class of p;s and k;s. Using Equation 4.12, simple

algebra shows that if all p;s satisfy

1
D, = (1 -+ ;) ki—l — /{I,;, (413)
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or if all k;s satisfy
j . i
2:;’ (1 3 %) Pi—j + Zf;lm_l(l + %) Pmti—j

ki = (1 N L)m =3 " (4.14)

then
i 1 iy = K (4.15)

We can also express Equations 4.13 and 4.14 using an m X m transformation

matrix M
-1 0 0 .. 142
142 =1 § . 0§
M= 0 1+; -1 .. 0
0 I B = -

Equation 4.13 states that given a set of k;s, one can always pick—using the transfor-

mation matrix M —a set of p;s given by

(p07p1a ---aPm-l)T = ]\/[(k(], l";la seey km—l)T (416)

(T is the matrix transposition operator) such that Equation 4.15 holds. Similarly,
Equation 4.14 states that given a se. of p;s, one can always pick—using M —1 the

inverse of the transformation matrix M-—a set of k;s given by
(kOa k17 gy k'rn—l)T = ]\4_1(7)071)17 "’7pm—1)T (417)

such that Equation 4.15 holds. Equations 4.13 and 4.14, or equivalently Equa-
tions 4.16 and 4.17, yield two classes of analytically computable values of the w;s.
These analytically computable values will play an important role in motivating the

validity of our approximate solution of the Et"-optimal w;s.

In the particular case of Vi : k; = k, i.e., the case of homogeneous circuits, using

Equation 4.13, we get that if Vi : p; = k/n then Vi : w; = k, or equivalently, using



Property 1, if Vi : p; = p then
Vi:w, =np, Yp, k>0. (4.18)

Equation 4.18 states that the transistor widths w; of a homogeneous circuit with equal

wire parasitics p, optimized for Et", are all equal to np, independently of k [43, 44].

4.2.3 Energy-Delay Complexity of Ft"-Optimal Circuits

In this section we establish two global properties of asynchronous circuits optimized
for Et". First, the consumed energy (£,,) is independent, in first approximation, of the
types of logic gates (NAND, NOR, C-element, etc.) used by the circuit and is solely
dependent on the optimization index n and the total amount of wiring capacitance
switched during computation. Second, the circuit speed (¢,) is independent, in first
approximation, of the wire capacitance and depends only on the optimization index
n and the types of logic gates used. These properties allow an abstract view on
transistor sizing by shifting the design emphasis to the logical level of circuits. As
such, they constitute the basis of our energy-delay complexity definition.

Let us define the theoretical minimal energy Fy to correspond to minimizing F
without regard for ¢; in other words, to correspond to the situation when the tran-
sistors are all zero-sized and the fixed parasitic capacitances constitute the entire F.
Conversely, let us define the theoretical minimal delay to to correspond to minimizing
t without regard for E. This delay is obtained when the transistor sizes go to infinity,
l1.e., when only gate capacitances contribute to F and ¢. Using these definitions, we

can state the following theorem:

Theorem 2 For a neighborhood V, = [p—n,p+n] of p > 0,7 > 0 and a neighborhood
Vi =[k=mnk+n] of k >0 where Vi : p; € V,, ki € Vi and n approaches zero, the

4

energy B, and delay t, of a ci-~uii optimized for Et" are given by

E, = (1 +n)Ey, (4.19)
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1

t, = (1 + —)too (4.20)
n

where Ey is the theoretical minimal energy (i.e., the energy due to the total switched

wire capacitance) and to, 18 theoretical minimal delay.

Proof. Let us compute the energy E, and delay t, for the circuit with parameters
ki = k and p; = p. We know trom Equation 4.18 that the w;s that achieve the

optimum in this case are w; = np. As a consequence—using Equation 4.10—we can

write
m—1 m—1 m—1 m—1 m—1
E.=> wi+ Y pi=nd pi+ > pi=1+n)> p=(1+n)E.
1=0 =0 i=0 1=0 i=0

Similarly, using Equation 4.9 we can write

m—1 m—1
Wi+l + Py nPi+1 + Pi
t = Zkz i+l Pz+1:2ki1+1 Pit1
=0 L =0 npi
1 m—1 1
= (14— ki=(14+—)m?
(7)) T h=(1+3)
Since V2 : lim,op; = p and Vi : lim,,o k; = k, the values of E, and ¢, we just
computed correspond to the energy and delay stated by the theorem. 0

Theorem 2 states that when all p;s are close to each other and all k;s are close to
each other as well, the optimal energy and delay of an Et"-optimal circuit is given by
Equations 4.19 and 4.20. While Equations 4.19 and 4.20 have been derived for only
a restricted class of circuits, they are in fact good approximations for a much wider
class. In the next section, we will present experimental results for this claim.

If we now revisit the example presented in the introduction of this chapter, using
Equations 4.19 and 4.20, we find that the circuit optimized for Et" consumes energy
E, = 51 and operates at delay ¢, — 7 5(1 + //7)2 Both of these values are close
approximations of the optimal values E,, = 49.67 and t,,; = 7.52(1 + \/,E)2

Based on Equation 4.19, the consumed energy is independent of the types of logic
gates used by the circuit and is solely dependent on the optimization index and the

total amount of wiring capacitance switched during computation. On the other hand,
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based on Equation 4.20 the circuit speed is independent of the parasitics and depends
only on the optimization index and the types of logic gates used.

If n goes to infinity in Equation 4.20, then t = t,,—an expected result in case
of delay-only optimization. On the other hand, if n = 0 in Equation 4.19 then
E = FE,, i.e., transistors should be sized as small as possible for minimum energy
consumption-—another expected result. For voltage-independent energy efficiency
(n = 2) the cycle time of the circuit should be chosen as 3t,; while the minimum
energy to achieve this delay will be 3 Ey—the loss in speed is more than compensated
by the energy savings.

Equations 4.19 and 4.20 provide an elegant way to analyze E and ¢ independently
at circuit level, while optimizing F+". In particular, the speed of an Et™ optimal
system can be directly derived from the theoretical minimal delay ¢, of the same
system. Similarly, the energy consumption of the system can be directly derived from

the total energy due to the switched wire capacitance Ejy.

Corollary 2 For a neighborhood V,, = [p—n, p+n] of p > 0,1 > 0 and a neighborhood
Vi=1k—nk+mn] of k >0 where i : p, € V,, ki € Vi and n approaches zero, the
total gate capacitance of a circuit optimized for Et"™ is n times the total switched wire

capacitance.

Proof. It follows directly from Equation 4.19 of Theorem 2 by recognizing that

m—1 m—1 m—1 m—1
E, = Z(wi+pi) = Fy+ Z w; = (n+1)Ey = Z w; =nky=n Zpi. O
=0 1=0 1=0 =0

Corollary 2 states that the total gate capacitance of a circuit is equal to the total

Et* will have—on average—transistors twice as big as the same circuit optimized
for Et. Corollary 2 also suggests a strong dependence of transistor sizes on wire
capacitance, a dependency that is in general ignored in delay-only sizing. For Et?
optimization, wire capacitance plays a major role and needs to be dealt with explicitly.

Experimental evidence for Corollary 2, for the case n = 2, is also provided by

SPICE simulations of an adder published by Chandrakasan and Brodersen and sum-
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marized in Figure 4.7 of their book [3]. Their figure shows that, for the five different
parasitic contributions they study, the minimum energy for a given speed (allow-
ing supply-voltage adjustment) is achieved when the gate capacitance is very close
to twice the parasitics. (They did not, however, draw the conclusion that we have
reached here.)

Based on the Equations 4.19 and 4.20, we define Eyt? to be the energy-delay
complezity of a circuit. The optimization index n represents the chosen trade-off
between energy and delay. Based on this definition, we can compare the energy-delay
efficiency of two circuits implementing the same computation by comparing their

energy-delay complexities, as stated by the following theorem:

Theorem 3 Given two circuits A and B implementing the same computation, circuit
A is more energy-delay efficient than circuit B——in terms of Et"—if and only if

E()AtgoA < EOBfn

‘oo B

(4.21)

where Ey4, Egp are the theoretical minimal energies and tooa, teop are the theoretical

minimal delays of circuit A and circuit B, respectively.

Proof. Follows directly from Theorem 2. O

The concept of energy-delay complexity together with Theorem 3 allow an abstract
view of the efficiency of a circuit—through the two figures of merit Fy and t,,—and
facilitate a high level comparison of circuit choices. One can attach a circuit-level
cost—in terms of Ey and {,—to basic constructs of a high level specification language
such as the CHP language [30]. Hence, the circuit level cost of any CHP program can
be evaluated for energy-delay efficiency without needing to consider the circuit-level
details of the given program.

Based on Theorem 2, we can formally show that optimizing Et" for large n is
equivalent to optimizing t. First, we notice that minimizing a circuit for Et" is

equivalent to minimizing the circuit for /Et. Thus, we want to show that

lim min(V/Et) = mint.
n—r00
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Using Equations 4.19 and 4.20, we get

. . 1 .
lim min(V Et) = lim /(1 + 'n,)Eg(l + —)too =t = mint.
n—00 n—00 n

4.2.4 Experimental Evidence on the Energy and Delay of
Et"-Optimal Circuits

As mentioned before, even though Equations 4.19 and 4.20 have been derived for only
a very restricted class of circuits, they are in fact good approximations for a much
wider class. We have checked the equations against the minimal Ft™ obtained by
applying an optimization algorithm (gradient descent) to two classes of circuits. In the
first class, each circuit consisted of a ring of operators that were chosen at random with
a uniform-squared distribution of parasitic capacitances; the number of transistors in
series was also chosen according to such a distribution. We used real numbers for
both parameters; we optimized the expression for Ft" using Equations 4.11. The
range of parasitics was [1,100] in normalized units; the range of transistors in series
was [1,6]. The results show that Equations 4.19 and 4.20 hold, with good accuracy,
over a wide range of parasitics, logic-gate types, and circuit sizes.

The results of the simulations for circuits consisting of a ring of 100 operators
are summarized in Figure 4.2. (Simulations for rings of 10 and 1000 operators show
similar results.) The figure shows the mean and standard deviation of the error in
the estimates of Equations 4.19 and 4.20 for a range of different optimization indices
(n € [1,10]). The estimates get more dependable for larger circuits, where the random
variation in operators tends to average out over the cycle. Overall, the estimates are
usually within 5% of the energy and within 2% of the delay values for the actual
optimum FE't".

The second class of circuits consisted of a closed chain of connected rings of oper-
ators with parasitic capacitances and number of transistors in series chosen the same
way as in the previous experiment. These results show, as well, that Equations 4.19

and 4.20 hold, with very goud accuracy, over a wide range of parasitics, logic-gate
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Figure 4.2: Results of simulating a ring of logic gates with gate topologies and para-
sitics chosen randomly.

types, circuit sizes and circuit topologies.

The results of the simulations for circuits consisting of a chain of 10 rings of 10
operators each are summarized in Figure 4.3. (Simulations for chains of 2, 4, 8, 12
and 20 rings of 4, 20 and 100 operators show similar results.) The figure shows the
mean and standard deviation of the error in the estimates of Equations 4.19 and 4.20
for a range of different optimization indices (n € [1,10]). Overall, the estimates are
usually good to within 8% of the energy and within 5% of the delay values for the
actual optimum FEt".

So far we have seen evidence that, on average, Equations 4.19 and 4.20 approxi-
mate the E' and ¢ of an Et" optimal circuit well. Ideally, we would like to characterize
more precisely the error between the estimated energy-delay performance and the ac-
tual minimal Et". We would like to bound analytically the error in E, t and Et".
Unfortunately, this seems too much to ask. We have seen that the transistor sizes of
the optimal solution are described by kquation 4.12. We are not aware of a general
analytical solution to this equation. We were able to compute the solution exactly,

through Equations 4.13 and 4.14, ounly for a very restricted class of parameters p; and
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Figure 4.3: Results of simulating a chain of rings of logic-gates with gate topologies
and parasitics chosen randomly.

k;. Hence, we have to rely on numerical optimization to characterize the absolute
error in formulas 4.19 and 4.20. For this, we consider a relevant case of the transistor
sizing problem and, using numerical optimization, we exhaustively evaluate the errors
for each circuit within the bounds imposed on p;s and k;s. Given the fact that the
number of circuits to be evaluated grows very quickly with the problem size m and
the number of different circuit parameters p; and k;, we have to limit significantly the
size of the class of problems we can consider. As a consequence, we analyze a partic-
ular case of Equation 4.11 with n = 2, m =5, p; € {1,2,3,4,5} and k; € {1,2,3}.
For this particular class of problems, there are 15° = 759375 circuits to consider.
Figures 4.4 and 4.5 show a histogram of the relative error in F, t and Et? between
the optimal values (computed using an optimization algorithm) and the estimated
values (computed using Equations 4.19 and 4.20). In general, the spread of all errors
increases by increasing the ratio between max p;/minp; and max k;/min k;. The error
range observed in this experiment is particular to the problem we have considered.
However, the general form of the error distribution is the same for the entire class

of transistor sizing problems. Figure 4.4 shows that the error in ¢ is more clustered
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than the error in E. In other words, the delay estimate is consistently better than
the energy estimate. This is particularly beneficial, given the fact that the error in ¢
gets amplified about linearly with n in the Ft" metric, as we observe in Figure 4.5.

In the exhaustive search through all problem instances, we have also considered
circuits that would not make good designs in practice, independently of the accuracy
of our performance estimate. In particular, circuits with slow gates (large k; due to
several transistors in series and/or fanout) driving long capacitive wires (large pii1)
are not desirable in practice. It turns out that circuits with k;p;, > Large, where
Large is a cut-off constant, typically underestimate the circuit performance. Elimi-
nating such cases from the exhaustive search reduces the error spread, as shown in
Figure 4.5. Such a restriction naturallv eliminates unpractical circuits whose perfor-
mance incidentally was estimated well, i.e., some circuits at the top of the histogram.
Figure 4.5 also shows a significant shift towards zero of the average error in Et?, when

the impractical cases are eliminated.

4.2.5 The Influence of RC Delay and Intrinsic Gate Delay on

Energy-Delay Complexity

The transistor model described in Chapter 2 ignores the RC delay due to wire resis-
tance and intrinsic gate delay. For a fixed-size wire, the corresponding RC propagation
delay is independent, to first order, of the transistor sizes. Similarly, the intrinsic de-
lay of a gate, i.e., the delay due to its own internal capacitance, is largely independent
of the transistor sizes as well. As a consequence, we can consider that each cycle of a
circuit has an added delay 7;, that is independent of the transistor sizes. This delay
depends only on the wire capacitance, wire resistance and logic gate topology.

We would like to know, qualitatively, how the energy-delay complexity of a circuit
changes when a constant delay is added to each transition in the transistor model. For
this, we consider a simple example: a ring of identical inverters of width w driving
idencical parasitics p. Assume that the intrinsic gate delay and the RC delay per

inverter and associated output wire is ;44 fir. The delay of the circuit is proportional
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fo = %ﬂ + tstage i and the consumed energy is proportional to £ = w + p. If we
minimize the metric Et", we get a transistor width that is we, < np, with equality
if and only if ¢sage fiz = 0. Hence, considering ¢y, to be the total RC and intrinsic
gate delay, we have

E, < (“/ + 1)EO

and

1
tn .>_ (1 =+ _)too = tfi.’lH
n

with equality if and only if ¢4, = 0. T #4,, # 0, the equalities of Theorem 2 become
inequalities.

Remarkably, the optimal Et™ of the circuit is within 0.5% of

(n s 1)EO ((1 ¥ %)too sk t,f"i:l:)”v

when ty;, is less than 10% of t. Thus, for small ¢;;, we can still use (n + 1)E, as
an estimate for the optimal energy for minimal Et", but we have to change the delay
estimate from (1 + %)too to (1 + %)too + tir. As a consequence, when a fix delay is
added to delay ¢, the energy-delay complexity changes from

- ) £, T [
Eotoo LO E’OKlw+ mtﬁm) . (422)

4.2.6 An Application of Energy-Delay Complexity

In this section we study the energy-delay efficiency of several circuit-level imple-
mentation techniques by applying the energy-delay complexity model developed in
Section 4.2.3. First, we compute the energy-delay complexity of a generic pipeline
stage. We investigate the influence of data encoding and horizontal pipelining on
this complexity. Next, we study circuits that are not pipelined and show that their
latency and energy consumption are smaller than that of an equivalent pipelined
implementation. Lastly, we investigate the energy-delay complexity of interleaved

circuits.
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4.2.6.1 Data Encoding and Horizontal Pipelining

Asynchronous circuits use delay-insensitive data encodings, i.e., encodings in which
data becomes valid only when all bits supposed to switch have done so. One of the
most widely used delay-insensitive encodings is the 1ofN encoding. A 1ofN encoding
represents log(N) bits. Each rail corresponding to the physical realization of a 1ofN
encoding represents a different combination of the log(N) bits. It is often the case, in
practice, that a designer has the freedom to decide the data encoding of the circuit
being implemented. In such a case, it is useful to know the influence data encoding
has on the energy-delay complexity of the circuit. Intuitively, encodings that result in
fewer wires being switched tend to be more energy efficient. On the other hand, our
measurements show that buffer circuits operating on dual-rail data are faster than
buffer circuits operating on quad-rail data. As a consequence, it is not immediately

clear how data encoding influences the energy-delay complexity of a circuit.

Horizontal pipelining is a technique used to speed-up the control distribution of
asynchronous circuits. Horizontal pipelining is achieved by grouping the datapath
into a set of unsynchronized circuit blocks operating in parallel (for more details
please see [33]). Similarly to data encoding, the amount of horizontal pipelining,
i.e., the number of bits grouped together, creates an energy-delay trade-off in the
design of a pipeline stage. Larger horizontal pipeline slices share more circuitry,
and as a consequence, consume less energy. On the other hand, shared circuitry
adds additional synchronization to a pipeline stage, and as a consequence, the stage

operates slower.

We will analyze a generic 32-bit pipeline stage. We compute the energy-delay
complexity of the circuit, as a function of its data encoding and amount of horizontal
pipelining. We investigate a generic pipeline stage that receives one bit of control
on input-channel C' and 32 bits of data on input-channel L and produces 32 bits
of data on output-channel R. This circuit is described by the following high-level
specification (for a detailed description of the CHP language please see [30]):
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generic — stage = x[C?c¢;
[c=0— RIfy(L?)
Dc=1— RIfi(L?)
]J7

where f; and f; are bit functions. The environment of a circuit could have a significant
influence on the energy consumption and delay. For this reason, we analyze circuit
generic-stage in a typical environment. We assume that channel I comes from an
identical generic-stage circuit, while channel R goes to an identical generic-stage
circuit. We limit our analysis to the two most widely used data encodings: dual-rail
(1of2) and quad-rail (1of4).

We compare the energy complexities of the different circuit alternatives using
Theorem 3. As a prerequisite, we need to compute the theoretical minimal energy Ey
and the theoretical minimal delay ¢, of each alternative. We compute Fy using esim,
a simulator that estimates, among otner things, the total switched wire capacitance
of a circuit [50]. The Appendix describes this simulator in detail. For our current
example, we assume a simple wiring scheme in which each circuit node has wire
capacitance proportional to its fanout. We separately compute, using the logical-
¢ffort model [11], the minimal cycle time of the control distribution and the minimal
cycle time of the circuit itself, and then, we assign the maximum of the two to the
system cycle time f..

Figure 4.6 shows the minimal energy E, and minimal cycle time ¢, as a function
of the data encoding and amount of horizontal pipelining. Figure 4.6 shows that, for
the same amount of horizontal pipelining, circuits using quad-rail encoding consume
less energy. The speed of a circuit neir~ cmall groups of bits in the horizontal pipelin-
ing is limited by the speed of the control distribution, both for dual-rail and quad-rail
implementations. On the other hand, for slices of 4 bits or more, the control distri-
bution cycle is not critical anymore. In this case, for the same amount of horizontal
pipelining, the quad-rail (1of4) implementation is slightly faster than the dual-rail

(10f2) implementation. In conclusion, under the setup of our experiment, for the
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Figure 4.6: Ey and ¢, for a generic pipeline stage for dual-rail and quad-rail encoding.

same amount of horizontal pipelining, the energy-delay complexity of a quad-rail im-
plementation is always better than that of a dual-rail implementation, independently
of the optimization index n.

Figure 4.7 shows the energy-delay complexity of process generic-stage for n = 2.
Figure 4.7 shows that the optimal amount of horizontal pipelining is achieved for
bundles of 4 bits, both for dual-rail and quad-rail implementations. As a consequence,
we conclude that the optimal Et? is achieved for horizontal pipelining in bundles of
4 bits.

The logic gate network we used so far in our implementation did not share any
transistors. We would like to quantify the influence of transistor sharing on energy-
delay complexity. To do this, we recompute F, and t., for process generic-stage
implemented quad-rail, in bundles of 4 bits, using maximal transistor sharing. As
expected, transistor sharing improves both Ey and t,,. The smaller number of tran-
sistors reduces the fanout in the expression of t.., improving it by about 10%. The

smaller number of wires decreases Ey by about 25%. The total improvement in Et?
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Figure 4.7: Et? of a generic pipeline stage for dual-rail and quad-rail encoding,.

is about 40%.

4.2.6.2 Unpipelined circuits

An unpipelined circuit can be obtained from a sequence of pipeline stages by elimi-
nating the internal communicatiou channels. In practice, this amounts to eliminating
internal output completions and internal right enable generations, while keeping the
precharge logic structure. A generic unpipelined circuit is shown in Figure 4.8. The
operation of this circuit is as follows. In the set phase, when input [ arrives and the
cnable signal en is high, the first pull-down fires and a data value is produced and
passed on to the next pull-down stage. In parallel, the enable signal and the input
validity are passed on to the next stage, as well. The enable signal en is buffered in
order to reduce its fanout and to balance out the signal arrival delay at the precharge
gates. Eventually, the computed data, together with the completion signals, propa-

gate to the last logic stage. This last stage behaves like a standard pipeline stage: it
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Figure 4.8: Generic unpipelined circuit.

produces an output when the environment is ready, and it generates the enable signal
en and the left enable signal le. In the reset phase, the input neutrality, together
with the neutrality of the internal signals, propagates to the last stage which then
re-enables the circuit for a new computation cycle.

We notice that, since the circuits implementing the internal handshakes were
eliminated, all precharge logic stages but the last, have one fewer transistor in series.
Furthermore, since all output completions but the last, were eliminated, the fanout
of the precharge signals is reduced (asynchronous circuits use output completion to
check the validity and neutrality of the data channels connecting circuit blocks).
These two effects reduce the latency of an unpipelined circuit, when compared to an
equivalent pipelined implementation. We can quantify this reduction using the logical
effort model. We consider the previously mentioned generic-stage process as a generic
example. The ratio between the pipelined and unpipelined latencies of a k-logic-stage
circuit is rz(1=%) , where 7 is a constant that depends on the data encoding and can be
compute, for example, using the logical effort model. Numerically, r = 2.59 for dual-
rail and r = 3.19 for quad-rail. In the limit when %k goes to infinity, the latency ratio
becomes /r. In other words, the limit on the latency speed-up due to unpipelining
is 1 —1//r: 38% for 1of2 encc Lng and 44% for 1of4 encoding.

Because an unpipelined circuit has fewer transistors than its pipelined counterpart,



Figure 4.9: Generic interleaved circuit.

its minimal energy Ej is reduced. The ratio of the minimal energy of a pipelined to
that of an unpipelined implementation is m for 1lof2 encoding, and m
for 1of4 encoding, independently of the amount of horizontal pipelining. In the limit
when £ goes to infinity, the minimal energy Fj is reduced by about 13% for 1lof2
encoding and by about 19% for lof4 encoding.

Considering the delay of the circuit to be its latency, on the limit, the Et? im-

provement is about 66% for 1of2 encoding and about 75% for 1of4 encoding.

4.2.6.3 Interleaved pipeline stages

Consider a program P implemented by circuit Cp. An interleaved implementation of
P can be obtained by connecting in parallel two identical circuits Cp through a split
circuit S and a merge circuit M, as shown in Figure 4.9. The split and merge circuits
alternately communicate with the Cp circuits, i.e., one data element is processed by
the top Cp circuit while the next data element is processed by the bottom Cp circuit.

Given such an operation, the throughput of the interleaved Cp circuit can be reduced
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to half the throughput of the split and merge circuits, without affecting the overall
throughput of the system. The reduced throughput allows a more energy-eflicient
implementation of Cp. However, all this comes with added energy and latency costs
due to the split and merge cells. As a result, it is not immediately clear if interleaved
circuits are more energy-delay efficient than non-interleaved circuit implementations.

We quantify the abovementioned trade-off using the generic process generic-stage.
We choose the implementation of generic-stage that has a throughput about half that
of the interleaving units. This ensures that the generic-stage processes do not operate
faster than they have to. Under this setup, we can compare the energy-delay complex-
ity of the interleaved circuit against a standard pipelined implementation. The ratio
between the two complexities, i.e., (Eyintericavedt o intertcaved)/ (F0 pipetinedtoc, pipelined)s 18
1.34 for k =1, 0.93 for k =2, 0.79 for k = 3, 0.72 for k = 4, 0.68 for kK = 5, 0.65 for
k = 6, and 0.63 for £k = 7. These results show that, with the exception of a single
pipeline stage (k = 1), the interleaving results in a better Et2. In the limit when k
goes to infinity, the Et? of the interleaved system is 48% better than the equivalent
pipelined version.

The energy-delay efficiency of a system using interleaved elements can be further
increased by replacing the pipelined Cp circuits by equivalent unpipelined implemen-
tations. In this case, (Epinterieavedtos intericaved) ! (B0 pipetinedtos pipetined) 15 1.22 for k =1,
0.84 for k = 2, 0.67 for k = 3, 0.58 for k = 4, 0.55 for k =5, 0.52 for £k = 6, and 0.49
for kK = 7. These results shows that the energy-delay efficiency is even higher when
the interleaved circuits are unpipelined.

It should be noted that the energy cost of the interleaving circuits is relatively
high. It is comparable to the energy cost of a regular pipeline stage. As a result,
the energy-delay improvement due to interleaving is significantly smaller than the
theoretical improvement resulting from zero cost split/merge devices [1]. Moreover,
to keep up any energy-delay improvement given by the interleaving technique, one has
to be able to run the entire system at the increased speed of the split/merge circuits.
Furthermore, the system needs to tolerate the latency added by these circuits. These

requirements might be difficult to meet in a system that has feedback in its operation,
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such as a microprocessor. On the other hand, they should be easy to achieve in a

system with feed-forward operatiocit, such as a DSP.

4.2.7 Et"-Optimal Transistor Sizes

So far we have analyzed the total energy and delay of an Et"-optimal system, without
saying much about the actual transistor sizes that achieve this optimum. One can
obviously find these transistor sizes by numerically optimizing Et™ with respect to
the transistor sizes. In this subsection we develop a set of simple analytical formulas
that approximates the transistor sizes of a system optimized for £t". Such a formula
has two main uses: first, if a rough estimate is enough for the given application,
the formula can be used as is (no numerical optimization is then needed); second,
if accuracy is required, the formula can provide a good starting point for numerical
optimization.

We start by proposing an approximate formula for the transistor sizes w; that
optimize f, in Equation 4.11, when Vi : k; = k. We then extend this formula to the

case when the k;s are not equal to each other.

4.2.7.1 Homogeneous Circuits

For the case when Vi : k; = k, we propose an approximate solution of the w;s, of the
following form:

Wi = W Pivi + V2P Avg, (4.23)

where

1
Pavg = — 3 1i (4.24)

and o and «ay will be determined later. First, let us motivate Equation 4.23. Based
on Property 2, we know that finding the w;s when Vi : k; = k is equivalent to finding
the w;s when Vi : k; = 1. In other words, the value of the w;s is independent of the
k;s, when all %;s are equal. Conversely, based on Property 1, we know that the w;s

scale linearly with the p;s. This suggests that the w;s should not have terms that



03
are independent of the p;s. Based on our experience of sizing, we know that-—while
the transistor sizes of gate i depend mostly on p,.;—the effect of a particular p;
gets distributed to some degree to all other gates. As a consequence, we would like
Equation 4.23 to depend linearly on both p;.; and some average of all other p;s and
one such choice is a;p;1| + @9pav,. We use the arithmetic mean for pa., since the p;s
correspond physically to wire capacitances that are manipulated additively both in

terms of delay and energy. With these clarifications in mind, we state the following:

Theorem 4 For a neighborhood V, = [p —n,p+ 1] of p > 0,1 > 0, the values of o
and ay that minimize Et™ given the w;s of the form defined by Equation 4.23, where
Vi:p, € Vp, ki=Fk >0 and n approaches zero, are

1
2

1 m_ "
7L+m—1

1
ap = 3 2 and oy =n —

n m—1

m

Proof. We start with the observation that for Vi : p, = p € V,, k; = k Equation 4.18
implies Vi : w; = np. Using the same values in Equation 4.23 yields Vi : w; =
a1p + asp. By combining these two relations it follows that np = ayp + asp =
Qg =N — Q.

Next, we focus on computing «y. We notice that

m—1 -1

E = Z (wi + pi) = Z (<¥11)7:+1 + (n — a1)pavg +pz’)
i=0 =0
m—1 m—1 m—1
= o Y pi+(n—a)mpay+ Y. pi=(n+1) > p; = constant.
i=0 i=0 i=0

As a consequence,

m—1

. . y w; + Pi .
min (t = ; ki 4 o ) = min f.

In other words, it is enough to compute v that minimizes the simpler expression ¢
instead of f. We minimize ¢ as a function of «; by substituting w; given by Equa-
tion 4.23 into the expression of 7. One way to do this computation is to assign

po = p(1 +me) and p;, = p,i € 1..m — 1, where ¢ = n/(mp). Clearly, the chosen p;s
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belong to the neighborhood V, of p. From the choice of the p;s it also follows that

Pavg = p(1 + €). As a consequence,

w, = ap+ (n—a)(l+ep, Yied.m—2
W1 = a(l+me)p+ (n—a))(1+¢€)p
and we may write

ap+n—a))(1+€e)p+p
arp+(n—ay)(l+e€p

ap+(n—a))(l+ep+p
aj(1+me)p+(n—ay)(1+e€)p
ar(1+me)p+ (n—a)(1+e)p+p
ap+ (n—ay)(1+e€)p '

+ (m—2)

di

da; = U, we obtain a quadratic equation

Minimizing ¢ with respect to ay, i.e., solving
in a; with coefficients that depend on n, m and e. This equation has the positive

root

—(1+e€)(n+21)+ \/(ne +n+ 2=1)(ne + n+ 2L — ¢ + me)
6(% + (mn = 2n — 2=1)(1 + 6)) .

o =n(l+e)

We would like to determine oy when 7 goes to zero or equivalently when € goes to zero.

0

It turns out that € = 0 creates a : indeterminacy in the expression of «ay; thus, we

0
L 1
need to use I’Hospital’s rule, which yields o) = T and e =n—o =n— 1 m.
n " m—1 n ' m-—1
O
If the size of the problem is large, —- is approximately one, which implies oy =
2—(#71) and oy = %((111—27:;2, thus £ = 1+ 2n. What is particularly surprising about

Equation 4.23 is that the width of a logic-gate depends far more strongly (5 times
more for Et? optimization) on the average parasitic load (o = 5/3) than it does on
the load on that particular operator (cv;, = 1/3). Furthermore, on the limit when n
goes to zero a; = ay = 0 which implies that Vi : w; = 0, regardless of the p;s. In other
words, for energy-only optimization, Equation 4.23 yields minimum-size transistors,

as one might expect.
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Figure 4.10: Accuracy in F, t and Et" of Equation 4.23 with «; and a3 given by
Theorem 4.

Theorem 4 yields the optimal values of r; and «» in a small neighborhood of p, or
equivalently when the p;s are close to each other. We now want to check if the form
of the w;s given by Equation 4.23 and Theorem 4 yields a practical approximation
of the w;s when Vi : k; = k and p;s are no longer close to each other. Again, we
rely on a numerical optimizer to compute the error between the optimal and the
predicted f = Et" for a given n, m and a set of p;s. We varied m over the range
[2,1000], n over the range [1,10] and used three different distributions (uniform,
uniform-squared, uniform-cubed) for p; in the range [1,100]. The observed errors are
practically independent of the problem size m and the distribution chosen for the p;s;
the errors only depend on n. Figure 4.10 shows the error in F, ¢t and f = Et" for
m = 31, n € [1,10], k; = 1 and p; € [1,100] chosen randomly through a uniform-
squared distribution. The average error in E is between 4.1% and 5.5%, the average
error in ¢ is between -3.0% and -0.3%, and the average error in f = Et" is between

1.0% and 1.7%.
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4.2.7.2 Nonhomogeneous Circuits (First Form)

The formula resulting from Theorem 4 yields excellent results when all k;s are equal.
Let us extend it to incorporate the case when the k;s are no longer all equal. To do
this, we assume that the cumulative effect of the p;s and the k;s on the w;s can be
viewed as the product of the individual effect of the p;s (wire capacitances) on the
w;s and the individual effect of the k;s (gate topology) on the w;s. Hence, we propose

an approximate solution of the w;s of the following form:
w; = (Ozl]),j_H + (Yg])Avg) ’f‘,,;(k,'o, k’l, asese ]i,',,,,,l) (425)

where oy and «y are given by Theorem 4, while the functions r; will be determined
later. When all gates are identical, i.e., when Vi : k; = k, we know from Equation 4.18
that the w;s are independent of the k;s. For this reason, we choose r;(kg, k1, -.., km—1)
such that Vk : ri(k,k,....k) = 1.

Based on our experience of delay-only transistor sizing, we know that—while the
transistor sizes of gate 7 depend strongly on k;—the effect of a particular k; gets
distributed to some degree to all other gates. As a consequence, we would like r;
to depend on both k; and some average of all other k;s. We use the geometric
mean ka,, = /IIk; as an average of the k;s, since it has physical meaning—it is
proportional to the theoretical minimal delay t,, of the cycle. In this context, we

introduce the following theorem:

Theorem 5 For a neighborhood V, = [p—1,p+n] of p > 0,1 > 0 and a neighborhood

Vi=[k—1n,k+n] of k >0, the values of cv|, ay, By and By that minimize Et" given

the w;s of the form defined by Equation 4.25 with ri(ko, ki, ..., km-1) = ﬁlﬁ— + Ba,
vg

where Vi : p; € Vp,, ki € V), and n approaches zero, are

1 1

: 1
0 =+—2— apy=n— —2— and B =Py = T

m 1 m
+ =T +

3|~

n m—1

Proof. By substituting Vi : k; = k& € V. the theorem reduces to Equation 4.23, for
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which Theorem 4 states the required values for «; and as. Thus, we need to focus
only on 3 and ;. In order to compute these values, we apply a similar strategy to
the one in the proof of Theorem 4: we eliminate «; and ay by choosing Vi : p; = p
and then compute 8 and £, to minimize f = Et" around a small neighborhood Vy
of k. If we substitute Vi : k, = k € V;, Equation 4.13 yields w; = np. On the other
hand, from the hypothesis of Theorem 5 w,; = np(f; + f2). Combining these last two
relations, it follows that gy, =1 — 3.

We now pick k; = k,i € 0.m — 2 and k-1 = k(1 + me) where € = n/(mk).
Because we are computing J; and 3, around k; € Vi, we use the computationally
simpler arithmetic mean instead of the geometric mean in the expression of ks, (on
the limit when 1 approaches zero, the two means are equal). This choice of k4,
allows us to minimize ¢ = 31" k,_l“l’u—“i-’f— instead of f because F is constant. With

the specified values of k;, kayy = k(1 + €) and

/ . ,6]6 ¥
iy = np(l 13 e)’ Vi € 0..m — 2,
¢
W = np(l +(m—1) fjr 6).
It follows that
np 1_H_li +p np 1—&‘e +p
t = k(1+me) (- %) 7y +k(m — 2) ( 1+ﬂ)
'n,p(l + (m — 1)ﬁ) np(l - 1_41-65)

knp(l +(m — 1),/3—‘;) +p

(i~ B

_dt
dp

in B; with coefficients that depend on m and e. This equation has the positive root

Minimizing ¢ with respect to i, i.e., solving = 0, we obtain a quadratic equation

I+ €e)(l+e—+1+me)

5 =
A €e(2—m+e)

Once again, € = 0 creates a % indeterminacy in the expression of (3;; thus, we need to

use 'Hospital’s rule, which yields 3, = % and gy =1— 1 = % O
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If we substitute the values of «y, «y, 8, and fFy given by Theorem 5 into Equa-

tion 4.25, we get the following expression:

1

1 k;
. 2 i +(,__z__> )(_+1> 4.26
N 2<<%+—m RN C T Y AW 20

m—1 n rn—1

Theorem 5 yields the optimal values of «, s, 5; and S5 when the p;s are in a
close neighborhood of p, and the k;s are in a close neighborhood of k. We would like
to verify now how good these values are in minimizing Et" when the p;s and the k;s
are no longer close to each other. We again use a numerical optimizer to compute the
error between the optimal and the czt*mated f = Et" for a given n, m and a set of
p;s and k;s. We varied m in the range [2,1000], n in the range [1, 10] and used three
different distributions (uniform, uniform-squared, and uniform-cubed) for p; in the
range [1,100] and k; in the range [1, 3.3] (if we assure k,; in the range [1, 6] and k,; in
the range [1, 2], then with 4 = 2.5 we get k; in the range [6.66,21.95] or equivalently,
using Property 2, k; in the range [1,3.3]). Same as for Equation 4.23, the observed
errors are practically independent of the problem size m and the distribution chosen
for the p;s and the k;s; the errors only depend on n. Figure 4.11 shows the error
in B, t and f = Et" for m = 31, n € 1,10} and p; € [1,100], k; € [1,3.3] chosen
randomly through a uniform-squared distribution. The average error in E is between
1.7% and 6.1%, the average error in ¢ is between -3.4% and 1.7%, and the average
error in f = Et" is about 3.3% for n = 2, but increasing about linearly with n, owing
to the error amplifying artifact of Et" (if t = to(1 + A) = t" & t2(1 + nA) for small
A).

4.2.7.3 Nonhomogeneous Circuits (Second Form)

The main intended use of Equation 4.25 in energy-delay efficient design is to find
approximate transistor sizes when n & 2, i.e., when voltage scaling is a design param-
eter. As Figure 4.11 shows, Equation 4.26, i.e., a particular case of Equation 4.25,
does this reasonably well—i.e., within a few percent of the optimum. On the other

hand, one might want to use such a sizing formula for large n as well—i.e., predomi-
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Figure 4.11: Accuracy in F, t and Et" of Equation 4.26.

nantly delay-only optimization. Getting a close approximation of f = Et™ when n is
large requires a very good delay estimate, since even a small error A in ¢ gets linearly
amplified to nA in f = Et". tur this reason, we study the behavior of Equation 4.25

and the delay estimate resulting from it, when n goes to infinity.

For now, consider a simpler problem, namely finding the transistor widths we
that minimize ¢ given by Equation 4.9. This is a special case of the Et™ optimization
problem when n goes to infinity. If we apply the inequality between the arithmetic
mean and the geometric mean to the terms of Equation 4.9 that are independent of

the p;s. we get

m—1 m—1

I &+ 3 k2L (4.27)

i=0 =0 Wi

t>m’

with equality if and only if Vi : k; L’uf—l = V/Ilki = Kkayg. The second term in the
right-hand side of Equation 4.27 is minimized when the w;s are infinitely large. As
a consequence, the optimal delay to, = mka,, is reached for transistor widths wee; =

kl
__Avg Ya e v sedge seling Fae ‘e )
Wik k> Where w is an infinitely large scaling factor. In particular, the wees have
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the property that
i - woo(i+l) _ kAvg

(4.28)

Weoi ki

We would like the w;s given by Equation 4.25 to reduce to the wy;s, for large

n. This condition would guarantee that the delay estimate resulting from Equa-
tion 4.25 is optimal for large n. Howcver, we cannot express this condition properly
simply by lim,_, o W; = Weei, Since both terms are infinitely large (lim, o g = 00 =
lim,,_,, w; = oo). Instead, we express the requirement on the w;s as a condition on

the ratio of transistor widths. More precisely, we require

. Wi41 Woo(i+1
lim —tt = o) (4.29)
L==>00 % Wooi
Using aq and as given by Theorem 5, we have
. Wiy . (upiv2 + wapavg)riv(ko, k1, .. ., km-1)
lim = lim :
200 n—co  (qqpip1 + (szAvg)’f‘i(k'o, SITTIRL.
. (upive + @opave) . Tir1(ko, Ky ko)
= lim ’
n=00 ((Pypy 1 (P Avg) VO ri(ko, ki, .oy kmo1)
= ’ri—i-l(k()a kl» 2iiy k:m——l)
= lim i
e 'f',j(k](), kla ¥ B e oy k;'m—l)
thus Equation 4.29 can be restated in terms of the ;s as
. Wit . Yo If() l’u,’l ok -y Weo(i+1
lim —— = lim -~ (ko, K1y -, K1) e L. (4.30)
n—oo n—=co (ko ki, knt) Wooi

Condition 4.30 guarantees that the delay estimate resulting from Equation 4.25 is
optimal when n increases without bound. An obvious choice of the r;s that fulfill
Equation 4.30 is Vi : ri(ko, k1, - -, k1) = Bwew, where § > 0 is a constant scaling
factor. The role of # is to normalize the w;s to the right energy level; its optimal

value is stated by the following theorem:

Theorem 6 For a neighborhood V, = [p—n,p+n] of p > 0,17 > 0 and a neighborhood
Vi =[k—mn,k+n] of k > 0, the values of oy, vy, [ that minimize Et* given the w;s of
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the form defined by Equation 4.25 with r;(ko, k1, ..., km—1) = BWooi, where Vi : p; € Vp,
ki € Vi, and n approaches zero, are

1 L I s +
= o ) : ] +
) 52 i
al e 2],0{2 =P — ﬁ—’ (l,’[/d / - 2 (( n) \/( n) n‘;152>,

m—1 n m—1

3=

where
1 m—1 1 m—1 1

Si=— z Wey; and Sy = — Z )

m = m =g Woeoi

Proof. The part stating the values of «; and a5 is proved exactly as it was proved for
Theorem 5. For the second part, we assume Vi : p; = p and find § that minimizes Et".
With the notations given in the theorem, E = mp(1+nS;5) and ¢t = mkAVg(l + %)

To optimize Et™ function of 3, we compute

d(Etm)  Safp 1 Tz 4
dp :0;”5“?2((1—5)*\/(1_5)+n5152)' .

Given the value of § from Theorem 6, we have that Vn > 0 : EIT < B <S5

with § = E%I if n approaches zero and 5 = S, if n becomes infinitely large. If we
choose § = 35—1, the error in £ is reduced by bringing E close to the energy optimum
(14+n)E, given by Equation 4.19, while if we choose 8 = Sy, the error in ¢ is reduced
by bringing ¢ close to the delay optimum (1 4 )t given by Equation 4.20. If we
choose (8 from Theorem 6, the error in Et" is minimized.

The formula resulting from Theorem 6 works extremely well in practice for small
m, i.e., it keeps the error in Et™ very low for the entire range of n, including large n.
However, for large m the accuracy of the formula deteriorates somewhat owing to the
fact that E becomes consistently overestimated, while the estimate in ¢ stays very

accurate. This is a consequence of the choice of the r;s, where we have intentionally

1

favored the accuracy of the delay estimation. For large ms, the difference between 5

and Sy becomes large enough that the resulting 4 pulls E noticeably away from the
optimum (1 + n)E,.

Figure 4.12 shows the error in F, t and f = Et™ for the approximation given
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Figure 4.12: Accuracy in E, t and Et" of the approximation given by Theorem 6.

by Theorem 6 for m = 9 (a circuit with 18 transitions per cycle), n € [1,10] and
pi € [1,100], k; € [1,3.3] chosen randomly through a uniform-squared distribution.
The average error in E is between 4.4% and 6.7%, the average error in ¢ is between
-0.2% and -2.8%, and the average error in Et" is between 1.4% and 2.3% for the
entire range of n. It is interesting to point out that for n = 100, the average error
in E is about 1.2%, the average error in ¢ is about -0.003%, and the average error in

f = Et" is about 0.5%.

For clarity, Theorems 4, 5, and 6 were formulated to refer to the transistor sizing
problem of a single-cycle system. However, these theorems can easily be extended to
multi-cycle systems. We extend formula 4.23, and as a consequence Theorem 4, to
multi-cycle systems by redefining p,,, for each gate ¢ to be the average parasitic of
all cycles gate ¢ is part of. Theorem 5 extends to multi-cycle systems by substituting
mkayg With to (the minimum achievable delay of the circuit). Given the definitions
of Wees and pa,y, Theorem 6 generalizes straightforwardly to multi-cycle systems,

with the only change that m—in the expression of S| and S;—represents the total
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number of transistors in the considered circuit, not just the ones on a given cycle.
Remembering the derivation of section 4.2.1.2, the values of the w;s are per op-
erator ¢; but they can be transformed into the effective nMOS and pMOS transistor

sizes directly, using Equations 4.5, 4.7 and 4.8.

4.2.8 An Iterative Approach to Et"-Optimal Transistor Siz-
ing

With the help of Theoremns 5 and 6, we can compute approximate transistor sizes of
an Ft"-optimal circuit. As we have seen, the approximate solution yields energy and
delay values within a few percent of the optimum. However, if the accuracy of such
a solution is not acceptable for the given application, one can employ an iterative
procedure to “fine tune” the initial transistor sizes.

Using Equation 4.12, we can compute w;,—for a fixed +—as a function of the other

ws. More precisely, if we define

bl + ’I”Lb()bg (—71 + 1)[)3 d ——nbobg
g = ———, 0 = —————— and @y = ————,
2T (n+ Dby (n+1)by 7 (n+ 1)by
where
by = Z iy ij,
i=1,i%j i=1
Ui w; + Py Di
bl = Z kj_l———/J S +ki~1, ! y
i=1,i i+ Wi~1 i—1
k,_
])2 - 1 7
Wi_y
and

by = ki(wi1 + piv1);
we can compute, using Cardano’s formula, w; as the positive solution to the cubic

equation

w; + (szf + ayw; + ag = 0. (4.31)
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Equation 4.31 has three solutions, which could be either all real, or one real and two
imaginary. If there is only one real solution, noting that ag < 0, that solution has
to be positive. If all solutions are real, they are either all positive or one positive
and two negative. But, noting that a; < 0 if n > 1 implies that not all solutions are
positive. In conclusion, Equation 4.31 has a single positive solution for n > 1, and
that is the solution we are interested in.

The iterative procedure starts with an initial solution and then repetitively com-
putes each w; as the positive solution of Equation 4.31 with coefficients computed from
the current value of all other ws. It is easy to see that such a procedure converges to
the Et™-optimal solution. First, the recomputed value of w; yields a better Et" than
the pre-iteration value. This is because 95%’— =0, i.e., the new w; is Ft"-optimal when
all other ws are fixed at their current value. Second, the Et"™ optimization problem is

convex in the ws, hence a local minimum reached by the iteration procedure is indeed

the global minimum.

To fully appreciate the benefit of the proposed iterative procedure when applied to
the initial solution given by Theorems 5 or 6, we exhaustively analyze a particular case
of Equation 4.11 with n =2, m =5, p; € {1,2,3,4,5} and k; € {1,2,3}. Figure 4.13
shows a histogram of the relative error in Ft* between the optimal values (computed
with an optimization algorithm) and the estimated values based on Theorem 6, and
also between the optimal values and the values computed by one step of the iteration
procedure starting with the approximate solution given by Theorem 6. One step
of iteration assigns one new value to each w;. We observe that the already small
maximal error of the original sizing formula is reduced about ten-fold by a single step
of the iteration procedure. Of course, one can repeat the same procedure and get
an even smaller error. However, this second step does not have the same impact on
reducing the error as the first step had. Given that the transistor sizes of a real circuit
are integer multiples of a technology-dependent constant, there is not much point in

trying to find the zero-error solution. 'hat solution is unlikely to be implementable

in practice, since it will likely have non-integer components.

We have done several experiments in which we tested the dependence of the it-
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Figure 4.13: Error in Et? when exhaustively simulating an entire class of circuits.

eration procedure on the initial starting point. We have found that the applicability
of the method strongly depends on the initial solution’s proximity to the optimal
solution. Without a good initial solution like the one given by Theorem 5 or 6, the
method nevertheless converges to the optimum eventually. However, the first step of
iteration yields a solution that has an error spread two orders of magnitude greater
than the solution resulting from the first step of the iteration on the good initial

solution.

4.2.9 An Algorithm for Et"-Optimal Transistor Sizing

As we have seen, the transistor sizes w, of a system optimized for Ft" depend heavily
on the wire parasitics p;. However, these parasitics are not known to begin with, since
they are meant to connect the transistors whose dimensions are yet to be found. This
circular structure makes transistor sizing a chicken and egg problem—which one was

first?

A two-phase algorithm solves the problem of the unknown parasitics. In the
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first phase. given the transistor netlist, each wire is assigned an initial wiring cost.
The more is known about the structure of the transistor netlist and about a future
floorplan, the more accurate sich an assignment will be. Based on these initial wire

parasitics, we can then compute an initial estimate for the w;s with the formulas

established by Theorems 5 and 6.

In the second phase, the pre-sized transistor netlist is wired up and the actual wire
capacitances are extracted from the layout. With these new parasitics, we recompute
the transistor widths w;. Finally, we may fine-tune the solution by iterating once as

described in Section 4.2.8.

If the accuracy of the solution is still not acceptable, a third phase can be added
to the transistor-sizing algorithm. In this last phase, the approximate w;s are used
as the starting point of a numerical optimizer. Given the proximity of the current
solution to the optimum, such an opuimization should converge quickly. In this last
phase, a more accurate transistor model (e.g., a BSIM model) can be employed, so
as to bridge the gap between the simplified transistor model used to infer Theorem 5

and 6, and the actual transistor behavior.

4.2.10 A Transistor-Sizing Example

In this section we present a simple optimization example in which we show how the
transistor sizing formulas of section 4.2.7 are applied to a concrete circuit. The circuit
we consider is the serial composition of several identical dual-rail weak-condition half-
buffers [10]. This circuit is an asyncurcnous buffer that passes one bit, encoded as
a dual-rail code, from left to right. The corresponding circuit diagram is shown in
Figure 4.14. The cycle time of this circuit is determined by the speed of the four-phase

handshake between two consecutive buffers. It can be written as

Wpg + Wpe + P1 + Wpz + Wyz + Po x QM’UJ”z + Wy + P1 + Wz + Wp3 + P2
Wn1 Wp1
Wnq + Wpg + P3 Wya + Wpa + P3
+ [
Wy3 w

t = 2

+ 2

3
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Figure 4.14: Optimal transistor sizing of a chain of buffers.

2(wn1 + wy1 + p 2(twn1 + wpy +
+ ( nl p1 [4) y ( 1 pl p4)
Wna Wpa
I 2wn2 + Wp2 + P1 + W3z + wyz + P2 N 2/L’(l)n2 + wpa + P1 + Wp3g + Wp3 + P2
Wn1 Wp1
W1 + Wp1 + Ps g Wy + Wp1 + ps‘

Wn32 Wp2
where for this example we assume ;. = 3. Similarly, the total energy consumption per

operation can be written as

E = wpy+ wyy + p1+ W3 + Wp3z + P2+ Wng + Wpe + P3

+ Wp + Wy + Py + 2(wWn1 + Wp1 + Pa).

If we optimize this circuit only for + when Vi : p; = 0, the minimal delay t. = 79.06

is reached for

Woonl = 2.70W, Woepr = 4.76w,

Woon2 = 1.38w,  Wegpr = 2.38w,



68
Weon3 = 1.86w, Woops = 2.27w,

Woond = 2.50w,  Woeops = 4.34w,

where w > 0 is an arbitrary constant.

For the case of Et" optimization, assume p; = 3, po = 1, p3 = 1.5, py = 2,
and ps = 3. We first compute all the constants needed to apply the proposed sizing
formulas. The length of the original cycle is 10, but after operator reduction, i.e., the
elimination of pMOS transistors using Equation 3, it becomes 5, i.e., m = 5. Using

this value of m, we can compute «; and «, for any n. Then,

1
Pavg = ;;(Pl +p2+p3 +pa+ps) =21,
g = E(woonl + Woopt + Weonz + Weepz T 2(/woonl =+ 'woopl)
+  Weons + Woop3 + Weona + woop4> = 7457
1 1 1 2
92 = —( + ~+
M \Woonl + Woopl Woon2 T Woop2 Woon1 T Woopl
1 1
+ + ) = ().21.
Woon3 + Woop3  Woond T Woopa

Using these values of S; and S,, we can compute 3 for any n. We can now directly

compute the Ft"-optimal nMOS and pMOS transistor widths as

_ P+ / -
Wn1 = ((){1 u ('}/’21)(1.’[1!])’ nls
_ P1+ P2 , ]
Wpr = ((Y'l + (Y2[)avg>7pl7
Wp2 = (cups+ (mpavg)’f‘nza
Wp2 = ((Ylpﬁ ' W‘ZP(I/U(J)"})‘Z,
Wnz = (D3 + 2Pavg)Tnss
Wp3z = (_0517)3 ~+ (VQp(L1Jg)7'pih
Wng = ((le4 + (Y‘Zp(l.'uy>7'n4a
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Wpg = (“1])4'1"()(2])(11)[])7'}74;

where

1/74(1 + /)%
Tny = _< ( \//7) m -+ ].) ! 5
2 1+ /i
I"pl = T’lLl\/ﬁa
1/7(1+ ’m 1
_ _( (1+ /1) L 1)

too

Tp2 = 3
2 s 1+ /1
Tp2 = Tn2\/ﬂ;
1/2(L+/5)*m I
Ty = = + 1) ;

I
Tp3 = Th3 ‘2“,

_ 1(2(1 + I)*m N 1) 1

Tnga =
2

Tpe = ’rn4\/ﬁ7

too

if we use Theorem 5, or r,,; = Sw,, and Ty = By, if we use Theorem 6.

We have verified the accuracy of the proposed transistor sizes using a numerical
optimizer. We have computed the error between the optimal and the predicted E,
t and Et" for n € [1,10]. For the first formula (given by Theorem 5), the average
error in E is between 1.6% and 3.6%, the average error in t is between -2.5% and
1.5%, and the average error in Et" is about 2.4% for n = 2, but, as in Figure 4.11,
increassing about linearly with n. (for n = 10 the error in Et" becomes 18.2%). For
the second formula (given by Theorem 6), the average error in F is between 1.1%
and 6.7%, the average error in t is between -2.1% and -0.7%, and the average error in
Et™ is between 0.2% and 0.9%. Both the magnitude and general shape of the error
functions resulting from using the sizing formulas in this example are consistent with

the error behavior seen in Figures 4.11 and 4.12.

If the example circuit is optimally sized (using a numerical optimizer) predom-
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Figure 4.15: Circuit energy using estimated and optimal transistor sizes.

inantly for speed (n = 20), its energy consuinption is E,y, = 291.75 and its delay
i topr = 83.04. On the other hand, if the circuit is optimized for n = 2 using
the proposed sizing formulas, the resulting energy and delay values are t, = 119.71,
Ey = 40.65 (first form) and ¢, = 117.92, F, = 40.99 (second form). The energy con-
sumption is reduced by 86%, while the delay is increase by 40%; as a consequence,

the Et? is improved by 350%.

The transistor sizes inferred in this example have been checked in practice. We
have simulated in hspice, using the HP’s 0.6um process, both the circuits result-
ing from using the optimal transistor sizes and the circuits resulting from using the
transistor sizing formula, for values of n in the range [1,10]. The optimal transistor
sizes were obtain using an iterative method sitmlar to Powell’s method. The iteration
procedure started with the optimal analytical solution, based on the simple transistor
model, and produced an optimal hspice solution. Figures 4.15 and 4.16 show the
energy and the delay of these circuits as a function of n, simulated in hspice. The
accuracy of these results is consistent with the accuracy of the theoretically predicted

results.
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Figure 4.16: Circuit delay using estimated and optimal transistor sizes.
4.3 An Abstract View on Transistor Sizing

If we eliminate n from Equations 4.19 and 4.20, we arrive at the following relation

between the minimum energy and the minimum delay of a circuit at a fixed voltage:

Eyt,
B =" (4.32)
t'n, - foo

Based on this expression, we can define an antimonotonic minimum-energy function
E(t) that describes the effect of transistor sizing on the minimum energy required for
a system to run at a given ¢ ai « fixed voltage. (Tierno has previously used a similar
energy function [48].) If we rewrite Equation 4.32 with F a function of ¢, we get the

following function:

Bty = —>— . (4.33)

It is easy to prove that Equation 4.33 satisfies the above definition of the minimum-
energy function. In the Chapter 5 we will extend the notion of minimum-energy
function and we will use Equation 4.33 to infer properties of composed systems.

I¥ we consider that the RC delay and the intrinsic gate delay are non-zero, i.e.,
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Figure 4.17: The Et? curve around the optimum.

triz # 0, Equation 4.33 becomes

Eo(t — trin
Et) = ———— U(f : ";’) : (4.34)
LT e T b
or equivalently
Eyt
E(t+tgin) = - _"f (4.35)

Another way to rewrite Equations 4.19 and 4.20 was suggested by Alain Martin,

in the form

AEAt = Eyto (4.36)

where AE = F, — Ey and At = t,, — to.

Using Equation 4.33, we can write Et" as f(t) = iy Figure 4.17 shows a plot

t—loo
of fforn =2 Ey =1, and t,, = 1. One can notice that around the point of optimum
topt = (1 + oo = %, function f is flat. More precisely, if ¢ = 0.9 x t,,; = 1.35 =
J(t) = 1.04 « fopy, while if t = 1.1 % t,p; = 1.65 = f(t) = 1.02 % fop.

The observation on the flatness of the Et" curve around the minimum should not
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be misinterpreted. In particular, this flatness does not imply that transistor sizing
has little impact on the energy-delay efficiency of the final circuit. What it really
means is that, assuming perfect sizing for a given target delay, i.e., minimal E for a
given ¢, the exact choice of £ around the optimum ¢, has little effect on Et". This is
because what would be lost by, for example, running the circuit at ¢ slightly higher
than ¢,,; would be partly compensated by the savings in £. On the other hand, if the
circuit does not run at minimal F given ¢, even a few unproperly sized transistors can
compromise the final outcoms. Mne can see this by considering a circuit with many
concurrent cycles. originally all sized to run at the same speed. If a few transistors
on one of these cycles were to be shrunk, the total energy E would not improve
much, since the global weight in E of these transistors is small. However, the delay
of the circuit ¢ can go up significantly. As a result, the Et"™ metric could increase

dramatically.

4.4 Improvement in Ft’ due to Transistor Sizing

In theory, sizing for delay-only requires n going to infinity. In practice, n is chosen
big, but finite. This is because the delay contribution of wire parasitics is not quite
zero, since that would result in impractically large transistors. While the MiniMIPS
microprocessor (an asynchronous version of a MIPS R3000) [33] was designed and
sized for high speed, we estimate its optimization index n to be between 10 to 20.
If the same design had been optimized for E#?, the expected energy improvement
would have been —13} to ﬂi, while the speed slow-down between 176 to % of the original.
This would have resulted in an overall Et? improvement of 200% to 350%. We would
expect this improvement everywhere on the chip except for the cache core cells which

are sized based on different considerations. The power consumption would decrease

by 80% to 90%.
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Chapter 5

Energy-Delay Optimization

5.1 Introduction

In Chapter 3 we have discussed the merits of the Et? metric proposed as an efficiency
metric for VLSI computation [1], and we have motivated the introduction of the more
general Et" metric. In this chapter, we show that the Et" metric for the energy-delay
efficiency index n > 0 can capture any optimal trade-off—as will be defined later,
not only the trade-off through voltage scaling, between the energy and the delay of a
computation. For example, any problem of minimizing the energy of a system for a
given target delay can be restated as minimizing F't" for a certain n. A subset of the
results to be presented here, have been published in [43, 44, 51].

In general, for a VLSI computation implementing a given algorithm, the faster the
computation, the more energy it consumes. This observation points to the existence
of a trade-off between the goodness of one property (delay) versus the badness of the
other (consumed energy). The goal of our efficiency metric is to quantify such a trade-
off. Certainly, there are computations that are both slower (bad) and consume more
energy (bad) than some base case; however, those computations are not interesting
implementations and will not be considered. Moreover, there are computations that
are both faster (good) and more energy efficient (good) than some base case (for
example the implementation of a transistor network in a newer technology). Again,
these cases are of no interest to us since one will always prefer the good-good case and

there is no trade-off. Later in this chapter we formalize the notion of trade-off and
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Figure 5.1: Optimal energy-delay trade-off.

the design parameters this trade-off applies to.

The feasible energy-delay region of a computation is defined by the set of (¢, E)
pairs with the property that, under the available design parameters, there exists a
circuit implementation that operates with delay ¢ and consumes energy E. In Fig-
ure 5.1, the shaded area represents such a feasible energy-delay region, when the
design-parameter space is continuous. Any point on the boundary of the feasible
energy-delay region represents an optimal energy-delay trade-off of the given compu-
tation, under the available design paramecters. In case the design parameter space
is noncontinuous, the boundary of a feasible energy-delay region is defined by a
step function. More precisely, given the set of feasible energy-delay pairs (t;, E;),
7 € 0..m — 1, such that t; < t;,1 and E; > F;,, the boundary of the feasible energy-

delay region is defined by the function

2

i it <t <tipy

E
Em-l if tm—l S t
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A VLSI computation can be made slower or faster in several ways: at high level,
by using a different architecture, and at low level, by choosing a different supply
voltage or different device parameters of the transistor network. In general, any of
those choices amounts to trading delay for energy and vice versa. For example, by
operating a circuit at a higher supply voltage its delay decreases, while its energy
consumption increases. Conversely, by operating the same circuit at a lower supply
voltage, its delay increases, while its energy consumption decreases. Thus, voltage
scaling is one way to trade delay for energy.

With an efficiency metric at hand, one can define the corresponding optimization
problem as of finding a set of parameters in the available parameter space that op-
timizes the given metric. The parameter space is defined by the freedoms available
to the designer. For example, if the operating voltage of the design can be varied,
then voltage is part of the parameter space. On the other hand, if operating voltage
is fixed, then it is not part of the parameter space. Throughout this text, when we
are referring to the efficiency metric, we are implicitly referring to the corresponding
optimization problem as well.

We define the efficiency metric in two seemingly different ways, and then we show
how these definitions indeed lead to the same trade-off between energy and delay.
Later in the chapter, we quantify the goodness of parallel and sequential VLSI com-
putations using the efficiency metric. As an example, we look at the energy-delay ef-
ficiency of circuits optimized through transistor sizing and voltage scaling. We bound
the energy and delay of the optimized circuits and we give necessary and sufficient
conditions under which these bounds are reached. We also give necessary and suffi-
cient conditions under which components of a design can be optimized independently,

so as to yield global optimum when composed.

5.2 The Et" Efficiency Metric

As mentioned in the introduction of this chapter, we are interested in defining an

efficiency metric over a set of design parameters, parameters that create a trade-off
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between energy and delay. More precisely, if we define two functions one for energy
E(x) > 0 and one for delay T (%) > 0, we are interested in studying them on the
domain D that has the property that if v,v + dv € D, dv # 0 then (S(v + dv) —
S(U)) (T(v +dv) — T(v)) < 0; in other words, we are interested in the domain where
evaluating £ and T for a point v + dv different from v results in increasing £ while
decreasing T or vice versa. Specifically, we are not interested in domains where
(E(zf + dv) — S(fu)) (T('u + dv) — 7'(/0)) > 0; since then there is no trade-off and the

optimization becomes trivial.

We do not require D to be continuous. It is important that our functions are
general enough to be definable on noncontinuous domains. This allows us to use
them to reason about noncontinuous parameter spaces like different architectural
implementations of a given algorithm or different decompositions of a high-level circuit
specification. For example, if we want to evaluate an architectural trade-off between
adders, the union of each different adder architecture (ripple-carry, carry-lookahead,

carry-save, etc.) can form the domain D.

The first form we propose for an efficiency metric combines the energy consumed
by the computation, and the delay (cycle time or latency) of the computation, in the
form ©,(v) : D —» R,,0,(v) = E(v)T(v)", n > 0. When the domain D of variable
v is clear or irrelevant, we will omit explicitly using v in ©,, £ and 7. Furthermore,
when we will use the value of £ or T evaluated at a specific point vy that follows from

the context, we will use E and ¢ as a shorthand for £(vg) and T (vo), respectively.

It has been argued in [1] that Et*—or with our notation O, (n = 2)—is indepen-
dent, in first approximation, of the supply voltage. In other words, forv = (..., V,...) €
D (v includes the supply voltage V), Oy(.... Vi, ...) = Oa(..., V2, ...) V V1, Va. Practi-
cally this means that, away from velocity saturation and threshold voltages, energy
and delay can be freely exchanged through supply-voltage adjustment (within the
feasible voltage range) while ©, remains constant. We shall point out that if ©,
is constant under the variation of a certain design parameter, £ and ¢ cannot be

determined uniquely (as is the case with voltage scaling).
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5.3 A Minimum-Energy Function

We can further refine the energy function £(*) and the delay function 7 (x) by defining
two implicit functions: energy as a function of delay and delay as a function of energy.
More precisely, we introduce a single-variable antimonotonic function by defining
a minimum-energy function E(t) : Ry — R, that describes the minimum energy
required for a system to run at a given delay ¢. Similarly, we introduce a single-variable
antimonotonic function by defining a miinimum-delay function t(E) : Ry — R, that
describes the minimum delay of a system that consumes energy E. Through these two
functions, we have abstracted away the original domain D of £ (%) and T (x); however,
it should be noted that the choice of D affects the expressions of E(t) and t(F).
Furthermore, these two functions depend at high level on the particular computation

being implemented and at low level on the circuits and device parameters used.

It should be noted that both of these functions are well defined (in the mathemat-
ical sense). In particular, for the minimum-energy function even though there could
be several ways to achieve a delay ¢, yielding several—possibly different—energy val-
ues F, by picking the smallest of them we force this relation to take a unique value
for each input ¢, and thus become & woli-defined function. A similar argument applies

to the minimum-delay fuiction.

The related optimization problem consists of finding these functions (or their

value) over parts or the entire domain of definition.

It can be shown that the minimum-energy function and minimum-delay function
represent the same implicit relation between E and t. More precisely, the minimum-
energy function and the minimum-delay function are the inverse of each other, i.e.,
Eot=1to# =1, where [ is the identity function. It turns out that the minimum-
energy function lends itself better to mathematical manipulation, given the fact that
many compositional properties result in relations in terms of the delay ¢. For this
reason, we will use only the minimin: snergy function in our reasoning, but one
should remember that the same argument can be stated in terms of the minimum-

delay function.
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In the next section, we give two examples of a minimum-energy function and of a

minimum-delay function for two particular types of optimizations.

5.3.1 A Minimum-Energy Function for Transistor Sizing

As studied in Chapter 4, transistor sizing provides a set of transistor dimensions for
a circuit such that a given metric is optimized. It has been shown in Chapter 4 that

for optimal transistor sizing for Et", the consumed energy is
E & (1 + ’IL)E()

and the delay is

1
t (1 + —)too,
)

where Ej is the energy due to the total switched wire capacitance of the circuit and
oo is the lower bound on the achievable delay of the circuit. It was also pointed out
that if we rewrite these two equations with E a function of t—by eliminating n—we

get the following function:

E(t) = . (5.1)

Similarly, one can express ¢ as function of F and get the minimum-delay function

for optimal transistor sizing
too

HE) = 525

(5.2)

In the context of transistor sizing, we define the asymptotic power as

The energy and delay used in defining the asymptotic power are of course not si-
multaneously attainable; yet the asymptotic power is related to the actual circuit

power. More precisely, the power consumption of a circuit optimized for Et" through
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Figure 5.2: The minimum-energy function in practice.

transistor sizing is

E E -
P= i n;—g = nf. (5.3)

This relationship shows that the power consumption increases linearly with the op-
timization index n. In particular, the power consumption of a circuit optimized for
FEt is half that of the same circuit optimized for Et?. Equation 5.3 also relates the
optimization index n to the ratio of the actual power consumption to the asymptotic

power of the circuit.

The validity of Equation 5.1 has been checked in practice. A ring of eperators op-
timized for different values of n was considered as a test vehicle. The results given by
the minimume-energy function were compared against hspice simulations conducted

in HP’s 0.6pm process. The results of this experiment are shown in Figure 5.2.
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5.3.2 A Minimum-Energy Function for Voltage Scaling

Consider a system in which the supply voltage is the only optimization parameter.

In this case, assuming E ~ CV? t = k/V and © = Ck?,

B(t) = % (5.4)
and
HE) = Y2 (5.5)

VE

1t should be noted that through the single parameter {—using the minimum-
energy function—one can quantify the optimal energy-delay trade-off. The same holds
for the single parameter E using the minimum-delay function. But this outcome
was already achieved by the Et" metric. For this reason, we would like to know if
these new functions are fundamentally different from our previous Et™ metric. More
precisely, if a system were to be optimized using one of these functions or the Et"

metric, would that result in different values of the optimal F and ¢?

5.4 Metric Equivalence

The answer to the previous question is given by the following:

Theorem 7 Given an energy-delay optimization of a computation, the problem spec-
ified as “find Eq = min E given ty” is equivalent to “find the values of E and t that

minimize Et™ forng = —ﬁ%(to) Y —when such a solution is well defined and unique.

Similarly, the problem specified as “find ty = mint given Ey” is equivalent to “find

1

———"—when such a solution
5 (Fo)

the values of E and t that minimize Et™ for ng = ——g%

15 well defined and unique.

Proof. We prove the equivalence of the two statements by showing that one implies
the other and vice versa. First, assume that we are solving “find Fy = min E given
to”. Minimizing Et" for the given t, implies—for any n—finding the minimum E

given to—which in this case is Ey. Second, assume we are solving “find the values of
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E and ¢ that minimize Et™ for ny, = —%%(to)”. With the help of the minimum-
energy function, we can write Et" as a single-variable function in ¢. This function is

minimized—given that the minimum-energy function is antimonotonic—where

d(Et") dE ., Ll ty dF
s :O:}—t ,Et :():>___+,':07
ai prACERS Bt "
but by hypothesis
to dE f{) dE ’ fo dE
 =ng = ——=——(tg) = = —(1y) = =——(%o)-
e (to) El di (fo) Ey dt (to)

Thus, we found E| and t; that optimize E¢"® such that g%%(fé) = %%(to). Clearly,
Ey and ty are solutions of this equality. However, by hypothesis, the solution to the
minimization problem is unique = ty = t, = E|, = E(ty) = E(to) = Ep as well.
Thus, when optimizing Et" with n = ng, if a unique solution exists, we find it to be

the required Fy and t,. O

The requirement on the solution to be well defined requires E(t) or t(E) to be
differentiable around tq and Ej, respectively. In particular, this requirement is not
met in the case of a noncontinuous parameter space. In such a situation ny is no longer
unique, but corresponds to an interval of values, all yielding the same energy-delay

pair.

The uniqueness of the solution minimizing Et™ is important for un-ambiguously
determining Ey and ¢;. It could be the case that there are several (E,t) pairs—
including (Ey,ty)—that minimize Et™. In particular, the metric Et"® accepts in-
tinitely many (E.t) pairs as solution if E(t) = ¢t7%, ¢ > 0, k > 0. If more than one
solution exists, finding the solution pair (Fy,tg) reduces to choosing from the solution

pairs (E,t) the one that has t = .

Theorem 7 tells us that, for a given system to be optimized in terms of both E and
t, one can pose the optimization problem either in terms of an energy-delay efficiency
index n, or a desired delay target ¢t and obtain as result the same optimal values of £

and ¢. This seemingly harmless result has the great benefit of allowing the application
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of the results developed for Et" optimization in Chapter 4 and [44] to other types
of energy-delay optimizations—optimizations where either the target energy or the
target delay are fixed. As a concrete example consider finding the optimal transistor
sizes of a circuit, so as to achieve delay ¢, for minimal energy. Given ¢y, one can find
the corresponding energy-delay optimization index ng. With ng at hand—using the
formulas developed in Chapter 4 for optimal Ft" transistor sizing—one can directly
generate the transistor sizes that achieve delay ty for minimal energy consumption.

In the next section, we apply the concept of metric equivalence to the parallel and

sequential composition of circuits.

5.5 Composition

It is often the case, in practice, that one wishes to decompose the design of a
complex system into a set of relatively independent subsystems, which then can be
independently designed and implemented. If the optimization problem is defined
globally using any of the parameters n, ¢t or F, it is not immediately clear how
subsystems of the original design should be optimized in terms of n, t or E| so as to
achieve global minimum when the subsystems are composed.

The two major composition techniques used in VLSI design are parallel compo-
sition and sequential composition. In the following, we show how the energy-delay
efficiency metrics have to be applied to subcomponents, so as to yield global minimum
when composed in parallel or serially.

We will assume that each subsystem S; has its own optimization index n; (to be

determined), and its own minimum-energy function Fy(t).

5.5.1 Parallel Composition

Let us consider the parallel composition of m subsystems S;. Let us assume a
computation that runs in parallel all S;s to completion before starting a new compu-
tation. We want to know at what ¢; to run .S; or which n; to optimize S; for, so as to

obtain the best E for a given ¢ or to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>