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Abstract 

Feature detection and tracking is a fundamental problem in computer vision research. 

By detecting and tracking features in an image sequence it is possible to recover 

information about both the motion of the viewer and the structure of the environment. 

The selection of features is a computationally intensive task. We derived two low

complexity algorithms that are suitable for integration in a CMOS sensor with focal

plane processing. We review the two algorithms and the circuits that implement 

them. We present results from accurate simulations and experimental results from 

the testing of these CMOS sensors. 
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Chapter 1 Introduction 

With weights of the order of few grams and power consumptions well below one watt, 

integrated CMOS image sensors are becoming increasingly attractive as a replacement 

for the standard combination of CCD camera and image processor in such applications 

as machine vision systems and embedded systems. 

Conventional systems are put at a disadvantage by the separation between a cam

era for seeing the world, and a computer for figuring out what is seen. The main 

advantage of CMOS image sensors, in fact, is the ability to integrate sensing and pro

cessing on the same chip. This advantage is especially important for implementing 

imaging systems requiring significant processing such as digital cameras and compu

tational sensors. 

In the field of digital cameras, Active Pixel Sensors (APS) using standard CMOS 

technologies have attracted a considerable amount of attention in the past few years. 

Nowadays CMOS APS imagers can be found at both the low end, and the high-end 

of the market spectrum. In APS sensors, processing can be integrated at the chip 

level using a "system-on-chip" approach, at the column level by integrating an array 

of processing elements each dedicated to one or more columns, and at the pixel level 

by integrating a processing element at each pixel or group of neighboring pixels. At 

present, chip and column level processing are the most widely used in APS sensors. 

Pixel level processing is generally dismissed as resulting in pixel sizes that are too 

large to be of practical use in such imaging systems. 

The work on computational sensors, on the other hand, involves the integration of 

analog processing at the pixel level. By distributing and parallelizing the processing, 

speed can be reduced to the point where analog circuits operation in weak inversion 

(subthreshold) can be used, yielding a substantial reduction in systems power. 

Some of the previous work in computational sensors has focused the attention on 

visual motion. 
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The analysis of motion using focal-plane pixel-parallel continuous time circuits is 

particularly appropriate because it eliminates the temporal aliasing problem found in 

sampled motion systems. Starting with the work of Mead and Tanner in 1986 [44J 

many works have been presented in this field of research [39J. 

~While many of these sensors showed creativity and great insight, almost all of 

them failed to generate enough interest among potential users like computer vision 

specialists and researchers iri autonomous robotic platforms. One of the main reason 

of this disconnection between sensors designers and users is the fact that most of these 

sensors compute quantities frequently not compatible with the algorithms developed 

by researcher for their applications. 

Conscious of this problem, we tried the opposite approach. By looking at what 

the potential users want and need, we designed a series of computational sensors that 

would provide a real advantage over the standard combination of CCD camera and 

dedicated digital image processor. 

The selection and tracking of features in an image stream is a fundamental problem 

in computer vision. In principle, from the stream of image frames produced by a 

moving camera, it is possible to recover the shape of objects in the field of view and 

the motion of the camera iteself. Information on both the structure of the environment 

and the motion of the viewer can be recovered from the displacement of key features in 

the image sequence. The selection of features is also a computationally intensive task 

and usually is accomplished off-line on a sequence of images recorded from a camera. 

Real-time systems, of which very few exist [43, 2], are usually bulky, expensive, require 

cameras and frame grabbers and have a very high power consumption. 

Starting from a well-known algorithm for feature detection and tracking, we de

rived two algorithms that allow a substantial reduction in complexity to the point 

, where an integration in a computational sensor with circuits working in weak inver

sion becomes possible. By carefully designing the circuits, we were able to implement 

the two algorithms without approximations, as results from accurate simulations will 

show. We present also results from the first attempt to include adaptation in CMOS 

visual sensor as a way to remove offsets mismatches that very often are the reason 
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behind inaccuracies in CMOS visual sensors operating in weak inversion. 

The thesis is organized as follows: in chapter 2 we review the known algorithms for 

feature detection and tracking and present the two low-complexity feature selection 

algorithms. In chapter 3 we present the first computational sensor to implement the 

feature detection algorithm. In chapter 4 we present the final sensor design along with 

accurate simulations and experimental results from a fabricated chip. In chapter 5 we 

introduce the problem and present results from the first attempt to use floating-gate 

devices to reduce offsets mismatches in CMOS visual sensors. And, finally, in chapter 

6 we summarize our contributions and present ideas for possible improvements and 

possible use of the sensors. Appendix A presents the family of wide linear range four 

quadrant multipliers that were the byproduct of the research on the computational 

sensors. 
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Problem 

7 

The Feature Selection 

In principle, from the stream of image frames produced by a moving camera, it is 

possible to recover both the shape of objects in the field of view and the motion of 

the camera. Information on both the structure of the environment and the motion 

of the viewer can be recovered from the displacement of key features in the image 

sequence. The selection and tracking of features in an image stream is therefore a 

fundamental problem in computer vision. 

In general two basic questions must be answered: how to select the features, and 

how to track them from frame to frame. One of the best know and most frequently 

used algorithm to track features was proposed by Lucas and Kanade in 1981 [29]. 

Their approach is to minimize the sum of squared intensity differences between 

past and current windows. Because of the small inter-frame motion, the current win

dow can be approximated by a translation of the old one. Furthermore, for the same 

reason, the image intensities in the translated window can be written as those in the 

original window plus a residue term that depends almost linearly on the translation 

vector. As a result of these approximations, one can write a linear 2 x 2 system whose 

unknown is the displacement vector between the two windows. 

The first question posed above, however, was left unanswered in [29]: how to 

select the windows that are suitable for accurate tracking. In the literature, several 

definitions of a "good feature" have been proposed, based on an a priori notion of 

what constitutes "interesting" windows. For example, Moravec and Thorpe proposed 

to use windows with high standard deviations in the spatial intensity profile [35, 45], 

Marr , Poggio, and Ullman prefer zero crossing of the Laplacian of the image intensity 

[30], and others define corner features based on first and second derivatives of the 

image intensity function [20, 12]. 
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In contrast with these selection criteria, which are defined independently of the 

tracking algorithm, Tomasi and Kanade [46] presented a criterion that explicitly op

timize the tracking performance. In other words, they define a feature to be good if 

it can be tracked well. 

This feature selection method, while providing an elegant solution to the problem, 

is still computationally intensive, and an implementation in a CMOS sensor would 

be impossible without a substantial reduction in complexity. 

For this purpose, we derived two successive simplifications to the original algo

rithm that allowed the design of two compact CMOS sensors that implement them. 

With the first simplification step, we obtained a low complexity algorithm that is 

equivalent to the original one proposed by Tomasi and Kanade, and, with the sec

ond step, an even further reduction in complexity was achieved at the cost of a lost 

equivalence with the original method. 

In section 2.1 we will review the tracking method. In section 2.2 we will present 

the original selection met,hod proposed by Tomasi and Kanade. In section 2.3 we 

present the simplified versions of the algorithm. In section 2.4 we present results 

from a comparison of the two selection criteria, and finally, section 2.5, summarize 

the contributions. 

2.1 Feature Tracking Algorithm 

As the camera moves, the patterns of image intensity change in a complex way. In 

general, any function of three variables I(x, y, t), where the space variables x and y as 

well as the time variable t are discrete and suitably bonded, can represent an image 

sequence. However, images taken at near time instants are usually strongly related 

to each other, because they refer to the same scene taken from only slightly different 

viewpoints. 

This correlation can be expressed by saying that there are patterns that move in 

the image stream. Formally, this means that the function I(x, y, t) is not arbitrary, 
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but satisfies the following property: 

I(x, y, t + T) = I(x - E" y - T/, t) . (2.1) 

That is, a later image taken at the time t + T can be obtained by moving every point 

in the current image, taken at time t, by a suitable amount. The amount d = (E" T/) is 

called the displacement of the point at x = (x, y), between time instants t and t + T, 

and is in general a function of x, y, t, and T. 

Even in a static environment under constant lighting, the property described by 

equation (2.1) is violated in many situations. For instance, at occluding boundaries, 

points do not just move within the image, but appear and disappear. Furthermore, 

the photometric appearance of a region on a visible surface changes when reflectivity 

is a function of the viewpoint. 

However, equation (2.1) is by and large satisfied at surface markings and away 

from occluding contours. At locations where the image intensity changes abruptly 

with x and y, the point of change remains well defined even in spite of small variations 

of overall brightness around it. Surface markings abound in images of natural scenes, 

and are not infrequent in man-made environments. 

An important problem in finding the displacement d of a point from one frame 

to the next is that a sigle pixel cannot be tracked unless it has a very distinctive 

brightness with respect to all of its neighbours. In fact, the value of the pixel can 

change due to noise and be confused with adjacent pixels. As a consequence, it is 

often hard or impossible to determine where the pixel went in the subsequent frame, 

based only on local information. 

Because of these problems, we do not track pixel but windows of pixels, and, as 

we will explain later on, we look for windows that contain sufficient texture. 

Unfortunately, different points within a window may behave differently. The cor

responding three-dimensional surface may be very slanted, and the intensity pattern 

in it can become warped from one frame to the next. Or the window may lie along 

an occluding boundary, so that points move at different velocities, and may even 



10 

disappear or appear anew. 

This can be a problem in two ways. First, how do we know that we are following 

the same window, if its contents change over time? Second, if we measure "the" 

displacement of the window, how are the different velocities combined to give the one 

resulting vector? 

One solution of the first problem is to keep checking that the appearance of a 

window has not changed too much. If it has then the window is discarded. 

The second problem can be solved by utilizing a more complex transformation 

than a simple translation to describe the window changes. One such transformation 

is an affine map that allows to associate different velocities to different points of the 

window. Examples of these more complex transformations can be found already in 

[29, 37, 41]. 

On the one hand, when the world is known to be rigid, the danger of over

parametrizing the system outweighs the advantages of a richer model. More pa

rameters to estimate require the use of larger windows to constrain the parameters 

sufficiently. On the other hand, using small windows implies that only few param

eters can be estimated reliably, but also alleviates the problems mentioned above. 

The simplest choice therefore is to estimate only two parameters (the displacement 

vector) for small windows. Any discrepancy between successive windows that cannot 

be explained by translation is considered to be error, and the displacement vector is 

chosen so as to minimize the residue error. 

Formally, if we define J(x) = I(x , y, t+T) , and I(x - d) = I(x-f"Y-T} , t) , where 

the time variable has been dropped for brevity, our local image model is 

J(x) = I(x - d) + n(x) , 

where n is noise. 

The displacement vector d IS then chosen so as to minimize the residue error 
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defined by the following double integral over the given window W: 

f = /w[I(X - d) - J(x)F w(x) dx. (2.2) 

In this expression, w(x) is a weighting or window function. In the simplest case, 

w could be set to 1. Alternatively, w(x) could be a Gaussian-like function or other 

functions that emphasize the central area of the window. 

If the inter-frame displacement is sufficiently small with respect to the texture 

fluctuations within the window, the displacement vector itself can be written approx

imately as the solution to a 2 x 2 linear system of equations. 

In particular, when the displacement vector is small, the intensity function can be 

approximated by its Taylor series truncated to the linear term: 

I(x - d) = I(x) - g(x) . d , 

where g(x) is the image gradient at location x = (x, y) 

( ) 
= (OI(X) OI(X))T 

g x ox' oy 

\\Te can now write the residue defined in equation (2.2) as 

f = /w[I(x) - g(x) . d - J(xW w(x) dx = j~[h - g(x) . dj2 w(x) dx, (2.3) 

where h = I(x) - J(x). 

This residue is a quadratic function of the displacement d. As a consequence, the 

minimization can be done in closed form. Differentiating the last expression of the 

residue f in equation (2.3) with respect to d, we have 

Of r 
ad = 2 iw[h - g(x) . d] g(x) w(x) dx . 
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To find the displacement d, we set the derivative to zero: 

OE r 
ad = 2 iw[h - g(x) . d] g(x) w(x) dx = 0 . 

Rearranging the terms, we obtain 

[fw g(x)gT(x) w(x) dX] d = fw h g(x) w(x) dx , 

where we used the fact that 

(g(x)· d) g(x) = (g(x) gT(x)) d , 

and d is assumed constant within the window W. 

This is a system of two scalar equations in two unknowns. It can be rewritten as 

Gd=e. 

The coefficient matrix is the symmetric, 2 x 2 matrix 

that can be rewritten as 

G = /w g(x) gT(x) w(x) dx , 

N 2 

L w(k) (1; ) 
k=l 

N 

L w(k) 1;1: 
k=l 

N 

L w(k) 1;1: 
k=l 
N 

L w(k) (1:f 
k=l 

(2.4) 

(2.5) 

where the partial derivatives of I(x, y, t) with respect of x and yare denoted by Ix, 

and Iy and the number of pixels in the window W is N. 

The right side of the system of equation (2.4) is the two-dimensional vector 

e = /w h g(x) w(x) dx = /w[I - J] g(x) w(x) dx 
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where h is explicitly written as the difference between the two frames I and J. 

Equation (2.4) is the basic step of the tracking procedure. For every pair of adja

cent frames, the matrix G can be computed from one frame by estimating gradients 

and computing their second order moments. The vector e, on the other hand, can 

be computed from the difference between the two frames, along with the gradient 

computed above. The displacement d is then the solution to the system (2.4). 

It is possible to obtain a corresponding expression for the continuous time case 

that is more closely related to the computations performed in visual sensors where 

the computation is not clocked. 

If I(x, y, t) is the image brightness, under the assumption of constant brightness, 

we can write 

dI(x, y, t) [] 
dt = Ixvx + Iyvy + It = Ix, Iy v + It = 0 

where dI/ dt is the total temporal derivative of the image intensity, v = [vx vy]T 

[dx/dt dy/dt]T and the partial derivatives of I(x, y, t) with respect of x, y and tare 

denoted by Ix, Iy and It respectively. 

If we make the assumption that all the N points in the region or window of interest 

are moving at the same speed, which is reasonable for small displacements and a small 

neighborhood, we can formulate the linear problem 

Jl t 

v=- or Av = b. 

The velocity vector v can be computed as the least squares solution to 

Av=b, I.e. (2.6) 
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where 

= [: : 1 
Once again the velocity v is related to the partial derivative of the image intensity 

with respect of time b (see equation (2.6)) in much the same way the displacement 

d was related to the interframe difference e in the system of equation (2.4). 

2.2 Feature Selection Algorithm 

Not all the regions in an image contain motion information. Some researchers propose 

to track corners or windows with high spatial frequency content or region where some 

mix of second-order derivatives is sufficiently high. It is possible to use a different 

approach that does not require to define a priori the characteristics of the image 

features to track. We can select a region in an image only if that region can be 

tracked well and omit a region if it is not good for the purpose. In this way the 

selection criterion is optimal by construction. 

With the formulation introduced in the previous section, this concept is easy to 

formalize. In fact, we can track a window from frame to frame if the systems (2.4) 

represents good measurements, and if it can be solved reliably. 

This means that G must be both above noise and well-conditioned. The noise 

requirement implies that both eigenvalues )'1 and A2 (with Al ::; A2) of G must be 

large, while the conditioning requirement means that they cannot differ by several 

orders of magnitude. This corresponds to enforcing an upper bound on the condition 

number: 
A2 

cond(G) = A1 < Cth . 

Two small eigenvalues mean a roughly constant intensity profile within a window. A 

large and a small eigenvalue correspond to unidirectional pattern. Note that when 

one eigenvalue is zero (for instance G is rank deficient), there is an unreachable 



15 

subspace in the solution for v that corresponds to the velocity component parallel to 

the direction of the edge. This situation is often referred to as the Aperture Problem. 

Two large eigenvalues are found for windows with corners, salt-and-pepper textures, 

or any other pattern that can be tracked reliably. 

For all practical purposes, when the smaller eigenvalue is sufficiently large to meet 

the noise criterion, the matrix G is usually well conditioned. This is due to the fact 

that the intensity variations in a window are bounded by the maximum allowable 

pixel value, so the greater eigenvalue, A2, cannot be arbitrarily large. 

This observation simplifies the selection of the trackable windows as to the ones 

for which 

(2.7) 

where Al is the minimum eigenvalue and At is a predefined threshold value. This 

is the method to select image features proposed by Tomasi-Kanade [46]. In real 

implementations it is usu~lly performed off-line with a computer working on an image 

stream produced by a camera and stored in the disk of a computer. 

There are several ways to determine the appropriate value for At for tracking 

purposes. A common approach is to measure the minimum eigenvalues Al for images 

of regions with approximately uniform brightness. The average of these values is a 

good estimate of a lower bound for At. Again, taking an average of Al for highly 

textured regions or windows with various features yields an estimate for an upper 

bound to At. Usually the two bounds are well separated and a choice of At halfway 

between is usually not critical. 

In Fig. 2.1 we show a picture taken in the corridor just outside our lab. It is a 

typical scene from a man-made environment, but it was carefully chosen as it contains 

several examples of the kind of features we are interested in as we will see later. In 

Fig. 2.2 we re-plot the same image where the white boxes indicates the features that 

were selected applying the Tomasi-Kanade algorithm. For this example we used a 

window of size 3 x 3 pixels, and an operation of local maximization was performed in 

order to isolate the pixel with the highest minimum eigenvalue if there were a cluster 
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Figure 2.1: A picture taken in the corridor just outside our lab. It is a typical scene 
from a man-made environment, but it was carefully chosen as it contains several 
examples of the kind of features we are interested in. 

of adjacent pixels with minimum eigenvalue above threshold. 

Fig. 2.3 shows a detailed view of some of the features detected in Fig. 2.2. All 

feature windows have substantial variation of intensity and can be characterized as 

having a spatial gradient significantly different from zero in both the horizontal and 

vertical directions even if most of them can hardly be classified as "corners." 

Fig. 2.4 shows the histogram of the number of pixels in Fig. 2.2 satisfying equation 

(2.7) for different values of the minimum eigenvalue AI. For the example of Fig. 2.2, a 

threshold value of 10000 was chosen yelding few hundreds pixel locations. Varying the 

windows size, of course, the magnitude of the coefficients a, b, and c of the matrix G 

increases since the summations have to be carried out over a larger number of pixels. 

An increase in the coefficients leads to an increase in the minimum eigenvalue Al for 

every pixel, as we can see from Fig. 2.5. The histograms, for increasing windows 

sizes, are, in fact, stretched towards higher Al values. 

Yet, even a region that is very rich in texture can be very poor for tracking 
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Figure 2.2: The same image of Fig. 2.1 with the white boxes indicating the features 
selected by the Tomasi-Kanade algorithm. For this example we used a window of size 3 x 3 
pixels, and an operation of local maximization was performed in order to isolate the pixel 
with the highest minimum eigenvalue if there were a cluster of adjacent pixels all above the 
threshold. 

purposes. Two of the most common cases of bad features that are useless or even 

harmful for most applications of the feature-tracking algorithm are reported in the 

two detailed view of Fig. 2.6. As we can see the presence of a depth discontinuity, like 

the corners in both the left and right view, or the boundary of a reflection highlight 

on a glossy surface, like the reflection on the poster on the right view, can lead the 

algorithm to believe that there is a good feature while in reality the feature is just 

an artifact due to that particular view or due to the lightning and is not attached to 

a fixed point in the environment. It is possible to monitor the quality of the image 

features during tracking to avoid this problem. Since this is beyond the scope of this 

thesis, we prefer to refer the reader, for example, to the work of Shi and Tomasi [41]. 
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. 
Figure 2.3: Detailed view of some of the features detected in Fig. 2.2. All feature windows 
have substantial variation of intensity and can be characterized as having a spatial gradient 
significantly different from zero in both the horizontal and vertical directions even if most 
of them can hardly be classified as "corners." The value of the minimum eigenvalue Al for 
every feature is reported above every image patch. 

2.3 Complexity Reduction 

In order to design a computational sensor implementing the algorithm, it is necessary 

to have a better understanding of the complexity of the algorithm step represented 

by equation (2.7). 

The eigenvalues of the matrix G are the roots of its characteristic polynomial 

P ().) = (a - ).)( C - A) - b2 (2.8) 

where a, band c are the coefficients of G; see equation (2.5). Equating the expression 

of P().) to zero 

P().) = (a - ).)(c - ).) - b2 = ).2 - (0 + c) ). + (oc - b2
) = 0 (2.9) 
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Figure 2.4: Histogram of the number of pixels of Fig. 2.1 satisfying equation (2.7) for 
different values of the minimum eigenvalue AI. For the example of Fig. 2.2, a threshold 
value of 10000 was chosen yelding few hundreds pixels location. 

and solving it for the smaller of the two solutions, we find that the minimum eigenvalue 

Al can be computed as 

(2.10) 

Since a sensor implementing the algorithm would have to compute Al at every 

pixel to check for the condition (2.7), it is necessary to find a simplified expression 

for Al because the computation represented by equation (2.10) is too complex to be 

implemented at every pixel of the sensor. 

It is important to point out that even if in the following pages we focus attention 

on how to reduce the complexity of the computation for AI, it should be remembered 

that the computation of equation (2.10) is just the final step of the algorithm at (2.7). 

A significant amount of computation is hidden underneath the coefficients a, b, and 

c as we can see in equation (2.5). 

The first thing we need to show is that the minimum eigenvalue Al is always more 

or equal to zero (i.e .. Al ~ 0). Looking at equation (2.10) and remembering that a 
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Figure 2.5: Histogram of the number of pixels satisfying equation (2.7) for different values 
of the minimum eigenvalue )'1 and different values of window size. 

and c are positive by construction (sums of second order moments), it is clear that 

),1 ;:::: 0 if and only if 

a+c J(a+c)2 ( b2) --- > --- - ac-
2 - 2 ' 

and this is true only if ac - b2 ;:::: O. 

Now, remembering equation (2.5), if we define the vectors 

it is clear that 

a xTx=x-x= IlxW 

b x T y = Ix _ Yl2 

C yTy = y. y = IIyl12 , 
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Figure 2.6: The presence of a depth discontinuity, like the corners in both the left and right 
view, or the boundary of a reflection highlight on a glossy surface, like the reflection on the 
poster in the right view, can lead the algorithm to believe that there is a good feature while 
in reality the feature is just an artifact due to that particular view or due to the lightning 
and is not attached to a fixed point in the environment. 

and, finally, remembering the Cauchy-Schwartz inequality, Ilxllllyll ~ Ix· yl, we have 

IIxlillyll > Ix·yl 

IIxl1211Yl12 > Ix. Yl2 

(x· x)(y . y) > Ix. Yl2 

(xT X)(yT y) > xTy 

ac > b2 

a c - b2 > o. 

Once we established that the minimum eigenvalue A1 is non negative, we can plot, see 

Fig. 2.7, the parabolic function P(A) of the characteristic polynomial of equations 

(2.8) and (2.9). 
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P(A) 

Figure 2.7: Requiring)'1 > At is equivalent to the conditions P(Ad > 0 and a!c > At, 
as shown in this picture. Furthermore, by requiring that P(O) > Pt we are imposing a 
restriction on Al to be sufficiently large. 

From Fig. 2.7 we can see that, for a gIven target At, if a~c > At then At is 

constrained to lie between' zero and the minimum of the parabolic function (i.e., a~c). 

Furthermore, if P(At) > 0 then At has to be smaller than the minimum eigenvalue Al 

that is the lowest root of the function P(A). 

Summarizing, the condition Al > At is equivalent to 

a+c , 
-- > /\t· 

2 
(2.11) 

Remembering that the coefficients a and c are positive by construction, the previous 

condition is equivalent to 

P(At) > 0 and a > At and c > At (2.12) 

and this is because if both a > At and c > At, then it is obvious that a~c > At. If 

either only a > At or only c > At it is still possible that a~c > At but the condition 

P(At) > 0 would be not satisfied. Finally, if both a < At and c < At, both conditions 

(2.11) and (2.12) are not satisfied. 

Finally, we can observe that it is not necessary to test that both a > At and c > At 
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Figure 2.8: Synthetic image used as example. 

as it is stated in (2.12). If, for example, the condit ion a > At is verified, the fact that 

P(Ad > 0 automatically imply that c > At. Consequently, the conditions originally 

expressed by the equations (2.11) are equivalent to either one of the following two 

conditions: 

(2.13) 

or 

(2.14) 

Looking at equations (2.13-2.14) and equation (2.10), it is evident how these 

simple observations allow a significant complexity reduction. Equation (2.10) requires 

five multiplications/divisions, five additions/subtract ion and one square root while 

equations (2.13-2.14) require just three subtractions and two multiplications. 

Since the original method proposed by Tomasi and Kanade and the one just 

derived are completely equivalent, it is not necessary to show an example of its appli

cation on the image proposed before because the features detected would be exactly 
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Figure 2.9: Plot of the minimum eigenvalue Al for the synthetic of Fig. 2.8. 

the same as in Fig. 2.2. 

On the other hand, it is possible to gain some insight by looking at some of the 

quantities like Al and P(At) that play an important role in the computation. In this 

case it is better if the synthetic image of Fig. 2.8 is used in place of the image in Fig. 

2.1. In Fig. 2.9 and Fig. 2.10 we plot the minimum eigenvalue AI' It is clear that 

Al is higher in the proximity of the four corners of the synthetic image. In Fig. 2.11 

and Fig. 2.12 we present P(At) for a particular choice of AI' Even in this case, P(At) 

is maximum for the pixels that correspond to the four corners of the synthetic image 

of Fig. 2.8. 

It is possible to decrease the computation complexity even further if we make the 

following observation. As we can see from Fig. 2.7, the higher the intercept P(O) of 

P(A) with the ordinate axis, the larger the minimum eigenvalue Al we should expect 

to be. Therefore, by imposing a threshold on P(O), a restriction on the minimum 

eigenvalue Al is indirectly imposed. 
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Figure 2.10: Another view of the minimum eigenvalue )'1 for the synthetic of Fig. 2.8. 

By forcing P(O) to be greater than a certain treshold value, for example, 

P(O) > Pt , (2.15) 

we can make sure that At is sufficiently large and therefore the window centered on 

the pixel most likely contains a feature. 

The complexity reduction arises from the fact that the computation of P(O) = 

ac - b2 is simpler that the computation of P(At) = (a - At) (c - At) - b2
. Furthermore, 

with this simplified version, only one test is necessary compared to the three necessary 

before. 

In Fig. 2.13 we show the features selected in the real image by the approximate 

algorithm. As we can see, comparing this figure with Fig. 2.2, the two algorithms 

select roughly the same features. Finally in Fig. 2.15 and Fig. 2.16 we plot the 

quantity P(O) = ac - b2
. We can notice how the minimum eigenvalue Al of Fig. 2.9 

and Fig. 2.10 and the plots of P(O) = ac-b2 are very similar and again P(O) = ac-b2 

is maximum for the pixels corresponding to the four corners of the synthetic image. 

Fig. 2.14 shows the histogram of the number of pixels in Fig. 2.2 satisfying equation 

(2.15) for different values of the threshold Pt and different windows sizes. The same 



26 

5 10 15 20 25 30 

Figure 2.11: P(Ad for a particular choice of AI. 

considerations about the increase of magnitude for the coefficients a, b, and c applies 

here, as in fact, the histograms are stretched towards higher values of Pt for increasing 

window sizes. 

vVe can summarize the two algorithms as follows: 

a) Compute Ix and Iy at every pixel location. 

b) For the window centered at (x,y), compute a, band c as defined by equation 

(2.5). 

c) Compute the polyno~ial P(At) = (a - At)(C - At) - b2 or P(O) 

depending on which algorithm is used. 

The window contains a trackable feature if 
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Figure 2.12: Another view of P(>"d. 

or, if the approximated algorithm is used, 

P(O) > Pt . 

Sometime it may be necessary to modify the condition P(At) > 0 with the more 

stringent one P(Ad > Pt where Pt is a second threshold introduced to eliminate any 

false positive given by image noise. 

The selection of the two threshold values At and Pt depends on the contrast of the 

image and the desired density of features. 

2.4 Analysis of the Two Algorithms 

The two algorithms, the Tomasi-Kanade of equation (2.7) (or its equivalent simplified 

version of equations (2.13-2.14)) and the approximated algorithm of equation (2.15) 

are similar but not exactly equivalent. Even looking at Fig. 2.2 and Fig. 2.13, we can 

see that most of the apparent features of the images are detected by both algorithms, 

but that some are missed by one or the other. 

One observation we can make for sure is that all the pixels that satisfy equation 
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Figure 2.13: Features selected in the image by the approximate algorithm expressed by 
equation (2.15). As we can see, comparing this figure with Fig. 2.2, the two algorithms 
select roughly the same features. 

(2.7) for some At also satisfy the approximated algorithm for some value of Pt. And 

vice versa, all the pixels that satisfy the approximated algorithm for some value of 

Pt also satisfy the original algorithm for some other value of At. This is because, for 

all pixels, the minimum eigenvalue At and the intersection of the parabolic function 

P(A) with the ordinate axis P(O) = ac - b2 is always positive. 

The two algorithms would be exactly equivalent if and only if for every choice of At 

there exists a corresponding choice for Pt such that the test P(O) > Pt selects exactly 

the same pixels (in location and number). This is only possible if, for all the pixels, 

the parabolic functions of equation (2.8) have the same curvature. This is generally 

not the case and depends on the statistics of the images under consideration. 

In Fig. 2.17, for example, we report the plot of the parabolic function of equation 

(2.8) for all the pixels of the synthetic image of Fig. 2.8 satisfying either one of the 

algorithms for a particular choice of At and Pt. More specifically, we chose At and Pt 

so that the two algorithms would be satisfied by a specific number (in this case 7) 

of pixels. It turns out that 6 out of the 7 pixels in the two groups are the same. At 
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Figure 2.14: Histogram of the number of pixels satisfying equation (2.15) for different 
values of the threshold Pt and different values of window size. 

least in this case, therefore, the two algorithms select almost the same pixels. We can 

in fact see how in Fig. 2.5 one of the parabolic functions crosses the ordinate axis 

below the threshold value Pt and another one (barely visible in the plot) crosses the 

abscissa axis to the left of the chosen threshold value At. 

It is interesting to have an idea of the percentage of the number of pixels that 

satisfy both algorithms for a given number of pixels satisfying each one. In other 

words, after choosing the value for the threshold At that selects, for example, 1000 

pixels and choosing the value of Pt also giving 1000 pixels, we are interested in know

ing how many pixels are in common in the two groups. In Fig. 2.18 we plot that 

percentage, for different window sizes. As we would expect the percentage increases 

with the group size and, as the number increases toward the total number of pixels in 

the image, the percentage tends to 100%. In Fig. 2.19 we plot a zoom of Fig. 2.18 for 

very small group sizes. As we can see, even for very small group sizes the percentage 

quickly reaches a plateau between 60% and 80%. 
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Figure 2.15: Plot P(O) = ac - b2 for the synthetic image. 

2.5 Conel us ion 

In this chapter we presented the feature selection and tracking problem and we derived 

the feature selection equations for both the discrete and continuous time cases. We 

presented the Tomasi and Kanade algorithm and the simplified equivalent version of 

conditions (2.11) and (2.12). This simplified version was first used by Benedetti and 

Perona [2] in their real-time implementation of the Tomasi and Kanade algorithm 

using a FPGA based custom board. We then presented an approximated version of 

the same algorithm that allow an even further reduction of the computation at the 

expense of the lost of the equivalence with the original algorithm. We also presented 

a more in depth study of the two different algorithms in order to better understand 

similarities and differences of the two. As we will see in the next chapter, the design 

of the computational sensors implementing the two algorithms are extremely similar 

and there is a minimal gain in choosing to just implement the simpler one. 
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F igure 2.16: Another view of P (O) = ac - b2 for the synthetic image. 
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F igure 2.17: P lot of the characteristic functions for the two goups of seven pixels. 
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Figure 2.18: Percentage of the number of pixels that satisfy both the simplified and the 
approximated algorithm for a given number of pixels satisfying each one. 
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Figure 2.19: Zoom in on the plot of Fig. 2.18. 
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Chapter 3 First CMOS Implementation 

In this chapter we present the description of Detectorl, the first computational sensor, 

implementing the algorithms presented in the previous chapter, that was designed, 

fabricated and tested by us. 

In order to better understand the various design issues that we confronted and the 

choices made in the design, it is useful to represent the algorithms under a different 

prospective. vVe can, in fact, conceptually separate the computation performed by 

the CMOS sensor in four separate layers as it is illustrated in Fig. 3.1. 

1) First light is detected and converted to a voltage value by a photoreceptor. 

In all our implementations we used the logarithmic photoreceptor proposed by 

Delbriick and Mead [7]. 

2) In the second layer, the operations of differentiation and multiplication are 

performed using the photoreceptor values of the adjacent pixels to obtain the 

.. (Ii)2 (Ii)2 d Iili quantItIes x , y an x y' 

3) In the third layer the terms la, Ib , and Ie are generated by combining the 

quantities (I~)2, (I~)2, and I~I~ with the corresponding terms coming from the 

neighboring pixels. 

4) In the fourth and final layer, the quantities P(Ad = (a - At)(C - Ad - b2 or 

P(O) = ac - b2 are computed and the test for P(At) > Pn, and a > At or 

P(O) > Pn are performed to verify the presence of a feature. 

In section 3.1 we will present the description of the structure of the visual sensor 

fabricated. In section 3.2 we will decribe the circuit choices for the sensor. In section 

3.3 the results from the testing of the chip will be presented and section 3.4 summarizes 

the contributions. 
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Figure 3.1: We can conceptually group the computation performed by the CMOS sensor 
in four separate layers of computations. First light is detected and converted to a voltage 
value by a continuous time photoreceptor. Then the operations of differentiation and mul
tiplication are performed using the photoreceptor values of the adjacent pixels to obtain the 
quantities (I~)2, (1~)2, and l~l~. The third layer combines the terms (I~)2, (I~)2, and l~l~ 
with the corresponding terms coming from the neighboring pixels to form the quantities la, 
lb, and Ie. In the fourth layer the quantities P()..d = (Ia - It)(lc - It) - l~ P(O) = laIc - l~ 
or are computed and the test for P()..d > lPn' and la > It or P(O) > lpn are performed. 

3.1 The Design of Detector1 

The structure of the chip Detectod is depicted in Fig. 3.2. 

In this first implementation of the algorithm we chose a window of size 3 x 3 

pixels (N = 9). The chip computes the algorithm in four 3 x 3 pixels windows. 

Since every pixel at the edge of the window computes the spatial-derivative both 

along the x axis and along the y axis from the adjacent pixels, the actual number of 

photoreceptors involved in the four computation is 21 and the patch has the shape 

depicted in Fig. 3.2. It is worth noticing that, even if the 3 x 3 pixels windows are 

non-overlapping, the actual 21-pixel patches used in the algorithm are overlapping 

and only the photoreceptor of the central pixel of the window contributes to only 

one patch . While the pixels in the four windows contain the additional circuitry to 

perform the first three layers of the computation (i.e., photodetection , differentiation 
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The algorithm is computed 
four 3x3 pixels windows 

Side pixels contain 
only photo receptors 

Figure 3.2: In this first. implementation of the algorithm 3 x 3 pixels window was selected. 
The algorithm is computed in four 3 x 3 pixels windows. The actual number of photore
cept.ors involved in the four computation is 21 and the patch has the shape depicted. The 
21-pixels patches used in the algorithm are overlapping and only the photoreceptor of the 
central pixel of the window contributes to only one pat.ch. The pixels on the border of the 
array contain only the photoreceptors. The four special pixels at the four corners of the 
array contain the selection circuits. 

and multiplication, and signal aggregation), the pixels on the border of the array 

contain only the photoreceptors. Four special pixels at the corners of the array finally 

contain the selection circuitry to perform the thresholding operation. Not shown in 

Fig. 3.2 are the scanners that allows the read out of the value of the outputs of all 

photoreceptors and the outputs of the four selection circuits. 

Going into detail to explain more accurately how the algorithm is implemented 

111 every window, we can refer to Fig. 3.3. Since every pixel has to perform the 

operations of differentiation and multiplication to obtain the quantit ies (J~)2, (J~? 

and I~I~, the photoreceptor output value is passed on to all four neighboring pixels, 

and, vice versa, the photoreceptor output values of the four adjacent pixels is received 

by every pixel; see Fig. 3.3a. 

If the photoreceptor output value is represented by a voltage, the operation of 

differentiation can be approximated, in the first order, by the difference of the two 

values. This means , for example, that if I~ = 1~~ft - ll:ight is the first order approxi

mation for Ix for the i-th pixel. 1~~ft and V~ii9ht are, in this case, the photoreceptors 
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Figure 3.3: a) The algorithm is evaluated on a 3 x 3 pixels windows (solid gray lines). 
Every pixel computes the spatial derivatives Ix and Iy along the x and y directions with 
the photoreceptor voltage of the four adjacent pixels (dashed line). The number of pho
toreceptors involved in the computation is 21 (solid black line). b) The pixel computes the 
quantities (I~)2, (I~)2 and I~I~ with three four-quadrant multipliers and add the resulting 
currents to the global la, h and Ie wires that are shared by the nine pixels in the 3 x 3 
windows. The photorecept~r feeds its output value to the four adjacent pixels. 

output voltages of the two pixels at the left and right of the i-th pixel. In this way 

the term (I~)2 is equivalent to (I~)2 = I~I~ = (V[~ft - 1!~\9ht) (l~~ft - 1~ii9ht). We can 

now be easily convinced that the second layer operations of differentiation and multi

plication can be easily and elegantly implemented by three four-quadrant multipliers 

that at every pixel i performs the operations of 

( Vi Vi) (Vi lTi) 'left - right left - right 

( Vi Vi ) (lTi Vi ) . up - down ! up - . down 

where the quantities V[~ft' v;.ii9ht' l!~p and Vdown are photoreceptors voltages of the 

four neighboring pixels; see Fig. 3.3b. 

For this first design, the algorithm was implemented in a 3 x 3 pixels window and 

the simplest of the weighting or window function was chosen. With the weighting 

function w(x) = 1 for every location, the third layer operation of signal aggregation 
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Figure 3.4: The logarithmic photoreceptor proposed by Delbriick and Mead used in the 
chip. The main characteristic of this photoreceptor is that, at least in first approximation, 
its output is proportional to the contrast of the image and invariant to the absolute value 
of the illumination. 

is elegantly accomplished by the summation of the quantities (I~)2, (I~)2 and I~I~ of 

the N = 9 pixels of the window. As we will see in the next section, if the output 

of the three four-quadrant multipliers is a current, then the sum of those quantities 

can be easily accomplished by connecting each output node of the multipliers to the 

corresponding wires that carry the currents la, h and Ie representing the quantities 

a, band c; see Fig. 3.3b. 

3.2 CMOS Implementation 

The photoreceptor used for this chip is the logarithmic photoreceptor proposed by 

Delbriick and Mead reported in Fig. 3.4. The main characteristic of this photorecep

tor is that, at least in first approximation, its output is proportional to the contrast 

of the image and invariant to the absolute value for the illumination 

(3.1 ) 

where in this case the contrast is defined as the ratio of dI, the varying small signal 

component of the intensity and the intensity I. As we can see from equation (3.1) 



> 
Q) 

38 

1.02r-----~------~------~----~------~-, 

1.01 

~0.99 
o 
> 

0.98 

0.97 

0.96'---------'5------1'-0----1-"-5-----"20-----2-'-5----' 

Pixel 

Figure 3.5: Plot the output voltages, under same intensity illumination, of an array of 26 
photoreceptors like the one in Fig. 3.4. The offset mismatches in output voltages, even for 
adjacent photoreceptors, can be as high as 40m V. The standard deviation in this example 
was 13mV. 

the gain can be set by choosing the appropriate value of the capacitive-divider ratio 

(C1 + C2 )/C2 . The choice for the ratio depends on many factors. In our case, due 

to the fairly accurate computations expected from the sensor, we are interested in 

obtaining the highest signal-to-noise ratio possible. The noise component that affects 

the computation the most is the fixed-pattern noise due to output voltage offsets of 

the array of photoreceptors. This kind of noise is due to transistor mismatches in the 

fabrication of the chips. A wrong choice in the capacitive-divider ratio would cause 

the differences between supposedly identical photoreceptor outputs to be dominant 

over the typical signal variations produced by real scenes. 

In Fig. 3.5 we plot the output voltage, under same intensity illumination, of an 

array of 26 such photoreceptors. The offset mismatches in output voltages even for 

adjacent photoreceptor can be as high as 40m V. \Ve found that a choice of C 1 = 10C2 

(i.e., (C1 +C2 )/C2 = 11) would give us a peak-to-peak output voltage of about 500mV 

in response of a 100% contrast stimuli. In Fig. 3.6 we plot the output of one of the 

photoreceptors in response of a 100% contrast drifting sinusoid. A higher choice for 
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Figure 3.6: A choice of C1 = 10C2 (i.e., (C1 + C2 )/C2 = 11) for the capacitive-divider 
ratio gives a peak-to-peak output voltage of about 500m V in response of a 100% contrast 
difference. The plot is the output of one of the photoreceptors in response of a 100% contrast 
drifting sinusoid. 

the capacitive-divider ratio often cause unwanted oscillations of the photoreceptor for 

some biasing choices and therefore was avoided. 

With a peak-to-peak output voltage of about 500m V, we were facing the problem 

of finding a four quadrant multiplier with a matching linear range. If images with high 

contrast were focused onto the chip, a standard subthreshold Gilbert four-quadrant 

multiplier [32] with an input linear range of about 100m V would saturate, degrading 

the precision of the computation. There are many designs of four quadrant multipliers 

using the MOS transistor above threshold with a linear range up to a few volts. It is 

fairly easy to obtain wide linear range above threshold due to the square law voltage

current characteristic of the MOS device. In the subthreshold region the characteristic 

is exponential and therefore it is more difficult to obtain a comparable linear range. 

We therefore were forced to design a four-quadrant multiplier, working in the 

subthreshold region, with a linear range matching the peak-to-peak voltage expected 

from the photoreceptors. The schematic of the new multiplier is shown in Fig. 3.7. 

The multiplier has a linear range of about ±1 V as we can see from Fig. 3.8, a factor 
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Figure 3.7: The four-quadrant multiplier used in the pixels has a linear range of about 
±lV with power consumption below lj.LW. Here shown is the multiplier that computes the 
term (I~)2 and feeds the resulting current to the wire carrying the current Ie. 

of 20 increase with respect to the normal 100m V, with less than double the number 

of transistors with respect to a standard implementation of the Gilbert multiplier. 

The multiplier achieves a wider input linear range by using the well terminals of the 

input transistors as low transconductance inputs and by using the feedback technique 

know as "gate degeneration" to extend the linear range even further. It is possible to 

show that the overall transfer characteristic of the multiplier is 

where 

I - I sinh(LlI2) sinh(Ll34 ) 

out - b 1 + cosh(LlI2) 1 + cosh(Ll34 ) 

1-K 
and Keff = ---

1+~ 
1£n 

(3.2) 

where h is the biasing current set by the gate voltage ~'bias. VI, V2 , Y3, and 114 are the 

four input voltages and K and Kn measure the effectiveness of the gate potential in 
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Figure 3.8: DC transfer characteristics of the multiplier used in the chip (V34 = V3 - V4 
sweeping in the range -3.0 - 3.0 V and V12 = VI - V2 at fixed values, common mode voltage 
for both differential input VCM=2.5 V). 

controlling the channel currents for the well input transistors and the nFET transistors 

respectively. 

The power consumption of the multiplier under normal bias condition is well below 

l/'-lW, allowing a total power consumption for the pixel of about l/'-lW. One last note 

about this multiplier is that if the input voltage of one input terminal or the other falls 

below about IV, the well-to-source junction of the input transistors becomes forward 

biased, and the parasitic bipolar transistor, which is part of every well transistor, 

shunts the current of the amplifier to ground, severely degrading the accuracy of the 

four quadrant multiplication. To reduce the risk of that happening, a pair of pFET 

source followers was included at the output of every photoreceptors to raise its value 

by a few hundred millivolts_ 

This multiplier is just one representative of a bigger family of wide linear range 

four-quadrant multipliers that we designed. For a complete description and charac

terization of the family of multipliers that we designed and tested, the reader can see 

appendix A. 

Every 3 x 3 pixel window computes the currents la, h and Ie that represent the 
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Figure 3.9: a) The capacitive voltage divider is the fundamental building block of any 
network of Multi Input Translinear Elements (MITEs). b) Network of that implements 
the computation lout = rInd Iref. c) Network of that implements the computation lout = 

Iinllin2/ Iref· 

quantities a, b, and c. At this stage of the computation all the quantities involved 

are represented by currents and, therefore the expressions that follow will reflect this 

fact. 

The last step of the algorithm is to compute the quantities P()..t) = (fa - It)(Ic -

It) - I; or P(O) = laIc - I; and test for P()..t) > Iptl and Ia > It or P(O) > Ipt · 

'While subtraction and addition of current are easily implemented with a minimum 

cost, a little more effort is required to implement multiplications and square laws. 

There are several circuit solutions that perform multiplications of currents. For this 

sensor we choose to use simple networks of Multi Input Translinear Elements (MITEs) 

introduced in [34]. 

To understand how these MITEs works we can refer to Fig. 3.9 where the two 

basic MITEs configurations used in the selection circuit are shown. 

For the capacitive voltage divider in Fig. 3.9a, if all the voltages are initially set 

to zero and then v1 and ~2 are applied, the voltage at the node lr becomes 

Now, remembering that in a saturated (n-type) MOS transistor working in subthresh-



43 

old the current is given by 
KVgs 

Ids = 10 e - VT (3.3) 

and assuming that all transistors and capacitors are identical, we can easily derive 

the expression of the current output for the remaining two circuits in Fig. 3.9. 

For the squaring circuit of Fig. 3.9b, we have that 

and, therefore, 

~T In (lout) = ~~nl and ~"T In (Ire!) = V~e! ' 
~ 10 ~ 10 

VT In (Iinl) 
~ 10 

~T In (Iinl) 
~ 10 

linl V~ef -+-
2 2 

1 1 VT In (lout) 2 + VT In (Ire!) 2 

~ 10 ~ 10 

I ( Iinl/lo)2 Ifnl 
a (Ired 10 ) ~ Ire! 

In a very similar way, we can show that the circuit of Fig. 3.9c computes that function 

At this point it is straightforward to understand the behavior of the selection 

circuit of Fig. 3.10 performing the thresholding operation on the quantities la, hand 

Ie· The two nFETs !v17 and !v18 subtract the current It, representative of At, to the 

two input currents Ia and Ie. The four MITEs M1 and M 4-A16 output the current 

(Ia - It)(Ic - It )/ Ire! (i.e., (a - At)(C - Ad) that is then mirrored to the node A. It 

is interesting to notice that this circuit, at the same time, test for the two conditions 

Ia > It and Ie > It (corresponding to the conditions a > At and C > At) because if one 

of the two input currents Ia and Ie is less than the threshold current It, the current 

output of the network of four MITEs is zero. On the right side of the figure, first the 

absolute value of the current h is computed, then, using MITEs 1\!11-A13 , the current 
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Figure 3.10: Network of MITEs that implements the final layer of the computation. If 
(Ia - It)(Ic - It )/ Ire! - I; /Ire! > In the output of the current comparator goes low to 
indicate the presence of a feature. It stays high otherwise. The voltage V Ire! could be 
either supplied as an external bias or generated injecting a current in a diode-connected 
MITE as illustrated. The former solution was used in this case as a mean to reduce to a 
minimum every potential source of mismatches. 

is squared to obtain 11;/ Ire!. Finally the current comparator connected to node A 

and the drain of the transistor l'v19 performs the final comparison: its output is low 

if (fa - It)(Ic - It)/ Ire! - 11;/ Ire! > Ipt (condition P(At) = (a - At)(c - At) - b2 > Pt) 

and high otherwise. In this first implementation, since we were not concerned with 

speed or power issues, a simple CMOS inverter was used as current comparator. 

In case of more extended arrays, where power consumption becomes an issue, more 

sophisticated choices of current comparator are available. The voltage V Ire! could be 

either supplied as an external bias to all the selection circuits or generated at every 

location by injecting a current in a diode-connected MITE as illustrated Fig. 3.10. 

The former solution was used in this case as a mean to reduce to a minimum every 

potential source of mismatches. 

From Fig. 3.10 we can also see how the circuit easily allows the approximated 

version of the algorithm (i.e., test only for P(O) 

implemented by simply turning off (i.e., current It = 0) the two transistors M7 

and A18. On the other hand, this also means that, if we were to implement only 
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Figure 3.11: Micro-graph of Detectorl. The layout mirrors the structure of Fig. 3.2. The 
chip was fabricated in a Tiny-Chip die (i.e., 2.1 x 2.1mm) in a 1.2JLm double-poly double
metal process available through the MOSIS fabrication service. The actual area occupied 
by the design is 1.6 x 1.5mm. 

this version of the algorithm, the gain, in terms of reduced circuit size, is only two 

transistors. 

For this reason, In our design, we decided to allow the freedom to implement 

both versions of the algorithm at the cost of just two transistors. In the case of an 

implementation of the simpler version of the algorithm in a digital ASIC or with a 

FPG A platform, one can expect the advantages in terms of reduced die size (or gates 

used) or reduced circuit complexity to be far greater than the one resulting from an 

analog VLSI one. 

3.3 Experimental Results 

vVe designed, fabricated and tested a chip with a 8 x 8 array of pixels that allows 

the detection of features in four windows of 3 x 3 pixels. The chip was fabricated 
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Figure 3.12: The layout of the pixel. The layout mirrors the pixel shown in Fig. 3.3b 
with the multipliers in the top-right, top-left and bottom-left corners, the photoreceptor in 
the bottom-right corner and the wires for la, Ib and I e in between. In the double-metal 
technology used, most of the area is lost to wiring that carries the currents la, h and I e to 
all the pixels in the 3 x 3 pixel windows. 

in a Tiny-Chip die (i.e., 2.2 x 2.2mm) in a 1.2f.1Tn double-poly double-metal process 

available through the MOSIS fabrication service. 

A micro-graph of the chip is shown in Fig. 3.11. The actual area occupied by the 

design is 1.6 x 1.5mm. In Fig. 3.12 we show a picture of the layout of the pixel. In 

Fig. 3.13 we show a micro-graph of the pixel. The layout mirrors the pixel shown in 

Fig. 3.3 with the multipliers in the top-right , top-left and bottom-left corners, the 

photoreceptor in the bottom-right corner and the wires for la, h and Ie in between. 

The pixel size is 189 x 189f.1m2 in a 1.2J.-lm CMOS technology. In the double-metal 

technology used , most of the area is lost to wiring that carries the currents la , hand 

Ie to all the pixels in the 3 x 3 pixels windows. The total number of transistors in the 

pixel is 80 and the fill factor of the sensor is about 1%. This figure is considerably 

lower that the 20% to 40% fill factor figures that are commonly found in today's 
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Figure 3.13: Micro-graph of the pixel of the CMOS sensor. The layout mirrors the pixel 
shown in Fig. 3.3b with the multipliers in the top-right, top-left and bottom-left corners, 
the photoreceptor in the bottom-right corner and the wires for la, h and Ie in between. 
The pixel size is 189 x 189JLm2 in a 1.2JLm CMOS technology. 

APS CMOS imager, but we have to remember that the main purpose of these sensors 

is to perform a computation, in this case detect features in the image, and not to 

obtain the best possible image. Furthermore, since this sensor was designed to work 

primarily in a man-made environment where we expect the features to be sparse and 

well defined, a high resolution is not required. 

We tested the chip with different stimuli, and it performed reliably in the tests 

we conducted. In Fig. 3.14a, the image of a pen was projected onto the chip; as 

expected, none of the four patches reported a feature. In Fig. 3.14b, the tip of the 

pen was just on the top-right patch and the feature was correctly detected by the . " 

corresponding thresholding circuit. 

For a more rigourous characterization of the sensor, we used the setup presented 

in Fig. 3.15. We mounted a lens directly over the chip to focus an image onto the 

pixel array. Random patterns were generated by a computer and presented on a TFT 
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a) b) 

Figure 3.14: a) The image of a pen is projected onto the chip. The tip is not in the field of 
view and the chip correctly reports that there are no features present. b) When the tip of 
the pen is in the field of view of the top-right patch, the chip correctly signals the presence 
of the feature. 

display. The same computer recorded the output of the selection circuits. We used 

a TFT display because the photoreceptors are able to detect the flicker of normal 

monitors, preventing a reliable characterization of the sensors. A 64-value gray scale 

was used to generate the stimuli on the display. 

It is not trivial to generate random patterns with a chosen value of minimum 

eigenvalue A1. In particular, as we noted in the previous chapter, the eigenvalues 

of the matrix G are bounded and their maximum value is a function of the image 

contrast. In order to test the chip with patterns with the largest possible range of 

minimum eigenvalue A1, we randomly selected patterns from a pool of three different 

type of images. Examples of these three types of images used are reported in Fig. 3.16. 

For low A1 images the patterns were selected from the leftmost image in Fig. 3.16. 

That image uses all 64 values of intensity and therefore the maximum eigenvalues 

achievable is lower than wh~t can be fo~nd in the two other random images that use 

less intesity values and have higher contrasts. Various examples of different patches, 

with different minimum eigenvalue A1, are presented on Fig. 3.17. 

The testing methodology used is very simple. \Ve presented to the sensor different 

patterns like the ones in Fig. 3.17, and for every presentation we recorded whether 

or not the selection circuit signaled the presence of a feature. 
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Figure 3.15: Chip testing methodology. A lens was mounted directly over the chip to 
focus an image on the pixel array. Patterns were generated randomly by the computer 
and presented on a TFT disply. The same computer recorded the output of the selection 
circuits. 

In a first series of experiments, we tested the implementation of the simplified 

algorithm of conditions (2.13-2.14). The current Ip was set to zero and the value of 

the current It was varied to chracterize the implementation of the condition (Ia -

the results of the experiments. Every curve in Fig. 3.18 is obtained by presenting 

to the sensor over 3300 different patterns and then clustering the recorded responses 

in 15 different bins according to their minimum eigenvalue AI. For every bin the 

percentage of positive answers was calculated. The abscissa of the point representing 

every bin is the mean of the Al values of the 220 patterns in the bin. Every point, 

therefore, can be thought of as the likelihood of a positive response, by the selection 

circuit, for patterns with a certain close range of minimum eigenvalue AI. By varying 

the current It, we vary the threshold of the selection circuit. The higher the current 

It the higher the minimum eigenvalue Al of the pattern has to be to trigger a positive 
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Lowest 1.,1 Medium 1.,1 Highest \ 

Figure 3.16: An example of three different images from which the random patterns were 
selected. Lower contrasts images (i.e., maximum number of gray values) provided lower Al 
patterns while high contrast images provided patterns with the highest A1S. 

response. The slope of the various lines in the transition region between 0% and 

100% is an indication of the accuracy of the calculations performed by the sensor. 

Perfect calculations would be represented by an almost vertical line with just one 

point between 0% and 100%. In this case the curves have a very high slope, but there 

is more than one point in the transition region between 0% and 100%. We can also 

see how, for higher )'1, the slope decreases slightly. There are several reasons why we 

should not be surprised by a behaviur like that. 

First of all, even if we tried our best, we cannot be sure that the patterns were 

perfectly focused onto the chip. The photoreceptors' array is not positioned in the 

perfect center of the silicon die, and the die itself is often not placed in the center of 

the package. 

Secondarily, the relationship between the gray scale light intensity of the patterns 

prsented on the display and the output response of the photo receptors is not linear. 

In Fig. 3.19 we plot the measured transfer characteristic between gray scale values 

and peak to peak output voltage of one of the photoreceptors. We could compensate 
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Figure 3.17: Examples of different patterns used for the characterization of the sensors. 
We obtained patterns with Al values varying from 0 to about 8000. 

this by inverting the function and adjusting the gray values of the various patterns, 

but we chose not too. If we started going in that direction, we could have ended 

up trying to compensate every little distortion in order to obtain better and better 

results. 

The third and, most probably, main reason why the transition portion of the 

curves is not vertical is transistor mismatches. We discussed earlier that starting 

from the photo receptors array, every circuit in the sensor presents some offest. The 

overall effect of all mismatches in the circuits manifest itself by decreasing the slopes 

of the curves in the transition region. For example, for the photoreceptors array of the 

sensor for which we report the results, we measured an average peak-to-peak output 

of 426mV with a standard deviation of 32mV, for a 100% contrast stimuli. The DC 

operating point of every photoreceptor was also measured. The mean was 1.232V 

with a standard deviation of 24m V. Just to have a feeling of how these transistor 

mismatches can affect the calculations, we performed a simple numerical simulation 
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Figure 3.1S: By varying the current It, we vary the threshold of the selection circuit. The 
higher the current It, the higher the minimum eigenvalue )'1 of the pattern has to be to 
trigger a positive response. The slope of the various curves in the transition region between 
0% and 100% is an indication of the accuracy of the calculations performed by the sensor. 

of the effect of photoreceptors' mistatches. 

The 24m V standard deviation DC offset is about 5% of the average peak-to-peak 

value of 426m V. This corresponds to an offset of 3.2 gray values for a 64 colors range. 

If we run a numerical simulation of these DC offsets, without even considering the 

offsets for peak-to-peak values, using the same 3300 patterns used before, we obtain 

the results of Fig. 3.20. Just with a systematic random offset with standard deviation 

of 3.2 gray values, the transition regions of the curves are no longer close to vertical 

but have a lower slope. It is interesting to see that, even for these simulation, the 

slopes decr~ase with higher values of lambda. We can now understand how transistor 

mismatches in the photoreceptors and all the others present in the various circuits 

can directly affect the precision of the analog circuits used in these kind of sensors. 

In the second series of experiments, the implementation of the approximated al

gorithm of the condition (2.15) was tested. After setting the current It to zero, we 
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Figure 3.19: Measured transfer characteristic between gray scale values and peak-to-peak 
output voltage of one of the photoreceptors. . 

varied the value of the current Ipt to characterize the implementation of the condition 

(Ia)(Ie)/ Ire! - It! Ire! > Ipt (i.e., P(O) = ac - b2 > Pt). In Fig. 3.21 we report 

the results of the experiments. Again, every curve is obtained by presenting to the 

sensor over 3300 different patterns and clustering the recorded responses in 15 dif

ferent bins. Even in this case, by varying the current Ipt , the thresholding circuits 

become more selective and only patterns with higher P(O) value are detected. As in 

the previous experiment, the slopes of the transition regions increase with the value 

of the threshold current. 

Finally, we tried to go "inside" the curves of Fig. 3.18 and Fig. 3.21 to arrive at 

an idea of the cross section behaviour of the various patches clustered in one of the 15 

points of the figures. 'We took ten patterns, see Fig. 3.22, with minimum eigenvalue 

)'1 very close to 4000, and, for five different settings of the threshold current It, we 

presented each pattern for 200 times and recorded the percentage of positive responses 

for every pattern. In Fig. 3.23 we report the five different curves that the five different 

settings of It produced. The five points representing the clusters of over 220 patterns 
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Figure 3.20: Result of the numerical simulation of the DC offsets not considering the offsets 
for peak-to-peak values. The same 3300 patterns utilized to obtain Fig. 3.18 were used. 

centered around Al = 4000 have aggregate positive response percentages of 96%,87%, 

54%, 20% and 3% respectively. The two vertical lines around Al = 4000 represent the 

set of ten patterns tested. In Fig. 3.24 we report the results of these measurements. 

While the cross section averages for everyone of the five settings, 98%, 87%, 52%, 

9% and 1%, is very close to the aggregate values of Fig. 3.23, we observe a large 

variability between the ten different patterns. This is especially significant for the 

central curve, which, even if the average of 52% is very close, the expected value of 

54% of Fig. 3.23, has a standard deviation of 28%. 

As a final test we presented to the sensor a reduced-size version of the image of Fig. 

2.1. The threshold was set very high in order to try to avoid false positive responses 

at the cost of missing some significant features. Most of the obvious features were 

selected along with some false positive resposes, like points 1 to 4. Other evident 

features were missed like the one numbered 5 to 8. 
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Figure 3.21: Result of the experiment testing the implementation of the approximated 
algorithm of the condition (2.15). Again, every curve is obtained by presenting to the 
sensor over 3300 different patterns and clustering the recorded respones in 15 different bins. 
Even in this case, by varying the current I pt the thresholding circuits becomes more selective 
and only patterns with higher P(O) value are detected. 

3.4 Conclusion 

In this chapter we presented the first implementation of a CMOS visual sensor with 

focal plane computation for feature detection. From the two algorithms derived in 

chapter 2, and , using the abstract representation of Fig. 3.1 , we were able to design 

a CMOS visual sensor t hat implements either one of these complex algorithms. It is 

interesting to notice how the algorithms are elegantly translated in silicon with simple 

and well characterized circu.its and yet.every step of the algorithms is implemented 

without approximations. To the best of our knowledge, this work represents the first 

successful example of a CMOS sensor with focal-plane computation for continuous 

time feature detection. 

Even if this first implementation worked well on "first silicon" , there were still 

some issues that we were interested to see resolved beside a better accuracy of the 
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Figure 3.22: The ten different patterns with minimum eigenvalue .A} very close to 4000 
that were used in the cross section experiment. 

computations. The most important is that since the algorithm is computed on 3 x 3 

pixels windows, the actual resolution of the feature detection algorithm is 1 to 9. That 

is, the sensor detects features centered on pixels that are located three pixels away 

both horizontally and vertically. In order to compute the algorithm at every pixel, it 

is necessary to include the selection circuit at every pixel and, most importantly, find 

a better way to implement the signal aggregation layer of the computation. Once the 

currents (I~Y, (I~)2 and I~I~ are combined with the corresponding currents coming 

from adjacent pixels to form la, h and Ie, there is no clear way to provide the same 

(I~)2, (I~)2 and l~l~ currents to all the other eight adjacent pixels. One solution would 

be to duplicate (nine copies) all the mirrors at the outputs of the three multipliers and 

then afford the cost of running eight additional wire lines for everyone of the three 

wires carrying la, h and Ie. This solution, beside being not elegant, is extremely area 

consuming and therefore would prevent solving the secondary issue of improving the 

fill factor of the sensor. Another issue that a second design should address is whether 
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Figure 3.23: Five different curves obtained with five different values of It. The points 
representing the cluster of Dver 220 patterns centered around ),1 = 4000 have percentages 
of 96%, 87%, 54%, 20% and 3%. The two vertical lines around ),1 = 4000 represent the set 
of ten patterns tested. 

it is possible to find an alternative design to implement the selection circuit that does 

not use floating-gate transistors. These devices, in fact, require the use of UV eraser 

to equalize the charges on the floating-gates before the circuit can be put in use, and 

are not area efficient due to the large number of capacitors required. 

In the next chapter we will show how we were able to address these issues in the 

final design of the visual sensor. 
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Figure 3.24: Results of the cross section measurements. While the cross section averages 
for everyone of the five settings, 98%, 87%, 52%, 9% and 1%, are very close to the values 
of Fig. 3.23, we observe a large variability between the ten different pattern percentages. 

Figure 3.25: Features selected in the reduced-size version of the image of Fig. 2.1. Most 
of the obvious features are selected along with some false positive responses, like points 1 
to 4. Other evident features were missed like the ones numbered 5 to 8. 
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Chapter 4 Final Design of the Sensor 

As was noted at the end of the previous chapter, one of the main issues with the 

previous sensor design was the fact that it could only detect features that are located 

three pixels away both horizontally and vertically from each other. In order to increase 

the resolution of the computation, for example, to be able to perform the algorithm 

computations at every pixel, it is necessary to include the selection circuits at every 

pixel and, most importantly, find an efficient way to implement the signal aggregation 

layer. 

Other concerns were the fact that the use of floating-gate transistors in the network 

of MITEs that implements the selection circuit require the use of UV eraser to equalize 

the charges on the floating gates before the circuit can be put in operation. Another 

issue with the use of floating-gate devices was the difficulty of performing accurate 

simulations of the sensor before fabrication. As we will describe in the following 

sections, most of those issues were addressed by the design of the final sensor that we 

will call Detector2. 

In section 4.1 we will describe the new implementation of the signal aggregation 

layer that represents the single major improvement of this new design compared to the 

early one. In section 4.2 the design choices of Detector2 will be presented. In section 

4.3 we will describe the circuits used. Section 4.4 presents results from both the 

extensive simulations and the experimental testing of the sensor and, finally, section 

4.5 summarizes the contribution of this work. 

4.1 The New Signal Aggregation Layer 

The problem of designing a more efficient signal aggregation layer lies in the fact that 

once the currents (I~)2, (I~)2 and I~I~, outputs of the three multipliers in the pixel, 

are combined with the corresponding currents corning from adjacent pixels to form 
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Figure 4.1: A two-dimensional diffusion network is an array of lateral resistors Rand 
vertical grounded conductances G. The current loutj flowing to ground at node j as a result 
of a current lini injected into node i at a distance dij (measured in pitch) exponentially 
decays with the distance. 

la, lb and Ie, the same currents cannot be used again to form the currents la, Ib and 

Ie for the eight other adjacent pixels (if a 3 x 3 pixels window configuration is used). 

The idea of generating nine actual copies of the current from the three multipliers, 

as we discussed in the previous chapter, is not practical in terms .of area efficiency. 

One alternative solution is to split the currents (I~)2, (I~)2 and I~I~ in various 

fractions to be provided to the neighboring pixels. In this way the expensive current 

mirror structures used to generate the copies of the currents are no longer necessary. 

Furthermore, it is possible to accomplish this without the need to have a dedicated 

wire to carry every fraction of the current to every corresponding pixel. All of this 

can be, in fact, realized using a resistive diffusion network. 

A two-dimensional diffusion network is shown in Fig. 4.1. It is an array of lateral 

resistors R and vertical grounded conductances G. The current loutj flowing to ground 

at node j as a result of a current I ini injected into node i at a distance dij (measured 

in pitch) decays with the distance according to the approximate law [32] 

Ioutj exp(-dijIL) 
-- rv 

Iini fd:7TIL V Uij/ D 

for dij 2:: L , (4.1) 

with L = 1/vRG. 

Since the network IS linear, the effects of currents injected into all nodes are 

superimposed and the network behaves essentially as a low-pass spatial filter that is 
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Figure 4.2: A diffusion network like the one in Fig. 4.1 can be implemented using standard 
MOS transistors used as pseudoconductance. 

exactly what was required to implement the signal aggregation layer. 

A diffusion network like the one in Fig. 4.1 can be implemented using standard 

MOS transistors used as pseudo conductance as it is explained in Fig. 4.2. It is 

possible to implement any network of linear resistors by means of only transistors and 

to control the value of each one of these pseudo-resistors by a voltage or a current. 

The property that allows to use standard transistor as pseudo-resistors is only 

understandable if the MOS device is adequately modeled. In section 4.1.1 we will 

briefly recall this model and explain the general principle. 

4.1.1 MOS Transistors as Pseudo Resistors 

As shown by the schematic representation Fig. 4.3, the MOS transistor is funda

mentally a symmetrical device. The source and drain ends are in principle not dis

tinguishable and are here labeled as the two terminal A and B of the channel, with 

potential VA and 1/B with respect to the local substrate (general substrate of the 

chip, or local well). V is the local value of the channel "potential." It is not the 

electrostatic potential but a measure of disequilibrium in the distribution of electrons 

or holes in the channel that is produced by the application of voltages tA and/or VB· 

It has the values V4. and VB at the two respective ends of the channel. 

For a given value of gate voltage, the local sheet conductivity 98 of the channel is 

a decreasing function of the channel potential [47]. 

This function decreases approximately linearly with tr for large values of 98 (strong 

inversion of the channel) and exponentially for low values of 95 (weak inversion). It 

can be shown [47] that the current flowing through the transistor is simply given by 
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n-type local substrate p-type local substrate 

Figure 4.3: The MOS transistor is fundamentally a symmetrical device. The source and 
drain ends are in principle not distinguishable and are here labeled as the two terminals A 
and B of the channel, with potential VA and VB with respect to the local substrate (general 
substrate of the chip, or local well). V is the local value of the channel "potential." 

lAB = lL¥ r~A g8 (Ve , l/) dV = l¥ [ r~ g8 (Ve, 1/) dV - roo g8 (Ve, V) dV] . (4.2) 
lVB L lVB lVA 

Due to the particular definition of V, this equation includes the two possible 

mechanisms of current transport: conduction (which dominates in strong inversion) 

and diffusion (which dominates in weak inversion). It is therefore valid for any value 

of lTA and VB. 

The decomposition in two terms is possible because g8 tends to 0 for large V. It 

provides a symmetrical expression with respect to lA and VB, which can be written 

lAB = Is [1(Ve , VB) - 1(v'o, V A)] (4.3) 

where Is is a specific current proportional to the width-to-Iength ratio W / L of the 

transistor. The transistor is said to be saturated when the smaller of the two terms 

of equation (4.3) becomes negligible. Channel shortening degrades the precision of 

equation (4.3) by making Is itself slightly dependent on 1/4 and/or lB. The relation 

is no more applicable if the channel length is reduced below the short channel limit. 

By defining a pseudo-voltage V* given by 

V* = ±10 1(1/'0, V) (+ for p-ch, - for n-ch) 
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Figure 4.4: A current I imposed through two transistors Tl and T2 connected in parallel 
splits linearly into two components hand h respectively proportional to Gi and G"2. This 
is identical to the current splitting through two linear conductances G1 and G2 . 

where Vo is an arbitrary scaling voltage, equation (4.3) can be rewritten as 

( 4.4) 

which corresponds to a linear pseudo-Ohm's law, with constant pseudo-conductance 

C* = Is/Vo, proportional to W/ L through Is. The pseudo-voltage V* is always 

positive for a p-channel transistor (negative for a n-channel). Moreover, it tends to 

o for V large. Thus the pseudo-ground 0* (O-reference for the pseudo voltage V*) is 

obtained by imposing V = V;g large enough to make f(Ve , V;g) negligible. 

As a consequence of equation (4.4), a current I imposed through two transistors Tl 

and T2 connected in parallel splits linearly into two components hand h, respectively, 

proportional to Cr and C;; see Fig. 4.4. This is identical to the current splitting 

through two linear conductances C 1 and C 2 . 

If VB = 0 (ground potential) in the conductance network, VB in the pseudo

conductance network should be at pseudo-ground 0*. Voltages VEl and VB2 need 

not be fixed or equal anymore; they must be sufficiently large to make f(~G, VBi ) 

negligible. This means the transistors must be saturated. 

For a given value of Ve , a transistor is in weak inversion if both VA and VB are 

large enough to obtain f(Ve , v") « 1 at both ends of the channel. This corresponds 
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Figure 4.5: The transistors implementing R* and G* can be controlled by different gate 
voltages Vgg and Vgr and the diffusion length of the diffusion network can be electrically 
adjusted through the control currents ICR and Icc. 

to ensuring a value of its saturation current much smaller than the specific current 

Is· 

In this case it can be shown that f(Fe, \/) reduces to 

'r (K;(VC - vr)) (F ) f(\e, v) = exp FT exp - FT «1 

and is separable in exponential functions of Fe and V Pseudo-voltage and pseudo 

conductance may then be redefined as 

F* = ±Fa exp ( - ~) (+ for p-ch, - for n-ch) 

and 

G*=Is (K;(Fe-vr)) 
TT exp F . 
Va VT 

The linear pseudo-Ohm's law of equation (4.4) is still valid, but the pseudo

conductance G* of each transistor is now controllable independently by the value 

of its gate voltage Fe. The linearity of currents is available in the whole range of 

weak inversion, which may correspond to 3 to 6 orders of magnitude. 

If operation is maintained in weak inversion, the transistors implementing R* and 

G* can be controlled by different gate voltages Fgg and v~r and the diffusion length 

of the diffusion network of Fig. 4.1 (realized with MOS transistors as pseudoconduc

tances) can be electrically adjusted according to 
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Figure 4.6: Cross section of some of the different weighting functions w(x) that can be 
obtained by changing the ratio of the two biasing currents ICR and ICG. 

(
h:(1/ - V )) 

L = I/vR*G* = exp gr
1
.y gg = V fCRI fCG 

where fCR and fCG are the control currents of R* and G* according to Fig. 4.5. All 

transistors are in the same substrate and the reference voltage lR is common to all 

the control transistors of the network. 

Going back to the initial problem of designing a new signal aggregation layer, the 

possibility of controlling the diffusion length of the pseudo-resistive network allows 

us the freedom of changing the shape of the weighting function w(x) discussed in 

chapter 2. In Fig. 4.6 and Fig. 4.7 we present different views of some of the different 

shapes of the weighting function w(x) that can be obtained by changing the ratio 

of the two biasing currents fCR and f cG . The plots in Fig. 4.6 and Fig. 4.7 are 

the results of accurate subthreshold simulations obtained with the circuit simulator 

Spectre provided with the Cadence environment. 

As we can see from the figures, when fCR = fCG most of the weight of the function 

w(x) is on the central pixel. This corresponds to implementing a feature selection 

algorithm that emphasizes local singularity of the image. If feR» fCG the weighting 
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Figure 4.7: Different views of some of the different shapes of the weighting function w(x) 
that can be obtained by changing the ratio of the two biasing currents ICR and ICG. 

function w(x) still has the exponential shape of of equation (4.1) but is flatter than 

before. Local singularities have less effect on the outcome of the feature selection 

process. It is interesting to notice that the sum of all the weights for all the different 

weighting functions is 1 as one should expect. The current lini injected at the node 

i has to be equal to the sum of all the currents loutj flowing to the ground for all j. 

Visually, this is not apparent from Fig. 4.6 and Fig. 4.7, but it is verified by the 

data. 

4.2 Design of Detector2 

Having found the circuital choice that allows an efficient implementation of the signal 

aggregation layer , we were able to design a sensor performing the aJgorithm compu

tations at every pixel. The structure of the sensor DetecotoT2 is reported in Fig. 4.8. 

The chips contains an array of 15 x 15 pixels. The pixels at the border of the 

array contain only the photoreceptors and the termination transistors of the diffusion 

networks for the quantities la , h and Ie. All the other pixels contain the circuitry 

necessary to perform the computations: t he photoreceptors, three multipliers , the 



67 

The algorithm is computed at 
every internal pixel of the array 

Border pixels contain only the 
photoreceptors and the termination 
of the resistive network 

Two shift register scan 
photoreceptors values and 
selection circuits outputs 

Figure 4.8: The chips contains an array of 15 x 15 pixels. The pixels at the border of 
the array contain only the photoreceptors and the termination transistors of the diffusion 
networks for the quantities la, h and Ie. All the other pixels contain the circuitry neces
sary to perform all the computations: the photoreceptors, three multipliers, the diffusion 
network, and the selection circuit. The vertical and horizontal scanner/shift-register allows 
the read-out of the photoreceptors' values and the result of the selection circuits. 

diffusion network, and the selection circuit. The vertical and horizontal scanner/shift

register allows the read-out of the photoreceptors' values and the result of the selection 

circuits. The biasing circuits are not shown in Fig. 4.8. 

4.3 CMOS Implementation 

For this design we used a 0.35fJm double-poly quad-metal technology provided by 

Taiwan Semiconductor Manufacturing Corporation through the MOSIS fabrication 

service. The choice of a smaller scale technology was primarily due to the necessity 

to have available more metal layers for wiring the complicated pixel-to-pixel inter

connections. As we can recall from Fig. 3.12 of the previous chapter, almost 30% of 

the area of the pixel was wasted to wiring due to the availability of only two metal 

layers. 

We tested different verSIOns of the same photoreceptor used for Detector 1, and 

we chose to use the version using a photodiode made with n-well substrate. In a 

comparison with another version using n-diffusion photodiode, it showed a higher 
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Figure 4.9: Measurements of the bandwidth of photoreceptors using n-well substrate and 
n-diffusion photodiodes. 

bandwidth, as we can see from Fig. 4.9. The higher bandwidth is due to a higher 

value of photocurrent, as we can see from the measurements of Fig. 4.10, and lower 

parasitic capacitance. A third implementation using a parasitic bipolar transistor as 

photodiode was tested and discarded due to instability problems. 

In the plot of Fig. 4.9, we can see the effect of the adaptation due to the so

called "tobi-element" (i.e., the central pFET that acts like a pair of diodes in parallel 

with opposite polarity) of Fig. 3.4. At very low frequencies the response of the 

photoreceptor goes to zero. In other words, it is able to adapt (i.e., filter out) huge 

DC variations of incident light intensity. 

The pixel still uses three multipliers to compute the quantities (I~)2, (I~)2 and 

I~I~ like in Detectorl with two minor differences. 

First, since in the diffusion network the currents are injected at the source of 

the pFETs acting as conductances G and extracted from their drain, it is necessary 

to work with unidirectional currents. The cross term I~I~, is therefore encoded as 

difference between two unidirectional currents that we call Ip and In; see Fig. 4.11. 

This just implies that it is necessary to double the output mirror of the wide linear 
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Figure 4.10: Measurements of photo current for photodiodes made with n-well substrate 
and n-diffusion. 

range four quadrant multiplier computing the cross term I~I~. 

The second difference with the previous design of the chip IS that some area 

was saved in the pixel by not including the input differential pair for the multiplier 

computing the two unidirectional currents Ip and In. It is clear, in fact, that if the 

inputs of the input differential pair are the two voltages Vz~ft and ~~ii9ht' for example, 

it is possible to obtain the currents that are input of the two output differential pairs 

from the multiplier computing (I~)2 = (~~~ft - Vright)2. In this way, it was possible to 

save the area that before was used for 9 FET transistors, two of which were in their 

separate wells. The full schematic of the three multipliers is reported at the end of 

the chapter in Fig. 4.32. 

In the signal aggregation layer the terms la, h p , hn and Ie are generated by 

combining the quantities (I~)2, (I~)2, I;- and I~ with the corresponding terms coming 

from the neighboring pixels using the linear networks based on transistors depicted 

in Fig. 4.12. Only three transistors per pixel are necessary for everyone of the 

four diffusion networks. Only one lateral transistor is, in fact, necessary between 

pixels. Not shown in Fig. 4.12 is the simple current mirror that recombines the two 

currents h p and hn into h. It is worthwhile to remember that, as long the "vertical" 
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Figure 4.11: The three four quadrant multipliers in the pixel compute the quantities (I~)2, 
(I~)2 and I~I~. The cross term I~I~, is encoded as difference between two unidirectional 
currents Ip and In. 

transistors remain in saturation, the behavior of the diffusion network is not affected 

if instead of connecting their drains to ground we insert current mirrors to copy the 

output currents for further computations. 

Due to the behavior of the linear network discussed in section 4.1, the terms la, 

h and Ie are now weighted summations of all the (I~)2, (I~)2, I; and I:n quantities, 

l.e., 

N 2 

L W(k) (1:) 
k=l 

N N N 

h p - hm = L w(k) (1;)2 - L w(k) (1!f = L w(k)I!I: 
k=l k=l k=l 

N 2 

L w(k) (1:) , 
k=l 

where N is the total number of pixels in the array and the terms w(k) are the weight 

of the windowing function, centered on the ith-pixel. 

The necessity to perform accurate simulations along with the fact that fioating

gate circuits require the use of UV light to equalize the changes forced us to find an 
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Vg,"""'--# I>-< Vgg 
Vg,"""'---V/ I>-< Vgg 

Figure 4.12: The linear networks based on transistors that generate the terms la , hand 
Ie combining the quantities (I~)2 , (I~f , Ip and In with the same terms coming from the 
neighboring pixels. Only three transistors per pixel are necessary for everyone of the four 
diffusion networks. Only one lateral transistor is, in fact , necessary between pixels. Not 
shown in the picture is the simple current mirror that recombines the two currents Ip and 
In into the current h. 

alternative solution to the use of MITEs for the selection circuit. 

The core element of the new selection circuit is current multiplier of Fig. 4.13. To 

analyze the circuit we can use the Translinear Principle that can be stated as follow: 

In a closed loop containing an equal number of appositely connected translinear ele

ments, the product of the current densities in the elements connected in one direction 

is equal to the corresponding product for elements connected in the opposite direction. 

A t ranslinear element is simply a physical device with a linear relationship between 

transconductance and current. A FET t ransistor working in subthreshold can be 

described as the ideal translinear element t hanks to the absence of gate currents. 

Analyzing the circuit of Fig. 4.13 and applying the translinear principle around 

the loop Vdd-A-B-C-Vdd, we can write 

and therefore we have 

I _ Ilh 
out - I . 

out 
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Figure 4.13: The current multiplier used in the new selction circuit. Applying the translin
ear principle around the loop Vdd-A-B-C-Vdd, we have hh = lreflout, and therefore 
lout = llh/ lout. 

Without using the translinear element we can derive the same equation by first sum

ming the voltages around the loop 

and substituting from equation (3.3) from the previous chapter, we have 

VT In (II) VT In (' h) = ~T In (Iref ) VT In (lout) , 
~ 10 ~ ,10 ~ 10 ~ 10 

from which we can obtain again lout = 1112/ lout· 

The current multiplier of Fig. 4.13 can be easily simulated with standard sim

ulation tools, as will see in the next section. On the other hand it is difficult to 

say whether something was gained in terms of area efficiency. Before, a considerable 

amount of area has to be allocated for the capacitors of the floating-gate transistors; 

in this case, some area has to be left unused to allow two pFETs to sits in their sepa

rate well. Moreover, the circuits require to be operated in subthreshold and therefore 

the four pFET transistors have to be drawn with a high Tl1/ L ratio. 

A simplified version of the selection circuit is reported in Fig. 4.14. The two 
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Figure 4.14: The selection circuit for the sensor Detector2. The two current multipliers are 
the two groups of four pFET transistors MI-M 4 and M5-M6. The multiplier comprising 
of transistors MI-M4 outputs the term (fa - Id(fc - Id/Ire! while the other computes 
the term t/; / Ire! . The two currents are then subtracted at node A that is the input of 
the current comparator performing the final comparison: its output is, in this case, high if 
(fa - Id (fe - Id / Ire! - III Ire! > Ipt (condition P(At) = (a - At)( C - Ad - b2 > Pt) and low 
otherwise. 

current multipliers a re the two groups of four pFET transistors !v11-NI4 and M5-Jl.16. 

The multiplier comprising of transistors Ml-!v14 outputs the term (fa - It) (fc- I t) / Ire! 

while the other computes the term t/; / I rej . Once again the two currents are subtracted 

at node A that is the input of the current comparator performing the final comparison: 

its output is, in this case, high if (fa - It)(Ie - It) / Ire! - I?; Ire! > Ipt (condition 

P(At) = (a - At)(C - At) - b2 > Pn) and low otherwise. Once again , we can easily see 

how the circuit of Fig. 4.14 allows the approximated version of the algorithm (i.e. 

test only for P(O) = laIc - Il > I pt ) to be implemented by simply turning off (i.e., 

current It = 0) the two transistors l'v19 and Jl.110 . 

In t he case of an implementation of the second a lgorithm, some area can be saved 

by the elimination of t he two transistors N19 and MI0 that subtract It from the two 

currents I a 'and I c. 

Performing extensive simulations of the circuit , we noticed that the accuracy of 

the computation could be increased significantly if most of the mirrors were replaced 

by cascoded mirros. The final version of the selection circuit that was included in the 

chip is reported in Fig. 4.33. The other difference with the circuit of Fig. 4.14 is that 
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Figure 4.15: The very simple current comparator used in the chip. The two current starved 
inverters allow some power saving in case of borderline cases. 

the current Ie - It is not injected directly into the source of the transistor 1'.112 from 

the diffusion network, and double mirrors had to be used instead. The reason for 

those extra transistors is that if Ia - It = 0, then the transitor .iYfl is off causing the 

transistor .iY12 to be off also. In that case there is no path to ground for the current 

Ie - It coming from the diffusion network. That current, consequently, is routed to 

other pixels altering the precision of the calculation. 

The very simple current comparator is reported in Fig. 4.15. Its input is connected 

to node A of Fig. 4.14 and it consists of just a series of two current starved inverters 

with a fairly high gain output stage in order to properly drive the digital circuitry of 

the scanning architecture. The only reason to include current starved inverters was 

to decrease the power wasted in case the currents (fa - It )( Ie - It) /Iref - 11; /Iref and 

Ipt were close in magnitude. In that case it is reasonable to expect the simple inverter 

used in Detectorl to be in conduction consuming, therefore, a significant amount of 

power. 

The scanning architecture is reported is Fig. 4.16. The shift-register on the side of 

the array select only one row at the time (i.e., RowSelect high); if there is a feature, 

the output of the current comparator is high and therefore the node A is low due 

the nand circuit. If node A is low, the transistor .iYfl pulls the ColumnOutputVVire 
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Figure 4.16: The scanning architecture of the chip. The vertical shift-register selects a row, 
the wired OR, made by transistors Ml in the pixels and transistor M2 , outputs the result 
of every column to the bottom of the chip where the horizontal shift-register and another 
wired OR conveys the results to the output pad. 

high. The ColumnOutputWire and the pull down transistor Jvf2 at the top of every 

column work as a wired OR. Only one of the transistors 1\11 of the column can be on 

at every time because of the selection of the shift-register. If none of the pixels in that 

column has a feature, then none of the transistors M1 is active and the line is pulled 

low by the transistor M2. At the output of the column the horizontal shift -register 

select s only one column at a time and another wired OR conveys the value to the 

output pad of the chip. 

4.4 Simulation Results 

One advantage of this second thresholding circuit over the one integrated used for 

Det ectorl is the possibility of performing accurate simulations without any of the 

problems associated with having to set the initial conditions on the floating-gates of 

the MITEs. The photoreceptor circuits were not included in the netlist used for the 

simulations, and therefore a static set of voltages was applied at every pixel to the 

inputs of the multipliers to simulate the effect of fo cusing an image onto the chip with 

a lens. For all the results t hat we will present, the set of voltages used corresponds 
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Figure 4. 17: SPICE simulation results: a) Input image. b) Current l a. c) Current h. d) 
Current Ie. 

to the synthetic image of Fig. 2.8. 

In Fig. 4.17a the plot of the stimuli used again displayed to ease the comparison 

with the adjacent plots. In Fig. 4.17b, c and d we plot the simulation results for 

the three currents f a, hand f e respectively. As was expected f a is higher for those 

pixels that correspond to the two almost vert ical edges of the stimuli while f e clearly 

detects the two horizontal ones. 

In Fig. 4.18 and Fig. 4.19, we plot the current (Ia - f t )(Ic - I t )/ Ire! - If;! I re! that 

is subsequently compared to I pt to determine the presence of a feature. It is evident 

how the circuit is able to selBct the four: corners of the input image that are the only 

regions not affected by the aperture problem. This current should be proportional 

to the function representing the minimum eigenvalue AI ' In Fig. 4.20 we plot that 

function computed with r..1ATLAB starting from the synthetic image. As we can see 

it is almost identical t o the result of the circuit simulation reported on Fig. 4.19. 

In Fig. 4.21 , Fig. 4.22, Fig. 4.23 and Fig. 4.24 , we perform the same compar-
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Figure 4.18: The simulation results for the current (Ia - Id (Ie - Id / Ire! - IN Ire!. It is 
evident how the circuit is able to find the four corners of the input image in Fig. 4.17a. 

ison between circuits simulations and MATLAB results for four of the fundamental 

computation modules of the sensor. In Fig. 4.21 we compare the simulation result of 

the multiplier computing Ia with the ideal result of t; computed from the synthetic 

image. In Fig. 4.22 we compare the accuracy of the multiplier that computes the 

quantity (fa - It)(Ie - Id / Ire!, and in Fig. 4.23 we look at the operation of absolute 

value on the current I b, and finally in Fig. 4.24 is reported the comparison between 

the simulation results for I~ / Ire! and its ideal counterpart. As we can see for all the 

four comparisons, the simulation results closely match the expected ideal results. 

We designed, fabricated and tested the sensor with a 15 x 15 array of pixels. As 

we mentioned before the chip was fabricated in a O.35JLm double-poly quad-metal 

technology provided by Taiwan Semiconductor Manufacturing Corporation through 

the MOSIS fabrication service Tiny-Chip. The die size was 2 x 2mm. 

A micro-graph of the chip is shown in Fig. 4.25. The actual area occupied by the 

design is 1.6 x 1.6mm. In Fig. 3.12 we show a picture of the layout of the pixel. In 
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Figure 4.19: The simulation results for the current (fa - It)(Ic - It)/Ire! - Il/Ire! that is 
subsequently compared to Ipt . 

Fig. 3.13 we show a micro-graph of the pixel. The layout is reported in Fig. 4.26 

with a close-up micro-graph of the pixel in Fig. 4.27. The pixel size is 100 x 100j.Lrn2 

in this technology. The total number of transistors in the pixel is 140 and the fill 

factor of the sensor is about 6%. 

The sensor was characterized with the same testing methodology used for Detec

tori. 

In Fig. 4.28 we present the results of the characterization of one pixel of the 

sensor implementing the simplified algorithm of conditions (2.13-2.14). The current 

Ip was again set to zero and the value of the current It was varied to chracterize 

the implementation of the condition (fa - It)(Ic - It) / Ire! - IN Ire! > o. As we 

can see, even if two sensors are quite different in design, the curves are very similar 

to the curves obtained for the sensor Detector1 in Fig. 3.18. The slopes of the 

different transition regions are lower than before, hinting a lower selectivity of the 

new selection circuit with respect to the one used in Detectorl. Another possible 

explanation of the decreasing slopes can be found in the higher standard deviation 

of the output voltages of the array of photoreceptors. For this design we measured 

an average peak-to-peak output of 496m V with a standard deviation of 81m V, for 
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Figure 4.20: MATLAB calculation of the minimum eigenvalue Al of the synthetic image 
used. 

a 100% contrast stimuli. The DC operating point of every photoreceptor was also 

measured. The mean was 1.198V with a standard deviation of 49mV. Comparing 

these results with the corresponding values measured for Detectorl, we see that the 

standard deviation of the peak-to-peak value is almost three times as big, and the 

one associated with the DC operating point is more than double than before. We 

learned in the previous chapter that with these increases in standard deviation we 

should expect some degree a decrease in the slopes of the curves. 

The only difference in interpreting the data of Fig. 4.28 and comparing them 

with the data obtained for Detector1 is that the signal aggregation layer is now 

implemented with a diffusion network instead of hard wiring the currents of the 9 

pixels to the selection circuit as it was for Detectorl. The implication of this fact is 

that when the results of Fig. 4.28 are plotted, the minimum eigenvalue of every test 

pattern should be recomputed to correctly reflect the effect on the overall computation 

of the diffusion network. 

For all the measurements here presented, the two biasing currents of the diffusion 

network were kept equal. Using the simulation results of the weighting functions, we 

obtained a rough estimate of the weighting function that correspond to that biasing 
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Figure 4.21: Comparison between the simulation result of the multiplier computing Ia with 
the ideal result of f; computed from the synthetic image. 

setting. Using that information to plot once again the same data of Fig. 4.28, we 

obtain Fig. 4.29 that represents a better picture of the overall circuit behavior. The 

range of the minimum eigenvalue of the test patterns is now greatly reduced, but the 

overall shape of the four curves is not drastically altered. 

Fig. 4.30, present the results of the characterization of the implementation of the 

approximated algorithm of condition (2.15). Even in this case the curves are not 

significantly different from the corresponding curves obtained during the testing of 

Detectorl. 

Since Detector2 has an array of 15 x 15 pixels, we were able to perfom some test to 

better characterize the effect of transistor mismatches. The most significant of these 

tests is the characterization of the variability of the curves between pixel and pixel 

keeping the biasing and thresholding currents constant. 

In Fig. 4.31 we plot the curves obtained from the 11 pixels on one of the two 

main diagonals at the same biasing conditions. The two pixels at the two ends of the 

diagonal were not tested to avoid edge effects in the results. As we can see even if 

more that half of the pixels have similar curves, there are at least four of them that are 
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Figure 4.22: Comparison of the accuracy of the multiplier that computes the quantity 
(fa - Id(fc - Id/ Irej. 

completely outliers. One pixel, for example, always reports the presence of features 

even for very low minimum eigenvalue levels, while three others hardly reported any 

feature at all even for the patterns with the highest )'1. This fact in itself limits the 

accuracy of the overall computation of the sensors since we should expect a much 

more uniform behavior of the various pixels across the chip. 

4.5 Conclusion 

In this chapter we presented the final design of the computational sensor for focal 

plane computation of image features. This final design addressed all the issues raised 

by the initial design. The algorithm is nmv computed at every pixel thanks to the 

elegant use of the diffusion network. The change in selection circuit allowed accurate 

' simulation to be performed on the design without any evident degradation of selec

tivity of the computation itself. The fill factor was also increased by more than a 

factor of five in this new design. 

The testing of the sensor highlighted the only major issue of this new design that 
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Figure 4.23: Comparison of the accuracy of the circuit that computes the absolute value 
of the current h. 

is the not perfect consistency of the computation across all the pixels of the sensor. 

The cause of this non uniformity has to be found in voltage and current offsets due 

to transistor mismatches. The next chapter presents a possible way to address this 

problem in a fundamental new way. 

This feature detection scheme in association with a simple token-based velocity 

algorithm [22] can be used to build a motion sensor not affected by the aperture 

problem. Another possible use of this implementation of the algorithm is to replace 

the intensity-based saliency map with a feature-based one in visual attention or ocu

lomotor systems [17, 24]. 

If fabricated in a denser array, either using a smaller technology or a large die, 

a feature detection chip can be used as a front-end to those navigation systems that 

detect and track features to navigate in the environment. 
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Figure 4.24: Comparison of the simulation results of It / Ire! and its ideal counterpart. 

Figure 4.25: Micro-graph of CMOS sensor. The actual area occupied by the design is 
1.6 x 1.6mm. 
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Figure 4.26: The layout of the pixel. The pixel size is 100 x 100p,m2 in this technology. 
The total number of transistors in the pixel is 140 and the fill factor of the sensor is about 
6%. 

Figure 4.27: Close-up micro-graph of the area around one pixel. The third metal layer 
cover most of the area and only the photo diode is visible. The fourth layer of metal was 
not used in the design. 



;;g 
E..... 

~ 
OJ 
~ 
(/) 
c 
(1J 

OJ 

£ 
'w a 
0. 

'0 
OJ 
Cl 
~ 
c 
OJ 
~ 
OJ 

0... 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 

85 

t; It1 

o It2> It1 

'V It3> It2 

o It4> It3 

1 000 2000 3000 4000 5000 6000 7000 8000 
Minimum eigenvalue \ 

Figure 4.28: Results of the characterization of one pixel of the sensor implementing the 
simplified algorithm of conditions (2.13-2.14). The current Ip was set to zero and the value 
of the current It was varied to chracterize the implementation of the condition (fa - It)(Ic
Id / Ire! - III I r·e! > O. 

100 

90 

;;g 
E..... 80 

~ 
OJ 70 
~ 
(/) 
c 
(1J 60 
OJ 
> 

+=' 'w 50 
0 
0. 

'0 40 
OJ 
Cl 

~ 30 c 
OJ 
~ 
OJ 20 0... 

10 

0 
0 100 

t; It1 

o 112 > It1 

'V It3> It2 

o It4> It3 

200 300 400 500 
Minimum eigenvalue A1 

Figure 4.29: Plot of the same curves of Fig. 4.28 taking into account the effect of the 
implementation using a diffusion network of the signal aggregation layer. 



86 

100 

90 

~ 80 

~ 
Q) 70 
~ 
(J) 
c 
C\l 60 
Q) 
> 

:;::; 
"m 50 
0 
D.. 

a 40 
Q) 
C) 

.!!l 
c 30 

'" Ipll Q) 

~ 
<) Ip12 > Ipll Q) 20 0... 

IPI3> Ip12 " 
10 0 IPI4> IPl3 

0 
0 2 3 4 5 6 7 8 

P(O) 
X 10

7 

Figure 4.30: Results of the characterization of the implementation of the approximated 
algorithm of condition (2.15). The curves are not significantly different from the corre
sponding curves obtained during the testing of Detectorl. 

100 

90 

~ 80 
(J) 

CD 70 
~ 
(J) 

c 
C\l 60 
Q) 

£ 
"00 50 
0 
D.. 

a 40 
Q) 
C) 
C\l 
C 30 
Q) 

~ 
Q) 20 0... 

10 

0 
0 1000 2000 3000 4000 5000 6000 

Minimum eigenvalue 1..1 
7000 8000 

Figure 4.31: Plot of the curves of the implementation of the simplified algorithm for 11 
pixels of one of the diagonals for the same biasing settings. 



87 

Figure 4.32 : The complete schematic of the three multipliers. 
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Figure 4.33: The complete schematic of the selection circuit used in the chip. 
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Chapter 5 Foating-Gate Transistors and 

Focal Plane Arrays 

The design of large arrays of analog circuits in VLSI is constrained by the inherent 

mismatch of transistors from the fabrication process. In photoreceptor arrays, the 

mismatch can appear as gain and offset errors. Under uniform intensity, such pixels 

will report slightly different values, producing a "fixed-pattern noise" image. While 

the removal of fixed-pattern noise is often performed by the subtraction of a cali

bration image stored on a downstream digital computer, the desire to combine both 

sensing and processing on the same chip ("smart sensors") has precipitated the need 

for a more integrated solution. A common solution to this problem is to measure and 

store a correction value locally at each pixel which is subtracted before the output. 

Although short-term storage can be performed on integrated capacitors, junction 

leakage from the connected circuitry limits its retention time to seconds, particularly 

for analog parameters. Floating-gate MOSFETs (MOS transistors with their gate 

completely surrounded by silicon dioxide), however, can provide an extremely effective 

charge-storage technique with its retention measured in years. Charge modification 

techniques using ultra-violet (UV) radiation [5 , 14, 31, 19] and bidirectional Fowler

Nordheim tunneling (e.g., [26, 38, 3, 23]) have both been successfully tested; there 

are , however, some drawbacks to these techniques such as the need for a UV light 

source, multiple high-voltage supplies, or special fabrication processes. Recently the 

combination of tunneling and hot-electron injection [10] has emerged as a promising 

new charge-modification technique that requires o~lly one high-voltage supply and 

standard CMOS fabrication processes. These types of structures are now being used 

for many different applications such as on-chip parameter storage (e.g. , [5, 15, 25]) 

and neural networks (e.g. , [42 , 4, 36]). 

As a result of these developments in technology, the use of floating-gate structures 
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Figure 5.1: (a) Circuit diagram of the old circuit used to compute the spatial
derivative in analog VLSI imagers. (b) Circuit diagram of the adaptive spatial
derivative circuit. Adding the floating-gate amplifier and one bias line to the paIr 
of stacked mirrors allows the circuit to remove offsets continuously. 

for fixed-pattern noise removal in images has been growing steadily in recent years. 

While earlier work used the UV technique to null offsets in a silicon retina [31], recent 

approaches have used bidirectional Fowler-Nordheim tunneling [8, IJ for storing image 

offset values. 

In applications where the absolute image intensity is not preserved and the local 

spatial-derivative information is used, spatial-derivative is an appropriate signal to 

calibrate. This is the situation for many neuromorphic circuits [11 J that adapt signals 

both spatially and temporally. 

In this paper we present a new approach to fixed-pattern noise removal, by very 

slowly adapting the output of the spatial-derivative computation to zero rather than 
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matching the photoreceptor outputs and balancing the spatial derivative circuit. Us

ing the floating-gate auto-zeroing amplifier described by Hasler et al. [16], a spatial

derivative circuit currently being used in other projects [21, 18] was modified to dra

matically reduce offset errors, or equivalently, to increase the dynamic range. This 

circuit uses a combination of electron tunneling to reduce charge and hot-electron 

injection to increase charge on the transistor gate. 

5.1 Circuit Description 

The circuit previously used to compute the spatial-derivative is shown in Fig. 5.1a. 

A transconductance amplifier receives input from two photo receptors (PH1 and Pi~l) 

and provides an output current that is a sigmoidal function of its differential input and 

therefore a second-order approximation of the spatial-derivative of the input image. 

Positive current sourced from the amplifier is pushed into the n-type current mirror 

(in the bottom part of the pair of stacked mirrors) and negative current is drawn out 

of the p-type current mirror (in the top part of the circuit). The output arms of the 

two current mirrors are connected together to provide a bidirectional output current. 

The two transistors connected to 1/~ef perform a thresholding operation, preventing 

very small spatial-derivative currents from appearing in the final output. While this 

can be desirable to reduce the effects of circuit offsets, it manifests itself as a "dead

zone" in the spatial-derivative transfer characteristics. Other configurations of the 

pair of stacked mirrors to compute the polarity or the absolute value of the bipolar 

current have been presented in the literature [21, 18]. 

The new circuit that we present is shown in Fig. 5.1b. The pFET differential pair 

is, in this case, terminated through a pair of diode-connected transistors. The diode

connected transistor on the right is the input to a current mirror which constitutes 

the input to the inverting auto-zeroing amplifier. This is the new output stage of the 

differential amplifier. As in the previous case, the output current is either drawn out 

of, or pushed into, the current mirrors on the top and bottom. The pair of stacked 

mirrors is a slightly modified version of the previous one to provide more control over 
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the dead-zone created by the threshold voltages of the nFET and pFET transistors 

in the center. 

Before considering the adaptive behavior of the circuit when tunneling and injec

tion are present, let us first describe the principle of operation without considering 

the auto-zeroing properties of the amplifier. 

If the two input voltages Vi+l and l~-l are equal, the current provided by the 

bias transistor is divided equally between the two arms of the differential pair. Let 

us assume now that in this condition the voltage Vaz sits at Vdd/2. When the output 

voltage of the photoreceptor Pi+1 increases with respect to Pi-I, more current starts 

flowing through the right-hand arm of the differential-pair and into the nFET current 

mirror. This increased current then pulls Vaz down. There is a voltage level Vdown at 

which the nFET controlled by Vref _n turns on and the pFET mirror starts conducting, 

thus clamping the Vaz voltage near Vdown . The value of Vdown is set by the threshold 

voltage of the nFET and by the bias voltage Vref _n0 If the difference between Vi+1 and 

Vi-I keeps increasing, then the current flowing through the pFET mirror will increase 

and Vaz will remain very close to the same value. Conversely, if Vi+l is less than Vi-I, 

the current through the diode connected nFET will decrease causing Vaz to increase 

until the pFET controlled by Vref _p turns on and the nFET mirror starts conducting. 

The voltage value at which Vaz is clamped in the upswing, Vup , is set by the threshold 

voltage of the pFET and by Vref _po When Vaz is between the two clamping voltages, 

the final output of the spatial-derivative is zero; thus, for differential input voltages 

!l V = Vi+1 - li-I such that Vdown < Vaz < Vup , the circuit fails to compute the 

correct spatial-derivative. To avoid this dead-zone in the transfer characteristics, it 

is necessary to set the bias voltages Vref _n and l'~ef _p so that the dead-zone is at 

a minimum. In Fig. 5.2 we plot different transfer characteristics obtained from the 

circuit as a function of the value of !ll'Az = Vup - Vdown . 

Let us now consider the behavior of the circuit with the auto-zeroing, floating

gate amplifier [16]. The auto-zeroing, floating-gate amplifier is a simple two transistor 

amplifier stage (transistors M1 and M2 in Fig. 5.1) that has the ability to adapt its 

steady state output voltage to lie at a value determined largely by fabrication pa-
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Figure 5.2: Plot of four different transfer characteristics obtained from the new 
spatial-derivative circuit for different values of 6 VAZ = Vup - Vdown ' A careful selec
tion of the bias voltages ~~ef _n and Vref _p permits a transfer characteristic without a 
"dead-zone" . 

rameters and global circuit variables and minimally by the individual signal levels. 

This adaptation is performed by modifying the charge on the floating-gate of the 

pFET transistor. Electrons are removed from the floating-gate by means of Fowler

Nordheim tunneling and added by pFET hot-electron injection [10]. The steady-state 

output voltage is kept nearly constant by changing the charge on the floating-gate. 

The amplifier reaches equilibrium when the tunneling current equals the injection 

current. The hot-electron injection current increases linearly with the source current 

in the pFET and exponentially with Vds , while the tunneling current increases expo

nentially with the voltage across the gate oxide (vtunn - \:19)' The tunneling process 

tends to turn the pFET transistor off and the injection process tends to turn the 

transistor on. Because the output of the amplifier directly controls Vds , the amplifier 

provides a high-gain, negative feedback signal which drives the system to equilib

rium. By modifying ~tunn and ~~nj, the steady-state output voltage and the rate of 

adaptation can be controlled. 

Fabrication mismatch is present in any CMOS processes and this usually translates 
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into reduced precision for the circuits that are affected. In the case of the spatial

derivative circuit, if the chip is placed under uniform illumination and the steady-state 

values of two photoreceptors "Yi-l and ~~+l differ by just a few thermal voltage units 

(11]-. = kT/q = 25 mV at room temperature) , the output of the amplifier ,,~z will 

be forced to one of the two clamping voltages. This causes a non-zero value for the 

spatial-derivative current Inew when the desired output value is zero. Using the auto

zeroing floating-gate amplifier, we cancel much of the error caused by fabrication 

mismatch because the amplifier will counter offsets and drive the output to a known 

voltage level. Then, in order to obtain a balanced output transfer characteristic of 

the spatial-derivative circuit , we just need to choose appropriate values for "Vref_n 

and "'~ef _p such that "'down and "'up are symmetric with respect to its steady-state 

value. When the spatial-derivative circuit is used in arrays , it is also necessary that 

the difference 6 "'AZ = v~p - "'down matches the amount of variation expected from 

the statistics of the auto-zeroing amplifiers' equilibrium points. It is worth noticing 

that in the case of the spatial-derivative circuit, the auto-zeroing amplifier cancels the 

effects of offset mismatch from both photoreceptors and the spatial-derivative circuit. 

5.2 Test Results 

To test the new circuit, we fabricated a chip with an array of 26 photoreceptors con

nected to 25 new, auto-zeroing spatial-derivative circuits and 25 old, non-adaptive 

spatial-derivative circuits. We used the same photoreceptor used in the sensors De

tector1 and Detector2. To perform a fair comparison, all the transistor sizes of the 

differential-pair circuits and the stacked current mirrors were kept the same in the 

two designs. The circuit was fabricated in a 1.2 fJm double-poly, double-metal, n-well 

CMOS proc·ess. 

We performed the experiments by focusing a uniform stimulus onto the chip (i.e., 

a white screen illuminated by diffuse light). We measured the output of the array of 

photoreceptors over three orders of magnitude of uniform light conditions. Fig. 5.3 

shows that the photoreceptor offsets are perfectly conserved across three orders of 
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Figure 5.3: Voltage output of the array of photoreceptors under uniform diffuse illu
mination at different light intensities. 

magnitude of light intensities and that there are cases where pairs of adjacent pho

toreceptors have a difference greater than a thermal voltage VT . We then measured 

the ability of the auto-zeroing spatial-derivative circuit to adapt and remove the off

sets. 

In Fig. 5.4 we report the measurements of the non-adaptive spatial-derivative 

circuit. The output is not perfectly flat as we might expect for a uniform white 

stimulus. All the current measurements were performed using a current-sense ampli

fier (i.e., recorded as voltage) and the reported values were obtained by numerically 

converting voltage back to current. The calculated standard deviation of the current 

offset for this circuit was 7.8 nA which, compared to a dynamic range of 340 nA, 

gives a "resolution" of 4.4 bits (for dynamic range we intend the difference between 

the positive and negative saturation values of the transfer characteristic). 

In our first series of tests of the auto-zeroing spatial-derivative circuit, we raised the 

tunneling and injection voltages and we let the array of auto-zeroing amplifiers adapt 

to their equilibrium point. By varying both the tunneling and injection voltages, the 

time-constant of floating-gate circuits like the one in Fig. 5.1 can be adjusted from 
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Figure 5.4: Output current of the old spatial-derivative circuit under uniform diffuse 
illumination. 

values of seconds to thousands of seconds [9]. In our experiments the voltage range for 

the tunneling voltage, vtunn, was between 25 and 30 V and the range for the injection 

voltage, Vinj, was from 7.5 V to 8.5 V. All the results reported here were obtained 

using a tunneling voltage of 26 V and an injection voltage of 7.7 V. The tunneling 

and injection voltages are much lower in modern submicron processes. In Fig. 5.5 

we report the output of the auto-zeroing spatial-derivative circuit both before we 

started the adaptation process and after the equilibrium was reached. The effect of 

the auto-zeroing amplifier is a dramatic reduction of the peak value of the offset by a 

factor of 20. The calculated standard deviation of the offset after adaptation is about 

1.2 nA. We can now compare in Fig. 5.6 the offset after the adaptation process with 

the constant offset of the non-adaptive circuit. The current offset of the auto-zeroing 

circuit is sensibly lower than the one of the non-adaptive circuit, the peak of the new 

circuit is about one order of magnitude lower than. the peak of the old circuit and 

the standard deviation ratio is about 6 to 1 in favor of the new scheme. Considering 

that the dynamic range of the auto-zeroing circuit was 235 nA, the corresponding 

resolution was about 6.4 bits compared to the 4.4 bits of the non-adaptive circuit. 

It is possible to obtain even better results if we use only the injection mechanism 
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Figure 5.5: Comparison of the output current of the new spatial-derivative circuit 
before and during continuous time adaptation. 

in the auto-zeroing amplifier. We will call this procedure "one-time" adaptation 

because, contrary to the continuous time adaptation described before, the adaptation 

is performed only once for every array of spatial-derivative circuits. In this case, after 

setting the injection voltage to the appropriate value, the voltage ~~ntl is increased 

(thus raising the floating-gate and reducing the current in the pFET transistor) so the 

output of the floating-gate amplifiers drops to a lower voltage. In this situation, the 

injection process becomes active and adds electrons onto the floating-gate until the 

pFET transistor drives the output of the amplifier high enough to turn the injection 

process off. \\lith this procedure it was possible to further reduce the offsets of the 

spatial-derivative circuit, as shown in Fig. 5.7 where we compare the final offsets 

obtained with the two different methods. Even more significant are the benefits of 

this procedure if we compare the remaining offsets after the one-time adaptation 

procedure, with the offset of the non-adaptive circuit in Fig. 5.8. The calculated 

standard deviation of the offset noise obtained with the one-time adaptation was 

0.3 nA, a factor of 26 smaller than the offset noise in the non-adaptive circuit. The 

computed resolution for this case was 8.5 bits with a gain of four bits with respect 
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Figure 5.6: Comparison of the output current of the old spatial-derivative circuit and 
the new circuit during continuous time adaptation. 

to the non-adaptive circuit. The results for the auto-zeroing circuit were obtained by 

setting the biases voltages Vrej _n and Vrej _p in such a way that the dead-zone of the 

transfer characteristic was negligible with respect its linear range. Finally, in Fig. 5.9 

we compare the output of the floating-gate amplifiers before and after the one-time 

adaptation. One drawback of this procedure is that the adaptation is performed only 

once and then unless tunneling is resumed the electrons are permanently stored on the 

floating-gates. Another important point is that, in the one-time adaptation case, the 

biasing of the pFET transistor of the floating-gate amplifier becomes critical to the 

correct functioning of the circuit. Temperature shifts could change the bias condition 

and therefore change the equilibrium point of the amplifier output. Temperature 

compensation could be possible by controlling the temperature dependence of the 

bias current in the differential-pair to match the dependence in the pFET transistor 

current. 

Indirect evidence suggests that the reason the one-time adaptation is more accu

rate than the continuous adaptation is because the injection process is better matched 

across the chip than is the tunneling process. Consequently, turning off the tunneling 

reduces the errors. 
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In the injection-only c~se, once the pFET has largely balanced the input current, 

Vds is reduced (output rises) until the injection shuts itself off. Since there is no 

tunneling current to balance, the equilibrium voltage only depends on the transistor 

matching. The actual gain of the injection process (which is a function of input 

current) only affects the rate at which the equilibrium is approached. 

5. 3 Conclusion 

In this paper we have presented a circuit for auto-zeroing a current signal as ap

plied to a visual processing task. First, the array of offset-ridden current signals 

was balanced by a floating-gate auto-zeroing amplifier. Second, adjustable thresholds 

were introduced to prevent any remaining offsets from appearing at the output. The 

adaptation was achieved by adding a floating-gate amplifier and one extra circuit 

parameter. In comparison to previous designs, offset "noise" was reduced by more 

than an order of magnitude. It should be noted that the technique of offset correction 

after the differential-pair, while zeroing the final output, does not correct the imbal-
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Figure 5.8: Comparison of the output current of the old spatial-derivative circuit and 
the new circuit after one-time time adaptation. 

ance produced by the offsets. Such an imbalance results in an asymmetrical output 

characteristic. 

vVe also demonstrated two different strategies for adaptation, a one-time (injection

only) calibration routine and a continuously-adapting strategy (tunneling and injec

tion). While the one-time calibration strategy provides a lower offset error after adap

tation, we are most interested in the use of continuous calibration for systems that 

require very long periods of operation without intervention. As imaging systems are 

in operation over long periods of time and are exposed to the environment, persistent 

offsets from dirty optics or circuit failure can increasingly impair performance. 

\Vhile one technique for reducing the effect of fabrication offsets is to increase the 

size of all of the transistors or improve the fabrication process, another is to make the 

circuit layout very small and utilize an adaptive system. In the chip we presented, 

all of the transistors were 6), x 6)" leaving room for further reduction in layout area 

in future designs. While both approaches to offset reduction are valid, the adaptive 

approach is attractive due to the potential for ignoring bad pixels and its ability to 

compensate for unforeseen changes in the system over time. 

It should be noted that the work presented here is different from other work in the 
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literature [8, 1], in that the sensor's output is not an image to be used by a downstream 

computer, rather it is intended to be used in a fully-integrated computational sensor 

[18] or in a larger system that requires pre-processed data. It is for this reason that 

adaptive photoreceptors are used and the spatial-derivative is used to calibrate the 

system rather than the image intensity. This adaptation strategy, however, does 

make the assumption that the visual world the sensor experiences has zero-mean 

spatial-derivative statistics over a time-interval comparable to the adaptation time-

constant. For an autonomous, mobile visual system viewing natural scenes, the zero

mean assumption of the continuous adaptation approach is likely to be reasonable. 

The brain has long been an inspiration to engineers for reasons of both computa

tional ability and adaptability; however, attempts to mimic even the smallest portions 

of it have fallen surprisingly short. \Vhile early attempts to build neural circuits used 

small numbers of discrete components, recent approaches have utilized VLSI technol

ogy. Neuromorphic analog VLSI chips [11], while space and power efficient, have often 

been criticized for their lack of precision and lack of realistic memory structures. The 

recent surge in development of non-volatile analog parameter storage on silicon and 
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the rapid growth of knowledge in neuroscience (where memory and computation are 

inextricably intermingled), however, have made neuromorphic analog VLSI systems 

a viable technology for designing tomorrow's extremely-low-power, smart sensors and 

systems. 
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Chapter 6 Conclusions 

In this dissertation, we presented a series of computational sensors that perform 

focal-plane computation for feature detection. 

The main contributions of this dissertation may be the fact that we were able to 

identify a fundamental task for the computer vision or image processing communities 

that, if successfully implemented in a computational sensor, could provide a real 

advan.tage over the standard combination of CCD camera and dedicated digital image 

processor. 

The choice of the feature selection task was particularly fortunate because, at 

the same time, it is both a fundamental topic for the field and offers a considerable 

challenge to the designer. 

The fact that feature selection is an important and established research topic in 

the computer vision and image processing community relieved ourselves from the 

burden of actually trying to explain and justify why we were interested in building 

such a sensor. We feel that many of the previous sensor designs, unfortunately, were 

not in the same fortunate situation. 

The fact that it presented a real challenge for a successful implementation in a 

CMOS sensor provided the opportunity to show that, with deep understanding of 

the problems, careful design, fortunate intuitions, and, sometimes, just sheer luck in 

finding the right circuits at the right time, it is still possible to implement very com

plicated algorithms using CMOS circuits, working in subthreshold, without having to 

go digital as soon as possible. 

\Vhile the previous two considerations were, more or less, on a personal level, we 

can evaluate, in a engineering sense, what we set of to accomplish and what we were 

able to show as a result of four years of work. 

Indeed we showed that, thanks to a careful design, it is possible to implement a 

very complex feature detection algorithm in a CMOS visual sensor with focal plane 
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computation. We showed that, at least in simulations, the algorithm can be imple

mented without approximations thanks to the very elegant circuit choices adopted. 

We realized that, for sensor utilizing transistors working in subthreshold, mismatches 

play a significant role in the accuracy that can be achieved. To counter that, we 

presented one of the first implementations, and the first implementation to focal

plane arrays, of floating-gate technology to lessen the effects of mismatches in analog 

CMOS circuits. We are confident that, with the progress of silicon technology, both 

in terms of smaller transistor sizes and better matching, and a more frequent use of 

floating-gate technology, it will be possible, in the near future, to redesign one of the 

sensors presented and obtain far better results in terms of accuracy and consistency 

of the computations across the pixels array. 

Looking at the bigger picture, we have to realize that the claim to fame of these 

computational sensors is that they can perform very complex computations with a sig

nificant reduction of power consumption with respect to their digital implementation 

counterparts. While this thesis can be considered a step in that direction, we proba

bly need to consider if, with all the added design and testing time and the increasing 

efficiency of low power digital design, all this is really worth it. It is debatable, in fact, 

if the small gain in power savings of an analog sensor that guide the navigation along 

a building corridor of a 20 Watts roving robot or aids the parking of a 250 hp (186 

KWatts) Mercedes can be really considered a determining factor. Of course, there is 

the very large market of portable/wearable battery-powered devices (PDA, hearing 

aids, implantable electronic devices, etc.) that, by nature, is very power sensitive. 

Even here, though, if we look carefully, the low power digital implementations are 

gaining ground with respect to the analog ones. If we are very pessimistic (or very 

optimistic), we can still find·the once-in-a-lifetime super-low-power mission to Mars 

or the occasional micro-fly project were the integralistic subthreshold CMOS view 

can find receptive hears, but we probably would not want to try to make a living out 

of those opportunities. 

We personally think the truth is, as often, somewhere in the middle. Presented 

with a new problem, the engineer should weigh all the alternatives and settle for 
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the solution that optimally matches the required specifications in terms of power 

consumption, design time, accuracy, cost of manufacturing, etc. We do not have any 

problem if, more often that not, this means that a digital implementation, obtained 

automatically from some VHDL code, wins over the analog one. We personally think 

that CMOS analog design is not a dead art; it just needs to be used in the right 

context. 

The world out there is still analog after all, and every machine that interacts with 

it will always have to deal with analog quantities. 
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Appendix A A Family of Wide Linear 

Range Multipliers 

Four quadrant analog multipliers are important building blocks for a large num

ber of signal processing applications such as correlators, convolvers, adaptive filters, 

frequency doublers and modulators, etc. Many CMOS analog multipliers which ex

ploited the MOS transistor operating in the above-threshold region have been pre

sented in the literature . However, most of them are not suitable for the application 

in Neuromorphic a VLSI chips [33, 32]' Artificial Neural Network application and for 

low power analog signal processing for portable applications where a very low power 

consumption is required. In these cases it is desirable to develop MOS building blocks 

that operate the transistors in the subthreshold region (weak inversion). Subthreshold 

operation has the advantage that the current levels are typically orders of magnitude 

lower than devices biased above threshold (strong inversion). 

There are many different approaches for implementing four quadrant analog mul

tiplier in CMOS technology: some of them, including the one here presented, use 

modified versions of the Gilbert cell [13] that was originally implemented with bipo

lar transistors. Others are based on the quarter-square algebraic identity that can be 

realized easily using the square law characteristics of the MOS device working above 

threshold. Then other multipliers based on the pulse-width modulation technique, 

switched capacitors technique, etc, have been reported. 

Many of these designs using the M OS transistor above threshold report linear 

range up to few volts. It is fairly easy to obtain wide linear range above thresh

old due to the square law voltage-current characteristic of the MOS device. In the 

subthreshold region the characteristic is exponential ; therefore, it is more difficult to 

obtain a comparable linear range. 

To the best of our knowledge all the reported designs of four quadrant multiplier 
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V4 V4 

Figure A.l: The wide linear range four quadrant multiplier. The inputs are through 
the well of the transistors WI, VI and V2 in the middle differential pair and V3 and V4 
in the two outer differential pairs. The transistors SD reduce the transconductance 
of the differential pairs through source degeneration. The transistors GDM further 
reduce the transconductance through gate degeneration and mirror the current to the 
other differential pairs or to the output. The transistors M are used in the current 
mirrors of the circuit. The transistors B further linearize the transfer function through 
bump linearization. The current output is lout, the voltage Vbias set the bias current 
of the multiplier and Vas allows fine adjustment of the its offset if necessary. 

working in subthreshold have a linear range that does not exceed ±100 m V [32, 

27, 28, 6] while our design exhibits a linear range of ±2 V. To achieve this value 

a combination of four different techniques is used. First the well terminals of the 

input transistors are used as low transconductance inputs. Then, feedback techniques 

known as source degeneration and gate degeneration provide further reduction of 

the transconductance. Finally a technique known as bump-linearization extends the 

linear range even further. The circuit that incorporates all four techniques is shown 

in Figure A.I. 

In section 2 we describe the principle of operation and the design of the multiplier. 

Section 3 shows the results of the measurements, and in section 4 we conclude by 

summarizing our contributions. 
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Principle of Operation 

To understand the principles of operation of the multiplier, we first analyze the char

acteristics of the single leg of the three differential pairs present in the multiplier. 

The circuit is shown in Figure A.2(a). 

In a subthreshold (p-type) MOS transistor, the current is given by [33] 

(A.I) 

where ~~s, Yds and Y~s are the gate-to-source, drain-to-source and the well-to-source 

potential respectively, 10 is the zero-bias current for the given device , VT = kT / q is 

the thermal voltage, Vo is the Early voltage and K, measure the effectiveness of the 

gate potential in controlling the channel current. 

A.I.1 The Well Inputs 

For a device in saturation (Vds ~ 4VT ) and neglecting the Early effect, equation (A.1) 

simplifies to 

(A.2) 

By differentiating equation (A.2) we obtain the gate and well transconductances: 

aIds ( ) Ids 
gw = av

w 
= - 1 - K, V

T 
. (A.3) 

From equation (A.3) it is clear that if K, > 0.5, which is almost always the case, 

the well transconductance has a lower value than the gate transconductance and thus 

is preferabl~ over the gate as a low-transconductance input. 

A.I.2 Source and Gate Degeneration 

The technique known as source degeneration was first used in vacuum-tube design , 

where is was called chatode degeneration, as well as in bipolar design, where it is 
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referred to as emitter degeneration. The principle is to convert the current of the 

MOS transistor into a voltage using a resistor, a diode or a diode-connect ed transistor, 

and then feed this voltage back to the emitter or source of the transistor to decrease 

its current. 

The technique of gate degeneration was firs t used by Sarpeshkar et al. [40]. It is 

based on the same principle of converting the current passing through t he transistor 

into a voltage that is then fed back to the gate of the transistor decreasing in this 

way its current. 

It is straightforward to quantify the reduction of transconductance obtained through 

the source and gate degenerat ion. The current through the transistor SD can be ex

pressed as 

(A.4) 

The current of transistor GDM is 

tin Vg _ ~ (11

0

) - "nn I = 10 e VT or e VT = (A.5) 

Now rewriting equation (A.2) for the input transistor WI, we have 

(A.6) 

Using equations (A.4)-(A.5) we can rewrite equation (A.6) as 

I ( I ) -n':, _ (l -".)Vw (I) -';p -,--Y,-
- = - e VT - e "p "T , 

10 10 10 

and solving for I we finally obtain 

(A.7) 

where 
1- 11, 

(A.8) 
K,ef f = 1 + -.L + ..!5:.. 

K.p K n 

That is to say, due to the source and gate degeneration, the three transistors of Figure 
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v 

Vg 

a) b) 

Figure A.2: (a) One leg of the differential pair used in the multiplier of Figure A.I. 
The transistor "VI use the well terminal as input to reduce the transconductance. 
The diode-connected transistor SD is responsible for the source degeneration while 
the transistor GDM further reduce the transconductance through gate degeneration 
and also mirror the current. (b) The simple bump transconductance amplifier. For a 
low value of the differential input voltage V = V+ - V_ the bump transistors B steal 
current to the other legs of the differential pair linearizing in this way the transfer 
function. 

A.2(a) are equivalent to a single transistor with well transconductance of 

A oJ J 
gw = oV

w 
= -reeff vr 

that is a lower value with respect to equation (A.3). 

A.1.3 Bump Linearization 

Bump linearization is a technique to extend the linear range of a subthreshold differ

ential pair [7]. 

A bump differential pair, Figure A. 2 (b), has two series-connected transistors in 

a middle leg in addition to its outer two legs. These transistors are called bump 

because their I-V characteristics is a bump-shaped function of the differential voltage 
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DC Characteristics: lout VS. V
12 
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Figure A.3: DC transfer characteristics (V12 = VI - V2 sweeping in the range -3.0 - 3.0 
V and V34 = V3 - V4 at fixed values, common mode voltage for both differential input 
VCM=2.5 V). 

The overall I-V curve of the differential pair is the usual tanh-shaped function of 

~ V except for a region near the origin where the bump transistors are in conduction. 

If we refer to the ~V / L ratio for a transistor as the strength of the transistor, then 

we can control the I-V curve of the differential pair by changing the strength ratio 

5 between the strength of the transistors in the middle leg to the strength of the 

transistors in the outer legs. A large value of 5 will cause a flat zone near the origin 

where a small 5 will not affect much the tanh-shaped transfer function. 

For the simple subthreshold bump amplifier with strength ratio 5, the output 

current can be shown to be 

I '- I sinh(K;~V/VT) 
out - b 1 + 5/2 + cosh(K;~V/VT) (A.9) 

Moreover Sarpeshkar et al. [40] demonstrated that if 5 ::; 2, the I-V curve of the 

amplifier has no point of inflection except at the origin and that for 5 = 2 the Taylor 

expansion of equation (A.9) doesn't contain a cubic distortion term unlike the Taylor 

expansion of tanh. 
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DC Characteristics: lout vs. V
34 
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V

34 
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V'2 =2.0 V 
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3 

Figure A.4: DC transfer characteristics (V34 = V3 - V4 sweeping in the range -3.0 - 3.0 
V and VI2 = VI - V2 at fixed values, common mode voltage for both differential input 
VCM=2.5 V). 

To obtain the output current of the subthreshold bump amplifier with well inputs 

and source and gate degeneration, it is sufficient to replace"" of equation (A.9) with 

""eff of equation (A.8) as demonstrated in section A.1.2 

A.2 Experimental Results 

Assuming as ideal all the current mirrors and using the results of equation (A.8)-(A.9) 

it is easy to show that the overall transfer function of the multiplier is 

I - I sinh(L\12) sinh(L\34) 
ont - b 1 + S/2 + cosh(L\12) 1 + S/2 + cosh(L\34) 

(A.10) 

where 

In equation (A.10), h is the bias current set with the voltage Ybias and S is the 

strength ratio between the transistors of the inner and outer legs respectively. 
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Fits of the DC Characteristics: lout VS. V
12 

o Measured data 

-1 

Fit to equation (10) 

o 
V,2 IV] 

Figure A.5: Fit of the experimental data of the DC characteristics lout vs. 1/12 to 
equation (A.I0). 

We designed the multiplier with a strength ratio S = 2 to verify the correctness of 

the theoretical analysis. We used a 1.2 pm double-poly double-metal n-well CMOS 

process available through the MOSIS fabrication service, and we obtained data from 

it. Figures A.3 and A.4 show the DC characteristics of the multipliers. As we can see 

the linear range extends between ±2 V. Figure A.5 shows the fit of equation (A.I0) 

performed over the data of Figure A.3. As we can verify from the figure, equation 

(A.I0) perfectly describes the DC characteristics of the multiplier. 

We also measured the Total Harmonic Distortion (THD) with respect to both 

inputs: we imposed a 2 V pp sinusoid (Freq. 1 Khz) at one differential input and 2 V 

DC at the other input. \Vith the sinusoidal input applied to V12 and V34 = 2.0 V, 

the distortion was 2.8%, and when the sinusoidal input was applied to V34 with 

'V12 = 2.0 V we measured a distortion of 3.0%. Figure A.6 shows the classic example 

of a frequency doubling operation with the multiplier. 

The power consumption is very low and depends on the bias current set by the 

voltage ~ias and on the input values. It is possible to derive an analytical expression 

for the power consumption as a function of the inputs. Here we just say that the 
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Frequency doubling operation: input signals V12 and V34 

0.01 0.015 0.02 0.025 0.03 0.035 
Time [sec] 

Frequency Doubling Operation: voltage in the current sense amplifier 

0.01 0.015 0.02 
Time [sec] 

0.025 0.03 0.035 

0.04 

0.04 

Figure A.6: Example of frequency doubling. F12 = F34 =2.0 V PP' Freq. 100Hz. 

power consumption P is always P< 5 Fdd hias, therefore, for example, for a value of 

hias = 40 nA and with Fdd = 5 V, the power is less than 1 J..lW. 

The bandwidth of the multiplier depends on the bias current and the amplitude of 

the two differential inputs. This multiplier is not suitable for medium or high speed 

systems due to the extremely low value of the currents involved. With a bias current 

of 80 nA, we measured a -3dB bandwidth of about 10 KHz with a peak-to-peak input 

of 2 V. 

A.3 Conclusion 

\Ve presented a novel design of an analog four quadrant multiplier in subthreshold 

CMOS. Special techniques allow a linear range of up to ±2 V. The power consumption 

depends on the bias current, but with normal subthreshold current levels, a power 

consumption of less than 1 J..lW is possible. This circuit is suitable for low power analog 

signal processing applications and for Neuromorphic a VLSI chips [33, 32] where the 

100 m V linear range of the usual subthreshold four quadrant multipliers is too small. 
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