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ABSTRACT 

Understanding the neural mechanisms that motivate us to eat is important because of the 

increasing rates of obesity and the consequential increasing rates of diabetes and 

cardiovascular disease in our society.  The aim of this dissertation is to gain insight into the 

neuromodulators and neural mechanisms that regulate satiety.  To do this, we turned to 

Drosophila melanogaster, which has been a powerful model organism to study the 

molecular mechanisms underlying innate animal behaviors and which exhibits many 

conserved elements of feeding regulation and energy homeostasis found in mammals.  A 

common theme in animal behavior is that food deprivation modifies behavioral responses, 

e.g., the likelihood that an animal will accept a low-nutrient food.  I manipulated the 

parameters of a feeding assay to screen for animals that lacked several starvation-induced 

feeding behaviors:  increased foraging for food, increased acceptance of low-nutrient food, 

and increased ingestion of low-quality food. Using this feeding assay, I identified a 

neuronal circuit manipulation that inhibits several starvation-induced behaviors.  Activation 

of a subset of Allatostatin-A-expressing neurons, using a novel transgenic tool that we 

generated, inhibits starvation-induced changes in both the acceptance and the ingestion of 

low-quality foods.  In contrast, this circuit manipulation did not affect starvation-induced 

metabolic changes or foraging behavior.  This suggests that we tapped into a mechanism 

that regulates a specific subset of starvation-induced changes in feeding behavior that is 

independent from general starvation-induced behavioral responses and energy metabolism.   

Studies in blowflies have revealed that the primary mechanism that promotes satiety is 

inhibitory proprioceptive feedback from the gut, but whether such a mechanism operates in 

Drosophila is unclear.  While Allatostatin A has been implicated as a satiety factor and as a 

myoinhibitor in several other insects, it has no known function in Drosophila.  A 

mechanism that promotes satiety but that does not alter energy metabolism has not 

previously been identified in Drosophila.  I have used this circuit manipulation to better 

understand how a state of satiety is achieved in Drosophila, by integrating the knowledge 

acquired from studies in other insects with the knowledge acquired from molecular genetic 

manipulations in Drosophila. 
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C h a p t e r  1  

INTRODUCTION 

1. The scientific relevance of studying satiety 

Globally there are more than 1 billion overweight adults, 1/3 of which are obese, 

and rates of obesity are increasing worldwide [1].  Obesity is one of the leading causes of 

preventable deaths in the United States, responsible for 1 in 10 deaths [2]; It increases the 

risk factor for medical complications such as diabetes, cardiovascular disease, and some 

forms of cancer [3].  In the U.S., 9.1 % of total medical expenditures in 1998 were due to 

medical complications caused by being overweight [4].  Because of the many health and 

economic costs of obesity, it is important to better understand the regulation of energy 

homeostasis and feeding behavior. 

The sheer number and diversity of life forms can be attributed to developing 

proficiency at: converting a variety of compounds into utilizable energy; storing excess 

energy for use in times of scarcity; and acquiring ways to adapt to harsh environments [5, 

6].  In animals, regulatory mechanisms promote feeding on high calorie foods, promote 

energy storage, and minimize energy expenditure.  The ever-increasing incidence of 

obesity in Westernized culture is fueled by an excess of high fat, high sugar foods in a 

technologically advanced urban world, where physical activity is a choice [6, 7].  It is 

medically and economically relevant to understand the neural and molecular underpinnings 

of hunger and satiety, how food is attributed a hedonic value, how food intake is regulated, 

and how the body maintains homeostasis.    

In mammals, the central nervous system (CNS) integrates internal and external 

cues, regulates feeding behavior, and coordinates the activities of multiple peripheral 

organs to maintain homeostasis [5, 8].  Complex feedback loops between peripheral organs 

and central regulatory centers interact to maintain stable blood glucose levels and to induce 

feeding and foraging to replenish energy stores [5, 8]. How this barrage of information is 



 

 

2
tracked and integrated to regulate feeding and energy homeostasis is not very well 

understood, and is an important and difficult challenge to scientists today [5, 8–10].  

Drosophila melanogaster (fruit flies) provide an excellent model system in which 

to study this complex problem because many elements of feeding regulation and 

homeostasis are conserved between Drosophila and mammals [7, 11–13].  Over 100 years 

of Drosophila genetic research has resulted in the characterization of many genes, signaling 

pathways, physiology, and behaviors [14].  Extensive libraries of mutants and transgenics 

have been created, as well as tools for manipulating genes and neuronal circuits [15].  

Historically, a limitation of Drosophila as a model system has been determining neuronal 

connectivity in the central nervous system [15].  The brain, which is the size of a poppy 

seed, is a dense ball of interconnected axons and dendrites (neuropile) surrounded by a 

shell of neuronal cell bodies [15, 16].  Although neuromodulatory neurons have been 

described in terms of molecular signaling and neuroanatomy, connectivity has been 

difficult to determine because the same neuronal processes can contain both inputs and 

outputs [15–17].    How “the as yet impenetrable interneuron jungle” [18] of the brain 

regulates behavior  has been a long-standing challenge [15, 16].  Recently, transgenic tools 

have been developed that allow us to establish connectivity, to visualize real-time neuronal 

activity, and to inducibly activate and silence neuronal circuits [15, 16]. This affords us the 

opportunity to leverage the knowledge of Drosophila genes, signaling pathways, 

physiology, and behavior to tackle the questions of how the CNS coordinates homeostasis 

and feeding behavior. 

In Drosophila, little is known about how the CNS regulates feeding behavior in 

response to homeostatic perturbations [9, 11, 17].  Although energy homeostasis and 

feeding behavior are tightly regulated [11, 19], the majority of studies have focused on 

energy metabolism while mostly overlooking the regulation of feeding behavior [10, 17].   

In addition, most of these studies have focused on the feeding behavior of larvae, which 

feed continuously and are in a life stage of rapid growth [7, 12].  In contrast, adult 

Drosophila have exited the growth phase, are discontinuous feeders, and face more 

complex life decisions than larvae [7, 12].  Understanding the regulation of feeding 



 

 

3
behavior in adult Drosophila would provide a more accurate model of how mammalian 

feeding is regulated [7, 12].  Studying insect feeding behavior could also contribute to 

improved methods of pest control, which could be used to target insect populations that 

transmit diseases and that damage agricultural crops.   

 

2.  The regulation of satiety: Lessons from the blowfly 

The majority of current knowledge about the neural regulation of insect feeding 

comes from in-depth investigations of the feeding behavior of the blowfly, or Phormia 

regina, and, according to studies conducted in other insects, this knowledge can be 

generalized to other insects [17, 18, 20].  The mechanisms that regulate feeding behavior in 

starved blowflies are different from those that regulate feeding under ad libitum1 feeding 

conditions [19, 21].  I will focus mainly on how feeding is regulated under starvation 

conditions in order to better understand how a state of satiety is achieved.  First, I will 

summarize the studies that characterized the neural regulation of feeding in starved 

blowflies;  these studies are described in detail in [20].   

  In the blowfly, satiety is measured in terms of sugar responsiveness [21, 22].   A 

starved fly will respond to and accept a lower concentration of a sugar solution than will a 

fed fly [21, 22].  This can be quantified by stimulating the taste sensillae on the foreleg of a 

fly with stepwise increasing concentrations of a sugar solution until the fly responds by 

extending its proboscis2, or mouthparts.  The lowest concentration to which a fly responds 

is designated the acceptance threshold3, which, depending on the degree of starvation, can 

vary over a hundred fold range of concentrations for some sugars.  This method measures 

the relative degree of starvation either between flies or within a single fly over time.  Thus 

a low or reduced acceptance threshold represents hungry or more nutrient-deprived flies 

                                                 
1 Ad libitum means “at one’s discretion” in Latin. 

2 The fly proboscis is a retractrable straw-like appendage through which flies feed. 

3  “Although threshold lies somewhere between the concentration that elicits extension and the one in the series immediately 
below it, the higher of the two is arbitrarily designated as threshold.  Since the aim of practically all experiments was to obtain 
data for comparative analysis, this fiction was acceptable” [20]. 
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and a high acceptance threshold represents a state of satiety. 

There are several physiological mechanisms that regulate satiety in the starved 

blowfly. The first and most potent inhibitor of feeding is crop distention [23]. The crop is 

an expandable sac that arises from an invagination of the foregut ([17], see Figure 1).  

When a starved fly feeds, food fills the midgut first, where the majority of digestion and 

nutrient absorption occurs [10], and then fills the crop, which is mostly used for food 

storage [17]. When food was prevented from entering the midgut, by tying off or severing 

the midgut, the volume of food intake of starved flies was comparable to sham operated 

starved flies, as was the increase in acceptance threshold [20].  Since little or no digestion 

occurs in the crop, this demonstrates that a state of satiety can be induced without food 

entering the midgut or ensuing nutrient absorption.  Consistent with the hypothesis that 

nutrient absorption is not mediating these effects, injection of a sugar solution into the 

hemolymph of a starved fly was not sufficient to decrease the acceptance threshold [20]. 

Thus, a state of satiety can be achieved by the act of feeding, regardless of hemolymph 

sugar levels.   

Anatomical and electrophysiological studies elucidated the mechanism by which 

crop distention regulates satiety.  Studies demonstrated that severing the median abdominal 

nerve (MAN) results in hyperphagia, defined as at least a twofold increase in food intake 

relative to sham-operated controls [24].  The MAN contains projections from a nerve net 

surrounding the crop [25].  Electrophysiological recordings from this nerve revealed 

neurons that increased their firing rate upon crop distention, indicating that proprioceptors 

are monitoring crop distention. Therefore it is proposed that proprioceptive feedback from 

the crop is necessary and sufficient to promote satiety [26].   
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Figure 1.  Anatomy of the digestive tract in Drosophila  

A sagittal view of the digestive tract illustrated within the body of Drosophila (reprinted 

with permission from [27].  Shown below, is an illustration of the digestive tract indicating 

the foregut (green), crop (yellow), midgut (red and pink), and hindgut (blue).  The crop 

duct branches off of the foregut.  The proventriculus (red) contains a valve that separates 

midgut from foregut contents.  

 

 

A second mechanism that contributes to the promotion of satiety in starved 

blowflies is foregut activity. When food was prevented from entering the crop, by lesioning 

or tying off the crop duct, sugar acceptance threshold rose for a few hours [20].  This 

suggests that the crop is not the only source of inhibitory feedback. To determine whether 

food within the midgut is sufficient to promote satiety, food was injected into the midgut of 



 

 

6

                                                

a starved fly [20].  Surprisingly, 80% of these flies exhibited no change in sugar 

acceptance threshold compared to pre-injection.  These flies were dissected to ensure that 

no food had passed into the foregut, which is separated from the midgut by the cardiac 

valve.  Since tying off the crop duct before feeding was sufficient to suppress the 

acceptance threshold, but injecting food into the midgut was not, this suggests that food 

passing through the foregut was responsible for the satiety effect seen in cropless flies. 

Additional lesioning studies revealed the mechanism underlying this satiety effect.    

When experimenters severed the recurrent nerve (RN), flies became hyperphagic [24].  The 

RN is part of the stomatogastric nervous system (SGS) in insects, which is analogous to the 

mammalian autonomic nervous system, and it innervates the aorta, foregut, crop, and 

hindgut [11].  To control for the possibility that severing the RN was impairing efferent 

motor control of the gut, several studies demonstrated that the motor patterning of food 

movement through the gut of these hyperphagic flies was normal [20].  First, food was able 

to enter the midgut and crop, and, as food was digested and the midgut emptied, the 

transfer of food from the crop to the midgut was normal4 in hyperphagic flies.  Further 

evidence that the SGS is not required for the motor patterning of food digestion is the fact 

that a digestive tract removed from the fly (dissected out and placed in saline) will continue 

the pattern of midgut emptying and food transfer until the crop is empty.  These results 

support the hypothesis that the presence or movement of food through the foregut promotes 

a satiety effect, and that severing the RN does not sever motor neurons that are required to 

move food through the gut.   

Electrophysiological recordings from the RN identified neurons whose firing rate 

was inversely correlated with the rate of crop emptying [26].  Although chemoreceptors 

exist in the foregut, they do not send their projections through the RN [23].  This led to the 

conclusion that proprioceptors are monitoring foregut contractions and are necessary and 

sufficient to produce a satiety effect.  It is quite surprising that neither the presence of food 

in the midgut nor hemolymph sugar levels is sufficient to promote a satiety effect under 

 
4 A two-way crop valve opens and a “slug” (bolus) of food is transferred by reverse peristalsis up the crop duct and into the 
foregut.  The cardiac valve, which separates the foregut from the midgut, opens and the slug is transferred into the midgut. 
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starvation conditions. This will be further discussed in a later section. 

Hyperphagia resulted when either the MAN or the RN was severed, but the feeding 

behavior as a result of these lesions was different [23].  Severing the MAN resulted in flies 

taking one long continuous meal, whereas severing the RN resulted in flies taking repeated 

near-normal sized meals.  These results suggest that crop distention (detected by the MAN) 

regulates meal cessation, while foregut contractions (detected by the RN) regulate meal 

initiation.  Dramatically, when both nerves were severed, flies continued to feed until they 

burst. 

RN and MAN lesioning in starved flies also results in polydypsia (water 

hyperphagia) [28].  Flies, like mammals, independently regulate water intake and food 

intake [19, 28].  To show that the primary effect of these lesions was not solely to promote 

drinking, the tastant stimulus presented to lesioned flies was varied [28].  When lesioned 

flies were feeding from a sucrose solution and the stimulus was switched to water, flies 

ceased drinking.  Additional evidence was provided by switching the solution to ever 

increasing concentrations of solutions.  When lesioned flies stopped drinking water, 100 

mM sucrose was presented.  This elicited feeding until the fly could not generate enough 

force to fill the crop any further despite continued efforts to feed.  Thereupon, a 1 M 

sucrose solution was presented and this resulted in more vigorous pumping (sucking) until 

the fly burst.   

There is evidence for additional mechanisms that promote satiety from ventral 

nerve cord (VNC) lesioning studies. Severing the cervical connective, which connects the 

brain to the VNC resulted in hyperphagia, and the effect of this lesion was stronger than 

that of severing the MAN, suggesting that the results are not merely due to a loss of the 

MAN (which projects to the VNC) [24].  The VNC is composed of several fused ganglia 

that control motor patterns, receive sensory feedback, and send and receive feedback to the 

brain [20].  This inhibitory feedback could be due to either loss of proprioceptive feedback 

from the abdomen or from locomotor centers in the VNC. 

Hyperphagia as a result of lesioning the VNC may be due to loss of proprioceptive 

feedback from the abdomen.  Experiments have demonstrated that abdomen distention is 
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necessary and sufficient to regulate drinking (water) [28].  “Bleeding” the fly, by nicking 

the cuticle and squeezing out hemolymph5, stimulated drinking, whereas when fluid was 

injected into the abdomen, inhibited drinking.  Surprisingly, injection of either hypertonic 

or hypotonic solutions was sufficient to inhibit drinking, which suggests that changes in 

hemolymph osmolarity are insufficient to promote drinking.  Instead, these results suggest 

that abdomen distention regulates drinking. 

Lesioning the VNC may also remove inhibitory feedback from locomotor centers. 

Hungry flies stop walking when they encounter a food source and during feeding, which 

suggests that feeding and locomotion are mutually exclusive events [29].  Indeed, it has 

been demonstrated that insects that are induced to fly exhibit a surprisingly high acceptance 

threshold despite the energy drain imposed by flight [20].  Therefore, locomotor centers in 

the VNC may be exerting an inhibitory influence on feeding behavior. 

All of the previously described experiments were conducted on flies that were 

starved 24–48 hours. The lesioning studies in starved flies are provocative, and 

demonstrate that an empty gut and crop triggers a strong drive to feed that overrides any 

effects of hemolymph sugar levels or humoral factors.  The crop is practically empty after 

24 hours of starvation, only 5% full compared to the total capacity of the crop, and is empty 

after 48 hours of starvation [23].  In nature, the crop provides a safety net against 

starvation.  Sometime between 24 and 48 hours of starvation, these flies will need to revert 

to internal energy reserves for energy.   

These experiments demonstrate that in starved blowflies, feedback from the RN, the 

MAN, and the VNC is necessary to promote satiety, or reverse the drive to feed.  

Recording from the RN and the MAN electrophysiologically demonstrated that these 

nerves carry information about gut distention. This suggests that proprioceptors monitor 

crop volume and foregut activity, that sensory neurons relay this information via the RN 

and MAN, and that this proprioceptive information is necessary to return to a state of 

satiety.  These findings are compelling, but it must be noted that these lesions disrupt 

 
5 Hemolymph is insect “blood”.   
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feedback from a number of organs and dirsupt tissue integrity.  The extent of the damage 

of this surgery is demonstrated by the high levels of morbidity:  nerve-transected flies die 

within 1–3 days after surgery [20].   

In contrast to the drastic effects of nerve transection on feeding behavior in starved 

flies, ad libitum fed flies starved 8 hours or less only exhibit a mild decrease in acceptance 

threshold upon RN transection and acceptance threshold is unaffected by MAN transection 

[21].  Interestingly, ad libitum fed blowflies that are supplied with carbohydrates but not 

protein in their diet, do become hyperphagic when the RN or MAN are severed [30].  This 

suggests that the regulation of satiety in blowflies is affected by beginning nutritional state. 

Perhaps nutrient-deprived flies are more reliant on peripheral feedback to determine 

acceptance threshold, and that peripheral feedback is a requirement to return to steady state.  

Nutrient deprivation may trigger a switch in behavioral responses, towards a more 

aggressive drive to feed, and that proprioceptive detection of food in the gut is required in 

order to turn off this drive to feed. 

Thus far, I have focused on what is known about peripheral mechanisms that 

promote satiety in blowflies.  Such a thorough examination of the regulation of satiety has 

not been reported for any other insects, though similar mechanisms of inhibitory feedback 

have been demonstrated in other insects [17, 18, 20].  In Drosophila, very little is known 

about the regulation of satiety [17].  Lesioning experiments that would demonstrate 

inhibitory feedback from the crop or foregut have not been reported in Drosophila 

melanogaster, despite the comment that “Bodenstein perfected the technique” of RN 

severing in Drosophila, though this reference might have been to a larger species of 

Drosophila [20].  Due to their small size, lesioning experiments in Drosophila 

melanogaster would be difficult, but analogous experiments could be performed using 

transgenetic tools that silence or ablate neurons. 

How does the feeding behavior of blowflies compare to what is known about 

Drosophila feeding behavior?  Similar to blowflies, Drosophila increase their acceptance 

of low reward food cues with increasing starvation, and the volume of food consumed also 

increases as a function of starvation and the stimulatory value of the food offered [19, 21].  
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Dethier and colleagues [20] propose that  feeding is regulated by gustatory cues, that 

satiety is regulated by proprioceptive feedback, and that the decision to feed involves a 

push-pull relationship between the stimulatory value of gustatory cues and the inhibitory 

feedback from gut distention.  The feeding behavior of starved Drosophila agrees with this 

model, but similar to ad libitum fed blowflies, a different model is needed to describe the 

feeding behavior of unstarved Drosophila. 

Nutritional state determines how food intake is regulated.  Fed on a high 

concentration of sucrose (50 mM or higher), ad libitum fed Drosophila have little or no 

food in the crop, whereas fed on lower concentrations (10–25 mM), ad libitum fed flies 

store a significantly larger volume of food in the crop [19].  Here, more stimulating 

gustatory cues are not promoting increased food intake, and a simple model in which the 

decision to feed involves only inhibitory proprioceptive feedback and excitatory gustatory 

cues does not apply.   

The neural mechanisms that regulate feeding behavior are dependent on nutritional 

state.  A model that incorporates the influence of nutritional state on insect feeding 

behavior, and that is consistent with behavioral studies as well as lesioning studies, has not 

been reported.  A model that is consistent with behavioral studies in blowflies and that 

incorporates the influence of nutritional state on feeding behavior is summarized in Figure 

2.  In nutrient-deprived flies, nutrient deprivation overrides inhibitory proprioceptive 

feedback, and promotes the acceptance of food.  Ad libitum fed flies, fed a nutrient 

balanced diet, will not utilize the crop for food storage, and will only accept a highly 

stimulating food source.  This suggests that inhibitory feedback from the gut is high in fed 

Drosophila.  Since severing the RN and MAN in fed blowflies had little or no effect on 

food acceptance, suggests that these models need to be revised to agree with both blowfly 

and Drosophila feeding behavior.  This model can account for this discrepancy, if gustatory 

cues and proprioceptive cues are simulateously regulated in opposite directions, depending 

on nutritional state. Excitatory gustatory cues and inhibitory proprioceptive cues are sensed 

immediately, whereas nutritional state only gradually changes.  A nutrient-deprived fly 

(either starved or protein-deprived), has a strong drive to accept food, but when the RN is 
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severed, immediate inhibitory feedback that normally occurs after feeding is lost.  This 

helps to explain the hyperphagia observed in starved nerve-severed flies.  On the other 

hand, studies found that ad libitum fed flies only had a mild phenotype from RN 

transection.  This could be explained if there was an independent mechanism providing an 

ongoing inhibition of food acceptance in a “sated” fly, which would minimize the feeding 

effects of removing inhibitory proprioceptive feedback.  

Figure 2.  A model that could explain the differential regulation of feeding in 
unstarved and nutrient-deprived flies  
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3.  Neuromodulators that promote satiety in other insects 

Many experiments were conducted to determine whether elements of hemolymph 

composition can regulate feeding behavior in blowflies, and some of these experiments led 

to some surprising conclusions.  As mentioned previously, injecting a sugar solution into 
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the hemolymph of a starved fly was unable to decrease the acceptance threshold at any 

time in the following 24 hours [20].  Regardless of whether a hypo- or hyper-osmotic 

solution was injected, the acceptance threshold of the fly did not increase. Further attempts 

were directed at identifying soluble factors that could promote satiety. When a starved fly 

is given a transfusion of hemolymph from a fly that had taken a meal two hours previously, 

the acceptance threshold of 80% of the transfused flies did not increase within the 

following two hours from the starting threshold [20].  Parabiosis is a more direct method to 

determine whether a humoral satiety cue exists in flies.  Parabiosis involves surgically 

connecting a pair of flies so that the hemolymph is shared.  A section of cuticle is removed 

from each fly, and paraffin is used to seal one fly onto the back of the other.  (The flies 

“took turns riding piggyback”).  At the beginning of the experiment, both flies had been 

starved for 48 hours.  Afterwards, only one of the two flies was fed to repletion, while the 

other was left unfed.  The sugar acceptance threshold of the unfed fly was monitored, and 

no change in threshold was observed.  This experiment was continued for three days, in 

which the fed fly was always fed to satiation, and the acceptance threshold of the unfed fly 

was monitored. After three days of experiments, it became clear that there was not a 

humoral factor present in the hemolymph that could promote satiety in an unfed fly.   

Since these parabiosis studies concluded that no soluble factor (including sugars) 

could promote satiety, it would have been informative to characterize the volume of food 

intake of the fed fly.  If the fed fly of the parabiosed pair of flies consumed the same 

volume of food compared to an unparabiosed fly, then this result would have provided 

further evidence that sugar levels or a humoral factor in the hemolymph is not sufficient to 

influence feeding behavior, since the hemolymph is shared in parabiosed flies and any 

nutrients absorbed by the fed fly would be diluted and any humoral factors released in 

response to feeding would be diluted.  Alternatively, if the fed fly of the parabiosed pair of 

flies consumed an increased volume of food compared to a single unparabiosed fly, then 

this result would suggest that a humoral factor could promote feeding (but not promote 

satiety in an unfed fly).  

Parabiosis studies suggest that a humoral factor in the hemolymph is not sufficient 
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to act as a satiety cue in starved flies.  It is quite surprising that blood sugar levels or by-

products of sugar conversion do not suppress hunger. A confound of transfusion and 

parabiosis experiments is that these experiments involve an unnatural series of events:  The 

nervous system never encounters this combinatorial event—nutrition without ingestion.  

Nevertheless these findings, in combination with experiments discussed in the last section, 

suggests that at least for starved blowflies satiety is achieved solely through inhibitory 

proprioceptive feedback from the foregut, crop, and abdomen, and possibly also from 

inhibitory feedback from locomotor centers in the VNC.   

In regards to the neural regulation of feeding behavior in unstarved flies, 

experiments characterizing the feeding behavior of blowflies starved less than 8 hours do 

not support the conclusion that peripheral inhibitory feedback is the only mechanism that 

can promote satiety.  Several studies demonstrate that blowflies starved for 8 hours or less 

were unaffected by MAN lesioning and were only mildly affected by RN lesioning.  These 

findings suggest that results from studies in starved blowflies involving nerve lesions or the 

direct manipulation of hemolymph content generate artificial scenarios (food intake 

without gut distention or replenished energy stores without food intake) ought to be  

interpreted conservatively.   

How nutritional state alters the mechanisms by which feeding behavior is regulated 

is unknown.  Gut proprioception may be involved in signaling nutritional state.  This is 

because crop emptying rate is dependent on hemolymph osmolarity [20].  Differences in 

crop emptying rate would produce distinctive patterns of proprioceptive feedback, which 

could provide a readout of nutritional state. 

In contrast to the findings that a humoral factor could not promote satiety in 

transfusion and parabiosis experiments, many studies have demonstrated that injected 

neuromodulators are able to promote satiety in blowflies and other insects.  Injection of 

biogenic amines, including serotonin and dopamine, and neuropeptides, including 

sulfakinin, leucomyosuppressin, insulin-like peptides, and allatostatins have been 

demonstrated to decrease feeding behavior in insects. 

Sulfakinin has been implicated as a “satiety factor” in several insects, including 
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blowflies, Tabanus nigrovittatus (salt marsh horse fly), Blattella germanica (cockroach), 

and Schistocerca gregaria (desert locust) [31].  In the blowfly, sulfakinin injection reduced 

carbohydrate but not protein intake of females (but not males) without reducing the percent 

of flies feeding [31]. In the locust, injection of sulfakinin reduced food intake without 

affecting the sensitivity of taste receptors [32]. In B. germanica, sulfakinin injection 

resulted in decreased food intake and sulfakinin was found to be myostimulatory [33]. It 

has also been shown to reduce feeding, stimulate gut contractions, and stimulate alpha-

amylase secretion in the desert locust and blowflies [31, 32]. Interestingly, sulfakinin is a 

structural orthologue of mammalian Cholecystokinin, which is also known to decrease 

feeding, stimulate gut contractions, and stimulate secretion in mammals [31].   

Despite being conserved as regulator of feeding behavior in other insects, in 

Drosophila sulfakinin is neither myostimulatory nor does it affect feeding behavior [34].  A 

long history of genetic studies in Drosophila have only identified few neuromodulators that 

promote satiety [10].  Neuromodulators that have been implicated in promoting Drosophila 

feeding include an insulin-like peptide, serotonin, and hugin. 

Both Drosophila insulin-like peptide (DILP) and its receptor (InR) are required for 

normal larval feeding behavior [35–37].  Mutations in these genes caused a reduction in 

feeding, growth, and development, while overexpression caused an increase in feeding, 

growth, and development.  This shows that the function of insulin has been conserved as a 

regulator of growth and development in animals [12].  There is also evidence for a 

conserved role for DILP neurons in the monitoring of internal energy stores.  Transcripts of 

DILP are reduced during starvation and hemolymph DILP levels rise after feeding.  In 

addition, changes in glucose or trehalose levels induce calcium release in adult DILP 

neurons [11].  

Several lines of evidence suggest that DILP signaling is also involved in the 

regulation of feeding behavior independent of its metabolic/developmental effects.  One 

study observed that the feeding deficits as a result of knocking down the DILP receptor 

(InR) expression preceded the developmental deficits.  Furthermore, growth deficits of InR 
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null mutants were rescued by overexpression of InR in serotonergic neurons.6  This 

suggests that the growth phenotype of InR mutants results from the feeding phenotype. 

Since InR and serotonin have many target tissues, it remains to be determined where these 

two signaling pathways overlap.   

In both invertebrates and mammals, serotonin signaling regulates both metabolism 

and feeding behavior [38].  In the blowfly, serotonin injection inhibited both sugar and 

protein intake [39].  Injection also resulted in an increased acceptance threshold as well as 

weight loss.  Similar effects on feeding due to serotonin injection have been observed in 

other insects [40].  Serotonin can stimulate foregut and crop contractions in other 

invertebrates [41, 42].  A functional role for serotonin in insect feeding behavior is 

supported by several immunohistological studies.  In Neobelliera bullata (flesh fly), 

immunoreactivity of serotonin in the subesophageal ganglion (SOG), which receives 

primary gustatory input, decreased post-feeding [40].  This suggests that serotonin was 

released in this region as a result of feeding.  Similar conclusions were drawn from studies 

in Rhodnius prolixus (triatomid bug), in which serotonin release from neurosecretory cells 

was observed in response to feeding [43].  Further supporting a neuromodulatory role for 

serotonin in feeding, is the presence of serotonin in the insect stomatogastric nervous 

system. 

Consistent with earlier suggestions that DILP signaling in serotonergic neurons 

promotes feeding behavior in Drosophila, are studies by Neckameyer and colleagues that 

demonstrated that serotonin is involved in the regulation of feeding in Drosophila as well 

[44].  Adult flies with a null mutation in Tph2, which is one of the enzymes required for 

serotonin synthesis, exhibited decreased feeding behavior [44].  Unstarved adult Tph2 

mutants consumed less over a 24 hour time period, exhibited decreased activity levels, and 

a decreased heart rate.  Since there is a paralogue of Tph in Drosophila, and since Tph is 

 
6 Overexpressing InR in DDC neurons rescued the InR -/- growth phenotype, whereas overexpressing InR in TH neurons did 

not.  Dopa decarboxylase (DDC) is an enzyme that is required for the synthesis of both serotonin and dopamine.  Tyrosine 
hydroxylase (TH) is required for dopamine synthesis. The expression of DDC and TH was found to only minimally overlap.  
Because neurons that coexpressed both TH and DDC were not proximal to DILP neurons, this led to the conclusion that 
DDC driven rescue of InR-/- occurred in serotonergic neurons and not dopaminergic neurons.  
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required for serotonin and dopamine synthesis, the authors demonstrated that Tph2 is 

exclusively expressed in serotonergic neurons in the adult, and not in dopaminergic 

neurons.  These results support a conserved role for serotonin in regulating feeding 

behavior. 

Conversely, Neckameyer observed that knockdown of Tph1 in the fat body resulted 

in increased mouthhook contractions and hyperactivity in larvae [44]. Feeding studies 

could not be done in Tph1 null mutants due to severe developmental deficits.  Authors 

showed that dopamine but not serotonin is expressed in the fat body, and therefore 

concluded that the loss of serotonin was not responsible for the observed increased feeding 

behavior.  Despite a previous study that demonstrated dopamine to modulate food intake 

and acceptance threshold [39], and numerous studies that have implicated dopamine in 

arousal [45, 46], the authors concluded that the feeding and hyperactivity phenotypes of fat 

body Tph1 knockdown larvae was due to toxic levels of tryptophan, the precursor to 

dopamine, and not due to serotonin or dopamine levels [44].  

In Drosophila, two additional neuromodulators have been indirectly shown to 

modulate satiety-like behavior.  Flies with null mutations in leucokinin or its receptor 

exhibited increased meal sizes compared to controls, though a gain of function phenotype 

for leucokinin was not reported. Leucokinin mutants consume larger than normal meals but 

compensate for the excess intake by decreasing meal frequency [47].  Given the expression 

of leucokinin in muscle tissue in the proventriculus it is likely that the leucokinin feeding 

phenotype is due to a malfunction of the cardiac valve, which separates the foregut from 

the midgut.  A family member of leucokinin has similarly been implicated in modulating 

the activity of the cardiac valve.  Injection of leucomyosuppressin into Blattella germanica 

resulted in a reduced feeding phenotype and an accumulation of food in the foregut [33].   

Another study has provided indirect evidence of another potential satiety factor in 

Drosophila. Silencing of hugin neurons resulted in a contextual feeding phenotype:  on 

being transferred from regular fly food to yeast paste, silencing of hugin neurons in adult 

flies resulted in a much shorter latency to feed than in control flies [48].  Transferred from 

yeast to yeast, or yeast to regular fly food, or regular food to regular food did not result in 
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differences in latency to feed, and in all conditions total food intake was no different 

from controls.  This contextual phenotype was observed in only unstarved flies, and 

silencing of hugin neurons did not alter the rate of food intake in starved flies.  Starvation-

induced feeding was also normal.  Since starvation reduces the latency to accept novel 

foods, and since hugin is downregulated in response to starvation, these results suggest that 

hugin neurons play a role in promoting the acceptance of novel foods.  Another 

interpretation could be that hugin neurons are involved in the regulation of protein feeding, 

since many standard fly foods provide low levels of protein and increased acceptance of 

yeast paste could reflect increased protein hunger.  This would explain why the other 

feeding conditions did not result in differences in latency to feed.  Indeed, authors also 

reported that hugin expression was downregulated in wild-type flies fed only sugar 

(protein-deprived) [48]. The expression pattern of hugin further supports a role for hugin 

neurons in feeding behavior, as hugin is expressed in neurons that project to pharyngeal 

muscles and to regions of the brain where primary gustatory neurons and DILP cell bodies 

are located [17].  Overexpressing hugin within hugin neurons did not alter rates of food 

intake.  This could indicate that additional neuromodulators expressed in hugin neurons are 

responsible for the effects observed upon silencing these neurons.  Another possibility is 

that hugin-overexpressing flies were not tested under the proper feeding conditions (testing 

protein versus carbohydrate feeding). It would be interesting to determine whether hugin is 

involved in regulating protein metabolism.  Ubiquitous overexpression of hugin resulted in 

growth deficits and lethality, which suggests a role for hugin development.  Further studies 

are needed to establish the function of hugin-expressing neurons in the regulation of 

feeding behavior. 

 

4. Allatostatin A  

In insects, the neuropeptide Allatostatin A (AstA) is a potential satiety factor.  In 

the cockroach, injection of AstA reduced food intake by 60% [49, 50].  Expression of AstA 

was shown to be anti-correlated with the feeding behavior of females.  During the 7-day 

gonadotrophic cycle, or female reproductive cycle, food consumption was highest in the 
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middle of the cycle, and AstA transcript levels were highest at the beginning and the end 

of the cycle, consistent with a role for AstA to inhibit feeding.  This observation was 

inconsistent with an independent study that demonstrated that peptide levels increased 

steadily during the gonadotrophic cycle.  Additional effects of AstA injection in these 

studies included the inhibition of hindgut (but not foregut) contractions and an increase in 

the secretion of alpha-amylase, an enzyme that digests starch, in the midgut [50].   

The function of AstA in adult cockroach, crickets, and termites is to inhibit Juvenile 

Hormone (JH) synthesis [51].  JH regulates the metabolic switch that occurs in females 

post-mating, by diverting diverting fat stores towards egg production. Mated females also 

exhibit increased feeding behavior compared to unmated females.  In conditions of 

starvation and short photoperiod/low temperatures, AstA levels increase, inhibiting JH 

synthesis which, in turn, inhibits egg production and leads to the build-up of fat stores.  

Thus, reproductive state and environmental conditions regulate AstA levels, and AstA 

inhibits the metabolic switch that occurs as a result of mating in some insects.   

Another study implicated a role for AstA in the regulation of feeding, but results 

were difficult to interpret.  In Gryllus bimaculatus, females were injected with AstA 

(RNAi) at emergence and tested 2 days later.  Knockdown of AstA was confirmed by Q-

RT-PCR [49].  Food intake of injected virgin females was 38% reduced after 30 minutes 

but 79% increased after 60 minutes of feeding [49, 52].  Since AstA inhibits JH synthesis 

in this species, and AstA levels are high in unmated females, knockdown of AstA in virgin 

females would be predicted to result in the disinhibiton of JH, which would lead to a 

diversion of fat stores to egg production and to increased feeding.  This study next reported 

that injected mated females, which should have low levels of AstA and high levels of JH, 

exhibited 30% decreased alpha-amylase activity after one day, yet after two days, enzyme 

activity was increased by 300%.  Mated females would likely have low levels of AstA and 

therefore knockdown of AstA would have little effect on JH synthesis.  Perhaps the logic of 

the authors was to tease apart a dual role for AstA in the cascade of effects due to JH 

synthesis from a role for AstA in the gut to promote alpha-amylase release. 

AstA has also been implicated in the regulation of feeding behavior in insects in 
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which AstA does not inhibit JH synthesis, suggesting that the effects of AstA on feeding 

is not necessarily an indirect effect of inhibiting JH synthesis.  Injection of AstA into the 

larvae of both L. oleracea and S. littoralis resulted in decreased feeding and growth, but 

only if the larval stage injected was in a feeding stage (injection during a non-feeding stage 

had no effect) [10]. 

Many neuropeptides that have been implicated in insect feeding behavior also have 

myoinhibitory or myostimulatory effects [10].  Perhaps their effects on feeding are by 

modulating proprioceptive feedback from the gut.  It has been difficult demonstrate a 

causal role for central versus peripheral expression of neuropeptides because many are 

expressed both centrally and peripherally, and many are expressed at neurohemal release 

sites, or sites where neuromodulators can be directly released into the hemolymph [10, 53]. 

 

5.  Does Drosophila have a brain-gut axis? 

In mammals, the gastrointestinal tract is “the largest endocrine organ in the body” 

[54].  Mechano-chemo-, and noci-ceptive information is communicated to the CNS directly 

via the vagus nerve and by neuromodulators via the circulatory systems.  The gut can 

produce over 100 bioactive peptides and some of these can modulate feeding and satiety; 

gut distention also affects feeding behavior in mammals.   

The role of the adult stomatogastric nervous system (SGS) in the regulation of 

feeding behavior has been overlooked in Drosophila [10, 55].  The SGS innervates and 

regulates the aorta, foregut, crop, and proventriculus [11].  Little is known about the type of 

information afferent sensory cues transmit or how efferent cues control digestion and gut 

motility [55].  A number of neuropeptides that have been implicated in insect feeding 

behavior are either expressed in the gut or the SGS: sNPF and FMRFamide are expressed 

in neurons that project to the anterior midgut;  FMRFamide and possibly dromyosuppressin 

are expressed in neurons that innervate the crop [56]; DILP3 is expressed in gut muscle in 

the proventriculus, foregut, and midgut [56]; leucokinin is expressed in muscle near the 

proventriculus [47]; and motorneurons expressing AstA, pigment dispersing factor (PDF), 

and proctolin innervate the posterior midgut and hindgut [51, 56].  In addition, receptors for 
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AstA, DILP, PDF, leucokinin, tachykinin, and diuretic hormone are expressed in the 

midgut and hindgut, and receptors for NPF and hugin are expressed in the crop according 

to microarray studies [65]. The function of neuropeptide expression in the gut and SGS has 

not been adequately addressed.  

Neuroendocrine cells in the midgut of Drosophila express a variety of different 

neuropeptides, including NPF, AstA, AstB, AstC, tachykinin, diuretic hormone, 

FMRFamide, and possibly sulfakinin [56].  A number of these neuropeptides have been 

implicated in the regulation of feeding and homeostasis but there has been little attempt to 

address the potential contribution of gut neuroendocrine expression to feeding phenotypes.  

The functions of these midgut endocrine cells could be to sense gut content, to stimulate or 

produce digestive enzymes, or to modulate gut motility. 

Understanding the function of these various neuropeptides in digestion and feeding 

behavior would be informative.  If proprioceptive feedback is primarily responsible for 

modulating feeding behavior in Drosophila, then neuropeptides with myoinhibitory and 

myostimulatory properties could indirectly modify feeding behavior. The satiety effects 

observed in other insects upon AstA injection, could be due to myinhibitory properties of 

AstA.  If feeding behavior is regulated by gut motility that is sensed by proprioceptive 

feedback, then directly altering gut motility would affect feeding behavior.  The 

myoinhibitory effects of AstA have been demonstrated in cockroach (Leucophaea 

maderae, Blattella germanica), moth (Manduca sexta), lobster (Homarus americanus, 

Homarus gammarus), and crab (Cancer borealis).  Interestingly, in the crayfish, AstA has 

myostimulatory properties [50, 57].  Alternatively the effects of AstA on feeding behavior 

could be to directly modulate the firing proprerties of proprioceptive neurons.  AstA is co-

expressed with serotonin in the SGS of Crustacea, in both lobsters and crabs [58, 59]  Co-

expression has been demonstrated in stretch receptors neurons that inhibit the pyloric and 

gastric mill rhythms in these organisms.  In the crab, bath application of both AstA and 

serotonin inhibited contractions and co-application had a stronger effect than either alone 

[60].  AstA was also shown to be co-expressed with Acetylocholine in the SGS. 

Based on the co-expression of serotonin and AstA in other species, these may be 



 

 

21
coexpressed in Drosophila as well.  This possibility is supported by evidence that both 

neuromodulators inhibit feeding in multiple organisms [10, 38]. The function of AstA in 

Drosophila is unknown [53]. Expression of AstA in feeding-related endocrine centers of 

Drosophila suggests that AstA might play a role in feeding behavior [61].  Drosophila 

eclose with food in the gut from their last meal as larvae [61].  It has been suggested that 

expression in the hindgut of pupae might serve to withhold the final meal of the larvae [61].  

In addition, there is a conserved role for orthologues of AstA receptors in the feeding 

behavior of mammals and Caenorhabditis elegans [62, 63].  
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C h a p t e r  2  

ANATOMICAL CHARACTERIZATION OF ASTA-GAL4 TRANSGENIC FLIES 

1. Introduction 

 The neuropeptide Allatostatin A (AstA) has been implicated as a satiety factor and 

as a myoinhibitor in several other insects [1–3].  Currently, there is no known function for 

AstA or for AstA neurons in Drosophila melanogaster.  Expression of AstA in feeding-

related endocrine centers suggests that AstA may play a role in the regulation of 

Drosophila satiety as well [3].  In order to study the potential function of AstA neurons in 

Drosophila, we generated AstA-Gal4 transgenic flies.  

The Gal4/UAS binary expression system takes advantage of the yeast transcription 

factor, Gal4, and its target, upstream activating sequence (UAS), to spatially and 

temporally restrict the expression of various transgenes using Drosophila enhancers [4].  

Enhancer-Gal4 transgenic flies can be crossed to any of a large number of UAS-reporter 

transgenic flies, to express the reporter in a limited manner.  Reporters include transgenes 

that encode fluorescent molecules which can be used to characterize the expression pattern 

of an enhancer-Gal4 line and transgenes which encode ion channels that can be used to 

manipulate neuronal activity [5].  UAS-reporter lines can also be used to either knockdown 

or overexpress specific genes.   

 In order to validate the specificity of these AstA-Gal4 transgenic lines, we used an 

antibody against AstA that had been used in previous studies to characterize the expression 

pattern of AstA in Drosophila.  Several antibodies against AstA have been used to 

characterize the expression pattern of AstA in Drosophila.  A monoclonal antibody raised 

against Diploptera punctata AstA was used to characterize larval, pupal, and adult 

expression patterns of Drosophila AstA [3, 6].  The specificity of this antibody was 

determined by preabsorbing it with the synthetic peptide against which the antibody was 

raised, and observing that immunoreactivity was abolished [3].  A second (polyclonal) 

antibody that was raised against D. punctata AstA, was reported to label the same cells as 

the monoclonal antibody [3].  Support for the specificity of this antibody to detect 

Drosophila AstA, is that immunolabeling reveals similar patterns of expression in both 
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Drosophila and D. punctata.  The only difference was that there was no immunoreactivity 

in the Drosophila corpus allata, where Juvenile Hormone (JH) is synthesized.  This 

supports the finding that AstA does not inhibit JH synthesis in Drosophila, which is a 

function of AstA in several other insects (see Introduction).  In this section, we demonstrate 

that the AstA-Gal4 transgenic flies that we generated, specifically express Gal4 in a subset 

of neurons that endogenously express AstA.   

 

2. Results 

 An AstA promoter-Gal4 transgenic was made by cloning 2.1 kb of 5’ flanking 

DNA up to but not including the predicted transcriptional start site (Figure 1a).  We 

obtained five independent insertion lines which we crossed to UAS-mcd8::GFP [7], a 

membrane-tethered fluorescent reporter, in order to compare and characterize the 

expression patterns of the independent insertion lines.  Immunostaining with an antibody 

against green fluorescent protein (GFP) revealed no differences in expression patterns 

between the different independent insertion lines (data not shown).  To address the 

specificity of the Gal4 expression pattern, we double labeled adult tissues with a 

monoclonal antibody raised against Diploptera punctata AstA that had previously been 

used to characterize AstA expression in Drosophila [3].   

 AstA-Gal4 labeled three pairs of neurons in the brain and ~ 30 neurons in each 

optic lobe.  AllAstA-Gal4-expressing neurons co-localized with AstA antibody (Figures 

1b–1g, cell bodies are circled in Figures 1b–d).  We saw extensive innervation of the 

subesophageal ganglion (SOG), protocerebrum, and pars intercerebralis (PI) (Figure 2c–2e, 

brain neural architecture is diagrammed in Figure 2b).  In addition, at higher magnification, 

we observed a descending axon that arborized in the dorsal-most neuromeres of the ventral 

nerve cord (VNC) (Figure 2a).   We were unable to differentiate and trace the axons of the 

three pairs of brain AstA-Gal4 neurons due to the overlap of the axon tracts and the 

saturation of the GFP immunostain. 

 In the last abdominal neuromere of the VNC, Gal4 and AstA co-localized to three 

pairs of cell bodies (Supplementary Figure 1 shows a higher magnification image that 

illustrates the number of cell bodies), which send projections dorsally (Figures 2f–2k, 

indicated with an arrow in Figure 2f–h).  These projections innervate the lower midgut, the 
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hindgut, and the rectum (Figures 3a–3f).  Also co-labeled were single neurons in each of 

two nerves that exit the VNC laterally (Figures 2h–2j, cell bodies are circled).   

 In the gut, less than half of the AstA-immunoreactive neuroendocrine cells located 

in the lower midgut expressed Gal4 (Figures 3j–3l), a few of which were only weakly 

immunoreactive to AstA (In these figures, AstA-immunoreactive neuroendocrine cells are 

surrounded by squares, Gal4-immunoreactive neuroendocrine cells by circles.  Notice the 

number of squares without circles (AstA+/Gal4-) and the circles without squares (weak 

AstA+/Gal4+).   

 Also co-labeled was tissue on both ends of the midgut, adjacent to the 

proventriculus and at the midgut/hindgut transition (Figures 3a–3c, 3g–3i, indicated using 

red arrows).  In addition, there is speckled immunolabeling that is smaller than the size of 

neuroendocrine cells and does not appear to be associated with motorneuron projections 

(Figure 3j–3l).  We see this type of labeling in the upper midgut as well (Figure 3g–i).  This 

was not due to precipitates of the fluorescent antibodies, because immunostaining with only 

secondary fluorescent antibodies did not create this pattern of staining.  Instead, we 

consistently see the highest density of speckling near the midgut transitions, and a gradual 

decrease in density further from the transitions (Figure 3a–c).  The dense and speckled 

staining is likely staining muscle tissue, but in the lower midgut, it could also be staining 

varicosities of motor neurons.  In the lower midgut, there are many more AstA+/Gal4- 

speckles than AstA+/Gal4+ speckles (Figure 3a–c, 3j–3l), whereas in the upper midgut, we 

see AstA+/Gal4-, AstA+/Gal4+ (indicated by arrows), and AstA-/Gal4+ (indicated inside 

circles) speckles (Figure 3g–i). 

 Similar to what we observed in adults, AstA-Gal4 is only expressed in a subset of 

AstA neurons in 3rd instar wandering larvae.  Immunostaining the CNS of AstA-Gal4/ 

UAS-nuclear-lacZ larvae with anti-B-galactosidase, reveals expression of Gal4 in five cell 

bodies, which all co-express AstA, as assessed by fluorescent in situ hybridization (Figure 

4a–4f).  The total number and general location of AstA-expressing cell bodies, as assessed 

by in situ hybridization, was identical to the number and location of neurons previously 

reported using the D. punctata antibody (Figure 4a–4f, AstA+/Gal4- cell bodies are 

indicated using arrows and [3]). These results support the specificity of the AstA antibody 
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for Drosophila AstA, and the conclusion that AstA-Gal4 is only expressed in a subset of 

AstA-expressing neurons.   

 Previous reports did not observe AstA immunoreactivity in the foregut or in the 

muscle tissue at the midgut transitions [7, 8].  In order to determine whether the AstA-Gal4 

expression that we observed in these regions was due to auto-fluorescence, we labeled 

AstA-Gal4,UAS-mcd8::GFP/UAS-Ricin tissues with an antibody against GFP.  Ricin 

promotes cell autonomous death by inhibiting protein synthesis [9].  Expression of Ricin in 

AstA neurons abolishes GFP immunoreactivity in the gut, indicating that Ricin ablates 

AstA+/Gal4+ cells and that immunolabelling witnessed in the gut is specific (Figure 4h).   

 In the brain and VNC, GFP immunolabelling was also abolished in AstA-

Gal4,UAS-mcd8::GFP/UAS-Ricin flies (data not shown).  This manipulation allowed us to 

observe the expression pattern of AstA+/Gal4- neurons.  Interestingly, the remaining five 

AstA+/Gal4- neurons in the brain extensively innervate the same regions as the 

AstA+/Gal4+ neurons:  the protocerebrum, the pars intercerebralis, and the SOG (Figure 

4g). In addition, expression in the central complex is also seen.   

 In order to localize potential post-synaptic terminals of AstA neurons, we used 

UAS-ANF::GFP, which expresses rat atrial natriuretic hormone (ANF) fused to GFP [10].  

This neuropeptide is packaged and shuttled similar to Drosophila neuropeptides, thus 

allowing us to visual neuropeptide trafficking in AstA neurons.  Labeling AstA-Gal4/UAS-

ANF::GFP fly brains with an antibody against GFP, revealed that potential synaptic 

terminals occur in the protocerebrum, pars intercerebralis, and SOG (Figure 4i). 
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3. Discussion 

We have demonstrated that the expression pattern of Gal4 in AstA-Gal4 transgenic 

flies faithfully reproduces the expression pattern of a subset of AstA-expressing neurons.  

All of the Gal4-positive neurons and neuroendocrine cells were also AstA-positive.  There 

were five additional neurons in the brain, and 10 addition neurons in the VNC that were 

AstA-immunoreactive neurons but that did not express Gal4.  We found that Gal4 co-

localized with AstA in the following locations: 

 —3 of 8 AstA neurons in the brain (per hemisphere) 

 —3 of 13 AstA neurons in the VNC (per hemisphere) 

 —all ~30 AstA neurons in the optic lobe (per hemisphere) 

 —1 AstA neuron in each haltere nerve 

 —1 AstA neuron in each wing nerve 

 —lower midgut endocrine cells 

 —motorneurons innervating the lower midgut, hindgut, and rectum, whose cell bodies  

      are located in VNC 

 —muscle at both midgut transitions   

 

 3.1 Projections of centrally expressed AstA neurons 

 Although we could not trace the projections of individual AstA neurons in the 

brain, we can infer the projection patterns of the three individual brain Gal4+/AstA+ 

neurons from previous anatomical studies. The projection patterns of individual AstA 

neurons in the Drosophila brain have been precisely characterized using camera lucida 

drawings [3].  Thanks to the sparse expression of AstA and the distinctive morphology and 

location of AstA cell bodies, we were able to infer the identity of Gal4+ neurons. 

 According to Yoon and Stay [3], the first pair of neurons, named ALT2, are located 

in the anterolateral tritocerebrum and these neurons project to the region of the pars 

intercerebralis. The second pair of cell bodies, named VMS, are located below the 

subesophageal ganglion, and project to the medial subesophageal ganglion.  The third pair 

of cells, named PLT, is located in the posterior lateral tritocerebrum with varying positions 

medially. These neurons were only weakly immunoreactive to AstA, and the projections of 

these neurons were not immunoreactive.   
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 We propose that the innervation of the protocerebrum and the descending neuron(s) 

in the cervical connective arise from the PLT cell bodies. We reach this conclusion by 

process of elimination, since AstA-Gal4 is only expressed in three neurons in the brain, two 

of which (ALT2 and VMS) were not reported to project to the protocerebrum and cervical 

connective.  Support for this suggestion is that PLT neurons project to these regions in the 

larval brain.  Yoon described larval PLT neurons as large and highly immunoreactive, and 

demonstrated that these neurons persist through pupation to adulthood.  In larvae, the PLT 

neurons extensively arborize the CNS, with projections to both the larval lateral 

protocerebrum and down to the dorsal end of the ventral ganglion. In agreement with our 

observations in the adult, Yoon observed projections within the cervical connective that 

were immunoreactive, but could not determine the source of these projections. 

 Finally, all AstA neurons in the optic lobes coexpress Gal4.  These neurons were 

reported to project to the base of the medulla, and likely play a role in visual processing. 

 

 3.2 Projections of VNC neurons and peripheral neurons 

 In the abdominal ganglion, Gal4 and AstA co-label three pairs of cell bodies and 

their projections to the gut, where they innervate the lower midgut, hindgut and rectum.  

Yoon named these neurons DLAa (dorsolateral abdominal) and reported these to be motor 

neurons that project through the median abdominal nerve to the lower midgut, hindgut and 

rectum.  Also co-labeled is a single cell body in, or on, each of the nerves exiting the VNC 

towards the wing and the haltere.  Based on projections from these neurons, which encircle 

these nerves, Yoon suggested that these projections may represent neurohemal release sites, 

secreting neuromodulators into the hemolymph or targeting neurons projecting through the 

nerve. 

 In agreement with previous findings, we saw AstA immunoreactivity in 

neuroendocrine cells in the lower midgut [3, 8].  Contrary to previous observations, we 

found AstA immunoreactivity in muscle tissue on both ends of the midgut, adjacent to the 

proventriculus and at the midgut/hindgut transition.  Because AstA-Gal4 was co-expressed 

in these regions, and ablating AstA-Gal4 neurons eliminated GFP immunofluorescence, we 

believe that this additional Gal4 expression represents real expression of AstA and not 

ectopic expression of Gal4. 
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 The discrepancy in upper midgut neuroendocrine expression, between our 

observations and previous studies, may be due to sexually dimorphic expression, or to 

differences in peptide expression due to genetic strain, nutritional regime, or nutritional 

state.  We characterized expression in males, whereas previous studies characterized 

females.  Further studies will be needed to clarify this discrepancy. 

 

 3.3 Why is AstA-Gal4 only expressed in a subset of AstA-immunoreactive  

         neurons? 

 There are several potential explanations for the expression of AstA-Gal4 in only a 

subset of AstA-immunoreactive neurons.  The most likely explanation is that we did not 

amplify the entire promoter/enhancer region of AstA, and the AstA-Gal4 transgene is 

lacking one or more enhancers for the missing neurons.  It is unlikely that the site of 

transgene insertion is inhibiting Gal4 expression in some AstA+ cells, because all five 

independent insertions of AstA-Gal4 exhibited identical expression patterns. 

 One tempting hypothesis is that the enhancer region we used to generate the AstA-

Gal4 transgenic construct captured one of the four putative isoforms of AstA that are splice 

variants of the prepropeptide.  Three isoforms of AstA have been isolated from adult 

Drosophila by MALDI-TOF mass spectrophotometric analysis [11]. Only one isoform was 

isolated from the brain, from the cell bodies of the Pars intercerebralis/Pars lateralis, and 

from the SOG.  Three isoforms were isolated from the VNC.  

 Another possibility is that the antibody used to identify the expression pattern of 

AstA is binding to another molecule, and therefore that the AstA+/Gal4- neurons do not 

actually express AstA.  Evidence against this possibility is the total agreement between 

AstA transcript expression that we observed using in situ hybridization and reported 

antibody labeling in larval brains, and the degree of overlap between Gal4 and anti-AstA 

labeling. The available antibodies were raised against Diploptera puntata AstA, and 

validated by blocking the antibody with D. punctata AstA.  We attempted to pre-absorb 

this antibody with Drosophila AstA, but in our hands, this did not eliminate 

immunostaining in Drosophila.  However, we did not have a positive control to 

demonstrate that the synthesized peptide that we used was functional and that it had not 
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been degraded.  In further support of the specificity of the antibody to AstA in Drosophila, 

is the similarity in the expression pattern of AstA between insects [3]. 

 Finally, it is also possible that some AstA immunostaining represents peptide 

uptake, and not endogenous AstA expression.  There have been examples in insects, where 

peptides but not transcripts were localized to tissues.  Since AstA neurons project to several 

neurohemal release sites, this suggests that there is a function for circulating AstA. 

 

 3.4 AstA-Gal4-expressing neurons may play an adult-specific role in  

            regulating feeding behavior. 

 Previous studies suggested that AstA may play a larger role in Drosophila adults  

than in larvae, based on the observation that there is an increase in the number AstA 

neurons and an increase in the amount of arborization in the brain of the adult compared to 

larvae [3].  Of the three AstA neurons that express Gal4 in the adult brain, two appear only 

in the adult.  Whereas the third neuron, PLT, is large and highly immunoreactive in the 

larvae, this neuron is only weakly immunoreactive in the adult.  Yoon and Stay [3] reported 

that the 30 neurons in the optic lobes only appear in the adult.  In contrast, we saw co-

expression of both AstA-Gal4 and AstA in the developing eye disc of wandering third 

instar larvae (data not shown) [3].  Furthermore, there is one additional neuron in the CNS 

and five in the VNC that are new to the adult but that do not express Gal4.  Finally, there 

are tenfold more gut neuroendocrine cells in the adult than in the larvae, and AstA-Gal4 is 

expressed in less than half of the AstA-immunoreactive gut neuroendocrine cells in the 

adult.  Therefore, AstA-Gal4 is expressed in a number of adult-specific AstA neurons.   

 AstA neurons innervate a number of feeding-related brain centers and tissues [3].  

In addition to expression in gut motorneurons, gut neuronendocrine cells, and gut muscle, 

AstA neurons innervate the SOG, where primary gustatory information is relayed, and the 

pars intercerebralis, where Drosophila insulin-like peptide is synthesized.  Isolation of 

AstA peptides from the adult brain suggests that AstA has a neuromodulatory function in 

the CNS [11].  

            AstA peptide expression at various potential neurohemal release sites supports a 

role for AstA as a humoral factor.  A large potential target site is the neural sheath, which is 

highly immunoreactive to one of the AstA receptors, DAR-2 [12].  Three pairs of AstA 



 33

neurons in the VNC innervate the neural sheath surrounding the VNC, and two pairs of 

neurons appear to innervate the surface of the wing and haltere nerves.  Support for this 

hypothesis, is the presence of AstA peptide in the hemolymph in Diploptera [3]. 

 

 

4. Materials and methods 

Fly husbandry 

All flies were reared on standard media [13] at 25ºC, 70% relative humidity, and under a 12 

h:12h light:dark regime unless otherwise indicated.  Flies used for immunohistochemistry 

and behavior were 5–10 day old males. Fly lines used included UAS-mcd8::GFP 

(Bloomington stock #5137) [7], UAS-preproANF-EMD (Bloomington stock #7001) [10],  

UAS-Ricin [9], w (Exelixis background), w (Dr. Tim Tully lab isogenic strain), Canton-S 

flies obtained from Dr. Seymour Benzer. 

Gal4 construct and transgenic fly lines 

The primer sequences GATTCTAGACTGGATCTCAAGTGCACATTGCACTGCG, and 

GATGGATCCTCGGTTAAGTTTTGAATCCGCATCCGCTG were used to amplify a 2096 bp 

fragment of DNA upstream of but not including the putative transcriptional start site of 

Drosophila AstA (NCBI Reference Sequence NM_079765.2) from whole fly cDNA.  The 

fragment was subcloned into the Xba I and BamH I restriction sites of  pC3G4 vector 

(Drosophila Genomics Resource Center)  [4].  Plasmid DNA was then collected using a 

Maxiprep kit (Qiagen) and microinjected into w (Exelixis background) embryos 

(microinjection was outsourced to BestGene, Inc.). We obtained a total of 5 stable 

independent transformant fly lines.  We crossed these lines to UAS-mcd8::GFP to visualize 

their expression patterns.  Co-labeling tissues with anti-GFP and anti-AstA confirmed that 

the AstA-enhancer-Gal4 lines faithfully reproduce the expression pattern of a subset of 

endogenously-expressed AstA.  Larval double in situ/immunohistochemistry yielded 

similar results. 

Immunohistochemistry 

Male adult tissues were dissected in phosphate-buffered saline (PBS) and fixed in 2% 

paraformaldehyde at room temperature for one hour.  After washing with 0.5% Triton X-

100 in PBS (PBT), tissues were blocked in 10% normalized goat serum in PBT and then 
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incubated with primary antibodies in blocking solution for 2 days at 4ºC and then with 

secondary antibodies overnight at 4ºC.  Tissues were then mounted in Vectashield (Vecta 

Labs) and visualized using a Leica confocal microscope.  Primary antibodies used include 

nc82 (mouse monoclonal IgG1 used at 1:20,  from Developmental Studies Hybridoma 

Bank (DSHB)), 5F10 (mouse monoclonal anti-Diploptera punctata Ast7 IgG1, used at 1:2, 

from DSHB, [3]), 3C11 (mouse monoclonal anti-synapsin IgG2b, used at 1:200, from 

DSHB), rabbit anti-green fluorescent protein (used at 1:300, Molecular Probes).  Secondary 

antibodies used were Alexa Fluor 488-goat anti-rabbit, 583-goat anti-mouse IgG1, or 633-

goat anti-mouse IgG2b or IgG1.     

In situ hybridization 

Double fluorescent in situ hybridization and immunohistochemistry protocol was modified 

from [14].  Briefly, tissues were dissected in chilled phosphate buffered saline (PBS) and 

fixed for one hour in 3.7% formaldehyde at room temperature.  After washing in PBS, the 

samples were transferred stepwise into 100% methanol and stored overnight at -20°C.  The 

next day, the samples were transferred stepwise back into PBS and then refixed for 15 

minutes in 3.7% formaldehyde.  After washing in PBS again, the samples were hybridized 

overnight at 58°C with a digoxygenin-labeled riboprobe.  The next day the samples were 

washed in PBS plus 0.5% Triton-X 100 (PBT) and incubated overnight at 4°C with POD-

coupled sheep anti-digoxigenin (Roche 1207733, at 1:20), anti-β-galactosidase (mouse 

IgG2a, Promega, at 1:200) and nc82 (1:20).  After washing in PBT, the samples were 

incubated in 1:150 fluorescein-tyramide for 10 minutes (Tyramide Signal Amplification 

kit, Perkin Elmer NEL704A001KT, Cy3) and then washed again.  Samples were then 

incubated overnight with secondary antibodies (goat anti-mouse IgG2a, Alexafluor 488 at 

1:250, Molecular Probes a21131, and goat anti-mouse IgG1-Cy5 at 1:250, Southern 

Biotechnology Associates 1070-15) and mounted in Vectashield (Vector Labs).   
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5. Figure legends 

Figure 1. Generation and characterization of AstA-Gal4 transgenic flies 

(a) At the top is the schematic representation of the predicted gene structure of Drosophila 

Allatostatin A (AstA), where blocks represent exons and highlighted in orange is the 

coding region.  Below is a schematic of the AstA-Gal4 construct.  The blue block indicates 

the 2.1 kb region of upstream DNA that was amplified to make the AstA-Gal4 trasngenic 

construct.  (b–d) AstA-Gal4 and AstA are co-expressed in three pairs of neurons in the 

brain (e–g) and in ~30 neurons in the optic lobes.  Co-expression was determined by 

double immunofluorescent labeling of adult male AstA-Gal4/UAS-mcd8::GFP brains with 

antibodies against GFP (in green, b and e) and Diploptera AstA (in red, c and f, [3]).  A 

merged image (d and g) of the two also includes anti-synapsin (in blue, labels synapses).  

The three co-immunostained cell bodies are circled in (b–d), and labeled according to the 

nomenclature of Yoon and Stay, 1995 [3].   UAS-mcd8::GFP is a reporter line that targets 

green fluorescence protein (GFP) to the cell membrane [7]. 

 

Figure 2.  Expression of AstA and AstA-Gal4 in the adult brain and ventral nerve 

cord 

Immunofluorescent detection of AstA (d, g, and j) and of UAS-mcd8::GFP driven by 

AstA-Gal4 (a, c, f, and i).  Merged images are shown in (e, h, and k).  (a) 

Immunofluorescent detection of UAS-mcd8::GFP in the cervical connective. An arrow 

points to the pair of medial dorsal cell bodies (VMS) in the SOG.  (b) Adult brain image 

with illustrations of the location of the pars intercerebralis, protocerebrum, and 

subesophageal ganglion (SOG).  (c–e) Arborization of neurons expressing AstA-Gal4 in 

the protocerebrum, pars intercerebralis, and SOG.   (f–k) AstA-Gal4 and AstA are co-

expressed in three pairs of neurons in the abdominal ganglion, marked by an arrow in (h), 

with axons projecting through the median abdominal nerve.  See Supplementary Figure 1 

for a higher resolution image.  Also co-labeled are cell bodies in/on the nerves projecting to 

the wing and haltere (i–k); cell bodies are circled.  The GFP immunofluorescence seen in 

(i) that is illustrated by an arrow, labels the wing nerve (not the VNC).  
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Figure 3. Expression of AstA and AstA-Gal4 in the adult midgut, hindgut, and rectum 

Gut expression of the AstA-promoter-Gal4 enhancer trap line.  Double immunofluorescent 

labeling of the lower midgut (a–c, j–l), the upper midgut (g–i), and the rectum (d–f) of 

adult male AstA-Gal4/UAS-mcd8::GFP flies with antibodies against GFP (a, d, g, and j) 

and AstA (b, e, h, and k).  Projections from the abdominal VNC terminate in the lower 

midgut and the hindgut (a–c), and the rectum (d–f).  Labeling of the muscle is marked by a 

red arrow, just anterior to the midgut-to-hindgut transition, which is marked by a blue 

arrow.  In the upper midgut (g–i) muscle tissue is also labeled, indicated by a red arrow, 

just below the foregut-to-midgut transition.  Speckled labeling of the foregut is indicated by 

circles, in cases where gfp+, AstA- labeling is seen, and white arrows in cases where 

gfp+,AstA+ labeling is seen.  Neuroendocrine cells of the lower midgut (j–l), are 

highlighted by circles where GFP+ labeling is seen, and squares, where AstA+ labeling is 

seen.  Merged images are shown in (c, f, i, l) and all images are positioned so that anterior 

is upper left. 

 

Figure 4. Co-expression of AstA and AstA-Gal4 in the CNS of third instar larvae, 

ablating AstA-Gal4 cells highlights AstA+/Gal4- expression, potential AstA release 

sites in the brain 

(a–f) Immunofluorescent detection of AstA and lacZ in the CNS of AstA-Gal4/UAS-

(nuclear)::lacZ wandering third instar larvae by whole-mount AstA in situ hybridization (b 

and e), and immunolabeling of reporter expression using anti-β-Galactosidase (a and d).  

Arrows in (a–c) indicate three AstA+, Gal4- cell bodies.  A higher magnification view of 

the larval brain (d–f) identifies at least four additional AstA+ Gal4- cell bodies, indicated 

by arrows.  Merged images shown in (c) and (f).   Immunofluorescent detection of GFP in 

the brain of AstA-Gal4,UAS-mcd8::GFP/UAS-Ricin flies confirmed the ablation of AstA-

Gal4-expression in  the brain (data not shown).  (g) Immunofluorescent detection of 

Diploptera AstA in the adult brain of AstA-Gal4/UAS-Ricin flies reveals the extent of 

arborization of the non-Gal4-expressing but AstA-expressing neurons in the brain.  (h) 

Immunofluorescent detection of GFP in the gut of AstA-Gal4,UAS-mcd8::GFP/UAS-Ricin 

flies confirmed the ablation of AstA-expressing muscle, neuroendocrine cells, and 
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projections in the midgut.  (i) A reporter that highlights neuropeptide trafficking, UAS-

ANF::GFP, was used to predict potential sites of neuropeptide release.  Immunofluorescent 

detection of GFP in the CNS of AstA-Gal4/UAS-ANF::GFP.  Note the density of GFP 

expression in the protocerebrum, pars intercerebralis, and SOG.  

 

Supplementary Figure 1.  High-resolution images of the abdominal ganglion 

High-resolution images of the abdominal ganglion illustrating that AstA and AstA-Gal4 are 

co-expressed in three pairs of cells.  Immunofluorescent detection of AstA (e, f, and g) and 

of UAS-mcd8::GFP driven by AstA-Gal4 (b, c, and d).  (a)  Merged image of the 

abdominal ganglion with arrows pointing to the relative location of three separate cell 

bodies.  (b and e), (c and f), and (d and g) are images of different planes/slices that 

illustrate that indeed three distinct cell bodies are co-expressing AstA and GFP.   
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C h a p t e r  3  

ACTIVATION OF ASTA NEURONS RESULTS IN SIGNIFICANTLY REDUCED 
STARVATION-INDUCED FEEDING BEHAVIOR 

1. Introduction 

 The neuropeptide Allatostatin A (AstA) has been implicated as a satiety factor and 

as a myoinhibitor in several other insects [1–3].  Currently, there is no known function for 

AstA or for AstA neurons in Drosophila [1–3].  Expression of AstA in feeding-related 

endocrine centers suggests that AstA may play a role in the regulation of Drosophila 

satiety as well [2]. To test whether AstA regulates Drosophila satiety, we modified an 

existing feeding assay in order to obtain large differences in food intake between ad libitum 

fed flies and starved flies.  This new assay interrogates physiologically-relevant behavioral 

changes that occur upon food deprivation, which includes increased food search behavior 

(foraging) and increased sensitivity to food cues (increased acceptance of low reward 

foods) [4].  Using this assay, we demonstrate that activation of AstA neurons results in 

significantly reduced starvation-induced food intake. 

 

2. Results 

 2.1 Description of a feeding assay that measures starvation-induced feeding  

         behaviors 

 The use of dyes to quantify feeding behavior has been well established [5].  This 

method of quantifying feeding makes it possible to do large scale experiments that examine 

both the feeding habits of populations of flies as well as the variability of the feeding habits 

within a population of flies.  Dye is added to the food source in order to measure food 

intake.  The volume of dye-laced food consumed by a population of flies can be quantified 

by measuring the absorbance of homogenized flies at the wavelength of the blue dye.  The 

volume of food intake is interpolated from absorbance measurements of a dilution series of 

the dye.  To gain more information about the feeding behavior of individual flies within a 

population of flies we visually inspected individual flies for the presence or absence of blue 

dye in the abdomen of each fly (before homogenizing).   Detecting very small meal sizes 
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by eye under a dissecting microscope is unambiguous and is a much more sensitive method 

than using colorimetric quantification1 (see Supplementary Figure 1a–1c).  Scoring by eye 

also allows us to monitor for an abnormal distribution of meal sizes within a population of 

flies2.   

 We modified feeding assay parameters in order to measure differences in 

starvation-induced feeding behaviors, which include an increase in food search behavior, 

food intake, and an increased sensitivity to food cues [4, 5].  Therefore, in a feeding assay, 

we wanted to use a concentration of sucrose that was not very stimulating to unstarved flies 

but that, as a result of starvation, became a stimulating concentration, as measured by food 

intake. We found that by manipulating the location and the size of the food patch, we could 

also manipulate the fraction of flies feeding, suggesting that we could use these parameters 

to incorporate food search behavior into our assay.  We determined that by providing 

sucrose in a small raised dish placed inside a standard fly vial resulted in 100% of starved 

flies feeding, but only a fraction of unstarved flies feeding.  The final parameters that we 

used in our feeding assay produced clearly distinguishable differences in both the number 

of flies feeding and in amount consumed between starved and unstarved animals (see 

Supplementary Figure 1d).   

 Unless otherwise noted, the following conditions were used in all feeding 

experiments:  Twenty male flies were deprived of food but not water for 24 hours and then 

allowed one hour to feed on 10 mM sucrose, which was located in a small raised dish3.  

These assay conditions resulted in nearly 100% of starved flies feeding ~120 nL each 

(Figures 1a and 1b).  In contrast, not only did a much smaller percentage of unstarved flies 

feed under these conditions, but they also consumed around sixfold less sucrose than 

starved flies (data not shown).  These results are highly reproducible and confirm that our 

feeding assay measures changes in starvation-induced feeding behaviors. 

  

                                                 
1 By eye, a meal size of 20 nL or less per fly can be unambiguously detected (see Supplementary Figure 1a–c).  By colorimetric 

quantification, the limit of detection is 400 nL per 20 flies. 

2 Using only colorimetric quantification to measure the food intake of a population of flies assumes that meal size is 
homogeneous across a population of flies and does not discriminate between a case in which 2 flies consumed 200 nL from 
20 flies that consumed 20 nL each.   

3 Sucrose was dissolved in 0.5% agar and supplied in the screwtop lid of a 1.5 mL microcentrifuge tube, which was placed 
inside of a standard fly vial in which flies were starved. 
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 2.2  Hyperexcitation of AstA neurons results in significantly reduced  

                        starvation-induced feeding.   

 Since the neural regulation of feeding is essential to the survival of an organism, it 

would be evolutionarily beneficial to have redundancy or compensatory mechanisms in 

place if elements of the circuit are lost (due to mutation or cell death).  Consequently, 

instead of silencing or ablating AstA neurons, we initially chose to use a gain of function 

manipulation in order to probe the function of AstA neurons.  We used UAS-NaChBac4 

[6], which would express a leaky sodium channel in AstA neurons, in order to increase the 

neuronal excitability of AstA neurons.  We tested flies in the feeding assay described in the 

last section, in order to determine whether AstA neurons play a role in the regulation of 

feeding behavior. 

 Constitutive activation of AstA neurons resulted in significantly fewer flies feeding 

relative to controls (Figure 1a).  As measured by the volume of food intake, control flies 

consumed on average ~120 nL per fly, while AstA/NaChBac5 flies consumed only ~15 nL 

per fly, an eightfold reduction in total feeding (Figure 1b).  This reduction in feeding 

behavior was observed using either of two independent insertions of AstA-Gal4 (labeled 

AstA3 and AstA5).  The reduction of volume consumed is not due to most flies taking 

smaller meals, but to fewer flies feeding.  Visual inspection of individuals showed that 

nearly 100% of control flies fed, but fewer than 20% of AstA/NaChBac flies fed.  To 

ensure that we were accurately scoring non-feeding flies, which might have been mis-

scored if they only consumed minute portions of food that were visually undetectable 

through the cuticle, we routinely dissected flies to directly visualize the contents of the gut 

and crop, and found few cases where dye was present in the gut but was undetectable 

through the cuticle.  

 To confirm that the feeding impairment phenotype observed by constitutively 

expressing NaChBac in AstA neurons was indeed due to hyper-activating these neurons, 

we asked whether the feeding phenotype could be rescued by simultaneously co-expressing 

an inwardly rectifying potassium channel using UAS-Kir2.1, which would decrease 

                                                 
4 A voltage-gated bacterial sodium channel 

5 AstA-Gal4/UAS-NaChBac.  To simplify text, we will henceforth not include “Gal4” and “UAS” when referring to 
genotypes. 
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neuronal excitability [7].  As previously observed, significantly fewer AstA5,NaChBac/+ 

flies fed, but the fraction of AstA5,NaChBac/Kir2.1 flies that fed was indistinguishable 

from the fraction of control genotypes that fed (Figure 1c).  This rescue by constitutive 

hyperpolarization shows that the feeding phenotype of AstA/NaChBac flies is due to the 

hyperactivation of AstA neurons.   

Constitutively activating neurons could result in developmental defects or other 

defects that could accumulate over time.  Therefore, we used UAS-TRPA1 [8], a warmth-

activated cation channel, to acutely activate AstA neurons.  Flies were raised at 22°C, a 

temperature at which TRPA1 is not activated, and shifted to the permissive temperature, 

28°C, an hour before and during the feeding assay.  When tested at 28°C, significantly 

fewer AstA/TRPA1 flies fed compared to genetic controls tested at the same temperature 

(Figure 1d).  When flies were raised and tested at 22°C, feeding of AstA/TRPA1 flies did 

not differ from controls.   There was no significant difference in the food intake of control 

flies as a consequence of the temperature shift.  Therefore, acute hyperactivation of AstA 

neurons phenocopied the feeding phenotype observed due to chronic hyperactivation.  The 

magnitude of this effect was less than that obtained using NaChBac which could be due to 

differences in the potency of the two effectors.  These results indicate that the feeding 

phenotype of AstA/NaChBac flies was not due to developmental defects, or other 

accumulated effects from chronic excitation, but instead was a result of acutely activating 

AstA neurons.   

 

 

2.3  The feeding behavior of AstA/NaChBac flies is not an indirect effect of  

assay parameters.  

Several control experiments were conducted to ensure that the reduced feeding 

observed among AstA/NaChBac flies was not due to the presence of dye or agar in food, 

social interactions, locomotor or foraging deficits, novelty, or visual deficits.  In an 

alternate feeding assay called CAFE (for CApillary FEeder) [9], flies were allowed one 

hour to feed on 100 mM sucrose supplied in capillary tubes.  As flies drink the sucrose 

solution from the capillairies, the meniscus drops, and the amount consumed was 

determined by measuring the change in the height of the meniscus from the beginning to 
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the end of the experiment.  As observed in our standard feeding assay, AstA/NaChBac flies 

consumed significantly less than control genotypes (Figure 2a).  Since feeding on a novel 

food source represents a risk-prone behavior, we repeated our standard feeding assay using 

standard fly food.  Again, AstA/NaChBac flies consumed significantly less than control 

genotypes (Figure 2b).  Taken together, these results suggest that the reduced feeding 

behavior of AstA/NaChBac flies is not specific to a low concentration of sucrose and is not 

an indirect effect of agar or dye, since the CAFE assay eliminates the need to use food 

coloring or agar.  In other control experiments, reduced feeding behavior of 

AstA/NaChBac flies persisted when provided an excess of food, when tested at various 

times during the day, and when tested in the dark (data not shown). 

 

2.4  Silencing or ablating Gal4-expressing AstA neurons does not alter  

feeding behavior. 

Since activating AstA neurons suppresses feeding behavior, we tested whether the 

opposite was true: does silencing or ablating AstA neurons enhance feeding behavior?  

Kir2.1 overexpression reduces neuronal excitability [7], and its rescue of the feeding 

phenotype of AstA/NaChBac flies suggests that this is true of AstA neurons.  We measured 

the feeding behavior of AstA/Kir2.1 flies in a variety of feeding assays, varying assay 

conditions such as the degree of starvation, food quality, food accessibility, and time to 

feed.  We did not detect any differences in the feeding behavior of AstA/Kir2.1 flies 

compared to control genotypes when tested unstarved or starved, on high- or low-quality 

food sources, or when we tested the rate of feeding (data not shown).  We also tested the 

feeding behavior of flies in which we ablated Gal4-expressing AstA neurons by 

overexpressing a cell-death-promoting gene using UAS-Ricin [10].  We confirmed the 

ablation of Gal4-expressing AstA neurons by co-expressing UAS-mcd8::GFP and UAS-

Ricin and co-labeling tissue with antibodies against AstA and GFP (See Chapter 2, Figure 

4).  We did not detect any differences in the feeding behavior of either starved or unstarved 

AstA/Ricin flies compared to control flies (data not shown).   
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2.5  Activation of NPF neurons rescues the decreased feeding behavior of  

AstA/NaChBac flies. 

To address the possibility that activation of AstA neurons is artificially or non-

specifically inhibiting feeding behavior, we next asked whether activation of AstA neurons 

exhibited functional interactions with a known modulator of normal feeding behavior.   

Neuropeptide F (NPF) is a neuropeptide that mediates many of the behavioral responses to 

starvation; Overexpression of NPF increases foraging behavior and increases the 

acceptance of less rewarding food sources in starved flies [11].  Since NPF overexpression 

and activation of AstA neurons yield opposing behavioral responses in starved flies, we 

decided to investigate potential epistatic interactions between these two pathways.  If 

activation of AstA neurons were artificially or non-specifically inhibiting feeding behavior, 

we would expect that simultaneous activation of NPF neurons would fail to override this 

inhibition. On the other hand, if simultaneous activation of NPF neurons overrides the 

inhibition of feeding caused by activation of AstA neurons, it would suggest that the 

mechanism by which AstA neuron activation impairs feeding occurs through a mechanism 

that impacts, directly or indirectly, pathways that normally control food intake. 

The majority of studies characterizing the role of NPF signaling in feeding behavior 

have focused on larvae, but several studies have demonstrated a role for NPF signaling in 

adult feeding as well.  Although increased feeding behavior as a result of activation of NPF 

neurons has not been directly demonstrated, one study has demonstrated that activation of 

NPF neurons is necessary and sufficient to produce the motivational state required for 

food-based associative learning [17].  When odor cues are paired with sucrose, starved flies 

will exhibit a preference for the sucrose-paired odorant in subsequent trials, but unstarved 

flies fail to exhibit this preference.  It was demonstrated that activation of NPF neurons, 

using UAS-TRPA1, can elicit a preference for the sucrose-paired odorant in unstarved 

flies, suggesting that activation of NPF neurons promotes a hunger-state in unstarved flies.   

In order to determine whether hyperactivation of NPF neurons would further 

enhance the hunger-state of starved flies, we first examined the feeding behavior of starved 

NPF/NaChBac flies.   Our feeding assay parameters were not designed to identify an 

increase in the fraction of flies feeding because we optimized parameters to detect the 

opposite.  By changing the food source in our feeding assay to 100 mM sucrose and 500 
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mM NaCl (a highly stimulating concentration of sugar combined with an aversive 

concentration of salt), a significantly larger fraction of NPF/NaChBac flies fed compared to 

control genotypes under these conditions (see Supplementary Figure 1e). In addition, even 

though we did not see a significant increase in the fraction of flies feeding using our 

original assay parameters (10 mM sucrose) due to a ceiling effect, NPF/NaChBac flies 

exhibited significantly increased food intake compared to control genotypes under these 

conditions (see Supplementary Figure 1f).  Therefore, constitutively activating NPF 

neurons in further enhances the hunger-state of starved flies, and can affect two aspects of 

feeding behavior:  The initiation of feeding (fraction of flies feeding) and the termination of 

feeding (total volume consumed). 

We next tested what the effects of co-activation of NPF and AstA neurons was on 

the feeding behavior of starved flies in our original assay, containing 10 mM sucrose. 

Activation of NPF neurons partially rescued the reduced feeding behavior of 

AstA/NaChBac flies, as measured by fraction of flies feeding (Figure 2c, p<0.0001). 

Activation of NPF neurons overrides the reduced feeding caused by activation of AstA 

neurons, and this suggests that activation of AstA neurons does not impair the motor 

control of feeding or cause a physical inability to feed. 
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3.  Discussion 

3.1  A behavioral assay that measures starvation-induced changes in feeding  

behavior 

 We developed a robust, high-throughput feeding assay that requires characteristic 

starvation-induced behaviors, including foraging and the acceptance of a low reward food 

source.  Many studies have identified neuropeptides and signaling pathways that are 

involved in the promotion of feeding behavior, but very little is known about the regulation 

or promotion of satiety in Drosophila [1].  This is likely because the majority of studies 

have focused on larvae, which feed almost constantly, and not adults, which are 

discontinuous feeders.  In contrast to larvae, adults have a vast repertoire of behaviors and 

face a multitude of challenges.  The regulation of feeding in adults could provide insight 

into the regulation of satiety. Our results demonstrate that we have developed a behavioral 

feeding assay that can identify flies with deficits in starvation-induced feeding behaviors.   

 

 3.2  Activation of AstA neurons results in significantly reduced  

                        starvation-induced feeding. 

Using this feeding assay, we demonstrated that activation of AstA neurons results 

in significantly reduced starvation-induced feeding relative to controls.  Both constitutive 

activation and acute activation of AstA neurons resulted in significantly reduced feeding.  

This reduced feeding behavior is caused by manipulating the firing properties of AstA 

neurons, because co-expression of UAS-Kir2.1 and UAS-NaChBac rescued the reduced 

feeding phenotype.   

 

3.3  The reduced feeding behavior of AstA/NaChBac flies is not due to  

indirect effects. 

We have ruled out potential defects that could result in decreased feeding behavior 

that are not directly related to feeding behavior. AstA/NaChBac flies fed significantly less 

in an established feeding assay, called the CAFE assay [9], which suggests that the reduced 

feeding behavior is reproducible using an established feeding assay, using a highly 

stimulating sucrose concentration, and is not due to an aversion to either agar or dye in the 

food.  Since the failure to find or access the food could be a result of impaired locomotor 
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activity or foraging, sensory deficits, or social interactions, we demonstrated that 

AstA/NaChBac flies fed significantly less when an excess of food was supplied.  These 

results imply that the decreased feeding of AstA/NaChBac flies was not a result of reduced 

encounter with the food source.  The decreased feeding behavior is not due to a 

disinclination of AstA/NaChBac flies to accept a novel food source.  The acceptance of a 

novel food source is considered a risk-prone behavior, and is modulated by hugin-

expressing peptidergic neurons [12].  Using standard fly food in the feeding assay did not 

rescue the decreased feeding behavior of AstA/NaChBac flies, eliminating the possibility 

that the feeding behavior is a result of an aversion to feeding on a novel food source.  In 

addition, since standard fly food contains a mixture of nutrients, including protein and fat, 

the decreased feeding behavior of AstA/NaChBac flies is not specific to sucrose.  These 

control experiments convinced us that AstA/NaChBac flies exhibit significantly decreased 

feeding relative to controls and that this is not an indirect effect on some other aspect of fly 

behavior.  It also validates that the behavioral feeding assay that we developed is a useful 

method to screen for flies with satiety-like feeding behavior. 

 

3.4  Silencing or ablating Gal4-expressing AstA neurons has no effect on  

feeding. 

We were unable to detect any differences in the feeding behavior of flies with either 

silenced or ablated AstA neurons compared to control flies. Silencing experiments are 

important because they can teach us about the function of a neuronal circuit in normal 

behavior.  If activation and silencing of a neuronal circuit gives opposing effects, it can 

prove the necessity and sufficiency of a circuit.  Silencing or ablating Gal4-expressing 

AstA neurons has no effect on feeding, suggesting that Gal4-expressing AstA neurons are 

not necessary for normal feeding behavior although these neurons are sufficient to 

modulate feeding behavior.  There are three potential explanations for these results: 

1)  We have not yet tested flies under the proper conditions to uncover a role of 

AstA in the regulation of feeding.  Activation of AstA neurons may be tapping into a 

mechanism that is only used under very specific circumstances, e.g., when avoiding a 

predator, encountering a mate, or undergoing diapause.  Diapause is a state of dormancy 

employed by insects to survive harsh environmental conditions, such as low temperatures 
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and short length of day [13].  In flies, diapause results in reduced food intake, a slowed 

metabolism, an increase in fat stores, arrested development, and reproductive dormancy 

[14, 15]. Activation of AstA could trigger a state of diapause but silencing these neurons 

would not result in altered feeding behavior under normal lab conditions. 

2)  The function of AstA neurons could be redundant.  In Chapter 2, we 

demonstrated that AstA-Gal4 is expressed in only a subset of AstA-expressing neurons.  In 

the brain, AstA-Gal4 is expressed in only three of eight AstA neurons, and in the VNC, it is 

expressed in only three of 13 AstA neurons.  Therefore, AstA+/Gal4- neurons may be 

compensating for silenced or ablated AstA+/Gal4+ neurons.  Alternatively, constitutive 

loss of AstA neurons may lead to the recruitment of alternate circuits during development 

that fulfill the function of AstA neurons.  This possibility could be addressed by testing the 

feeding behavior when acutely silencing AstA neurons. 

3)  Activation of AstA neurons results in a gain of function phenotype that does not 

represent the role of AstA neurons in satiety.  For example, constitutive activation of AstA 

neurons could result in the secretion of abnormally high concentrations of a 

neuromodulator that regulates satiety, but systemic secretion of this neuromodulator does 

not occur as a result of the normal firing properties of AstA neurons.   

 

3.5  Activation of NPF neurons rescues the decreased feeding behavior of  

AstA/NaChBac flies. 

Simultaneous activation of NPF and AstA neurons resulted in a partial rescue of the 

decreased feeding observed in AstA/NaChBac flies. The foregoing results suggest that NPF 

neurons act downstream of (or in parallel to) AstA neurons in their control of feeding.  If 

we had obtained no rescue (i.e., reduced feeding due to AstA neurons acting downstream of 

NPF neurons), then it would leave open the possibility that activation of AstA neurons 

impairs the motor control of feeding, or causes a physical inability to feed, e.g., 

constipation or motor impairment.  In agreement with other control experiments mentioned 

in earlier sections, these results rule out many non-specific potential causes for the reduced 

feeding behavior of AstA/NaChBac flies, such as motor deficits and sensory deficits. 
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4. Materials and methods 

Fly husbandry 

All flies were reared on standard media [16] and maintained at 25ºC, 70% relative humidity 

under a 12h:12h light:dark regime unless otherwise indicated.  For TRPA1 experiments, 

flies were raised at 22ºC.  Flies used for immunohistochemistry and behavior were 5–10 

day old males.  Fly lines used included  AstA-Gal4 (described in Chapter 2), UAS-

NaChBac::eGFP (a generous gift from Dr. Bader Al-Anzi) [6], UAS-TRPA1 flies express 

two independent insertions of the transgene (the recombinant was a kind gift from Kenta 

Asahina) [8], UAS-eGFP::Kir2.1 [7], w (Exelixis background, used for UAS-responder x w 

crosses), w (isogenic strain from the Dr. Tim Tully lab, used for w x Gal4 crosses),  NPF-

Gal4 (Bloomington stock #25681)[11], and Canton-S flies (obtained from the Seymour 

Benzer lab).  For experiments using flies expressing three transgenes, AstA5-Gal4 and 

UAS-NaChBac::eGFP were recombined onto the same chromosome. 

Behavior 

Feeding assays 

Unless otherwise noted, the following conditions were used in all feeding assays.  Twenty 

adult male flies were wet-starved for 24 hours in standard fly vials containing 1% agar.  A 

small dish containing 10 mM sucrose was placed into fly vials for one hour.  Sucrose was 

dissolved in 0.5% agar plus 0.5% FD&C Blue #1 and was provided within the center ring 

(28 mm2 surface area) of a screwcap lid (belonging to 1.5 mL microcentrifuge tubes, Fisher 

02-681-347).  After each experiment, the fraction of flies feeding was visually scored as the 

presence or absence of blue dye in the abdomen using a dissecting microscope (for a more 

detailed explanation of this method of quantification, see Supplementary Figure 1a).  After 

visual scoring, the volume of food intake was determined by colorimetric quantification.  

Each population of flies was beheaded, homogenized, centrifuged, and the absorbance of 

the supernatant was measured at the wavelength of the blue dye (625 nm).  To control for 

any background absorbance from homogenized flies, a set of starved, unfed flies were 

simultaneously processed.  Only males were used in feeding experiments because the 

regulation of feeding behavior in females is complicated by reproductive state, since 

feeding behavior and metabolism are altered by mating and egg production in females [17].  

All experiments were conducted during midday, within a six-hour time window that did not 

http://flystocks.bio.indiana.edu/Reports/25681.html
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overlap with the morning and evening peaks of fly activity.   Before experiments, flies were 

acclimated for one hour within the testing chamber at 25°C and 60% relative humidity.   

Flies were allowed to recover from CO2 anesthesia (used to sort flies) for at least 24 hours 

before starvation was initiated. 

The CAFE assay was previously described in [9].  Briefly, a 100 mM sucrose solution was 

provided in small glass capillary tubes from which 20 flies were allowed to feed for 1 hour.  

Amount consumed was Meniscus levels were measured before and after the experiment.   

Evaporation was controlled for by measuring meniscus levels from capillaries that were set 

up during the experiment, but without flies.  The changes in meniscus distance in 

evaporation controls were subtracted from experimental measurements.   

Data and statistics 

GraphPad Prism software was used to generate graphs as well as for statistical analysis. 

Bar graphs plot the mean and standard error.  Unless otherwise noted, all data was analyzed 

using one-way ANOVA with Bonferroni correction for multiple comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56

5. Figure Legends 

Figure 1.  Hyperexcitation of AstA neurons results in significantly reduced feeding.   

(a, c, and d) The fraction of food-deprived flies that fed and (b) the total volume of 10 mM 

sucrose consumed.  (a and b) Both the fraction of flies feeding and the total volume 

consumed was significantly reduced for AstA/NaChBac flies relative to genetic controls. 

(p<0.0001, N=4–20).  The total volume of sucrose consumed for each population of flies 

from (a) is shown in (b).  Unless otherwise noted, all feeding assays allowed twenty adult 

male flies one hour to feed from 10 mM sucrose after being starved for 24 hours with 

access to water.  Sucrose was dissolved in 0.5% agar and 0.5% FD&C Blue #1 and was 

provided in the scewtop lid of a 1.5 mL microcentrifuge tube.  In order to calculate the 

fraction of flies feeding, individual flies were scored by eye under a dissecting microscope 

for the presence or absence of blue dye in the abdomen.  This method of scoring was 

unambiguous above a meal size of ~15 nL (see Supplementary Figure 1a). After visual 

scoring, the amount of sucrose consumed by each population of flies was determined in the 

following way:  flies were beheaded, homogenized, and centrifuged, and the absorbance in 

the wavelength of the dye (625 nm) of the supernatant was measured.  The total volume of 

sucrose consumed was interpolated from this absorbance measurement (minus the 

absorbance measurement of unfed flies processed in parallel) and the absorbance 

measurements of a dilution series of the dye.  [5] used similar feeding conditions (males 

wet-starved 24 hours, and allowed one hour to feed on 10 mM sucrose containing 0.5% 

FD&C Blue #1) and reported an average food intake of 110 nL per fly, similar to the 

amount of intake of control genotypes. NaChBac expression increases the electrical 

excitability of neurons [6].  Crosses were UAS-NaChBac x w, UAS-NaChBac x AstA-

Gal4, and w x AstA-Gal4.  Two independent insertions of AstA-Gal4 were used (labelled 

AstA3 and AstA5).  “Gal4” and “UAS” will be eliminated from future text when referring 

to genotypes to simplify figures and text.   (c)  The fraction of AstA5,NaChBac/+ flies that 

fed was significantly reduced compared to that of all control genotypes (p<0.0001), but the 

fraction of AstA5,NaChBac/Kir2.1 flies that fed was not significantly different from that of 

genetic controls (p=0.2429, N=3–7).  Crosses were AstA5-Gal4,UAS-NaChBac x w,  

AstA5-Gal4,UAS-NaChBac x UAS-Kir2.1, and UAS-NaChBac x UAS-Kir2.1.   (d) The 

fraction of AstA/TRPA1 flies that fed was significantly reduced when tested at a 
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temperature that activates TRPA1, 28°C, but not when tested at a temperature that does not 

activate TRPA1, 22°C (two-way ANOVA, p<0.0001, N=12–15, [8]).  All flies were raised 

at 22°C, and either tested at 22°C or shifted to 28°C for one hour before and during the 

experiment.  When raised and tested at 22°C, the fraction of AstA/TRPA1 flies that fed 

was not significantly different from that of genetic controls (one-way ANOVA, p=0.1597).  

For control genotypes, there was no interaction of temperature (two-way ANOVA, 

p=0.7202).  Crosses were UAS-TRPA1 x w, UAS-TRPA1 x AstA5-Gal4, and w x AstA5-

Gal4.  Unless otherwise noted, the mean and standard error are plotted and one-way 

ANOVA with Bonferroni correction for multiple comparisons was used for statistical 

analysis.  AstA/NaChBac flies are plotted in orange, +/NaChBac flies in blue, and AstA/+ 

flies in white or black.  Asterisks indicate statistical significance of p<0.05 (*), p<0.01 (**), 

or p<0.001 (***).  The letters that appear above graphs indicate the statistical significance 

between genotypes after Bonferroni correction. 

 

Figure 2.  AstA/NaChBac flies feed significantly less when tested in the CAFE assay 

or fed standard fly food. Activation of NPF neurons partially rescued the reduced 

feeding behavior or AstA/NaChBac flies.   

(a)  AstA/NaChBac flies consumed a significantly smaller volume of sucrose in the 

Capillary Feeding assay, or CAFE assay (p=0.003, N=2–6).  Groups of 20 flies were given 

an hour to feed on a 100 mM sucrose solution supplied in capillary tubes.  The amount 

consumed was measured by the distance that the meniscus moved, by marking the height 

of the meniscus before and after the experiment.  Chambers were set up in parallel without 

flies to control for evaporation of the sucrose solution.  (b) Average fraction of starved flies 

feeding on standard fly food.  AstA/NaChBac flies fed significantly less than controls.  (c)  

When AstA and NPF neurons were simultaneously activated (AstA,NaChBac/NPF flies, 

orange striped bars) the fraction of flies feeding was significantly increased compared to 

when only AstA neurons were activated (AstA,NaChBac/+, orange bars, unpaired t-test, 

p<0.0001, N=10–11).  The fraction of AstA,NaChBac/NPF flies feeding was still 

significantly reduced compared to that of other genotypes tested (one-way ANOVA, 

p<0.0001, N=6–11).  Feeding conditions described in Figure 1a were used.   
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Supplementary Figure 1.  Small meal sizes are easily visualized using food coloring.  

Activation of NPF neurons results in significantly increased food intake and fraction 

of flies feeding. 

(a–c) Photos that illustrate the ability to detect small amounts of dye-laced food in the 

abdomens of adult male flies by visual scoring under a dissecting microscope.  Circled in 

(a–c) is the section of the abdomen scored for blue dye (used at the same concentration as 

in feeding assays). An images of an unfed fly (a), a fly that consumed 20 nL (b), and a fly 

that consumed 100 nL (c) of blue-laced dye.  The midguts and crops (indicated by arrows) 

were dissected out these photographed flies and are shown in images to the right.  The 

volume consumed was measured by processing the intact midguts and crops as described in 

Figure 1b, except that the intact dissected digestive tracts of single flies were homogenized 

in a smaller final volume.  (d) Fraction of unstarved and starved flies feeding on 10 mM 

sucrose when required to “work” for the food.  Supplying food in microcentrifuge tube lids 

is considered work, whereas the “no work” conditions supply a sucrose patch that spans the 

base of the fly vial, the surface area of which is 133 mm2.  The surface area supplied in the 

lid was 28 mm2.  (e) Constitutively activating NPF neurons resulted in significantly 

increased food intake compared to that of control genotypes (p<0.0001).  Assay conditions 

were the same as those described in Figure 1a, and the method to quantify food intake is 

described in Figure 1b.  (f)  Constitutively activating NPF neurons resulted in significantly 

increased fraction of flies feeding compared to controls when the food source was 100 mM 

sucrose plus 500 mM sodium chloride (p=0.038, N=3–9).  Changing the concentrations of 

tastants in our feeding assay allowed us to measure increases in fraction of flies feeding.  

All other assay conditions were the same as those described in Figure 1a. 
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Figure 1  
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Figure 2 
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Supplementary Figure 1 
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e.                                                                                            f.                                                                                                                    
                            10 mM sucrose              100 mM sucrose + 500 mM NaCl 
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C h a p t e r  4  

MECHANISMS BY WHICH ACTIVATION OF ASTA NEURONS REDUCES 
STARVATION-INDUCED FEEDING BEHAVIOR 

1. Introduction 

In the previous chapter, I showed that activation of AstA neurons results in 

significantly reduced starvation-induced feeding.  Here, I examined the behavioral and 

metabolic responses to starvation of flies with activated AstA neurons in order to further 

define the phenotype.  First, I will discuss potential mechanisms that could explain the 

phenotype in relation to what is known about the regulation of feeding and metabolism in 

insects.  

 

1.1 Nutritional state 

The reduced food intake following starvation of AstA/NaChBac flies could be the 

result of higher energy reserves.  Drosophila store energy in the form of triglycerides and 

glycerol, and utilize trehalose as an energy source [1].  If starvation-induced depletion of 

energy reserves plays a role in regulating feeding behavior, then a manipulation that 

prevents the depletion of energy reserves during food deprivation could reduce starvation-

induced feeding.  Depletion of energy stores during food deprivation could be prevented or 

decreased by a manipulation that causes decreased energy expenditure during starvation, 

decreased metabolism, or that endows flies with excess energy stores compared to controls.  

In Drosophila, hemolymph sugar levels are monitored and regulated by two 

neuropeptides with opposing functions.  Low hemolymph sugar levels prompt the release 

of adipokinetic hormone (AKH), which promotes fat mobilization [2].  Ablation of AKH 

neurons results in increased fat stores and increased resistance to starvation compared to 

controls, whereas overexpression of AKH has the reverse effect [3-5].  Conversely, high 

hemolymph sugar levels prompt the release of insulin-like peptide (DILP), which promotes 

fat storage  [6-8]   Ablation of DILP neurons results in increased hemolymph sugar levels 

and starvation sensitivity compared to controls, whereas overexpression of DILP has the 

reverse effects [6-8].  Manipulation of these metabolic regulators also alters feeding 
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behaviors:  A null mutation in the AKH receptor or overexpression of DILP results in 

decreased food intake [5, 6].  Corazonin (Crz) neurons are involved in regulating stress 

responses and are upstream of AKH neurons; the metabolic effects of manipulating the 

neuronal activity of Crz neurons mimics those of manipulating AKH levels [9, 10].   

 

Diagram 1.  Neuropeptides regulate hemolymph sugar levels.  This model simplifies 

the various interactions between nutritional state, neuromodulators, energy homeostasis, 

and behavior. How Crz neurons fit into this model is yet to be determined. 

 

 

 

1.2  Excitatory and inhibitory sensory input 

In the blowfly, proprioceptive feedback from the foregut, crop, or abdomen inhibits 

food intake, whereas the stimulating effect of tastants promotes food intake [11].  The 

stimulating effect of tastants increases with increasing sugar concentration and decreases 

with the addition of contaminating aversive tastants [12].  In Drosophila, the stimulating 

effect of tastants determines the volume of intake, but it has not been demonstrated that 

proprioceptive feedback inhibits food intake [13].  As mentioned previously, starvation in 

Drosophila increases responsiveness to food cues, but it is unclear if this is a result of 

tuning the sensitivity of primary gustatory neurons, a release of inhibition (disinhibition) 

from peripheral proprioceptors, or other internal changes.   
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If the activation of AstA neurons were drastically impairing gustatory acuity, flies 

in which NPF and AstA neurons were co-activated would not recognize the food offered, 

and would be unlikely to feed.  But if gustatory acuity is slightly impaired, it is possible 

that NPF activation could overcome this impairment.  Another possibility is that AstA 

neurons and NPF neurons are involved in tuning the sensitivity of gustatory neurons in 

opposite directions.   

If AstA neurons were enhancing peripheral proprioceptive feedback, and if the 

regulation of feeding in Drosophila occurs in the same way as in blowflies, then we would 

not expect a rescue of feeding behavior in NPF,AstA/NaChBac flies.  Blowfly studies 

demonstrated that in starved flies, proprioceptive feedback from the foregut, crop, and 

abdomen have a powerful inhibitory effect on feeding behavior.  Given the robust feeding 

phenotype of AstA/NaChBac flies, we might not expect a central mechanism (NPF) that 

promotes starvation-induced feeding to override the effects of enhancing proprioceptive 

feedback.  Based on blowfly studies, we would also expect inhibition of AstA neurons to 

result in hyperphagia, which did not occur (see Chapter 3). 

 

1.3 Integration of nutritional state and gustatory/proprioceptive sensory cues 

In blowflies, behavioral studies have demonstrated that gustatory discrimination 

and the decision to ingest are processed independently [14].  Previous studies have 

suggested that this might be the case in Drosophila as well [15].  AstA/NaChBac flies may 

be impaired in detecting nutritional state or in integrating this information with gustatory 

cues which would lead to impairments in feeding/ingestion “decision-making”.   

In Drosophila gustatory sensory neurons, the regulation of feeding behavior, and 

the regulation of metabolism are well characterized.  Very little is known about how 

gustatory input is integrated or how nutritional state alters feeding behavior. Integration of 

gustatory cues and nutritional state may occur in DILP neurons or the many types of 

neuropeptide-expressing neurons that send projections to both the SOG and to the vicinity 

of DILP neurons.  DILP neurons are sensitive to hemolymph sugar levels, though direct 

connectivity has not been established.  In addition, there is no overlap between primary 

gustatory neurons and motor neurons within the SOG, ruling out the possibility that feeding 

is a simple reflex circuit without any interneurons [16]. 
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1.4 Regulation of motor patterns 

 In insects and mammals many complex behaviors are controlled motor pattern 

generators [17].  These motor patterns are fully functional independent of central nervous 

system input, but stimulus from central control centers is required to release the motor 

pattern, e.g. from descending inhibition.  In Drosophila, motor neurons that control feeding 

arise from the SOG, which receives gustatory input, controls proboscis and head 

movements, and serves as a control center for motor patterns [18].  In blowflies, motor 

patterns control proboscis extension, sucking, transfer of food into the midgut and into the 

crop, transfer of food from the crop to the midgut, and excretion [14]. If AstA/NaChBac 

flies were impaired at initiating or executing motor patterns required in feeding, then we 

would not expect AstA,NPF/NaChBac flies to feed.  However, this does not rule out the 

possibility that AstA and NPF modulate the initiation of motor patterns.  

 

1.5 Additional factors that can alter feeding behavior 

Other factors that influence feeding behavior include circadian rhythm, experience, 

social interactions, arousal, reproductive state, and environmental cues.  In the previous 

chapter, we were able to rule out the possibility that circadian rhythm, experience, or social 

interactions are responsible for the feeding behavior of AstA/NaChBac flies.  Remaining 

factors include arousal, reproductive state, and environmental cues.   

It is possible that altered levels of arousal are contributing to the reduced feeding of 

AstA/NaChBac flies.  In Drosophila, food deprivation prompts increased food search 

behavior, increased responsiveness to food cues, and a heightened central excitatory state 

[12, 19]. In insects, both stress and food deprivation results in the release of octopamine, 

which has functions analogous to that of adrenaline in vertebrates [20, 21].  In the blowfly, 

octopamine injection increases spontaneous locomotor activity, increases food intake, and 

decreases acceptance threshold [22]. Once food is located, locomotion is arrested and a 

period of quiescence follows feeding.  In the blowfly, parabiotic studies have demonstrated 

that a humoral factor can induce the quiescence normally seen post-feeding [12]; an unfed 

fly will become quiescent after its pair is fed [14].  This humoral factor that mediates post-

feeding quiescence has not been identified. 
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In males, reproductive state does not affect feeding [23].  Since all of our studies 

examined only male flies, it is unlikely that effects of reproductive state are altering 

AstA/NaChBac feeding behavior.  Environmental cues such as low temperatures and short 

days can cause flies to enter a state of diapause, which is a state of dormancy employed by 

insects to survive harsh environmental conditions [24].  Female blowflies in diapause 

decrease their food intake because feeding would stimulate egg production, ending a state 

of diapause [25].  In Drosophila females, low temperatures can trigger arrested egg 

development, increased stress resistance, and increased fat reserves [24].  Null mutations in 

a gene called couch potato exhibit defects in diapause;  they are hypoactive and exhibit 

only weak phototaxis and negative geotaxis [26]. If AstA/NaChBac flies were exhibiting a 

state of diapause, we would expect to observe changes in energy reserves, starvation 

resistance, phototaxis, geotaxis, and activity levels. 

 

2. Results 

2.1 Nutritional state  

2.1.1 Starved AstA/NaChBac flies do not have excess energy stores. 

One explanation for the decreased feeding behavior of starved AstA/NaChBac flies 

is that they have excess energy reserves compared to control flies.  These excess energy 

reserves could be due to reduced motor activity in AstA/NaChBac flies.  To examine 

differences in energy expenditure due to decreased locomotor activity during starvation, 

flies were monitored in group circadian monitors (Trikinetics) during starvation.  The 

activity levels of AstA/NaChBac flies were not significantly different from controls during 

the first 24 hours of starvation (Supplementary Figure 1a).  In addition, we looked at the 

activity levels of flies in which AstA neurons were acutely activated, using AstA/TRPA1 

flies.  We monitored activity levels during wet starvation for 22 hours at 22°C followed by 

an additional two hours at 28°C.  The activity of AstA/TRPA1 flies was not significantly 

different from the activity levels of control flies (Supplementary Figure 1b).  Thus, 

activation of AstA neurons does not result in decreased locomotor activity during 

starvation.   

To further address the possibility that AstA/NaChBac flies have excess energy 

reserves or a slower metabolism, we measured starvation resistance, i.e., the length of time 
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that the flies can withstand starvation before they die.  Activity was monitored during wet 

starvation in single-fly activity monitors (Trikinetics).  The time of last beam crossing was 

considered time of death.  The survival of AstA/NaChBac flies was not significantly 

different from the survival of +/NaChBac flies1 (Figure 1a).  Furthermore, activation of 

AstA neurons was unable to rescue the increased starvation sensitivity of Crz/NaChBac 

flies.  As mentioned in the introduction of this chapter, activation of Crz neurons promotes 

fat mobilization and results in the depletion of fat stores causing increased starvation 

sensitivity.  The survival of Crz/NaChBac flies and AstA,Crz/NaChBac flies were not 

significantly different from each other, but were significantly different from all other 

control genotypes (Figure 1a, see Supplementary Figure 1c for survival curves).  AstA 

neuron activation neither prolonged survival upon starvation on its own, nor did it prolong 

the survival of starved Crz/NaChBac flies.  Given that Crz/NaChBac flies have decreased 

energy reserves, these data indicate than activation of AstA neurons either decreases food 

intake by a mechanism that does not involve increasing energy reserves, or that any effect 

of AstA activation to increase such reserves can be overridden by simultaneous activation 

of Crz neurons.  

If increased energy stores caused the reduced feeding of AstA/NaChBac flies, we 

would expect higher triglyceride, glucose, or protein levelss in these flies versus controls.  

AstA/NaChBac flies did not have excess energy reserves in the form of higher levels of 

triglycerides2 or glucose3 before starvation (Figure 1b, 1c).  AstA/+ flies had higher 

triglyceride levels before starvation, which may be due to excess toxicity of the UAS-

NaChBac transgene, but triglyceride levels were depleted to levels similar to 

                                                 
1 All Gal4/+ flies exhibited a slightly longer survival time than all Gal4/NaChBac and +/NaChBac flies, which was likely due 

to slight toxicity caused by UAS-NaChBac. 
2 There is an unresolved question regarding the accuracy of the method we used to quantify triglyceride levels. One study 
has shown that measurements using this method are inflated by fly eye pigment [27]; another demonstrates the assay’s 
large dynamic range among flies with the same eye pigment.  We did not observe changes in eye pigment levels in 
response to starvation regime, and thus we can confidently compare relative triglyceride levels within a single genotype 
before and after starvation.  These measurements underly our statement that triglyceride levels of AstA/NaChBac flies 
deplete upon starvation.  The inter-genotype measurements are motivated by finding a mechanism to explain reduced 
feeding. If increased triglyceride stores caused the reduced feeding, we would expect higher triglyceride measurements in 
the AstA/NaChBac flies than in the controls, a result that would need to be further investigated to assess the contribution 
of eye pigment to the increased triglyceride measurements. However, in our inter-genotype comparisons, AstA/NaChBac 
flies have triglyceride levels measured at or below those of the control genotypes. AstA/NaChBac flies thus do not have 
elevated triglycerides.  
3 Although Drosophila utilizes trehalose and not glucose as fuel, glucose levels are altered by the manipulation of DILP 
or AKH levels.  Unfortunately, we were unsuccessful at measuring trehalose levels directly. 
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AstA/NaChBac and +/NaChBac flies after 24 hours of starvation.  Most importantly, the 

energy stores of AstA/NaChBac flies after 24 hours of starvation were not significantly 

different from that of control flies (Figure 1b, 1c).  Triglyceride and glucose levels were 

normalized to protein levels for these measurements, but raw triglyceride, glucose, and 

protein levels were also not significantly different from controls (data not shown).   

We also addressed the possibility that excess energy reserves were being stored as 

undigested food in the gut and not reflected in our measurements of triglycerides, glucose, 

or protein.  We let flies feed undisturbed on regular Caltech fly food containing blue dye 

for several days before starvation.  After 24 hours of starvation, both AstA/NaChBac and 

control flies had negligible amounts of blue dye detectable in the abdomen (data not 

shown).  This implies that AstA/NaChBac flies do not retain digested or undigested food 

after 24 hours starvation.  This result eliminates the possibility that starved AstA/NaChBac 

flies are feeding less because of slower excretion.   

Taken together, these results rule out the possibility that the decreased feeding 

behavior of AstA/NaChBac flies is a result of increased energy reserves.  They also 

indicate that the decreased feeding behavior of AstA/NaChBac is not due to a state of 

diapause, because diapause leads to excess fat stores and increased resistance to starvation.  

 

2.1.2 AstA/NaChBac flies fail to modulate their feeding behavior in  

response to a depletion of energy stores. 

In order to clarify whether homeostatic regulation of energy levels and feeding 

behavior can be fully dissociated, we returned to the AstA,Crz/NaChBac flies. Due to their 

metabolic deficit, Crz/NaChBac flies have fewer energy stores than controls and also feed 

more than controls (Supplementary Figure 2 and [10, 28]).  Given that AstA,Crz/NaChBac 

flies are starvation sensitive (Figure 1a), we will assume that, like Crz/NaChBac, these flies 

also have lower energy reserves.    

Remarkably, despite sensitizing AstA/NaChBac flies to starvation by further 

depleting energy stores (by co-activation of Crz neurons), these flies also failed to show a 

starvation-induced increase in their feeding behavior.  Flies were allowed to feed on 10 

mM sucrose after 13 hours of wet starvation.4  AstA,Crz/NaChBac flies behaved like 

                                                 
4 Starvation time was shortened because most Crz/NaChBac flies do not survive 24 hours wet starvation. 
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AstA/NaChBac flies;  the two were not significantly different from each other, but fed 

significantly less than all controls (Supplementary Figure 2c, p<0.0001).  Thus, the 

suppression of food intake caused by activation of AstA neurons overrides the increased 

feeding behavior induced by the activation of Crz neurons.   

 

2.2 Integration of nutritional state and sensory cues 

2.2.1  AstA/NaChBac flies fail to exhibit starvation-induced changes in 

sucrose responsiveness 

           In wild-type flies, food deprivation results in an increased behavioral sensitivity to 

food cues. To test whether activation of AstA neurons influences this effect of starvation, 

we used proboscis extension assays to measure the sensitivity to food cues.  In the 

proboscis extension reflex (PER) assay [29], the retracted proboscis is stimulated with 

stepwise increasing concentrations of a sucrose solution.5  The probability of proboscis 

extension increases as the concentration of sucrose is increased, and the probability of 

proboscis extension is also increased as a result of starvation [30].  In other words, starved 

flies are more responsive to low concentrations of a sucrose solution than unstarved flies.                                    

Using PER to test responsiveness, we observed that starved genetic control flies 

(+/NaChBac and AstA/+ flies), like wild-type flies, had a higher probability of proboscis 

extension at low sucrose concentrations than did unstarved genotype controls (Figure 2a, 

solid lines versus dashed lines, blue and black lines).  Specifically, at 50 and 100 mM 

sucrose, the percentage of starved genotype control flies exhibiting a PER was significantly 

higher than that of unstarved genotype controls (Supplementary Figure 3a, 3b).  In contrast, 

the PER of starved AstA/NaChBac flies was significantly lower than that of starved 

genotype controls at these sucrose concentrations (Figure 2a, orange solid line).  

Furthermore, the 50 and 100 mM PER responses of starved AstA/NaChBac flies did not 

differ significantly from that of any of the unstarved genotypes tested (Supplementary 

Figure 3a, 3b). 

The foregoing experiments pooled the responses of all flies across all 

concentrations of sucrose.  We also used these PER experiments to measure the PER 

                                                 
5 A pipetman is used to produce a small droplet of the tastant.  The droplet is briefly touched to the 
chemosensory hairs of the labellum (on the mouthparts) and quickly withdrawn before flies can drink. 
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threshold,6 or the lowest concentration of sucrose that elicits proboscis extension in each 

fly.   The PER threshold of unstarved AstA/NaChBac flies did not differ significantly from 

that of unstarved genetic controls (p=0.4015, Figure 2b), but the PER threshold of starved 

AstA/NaChBac flies was significantly higher than that of starved genetic controls (Figure 

2c, p<0.0001).  These experiments show that starved AstA/NaChBac flies behave as 

though unstarved with respect to sucrose responsiveness in the PER assay.   

 

2.2.2 The PER phenotype of AstA/NaChBac flies is not responsible for 

the feeding phenotype.   

The reduced feeding phenotype we observed in AstA/NaChBac flies could simply 

be a reflection of the impaired regulation of PER upon starvation.  If the PER demonstrates 

the probability of whether flies will initiate feeding and if the reduced feeding behavior of 

AstA/NaChBac flies represents a decreased initiation of feeding behavior, then we would 

expect that the feeding behavior of AstA/NaChBac flies on a concentration of sucrose that 

elicits 100% PER would be similar to control flies.  Alternatively, these two phenotypes 

may represent independent effects of activating AstA neurons.  To resolve whether the 

feeding phenotype is purely due to the PER phenotype, we tested feeding behavior on 800 

mM sucrose, a concentration that elicits 100% PER, even in AstA/NaChBac flies (Figure 

2a). Thus, this concentration of sucrose overrides the PER deficit of AstA/NaChBac flies.  

Nevertheless, wet-starved AstA/NaChBac flies still exhibited significantly reduced feeding 

when allowed to feed on 800 mM sucrose over a 20 minute time period  (Figure 2d, 

p<0.0001). These data suggest that the feeding deficit of AstA/NaChBac flies is not 

exclusively a consequence of their PER deficit (although it could still contribute). 

An impairment in either starvation-induced increases in foraging activity or food 

intake could, in combination with the PER phenotype, account for the decreased feeding of 

starved AstA/NaChBac flies.  Experiments discussed in Chapter 3 argue against the former 

possibility. To determine whether ingestion is impaired in these flies, we directly presented 

a sucrose solution that elicits 100% PER to mounted wet-starved flies.  Under these “bottle-

                                                 
6 According to Dethier, “Although threshold lies somewhere between the concentration that elicits 
extension and the one in the series immediately below it, the higher of the two is arbitrarily designated as 
threshold.  Since the aim of practically all experiments was to obtain data for comparative analysis, this 
fiction was acceptable” [14]. 
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fed” conditions, locomotion, vision, olfaction, and gustatory acuity of foreleg 

chemoreceptors (which can detect the presence of food) are not required to feed.  Single 

flies were fed to satiation with 800 mM sucrose containing blue dye, by allowing them to 

drink until they stopped extending their proboscis to the sucrose solution. The volume of 

intake of single flies was determined by colorimetric quantification as described in Chapter 

3.  The food intake of AstA/NaChBac flies was still significantly less than that of controls, 

even at this high sucrose concentration (Figure 2e, p<0.0001).  Thus the reduced feeding of 

these flies is not due to deficits in foraging, vision, olfaction or gustatory acuity of foreleg 

chemoreceptors 

We have demonstrated that AstA/NaChBac flies are impaired at modulating their 

feeding behavior in response to starvation, which in wild-type flies includes increased 

responsiveness to food cues and increased food intake as a consequence of starvation.  We 

have also shown that the reduced feeding behavior of AstA/NaChBac flies is not due to 

excess energy stores.  In the blowfly, proboscis extension and sucking are independently 

regulated and are controlled by a different set of muscles [14]. Our results imply that in 

Drosophila, starvation-induced changes in the sucrose-sensitivity of the PER and in the 

volume of food intake are independently regulated. 

 

2.2.3  Sensory discrimination of starved AstA/NaChBac flies is normal 

at low sucrose concentrations.  

The mechanism by which starvation alters responsiveness to food cues in flies has 

been contested.  Some studies argue that primary gustatory neurons become more excitable 

[31, 32], while others argue that the firing properties of primary gustatory neurons are not 

altered by starvation [14].  Since we used a low concentration (10 mM) of sucrose in many 

of our feeding assays, and since there is a low probability of proboscis extension in this 

concentration range, we considered the possibility that a decreased ability of 

AstA/NaChBac flies to detect this low concentration of sucrose is the basis for its reduced 

feeding behavior. 

In order to determine whether AstA/NaChBac flies have gustatory acuity deficits at 

low sucrose concentrations, we used a taste discrimination test as an indirect measure of 

gustatory acuity.  Flies are capable of discriminating between 1 mM and 5 mM sucrose, 
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and will exhibit a preference for the higher concentration in a two-choice assay [33].  We 

therefore tested AstA/NaChBac flies for their ability to discriminate between these two 

very low concentrations of sucrose.  We used red and blue food coloring to score for 

preference.  Starved flies were allowed to feed for one hour, after which the abdomens of 

the flies were scored for the presence of red, blue, or purple dye.  Half of the experiments 

were conducted using red 1 mM, blue 5 mM and the other half used the reverse 

combination to ensure that there was no bias introduced from either dyes.   Nearly 100% of 

flies consumed only the higher concentration of sucrose (Figure 2f).  Although a 

significantly smaller fraction of AstA/NaChBac flies fed (p=0.0005, 0.28 +/- 0.03% versus 

0.71 +/- 0.04% and 0.74 +/- 0.10%), those that did were unimpaired at discriminating 

between the two concentrations (p=0.3922, Figure 2f).   These data suggest that the 

gustatory sensitivity of starved AstA/NaChBac flies is normal with respect to sucrose, 

whereas their starvation-induced behavioral responses do not reflect those of a normal fly.  

However, electrophysiology or calcium imaging studies are required to formally exclude a 

mechanism by which the gustatory sensitivity of AstA/NaChBac flies is impaired in a 

manner that does not affect their ability to discriminate different concentrations of sucrose. 

Our results demonstrate that starvation-induced changes in feeding behavior do not 

rely on neural mechanisms that alter gustatory sensitivity or discrimination in Drosophila.  

In blowflies, behavioral studies have demonstrated that gustatory discrimination and the 

decision to ingest are processed independently [14].  Previous studies have suggested that 

this might be the case in Drosophila as well [15], and our results confirm this hypothesis.   

The reduced feeding behavior of AstA/NaChBac flies is not a consequence of an impaired 

ability to detect sucrose.  

 

2.3 AstA/NaChBac flies are able to generate the normal motor patterns that 

control digestion. 

 We have ruled out the possibility that AstA/NaChBac flies are unable to generate 

the motor patterns that control proboscis extension or food intake, or that they retain excess 

food that might prevent them from feeding.  The possibility remains that motor patterns 

involved in food transfer into the gut are impaired.  We tested this by dissecting out the gut 

and crop from flies immediately after feeding them dye-laced food.  The entire length of 
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the midgut of AstA/NaChBac and control flies contained blue food similar to controls (data 

not shown).  Depending on the volume of intake, the crop contained blue food coloring as 

well.  Taken together, these results imply that AstA/NaChBac flies are able to execute the 

motor patterns involved in food intake and transfer of ingested food from the gut to the 

crop, and that excessive food retention is not impairing their physical capacity to feed.   

 

2.4 The activation of AstA neurons does not impair all starvation-induced 

behavioral changes. 

Starvation results in several types of behavioral responses:  increased spontaneous 

locomotor activity, increased responsiveness to food cues, and a heightened central 

excitatory state [12, 34].  We were curious whether AstA/NaChBac flies were deficient in 

other starvation-induced behavioral responses. 

 

2.4.1 Starvation-induced changes in spontaneous locomotor activity 

 are normal in AstA/NaChBac flies. 

Starvation elicits increased spontaneous locomotor activity [12, 35].  When animals 

reach a critical stage of starvation, it is more important to expend energy foraging for food 

than it is to conserve energy by not moving, in order to avoid death by starvation.  Animals 

become hyperactive when this critical stage is reached.  Using single-fly circadian monitors 

to track locomotor activity during wet starvation, we found that starvation-induced 

hyperactivity of AstA/NaChBac flies was normal (Figure 3). In Section 2.1, we 

demonstrated that triglyceride levels of AstA/NaChBac flies are depleted to the same levels 

as starvation-matched controls.  These findings imply that starvation-induced changes in 

food responsiveness and food intake occurs downstream of, or in parallel to, starvation-

induced changes in metabolism and spontaneous locomotor activity.  The starvation-

induced behavioral deficits of AstA/NaChBac flies are not due to a general inability to 

sense low hemolymph sugar levels (otherwise starvation-induced increases in locomotor 

activity should be reduced or eliminated).  This in turn indicates that activation of AstA 

neurons does not impair all starvation-induced behavioral changes. 
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2.4.2 Activation of AstA neurons does not block memory performance.   

In associative memory tasks using tastants as the unconditional stimulus, starvation 

is required for memory performance, as unstarved flies fail to learn [36].  Our colleagues 

(in Scott Waddell’s lab) tested AstA/TRPA1 flies in food-associated learning and memory 

tasks, and found that memory performance was indistinguishable from controls (data not 

shown).  This suggests that the mechanism by which AstA neurons are inhibiting feeding 

behavior is not by inhibiting (all) NPF signaling, which is required to disinhibit three pairs 

of dopamine neurons in the mushroom bodies in order for memory performance to occur 

[36].  Since activation of AstA neurons does not affect starvation-induced hyperactivity or 

memory performance, this demonstrates that this manipulation does not result in general 

starvation-induced behavioral responses. 

 

            2.5 AstA/NaChBac flies do not have general arousal deficits. 

It has recently been demonstrated that there are at least two different forms of 

dopamine-mediated arousal and that these are controlled by discrete neural correlates [37].  

These include sleep/wake arousal and startle-induced arousal. 

 

            2.5.1 Sleep/wake arousal deficits do not contribute to the feeding  

behavior of AstA/NaChBac flies. 

Sleep/wake arousal and feeding behavior are linked.  Total food intake is inversely 

proportional to the time spent sleeping [38].  The total time that AstA/NaChBac flies spent 

sleeping was indistinguishable from that of controls (data not shown).  In addition, flies 

exhibit differences in feeding behavior at different times of day, and this is abolished by 

eliminating cycling of clock genes in the fat body, a tissue in which energy is stored [39]. 

In order to determine whether the feeding behavior of AstA/NaChBac flies was reflecting a 

difference in daytime arousal levels or reflecting a preference to feed at different times than 

control flies, we tested feeding at different times of day and night.  AstA/NaChBac flies 

exhibited a decreased feeding phenotype independent of the time of day or night tested (see 

Chapter 3).  These results imply that activation of AstA neurons is not altering starvation-

induced responsiveness to food cues by altering circadian activity patterns. 
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2.5.2 Startle-induced arousal does not contribute to the feeding 

behavior of AstA/NaChBac flies. 

It is possible that either stress levels or startle-induced arousal contribute to the 

decreased feeding behavior of AstA/NaChBac flies.  In insects, both stress and food 

deprivation results in the release of octopamine [20, 21], which is thought to be the insect 

equivalent of adrenaline [20].  Octopamine injection increases spontaneous locomotor 

activity, increases food intake, and promotes trehalose synthesis [40].  If activation of AstA 

neurons is suppressing octopamine release, we would expect that these flies would also 

have altered locomotor activity.  We have demonstrated that the locomotor activity of 

AstA/NaChBac flies is normal (Supplementary Figure 1a).  

Repetitive mechanical stress induces a heightened state of arousal [37], and it is 

possible that either a heightened or a dampened sensitivity to mechanical stress could 

indirectly affect feeding behavior.  The feeding behavior of AstA/NaChBac flies could 

reflect altered stress responses due to the mechanical stimulus that flies experience at the 

beginning of feeding experiments.  To test whether AstA/NaChBac flies exhibit altered 

startle-induced locomotor activity, we monitored these flies in a circadian monitor.  We 

administered a mechanical stimulus similar to that experienced by flies when transferred to 

a feeding assay, and that induced several hours of heightened activity levels in both 

AstA/NaChBac and control flies.  The increased spontaneous locomotor activity of acutely 

stressed AstA/NaChBac flies was indistinguishable from that of controls (data not shown).  

This suggests that startle-induced arousal is not contributing to the decreased 

responsiveness to food cues observed in AstA/NaChBac flies. 

 

         2.5.3  The locomotor agility and performance of AstA/NaChBac flies are  

                      unimpaired. 

Finally, we demonstrated that AstA/NaChBac flies performed no differently than 

control flies in other motivated behaviors that require locomotor agility, such as phototaxis 

and geotaxis.   Phototaxis and geotaxis are the innate attraction towards light and against 

gravity, respectively.  These behaviors can be used to motivate flies to pass through a maze 

that demands locomotor agility in order to navigate the maze successfully.  Experiments 

discussed earlier suggest that the reduced feeding of starved AstA/NaChBac flies is 
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unlikely due to decreased locomotor or foraging activity, since these flies still exhibit a 

feeding phenotype when no work is required to access food.  To further investigate this 

question, we tested the performance of AstA/NaChBac flies in both a phototaxis maze and 

a geotaxis maze.  The performance of AstA NaChBac flies was both accurate and speedy in 

both assays, and indistinguishable from that of controls (see Supplementary Figures 3c, 3d, 

and 3e).  These results confirm that AstA/NaChBac flies are unimpaired in their locomotor 

agility and that they do not exhibit a general deficit in motivated behaviors.  

 

3.  Brief summary 

We have identified a group of neurons whose hyper-activation can specifically 

inhibit some, but not all, of the normal starvation-induced changes in the behavioral 

responses to food cues.  Activation of these neurons has no effect on starvation-induced 

changes in metabolic homeostasis, food search behavior or the drive state (“motivation”) 

necessary to perform a starvation-dependent appetitive conditioning task.   
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4. Materials and methods 

Fly husbandry 

All flies were reared on standard Caltech fly food [41] at 25ºC, 70% relative humidity, and 

under a 12 h:12 h light:dark regime unless otherwise indicated.  For TRPA1 experiments, 

flies were raised at 22ºC.  Flies used for immunohistochemistry and behavior were 5–10 

day old males.  Fly lines used:  AstA-Gal4 (described in Chapter 2), UAS-NaChBac::eGFP 

(a generous gift from Dr. Bader Al-Anzi) [42], UAS-TRPA1 contained two copies of the 

responder (the recombinant was a kind gift from Kenta Asahina) [43], UAS-eGFP::Kir2.1 

[44], w (Exelixis, used for UAS-responder x w crosses), w (Dr. Tim Tully lab isogenic 

strain, used for w x Gal4 crosses),  NPF-Gal4 (Bloomington stock #25681) [45],   Crz-Gal4 

(T. Tayler, et al., unpublished), Canton-S flies obtained from Dr. Seymour Benzer, AKH-

Gal4.  Tim Tayler and I generated Crz-Gal4 transgenic flies independently.  I have 

confirmed that the expression pattern of Crz-Gal4 in these flies is specifically expressed in 

Crz-expressing neurons in third instar larvae by double fluorescent in situ/ 

immunohistochemistry.  The adult expression pattern of Crz-Gal4 transgenic flies has also 

been validated (T. Tayler, unpublished).  The expression pattern of the Crz-Gal4 in adults 

is similar to the expression pattern of Crz-Gal4 transgenic flies described in [46].   

Triglyceride, protein, and glucose measurements 

Starved flies were transferred to vials containing 1% agar.  Starved and unstarved samples 

of all genotypes were processed in parallel.  20 male flies, aged 6–9d old, were frozen and 

then homogenized in 500uL PBT (PBS +0.1% Triton X).  Samples were sonicated then 

centrifuged at maximum speed for 15 minutes.  300 uL of supernatant was then diluted ten-

fold for use in the assays.  Triglyceride levels were measured using the Stanbio 

Triglyceride Kit, and the absorbance at 500 nm was measured.  Protein levels were assayed 

using the BCA1 protein kit (Sigma), and the absorbance at 562 nm measured.  Glucose 

levels were assayed using a kit as well (Sigma GAHK-20), and the absorbance at 340 nM 

was measured.  All measurements were done using a spectrophotometer.  Both the 

triglyceride and the glucose values were normalized to protein levels.   

 

 

 

http://flystocks.bio.indiana.edu/Reports/25681.html
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Behavior 

Circadian activity and survival   

Flies were monitored in single-fly locomotor activity monitors (Trikinetics, Waltham MA).  

For monitoring locomotor activity, flies were supplied with standard fly food media.  For 

survival assays flies were supplied with 1% agar.  Survival was determined by the time of 

last beam crossing per fly.  Trikinetics data acquisition software was used to collect data in 

one-minute time bins.  Trikinetics file scan software was used to bin data into 30-minute 

time bins for generating figures of locomotor activity.   

Feeding assays 

Unless otherwise noted, all feeding assays and quantification methods were done as 

described in Chapter 3.  For the two-choice feeding assay [47], we optimized the final 

concentrations of red and blue food coloring so that mixtures in a 5:1 and a 1:5 ratio 

yielded an obvious purple mixture, distinct from the pure red or pure blue solution.   Half 

of the experiments were conducted using red 1 mM sucrose and blue 5 mM sucrose and the 

other half used the reverse combination to ensure that there was no bias introduced from 

the dyes.  Sucrose was dissolved in 0.5% agar, and 0.5 mL was pipeted into a standard fly 

vial that was positioned at a 45 degree angle.  Once the agar had hardened, the vial was 

tilted 45 degrees in the opposite direction in order to pipet the second 0.5 mL sucrose 

solution.  This created a V-shaped base of food on the bottom of the fly vial, except that the 

two sucrose patches did not touch.  Flies were wet-starved for 24 hours, and then 

transferred to the two-choice sucrose vial for 1 hour.   The abdomens of flies were then 

scored for the presence of red, blue, or purple dye under a dissecting microscope.    

Performance index (PI), which was calculated as [(# that eat 5 mM sucrose) + (0.5)*(# that 

eat both)]  /  (total # that eat). 

“Bottle fed” or hand-fed flies, were first mounted on their backs using Elmers glue.  A 

droplet of 800 mM sucrose solution containing 0.5% FD&C Blue #1 was produced using a 

10 uL pipetman, and the droplet was touched to the proboscis of the fly.  Flies were 

allowed to drink until they stopped extending their proboscis in response to the stimulus. 
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PER  

The protocol referenced in [33] was roughly followed.  Briefly, flies were mounted in 200 

uL tips without anesthesia so that they were immobilized with only their heads exposed.  

Flies were given at least 30 minutes to acclimate before being presented with water, using a 

pipetteman, directly to the proboscis.  If they extended their proboscis in response to water, 

those flies were eliminated from further data sets.  Sucrose concentrations were then 

presented directly to the proboscis from lowest to highest concentration.  The stimulus was 

promptly removed so that the flies were not able to ingest the solution.  The lowest 

concentration of sucrose which elicited a proboscis extension was noted for each fly as well 

as the percent of total flies extending their proboscis at each concentration.  Data represents 

the average of many experiments, each of which included 10–20 flies per experiment. 

Geotaxis and phototaxis  

The T-maze and the geotaxis maze were previously described [29]. For the phototaxis 

assay, flies were acclimated in the dark for one hour prior to testing.  Groups of 20 flies 

were then transferred into the elevator of the T-maze, which was oriented so that one arm 

pointed towards a bright light source.  The elevator was lowered to transfer flies into the 

two-pronged “maze” and 10 seconds later, the total number of flies in each arm of the maze 

was counted. Performance index was calculated as [(# of flies in the illuminated arm) – (# 

of flies in the un-illuminated arm)] / (total # of flies in both arms).  For the geotaxis assay, 

flies were acclimated in the dark for one hour prior to testing.  Twenty flies were 

transferred to the entrance of the geotaxis maze under red light conditions.  The maze 

branches vertically a number of times, so that flies traveling through the maze have to 

choose to positively or negatively geotax at least eight times before they exit the maze.  

The innate negative geotaxis behavior of flies is so robust, that the majority of wild-type 

flies will exit the maze from the uppermost exits within an average of two minutes.  Flies in 

the maze were watched and the time for the last fly to exit the maze was noted.  Geotaxis 

scores reflect the average level at which flies exit the maze, where nine corresponds to the 

uppermost exit and 1 to the lowest exit.  The geotaxis score represents the average level 

that a population of flies exited the maze, i.e. (# of flies at level n)*(n)/(total # of flies).   
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Data and statistics 

GraphPad Prism software was used to generate graphs as well as for statistical analysis. 

Bar graphs represent mean and standard error.  Unless otherwise noted, data was analyzed 

using one-way ANOVA with Bonferroni correction for multiple comparisons. 
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5. Figure Legends 

Figure 1.  Starved AstA/NaChBac flies do not have excess energy stores. 

(a) Survival of AstA/NaChBac, Crz/NaChBac, AstA,Crz/NaChBac flies and genetic 

controls after starvation with access to water.  Single-fly activity monitors (Trikinetics) 

were used to track the locomotor activity of wet-starved flies, and the time of last beam 

crossing was considered the time of death.  The survival of AstA5/NaChBac flies was not 

significantly different from that of +/NaChBac flies (unpaired t-test, p=0.7218), but was 

significantly different from that of AstA5/+ flies (unpaired t-test, p=0.0011).  The survival 

of Gal4/+ flies was slightly longer than Gal4/NaChBac and +/NaChBac flies (one-way 

ANOVA, p<0.0001), which was likely due to slight toxicity caused by the UAS-NaChBac 

transgene. The survival of Crz/NaChBac flies was not significantly different from that of 

AstA5,Crz/NaChBac flies, but the survival of both genotypes was significantly decreased 

compared to that of all other genotypes tested (one-way ANOVA, p<0.0001). See 

Supplementary Figure 1c for survival curves.   Crosses were UAS-NaChBac x Corazonin-

Gal4, UAS-NaChBac x AstA5-Gal4, Corazonin-Gal4, and w x AstA5-Gal4, Corazonin-

Gal4. (n=15–32)   (b) Whole-body triglyceride levels of unstarved and 24-hour wet-starved 

AstA/NaChBac flies and genetic controls.  Twenty male flies were homogenized, 

sonicated, and centrifuged, and the triglyceride levels and protein levels of the supernatant 

were measured.  Plotted are the average triglyceride/protein ratios.  The triglyceride levels 

of starved AstA/NaChBac flies were not significantly different than those of starved 

controls (p=0.3009, N=3).   Triglyceride levels were significantly depleted after 24 hours 

starvation within each genotype (unpaired t-test, p< or = 0.029).  Although triglyceride 

levels of AstA/+ were significantly elevated in unstarved flies, the levels in unstarved 

AstA/NaChBac and +/NaChBac flies were not significantly different from each other 

(unpaired t-test p=0.4008, N=3).  (c)  Whole-body glucose levels of unstarved and 24-hour 

wet-starved AstA/NaChBac flies and genetic controls.  Glucose levels of the supernatants 

described in (b) were measured.  Plotted are the average glucose/protein ratios.  Glucose 

levels of  AstA/NaChBac flies were not significantly different from those of controls, in 

both starved and unstarved conditions (p=0.8384, p=0.0787, N=3).  One-way ANOVA 

with Bonferoni correction was used to analyze data unless otherwise stated.  Averages and 
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standard error are plotted unless otherwise stated.  AstA/UAS-reporter are always plotted in 

orange, +/UAS-reporter in blue, and AstA/+ in white or black. 

 

Figure 2.  AstA/NaChBac flies do not exhibit normal starvation-induced changes in 

sucrose responsiveness.  The proboscis extension phenotype does not account for the 

feeding phenotype of AstA/NaChBac flies. 

(a) Average fraction of flies that extended their proboscis in response to different 

concentrations of sucrose.   Responses of 24-hour wet-starved flies is plotted using solid 

lines and those of unstarved flies using dotted lines.  The proboscis extension reflex (PER) 

assay [24] involves briefly touching stepwise increasing concentrations of a sucrose 

solution to the retracted proboscis of a fly and noting the presence or absence of proboscis 

extension in response to the stimulus. See Supplementary Figures 2a and 2b for statistical 

analysis. Data points in (a) represent the average percentage of flies extending their 

proboscis at each concentration, whereas in (b and c) the lowest concentration of sucrose 

that elicited a proboscis extension in individual flies is plotted (PER threshold).  (b) The 

average PER threshold of unstarved and (c) starved flies.  The PER threshold of unstarved 

AstA/NaChBac flies was not significantly different from that of unstarved genetic controls 

(p=0.4015, n>68), whereas (c) the PER threshold of starved AstA/NaChBac flies was 

significantly higher than that of starved genetic controls (p<0.0001, n>52).  (d) Average 

fraction of flies feeding on 800 mM sucrose.  Significantly fewer starved AstA/NaChBac 

flies fed compared to genetic controls (p<0.0001, N=5–9). Feeding assay parameters were 

the same as those described in Figure 1a, except for sucrose concentration and that feeding 

was scored after 20 minutes of feeding.  (e)  Average volume of 800 mM sucrose 

consumed when “bottle-fed”. Individual flies were immobilized and fed to satiation with 

800 mM sucrose containing dye.  Volume consumed by starved AstA/NaChBac flies was 

significantly less than that of control genotypes (p<0.0001, n= 17–19).   Food intake was 

measure as described in Figure 1b, except that single flies were processed in a smaller final 

volume.  (f)  Average performance index of flies in a two-choice feeding assay using 5 mm 

sucrose and 1 mm sucrose.  Wet-starved flies were given the opportunity to feed on either 1 

mM or 5 mM sucrose which contained either red or blue food coloring.  Preference did not 

differ significantly between genotypes (p=0.3922, N=4), although a significantly smaller 
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fraction of AstA/NaChBac flies fed (p=0.0005, 0.28 +/- 0.03% versus 0.71 +/- 0.04% and 

0.74 +/- 0.10%).  Half of the experiments were conducted using red 1mM, blue 5mM and 

the other half used the reverse combination to ensure that there was no bias introduced 

from the dyes.  After 1 hour of feeding, the abdomens of flies were scored for the presence 

of red, blue, or purple dye.  Performance index (PI), which was calculated as [(# that eat 5 

mM sucrose) + (0.5)*(# that eat both)]  /  (total # that eat).  

 

Figure 3.  Starvation-induced hyperactivity of AstA/NaChBac flies was normal. 

(a) Average activity levels of AstA/NaChBac flies and genetic controls during the first and 

second mornings after wet starvation.  Flies were starved on 1% agar in single-fly activity 

monitors (Trikinetics, n=32). Starvation-induced hyperactivity refers to the increase in 

average locomotor activity that becomes evident after ~ 30 hours of wet starvation, and is 

represented graphically as a widening of the activity peaks, i.e., the area under the curves of 

both the morning peak and the evening peak of activity increases with time.  Similar results 

were observed in population monitors (data not shown).  

 

Supplementary Figure 1.  Activity levels and locomotor agility were normal when 

AstA neurons were activated. 

(a) and (b) Population monitors (Trikinetics) were used to measure the total activity, or 

total beam crosses, of groups of 20 flies per fly vial.  (a) Activity levels of AstA/NaChBac 

flies and genetic controls during a 24 hour starvation period (p=0.1333, N=2–3). (b)  

Activity levels of AstA/TRPA1 flies and genetic controls during a 24 hour starvation 

period, during which the temperature was kept at 22°C for the first 22 hours and then 

shifted to 28°C for an additional 2 hours.  (c) The survival curves of Crz/NaChBac (pink 

line), AstA/NaChBac (orange line), AstA5,Crz/NaChBac flies (red line), and genetic 

controls (blue and black lines).  The survival curves of AstA5,Crz/NaChBac and 

Crz/NaChBac were not significantly different from each other (p=0.4225), but were 

significantly different from all other genotypes (p<0.0001).  The survival curve of 

AstA5/NaChBac flies was not significantly different from that of +/NaChBac flies 

(p=0.0753), but was significantly different from that of the AstA5/+ flies (p=0.0012).  Log-

rank (Mantel-Cox) Test was used to compare survival curves, (n=15–32).  Crosses were 
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UAS-NaChBac x Corazonin-Gal4, UAS-NaChBac x AstA5-Gal4, Corazonin-Gal4, and w 

x AstA5-Gal4, Corazonin-Gal4. 

 

Supplementary Figure 2. Excessively depleting energy stores does not induce 

AstA/NaChBac flies to feed. 

(a) Average fraction of flies feeding and (b) total volume consumed by 13-hour wet-

starved Crz/NaChBac flies, AKH/NaChBac flies, and genetic controls on 100 mM sucrose 

plus 500 mM NaCl.   Both Crz/NaChBac and AKH/NaChBac flies fed significantly more 

than genetic controls.  (a–d) Feeding assay parameters were the same as those described in 

Figure 1a, except for the nutrients provided and that starvation time was reduced to 13 

hours.  Total volume consumed was measured as described in Figure 1b.  (c) Average 

fraction of flies feeding and (d) total volume consumed after 13 hours wet-starved on 10 

mM sucrose.  (c) The fraction of AstA/NaChBac flies that fed was not significantly 

different from the fraction of AstA,Crz/NaChBac flies that fed, but both were significantly 

reduced compared to all other genotypes (p<0.0001, N=3–11).  (d) The average food intake 

of Crz/NaChBac flies was significantly increased under these feeding conditions relative to 

control genotypes. (Note:  multiply total nL consumed on the y-axis by 100).  UAS-

NaChBac was crossed to two independent insertions of a Crz-Gal4 contruct (referred to as 

Crz4 and Crz6) and resulted in similar effects on feeding behavior.  All previous 

experiments used Crz4 flies.  

 

Supplementary Figure 3  Starved AstA/NaChBac flies behave as though sated with 

respect to the PER assay.  

 (a and b) The average fraction of flies that extended their proboscis in response to 50 mM 

(a) and 100 mM (b) sucrose. At both these concentrations, the PER of starved 

AstA/NaChBac flies was significantly lower than that of either starved +/NaChBac and 

AstA5/+ flies (one-way ANOVA, p<0.0001).  Moreover, at these concentrations of 

sucrose, the PER of starved AstA/NaChBac flies was not significantly different from that 

of unstarved AstA/NaChBac flies or unstarved control genotypes (two-way ANOVA, 

p<0.0001). These bar graphs replot the data described in Figure 2a.  (d) Performance of 

flies in a maze that tests whether flies are attracted to light (phototaxis assay).  Unstarved 
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flies were allowed 10 seconds to enter one of two arms of a T-maze, in which one of the 

arms was brightly illuminated.  Performance index was calculated as [(# of flies in the 

illuminated arm) – (# of flies in the un-illuminated arm)] / (total # of flies in both arms).  

The performance index of AstA/NaChBac flies was not significantly different from that of 

control genotypes (p=0.4683, N=4–7).  (e and f)  Performance of flies in a negative 

geotaxis locomotor assay.  Twenty unstarved flies enter a maze that branches vertically a 

number of times, so that flies traveling through the maze have to choose to positively or 

negatively geotax at least eight times before they exit the maze.  The innate negative 

geotaxis behavior of flies is so robust, that the majority of wild-type flies will exit the maze 

from the uppermost exits within an average of two minutes.  Experiments were done in the 

dark. Geotaxis scores reflect the average level at which flies exit the maze, where nine 

corresponds to the uppermost exit and 1 to the lowest exit.  +/NaChBac flies performed 

significantly more poorly in the geotaxis assay (one-way ANOVA, p=0.0224), but 

AstA/NaChBac flies did not differ from AstA/+ flies in performance (t-test, p=0.8899, 

N=3–5).  Time to finish was computed as (total time it took for the last of ~ 20 flies to exit 

the maze) / (total # flies).  
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FIGURE 2 
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Figure 3 
 
a.   
                          day 1 morning                                       day 2 morning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 94

Supplementary Figure 1 
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Supplementary Figure 2 
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Supplementary Figure 3 
 
a.              50 mM sucrose            b.         100 mM sucrose 
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C h a p t e r  5  

DISCUSSION AND FUTURE DIRECTIONS 

Understanding the neural mechanisms that motivate us to eat is important because 

of the increasing rates of obesity and the consequential increasing rates of diabetes and 

cardiovascular disease in our society [1–3].  Drosophila melanogaster provides an 

excellent model system in which to study this complex problem because many elements of 

feeding regulation and homeostasis are conserved between Drosophila and mammals [4–

6].  Here we have presented a unique model in which to study the regulation of feeding and 

satiety in Drosophila:  A circuit manipulation that produces satiety-like behavior in 

otherwise starved flies, without affecting starvation-induced metabolic changes.  While 

control of satiety has been extensively studied in blowflies, very few examples exist of a 

robust satiety-promoting signaling mechanism in Drosophila [7–9].  Using this model of 

satiety, we have demonstrated a number of important new findings in the regulation of 

feeding in flies.  This discovery opens up countless new avenues of research that could 

potentially contribute to future medical interventions relevant to obesity, as well as to 

developing mechanisms to control agricultural pests and disease-carrying insect 

populations.   

 

1. Summary of main results 

       1.1 Characterization of AstA-Gal4 transgenic flies  

AstA has been implicated as a satiety factor and as a myoinhibitor in several other 

insects [8, 10].  Expression of AstA in feeding-related endocrine centers supports the 

possibility that AstA may play a role in the regulation of Drosophila satiety as well [11].  

In order to test this hypothesis, we generated AstA-Gal4 transgenic flies and used them to 

map the distribution of AstA-expressing neurons using a UAS-mcd8::GFP reporter.  In 

Chapter 2, we demonstrate that AstA-Gal4 is expressed in a subset of mostly adult-specific 

AstA-expressing neurons and neuroendocrine cells, including neurons that innervate the 

subesophageal ganglion (SOG), where primary gustatory information is relayed, and the 
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pars intercerebralis (PI), where Drosophila insulin-like peptide is synthesized. 

Enhancers that are sufficient to promote specific expression in a subset of AstA-

expressing neuroendocrine cells are contained within 2.1 kb of 5’ flanking sequence of the 

predicted AstA coding sequence. This short promoter sequence is sufficient to drive 

expression in 3/8 neurons in the brain, ~ 30 optic lobe neurons that innervate the medulla, 

3/13 neurons in the VNC that innervate the midgut, hindgut, and rectum, single peripheral 

neurons that sit on each wing and haltere nerves, neuroendocrine cells of the lower midgut, 

and in muscle tissue on either end of the midgut.  We also confirmed by in situ 

hybridization, that the expression pattern of AstA mimics the labeling pattern by 

Diploptera AstA immunostaining.   

In addition to further characterizing the role of AstA neurons in feeding behavior, 

which I will discuss in later sections, we will use mosaic analysis with a repressible cell 

marker (MARCM, [12]) to confirm the projection patterns of each of the three brain AstA-

Gal4 neurons, since the origin of the projections in the protocerebrum and cervical 

connective could not be confirmed.  We will also co-immunostain AstA-Gal4-expressing 

neurons with various antibodies in order to determine which neurotransmitters are co-

released.  There are a number of transgenic tools that manipulate specific neurotransmitters, 

and learning which neurotransmitter is co-expressed in AstA neurons would inform us of 

which tools we could use in the future to better understand the function of AstA neurons. 

We would like to generate AstA-Gal4 transgenic flies that express Gal4 in all AstA-

expressing neurons by amplifying a longer upstream sequence to try to capture additional 

enhancers that we might have missed.  If successful, we could generate AstA-

promoter::Ricin fusion transgenic flies using the shorter, 2.1 kb promoter sequence, and 

combine this tool with the complete-enhancer-Gal4 to probe the role of a subset of centrally 

expressed AstA neurons.   
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1.2 Activation of AstA neurons inhibits multiple starvation-induced  

feeding behaviors. 

Previously, there was no known function for AstA or for AstA neurons in 

Drosophila [9, 10].  We used transgenic AstA-Gal4 flies to demonstrate that activation of 

AstA neurons inhibits starvation-induced feeding behaviors.  A starved fly will normally 

accept lower concentrations of food and ingest larger meals [13, 14].  We have shown that 

activation of AstA neurons prevents these starvation-induced changes without preventing 

other starvation-induced behavioral changes, such a starvation-induced hyperactivity and 

starvation-motivated associative learning.   

The only other case of a manipulation that causes starvation-induced behavioral 

changes in the absence of metabolic effects is NPF, which affects all starvation-induced 

behavioral changes and therefore seems to promote a “hunger” state [15, 16].  

Investigations into the neural circuits and neuromodulators that regulate homeostasis and 

behavior in Drosophila have revealed that regulatory control is a result of opposing push-

pull forces and not of individual master regulators [17].  In terms of the regulation of 

feeding behavior, there is no known counter-regulatory mechanism to NPF that inhibits 

starvation-induced feeding behaviors without altering energy metabolism. 

 

       1.3 Changes in feeding behavior are not secondary to metabolic changes. 

We used metabolic and behavioral assays to demonstrate that activation of AstA 

neurons specifically results in the loss of behaviors typically resulting from starvation, in 

the absence of overt metabolic deficits (see Chapter 4). Fly mass, triglyceride stores, 

glucose stores, protein stores, and starvation resistance were no different from starvation-

matched animals. In agreement with these findings, activation of AstA neurons in animals 

with substantially depleted energy stores and heightened sensitivity to starvation 

(Crz/NaChBac flies), was not sufficient to prolong the survival of these flies. Therefore 

there is no evidence supporting an underlying metabolic cause for differences in feeding 

behavior when AstA neurons are activated. 
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        1.4 Tentative conclusions 

AstA neurons negatively regulate starvation-induced changes in feeding behavior, 

by inhibiting mechanisms that promote behavioral responses to starvation, either 

downstream of, or in parallel to, metabolic responses to starvation. During our 

investigations into the mechanisms responsible for the loss of starvation-induced feeding 

behavior, we discovered that the starvation-induced inhibition of increased sugar-sensitivity 

of PER and inhibition of food intake can be experimentally uncoupled.  This suggests that 

AstA neurons coordinately control several behavioral responses to starvation. 

Gene or circuit manipulations that decrease feeding behavior usually also alter 

metabolism [9, 18].   Many studies have described gene mutations or neuronal silencing 

that result in decreased feeding behavior, but few cases of gene overexpression and no 

cases of neuronal activation have been shown to decrease feeding behavior [9].  

Neuromodulators that promote feeding behavior include NPF and AKH [9]. Conversely, 

DILP overexpression results in decreased feeding behavior and increased energy stores [19, 

20].  Loss of function studies have identified several potential neuromodulators that may 

also promote starvation-induced feeding behavior, because these loss of function 

manipulations led to increased feeding behavior [21, 22], but a gain of function feeding 

phenotype (exhibiting decreased feeding behavior) has not been demonstrated for these 

neuromodulators.      

Starvation-induced changes in behavior can be uncoupled from the hunger state in 

Drosophila, i.e., these changes occur downstream of metabolic changes) [16].  Our results 

have demonstrated that activation of AstA neurons is capable of preventing starvation-

induced behavioral changes without inhibiting corresponding metabolic changes.  Many 

neuroendocrine mechanisms promote feeding behavior, and these have been documented in 

the literature [9], but we focus here on the promotion of satiety in order to piece together 

the divergent studies that might give us insight into this behavioral state.  Whereas the 

neural control of feeding behavior has been studied in the blowfly using nerve lesions and 

injections, this has been studied in Drosophila by genetically manipulating neurons and 

gene expression [7, 8].  I will address whether regulatory mechanisms are similar between 

blowflies and Drosophila and how studies in each affect the interpretation of our results. 
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2. What do my results contribute to what is known about satiety, or the control of  

starvation-induced changes in feeding behavior, in Drosophila? 

Although a number of neuropeptides have been implicated in the regulation of 

feeding, the mechanism by which they act has not been clearly elucidated [9, 18].  

Neuropeptides and neuropeptide receptors are often expressed in both central and 

peripheral sites, making it difficult to establish how their behavioral effects are achieved 

[9].  For example, NPF regulates starvation-induced feeding behaviors and is expressed in 

the both the CNS and in gut neuroendocrine cells [9]. Furthermore, the NPF receptor 

(NPFR) is expressed in both the crop and the malphigian tubules, which are involved in 

osmoregulation and excretion [18, 23].  Therefore, NPF could regulate feeding behavior by 

either modulating gustatory input or by regulating proprioceptive feedback.  A large 

number of neuropeptides and neuropeptide receptors are expressed in the stomatogastric 

nervous system and in the gut, but their function peripherally has been largely ignored [9, 

24].  In this section, I will discuss how our results relate to other neuropeptides that regulate 

feeding behavior, and will discuss potential central and peripheral mechanisms in a later 

section.    

 

       2.1 AstA neurons and NPF neurons co-regulate feeding behavior in opposing 

             directions. 

Activation of AstA neurons inhibits starvation-induced changes in feeding 

behavior.  Conversely, NPF neurons promote starvation-induced changes in feeding and 

foraging activity [15, 25].  The opposite actions of NPF and AstA neuron activation brings 

up the question of how these two neuronal circuits are related.  There are four possibilities:  

AstA neurons could be upstream of NPF neurons (Figure 1, Model 1), NPF neurons could 

be upstream of AstA neurons (Model 2), NPF and AstA neurons could act on a common 

target (Model 3), or they could act on independent targets (Model 4).   
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Figure 1.  Models of how NPF and AstA neurons regulate feeding behavior  

 

 

Since co-activation of AstA and NPF neurons partially rescues the AstA feeding 

phenotype, it rules out the first two models.  If either of the first two models were correct, 

we would have expected that co-activation mimicked the effect of either AstA or NPF 

activation on feeding behavior.  Both activation of AstA neurons and co-activation of AstA 

and NPF neurons resulted in significantly reduced feeding behavior, but co-activation 

resulted in significantly increased feeding versus AstA neuron activation.  If AstA and NPF 

neurons modulate a common post-synaptic target (Model 3), then the physiological effects 

caused by AstA and NPF neurons would need to be opposing, since the behavioral effects 

are opposing.  Potential common post-synaptic targets include primary gustatory neurons 

and peripheral proprioceptors that monitor gut activity.  Finally, these two mechanisms 

could target independent sites that regulate feeding behavior (Model 4).  For example, NPF 

neurons could modify gustatory input and AstA neurons could be promoting peripheral 

inhibitory feedback.  For this model to be correct, constitutive activation of NPF neurons 

would need to result in significantly increased NPF signaling than that caused by increased 

endogenous NPF signaling as a result of 24 hours of starvation. This is likely true, since 

constitutive activation of NPF neurons resulted in increased feeding compared to starved 

controls. 
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Figure 2.  Possible mechanisms by which NPF and AstA neurons regulate starvation-

induced feeding behavior 

                   

NPF signaling is indirectly regulated by nutritional state.  Hemolymph sugar levels 

regulate Drosophila insulin-like peptide (DILP) levels, and DILP signaling blocks NPF 

signaling.  After feeding, hemolymph sugar levels rise, which increases DILP levels, and 

DILP inhibits neurons that express the NPF receptor (NPFR) via a co-expressed DILP 

receptor (InR) (Figure 2) [15].  This means that in fed flies, the ability of NPF to promote 

feeding behavior is suppressed.  If Model 3 is correct, AstA and NPF neurons may 

antagonistically co-regulate NPFR neurons, which promote starvation-induced feeding 

(Figure 2). 

Future directions 

In order to determine whether Model 3 is correct, that AstA and NPF regulate a 

common target in an opposing fashion, we could determine whether NPFR and AstA 

neuron co-activation phenocopies the behavioral effects of NPFR neuron activation.  If we 

instead see partial rescue due to co-activation, then it would imply that NPF and AstA 

neurons do not target the same neurons (Model 4).   

 

 



 104

       2.2 Are AstA neurons involved in the regulation of feeding under normal  

             conditions? 

DILP and adipokinetic hormone (AKH) signaling inversely modulate metabolism, 

and also inversely modulate starvation-induced behavioral effects.  AKH neurons are 

sensitive to blood sugar levels [26] and low levels result in AKH secretion, which promotes 

the mobilization of fat stores in Drosophila [27, 28]. AKH mutants feed normally under ad 

libitum conditions but do not exhibit starvation-induced increases in food intake (Figure 3) 

[28, 29].  

 

Figure 3.  AKH signaling regulates fat mobilization and feeding in starved flies  

 

The mechanism by which AKH regulates starvation-induced feeding behavior is 

not known.  Both AKH and AKHR mutants do not exhibit starvation-induced increases in 

feeding behavior [28, 29].  Interestingly, arborizations of AKH-R neurons overlap with 

sweet-sensing primary gustatory neurons in the SOG, which suggests that AKHR neurons 

may mediate starvation-induced changes in sugar responses [29].  Alternatively, AKH may 

regulate feeding behavior by regulating NPF signaling.  Since AKH and AKHR mutants 

have altered energy stores, it cannot be ruled out that the feeding behavior of these mutants 

is due to some aspect of their altered metabolism compared to controls. 

Activation and silencing of Crz neurons mimics the metabolic effects of AKH 
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signaling, and Crz and AKH projections overlap in the corpus collosum, which is a 

peripheral endocrine release site [30, 31].   This suggests an interaction between Crz 

neurons and AKH signaling.  In males, Crz neurons are involved in responding to 

environmental stress, since activating Crz neurons results in increased sensitivity to 

osmotic, oxidative, and nutritional stress (starvation).   Since both Crz activation and AKH 

overexpression result in reduced triglyceride levels and starvation sensitivity, we presumed 

that these flies with compromised energy stores would be more motivated to feed.  Indeed, 

we found that activating either AKH or Crz neurons resulted in increased starvation-

induced feeding (see Chapter 4).   

 

Figure 4.  Several models that explain the interactions between Crz and AKH 

 

 There are several models to explain the interaction of Crz and AKH neurons 

(Figure 4).  Since it is well established that AKH signaling is directly involved in fat 

mobilization, Crz neurons cannot be downstream of AKH neurons in mediating this 

metabolic effect.  The first possibility is that AKH neurons promote starvation-induced 

feeding behavior by activating Crz neurons (Model 1).  Behavioral and metabolic effects 

could also be explained by a case where AKH and Crz neurons co-activate each other to 

promote common metabolic and behavioral effects (Model 3).  Another possibility is that 

Crz neurons activate AKH neurons in times of stress, as proposed by Zhao et al. [30] 

(Model 2).  Finally, as stated earlier, the feeding behavior due to AKH and Crz neurons 
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may be indirect effects of depletion of energy stores (not shown). 

Since AstA/NaChBac flies have behavioral deficits that do not accompany 

metabolic changes, AstA neurons may be acting downstream of AKH and DILP neurons.  

If AstA neurons are involved in the normal regulation of feeding behavior, four different 

types of interactions could occur (Figure 5).  High DILP levels may activate AstA neurons 

in order to inhibit starvation-induced feeding behavior (Model 1).  Alternatively, AKH 

neurons may inhibit AstA neurons in order to disinhibit starvation-induced feeding 

behavior (Model 3).  A third possibility is that AstA neurons monitor energy stores and act 

independently of DILP and AKH (Model 2).  Finally, either some other unknown 

mechanism or an intermediate signal that is downstream of DILP or AKH could regulate 

AstA neurons (Model 4). If we can establish an interaction between AstA neurons and 

DILP signaling, AKH signaling, or nutritional state, then it would demonstrate that AstA 

neurons are involved in the regulation of feeding under normal conditions. 

 

Figure 5.  Four potential mechanisms by which AstA neurons are regulated 

 

 

Future directions 

There are a number of established transgenic tools that can be used to probe the 

relationship between AstA neurons and DILP signaling.  Overexpression of both InR and 
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the dominant negative version of InR in AstA neurons could teach us about a potential 

relationship between DILP/AstA neurons.  Since AstA/NaChBac flies behave as though 

sated, it is possible that DILP functionally activates AstA neurons.   

In order to determine whether AstA neurons monitor hemolymph nutrient levels, 

we could take advantage of transgenic tools that alter the target of rapamycin (TOR) 

pathway, which is involved in nutrient sensing and requires S6 kinase (S6K), a target of 

TOR [6].  Using transgenic tools to overexpress either wild-type, dominant negative, or 

constitutively active S6K in AstA neurons, we could determine whether AstA neurons are 

sensitive to hemolymph sugar levels, and whether we can use these manipulations to alter 

feeding behavior.   

 

Figure 6.  There are several models to explain the interactions between Crz and AstA. 

 

Activation of AstA neurons fully suppressed the increased food intake phenotype 

due to activating Crz neurons. There are several models that explain the interaction 

between AKH, Crz, and AstA neurons (Figure 6).  Our results imply that Crz may not have 

a direct role in regulating feeding behavior, unless it does so via a mechanism that is 

overruled by activation of AstA neurons (Model 1).  Another possibility is that either AKH 

neurons or Crz neurons are upstream of AstA neurons, and disinhibit starvation-induced 

feeding behavior in response to stress (Models 2 and 3).  Finally, it is possible that the 

feeding behavior due to manipulation of Crz and AKH neurons is an indirect metabolic 
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effect (Model 4).  

We have also demonstrated that starvation-induced changes in feeding behavior 

occur downstream of, or in parallel with, the metabolic effects of starvation. Interpreting 

the behavioral effects of manipulating DILP, AKH, or Crz neurons is confounded by the 

simultaneous effect of these manipulations on energy stores.  Additional mechanisms that 

potentially alter starvation-induced changes in feeding behavior independent of changes in 

metabolism include NPF, leucokinin, and hugin neurons, though evidence for or against a 

role for these neurons in metabolism has not been demonstrated [9].   

 

       2.3 The regulation of starvation-induced feeding can be uncoupled from  

             the regulation of starvation-induced hyperactivity. 

Interestingly, activation of AstA neurons affected only starvation-induced feeding behavior 

and not other starvation-induced behaviors, such as starvation-induced hyperactivity.  This 

suggests that starvation-induced feeding and hyperactivity occur via independent 

mechanisms, since activation of AstA neurons abolishes the former but not the latter.  This 

conclusion is supported by the behavioral phenotype of AKH receptor (AKHR) mutants. 

Whereas both AKH and AKHR mutants display defects in starvation-induced feeding 

behavior, only AKH mutants exhibit defects in starvation-induced hyperactivity [29, 32].  

Ablation of AKH neurons results in the absence of normal starvation-induced 

hyperactivity, yet overexpression of AKH in Drosophila does not cause increased 

locomotor activity.  Two explanations for these findings are that either AKH neurons 

produce a neuromodulator other than AKH that is required for starvation-induced 

hyperactivity, or that a second AKH receptor that has not yet been identified could be 

mediating these effects.  Contrary to the results of AKH overexpression in Drosophila, 

AKH injection increases locomotor activity in other insects.  One candidate 

neuromodulator that may coordinate starvation-induced hyperactivity is octopamine.  

Octopamine injection increases spontaneous locomotor activity in several other insects [33] 

and octopamine feeding promotes locomotor activity in Drosophila larvae [34].  

Nevertheless, AKH mutants provide support for our observation that the coordination of 

starvation-induced feeding and hyperactivity occur via independent mechanisms. 

Our findings that activation of AstA neurons has no impact on the regulation of 
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energy stores, results in severely reduced feeding behavior despite excessively depleted 

energy stores (in Crz,AstA/NaChBac flies), and does not impact starvation-induced 

hyperactivity, support a mechanism by which AstA neurons inhibit feeding behavior 

downstream of or independent of AKH signaling.   

 

Figure 7 The interactions between nutritional state, neuromodulators, energy 

homeostasis, and behavior 
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Future directions 

We could utilize AstA/NaChBac flies to determine whether there are discrete sets 

of genes that independently regulate starvation based changes in metabolism and behavior.  

Using cDNA microarrays, genes that modulate starvation-induced changes in behavior 

would be upregulated in starved wild-type flies versus unstarved wild-type flies, but remain 

unchanged in starved versus unstarved AstA/NaChBac flies.  Analysis of genome-wide 

transcript expression could also aid us in identifying interactions between AstA and other 

neuropeptide signaling systems, as has been demonstrated using mutants defective in 

feeding behavior.  Larvae with mutations in klumpfuss display defective food-oriented 

behavior and feeding;  microarray analysis of these mutants revealed upregulation of 

several neuropeptides including hugin, Crz, NPF, and AKH, and resulted in the discovery 

that hugin neurons regulate the acceptance of novel foods [22].   This experiment could 

also identify or rule out additional mechanisms by which activation of AstA neurons is 

inhibiting feeding behavior, i.e., stress responses, untested metabolic differences, or 
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additional neuromodulators mediating the effects of activating AstA neurons. 

 

       2.4  Can we integrate molecular genetic approaches and neuroethological  

  approaches to studying the regulation of feeding behavior? 

Most of what we know about the neural regulation of insect satiety has come from 

blowfly studies [7, 35].  Studies in the blowfly demonstrate that in starved animals, the 

most salient cues come from inhibitory proprioceptive feedback from the foregut, crop, and 

abdomen, via the recurrent nerve (RN), median abdominal nerve (MAN), and ventral nerve 

cord (VNC).  Each of these nerves provides different strengths and types of inhibition, and 

severing any of these nerves results in hyperphagia.  Regulation of feeding and satiety in 

unstarved blowflies, however, involves only a minor contribution from inhibitory 

proprioceptive feedback; Severing the RN only had a mild effect on acceptance threshold 

and severing the MAN had no effect on acceptance threshold [36]  (refer to Chapter 1 for a 

thorough discussion). 

In Drosophila, lesioning studies to demonstrate any effect of inhibitory 

proprioceptive feedback from the periphery have not been reported.  But otherwise, 

behavioral studies in Drosophila have demonstrated that the regulatory mechanisms in 

Drosophila and blowflies are similar.  Similar to blowflies, in Drosophila carbohydrates 

have a powerful stimulatory effect on food intake, the regulatory mechanisms that control 

the feeding behavior of unstarved and food-deprived animals is different, and the regulation 

of protein and carbohydrate intake are independently regulated. 

Taken together, this suggests three possible mechanisms by which activation of 

AstA neurons regulates feeding behavior.  Either this manipulation is activating a 

mechanism that promotes ad libitum fed regulatory mechanisms, is inhibiting starvation-

induced feeding behavior, or is inhibiting feeding behavior by some alternative mechanism 

that is not involved in the normal regulation of feeding.   

Neuropeptides that have been implicated in regulating starvation-induced feeding 

behavior include AKH and NPF, but these neuropeptides are only required to regulate 

starvation-induced feeding behavior, and are not involved in the feeding behavior of 

unstarved flies [15, 28].  The only neuropeptides that have been shown to modulate the 

feeding behavior in ad libitum fed flies are DILP and hugin [20, 22, 26].  Because DILP 
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signaling also regulates metabolism and growth, the direct effects of DILP on feeding 

behavior have been difficult to determine.  The role of DILP signaling in feeding behavior, 

moreover, has been overshadowed by its role in sugar metabolism, since studies that 

interrogate the latter could provide insight into human diseases such as diabetes.  Given the 

strong foundation of behavioral and genetic studies in Drosophila, it is surprising that so 

little is known about the neuromodulators and circuits that regulate feeding behavior under 

ad libitum feeding conditions.   

         Although a few studies have demonstrated a role for DILP signaling in feeding 

behavior, it is difficult to differentiate the effects on energy stores from the effects on 

feeding behavior as a result of manipulate DILP signaling.  If feeding behavior were 

exclusively regulated by the inhibition and disinhibition of NPF signaling, then we would 

expect a much more drastic phenotype due to manipulation of NPF neurons.  Three 

potential additional mechanisms by which feeding behavior could be regulated include 

(Figure 8, Model 1) a negative feedback loop occurs between hemolymph sugar levels and 

feeding behavior, (Model 2) DILP signaling mediates this negative feedback loop, or 

(Model 3) feeding is regulated by feedback from the gut about nutritional state and gut 

content, as studies suggest in the blowfly (refer to Chapter 1).   
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Figure 8.  Mechanisms by which feeding behavior may be regulated in unstarved flies. 

 

 

3.  Are the observed feeding behavioral effects due to the action of AstA signaling? 

The function of AstA or AstA-expressing neuroendocrine cells has not previously 

been demonstrated in Drosophila. Three of the four splice variants of AstA have been 

isolated from the adult VNC (but not neural sheath) of adult Drosophila by MALDI-TOF 

mass spectrometric analysis, and at least one of these was isolated from the pars 

intercerebralis and SOG, suggesting that the isoforms may have differential tissue 

specificity [37]. It would be interesting to determine whether the AstA-Gal4 expression 

pattern reflects the expression pattern of one of these isoforms. 

Drosophila Allatostatin Receptor-1 and -2 (DAR-1, DAR-2) are G-protein-gated 

inwardly rectifying potassium channels (GIRK) and are orthologues of the mammalian 

galanin receptor family, which is a subfamily of the somatostatin receptor family [38, 39]. 

DAR-1 is highly expressed in the adult brain, whereas DAR-2 is expressed in the 

periphery,1 within the midgut, hindgut, crop, and the neural sheath [38, 40].  The 

differential expression of the two Drosophila homologues suggests that they may be 

associated with discrete functions of AstA signaling.  The function of these receptors may 

also be differentially regulated by the four putative splice variants of AstA, since they have 
                                                 
1 Contrary to several independent studies, Veenstra, 2009, reported co-expression of DAR-2 with Corazonin (Crz) in the larval 

brain, despite using the same antibody and the same experimental protocol as a previous study [38., 40,, 41]..  I also 
immunostained adult (but not larval) brains with anti-DAR-2, and my results support previous reports that DAR-2 is 
expressed in the neural sheath and not in the brain (data not shown). 
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differential binding properties to the receptors [42]. 

The simplest interpretation of our experimental results is that the behavioral effects 

of activating AstA neurons are mediated through the release of AstA itself.  However, our 

attempts to demonstrate this produced negative results (see Section 3.1).  It is possible that 

other neuromodulators or neurotransmitters co-expressed with AstA are required for the 

phenotypes we observed due to activation of AstA neurons. Neuropeptides are co-

expressed with classical neurotransmitters and sometimes with other neuropeptides, but 

whether they are co-released depends on the neuron and/or the firing frequency of the 

neuron [43].  Despite this caveat, there is a precedent for AstA in the regulation of feeding 

behavior in other insects (see Section 3.3).    

 

       3.1 Experiments I have conducted to address this question 

 I have made several attempts to address the role of AstA signaling in 

mediating the effects of activating AstA neurons.  Since our AstA-Gal4 is not expressed in 

all AstA neurons, using this tool to silence or ablate AstA neurons does not eliminate AstA 

expression in many CNS neurons.  Ablation eliminates only three of eight pairs of AstA 

neurons in the brain, and only three of 13 pairs of neurons in the VNC.  These remaining 

AstA neurons may compensate for the loss of a subset of AstA neurons in silencing or 

ablation experiments.  One approach to this question is to ask whether the effects of 

activating AstA neurons can be overridden by simultaneously knocking down AstA 

expression.  To knock down AstA expression, we could use several UAS-RNAi transgenic 

tools.   

A transgenic library of inducible UAS-RNAi lines was generated by the Vienna 

Drosophila RNAi Center (VDRC) and includes UAS-AstA-RNAi transgenic lines (two 

independent insertions), UAS-DAR1-RNAi (3 constructs, two independent insertions 

each), and UAS-DAR2-RNAi (two independent insertions) [44].  I have crossed these 

transgenic flies to pan-neuronal drivers, including elav-Gal4 and appl-Gal4, which are also 

expressed in gut neuroendocrine cells.  In order to improve cleavage of the dsRNA into 

RNAi fragments, I also co-expressed UAS-dicer.  I tested these flies and genetic controls in 

several feeding assays, and did not observe any feeding phenotypes. Q-RT-PCR 

experiments indicated, however, that levels of AstA mRNA were not diminished in 
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elav/AstA-RNAi flies.  I also tried using a stronger ubiquitous driver, daughterless-Gal4, to 

drive AstA-RNAi expression, but did not see a behavioral phenotype or knock down of 

transcript expression.  It is possible that the particular sequences used to generate these 

RNAi lines were not ideal or that transcript expression compensated for knockdown.  There 

are additional available collections of UAS-RNAi that we can test in the future.   

Another way to determine whether AstA signaling is responsible for the feeding 

phenotype, would be to phenocopy the feeding phenotype using AstA peptide injections.  

We had Drosophila AstA peptide synthesized and we also obtained synthetic Diploptera 

AstA. I injected starved, cold-anesthetized flies with either saline or with varying 

concentrations of AstA.  After a brief recovery period (flies wake up in under 5 minutes), I 

tested either food intake or the PER of the injected flies.   Neither food intake nor PER to 

sucrose was impaired in AstA-injected starved flies.   

The failure of AstA injections to phenocopy the effect of AstA neuron activation 

could be due to either methodology or to mechanism.  By methodology, I mean that either 

the synthesized peptide may not have been pure or concentrated enough, that injections or 

cold-anesthesia adversely affected starvation-induced feeding responses, or that the injected 

peptide may not have had access to relevant sites of action.  Degradation may also be a 

problem, as injected synthetic Diploptera AstA has been reported to degrade rapidly and to 

only be moderately effective (to inhibit JH synthesis in Diploptera) [10].  Several 

Diploptera AstA mimetics have been developed that are not so rapidly degraded [10], and 

we can instead use these in future injection experiments.  By mechanism, I mean that we 

might have synthesized an AstA isoform that does not normally regulate feeding. There are 

four putative AstA isoforms, and the one we had synthesized may not be expressed in the 

brain.  Another isoform of AstA has been isolated from both the pars intercerebralis and 

SOG by MALDI-TOF mass spectrometric analysis, and we will have this isoform 

synthesized for future injection experiments as well.  Alternatively, these negative results 

may indicate that the effects of AstA neuron activation on feeding may require co-release 

of another neuromodulator, or that another neuromodulator, and not AstA, is responsible 

for the behavioral phenotypes observed.  
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        3.2 Future experiments to address this question 

 Besides peptide injection, there are other ways to address the role of AstA 

signaling in feeding behavior.  Since most neuromodulators involved in feeding behavior 

are regulated in response to nutritional state, we would like to determine whether AstA 

levels are sensitive to nutritional state as well.  Transcript levels of neuropeptides that are 

normally upregulated due to starvation, such as hugin, Crz, NPF, and AKH, are also 

elevated in larval klumpfuss mutants, which have impaired feeding behavior and die of 

starvation [22].   If AstA levels change in response to starvation, it would support a 

function for AstA signaling in the regulation of feeding.  Furthermore, looking for changes 

of AstA levels in the brain versus the gut could illuminate which regions of the gut/brain 

are involved in sensing nutritional state.  We will use an antibody to quantify relative levels 

of AstA expression and simultaneously use UAS-ANF::GFP to visualize peptide release 

[45, 46].  In addition to comparing AstA levels in starved versus unstarved flies, we would 

also like to look at the effects of altering nutritional regime on AstA expression in various 

tissues.  There are several transgenic tools I would like to generate to establish a 

requirement of AstA in feeding behavior.  We could use UAS-AstA transgenics in order to 

overexpress AstA in various tissues, which would also allow us to determine whether AstA 

signaling is sufficient to regulate feeding behavior.  Furthermore, we could limit 

overexpression using various Gal4 drivers in order to determine whether effects of AstA 

are central or peripheral.  Since DAR-1 and DAR-2 are exclusively expressed centrally or 

peripherally, respectively, generating Gal4 enhancer traps of these receptors would be 

useful to determine the site of action of AstA.  We will address additional experiments that 

could differentiate the site of action of AstA as well as determine whether other 

neuromodulators are required, in later sections. 

  

       3.3 Orthologues of AstA signaling regulate feeding behavior  

                 3.3.1 In arthropods 

 As mentioned in Chapter 1, AstA has been demonstrated to promote satiety 

in other insects.  It is involved in signaling nutritional stress, promoting a metabolic switch 

towards fat storage, and decreasing food intake.  Many studies support a role for AstA in 

sensing nutritional or environmental stress, since AstA is regulated in response to 



 116

starvation [10].  Some of the reported effects of AstA signaling may be indirect, as a result 

of the inhibition of Juvenile Hormone (JH) [10].  Since DAR-1 is expressed in the nervous 

system in Drosophila and AstA does not regulate Drosophila JH, suggests that AstA has 

retained other neuromodulatory functions [11, 38].  The co-expression of AstA and 

serotonin in the SGS of crabs and lobsters [47, 48], and the studies implicating serotonin to 

inhibit feeding in several insects including Drosophila [49, 50], suggests that serotonin may 

be mediating the effects of AstA neuron activation.        

 

                 3.3.2 In nematodes 

An allatostatin/galanin-like receptor in Caenorhabditis elegans, NPR-9, promotes 

food-leaving behavior in the presence of food cues without affecting gustatory 

discrimination [51].  NPR-9 is expressed exclusively in one pair of neurons, named AIB, 

that determine sensory-dependent locomotor behavior.  These neurons are required for the 

stereotyped enhanced forward motion exhibited in the absence of food.  NPR-9 is 

necessary and sufficient to promote food-leaving behavior. 

 

                 3.3.3 In mammals 

Although the peptide sequence of AstA has not been conserved in mammals, six of 

seven transmembrane sequences of DAR-1 have 50–70% amino acid similarity with the 

mammalian somatostatin family of GPCRs, and are most similar to the mammalian galanin 

subfamily of GPCRs [38].  Galanin and galanin receptors are expressed in brain regions 

that regulate satiety in mammals (including the hypothalamic arcuate nucleus), and are 

involved in the regulation of feeding behavior [52–54].  Knockouts of galanin exhibit 

normal feeding behavior on low-fat foods, and have normal responses to starvation, but 

become obese on a high-fat diet [52].  This suggests that galanin is not involved in the 

normal regulation of feeding, but is instead involved in only context-specific regulation of 

feeding behavior.  

Further support for a context-specific function in feeding, is that leptin injection 

induces galanin expression, whereas starvation has no effect on galanin expression [55].  

Interestingly, galanin knockouts are much more sensitive to the effects of leptin, which 

suggests that galanin antagonists may have the potential to be used to treat obesity. The 
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exact function of galanin in feeding behavior remains to be determined, but one hypothesis 

has been proposed that the function of galanin signaling may be to reduce the negative side 

effects produced by by-products of fat metabolism (when fed on a high-fat diet), by 

reverting to increased carbohydrate metabolism [52]. 

 

       3.4 Conclusions and future directions 

Multiple animal models suggest a conserved role for allatostatin/galanin signaling 

to modulate food intake in response to nutrient-based stress. Our results demonstrate that in 

Drosophila, AstA neuron signaling represses certain behavioral responses to nutritional 

stress. In future studies, we would like to determine whether AstA signaling is mediating 

the behavioral effects we observed upon AstA neuron activation.  Since the AstA-Gal4 

transgenic flies that we generated were only expressed in a minority of AstA neurons in the 

brain and VNC, we cannot determine from our silencing and ablation studies whether AstA 

signaling is required in feeding behavior.  The finding that DAR-1 and DAR-2 are 

expressed centrally and peripherally, respectively, affords us the opportunity to distinguish 

between a role for central versus peripheral AstA neurons to mediate the feeding phenotype 

of AstA/NaChBac flies (assuming that the feeding effect is not due to a co-expressed 

neuromodulator with different targets.) 

 

4.  What is the circuit-level mechanism that underlies the effect of AstA neuron 

activation to inhibit starvation-induced feeding behaviors? 

       4.1 Neural mechanisms that regulate blowfly and Drosophila satiety 

In the unstarved blowfly, MAN transection has no effect on feeding behavior, 

suggesting that crop distention has no effect on the feeding behavior of unstarved flies [36].  

In unstarved Drosophila, the crop is barely utilized for food storage unless fed flies are 

nutrient-deprived due to a diluted or unbalanced food source [36].  If proprioceptive 

feedback from crop distention is disregarded in fed flies, it would explain why MAN 

transection in blowflies has no effect on feeding, and why in Drosophila a low 

concentration (low stimulating) food source could overcome inhibitory proprioceptive 

feedback from the crop to induce feeding.  Nutritional state determines the mechanisms 

that regulate feeding behavior (refer to Chapter 1).   



 118

        4.2 Does activation of AstA neurons inhibit feeding behavior by promoting  

              proprioceptive feedback? 

Starved AstA/NaChBac flies behaved as though unstarved in that they minimally 

utilized crop storage even though all metabolic assays indicated that starvation-induced 

metabolic changes were no different than controls. If we assume that the mechanisms to 

promote satiety in blowflies are conserved in Drosophila, since we observed such a robust 

inhibition of starvation-induced feeding behavior upon activation of AstA neurons, then 

one obvious interpretation is that activation of AstA neurons in Drosophila directly or 

indirectly transmits inhibitory proprioceptive feedback to the CNS. 

In several species of moth, AstA is expressed in the frontal ganglion and in nerves 

projecting to the brain and through the RN [8].  The larvae of these moths exhibited 

decreased feeding when injected with AstA during a feeding stage [8].  Since AstA is 

released at neurohemal release sites, it is possible that even though expression of AstA 

within the RN may not have been conserved in Drosophila, the target neurons expressing 

AstA receptors may have been conserved.   

The mechanisms by which AstA neuron activation could potentially mimic 

inhibitory proprioceptive feedback in Drosophila is by inhibiting either foregut or crop 

contractions, or by inhibiting proprioceptive information from being transmitted.  

Peripheral sites of AstA expression that could inhibit feeding behavior include midgut 

muscle, midgut neuroendocrine cells and motor neurons innervating the midgut and 

hindgut.  AstA is not expressed in sensory neurons in the gut, but since DAR-2 is expressed 

in the midgut and crop [40], it would be informative to determine whether DAR-2 is 

expressed in peripheral sensory neurons. 

 

                 4.2.1 Proventriculus  

In the midgut, we observed co-labeling of muscle near the proventriculus.  The 

proventriculus, also called the cardia, is the stomach in insects, and serves as a valve 

permitting transfer of food from the foregut to the midgut [18].  AstA is expressed below 

the proventriculus in a similar region as another another peptide, leucokinin, that is 

required for regulating meal size ([21], see Chapter 1).    If AstA neuron manipulation were 

involved in only modulating meal size, we would expect all flies to feed, but imbibing 
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smaller volumes. After 24 hours of starvation, 100% of leucokinin mutants consumed food, 

whereas a smaller percentage of AstA/NaChBac flies feed compared to controls.   

We have ruled out the possibility that the feeding phenotype of AstA/NaChBac 

flies is due to an inability to transfer food to the midgut or the crop by visual inspection.  

An impairment in cardiac valve function does not prevent hungry flies from feeding, as the 

crop duct is anterior to the proventriculus and food can enter the crop. Support for this 

argument lies in the feeding behavior of flies carrying mutations in the gene drop-dead.  

These mutant flies are unable to transfer food into the midgut yet their crops are bloated 

with food [56].  These mutants eventually die of starvation among other problems.   

 

                 4.2.2 Motorneurons 

Since AstA is expressed in motor neurons innervating the gut, we addressed the 

possibility that AstA/NaChBac flies were impaired at moving food through the gut.  

Despite this expression in motor neurons, I saw no evidence of constipation, decreased 

excretion, decreased regurgitation, etc.  After 24 hours of starvation, very little food 

remains in the gut of AstA/NaChBac flies, implying that excess food is not impairing their 

ability to imbibe food.  Although this does not rule out the possibility that AstA is 

inhibiting gut contractions, it suggested that constipation/ability to ingest was not affected. 

 

     4.2.3 Midgut neuroendocrine cells  

AstA expression in neuroendocrine cells in the posterior midgut could secrete 

neuromodulators that target gut muscle or sensory neurons (Figures 2d–f). It is not known 

whether neuroendocrine cells are excitable or how overexpression of a sodium channel 

would affect the function of these cells.  There are a variety of neuroendocrine cells in the 

midgut of Drosophila and they express a large number of neuropeptides, including NPF 

[57].    

 

    4.2.4 Humoral factor 

 Activation of AstA neurons could release a neuromodulator into the hemolymph 

which could target peripheral tissues, the SGS, or the CNS.  In blowflies, paracrine 

gut/brain signals were not sufficient to inhibit feeding behavior in transfusion or parabiotic 
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studies  [35].  Contrary to these findings, injection of several neuromodulators was 

sufficient to inhibit feeding, including dopamine, serotonin, and sulfakinin [58, 59].   

Future experiments 

Activation of AstA neurons could be affecting feeding behavior by promoting 

inhibitory proprioceptive feedback from the gut.  If this is the case, a requirement for AstA 

neurons in the gut for normal feeding behavior is not necessary or is redundant, because 

silencing or ablation of these neurons has no effect on feeding.  Potential targets include gut 

muscles, proprioceptive sensory neurons, and the SGS. 

 Although I saw no evidence of overt effects on gut motility in 

AstA/NaChBac flies, I will quantify gut motility in more detail in these flies.  To address 

potential myoinhibitory properties of AstA neurons, I will try bath application of synthetic 

AstA alone or in combination with serotonin and proctolin.  In other insects, bath 

application of AstA could only inhibit proctolin-induced gut contractions. 

We could attempt nerve transection in Drosophila to determine whether inhibitory 

proprioceptive feedback regulates Drosophila satiety and if so, whether feeding is rescued 

in AstA/NaChBac flies due to nerve transection.  Since octopamine injection mimics the 

effects of RN/MAN transection [60], we could test whether octopamine injection rescues 

the AstA/NaChBac feeding phenotype.   

 Experiments and transgenic tools described in Section 2 could also address 

whether activation of peripheral AstA neurons is responsible for the feeding phenotype.  

Determining whether starvation, feeding, or feeding regime alters AstA signaling in the gut 

could demonstrate whether AstA normally functions in the regulation of feeding.  We 

could drive UAS-AstA expression peripherally or silence DAR-2 neurons to determine 

whether these modulations phenocopy the effects of AstA neuron activation.  

 

         4.3 How could central sites of AstA expression contribute to the behavioral  

                  effects of activation of AstA neurons?  

The activation of AstA neurons that innervate the SOG, the Pars intercerebralis, the 

protocerebrum, and the optic lobes could impair feeding behavior.  In addition to being 

potential downstream targets of inhibitory proprioceptive feedback, these brain centers 

have each been implicated in the regulation of feeding behavior. 
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     4.3.1 Subesophageal ganglion 

The SOG receives primary gustatory input and also contains motor neurons and 

SGS neurons that control various aspects of feeding behavior [61].  How gustatory 

information is processed and how this is integrated with nutritional state to execute feeding 

behaviors is not well understood [18, 62].   We have shown that gustatory acuity and 

discrimination is intact in AstA/NaChBac flies.  AstA/NaChBac flies are also capable of 

executing the motor patterns that control feeding behavior.  We have discussed 

mechanisms by which activation of AstA neurons could affect gustatory 

integration/feeding decision centers in a previous section.  

 

        4.3.2 Pars intercerebralis 

 AstA neurons project to the Pars intercerebralis (PI), which contains a 

number of neurosecretory cells that project to peripheral neurosecretory sites [63].  The PI 

is involved in regulating growth and metabolism, egg development, and color change [64, 

65].  DILP-expressing neurons that are critical for growth and development have cell 

bodies located in the PI [19, 27].  These neurons monitor hemolymph sugar levels and 

DILP signaling regulates fat storage and feeding behavior (see Section 2 for a discussion of 

DILP signaling). 

 

         4.3.3 Protocerebrum 

 AstA neurons have extensive projections in the protocerebrum, which 

contains higher processing centers. The superior lateral neuropile is “invaded” by 

secondary-to- quaternary visuo-, chemo-, mechanosensory systems [66, 67].  Several 

studies have demonstrated that the mushroom bodies in the protocerebrum integrate 

gustatory inputs [68, 69].    

 

          4.3.4 Optic lobes 

AstA is expressed in ~ 30 optic lobe neurons that innervate the medulla [11].  While 

this is not a feeding-related center per se, feeding is affected by light exposure and by 

internal circadian rhythm [70].   

Flies exhibit two peaks of locomotor activity daily, when lights are turned on and 
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when lights are turned off, with relatively little activity in between these peaks [71]. 

Cycling of clock genes not only regulates circadian rhythm, but is autonomously required 

for the proper functioning of a surprising number of tissues [72, 73].  Drosophila exhibit 

cycling in their feeding behavior, with a peak in feeding behavior in the late morning, and 

abolishing clock genes in the fat body abolishes this cycling in feeding behavior [70].   

Flies exposed to constant light feed more than flies exposed to a 12:12 light:dark 

cycle.  Exposing flies to constant light causes arrhythmia [74] and results in excess feeding 

due to either constant activity or to interferences with sleep patterns  [35].   

Diapause is a state of dormancy employed by insects to survive harsh 

environmental conditions [75] such as low temperatures and short length of day.  In 

Drosophila, diapause is impaired in mutants in couch potato.  These mutants are 

hypoactive and exhibit only weak phototaxis and negative geotaxis [76].  

 

Conclusions 

We demonstrated that activity levels of flies during the 24 hours prior to starvation 

of AstA/NaChBac and AstA/TRPA1 flies did not differ from controls.  The decreased 

feeding phenotype of AstA/NaChBac flies persisted despite time of day tested.  Given that 

we were testing starved flies, any differences in circadian dependent patterns of ad libitum 

feeding behavior ought to be overwhelmed by the state of deprivation.  There was no 

evidence that AstA/NaChBac flies were in a state of diapause, because energy stores were 

not increased, starvation resistance was not increased, geotaxis and phototaxis was normal, 

and egg production and fertility was normal (data not shown).  Therefore the decreased 

feeding behavior of AstA/NaChBac flies cannot be explained by circadian influences.    

 

5. Other potential neuromodulators mediating the effects of activating AstA  

neurons 

         5.1 Serotonin 

Given the function of serotonin in both invertebrates and vertebrates to decrease 

food intake, it is possible that AstA neurons are serotonergic [77].  In the blowfly, serotonin 

injection inhibits both sugar and protein intake [58, 78].  Injection also resulted in an 

increased acceptance threshold as well as weight loss.  Activation of AstA neurons does not 
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result in weight gain, but this might be explained by the fact that AstA-Gal4 is expressed in 

only a small number of neurons, whereas serotonin is expressed in around 100 neurons in 

the brain.  Also, serotonin is found in Drosophila pharyngeal muscle, proventriculus, and 

gut [49].   It is also found in the stomatogastric nervous system of other invertebrates, and 

allatostatin has been found to be co-expressed with serotonin in the stomatogastric nervous 

system of Crustacea [43].  Allatostatin is co-expressed with serotonin in stretch receptor 

neurons innervating the stomatogastric nervous system of crab and lobster, and in vitro 

studies have demonstrated that allatostatin and serotonin inhibited gastric mill 

rhythm/contractions [43].  Interestingly, the effects of allatostatin on the spiking of stretch 

receptors in the crab, Cancer borealis, was dependent on prior activity; inhibition of 

spiking was more pronounced at low stretch amplitudes and with prolonged exposure [79].  

In Drosophila, a null mutation in one of the enzymes required for serotonin production also 

exhibited a decreased feeding phenotype [49].  Based on these studies, it seems likely that 

AstA and serotonin are coexpressed in Drosophila as well.  Manipulation of serotonin 

levels may be responsible for the feeding phenotype we observe in AstA/NaChBac flies.  

Alternatively, AstA and serotonin levels may jointly regulate feeding behavior. 

PDF neurons, which coordinate circadian rhythms, project to the medulla, and it has 

been speculated that they may receive input from serotonergic neurons in this region.  AstA 

neurons in the optic lobe project to the base of the medulla, and it would be interesting to 

determine whether these neurons are also serotonergic, and to determine their pre-synaptic 

inputs and post-synaptic outputs.   

Future directions 

If we determine that serotonin and AstA expression overlap, it could give us an 

opportunity to 1) determine if we might be able to target a subset of AstA neurons, 2) 

determine whether excess serotonin levels are responsible for the feeding phenotype, 3) 

identify a silencing phenotype, and 4) confirm a role for serotonin in feeding behavior. 

In order to determine whether the two are co-expressed in the same neurons, we 

will use immunohistochemistry in order to co-label AstA-Gal4/UAS-mcd8::GFP brain, 

VNC, and gut tissue with antibodies against GFP and serotonin.  If no overlap occurs, we 

would then attempt co-labeling with antibodies to serotonin receptors.  If we see overlap in 

expression, it is possible that only a subset of AstA-Gal4+ neurons overlap with serotonin 
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expression.  This would give us the opportunity to identify which subset of neurons are 

responsible for the feeding phenotype.   

Various tools have been used in Drosophila to successfully manipulate serotonin 

levels and alter behavior, including feeding of serotonin agonists and antagonists, null 

mutations in enzymes required for serotonin synthesis (Tph1 and 2), and UAS-Tph 

transgenic flies [49, 80].  In addition, we can use THGal80 to discriminate serotonin from 

dopamine requirement [16]. 

 

       5.2 Hugin 

Activation of AstA neurons may represent the reverse of silencing hugin neurons.  

Flies in which hugin neurons are silenced exhibit an increased rate of acceptance of a novel 

food source [22]. Silencing hugin neurons in unstarved adult flies resulted in feeding 

sooner than but not more than controls flies, but only when transferred from regular fly 

food to yeast paste.  Silencing did not alter the rate of accepting a novel food source in 

starved flies, possibly because starved wild-type flies increase their rate of acceptance as 

well, compared to unstarved wild-type flies.  Another interpretation of this data is that 

hugin neurons regulate protein feeding, since standard fly food is not typically rich in 

protein content. 

To test whether the activation of AstA neurons is impairing the rate of acceptance 

of a novel food source, we tested feeding on normal fly food, and still saw decreased 

feeding behavior of AstA/NaChBac flies.  We also tested whether AstA/Kir2.1 and 

AstA/TNT had an increased rate of acceptance of a novel food when unstarved, and did not 

observe differences compared to controls.  We also tested whether minimizing stress levels 

during feeding assays was either promoting feeding in control flies or whether this was 

uncovering a context-dependent feeding phenotype in AstA/NaChBac flies, and still saw 

normal feeding behavior of control flies and decreased feeding behavior of AstA/NaChBac 

flies.  
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       5.3 DILP-7 

In Drosophila, there are seven genes encoding DILPs.  The DILPs I have been 

referring to throughout my dissertation are DILP-2, DILP-3, and DILP-5, which are 

expressed in the pars intercerebralis and have functional roles in growth and metabolism 

[5].  DILP-6 is expressed in the fat body and also plays a role in growth and development, 

as it is required to maintain growth during the non-feeding stage of metamorphosis [81, 

82]. In contrast, DILP-7 is not essential for growth and development, but instead is 

involved in food-based decision-making. 

The evidence against the involvement of DILP-7 in growth and development is that 

flies with a null mutation in DILP-7 exhibit normal development time, body weight, lipid 

and glycogen content, starvation and paraquat resistance, viability, lifetime fecundity, or 

median lifespan [83].  Further support for this suggestion, is that both the survival and body 

weight of flies with combinatorial mutations in DILP-2, -3, and -5 or in DILP-1–5 were 

significantly reduced, and combining these combinatorial mutants with a null mutation in 

DILP-7 did not further decrease survival or body weight.  While not being required for 

growth and development, and not being sufficient to compensate for the loss of other 

DILPs, an independent study demonstrated that constitutive overexpression of DILP-7 

using armadillo-Gal4 (a housekeeping gene, thus expressed everywhere) resulted in a 

increase in body weight of adults [20].  This effect on body weight was likely due to 

overexpressing DILP-7 at much higher levels throughout the body than might be expected 

from the endogenous DILP-7 enhancer.  Evidence for low levels of DILP-7 endogenous 

expression levels is that DILP-7 expression was not detectable by in situ hybridization in 

adults [20]. 

Several studies have implicated DILP-7 in the regulation of feeding behavior.  One 

study demonstrated a role for DILP-7 neurons in the rate of food intake.  Silencing DILP-7 

neurons did not have any effect on food intake unless provided a low-nutrient food source, 

in which case food intake was increased compared to control flies [24].  Feeding behavior 

was increased during 24 and 48 hours of feeding on 26 mM sucrose plus 0.6% yeast, 

whereas food intake was normal when provided a nutritious diet, which contained sixfold 

the amount of sucrose and yeast.   

Another study demonstrated a role for DILP-7 in determining oviposition site.  
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Overexpression of DILP-7 by either using hs-DILP-7 (a heat shock promoter fused to 

DILP-7) or by using DILP-7-Gal4/UAS-DILP-7 reduced or eliminated the oviposition 

preference of females, respectively [84].  Whereas wild-type females preferentially laid 

eggs on lobeline when given the choice between this aversive tastant and sucrose, over-

expressing DILP-7 either suppressed or eliminated this preference.  The nature of this 

oviposition preference of wild-type flies is peculiar, given the stimulatory value of the 

sucrose (100 mM) and the lack of nutritional value of the lobeline (which did not contain 

any sucrose).  Both oviposition sites contained 1% ethanol, which might have added 

stimulatory value to the lobeline.  The effects of overexpressing DILP-7 were not further 

examined in this study.   

In wild-type flies, nutritional state did not effect the decision to lay eggs on 

lobeline, and wild-type flies visited either food source an equal number of times [84]. This 

suggests that flies do not indiscriminately choose the location to lay eggs or that nutritional 

state would alter this choice.  In fact, the preference against laying eggs on 100 mM 

sucrose of wild-type females was upheld when given the choice between sucrose and 

agarose.  These findings suggest that overexpressing DILP-7 is not reflecting the behavior 

of a “sated” fly.  When DILP-7 neurons were silenced, using DILP-7-Gal4/UAS-Kir2.1, all 

egg-laying motor patterns were abolished, rendering these flies sterile.  In addition to the 

expression pattern of DILP-7 in both the female reproductive tract and the SOG, this 

suggests that DILP-7 signaling may be involved in integrating gustatory cues to inititate 

oviposition motor patterns. 

The expression pattern of AstA and DILP-7 in the larval brain is surprisingly 

similar (data not shown).  Similar to AstA expression in the VNC, DILP-7 is expressed in 

several pairs of large abdominal ganglion neurons that project to the hindgut and rectum, in 

three pairs of lateral dorsal neurons, and in a pair of central medial neurons [84].  

Immunostaining images of DILP-7 in the adult brain in Yang et al. [84], shows a strong 

signal in the posterior SOG, in the same location that AstA and AstA-Gal4 label a pair of 

cell bodies.  In contrast to antibody staining, DILP-7-Gal4 was not expressed in the dorsal 

medial SOG, which could be explained if additional enhancers of DILP-7 expression were 

missing in the DILP-7-Gal4 transgenic construct. It is also possible that the DILP-7 

antibody is not specific, and is detecting the expression of other DILPs in the SOG.  In the 
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adult, the DILP-7 cell bodies in the abdominal ganglion send projections through cervical 

connective to the SOG and also to the hindgut, rectum, and to the female reproductive tract.  

Although the AstA-Gal4 transgenics and the anti-AstA antibody do not show expression in 

the female reproductive tract, it is possible that the VNC neurons that project to the hindgut 

and rectum overlap with DILP-7 neurons.  Both the AstA-Gal4 transgenics and the anti-

AstA antibody also show expression in the ventral nerve cord and the SOG, but the origin 

of the projections in the cervical connective is not clear.   

This similarity in expression patterns is especially intriguing due to the proximity of 

Drosophila AstA receptor 1 (DAR-1) and Drosophila insulin-like peptide 7 (DILP-7) on 

the X chromosome (DAR-1 is located only ~ 1.3 kb upstream of DILP-7 and in the same 5’ 

to 3’ orientation).  The close proximity of two genes involved in feeding decision-making 

suggests that there may be common enhancers for these genes.  Although microarray data 

suggest that DAR-1 is exclusively expressed in the CNS [40], the expression pattern of 

DAR-1 is undetermined because in situ hybridization of GPCRs has generally posed a 

challenge.   

  These observations suggest a possible overlap between DILP-7 and either AstA or 

DAR-1 expression.  Arguing against DILP-7 and AstA co-expression though, is a report 

that larval DILP-7 neurons weakly express proctolin, which is a widely expressed 

neuropeptide that stimulates gut contractions.  In several insects, AstA has been reported to 

inhibit proctolin-induced gut contractions [8, 85].  But since cases/examples exist where 

neuropeptides with counteracting functions are co-expressed, this finding may not exclude 

the possibility that AstA and DILP-7 are co-expressed. 

Also intriguing, is the fact that DILP-7 is the most conserved DILP in Drosophila, 

and is in fact the only DILP with homology to other ILPs outside of Drosophila species.  

Similarly, AstA is found in almost all insects/arthropods studied, and at least 431 different 

isoforms of AstA have been observed in arthropods (!!).  The extent of conservation of 

each of these molecules suggests an important role in evolution.  Although the sequence of 

the neuropeptide AstA has not been conserved across the animal kingdom, the sequence of 

the receptors of AstA, DAR-1 and DAR-2, has been conserved.  In C. elegans and in 

mammals, receptor orthologues of DAR have similarly been implicated in regulating 

feeding behavior.  The close proximity of DILP-7 and DAR-1 on the X chromosome may 
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have co-conspired in the evolutionary conservation of these two signaling systems. 

Evidence for a role of DILP-7 in food-based decision-making without displaying a 

role in growth and development, in combination with potential overlap of DILP and 

AstA/DAR1 expression, begs the question of whether DILP-7 signaling is driving the 

phenotype we observed upon AstA activation, an impairment of feeding decision-making 

without a role in metabolism.  Another possibility is that these two signaling systems are 

interacting.  I can address this possibility by using the feeding and oviposition assays 

described in the DILP-7 studies to examine whether AstA/Kir2.1 flies exhibit similar 

phenotypes as DILP-7/Kir2.1 flies.  Further characterization of DILP-7 overexpression is 

necessary as well as characterization of DILP, AstA, DAR-1, and InR expression patterns.  

Given the number of DILP-7 tools available, we could also determine whether AstA-

Gal4/UAS-DILP phenocopies the observed phenotype of activating AstA neurons, and 

whether AstA-Gal4/UAS-NaChBac/UAS-DILP-7-RNAi rescues the phenotype.   

 

6. Summary 

         The aim of this dissertation is to gain insight into the neuromodulators and neural 

mechanisms that regulate satiety.  Since many mechanisms that regulate mammalian 

feeding behavior have been conserved in Drosophila and other insects [4, 8], we sought to 

better characterize how feeding behavior is regulated in Drosophila.  I optimized a set of 

assay parameters that clearly distinguishes the hunger-state of flies.  I utilized this assay to 

identify a circuit manipulation that inhibits starvation-induced changes in feeding behavior.  

Activation of AstA neurons results in reduced starvation-induced changes in food 

responsiveness and food intake and this manipulation does not alter any other changes that 

normally occur in response to starvation.  This suggests that we have tapped into a 

mechanism that regulates a specific subset of starvation-induced changes in feeding 

behavior and that is independent from general starvation-induced behavioral responses and 

energy metabolism.  A mechanism that promotes satiety but that does not alter energy 

metabolism has not previously been identified in Drosophila.  This may be because studies 

in Drosophila have focused on energy metabolism and not feeding behavior, or because 

studies have focused on larvae, which are in a growth phase and feed continuously.   
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            Given the precedent of AstA to act as a satiety factor in other insects, and given the 

precedent of orthologues of AstA receptors in the regulation of feeding behavior, suggests 

that my findings that activation of AstA neurons inhibits feeding behavior are 

evolutionarily relevant.   Identifying the mechanism by which activation of AstA neurons 

reduces feeding behavior has been complicated by the fact that AstA-expressing neurons 

are located in multiple anatomical locations that could regulate feeding behavior. 

Furthermore, I found a gap in the literature, between studies that characterized the 

molecular genetics underlying the regulation of feeding behavior in Drosophila and studies 

that used nerve lesions to characterize the regulation of feeding behavior in other insects.  

Many of the neuropeptides and neuropeptide receptors that have been implicated in the 

regulation of feeding behavior and that were identified in Drosophila studies, are expressed 

in the nervous system, in the gut, and also at potential neurohemal release sites, yet the 

majority of these studies have ignored a potential peripheral mechanism of action of these 

neuropeptides.  A number of reviews have pointed out this gap in the literature:  the adult 

SGS is not well characterized in terms of its role in the regulation of feeding, digestion, and 

metabolism, and a large number of neuropeptides and neuropeptide receptors are expressed 

in various regions of the gut.  The neural mechanisms that regulate feeding behavior have 

been extensively studied in blowflies, and suggest that peripheral feedback from the gut 

plays an important role in the regulation of feeding behavior, and this finding is consistent 

with studies conducted in other insects.   

         Since this discrepancy in the literature, between a focus on central mechanisms in 

Drosophila studies and peripheral mechanisms in blowfly studies, has made it difficult to 

interpret my findings, I have used this opportunity to develop several models that could 

integrate the discrepancies between the role of neuromodulators in the regulation of feeding 

behavior, the role of central and peripheral mechanisms in the regulation of feeding 

behavior, and the role of nutritional state in the regulation of feeding behavior. 
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Supplementary Figure 1 (S1) 
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Supplementary Figure Legend 1 

 (a) Dose-response curve for avoidance behavior to CO2.  Flies were sorted without the 

use of CO2 anaesthesia for this experiment.  Each point represents the mean±SEM of n=3 

determinations, 50 flies per determination. (b) Dose-response curve for activation (F/F) 

of GR21A+ neurons to CO2 , using the UAS-GCaMP reporter.   
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