




















































































































































































































































































and 

where 
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umod(a) = - J J IV' "p(a,?, V' "z(a'?l 

Z'" (a')(a] - + Z"2(a')(a2 - d ' 
X Iz",(a')(a] + Z"2 (a') (a2 _ a , 

( ')T (')TI ap ap IV' "p a , V' "z a = -a Z"2 - -a Z"'. 
U1 0:2 

The difference is 

Dif(a) = (ul - umDd) (a) = - J J IV' "p(a'f, V' "z(a'?l x K(a, a')da' , 

where 

K z(a) - z(a') z,,' (a')(a] - aD + z"2(a')(a2 -
(a, a) = Iz(a) _ z(a')13 - Iz", (a') (a] _ + Z"2 (a') (a2 _ . 

It follows from the smoothness of z that (simHar to the proof in the chapter of existence 

proof) 

lim K(a, a') :0; I A 'I 
0'_0 Q-Q: 

(5.15) 

if 8], 8 2 , and 83 are sufficiently small, which is guaranteed by our assumption at time t = o. 

Consequently, for each z E S, Dif(z(a)) is a regular integral. This means that the 

integral is continuous with respect to a. Thus, there wifr'be no jump on the integral when 

moving from one side of the real a2-axis to the other side of the real a2-axis. 
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Furthermore, since 

wmod = wi - Dij , 

where wmod is the velocity evaluated from the model equation, from equations (5.12) and 

(5.13), it can be shown that 

wmod(a) = -w/oc(a) + WI (a) - Dij(a) , 

w/oc(a) + w2(a) - Dij(a) . 

(5.16) 

(5.17) 

Since Dij (a) is continuous across the real a axes, this means that we have derived the same 

local terms as that of the full equation. 

In summary, we have shown that our model equation generates the same tangential 

velocity jump as that generated by the full equation. AB a result, these two equations 

develop the same type of singularities at almost identical location up to the leading order 

term. 

5.1.3 Local Form of the Curvature Singularity 

In this subsection, we show that our three-dimensional model equation preserves the local 

form of the curvature singularity near physical singularity time. 

Following the analysis in Section 3.5 of Chapter 3, it is sufficient to show that we can 

derive the asymptotic system (3.72) - (3.74) from the model equation. It leads to the 

asymptotic approximation of the local sheet form straightforwardly, as we have seen in 

Chapter 3. 

In fact, following the derivation by HOll & Zhang [17], as long as the perturbations 
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are small in magnitude, we can show that the difference between our model equation and 

the full equatiou only contributes to the smoother terms. As a result, we claim that the 

leading order system from our model equation has the same leading order terms as (3.72) 

- (3.74). Consequently, following the same derivations as in the Section 3.5 of Chapter 3, 

we can show that by a similar transformation on the interface variable functions, our model 

equation preserves the local form of the curvature singularity near physical singularity time. 

5.2 Two-dimensional Model Equation 

5.2.1 Formulation 

The motivation of deriving a two-dimensional model equation for the Birkhoff-Rott equation 

is mainly for computational purposes, and more importantly, as a special case for the 

three-dimensional model equation. In fact, we provide more detailed analysis to show that 

our model equations does capture the singularity type and the local physical singularity 

structure of the full equation. 

In the two-dimensional problem, the model equation is derived by approximating 

z(.o - z(e') , 

by its first order Taylor expansion at z (el as 

where z{ stands for the space derivative of z(e, t) [16]. 
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Therefore, the two-dimensional model equation is defined as: 

(5.18) 

where the over bar denotes the complex conjugation. 

In this section, we assume that the perturbation of the sheet and the vortex sheet 

strength are 211" periodic, i.e. , that z(~ + 21T, t) = 211" + z(~, t), r~(~ + 211") = r~. If we 

normalize the flow so that the average jump in the tangential velocity across the vortex 

sheet is unity, it implies that r(~ + 211") = 211" + r(O. Given the periodicity, (5.18) can be 

written as 

(5.19) 

Now, we extend e into complex domain, and consider z(~) as a complex flmction defined 

on complex domain. We write the Cauchy principal value as a contour integral: 

(5.20) 

where the contour C runs from e = 0 to ~' = 211", and is assumed to be deformed beneath 

a simple pole at e = ~. From the periodicity assumption, it is reasonable to assume that z 

and r have the forms of 

z(~, t) = H s(~, t). r(~) = H u({) . (5.21) 
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Following [9], we complexify s as follows: 

s'{t;, t) = s{~, t) . (5.22) 

Equation (5.19) can be analytically continued to the upper half complex t; domain as: 

as'{t;, t) _ 1 11 + adO (I V{ ',))d t ' 1 + a<{O -~--'- - - cot - t;.t;.t ,+ . 
at 4rri c 1 + s<W, t) 2 2{1 + s<{c t)) 

where 

V{t;,(,t) = t; - ( . 

Furthermore, we can write the equation as follows: 

where 

as'{t;. t) 
at = adO - s<{O + G{t;. t) . 

2{1+ sdt;,t)) " 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

To derive an evolution equation for s{t;, t), we take complex conjugate on both side of 

equation (5.19) and deform the integration contour so that 
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Finally, we extend ~ into the upper complex domain to get 

where 

8s(( t) 
at 

a(~) - s~(~,t) • 
2(1+ s~(~, t)) + G (~. t) . 

G'(~, t) = _2., {(I + a (())(i + cot(~(~ - 0) )d( . 
47rZ Jc' 1 + s,(e. t) 

(5.27) 

(5.28) 

From the derivation, C runs from ( = 0 to ( = 271', and is assumed to be deformed 

beneath a simple pole at ( = t;. However, following the idea used by Cowley, Baker /,[ 

Tanveer [12]. we take the contour to run from ( = 0 to ( = 2r. along the real ( axis 

for the simplicity of the later analysis. The result is going to be confirmed by numerical 

calculations a posteriori. 

Assmne we start with an almost flat interface, i.e. , s,(O = 0(0) for I; E R, it can be 

shown from the Taylor expansion that 

. cot(~(~-()). 1 , 
Z+ (') =,+cot(-(~-O)+O(c). 

1 + s, ~ . t 2 

On the other hand, it follows from straightforward calculation that 

Ii + cot(~(~ - ())I ~ 2exp(-lm(0)« 1 , 

when ~ is far above the real axis. By combining the above two inequalities, we obtain the 
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inequality that bounds the integral terms in (5.25) and (5.27) that 

for fm(t;) » 1. 

i + cot(W - (» 
1 + S{({', t) 

= O(e) , 

Under the above estimation, equations (5.25) and (5.27) can be re-written as: 

os'{t;, t) 
at 

os(t;, t) 
at 

= 

= 

a(t;) - s{(t;) 
2{1 + S{({, t)) , 

a({) - s{({, t) 

2(1 + s{({, t)) . 

(5.29) 

(5.30) 

In smnmary, we have derived the same simplified model system as system (2.13) in [12J. 

5.2.2 The MBO Initial Condition 

In the rest of this section, we concentrate on the singularity formation of model equation. By 

considering several different classes of initial conditions, we show that our model equation 

develops the same kind of singularities spontaneously at time t = 0+ as the full Birkhoff-

Rott equation. 

We start with the initial condition given by 

s({,O) = 0, ad{) = ccos(t;) . (5.31) 

This initial condition was first us6lll and analyzed by Meiron, Baker & Orszag in [22]. 

Thereafter, we refer to this condition as the !vmo initial condition. 



130 

Consider the following expansion of z(( t) with respect to t, 

(5.32) 

Substituting the MBO initial condition into the expansion, we get 

(5.33) 

Other terms will have to be derived from the model equation. Substituting the expansion 

into equation (5.18), and expand it in powers of t, we get: 

z~(O + 2tz;(0 + ... = 

~ 12K (1 + "eos() eot( .!.(~ - ())[1 - tz;(() + ... Jd( 
4~, 0 2 

(5.34) 

In particular, since Zo = ~, we can derive the formulation of ZI (0 as: 

zj(O 
oz* 1 12K 1 
--;:;-(~,t = 0) = -. (1 +ceos()eot(-(~ -())d( 
ut 4~1 0 2 

(5.35) 

1 
--iEsin~ . 

2 
(5.36) 

Since sin*(O = sin(O, it implies 

(5.37) 
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Furthennore, we can derive Z2 as 

2z~ 
1 12~ 1 
-. (I+Ecosncot(-(~-~'))(-z;(())d( 
4,"" 0 2 

1 12~( ')( 1. I (1( '))d I -. 1 + ECOS~ --!CCOS~ cot - ~ - ~ ~ 
47f! 0 2 2 

1 12~ (1. ,1 . 2 2 I (1 ')) I -. --!ECOS~+-!ccosOcot-(~-~ ~ 
47f! 0 2 2 2 

1 12~ 1. I 1 2 I 1 ')) I -. -(-!ECOS~ + -iE cos20cot(-(~-~ d~ 
47f! 0 2 2 2 

1 . < 1 . 2< 
--ESln~ - -ESln .." 

4 8 

-~Esin~(l + ECOSO . 

Combining the first two terms, s has the expansion 

(5.38) 

However, no matter how small the time t is, the power series does not converge far from 

the real ~-axis. In particular. it follows from (5.38) that the expansion becomes disordered 

when 

which suggests that for small times, and far from the real ~-axis. a similarity solution should 

be sought of the form 

'I = Etexp(-iO, s = sO(1)) + O(t). s' = so(TJ) + O(t). (5.39) 
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It follows from the transform that 

(5.40) 

(5.41) 

Combining (5.29), (5.30), (5.40) and (5.41), we find that to leading order 

1 
(5.42) SOl} = 

Cowley, Baker & Tanveer [12] has derived the same system from the full equation for 

the NIBO initial condition. This is to be expected since the full equation and the model 

equation have the same leading order systems (5.29) (5.30) for the MBO initial condition. 

From here, we can just follow all the analysis performed in [12]. In particular, their 

analysis showed that sand s' have 3/2 power singularities at 

(5.43) 

when t = 0+. This shows that the solution of the model equation develops 3/2 power 

singularities at ~ ~ i In(:,) spontaneously at t = 0+. 

5.2.3 Other Initial Conditions 

In this subsection, we study the solution in which, initially, there exists at least one point ~o, 

such that (1 + 80{) or (1 + 80{) vanishes. In particular, around those points, the right-hand 

side of equation (5.25) and (5.27) are dominated by the leading order terms. 

Since the leading order terms blow up at some position ~o, it is very possible that some 
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singularity emerges from the analytical initial data. In the next two subsubsections, we 

consider two cases. First, we study the solution around one point ~ = ~o, where (l+sod = 0 

but (1 + s~~) cJ o. Then, we study the solution around a point ~ = ~o, wbere (1 + so~) and 

(1 + SOl) vanishes simultaneously. ,Ve show that our model equation generates the same 

type of singularity as the full equation does under the above initial conditions. 

Apparently, it is infeasible to expand the solution in powers of t alone, since the expansion 

would break down around ~o. This suggests that we expand the solution as a power series 

in both ( = ~ - ~o and time t. \Ve seek a solution in the following form: 

S 
1 2 Sal ~ eT01 * 

SOO - ( + -S02( + ... + (( * ) + Goo + ... )t + ... 
2 2 1 + sOl 

(5.44) 

S· * * 1. (2 ( 1 + aOl ) soo - SOl ( + -S02 + ... + + ... t + ... 
2 2s02 ( 

(5.45) 

(5.46) 

where 

anSa 
SOn = 8~n (~O), "01 = ,,~(~o). and Goo = G*(~o, 0) . (5.47) 

The non-uniformity arises from the leading coefficient of ott) terms in the expansion. 

\Ve need to match ( with t. From the simplified model equation (5.29) and (5.30), we see 

that the leading coefficient of ott) terms in (5.44) and (5.59) should playa deterministic 

role. These two terms should be matched with the S02 and SOl terms respectively. This 

1 
suggests that ( = 0(/2) be a good match [12[. 



134 

For t « 1, let 

1 
C, = 7]wt'i, where (5.48) 

and expand sand s· in the form of 

1 1 * 1 + 0"01 
S = SOD - 7]wt'i + (- + Goo + . * A(7]))t + ... 

2 1 + sOl 
(5.49) 

s* = soo + ((1 + sOl)B(7]) - 7])wt! + .... (5.50) 

so that by substituting into the evolution equation, A(7]) and B(7]) can be solved. Since we 

1 
have changed variables from (E, t) to ('1, t), where E = Eo + '1wt'i, the following equalities 

can be verified: 

{) 

{)E 
{) 

{)t 

Substituting (5.52) into (5.49), we get: 

Substituting (5.51) into (5.50), we have 

(5.51) 

(5.52) 

(5.53) 

(5.54) 



which implies 

s' e 
2(1 + s:() 

1 
2 
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1 1 

2(1 + sOl)B~ + O(t,) . (5.55) 

Moreover, substituting (5.53) and (5.55), into (5.27), we extract the leading order terms 

as 

wltich can be further simplified to 

1 
2A-1]A~ = -B· 

~ 

1 G* 
2(1 + sOl)B~ + 00 

Similarly, from equation (5.25), it can be shown that 

(5.56) 

(5.57) 

(5.58) 

The system that consists of equation (5.57) and equation (5.58) coincides with system 

(2.28) in [12]. Therefore, following the analysis presented by Cowley, Baker & Tanveer, we 

can show that in this case, onr model equation develops the same type of singularity as that 

of the full equation. Furthermore, it follows natnrally that the singularity appears at almost 

1 
the same location up to order ott') when t « 1 as that of the Birkhoff-Rott equation. 

The case (1 + soe(~o)) = 0 and (1 + soe(~o)) = 0 

The above analysis is not valid when (1 + so«~o)) and (1' + soe(~o)) vanish simultaneously. 

However, following the idea presented above, we still can expand the solution as a power 
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series in both, = e - eo and time t: 

1 2 -1-0"01 * 
8 800 - , + -802' + ... + ( * + Goo + .. . )t + ... 

2 2802 ' 

(5.59) 

* * 1 * 2 (1 + 0"01 G ) 
S = 800 - , + -802 ' + ... + r + 00 + ... t + ... 

2 2802, 
(5.60) 

where 

(5.61) 

Again we need to match, witht. From the simplified model equation, we see that 

the leading coefficient of the ott) term should playa deterministic role. These two terms 

1 
should be matched with the 802 and 802 terms respectively. This suggests that' = O( t3) 

would be a good match. 

Let 

1 ,= ryOt'.i, where 0= (4(1 + ~01))! . 
802802 

(5.62) 

Therefore, the expansions (5.59) and (5.60) need to be replaced by 

8 
.! 1 2 a 

800 - ryOt 3 + 28020 A(ry)t 3 + ... (5.63) 

(5.64) 
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1 

Change variable from (~, t) to (7], t), where ~ = ~o + 7]On. We find 

a a a7] a at -1 _1 a 
a~ = a7] ae + at a~ = (O t 3) a1] , 

a a a7] a at 1 -1 a a 
at a1] at + at at = -31Ji a1] + at . 

It follows from substituting (5.66) into (5.63) that 

as 
at 

1212121121 
-31]OC3 + 31]OC3 + 3S020 A{1])C3 - "68020 7]A"r 3 + ... 

1 2 1 
= "68020 C'l (2A{7]) - 7]A") + '" 

Similarly, substituting (5.65) into (5.64) yields 

which implies that 

2{1 + s{) 
1 1 

* OB r'l + 0(1) . 
S02 " 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

By substituting (5.67) and (5.69) into (5.27), we extract the leading order terms as 

which can be further simplified to 

3 
2A-1]A"=-- . 

2B" 

(5.70) 

(5.71) 



138 

Similarly, we can derive from (5.27) that 

3 
2B - 1)BlJ = -A . 

2 1) 
(5.72) 

System (5.71) and (5.72) coincides with system (2.38) in [12]. Therefore, we can follow 

the analysis by Cowley, Baker & Tanveer from now on. In particular, we can show that 

in this case, our model equation also develops the same type of singularity (of power 3/2) 

as that of the full equation. Further, as in the previous case, we can also show that the 

1 
singularity appears at almost the same location up to order 0(t3) when t « 1 as that of 

the full Birkhoff-Rott equation. 

5.2.4 Motion of the Singularity 

In the previous two subsections, we have shown that our model equation develops the same 

type of singularity as the full equation spontaneously in the complex domain at t = 0+. In 

the subsubsection, we show that at time t = O( 1), singularities can continue to propagate in 

the extended complex domain. In particular, we derive an ODE which governs the motion 

of the singularity, and thus, we show that the singularity type does not change along the 

trajectory. 

Suppose that at time t a singularity is at ~ = ~s(t). Close to the singularity we seek an 

asymptotic expansion of the form: 

(5.73) 

s* = So(t) + Sj(t)1) + S;(t)rf + ... , (5.74) 

where 1) = ~ - ~s(t). 
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Substituting the above expansion into (5.25) and (5.27), and equating like powers of 11, 

we derive the equations for the functions in the expansion as: 

Qs - S~(t) * 
2(1 + Sj) + G (€., t) , 

2(1 + S1l2S; . 
2(1 + Qs) €s· 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

Although we have obtained similar system as (2.'13) in [12], the forcing term is different. 

It shows that although in both equations, the singularity type does not change when they 

propagate along the complex domain, the actual trajectories can be different. Therefore, 

the physical singularity time would be different, which has been verified by our numerical 

calculations. 

In summary, we conclude that in our model equation, 3/2 power singularities are gen-

erated spontaneously at t = 0+, as in the full Birkhoff-Rott equation. The singularities 

can move around the complex domain at later time but keep the same power. Therefore, 

the physical singularity should also be of 3/2 power in our model equation for the initial 

condition we studied. However, the trajectory along which the singularities propagate in 

our model equation might be different from that in the full equation and the times at which 
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the physical singularities occur might also be different. 

In our next subsection, we study the interface shape in the neighborhood of a singularity 

near the physical singularity time in our model equation. We also show that our model 

equation preserves the local singularity structure of the full equation near the physical 

singularity time. All results will be verified by our numerical calculation in the next chapter. 

5.2.5 The Local Form of the Curvature Singularity 

In this subsection, we study the local form of the curvature singularity. We hope to obtain 

the interface shape in the neighborhood of the singularity. Without loss of generality, we 

consider the case where a{O = ° in (5.21). Moreover, we assume that the singularity forms 

at t = 0, ~ = 0, Z = 0, and that the surface is moving with a velocity zo. We also assume 

that at the time of singularity formation, the surface is locally flat in the neighborhood of 

the singularity, with z ~ ~, where A is a complex number. The assumption is reasonable 

when the singularity is of power 3/2. 

We seek an asymptotic expansion of the solution to our model equation (5.18) in the 

power series of both t and ~. We split the integral region into two subregions: a local region 

with ~ ~ ott) and an outer region covers the rest of the integration domain. We also split 

the integral into three parts according to the regions. 

(5.79) 

where I~I « Ii « 1. 

Under the above assumptions, the first and third integral contribute to ottO) and O{t!) 

terms, whereas the shape of vortex sheet in the neighborhood of the singularity is determined 
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by the second integral. In order to approximate this integral, we re-scale it by using: 

(5.80) 

where s here is slightly different from the s defined before in 5.21. 

The second integral then becomes: 

jo de 
-Ii zdf. t)(~ - e) 

IjO de 
,\ -Ii (1 + sde, t))(~ _ ~J) 

IjO-{ de 
,\ -ii-{ (1 + s{(~ + (,I))(-() 

Ij'S-{ -s{(~ + (, t)( d( 1jli-{ d( 
,\ -ii-{ (1 + s{(~ + (, t))( -() ( ,\ -ii-{ ( 

Ij'S-{ s«~+(,t) d( 1 In (Ii-f..) 
A -ii-{ (1 + sd~ + (, t)) . "( - A Ii + ~ 

~ jii-{ s«~ + C, t) . d( + O(~) (5.81) 
,\ -ii-{ (1 + s{(f.. + (,t)) ( . 

Again, we take I~I ~ t when I~I, t « 1. We see, by splitting the integral, the first and the 

J 
third integrals must balance the Zo term in the expansion, and the next term of ~'i matches 

with the second integral. 

Let 

~= (-T)X, (5.82) 

and seek a similarity solution: 

s = (-T)"F(X) , (5.83) 

where 1 < q < 2. For the initial conditions we studied in the early subsections,we know 
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that q = ~. 

The change of variable implies 

a 1 a 
= (-7)- - , 

at; ax 
(5.84) 

a x a -2 a 
at 71AI2 ax + IAI 8T. (5.85) 

Therefore, by substituting the change of variables into the similarity solution, we get 

Z - -T - - q-l a- ({ )q-1 ) 
at = A IAI2 (xFx - qF) + a{ 7 ). (5.86) 

On the other hand, further manipulations on (5.81) implies 

(5.87) 

(5.88) 

(5.89) 

By matching the O{{ _7)q-1) terms, we obtain 

(5.90) 

In order to fit the 'outer region' where t; = 0(1), we claim that F ~ F±lxlq as X --> ±oo, 

where F± are constants and satisfy F+ = -F_. Under this condition, we perform the 

integration by part in equation (5.90). The result is: 

P _ F - _1_100 F{x + 1)) - F{x) d 
Xxq-2· ..,2 1). 

7rZ -00 '/ 
(5.91) 
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Note that equation (5.91) is the same as equation (5.7) in [12], which shows that our 

model preserves the shape of vortex sheet where a physical singularity appears. Here, we 

just briefly restate the main results in [12] which were derived from equation (5.91). Our 

numerical calculations have confirmed these results. 

By solving equation (5.91), we can show that 

(5.92) 

where, is a real constant. 

For the initial conditions that we considered here, q = ~. Thus the vortex sheet has the 

local form 

. 1/2 1 
Zt; ~ A+3,(1-z)A(-r) cos("2arctan(2x)), (5.93) 

(5.94) 

Based on (5.94), we would like to mention one special case of our analysis. Note that 

if we take arg A = IT /4, the leading order branch-cut singularity is only evident in x, and 

not in y. It provides an explanation of Shelley's [28] observation that when c = 0.5 in the 

iVIEO initial condition, the nature of singularity in the real variable seems to be different 

from the imaginary variable in the full vortex sheet equation. From the analysis presented 

above, we have shown that a similar phenomenon should happen to our model equation as 

well. This rather surprising result has also been verified by our numerical calculation. 
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Chapter 6 Numerical Study on the Model Equations 

In this chapter, we validate our theoretical analysis by performing numerical computations 

on both two-dimensional and three-dimensional vortex sheet problems .. 

The sections in this chapter are arranged as follows. Section 1 presents our numer-

ical results for the two-dimensional problem. While in Section 2, we perform numerical 

calculations on the three-dimensional problem. 

6.1 Two-dimensional Model Equation 

6.1.1 Algorithm 

The motion of a two-dimensional vortex sheet is governed by the Birkhoff-Rott equation 

[6J. 

(6.1) 

where the over-bar denotes the complex conjugate, t is the time, z{~, t) = x{~, t) + iy{~, t) 

is the complex interface position parametrized by a Lagrangian variable €, and no is 

the circulation in the sheet measured between the point with coordinate z and a reference 

particle. Most importantly, the integral takes the Cauchy principal value. function z - € 

and function r { are assumed to be 21T-periodic. 

Following Shelley [28], we use the modified point-vortex approximation (subsequently 

referred to as MPVA) to study the full vortex sheet equation. Discretizing z{€, t = 0) and 
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'Y(O = r~(o uniformly in the Lagrangian parameter I; as 

Zj(t = 0) = z(jh,t = 0), 

and 

'Yj = 'Y(jh) , 

with h = 2n: / Nand j ranging from 0 to N - 1, we can approximate the velocity integral in 

(6.1) by the alternating trapezoidal rule 

(6.2) 

Shelley [28[ showed that the approximation is of spectral accuracy, which means that the 

error decreases faster than any algebraic power of h. 

Naturally, MPVA can be applied to our model equation as well, since it is described as 

aZ (I;, t) = ~ JIT r~(() cot [~(I; - ()] cU.'. 
at 4n _IT z~(n 2 

(6.3) 

However, since our model equation can be re-written as 

(6.4) 
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where H stands for the Hilbert transform defined as 

The integral can be evaluated by means of FFT. 

(6.5) 

One co=on technique needed in numerically solving both the full equation and our 

model equation is the spectral filtering technique introduced by Krasny [19]. Due to Kelvin­

Helmholtz instability, the round-off error of the calculation leads to a rapid and spurious 

growth of the high-wavemunber amplitudes [27], causing a severe departure of the computed 

solution of the discrete system from the exact solution. For this reason, Krasny employed 

a Fourier filter that, at each time-step, zeroes any Fourier amplitude whose modulus is less 

than some preassigoed tolerance. Recently, Cafiisch, Hou & Lowengrub [8] have proved the 

convergence of the modified point-vortex approximation with spectral filtering. 

6.1.2 Numerical Results 

In this subsection, we study the two-dimensional vortex sheet with MBO initial condition. 

The initial condition is 

z(e, t = 0) = e (6.6) 

,(0 = -1 + E cos(O (6.7) 

for E = 0.5. 

For this initial condition, we perform two sets of numerical computations, using the 
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full equation and our model equation respectively. The calculations of both equations are 

performed using quadruple precision in order to detect the early time singularity formation. 

The procedure can be described as follows: 

1. Evolve both equations from t = 0 up to t = 1.3, by taking N = 256, 6t = 0.0025. 

2. Double the mesh points N to 512, reduce 6t in half to 0.00125, and calculate both 

equations from t = 1.3 up to t = 1.5 by taking the final results of the last step as the 

initial condition. 

3. Further double the mesh points N to 1024, reduce 6t to 0.000625, and calculate both 

equations from t = 1.5 up to t = 1.65. 

In our calculations, the filter tolerance level is set at 10-23 for both equations. Both the 

above procedure and the tolerance level are set to follow that of [28], so that we can compare 

the computational results with those by Shelley in [28]. 

The purpose of this section is to confirm our theoretical results for the two-dimensional 

model equation. Therefore, we analyze the numerical computations in four aspects: 

1. Interface shapes and their Fourier spectra. 

2. Early time singularity formation. 

3. Local sheet form at the physical singularity time. 

4. Physical singularity time. 

1. Interface shapes and their Fourier spectra. In this part of the numerical 

analysis, we want to show the sheet interfaces and their Fourier spectra for solutions of 

both equations. As we can see from Figure (6.1) and Figure (6.2), the Fourier spectra of 
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<aJ Interface (b J Spectrum 

Figure 6.1: The interfaces and Fourier spectrums calcnlated from the full equation, in which 
t = 0.6 to 1.6 at intervals of 0.1. 

the solutions to both equations have grown considerably as time increases, due to Kelvin-

Helmholtz instability. 
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(a) Interface (b) Spectrum 

Figure 6.2: The interfaces and Fourier spectrums calculated from the model equation, in 
which t = 0.6 to 1.6 at intervals of 0.1. 

2. Early time singularity formation. From the theoretical analysis for both the full 

equation and the model equation, we know that singularities form spontaneously at t = 0+ 

when complexifying the independent variable. In particular, we showed that the solution 

to our model equation develops the same type of the singularities at the same position at 

which the full eqnation develops a singularity. In order to provide convincing numerical 

evidence to support our analysis, we form-fit the Fourier spectrum of the data with: 

1£;(t)1 = Cxk- tJx exp(-axk ) , (6.8) 

!Yk(t) 1 = Cyk- tJy exp( -ayk) , (6.9) 

where Xk is the kth Fourier coefficient of x(~, t) - ~ and Yk is the kth Fourier coefficient of 

y(~, t). This form-fitting idea follows the previous work by Krasny [19], Pugh [26J, Shelley 

[28J, and Baker, Caflisch & Siegel [3J. In the form-fitting, ax measures the distance of the 

x-direction singularity from the real ~ axis, while (f3x - 1) measures the power of singularity 
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Figure 6.3: The form-fitted O:x and {Jx calculated from the full equation, in which t = 0.6 
to 1.3 at intervals of 0.1. 

in the x-direction and similarly for O:y and {Jy. 

As we can see from Figure (6.3), Figure (6.4), Figure (6.5), and Figure (6.6), {Jx and {Jy 

are around 2.5 for both equations. This shows that at early time, both equations generate 

3/2 singularities at x and y directions. Moreover, we notice that form-fitted a's is slightly 

different between the full equation and our model equations. This indicates the disparity 

between the trajectories along which singularity propagates in the two equations. 
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(b) 13x 

Figure 6.4: The form-fitted ax and {:Jx calcnlated from the model equation, in which t = 
0.6 to 1.3 at intervals of 0.1. 

" . l ; 

. ~ 

! . 

l' .--- f 

•• ! ~:-~~~_/~~/i 

(a) ax 

" 

1~---_____ -' 

• m • 

(b) 13x 

Figure 6.5: The form-fitted ay and {:Jy calcnlated from the full equatiou, in which t = 0.6 
to 1.3 at intervals of 0.1. 
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Figure 6.6: The form-fitted Ciy and {3y calculated from the model equation, in willch t = 

0.6 to 1.3 at intervals of 0.1. 

3. Local sheet form at the physical singularity time. In the numerical study by 

Shelley [28], he observed that the singularity type in the x direction is different from that 

in the y direction. In later work, Cowley, Baker & Tanveer [12] explained this disparity 

by asymptotic expansions around the neighborhood of the physical singularity near the 

singularity time. F\rrther, our analysis predicts that even in this case, our model equation 

should still capture the local form of the vortex sheet shape at the physical singularity time. 

By comparing Figure (6.7) and Figure (6.8), we see that for both equations, the second 

order space derivative in the x variable becomes singular, whlle that in the y variable stays 

regular. To provide a more precise measurement, we form-fit the Fourier spectra of the 

interfaces. As can be seen in Figure (6.9), Figure (6.10), Figure (6.11), and Figure (6.12), 

by comparing the {3 part of the figures, we conclude that the singularity's power is about 

3/2 in the x variable, while the singularity's power is about 2 in the y variable. Tills subtle 

feature is also captured by our model equation. 
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(a) x-direction (b) y-direction 

Figure 6.7: The second order differentiation on x and y direction calculated from the full 
equation, in which t = 1.5, 1.525 and 1.6 to 1.625 at intervals of 0.0025. 

" 
•• 

i .~ 

~ 

-
~. 

~'. 

(a) x-direction (b) y-direction 

Figure 6.8: The second order differentiation on x and y direction calculated from the model 
equation, in which t = 1.3 and 1.5775 to 1.5925 at intervals of 0.0025. 
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(a) ax (b) 13x 

Figure 6.9: The form-fitted ax and fJx calculated from the full equation, in which t = 1.6 
to 1.615 at intervals of 0.0025. 
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(a) Ox (b) 13x 

Figure 6~10: The form-fitted ax and fix calculated from the model equation, in which t = 
1.5775 to 1.5925 at intervals of 0.0025. 
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(a) C<y (b) {iy 

Figure 6.11: The form-fitted ay and {Jy calculated from the full equation, in which t 1.6 
to 1.615 at intervals of 0.0025. 
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Figure 6.12: The form-fitted ay and {Jy calculated from the model equation, in which t = 
1.5775 to 1.5875 at intervals of 0.0025. 
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4. Physical singularity time. One of the major differences between the two equations 

is the singularity time. To have a definite measure on this issue, we check the 0/ form-fitting 

near the singularity time. As we can see from the 0/ fitting curves in Figure (6.9), Figure 

(6.10), Figure (6.11), and Figure (6.12), the singularity time is about 1.5925 for our model 

equation, while it is around 1.6125 to 1.615 for the full equation. 

6.2 Three-dimensional Model Equation 

6.2.1 Formulation 

As we stated in the previous section, our three-dimensional model equation is: 

OZ 
&t 

where N stands for the normal direction of the interface. 

(6.10) 

However, the model equation is not a convolution operator in its present form. If 

we use direct summation in our evaluation of the velocity integral, it would take O( N4) 

computational complexity in each time step, where N is the number of mesh points in each 

direction. The numerical calculation becomes prohibitively expensive even when N reaches 

the level of 0(100). We will introduce a special coordinate system (0/1,0/2) to reduce the 

integral operator in (6.10) to a convolution operator. Then the velocity can be evaluated 

efficiently by FFT. 

The special coordinate system is chosen so that the following properties are satisfied 



157 

[16] 

(6.11 ) 

(6.12) 

where C, and C2 are independent of <>, and <>2. With this set of coordinates, the integral 

on the right-hand side of equation (6.10) becomes a convolution operator with kernel 

(6.13) 

where i = 1,2. In particular, when C, = 0 as in the case of our computation, the spectral 

representation of the operator is: 

-i6 
(6.14) 

and 

-i/;2 
(6.15) 

In general, even if C, # 0, the spectral representation of the kernels are still known as [16]: 

(6.16) 
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and 

(6.17) 

For interface near equilibrium, it is possible to prove the existence of a set of coordinates 

satisfying (6.11) and (6.12) [16]. From our numerical experiences, we find that such coor-

dinates exist even for large initial data. 

6.2.2 Some Implementation Issues 

In this subsection: we discuss several implementation issues for our computations. These 

issues have been addressed by Si in [29]. For simplicity, we just present a brief introduction 

here without going into too much details. Interested readers should refer to [29] (Page 

71-75). 

In order to construct a coordinate system so that equations (6.11) and (6.12) are satisfied 

at all time, we need to consider the following details: 

1. Iuitially, we need to find a system of (O'l, (2) such that equation (6.11) and (6.12) are 

satisfied. 'Ve can derive a system of PDEs for these coordinates which can be solved 

by an iteration method. 

2. During the evolution, it is possible that the coordinates from the last time-step do not 

satisfy equation (6.11) and (6.12) in the current time-step. To avoid re-adjusting the 

coordinates every time, we add two tangential velocities hand fz to the evolution 

equation. These two added tangential velocities hand fz are determined by a set of 

linear elliptic PDE's to guarantee that (6.11) and (6.12) are satisfied at all time. 

\Ve point out that adding hand fz does not change the singularity structure. It is 
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because that the only factor that affects the interface shape in the full equation is the 

normal velocity. The change of tangential velocities only results in are-arrangements 

of the Lagrangian fluid particles. It does not change the tangential velocity jmnp. 

Thus our analysis comparing the model equation with the full equation still applies 

to this case. 

However, the modification of the tangential velocity changes the evolution equation of 

the velocity jump potential p" i.e. p, is not conserved with time any more. Therefore, we 

need to derive the evolution equation of p, under the new added tangential velocities. 

In particular, the equation can be written as: 

dp, 
dt (x, y, z, t) 

(6.18) 

where T 1 , T2, and N are the local tangential directions and the normal direction. 

Note that if the interface evolves with the tangential velocities from the vortex sheet 

equation, then 

dji 
dt (x, y, z, t) 

o , (6.19) 

where ]1 and h stand for the tangential velocities derived from the vortex sheet 
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equation. Therefore, it follows from combining (6.18) and (6.19) that 

dft 
dt (x, y, z, t) '11 zft . {{h - !J)TI + (/2 - i2)T2) 

= 'I1zft· ({h - il) IZa'1 + (/2 - i2) IZa'l) 
ZOI Z02 

h-il h-i2 
1 1 fta, + 1 1 fta, . 
ZOI ZQ2 

(6.20) 

3. After each small time-step evolution, even though we evolve the interface with the 

added tangential velocities, (6.ll) and (6.12) might not be completely satisfied at the 

discrete level due to the numerical error. Therefore, we need to reconstruct the surface 

based on the computed surface. Details in this part of the computation are given in 

129]. 

6.2.3 Algorithm 

In this subsection, we briefly describe our Algorithm: 

1. Given the initial interface z, construct {CI}, "'2) that satisfies (6.11) and (6.12). 

2. For each Lagrangian particle, evaluate the integral on the right-hand side of equation 

(6.1O) using FFT. Compute the normal velocity by projecting the velocity to the 

normal direction and write it as h. 

3. Compnte the tangential velocities on "'I and "'2 direction respectively as h and /2 

using h 

4. Evolve the interface and the vorticity strength according to a Fourth-order Adams-

Bashforth Method. 
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5. Reconstruct the fluid interface based on the computed interface to satisfy (6.11) and 

(6.12). 

6. Compute the solution at the next time step from Step 2. 

6.2.4 ~lUDnerical Ftesluts 

In this section, we will perform an extensive numerical study of the 3-D vortex sheet model 

equation to couiirm our theoretical results obtained in the previous chapters. In particu­

lar, we will investigate three aspects of singularity formation in 3-D vortex sheets in our 

numerical study: 

1. Interface shape and the curvature. 

2. Singularity formation. 

3. Local singularity structure. 

In our three-dimensional computations, we take the following iuitial data: 

(6.21) 

where 101 = 0.1, and 102 = 0.5, with 

(6.22) 

For this initial condition, we solve the model equation with N = 64, N = 128, N = 256, 

N = 512, and N = 1024 respectively to ensure the convergence of our computation. Every 

time we double the mesh points, we reduce the time-step f'>.t by half. As a result, f'>.t ranges 

from O.D! to 0.000625. The filter tolerance level is set to 10-12 in our computation, since 
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we are using the standard double precisiou for the calculations of the three-dimensional 

problem due to the computational resource constrrunt. The procedure can be described as 

follows: 

1. Evolve the interface using N = 256, LSI = 0.0025 up to t = 1.00. 

2. Double the mesh size, reduce the time step in half, and continue the computation up 

to t = 1.65 with N = 512 and 6t = 0.00125. 

3. At time t = 1.45, further double the mesh size, reduce the time step in half and 

compute up to t = 1.60 with N = 1024 and 6t = 0.000625. 

We su=arize our numerical results below. 

1. Interface shape and the Curvature Plot. In this part of the study, we illustrate 

the dynamical evolution of the sheet interface and its mean curvature. We can see from 

Figure (6.14) - Figure (6.20) that the mean curvature develops a rapid growth in time and 

a curvature singularity may develop in finite time. It is important to point out that the ini­

tially smooth curvature function is pushed to form a sharp gradient along a certrun direction 

(like the (32 direction in our analysis) while it remruns relatively smooth perpendicular to 

this direction (like the (3, direction in our analysis). This confirms our analytical prediction 

that singularity formation for 3-D vortex sheets can be essentially reduced to a 2-D vortex 

sheet along certain space curve. 

In Chapter 3, our analysis predicts that for each fixed {3" 3/2 singularities form in 

the extended complex f32 domrun spontaneously at t = 0+. Since the speeds at which 

the singularities propagate depend on {3" we expect that the physical singularities would 

generically appear at some isolated points first, and thim spread into a one-dimensional 

manifold. In Figure (6.21), we present the contour plot ofthe curvature. We can see clearly 
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Figure 6.13: Interface calculated from three-dimensional model equation at t = 1.64. 

that the singular region of curvature is indeed concentrated along a one-dimensional curve 

which is parametrized by fh. The curvature achieves its maximum value at isolated points 

along these one-dimensional curves. Note that in this particular example, we have i31 = 01 
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Figure 6.H: Curvature calculated from three-dimensional model equation at t = 1.20. 
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Figure 6.15: Curvature calculated from three-dimensional model equation at t = 1.30. 
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Figure 6.16: Curvature calculated from three-dimensional model equation at t = 1.400 . 

. , 

.•. 
~, ., 

, , ., 

Figure 6.17: Curvature calculated from three-dimensional model equation at t = 1.50. 
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Figure 6.18: Curvature calculated from three-dimensional model equation at t = 1.60. 
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Figure 6.19: Curvature calculated from three-dimensional model equation at t = 1.64. 
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Figure 6.20: Curvature calculated from three-dimensional model equation at t = 1.646. 

" 

Figure 6.21: Curvature contours calculated from three-dimensional model equation at t = 
1.646. 
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Singularity Formation: We study the singularity type in this part of the numerical 

analysis. The purpose is to further confirm our theoretical result, which has predicted 

that the singularity is of type 3/2 for a wide range of initial conditions along a certain 

critical direction. Following the work of Krasny [19], we use the log-log plot of the Fourier 

coefficients of the x-component of the intersection along the fh direction with a fixed f31 

which give rise to the maximum curvature valne at the intersection of these two directions. 

If the interface forms a 3/2 singularity at tc as predicted by our analysis, the slope of the 

logarithm of the Fourier modes would approach -2.5 asymptotically. In fact, from Figure 

(6.23), Figure (6.24), and Figure (6.25), we see that the Fourier modes are approaching the 

-2.5 slope as tinte increases. In particnlar, the four curves in Figure (6.23), Figure (6.24), 

and Figure (6.25) represent the Fourier modes at four different tintes. As the singularity time 

is approached, we can see that the Fourier modes corresponding to the lower to intermediate 

wave numbers converge to the -2.5 slope, while the higher wave number modes also move 

towards this slope as the singularity tinte is approached. In addition, we find that the x, y, 

and z components form a 3/2 singularity simultaneously. This indicates that the interface 

may form a singularity of type 3/2 in finite tinte. 

To provide further evidence of singularity fonnation of type 3/2, we have performed a 

resolution study. In Figure (6.26), Figure (6.28), and Figure (6.30), we present the numerical 

results using N = 1024. In each of the three figures, two sets of the computational results 

are presented, using 512 by 512 mesh points and 1024 by 1024 mesh points respectively. In 

addition, Figure (6.27), Figure (6.29), and Figure (6.31) show the close-up of these three 

figures in the high frequency region. From the close-up plot, we observe that as soon as 

the logarithlUS of the Fourier modes deviate from the -4.5 slope, the curves representing 

the logarithIUS in the 512 by 512 computations also deviate from those in the 1024 by 
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Figure 6.22: Cross section of curvature plot along y = 7r, at t = 1.2, 1.3 1.4, 1.5, 1.641 to 
1.647 at the interval of 0.001 respectively. 

1024 computation. Therefore, we conclude that the decaying behavior of the higher wave 

number modes in these figures is due to the lack of numerical resolution and the filtering 

effect. Moreover, we observe that at the same high wave number, the coefficients computed 

from higher resolution eN = 1024) are closer to the -2.5 slope. This indicates that the higher 

wave number modes will eventually converge to the -2.5 slope as more and more mesh points 

are used. This resolution study gives convincing evidences that a 3/2 singularity is indeed 

formed at the singularity time. 
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Figure 6.23: Log-log plot of the X variable Fourier coefficients of the a,-direction intersec­
tion passing the maximum curvature position at tinle t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as tinle increases. The straight line shows the - 2.5 slope . 

. , 

Figure 6.24: Log-log plot of the Y variable Fourier coefficients of the a,-direction intersec­
tion passing the maximum curvature position at time t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as time increases. The straight line shows the -2.5 slope. 



171 

Figure 6.25: Log-log plot of the Z variable Fourier coefficients of the Cil-direction intersection 
passing the maximum curvature position at time t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as time increases. The straight line shows the - 2.5 slope. 
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Figure 6.26: Log-log plot of the X variable Fourier coefficients of the Cil-direction intersec­
tion passing the maximum curvature position at timet = 1.641, to 1.647 at the interval of 
0.001. The Fourier coefficients plot increases as time increases. The straight line shows the 
- 2.5 slope. The two sets of curves stand for the computation results for 512 mesh points 
and 1024 mesh points. 
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Figure 6.27: Zoomed plot of Figure 6.26. Log-log plot of the X variable Fourier coefficients 
of the QI-direction intersection passing the maximum curvature position at tinle t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the -2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 
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Figure 6.28: Log-log plot of the Y variable Fourier coefficients of the QI-direction intersec­
tion passing the maximum curvature position at tinle t = 1.641, to 1.647 at the interval of 
0.001. The Fourier coefficients plot increases as tinle increases. The straight line shows the 
- 2.5 slope. The two sets of curves stand for the computation results for 512 mesh points 
and 1024 mesh points. 
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Figure 6_29: Zoomed plot of Figure 6.28- Log-log plot of the Y variable Fourier coefficients 
of the !>I-direction intersection passing the mrodmum curvature position at time t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the -2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 
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Figure 6.30: Log-log plot ofthe Z variable Fourier coefficients of the !>I-direction intersection 
passing the maximum curvature position at time t = 1.641, to 1.647 at the interval of 0.001. 
The Fourier coefficients plot increases as time increases. The straight line shows the -2.5 
slope. The two sets of Curves stand for the computation results for 512 mesh points and 
1024 mesh points. 
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Figure 6.31: Zoomed plot of Figure 6.30. Log-log plot of the Z variable Fourier coefficients 
of the a,-direction intersection passing the maximum curvature position at time t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the - 2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 

4. Local singularity structure. In the last section of Chapter 3, in order to study 

the local singularity structure, we introduce two new variables rPI and rP2. We show that to 

the leading order rP2 and z form 3/2 singularities but there is no 3/2th order singularity in 

the rPI variable. Since our analysis is based on formal asymptotic analysis, we would like to 

validate this result numerically. From the log-log plot of the Fourier coefficients of the rPI 

and rP2 variables along the fh direction in Figure (6.32) and Figure (6.33), we see that the 

Fourier modes of the rPI variable approaches the -3.1 slope, while the Fourier modes of the 

¢2 variable approaches the -2.5 slope. This confirms that rPI is smoother than rP2 near the 

singularity tillIe. 

Throughout our analysis, we argue that under the special set of coordinates, one di-

rectiou is the essential singularity direction (the fJ2 direction) In the case we study here, 

even with the added tangential velocities and the re-adjusted vorticity, the fJ2 direction 
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Figure 6.32: Comparison of the log-log plot of the "'I variable Fourier coefficients to that of 
the "'2 variable. Both intersections pass the maximum curvature position at time t = 1.646. 
The upper line is the Fourier coefficients of the "'2 variable, the straight line has the slope 
of -2.5. The lower line stands for the Fourier coefficients of the "'I variable, the straight line 
has the slope of -3.1. Similar resolution test is involved. 

corresponds to the "'I-direction. So the "'I-direction should be the essential direction to the 

leading order. To confirm this idea, we compare the Fourier coefficients of the intersection 

along the "'I-direction to the Fourier coefficients of the intersection along the "'2-direction. 

AB we can see from Figure (6.34), Figure (6.35), and Figure (6.36), even though our 01 = 0.1 

is not particularly small, there are still disparities in the tails of the Fourier coefficients in 

all x, y, and z variables. This shows that the (32 direction, which coincides with the "'1-

direction in this case, is indeed the essential direction driving the singularity formation of 

the 3-D vortex sheet problem. Further evidence is provided in Figure (6.37), Figure (6.38), 

and Figure (6.39) to confirm this property. 



176 

.. , , 

Figure 6.33: Zoomed plot of Figure (6.32). Comparison of the log-log plot ofthe <1>1 variable 
Fourier coefficients to that of the </>2 variable. Both intersections pass the maximum curva­
ture position at time t = 1.646. The upper line is the Fourier coefficients of the <1>2 variable, 
the straight line has the slope of -2.5. The lower line stands for the Fourier coefficients of 
the <1>1 variable, the straight line has the slope of -3.1. Similar resolution test is involved . 
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Figure 6.34: Comparison of the log-log plot of the X variable Fourier coefficients of the 
"'I-direction intersection with the "'2-direction intersection both passing the maximmn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the "'I-direction 
intersection. Lower line is the Fourier coefficients of the "'2-direction intersection. 
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Figure 6.35: Comparison of the log-log plot of the Y variable Fourier coefficients of the 
Gl-direction intersection with the G2-direction intersection both passing the maximlUn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the Gl-direction 
intersection. Lower line is the Fourier coefficients of the c¥2-direction intersection. 
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Figure 6.36: Comparison of the log-log plot of the Z variable Fourier coefficients of the 
Gl-direction intersection with the G2-direction intersection both passing the maximmn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the Gl-direction 
intersection. Lower line is the Fourier coefficients of the G2-direction intersection. 



178 

• 
. , 

'W 

-15 

" x' 

II 
.,; 

, 

·we 

." 
•• 
~ • 

Figure 6.37: Comparison of the log-log plot of the X variable Fourier coefficients of the 
Cr:l-direction intersection with the Q:2-direction intersection both passing the maximum cur­
vature position at time t = 1.647. Upper line is the Fourier coefficients of the ol-direction 
intersection. Lower line is the Fourier coefficients of the Cr:2-direction intersection. 
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Figure 6.38: Comparison of the log-log plot of the Y variable Fourier coefficients of the 
ct'}-direction intersection with the 0'2-direction intersection both passing the maximum cur­
vature position at time t = 1.647. Upper line is the Fourier coefficients of the ol-direction 
intersection. Lower line is the Fourier coefficients of the D:2-direction intersection. 
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Figure 6.39: Comparison of the log-log plot of the Z variable Fourier coefficients of the 
aI-direction intersection with the a2-direction intersection both passing the maximum cur­
vature position at tinle t = 1.647. Upper line is the Fourier coefficients of the aI-direction 
intersection. Lower line is the Fourier coefficients of the a2-direction intersection. 
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Chapter 7 Conclusions 

In this thesis, we have studied the three-dimensional vortex sheet problem theoretically and 

numerically. vVe found that the three-dimensional vortex sheet problem can be reduced 

to a two-dimensional vortex sheet problem to the leading order along certain space curve 

and with appropriate change of variables. vVith this key observation, we have derived the 

early time singularity formation and the local form of the curvature singularity near the 

physical singularity time. The results are found to be qualitatively the same as those of 

the two-dimensional vortex problem. Moreover, we have proved the long time existence 

theorem for the three-dimensional vortex sheet equation for analytic initial conditions near 

equilibrium. The existence time is almost optimal if the initial perturbation to equilibrium 

is sufficiently small. Further, by introducing simplified model equations, we have performed 

carefullllUllerical computations which confirm some of our theoretical results. 

One area worth further research is how to best use our simplified model equations in 

study of interfacial flows in three space dimensions. The fact that the model equations 

capture correctly the singular behavior of the interface at small scales and can be evaluated 

efficiently may find useful applications in other contexts. In fact, from our analysis, we 

show that the difference between the full equation and the model equation is a smoothing 

operator. Therefore, it is possible that we can develop an efficient multi-resolution method 

to represent the large scale regular behavior. This will offer an alternative fast method to 

study three-dimensional interfacial flows which can capture the singular behavior at small 

scales. 



181 

It is generally believed that vortex stretching is an important mechanism for three-

dimensional incompressible Euler equations. It is a long open question whether the 3-D 

Euler equations can develop a finite time singularity from smooth initial data. In this 

sense, it is quite surprising that the 3-D vortex sheet is essentially like the 2-D vortex sheet. 

It would be interesting to investigate whether this has any implication to the 3-D Euler 

equations with smooth but nearly singular shear layered initial data. For example, what is 

the limiting behavior of the regularized vortex layer solution as the thickness of the shear 

layer tends to zero. This may shed some useful light into the singularity formation in 3-D 

Euler equations with smooth initial data. 
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