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Abstract 

In this thesis, we investigate both theoretically and numerically the singularity formation 

and long time existence of three-dimensional vortex sheets. 

For the theoretical work, we divide it into two parts. In the first part, we study the 

early time singularity formation and the local form of the vortex sheet in the neighborhood 

of a singularity near the singularity time. ,Ve show that under a special set of coordinates, 

the three-dimensional vortex sheet can be viewed as a two-dimensional vortex sheet along 

certain space curves. As a result, the study of singularity formation of a three-dimensional 

vortex sheet can be related to that of the corresponding two-dimensional vortex sheet. And 

the singular behavior of these two problems is very similar. iVloreover, by performing a 

transformation in the interface variables and deriving leading order asymptotic approxima­

tions for the evolution of these transformed variables, we show that the Kelvin-Helmholtz 

instability is a result of the coupling of two of these three variables to the leading order. 

This observation simplifies significantly our singularity analysis for three-dimensional vor­

tex sheets and allows us to reveal clearly the nature of the curvature singularity in the 

three-dimensional vortex sheet equation. In the second part of our theoretical work, we 

prove the long time existence of the three-dimensional vortex sheet problem for analytic 

initial conditions near equilibrium. :'vloreover, the existence time is almost optimal if the 

initial perturbation over the equilibrium is sufficiently small. 

\Ve have performed careful numerical study to validate our theoretical results. \Vell­

resolved numerical study of the full three-dimensional vortex sheet equation is difficult 
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due to the complexity in evaluating the interface velocity. To alleviate this difficulty, we 

introduce two model equations. An important feature of these models equations is that they 

can be expressed in terms of convolution operators and consequently they can be computed 

efficiently by Fast Fourier Transform. Moreover, we show by asymptotic analysis that 

these model equations preserve the singularity type of the full equations. Our analysis also 

suggests that the model equations generate the same local form of curvature singularity 

near the physical singularity time as that of the full equations. Our detailed numerical 

computations on the two-dimensional problem show that the model equation captures all 

the essential singularity behavior of the full vortex sheet equation. Our calculations based 

on the three-dimensional model equation provide convincing evidences that a curvature 

singularity develops in finite time in the three-dimensional vortex sheet. And the type of 

the singularity is of order -1/2 in the mean curvature. 
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Chapter 1 Introduction and Background 

One of the generic features of shear flows at high Reynolds numbers is Kelvin-Helmholtz 

(K-H) instability. It has been suggested that K-H instability plays a role in maintaining 

turbulent flow by causing the break-up of shear layers [21J. One of the well-known examples 

where K-H waves develop is the instability of the vortex sheet centered on the dividing 

streamline of a separated flow. It is an asymptotic model of a parallel shear flow in which 

the thickness of the transition region between the two streams is small compared with a 

typical stream-wise length-scale. 

The singularity formation in two-dimensional vortex sheets has been thoroughly studied 

in the last two decades. Among the early contributions, Moore [23J studied the nonlinear 

evolution of a vortex sheet with a small sinusoidal initial disturbance of amplitude E. He 

predicted that close to the singularity, the curvature of the sheet is proportional to !r -
1 

rsl-', where r is the circulation in the sheet measured from a fixed reference particle 

and r s is the position of the singularity. Although Moore's analysis was based on formal 

asymptotic analysis, his result was supported by Meiron, Baker & Orszag [22J, who analyzed 

a power series solution in time using series extension techniques. Further, their results were 

confirmed numerically by Krasny [19J and Shelley [28], in which the roundoff eITor growth 

was controlled by spectral filtering. Moreover, as a rigorous validation of Moore's analysis, 

Caflisch & Orellana [9J proved the existence for a slightly perturbed vortex sheet up to 

t = O(llog(E)I) for Moore's initial condition. 

A recent article by Cowley, Baker & Tanveer [12J presented a complete study to the 
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two-dimensional problem. Among other results, they studied the early time singularity 

formation on the Birkhoff-Rott equation, and showed by complexifying the independent 

variable ~, that early time complex singularities of power ~ can be developed at t = 0+. 

Further, the singularity moves around the complex ~-domain towards the real ~-ax.is without 

changing its type. The first time at which a singularity intersects the real ~-axis gives the 

time at which a singularity forms in the physical problem. Moreover, they obtained an 

asymptotic description of the sheet shape as the physical singularity forms, and explained 

certain results observed numerically for the larger initial condition studied by Shelley [28J. 

The three-dimensional vortex sheet equation has also been studied by a number of 

researchers recently. Among them, Ishihara & Kaneda [18J provided some evidence of the 

singularity formation in the three-dimensional problem. Brady & Pullin [7J presented analy­

sis on three-dimensional vortex sheets which have cylindrical shape and normal mode initial 

data. They showed that in planes normal to the generator of the cylindrical sheet geometry, 

the nonlinear evolution of the sheet is the same as that of an equivalent two-dimensional 

vortex sheet motion. Consequently, singularity formation of this special three-dimensional 

vortex sheet problem is rednced exactly to that of the corresponding two-dimensional prob­

lem. Our study of singularity formation in three-dimensional vortex sheets is partially 

motivated by Brady & Pullin's result. Here we consider generic three-dimensional initial 

data and show that the evolution of three-dimensional vortex sheets can be reduced to that 

of two-dimensional vortex sheets to the leading order. 

In this thesis, we study the singular behavior of three-dimensional vortex sheets. Our 

study is divided into four parts. In the first part, by performing asymptotic analysis on the 

three-dimensional vortex sheet equation, we study the formation of early time singularity 

and the local form of the vortex sheet in the neighbor hood of the singularity near the 
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singularity time. In the second part, we provide a long time existence proof to the three-

dimensional vortex sheet equation. The existence time is ahnost optimal for small initial 

pertmbations. In the third part of this thesis, we introduce two model equations and 

study their singular behavior comparing to the fnll equations. An important featme of 

these model equations is that they capt me the leading order singularity behavior of the full 

vortex sheet equation and can be computed efficiently. In the fomth part of this thesis, we 

perform a detailed numerical study which confirms some of the theoretical findings. Below, 

we summarize the main results that we obtain in this thesis. 

1.1 Three-dimensional Vortex Sheets' Early Time Singular-

ities Formation 

In Chapter 3, we study the early time singularity formation of solutions to the three­

dimensional vortex sheet equation. We show that along certain space curves on the three­

dimensional vortex sheet interface, singularity formation is equivalent to that of a two­

dimensional vortex sheet interface to the leading order. In fact, by choosing a special 

set of coordinates and complexifying one of the two independent variables, we show that 

branch point singularities of order 3/2 develop spontaneously at t = 0+ in the extended 

complex domain. Further, following the idea by Cowley, Baker & Tanveer, [12J we derive an 

asymptotic expansion which describes the local form of the three-dimensional vortex sheet 

at the physical singularity time. 

As pointed out by a number of researchers (Moore in [23], [24], Caflisch & Se=es in 

[10], Cowley, Baker & Tanveer in [12]), the key in studying the early time singularity is 

to derive a local approximation from the vortex sheet equation. Previous studies relied on 
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complexifying the integral and applying the Residue Theorem. However, it is not trivial to 

extend this idea to the three-dimensional problem. Therefore, we take a different approach 

which is generalizable to the three-dimensional problem. By using the dipole representation 

and Bernoulli's equation, we are able to derive the same local terms from the velocity jump 

in the tangential direction across the sheet. As we will see later, this tangential velocity 

jump is the physical driving force of the singularity formation in two and three-dimensional 

vortex sheets. 

The local terms derived from the three-dimensional vortex sheet equation suggest that 

under a set of special orthogonal coordinates (a], a2), the three-dimensional problem de­

velops the same type of the singularity along the space curves z( a], ., t) as that of the two­

dimensional problem. The reason is that by taking a] as parameter, the three-dimensional 

problem has the same leading order terms as those of the two-dimensional problem. Fur­

thermore, by complexifying a2 and comparing the governing equation of the arc length 

functions of z( a], ., t) to the two-dimensional interface, we show formally that same type 

of the singularities form at the early time stage for both equations. From this asymptotic 

analysis, we conclude that the three-dimensional vortex sheet develops the same type of 

singularity on the a2 direction in the complex a2 domain as that of the two-dimensional 

vortex sheet. 

To study the local form of the curvature singularity, we employ the asymptotic analysis 

performed by Hou & Zhang [17]. We present a description to the local vortex sheet interface 

in the neighborhood of singularity near the physical singularity time. From our analysis, we 

show that under the special orthogonal coordinates mentioned above, with special choices 

of three interface variables, the local form of the curvature singularity is only observed in 

two of the three components. 
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1.2 Existence Proof of the Three-dimensional Vortex Sheet 

Problem 

In Chapter 4, we provide an existence proof for a three-dimensional vortex sheet that is 

slightly perturbed from a plane uniform vortex sheet. Our result shows that given a small 

analytic periodic initial perturbation, an analytic solution exists aud remains small for a 

long time. The existence time interval depends on the amplitude of the perturbation c 

aud the dipole strength,. Specifically, we assume that the initial perturbation can be 

aualytically continued into a strip of width max(IIm(cq)l, IIm(<>2)1) < Po, where (C",<>2) 

is the Lagrangian parameter. Under this assumption, our theorem ensures the existence of 

an analytic solution to the three-dimensional vortex sheet equation for 0 < t < po/G + ,,), 

where" is a constant, which can be chosen as auy small positive number provided that the 

initial perturbation is sufficiently small. This is au optimal result if the initial perturbation 

is sufficiently small. 

In the two-dimensional problem, Caflisch & Orellana [9J proved the long time existence of 

the solution to the Birkhoff-Rott equation. The key to their proof is to analytically continue 

the interface variables into the complex domain. In the extended complex domain, au elliptic 

system can be considered as a hyperbolic system with complex characteristic speed, and 

thus, au existence result can be established within a time interval which depends on the 

initial perturbation. Specifically, they first derived a system from the Birkhoff-Rott equation 

whose leading order terms are identical to Moore's equation [23], [24]. Furthermore, they 

split the solution into two parts, the first part satisfies Moore's equation with the full initial 

condition. The second part is the difference between the full solution and the first part of 

the solution. The existence of Moore's equation is proved using Lax's estimates for a 2 x 2 
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system of nonlinear conservation laws [20]. The existence of the second part of the solution 

is proved by using the extended abstract Cauchy-Kowalewski theorem [25, 9], which ensures 

that the remaining terms in their derived system are of smaller amplitude. 

Our proof is close to that of Caflisch and Orellana [9]. The key to our proof is also to 

analytically continue the interface variables into the complex domain. In the first part of 

the proof, we derive a linear leading order system from the three-dimensional vortex sheet 

equation. Although a nonlinear leading order system (similar to Moore's system) can also 

be derived, we find that the linear leading order system gives a better structure for our 

analysis. As in [9], we split the solution into a leading order part and a lower order part. 

The existence of the leading order part of the solution can be obtained immediately from 

the linearity. To estimate the nonlinear nonlocal lower order part, we apply the extended 

abstract Cauchy-Kowalewski theorem which shows that the second part is indeed of lower 

order and smaller amplitude in a suitable norm. This proves the existence of the three­

dimensional vortex sheet solution. Throughout the proof, in order to control the nonlinear 

growth of the vortex sheet solution, we complexify both of the two independent variables 

and apply the Lipschitz norm in the twa-dimensional complex domain. 

1.3 Some Theoretical Results on Model Equations 

In Chapter 5, we introduce two model eqnations for two and three-dimensional vortex sheet 

equations for computational purposes. 

From the study of singularity formation in three-dimensional vortex sheet problems, 

most of theoretical work is done by formal asymptotic analysis. It requires confirmation 

from numerical studies. However, from the nature of integra-differential equations, the 

computation of the three-dimensional vortex sheet equation takes O( N4) computational 
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complexity in every time step by direct double summation, where N is the number of 

particles used to discretize the surface in each dimension. It becomes prohibitively expensive 

even with N at the level of 0(100). On the other hand, although the Fast :Vlultipole :Vlethods 

(Greengard & Rokhlin [13], Berman & Greengard [5]) is able to reduce the operating accolmt 

to cN2 , the constant c is still very large. Recently, Haroldsen & Meiron [14] applied this 

method on the numerical computation of several cases of three-dimensional water waves. 

They could just perform the computation up to N = 64 in their time-dependent calculations. 

To overcome this difficulty, we introduce our model equation for the three-dimensional 

vortex sheet problem. 

The evolution equation of a three-dimensional vortex sheet interface 5 is: 

where 

G(z - z') 

and 

1 
47fjz - z'j , 

z-z 

(1.1) 

where (a" (2) is the Lagrangian parameter, z is the interface particle position written in a 

vector form, and J1 is the dipole strength. 
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In the first part of Chapter 5, we introduce a model equation for the three-dimensional 

problem. The idea is to capture the leading order behavior of the singular integral on the 

right-hand side of equation (1.1) at small scales. This is achieved by using first order Taylor 

expansion 

to approximate 

z(a) - z(a') . 

This leads to our three-dimensional model equation [16]: 

where 

N = zCt} X ZO:2 

IZal x z",1 

The goal of our theoretical work on the three-dimensional model equation is to show 

its connection to the full three-dimensional vortex sheet equation. In particular, we show 

that our model equation forms the same tangential velocity jump condition as that of the 

full equation. Therefore, by applying the same analysis developed for the full equation in 

Chapter 3, we can show that our model equation captures the singularity type of the full 

equation. Furthermore, we show that the local singularity structure of our model equation 
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has the same form as that of the full equation near the physical singularity time. 

To further illustrate our idea of the model equations, we introduce a model equation for 

the twa-dimensional vortex sheet equation in the second part Chapter 5. 

The evolution of a twa-dimensional vortex sheet is described by the Birkhoff-Rott 

integra-differential equation [6J 

(1.3) 

where the over-bar denotes the complex conjugate, t is time, z(~, t) = x(~, t) + iy(~, t) is 

the complex interface position parametrized by a Lagrangian variable ~, and r(o is the 

circulation in the sheet measured between the point with coordinate z and a reference 

particle. By Kelvin's circulation theorem, r is independent of time, which makes it possible 

to re-write the Birkhoff-Rott equation so that r is the independent variable in the case that 

To study the singular behavior of this integro-differential equation, several model e-

quations have been derived by previous researchers in this field. Moore [23J was the first 

one who derived an approximate differential equation for the evolution of the vortex sheet. 

Subsequently, CafJisch & Orellana [9J, Caflisch & Semmes [10J presented a system of four 

first-order differential equations, which generalized Moore's approximation. Recently, Cow-

ley, Baker, & Tanveer [12J further extended CafJisch's model equation and provided a more 

extensive study of the singularity. Although their derivations are formal, numerical com-

putations did confirm that their models capture the essence of the singularity. 

Our twa-dimensional model equation further generalizes the model derived by CafJisch 

& Semmes [10J. Similar to our three-dimensional model equation, the idea is using the first 
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order Taylor expansion 

to approximate 

z(O - z((') 

in equation (1.3). This leads to our two-dimensional model equation [16J 

(1.4) 

By applying the analysis conducted by Cowley, Baker & Tanveer [12], we can show that 

our model equation captures the singularity type for a vast class of initial conditions (all 

initial conditions studied in [12J in fact). Furthermore, our model equation can be used to 

derive an asymptotic approximation to the interface shape in neighborhood of singularities 

when physical singularities appear. We show that the model equation has the same form of 

singularities as that of the full equation. Another important feature of our model equation 

is that it is expressed in terms of the Hilbert transform, which can be evaluated by means 

of the Fast Fourier Transform (FFT). This allows us to perform computations with an 

operating count O(N log N) per time step. It offers a tremendous saving over the full 

equation which requires O(N2) operations per time step by direct sum methods. 
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1.4 Numerical Study on the Model Equations 

In Chapter 6, we confirm our theoretical analysis of Chapter 5 by performing numerical 

computation on both two-dimensional and three-dimensional vortex sheet problems. 

In the two-dimensional problem, we apply the modified point vortex approximation 

used by Shelley [28] and the spectral filtering technique of Krasny [19] in our numerical 

study. Further, to provide convincing evidence on the singularity type and the propagating 

trajectory, we form-fit the Fourier coefficients of the interface following [26, 28]. Our form­

fitting result shows that when we evolve the vortex sheet from the initial condition used in 

the analysis of Meiron, Baker & Orszag [22] (subsequently referred to as MBO), our two­

dimensional model equation generates the same type of singularities as the full equation. 

But the speed of which the singularity propagates is different from the full equation. This 

is because the lower order terms we changed in defining our model equation also contribute 

to this quantity. Our results also show that at the time of physical singularity, our model 

equation preserves the singularity structure in the neighborhood of singularity. 

In three-dimensional problems, the application of our model equation is less straight­

forward, since the model equation is in general not of convolution type. By choosing the 

coordinates (a], (2) which satisfy 

(1.5) 

(1.6) 

with C" C2 independent of (a" (2), Hou & Zhang [16] derived a model equation in con­

volution form. To ensure that the conditions in (1.5) and (1.6) are satisfied in time, they 

introduced two tangential velocities at every time step [16]. vVith this special coordinate, 



12 

the integral operators in the model equations become Riesz transforms, which can be e-

valuated by the Fast Fourier Transform with O(N210g(N)) complexity at every time step, 

where N is the number of particles used to discretize the surface in each dimension. 

Further, with the three-dimensional computational results, we form-fitted its singularity 

time and the singularity power. Combining our numerical calculation with our theoretical 

derivation, we claim that for the full three-dimensional vortex sheet equation, curvature 

singularity appears in finite time. Moreover, the type of singularity is of order 3/2 which is 

the same as the two-dimensional vortex sheet problem. 

The rest of the thesis is organized as follows. In Chapter 2, we provide general for­

mulations for vortex sheet equations. In Chapter 3, we study the early time singularity 

formation and the local singularity form in the three-dimensional vortex sheet problem. In 

Chapter 4, we present a proof for the long time existence of the three-dimensional vortex 

sheet equation. Our model equations are introduced and analyzed by asymptotic analysis 

in Chapter 5. vVe devote Chapter 6 to present the numerical computations. 
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Chapter 2 General Formulation 

In this chapter, we introduce the general formulation used in this thesis. ·We divide this 

chapter into two sections. In the first section, the three-dimensional vortex sheet equation is 

derived from the dipole representation and the Bernoulli's equation. In the second section, 

we present a brief derivation to the model equations proposed to simulate the full vortex 

sheet equations. 

2.1 Vortex Sheet Equation 

\Ve consider an interface S separating two infinite layers of incompressible, inviscid, irrota-

tional and identical fluids in the absence of surface tension. Using the Lagrangian frame, 

the interface location at any instant t is given by: 

(2.1) 

where (aI, (2) is the Lagrangian surface parameter. Thus, the normalized tangential vectors 

of the surface TI and T2 are defined by 

Z'" 
TI = -I -I' 

Z'" 
(2.2) 

and the normal vector to the surface N is defined by 

(2.3) 
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,Ve label the region below the interface as region 1 and the region above the interface 

as region 2. Therefore, the velocity field Ul (U2) is the velocity below (above) the interface. 

We define U+ to be the limit of ll2 approaching the interface from Region 2 and ll_ to be 

the limit of III approaching the interface from Region 1. 

Since the flow in each region is irrotational, we can introduce the velocity potentials <PI 

and <P2 so that 

(2.4) 

Furthermore, since the flows are incompressible, the velocity potentials satisfy the 

Laplace equation: 

(2.5) 

Therefore, the potentials in the fluid domain can be written in the following dipole 

representation: 

where 

<p(z) = ( )1(a/)(Zal X z",)(a')· 'i7z,G(z - z(a'))da' , 
is' 

G(z - z') 
1 

47rlz - z'l 
z-z 

and )1(a) = <P- - <P+. 

(2.6) 
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By differentiating equation (2.6) with respect to z and then integrating by parts, we 

obtain 

V'c/>(z) = r lV'ojl(a')T,V'oz(c/fl x V'z,G(z(a) -z(a'))da', 
is' 

where we have used the notation 

The motion of the interface is governed by 

Elz 
&t = u, 

(2.7) 

where u = (u, v, w) is the velocity of fluid particles on the interface. The kinematic condition 

that ensures the interface moving with the fluid, requires that the normal component of 

velocity be continuous at the interface. However, the tangential velocity at the interface is 

arbitrary and can be chosen at our convenience. 

For the vortex sheet problems, by combining equation (2.6), equation (2.7) and the 

Bernoulli equation for both layers of flnid and using the continuity of normal stress, it can 

be shown that when choose u = !(u+ + u_), 

Eli' = 0 
Elt 

(2.8) 

holds ([4]). (2.8) says that the circulation stays constant along the trajectories whose motion 

are determined by the average fluid velocity, a we11-know:n result in Fluid Mechanics. 
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With this particular choice of tangeutial velocity, the velocity of the vortex sheet inter-

face has the form of (2.7). The equation of the surface particle motion can be written down 

as: 

: (z) = ls, IV' aJ.l(a'f, V' "z(a'fl x V' z,G(z(a) - z(a')) da' , (2.9) 

where z E S and the integral takes Cauchy principle value. 

From the three-dimensional vortex sheet equation, it is quite straightforward to derive 

the Birkhoff-Rott equation for the two-dimensional vortex sheet evolution from it. 

In fact, a two-dimensional vortex sheet is a special case of three-dimensional vortex 

sheets with 

(2.10) 

Then, it follows from substituting (2.10) into (2.9) and integrating out a2 that 

y - y(aD 

GZ 100 
J.l'" (a~) 

at (z) = -co (x - x(a~)? + (y - y(aD? o da~ . (2.11 ) 

-x + x(a~) 

Further, by combining x and y into one complex function as z = x + iy, (2.11) can be 

re-written as 

GZ 1 100 J.l,,(a')da' - a t) =-at (, 21fi -00 z(a) - z(a') 
(2.12) 
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which is the Birkhoff-Rott equation [61. 
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Chapter 3 Formation of Early Time Singularities in 3-D 

Vortex Sheets 

In this chapter, we study early time singularity formations in three-dimensional vortex 

sheets with a wide range of initial conditions. 

The sections in this chapter are arranged as follows. A different derivation of two­

dimensional leading order approximation is presented in Section 1. In Section 2, we extend 

the analysis and derive a leading order local system for the three-dimensional vortex sheet 

equation. In Section 3, we present the main result of this chapter, where we identify the 

singularity type in the three-dimensional vortex sheet evolution. In the final section, we 

derive the local form of the vortex sheet at the time close to the formation of a physical 

singularity in the neighborhood of the singularity. 

3.1 Alternative Approach for Analyzing the Two-dimensional 

Problem 

In this section, we provide an alternative derivation to the leading order approximation to 

the two-dimensional Problem derived by Cowley, Baker & Tanveer [12J. 

In fact, the system we want to derive in this section has been derived and studied by 

many researchers in this field. In most of the previous articles, the system was derived by 

means of complex analysis. A special feature of the two-dimensional vortex sheet problem is 

that one can combine x and y to form a complex variable z(a) = x(a) + iy(a), and further 

complexify Ct to model z as an analytic function. This idea has no obvious extension to the 
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three-dimensional problem. 

However, physically, the tangential velocity difference is always the driving force of 

the instability. This is the common feature between the two and the three-dimensional 

problem. We want to use this physical property to re-derive the ill-posed system from the 

two-dimensional equation. In the next section, we extend the idea to the three-dimensional 

case. 

In the first half of this section, we briefly review the derivation by Cowley, Baker & 

Tanveer [12] which used complex analysis and the Residue Theorem. In the second half 

of this section, we provide an alternative derivation using the dipole representation and 

Bernoulli equation. 

We consider a free interface, parameterized by (x(a, t), y(a, t)), between two layers of 

identical fluids in absence of surface tension. By combining x and y into a complex number 

z = x + iy, the motion of the interface is determined by the well-known Birkhoff-Rott 

equation [6]. 

Dz(a, t) = _1_100 r o(a')da' 
at 27fi -cc z(a) - z(a') , 

(3.1) 

where a is a Lagrangian marker variable, t is the time and the over-bar denotes the complex 

conjugate. The integral takes Cauchy principal value. 

Cowley, Baker & Tanveer [12] studied the case in which the interface is a periodic 

disturbance of the equilibrium state, z = a. ,Vithout loss of generality, they assumed that 

z(a + 27f, t) = 27f + z(a, t) , 
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and 

rIa + 27r) = 27r + rIa) . 

Under these assumptions, (3.1) can be rewritten as [12[ 

: (a, t) = 4~i 1: r a(a') cot(~(z(a, t) - z(a', t)))da' (3.2) 

Furthermore, by analytically continuing z into the complex a' domain, they were able 

to write the Cauchy principle value integral as a contour integral: 

171" I 1 " 
_~ r a(a ) cot( 2(z(a, t) - z(a ,t)))da = 

1 ,1 , ) , 27rira(a) 
r a(a) cot( -(z(a, t) - z(a, i)) da + ( ) 

c 2 ZQ Ct, t 
(3.3) 

where the contour C runs from a' = -7r to a' = 7r, and is assmned to be deformed beneath 

a simple pole at a' = a. 

Moreover, with the periodicity properties of z(a, t) aud rIa), it is convenient to write 

z(a, t) = a + s(a, t), rIa) = a + ala) , (3.4) 

so that sand 0' are identified as the 27r-periodic part of z and r respectively. Following 

Caflisch & Orellana [9], Cowley, Baker & Tanveer introduced the analytic extension of 

s(a, t) by the following * operator: 

s'(a, t) = s(ei, t) (3.5) 
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which has the following properties. 

1. s* is an analytic function if, and only if, s is an analytic function. 

2. if sand s* are known in the upper half plane, s is known in the whole complex plane. 

3. if s is real when a is real, then s* = s for all complex a. 

4. when a is real, s*(a, t) = s(a, t). 

Using the last property and the Residue Theorem, one can analytically continue equation 

(3.2) into the upper half complex a-plane as 

_8s_*~(ac'-,-,-t) _ 1 11 + O",,(a') (I W (.' ))d ' 1 + O",,(a) - - cot - n. Q ) t a + 1 

at 4"i c 1 + s,,(a', t) 2 2(1 + s,,(a, t)) 
(3.6) 

where 

W(a, a', t) = a - a' + s(a, t) - s(a', t) . (3.7) 

Furthermore, equation (3.6) can be re-written as 

8s*(a, t) O",,(a) - s,,(a, t) J( ) 
-""""""'-'-'- = + 0, t 1 at 2(1 + s,,(a, t)) 

(3.8) 

where 

( ) 1 11+0",,(a') (. (1 ( '))) , J a, t = -. ( , ) z + cot - W a, a, t da. 
4m C 1 + s" a , t 2 

(3.9) 

For simplicity, Cowley, Baker & Tanveer [12[ assumed that the contour C can be de-

formed so that it runs from a' = -IT to a' = " along the real a'-axis. This assumption was 
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confinned by their snbsequent analysis and numerical calculations. 

To obtain another equation for the leading order system, they took the complex conju-

gate of equation (3.2) so that 

: (a, t) = _.2., jn r .,(a') cot( -2
1 

(z(a, t) - z(c/, t)))da' . 
v< 4"1 -n 

(3.10) 

By using the Residue Theorem similar to (3.3) before analytically continuing the functions 

into the upper complex a domain, they obtained: 

a8(a, t) 
= at 

O'.,(a) - 8~(a, t) K( ) 
( ( )) + G, t . 

2 1 + s~ a, t . 
(3.11) 

where 

() 1 11+0'.,(a') (. (1 *( '))) , Ka,t =--. (' ) ,+cot -W a,a,t dG. 
4", C 1 + s., a , t 2 

(3.12) 

Equation (3.8) and (3.11) constitute the ill-posed system derived from the Birkhoff-

Rott equation. There is one important aspect of equation (3.11) which was not addressed 

explicitly in [12]. During the derivation, the complex conjugate of (3.2) is analytically 

continued into the upper half complex a-plane with respect to 8*. This is equivalent to 

analytically continuing the equation into the lower half of the complex a-plane with respect 

to 8 because of the definition of 8*(a, t) = 8(li', t). Therefore, the directions towards which 

the analytically continuations take place are in fact opposite for (3.8) and (3.11). As a 

result, it provides the coupling from 8 on the upper half complex a-domain to 8 on the 

lower half complex a-domain by introducing s*. ~Iore importantly, it is the coupling itself 

that generates the Kelvin Helmholtz instability. In the rest of this section, we present an 
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alternative derivation to (3.8) and (3.11) without complexifying a' and without using the 

Residue Theorem. Instead, we use the dipole representation and Bernoulli equation to 

derive the leading order system. 

We consider an interface separating two layers of identical, incompressible, and irrota-

tional fluid in the absence of surface tension. \Ve assume that the fluids move with velocities 

(Ul, vd and (U2' V2) respectively, where the subscripts 1 and 2 refer to quantities associated 

with the lower and upper fluids. There is a tangential velocity jump along the interface 

when approached from lower or upper fluid. The jump of velocity potential is r. Since we 

use r as the independent variable in equation (3.2), the jump is also equal to the complex 

variable Q. 

Since it is a two-dimensional problem, it is convenient to use the notation 

z(a, t) = x(a, t) + iy(a, t) 

to describe the fluid particle position and 

q(a, t) = uta, t) + iv(a, t) 

to describe the fluid particle velocity. 

By applying the dipole representation and Bernoulli equation to the fluid on both sides 

of the interface, one can show that (Baker [2]) 

q*(a) = q;(a) - 2z,,\a) , 

q*(a) = qi(a) + 2z,,\a) , 

(3.13) 

(3.14) 
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where * stands for the complex conjugate, and 

q;(Ct) = Ui(Ct) - iVi{Ct) 

are the limiting velocities of the interface particle approach from upper or lower layers 

of fluid. Although equation (3.13) and equation (3.14) are still written in the complex 

form, they are essentially real functions with complex expressions since a is a real variable. 

Without complexifying Ct, (3.13) and (3.14) specify the velocity jump across the interface, 

which is l/z". On the other hand, it is interesting to notice that the velocity jump specified 

from (3.13) and (3.14) coincides with the local terms in (3.8) and (3.11). From the analysis 

by Cowley, Baker & Tanveer in [12], the local terms are the leading order terms that generate 

the singularity; this suggests that the velocity jump is the driving force for singularity 

formation. 

To derive the ill-posed system (3.8) and (3.11), we use the interface equation 

q*{a,t) = :(Ct,t) (3.15) 

and the extended velocity expression 

1 j~ 1 q{z) = -. cot[-{z - z{Ct'll]da' , 
411"1 _~ 2 

(3.16) 

which describes the velocity in the upper or lower layer of fluid. 
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By substituting (3.15) and (3.16) into (3.14), we get 

Oz 1 1 1" [1 ( ')] , "" = -2 () + lim -. cot - x + iy - z{a ) da 
v/, ZQ Q (x+iy)-z(a) 47r~ -1f 2 

y>Im(z(,,)) 

(3.17) 

Following the derivation by Cowley, Baker & Tanveer, we continue a into the upper 

complex domain and let z{a) = a + s{a), s' (a, t) = s{Ci, t). 

\Vhen a ric ?II, there is no singular point in the integral any more. Therefore, we can 

remove the "limit" on the right-hand side and get: 

as* 

at 

= 

2{1 + ~,,{a)) + 4~i 1: cot[~{a - a' + s{a) - s{a'))]da' 

s" (a) 1 1" . [1 ( , () ('] , 2{1 + s,,{a)) + 471"i _,,' + cot 2" a - a + s a - sa)) da 

(3.18) 

To derive equation (3.11), we substitute (3.15) and (3.16) into the complex conjugate 

of (3.13) and get 

az 1 1 1" [1 ( ('))] , "-' = () + lim -. cot - x - iy - z a da. 
v/.. 220: Q (x-iy)-'z(o) 47r'l -1(" 2 

y>Im(z(,,)) 

Then, we analytically continue a into the upper complex domain to get 

as 
{)t 

s* (a) 1 1" 1 ( " ()) - -. i + cot[-{a - a' + s*{a) - s*{a'))]da' . 
2 1 + si, a 471"' _" 2 

(3.19) 

(3.20) 

In the analysis performed by Cowley, Baker & Tanveer [12], they focused on the sin-

gular behavior of s{a, t) and s*{a, t) around the points ad where either one or both of the 
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conditions 

hold. In particular, they expanded the solution of (3.8) and (3.11) at t = 0+ in powers of t 

and assumed that around ad, the integrals only contribute to the ott) terms. In this way, 

they showed that the integral terms in (3.8) and (3.11) have little effect on the early time 

singularity formation. 

Remarks: The fundamental difference between our derivation and the derivation by 

Cowley, Baker & Tanveer is how the local terms are derived. In [12], Cowley, Baker & 

Tanveer complexified a' before the jump condition was derived. In fact, they derived the 

jump condition from the complexification and the residue theory, which can be seen from 

equation (3.10) and equation (3.11). Our analysis does not complexify a' in the Birkhoff­

Rott equation. We develop the jump condition essentially from real a'. Further, as we can 

see from {3.19}, we do not take the complex conjugate on the Birkhoff equation until the 

jump condition is derived. This makes it easier for us to extend our methodology into the 

three-dimensional problem. 

3.2 Extension to the Three-dimensional Problem 

We now extend the idea to the three-dimensional problem. We assume that the system at 

time t is specified by the interface position z{a, t) and the velocity potential <p{a, t) on the 

interface, where a = (a1,(2). We begin with a double layer or dipole representation for the 

potential in terms of the dipole strength I"{ a). In the case of vortex sheet problems, since 

the velocity on the interface is defined as the average of the limiting velocities approaching 
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from the upper and lower fluids, it is well-known [4] that )l(a) stays fixed over time along 

the Lagrangian trajectory, i.e. 1 

[I)l = 0 
[It . (3.21 ) 

We write the potential in the fluid domain as: 

q,(z) J )l(a')(z", x z",)(a') . 'i7.,G(z - z')da' 

I:; 
K)l , (3.22) 

where 

G(z _ z') = 
1 

47rlz - z'l 

z - z' 
'i7.,G(z - z') = - 4 I '13 

7rZ-Z 

Using the limit of the double layer potential, we find that the value of q, on the interface 

is given by 

q,(()) 1() lim q,(z). z a = -2)l a + .~.(,,) (3.23) 

from lower layer. 

By differentiating (3.22) with respect to z and integrating by parts, we obtain: 

(3.24) 
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where we have used the notation 

1 ( ')T (')TI {}/1 (}/1 'V a J.1 0: ~ 'VoZ a = -{} Z02 - -{} ZOI' 
al 0'2 

By combining the dipole formulation with the vorticity formulation, Haroldsen and 

Meiron [14] have derived the velocity on the interface. It is given by: 

w(o) = \7¢(z(o)) = Wloe(O) + W1(0) , 

where W stands for the velocity on the interface, and 

lim J 1\7,,/1(o'f, \7"z(o'fl x \7z,G(z ~ z(o'))do' , 
z_z(a) 

from lower layer. 

( 1 , T ')T Z'" X Z", 
Wloe 0) = -21\7,,/1(0) , \7 "z(o 1 X 1 12 

ZOI X Z0;2 

Similarly, using the equation related to the upper layer fluid, we get: 

where 

W(o) = \7¢(z(o)) = -Wloe(O) + W2(0) , 

lim J 1\7,,/1(o'f, 'V"z(o'fl x 'Vz,G(z ~ z(o'))do' . 
z_z(o} 

from upper layer. 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Assume further that there exists orthogonal coordinates (01, (2), such that, at time 



t = 0, the coordinates satisfy: 

8!" 
-8 =0, 

<XI 

29 

(3.30) 

(3.31 ) 

Above assumptions can be relaxed to a much more general class of !"-functions. In 

fact, we can prove that starting from any orthogonal coordinates) given that J.1 is a small 

perturbation of 11 <XI + 12<X2 with 11 and 12 being constants, we can always find a set of 

coordinates that satisfy (3.30) and (3.31). "\Te defer the proof to the end of next section. 

Using the properties (3.30) and (3.31), we can simplify the local term to 

(3.32) 

By substituting (3.32) into equation (3.25) and (3.28), we get 

W(<X) (3.33) 

(3.34) 

where WI and W2 are defined in (3.26) and (3.29). 

Remarks: So far we have derived the jump condition based on the three-dimensional 

vortex sheet equation. In particular, by comparing (3.33) and (3.34) to (3.13) and (3.14), 
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we find that the three-dimensional problem has the identical local terms as that of the 

two-dimensional problem using the special coordinates (aJ, a2) satisfying (3.30) and (3.31). 

It is also interesting to consider the two-dimensional problem as a special case of the 

three-dimensional problem. In this case, the coordinate satisfies: 

(3.35) 

and 

(3.36) 

Our main observation is that the three-dimensional vortex sheet problem can be reduced 

to a two-dimensional vortex sheet problem, along the 0:2-direction, to the leading order 

approximation. This observation suggests that the three-dimensional problem develop the 

same type of singularities along the space curves z(al,·, t) as we complexify a2. The detailed 

derivation will be presented in the next section. 

3.3 Singularities at t = 0+ near IZQ21 o 

In this section, we show that along the space curves z(aJ,·, t), by continuing z into the 

complex a2-domain, 3/2 singularities on the a2-direction form at t = 0+. 

The structure of the proof is described as follows. 

1. At time t = 0, by fixing aJ, we calculate the mean curvature H and the square of the 
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arclength G along the Ci2-direction by the following formulas, 

(3.37) 

and 

H= EN-2FM+GL 
2{EG - F2) , 

(3.38) 

where 

E ZOI . ZQl' 

F ZOI . Z02' 

zN Zo, x Z02 

Izo, x za21' 

L za10l . z 
N 

M ZO:l Cf2 . Z 
N 

N Z0202 . Z 
N 

2. Using VG{t = 0) as the arc length and H{t = 0) as the curvature, we can construct a 

unique planar curve up to a constant. ,Ve denote this curve as (X~H{Ci2), Y~H{Ci2)). 

3. Taking (X~H{Ct2). Y&H{Ct2)) as the initial condition, we can solve the Birkhoff-Rott e-

quation in time to obtain a family of plane curves {denoted as {XGH (Ct2' t), YGH (Ct2, t))). 

4. By complexifying the parameter Ct2 in (XGH{Ct2, t), YGH{Ct2, t)), Cowley, Baker & Tan-

veer [121 showed that 3/2 singularities can spontaneously form at t = 0+ in the 

complex Ci2-domain. As a result, the two-dimensional square of arclength function 
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(3.39) 

forms 1/2 singularities in the extended complex domain at the same position as that 

5. We define the square of arclength function on 02 direction of the three-dimensional 

vortex sheet interface G3 as 

(3.40) 

By showing that the evolution equations of both G2 and G3 have the identical leading 

order terms around the points where singularities of G2 develop, we show that G3 

also form singularities around the same 02 position with the same power on the 02-

direction. 

6. The result of Step 5 implies that the solution to the three-dimensional vortex sheet 

equation form 3/2 singularities on the 02-direction spontaneously at t = 0+. 

The key in our analysis is to justify Step 5. We divide the analysis into three sub-steps. 

1. Derive the evolution equations of G2 and G3 . 

2. Show that around the 02 locations where the singularities of G2 form, the two equa­

tions share the same leading order terms in the evolution equations. 

3. Show that G3 (a, t) develops the same type of singularity at the same locations where 

G2(0, t) develops singularity. 
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Sub-step 1; It is sufficient to derive the evolution equation for G3 only, because G2 

can be considered as a special case of G3 from the last remark in the last section. 

At time t = 0, the motion of a three-dimensional interface z(al, a2, t) is governed by 

az (a) = 
at (3.41 ) 

where a = (al. (2). The equation which describes the a2-direction arclength square G can 

be derived as 

Gt 

(3.42) 

at time t = O. 

Similarly, if the governing equation for the interface is 

az Z"2 ( ) 
at (a) = 21 z0212 + W2 a , (3.43) 

the equation for G can be showu to be 

(3.44) 

Remarks; 1. Xote that (3.42) and (3.44) can be applied to both G2 and G3 with dif-

ferent w terms because two-dimensional vortex sheet problems can be considered as special 

cases of three-dimensional vortex sheet problems. 
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2. Essentially, equation (3.42) and equation (3.44) describe a jump condition for the 

evolution equation of the arclength square f,mction. 'What we need to mention here is that 

both (3.42) and (3.44) can only be analytically continued to half of the complex a2 plane 

because of the jump condition. Following the idea used in studying the two-dimensional 

problem, we analytically continue equation (3.42) to the lower half complex a2 domain and 

equation (3.44) to the upper half complex az domain. 

Sub-step 2: ,Ve need to show that around the az locations where the G2 forms singu­

larity, the evolution equations of Gz and G3 share the same leading order terms. 

First of all, it is necessary to derive the az locations where G2 {az, t) develops singular­

ities. Cowley, Baker & Tanveer [12], by applying asymptotic analysis to (3.8) and (3.11), 

showed that the 3/2 type singularities appear in the neighborhood of a20 in which 

or (3.45) 

Note that the analytic continuation of Gz (az, t) takes the form 

Therefore, (3.45) implies that the singularities form around aZO such that 

Furthermore, from Step 2 in the outline, with a1 being fixed, the following equality is 
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satisfied for real "2: 

This also implies that G2("2,0) = G3("2,0) for complex "2 as long as G2 and G3 are 

analytic. Together with Sub-step 1, we conclude that around the "'2'S where the singularity 

formation takes place, the evolution equations of G2 and G3 have the same leading order 

terms. 

Sub-step 3: ,Ve need to show that at the <>2 locations where G2 develops singularities, 

G3 also develops the same type of singularities. 

In [12], the singularities of 8 and 8* defined in (3.4) and (3.5) are analyzed in two 

cases, the case in which there exists a <>20 such that 1 + 8",(<>20) and 1 + 8~2(<>20) vanish 

simultaneously, and the case in which there exist a <>20 such that one of them vanish at 

the point but the other does not. ,Ve take the same approach as well. However, from the 

similarity of these two cases, it is sufficient for us to show only one of them in detail. The 

result of the other case can be derived similarly. ,Ve choose the case where there exists a 

"20 so that 

but 
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Since 

for all (2) it is appropriate to combine the expansion of 80:2 and S~2 around 020 in powers 

of the time t to obtain the expansion of G2(02,t) for t« l. 

Since direct expansion of 8 and s' in powers of t breaks down in the neighbor hood of 

020, Cowley, Baker & Tanveer [121 took ( = 02 - "20 and used the asymptotic scaling for 

small ( when t « 1 as 

1 (2) ~ ( = TlDt' where D-
- s02(1 + SOl) 

where 

and 

Koo = K(020, 0) 

which was defined in (3.12). In this way, they obtained the expansion of sand s* as 

1 (1 1) 8 = 800 - TlDt2 + - + Koo + ,A(TI) t + ... , 
2 1 + 801 

(3.46) 

1 
s'= SOD + ((1 + sOl)B(TI) - TI)Dt'i + ... , (3.47) 
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by solving A(1)) and B(1)) from the evolution equations of sand s'. As a result, they showed 

that A(1)) and B(1)) have a 3/2 branch point singularity at certain point 1)0. In particular, 

A(1)) and B(1)) have the expansions 

B(1)) 

in the neighborhood of 1)0 with AIBI i' 0, p = ~. 

Since 

from the rescaling, G2 (G2) has the expansion 

(1 + S",(G2, t))(l + S~,(G2' t)) 

A'( )!1- l d 
TJ" . (1 + sodB'(TJ) + ... 

1 T SOl 

A'(1))B'(1))!1-ld + ... 

(3.48) 

(3.49) 

(3.50) 

'We conclude that G2 develops a 1/2 singularity at the same TJo from the term of order t l
/

2
. 

Now, we show that G3 develops the same type of singularity at the same G2 location. 

Our approach is to expand G2 and G3 around the (}:20 in powers of t and (, by using the 

rescaling of ( = 0(t l / 2 ), to show that G2 and G3 have identical expansions to the order of 

0(t1/2). To perfonn our analysis, we make the same assumption as in [12], that when we 

complexify (}:2 in (3.26) and (3.29), the integrals are bounded in the complex (}:2 domain. 
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From our assumption of a20, G2 vanishes in the upper half complex a2-domain. There-

fore, from the remarks at the end of Sub-step 1, we use (3.44) to expand both G2 and G3 

in powers of t and ( = a2 - a20. Taking G2 as an example, we get 

G2 (a2, 0) + G2t (a2, O)t + ... 

(3.51) 

from equation (3.44). As expected, the expansion breaks down near ( ~ O. Following the 

scaling in the expansions of s and s', we use ( = 1)011/ 2 and expand G2 as 

On the other hand, from equation (3.50), G2 has the expansion up to order 0(t 1/ 2 ) of 

We conclude that equation (3.50) satisfies the evolution equation of G2 up to the order 
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Similarly, G3 has the expansion in powers of t and ( 

(3.52) 

The expansion also breaks down near ( ~ O. \Ve use the same scaling function ( = 7]!!t 1
/

2 

as in the case of G2 and also expand G3 as 

Since G2 and G3 have the same initial condition and the same leading order terms in their 

evolution equations, their expansions share identical terms up to O(t 1/ 2 ) which is the term 

that generates a singularity at G2 . Thus, G3 also has the expansion 

(3.53) 

This shows that G3 develops the same type of singularities at the same <>2 position. AIore-

over, if we complexify <>2 in the three-dimensional vortex sheet equation, singularities of 

power 3/2 on the <>2 direction form spontaneously at t = 0+. This completes our derivation 

of the singularity formation in the three-dimensional vortex sheet problem. 

Existence of orthogonal coordinates satisfying (3.30) and (3.31): Throughout 

the analysis, we have assumed that (<>1,<>2) satisfies (3.30) and (3.31). :"low we prove that 

given an orthogonal coordinates (<>1, <>2) and a reasonably large class of /1, we can always 

find another coordinate system (131,132) such that equation (3.30) and (3.31) are satisfied. 
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Lemma 3.3.1 Assume that the interface is a small perturbation of a flat plane, and there 

exists orthogonal coordinates (aI, (2) for z. Furthermore, we assume that 

where (aI, (2) E R x R. Then there exists a change of variables a = a(13), such that: 

Z/3, . zfh = 0 (3.54) 

(3.55) 

(3.56) 

Proof: Starting from (aI, (2), we need to find another set of coordinates (131,132) as 

functions of (a1,a2). Furthermore, we need to show that the map from (a1,a2) to (131,132) 

is a one-to-one map, which means that for any (1310,1320), there is one and only one pair 

(alO, a20) which maps to (1310.1320), and vice versa. 

Assume that the map from (131,132) to (at, a2) has the following form: 
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'Write down the Jacobian matrix for (13], /3,) as 

8(3],0,) 
8(a], (2) 

Consequently, the Jacobian matrix for (a], (2) will be: 

-3] 
. ", 

where 

From equation (3.56), it is natural to choose 

\Vith this choice, we can show that 

0, 

provided that f'.. oj O. which will be verified later. 

(3.57) 

) (3.58) 

(3.59) 

(3.60) 

(3.61) 

Therefore, by choosing 132 = j1, equation (3.55) and (3.56) are satisfied. The next step 

is to use equation (3.54) to solve for 3]. 
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From equation (3.54), we get 

(3.62) 

(3.63) 

Note that in the case that the interface is a small perturbation of a flat plane, A is a 

small perturbation of a constant. By substituting (3.63) into equation (3.62) and using 

By applying (3.58), we obtain 

Furthermore, substituting (3.60) to the above equality leads to 

(3.64) 

Thus, we have derived an equation for {3,. Under the assumption of lemma 3.3.1, A, }la, 

and }la, are all small perturbation of some constants. Therefore, we can solve the linear 

hyperbolic equation. 

Furthermore, under the assumption of current lemma, it is easy to verify that t;. will 
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always be a small perturbation of some nonzero constant. That concludes the proof of the 

lemma. 

Remark: The assumption of the lemma can be relaxed to include more general initial 

conditions far from the equilibrium. Since it is our main interest to study the singularities 

near equilibrium state, we do not present the more general result here. 

3.4 Motion of the singularities 

In the previous section, we have shown that with a wide range of initial conditions, 3/2 

singularities on the 02 direction develop at the complex 02 domain around the positions 

where G3(01, 02, t) = O. This implies that the singularities develop simultaneously along 

one or several one-dimensional curves parametrized by 0'1, i.e., 0"2(CI':} , "t). As time increases, 

each point of these one-dimensional curves moves around in the complex 02 domain. The 

physical singularity time is the first time when these curves hit the real 02 axis. 

In this section, we show that at any time t before the singularity time, the one­

dimensional curve 02(01, t) is always an analytical function of 01. Due to the analyticity 

of 02(01,t) as a function of 0" the curve 02(0"t) cannot intersect with the real (0,,02) 

plane in a segment, for if this were the case it would imply the entire curve has zero imagi-

nary part by analytic continuation. Therefore, its intersection with the real (0" (2) plane 

contains either isolated points, or the entire 02(0" t) curve. In the latter case, the vortex 

sheet surface becomes singular along a one-dimensional curve at the singularity time. 

At time t = 0+, from the results of the previous section, 02(0,,0) is defined implicitly 

by G3(0" 02, 0) = O. Since the initial condition is assumed to be analytic in both 0, and 

02, we conclude that 02(0,,0) is an analytic function of Cl,. Let us parameterize the curve 

alpha2(0"t) in the complex (0,,02) plane as (0"02(0,,t). Furthermore, we expand the 
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square of the arc length function G3 (oq, <>2, i) around (<>10, <>2(<>10, I)) in the following form 

by factoring out the square root singularity explicitly: 

(3.65) 

where A" A21 and A22 are functions of <>10 and t. Since we have singled out the singular 

factor in the expansion, it is reasonable to assume that the coefficients, AI, A21 and A22 

are analytic functions of <>10. 

To derive the equation which governs the motion of <>2(<>1, t), we substitute (3.65) into 

either (3.42) or (3.44) based on whether the singularities are in the upper complex <>2 

domain or in the lower complex <>2 domain. \Vithout loss of generality, we assume that 

the singularities are in the upper half complex <>2 domain, and we use equation (3.44). By 

I 
extracting the (<>2 - <>2(<>10, t))-, terms, we get 

(3.66) 

Note that for t > 0, the singularity trajectory departs from the trajectory of G3(<>I, <>2, t) = 

o. Thus Al does not vanish at (<>10, <>2(<>10, t), and the above equation for <>2(<>I,t) is well 

defined. From equation (3.66), we conclude that <>2(<>1, t) is an analytic function of <>1 up 

to time t since the right hand side is analytic (at least within this leading order asymptotic 

analysis). As a result, we conclude that when physical singularities appear, they appear 

either at some isolated points, or along the entire one-dimensional curve in the real (<>1,£>2) 

plane. It is not possible for the interface to develop finite time singularities along a segment 

of a one-dimensional curve. I This result will be confirmed by our numerical results. 

l\Ve thank Prof. Oscar Bruno for kindly suggesting the idea of proving analyticity of 0:2(0:1, t) as a way 
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3.5 The Local Form of the Curvature Singularity 

Our arguments in the previous sections show that with a large class of initial conditions, 3/2 

singularities on the <>2 direction develop at the complex <>2 domain where IIm(<>2)1 » 1. 

As time increases, the singularities propagate in the extended complex domain. The first 

time at which their trajectories intersect the real <>2 a.xis gives the time that a physical 

singularity appears. In this section, we study the local form of the interface shape in the 

neighborhood of the physical singularity. 

,Vithout loss of generality, we assume that the singularity forms at t = 0 and (a1' <>2) = 

(0,0), and that the surface is moving with a velocity of z at that point. ,Ve also assume 

that at the time of singularity formation, the surface is locally flat in the neighborhood of 

the singularity, with z ~ zo(a1,a2), where Zo is a plane. i\Ioreover, we assume that (a1,a2) 

satisfies (3.54) and (3.55) at time t = O. 

\Ve seek an asymptotic expansion of the solution of the three-dimensional vortex sheet 

equation 

~;(z) = 1:1: 1V'"I'(n'f, V'"z(a'?l x V'z,G(z(<» - z(a'))da' , (3.67) 

where we have used the notation 

')T ')T I a!, a!, IV' "I'(a , V' "z(<> = -a z,,' - -a z",' 
(Xl Q2 

to exclude the possibility of the singularity formation along a segment of a one dimensional curve. 
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and 

G(z - z') 
1 

41fIZ - z'l 

V'z,G(z - z(a')) 
z-z 

Following the idea of Cowley, Baker & Tanveer [12], we separate the integral on the right-

hand side of (3.67) into two regions: a local region where la'i = OCt) and an outer region 

covering the rest of the sheet, 

~z (z) = (1 + 1 ) IV' oJ1.(a,)T, V' oz(a'fl x V' z,G(z(a) - z(a')) da' . 
ut 10'1>8 10'1<:8 

(3.68) 

In order to determine the local shape of the vortex sheet near the singularity, it is 

not necessary to consider the first integral in detail, other than to note that in the Taylor 

expansion of z(a, t) in powers of t, the first two terms of the asymptotic expansion can be 

assumed to be O(tO) and O(tl), as in [12J. This means that the leading order contribution 

from the first integral is of order O(tO). It also suggests that the leading order correction 

terms from the first integral is smaller than that of the second integral, as we will show 

later. Therefore, the shape of the vortex sheet in the neighborhood of the singularity is 

essentially determined by the second integral, In order to approximate the singularity, it 

is convenient to write z in the form of components on the two tangential and one normal 

directions. 

ZTI 

° 
PI (a, t) 

z = zot + zTz 

° 
+ P2 (a, t) (3.69) 

zI'Ii 

° 
P3 (a. t) 
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and 

47 

ZT, 
0 ZO' Tl , 

ZT2 
0 ZO' T2 , 

ZOV zo·N. 

N = ZOOt X ZOoz 

Izoo} x zoozl 

where PI, P2 , and P3 are small perturbations of the interface from the tangent plane in the 

TIl T 2, and N directions respectively. 

,Ve substitute (3.69) into the second integral of the three-dimensional vortex sheet e-

quation and seek asymptotic expansions of Pis. ,Ve follow the analysis in [l71 where Hou 

& Zhang, among other results, studied the growth rate for the linearized motion about an 

arbitrary smooth solution to the three-dimensional vortex sheet equation. In our case~ we 

can use their result directly because a flat plane is an equilibrium state of equation (3.67), 

and therefore, the leading order terms extracted from the asymptotic expansion coincide 

with the leading order terms in the linearized equation. 
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By introdncing </>1 and </>2 as 

(3.70) 

(3.71) 

where fIt and fh are the Riesz transforms defined on the interface, 

and denoting 

with I = 1,2, Hou & Zhang [17J showed that 

= El (</>1,</>2,P3), (3.72) 

1 OP3 
= 2" al a2 oa2 + E2(</>I, </>2, P3} , (3.73) 

1 3 3 0 </>2 1 2 4 0</>1 
= -2"a l a2 oa2 + "2al a2 oal + E3(</>I, </>2, P3) , (3.74) 

where EI, E2, and E3 are the general representations of terms that are either smaller or 

smoother than the leading order terms, provided that </>1, </>2, and P3 are of small amplitnde. 

More inIportantly, EI, E2, and E3 do not contain terms with higher order differentiations. 

Following the idea by Cowley, Baker & Tanveer [12J, we introduce a rescaling by 

a2 = (-t)x , (3.75) 
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and seek similarity solutions of the form 

(3.76) 

(-t)QF2 (cq,X) + ... (3.77) 

(3.78) 

where q > 1 in order to be consistent with the assumption of the sheet being locally flat in 

the neighborhood of singularity. Since we have showed that branch point singularities on 

the <>2 direction develop at t = 0+, we anticipate that Fi ~ Fi± Ixl" as X ~ :xl. in order to 

match with the 'outer' region where 02 = 0(1). For the initial conditions analyzed in the 

last section, we have q = 3/2. 

With the rescaling of (3.75), we substitute (3.76), (3.77), and (3.78) into (3.72), (3.73), 

and (3.74) and extract the O((-t)-q+l) terms. It leads to 

XFI, - qFI 0, (3.79) 

XF2, - qF2 
1 
2 lJ]U2F3, (3.80) 

XF3, - qF2 
1 3 3 

-'20"10"2 F 2:x 
-t 2 4 

+ 20"1 (Y2 F1 0 1 
(3.81 ) 

:'-Iote that (3.79) has zero forcing term. This suggests that there is no qth order singularity 

in the <PI term. "Ve conclude that FI = O. Moreover, substituting this result into (3.80) 

and (3.81) leads to 

1 
(3.82) XF2, - qF2 -(Jl(J2 F3 

2 ' 

XF3, - qF2 
1 3 3 

-2lJI lJ2F2, (3.83) 
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Since al and (72 are nearly constants in the neighborhood of the singularity~ without loss 

of generality, we may assume that "I = 1 and "2 = 1. :lote that in equations (3.82) and 

(3.83), 01 can be considered as a parameter. which shows that the essential direction in 

which singularities form is the <>2 direction. 

To solve (3.82) and (3.83), by taking "I = "2 = 1, we define 

so that we can combine the system and derive 

By solving F from (3.85), we get 

I . 1., 
XF - qF = --IF. 

2 

F c(x+~J 
CTQ{4X2 + 1)~ exp{;qarctan{{2x)-I)), 

where C is a function of 01 only. 

(3.84) 

(3.85) 

(3.86) 

In summary, we conclude that near the physical singularity time, by transferring (ZT1, ZT2, zN) 

into (<PI. <P2, zN), the curvature singularity does not appear on the <PI function to the leading 

order. For 1>2 and zN, the curvature singularity can be observed on at least one of the two 

functions. 

Remark: We show that our result is consistent with that of Brady & Pullin's [71. In [7], 

Brady & Pullin studied a three-dimensional vortex sheet with cylindrical shape and strength 

distribution at the same time. In particular, they assume that initially, the interface has a 



51 

normal mode disturbance of the form 

h(x,y) = Aexp[i(mx + ny)] , (3.87) 

with uniform velocity jump U in the x-direction. By rotating from (x, y, z) axes to (x', y, z') 

axes 

kx' = mx+ny, ky' = -nx + my , z' = z , (3.88) 

where k2 = m2 + n2 , they showed that the singularity evolution in this special case is 

equivalent to that of a two-dimensional vortex sheet with velocity jump of UW. 

To apply our analysis to this special case, we take x = "'1 and y = "'2 at the initial time 

to fit the initial coordinates taken by Brady & Pullin in [7]. Under this choice of coordinates, 

the transformations (3.70) and (3.71) applied to the normal mode is equivalent to a rotation 

of the axes. This is because the the Fourier representations of the Riesz transforms are: 

-if,k 
(3.89) 

where k = 1,2 and (6,6) are the Fourier mode. Since the normal mode functions only have 

one Fourier mode, applying the Riesz transforms is equivalent to multiplying constants to 

such functions. Specifically, the transformations (3.70) and (3.71) applied to normal mode 

initial condition (3.87) is equivalent to the axis rotation of (3.88). In this particular case, 

<P1 defined by (3.70) turns out to be zero, as has been proved in [7]. This shows that our 

analysis is consistent with Brady & Pullin's result when we apply our analysis to their initial 

data. 
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'Ye would also like to point out that even though Brady & Pullin [7] have shown that 

the singularity appears in both Ct] and "2 direction, the singularity in the "2 direction is 

the essential singularity. This can be seen from rotating the normal mode in the (m, n) 

plane. \Yhen we take m = 0, which means that the direction that the wave propagates is 

orthogonal to the x-direction, the singularity disappears. However, if we take n = 0, which 

means that the direction along which the wave propagates is parallel to the x-direction, 

the singularity still exists, and in addition, the physical singularity time is smaller than 

any other combinations of (m, n). This confirms that the velocity jump direction is the 

fundamental direction for the singularity development, and the tangential velocity jump is 

the driving force of singularity formation for vortex sheets. 
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Chapter 4 Existence Proof of the Three-dimensional Vortex 

Sheet Problem 

In this chapter, we prove the long time existence of a three-dimensional vortex sheet slightly 

perturbed from an equilibrium state and in the absence of surface tension. 

The sections of this chapter are arranged as follows. Section 1 provides a general in-

troduction to the formulation of this problem, and states our main result. In Section 2, 

we derive a nonlinear system with linear leading order terms. This system is our platform 

of the existence proof. \Ve devote Section 3 to the outline of the proof without details of 

energy estimates and the estimates of the nonlinear terms in our derived system. In Section 

4, we provide the technical details omitted in Section 3. 

4.1 Formulation and :lVIain Result 

4.1.1 General Formulation 

\Ve consider an interface S separating two infinite layers of incompressible: inviscid, irrota­

tional and identical fluids in the absence of surface tension. Using the Lagrangian frame, 

the interface location at any instant t is given by: 

(4.1 ) 
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where (Q'1~ (2) is the Lagrangian surface parameter. Thus) the nonnalized tangential vectors 

to the surface, TI and T 2 , are defined by 

T 
_ ZOI 

1--­
IZOll 

and the normal vector to the surface N is defined by 

N = ZOI X ZC2 

IZOI x zo,l 

(4.2) 

(4.3) 

\Ve label the region below the interface as Region 1 and the region above the interface 

as Region 2. Therefore, the velocity field UI (U2) is the velocity below (above) the interface. 

\Ve define U+ to be the limit of U2 approaching the interface from Region 2 and u_ to be 

the limit of UI approaching the interface from Region L 

Since the flow in each region is irrotationaL we can introduce the velocity potentials 4>1 

and 4>2 so that 

(4.4) 

Furthermore, since the flows are incompressible, the velocity potentials satisfy the 

Laplace equation: 

(4.5) 

Therefore, the potentials m the fluid domain can be written in the following dipole 
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¢(z) = r ,u(e/)(z", x z",)(a') . 'i7z ,G(z - z(a'))dc/ , 
)S' 

G(z - z') 
1 

47flz - z'l 

'i7 z,G(z - z(a')) 
z-z 

and ,uta) = ¢- - ¢+. 

(4.6) 

By differentiating equation (4.6) with respect to z and then integrating by parts, we 

obtain 

(4.7) 

where we have used the notation 

The motion of the interface is governed by 

where u = (u, v, w) is the velocity of fluid particles on the interface. The kinematic condition 

that ensures that the interface moves with the fluid requires that the normal component of 

the velocity be continuous at the interface. However, the tangential velocity at the interface 
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is arbitrary and can be chosen at our convenience. 

For the vortex sheet problem, we apply Bernoulli's equation to the upper and lower 

layer of fluid respectively. Based on the continuity of the normal stress, and combining with 

equation (4.6) and equation (4.7), we can show that with u = ~(u+ + u_J, 

up = 0 
iJt 

(4.8) 

holds [4]. Equation (4.8) says that the circulation stays constant along the trajectories 

whose motions are determined by the average fluid velocity. 

\Yith this particular choice of tangential velocity, the velocity of the vortex sheet inter-

face can be obtained by the average of the limiting velocities in equation (4.7) approaching 

from the upper and lower layer of fluid. The equation of the surface particle motion can be 

written as: 

: (z) = 1, I'll op(Ct'f, '17 oz(Ct'f1 x 'I7z,G(z(Ct) - z(Ct')) dCt' , (4.9) 

where z E S and the integral takes Cauchy principal value. 

4.1.2 Main Result 

Throughout this chapter, we study the long time existence of a unique solution to the initial 

value problem (4.9). The main result is to prove the existence of such a solution given a 

slightly perturbed periodic initial condition from an equilibrium flat state. IIIore precisely, 
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z is written as 

x 

Z= y + (4.10) 

z o 

where P" P2 and ?3 are periodic functions with period of (27f x 27f) and small analytic 

initial values. Furthermore, without loss of generality, we assume Jl = '"'IIO'} + ')'20'2, with 

I' and 12 being two constants. The existence of such a set of coordinates was proved in 

the last chapter where we studied the early time singularity formation of three-dimensional 

vortex sheets. 

Similar to the two-dinlensional problem, there is no existence result in the Sobolev norm 

(Caflisch & Orellana, [9]). Therefore, we establish the well-posedness in an analytic norm. 

Particnlarly, we choose the Lipschitz norm within a certain complex strip following the idea 

of Caflisch and Orellana [9]. The following theorem is our main result. 

Theorem 4.1.1 (Long Time Existence of 3D Vorlex Sheet Solutions) Let 0 < " < 1, 

0< '" < 1, and Po> O. Assume that z has the form of (4.10) with S;(,6",62,0) satisfying 

sup (IS;(.6",62,0)1 + IV'S;(,6",62,0)1 
IIm(lJ,)I<po 
IIm(fl,)I<po 

2 2 

+ LLI(ollkOIlA(,6",62,0))I) <0, 
k=lj=l 

where i = 1,2,3 and 0 is sufficiently small. 

(4.11) 

Then there exists a solution z = (,6",62, of + (S"S2,S3)T for a time 0::; t::; T, where 



T satisfies 

Moreover, Si{t) satisfies: 

for any P and t such that 
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3 

L IISi{t)lI"p < C{I<~1t)E 
i=l 

t 
O<p<po--- , 

1+1< 2 

where c is independent of E, I< and Po. And the Lipschitz norm is defined by 

Ilfll"p = sup If{1<1,1<2)1 + sup 
IIm(~dl<p IIm(,dl<p, IIm(~2)I<p 
IIm(~2)I<p IIm(~DI<p, IIm(~2)I<p 

(Xl ,K2)¢(K~ ,K~) 

If{1<1,1<2) - f{I<~,I<~)1 

1{1<1,1<2) - {I<~,I<DI" 

Remarks: This result is similar to the two-dimensional result proved by Caflisch and 

Orellana [91. Particularly, the existence times in the two results are same up to the leading 

order term 2po. Besides, a linear time growth rate is observed in both results even though 

it is bounded over all by the product of E and the maximum existence time, ET. 
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4.2 A Nonlinear System with Linear Leading Order Terms 

In this section, we derive a nonlinear system with linear leading order terms from equation 

(4.9). The linear terms constitute an elliptic system, whose initial value problem leads 

to Kelvin-Helmholtz instability. The nonlinear terms are small in the Lipschitz norm for 

analytic solutions within a strip in the complex domain. The bounds of the nonlinear terms 

are proved rigorously in the next section. 

To overcome the instability from the Cauchy-Riemann structure, we extend the inde-

pendent variables into the complex domain. With this complexification, the system can be 

considered as a hyperbolic system with complex characteristic speeds. With its character-

istic lines propagating within the complex domain, the ill-posed problem in the physical 

domain becomes a well-posed problem in the extended complex domain with shrinking 

analytic strip. 

Before we start deriving the system, it is necessary to introduce the Riesz transforms, 

which will be used extensively throughout this chapter. 

Define: 

(4.12) 

(4.13) 

for f E IJ'()R2), where 1 < p < 00, c/ = (ai, a~). The integrals take the Cauchy principal 

value. 

In [30], Stein proved that the Riesz transformations have the following spectral repre-
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sentations: 

HJi 
-i6 ' 

(~i +@1/2f , 
(4.14) 

Hd 
-i6 ' 

(~i + ~~)1/2 f , 
(4.15) 

in which j stands lor the Fourier transformation of f E L2(!R2). 

From (4.14) and (4.15), the following Lemma can be shown straightforwardly. 

space on !R2 and j is the Fourier transform of f. The following equalities hold: 

where DI (D2 ) stands for derivative operator with respect to al (a2). 

Throughout the derivation, we will encounter the following singular operators: 

AU) = ~ 1f f(a) - f(a') 3 da' , 
2r. ((al - a~)2 + (a2 - a;)2)2 

(4.16) 

(4.17) 
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AI2(f) = ~ 1J (al - ai)(a2 - a~)(f(a) - f~a')) da' , 
21T ((al - a~J2 + (a2 - aD2)2 

(4.18) 

(4.19) 

Hou & Zhang [16[ proved the following lemma: 

A(f) (HIDI + H2D2)(f) , 

All (f) 
1 
'3(2HIDI + H2D2)(f) , 

A 12(f) 1 
'3 HID2 (f) , 

A22(f) 1 
'3(H1D 1 + 2H2D 2)(f) . 

Up to now, we have defined the Riesz transforms for L2 ftmctions in the infinite domain. 

We would like to extend the definition to periodic functions. This can be implemented in 

two ways. One is to use the Fourier representations, in which the Fourier transforms in 

(4.14) and (4.15) will be written in the form of Fourier coefficients for periodic functions. 

This can be done for Lipschitz continuous functions Lip" ([0, 21T] x [0,21T]) because of the 

fact that Lip,,([O, 21T] x [0,21T]) C L2([0,21T] X [0, 21T]). 

Another way to extend the definition is through the kernel. We denote K (CiJ, a2) the 

integral kernel of the Riesz transform, and assume that f is periodic with period of 21T x 21T 

and 

(4.20) 
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The Riesz transform with kernel K (a1, (2) can be written as: 

H,(J)(() 

(k 1 ,k2 )=( -nl,-n2) 
(k, ,k,),,(O,O) 

n"U~ocLl: I(( - a)[K(a) 

+ 
(kl,k2)=( -nl,-n2) 

(k"k,),,(O,O) 

(K(a - 2k1r) - K( -2k1r))]dcqda2 , 

(4,21) 

where a = (a1,a2), (= ((1,(2), and k = (k1,k2) with k1,k2 both being integers, We have 

used the fact that J I(a) da = 0 in the last step, 

If for the kernel K (a), 

(kl,K2)=( -nl,-n2) 
(k, ,k, ),,(0,0) 

(K(a - 2k1r) - K( -2k1r))] 

converges absolutely and uniformly for a E [0,2rr] x [0,2rr], we can take the limit into the 

integral and define: 

K*(a) K(a) + L [K(a + 2k1r) - K(2k1r)] 
k,,(O,O) 

K(a) + K(a) , ( 4,22) 
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It is well-known [llJ that the sum K(a" a2) does converge absolutely and uniformly to 

a bounded function for (a" a2) E [0,211"J x [0, 211"J. Particularly, K* converges to ~ cot(~a) 

if K is the kernel of the Hilbert transform in one dimension. This shows that the Riesz 

transform for periodic functions is well-defined. It can be written so that its integration 

interval is either the function period or the infinite domain; both forms are equivalent. 

"Ve derive similarly the periodic kernel of the vortex sheet integral. The result is anal-

ogous to obtaining the kernel ~ cot( Z-ZZ') in one-dimensional space. 

Denote: 

'( ) (, 
K z a,a - ( = Iz(a) _ z(a _ ()13 ( 4.23) 

where a = (a" (2) and ( = ((" (2). Since z has the form of (4.10), the denominator can 

be re-written as: 

3 

(, S,(a)-S,(a-() 

Iz(a) - z(a _ ()13 = + S2(a) - S2(a - () (4.24) 

Using the periodicity of S" S2 and S3, one can show that 

Iz(a) - z(a - (( + 2k7r)) 13 = 
3 

( 4.25) 

o S3(a) - S3(a - () 
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where k = (k1 . k2)' Consequently, we can define: 

K;(a.a - () + L (K;(a,a - (( + 2k7r)) - Kl(2k7r)) 
kT'(O.O) 

1 -K z (a, a - () + K1(o. 0 - () 

where K' is the kernel of Riesz transform in the a,-direction, 

1 () (, 
K(=j(j3' 

( 4.26) 

Similar to equation (4.22), K; converges absolutely and uniformly to a bounded function 

for every (a,. 02) E [D,27r1 x [D,27r1 provided that the perturbation from z to a flat plane is 

sufficiently small. 

The idea can be illustrated in the case of Hilbert transform. where 

and 

1 

. z(o) - z(o - () 
1 

(+ 8(a) - s(o - () 

1 
K(a) = - . 

a 
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In this particular case, there is a closed form of K;(n, n - (): 

= Kz(n,n - () + 2:(K.(n,n - (( + 2k1r)) - K(2k1r)) 
k;<O 

z(n) - ~(n - () + f1a Ck1r + Z(n)l - z(n - () - 2~1f ) 
= ~ cot G(Z(n) - z(n - m) . (4.27) 

Remarks: L The definition shows that the vortex sheet integral can be applied to the 

periodic fnnctions as welL In addition, similar to the result of the Riesz transform, it can 

be written so that the integration interval is either the period of the fnnction or the infinite 

domain as welL 

2. As we will show rigoronsly in last section, if z is a small perturbation of a fiat plane 

under the Lipschitz norm, i.e. , 

the vortex sheet kernel Kl* (n, n - () defined in (4.26) is close to the Riesz transform kernel 

Kh(n) defined in (4.22) under the same Lipschitz norm. This observation will be nsed 

extensively in the following derivation. 

3. All the derivations in this section are formal. We write the remaining terms as 0(0:2 ) 

since they are, as we will show later, of smaller amplitude, during the derivation. At the 

end of this section, we denote them as R" R2 and R3 respectively. 

4. Since we have defined the Riesz transforms for per!odic fnnctions, the other singular 

integral operators mentioned before can be defined by Le=a 4.2.2. 
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Next we derive our target system. Based on the assumptions stated in the last section, 

equation (4.9) can be re-written as: 

[}z 

at 

= 

Sf 02 

-4~JJ "II 1 + S~"2 

S~a2 

al - a\ + SI - S; 

x a2-a~+S2-S~ 

S3 - S~ 

1 + Si"l 

-"12 S~al 

S~al 

da' 

Iz - z'13 

Since Si ~ OlE), it is reasonable to consider the linear terms in the integral as the 

leading order terms. By writing down every component separately and only keeping the 

linear terms, equations for S1, S2 and S3 can be obtained. 

_~ 1J hI (1 + S~"2) - "I2S~"1 )(S3 - S~) 
471' 1 Z - z'13 
("I1S~"2 - "I2S~"1)(a2 - a~ + S2 - S~) d ' - a Iz - z'I3 

= _~ 1J "Il(S3 - S~) - hlS~"2 -"I2S~"1)(a2 - a~) da' 
471' Iz - z'I3 

+ O(E2) , (4.28) 
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DS3 

at 
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_~ J] (J1S~", - "(2S~",)(a1 - ai + Sl - sD 
47r Iz - z'I3 

_ h1S ;", - "(2(1 + S;",))(S3 - S~) da' 
Iz - Z'I3 

= _~ J] "(2(S3 - S~) + (J1S~"2 - "(2S~",)(Cq - aD da' 
47r Iz - z'I3 

+0(£2) , 

= _~ J] (J1 S ;", - "(2(1 + S;",))(a2 - a~ + S2 - S~) 
47r Iz - z'I3 

_ h1 (1 + S~",) - "(2S~",)( a1 - a; + Sl - SD de,' 
Iz - z'I3 

_~ J] ("(l S ;", - "(2 S;",)(a2 - d,) 
47r Iz - z'I3 

(J1S~", ;- "(2S~",)(a1 - aD 
Iz - z'I3 

_ "(1(a1 - a; + Sl - SD + "(2(a2 - d, + S2 - S~) da' 
Iz - z'I3 

(4.29) 

(4.30) 

To understand the instability mechanism in the system, it is helpful to introduce the 

following change of variables. 

(4.31) 

(4.32) 

The ill-posedness or instability will become more apparent using these new variables. F'ur-

thermore, from Le=a 4.2.1, (Sh S2) can be represented by (1/!h 1/!2) through the following 
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equations: 

(4.33) 

(4.34) 

Therefore, it follows from differeutiatiug equation (4.31) and (4.32) with respect to time t 

that 

(4.35) 

(4.36) 

To derive the leading order terms ofthe evolution equation for 'lj;1, we substitute (4.28) 

and (4.29) into (4.35), so that 

a'lj;l H2(aSI)_HI(aS2) 
at at at 

= }h(-~ J II(S3 - S~) - ((IS~"2 - 12S~",)(a2 - a~) da') 
471' Iz - z'I 3 

_ HI(-~ J 12(S3 - S~) + ((IS~"2 - 12S~",)(al - a~) da') 
471' Iz - z'I3 

+ 0(c2
) . (4.37) 

By further using the observation that the vortex sheet kernel is close to the Riesz transform 



69 

kernel under Lipschitz norm, one can show that 

i)1/JI 1 
i)t -"2 H2 {'l'1 AS3 - '"n H2D2S3 + 12JhD1S3) 

1 2 + "2Hlb2AS3 + ,IJhD2S3 -,2H1D1S3) + O{E ) 

1 
-"2JhbIH1DIS3 + ,2H2D 1S3) 

1 ) 2 + "2HlblH1D2S3 + ,2H2D2S3 + O{e ) 

( 4.38) 

where we have applied Lemma 4.2.1 and 4.2.2 in the last step. 

Similarly, to derive the leading order terms in the evolution equation of 1/J2, we substitute 

(4.28) and (4.29) into (4.36) and get 

i)1/J2 H/)Sl) + H2{oS2) 
i)t i)t i)t 

Hl{-~ J 'l'1{S3 - S~) - blS~"2 -'2S~"I)(a2 - a~) da') 
4" Iz - z'1 3 

+ H
2
{ _~ J 12{S3 - S~) + blS~"2 -'2S~"I)(al - a~) da') 

4" Iz - z'1 3 

+ 0{E2) , (4.39) 

which by our observation further implies that: 

o1/J2 1 
i)t -"2HlblAS3 -,1H 2D2S3 + ,2H2D 1S3) 

1 2 
- "2H2b2AS3 + '"nJhD2S3 -,2HID1S3) + O{E ) 

1 
-"2HlblJhD1S3 + 12 H2D 1S3) 

1 2 
- "2H2b1H1D2S3 + 12H2D2S3) + O{E ) . (4.40) 
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By applying Lemma 4.2.1 and 4.2.2, we simplify the above equation to 

f)'l/J2 1 
f)t -Z''I1D I (HI HI + H2 H2)83 

1 2 
- Z"l2D2(HIHI + H2H2)83 + OlE ) 

1 2 
= ZblDI + "I2D2)S3 + OlE ) . (4.41 ) 

For the evolution equation of 83, we substitute (4.33) and (4.34) into (4.30), and extract 

the leading order terms: 

= _~ if "11 (-H2('l/JD - HI('l/J~))02)(a2 - a~) 
4" Iz - z/13 

"I2(H2('l/J;) + HI ('l/J~)Ol (a2 - a~) 
+-'=-'e--..=-'-'-'''----.,----'-'-'~''''-'--=----''-'­Iz - z/13 
+ "I2(HI('l/JD - H2('l/J~))Ol (al - aD 

Iz - zl13 
"II(HI('l/JD - H2('l/J~)02(al - aD 

Iz - zl13 
"I2(HI('l/JI - 'l/JD - Hd'l/J2 - 'l/J~)) 

Iz - zl13 
"II (-H2('l/JI - 'l/JD - HI('l/J2 - 'l/J~)) 

Iz - z/13 

_ "I1(al - aD + "I2(a2 - a~) d '+ O( 2) 
Iz _ zl13 a E. 

( 4.42) 

By using Lemma 4.2.1 and 4.2.2, and tbe fact tbat Iz - zll ~ la - a'l to the leading order, 
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we obtain 

aS3 1 2 1 1 2 1 
at 2"11H2D21/11 + 2"11 H2Jh D21/12 - 2"12H2D11/11 - 2"12H2HIDl'I/J2 

1 2 1 1 2 1 
+ 2"11HID2'I/Jl - 2"11H1H2D2'I/J2 - 2"12HIDl'I/J1 + 2"12HIH2Dl'I/J2 

1 1 1 1 
+ 2"12AHl'I/Jl - 2"12AH2'I/J2 - 2"11AH2'I/J1 - 2"11AHl'I/J2 

+ ~ J "I2(a2 - a~) + "11 (a1 - ail da' + 0(102) 
47r Jz - Z'J3 

1 
2b1Dl + "I2 D2)'l/J2 

~J "I2(a2 - a~) + "Il(a1 - ail d' O( 2) 
+ 47r Jz _ z'J3 a + c . (4.43) 

It is necessary to analyze the integral term of equation (4.43) and extract the leading 

order contributions. By further expanding the integral in terms of S;s, we find that the 

leading order terms are: 

~ J "I2(a2 - a~) + "I1(a1 - ail da' 
47r Jz - z'J3 _ _~ J "I2(a2 - a~)[(SI - Sil(a1 - ai) + (S2 - S~)(a2 - a~)J (4.44) 

- 47r Jz - z'J5 ' 

where we applied the matrix equality of 

3(z - z') (z - z')T 

Jz - z'J5 
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from [15]. Then, it follows from Lemma 4.2.1 and 4.2.2 that 

~ J "I2(a2 - a~) + "I1(al - aD da' 
47f Iz - z'13 

"11 (al - aD[(SI - S;)(al - aD + (S2 - S~)(a2 - aD] O( 2) 
+ I '15 + £ z-z 

-~"/2(AI2(SI) + A22 (S2)) + -~"I1(All(SI) + AI2 (S2)) + 0(£2) 
2 2 
1 

= --:2'"t2(H1D2(SI) + (2H2D2 + H1Dl)(S2)) 

1 2 
- "2"11((2H1D1 + H2D2)(SI) + H1D2(S2)) + O(E ) . (4.45) 

By substituting (4.33) and (4.34) into (4.45), we write the leading order terms in..pl and 

~ J "I2(a2 -~) + "I1(al - aD da' 
47f Iz - z'13 

1 
= -"2"12(HI D2) ( -H2..pl - H1..p2) 

1 
- "2"12(2H2D2 + HIDl)(H1..pl - H2..p2) 

1 
- "2"/1 (2HIDI + H2D2) ( -H2..pl - H1..p2) 

1 2 
- "2"11HID2(Hl..pl - H2..p2) + O(e: ) , (4.46) 

which can be further sinIplified to 

~ J "!2(a2 - a~) + "11 (al - a;) da' 
47f Iz - z'13 

1 
-"2(H1D1 + H2 D2) ( -"I1H2 + "I2Hl)..pl 

+ (HIDI + IhD2)(''/lH1 + "/2H2)..p2 + 0(e:2) 



73 

To unify our notations, we define 

Combining (4.28), (4.29), and (4.43) into a system we get 

a'G'2 
at 

IN.'3 
at 

~h1D1 + "I2D2)03 + 0(,,2) , 

-~h1D1 + "I2D2)1i}2 + ~h2D1 - "I1D2)~'1 + 0(,,2) , 

where D1 (D2) stands for differentiation with respect to the a1 (a2) variable. 

( 4.48) 

( 4.49) 

( 4.50) 

(4.51 ) 

'We compare our leading order terms to the linearized system derived in the article of 

Hou & Zhang [171. Their linearized system is 

a,p1 
at 
a~;2 
at 
ai 
at 

0, 

1 . 
2h1D1 + "I2 D 2)Z , 

1 . 1 , 
-2h1D1 + "I2 D 2)1P2 + 2h2Dl - "I1 D 2)(li'1) , 

,,,here ~1:r~2 and z are perturbations of 1};11 1j.,'2 and z respectively. This comparison confinns 

that our linear system does capture the leading order terms of the three-dimensional vortex 

sheet equation when perturbed around an equilibrium state. 

Since "11 and "12 are constants, we introduce a change of variables from (aI, (2) to (.81 , f:h) 
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as follows: 

(31 = (4.52) 

(4.53) 

Substitute this variable change into system (4.49) - (4.51); the leading order terms 

become 

(4.54) 

1 2 
Z"tD{3,1/J3 + O(c ) , (4.55) 

1 1 2 
-Z"tD{3,1/J2 - Z"tD{J,1/Jl + O(c ) , (4.56) 

In the new coordinates, we can see that the system will suffer the Kelvin-Helmholtz 

instability because of the coupling of (4.55) and (4.56). It also shows that the {32 direction 

is the lUlStable direction responsible for generating Kelvin-Hehnholtz instability. Moreover, 

since the {32 direction is the tangential velocity jump direction between the upper and lower 

layers of fluid, the leading order terms confirm that the tangential velocity jump is the 

physical driving force of the instability of the three-dimensional vortex sheet. 

During the derivation, the only terms written down explicitly were the leading order 

terms. This is because, as we will see in later sections, the remaining terms on the right-

hand side of the equations are of smaller magnitude. vVe denote them as R 1 , R2 , and R3 
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and define them as: 

R 1 (,pI, ,p2, ,p3) 
D,pl 

(4.57) = , 
[)t 

R2(,p1, ,p2, ,p3) 
D,p2 1 
[)t - 2"/Dfh.,p3 , (4.58) 

R3 (,pI, ,p2, ,p3) 
D,p3 1 1 
&t + 2"/Dfh.,p2 + 2,,/D{31,p1 (4.59) 

Next, we extend the independent variables fh and f32 into the complex domain. Iv; a 

result, we can analytically continue the system into the two-dimensional complex domain. 

Following Caflisch & Orellana [9]' we assume that 81, 82, and 83 are initially small analytic 

functions within a strip ofmax(llm(al)l, Ilm(a2)1) < P, where the strip width p depends on 

their initial amplitude E. Since,pI,,p2 are Riesz transforms of 8 1 and 82, it can be shown that 

,pI and ,p2 are also analytic functions within the strip, since the Riesz transforms preserve 

analyticity. Therefore, from the fact that "/1 and "/2 are constants, we conclude that ,pI, ,p2, 

and ,p3 are initially analytic functions in the strip of max(llm(,6I)l.llm(f32)I) < Po, where 

Po and p are of the same order. 

By analytically extending system (4.57) - (4.59) into the complex domain, the system 

can be considered as a hyperbolic system with characteristic lines in the complex domain. 

Furthermore, sinlple calculations show that the characteristic speeds of the linear system are 

o and ± ~. Later, we will prove that these are the leading order terms of the characteristic 

speed of the nonlinear system. 

Remark: Even though we will analyze a complex system instead of a real system, the 

domain that interests us the most is still the real (,61, ,62) plane. This means that we have 

the flexibility to shrink the inlaginary strip without affecting the physical solution. 

Following the idea by Caflisch & Orellana [9J, we construct a quasi-linear system from 
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(4.57) - (4.59). Seemingly, we are deriving a more complicated system. In fact, it is more 

amendable for eITor control for the high order terms. 

To construct a quasi-linear system, we differentiate (4.57) - (4.59) in space and derive 

a system of the space derivatives of 1/11, 1/12 and 1/13. Specifically, define: 

(4.57) - (4.59) then becomes: 

iNn 
at 

81/112 
8t 

81/121 
8t 

81/122 
at 

81/131 
at 

81/132 
at 

8 
8th R1 (1/11 , 1/12, 1/13) , 

8 
8th R1 (1/1], 1/12, 1/13) , 

7 8 
2 DfiJ 1/132 + 8f31 R2(1/1], 1/12, 1/13) , 

7 8 
2DfJ21/132 + 8f32 R2(1/1) , 1/12, 1/13) , 

7 7 8 
-2DfJl1/122 - 2 DfJl1/1n + 8(3) R3(1/1) , 1/12, 1/13) , 

7 7 8 
-2DIl21/122 - 2 DIl21/1n + 8f:k R3(1/1) , 1/12,1/13) . 

This is our target nonlinear system. 

In (4.63) - (4.68), if we take 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

( 4.68) 
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and assume that they are known forcing flllctions, in order to solve system (4.63) - (4.68), 

we can first solve system (4.63), (4.64), (4.66), (4.68) by integrating along the characteristic 

lines, and then substituting the calculated solutions into system (4.65), (4.67) and solve the 

resulting O.D.E .. The procedure will be used in the last section where we prove a le=a 

on energy estimates. Furthermore, without loss of generality, we assume that "I = 1 for the 

rest of the chapter. In this case, the leading order term of the characteristic speed becomes 

4.3 Long Time Existence Proof 

In this section, we prove the main result of this chapter, the long time existence theorem of 

the three-dimensional vortex sheet equation. 

The idea is to apply the extension of the abstract Cauchy-Kowalewski Theorem intro-

duced by Caflisch & Orellana [9J. It requires estimates of the noulinear terms in system 

(4.63) - (4.68). Since the estimation itself is rather technical, to show a clearer outline of 

our main proof, we just state the results here and leave the detailed derivation to the next 

section. 

For technical purposes, we split the solution of (4.63) - (4.68) into two parts. One 

satisfies a linear system with the initial condition of the full nonlinear system, while the 

other satisfies a noulinear system with vanishing initial condition. The existence of the 

first part of the solution is straight-forward, while we use the extension of the abstract 

Cauchy-Kowalewski theorem to prove the existence of the second part. 

The subsections in this section are arranged as follows. In the next subsection, we 

present two le=as about error estimates and energy estimates respectively. The proofs 

of the lemmas are deferred to the next section. In subsection 2, we state the extended 
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abstract Cauchy-Kowalewski theorem. Furthermore, we devote subsection 3 to solving the 

linear system with full initial condition as the first part of the solution to the full nonlinear 

system. The existence of the second part of the solution will be proved in the last subsection. 

4.3.1 Results on Error Estimates and Linear Systems 

In this subsection, we state two lemmas related to the error estimates and energy estimates 

respectively. First of alL it is necessary to define the following Lipschitz norms: 

I/lp = sup 1/(1<1,1<2)1, 
IIm(Kl)1<p 
IIm(K,)I<p 

11/11"p = I/lp + sup 
IIm(K,)I<p, IIm(K2)I<p 
!Jm(K:~)I<p, 11m(K:~)I<p 

(1£1 ,K2)#(I'i~ ,K;) 

1/(1<1,1<2) - I(K~,K~)I 

I(Kl, 1<2) - (K~,K~)I" 

11/11"p+ = I/lp + sup 
IIm(Kl)l<p, IIm(K2)I<p 
IIm(K; )I<p, IIm(K~)I<p 

Im{Kl)=lm(K~), Im(K2)=Im(,...;) 
(1'.:1 ,K2h~(Kl ,/'\:;) 

I/(Kl,K2) - I(K~,K~)I 
1(1<1,1<2) - (K~,K~)I" ' 

(4.69) 

(4.70) 

(4.71 ) 
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Also define II·II",P and lI'II",p as the 1I'II"p norm on the {31 and {32 direction respectively: 

= 111p+ sup 
max(lI m(~I)1,II m(~D I,IIm(~, )I)<p 

KI :!x;~ 

111p + sup 
maxi II m('I) I,IIm(.,)l,IIm(.,)I) <p 

K2¢K2 

11(1<1,1<2} - 1(l<i,1<2}1 
I(I<I-I<DI" 

If(l<], 1<2} - f(l<l, I<~}I 
1(1<2 - I<~}I" 

(4.72) 

(4.73) 

Similarly, we can define II . II",P+ and II . 1I",p+ for the II . lI"p+ norm on the {31 and {32 

directions respectively: 

Ilfll",p+ 

Iflp + sup 
max(IIm(~I)1 ,IIm(., )l,IIm(~,) I)<p 

Im(Kl)=lm(K;) 
Kl:f:~ 

Iflp + sup 
max(lIm(~I)I,II m(N2 )1,lIm(., )I)<p 

Im(K2)=Im(i'>2) 
X2:f:K2 

If(I<],1<2} - f(l<i,1<2}1 
1(1<1 - l<i}I" 

If(I<I,1<2} - f(l<], I<~}I 
1(1<2 - I<~}I" 

Note that for 1<1 # I<i and 1<2 # I<~, 

If(I<],1<2} - f(l<i,I<~}1 

1(1<1,1<2} - (l<iA}I" 
< If(I<I,1<2) - f(l<i,1<2}1 If(l<i,1<2} - f(l<i,I<~}1 

I(KI,K2} - (l<i,K~}I" + I(KI,K2) - (Ki,I<~}I" 
< If(KI,K2) - f(Ki,K2}1 + If(Ki,K2} - f(Ki,~}1 

I(KI,K2} - (Ki,K2}1" 1(l<i,K2) - (l<i,I<~}I" 
If(K], 1<2) - f(l<i, K2}1 If(I<L K2} - f(Ki, I<~}I 

IKI - I<il" + II<~ - K~I" . 

(4.74) 

(4.75) 

(4.76) 

We conclude that II . lI"p is equivalent to (II ·II",P + II . 1I"2P)' Similarly, we can show that 
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11·II"p+ is equivalent to (II·II",P+ + 11·11"2P+)· This property will be used extensively in the 

later analysis. 

Definitions (4.72), (4.73), (4.74), and (4.75) are natural extensions from the correspond-

ing one-dimensional norm. In particular, Caflisch and Orellana [91 have proved that for 

one-dimensional analytic functions: 

Therefore, for two-dimensional analytic functions, the following inequality holds, 

Ilfll"p::; (lIfll",P + Ilfll"2P) ::; c(llfll",P+ + Ilfll"2P+) ::; 2cllfll"p+ . (4.77) 

In the next section, we prove that 

Lemma 4.3.1 Assuming that x, y, z defined in (4.1) are small perturbations of a flat 

plane, and 51, 52, 53 satisfy 

1. 51, 52, 53 are analytic functions within the strip 

2. 51, 52, 53 are periodic functions with period of (27r, 27r). 

3. 

1 
S· 
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where j = 1,2,3 with (111,112) satisfying 11111 < p and 11121 < p. 

Furthermore, we assume that 1fJij and {;ij are defined in (4.31), (4.32), and (4.60) -

(4.62). Then, for 0 < p' < p and 0 < " < 1, the following inequalities hold: 

(4.78) 

and 

IIEij - Eij 11"p' < c(p - /)-1 (ktl tl (111fJklk,ll"p + lI{;k1k,lI"p) 

. (tlktlll1fJk,k, - {;kl.k,lI"p) , (4.79) 

where i, j = 1,2,3. 

Lemma 4.3.2 Consider the following system of 

with analytic fOTcing terms 
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BUll 
(4.80) = 911 , 

at 

BU12 
(4.81) 

Bt 
912 , 

BU21 1 
(4.82) = 2DiJl U32 + g21 , at 

BU22 1 
(4.83) 

at 2Dil2U32 + g22 , 

BU31 1 1 
(4.84) --DiJ U22 - -DiJ Ull + g31 

Bt 2 1 2 1 , 

BU32 1 1 
(4.85) 

at -2Dil2U22 - 2DiJ2Ull + g32 , 

with 

u(t = 0) = 0 . (4.86) 

Then, the following inequality holds, 

(4.87) 

for any 0 < '" < 1, 0 < 0< < 1, with c being a. constant. 

4.3.2 Extended Abstract Cauchy-Kowalewski Theorem 

In this subsection, we state the result of the extended abstract Cauchy-Kowalewski theorem 

for future use. 

Consider the equation 

B 
atu+L[u,t] = G[u,t] , (4.88) 
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with 

u{t = 0) = 0 , (4.89) 

in which L is a linear operator on u, and G may be nonlinear. Assume that there are 

positive functions Po(tl, PI{T,t,p), dl{T,t), d2{t) and positive scalars CI, C2, C3, Rand K 

that satisfy the following conditions: 

1. If u solves (8j&t)u + L[u, tl = g{t), with u(t 

P < Po{t), 

0) o for some g, then for any 

( 4.90) 

2. If Ilu{t)lIp :s R, Ilil{t)llp:S R, and 0 < P' < P < po{t), then 

IIG[u, tl - G[il, tillp' :s 

C2{P - P')-'{d2{t) + lIu{t)llp + Ilil(t)llp)lI{u - il)(t) lip , (4.91) 

in which d2 is an increasing flIDction of t. 

3. IIG[u = O,tlllp:S Kd2(t)(PO{t) - p)-I if P < po(t). 

4. P is positive and decreasing for 0 < t < To; PI{T, t,p) is decreasing in T and increasing 

in p. i'vloreover, if 0 < T < t and 0 < p < Po(t) 

P < PO{T,t,p):S PO{T) - (po{t) - p). (4.92) 
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5. If 0:0: T :0: t < To, then 

(4.93) 

Theorem 4.3.1 (Extended Abstract Cauchy-Kowalewski Theorem) Under assumption (1)­

(5) above, equation (4.88) with initial condition (4.89) has a unique solution u for the time 

interval 0 :0: t :0: T. The solution satisfies 

(4.94) 

for all p and t < T for which 0 < t < a(po(t) - p), where a, (3, and T are any numbers 

satisfying 

/(1 + 2i3)a < 1 (4.95) 

2ac,K(3 - /(1 + 2i3)a)(1 - /(1 + 2(3)a)-3 < (3 (4.96) 

T = min(To,max(t: 2j3d2 (t) < R)) (4.97) 

Remark: 1. In the proof provided by Caflisch & Orellana [9], they used Condition (2) 
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as: 

IIG[u,t]- G[u,t]lItf:<:; 

C2{P - P')-I{d2{t) + lIu{t)lItf + Ilu{t)lItf)lI{u - u){t)llp , (4.98) 

The same proof can be carried out using the Condition (2) in our statement, and this does 

not effect the result. 

2. The proof uses the iteration method since the system is basically a linear system 

with weak nonlinear terms. Among all the constraints, Condition (1) provides the energy 

estimates in every step of the iteration. Condition (2) controls the nonlinear terms during 

the iteration. Condition (3) describes the nonlinear terms at the initial moment. 

3. In our case, Po(t) is to describe the outer boundary where 1/Jij are still smaIl at time 

t for our nonlinear problem. The function PI (7, t, p) corresponds to the downwards moving 

characteristic for the linear problem in Condition (1). Condition (4) says that the linear 

characteristic stays within the domain of dependence for the nonlinear problem. 

4. The inequalities (4.95), (4.96), and (4.97) are due to some technical estimates in the 

proof. These inequalities set a bound on a, which is the speed in which the complex domain 

shrinks in addition to Po (t). 
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4.3.3 Linear System with Full Initial Condition 

Consider the following linear system: 

a,pl1 o , ( 4.99) 
at 

a,p12 o , (4.100) 
at 

a,p21 i -
(4.101) 

at 
-2,,/D/3,1/;32 , 

a,p22 i -
(4.102) = -2"/D(h.1/;32 , at 

a1/;31 i - i -
(4.103) 

at 2"/D/3,1/;22 + 2"/D/3, 1/;11 , 

a,p32 i - i -
(4.104) = 2,,/D/321/;22 + 2"/D(h.1/;11 , at 

with 

If we change variables, letting 1/;:j = ,pij - ,pijlt~o and still write them as ,pij, we get a 

system as (4.80) - (4.85) in Le=a 4.3.2. Therefore, we can apply Le=a 4.3.2 to prove 

the existence and estimate the boundness of ,pij' 

Assume the 1/;ijlt~o's are analytic within the strip max{IIm{i31) I, IIm{i32) I) < Po with 

their Lipschitz norms satisfying: 

(4.105) 

where i = 1,2,3; and j = 1,2. 
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From Le=a 4.3.2, we know that -¢;;j is analytic within a shrinking domain of width 

1 
Po{t) = Po - ("2 + ,,)t , (4.106) 

where 0 < " < 1. As we will see later, " could be taken as small as pleased provided that 

E is sufficiently small. Furthermore, the estimates in Le=a 4.3.2 show that 

1I-¢;;j{t)lI"po(t) < c,,-I l'"'V{"l/J;jlt=o)ll"podT 

< cc{x;-It). (4.107) 

We remark that po(t) in the three-dimensional problem has an expression similar to the 

corresponding two-dimensional problem in [9], when" is small and "-I,, « 1. In addition, 

similar linear growth rate with respect to time is observed in both the two-dimensional and 

the three-dimensional problem if ct « 1. 

4.3.4 Long Time Existence Theorem 

To split the solution into two parts, we define: 

where i = 1,2,3, j = 1,2 and "l/J;j'S are the solution for our target system. 
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By substitutiug it into tbe system and derivillg equations for 'if;:j' we get 

a'if;i, a 
at afl, R,('if;"'if;2, 'if;3) , (4.108) 

8'!f;i2 a 
(4.109) at atl, R,('if;"'if;2, 'if;3) , 

a'if;~, 1 , a ( (4.110) = "2DIl1'if;32 + ath R2 'if;,,'if;2,'if;3) , at 
a'if;~2 1 , a 

(4.111) 
(}t "2 Dil2'if;32 + afJ2 R2('if;,,'if;2,'if;3), 

a'if;~, 1 , 1 , a ) 
(4.112) at -"2 DIl1 'if;22 - "2DIl1 'if;1l + afJ, R3('if;,,'if;2,'if;3 , 

a'if;~2 1 , 1 , a ) 
(4.113) at -"2DIl2 'if;22 - "2Dil2'if;ll + afJ3 R3('if;" 'if;2, 'if;3 , 

with 

'if;;j(t = 0) = ° i = 1,2,3 j = 1,2. 

The existence of 'if;:/s implies the existence of Si'S. Moreover, the following theorem 

implies Theorem (4.1.1). 

Theorem 4.3.2 (Theorem of Long Time Existence) Let ° < '" < 1, 0< 0 < 1, and Po > 0. 

Assume that Si(fJ, , fJ2, 0) satisfy 

where i 

sup (lS'("}'''2,0)1 + 1\7(S,(o, , 02,0))1 
Ilm("l)l<po 
Ilm("2)I<po 

2 2 

+ I L L(a"ka"jSi(O" 02, 0))1) < c , 
k~'j~' 

1,2,3, and c is sufficiently small. Then system (4.63) - (4.68) with z = 
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(Cl!],Cl!2,0) + (SI,S2,S3) has a solution for a time 0 ~ t ~ T where T satisfies 

T =< ~ and ",-2ET« 1 . 
1+ ' "2 I< 

Moreover, the corresponding functions 1/Jij satisfy 

for any p, t satisfying 

" - -I 1 L.. l11/Jij(t) - 'l/Jij(t)llop ~ eEl< t < 8 ' 
i=1,2,3;j=1,2 

t 
O<p<po---1+' "2 I< 

(4.115) 

where the functions 1Pij are solutions of the linear system (4.gg) - (4.104) with initial data 

corresponding to Silt = 0), and c is independent of 13:, I< and Po. 

Proof: From equation (4.106) in the last section, we have that 

1 
po(t) = po - (2 + I<)t . 

From Lemma 4.3.2, choosing any fixed ",' > "', we can always derive inequality (4.90) 

such that 

PI(p,t,r) = p+ (~+ ",')(t - r). 
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From Le=a 4.3.1, the following inequalities hold: 

IIEij{O, t)llc<p' < c{p - P')-I (tl tl 1I',h'k211c<p r 
< c{p - P')-I{EI<-lt )2 , 

IIEij{"'~j' t) - Eij{{lij, t)IIc<p' 

S c{p- p,)-l [CCI<-lt+ (tlktl{II"'k1k211c<p+ 1I"h1k211c<p)] 

. [t t 1I"'~'k2 - 'hI.k211c<p] , 
kl=l k2=1 

for any 0 < p' < p < po{t). 

(4.116) 

(4.117) 

Thus, the assumptions (I) to (5) in the statement of Theorem (4.3.1) are satisfied with 

our choice of Po{t), PI (7, t, p) as above and with 

We can simply take f3 = 1 and any constant a for E sufficiently small. In particular, we 

take a = 1<' - I< to fulfill the conditions on po{t) and PI (p, t, 7). Therefore, it is straight-

forward to apply the Cauchy-Kowalewski theorem to our system. This guarantees the 

existence of the solution to (4.9) throughout the time interval. It also proves that the 

magnitude of the solution remains small since the "'i/S are always of order 0(1) with the 

choice of T for sufficiently small E:. 
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4.4 Estimate on the Error Terms 

Our goal in this section is to provide proofs for Lemma 4.3.1 and 4.3.2. Since the proof for 

le=a 4.3.2 is quite straightforward, we present it in the first subsection. The proof for 

le=a 4.3.1 is much more complicated and we divide it into three subsubsections. 

4.4.1 Bounds on a Linear System 

Consider the linear, spatially inhomogeneous complex N x N system 

f) f) 
f)tu+F 8yu=g(x,y,t), (4.118) 

with 

U(t = 0) = 0 , 

in which the complex N-vector g and the complex N x N matrix F are given. Further 

assume that F is constant matrix and can be diagonalized as: 

F=P-1AP, 

Define the backward characteristics by 

(4.119) 
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where 

Y;(t,t,y)=y, (4.120) 

and for T < t, define the dependence set !I(T,t,y) as those y' which can be reached at time 

T going backwards along characteristics starting from y at time i, i.e. , 

!I(t, i, y) = {V} , 

!I(T, t, y) {y': y' = Y;(T,i,y") for some i and 

for some y" E !I(tl, t, v), T < tl < t} . 

Lemma 4.4.1 Suppose that g is analytic in x and y and, that 

where IFI is the maximal norm of matrix P. 

Then the solution u of (4.118) is analytic and satisfies 

IUj(x,y,t)l:::: c (t sup Ig(x,j],T)ldT, 
Jo YE!l(r.t,y) 

(4.121) 

(4.122) 

(4.123) 

(4.124) 
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lu,(x,y,t)-u,(x,y',t)1 l' I ( - )Id 
I 'I" :s c sup 9 X,y,T T, 
Y - Y 0 yEI1(7,',y)UI1(7,t,y') 

+ c fo' sup (lg(x,y,T) - g;X,yl,T)I) dT, 
In yEI1(7,',X,y) Iy - y I 

IUi(x,y,t) -u,(x'.y,t)1 
Ix - xii" 

where c only depends on p. 

y'EO(T,t,X,y') 
fJ#f/ 

< l' Ig(x,y,T)-g(x',y,T)l d c sup I 'I" T , o yEO(T,t,y) x - x 

(4.125) 

(4.126) 

Proof: The proof of inequality (4.124) and (4.125) can be obtained by directly applying 

Proposition B.1 in (Caflisch & Orellana [9]). 

Therefore, we only need to prove (4.126). Note that in equation (4.118), x is only a 

parameter. Therefore, if u(x, y, t) is a solution of (4.118), 

is a solution of 

u(x,y,t) - U(X',y,t) 
Ix - xii" 

~u + F~u = g(x, y,t) - g(x' , y, t) 
at ay Ix - xii" 

And thus, by applying inequality (4.124), we get (4.126). 

As we mentioned at the end of last section, if we treat the error terms in system (4.63) 
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- (4.68) as given functions, we can solve the equation by first solving system (4.63), (4.64), 

(4.66), (4.68) by integrating along the characteristic lines, and then substituting the solution 

into system (4.65), (4.67) to solve the resulting O.D.E. Thls was the procedure used in the 

proof of the extended abstract Cauchy-Kowalewski theorem in which the following results 

are used to carryover the iteration [9]. 

Using Lemma 4.4.1 as a tool, we can prove Lemma 4.3.2. 

Proof of Lemma 4.3.2: Considering the following matrix 

0 0 0 0 

0 0 0 0 
F= 

0 0 0 1 
2 

1 0 1 0 -2 -2 

Straightforward calculation shows that its eigenvalues are 0, 0, ~, and - ~. By applying 

Lemma (4.4.1), we can show that 

(4.127) 

Fmthermore, we can solve the remaining two equations as D.D.E.'s. Taking U21 as 

example, we can show that 

(4.128) 
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by applying the Cauchy Inequality. Then, it follows from the estimates on the first integral 

that 

< 1 -I 1" -2K max cI19(-'" T)II,,(p+~t+l(t'_T))dT 
O<t/<t 0 2 

+ 1'11921("',T)II"pdT, 

(4.129) 

where we used iuequality (4.127) in the last step. Moreover, using the monotonicity of the 

Lipschitz norm, we have 

Il u2dl"p < ~I<-I 1'119(-,', T)II,,(p+~,+!(t_T))dT + 1'11921 (.,., T)II"pdT 

< CI<-I rt 119(',', T)II,,(p+.t+1(t_T))dT io 2 

< CI<-I rt 119(',', T)II,,(p+(lh)(t_T)jdT . (4.130) io 2 

The estimate on U32 can be obtained similarly. 

4.4.2 Bound on Eij 

The error terms Eij are defined in system (4.63) - (4.68), which are space derivatives of the 

Rk'S. Since we can apply the Cauchy inequality for analytic functions in the complex plane 

[1], it is sufficient to obtain the bOlmds for Rk. Ivloreover, since the Rk'S are combinations of 

the Riesz transforms of the error terms in the equations for 8S;jat's, from the boundedness 

of the Riesz transforms which we show later, we are able to derive the bounds of Eij from 

the bounds in the 8S;j8t equations. 
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Along this line, we perform the error estimates in three steps: the error estimates on the 

Riesz transforms) the error estimates on the Ri terms, and the error estimates on theEij 

terms. 

First of all, we define a special Lipschitz norm, which will be used only in this section. 

+ 

IIf(· + ill], . + i1l2) 110 = sup If(,,] + ill], "2 + i1l2)! , 

sup 

"1,K2ER 

If("] + ill], "2 + i1l2) - f("~ + ill],"~ + i1l2)! 

1("],"2) - ("~,"~)I" 

Bounds on the Hilbert Transform 

(4.131) 

(4.132) 

The following lemma has been proved by Calderon & Zygmund Ill] and Taibleson ]31]: 

Lemma 4.4.2 Iff has period of 21r x 21r, and satisfies 

for any Il] and 1l2, then 

(4.133) 
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where Hk is the Riesz transform in the k-th variable, k = 1,2, 0 < Q < 1, and c depends 

only on Q. 

4.4.3 Bounds on the R; Terms in System (4.57) - (4.59) 

The Ri terms are defined in (4.57) - (4.59). Taking equation (4.57) as an example, we see 

that R1 is the sum of the Riesz transforms of the residue terms in the ag,' and the ag,2 

equatious. The same is true for equation (4.58). Therefore, by the boundedness of the 

Riesz transform, we claim that the boundedness of the residue terms in equations (4.28), 

(4.29), (4.30) are equivalent to the boundness of the R; terms. Moreover, taking equation 

(4.28) as an example, it is sufficient to prove the following le=as. 

Lemma 4.4.3 Given x, y, z defined as small perturbations of a flat plane, assume that 

(p], P2), satisfying Ipd < p and Ip21 < p and f, 5], 52, 53 satisfy: 

1. f, 5], 52, 53 are analytic functions within the strip 

2. f, 51, 52, 53 are periodic functions with period of (2."., 2.".). 

3. 

IIfll,,(' + ip],' + ip2) < 
1 

8' 

115j ll,,(' + ip],' + ip2) < 
1 

8' 

where j = 1,2,3. 
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We define: 

(4.134) 

where 

and 

Then the following inequality holds 

(4.135) 
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(4.136) 

for 0 < a < 1, where 

3 

N{a,).Lb).L2) = (Ilfll" + lIill" + L(lI\7Sjll" + II \7 Sj II,,)) . 
j=l 

3 

(Ilf - ill" + L{II\7{Sj - Sj)II,,)){· + i).LI,· + i).L2) , 
j=l 

(4.137) 

and k = 1,2. 

Lemma 4.4.4 Let f, x, y, z be defined as in Lemma 4.4.3, then the same inequalities hold 

if we re-define Diff as, 

Diffk[f, SI, S2, S3](i31 + i).Lb 132 + i).L2) = 

~ J {Sk - SD!' di3' _ ~ J [{1'11 -I'1DSkol + {i32 - i3~)Sk82Jf' dl'1' 
21f Iz-z'13 21f l{i3l,,6z)-{i3;,i3~)13 ' 

(4.138) 

where k = 1,2,3. 
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Lemma 4.4.5 Let x, y, z be given as in Lemma (4.4.3), define 

Diff[St, S2, S3](,8] + iJ.Lt,,82 + iJ.L2) = 

2. J ''II (,8] -,8D + ')'2(.82 - ,8~) d,8' 
211" Iz(,8 + iJ.L) - z(,8' + iJ.L') 13 

+ ,2(IhD2(S]) + (2H2D2 + H]DIl(S2))(,8 + iJ.L) 

where D] (D2 ) stands for the space derivative on the,8] (,82) direction, and 

and 

Then the following inequalities hold: 

(4.139) 

(4.140) 
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3 

LtlIVSjll" + IIVSjll,,)' 
j=1 

3 

L{IIV{Sj - Sj)II,,)(- + i}ll,' + i}l2) . 
j=l 

(4.141) 

(4.142) 

Remarks: The above lemmas confirm our observation in the previous section where 

we derived our leading order system. We have proved that, if the interface is close to a fiat 

plane, the vortex sheet kernel is close to the Riesz transform kernel. The difference is a 

smaller term in the Lipschitz norm. 

Combining Lemma 4.4.3, 4.4.4, and Le=a 4.4.5, we get the following bound. 

Lemma 4.4.6 Let x, y, z be given as that in Lemma (4.4.3), then the following inequalities 

hold: 

(4.143) 
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and 

IIRk[S1, S2, S3] - Rk[5
" 

52, 5311,,(' + il'l,' + iI'2}::; 

c (t{II'VSjll" + 11'V5jlla}) (t 1I'V{Sj -Bj}II,,) {. + il'1,' + i1'2} , 

{4.144} 

where k = 1,2,3. 

Now that we have obtained the estimates of the R; terms, we can derive the bounds of 

Eij terms in the next subsubsection. Now, we provide the proof of above le=as. 

vVe just prove Lemma 4.4.3 here. Lemma 4.4.4 and Lemma 4.4.5 can be proved similarly. 

Lemma 4.4.6 is a natural extension of Lemma 4.4.3, Lemma 4.4.4, and Lemma 4.4.5. 

Proof of Lemma 4.4.3: We only prove the inequalities for Diff ,. The inequalities of 

Diff2 can be proved similarly. Furthermore, we suppress 1'1 and 1'2 and just keep the real 

part fJ, and fl2 throughout the proof. 

Note that inequality (4.135) can be derived from inequality {4.136} by taking j = 0, 

and Bi = 0 for i = 1,2,3. Therefore, it is sufficient to prove {4.136}. 

To perform our analysis, we first write the integrals in the periodic form as 

{4.145} 

What we need to do is to prove 1, and h both satisfy {4.136}. 
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Since h does not contain any singularity, it is just a regular integral on a bounded 

domain. Therefore, the maximum value of h is bounded by the maximum value of f, and 

8;'s. In addition, the Holder norm of h is bounded by the Holder norm of f, and "il 8i 's. 

Along this line, we can prove that h satisfy (4.136). 

vVe focus on the first integral 1,. vVhat we need to prove is 

I(I, - i,)(,6) I :-:; cN(a) (4.146) 

and 

1(1, - i,)(,6) - (I, - i,)(,6') I :-:; cl,6 - ,6'1'" N(a) , (4.147) 

where N(a) is defined in the statement of the lemma with ip being suppressed. 

We split the rest of our proof into three parts: the preparation, the proof of (4.146) and 

the proof of (4.147). 

Preparation: Before we go on to prove (4.146) and (4.147), it is necessary to analyze 

the integrand of I, more and derive several inequalities for later use. 

From the definition of 1" we get: 

I, 2~ 1:1: (K'(e,) - K1 (,6,,6 - ())f(,6 - e,)d(,d(2 

- 2~ 1:1: f(,6 + () (1~13 - Iz(,6 + (~'_ z(,6)[3 ) d(,d(2 

-2..1"1" (,j(,6 + e,) (IZ(,6 + e,) - z(,6)1
3 

- 1(1
3

) d( de 
2" _" _". [(13 Iz(,6 + () - z(,6) 13 '2 , 

(4.148) 

where ,6 = (,6"{h) and ( = «(" (2). 
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Define 

G(fJ, fJ + () = f(fJ + OGI ({3, fJ + 0 , 

where 

G (fJ fJ + 0 = Iz(fJ + 0 - z(fJ)13 
- 1(13 

1 , Iz(fJ + () - Z(fJ) 13 

Naturally, we can also write down: 

G(fJ, fJ + 0 = f(fJ + OCI (fJ, fJ + 0 , 

where 

C (fJ fJ + r) = Iz(fJ + 0 - z(fJW - 1(13 

1" Iz(fJ + () - z(fJ) 13 

Under the assumptions of Le=a 4.4.3, we can prove the following bounds: 

Iz(fJ + 0 - z(fJ) I ~ cl<l , 

3 

IGI(fJ,fJH)I:::: cLII'i7S,llo, 
i=l 

3 

I(GI - GI)(fJ, fJ + ()I :::: C L 11'i7(S, - 8,)110 , 
i=l -

(4.149) 

(4.150) 

(4.151) 

(4.152) 

(4.153) 

(4.154) 

(4.155) 
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I(GI - Ch)({3, {3 + () - (Gl - GI )({3, {3 - ()I 

$ el(I" (t 11\7(Si - Si)II,,) , (4.156) 

(4.157) 

However, to focus on the main idea of the proof of Lemma 4.4.3, we will defer the verification 

of the above inequalities to the end. 

From (4.154), it is straightforward to derive the following bound: 

IG({3,{3+()1 < If({3 + ()IIGI ({3,{3+ ()I 
3 

< cllfllo L II\7S"lo . (4.158) 
i=l 

Similarly, from (4.155), it can be shown that 

I(G - G)({3,{3 + ()I 

< I(J - j)({3 + ()IIGI ({3, {3 + 01 + 1]({3 + ()II(GI - GI )({3,{3 + ()I 
3 3 

< ellf - 1110 L II\7Si lio + cllfllo L 11\7(Si - Si)llo 
i=l i=l 

< cN(a.), (4.159) 

where N(a.) again is defined in the statement of the le=a as N(a., I"j, 1"2). 

Using an argument similar to (4.159), the following inequality can be shown from (4.156): 

I(G- G)({3,{3+() - (G- G)({3,{3- ()I $ cl(l"N(a.), (4.160) 
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From (4.157), we can derive 

3 

. 1'i7 il(G1 - Ch)({3, {3 + ()I :S cl(I-I+" L 1I'i7(S; - 8;)11" , (4.161) 
i=l 

which implies 

3 

< el{3 - {3'II(I-I+" L 1I'i7(S; - 8;)11" . (4.162) 
i=l 

Proof of (4.146): We are ready to derive (4.146). 

vVe split the integration domain in two regions as: 

Ih - j11 = 2~ 11:1: l~i3 (G({3, {3 + () - G({3, {3 + ())d(1 
= 2~ 1 (1:1: + 1:[) 

(1 -
i(j3(G({3,{3 + () - G({3, {3 + ()d(1 . (4.163) 

(4.164) 

From the oddness of the kernel ~, we change the variable (' = -( in the second integral 

and get 

Ih -jd = 1 1[[ (1 -2" _" 0 1e13 [(G - G)({3, {3 + () 

- (G - G)({3, {3 - ()]d(ld(21 

< 2: 11:[ ,~i31('''d(ld(21 N(a) 

< eN(a) , (4.165) 
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where we applied inequality (4.160) in the second step. 

Proof of (4.147): Our next step is to prove 

1(1, - i,)(fJ) - (1, - i,)(fJ')1 :s: elfJ - fJ'l" N(a) . (4.166) 

For a complicated inequality like (4.166), we would like to break it down into several 

integrals and estinIate them one by one. It can be shown that 

1(1, - i,)(fJ) - (1, - il)(fJ') I 

= 11:1: f(fJ + ()GI (fJ, fJ + (l - j(fJ + (lGI (fJ, fJ + (l l~i3 d( 

-1:1: f(fJ' + ()GI ({3',fJ' + (l - J(fJ' + (lGI (fJ', fJ' + (l l~i3 d(1 

< 11:1: [(J - J)(fJ + (lGI (fJ, fJ + () - (J - J)(fJ' + (lG,(fJ', fJ' +()J l~i3 d(1 

+ 11:1: J(fJ' + (l[(G, -G,)(fJ,fJ + () - (GI -G,)(fJ',fJ' + ()J l~i3d(1 

+ 11:1: <l(fJ + (l - j(fJ' + ()l(GI -G,)(fJ,fJ + (l l~i3d(1 
(4.167) 

We prove the inequalities of I" and 1,2 in detail. The estimates of 1,3 can be obtained 

similar to that of I". 

Bounds on 1,2: To estinIate 112, we follow an idea by Caflisch & Orellana from [9J in 

their estimation for singular operator. First of all, we break the integration domain into 
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two regions, 1(1 < 1,6 - ,6'1 and 1(1 ~ 1,6 - ,6'1, 

12~ 1:1: 1~;j{,6' + ()[{G] - 0])(,6,,6 + () - {G] - 0])(,6', {3' + ()]d(1 

2~ (j,,<lfJ-fJ'l + j(I~IIl-fJ,) 
1~;3J(,6' + ()[{G] - 0]){,6,,6 + () - {G] - O]){,6',,6' + ()]d(1 (4.168) 

For the first integral we use the oddness of the kernel similar to the way we prove (4.165), 

while for the second integral, we apply inequality (4.162). Therefore, it follows that 

12~ 1:1: 1~;3J{{3' +()[{G]- 0]){,6,,6+() - {G]- 0])(,6',,6' + ()]d(1 

< 1 { (] 
27r JI(I<lfJ-fJ'l 1(1 3 . 

(1)0 

[J(,6' + ()(( G] - 0])(,6,,6 + () - (G] - 0])(,6',,6' + ()) 

- J(,6' - ()((G] - 0])(,6,,6 - () - {G] - 0])(,6',,6' - ())]d(i 

+ -2
1 

{ 1;]13 J(,6' + ()[(G] - 0])(,6,,6 + () 
7r J1(ldfJ-fJ'l , 

-(G] - OIl(,6',,6' + ()]d(i 

< 2
C 

( 1((]131 (I"d(N(a) 
7r J1<I<lfJ-fJ'l 

+ ~ { (]3IWI+"d(l,6 - ,6'IN(a) 
27r JI(I~lfJ-fJ'l 1(1 

< cl,6 - ,6'1" N(a) , 

where we have applied (4.160) and (4.162) in the above proof. 

Therefore, we get 

h2 :c:: cl,6 - ,6'1" N{a) . 

(4.169) 

(4.170) 
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Bounds on Ill: It is sufficient to prove 

11
ITlrr (lrrlrr 

( I _" -rr 1(13+ ()G1 (13, 13 + ()l(j3d( - _" -rr 1(13' + ()G1 (13',I3' + ()1(j3 d( 
3 

:'0 cll3 - /3'1"11/11" L IIV'Sdl", (4.171) 
i=l 

because by taking f' = 1 - 1 and still writing as 1 in Ill, the bound satisfies 

3 

cll3 - 13'1"111 - 111" L IIV'Si II" :'0 cll3 - ,6'1" N(a) . 
i=l 

From (4.169), by taking 01 = 0 and 1 = 1, we get: 

11(13) (1:1: Gl(I3,I3+()I~j3d(-1:1: Gl(,6',/3'+()I~j3d()1 
3 

:'0 cll3 -13'1"11/110 L IIV'S.II" . 
i=l 

Therefore, to prove (4.171), we only need to prove that 

11:1: (f(I3+ () - 1(I3))Gl(I3,I3+ ()1~j3d(-

1:1: (f(I3' + () - 1(I3))G1 (/3', 13' + ()1~j3d(1 
3 

:'0 cll3 - 13'1" 11/110 L IIV'Si II" . 
i=l 

(4.172) 

(4.173) 

For simplicity, we denote h = 13' - 13 = (hI, h2)' By changing variable from ( to (' as 

(,=(+h, 
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and still writing it as (, we re-write the second integral above as 

For h sufficiently small, the integral 

does not contain any singular points for sufficiently small h. Because the integration area 

is of order O(lhl), it can be shown that 

(1"+h'1"+h2 1"1" ) ( h -,,+h, -rr+h2 - _" _" (f(,6+()-f(,6))Gl(,6',,6+()I~'::-hl;d( 
3 

:'0 clhillflio L IIV'Sillo:'O cl,6 - ,6'I"N{a) . 
i=l 

Therefore, to prove (4.173), we only need to prove 

11:1: (f(,6 +() - f(,6)) [Gl (,6,,6 + () l~i3 - G1 ({3',,6 + () ~ .::-~~ ] d(1 
3 

:'0 cl,6 - ,6'I"llfllo L IIV'Sill" . 
i=l 

(4.174) 
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vVe denote the above integral as h and split it into two parts: 

j'I<3Ihl (f{!3 + () - f{!3)) [G1{l3,!3 + () l~i3 - G1{rr,!3 + () ~ -=- :I~ ] de, 

+ j'I~3Ihl (f{!3 + () - f{!3)) [Gl {!3,!3 + () l~i3 - G1 (!3',!3 + () ~ -=-~~ ] de, 

(4.175) 

Because the integration area is of order O(h2), we get 

3 

b :S cl!3 - !3'I"llfll" L II\7S;II" . (4.176) 
i=I 

To estimate h2, we further split h2 into two parts: 

(4.177) 

which were denoted as h21 and h22. 

vVe estimate them separately. First, it can be shown that 

3 

1322 :S cl!3 - !3'I" II fll" L II\7S;II" , (4.178) 
i=l 

since 

(4.179) 
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Furthermore, the following bound can be proved. 

3 

h21 ~ cit) - t)/1"1I!1I" L IIV'S;II" , (4.180) 
i=l 

since 

Ihl 3 
IG1 (t), t) + 0 - G1 (t)I, t) + 01 ~ em L IIV'S;lIo , 

i=l 

(4.181) 

where we have applied (4.154), (4.156), and (4.162). The derivation of (4.181) is similar to 

that of (4.179). 

Moreover, as we mentioned earlier, by replacing! with! - i, we can prove 

3 

111 ~ cit) - t)/I"II! - ill" L IIV'S;II" , 
i=l 

which further implies that 

111 ~ cit) - t)/1" N{a) . 

In summary, we obtained inequality (4.136). Inequality (4.135) will follow if we take 

Up to now, the only thing left is to prove (4.153) - (4.157). Since the proofs are similar, 

we just prove the first two. 

1. The proof of (4.153) 



113 

Basically, we need to prove 

Iz{iJ + () - z{iJ) I > c . 
1(1 -. 

which is equivalent to 

Substituting the formulation of x, y, and z into the left-hand side of the inequality, we get 

which is greater than 

3 

1- 2(11'1751110 + 1'1752 110) - L 11'I75i 1l6 . 
i=l 

The above quantity has a lower bound of ~~ if 

2. The proof of (4.154) 

1 
1I'I75i llo ::: 8 . 

Similarly to the proof of (4.153), we can show that 

Iz{iJ + () - z(iJ) I < 
1(1 - c. 
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Therefore, to prove (4.154), we only need to show that 

Iz({3 + () - Z({3) 13 
- 1(13 

< (~ 11\15 II ) 1(13 _ C ~ ,0 
1=1 

This is true if 

because by denoting Df = z({3 + () - z({3), we have 

IDfl 3 _1(1 3 = IDfl2 - 1(12 
. IDfl2 + IDfll(1 + 1(12 

1(13 1(12 IWIDfl + 1(1) 

It comes down to show that for each 5, 

15,({3 + () - 5i ({3) I ~ c (t 11\15,110) 1(1 

holds, which is obviously true. 

This concludes our proof. 

4.4.4 Bounds on E'j 

The error terms E'j are defined in system (4.63) - (4.68), which are space derivatives of the 



115 

By the definition of the Eij's, using the Cauchy inequality for analytic functions, we get: 

< C sup II'V Rk[S}, S2, S3] 11,,(· + iJ-l}" + iJ-l2) 
(," ,1'2)<1" 

::; c(p - p,)-1 sup IIRk[S}, S2,S3]11,,(' + iI-'1,' + i1-'2) . 
(1'1,1'2)<P 

It further follows from Lemma 4.4.6 that 

< c(p_p)-1 sup (tll'VSkll,,)2 (·+iI-'1,·+iI-'2) 
(1'1,1'2)<P k=1 

< c(p_p)-1 (t,II'VSkll"pY 

< c(p_p)-1 (t1k~111'<Pklk211"p) , 

where in the last step we used the definition of '<Pij' 

(4.182) 

(4.183) 

Similarly, we can get the bounds of (Eij - Eij). We conclude this part of the estimate 

with a final lemma which is identical to Lemma 4.3.1. 

Lemma 4.4.7 Let x, y, z be given as in Lemma 4.4.3. Suppose <Pij and ¢ij are analytic 

in max(IIm(X:1)1, IIm(X:2)1) < p. Then for 0 < p' < p, and 0 < a < 1, the following 

inequalities hold: 

(4.184) 
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and 

IIEij - Eij lIaP' :5 c(p - /)-1 (t1 f1 (lI1/Jk.k2I1ap + Ihh.k2I1ap) 

(t1f1 11 1/Jk.k2 - ih •. k2I1 ap) , (4.185) 

where i, j = 1,2,3. 
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Chapter 5 Some Theoretical Results on Model Equations 

In this chapter, we introduce model equations for two-dimensional and three-dimensional 

vortex sheet equations. 

The sections of this chapter are arranged as follows. Section 1 provides some theoretical 

results for the three-dimensioual model equation, where we show that our three-dimensional 

model equation preserve the singularity type and the local singnlarity structure near the 

singnlarity time of the full equation. We devote Section 2 to the theoretical work on two-

dimensional model equation, which we present as a special case of our three-dimensional 

model equation. 

5.1 Three-dimensional Model Equation 

5.1.1 Formulation 

Consider the three-dimensional vortex sheet equation on an interface denoted as S, 

where 

: (z) = is, IV' "/L(a'f, V' "z(a'fl x V'z,G(z(a) - z(a'» da' , (5.1) 

G(z - z') = 

V' z,G(z - z(a'» 

1 

41flz - z'l 
z-z 
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and 

where the integral takes the Cauchy principal value. 

Our main purpose of introducing the model equation is to use it as a tool to numeri-

cally study the three-dimensional vortex sheet problem. As we have mentioned before, all 

theoretical results on the singularity development of vortex sheet equations are based on 

formal asymptotic analysis. To confirm the results, some numerical calculation is needed. 

However, because of the nature of integro-differential equations, the numerical computation 

of equation (5.1) could become prohibitively expensive. For this reason, we try to derive 

a model equation for (5.1). We hope that the model equation captures the essence of the 

vortex sheet singularity and, at the same time, can be solved efficiently. 

Inspired by our two-dimensional model equation, we feel that the most singular part of 

the integral on the right-hand side of equation (5.1) is in the neighborhood of z(a). Similar 

to the two-dimensional model equation, we propose to replace 

by the first order Taylor expansion around z(a') 
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Consequently, equation (5.1) becomes: 

az(z) 
at 

with further leads to 

where 

r 1'17 c<1'(a'f, '17 az(a'fl 
Js' 

zC<J (a')(a, - aD + zC<2(d)(02 - 0;) d ' 
x IZC<J (o')(a, _~) + ZC<2(O')(02 _ 0;)13 0 , 

N = ZOl X ZO:2 

IZC<J x zC<21 

(5.2) 

(5.3) 

Furthermore, in every time step, if we can find a coordinate system (a" (2), such that 

(5.4) 

(5.5) 

where C, and C2 are independent of a, and a2, the integral on the right hand side of 

equation (5.3) becomes a convolution operator with kernel 

(5.6) 

where k = 1,2. Therefore, we can use FFT to evaluate it. In particular, when C, = 0 as in 
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the case of our computation, the spectral representation of the operator is: 

-i6 
(5.7) 

and 

-it;, 
(5.8) 

In general, even if C1 oF 0, the spectral representation of the the kernel is still known. In 

this way, the computational complexity in each time step is reduced to O(N2 log N) from 

O(N4), where N is the number of mesh points in each direction. 

However, since the numerical computation is performed on our model equation instead 

of the full equation, it is important to understand how much our model equation can be 

used to represent the fuJI equation. That is the topic of next subsection, where we show 

that our model equation does capture the singularity type of the full equation, while the 

physical singularity time and location could be different. 

5.1.2 Early Time Singularity Formation 

Our goal in this subsection is to show that our three-dimensional model equation preserves 

the singularity type of the fuJI three-dimensional vortex sheet equation. 

First, it is necessary to review the results of last chapter where we derived the early 

time singularity formation on the fuJI equation. 

We consider a vortex sheet interface S separating two layers of fluids. With the La-

grangian representation, we parameterize the interface using surface parameters a1 and a2, 
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so that 

In particular, according to Le=a (3.3.1) in the last chapter, it is reasonable to asslUne 

that the coordinates (,,}, "2) satisfy 

(5.9) 

(5.10) 

(5.11) 

at time t = O. Without loss of generality, we also assmne that 

where 8}, 8 2 and 83 are small perturbations. 

Under the above assmnptions, we have shown in Chapter 3 that by considering ", as 

a parameter and complexifying "2, z("",) develops ~ singularities on the "2-direction at 

t= 0+. 



122 

The key to the result is to derive a local term from the integra-differential equation. It 

can be shown from the full equation that: 

weal = -w/oc(a) + WI (a) , (5.12) 

w/oc(a) + W2(a) , (5.13) 

where 

(5.14) 

and WI (a), W2 (a) stand for the limiting velocity approaching from the lower and upper layer 

fluid respectively. 

Furthermore, the local term 2w/oc( a) represents a tangential velocity jump from the 

upper layer limiting velocity to the lower layer limiting velocity across the sheet. The jmnp 

is the driving force of the development of singularities. To derive a sinlilar local term from 

our model equation, we analyze the difference between the full equation and our model 

equation. We would like to show that the difference is a regular integral and does not 

generate any discontinuity when extended into the complex domain. 

Define: 

f _ 1 1J 1 TIT zeal - zed) 1 
u (a) - - 4.,.. IV' a/l(a) , V' az(a) I x Iz(a) _ z(d)13 da , 
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umod(a) = - 4~ J J IV' "p(a,?, V' "z(a'?l 

Z'" (a')(a] - a~) + Z"2(a')(a2 - ~) d ' 
X Iz",(a')(a] _~) + Z"2 (a') (a2 _ ~)13 a , 

( ')T (')TI ap ap IV' "p a , V' "z a = -a Z"2 - -a Z"'. 
U1 0:2 

The difference is 

Dif(a) = (ul - umDd) (a) = - 4~ J J IV' "p(a'f, V' "z(a'?l x K(a, a')da' , 

where 

K z(a) - z(a') z,,' (a')(a] - aD + z"2(a')(a2 - a~) 
(a, a) = Iz(a) _ z(a')13 - Iz", (a') (a] _ ~) + Z"2 (a') (a2 _ ~)13 . 

It follows from the smoothness of z that (simHar to the proof in the chapter of existence 

proof) 

lim K(a, a') :0; I A 'I 
0'_0 Q-Q: 

(5.15) 

if 8], 8 2 , and 83 are sufficiently small, which is guaranteed by our assumption at time t = o. 

Consequently, for each z E S, Dif(z(a)) is a regular integral. This means that the 

integral is continuous with respect to a. Thus, there wifr'be no jump on the integral when 

moving from one side of the real a2-axis to the other side of the real a2-axis. 
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Furthermore, since 

wmod = wi - Dij , 

where wmod is the velocity evaluated from the model equation, from equations (5.12) and 

(5.13), it can be shown that 

wmod(a) = -w/oc(a) + WI (a) - Dij(a) , 

w/oc(a) + w2(a) - Dij(a) . 

(5.16) 

(5.17) 

Since Dij (a) is continuous across the real a axes, this means that we have derived the same 

local terms as that of the full equation. 

In summary, we have shown that our model equation generates the same tangential 

velocity jump as that generated by the full equation. AB a result, these two equations 

develop the same type of singularities at almost identical location up to the leading order 

term. 

5.1.3 Local Form of the Curvature Singularity 

In this subsection, we show that our three-dimensional model equation preserves the local 

form of the curvature singularity near physical singularity time. 

Following the analysis in Section 3.5 of Chapter 3, it is sufficient to show that we can 

derive the asymptotic system (3.72) - (3.74) from the model equation. It leads to the 

asymptotic approximation of the local sheet form straightforwardly, as we have seen in 

Chapter 3. 

In fact, following the derivation by HOll & Zhang [17], as long as the perturbations 
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are small in magnitude, we can show that the difference between our model equation and 

the full equatiou only contributes to the smoother terms. As a result, we claim that the 

leading order system from our model equation has the same leading order terms as (3.72) 

- (3.74). Consequently, following the same derivations as in the Section 3.5 of Chapter 3, 

we can show that by a similar transformation on the interface variable functions, our model 

equation preserves the local form of the curvature singularity near physical singularity time. 

5.2 Two-dimensional Model Equation 

5.2.1 Formulation 

The motivation of deriving a two-dimensional model equation for the Birkhoff-Rott equation 

is mainly for computational purposes, and more importantly, as a special case for the 

three-dimensional model equation. In fact, we provide more detailed analysis to show that 

our model equations does capture the singularity type and the local physical singularity 

structure of the full equation. 

In the two-dimensional problem, the model equation is derived by approximating 

z(.o - z(e') , 

by its first order Taylor expansion at z (el as 

where z{ stands for the space derivative of z(e, t) [16]. 
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Therefore, the two-dimensional model equation is defined as: 

(5.18) 

where the over bar denotes the complex conjugation. 

In this section, we assume that the perturbation of the sheet and the vortex sheet 

strength are 211" periodic, i.e. , that z(~ + 21T, t) = 211" + z(~, t), r~(~ + 211") = r~. If we 

normalize the flow so that the average jump in the tangential velocity across the vortex 

sheet is unity, it implies that r(~ + 211") = 211" + r(O. Given the periodicity, (5.18) can be 

written as 

(5.19) 

Now, we extend e into complex domain, and consider z(~) as a complex flmction defined 

on complex domain. We write the Cauchy principal value as a contour integral: 

(5.20) 

where the contour C runs from e = 0 to ~' = 211", and is assumed to be deformed beneath 

a simple pole at e = ~. From the periodicity assumption, it is reasonable to assume that z 

and r have the forms of 

z(~, t) = H s(~, t). r(~) = H u({) . (5.21) 
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Following [9], we complexify s as follows: 

s'{t;, t) = s{~, t) . (5.22) 

Equation (5.19) can be analytically continued to the upper half complex t; domain as: 

as'{t;, t) _ 1 11 + adO (I V{ ',))d t ' 1 + a<{O -~--'- - - cot - t;.t;.t ,+ . 
at 4rri c 1 + s<W, t) 2 2{1 + s<{c t)) 

where 

V{t;,(,t) = t; - ( . 

Furthermore, we can write the equation as follows: 

where 

as'{t;. t) 
at = adO - s<{O + G{t;. t) . 

2{1+ sdt;,t)) " 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

To derive an evolution equation for s{t;, t), we take complex conjugate on both side of 

equation (5.19) and deform the integration contour so that 
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Finally, we extend ~ into the upper complex domain to get 

where 

8s(( t) 
at 

a(~) - s~(~,t) • 
2(1+ s~(~, t)) + G (~. t) . 

G'(~, t) = _2., {(I + a (())(i + cot(~(~ - 0) )d( . 
47rZ Jc' 1 + s,(e. t) 

(5.27) 

(5.28) 

From the derivation, C runs from ( = 0 to ( = 271', and is assumed to be deformed 

beneath a simple pole at ( = t;. However, following the idea used by Cowley, Baker /,[ 

Tanveer [12]. we take the contour to run from ( = 0 to ( = 2r. along the real ( axis 

for the simplicity of the later analysis. The result is going to be confirmed by numerical 

calculations a posteriori. 

Assmne we start with an almost flat interface, i.e. , s,(O = 0(0) for I; E R, it can be 

shown from the Taylor expansion that 

. cot(~(~-()). 1 , 
Z+ (') =,+cot(-(~-O)+O(c). 

1 + s, ~ . t 2 

On the other hand, it follows from straightforward calculation that 

Ii + cot(~(~ - ())I ~ 2exp(-lm(0)« 1 , 

when ~ is far above the real axis. By combining the above two inequalities, we obtain the 
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inequality that bounds the integral terms in (5.25) and (5.27) that 

for fm(t;) » 1. 

i + cot(W - (» 
1 + S{({', t) 

= O(e) , 

Under the above estimation, equations (5.25) and (5.27) can be re-written as: 

os'{t;, t) 
at 

os(t;, t) 
at 

= 

= 

a(t;) - s{(t;) 
2{1 + S{({, t)) , 

a({) - s{({, t) 

2(1 + s{({, t)) . 

(5.29) 

(5.30) 

In smnmary, we have derived the same simplified model system as system (2.13) in [12J. 

5.2.2 The MBO Initial Condition 

In the rest of this section, we concentrate on the singularity formation of model equation. By 

considering several different classes of initial conditions, we show that our model equation 

develops the same kind of singularities spontaneously at time t = 0+ as the full Birkhoff-

Rott equation. 

We start with the initial condition given by 

s({,O) = 0, ad{) = ccos(t;) . (5.31) 

This initial condition was first us6lll and analyzed by Meiron, Baker & Orszag in [22]. 

Thereafter, we refer to this condition as the !vmo initial condition. 
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Consider the following expansion of z(( t) with respect to t, 

(5.32) 

Substituting the MBO initial condition into the expansion, we get 

(5.33) 

Other terms will have to be derived from the model equation. Substituting the expansion 

into equation (5.18), and expand it in powers of t, we get: 

z~(O + 2tz;(0 + ... = 

~ 12K (1 + "eos() eot( .!.(~ - ())[1 - tz;(() + ... Jd( 
4~, 0 2 

(5.34) 

In particular, since Zo = ~, we can derive the formulation of ZI (0 as: 

zj(O 
oz* 1 12K 1 
--;:;-(~,t = 0) = -. (1 +ceos()eot(-(~ -())d( 
ut 4~1 0 2 

(5.35) 

1 
--iEsin~ . 

2 
(5.36) 

Since sin*(O = sin(O, it implies 

(5.37) 
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Furthennore, we can derive Z2 as 

2z~ 
1 12~ 1 
-. (I+Ecosncot(-(~-~'))(-z;(())d( 
4,"" 0 2 

1 12~( ')( 1. I (1( '))d I -. 1 + ECOS~ --!CCOS~ cot - ~ - ~ ~ 
47f! 0 2 2 

1 12~ (1. ,1 . 2 2 I (1 ')) I -. --!ECOS~+-!ccosOcot-(~-~ ~ 
47f! 0 2 2 2 

1 12~ 1. I 1 2 I 1 ')) I -. -(-!ECOS~ + -iE cos20cot(-(~-~ d~ 
47f! 0 2 2 2 

1 . < 1 . 2< 
--ESln~ - -ESln .." 

4 8 

-~Esin~(l + ECOSO . 

Combining the first two terms, s has the expansion 

(5.38) 

However, no matter how small the time t is, the power series does not converge far from 

the real ~-axis. In particular. it follows from (5.38) that the expansion becomes disordered 

when 

which suggests that for small times, and far from the real ~-axis. a similarity solution should 

be sought of the form 

'I = Etexp(-iO, s = sO(1)) + O(t). s' = so(TJ) + O(t). (5.39) 
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It follows from the transform that 

(5.40) 

(5.41) 

Combining (5.29), (5.30), (5.40) and (5.41), we find that to leading order 

1 
(5.42) SOl} = 

Cowley, Baker & Tanveer [12] has derived the same system from the full equation for 

the NIBO initial condition. This is to be expected since the full equation and the model 

equation have the same leading order systems (5.29) (5.30) for the MBO initial condition. 

From here, we can just follow all the analysis performed in [12]. In particular, their 

analysis showed that sand s' have 3/2 power singularities at 

(5.43) 

when t = 0+. This shows that the solution of the model equation develops 3/2 power 

singularities at ~ ~ i In(:,) spontaneously at t = 0+. 

5.2.3 Other Initial Conditions 

In this subsection, we study the solution in which, initially, there exists at least one point ~o, 

such that (1 + 80{) or (1 + 80{) vanishes. In particular, around those points, the right-hand 

side of equation (5.25) and (5.27) are dominated by the leading order terms. 

Since the leading order terms blow up at some position ~o, it is very possible that some 
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singularity emerges from the analytical initial data. In the next two subsubsections, we 

consider two cases. First, we study the solution around one point ~ = ~o, where (l+sod = 0 

but (1 + s~~) cJ o. Then, we study the solution around a point ~ = ~o, wbere (1 + so~) and 

(1 + SOl) vanishes simultaneously. ,Ve show that our model equation generates the same 

type of singularity as the full equation does under the above initial conditions. 

Apparently, it is infeasible to expand the solution in powers of t alone, since the expansion 

would break down around ~o. This suggests that we expand the solution as a power series 

in both ( = ~ - ~o and time t. \Ve seek a solution in the following form: 

S 
1 2 Sal ~ eT01 * 

SOO - ( + -S02( + ... + (( * ) + Goo + ... )t + ... 
2 2 1 + sOl 

(5.44) 

S· * * 1. (2 ( 1 + aOl ) soo - SOl ( + -S02 + ... + + ... t + ... 
2 2s02 ( 

(5.45) 

(5.46) 

where 

anSa 
SOn = 8~n (~O), "01 = ,,~(~o). and Goo = G*(~o, 0) . (5.47) 

The non-uniformity arises from the leading coefficient of ott) terms in the expansion. 

\Ve need to match ( with t. From the simplified model equation (5.29) and (5.30), we see 

that the leading coefficient of ott) terms in (5.44) and (5.59) should playa deterministic 

role. These two terms should be matched with the S02 and SOl terms respectively. This 

1 
suggests that ( = 0(/2) be a good match [12[. 
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For t « 1, let 

1 
C, = 7]wt'i, where (5.48) 

and expand sand s· in the form of 

1 1 * 1 + 0"01 
S = SOD - 7]wt'i + (- + Goo + . * A(7]))t + ... 

2 1 + sOl 
(5.49) 

s* = soo + ((1 + sOl)B(7]) - 7])wt! + .... (5.50) 

so that by substituting into the evolution equation, A(7]) and B(7]) can be solved. Since we 

1 
have changed variables from (E, t) to ('1, t), where E = Eo + '1wt'i, the following equalities 

can be verified: 

{) 

{)E 
{) 

{)t 

Substituting (5.52) into (5.49), we get: 

Substituting (5.51) into (5.50), we have 

(5.51) 

(5.52) 

(5.53) 

(5.54) 



which implies 

s' e 
2(1 + s:() 

1 
2 
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1 1 

2(1 + sOl)B~ + O(t,) . (5.55) 

Moreover, substituting (5.53) and (5.55), into (5.27), we extract the leading order terms 

as 

wltich can be further simplified to 

1 
2A-1]A~ = -B· 

~ 

1 G* 
2(1 + sOl)B~ + 00 

Similarly, from equation (5.25), it can be shown that 

(5.56) 

(5.57) 

(5.58) 

The system that consists of equation (5.57) and equation (5.58) coincides with system 

(2.28) in [12]. Therefore, following the analysis presented by Cowley, Baker & Tanveer, we 

can show that in this case, onr model equation develops the same type of singularity as that 

of the full equation. Furthermore, it follows natnrally that the singularity appears at almost 

1 
the same location up to order ott') when t « 1 as that of the Birkhoff-Rott equation. 

The case (1 + soe(~o)) = 0 and (1 + soe(~o)) = 0 

The above analysis is not valid when (1 + so«~o)) and (1' + soe(~o)) vanish simultaneously. 

However, following the idea presented above, we still can expand the solution as a power 
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series in both, = e - eo and time t: 

1 2 -1-0"01 * 
8 800 - , + -802' + ... + ( * + Goo + .. . )t + ... 

2 2802 ' 

(5.59) 

* * 1 * 2 (1 + 0"01 G ) 
S = 800 - , + -802 ' + ... + r + 00 + ... t + ... 

2 2802, 
(5.60) 

where 

(5.61) 

Again we need to match, witht. From the simplified model equation, we see that 

the leading coefficient of the ott) term should playa deterministic role. These two terms 

1 
should be matched with the 802 and 802 terms respectively. This suggests that' = O( t3) 

would be a good match. 

Let 

1 ,= ryOt'.i, where 0= (4(1 + ~01))! . 
802802 

(5.62) 

Therefore, the expansions (5.59) and (5.60) need to be replaced by 

8 
.! 1 2 a 

800 - ryOt 3 + 28020 A(ry)t 3 + ... (5.63) 

(5.64) 
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1 

Change variable from (~, t) to (7], t), where ~ = ~o + 7]On. We find 

a a a7] a at -1 _1 a 
a~ = a7] ae + at a~ = (O t 3) a1] , 

a a a7] a at 1 -1 a a 
at a1] at + at at = -31Ji a1] + at . 

It follows from substituting (5.66) into (5.63) that 

as 
at 

1212121121 
-31]OC3 + 31]OC3 + 3S020 A{1])C3 - "68020 7]A"r 3 + ... 

1 2 1 
= "68020 C'l (2A{7]) - 7]A") + '" 

Similarly, substituting (5.65) into (5.64) yields 

which implies that 

2{1 + s{) 
1 1 

* OB r'l + 0(1) . 
S02 " 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

By substituting (5.67) and (5.69) into (5.27), we extract the leading order terms as 

which can be further simplified to 

3 
2A-1]A"=-- . 

2B" 

(5.70) 

(5.71) 
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Similarly, we can derive from (5.27) that 

3 
2B - 1)BlJ = -A . 

2 1) 
(5.72) 

System (5.71) and (5.72) coincides with system (2.38) in [12]. Therefore, we can follow 

the analysis by Cowley, Baker & Tanveer from now on. In particular, we can show that 

in this case, our model equation also develops the same type of singularity (of power 3/2) 

as that of the full equation. Further, as in the previous case, we can also show that the 

1 
singularity appears at almost the same location up to order 0(t3) when t « 1 as that of 

the full Birkhoff-Rott equation. 

5.2.4 Motion of the Singularity 

In the previous two subsections, we have shown that our model equation develops the same 

type of singularity as the full equation spontaneously in the complex domain at t = 0+. In 

the subsubsection, we show that at time t = O( 1), singularities can continue to propagate in 

the extended complex domain. In particular, we derive an ODE which governs the motion 

of the singularity, and thus, we show that the singularity type does not change along the 

trajectory. 

Suppose that at time t a singularity is at ~ = ~s(t). Close to the singularity we seek an 

asymptotic expansion of the form: 

(5.73) 

s* = So(t) + Sj(t)1) + S;(t)rf + ... , (5.74) 

where 1) = ~ - ~s(t). 
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Substituting the above expansion into (5.25) and (5.27), and equating like powers of 11, 

we derive the equations for the functions in the expansion as: 

Qs - S~(t) * 
2(1 + Sj) + G (€., t) , 

2(1 + S1l2S; . 
2(1 + Qs) €s· 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

Although we have obtained similar system as (2.'13) in [12], the forcing term is different. 

It shows that although in both equations, the singularity type does not change when they 

propagate along the complex domain, the actual trajectories can be different. Therefore, 

the physical singularity time would be different, which has been verified by our numerical 

calculations. 

In summary, we conclude that in our model equation, 3/2 power singularities are gen-

erated spontaneously at t = 0+, as in the full Birkhoff-Rott equation. The singularities 

can move around the complex domain at later time but keep the same power. Therefore, 

the physical singularity should also be of 3/2 power in our model equation for the initial 

condition we studied. However, the trajectory along which the singularities propagate in 

our model equation might be different from that in the full equation and the times at which 
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the physical singularities occur might also be different. 

In our next subsection, we study the interface shape in the neighborhood of a singularity 

near the physical singularity time in our model equation. We also show that our model 

equation preserves the local singularity structure of the full equation near the physical 

singularity time. All results will be verified by our numerical calculation in the next chapter. 

5.2.5 The Local Form of the Curvature Singularity 

In this subsection, we study the local form of the curvature singularity. We hope to obtain 

the interface shape in the neighborhood of the singularity. Without loss of generality, we 

consider the case where a{O = ° in (5.21). Moreover, we assume that the singularity forms 

at t = 0, ~ = 0, Z = 0, and that the surface is moving with a velocity zo. We also assume 

that at the time of singularity formation, the surface is locally flat in the neighborhood of 

the singularity, with z ~ ~, where A is a complex number. The assumption is reasonable 

when the singularity is of power 3/2. 

We seek an asymptotic expansion of the solution to our model equation (5.18) in the 

power series of both t and ~. We split the integral region into two subregions: a local region 

with ~ ~ ott) and an outer region covers the rest of the integration domain. We also split 

the integral into three parts according to the regions. 

(5.79) 

where I~I « Ii « 1. 

Under the above assumptions, the first and third integral contribute to ottO) and O{t!) 

terms, whereas the shape of vortex sheet in the neighborhood of the singularity is determined 



141 

by the second integral. In order to approximate this integral, we re-scale it by using: 

(5.80) 

where s here is slightly different from the s defined before in 5.21. 

The second integral then becomes: 

jo de 
-Ii zdf. t)(~ - e) 

IjO de 
,\ -Ii (1 + sde, t))(~ _ ~J) 

IjO-{ de 
,\ -ii-{ (1 + s{(~ + (,I))(-() 

Ij'S-{ -s{(~ + (, t)( d( 1jli-{ d( 
,\ -ii-{ (1 + s{(~ + (, t))( -() ( ,\ -ii-{ ( 

Ij'S-{ s«~+(,t) d( 1 In (Ii-f..) 
A -ii-{ (1 + sd~ + (, t)) . "( - A Ii + ~ 

~ jii-{ s«~ + C, t) . d( + O(~) (5.81) 
,\ -ii-{ (1 + s{(f.. + (,t)) ( . 

Again, we take I~I ~ t when I~I, t « 1. We see, by splitting the integral, the first and the 

J 
third integrals must balance the Zo term in the expansion, and the next term of ~'i matches 

with the second integral. 

Let 

~= (-T)X, (5.82) 

and seek a similarity solution: 

s = (-T)"F(X) , (5.83) 

where 1 < q < 2. For the initial conditions we studied in the early subsections,we know 
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that q = ~. 

The change of variable implies 

a 1 a 
= (-7)- - , 

at; ax 
(5.84) 

a x a -2 a 
at 71AI2 ax + IAI 8T. (5.85) 

Therefore, by substituting the change of variables into the similarity solution, we get 

Z - -T - - q-l a- ({ )q-1 ) 
at = A IAI2 (xFx - qF) + a{ 7 ). (5.86) 

On the other hand, further manipulations on (5.81) implies 

(5.87) 

(5.88) 

(5.89) 

By matching the O{{ _7)q-1) terms, we obtain 

(5.90) 

In order to fit the 'outer region' where t; = 0(1), we claim that F ~ F±lxlq as X --> ±oo, 

where F± are constants and satisfy F+ = -F_. Under this condition, we perform the 

integration by part in equation (5.90). The result is: 

P _ F - _1_100 F{x + 1)) - F{x) d 
Xxq-2· ..,2 1). 

7rZ -00 '/ 
(5.91) 
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Note that equation (5.91) is the same as equation (5.7) in [12], which shows that our 

model preserves the shape of vortex sheet where a physical singularity appears. Here, we 

just briefly restate the main results in [12] which were derived from equation (5.91). Our 

numerical calculations have confirmed these results. 

By solving equation (5.91), we can show that 

(5.92) 

where, is a real constant. 

For the initial conditions that we considered here, q = ~. Thus the vortex sheet has the 

local form 

. 1/2 1 
Zt; ~ A+3,(1-z)A(-r) cos("2arctan(2x)), (5.93) 

(5.94) 

Based on (5.94), we would like to mention one special case of our analysis. Note that 

if we take arg A = IT /4, the leading order branch-cut singularity is only evident in x, and 

not in y. It provides an explanation of Shelley's [28] observation that when c = 0.5 in the 

iVIEO initial condition, the nature of singularity in the real variable seems to be different 

from the imaginary variable in the full vortex sheet equation. From the analysis presented 

above, we have shown that a similar phenomenon should happen to our model equation as 

well. This rather surprising result has also been verified by our numerical calculation. 
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Chapter 6 Numerical Study on the Model Equations 

In this chapter, we validate our theoretical analysis by performing numerical computations 

on both two-dimensional and three-dimensional vortex sheet problems .. 

The sections in this chapter are arranged as follows. Section 1 presents our numer-

ical results for the two-dimensional problem. While in Section 2, we perform numerical 

calculations on the three-dimensional problem. 

6.1 Two-dimensional Model Equation 

6.1.1 Algorithm 

The motion of a two-dimensional vortex sheet is governed by the Birkhoff-Rott equation 

[6J. 

(6.1) 

where the over-bar denotes the complex conjugate, t is the time, z{~, t) = x{~, t) + iy{~, t) 

is the complex interface position parametrized by a Lagrangian variable €, and no is 

the circulation in the sheet measured between the point with coordinate z and a reference 

particle. Most importantly, the integral takes the Cauchy principal value. function z - € 

and function r { are assumed to be 21T-periodic. 

Following Shelley [28], we use the modified point-vortex approximation (subsequently 

referred to as MPVA) to study the full vortex sheet equation. Discretizing z{€, t = 0) and 
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'Y(O = r~(o uniformly in the Lagrangian parameter I; as 

Zj(t = 0) = z(jh,t = 0), 

and 

'Yj = 'Y(jh) , 

with h = 2n: / Nand j ranging from 0 to N - 1, we can approximate the velocity integral in 

(6.1) by the alternating trapezoidal rule 

(6.2) 

Shelley [28[ showed that the approximation is of spectral accuracy, which means that the 

error decreases faster than any algebraic power of h. 

Naturally, MPVA can be applied to our model equation as well, since it is described as 

aZ (I;, t) = ~ JIT r~(() cot [~(I; - ()] cU.'. 
at 4n _IT z~(n 2 

(6.3) 

However, since our model equation can be re-written as 

(6.4) 
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where H stands for the Hilbert transform defined as 

The integral can be evaluated by means of FFT. 

(6.5) 

One co=on technique needed in numerically solving both the full equation and our 

model equation is the spectral filtering technique introduced by Krasny [19]. Due to Kelvin­

Helmholtz instability, the round-off error of the calculation leads to a rapid and spurious 

growth of the high-wavemunber amplitudes [27], causing a severe departure of the computed 

solution of the discrete system from the exact solution. For this reason, Krasny employed 

a Fourier filter that, at each time-step, zeroes any Fourier amplitude whose modulus is less 

than some preassigoed tolerance. Recently, Cafiisch, Hou & Lowengrub [8] have proved the 

convergence of the modified point-vortex approximation with spectral filtering. 

6.1.2 Numerical Results 

In this subsection, we study the two-dimensional vortex sheet with MBO initial condition. 

The initial condition is 

z(e, t = 0) = e (6.6) 

,(0 = -1 + E cos(O (6.7) 

for E = 0.5. 

For this initial condition, we perform two sets of numerical computations, using the 
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full equation and our model equation respectively. The calculations of both equations are 

performed using quadruple precision in order to detect the early time singularity formation. 

The procedure can be described as follows: 

1. Evolve both equations from t = 0 up to t = 1.3, by taking N = 256, 6t = 0.0025. 

2. Double the mesh points N to 512, reduce 6t in half to 0.00125, and calculate both 

equations from t = 1.3 up to t = 1.5 by taking the final results of the last step as the 

initial condition. 

3. Further double the mesh points N to 1024, reduce 6t to 0.000625, and calculate both 

equations from t = 1.5 up to t = 1.65. 

In our calculations, the filter tolerance level is set at 10-23 for both equations. Both the 

above procedure and the tolerance level are set to follow that of [28], so that we can compare 

the computational results with those by Shelley in [28]. 

The purpose of this section is to confirm our theoretical results for the two-dimensional 

model equation. Therefore, we analyze the numerical computations in four aspects: 

1. Interface shapes and their Fourier spectra. 

2. Early time singularity formation. 

3. Local sheet form at the physical singularity time. 

4. Physical singularity time. 

1. Interface shapes and their Fourier spectra. In this part of the numerical 

analysis, we want to show the sheet interfaces and their Fourier spectra for solutions of 

both equations. As we can see from Figure (6.1) and Figure (6.2), the Fourier spectra of 
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<aJ Interface (b J Spectrum 

Figure 6.1: The interfaces and Fourier spectrums calcnlated from the full equation, in which 
t = 0.6 to 1.6 at intervals of 0.1. 

the solutions to both equations have grown considerably as time increases, due to Kelvin-

Helmholtz instability. 
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.. 
(a) Interface (b) Spectrum 

Figure 6.2: The interfaces and Fourier spectrums calculated from the model equation, in 
which t = 0.6 to 1.6 at intervals of 0.1. 

2. Early time singularity formation. From the theoretical analysis for both the full 

equation and the model equation, we know that singularities form spontaneously at t = 0+ 

when complexifying the independent variable. In particular, we showed that the solution 

to our model equation develops the same type of the singularities at the same position at 

which the full eqnation develops a singularity. In order to provide convincing numerical 

evidence to support our analysis, we form-fit the Fourier spectrum of the data with: 

1£;(t)1 = Cxk- tJx exp(-axk ) , (6.8) 

!Yk(t) 1 = Cyk- tJy exp( -ayk) , (6.9) 

where Xk is the kth Fourier coefficient of x(~, t) - ~ and Yk is the kth Fourier coefficient of 

y(~, t). This form-fitting idea follows the previous work by Krasny [19], Pugh [26J, Shelley 

[28J, and Baker, Caflisch & Siegel [3J. In the form-fitting, ax measures the distance of the 

x-direction singularity from the real ~ axis, while (f3x - 1) measures the power of singularity 
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Figure 6.3: The form-fitted O:x and {Jx calculated from the full equation, in which t = 0.6 
to 1.3 at intervals of 0.1. 

in the x-direction and similarly for O:y and {Jy. 

As we can see from Figure (6.3), Figure (6.4), Figure (6.5), and Figure (6.6), {Jx and {Jy 

are around 2.5 for both equations. This shows that at early time, both equations generate 

3/2 singularities at x and y directions. Moreover, we notice that form-fitted a's is slightly 

different between the full equation and our model equations. This indicates the disparity 

between the trajectories along which singularity propagates in the two equations. 
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Figure 6.4: The form-fitted ax and {:Jx calcnlated from the model equation, in which t = 
0.6 to 1.3 at intervals of 0.1. 
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Figure 6.5: The form-fitted ay and {:Jy calcnlated from the full equatiou, in which t = 0.6 
to 1.3 at intervals of 0.1. 
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Figure 6.6: The form-fitted Ciy and {3y calculated from the model equation, in willch t = 

0.6 to 1.3 at intervals of 0.1. 

3. Local sheet form at the physical singularity time. In the numerical study by 

Shelley [28], he observed that the singularity type in the x direction is different from that 

in the y direction. In later work, Cowley, Baker & Tanveer [12] explained this disparity 

by asymptotic expansions around the neighborhood of the physical singularity near the 

singularity time. F\rrther, our analysis predicts that even in this case, our model equation 

should still capture the local form of the vortex sheet shape at the physical singularity time. 

By comparing Figure (6.7) and Figure (6.8), we see that for both equations, the second 

order space derivative in the x variable becomes singular, whlle that in the y variable stays 

regular. To provide a more precise measurement, we form-fit the Fourier spectra of the 

interfaces. As can be seen in Figure (6.9), Figure (6.10), Figure (6.11), and Figure (6.12), 

by comparing the {3 part of the figures, we conclude that the singularity's power is about 

3/2 in the x variable, while the singularity's power is about 2 in the y variable. Tills subtle 

feature is also captured by our model equation. 
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(a) x-direction (b) y-direction 

Figure 6.7: The second order differentiation on x and y direction calculated from the full 
equation, in which t = 1.5, 1.525 and 1.6 to 1.625 at intervals of 0.0025. 
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Figure 6.8: The second order differentiation on x and y direction calculated from the model 
equation, in which t = 1.3 and 1.5775 to 1.5925 at intervals of 0.0025. 
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Figure 6.9: The form-fitted ax and fJx calculated from the full equation, in which t = 1.6 
to 1.615 at intervals of 0.0025. 
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Figure 6~10: The form-fitted ax and fix calculated from the model equation, in which t = 
1.5775 to 1.5925 at intervals of 0.0025. 
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(a) C<y (b) {iy 

Figure 6.11: The form-fitted ay and {Jy calculated from the full equation, in which t 1.6 
to 1.615 at intervals of 0.0025. 
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Figure 6.12: The form-fitted ay and {Jy calculated from the model equation, in which t = 
1.5775 to 1.5875 at intervals of 0.0025. 
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4. Physical singularity time. One of the major differences between the two equations 

is the singularity time. To have a definite measure on this issue, we check the 0/ form-fitting 

near the singularity time. As we can see from the 0/ fitting curves in Figure (6.9), Figure 

(6.10), Figure (6.11), and Figure (6.12), the singularity time is about 1.5925 for our model 

equation, while it is around 1.6125 to 1.615 for the full equation. 

6.2 Three-dimensional Model Equation 

6.2.1 Formulation 

As we stated in the previous section, our three-dimensional model equation is: 

OZ 
&t 

where N stands for the normal direction of the interface. 

(6.10) 

However, the model equation is not a convolution operator in its present form. If 

we use direct summation in our evaluation of the velocity integral, it would take O( N4) 

computational complexity in each time step, where N is the number of mesh points in each 

direction. The numerical calculation becomes prohibitively expensive even when N reaches 

the level of 0(100). We will introduce a special coordinate system (0/1,0/2) to reduce the 

integral operator in (6.10) to a convolution operator. Then the velocity can be evaluated 

efficiently by FFT. 

The special coordinate system is chosen so that the following properties are satisfied 
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[16] 

(6.11 ) 

(6.12) 

where C, and C2 are independent of <>, and <>2. With this set of coordinates, the integral 

on the right-hand side of equation (6.10) becomes a convolution operator with kernel 

(6.13) 

where i = 1,2. In particular, when C, = 0 as in the case of our computation, the spectral 

representation of the operator is: 

-i6 
(6.14) 

and 

-i/;2 
(6.15) 

In general, even if C, # 0, the spectral representation of the kernels are still known as [16]: 

(6.16) 
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and 

(6.17) 

For interface near equilibrium, it is possible to prove the existence of a set of coordinates 

satisfying (6.11) and (6.12) [16]. From our numerical experiences, we find that such coor-

dinates exist even for large initial data. 

6.2.2 Some Implementation Issues 

In this subsection: we discuss several implementation issues for our computations. These 

issues have been addressed by Si in [29]. For simplicity, we just present a brief introduction 

here without going into too much details. Interested readers should refer to [29] (Page 

71-75). 

In order to construct a coordinate system so that equations (6.11) and (6.12) are satisfied 

at all time, we need to consider the following details: 

1. Iuitially, we need to find a system of (O'l, (2) such that equation (6.11) and (6.12) are 

satisfied. 'Ve can derive a system of PDEs for these coordinates which can be solved 

by an iteration method. 

2. During the evolution, it is possible that the coordinates from the last time-step do not 

satisfy equation (6.11) and (6.12) in the current time-step. To avoid re-adjusting the 

coordinates every time, we add two tangential velocities hand fz to the evolution 

equation. These two added tangential velocities hand fz are determined by a set of 

linear elliptic PDE's to guarantee that (6.11) and (6.12) are satisfied at all time. 

\Ve point out that adding hand fz does not change the singularity structure. It is 
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because that the only factor that affects the interface shape in the full equation is the 

normal velocity. The change of tangential velocities only results in are-arrangements 

of the Lagrangian fluid particles. It does not change the tangential velocity jmnp. 

Thus our analysis comparing the model equation with the full equation still applies 

to this case. 

However, the modification of the tangential velocity changes the evolution equation of 

the velocity jump potential p" i.e. p, is not conserved with time any more. Therefore, we 

need to derive the evolution equation of p, under the new added tangential velocities. 

In particular, the equation can be written as: 

dp, 
dt (x, y, z, t) 

(6.18) 

where T 1 , T2, and N are the local tangential directions and the normal direction. 

Note that if the interface evolves with the tangential velocities from the vortex sheet 

equation, then 

dji 
dt (x, y, z, t) 

o , (6.19) 

where ]1 and h stand for the tangential velocities derived from the vortex sheet 
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equation. Therefore, it follows from combining (6.18) and (6.19) that 

dft 
dt (x, y, z, t) '11 zft . {{h - !J)TI + (/2 - i2)T2) 

= 'I1zft· ({h - il) IZa'1 + (/2 - i2) IZa'l) 
ZOI Z02 

h-il h-i2 
1 1 fta, + 1 1 fta, . 
ZOI ZQ2 

(6.20) 

3. After each small time-step evolution, even though we evolve the interface with the 

added tangential velocities, (6.ll) and (6.12) might not be completely satisfied at the 

discrete level due to the numerical error. Therefore, we need to reconstruct the surface 

based on the computed surface. Details in this part of the computation are given in 

129]. 

6.2.3 Algorithm 

In this subsection, we briefly describe our Algorithm: 

1. Given the initial interface z, construct {CI}, "'2) that satisfies (6.11) and (6.12). 

2. For each Lagrangian particle, evaluate the integral on the right-hand side of equation 

(6.1O) using FFT. Compute the normal velocity by projecting the velocity to the 

normal direction and write it as h. 

3. Compnte the tangential velocities on "'I and "'2 direction respectively as h and /2 

using h 

4. Evolve the interface and the vorticity strength according to a Fourth-order Adams-

Bashforth Method. 
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5. Reconstruct the fluid interface based on the computed interface to satisfy (6.11) and 

(6.12). 

6. Compute the solution at the next time step from Step 2. 

6.2.4 ~lUDnerical Ftesluts 

In this section, we will perform an extensive numerical study of the 3-D vortex sheet model 

equation to couiirm our theoretical results obtained in the previous chapters. In particu­

lar, we will investigate three aspects of singularity formation in 3-D vortex sheets in our 

numerical study: 

1. Interface shape and the curvature. 

2. Singularity formation. 

3. Local singularity structure. 

In our three-dimensional computations, we take the following iuitial data: 

(6.21) 

where 101 = 0.1, and 102 = 0.5, with 

(6.22) 

For this initial condition, we solve the model equation with N = 64, N = 128, N = 256, 

N = 512, and N = 1024 respectively to ensure the convergence of our computation. Every 

time we double the mesh points, we reduce the time-step f'>.t by half. As a result, f'>.t ranges 

from O.D! to 0.000625. The filter tolerance level is set to 10-12 in our computation, since 
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we are using the standard double precisiou for the calculations of the three-dimensional 

problem due to the computational resource constrrunt. The procedure can be described as 

follows: 

1. Evolve the interface using N = 256, LSI = 0.0025 up to t = 1.00. 

2. Double the mesh size, reduce the time step in half, and continue the computation up 

to t = 1.65 with N = 512 and 6t = 0.00125. 

3. At time t = 1.45, further double the mesh size, reduce the time step in half and 

compute up to t = 1.60 with N = 1024 and 6t = 0.000625. 

We su=arize our numerical results below. 

1. Interface shape and the Curvature Plot. In this part of the study, we illustrate 

the dynamical evolution of the sheet interface and its mean curvature. We can see from 

Figure (6.14) - Figure (6.20) that the mean curvature develops a rapid growth in time and 

a curvature singularity may develop in finite time. It is important to point out that the ini­

tially smooth curvature function is pushed to form a sharp gradient along a certrun direction 

(like the (32 direction in our analysis) while it remruns relatively smooth perpendicular to 

this direction (like the (3, direction in our analysis). This confirms our analytical prediction 

that singularity formation for 3-D vortex sheets can be essentially reduced to a 2-D vortex 

sheet along certain space curve. 

In Chapter 3, our analysis predicts that for each fixed {3" 3/2 singularities form in 

the extended complex f32 domrun spontaneously at t = 0+. Since the speeds at which 

the singularities propagate depend on {3" we expect that the physical singularities would 

generically appear at some isolated points first, and thim spread into a one-dimensional 

manifold. In Figure (6.21), we present the contour plot ofthe curvature. We can see clearly 
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Figure 6.13: Interface calculated from three-dimensional model equation at t = 1.64. 

that the singular region of curvature is indeed concentrated along a one-dimensional curve 

which is parametrized by fh. The curvature achieves its maximum value at isolated points 

along these one-dimensional curves. Note that in this particular example, we have i31 = 01 
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Figure 6.H: Curvature calculated from three-dimensional model equation at t = 1.20. 
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Figure 6.15: Curvature calculated from three-dimensional model equation at t = 1.30. 
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Figure 6.16: Curvature calculated from three-dimensional model equation at t = 1.400 . 
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Figure 6.17: Curvature calculated from three-dimensional model equation at t = 1.50. 
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Figure 6.18: Curvature calculated from three-dimensional model equation at t = 1.60. 
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Figure 6.19: Curvature calculated from three-dimensional model equation at t = 1.64. 
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Figure 6.20: Curvature calculated from three-dimensional model equation at t = 1.646. 

" 

Figure 6.21: Curvature contours calculated from three-dimensional model equation at t = 
1.646. 
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Singularity Formation: We study the singularity type in this part of the numerical 

analysis. The purpose is to further confirm our theoretical result, which has predicted 

that the singularity is of type 3/2 for a wide range of initial conditions along a certain 

critical direction. Following the work of Krasny [19], we use the log-log plot of the Fourier 

coefficients of the x-component of the intersection along the fh direction with a fixed f31 

which give rise to the maximum curvature valne at the intersection of these two directions. 

If the interface forms a 3/2 singularity at tc as predicted by our analysis, the slope of the 

logarithm of the Fourier modes would approach -2.5 asymptotically. In fact, from Figure 

(6.23), Figure (6.24), and Figure (6.25), we see that the Fourier modes are approaching the 

-2.5 slope as tinte increases. In particnlar, the four curves in Figure (6.23), Figure (6.24), 

and Figure (6.25) represent the Fourier modes at four different tintes. As the singularity time 

is approached, we can see that the Fourier modes corresponding to the lower to intermediate 

wave numbers converge to the -2.5 slope, while the higher wave number modes also move 

towards this slope as the singularity tinte is approached. In addition, we find that the x, y, 

and z components form a 3/2 singularity simultaneously. This indicates that the interface 

may form a singularity of type 3/2 in finite tinte. 

To provide further evidence of singularity fonnation of type 3/2, we have performed a 

resolution study. In Figure (6.26), Figure (6.28), and Figure (6.30), we present the numerical 

results using N = 1024. In each of the three figures, two sets of the computational results 

are presented, using 512 by 512 mesh points and 1024 by 1024 mesh points respectively. In 

addition, Figure (6.27), Figure (6.29), and Figure (6.31) show the close-up of these three 

figures in the high frequency region. From the close-up plot, we observe that as soon as 

the logarithlUS of the Fourier modes deviate from the -4.5 slope, the curves representing 

the logarithIUS in the 512 by 512 computations also deviate from those in the 1024 by 
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Figure 6.22: Cross section of curvature plot along y = 7r, at t = 1.2, 1.3 1.4, 1.5, 1.641 to 
1.647 at the interval of 0.001 respectively. 

1024 computation. Therefore, we conclude that the decaying behavior of the higher wave 

number modes in these figures is due to the lack of numerical resolution and the filtering 

effect. Moreover, we observe that at the same high wave number, the coefficients computed 

from higher resolution eN = 1024) are closer to the -2.5 slope. This indicates that the higher 

wave number modes will eventually converge to the -2.5 slope as more and more mesh points 

are used. This resolution study gives convincing evidences that a 3/2 singularity is indeed 

formed at the singularity time. 



170 

~~~----~----~----~,----~----~----~ 
"'. 

Figure 6.23: Log-log plot of the X variable Fourier coefficients of the a,-direction intersec­
tion passing the maximum curvature position at tinle t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as tinle increases. The straight line shows the - 2.5 slope . 

. , 

Figure 6.24: Log-log plot of the Y variable Fourier coefficients of the a,-direction intersec­
tion passing the maximum curvature position at time t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as time increases. The straight line shows the -2.5 slope. 
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Figure 6.25: Log-log plot of the Z variable Fourier coefficients of the Cil-direction intersection 
passing the maximum curvature position at time t = 1.61, 1.62, 1.63, 1.64. The Fourier 
coefficients plot increases as time increases. The straight line shows the - 2.5 slope. 
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Figure 6.26: Log-log plot of the X variable Fourier coefficients of the Cil-direction intersec­
tion passing the maximum curvature position at timet = 1.641, to 1.647 at the interval of 
0.001. The Fourier coefficients plot increases as time increases. The straight line shows the 
- 2.5 slope. The two sets of curves stand for the computation results for 512 mesh points 
and 1024 mesh points. 
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Figure 6.27: Zoomed plot of Figure 6.26. Log-log plot of the X variable Fourier coefficients 
of the QI-direction intersection passing the maximum curvature position at tinle t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the -2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 
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Figure 6.28: Log-log plot of the Y variable Fourier coefficients of the QI-direction intersec­
tion passing the maximum curvature position at tinle t = 1.641, to 1.647 at the interval of 
0.001. The Fourier coefficients plot increases as tinle increases. The straight line shows the 
- 2.5 slope. The two sets of curves stand for the computation results for 512 mesh points 
and 1024 mesh points. 
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Figure 6_29: Zoomed plot of Figure 6.28- Log-log plot of the Y variable Fourier coefficients 
of the !>I-direction intersection passing the mrodmum curvature position at time t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the -2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 
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Figure 6.30: Log-log plot ofthe Z variable Fourier coefficients of the !>I-direction intersection 
passing the maximum curvature position at time t = 1.641, to 1.647 at the interval of 0.001. 
The Fourier coefficients plot increases as time increases. The straight line shows the -2.5 
slope. The two sets of Curves stand for the computation results for 512 mesh points and 
1024 mesh points. 
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Figure 6.31: Zoomed plot of Figure 6.30. Log-log plot of the Z variable Fourier coefficients 
of the a,-direction intersection passing the maximum curvature position at time t = 1.641, 
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases. 
The straight line shows the - 2.5 slope. The two sets of curves stand for the computation 
results for 512 mesh points and 1024 mesh points. 

4. Local singularity structure. In the last section of Chapter 3, in order to study 

the local singularity structure, we introduce two new variables rPI and rP2. We show that to 

the leading order rP2 and z form 3/2 singularities but there is no 3/2th order singularity in 

the rPI variable. Since our analysis is based on formal asymptotic analysis, we would like to 

validate this result numerically. From the log-log plot of the Fourier coefficients of the rPI 

and rP2 variables along the fh direction in Figure (6.32) and Figure (6.33), we see that the 

Fourier modes of the rPI variable approaches the -3.1 slope, while the Fourier modes of the 

¢2 variable approaches the -2.5 slope. This confirms that rPI is smoother than rP2 near the 

singularity tillIe. 

Throughout our analysis, we argue that under the special set of coordinates, one di-

rectiou is the essential singularity direction (the fJ2 direction) In the case we study here, 

even with the added tangential velocities and the re-adjusted vorticity, the fJ2 direction 
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Figure 6.32: Comparison of the log-log plot of the "'I variable Fourier coefficients to that of 
the "'2 variable. Both intersections pass the maximum curvature position at time t = 1.646. 
The upper line is the Fourier coefficients of the "'2 variable, the straight line has the slope 
of -2.5. The lower line stands for the Fourier coefficients of the "'I variable, the straight line 
has the slope of -3.1. Similar resolution test is involved. 

corresponds to the "'I-direction. So the "'I-direction should be the essential direction to the 

leading order. To confirm this idea, we compare the Fourier coefficients of the intersection 

along the "'I-direction to the Fourier coefficients of the intersection along the "'2-direction. 

AB we can see from Figure (6.34), Figure (6.35), and Figure (6.36), even though our 01 = 0.1 

is not particularly small, there are still disparities in the tails of the Fourier coefficients in 

all x, y, and z variables. This shows that the (32 direction, which coincides with the "'1-

direction in this case, is indeed the essential direction driving the singularity formation of 

the 3-D vortex sheet problem. Further evidence is provided in Figure (6.37), Figure (6.38), 

and Figure (6.39) to confirm this property. 
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Figure 6.33: Zoomed plot of Figure (6.32). Comparison of the log-log plot ofthe <1>1 variable 
Fourier coefficients to that of the </>2 variable. Both intersections pass the maximum curva­
ture position at time t = 1.646. The upper line is the Fourier coefficients of the <1>2 variable, 
the straight line has the slope of -2.5. The lower line stands for the Fourier coefficients of 
the <1>1 variable, the straight line has the slope of -3.1. Similar resolution test is involved . 
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Figure 6.34: Comparison of the log-log plot of the X variable Fourier coefficients of the 
"'I-direction intersection with the "'2-direction intersection both passing the maximmn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the "'I-direction 
intersection. Lower line is the Fourier coefficients of the "'2-direction intersection. 
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Figure 6.35: Comparison of the log-log plot of the Y variable Fourier coefficients of the 
Gl-direction intersection with the G2-direction intersection both passing the maximlUn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the Gl-direction 
intersection. Lower line is the Fourier coefficients of the c¥2-direction intersection. 
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Figure 6.36: Comparison of the log-log plot of the Z variable Fourier coefficients of the 
Gl-direction intersection with the G2-direction intersection both passing the maximmn cur­
vature position at time t = 1.64. Upper line is the Fourier coefficients of the Gl-direction 
intersection. Lower line is the Fourier coefficients of the G2-direction intersection. 
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Figure 6.37: Comparison of the log-log plot of the X variable Fourier coefficients of the 
Cr:l-direction intersection with the Q:2-direction intersection both passing the maximum cur­
vature position at time t = 1.647. Upper line is the Fourier coefficients of the ol-direction 
intersection. Lower line is the Fourier coefficients of the Cr:2-direction intersection. 
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Figure 6.38: Comparison of the log-log plot of the Y variable Fourier coefficients of the 
ct'}-direction intersection with the 0'2-direction intersection both passing the maximum cur­
vature position at time t = 1.647. Upper line is the Fourier coefficients of the ol-direction 
intersection. Lower line is the Fourier coefficients of the D:2-direction intersection. 
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Figure 6.39: Comparison of the log-log plot of the Z variable Fourier coefficients of the 
aI-direction intersection with the a2-direction intersection both passing the maximum cur­
vature position at tinle t = 1.647. Upper line is the Fourier coefficients of the aI-direction 
intersection. Lower line is the Fourier coefficients of the a2-direction intersection. 
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Chapter 7 Conclusions 

In this thesis, we have studied the three-dimensional vortex sheet problem theoretically and 

numerically. vVe found that the three-dimensional vortex sheet problem can be reduced 

to a two-dimensional vortex sheet problem to the leading order along certain space curve 

and with appropriate change of variables. vVith this key observation, we have derived the 

early time singularity formation and the local form of the curvature singularity near the 

physical singularity time. The results are found to be qualitatively the same as those of 

the two-dimensional vortex problem. Moreover, we have proved the long time existence 

theorem for the three-dimensional vortex sheet equation for analytic initial conditions near 

equilibrium. The existence time is almost optimal if the initial perturbation to equilibrium 

is sufficiently small. Further, by introducing simplified model equations, we have performed 

carefullllUllerical computations which confirm some of our theoretical results. 

One area worth further research is how to best use our simplified model equations in 

study of interfacial flows in three space dimensions. The fact that the model equations 

capture correctly the singular behavior of the interface at small scales and can be evaluated 

efficiently may find useful applications in other contexts. In fact, from our analysis, we 

show that the difference between the full equation and the model equation is a smoothing 

operator. Therefore, it is possible that we can develop an efficient multi-resolution method 

to represent the large scale regular behavior. This will offer an alternative fast method to 

study three-dimensional interfacial flows which can capture the singular behavior at small 

scales. 
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It is generally believed that vortex stretching is an important mechanism for three-

dimensional incompressible Euler equations. It is a long open question whether the 3-D 

Euler equations can develop a finite time singularity from smooth initial data. In this 

sense, it is quite surprising that the 3-D vortex sheet is essentially like the 2-D vortex sheet. 

It would be interesting to investigate whether this has any implication to the 3-D Euler 

equations with smooth but nearly singular shear layered initial data. For example, what is 

the limiting behavior of the regularized vortex layer solution as the thickness of the shear 

layer tends to zero. This may shed some useful light into the singularity formation in 3-D 

Euler equations with smooth initial data. 
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