Singularity Formation in Three-Dimensional Vortex Sheets

A Thesis by

Gang Hu

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2001

{Submitted August 2, 2000)



(© 2000
Gang Hu

All Rights Reserved



DEDICATION

To My Grandmother



iv

Acknowledgements

I am deeply indebted to Professor Thomas Y. Hou, my thesis advisor, who suggested this
work and guided me through many difficulties and obstacles. What T learned from him is
not only about scientific research, but more importantly, about the attitude towards life and
career. 1 feel extremely fortunate to be able to work closely with him in the past five years.
I would like to thank him both professionally and personally. I would also like to express my
appreciation to Professor Oscar Bruno, Professor Pingwen Zhang, Dr. Hector D. Ceniceros,
Dr. Helen Si, Dr. Patrick Guidotti, and Dr. John Pelesko for valuable discussions and
suggestions. 1 thank many professors and instructors at Caltech who led me through my
journey in Applied Mathematics.

My study in America is made possible by the Graduate Research and Teaching Assis-
tantship from the California Institute of Technology. I greatly appreciate its generosity.

Next T would like to extend my thanks to a more personal level. 1 would like to thank
my grandparents for bringing me up in those difficult years, my parents for all the sacrifice
they have made for me. Especially I would like to dedicate this thesis to my grandmother,
who will always live in my heart.

I would also like to thank all my friends at Caltech who have made this journey an
enjoyable one, in particular, Mayya Tokman, as my closest friend and officemate; Patrick
Guidotti, Danny Patrasek, Chad Schmutzer, Yalchin R. Efendiev, Randy Paffenroth, and
Dave Amundsen, the AMA gang; Sue Zhang, Vivian Guo, Jin Yu, Hongyu Ran, John Li,

Guangyang Wang, and Qianli Lin, the Caltech Cer’s and card game gang.



v

Finally, special thanks go to my wifle, Jingying, for all her love and support.



vi

Abstract

In this thesis, we investigate both theoretically and numerically the singularity formation
and long time existence of three-dimensional vortex sheets,

For the theoretical work, we divide it into two parts. In the first part, we study the
early time singularity formation and the local form of the vortex sheet in the neighborhood
of a singularity near the singularity time. We show that under a special set of coordinates,
the three-dimensional vortex sheet can be viewed as a two-dimensional vortex sheet along
certain space curves. As a result, the study of singularity formation of a three-dimensional
vortex sheet can be related to that of the corresponding two-dimensional vortex sheet. And
the singular behavior of these two problems is very similar. Moreover, by performing a
transformation in the interface variables and deriving leading order asymptotic approxima-
tions for the evolution of these transformed variables, we show that the Kelvin-Helmholtz
instability is a result of the coupling of two of these three variables to the leading order.
This observation simplifies significantly our singularity analysis for three-dimensional vor-
tex sheets and allows us to reveal clearly the nature of the curvature singularity in the
three-dimensional vortex sheet equation. In the second part of our theoretical work, we
prove the long time existence of the three-dimensional vortex sheet problem for analytic
initial conditions near equilibrium. Moreover, the existence time is almost optimal if the
initial perturbation over the equilibrium is sufliciently small.

We have performed careful numerical study to validate our theoretical results. Well-

resolved numerical study of the full three-dimensional vortex sheet equation is difficult
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due to the complexity in evaluating the interface velocity. To alleviate this difficulty, we
introduce two model equations. An important feature of these models equations is that they
can be expressed in terms of convolution operators and consequently they can be computred
efficiently by Fast Fourier Transform. Moreover, we show by asymptotic analysis that
these model equations preserve the singularity type of the full equations. Our analysis also
suggests that the model equations generate the same local form of curvature singularity
near the physical singularity time as that of the full equations. Our detailed numerical
computations on the two-dimensional problem show that the model equation captures all
the essential singularity behavior of the full vortex sheet equation. Our calculations based
on the three-dimensional model equation provide convincing evidences that a curvature
singularity develops in finite time In the three-dimensional vortex sheet. And the type of

the singularity is of order —1/2 in the mean curvature.
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Chapter 1 Introduction and Background

Omne of the generic features of shear flows at high Reynolds numbers is Kelvin-Helmholtz
(K-H) instability. It has been suggested that K-H instability plays a role in maintaining
turbulent flow by causing the break-up of shear layers [21]. One of the well-known examples
where K-H waves develop is the instability of the vortex sheet centered on the dividing
streamline of a separated flow. It is an asymptotic model of a parallel shear flow in which
the thickness of the transition region between the two streams is small compared with a
typical stream-wise length-scale.

The singularity formation in two-dimensional vortex sheets has been thoroughly studied
in the last two decades. Among the early contributions, Moore [23] studied the nonlinear
evolution of a vortex sheet with a small sinusoidal initial disturbance of amplitude £. He
predicted that close to the singularity, the curvature of the sheet is proportional to [T —
I‘s|‘%, where 1" is the circulation in the sheet measured from a fixed reference particle
and T’y is the position of the singularity. Although Moore’s analysis was based on formal
asymptotic analysis, his result was supported by Meiron, Baker & Orszag [22], who analyzed
a power series solution in time using series extension techniques. Further, their results were
confirmed numerically by Krasny [19] and Shelley [28], in which the roundoff error growth
was controlled by spectral filtering. Moreover, as a rigorous validation of Moore's analysis,
Caflisch & Orellana [9] proved the existence for a slightly perturbed vortex sheet up to
t = O(|log(=}|) for Moore’s initial condition.

A recent article by Cowley, Baker & Tanveer [12] presented a complete study to the
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two-dimensional problem. Among other results, they studied the early time singularity
formation on the Birkhoff-Rott equation, and showed by complexifying the independent
variable £, that early time complex singularities of power % can be developed at ¢t = 0+.
Further, the singularity moves around the complex £-domain towards the real £-axis without
changing its type. The first time at which a singularity intersects the real £-axis gives the
time at which a singularity forms in the physical problem. Moreover, they obtained an
asymptotic description of the sheet shape as the physical singularity forms, and explained
certain results observed numerically for the larger initial condition studied by Shelley {28].

The three-dimensional vortex sheet equation has also been studied by a number of
researchers recently. Among them, Ishihara & Kaneda [18] provided some evidence of the
singularity formation in the three-dimensional problem. Brady & Pullin [7] presented analy-
sis on three-dimensional vortex sheets which have cylindrical shape and normal mode initial
data. They showed that in planes normal to the generator of the ¢ylindrical sheet geometry,
the nonlinear evolution of the sheet is the same as that of an equivalent two-dimensional
vortex sheet motion. Consequently, singularity formation of this special three-dimensional
vortex sheet problem is reduced exactly to that of the corresponding two-dimensional prob-
lem. Our study of singnlarity formation in three-dimensional vortex sheets is partially
motivated by Brady & Pullin’s result. Here we consider generic three-dimensional initial
data and show that the evolution of three-dimensional vortex sheets can be reduced to that
of two-dimensicnal vortex sheets to the leading order.

In this thesis, we study the singular behavior of three-dimensional vortex sheets. Our
study is divided into four parts. In the first part, by performing asymptotic analysis on the
three-dimensional voriex sheet equation, we study the fprmation of early time singularity

and the local form of the vortex sheet in the neighborhood of the singularity near the
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singularity time. In the second part, we provide a long time existence proof to the three-
dimensional vortex sheet equation. The existence time is almost optimal for small initial
perturbations. In the third part of this thesis, we introduce two model equations and
study their singular behavior comparing to the full equations. An important feature of
these model equations is that they capture the leading order singularity behavior of the full
vortex sheet equation and can be computed efficiently. In the fourth part of this thesis, we
perform a detailed numerical study which confirms some of the theoretical findings. Below,

we summarize the main results that we obtain in this thesis.

1.1 Three-dimensional Vortex Sheets’ Early Time Singular-

ities Formation

In Chapter 3, we study the early time singularity formation of solutions to the three-
dimensional vortex sheet equation. We show that along certain space curves on the three-
dimensicnal vortex sheet interface, singularity formation is equivalent to that of a two-
dimensicnal vortex sheet interface to the leading order. In fact, by choosing a special
set of coordinates and complexifying one of the two independent variables, we show that
branch point singularities of order 3/2 develop spontaneously at ¢ = 0+ in the extended
complex domain. Further, following the idea by Cowley, Baker & Tanveer, [12] we derive an
asymptotic expansion which describes the local form of the three-dimensional vortex sheet
at the physical singularity time.

As pointed out by a number of researchers {Moore in [23], [24], Caflisch & Semmes in
[10}, Cowley, Baker & Tanveer in [12]), the key in studying the early time singularity is

to derive a local approximation from the vortex sheet equation. Previous studies relied on
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complexifying the integral and applying the Residue Theorem. However, it is not trivial to
extend this idea to the three-dimensional problem. Therefore, we take a different approach
which is generalizable to the three-dimensional problem. By using the dipole representation
and Bernoulli’s equation, we are able to derive the same local terms from the velocity jump
in the tangential direction across the sheet. As we will see later, this tangential velocity
jump is the physical driving force of the singularity formation in two and three-dimensional
vortex sheets.

The local terms derived from the three-dimensional vortex sheet equation suggest that
under a set of special orthogonal coordinates {o, &z}, the three-dimensional problem de-
velops the same type of the singularity along the space curves z{e, -, ) as that of the two-
dimensional problem. The reason is that by taking o as parameter, the three-dimensional
problem has the same leading order terms as those of the two-dimensional problem. Fur-
thermore, by complexifying «s and comparing the governing equation of the arc length
functions of z(on, -, 1) to the two-dimensional interface, we show formally that same type
of the singularities form at the early time stage for both equations. From this asymptotic
analysis, we conclude that the three-dimensional vortex sheet develops the same type of
singularity on the as direction in the complex as domain as that of the two-dimensional
vortex sheet.

To study the local form of the curvature singularity, we employ the asymptotic analysis
performed by Hou & Zhang [17]. We present a description to the local vortex sheet interface
in the neighborhood of singularity near the physical singularity time. From our analysis, we
show that under the special orthogonal coordinates mentioned above, with special choices
of three interface variables, the local form of the curvature singularity is only observed in

two of the three components.
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1.2 Existence Proof of the Three-dimensional Vortex Sheet

Problem

In Chapter 4, we provide an existence proof for a three-dimensional vortex sheet that is
slightly perturbed from a plane uniform vortex sheet. Our result shows that given a small
analytic periodic initial periurbation, an analytic solution exists and remains small for a
long time. The existence time interval depends on the amplitude of the perturbation ¢
and the dipole strength <. Specifically, we assume that the initial perturbation can be
analytically continued into a strip of width max(|Im{en}|, [ Im{a2)|) < po, where (a1, )
is the Lagrangian parameter. Under this assumption, our theorem ensures the existence of
an analytic solution to the three-dimensional vortex sheet equation for 0 <t < po/{3 + &),
where x is a constant, which can be chosen as any small positive number provided that the
initial perturbation is sufficlently small. This is an optimal result if the initial perturbation
is sufficiently small.

In the two-dimensional problem, Caflisch & Orellana [9) proved the long time existence of
the solution to the Birkhoff-Rott equation. The key to their proof is to analytically continue
the interface variables into the complex domain. In the extended complex domain, an elliptic
system can be considered as a hyperbolic system with complex characteristic speed, and
thus, an existence result can be established within a time interval which depends on the
initial perturbation. Specifically, they first derived a system from the Birkhoff-Rott equation
whose leading order terms are identical to Moore's equation [23], [24]. Furthermore, they
split the solution into two parts, the first part satisfies Moore’s equation with the full initial
condition. The second part is the difference between the full solution and the first part of

the solution. The existence of Moore’s equation is proved using Lax’s estimates for a 2 x 2
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system of nonlinear conservation laws [20]. The existence of the second part of the solution
is proved by using the extended abstract Cauchy-Kowalewski theorem [25, 9], which ensures
that the remaining terms in their derived system are of smaller amplitude.

Our proof is close to that of Caflisch and Orellana [9]. The key to our proof is also to
analytically continue the interface variables into the complex domain. In the first part of
the proof, we derive a linear leading order system from the three-dimensional vortex sheet
equation. Although a nonlinear leading order system (similar to Moore’s system) can also
be derived, we find that the linear leading order system gives a better structure for our
analysis. As in [9], we split the solution into a leading order part and a lower order part.
The existence of the leading order part of the solution can be obtained immediately from
the linearity. To estimate the nonlinear nonlocal lower order part, we apply the extended
abstract Cauchy-Kowalewski theorem which shows that the second part is indeed of lower
order and smaller amplitude in a suitable norm. This proves the existence of the three-
dimensional vortex sheet solution. Throughout the proof, in order to control the nonlinear
growth of the vortex sheet solution, we complexify both of the two independent variables

and apply the Lipschitz norm in the two-dimensional complex domain.

1.3 Some Theoretical Results on Model Equations

In Chapter 5, we introduce two model equations for two and three-dimensional vortex sheet
equations for computational purposes.

From the study of singularity formation in three-dimensional vortex sheet problems,
most of theoretical work is done by formal asymptotic analysis. It requires confirmation
from numerical studies. However, from the nature of integro-differential equations, the

computation of the three-dimensional vortex sheet equation takes O(N?) computational
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complexity in every time step by direct double summation, where N is the number of
particles used to discretize the surface in each dimension. It becomes prohibitively expensive
even with V at the level of O(100). On the other hand, although the Fast Multipole Methods
(Greengard & Rokhlin [13], Berman & Greengard {5]) is able to reduce the operating account
to cN2, the constant c is still very large. Recently, Haroldsen & Meiron [14] applied this
method on the numerical computation of several cases of three-dimensional water waves.
They could just perform the computation up to N = 64 in their time-dependent calculations.
To overcome this difficulty, we introduce our model equation for the three-dimensional
vortex sheet problem.

The evolution equation of a three-dimensional vortex sheet interface S is:

8t z) = / |Vmu(a ,Vaz(a) | x VaG(z(a) — 2(e)) de’ | (1.1)
where
N 1
Gz —z) Arlz — 2|’
Z—Z
V G(Z—Z(O_’)) = *m .
and

du du

nT NI _ i _ e
IVQ,U(CE) ,VQZ(CE) IABQIZQZ 8&2

Zﬂl :

where (o1, ) is the Lagrangian parameter, z is the interface particle position written in a

vector form, and p is the dipole strength.



8

In the first part of Chapter 5, we introduce a model equation for the three-dimensional
problem. The idea is to capture the leading order behavior of the singular integral on the
right-hand side of equation {1.1) at small scales. This is achieved by using first order Taylor

expansion

Zﬂl(a’)(al - all) + zaz(al)(a2 - 012) »

to approximate

z(a) — z{(c) .

This leads to our three-dimensional model equation [16]:

dod datly | (1.2)

] (p'al al) + nu'ﬂz( a;))lzijl x ZLZIN(O.”)
|z

(‘:)t o — o) + 20 (oo~ ah)?

where

Zey X By
N= 1 2

|Zo, X Zag

The goal of our theoretical work on the three-dimensional model equation is to show
its connection to the full three-dimensional vortex sheet equation. In particular, we show
that our model equation forms the same tangential velocity jump condition as that of the
full equation. Therefore, by applying the same analysis developed for the full equation in
Chapter 3, we can show that our model equation capiures the singularity type of the full

equation. Furthermore, we show that the local singularity structure of our model equation
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has the same form as that of the full equation near the physical singularity time.
To further illustrate our idea of the model equations, we introduce a model equation for
the two-dimensional vortex sheet equation in the second part Chapter 5.
The evolution of a two-dimensional vortex sheet is described by the Birkhof-Rott
integro-differential equation [6]
1 / = _Te(@dd

Dz

211 oo 0 - 26 o

where the over-bar denotes the complex conjugate, ¢ is time, z(£,t) = x{{,t) + iy(£, 1) is
the complex interface position parametrized by a Lagrangian variable £, and I'(£) is the
circulation in the sheet measured between the point with coordinate z and a reference
particle. By Kelvin’s circulation theorem, I' is independent of time, which makes it possible
to re-write the Birkhoff-Rott ecquation so that T" is the independent variable in the case that
Te>0.

To study the singular behavior of this integro-differential equation, several model e-
quations have been derived by previous researchers in this field. Moore (23] was the first
one who derived an approximate differential equation for the evolution of the vortex sheet.
Subsequently, Caflisch & Orellana [9], Caflisch & Semmes [10] presented a system of four
first-order differential equations, which generalized Moore’s approximation. Recently, Cow-
ley, Baker, & Tanveer [12] further extended Caflisch’s model equation and provided a more
extensive study of the singularity. Although their derivations are formal, numerical com-
putations did confirm that their models capture the essence of the singularity.

Our two-dimensional model equation further generalizes the model derived by Caflisch

& Semmes [10]. Similar to our three-dimensional model equation, the idea is using the first
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order Taylor expansion
Zﬂ({’)({ - 5’) *
to approximate

z(€) — #(¢)
in equation (1.3). This leads to our two-dimensional model equation [16]

% . 1 /°° Te(£)dE’

= ot ) HEOE-E) (1.4)

By applying the analysis conducted by Cowley, Baker & Tanveer {12|, we can show that
our model equation captures the singularity type for a vast class of initial conditions {all
initial conditions studied in [12| in fact). Furthermore, our model equation can be used to
derive an asymptotic approximation to the interface shape in neighborhood of singularities
when physical singularities appear. We show that the model equation has the same form of
singularities as that of the full equation. Another important feature of our model equation
is that it is expressed in terms of the Hilbert transform, which can be evaluated by means
of the Fast Fourier Transform (FFT). This allows us to perform computations with an
operating count O(N log N) per time step. It offers a tremendous saving over the full

equation which requires ((N?) operations per time step by direct sum methods.
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1.4 Numerical Study on the Model Equations

In Chapter 6, we confirm our theoretical analysis of Chapter 5 by performing numerical
computation on both two-dimensional and three-dimensional vortex sheet problems.

In the two-dimensional problem, we apply the modified point vortex approximation
used by Shelley [28] and the spectral filtering technique of Krasny [19] in our numerical
study. Further, to provide convincing evidence on the singularity type and the propagating
trajectory, we form-fit the Fourier coefficients of the interface following [26, 28]. Our form-
fitting result shows that when we evolve the vortex sheet from the initial condition used in
the analysis of Meiron, Baker & Orszag [22] (subsequently referred to as MBO), our two-
dimensional model equation generates the same type of singularities as the full equation.
But the speed of which the singularity propagates is different from the full equation. This
is because the lower order terms we changed in defining our model equation also contribute
to this quantity. Our results also show that at the time of physical singularity, our model
equation preserves the singularity structure in the neighborhood of singularity.

In three-dimensional problems, the application of our model equation is less straight-
forward, since the model equation is in general not of convolution type. By choosing the

coordinates (o, o) which satisfy

Zoy " Zay = ClZog - Bay (1.5)

I

CoZqy - Zao (1.6)

with 1, C, independent of {1, a2), Hon & Zhang [16] derived a model equation in con-
volution form. To ensure that the conditions in (1.5) and (1.6) are satisfied in time, they

introduced two tangential velocities at every time step [16]. With this special coordinate,
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the integral operators in the model equations become Riesz transforms, which can be e
valuated by the Fast Fourier Transform with O(N?log(/V)) complexity at every time step,
where IV is the number of particles used to discretize the surface in each dimension.

Further, with the three-dimensional computational results, we form-fitted its singularity
time and the singularity power. Combining cur numerical calculation with our theoretical
derivation, we claim that for the full three-dimensional vortex sheet equation, curvature
singularity appears in finite time. Moreover, the type of singularity is of order 3/2 which is
the same as the two-dimensional vortex sheet problem.

The rest of the thesis is organized as follows. In Chapier 2, we provide general for-
mulations for vortex sheet equations. In Chapter 3, we study the early time singularity
formation and the local singularity form in the three-dimensional vortex sheet problem. In
Chapter 4, we present a proof for the long time existence of the three-dimensional vortex
sheet equation. OQur model equations are introduced and analyzed by asymptotic analysis

in Chapter 5. We devote Chapter 6 to present the numerical computations.
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Chapter 2 General Formulation

In this chapter, we introduce the general formulation used in this thesis. We divide this
chapter into two sections. In the first section, the three-dimensional vortex sheet equation is
derived from the dipole representation and the Bernoulli’s equation. In the second section,
we present a brief derivation to the model equations proposed to simulate the full vortex

sheet equations.

2.1 Vortex Sheet Equation

We consider an interface S separating two infinite layers of incompressible, inviscid, irrota-
tional and identical fluids in the absence of surface tension. Using the Lagrangian frame,

the interface location at any instant ¢ is given by:

Z(Ct],az,t) = (:C(C!l,CIQ,t) ,y(al,ag,t),z(al,ag,t))T , (21)

where (o, ag) is the Lagrangian surface parameter. Thus, the normalized tangential vectors

of the surface T and Ts are defined by

Zoy T, = 202 (2.2)

T = =
|Zcs |

B 1Za | ,

and the normal vector to the surface N is defined by

N Zoy X Zoy (2.3)

B %o, X Zap
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‘We label the region below the interface as region 1 and the region above the interface
as tegion 2. Therefore, the velocity field u; (ug) is the velocity below (above) the interface.
We define u,. to be the limit of uy approaching the interface from Region 2 and u_ to be
the limit of 1y approaching the interface from Region 1.

Since the flow in each region is irrotational, we can introduce the velocity poteatials ¢

and ¢ so that

m =V, uy = Vs . (24)

Furthermore, since the flows are incompressible, the velocity potentials satisfy the

Laplace equation:

Vi =0 and V%93 =0. (2.5)

Therefore, the potentials in the fluid domain can be written in the following dipole

representation:
8(2) = [ p(e!)(zan X t)et) - VGl el (26)
where
Glz—2) = —m,
VaGa-a(e) = ~po—m

and pla) = ¢- — ¢+
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By differentiating equation (2.6) with respect to z and then integrating by parts, we

obtaln
Vo(z) = /S Vad(e!)?, Vorlo!)7] x VarClala) — (o)) da’ (2.7)

where we have used the notation

du du

Vap(a)', Vas (o) | = 5 —ta; = 5 e -
The motion of the interface is governed by
oz —u
o

where u = (u, v, w) is the velocity of fluid particles on the interface. The kinematic condition
that ensures the interface moving with the fluid, requires that the normal component of
velocity be continuous at the interface. However, the tangential velocity at the interface is
arbitrary and can be chosen at our convenience.

For the vortex sheet problems, by combining equation (2.6), equation (2.7) and the
Bernoulli equation for both layers of fluid and using the continuity of normal stress, it can
be shown that when choose u = 1 (uy +u_),

ou

5 =0 (2.8)

holds ([4]). (2.8} says that the circulation stays constant along the trajectories whose motion

are determined by the average fluid velocity, a well-known result in Fluid Mechanics.
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With this particular choice of tangential velocity, the velocity of the vortex sheet inter-

face has the form of {2.7}. The equation of the surface particle motion can be written down

as:

%(z) = L Vapu(a)T, Vaz(e')T| x VaGlz(a) - 2(o)) da’ | (2.9)

where z € § and the integral takes Cauchy principle value.

From the three-dimensional vortex sheet equation, it is quite straightforward to derive
the Birkhoff-Rott equation for the two-dimensional vortex sheet evolution from it.

In fact, a two-dimensional vortex sheet is a special case of three-dimensional vortex

sheets with

I(O.fl,t)

Z(Cf],az,t) = ¥y ’ B = #(al) . (210)

y(o, 1)

Then, it follows from substituting (2.10) into (2.9} and integrating out e that

y = yleh)

9z, v [* oy (0)) ;

ot (=) = [,oo (z —z(a]))? + (y — y(e)))? 0 doy . (2.11)
-z + z{a))

Further, by combining z and y into one complex function as z = z + &y, (2.11) can be

re-written as

Oz 1 pa(e)de’
o= 5 | e (212)



which is the Birkhoft-Rott equation [6].

17
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Chapter 3 Formation of Early Time Singularities in 3-D

Vortex Sheets

In this chapter, we study early time singularity formations in three-dimensional vortex
sheets with a wide range of initial conditions.

The sections in this chapter are arranged as follows. A different derivation of two-
dimensional leading order approximation is presented in Section 1. In Section 2, we extend
the analysis and derive a leading order local system for the three-dimensional vortex sheet
equation. In Section 3, we present the main result of this chapter, where we identify the
singularity type in the three-dimensional vortex sheet evolution. In the final section, we
derive the local form of the vortex sheet at the time close to the formation of a physical

singularity in the neighborhood of the singularity.

3.1 Alternative Approach for Analyzing the Two-dimensional

Problem

In this section, we provide an alternative derivation to the leading order approximation to
the two-dimensional Problem derived by Cowley, Baker & Tanveer [12].

In fact, the system we want to derive in this section has been derived and studied by
many researchers in this field. In most of the previous articles, the system was derived by
means of complex analysis. A special feature of the two-dimensional vortex sheet problem is
that one can combine z and y to form a complex variable z{(a) = x(a) + iy{a), and further

complexify a to model z as an analytic function. This idea has no obvious extension to the



19

three-dimensional problern.

However, physically, the tangential velocity difference is always the driving force of
the instability. This is the common feature between the two and the three-dimensional
problem. We want to use this physical property to re-derive the ill-posed system from the
two-dimensional equation. In the next section, we extend the idea to the three-dimensional
case.

In the first half of this section, we briefly review the derivation by Cowley, Baker &
Tanveer [12] which used complex analysis and the Residue Theorem. In the second half
of this section, we provide an alternative derivation using the dipole representation and
Bernoulli equaticn.

We consider a free interface, parameterized by (z{a,t),y{c,t}), between two layers of
identical fluids in absence of surface tension. By combining x and y into a complex number
z = x -+ iy, the motion of the interface is determined by the well-known Birkhoff-Rott

equation [6].

Oz(a,t) 1 /‘0" Co(a'}do!

ot 2mi J_o z{a) — 2(e!) (3:1)

where ¢ is a Lagrangian marker variable, t is the time and the over-bar denotes the complex
conjugate. The integral takes Cauchy principal value.
Cowley, Baker & Tanveer [12]| studied the case in which the interface is a periodic

disturbance of the equilibrium state, z = . Without loss of generality, they assumed that

(o + 2m,8) = 27 + 2(ev, t)
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MNa+2m)=2r+T{(a).
Under these assumptions, (3.1) can be rewritten as [12]

%(u,t) = L fﬂ Ta{c) cot(%(z(a,t) —z(e, 1)))dey (3.2)

dmi f_,

Furthermore, by analytically continuing z into the complex o' domain, they were able

to write the Cauchy principle value integral as a contour integral:

" Pole) cot(%(z(a,t) — 2o 8)))de =

-

1 2mil’
/ T (o) cot( - (2(a, 2) — 2(c 1)) de + 2~ kel®) (3.3)
¢ 2 za(o, 1)
where the contour € runs from o = —% to o’ = 7, and is assumed to be deformed beneath

a simple pole at o’ = a.

Moreover, with the periodicity properties of z(a,1) and I'(a), it is convenient to write

z(e,t) = a + s(a,t), o) =a+o(a), (3.4)

so that 5 and o are identified as the 2#-periodic part of z and I respectively. Following
Caflisch & Orellana [9], Cowley, Baker & Tanveer introduced the analytic extension of

5(ov, t) by the following * operator:

s (e, t) = 8

ol

) (3.5)
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which has the following properties.

1. s* is an analytic function if, and only if, s is an analytic function.

o

if s and s* are known in the upper half plane, s is known in the whole complex plane.

3. if 5 is real when « is real, then s* = s for all complex .

4. when o is real, s*(a,t) = s(o, 1).

Using the last property and the Residue Theorem, one can analytically continue equation

{3.2) into the upper half complex a-plane as

Os*(a, t) 1 1+ oa{a’) 1 , , 1+ oala)
== o 2otz W(a, - 3.6
ot Ari /C 17 sl ) GV e )da’+ o2ty 36)

where
W(a,o',t) = a - o + s(a,t) — s(, 1) . (3.7)

Furthermore, equation (3.6) can be re-written as

s*(a,t)  oala) — sefa,t)

ot - 2 rsalaty @Y (38)
where
J(o, £} = %A% (z + cot (%W(a,a',t))) da’ . (3.9)

For simplicity, Cowley, Baker & Tanveer [12| assumed that the contour C can be de-

formed so that it runs from o’ = —7 to &’ = « along the real o’-axis. This assumption was
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confirmed by their subsequent analysis and numerical calculations.
To cbtain another equation for the leading order system, they took the complex conju-

gate of equation (3.2) so that

%tz-(a,t) - —ﬁ _: Tofe) cot(%(i(a,t) — 2, E)))ded (3.10)

By using the Residue Theorem similar to (3.3) before analytically continuing the functions

into the upper complex o domain, they obtained:

ds(c,t)  oala) — 83 (at)

e Trurwey par R G (3.11)
where
Kot = - [ 132D (o (e ot))) do (3.12)
N E T Je Thsalo ) \ g ™ “- '

Equation (3.8) and {3.11) constitute the ill-posed system derived from the Birkhofi-
Rott equation. There is one important aspect of equation (3.11) which was not addressed
explicitly in [12]. During the derivation, the complex conjugate of (3.2) is analytically
continued into the upper half complex o-plane with respect to s*. This is equivalent to
analytically continuing the equation into the lower half of the complex a-plane with respect
to s because of the definition of s*(cr,t) = s(@,t). Therefore, the directions towards which
the analytically continuations take place are in fact opposite for (3.8) and (3.11). Asa
result, it provides the coupling from s on the upper half complex a-domain to s on the
lower half complex a-domain by introducing s*. More importantly, it is the coupling itself

that generates the Kelvin Helmholtz instability. In the rest of this section, we present an
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alternative derivation to (3.8) and (3.11) without complexifying o’ and without using the
Residue Theorem. Instead, we use the dipole representation and Bernoulli equation to
derive the leading order system.

‘We consider an interface separating two layers of identical, incompressible, and irrota-
tional fluid in the absence of surface tension. We assume that the fluids move with velocities
{11, v1) and {u2, ve) respectively, where the subscripts 1 and 2 refer to quantities associated
with the lower and upper fluids. There is a tangential velocity jump along the interface
when approached from lower or upper fluid. The jump of velocity potential is I'. Since we
use ' as the independent variable in equation (3.2}, the jump is also equal to the complex
variable o.

Since it is a two-dimensional problem, it is convenient to use the notation

(. t) = z(a, t) + iy{a, t)

to describe the fluid particle position and

gla, t) = u(e, t) + iv{e, t)

to describe the fluid particle velocity.
By applying the dipole representation and Bernoulli equation to the fluid on both sides

of the interface, one can show that (Baker [2])

(@) = gile) - 5 (313)
7o) = 63(0) + 5 (3.19)



24

where * stands for the complex conjugate, and
g; () = w(a) — in(a)

are the limiting velocities of the interface particle approach from upper or lower layers
of fluid. Although equation (3.13) and eguation (3.14) are still written in the complex
form, they are essentially real functions with complex expressions since « is a real variable.
Without complexifying ¢, (3.13) and (3.14) specify the velocity jump across the interface,
which is 1/z4. On the other hand, it is interesting to notice that the velocity jump specified
from (3.13) and (3.14) coincides with the local terms in (3.8) and (3.11). From the analysis
by Cowley, Baker & Tanveer in [12], the local terms are the leading order terms that generate
the singularity; this suggests that the velocity jump is the driving force for singularity
formation.

To derive the ill-posed system (3.8) and (3.11), we use the interface equation
iz
o, t) = =—(a,t 3.15

and the extended velocity expression

o(z) = ﬁ /_ 7; cot[%(z — A(d))de! (3.16)

which describes the velocity in the upper or lower layer of fluid.
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By substituting (3.15) and (3.16) into (3.14), we get

az 1 T 1

— T — + 1' . t - . _ z 7 d ] 3'17

ot 22&(0‘) (Z+i3,!1)I£l>z(a) 4mi [F co [2($ + 2y (a ))] 44 ( )
y>Im(z{a))

Following the derivation by Cowley, Baker & Tanveer, we continue « into the upper

complex domain and let z{c) = o + s(ex), 57 (o, ) = s(@, 1).
When a ¢ R, there is no singular point in the integral any more. Therefore, we can

remove the “limit” on the right-hand side and get:

sa(0)

It

T2t sale) = /ﬂ +oot[3 (o — o + s(a) - s(aldo’

(3.18)

To derive equation (3.11), we substitute (3.15) and (3.16) into the complex conjugate

of (3.13) and get

A T T IC - L LI Er e 0 P (3.19)
_— = m _— COt|—\ T — ity — 2 . .
Ot Tzala) | (e—ip)ozie) dmi J_p 2 y - Haplta

y>Im(z(a))

Then, we analytically continue « into the upper complex domain to get

25 _ sy

o m_ﬁf i+cot[%(a—a'+3*(0)—3*(ﬂ'))}da'-

-7

(3.20)

In the analysis performed by Cowley, Baker & Tanveer {12], they focused on the sin-

gular behavior of s(a,t) and s*(@,t) around the points «g where either one or both of the
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conditions

14+ s4(ag) =0, and 1+ s4(ag) =0

hold. In particular, they expanded the solution of (3.8) and (3.11) at ¢ = 0- in powers of ¢
and assumed that around g, the integrals only contribute to the O%) terms. In this way,
they showed that the integral terms in (3.8) and (3.11) have little effect on the early time
singularity formation.

Remarks: The fundamental difference between our derivation and the derivation by
Cowley, Baker & Tanveer is how the local terms are derived. In [12], Cowley, Baker &
Tanveer complexified o before the jump condition was derived. In fact, they derived the
jump condition from the complexification and the residue theory, which can be seen from
equation (3.10) and equation (3.11). Our analysis does not complexify o' in the Birkhoff-
Rott equation. We develop the jump condition essentially from real o’. Further, as we can
see from (3.19}, we do not take the complex conjugate on the Birkhoff equation until the
jump condition is derived. This makes it easier for us to extend our methodology into the

three-dimensional problem.

3.2 Extension to the Three-dimensional Problem

We now extend the idea to the three-dimensional problem. We assume that the system at
time ¢ is specified by the interface position z(«, ) and the velocity potential ¢(c,t) on the
interface, where o = {cvy, &v2). We begin with a double layer or dipole representation for the
potential in terms of the dipole strength p{a). In the case of vortex sheet problems, since

the velocity on the interface is defined as the average of the limiting velocities approaching
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from the upper and lower fluids, it is well-known [4] that p(e) stays fixed over time along

the Lagrangian trajectory, i.e. ,

> _p. {3.21)

We write the potential in the fluid domain as:

o(z) = /‘,m(c.oz')(z(,,1 X Zay ) () - Vi G(z — 2"}do
2 xpu, (3.22)
where
1

Gla—4) = — .
(2 - =) Ar|z — 2|’
VaGlz-12') = _Lzl

o T Adrnlz-#P

Using the limit of the double layer potential, we find that the value of ¢ on the interface

is given by

Hale)) = —gule@)+  Tm o). (3.23)
from lower layer.

By differentiating (3.22) with respect to z and integrating by parts, we obtain:

V(z) = / |Vau(a)T, Vazla) Tt x Vo Glz — 2(d))de | (3.24)
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where we have used the notation

) &
K, 2

nrT AY S Il _ e
Ivalu(a) ,VQZ(O{) |— Bony an aagch .

By combining the dipole formulation with the vorticity formulation, Haroldsen and

Meiron [14] have derived the velocity on the interface. It is given by:
w(a) = Vo(z()) = wioel@) + wn(a) | (3.25)
where « stands for the velocity on the interface, and

)= lm [ Va(e!)F, Voz(a)F| x VuClz - z(a))da’,  (3.26)
from lower layer.

Zn, X Zg,

r(0) = 5| Vaps(e!)T, Voa(e!)T| x 2o e (3:27)
Similarly, using the equation related to the upper layer fluid, we get:
wla) = Vé(a(a)) = —wiee(a) + wala) , (3.28)
where
wala) = 2_13;1(10) /|Vmu(a’)T, Vael(a')T| x V, Gz — z(a))da' . (3.29)

from upper layer.

Assuine further that there exists orthogonal coordinates (a1, a2}, such that, at time
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t = 0, the coordinates satisfy:

Zoy *Zar =0, (3.30)
A Jdu
— = —/ =1. 3.31
8(]1 0 ! Bag ! ( )

Above assumptions can be relaxed to a much more general class of py-functions. In
fact, we can prove that starting from any orthogonal coordinates, given that p is a small
perturbation of vy + Yo with 7 and < being constants, we can always find a set of
coordinates that satisfy (3.30) and (3.31}). We defer the proof to the end of next section.

Using the properties (3.30) and {3.31}, we can simplify the local term to

1 Zgy X E
wioo(@) = 5IVap(@'), Var(@))| x RS
1 Zay X Zag
= —_ X —
g%m oy X Ba,|?
Zay
= - . 3.32
2|Za,|? ( )
By substituting (3.32) into equation (3.25) and (3.28), we get
Zas
w(la) = ——— twi(a 3.33)
( ) 2|Za212 ( ) (
Zay
_ n _ 3.34

where wq and w; are defined in (3.26) and (3.29).
Remarks: So far we have derived the jump condition based on the three-dimensional

vortex sheet equation. In particular, by comparing (3.33) and (3.34) to (3.13) and (3.14),
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we find that the three-dimensional problem has the identical local terms as that of the
two-dimensional problem using the special coordinates (o, ao) satisfying (3.30} and (3.31).
It is also interesting to consider the two-dimensional problem as a special case of the

three-dimensional problem. In this case, the coordinate satisfies:

z(oy, g, t) = (o, fa(oa, 1), fa(es, 1)) . (3.35)

and

p = plag) . (3.36)

Our main observation is that the three-dimensional vortex sheet problem can be reduced
to a two-dimensional vortex sheet problem, along the as-direction, to the leading order
approximation. This observation suggests that the three-dimensional problem develop the
same type of singularities along the space curves z(ov, -, 1) as we complexify ae. The detailed

derivation will be presented in the next section.

3.3 Singularities at { = 0+ near |z,,| =0

In this section, we show that along the space curves z(o, -, t), by continuing z into the
complex as-domain, 3/2 singularities on the as-direction form at t = 0+.

The structure of the proof is described as follows.

1. At time ¢t = 0, by fixing o1, we calculate the mean curvature H and the square of the
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arclength G along the ao-direction by the following formulas,

G =24y 2oy » (3.37)

and
EN -2FM + GL
= 3.38
H 2AEG-F?%) 7 ( )
where
E = Za—l - Zal‘
F = Zal i Zaza
N Za, X Zay ,
|Za; X Za,
L = 244 -zN,
M = 244, - 2V
N = Zgye 2.

2. Using VG(t = 0) as the arc length and H(¢ = 0} as the curvature, we can construct a

unique planar curve up to a constant. We denote this curve as (22 (a2). 32 5 (a2)).

3. Taking (zd{02). Y&y (a2)) as the initial condition, we can solve the Birkhoff-Rott e-

quation in time to obtain a family of plane curves (denoted as (xgp (02, t), you (o, £))).

4. By complexifying the parameter as in {zgp(as. t), you (a2, t)), Cowley, Baker & Tan-
veer [12] showed that 3/2 singularities can spontaneously form at £ = 0+ in the

complex as-domain. As a result, the two-dimensional square of arclength function
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Ga2{c2, 1) defined by

G2(a21 t) = 'T%'Haz (0‘23 )+ y%‘H’az {az,t) (3.39)

forms 1/2 singularities in the extended complex domain at the same position as that

of (I‘GH(CEQ, t), yGH(Otg, t))

5. We define ihe square of arclength function on as direction of the three-dimensional

vortex sheet interface Gz as

Gslag, az, t} = .Iiz (o1, a2, t) + yiz(al,az,t) + zﬁz(al,ag,t) ; (3.40)

By showing that the evolution equations of both G2 and G3 have the identical leading
order terms around the points where singularities of G5 develop, we show that G
also form singularities around the same o position with the same power on the ag-

direction.

6. The result of Step 5 implies that the solution to the three-dimensional vortex sheet

equation form 3/2 singularities on the ag-direction spontaneously at £ = 0+.

The key in our analysis is to justify Step 5. We divide the analysis into three sub-steps.

1. Derive the evolution equations of G» and G,

2. Show that around the as locations where the singularities of Gy form, the two equa-

tions share the same leading order terms in the evolution equations.

3. Show that G3(a,t) develops the same type of singularity at the same locations where

Gafa, t) develops singularity.
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Sub-step 1: It is sufficient to derive the evolution equation for Gz only, because G2
can be considered as a special case of Gy from the last remark in the last section.

At time ¢ = 0, the motion of a three-dimensional interface z(o;, a2, t) is governed by

Oz %

a(a) = 2| Q2[2 +uwy(a) , (3.41)

where o = (a1, a2). The equation which describes the op-direction arclength square G can

be derived as

Gi = 224, Zayt = 2%, - + wn a))

(36

(2541

1 1
= azaz * Beygg -+ 2G (—é) + 2202 - Ldlaz (O!)
Gz

= -3 GGGZ+2ZGZ wiy, (@) (3.42)

at time ¢ = 0.

Similarly, if the governing equation for the interface is

oz Zey
Bl B 3.43
ai (a) 2| O2|2 +w2(a) T ( )
the equation for G can be shown to be
! 2 3.44
G = QGGaz + 224, - Lu‘gaz(a) . (3.44)

Remarks: 1. Note that (3.42) and (3.44) can be applied to both G2 and G3 with dif-
ferent w terms because two-dimensional vortex sheet problems can be considered as special

cases of three-dimensional vortex sheet problems.



34

2. Essentially, equation (3.42) and equation (3.44) describe a jump condition for the
evolution equation of the arclength square function. What we need to mention here is that
both (3.42) and (3.44) can only be analytically continued to half of the complex s plane
because of the jump condition. Following the idea used in studying the two-dimensional
problem, we analytically continue equation (3.42) to the lower half complex as domain and
equation (3.44) to the upper half complex a» domain.

Sub-step 2: We need to show that around the «o locations where the G2 forms singu-
larity, the evolution equations of G5 and (3 share the same leading order terms.

First of all, it is necessary to derive the oy locations where Ga{a,t) develops singular-
ities. Cowley, Baker & Tanveer [12], by applying asymptotic analysis to (3.8) and (3.11),

showed that the 3/2 type singularities appear in the neighborhood of agp in which

1+ 8gy(c0,0) =0 or 1+ s;,{020.0) =0 {3.45)

Note that the analytic continuation of Ga(as,t) takes the form

Ga(o2,t) = (1 4 sa, (o2, 1)1 + 55, (a2, 1))

Therefore, (3.45) implies that the singularities form around esg such that

Ga(a,0) = 0.

Furthermore, from Step 2 in the outline, with a7 being fixed, the following equality is
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satisfied for real ow:

Ga(a2.0} = Ga(ex. 0) .

This also implies that Ga(as,0) = Gi(as,0) for complex oy as long as Gz and G3 are
analytic. Together with Sub-step 1, we conclude that around the on’s where the singularity
formation takes place, the evolution equations of G» and G35 have the same leading order
terms.

Sub-step 3: We need to show that at the as locations where G» develops singularities,
(-3 also develops the same type of singularities.

In [12], the singularities of s and s™ defined in (3.4) and (3.5) are analyzed in two
cases, the case in which there exists a agp such that 1 + s,,{a20) and 1 + s3, (a90) vanish
simultaneously, and the case in which there exist a app such that one of them vanish at
the point but the other does not. We take the same approach as well. However, from the
similarity of these two cases, it is sufficient for us to show only one of them in detail. The
result of the other case can be derived similarly. We choose the case where there exists a

trpp 50 that

1+ SQQ(GQQ) =0,

but

1+ 8;2(020) #0.
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Since

Gz(az) = (1 + sa,(02))(1 + s5,{e2))

for all g, it is appropriate to combine the expansion of s4, and s;, around g in powers
of the time ¢ to obtain the expansion of Ga(as,t) for ¢ < 1.

Since direct expansion of s and s* In powers of ¢ breaks down in the neighborhood of
g0, Cowley, Baker & Tanveer [12] took { = s — app and used the asymptotic scaling for
small { when t < 1 as

1 2 2
=piH? where Q= ——M .
¢ (soz(usal)) '

where

s ds*

. 3
Ba3 {020, 0), sp, = @(020«.0),

Son =

and

Koo = K(az0,0)

which was defined in {3.12). In this way, they obtained the expansion of s and s* as

1
1+ 55,

1
5= Spp — T]Qt% + (5 + Koo + A(’I])) T+, {3.46)

s = sso + (1 + s5)B(m) — MUz + -, (3.47)
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by solving A(n) and B(n) from the evolution equations of s and s*. As a result, they showed

that A(n) and B(n) have a 3/2 branch point singularity at certain point 7np. In particular,

A(n) and B(n) have the expansions

An) = Ao+ Ai(n—mo}+ Ap(n—m)P +--- .

&
—
3
~—

Il

in the neighborhood of 7y with A1 By # 0, p= %

Since

17, d
— = ()=,
o ( 2)67] ;
from the rescaling, G2(a2) has the expansion
Galog,t) = (14 sa,(00, 1)1+ 55, (00, 1))
Atz
- L*z AL+ s)B () + -
1+ s

Am)B (R 12+

1
= (Ai1Bi + (pA1By + pBrdy)(n — )P Q7 HE 4 -

By + Bi{n— o) + Bpln—mo)” + - -

(3.48)

(3.49)

(3.50)

We conclude that G2 develops a 1/2 singularity at the same g from the term of order 1172,

Now, we show that G3 develops the same type of singularity at the same o9 location.

Cur approach is to expand G2 and G3 around the app in powers of ¢t and ¢, by using the

rescaling of { = O(tllz), to show that (G2 and 3 have identical expansions to the order of

O(tlf 2). To perform our analysis, we make the same assumption as in [12], that when we

complexify as in (3.26) and (3.29), the integrals are bounded in the complex oy domain.
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From our assumption of exsp, G2 vanishes in the upper half complex as-domain. There-
fore, from the remarks at the end of Sub-step 1, we use (3.44) to expand both G and G3

in powers of ¢ and { = a» - agp. Taking G- as an example, we get

Gz(az,t) = Gg(az, 0) + GQ;(O!Q, O)t +---

1
Ga{a0,0) + Gz, (@20, 0)C + 520, (020, 0)% + -+

+ ( G2u2 (az, 0)

o e e o om )

(3.51)

from equation (3.44). As expected, the expansion breaks down near { ~ 0. Following the

scaling in the expansions of s and s*, we use ¢ = n€%#1/2 and expand G as

Ggug (aﬂ, 0)

Gg(az,t) = G2(020,0)+ (G2a2 (020,0)Qﬂ+m

C(n)) 5.
On the other hand, from equation (3.50), G> has the expansion up to order O{t1/2) of

Calomt) = (A1B1+ (PAL1Bp + pB1An)(n — o) )12 + - .

We conclude that equation (3.50) satisfies the evolution equation of G2 up to the order

O(t3).
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Similarly, G5 has the expansion in powers of ¢ and ¢

Ga(og,1) = Gz{ag,0)+ Gapaz,0) + - -

1
= Gg(agg, 0) + GSE,Z(O‘QO:O)C -+ 5030202 (agg, 0)(2 + ...

N ( Gs,,(a2,0)

3, (a0, 0)C | oer o) (020: 0)) P4 (352)

The expansion also breaks down near ¢ ~ 0. We use the same scaling function ¢ = nx'/?

as in the case of (73 and also expand G3 as

G3(02, t) = Gg(ago, 0) + (G3a2 (Ofgo, O)QT] -+

G302 (02, O) 1
— =2 ¢ t2 ...,
2Gs,, (20, 0)2 )

Since G2 and G3 have the same initial condition and the same leading order terms in their
evolution equations, their expansions share identical terms up to Q(t}/2) which is the term

that generates a singularity at G». Thus, G3 also has the expansion
1
Gs(az.t) = (A1By + (pA1B, + pB1Ay)(n — )P Q7 Mz + - (3.53)

This shows that (3 develops the same type of singularities at the same o position. More-
over, if we complexify a2 in the three-dimensional vortex sheet equation, singularities of
power 3/2 on the o3 direction form spontaneously at ¢ = 0+. This completes our derivation
of the singularity formation in the three-dimensional vortex sheet problem.

Existence of orthogonal coordinates satisfying (3.30) and (3.31): Throughout
the analysis, we have assumed that (o, @z} satisfies (3.30) and (3.31). Now we prove that
given an orthogonal coordinates (o, e} and a reasonably large class of u, we can always

find another coordinate system (3, 32) such that equation (3.30) and (3.31) are satisfied.
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Lemma 3.3.1 Assume that the interface is a small perturbation of a flat plane, and there

exists orthogonal coordinates (a1, op) for z. Furthermore, we assume that

=m0+ yeoe + Ofe)

where (o1, a2) € B x R. Then there exists a change of variables o = o3), such that:

Zg, - %3, =0 (3.54)
o
— =0 3.55
Ou
Fro 1 (3.56)

Proof: Starting from (o1, a2), we need to find another set of coordinates (51, 52) as
functions of (a3, &e). Furthermore, we need to show that the map from (a3, a2) to (51, 52)
is a one-to-one map, which means that for any {810, 320), there is one and only one pair
{en0, 20} which maps to (B10. Ba0), and vice versa.

Assume that the map from {51, J2) to (o1, o2) has the following form:

ar = (B, Ba) .

ay = o(B1,5) .
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Write down the Jacobian matrix for (3;, 32) as

B1.3) | oy Biag

— = 3.57
day, o) (3.57)
B2, B2q,
Consequently, the Jacobian matrix for (o, az) will be:
dajag) 1| Pray —Oia (3.58)
(b, 02) A ' '
~D20,  Bia,
where
O =581, 02,, — Bla, P24, - (3.59)
From equation {3.56), it is natural to choose
Falo. ) = plen. og) . (3.60)
With this choice, we can show that
ou
T& = He 31_31 + p'(xzazl@l
1
= Z(#0162a2 - 1”012»8201)
= 0, (3.61)

provided that A # (0. which will be verified later.
Therefore, by choosing 32 = p, equation (3.55) and (3.56) are satisfied. The next step

is to use equation (3.54) to solve for 3.
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From equation (3.54), we get

da do Oo O
[z aﬁi + Zay 6ﬁf] |2 aﬁ; + Zay (%,j] =0. (3.62)

Define Aoy, o) as

Ao, o) = 221 Fan (3.63)

2a2 * 232

Note that in the case that the interface is a small perturbation of a flat plane, A is a
small perturbation of a constant. By substituting (3.63) into equation (3.62) and using
Zay " Fan = 0, we get

Oy Oon Oog Oy —0
061882 861 8B

By applying (3.58), we obtain

/\352 9B, | 0B 9f _
" Oag By Doy Oorg

Furthermore, substititing {3.60) to the above equality leads to

\2u 08 | Op 0B _

Doy Oty Boy Oy (3.64)

Thus, we have derived an equation for 8;. Under the assumption of lemma 3.3.1, A, 24,
and po, are all small perturbation of some constants. Therefore, we can solve the linear
hyperbolic equation.

Furthermore, under the assumption of current lemma, it is easy to verify that A will
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always be a small perturbation of some nonzero constant. That concludes the proof of the
lemma.

Remark: The assumption of the lemma can be relaxed to include more general initial
conditions far from the equilibrium. Since it is our main interest to study the singularities

near equilibrium state, we do not present the more general result here.

3.4 Motion of the singularities

In the previous section, we have shown that with a wide range of initial conditions, 3/2
singularities on the oy direction develop at the complex oy domain around the positions
where Gy, ao,t}) = 0. This implies that the singularities develop simultaneously along
one or several one-dimensional curves parametrized by a;, i.e., as{ay,t). As time increases,
each point of these one-dimensional curves moves around in the complex a2 domain. The
physical singularity time is the first time when these curves hit the real oy axis.

In this section, we show that at any time ¢ before the singularity time, the one-
dimensional curve ag{ai,t) is always an analytical function of «;. Due to the analyticity
of aa(0r1,1) as a function of ¢y, the curve ao(a.t) cannot intersect with the real (o, as)
plane in a segment, for if this were the case it would imply the entire curve has zero imagi-
nary part by analytic continuation. Therefore, its intersection with the real (aq, ar2) plane
contains either isolated points, or the entire a(on,t) curve. In the latter case, the vortex
sheet surface becomes singular along a one-dimensional curve at the singularity time.

At time t = 0+, from the results of the previous section, as(e.0) is defined implicitly
by G3{a,2,0) = 0. Since the initial condition is assumed to be analytic in both a; and
ao, we conclude that as{c,0) is an analyiic function of ¢. Let us parameterize the curve

alphas(o,t) in ithe complex (o, ag) plane as (a1, aa(an, ). Fuarthermore, we expand the
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square of the arc length function Gs{c1, @s,t) around (@0, @2{a1p,1}) in the following form

by factoring out the square root singularity explicitly:
1 1
Ga(ar, a2,t) = Ay + Aai(01 — auo)? + Aze(az — az(ao, 1)) + - (3.65)

where A,, Az and Asp are functions of oy and £. Since we have singled out the singular
factor in the expansion, it is reasonable to assume that the coeflicients, A;, Az and Aas
are analytic functions of aqp.

To derive the equation which governs the motion of az{aq,t), we substitute (3.65) into
either (3.42} or (3.44) based on whether the singularities are in the upper complex o3
domain or in the lower complex a» domain. Without loss of generality, we assume that
the singularities are in the upper half complex oz domain, and we use equation (3.44). By
extracting the {as — ag(am,t))_% terms, we get

Oco 1

i (0t) = -Al(am,t) )

= (3.66)

Note that for £ > 0, the singularity trajectory departs from the trajectory of Gs(on, aa,t) =
0. Thus A; does not vanish at (o1g, az(cag, £}, and the above equation for as(o,t) is well
defined. From equation (3.68), we conclude that as{cn, ) is an analytic function of ey up
to time ¢ since the right hand side is analytic (at least within this leading order asymptotic
analysis). As a result, we conclude that when physical singularities appear, they appear
either at some isolated points, or along the entire one-dimensional curve in the real {ay, o2)
plane. It is not possible for the interface to develop finite time singularities along a segment

of a one-dimensional curve. ! This result will be confirmed by our numerical results.

'"We thank Prof. Oscar Bruno for kindly suggesting the idea of proving analyticity of az(c,t) as a way
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3.5 The Local Form of the Curvature Singularity

Our arguments in the previous sections show that with a large class of initial conditions, 3/2
singularities on the a; direction develop at the complex a; domain where [Im{og)f > 1.
As time increases, the singularities propagate in the extended complex domain. The first
time at which their trajectories intersect the real g axis gives the time that a physical
singularity appears. In this section, we study the local form of the interface shape in the
neighborhood of the physical singularity.

Without loss of generality, we assume that the singularity forms at + = 0 and (a;, a2) =
{0,0), and that the surface is moving with a velocity of z at that point. We also assume
that at the time of singularity formation, the surface is locally flat in the neighborhood of
the singularity, with 2 ~ 2p(0a1, a2), where 2z is a plane. Moreover, we assume that (o, &)
satisfies (3.54) and (3.55) at time ¢ = 0.

We seek an asymptotic expansion of the solution of the three-dimensional vortex sheet

equation

%(z) = [_0:/00 (Vo) , Vaz()T| x VuG(za(a) — z(a)) de’ | (3.67)

—2c
where we have used the notation

du du

[Va,u(oz’)T,Vaz(a')TE = 8_(1]3&2 - %Zal )

to exclude the possibility of the singularity formation along a segment of a one dimensional curve.
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and

1
! _ - -
Glz-2) = Ar|z — #)
() = ——2T%
V.G(z —2z{a')) = ppr——

Following the idea of Cowley, Baker & Tanveer [12], we separate the integral on the right-
hand side of (3.67) into two regions: a local region where {a’| = O(¢) and an outer region

covering the rest of the sheet,

%(z) - ( /Wwﬁa ]|o’|sa) Vopt(6)T, Vaz(a)T| x Vo Cla(a) - z(a’))de’ . (3.68)

In order to determine the local shape of the vortex sheet near the singularity, it is
not necessary to consider the first integral in detail, other than to note that in the Taylor
expansion of z(a,t) in powers of t, the first two terms of the asymptotic expansion can be
assumed to be O(%) and O(#!), as in [12]. This means that the leading order contribution
from the first integral is of order O(t%). It also suggests that the leading order correction
terms from the first integral is smaller than that of the second integral, as we will show
iater. Therefore, the shape of the vortex sheet in the neighborhood of the singularity is
essentially determined by the second integral. In order to approximate the singularity, it
is convenient to write z in the form of components on the two tangential and one normal

directions.

z73! Py, t)

z=%ot+ | g2 |+ | Pyo.t) . (3.69)

S

Pg(a. 'ﬁ)
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where
zg‘ = zg- T,
28 = z0-Ta,
7y = #-N
and
T, = 204, T, = 2p,,
200, | |20,
Zy X 2o,
N — a1 2
200, * Z0a,

where Py, P, and P; are small perturbations of the interface from the tangent plane in the
Ty, T2, and N directions respectively.

We substitute (3.69) into the second integral of the three-dimensional vortex sheet e-
guation and seek asymptotic expansions of F;’s. We follow the analysis in [17] where Hou
& Zhang, among other results, studied the growth rate for the linearized motion about an
arbitrary smooth solution to the three-dimensional vortex sheet equation. In our case, we
can use their result directly because a flat plane is an equilibrium state of equation (3.67),
and therefore, the leading order terms extracted from the asymptotic expansion coincide

with the leading order terms in the linearized equation.
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By introducing ¢ and ¢, as

¢1 = (02) 'HaPy— (01) ' FW Py, (3.70)

$o = (01) VWP + (02) 1 Ha P, (3.71)

where H; and H, are the Riesz transforms defined on the interface,

(I;{If)(a) — i] ( (al - Cii)f(a’) dod ’

27 J (l20a, (@)P(oa — 04)? + |20, (0} (02 — 03)%)%/2

and denoting
-1
Ul = |ZoaI| ]

with [ = 1,2, Hon & Zhang [17] showed that

o

% = E1(¢1?¢21P3) 3 (372)
O 1 P

% = 50'1020—%3- + Ey(¢1, 2, Ps) , (3.73)
OB 1 3 30¢2 1 5 40P

o~ Y192 oes + 50192 B0, + E3(¢1, ¢2, F3) , (3.74}

where Fi, F», and E3 are the general representations of terms that are either smaller or
smoother than the leading order terms, provided that ¢, ¢, and P; are of small amplitude.
More importantly, E1, Ez, and E3 do not contain terms with higher order differentiations.

Following the idea by Cowley, Baker & Tanveer [12], we introduce a rescaling by

oz = {-t)x, (3.75)
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and seek similarity solutions of the form

o = (—t)qFl(al, X) + e (3.75)
o2 = (—t)'Flo,x)+---, (3.77)
.P3 = (—t)ng(Otl, X) + -y (3.78)

where g > 1 in order to be consistent with the assumption of the sheet being locally flat in
the neighborhood of singularity. Since we have showed that branch point singularities on

the a9 direction develop at ¢t = 0+, we anticipate that £} ~ Fj,

x| as y — co, in order to
match with the ‘outer’ region where nis = O(1). For the initial conditions analyzed in the
last section. we have g = 3/2.

With the rescaling of (3.75), we substitute (3.76), (3.77), and (3.78) into (3.72), (3.73),

and (3.74) and extract the O((—#)~9!) terms. It leads to

xf, —gh = 0, (3.79)
1
xfa2, —gF2 = 501021‘_'3\, , (3.80)
1 —t
xFs, —qFy = —-ﬁanSFgm + ?afogFlal . (3.81)

Note that (3.79) has zero forcing term. This suggests that there is no gth order singularity
in the ¢ termn. We conclude that F; = 0. Moreover, substituting this result into (3.80)

and (3.81) leads to

1
xF2, —qf2 = 50102173\ : (3.82)

1.
XFa, —gky = —zoloyFy, . (3.83)
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Since oy and o2 are nearly constants in the neighborhood of the singularity, without loss
of generality, we may assume that o; = 1 and oo = 1. Note that in equations {3.82) and
(3.83}, o1 can be considered as a parameter, which shows that the essential direction in
which singularities form is the «» direction.

To solve (3.82) and (3.83), by taking o) = g2 = 1, we define
F=F+iF;, (3.84)
so that we can combine the system and derive
xF' — gﬁ = —%iF’ . (3.85)

By solving F from (3.85), we get

1 q

= C279%4x% + 1)3 exp(igarctan((2x)™1)) . (3.86)

where C is a function of a1 only.

In summary, we conclude that near the physical singularity time, by transferring (27,272, 2

into (¢1. ¢, "), the curvature singularity does not appear on the ¢; function to the leading
order. For ¢ and 2z, the curvature singularity can be observed on at least one of the two
functions.

Remark: We show that our result is consistent with that of Brady & Pullin’s [7]. In [7],
Brady & Pullin studied a three-dimensional vortex sheet with cylindrical shape and strength

distribution at the same time. In particular, they assume that initially, the interface has a

N)
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normal mode disturbance of the form

h(z,y) = Aexpli(mz + ny)| , (3.87)

with uniform velocity jump U in the z-direction. By rotating from (z,y, z) axes to (27, ¢/, 2')

axes

k' = mz +ny, ky' = -nz + my , =z, (3.88)

where k2 = m? + n?, they showed that the singularity evolution in this special case is
equivalent to that of a two-dimensional Vor_tex sheet with velocity jump of UZ.

To apply our analysis to this special case, we take x = a1 and y = oy at the initial time
to fit the initial coordinates taken by Brady & Pullin in [7]. Under this choice of coordinates,
the transformations (3.70) and (3.71) applied to the normal mode is equivalent to a rotation
of the axes. This is because the the Fourier representations of the Riesz transforms are:

— ik

(& + &) (359

where k = 1,2 and (£1, &) are the Fourier mode. Since the normal mode functions only have
one Fourier mode, applying the Riesz transforms is equivalent to multiplying constants to
such functions. Specifically, the transformations (3.70) and (3.71) applied to normal mode
initial condition (3.87) is eguivalent to the axis rotation of (3.88). In this particular case,
¢ defined by (3.70) turns out to be zero, as has been proved in [7]. This shows that our
analysis is consistent with Brady & Pullin’s result when we apply our analysis to their initial

data.
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We would also like to point out that even though Brady & Pullin [7] have shown that
the singularity appears in both o1 and oy direction, the singularity in the ay direction is
the essential singularity. This can be seen from rotating the normal mode in the {(m, n)
plane. When we take m = 0, which means that the direction that the wave propagates is
orthogonal to the z-direction, the singularity disappears. However, if we take n = 0. which
means that the direction along which the wave propagates is parallel to the a-direction,
the singularity still exists, and in addition, the physical singularity time is smaller than
any other combinations of (m.n). This confirms that the velocity jump direction is the
fundamental direction for the singularity development, and the tangential velocity jump is

the driving force of singularity formation for vortex sheets.
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Chapter 4 Existence Proof of the Three-dimensional Vortex

Sheet Problem

In this chapter, we prove the long time existence of a three-dimensional vortex sheet slightly
perturbed from an equilibrium state and in the absence of surface tension.

The sections of this chapter are arranged as follows. Section 1 provides a general in-
troduction to the formulation of this problem, and states our main result. In Section 2,
we derive a nonlinear system with linear leading order terms. This system is our platform
of the existence proof. We devote Section 3 to the outline of the proof without details of
energy estimates and the estimates of the nonlinear terms in our derived system. In Section

4, we provide the technical details omitted in Section 3.

4.1 Formulation and Main Result

4.1.1 General Formulation

We consider an interface S separating two infinite layers of incompressible; inviscid, irrota-
tional and identical fluids in the absence of surface tension. Using the Lagrangian frame,

the interface location at any instant ¢ is given by:

z(on. ap.t) = (2(ay, as,t) ,yler, 0o, 1), 2{c1. 2. 1)) . (4.1)
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where (7, trz} is the Lagrangian surface parameter. Thus, the normalized tangential vectors

to the surface, T and T, are defined by

Zoy o, o Zoz (4.2)

and the normal vector to the surface N is defined by

Zey X Zay

N (4.3)

Bl ‘ZGI XZGQ& '

We label the region below the interface as Region 1 and the region above the interface
as Region 2. Therefore, the velocity field 1y (u2) is the velocity below (above) the interface.
We define u, to be the limit of u; approaching the interface from Region 2 and u_ to be
the limit of u; approaching the interface from Region 1.

Since the flow in each region is irrotational, we can introduce the velocity potentials ¢

and @2 so that

u; = Vi . uy = Vo . (4.4)

Furthermore, since the flows are incompressible, the velocity potentials satisfy the

Laplace eqguation:

V31 =0 and V¢ =0. (4.5)

Therefore, the potentials in the fluid domain can be written in the following dipole
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representation [2]:

0(2) = [ W(e/)(aay % 20,)(0) - ViCla - afe )i (1.6)
where
N 1
G(z—2z) = “iz—z]’
V,G(z—-z(d)) = —47T|z_——z"|3 .

and pl{a) = ¢ — oy
By differentiating equation (4.6) with respect to z and then integrating by parts, we

obtain
Vo) = [ IVan(o!)T. Vo] % VuGla = alo)) e (4.7)

where we have used the notation

i3
8&2

7)
IVau(a) T, Vaz(a)T| = rizqz - Zy

1 -

The motion of the interface is governed by

Oz
— =u.
o ‘

where 1t = {u, v, w) is the velocity of fluid particles on the interface. The kinematic condition

that ensures that the interface moves with the fluid requires that the normal component of

the velocity be continuous at the interface. However, the tangential velocity at the interface
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is arbitrary and can be chosen at our convenience.
For the vortex sheet problem, we apply Bernoulli’s equation to the upper and lower
layer of fluid respectively. Based on the continuity of the normal siress, and combining with

equation (4.6) and equation (4.7), we can show that with u = %(u+ +u_),
— =0 (4.8)

holds [4]. Equation (4.8) says that the circulation stays constant along the trajectories
whose motions are determined by the average fluid velocity.

With this particular choice of tangential velocity, the velocity of the vortex sheet inter-
face can be obtained by the average of the limiting velocities in equation (4.7) approaching
from the upper and lower layer of fluid. The equation of the surface particle motion can be

written as:

%Z(Z) = | IVau(@)?. Vaa(e)T| x Vo Ga(a) - 2(o)) do” (4.9)
5

where z € S and the integral takes Cauchy principal value.

4.1.2 Main Result

Throughout this chapter, we study the long time existence of a unique solution to the initial
value problem {4.9). The main result is to prove the existence of such a solution given a

slightly perturbed periodic initial condition from an equilibrium flat state. More precisely,
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Z is written as

T (84} Iﬂ
Z D f%

where Py, P, and P; are periodic functions with period of (2r x 27) and small analytic
initial values. Furthermore, without loss of generality, we assume p = 11 + Yacre, with
71 and < being two constants. The existence of such a set of coordinates was proved in
the last chapter where we studied the early time singularity formation of three-dimensional
vortex sheets.

Similar to the two-dimensional problem, there is no existence result in the Sobolev norm
(Caflisch & Orellana, [9]). Therefore, we establish the well-posedness in an analytic norm.
Particularly, we choose the Lipschitz norm within & certain complex strip following the idea

of Callisch and Orellana [9]. The following theorem is our main result.

Theorem 4.1.1 (Long Time Existence of 3D Vortex Sheet Solutions) Let 0 < & < 1,

0<a<l, and pp > 0. Assume thai 2 has the form of (4.10) with S;(51, 32.0) satisfying

sup  ( |Si(B1, B2, 0} + |VSi(B1, G2, 0)|
|Fm{B1)|<po
[Tm{32)|<po

2 2
2D 1(96,05,5:(B1, B2, 0D ) < £, (4.11)

k=1 j=1

where i = 1,2,3 and € is sufficiently small.

Then there exists a solution z = (51, 5, O)T + (S, 82, S3)T foratime 0 <t <T, where



a8
T satisfies

T ,and 82T < 1.
5tK

Moreover, Si(t) satisfies:

3
S USit)ap < (s M)

i=1
< (s e,

for any p and t such thaot

O<p<py—

1 3
5+K

where ¢ is independent of €, k and py. And the Lipschitz norm is defined by

K1, K2) — F(K7, K2
Ifllap = sup  [f(s1, w2} + sup [f (51, 52) — fx1: m0)l
{Im{s1)1<p Im(s1)l<p, Hm(s2)l<p
[Im{rz2)]<p

(%1, 52) — (%1 )|
lIm(x})I<p, |Im(s3)l<p

(Kl|ﬁ2)9&(’i’1$ﬁa)

Remarks: This result is similar to the two-dimensional result proved by Caflisch and

Orellana [9]. Particularly, the existence times in the two results are same up to the leading

order term 2pp. Besides, a linear time growth rate is observed in both results even though

it is bounded over all by the product of ¢ and the maximum existence time, 7.
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4.2 A Nonlinear System with Linear Leading Order Terms

In this section, we derive a nonlinear system wiih linear leading order terms from equation
(4.9). The linear terms constitute an elliptic system, whose initial value problem leads
to Kelvin-Helmholtz instability. The nonlinear terms are small in the Lipschitz norm for
analytic solutions within a strip in the complex domain. The bounds of the nonlinear terms
are proved rigorously in the next section.

To overcome the instability from the Cauchy-Riemann structure, we extend the inde-
pendent variables into the complex domain. With this complexification, the system can be
considered as a hyperbolic system with complex characteristic speeds. With its character-
istic lines propagating within the complex domain, the ill-posed problem in the physical
domain becomes a well-posed problem in the extended complex domain with shrinking
analytic strip.

Before we start deriving the system, it is necessary to introduce the Riesz transforms,
which will be used extensively throughout this chapter.

Define:

_ 1 (on — &) f(a) , .
h(f) = 5 f f a7+ (o — o)D) do/ (4.12)
_ 1 (a2 — a5)f(e) p
w0 = o [f R (413)

for f € LP(R?), where 1 < p < o0, &’ = (o, &}). The integrals take the Cauchy principal
value.

In [30], Stein proved that the Riesz transformations have the following spectral repre-
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sentations:

7 -1 )
f = (4.15)

(63 + 2172

in which f stands for the Fourier transformation of f ¢ L?(}R?).

From (4.14) and (4.15), the following Lemma can be shown straightforwardly.

Lemma 4.2.1 For flai.az) € HY(R?) and f(0) = 0, where H'(R?) is the Sobolev H'

space on K2 and [ is the Fourier transform of f. The following equalities hold:

H\Hy(f) = H2Ho(f)

H1Dy(f) = HaDy(f) .

(H\Hy + Hy ) (f) = -

where Dy {Ds) stands for derivative operator with respect to o (o2).

Throughout the derivation, we will encounter the following singular operators:

f(a) o
L /,/ ({es — })? + (ag — a{,_)?)% : (4.16)
AR oy — o) (fte) - (aq)sda’. 4.17
27" /] (a} 701)2 (012—01"2)2)5 : ( )
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A12 27]- / (0:1 - al) Gz — a‘z)(f(ﬂ’) f(a’)) (418)

((en = 04)? + (02 — ah)?)3

1 [ ea- oP(Se) ~ 5@
f ( dot . (4.19)

A22 —
D= (o1 — )2 + (o — )23

Hou & Zhang [16] proved the following lemmas:

Lemma 4.2.2 For f(og,0n) € HY(R?),

A(f) = (HiDv+ H2D2)(f)
AN = Z@IDI+ D))
AR() = SID))

AZ(f) — %(H1D1+2H2D2)(f).

Up to now, we have defined the Riesz transforms for L? functions in the infinite domain.
‘We would like to extend the definition to periodic functions. This can be implemented in
two ways. Oue is to use the Fourier representations, in which the Fourier transforms in
(4.14) and (4.15) will be written in the form of Fourier coeflicients for periodic functions.
This can be done for Lipschitz continuous functions Lipa(]0, 27] % [0, 2%]) because of the
fact that Lipa{[0, 27| x [0,2x]) C L3([0, 2] x [0, 27]).

Another way to extend the definition is through the kernel. We denote K(aj, ) the
integral kernel of the Riesz transform, and assume that f is periodic with period of 27 x 27

and

/ﬂ i f(al,ag)daldag =0. (4.20)

—T =T
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The Riesz transform with kernel K{o, a2) can be written as:

/J (¢ — o) K(a)daiday

(2n1+1)m p(2no+1)m
= lim / F (€ — a}K(a)dadas

Hi()(C)

11,1200 (2n1+1)‘rr —(2r2+ D7
(2ky+1)r (2k2+1)1r
= lim / / — a)K(a)daydas
'"1~"2—‘°°k1=_mk2 ——na {2ky—1ym J(2ka— )7
- % — a)[K
pim ] 7ﬂf(C a)[K(a)
(m1.n2}
-+ Z Koy — 2ky7, g — 2kam)ldodas
(k1,kz)=(-n1,—n2)
(k3.k2)4(0,0)
- lim 7€ - ) [K (@)
nine—os f_of o
{m1,n2)
+ > (K{a — 2k7) — K(—2k7))|dodag |

{k1,k2)=(—n1,—n2)
(k1,k2)#(0,0)

(4.21)

where a = (a1, a2), ¢ = {({1.¢2), and k = (k1, k2) with k), k2 both being integers. We have
used the fact that [ f(a)da = 0 in the last step.

If for the kernel K{a),

{n1.n2)

> (K(a - 2k7) — K(—2k7))]
(kl,K2)=(—‘n1.—n2)
{k1.,k2)7#(0,0)

converges absolutely and uniformly for a € [0.2x] x [0,27], we can take the limit into the

integral and define:

K'a) = K@)+ Y [K(a+2k%)— K(2kr)]

= Kfa)+ K(a) , (4.22)
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for each (o, 02) € [0, 27] x [0, 27].

It is well-known [11] that the sum K (o, 2) does converge absolutely and uniformly to
a bounded function for (@, az) € [0,2r] x [0,2rx]. Particularly, K* converges to 3 cot(3a)
if K is the kernel of the Hilbert transform in one dimension. This shows that the Riesz
transform for periodic functions is well-defined. It can be written so that iis integration
interval is either the function period or the infinite domain; both forms are equivalent.

We derive similarly the periodic kernel of the vortex sheet integral. The result is anal-

z—z'

2

ogous to obtaining the kernel % cot( ) in one-dimensional space.

Denote:

€1

Yo o — €)=
Koo =0 = 0y 2@—0F -

(4.23)

where o0 = (@1, 2) and { = ((;,({2). Since z has the form of (4.10}, the denominator can

be re-written as:

3
G Si{a) — Si{e - ()
|z(a) — z(a - C)IS = (o + 52(05) — Sg(a -¢) . (4.24)
0 S3(or) — Sa{a - ()
Using the periodicity of §), S and Sz, one can show that
|2(@) — a(a — (¢ + 2km))| =
3
1+ 2k @ Sl(a)fSl(afC)
G+ 2k | T | Sa(e) - Sola—¢) ; (4.25)
0 S3(a) — S3(a— Q)
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where k& = (k1, k2). Consequently, we can define:

K;*(a,a - C)

Kia,a—Q)+ Y (KMa,a—(C+2km)) — K'(2km))
k#(0,0}
= Kl(o,a—¢)+ KHa,a =) (4.26)

where K1 is the kernel of Riesz transform in the a-direction,

_ G

l =

Similar to equation (4.22), K1 converges absolutely and uniformly to a bounded function
for everv (a1, ag) € [0. 2] x {0,27] provided that the perturbation from z to a flat plane is

sufficiently small.

The idea can be illustrated in the case of Hilbert transform, where

K.o,a—-() =

and

K(a):é.
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In this particular case, there is a closed form of K} (o, a — (}:

K:(D"’a - C)

= Ki(aa— Q)+ ) (Ko, a— (¢ +2kn)) — K(2%r))

k#D
1 i 1
- z2{e) — z(a — §) + kz;éa (2kﬂ' +z{a) - za-C) %)
= %cot (%(z(a) - z{o — C))) . (4.27)

Remarks: 1. The definition shows that the vortex sheet integral can be applied to the
periodic functions as well. In addition, similar to the result of the Riesz transform, it can
be written so that the integration interval is either the period of the function or the infinite
domain as well.

2. As we will show rigorously in last section, if z is a small perturbation of a flat plane

under the Lipschitz norm, i.e. ,

Z (al,ag,D)T + 0(e) ,

the vortex sheet kernel K1* (¢, o« — ¢) defined in (4.26) is close to the Riesz transform kernel
K'*(a) defined in (4.22) under the same Lipschitz norm. This observation will be used
extensively in the following derivation.

3. All the derivations in this section are formal. We write the remaining terms as O(g?)
since they are, as we will show later, of smaller amplitude, during the derivation. At the
end of this section, we denote them as B;, Rz and B3 respectively.

4. Since we have defined the Riesz transforms for per_i_odic functions, the other singular

integral operators mentioned before can be defined by Lemma 4.2.2.
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Next we derive our target system. Based on the assumptions stated in the last section,

equation (4.9} can be re-written as:

Oz _ (MZa, — Voey) X (2 —%)
ot |z — 2|3
iaz ]' + S{L‘tl
= 1 } }
= "I ! 1+ 854, - SM1
L Sé&z Séal |

] — Ot; + 51 — Si
do’

| -+ S-S | TR

S5 - S,

Since §; ~ O(g), it is reasonable to consider the linear terms in the integral as the
leading order terms. By writing down every component separately and only keeping the

linear terms, equations for Sy, 5: and S5 can be obtained.

% = _i] (@ + Saaz) - 72S§ag)(83 ~ :Ji)
o [ z— 2|3
(’Tlséag - 725&01)(02 - C'fi2 + '5'2 - é) ’
- do
jz— 2P
1 /f 1(S3 — 83) — (M Sa2 = 12530, o2 — o)
= 1= dey
4 |z — 23

), (4.28)
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and

083

I
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1 f] (11530, — 12530, ) (@1 — 01 + 51 — 51)
dqr

|z —2'|°
Sty = O+ SIS = 8D
|z — 2|3
1 f] 72(83 — 53) + (1 850r — 12550, Hen — )
4 |z — 2|3
+0(?) (4.29)

1 // (M1, — 12(1+ 81, )2 — o) + Sz — 53)
A lz — 2|3
. (’71(1 + Séﬂg) - '725501)(0‘1 - Oti + 5 ~ S{)
|z — 2|8
1 ff (11510, — 72510, ) (02 — 05)
dm

|z — 23

do’

(Wlséag = ’725501)(0’1 - O.f'i)
|z — 2|3
oyl —oq+ S-St ple -t S - 5)
|z — 23

+OE?) . (4.30)

To understand the instability mechanism in the system, it is helpful to introduce the

following change of variables.

P = Ha(5) — H1(52), (4.31)

Yo = Hi(5)) + H2(Sz) - (4.32)

The ill-posedness or instability will become more apparent using these new variables. Fur-

thermore, from Lemma 4.2.1, (57, S2) can be represented by (41, 12) through the following
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equations:

S1 = —Hs(n) — Hi{ye) , (4.33)

S2 = Hi(yn) — Ha(¥2) - (4.34)

Therefore, it follows from differentiating equation (4.31) and (4.32) with respect to time ¢

that

Moo - m%, (435)
e o m @y m%. (4.36)

To derive the leading order terms of the evolution equation for ¥;, we substitute (4.28)

and (4.29) into (4.35), so that

o 25 053
o - ) )
7(53*3)-(’)‘5' Vo834, Hox )
- Hz(—— f : 3 llz"'?z,lg =S 72 dd)
Y2(83 — 53) + (71534, = 12554, Hon — o) Jo!
1(__ 1Z—Zi|3 )
+0(?) . (4.37)

By further nsing the observation that the vortex sheet kernel is close to the Riesz transform
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kernel under Lipschitz norm, one can show that

o _ —%Hz("flﬁss — 2 Hy D383 + v Ho D1 S3)

4 %Hl (v2AS3 + 11 H1 D2 S3 — 72 Hy D1 S3) + O(?)
- _% Hy(y1H1 D183 + v Ha D1 S3)

+ % Hi(y1 H1D2S3 + 72HzDaS3) + O(e?)

= 0%, (4.38)

where we have applied Lemma 4.2.1 and 4.2.2 in the last step.

Similarly, to derive the leading order terms in the evolution equation of 442, we substitute

{(4.28) and {4.29) into (4.36) and get

O _ g 05 g 05
5 Hy( It )+ Ha( ot )
_ 1 71(53 - Sé) - (’Y]Séaz - 725&&1)(02 - aé) 7
= iy | PRI 4
1 [ 7283 — 83) + (MS30, — 12550, o1 — )
+ HZ(_4_1;/ z— 2" dor)
+0(%) (4.39)

which by our observation further implies that:

b

1
5 = —§H1 (mAS3 — 11 HeDyS3 + v Ha D) S3)

1
~ 5H2(12A85 + 1 H1 D285 — 12 H1D153) + 0(?)
1
= —§H1(71}11D183 + 72H2D153)

1
— 5H2(’71H1D253 + Yo Ho D2 S3) + 0(52) . (4.40)
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By applying Lemma 4.2.1 and 4.2.2, we simplify the above equation to

Oy

1
= ——Di{H1H HsHs)S
T 57 1{H1Hy + HaH2)S53

1
- 5’72D2(H1H1 + HaH3)S3 + O(e?)

1
= 5nDi+72D2)Ss+ 0@ . (4.41)

For the evolution equation of S3, we substitute (4.33) and (4.34) into {4.30), and extract

the leading order terms:

953 _ _if/ n(=Ha(¥) — H1(¥5))a, ) oa — ab)
ot amr |z — 2’|
N va(Ha(t) + Hi(th)a, (02 — 0f)
|z — 2'|°
+ 'Y?(Hl("’b‘i) — Hﬂ(wé))m (al ﬁ afi)
Iz — 2’|
_ mH 1) — Ha(¥h)as(en — af)
|z -~ 2|3
_ ve(Hh (¥ — ¥1) — Ha(yz — ¥3))
|z — 2’|
- n{=H(¥s - 1) — Ha(¥2 — ¥3))
|z — 2’|
iy — o) +rla: — o) ., 2 y
- P da’ + Ofe®) . (4.42)

By using Lemma 4.2.1 and 4.2.2, and the fact that |2 — 2’| ~ |a — ¢/| to the leading order,
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53

71

1 1 1 1

5’71H§D27!)1 + E“/lH2H1D2’!!'J2 — §’Y2H§D11P1 - 5’}’21‘123191102
1, 1 1, 1

+ §’Ylﬂl Dy — 5’71H1H2D2¢2 - 5")*21‘11 Dy + 5’72H1H2D11,02

1 1 1 1
+ -2"}(21\1‘117!’1 - 5’)‘2AH2¢2 - 5’]’11\15’21!)1 - E’YIAHlT,bQ

1 [ ylee—oh) + n{eg —of) 2
+E] I;—Z’F‘ 1 da’JrO(E )
1
5(7191 + y2 Doy
1 a9 — o) + 1o — o
+ Ef 2202 l;)_ 2,113( Ll VAN 0(e?) . (4.43)

It is necessary to analyze the integral term of equation (4.43) and extract the leading

order contributions. By further expanding the integral in terms of S;’s, we find that the

leading order terms are:

1
47

Yol — o) + (e — o) o

where we applied the matrix equality of

|z — 2|3
A
Vz’vzr(;’(z — z’) 1 1 3(2 — z’) (z - Z’)T

- Eﬁz —ZB " |z-2ZP
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from [15]. Then, it follows from Lemma 4.2.1 and 4.2.2 that

_1_/ Ya{ae — oh) + y1(on — o) o’

dgr |z — 2|2

(e — AA)[(S1 = 81)(ea — ) + (S2 — S3) (a2 — )]
|z — 2>

+

+ 0O(£%)
= Da(A2(51) + A2(82) + (A (S:) + AT(S5)) + O)
= —3m(HDu(S1) + (2HzDs + HiD1)(52))

_ %71((21;1131 + HoD3)(S1) + HiD2(82)) + O(2) . (4.45)

By substituting (4.33) and (4.34) into (4.45)}, we write the leading order terms in 1, and

Pa.

if”ﬁ(ﬂz-a'z)%-’h(al —@)

’
o
A7 lz — 2|3

1
= —572(H1D2)(—H2?/J1 — Hiy)
1
- 5’72(2H2D2 + Hi.Dy){(Hi — Hoa)
1
—gh (2H\Dy + HyDo)(—Hatpy — Hyaho)

1
- §W1H1D2(H1’¢1 — Hay) + O(e%) (4.48)
which can be further simplified to

1 y2lay — ah) + v — af) ol
— a
A |s — 2|3

1
= —5(HiDy+ HoDo)(-mHa + 2 Hy)
+ (HlDl + _HzDg)('ﬁ.Eﬁ + ’)’2H2)'l,-’)2 + 0(62)

1
= —{mDi+ D) — 5(’}’1132 — vsD1)h1 + O(e®) . (4.47)
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To unify our notations, we define

i3 = S (4.48)

Combining (1.28), (4.29), and (4.43} into a system we get

O

= 52 . 4
5 Ofe*) , (4.49)
o 1
52 = D1+ mDais +0() (4.50)
o 1 . 1 :
Wg = 3Dy +mDo)ve + 5 (D - nD2)vn + o(£?) , (4.51)

where Dy (D) stands for differentiation with respect to the ey (g} variable.
We compare our leading order terms to the linearized system derived in the article of

Hou & Zhang [17]. Their linearized system is

= 0,
ot '
Da 1 )
5 5(7191 + 2 Do)z,
%~ _LuDy+wDa)gs + =(3D1 — 1 D)(¥1)
o 2’711{22122 2’}21 T2 Nywy)

where 1;51,1;;2 and 2 are perturbations of ¥, 1o and z respectively. This comparison confirms
that our linear system does capture the leading order terms of the three-dimensional vortex
sheet equation when perturbed around an equilibrium state.

Since 77 and -y, are constants, we introduce a change of variables from (&, ts) to (31, 52)



as follows:

1

B = —=——(—mo+me), (4.52)
VA + 73
1
B = —===(non+mnog}. (4.53)
vt

Substitute this variable change into system (4.49) — (4.51); the leading order terms

become

EE:=0@L (4.54)
8'%!’2 - l 2

M 1 1

52 = —31Dm¥2— 51Da%1+0() (4.56)

where v = \/’m .

In the new coordinates, we can see that the system will suffer the Kelvin-Helmholtz
instability because of the coupling of (4.55) and {4.56). It also shows that the 3y direction
is the unstable direction responsible for generating Kelvin-Helmholtz instability. Moreover,
since the 5 direction is the tangential velocity jump direction between the upper and lower
layers of fluid, the leading order terms confirm that the tangential velocity jump is the
physical driving force of the instability of the three-dimensional vortex sheet.

During the derivation, the only terms written down explicitly were the leading order
terms. This is because, as we will see in later sections, the remaining terms on the right-

hand side of the equations are of smaller magnitude. We denote them as &), Rp, and R3
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and define them as:

Rl (1/)111!)2! 1;',)3) = % ) (457)
o
Ro{r,v2,3) = % - %’TD@% , (4.58)
1
Rs(in,¥2,%3) = % + %717321!)2 +57Dm¥n - (4.59)

Next, we extend the independent variables 8; and £; into the complex domain. As a
result, we can analytically continue the system into the two-dimensional complex domain.
Following Caflisch & Orellana (9], we assume that Sy, Sz, and Sz are initially small analytic
functions within a strip of max(|Im{eca )|, |[Im(az)|) < p, where the strip width p depends on
their initial amplitude . Since 1, 12 are Riesz transforms of 5 and Ss, it can be shown that
1 and ¥ are also analytic functions within the strip, since the Riesz transforms preserve
analyticity. Therefore, from the fact that v, and - are constants, we conclude that 4, s,
and 13 are initially analytic functions in the strip of max(|Im{(Gi)|, |[Im(B2}]) < po, where
po and p are of the same order.

By analytically extending system (4.57) — {4.59) into the complex domain, the system
can be considered as a hyperbolic system with characteristic lines in the complex domain.
Furthermore, simple calculations show that the characteristic speeds of the linear system are
0 and :t%l. Later, we will prove that these are the leading order terms of the characteristic
speed of the nonlinear system.

Remark: Even though we will analyze a complex system instead of a real system, the
domain that interests us the most is still the real {5, £2) plane. This means that we have
the flexibility to shrink the imaginary strip without affecting the physical solution.

Following the idea by Caflisch & Orellana [9], we construct a guasi-linear system from



76

(4.57) — (4.59). Seemingly, we are deriving a more complicated system. In fact, it is more
amendable for error control for the high order terms.
To construct a quasi-linear system, we differentiate (4.57) — (4.59) in space and derive

& system of the space derivatives of ¥4, 2 and v¥3. Specifically, define:

3] I
P = 6—1’;1 , Pz = 6—2 ; {4.60)
)
o1 = g? thog = g—z ; (4.61)
O3 _ s
P31 = 36, P32 = 56, (4.62)
(4.57) — (4.59) then becomes:
% = %Rl(vlﬂﬁz,%) ; (4.63)
17

;”;2 = BZ Ra(41,92,%3) (4.64)
agtzl = ’YDﬁllbsz + Z 2(%1, P2, 13) , (4.65)
)

32 = 7Dﬁ21/}32 + 2 2(101, %2, %3) , (4.66)
8231 = —E.Dﬁl‘d)gz Dﬁltfm +3 R3(1b1,¢2,¢3) ; (4.67)
12, B
% = —%Dﬂe%z - EDﬁz%bu + 5-53-33(%,1’)2,11)3) . (4.68)

This is our target nonlinear system.

In (4.63) — (4.68), if we take

f a2
Ey = B_;BlRl’ By = '(T)‘ﬁ—QRla
a d
E =—R, E; =_R1
2 = -t 2 =55 Fs
& P]
Bsi= ——Rs, Ep=—=DRs,
31 =55 52 = -
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and assume that they are known forcing fumctions, in order to solve system (4.63) — (4.68),
we can first solve system (4.63), (4.64), (4.66), {4.68) by integrating along the characteristic
lines, and then substituting the calculated solutions into system (4.65), {4.67) and solve the
resulting O.D.E.. The procedure will be used in the last section where we prove a lemma
on energy estimates. Furthermore, without loss of generality, we assume that v = 1 for the

rest of the chapter. In this case, the leading order term of the characteristic speed becomes

3 )

4.3 Long Time Existence Proof

In this section, we prove the main result of this chapter, the long time existence theorem of
the three-dimensional vortex sheet equation.

The idea is to apply the extension of the abstract Cauchy-Kowalewski Theorem intro-
duced by Caflisch & Orellana [9]. Ii requires estimates of the nonlinear terms in system
(4.63) — (4.68). Since the esiimation itself is rather technical, to show a clearer outline of
our main proof, we just state the results here and leave the detailed derivation to the next
section.

For technical purposes, we split the solution of {(4.63) — (4.68) into two parts. One
satisfies a linear system with the initial condition of the full nonlinear system, while the
other satisfies a nonlinear system with vanishing initial condition. The existence of the
first part of the solution is straight-forward, while we use the extension of the abstract
Cauchy-Kowalewski theorem to prove the existence of the second part.

The subsections in this section are arranged as follows. In the nexi subsection, we
present two lemmas about error estimates and energy estimates respectively. The proofs

of the lemmas are deferred to the next section. In subsection 2, we state the extended



73

abstract Cauchy-Kowalewski theorem. Furthermore, we devote subsection 3 to solving the
linear system with full initial condition as the first part of the solution to the full nonlinear

system. The existence of the second part of the solution will be proved in the last subsection.

4.3.1 Resulis on Error Estimates and Linear Systems

In this subsection, we state two lemmas related to the error estimates and energy estimates

respectively. First of all, it is necessary to define the following Lipschitz norms:

Iflo = sup  [f(m1,52)] (4.69)
[m{sa)]<p
Fm{sa)i<p

|f {51, k2) — F(5]. :5)]

| fllee = 11 + sup : (4.70
o P iimsn)l<p, misa)l<p (51, %2) — (K], K5)[® )
Um(k))|<p, [Tm(sb)|<p
(m1.02)7 (5] .K5)
_ o
”f“ap—l- e |f|p+ sup |f(ﬁlaﬁ'2) f(ﬂlﬁ"“'ﬁ)l . (471)

(Imixy)i<o, Umisa)l<p 1K1, K2) = (K], KH)I®
[Tm{s} <o, Um{sy)l<p
Im(r1)=Fm{x}), Im(xz)=Im(x})
(k1.:2)#(r7.55)

where 0 < @ < 1 and (K1, k2) — (k). 55)] = /(K1 — &])% + (K2 — K5)2.
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Also define || ||, p and ||+ |azp @5 the ||-||lae norm on the §) and Gz direction respectively:

[f{r1, 82) — Ky, K2)l

Wfllep = |flo+ sup :
wp 7 max(Im(s LT me) L mis2))<p [(51 — &}
R1#8]
(4.72)
_ ’
oy = 171+ up o, 52) S, 3)]
max(Im(s)L m(e)lImisp))<p ({2 = %3)
saFnh
(4.73)
Similarly, we can define || - ||a;p+ and || - lagp+ for the || - [|ap+ norm on the B and Bs
directions respectively:
|f(i€],f‘62) — f(f’bi,l’"»z)l
1K = {flo+ sup ;
et " max(mGs ) mGDms)<p I — KO
Im(k1)=Im(x})
Ky
(4.74)
|.f (1, 82) — fr1, 53)]
171 = |flo+ sup .
mert ! max(Umpenp ImisMmOss<p (52 = )l
Im(xz2)=Im(r})
rRaFih
(4.75)
Note that for k1 # &} and &2 # &5,
|f(f€1,l€2) - f(ﬁ',’l,K,ig)l
(51, 82) — (57, K3)|°
|[f(r1,k2) = Flsn, sl | F(R1,52) = f(m), 55)]
T (k1 m2) = (s )l ke, s2) — (K, sa)|™
tf(fila“"?) - f(ni,n2)| + |f(K']1’H'2) — f(n";'rﬁé)l
[(k1,82) — (K], m2)[®  |(%7, k2) — (K], K5)|®
Pl 2) — Fh o)l 05, 2) = 5,3 W)
_ el ! | ¢ )
|51 — w1l |ig — 3

We conclude that | - ||ap is equivalent to (|| - |layp + || - llagp)- Similarly, we can show that
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|| - llap+ is equivalent to (|| - la;p+ + |l - lazp+)- This property will be used extensively in the

later analysis.

Definitions (4.72), (4.73), {4.74), and (4.75) are natural extensions from the correspond-

ing one-dimensional norm. In particular, Caflisch and Orellana {9] have proved that for

one-dimensional analytic functions:

“f“oqp < C”f”m,o+ :

| flloze < clffllazp+ -

Therefore, for two-dimensional analytic functions, the following inequality holds,

Ifllap < ({fllarp + 1 fllazp) < elllf llerrps + N llazpst) < 2¢)l fllap+ - (4.77)

In the next section, we prove that

Lemma 4.3.1 Assuming that x, y, z defined in (4.1) are small perturbations of o flat

plane, and 51, S2, 53 satisfy

1. 51, 83, S3 are enalytic functions within the strip

{(B1, B2)| max([Im(51)], [{m(B2)[} < p} .

2. 81, S», Sz are periodic functions with period of (27,2m).

@l

155llal: + dpe1, - + i) <
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where 7 = 1,2,3 with (1, pa) satisfying |p1] < p and |uz| < p.

Furthermore, we assume that i;; and 1,52-3- are defined in (4.81}, (4.32}, end (4.60) —

(4.62). Then, for 0 < p' < p and 0 < a < 1, the following inequalities hold:

2

3 2
IEshaw < elo=p)" [ D0 D Ikksllap | (4.78)
ki=1ky=1
and
- 3 2 —
1B = Eijllap < elo— )" | D0 D7 Uldbkskalap + [9sk2llap
ki=1ks=1
3

2
: D kiks — Yragallap | - (4.79)
k1=1ko=1

where 1,7 = 1,2, 3.

Lemma 4.3.2 Consider the following system of
— T
u = (u11,u12, w21, U2, U31, Us2)
with anaelytic forcing terms

g= (911,912,!}21,922,9313.932)T



duqq
611.12
o

8’1&21

dusa

Huay
ot

Ouzy
ot

writh

M,

M2,

1
§Dﬁ, usz -+ go1 ,
1
§Dﬂ2u32 + g22 5
1 1
-§Dﬁ1u22 - §D,B1u11 + g3 ,

1 1
_EDﬁ2u22 - §Dﬁzuu + 932,

Then, the following inequality holds,

£
”unﬂp < CK'I/.O "g('s "T)"a(p-!-(%+n)(t—1'))d7 *
foreny 0 < s <1, 0< <], with ¢ being o constant.

4.3.2 Extended Absiract Cauchy-Kowalewski Theorem

82

(4.80)
(4.81)
(4.82)
(4.83)
(4.84)

(4.85)

(4.86)

(4.87)

In this subsection, we state the result of the extended abstract Cauchy-Kowalewski theorem

for future use.

Consider the equation

o
Eu+L[u, t] = Glu,t| ,

(4.88)
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with
ut=0)=0, (4.89)

in which L is a linear operator on u, and G may be nonlinear. Assume that there are
positive functions pp(t), p1(7, ¢, p), di(7,t}, d2(¢) and positive scalars ¢1, ¢2, €3, R and K

that satisfy the following conditions:

1. If w solves (&/dtyu + Li{u,t] = g{t), with u{t = 0) = 0 for some g, then for any

p < po(t),
i
@)l < ]0 i, Og () ey - (4.90)
2. If |lu(t)i, < R, ||@{t}, € R, and 0 < p’ < p < pp(t), then

1G[u, t] — G[&, )iy <

calp — £)7H{da () + Nu(®)llp + NEDIN(u — D))o (4.91)

in which ds is an increasing function of ¢.
3. [IGlu = 0,ll, < Kda(t)(po(t) — p) 7" if p < po(2).

4. pis positive and decreasing for 0 < ¢ < Tp; pa(7. 1, p) is decreasing in 7 and increasing

in p. Moreover, if 0 <7 < ¢ and 0 < p < ppft)

p < polT.t.p) < po(7) — (po(t) - p) . {4.92)
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5 HO< 7 <t <Tp, then

dy (7, 8)d2(7) < do(t) < 3 - (4.93)

Theorem 4.3.1 (Extended Abstract Cauchy-Kowalewski Theorem) Under assumption (1)-
(5) above, equation (4.88) with initial condition (4.89) has o unique solution u for the time

interval 0 <t < T. The solution satisfies

lu(®)llp, < Bda(t) < R (4.94)

for all p and t < T for which 0 < t < a{pg(t) — p}, where a, 3, and T are any numbers

satisfying

¥(1+28)e <1 (4.95)
2a0c1 K (3 — v(1 +28)a)(1 — (1 +28)a) * < 3 (4.96)
T = min{Tp, max(t : 28dy(t) < R)) (4.97)

with v = Beyeaes and R, da, K, €1, ¢0, 03, Ty defined in (1)-(5)

Remark: 1. In the proof provided by Caflisch & Orellana [9], they used Condition (2)
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G, ¢] - Gla, |y <

ea(p = #)7Hd2 () + llu(@®llp + @I — Do » (4.98)

The same proof can be carried out using the Condition (2} in our statement, and this does
not effect the result.

2. The proof uses the iteration method since the system is basically a linear system
with weak nonlinear terms. Among all the constraints, Condition (1) provides the energy
estimates in every step of the iteration. Condition (2) controls the nonlinear terms during
the iteration. Condition (3) describes the nonlinear terms at the initial moment.

3. In our case, pp(t} is to describe the outer boundary where ¥;; are still small at time
t for our nonlinear problem. The function p, (7, ¢, p) corresponds to the downwards moving
characteristic for the linear problem in Condition (1). Condition {4) says that the linear
characteristic stays within the domain of dependence for the nonlinear problem.

4. The inequalities (4.95), (4.96), and (4.97) are due to some technical estimates in the
proof. These inequalities set a bound on a, which is the speed in which the complex domain

shrinks in addition to go(t).



86
4.3.3 Linear System with Full Initial Condition

Consider the following linear system:

% -0, (4.99)
‘915’;2 - 0, (4.100)
6gt21 = —%7D511/;327 (4.101)
6;5:2 = _%WD,@Q'I;E‘?Q') (4.102)
% = IADadn + 9Dsiu (4.103)
agfz = %7Dg21ﬁ22+%7D&d311 ) (4.104)

with

Pijli=o = Yijlt=0, i=1,2,3, j=1,2.

-
7

If we change variables, letting ng-j - 1,(;g-j[t=g and still write them as ’IIJl'j, we get a
system as (4.80) — (4.85) in Lemma 4.3.2. Therefore, we can apply Lemma 4.3.2 to prove
the existence and estimate the boundness of 1,(3,:3,—.

Assume the ¥;;|;=0’s are analytic within the strip max(|Im{61)], |Im(B82)|) < po with

their Lipschitz norms satisfying:

IVihijli=clleps < €, (4.105)

where 1 = 1,2,3; and § =1, 2.
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From Lemma 4.3.2, we know that 1,5,-j is analytic within a shrinking domain of width
1
po(t) = po — (5 +r)t, (4.106)

where 0 < k < 1. As we will see later, x could be taken as small as pleased provided that

€ is sufficiently small. Furthermore, the estimates in Lemima 4.3.2 show that

_ t
55 ey < ox™" fo IV (i =) lapo T

< ee(slt) . (4.107)

‘We remark that pp(¢) in the three-dimensional problem has an expression similar to the
corresponding two-dimensional problem in [2], when & is small and s~ 1e <« 1. In addition,
similar linear growth rate with respect to time is observed in both the two-dimensional and

the three-dimensional problem if et <« 1.

4.3.4 Long Time Existence Theorem

To split the solution into two parts, we define:
Vi; =P — Vij

where i = 1,2,3, j = 1,2 and ;;'s are the solution for our target system.
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By substituting it into the system and deriving equations for ., we get

oy b7 ]

% = g5 l¥1v298) (4.108)
4 d

Ta% = %Rl (¢1, 1!)27 ¢3) 1 (4109)

% = l‘Dﬁlwl;Q + %R2(¢15 ¢2,¢3) ’ (4110)

3 F

% = Dﬁle’gz + = 66 By (Y1, 92,93) , (4.111)

b ,

% - —ED'GIZ[}22 Dﬁlipll + 57 6 (?lblY 'ng, ":b3) 3 (4112)

oA 1 ,

% = —3Pavn- Dﬁﬂpn + 53 8,6 Rs(t, %2, 93) (4.113)

with

The existence of 1,(; 's implies the existence of S;’s. Moreover, the following theorem

implies Theorem (4.1.1).

Theorem 4.3.2 (Theorem of Long Time Existence) Let0< k< 1, 0 < a < 1, and gy > 0.

Assume that 5;(B1, B, 0) saiisfy

sup  (|8i(a1, a2, 0)] + [V (Si{a, o2, 0))]
[Hm(en)|<po
[Hm{e2)|<po

2 2
130 (D0 Dy Sierr, 2, ) < & (4.114)

k=1 j=1

where i = 1,2,3, and € is sufficiently small. Then system (4.68) - (4.68) with z =
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(ov1,002,0) + (81, 82, 83) has o solution for a time 0 <t < T where T satisfies

; ,and 2T < 1.
5K

Moreover, the corresponding functions yi; salisfy

= _ 1
> M) - PyOllep < cerl < 2 (4.115)
i=1,2,3;j=1,2
for any p, t satisfying

O<p<po~

1 ]
3 tK

where the functions J},j are solutions of the linear system (4.99) - (4.104) with initial data
corresponding to S;(t = 0), and c is independent of £, k and pg.

Proof: From equation (4.106) in the last section, we have that
1
po(t) = po = (5 +K)L.

From Lemma 4.3.2, choosing any fixed ' > k, we can always derive inequality (4.90)
such that

ppt,T)=p+ (%+n’)(t—7) :
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From Lemma 4.3.1, the following inequalities hold:

2
3 2
IE5 (0,0l < clp—2)" [ D0 > Ibkaksllap
k1=1k2=1
< elp-p) Hes1t)?, (4.116)
E:j (W0 8) — Eij (81508l apr
3 2
< C(p - p’)—l CEK_lt + Z Z (“")bklkz ”ap + "¢k1k2”ap
ki1=1ky=1
3 2 R
AT S Wk — Prasllan| (4.117)

k1=1ka=1

for any 0 < p’ < p < po(t).
Thus, the assumptions (1) to (5) in the statement of Theorem (4.3.1} are satisfied with

our choice of py(t), p1(7.t, p) as above and with

di(nt)=1 a=c o=c

doft) = cetn™; K =€eTk™Y; e3=ceTr™ 1

We can simply take 8 = 1 and any constant o for £ sufficiently small. In particular, we
take ¢ = k' — k to fulfill the conditions on pgp(t) and p1{p,t, 7). Therefore, it is straight-
forward to apply the Cauchy-Kowalewski theorem to our system. This guarantees the
existence of the solution to (4.9) throughout the time interval. It also proves that the
magnitude of the solution remains small since the ¥;;’s are always of order o{1) with the

choice of T for sufficiently small &.
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4.4 Estimate on the Error Terms

Our goal in this section is to provide proofs for Lemma 4.3.1 and 4.3.2. Since the proof for
lemma 4.3.2 is quite straightforward, we present it in the first subsection. The proof for

lemma 4.3.1 is much more complicated and we divide it into three subsubsections.

4.4.1 Bounds on a Linear System

Consider the linear, spatially inhomogeneous complex N x N system

i
—u+ F—u=g(z,y1t), {4.118
35 )

with

in which the complex N-vector g and the complex N x N matrix F are given. Further

assume that F is constant matrix and can be diagonalized as:

F=PAP,

A =diag(Mh, -, An) -
Define the backward characteristics by

o
EY;(Tvtry) = Ai ’ (4119)
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where

Yiit,t,y) =y,

(4.120)

and for 7 < t, define the dependence set (7, #,y) as those y’ which can be reached at time

7 going backwards along characteristics starting from y at time ¢, ie. ,

Qft, . y) = {y} .

Qr,tyy = {¥:9 =Yi(r,t,y") for some i and

for some " € Q(t1,4,5),7 <t1 < t}.

Lemnma 4.4.1 Suppose that g is analytic in x end y and, that
|Pl+ P <p,

where | P} is the mazimal norm of matriz P.

Then the solution u of (4.118)} is analytic and satisfies

i
g, 4, 2)] < e / sup lgle, 7 m)ldr
0 ge(r.ty)

(4.121)

(4.122)

(4.123)

(4.124)
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|ui($1? 15) - 'U:g‘(.’ﬂ, yrit)l
ly — '

i
< ¢ / sup o9, ldr
0 eQ(r,ty)uidrt.y)

+c/t sup ('g(ﬂ?,'g,?‘) 4g($7y,77—)t) dr .
D

T
yed(r.t,2.y) |y -V |
FeQr.t,x.y')

77y

(4.125)

b

lz — 2’| —Jo ety |z — a'|e

(4.126)

where ¢ only depends on p.

Proof: The proof of inequality (4.124) and (4.125) can be obtained by directly applying
Proposition B.1 in (Caflisch & Orellana [9]).

Therefore, we only need to prove (4.126). Note that in equation (4.118), z is only a
parameter. Therefore, if u(xz,y,t) is a solution of (4.118),

w(z,y,t) — u(x',y, 1)
|z — 2/je

is a solution of

2 d g($’y1 t) - g(xlr yrt)
— F—u= .
P ay“ |x — =/|™

And thus, by applying inequality (4.124), we get (4.126).

As we mentioned at the end of last section, if we treat the error terms in system (4.63)
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— (4.68) as given functions, we can solve the equation by first solving system (4.63), (4.64),
(4.66), (4.68) by integrating along the characteristic lines, and then substituting the solution
into system (4.65), (4.67) to solve the resulting O.D.E. This was the procedure used in the
proof of the exiended abstract Cauchy-Kowalewski theorem in which the following results
are used to carry over the iteration [9].

Using Lemma 4.4.1 as a tool, we can prove Lemma 4.3.2.

Proof of Lemma 4.3.2: Considering the following matrix

Straightforward calculation shows that its eigenvalues are 0,0,%, and —%. By applying

Lemma (4.4.1), we can show that

t
”ull(t):ul?(t)su22(t)!u32(t)|[ap < C/U ||g(-7-7T)||a(p+%(t—‘r))d’j~

IA

t
C/c'v ”g(, -,T)||a(p+(_12_+n)(t_-,r))dr .

(4.127)

Furthermore, we can solve the remaining two equations as 0.D.E.’s. Taking us; as

example, we can show that

¢
1
”uzl”aP < _/DEllDﬁluSz(-"’T)”ap—%-'lg?l(-’.’T)llanT
t] 11 t
< /055“ i ||u32(-,-,7)||a(p+md7'+fo lga1(s s T lapdr . (4.128)
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by applying the Cauchy Inequality. Then, it follows from the estimates on the first integral

that

1 _ i
|!u21“ap < 5»"5 lolilﬁ-}ét”u32('a'zt’)”a(p+nt)+\/0 ”921('r'17-)”apd7
tf
1

1 _
E‘K‘ D]llt?i(t o c”g('1 -’T)”a(p-{-p;t-{-%(t’—'r))d’r

4
+ / 1991C s gl
)]

IA

(4.129)

where we used inequality (4.127) in the last step. Moreover, using the monotonicity of the

Lipschitz norm, we have

i i
€ -1
“u21l|ap < 5’5 /0“g(."-7T)||G(p+fif+%(t—’i"))d1'+A “921(',‘17)”npd‘r
i
o™ [ gt s -rnd”

i
Cfi_lfo ”g('7 -,T)||Q(P+(%+K}(1_T))d’r . (4.130)

IA

IA

The estimate on 432 can be obtamed similarly.

4.4.2 Bound on Lj;

The error terms E;; are defined in system (4.63) — (4.68), which are space derivatives of the
Ry’s. Since we can apply the Cauchy inequality for analytic functions in the complex plane
(1], it is sufficient to obtain the bounds for R,. Moreover, since the H;'s are combinations of
the Riesz transforms of the error terms in the equations for @5;/9t’s, from the boundedness
of the Riesz transforms which we show later, we are able to derive the bounds of E;; from

the bounds in the 45;/8t equations.
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Along this line, we perform the error estimates in three steps: the error estimates on the
Riesz transforms, the error estimates on the R; terms, and the error estimates on theE;
terms.

First of all, we define a special Lipschitz norm, which will be used only in this section.

IF(- +ipg, - +ip)llo = sup |fx1 +ip, k2 + iu2)l . (4.131)

K1.52€R

F(+ i, - +ip2)lla = [ F( -+ dpa, 0 -+ ip2)llo

|f (k1 + dp1, 82 + ipa) = FK] +ipn, k3 + dp2)|
(%1, K2) — (K7, K3)|"

+ sup

(s1.m2) (k] .R5)ERXR

(r1.m2)# (8] ,65)

(4.132)

Bounds on the Hilbert Transform

The following lemma has been proved by Calderon & Zygmund [11] and Taibleson [31]:

Lemma 4.4.2 If f has period of 2r x 2w, and satisfies

/ / F(B1 +ip, B2 + iug)dBdB: = 0,

for any u) and ug, then

| Hyf(-+ dpr, -+ ip2dlla < ell £+ dpa, - + iu2)lla (4.133)
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where H® is the Riesz transform in the k-th variable, k = 1,2, 0 < a < 1, and c depends

only on o.

4.4.3 Bounds on the R; Terms in System (4.57) — (4.59)

The R; terms are defined in (4.57) — (4.59). Taking equation (4.57) as an example, we see
that R is the sum of the Riesz transforms of the residue terms in the a_g; and the %
equations. The same is true for equation (4.58). Therefore, by the boundedness of the
Riesz transform, we claim that the boundedness of the residue terms in equations (4.28},

(4.29), (4.30) are equivalent to the boundness of the R; terms. Moreover, taking equation

{4.28) as an example, it is sufficient to prove the following lemmas.

Lemma 4.4.3 Given z, y, z defined as small perturbations of a flat plane, essume thal

(1, p2), satisfying |u1| < p end |pz| < p end f, 51, Sz, S3 satisfy:

1. f, 51, 52, 53 are analylic functions within the strip

{(By, Bz)| max(|Im(B1)], [Im(B2)]) < p} .

2. f, 81, 52, 53 are periodic functions with period of (2, 2w).

Al +ipa, - +ip2) <

ool = Gol =

(1Sl +du1, - +ipa) <

where 7 =1,2,3.
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We define:

Diff*(f, 81, 82, Sa) (B + i1, Be + iug) =

Hyf(B1 +ip1, Be +ip2) — / (Bx — B 51 + ff;l , 05 +ipuz) i .

(4.134)
where

s = (Bt 518+ in), B+ SaB+in), Sa(B+ip)

2 = (B + 518 +in), B + S2B +ip), Ss(6 + )"

and

B+in = (Bo+ip,Pa+ipg),

B tip = (B +im, B+ ipe) .
Then the following inequality holds

| Diff*{f, S1, S2, S](- + ipa1, - + ip2)|la <
e(IVSille + [VSzlle + IVSalla) | flla(- + a1, -+ iu2)

(4.135)
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II(DZﬁk[f, 51752153] - Diﬁk[f, 5133'2,3'3])(’ -+ ip'la' +2,U,2)”a S CN(C‘:P'LMQ) P

(4.136)
Jor 0 < o <1, where
-~ 3 —
N(oyppz) = (Iflla+ 1Flle+ D_(IVSilla + I1VSila) -
i=1
- 3 J —~
(17 = Flla + D UV(S; = Silla))(- + i, - + ippa)
=1
(4.137)

end k=1,2.

Lemma 4.4.4 Let f, x, y, 2z be defined as in Lemma 4.4.8, then the same inequalities hold

if we re-define Diff as,

Diff*(f, 81, Sa, Sa](Br + i1, Bo + p2) =

/(Sk—sk)f’ /l(ﬁl 8) Shm (B2 — 85)Sis, 1
) la-aP 161, 2) — (B, B)F

g’ ,

(4.138)

where k =1,2,3.
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Lemma 4.4.5 Let z, y, z be given as in Lemma (4.4.3), define

Diff 81, S2, Sa| (B + ipa, Bo + ipg) =

1 (B —B)+ 7B — 5)
2r J {a(B+ip) — 2(8 + )P

+ o (H1D2(S1) + (2Ha Dz + H D) (S2))(B + in)

a8’

-+ "/1((2H1D1 + H2.D2)(S]_) + }Il.Dz(Sg))(ﬁ + i,u) y (4139)

where Dy (D3) stands for the space derivative on the 8y (B2) direction, and

z = (B1+ S1(B+in), B2+ S2(0+ip), S3(6 +iu))T ,

7 = (B + 510 +ip), B+ Sa(B +in), S3(B +ip)T ,

and

ﬁ+7'“ = (ﬁl +?:1u17ﬁ2+3.:u'2) 1

B +ip = (8] +ip, Bo+ing) -

Then the following inequalities hold:

| Diff [S1, S2, S3)(- +ip1, - +ipe)lla <
c(IVSilla + IV Sella + IVSslla)? (- +dpa, - +ip2)

(4.140)
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”(D’lﬁ[S}, 52:‘33] - Dﬁ.ﬁ‘[‘ghs—21§3])( + i#],' + ?‘“2)”0 S CN(O:, .u'111u2) 3

(4.141)
for 0 < o < 1, where
3 -
N(aap'l!;uIZ) = Z(HVSJHQ + ”VSJ”‘]) .
j=1
3 o~
> UIVS; = Slla)(- + i, -+ ipe) -
J=1
(4.142)

Remarks: The above lemmas confirm our observation in the previous section where
we derived our leading order system. We have proved that, if the interface is close to a flat
plane, the vortex sheet kernel is close to the Riesz transform kernel. The difference is a
smaller termn in the Lipschitz norm.

Combining Lemma 4.4.3, 4.4.4, and Lemima 4.4.5, we get the following bound.

Lemma 4.4.6 Lelzx,y, z be given as that in Lemma (4.4.3), then the following inequalities

hold:

2

3
IR&[S1, Sz, S3lllal- + ipa, - +ipe) < e | D IVSjlla | -+ ipn,-+ipa) ,
Jj=1

(4.143)
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and
|| Rk[S1, S2, S3) — Ri[S1, Se, Sallal: + ip, - +ipa) <
3 3
c (Z(uvsjnu + nvsjua)) (Z Iv(S; - Sj)ua) (- +ip, - +ips)
F=1 =1
(4.144)
where &k = 1,2, 3.

Now that we have obtained the estimates of the B; terms, we can derive the bounds of
E;; terms in the next subsubsection. Now, we provide the proof of above lemmas.

‘We just prove Lemma 4.4.3 here. Lemma 4.4.4 and Lemma 4.4.5 can be proved similarly.
Lemma 4.4.6 is a natural extension of Lemma 4.4.3, Lemma 4.4.4, and Lemma 4.4.5.

Proof of Lemma 4.4.3: We only prove the inequalities for Diff!. The inequalities of
Diff? can be proved similarly. Furthermore, we suppress jt; and pg and just keep the real
part 4 and O, throughout the proof.

Note that inequality (4.135) can be derived from ineqguality {4.136) by taking f =0,
and S; = 0 for i = 1,2, 3. Therefore, it is sufficient to prove (4.136).

To perform our analysis, we first write the integrals in the periodic form as

(s s = 5= [ [ O - K166 - )0 - dcndte
- o [ [ ®©-xiss- 016 - o

vo [ @0~ KT6.6 - 0)1(6 - dadea

>

Il [f; 51,82753](ﬁ) + I2[f1 51152) 83] (ﬁ) - (4145)

What we need to do is to prove [; and I> both satisfy (4.136).
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Since Is does not contain any singularity, it is just a regular integral on a bounded
domain. Therefore, the maximum value of I; is bounded by the maximum value of f, and
Si’s. In addition, the Holder norm of Is is bounded by the Holder norm of f, and V.S§;’s.
Along this line, we can prove that Ir satisfy (4.136).

We focus on the first integral 7;. What we need to prove is

(71 — h)(B)] < eN(e) (4.146)

[(7i = H)(8) = (I — h)(B)| < cl8 - B1°N{e) (4.147)

where N (o) is defined in the statement of the lemma with iy being suppressed.

We split the rest of our proof into three parts: the preparation, the proof of (4.146) and
the proof of (4.147).

Preparation: Before we go on to prove {4.146) and (4.147), it is necessary to analyze
the integrand of J; more and derive several inequalities for later use.

From the definition of I, we get:

b= 5 f_ | (IO~ K (B, = O) (B~ Qdrde

B 1 T P 7 ‘_C_}_ ~ a
_ L [mmafB+Q) (1s(8+ ) - 2(B)° - |g|3)
- =LY ( 2B+ - PP )"

(4.148)

where 8 = (fh, ) and ¢ = ((1, G2)-
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Define

G(B,B+{) = F(B+0OGi(B.B+C),

where

(2(8+ Q) - 3B - ¢P

G B+ 0= =B 0~ wF

Naturally, we can also write down:

GB.B+C) = F(B+QGB,L+C),

where

206+ )~ B)F — KPP

G+ = e O - s )P

Under the assumptions of Lemma 4.4.3, we can prove the following bounds:

|2(8 + C) — 2(8)| = ¢l¢]

3
1G1(8,8+ ¢l < e IVSillo

i=1

3
(G =GB, B+ < e IV(S; = 8l ,

i=1

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)
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(G1 — G1)(8,8 + ¢} — (G1 — G1)(B. B~ ()

3
< dgl” (Z IIV(Si—Si)IIa) ; (4.156)

i=1

o
e Gl S eldl™ (2.157)

However, to focus on the main idea of the proof of Lemina 4.4.3, we will defer the verification

of the above inequalities to the end.

From (4.154)}, it is straightforward to derive the following bound:

IG(8,8+ Q) < |F(B+OIGi1(B,8+ )

3
< dlflo 3 IVSill - (4.158)

i=1

Similarly, from (4.155), it can be shown that

(G - G)(B, B8+ Q)

< (F = HB+ NGB, B+ QI+ IF(B+ QG — C1)(B, 8+ O]

IA

3 3
ellf = Fllo Z IVSillo + cll fllo > IV(S: — 8)llo

i=1 i=1

A

eN(a), (4.159)

where N(a) again is defined in the statement of the lemma as N (o, 3, u2).

Using an argument similar to (4.159), the following inequality can be shown from {4.156):

(G = C)B.B+ )~ (G~ G)B.B~ Ol < cl¢|*N(a) (4.160)
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From (4.157), we can derive

3
IVs(Gr = G1)(8,8+ O < elgT+ Y IV(Si = SiMlla (4.161)

=1

which implies

(G - G1)(B, B+ ) — (G1 =GB, B + Q)

3
< dB= BT NV(S: — Si)lle - (4.162)

i=1

Proof of (4.148): We are ready to derive (4.146).

We split the integration domain in two regions as:

L -5 =

/_ ~ |C|3 = (G(B, B+ () - G(B, B+ )¢

(f/ L)

==(G(B, 8+ ¢) — G(B, B+ ()d(]| - (4.163)

o

%

IC I3
(4.164)

From the oddness of the kernel Tg-llg, we change the variable (' = —( in the second integral

and get

|- 5| =

] / |<|3[(G EYB. B+ 0)
— (G — B)B, 8 — ))dCidCa|

/_ /0 KB —5C1%d6dCs

< cN{a), (4.165)

217

N(a)

<
= 27
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where we applied inequality (4.160) in the second step.

Proof of (4.147): Our next step is to prove
(L = 11)(B) — (h - L)(B) < el ~ FI°N(a) . (4.166)

For a complicated inequality like (4.166), we would like to break it down into several

integrals and estimate them one by one. It can be shown that

|(h — H)(B) — (I — [)(8)

- /__fﬁ+C)Gz(ﬁ6+C) (ﬁ+C)Gl(ﬁ,ﬁ+C)|C|3

f_ " 50+ 0.8 + 0 - FW + OGS B +C)|C|3

IA

f_ - DB+QCHB.B+Q) = (f - I +GUB B +C]|C|3dC‘

| ] R ol - oe.s+ 0 - @ - 6o p + O]

f_ i (F(B+C)— F(B + ONGy - Gl)(ﬁﬁ+c)|d3dC‘

Iy +ha+ 1. (4.167)

We prove the inequalities of I;; and 2 in detail. The estimates of 113 can be obtained

similar to that of f17.

Bounds on I;3: To estimate f12, we follow an idea by Caflisch & Orellana from [9] in

their estimation for singular operator. First of all, we break the integration domain into
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two regions, lCl < |6 - ﬁ,l a‘nd |CI 2 |ﬁ - ﬁils

o /_ / |C|3f (B + QG — G B, B+ - (G1 -G, 8 + g)]dgl

Locso™
277 lc<ig-g1  Ji¢I=18-8

é}sf(;@ + QUG- G)(B.B+¢) - (G - @1)(ﬂ’,ﬁ’+C)]dgl . (4.168)

For the first integral we use the oddness of the kernel similar to the way we prove (4.165),

while for the second integral, we apply inequality (4.162). Therefore, it follows that

o [ [ &5iE + 061 - GB.5+ 0 - (61— B8 + ]

/ L
-1 |¢|3
55511

[J(B +)((Gr— GI)(B,B+¢) — (G1 —G1)(B. B +Q))

2

~F(8 - OG- C1)(B.8 - Q) — (G1 - G)(B, 8 - O]

+1
2

/||>|6 :q ICI3 FB + QG - G1)(B,8+¢)

—(G1 =GB, 8 + Q)d¢
C

2 Jig<ip-p
c

+ o 1+ad N
12168 |CI3|C| (18— B'|N{(c)

< df-pFI°N(a), (4.169)

| |C|3lClach(a)

where we have applied (4.160) and (4.162) in the above proof.

Therefore, we get

Iiz < clB - BN (e) . (4.170)
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Bounds on I;: It is sufficient to prove

0,6+ )k - " KB+ OB B +o|§|3dc‘

<elf- ﬁ'l"‘llfllaz IVSilla, (4.171)

i=1

because by taking f/ = f — f and still writing as f in Jq;, the bound satisfies

3
o8 - B1%f = Flla 2 IVSilla < €18 - B|*N(a) .

i=1

From (4.169), by taking G; = 0 and f = 1, we get:

o ([] owssorguac [ e o)

<8~ B1%F o Z IV Silla - (4.172)

i=1

Therefore, to prove (4.171), we only need to prove that

[ [ ue+a-sepcs.s+ ol
I / (B +0) - FB)G: (B F +c)|d3dc‘

<elf- ﬁ’l"ufuoz IVSilla - (4.173)

i=1

For simplicity, we denote h = 8’ — 8 = (h1, h2). By changing variable from ¢ to ¢’ as

(=C+h,
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and still writing it as (, we re-write the second integral above as

w-kh1 prtha -
L e+ 0 - 1N B+ e

w+his —w+hg

For h suiliciently small, the integral

(f;/: [ ) vt a- seneo s o iha

does not contain any singular points for sufficiently small . Becaunse the integration area

is of order O(|h|), it can be shown that

(/ :f j; /_/_) U3 +0) = OG5+ O e

< CIhlllfIInZ IVSillo < ¢l8 - 817N (c) -

i=1

Therefore, to prove (4.173), we only need to prove

U_Zf_:(f(ﬁ+()—f(ﬁ))[01(5,6+C)I% (ﬁ’ﬁ+¢)|C hls]dc|

<ef - 6’I“I|flloz IVSilla -

i=1
(4.174)
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We denote the above integral as I3 and split it into two parts:

€1

b= 14|3

L 58+ 0= 700 [Gl(ﬁ,mc) -G8, ﬁ+<;)|C htg] dc’

+

-G d¢| .

I3+ Isp . (4175)

f FB+0 - 1(6) [Gl(ﬁ B o)L
I1=3]h|

I

Because the integration area is of order O{h2), we get

3
In < clB = 811 flle Y 1VSilla - (4.176)

i=1

To estimate /32, we further split I35 into two parts:

In < / I e 1618, 8+ ©) = Ga (8, 8+ O)-E
1¢1>3h}

[q 13
G G-
+ %A |G, B+¢ (———)‘JC
A
= 1-321 + I39n . (4].77)
which were denoted as f397 and fsg0.
‘We estimate them separately. First, it can be shown that
3
Tszz < B~ B0 flla D 1V Sille » (4.178)

i=1

since

O G-
I lc—-RP|~

Ll
‘1P

(4.179)
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Furthermore, the following bound can be proved.

3
Iz < B = B Flle Y 1V Silla (4.180)
i=1
since
, 1| <
IG1(8,8+¢) = Cr{F, B+ Ol e > IVSilo , (4.181)
i=1

where we have applied {4.154}, (4.156), and (4.162). The derivation of (4.181) is similar to
that of (4.179).

Moreover, as we mentioned earlier, by replacing f with f — f, we can prove
3
In<cB=B1NF = fla D IVSille

i=1

which further implies that
Iy <cB-F*N(a) .

In summary, we obtained inequality (4.136). Inequality (4.135) will follow if we take
F=5=0.

Up to now, the only thing left is to prove (4.153) — (4.157). Since the proofs are similar,
we just prove the first two.

1. The proof of (4.153)
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Basically, we need to prove

26+ 0) - =8) .,
a

which is equivalent to

12(8 + ) — 2(8)}?
<2

262.

Substituting the formulation of z, ¥, and z into the lefi-hand side of the inequality, we get

(cl + 518+ Q) - 51(8))2 N (Cz +5(B+¢) - Sz(ﬁ))2 N (53(ﬁ+ Q) -~ sa(ﬂ))2
i 5 § ’

which is greater than

3
1= 2(IVSillo + [VSallo) — 3 IIVS.[iF -

i=1

The above quantity has a lower bound of % if

1
198ilo < ; -

2. The proof of (4.154)

Similarly to the proof of (4.153), we can show that

|2(8+¢) —2(0)| _
€l T
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Therefore, to prove (4.154), we only need to show that

_ 3_ |3 3
[2(8+6) lczlfa(ﬁn <l SC(Z ”VSi”O) _
i=1

This is true if

Z - il 4 ;
|2(8 + () |Cz|§6)l Il SC(Z ||vs,-||o) ;

i=1

because by denoting Df = z(3 + {) — 2(3), we have

|DFP —[¢® _ IDF? — 16P | DfI? + | Df[I¢] + 1<
¢ I<I? ICIARA+ g

Ii comes down to show that for each §;

3
ISi(B+¢) - Si(B)| <c (Z ||V5i||0) <]

i=1

holds, which is obviously true.

This concludes our proof.

4.4.4 DBounds on Ej;

The error terms E;; are defined in system (4.63) — (4.68), which are space derivatives of the

Rk’s.
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By the definition of the E;;’s, using the Cauchy inequality for analytic functions, we get:

IE;lleyr < elEijllay+

< ¢ sup ||[VEg[S),S2, Ssllla{- + iw, - +in2)

(p1,u2}<p’
< elp— o)t sup [|Ri[S1, S2, Slllal- + i, - +ina) -
(p1,12)<p
(4.182)
It further follows from Lemma 4.4.6 that
3 2
IEijlley < elp—p)" sup (Z HVS}c”a) (- ipa, - + ipa)
(p2)<p \ 21
3 2
< ofp-p)7! (Z uvsknup)
k=1
3 2
< clo-p) [ D 3 Wnkallas | (4.183)
ki1=1ka=1

where in the last step we used the definition of ;.
Similarly, we can get the bounds of (E;; — Eij). We conclude this part of the estimate

with a final lemma which is identical to Lemma 4.3.1.

Lemma 4.4.7 Let z, y, z be given as in Lemma 4.4.8. Suppose ¢i; and aSi,- are analytic
in max(|Im{x1)|, |[Im(s2)|) < p. Then for 0 < p/ < p, and 0 < a < 1, the following

inequalities hold:

3 2

1Ellapy <elo— )70 D0 D Ikakollan | (4.184)

k1=1ka=1
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ond

3 2
“Eij - Ez’j"ap’ < C(p - p’)_l Z Z ("/wklkg”up + ""r‘bk1k2 ]Iap)

ki=1ke=1
3

2
Z Z ||¢k1kz - ibkl,kzllap 3 (4185)

Ei=1ky=1

where 1,7 =1,2,3.
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Chapter 5 Some Theoretical Results on Model Equations

In this chapter, we introduce model equations for two-dimensional and three-dimensional
vortex sheet equations.

The sections of this chapter are arranged as follows. Section 1 provides some theoretical
results for the three-dimensional model equation, where we show that our three-dimensional
model equation preserve the singularity type and the local singularity structure near the
singularity time of the full equation. We devote Section 2 to the theoretical work on two-
dimensional model eguation, which we present as a special case of our three-dimensional

model equation.

5.1 Three-dimensional Model Eqguation

5.1.1 Formulation

Consider the three-dimensional vortex sheet equation on an interface denoted as S,

8
() = /S Vo)), Ve @)T| % Y Gla(o) ~ a(e)) det (5.1)
where
1
—_ 4 — R —
Glz—-z) dr|z — 2|’
Z—Z

VZIG(Z—Z(Q’)) = —m,
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and

du

p
lva”(a’)T1 vaz(a])TI = %{zaz - a_%ch 2

where the integral takes the Cauchy principal value.

Our main purpose of introducing the model equation is to use it as a tool to numeri-
cally study the three-dimensional vortex sheet problem. As we have mentioned before, all
theoretical results on the singularity development of vortex sheet equations are based on
formal asymptotic analysis. To confirm the results, some numerical calculation is needed.
However, because of the nature of integro-differential equations, the numerical computation
of equation (5.1) could become prohibitively expensive. For this reason, we try to derive
a model equation for (5.1). We hope that the model equation captures the essence of the
vortex sheet singularity and, at the same time, can be solved efficienily.

Inspired by our two-dimensional model equation, we feel that the most singular part of
the integral on the right-hand side of equation {5.1) is in the neighborhood of z{w). Similar

to the two-dimensional model equation, we propose to replace
z(on, s} — 2(a), ah) ,
by the first order Taylor expansion around z{¢/')

Za, ()01 — o)) + Za, ()02 — o) .
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Consequently, equation (5.1) becomes:

%{z) = fs Van(e)", Voa(e)|

oy (0 )1 — o) + 2o, (@) {02 — o)
|Zey ()01 — 04) 4 Za, (&) (02 — 03)P

dod | (5.2)

with further leads to

oz _ 1 f/ (B (1 — 01} + pg, (2 — ah)) 2y, X 26, |N(e)
8t dr

dolidod, | 5.3
2, (o1 — o) + 7, (a2 — )P doy, (53)

where

Zoy X Ba
N_ 1 2

B [8a, x Zazl )

Furthermore, in every time step, if we can find a coordinate system {c;, tv2), such that

Za, *Bay = 1% Zag (5.4}

Zﬂ] - Zal = C‘2Za—2 M Zaz y (5.5)

where C; and C5 are independent of oy and os, the integral on the right hand side of

equation (5.3) becomes a convolution operator with kernel

235
2n{Ca08 + 2C a0z + o2)3/2
1 2

(5.6)

where k = 1,2. Therefore, we can use FFT to evaluate it. In particular, when €1 =0 asin
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the case of our computation, the spectral representation of the operator is:

—i&

Co(&2 + Cp83)1/2 7 (5-1)
and
—ifs
GERI 58)

In general, even if C4 # 0, the spectral representation of the the kernel is still known. In
this way, the computational complexity in each time step is reduced to O(N?log N) from
O(N?), where N is the number of mesh points in each direction.

However, since the numerical computation is performed on our model equation instead
of the full equation, it is important to understand how much our model equation can be
used to represent the full equation. That is the topic of next subsection, where we show
that our model equation does capture the singularity type of the full equation, while the

physical singularity time and location could be different.

5.1.2 Early Time Singularity Formation

QOur goal in this subsection is to show that our three-dimensional model equation preserves
the singularity type of the full three-dimensional vortex sheet equation.

First, it is necessary to review the results of last chapter where we derived the early
time singularity formation on the full equation.

We consider a vortex sheet interface S separating two layers of fluids. With the La-

grangian representation, we parameterize the interface using surface parameters oy and e,
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so that

Z(le], 0!2,15) = ($(al,a2,t),y(a1,ag,t),z(cq, a2:t))T -

In particular, according to Lemma (3.3.1} in the last chapter, it is reasonable to assume

that the coordinates (o7, az) satisfy

Zoy " Bay =0, (5.9)
Ou
=0, (5.10)
Ou
s =1 (5.11)

at time ¢t = 0. Without loss of generality, we also assume that

z{ag,on,t) = ap -+ Si(og,a9t),
ylo,o,8) = ag+ Sa(og,an,t)
Z(Cfl?a?:t) = S3(a11a27t) 3

where 51, 53 and S35 are small perturbations.
Under the above assumptions, we have shown in Chapter 3 that by considering o as
a parameter and complexifying ao, 2(a,-) develops % singularities on the co-direction at

t = 04.
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‘The key to the result is to derive a local term from the integro-differential equation. It

can be shown from the full equation that:

wla) = —wpel(a) +wi(a), (5.12)
= wige(a) +wala), (5.13)

where
Wigelet) = ﬁ : (5.14)

and w {e), we(a) stand for the limiting velocity approaching from the lower and upper layer
fluid respectively.

Furthermore, the local term 2wj,.(o) represents a tangential velocity jump from the
upper layer limiting velocity to the lower layer limiting velocity across the sheet. The jump
is the driving force of the development of singularities. To derive a similar local term from
our model equation, we analyze the difference between the full equation and our model
equation. We wonld like fo show that the difference is a regular integral and does not
generate any discontinuity when extended inio the complex domain.

Define:

a(a) — #(c)

W) = ~g [ [ IVante)”, Vaale)T| x 2L =2 e
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and
'umOd(C!) = —%j/\ |Vaﬂ(aI)T:vaz(a’)T|
B (@) (01 = ) + 2y (W) — )
|Za, () (01 ~ ¢]) + 2oy (@' )2 — )P °
where

u
nT ATy YK Op
IVah(e)T, Vo) = oty = 5t
The difference is
Dif(a) = (uf — um"d)(a) = —4%_ f/ [Vmu(a")T,Vaz(a')T[ x K(a, o )da'

where

z{e) —2(0) o () (1 — ) + By () (a2 ~ 0)

l2(c) — 2(@)P |20, (@) (o1 — ) + 2 (@) (02 — )P

Ko, ) =

It follows from the smoothness of #z that (similar to the proof in the chapter of existence

proof)

lim Ko o’) < —0— (5.15)

o’ —a - ]a - a'|

if 81, 5, and 93 are sufficiently small, which is guaranteed by our assumption at time ¢ = 0.
Consequently, for each z € S, Dif(z{e)) is a regular integral. This means that the
integral is continuous with respect to o. Thus, there will*be no jump on the integral when

moving from one side of the real as-axis to the other side of the real cvp-axis.
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Furthermore, since

W™ = uF — Dif |

mod

where w™ is the velocity evaluated from the model equation, from equations (5.12) and

{5.13), it can be shown that

w™a) = —we(c) +wi{a) — Dif(a) , (5.16)

= wiec(a) + wz(e) - Dif(a) . (5.17)

Since Dif{a} is continuous across the real o axes, this means that we have derived the same
local terms as that of the full equation.

In summary, we have shown that our model equation generates the same tangential
velocity jump as that generated by the full equation. As a result, these two equations
develop the same type of singularities at almost identical location up to the leading order

term.

5.1.3 Local Form of the Curvature Singularity

In this subsection, we show that our three-dimensional model equation preserves the local
form of the curvature singularity near physical singularity time.

Following the analysis in Section 3.5 of Chapter 3, it is sufficient to show that we can
derive the asymptotic system (3.72) — (3.74) from the model equation. It leads to the
asymptotic approximation of the local sheet form straightforwardly, as we have seen in
Chapter 3.

In fact, following the derivation by Hou & Zhang [17], as long as the perturbations
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are small in magnitude, we can show that the difference between our model equation and
the full equation only contributes to the smoother terms. As a result, we claim that the
leading order system from our model equation has the same leading order terms as (3.72)
- (3.74). Consequently, following the same derivations as in the Section 3.5 of Chapter 3,
we can show that by a similar transformation on the interface variable functions, our model

equation preserves the local form of the curvature singularity near physical singularity time.

5.2 Two-dimensional Model Equation

5.2.1 Formulation

The motivation of deriving a two-dimensional model equation for the Birkhoff-Rott equation
is mainly for computational purposes, and more importantly, as a special case for the
three-dimensional model equation. In fact, we provide more detailed analysis to show that
our model equations does captire the singularity type and the local physical singularity
structure of the full equation.

In the two-dimensional problem, the model equation is derived by approximating

(€) - z(¢)

by its first order Taylor expansion at z(£'} as

2ENE-€),

where z; stands for the space derivative of z(&, 1) [16].
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Therefore, the two-dimensional model equation is defined as:

0z %  Te(g)de
(&t) 57 / 2@ DE-8) (5.18)

where the over bar denotes the complex conjugation.

In this section, we assume that the perturbation of the sheet and the vortex sheet
strength are 2w periodic, i.e. , that 2(§ + 2m,t) = 2w + 2(§,1), Te(é + 27) = Tz, If we
normalize the flow so that the average jump in the tangential velocity across the vortex
sheet is unity, it implies that I'(£ + 2x) = 27 + I'(£). Given the periodicity, (5.18) can be

written as

9z(¢,t) _ i/% Te(£)
0

1 Ny
S = i . cot(§(§—§))d§ . (5.19)

Now, we extend £’ into complex domain, and consider z({£) as a complex function defined

on complex domain. We write the Cauchy principal value as a contour integral:

= T(e) Tel€) Lo 200
| s meetyte - e = [ eontle— €'+ S

(5.20)

where the contour € runs from £ = 0 to £ = 2w, and is assumed to be deformed beneath
& simple pole at £ = £. From the periodicity assumption, it is reasonable to assume that z

and I’ have the forms of

&) =&+ s(1), TE)=E+0(). (5.21)
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Following (9]. we complexify s as follows:

s*(&:1) = s(€,1) . (5.22)

Equation (5.19) can be analytically continued to the upper half complex £ domain as:

as*(E.t)y 1 1+ oe(E) 1 , , 1+ o¢(£)
o Imi fe Ta ey CHGY G D 5T (5.23)
where
Vg y=¢c-¢. (5.24)
Furthermore, we can write the equation as follows:
9s* (€.t} _  oel8) — s5e(8)
ot T2(1 + sg(E,1) +GEY (5:25)
where
_ L PR cot(:,zl-(.f - {’)) ’
Ge.t) = o [ o€+ TR e (5.26)

To derive an evolution equation for s{£,t), we take complex conjugate on both side of

equation (5.19) and deform the integration contour so that

Os B 12" Te(€) 1 R

St = o /0 —25(5’.t)60t(_(£_£))d§
1 Te(€') ; Lel€)
- = /C S cot( (€~ ENde’ + amiz o

14+ 0(8) 1 -/1“5‘5)

T sED) I e mE D) cot( (€ ~ €
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Finally, we extend £ into the upper complex domain to get

ase.t) _ o8 - sp6:t)
o 2L+ siEe)

+GYEL) . (5.27)

where

cot(z(€ - £)

T }de' . (5.28)

4mi

G (1) = —— (14 octenti +

From the derivation, € runs from & = 0 to £ = 2w, and is assumed to be deformed
beneath a simple pole at £ = £. However, following the idea used by Cowley, Baker &
Tanveer [12], we take the contour to run from & = 0 to £ = 2r along the real & axis
for the simplicity of the later analysis. The result is going to be confirmed by numerical
calculations a posteriori.

Assume we start with an almost flat interface, ie. | 5:(§) = O(e) for £ € R, it can be
shown from the Taylor expansion that

)

. i : -
T s (@.0) = E+C0‘t(§(€*£))+0(c) .

On the other hand, it follows from straightforward calculation that
1
i + cot(5(§ = €)1 ~ 2exp(~Im(§)) < 1,

when £ is far above the real axis. By combining the above two inequalities, we obtain the
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inequality that bounds the integral terms in (5.25) and (5.27) that

!H 2ot3E— N _ oy

1+ s.g(f’,i)

for Im(&) > 1.

Under the above estimation, equations (5.25) and (5.27) can be re-written as:

ds*(6,1) _ o) —se(8)

ot o 2(1+se(€,1) 7
Os(&,t) _ ol&)—sp(&.t)
o T 2L+ sEE)

(5.29)

(5.30)

In summary, we have derived the same simplified model system as system (2.13) in [12).

5.2.2 The MBO Initial Condition

In the rest of this section, we concentrate on the singularity formation of model equation. By

considering several different classes of initial conditions, we show that our model equation

develops the same kind of singularities spontaneously at iime £ = 04+ as the full Birkhofi-

Rott equation.

We start with the initial condition given by

8{£,0) =0, o¢(£) =ecos() .

(5.31)

This initial condition was first used and analyzed by Meiron, Baker & Orszag in [22].

Thereafter, we refer to this condition as the MBO initial condition.
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Consider the following expansion of z(£,1) with respect to ¢,

2= 2(€) + tz1(€) + Pz(€) + -

Substituting the MBO initial condition into the expansion, we get

»n{€) =¢.

(5.32)

(5.33)

Other terms will have to be derived from the model equation. Substituting the expansion

into equation {5.18), and expand it in powers of ¢, we get:

21(6) + 2tz (E) + -0 =
1 [ ) 1 , r et ,
o | (e ecosE)eot(5(6 — €N - 2 () + e

A7y 0

In particular, since zg = £, we can derive the formulation of z (£} as:

02" L " eot( e — €M1de’
5O = rlet=0= g [+ ecose)ootlle - £t
1, .
= 75155111{.

Since sin*(£) = sin(£), it implies

1
(&) = —éiasiné .

(5.34)

(5.35)

(5.36)

(5.37)
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Furthermore, we can derive z» as

il
228 = 4_115 0 (l—I-Ecos{')cot.(%({—5’))(—2{({’))(1{’

_ Ly N (=L ie cos € cot( L (€ — EMde!

= o O ecose (- Jiecose ot € - )
2r

= ﬁ ; —(%iacos§’+%i£20052§')cot(%(5—5'))(1{’
27

= -4372 ; —(§iecos§'+%isgcos%')cot(%({—5'))d§'

1 1
= —Zesinﬁ - gesin%

i
= —Zasinf(l + ecosé) .
Combining the first two terms, s has the expansion
1. . 1 5.
s = izetsmﬁ — gst siné(l +eccosé) +--- . (5.38)

However, no matter how small the time ? is, the power series does not converge far from
the real £-axis. In particular. it follows from (5.38) that the expansion becomes disordered

when
exp(—i€) ~ ™1t

which suggests that for small times, and far from the real £-axis, a similarity solution should

be sought of the form

n=ctexp(—if) . s=s0(n)+O), " =s5(n)+0(t) - (5.39)
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It follows from the transform that

8 Doy _ N
%" e exp{ z&)an , (5.40)
G, ooy B D

Combining (5.29), (5.30), (5.40) and (5.41), we find that to leading order

1 . 1
T T H =gy T W= e 42

Cowley, Baker & Tanveer [12] has derived the same system from the full eguation for
the MBO initial condition. This is to be expected since the full equation and the model
equation have the same leading order systems (5.29) (5.30) for the MBO initial condition.

From here, we can just follow all the analysis performed in [12]. In particular, their
analysis showed that s and s* have 3/2 power singularities at

2

&~ i]n(f:t

), (5.43)

when ¢ = 0+. This shows that the solution of the model equation develops 3/2 power

singularities at & ~ iln(-ft-) spontaneously at t = 0+.

5.2.3 Other Initial Conditions

In this subsection, we study the solution in which, initially, there exists at least one point £,
such that (1+ sgg) or (14 SSE) vanishes. In particular, around those points, the right-hand
side of equation {5.25) and (5.27) are dominated by the leading order terms.

Since the leading order terms blow up at some position &p, it is very possible that some
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singularity emerges from the analytical initial data. In the next two subsubsections, we
consider two cases. First, we study the solution around one point £ = £y, where (1+sg¢) = 0
but (1 + s5.) # 0. Then, we study the solution around a point = &, where (1 + sqo¢) and
(1 + i} vanishes simultancously. We show that our model equation generates the same

type of singularity as the full equation does under the above initial conditions.

The case (1 + sog(éo)) = 0 but (1 + s5.(&0)) #0

Apparenily, it is infeasible to expand the solution in powers of ¢t alone, since the expaunsion
would break down around &. This suggests that we expand the solution as a power series

in both { = £ — & and time ¢. We seek a solution in the following form:

£
Sp1 — J01

1 2
= — = . 2 LG .. . 5.

s soo — ( + 2802C +...+ (2(1+831) +Goo+ -t {5.44)

* * EJ 1 * 1 + (‘r
5 = SUO - SU].C -+ ‘2"502C2 + ... + ( 2S0221 - )t + P (5.45)
(5.46)

where
J%s N +

Son = ?"(‘)(&) » oo = d¢(&o) . and Ggg = G7(&,0) . (5.47)

The non-uniformity arises from the leading coefficient of O(t} terms in the expansion.
We need to match ¢ with t. From the simplified model equation (5.29) and (5.30), we see
that the leading coeflicient of O(¢) terms in (5.44) and (5.59) should play a deterministic
role. These two terms should be matched with the sp2 and sy, terms respectively. This

suggests that ¢ = O(t%) be a good match [12].
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Forf <« 1, let

2(1 -+ 0’01)

sp2(1 + 801))- (5-48)

(= 'qwt%, where w=(

and expand s and s* in the form of

1
5 = spp— nuwi? + (5+Goo+ iig‘“A( NE+ .. (5.49)
s = spo+((A+s51)Bn) — n)u)ti +.... (5.50)

so that by substituting into the evolution equation, A(n) and B(7) can be solved. Since we
have changed variables from (£,1) to (%,1), where £ = & -+ nwt%, the following equalities

can be verified:

o _ 20n 0o -1,-3

% ~ onoe T aee =W ) (5:51)
& _ dom od -la o

% = oot EE 3 Lo + o (5.52)

Substituting (5.52) into (5.49), we get:

1 1 1 1
° = —§nwt_% + §nwt_% + (5 + Ggo + + oo

d 1+ o1
= Alm)

1+ 58, T2 x ey
(5.53)

Substituting (5.51) into (5.50), we have

st=((1+85)By—Dw '+, (5.54)
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which implies

5¢ 1 1

— . L O[3). 5.55
30+s) 2 204508, (t2) (5:55)

Moreover, substituting (5.53) and (5.55), into (5.27), we extract the leading order terms

1+ om
1+ 83

1 1
190 a1+ G (5.56)

A = 3 20+ 55, B,

1+ s5)
which can be further simplified to

1
24 — nA, = -5 (5.57)

Similarly, from equation {5.25), it can be shown that

B—nBy=—. (5.58)
]

The system that consists of equation (5.57) and equation {5.58) coincides with system
(2.28) in [12]. Therefore, following the analysis presented by Cowley, Baker & Tanveer, we
can show that in this case, our model equation develops the same type of singularity as that
of the full equation. Furthermore, it follows naturally that the singularity appears at almost

the same location up to order O(t%) when ¢ < 1 as that of the Birkhoff-Rott equation.

The case (14 spg(€p)) = 0 and (1 + sg,(£o)) = 0

The above analysis is not valid when (1 + sp¢(5o)) and (T + Soe (£o)) vanish simultaneously.

However, following the idea presented above, we still can expand the solution as a power
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series in both { = £ — £y and time ¢:

1 2 —1—0‘01 "
s = spo—C+=8pl*+...+(———+Gpp+---)t+...
2 2s3,C 00
. i 1+ om
s = sgo—c+§sggg2+...+(23mc +Coop+ .. )tk
where
3n30

Son = g (60) » 001 = 0¢(60) , amd G = G”(60,0) -

(5.59)

(5.60)

(5.61)

Again we need to match { with . From the simplified model equation, we see that

the leading coefficient of the O(2) term should play a deterministic role. These two terms

should be matched with the sy and s, terms respectively. This suggests that { = O(t%)

would be a good match.

Let

4(1
= Tlﬂt%, where Q= (_( + ':01))-;- _
S5025p2

Therefore, the expansions {5.59) and (5.60) need to be replaced by

1
8 = Sop— ﬂQi% + 530292A(n)t% +ae,

1,
s = shy— NI+ 5332923(1;)11% o

(5.62)

(5.63)

(5.64)
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Change variable from (£, £) to (n,1), where £ = & + nﬂt%. We find

2 don oot

17
L - 2, 9% _gy-H L 5.65
% ~ poe oo O g (5.65)
7] ddn 0ot 1,9 @
= = = e oyt 2 5.66
% " mpot e 3 o m (5.66)
It follows from substituting (5.66) into {5.63) that
Os 1 2 1 2 1 -1 1 _1
i —gﬂﬂt 5+ §nﬂt i §5()292A(‘T})t 3 — ESDQanAnt 34 ..
= 2ot 3 2A() A+ (5.67)
Similarly, substituting (5.65) into (5.64) yields
& l & -1 1
3£=“‘1+§302Q t3Bﬂ+... f (5.68)
which implies that
— s
e ___1 _+iio0). (5.60)

2(1+s7)  s50B,

By substituting (5.67) and {5.69) into (5.27), we extract the leading order terms as

1., 1 .
630230293(214 — nAv,?) = —E";SO2SQQQ3 . (5.70)
which can be further simplified to
3
24 -pdy= > . (51)

2B,
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Similarly, we can derive from (5.27) that

3
9B — nB, = —— . 5.72
7 24 (5.72)

System (5.71) and (5.72) coincides with system (2.38) in [12]. Therefore, we can follow
the analysis by Cowley, Baker & Tanveer from now on. In particular, we can show that
in this case, our model equation also develops the same type of singularity {of power 3/2)
as that of the full equation. Further, as in the previous case, we can also show that the
singularity appears at almost the same location up to order O('t%) when ¢ <« 1 as that of

the full Birkhoff-Rott equation.

5.2.4 Motion of the Singularity

In the previous two subsections, we have shown that our model equation develops the same
type of singularity as the full equation spontaneously in the complex domain at { = 04-. In
the subsubsection, we show that at time ¢ = O(1), singularities can continue to propagate in
the extended complex domain. In particular, we derive an ODE which governs the motion
of the singularity, and thus, we show that the singularity type does not change along the
trajectory.

Suppose that at time ¢ a singularity is at £ = £,(¢). Close to the singularity we seek an

asymptotic expansion of the form:

s = Solt)+Si{t)n+ Spl)f + ..., (5.73)

s = SiB+ S+ SOP ..., (5.74)

where 7 = £ — £:(1).
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Substituting the above expansion into (5.25) and (5.27), and equating like powers of 7,

we derive the equations for the functions in the expansion as:

Sp— £.81 = -%;TSI;E? + G*(&s, 1), (5.75)
8- és; = -2 e glen), (5.76)
80 = -G =" (5.77)
50 = -T2, (5.79)

Although we have obtained similar system as (2.43) in [12], the forcing term is different.
It shows that although in both equations, the singularity type does not change when they
propagate along the complex domain, the actual trajectories can be different. Therefore,
the physical singularity time would be different, which has been verified by our numerical
calculations.

In summary, we conclude that in our model equation, 3/2 power singularities are gen-
erated spontaneously at ¢ = 0+, as in the full Birkhoff-Roit equation. The singularities
can move around the complex domain at later time but keep the same power. Therefore,
the physical singularity should alsc be of 3/2 power in our model equation for the initial
condition we studied. However, the trajectory along which the singnlarities propagate in

our model eguation might be different from that in the full equation and the times at which
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the physical singularities occur might also be different.

In our next subsection, we study the interface shape in the neighborhood of a singularity
near the physical singularity time in our model equation. We also show that our model
equation preserves the local singnlarity structure of the full equation near the physical

singularity time. All results will be verified by our numerical calculation in the next chapter.

5.2.5 The Local Form of the Curvature Singularity

In this sithsection, we study the local form of the curvature singularity. We hope to obtain
the interface shape in the neighborhood of the singularity. Without loss of generality, we
consider the case where ¢(£) = 0 in (5.21). Moreover, we assume that the singularity forms
at £t =0, £ =0, z = 0, and that the surface is moving with a velocity 2. We also assume
that at the time of singularity formation, the surface is locally flat in the neighborhood of
the singularity, with z ~ Af, where A is a complex number. The assumption is reasonable
when the singularity is of power 3/2.

We seek an asymptotic expansion of the solution to our model equation (5.18) in the
power series of both ¢ and £. We split the integral region into two subregions: a local region
with £ ~ O(2) and an outer region covers the rest of the integration domain. We also split

the integral into three parts according to the regions.

/. %(€ S£(£ &) '{f . / f }zgg NE=9) " (5.79)

where || € §d < 1.
Under the above assumptions, the first and third integral contribute to O(t%) and O(2!)

terms, whereas the shape of vortex sheet in the neighborhéod of the singularity is determined
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by the second integral. In order to approximate this integral, we re-scale it by using:

z= 5| A%+ A&+ s{€,7), t =M, (5.80)

where s here is slightly different from the s defined before in 5.21.

The second integral then becomes:

& d{l‘
[_5 ZEHE-¢) ,\/5(1+s§ ()~ &)
dg’
,\ —6- §(1+S£ £+ N0

_ / T sl 61 gg_;f“fd_c
X s §(1+8£(§+C N-¢) ¢ Al (
_ ] sg€+ ¢ dC 3111(6;5)
- Mrsler ) ¢ A

_ / se§+¢t) dg
Mg MrsE+CD) ¢

+0(e) . (5.81)

Again, we take |£| ~ ¢ when |£},t €« 1. We see, by splitting the integral, the first and the
third integrals must balance the Zg term in the expansion, and the next term of £ % matches

with the second integral.

Let

£={(-7)x, (5.82)

and seek a similarity solution:

5= (~1)IF(x) | (5.83)

where 1 < g < 2. For the initial conditions we studied in the early subsections,we know
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that g = %

The change of variable implies

0

= (=1) 84
& _  x 9 oy
ot ey M (5.85)

Therefore, by substituting the change of variables into the similarity solution, we get

o (SR b)) +otr ) (5.86)

On the other hand, further manipulations on (5.81) implies

s g ~ sel€+¢t) A
[iw@ve=s - 3 i s Ars+Cn ¢ T o0 (587
- / ” (‘T)q 1F (X+")( ~P)dn+0(r)  (588)
_ /\/ —m)" IF (X = i+ O(r) - (5.89)
By matching the O{(—7)%"!) terms, we obtain
xFy — gF = ﬁ /_ Z Wcﬁn i (5.90)

In order to fit the ‘outer region’” where £ = O(1), we claim that F ~ Fylx|9 as x — *co,
where Fyi are constants and satisfy Fy, = —F_. Under this condition, we perform the

integration by part in equation (5.90). The result is:

XFy - gF = 2:” /m F(X""T?Q_ FOO g, (5.91)
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Note that eguation (5.91) is the same as equation (5.7} in [12], which shows that our
model preserves the shape of vortex sheet where a physical singularity appears. Here, we
just briefly restate the main results in [12] which were derived from equation (5.91). Our
numerical calculations have confirmed these results.

By solving equation (5.91), we can show that

F = ~(1 —i)(4x® + 1)%? sin(g arctan(2x)) , (5.92)

where 7 is a real constant.

For the initial conditions that we considered here, g = g Thus the vortex sheet has the
local form
1
ze ~ A+3y(1- DA(-7)1/2 cos(§ arctan{2y)) , (5.93)

Zge = Asge ~ 3V2yAexp(—in /A (—T)V 3 (4x® + 1) Y4 sin(% arctan(2y)) .

(5.04)

Based on (5.94), we would like to mention one special case of our analysis. Note that
if we take arg A = 7w /4, the leading order branch-cut singularity is only evident in z, and
not in y. It provides an explanation of Shelley’s [28] observation that when £ = 0.5 in the
MBO initial condition, the nature of singularity in the real variable seems to be different
from the imaginary variable in the full vortex sheet equation. From the analysis presented
above, we have shown that a similar phenomenon should happen to our model equation as

well. This rather surprising result has also been verified by our numerical calculation.
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Chapter 6 Numerical Study on the Model Equations

In this chapter, we validate our theoretical analysis by performing numerical computations
on both two-dimensional and three-dimensional vortex sheet problems..

The sections in this chapter are artanged as follows. Section 1 presents our numer-
ical results for the two-dimensional problem. While in Section 2, we perform numerical

calculations on the three-dimensional problem.

6.1 Two-dimensional Model Equation

6.1.1 Algorithm

The moticn of a two-dimensional vortex sheet is governed by the Birkhoff-Rott equation

[6]-

60 =g [ Te€)eot a0 - )] (6.1

where the over-bar denotes the complex conjugate, ¢ is the time, z(£,1} = x(&, ) + iy(£, 1)
is the complex interface position parametrized by a Lagrangian variable £, and T(£) is
the circulation in the sheet measured between the point with coordinate 2 and a reference
particle. Most importantly, the integral takes the Cauchy principal value. function z — £
and function T'¢ are assumed to be 27-periodic.

Following Shelley [28], we use the modified point-vortex approximation (subsequently

referred to as MPVA) to study the full vortex sheet equation. Discretizing z(£,1 = 0) and
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¥(€) = T'¢(€) uniformly in the Lagrangian parameter £ as

z(t = 0) = 2(jh,t = 0) ,

v ={ih) ,

with h = 2 /N and j ranging from 0 to V — 1, we can approximate the velocity integral in
(6.1) by the alternating trapezoidal rule

Aoy 2

Ami

N-=1

> oot 3les(t) - (1) (62)
J+k odd
Shelley [28] showed that the approximation is of spectral accuracy, which means that the
error decreases faster than any algebraic power of h.

Naturally, MPVA can be applied to our model equation as well, since it is described as

o= [ o [fe €] (63)

However, since our model equation can be re-written as

% et) - = (3). (6.0

%€
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where H stands for the Hilbert transform defined as
11O =5 [ 1€ eot |56 - €| ag (6.5)
o) co 3 . .

The integral can be evaluated by means of FFT.

One common technique needed in numerically solving both the full equation and our
model equation is the spectral filtering technique introduced by Krasny [19]. Due to Kelvin-
Helmholtz instability, the round-off error of the calculation leads to a rapid and spurious
growth of the high-wavenumber amplitudes [27], causing a severe departure of the computed
solution of the discrete system from the exact solution. For this reason, Krasny employed
a Fourier filter that, at each time-step, zeroes any Fourier amplitude whose modulus is less
than some preassigned tolerance. Recently, Caflisch, Hou & Lowengrub [8] have proved the

convergence of the modified point-vortex approximation with spectral filtering.

6.1.2 Numerical Results

In this subsection, we study the two-dimensional vortex sheet with MBO initial condition.

The initial condition is

2(§t=0)=¢ (6.8)

(&) = =1 + £ cos(£) (6.7)

for £ = 0.5.

For this initial condition, we perform two sets of mumerical computations, using the
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full equation and our model equation respectively. The calculations of both equations are
performed using quadruple precision in order to detect the early time singularity formation.

The procedure can be described as follows:

1. Evolve both equations from ¢ = 0 up to ¢ = 1.3, by taking N = 256, At = 0.0025.

2. Double the mesh points N to 512, reduce At in half to 0.00125, and calculate both
equations from ¢ = 1.3 up to = 1.5 by taking the final results of the last step as the

initial condition.

3. Further double the mesh points N to 1024, reduce At to 0.000625, and calculate both

equations from t = 1.5 up to £ = 1.65.

In our calculations, the filter tolerance level is set at 1072 for both equations. Both the
above procedure and the tolerance level are set to follow that of [28], so that we can compare
the compuiational results with those by Shelley in [28].

The purpose of this section is to confirm our theoretical resnlts for the two-dimensional

model equation. Therefore, we analyze the numerical computations in four aspects:

1. Interface shapes and their Fourier spectra.

2. Early time singularity formation.

3. Local sheet form at the physical singularity time.

4. Physical singularity time.

1. Interface shapes and their Fourier spectra. In this part of the numerical
analysis, we want to show the sheet interfaces and their Fourier spectra for solutions of

both equations. As we can see from Figure (6.1) and Figure (6.2), the Fourier spectra of
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Tigure 6.1: The interfaces and Fourier spectrums calculated from the full equation, in which
t = 0.6 to 1.6 at intervals of 0.1.

the solutions to both equations have grown considerably as time increases, due to Kelvin-

Helmholtz instability.
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Figure 6.2: The interfaces and Fourier spectrums calculated from the model equation, in
which ¢ = 0.6 to 1.6 at intervals of 0.1.

2. Early time singularity formation. From the theoretical analysis for both the full
equation and the model equation, we know thati singularities form spontaneously at ¢ = 0+
when complexifying the independent variable. In particular, we showed that the solution
to our model equation develops the same type of the singularities at the same position at
which the full equation develops a singularity. In order to provide convincing numerical

evidence to support our analysis, we form-fit the Fourier spectrum of the data with:

| Xx(t)] = Cxk™5% exp(—axk) , (6.8)

Y (t)] = CyE™ exp(—oyk), (6.9)

where 5(; is the kth Fourier coefficient of x{£,1) — £ and ?f: is the kth Fourier coefficient of
y(¢,t). This form-fitting idea follows the previous work by Krasny [19], Pugh [26], Shelley
(28], and Baker, Caflisch & Siegel [3]. In the form-fitting, ax measures the distance of the

z-direction singularity from the real £ axis, while (8x — 1) measures the power of singularity



150

{a) ax {b) Bx

Figure 6.3: The form-fitted oy and Bx calculated from the full equation, in which ¢ = 0.6
to 1.3 at intervals of 0.1.

in the z-direction and similarly for ay and By.

As we can see from Figure (6.3}, Figure (6.4}, Figure (6.5), and Figure (6.6), Sx and By
are around 2.5 for both equations. This shows that at early time, both equations generate
3/2 singularities at x and y directions. Moreover, we notice that form-fitted o's is slightly
different between the full equation and our model equations. This indicates the disparity

between the trajectories along which singularity propagates in the two equations.
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Figure 6.4: The form-fitted cx and Bx calculated from the model equation, in which £ =
0.6 to 1.3 at intervals of 0.1.
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Figure 6.5: The form-fitted ay and By calculated from the full equation, in which ¢t = 0.6
to 1.3 at intervals of 0.1.
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Figure 6.6: The form-fitted oy and Gy calculated from the model equation, in which ¢ =
0.6 to 1.3 at intervals of 0.1.

3. Local sheet form at the physical singularity time. In the numerical study by
Shelley [28], he observed that the singularity type in the z direction is different from that
in the y direction. In later work, Cowley, Baker & Tanveer [12] explained this disparity
by asymptotic expansions around the neighborhood of the physical singunlarity near the
singularity time. Further, our analysis predicts that even in this case, our model equation
should still capture the local form of the vortex sheet shape at the physical singularity time.

By comparing Figure (6.7) and Figure (6.8), we see that for both equations, the second
order space derivative in the x variable becomes singular, while that in the y variable stays
regular. To provide a more precise measurement, we form-fit the Fourier spectra of the
interfaces. As can be seen in Figure (6.9), Figure (6.10), Figure (6.11), and Figure (6.12),
by comparing the § part of the figures, we conclude that the singularity’s power is about
3/2 in the z variable, while the singularity’s power is about 2 in the y variable. This subtle

feature is also captured by our model equation.



153

(a) z-direction (b) y-direction

Figure 6.7: The second order differentiation on z and y direction calculated from the full
equation, in which £ = 1.5, 1.525 and 1.6 to 1.625 at intervals of 0.0025.

{a) z-direction (b) y-direction

Figure 6.8: The second order differentiation on x and y direction calculated from the model
equation, in which ¢ = 1.3 and 1.5775 to 1.5925 at intervals of 0.0025.
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Figure 6.9: The form-fitted ax and Sx calculated from the full equation, in which ¢ = 1.6
to 1.8615 at intervals of 0.0025.
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Figure 6.10: The form-fitted ax and Bx calculated from the model equation, in which ¢ =
1.5775 to 1.5925 at intervals of 0,0025.
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Figure 6.11: The form-fitted vy and By
to 1.615 at intervals of 0.0025.

(b) By

calculated from the full equation, in which 2 = 1.6
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Figure 6.12: The form-fitted ay and Sy
1.5775 to 1.5875 at intervals of 0.0025.

calculated from the model equation, in which ¢ =



1586

4, Physical singularity time. One of the major differences between the two equations
is the singularity time. To have a definite measure on this issue, we check the o form-fitting
near the singunlarity time. As we can see from the « fitting curves in Figure (6.9}, Figure
(6.10), Figure (6.11), and Figure (6.12), the singularity time is about 1.5925 for our model

equation, while it is around 1.6125 to 1.615 for the full equation.

6.2 Three-dimensional Model Equation

6.2.1 TFormulation

As we staied in the previous section, our three-dimensional model equation is:

a_z_ __1_ (lu”&lz:xz - y‘f_‘(zz’al) X (z:];[ (Qf] - ai) + z’az(az - aé))dal da.‘
ot ir 172

|2, (01 — o) + 25, (a2 — )P
o L[] ten— ) b el N
4 |

do, dov! , 6.10
7 (on— o)+ 2, (s — AP adaz,  (6.10)

where N stands for the normal direction of the interface.

However, the model equation is not a convolution operator in its present form. If
we use direct summation in our evaluation of the velocity integral, it would take O(N4)
computational complexity in each time step, where &N is the number of mesh points in each
direction. The numerical calculation becomes prohibitively expensive even when N reaches
the level of O(100). We will introduce a special coordinate system (o, az2) to reduce the
integral operator in (6.10) to a convolution operator. Then the velocity can be evaluated
efficiently by FFT.

The special coordinate system is chosen so that the following properties are satisfied
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Zo, " Bay = Cl#g, - 2a, , {6.11)

Za,  Bay = C2%ay - Zag » (6.12)

where Cq and €5 are independent of aq and we. With this set of coordinates, the integral
on the righi-hand side of equation (6.10) becomes a convolution operator with kernel

Cj

: 6.13
2m(Ca0f + 2C1on 02 + a3)3/2 (6.13)

where i = 1,2. In particular, when C; = 0 as in the case of our computation, the spectral

representation of the operator is:

—i{1
Ca(€3 + Coe)1 /27 (6.14)
and
—i2 (6.15)

(&5 + Cat3)1/2
In general, even if C} # 0, the spectral representation of the kernels are still known as {16]:

—i(&1 — C1&2)
(Ca — C2NE — 2016165 + Catl)}

, (6.16)
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and

—i{Ca6 ~ C1&r) _
(Ca — C3)(E2 - 2016165 + (H€2)3

(6.17)

For interface near equilibrium, it is possible to prove the existence of a set of coordinates
satisfying (6.11) and (6.12) [16]. From our numerical experiences, we find that such coor-

dinates exist even for large initial data.

6.2.2 Some Implementation Issues

In this subsection, we discuss several implementation issues for our computations. These
issues have been addressed by Si in [29]. For simplicity, we just present a brief introduction
here without going into too much details. Interested readers should refer to [29] (Page
71-75).

In order to construct a coordinate system so that equations (6.11) and (6.12) are satisfied

at all time, we need to consider the following details:

1. Initially, we need to find a system of (o, @2) such that equation (6.11) and (6.12) are
satisfied. We can derive a system of PDEs for these coordinates which can be solved

by an iteration method.

2. During the evolution, it is possible that the coordinates from the last time-step do not
satisfy equation (6.11) and (6.12) in the current time-step. To avoid re-adjusting the
coordinates every time, we add two tangential velocities f1 and f> to the evolution
equation. These two added tangential velocities f} and f> are determined by a set of

linear elliptic PDE’s to guarantee that (6.11) and (6.12) are satisfied at all time.

We point out that adding f; and f> does not change the singularity structure. It is
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because that the only factor that affects the interface shape in the full equation is the
normal velocity. The change of tangential velocities only results in a re-arrangements
of the Lagrangian fluid particles. It does not change the tangential velocity jump.
Thus our analysis comparing the model equation with the full equation still applies

to this case.

However, the modification of the tangential velocity changes the evolution equation of
the velocity jump potential u, i.e. p is not conserved with time any more. Therefore, we
need to derive the evolution equation of u under the new added tangential velocities.
In particular, the equation can be writien as:

du

ot

= %tﬁ + Vap - (f1T1 + foTa + f3N) , (6.18)

d
d_‘:"(ﬂ:aytza t) +V3,U'Zt

where T, Ts, and N are the local tangential directions and the normal direction.
Note that if the interface evolves with the tangential velocities from the vortex shest

equation, then

dji Ofi -
d_i;(mfyazat) = EH +V2y' D

) . -
= EH +Vaii - (AT1 + T2+ f3N)

= 0, (6.19)

where f; and f» stand for the tangential velocities derived from the vortex sheet
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equation. Therefore, it follows from combining (6.18) and (6.19) that

Elﬁ(a:,y,z,t) = vz;”"((fl_fl)Tl+(f2_f2)T2)

dt
<\ By 7y Boy
— V- _((fl - PR+ (b= PR
Hh-nh F2= fo
[Zar] o Tzl P o2

3. After each small time-step evolution, even though we evolve the interface with the
added tangential velocities, (6.11) and (6.12) might not be completely satisfied at the
discrete level due to the numerical error. Therefore, we need to reconstrict the surface
based on the computed surface. Details in this part of the computation are given in

[29].

6.2.3 Algorithm

In this subsection, we briefly describe our Algorithm:

1. Given the initial interface 2, construct (o, a2} that satisfies (6.11) and (6.12).

2. For each Lagrangian particle, evaluate the integral on the right-hand side of equation
(6.10) using FFT. Compute the normal velocity by projecting the velocity to the

normal direction and write it as f3.

3. Compute the tangential velocities on o and oo direction respectively as fi and fo

using fs.

4. Evolve the interface and the vorticity strength according to a Fourth-order Adams-

Bashforth Method.
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5. Reconstruct the fluid interface based on the computed interface o satisfy (6.11) and

(6.12).

6. Compute the solution at the next time step from Step 2.

6.2.4 Numerical Results

In this section, we will perform an sxtensive numerical study of the 3-D vortex sheet model
equation to confirm our theoretical results obtained in the previous chapters. In particu-
lar, we will investigate three aspects of singularity formation in 3-D vortex sheets in our

numerical study:

1. Interface shape and the curvature.
2_ Singularity formation.

3. Local singularity structure.

In our three-dimensional computations, we take the following initial data:

z(t = 0) = (v, o2, €1 sin{cu — ez sin{aw))) (6.21)

where 1 = 0.1, and &5 = 0.5, with

plon, 02) =20 . (6.22)

For this initial condition, we solve the model equation with N = 64, N = 128, N = 256,
N =512, and N = 1024 respectively to ensure the convergence of our computation. Every
time we donble the mesh points, we reduce the time-step Nt by half. As a result, Af ranges

from 0.01 to 0.000625. The filter tolerance level is set to 10~12 in our computation, since
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we are using the standard double precision for the calculations of the three-dimensional
problem due to the computational resource constraint. The procedure can be described as

follows:
1. Evolve the interface using N = 256, At = 0.0025 up to ¢ = 1.00.

2. Double the mesh size, reduce the time step in half, and continue the computation up

to ¢ = 1.65 with IV = 512 and At = 0.00125.

3. At time 1 = 1.45, further double the mesh size, reduce the time step in half and

compute up to £ = 1.60 with ¥ = 1024 and At = 0.000625.

‘We summarize our numerical results below.

1. Interface shape and the Curvature Plot. In this part of the study, we illustrate
the dynamical evolution of the sheet interface and its mean curvature. We can see from
Figure {6.14) — Figure {6.20) that the mean curvature develops a rapid growth in time and
a curvature singularity may develop in finite time. It is important to point out that the ini-
tially smooth curvature function is pushed to form a sharp gradient along a certain direction
(like the B, direction in our analysis) while it remains relatively smooth perpendicular to
this direction (like the £ direction in our analysis). This confirms our analytical prediction
thai singularity formation for 3-D vortex sheets can be essentially reduced to a 2-D vortex
sheet along certain space curve.

In Chapter 3, our analysis predicts that for each fixed f;, 3/2 singularities form in
the extended complex £ domain spontaneously at # = 04. Since the speeds at which
the singularities propagate depend on 1, we expect that the physical singularities would
generically appear at some isolated points first, and then spread into a one-dimensional

manifold. In Figure (6.21), we present the contour plot of the curvature. We can see clearly
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Figure 6.13: Interface calculated from three-dimensional model equation at ¢ = 1.64.

that the singular region of curvature is indeed concentrated along a one-dimensional curve
which is parametrized by 8;. The curvature achieves its maximum value at isolated points
along these one-dimensional curves. Note that in this particular example, we have ) = m

and fs = ay.
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Curvaturo

Figure 6.14: Curvature calculated from three-dimensional model equation at ¢t = 1.20.

Curvetury

Figure 6.15: Curvature calculated from three-dimensional model equation at ¢ = 1.30.
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Figure 6.16: Curvature caleulated from three-dimensional model equation at ¢ = 1.400.

Figure 6.17: Curvature calenlated from three-dimensional model equation at # = 1.50.
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Curvatuie

Figure 6.18: Curvature calculated from three-dimensional model equation at £ = 1.60.

Curvuture

Figure 6.19: Curvature calculated from three-dimensional model equation at ¢ = 1.64.
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Figure 6.20: Curvature calculated from three-dimensional model equation at £ = 1.646.
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Figure 6.21: Curvature contours calculated from three-dimensional model equation at ¢ =
1.646.
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Singularity Formation: We study the singularity type in this part of the numerical
analysis. The purpose is to further confirm our theoretical result, which has predicted
that the singularity is of type 3/2 for a wide range of initial conditions along a certain
critical direction. Following the work of Krasny [19], we use the log-log plot of the Fourier
coefficients of the z-component of the intersection along the f2 direction with a fixed 5
which give rise to the maximum curvature value at the intersection of these two directions.
If the interface forms a 3/2 singularity at . as predicted by our analysis, the slope of the
logarithm of the Fourier modes would approach —2.5 asymptotically. In fact, from Figure
(6.23), Figure (6.24), and Figure (6.25), we see that the Fourier modes are approaching the
—2.5 slope as time increases. In particular, the four curves in Figure (6.23), Figure (6.24),
and Figure (6.25) represent the Fourier modes at four different times. As the singularity time
is approached, we can see that the Fourier modes corresponding to the lower to intermediate
wave mumbers converge to the —2.5 slope, while the higher wave number modes also move
towards this slope as the singularity time is approached. In addition, we find that the z, y,
and z components form a 3/2 singularity simultaneously. This indicates that the interface
may form a singularity of type 3/2 in finite time.

To provide further evidence of singularity formation of type 3/2, we have performed a
resolution sindy. In Figure (6.26), Figure (6.28), and Figure (6.30), we present the numerical
results using N = 1024. In each of the three figures, two sets of the computational results
are presented, using 512 by 512 mesh points and 1024 by 1024 mesh points respectively. In
addition, Figure (6.27), Figure {6.29), and Figure (6.31) show the close-up of these three
figures in the high frequency region. From the close-up plot, we observe that as soon as
the logarithms of the Fourier modes deviate from the -2.5 slope, the curves representing

the logarithms in the 512 by 512 computations also deviate from those in the 1024 by
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Figure 6.22: Cross section of curvature plot along y = 7, at £ = 1.2, 1.3 1.4, 1.5, 1.641 to
1.647 at the interval of 0.001 respectively.

1024 computation. Therefore, we conclude that the decaying behavior of the higher wave
number modes in these figures is due to the lack of numerical resolution and the filtering
effect. Moreover, we observe that at the same high wave number, the coefficients computed
from higher resclution (N = 1024) are closer to the -2.5 slope. This indicates that the higher
wave number modes will eventually converge to the -2.5 slope as more and more mesh points
are used. This resolution study gives convincing evidences that a 3/2 singularity is indeed

formed at the singularity time.
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Figure 6.23: Log-log plot of the X variable Fourier coeflicients of the a;-direction intersec-
tion passing the maximum curvature position at time ¢ = 1.61, 1.62, 1.63, 1.64. The Fourier
coeflicients plot increases as time increases. The straight line shows the —2.5 slope.

Figure 6.24: Log-log plot of the ¥ variable Fourier coefficients of the a;-direction intersec-
tion passing the maximum curvature position at time ¢ = 1.61, 1.62, 1.63, 1.64. The Fourier
coefficients plot increases as time increases. The straight line shows the —2.5 slope.
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Figure 6.25: Log-log plot of the Z variable Fourier coefficients of the o-direction intersection
passing the maximum curvature position at time ¢ = 1.61, 1.62, 1.63, 1.64. The Tourier
coefficients plot increases as time increases. The straight line shows the —2.5 slope.
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Figure 6.26: Log-log plot of the X variable Fourier coeflicients of the aj-direction intersec-
tion passing the maximum curvature position at time ¢ = 1.641, to 1.647 at the interval of
0.001. The Fourier coefficients plot increases as time increases. The straight line shows the
—2.5 slope. The two sets of curves stand for the computation results for 512 mesh points
and 1024 mesh points.
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Figure 6.27: Zoomed plot of Figure 6.26. Log-log plot of the X variable Fourier coefficients
of the a;-direction intersection passing the maximum curvature position at time ¢ = 1.641,
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases.
The straight line shows the —2.5 slope. The two sets of curves stand for the computation
results for 512 mesh points and 1024 mesh points.

Figure 6.28: Log-log plot of the Y variable Fourier coeflicients of the ¢-direction intersec-
tion passing the maximum curvature position at time ¢ = 1.641, to 1.647 at the interval of
0.001. The Fourier coeflicients plot increases as time increases. The straight line shows the
—2.5 slope. The two sets of curves stand for the computation results for 512 mesh points
and 1024 mesh points.
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Figure 6.29: Zoomed plot of Figure 6.28. Log-log plot of the ¥ variable Fourier coefficients
of the o;-direction intersection passing the maximum curvature position at time ¢ = 1.641,
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases.
The straight line shows the —2.5 slope. The two sets of curves stand for the computation
results for 512 mesh points and 1024 mesh points.

Figure 6.30: Log-log plot of the Z variable Fourier coefficients of the a;-direction intersection
passing the maximum curvature position at time ¢ = 1.641, to 1.647 at the interval of 0.001.
The Fourier coeflicients plot increases as time increases. The straight line shows the —2.5
slope. The two sets of curves stand for the computation results for 512 mesh points and
1024 mesh points.
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Figure 6.31: Zoomed plot of Figure 6.30. Log-log plot of the Z variable Fourier coefficients
of the ovj-direction intersection passing the maximum curvature position at time £ = 1.641,
to 1.647 at the interval of 0.001. The Fourier coefficients plot increases as time increases.
The straight line shows the —2.5 slope. The two sets of curves stand for the computation
results for 512 mesh points and 1024 mesh points.

4. Local singularity structure. In the last section of Chapter 3, in order to study
the local singularity structure, we introduce two new variables ¢ and ¢;. We show that to
the leading order ¢2 and z form 3/2 singularities but there is no 3/2th order singularity in
the ¢; variable. Since our analysis is based on formal asymptotic analysis, we would like to
validate this result numerically. From the log-log plot of the Fourier coefficients of the ¢
and ¢ variables along the S direction in Figure (6.32) and Figure (6.33), we see that the
Fourier modes of the ¢ variable approaches the -3.1 slope, while the Fourier modes of the
&2 variable approaches the -2.5 slope. This confirms that ¢, is smoother than ¢ near the
singularity time.

Throughout our analysis, we argue that under the special set of coordinates, one di-
rection is the essential singularity direction (the S direction) In the case we study here,

even with the added tangential velocities and the re-adjusted vorticity, the 3, directicn
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Figure 6.32: Comparison of the log-log plot of the ¢; variable Fourier coefficients to that of
the ¢ variable. Both intersections pass the maximum curvature position at time ¢ = 1.646.
The upper line is the Fourier coeflicients of the ¢, variable, the straight line has the slope
of -2.5. The lower line stands for the Fourier coefficients of the ¢ variable, the straight line
has the slope of -3.1. Similar resolution test is involved.

corresponds to the og-direction. So the aq-direction should be the essential direction to the
leading order. To confirm this idea, we compare the Fourier coefficients of the intersection
along the o-direction to the Fourier coefficients of the intersection along the as-direction.
As we can see from Figure (6.34), Figure (6.35), and Figure (6.36), even though our £ = 0.1
is not particularly small, there are still disparities in the tails of the Fourier coefficients in
all z, y, and z variables. This shows that the F» direction, which coincides with the oy-
direction in this case, is indeed the essential direction driving the singularity formation of
the 3-D vortex sheet problem. Further evidence is provided in Figure (6.37), Figure (6.38),

and Figure (6.39) to confirm this property.
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Figure 6.33: Zoomed plot of Figure (6.32). Comparison of the log-log plot of the ¢ variable
Fourier coeflicients to that of the ¢ variable. Both intersections pass the maximum curva-
ture position at time ¢ = 1.846. The upper line is the Fourier coeflicients of the ¢, variable,
the straight line has the slope of -2.5. The lower line stands for the Fourier coefficients of
the ¢y variable, the straight line has the slope of -3.1. Similar resolution test is involved.

Figure 6.34: Comparison of the log-log plot of the X variable Fourier coefficients of the
orp-direction intersection with the op-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.64. Upper line is the Fourier coefficients of the on-direction
intersection. Lower line is the Fourier coefficients of the ag-direction intersection.
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Figure 6.35: Comparison of the log-log plot of the Y variable Fourier coefficients of the
erp-direction intersection with the as-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.64. Upper line is the Fourier coeflicients of the o)-direction
intersection. Lower line is the Fourier coefficients of the as-direction intersection.
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Figure 6.36: Comparison of the log-log plot of the Z variable Fourier coefficients of the
ap-direction intersection with the as-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.84. Upper line is the Fourier coefficients of the a;-direction
intersection. Lower line is the Fourier coefficients of the as-direction intersection.
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Figure 6.37: Comparison of the log-log plot of the X variable Fourier coefficients of the
o1-direction intersection with the op-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.647. Upper line is the Fourier coefficients of the a;-direction
intersection. Lower line is the Fourier coefficients of the as-direction intersection.
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Figure 6.38: Comparison of the log-log plot of the Y wvariable Fourier coefficients of the
op-ditection intersection with the wo-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.647. Upper line is the Fourier coefficients of the e;-direction
intersection. Lower line is the Fourier coefficients of the ao-direction intersection.
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Figure 6.39: Comparison of the log-log plot of the Z variable Fourier coeflicients of the
o-direction intersection with the as-direction intersection both passing the maximum cur-
vature position at time ¢ = 1.647. Upper line is the Fourier coefficients of the o;-direction
intersection. Lower line is the Fourier coefficients of the as-direction intersection.
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Chapter 7 Conclusions

In this thesis, we have studied the three-dimensional vortex sheet problem thecretically and
numerically. We found that the three-dimensional vortex sheet problem can be reduced
to a two-dimensional vortex sheet problem to the leading order along certain space curve
and with appropriate change of variables. With this key observation, we have derived the
early time singularity formation and the local form of the curvature singularity near the
physical singularity time. The results are found to be qualitatively the same as those of
the two-dimensional vortex problem. Moreover, we have proved the long time existence
theorem for the three-dimensional vortex sheet equation for analytic initial conditions near
equilibrium. The existence time is almost optimal if the initial perturbation to equilibrinm
is sufficiently small. Further, by introducing simplified model equations, we have performed
careful numerical computations which confirm some of our theoretical results.

One area worth further research is how to best use our simplified model equations in
study of interfacial flows in three space dimensions. The fact that the model equations
capture correctly the singular behavior of the interface at small scales and can be evaluated
efficiently may find useful applications in other contexts. In fact, from our analysis, we
show that the difference between the full equation and the model equation is a smoothing
operator. Therefore, it is possible that we can develop an eflicient multi-resolution method
to represent the large scale regular behavior. This will offer an alternative fast method to
study three-dimensional interfacial flows which can capture the singular behavior at small

scales.
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It is generally believed that vortex stretching is an important mechanism for three-
dimensional incompressible Enler equations. It is a long open question whether the 3-D
Euler equations can develop a finite time singularity from smooth initial data. In this
sense, it is quite surprising that the 3-D vortex sheet is essentially like the 2-D vortex sheet.
It would be interesting to investigate whether this has any implication to the 3-D Euler
equations with smooth but nearly singular shear layered initial data. For example, what is
the limiting behavior of the regulerized vortex layer solution as the thickness of the shear
layer tends to zero. This may shed some useful light into the singularity formation in 3-D

Euler equations with smooth initial data.
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