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Abstract

In this thesis, we focus on Lagrangian investigations of isotropic turbulence, wall-bounded tur-

bulence and vortex dynamics. In particular, the evolutionary multi-scale geometry of Lagrangian

structures is quantified and analyzed. Additionally, we also study the dynamics of vortex-surface

fields for some simple viscous flows with both Taylor–Green and Kida–Pelz initial conditions.

First, we study the non-local geometry of finite-sized Lagrangian structures in both station-

ary, evolving homogenous isotropic turbulence and also with a frozen turbulent velocity field. The

multi-scale geometric analysis is applied on the evolution of Lagrangian fields, obtained by a particle-

backward-tracking method, to extract Lagrangian structures at different length scales and to char-

acterize their non-local geometry in a space of reduced geometrical parameters. Next, we report

a geometric study of both evolving Lagrangian, and also instantaneous Eulerian structures in tur-

bulent channel flow at low and moderate Reynolds numbers. A multi-scale and multi-directional

analysis, based on the mirror-extended curvelet transform, is developed to quantify flow structure

geometry including the averaged inclination and sweep angles of both classes of turbulent structures

at multiple scales ranging from the half-height of the channel to several viscous length scales. Re-

sults for turbulent channel flow include the geometry of candidate quasi-streamwise vortices in the

near-wall region, the structural evolution of near-wall vortices, and evidence for the existence and

geometry of structure packets based on statistical inter-scale correlations.

In order to explore the connection and corresponding representations between Lagrangian kine-

matics and vortex dynamics, we develop a theoretical formulation and numerical methods for com-

putation of the evolution of a vortex-surface field. Iso-surfaces of the vortex-surface field define

vortex surfaces. A systematic methodology is developed for constructing smooth vortex-surface

fields for initial Taylor–Green and Kida–Pelz velocity fields by using an optimization approach.

Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and

viscous incompressible flows. Numerical results on the evolution of vortex-surface fields clarify the

continuous vortex dynamics in viscous Taylor–Green and Kida–Pelz flows including the vortex re-

connection, rolling-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes,

and vortex stretching and twisting. This suggests a possible scenario for explaining the transition

from a smooth laminar flow to turbulent flow in terms of topology and geometry of vortex surfaces.
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2.23 Ŝ–Ĉ plane of the visualization space for Lagrangian structures with the blob-like initial

φ
(1)
0 at different scales in the frozen turbulent field (� scale 1; △ scale 2; ▽ scale 3; ⊲

scale 4; 3 scale 5). The sizes of symbols are scaled by the log of surface area . . . . . 39



xi

2.24 Average feature centers at different scales for the Lagrangian field with different initial

conditions at t = Te in stationary isotropic turbulence (solid lines) and the frozen

turbulent field (dashed lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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4.15 Averaged feature centers 〈Ĉ〉 and 〈Ŝ〉 at different times in the TG flow . . . . . . . . . 99

4.16 Relations between vortex surfaces and vorticity fields at t = 4 in the TG flow at

Re = 1600. Vortex surface cross-sections are expressed by contour lines of φ and the

magnitude of |ω| in shadings on the plane-cuts in the fundamental box . . . . . . . . 100

4.17 Vortex surfaces (iso-surfaces of φ̂ = ±0.015) in the KP flow at Re = 1000. These

surfaces lie in the x–y symmetry plane at z = 0, where −π/2 ≤ x, y ≤ π/2 . . . . . . . 101

4.18 Iso-contour lines of φ̂ = {±0.001,±0.01,±0.1,±0.5,±0.9} on the x–y plane-cut at z = 0

in the impermeable box for the KP flow at Re = 1000 . . . . . . . . . . . . . . . . . . 102

4.19 Relations between vortex surfaces and vorticity fields at t = 1.5 in the KP flow at

Re = 1000. Vortex surface cross-sections are expressed by contour lines of φ and the

magnitude of |ω| in shadings on the plane-cuts in the fundamental box . . . . . . . . 103

5.1 Dissipation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Sketch of the numerical implementation for computing the VSF. Solid curve: solution

of the VSF; dashed arrow: prediction step (5.14); solid arrow: correction step (5.15) . 110

5.3 Convergence studies of the numerical solutions for the VSF in the TG flow at Re = 100 112

5.4 Temporal evolution of 〈|λω |〉 in TG and KP flows at different Reynolds numbers (�:

Lagrangian field with the initial VSF; #: VSF) . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Evolution of the VSF in the TG flow at Re = 400. Some vortex lines are integrated

and plotted on the iso-surfaces at φ̂ = 0.5 (a–e) and φ̂ = 0.4 (f). Color on the surfaces

is rendered by 0 ≤ |ω| ≤ 12 from blue to red . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Interacting vortex lines on the tube-like vortex-surfaces at t = 5 in the TG flow at

Re = 400 in figure 5.5(e). Color on the lines is rendered by 0 ≤ |ω| ≤ 12 from blue to

red. The rapid local intensification of the vorticity could be explained by the interaction

of anti-parallel vortex tubes and the Biot–Savart law . . . . . . . . . . . . . . . . . . . 115



xiv

5.7 Evolution of the VSF in the TG flow at Re = 50. Some vortex lines are integrated and

plotted on the iso-surfaces at φ̂ = 0.5. Color on the surfaces is rendered by 0 ≤ |ω| ≤ 12

from blue to red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Vortex surfaces in TG flows for different Reynolds numbers at t = 7.5 . . . . . . . . . 116

5.9 Vortex surfaces from three independent initial VSFs (white: φ0 = (cos 2x−cos 2y) cos z;
light blue: φ0 = cosx cos y cos z; red: φ0 = cosx cos3 y cos2 z) in the TG flow for

Re = 400 at t = 7.5. The surfaces are shown in the sub domain 0 ≤ x, y, z ≤ π . . . . 118

5.10 Evolution of the VSF in the KP flow at Re = 200. Some vortex lines are integrated

and plotted on the iso-surfaces at φ̂. Color on the surfaces is rendered by 0 ≤ |ω| ≤ 15

from blue to red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1 Temporal evolution of the volume-averaged |λω| for Lagrangian simulations and |λvω|
for vortex-surface simulations in the viscous TG flow at low Reynolds numbers . . . . 129



xv

List of Tables

2.1 Summary of DNS parameters for isotropic turbulence . . . . . . . . . . . . . . . . . . 12

2.2 Summary of the evolution of alignments for the Lagrangian field . . . . . . . . . . . . 25

3.1 Summary of DNS parameters for turbulent channel flows . . . . . . . . . . . . . . . . 48

3.2 Breakdown of characteristic length scales for the filtered scales j in terms of the half-

height δ and viscous length scale δν in turbulent channel flow. . . . . . . . . . . . . . 52

4.1 Comparisons between VSFs and classical Clebsch potentials . . . . . . . . . . . . . . . 85

4.2 Parameters of the study for TG and KP flows . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Parameters of the study for TG and KP flows . . . . . . . . . . . . . . . . . . . . . . 109

A.1 List of wavenumber pairs (Kψ = 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



1

Chapter 1

Introduction

1.1 Lagrangian studies of turbulence

The Lagrangian method for the study of turbulence, originated by Taylor (1922), is a classical

but challenging approach, which involves tracking the trajectories of fluid particles. Recent progress

has seen the combination of modern supercomputation and advanced experimental facilities, thus

offering real promise for advancing our understanding of Lagrangian turbulence (see Toschi & Bo-

denschatz, 2009). To date most studies of Lagrangian turbulence have focused on the statistics of

single particles (see Yeung, 2002), particle pairs (see Sawford, 2001), and particle triangles or tetra-

hedrons (e.g., Pumir, Shraiman & Chertkov, 2000). Earlier, Batchelor (1952b) showed that the area

of material surface elements increases exponentially as a consequence of conservation of mass of the

fluid. The Lagrangian-history, direct interaction approximation developed by Kraichnan (1965) can

provide quantitative predictions of single particle or particle-pair statistics in isotropic turbulence.

Signature stretching and folding effects on Lagrangian structures in low Reynolds number flows were

demonstrated in the chaotic advection theory of Aref (1984). Several stochastic models for local sta-

tistical and geometric structure in three-dimensional isotropic turbulence based on the properties of

the velocity gradient tensor have been developed to show the material deformation history of fluid

elements (e.g., Girimaji & Pope, 1990; Chertkov, Pumir & Shraiman, 1999; Li & Meneveau, 2007).

Up to now, however, no general theory for Lagrangian turbulence exists, especially one that clarifies

the non-local geometry (in the surface sense) of finite-sized Lagrangian structures or material sur-

faces in turbulence. Knowledge of Lagrangian structures can also help elucidate various applications

in fluid dynamics, for example, scalar mixing (see Warhaft, 2000), premixed combustion (see Pope,

1987), and aquatic animal locomotion (see Peng & Dabiri, 2008).

While recent progress in particle tracking techniques in turbulent experiments have demonstrated

a promising capability for investigation of two-particle dispersion and Lagrangian tetrahedrons in

three-dimensional turbulence (e.g., Bourgoin et al., 2006; Xu et al., 2008; Salazar & Collins, 2009),

in order to follow coherent Lagrangian structures, tens and hundreds of thousands or even millions
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of particles need to be tracked simultaneously and instantaneously under some specified topological

order. This task seems formidable for current experimental facilities. Finally, for numerical simula-

tion, tracking finite-sized Lagrangian structure requires huge computational resources. In evolution,

the geometry of Lagrangian structures typically becomes highly convoluted with some portions al-

most singular and hard to resolve (Pope, Yueng & Girimaji, 1989; Goto & Kida, 2007; Leonard,

2009). Constraints on structure evolution are that the topology should be invariant and the vol-

ume conserved. Hence, a stable and topology-preserving method is required to track Lagrangian

structures.

1.2 Vortex dynamics in the Lagrangian framework

The Lagrangian formulation provides a revealing theoretical framework for studying kinematics

of turbulence and various turbulent transport phenomena. On the other hand, in order to study

dynamics of turbulent flows themselves based on the Lagrangian framework, we may need to find a

particular scalar field which can be directly mapped to the vorticity field for tracking vortex motions.

Vortex dynamics has become an important paradigm within theoretical fluid mechanics with a

substantial impact on many applications in fluid systems (e.g., Saffman, 1992; Majda & Bertozzi,

2001). Helmholtz (1858) obtained a central result in vortex dynamics, namely that vortex lines or

surfaces move with fluid in a perfectly inviscid flow. This means that material lines or surfaces that

were initially vortex lines or surfaces are vortex lines or surfaces for all time. Presently we define a

‘vortex surface’ (the term ‘vorticity surface’ is used instead in some literature)—examples of which

are tube-like or sheet-like geometries—as a smooth surface or manifold embedded within a three-

dimensional velocity field, which at a time instant t, has the property that the local vorticity vector

is tangent at every point on the surface. We further define a ‘Lagrangian field’, say φ(x, y, z, t), as

a scalar field whose iso-surfaces evolve as Lagrangian material surfaces, and a ‘vortex-surface field’

(VSF) φv(x, y, z, t) as a smooth scalar field whose iso-surfaces are vortex surfaces, either instanta-

neously or in evolution. This concept was utilized by Clebsch (1859) in developing a Lagrangian

formulation of the Euler equations for incompressible inviscid flow where each vortex line is ex-

pressed, at least locally, by the intersection of iso-surfaces of Clebsch potentials. More recently

vortex dynamics has been interpreted in terms of the Clebsch potentials (e.g., Lamb, 1932; Trues-

dell, 1954; Pumir, Shraiman & Siggia, 1992) while the classical Clebsch representation has been

extended to build Eulerian–Lagrangian frameworks for Navier–Stokes dynamics (e.g., Constantin,

2001; Ohkitani & Constantin, 2003; Cartes, Bustamante & Brachet, 2007). The global existence of

VSFs and smooth Clebsch potentials is, however, less obvious. Although the Helmholtz vorticity

theorem has been utilized for more than 150 years, we know of no Lagrangian study of the evolution

of complete and globally smooth vortex surfaces in general three-dimensional flows. Challenges exist
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in both the initial construction and tracking of vortex surfaces or VSFs.

1.3 Evolutionary geometry of Lagrangian structures/vortex

surfaces

In the paradigm of the energy cascade, three-dimensional turbulence is often viewed as composed

of different scales with energy transferred from large scales to small scales in a self-similar process

(e.g., Davidson, 2004). To investigate the temporal evolution of turbulent structures, Lagrangian

methods can be useful in clarifying the cascade process. In particular, while for inviscid flow,

vortex surfaces are Lagrangian material surfaces, little is understood concerning their evolutionary

geometry.

A hierarchy of vortex sizes appears to be involved in this multi-stage process. In recent work, the

multi-scale geometrical decomposition of instantaneous passive scalar (Bermejo-Moreno & Pullin,

2008), enstrophy, and dissipation fields (Bermejo-Moreno, Pullin & Horiuti, 2009) showed a geomet-

rical progression from blobs through tubes to sheet-like structures with decreasing physical length

scales. Because the Eulerian fields analyzed are obtained at a particular time instant, their geo-

metrical decomposition does not unfold or clarify the geometry of the dynamical eddy evolution or

breakdown process itself. This is an important question that is pertinent to cascade ideas put for-

ward by Richardson that have been cast in similarity and statistical form by Kolmogorov and others.

Furthermore, the knowledge of geometry of turbulent structures can inform a vorticity-based, small-

scale description of turbulence (Lundgren, 1982; Pullin & Saffman, 1993) from which subgrid-scale

models suitable for large-eddy simulation (LES) can be constructed (e.g., Misra & Pullin, 1997;

Chung & Pullin, 2009). Through the Helmholtz vorticity theorem and the construction of possible

VSFs, the evolutionary geometry of vortex surfaces may be relevant to the mechanism of vortex

reconnection (Kida & Takaoka, 1994), the scenario of transition from laminar flow to turbulent flow

(e.g., Brachet et al., 1983), and the possible finite-time singularity in Euler dynamics (e.g., Kerr,

1993; Hou & Li, 2008).

For wall-bounded turbulence, coherent motions or structures with particular tube-like and hairpin-

or Λ-like shapes have been extensively observed and reported from visualizations of laboratory ex-

periments and numerical simulations. Although the mechanisms of turbulent coherent, near-wall

structures are still not fully understood, over the past several decades many studies have showed

that they are important for drag reduction, turbulent control, and other applications (see Robinson,

1991; Panton, 2001). In addition, the scaling laws and high-order statistics of the mean velocity

and velocity fluctuations are influenced by turbulent coherent structures, such as hairpin vortices in

the near-wall region (see Adrian, 2007) and large-scale structures in the outer layer (see Hutchins

& Marusic, 2007). The quantified, evolutionary geometry of Lagrangian structures may clarify the



4

structural evolution of near-wall vortices, with initially almost spanwise orientation within the buffer

region very close to the wall, into possible Λ-like or hairpin vortices at larger wall distance.

1.4 Outline of thesis

In the present work, we begin in § 2 by developing a theoretical formulation describing Lagrangian

structures in terms of the Lagrangian field in turbulence. Then, computational methods for tracking

the Lagrangian field and a diagnostic tool for analyzing multi-scale geometric features are introduced

and applied to homogeneous isotropic turbulence.

For wall-bounded turbulence, in § 3, a systematic framework is introduced to quantify geometries

including averaged inclination and sweep angles of flow structures at multiple scales in turbulent

channel flows. The multi-scale and multi-directional geometric methodology is applied to investigate

the geometry of Lagrangian structures at different length scales in time evolution. For comparison,

the geometry of some typical Eulerian structures is also studied.

In § 4, we first develop a systematic methodology for constructing VSFs for both Taylor–Green

and Kida–Pelz initial velocity fields and then derive equations describing the evolution of VSFs.

This is followed by a study of the local and non-local evolutionary geometry of Lagrangian surfaces,

that were initially vortex surfaces, as an approximation to vortex surfaces at later times.

The numerical method for computation of the evolution of the VSF in viscous incompressible

flows with simple topology and geometry is developed in § 5. Corresponding numerical results

demonstrate continuous vortex dynamics in terms of topology and geometry of vortex surfaces.

Finally, general conclusions are summarized in § 6.
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Chapter 2

Lagrangian structures in homogenous

isotropic turbulence

2.1 Background and objectives

The main purpose of this chapter is to describe the non-local, multi-scale geometry of Lagrangian

structures in the cascade process in turbulence. In Fourier space, the velocity field can be projected

onto Fourier basis functions that represent, in some statistical sense, the hierarchy of eddy sizes.

Although it is natural to present the energy spectrum in Fourier space, it is often difficult to at-

tribute physical meaning to the amplitudes of the basis-function coefficients in terms, for example of

structural elements such as vortical structures with different geometry like tubes and sheets. An at-

tractive physically intuitive idea of energy cascade might be cast in terms of vortex dynamics where

vortex stretching is a crucial agent. But the participating eddies may not be the often portrayed

cartoon, blob-like structures of different sizes. While sheet and tubes are attractive alternative ge-

ometries, there exist few relevant quantitative models with predictive or even postdictive capability.

When the Reynolds number is infinite, vortex lines and surfaces can be considered as material lines

and surfaces that are progressively stretched by chaotic motion in the inertial range to form highly

convoluted shapes. This mechanism can occur at all scales, but the most efficient transfer of energy

is perhaps caused by the interaction of vortices with similar sizes. There is, however, no explicit

length scale in the vorticity equation in physical space. This suggests that a multi-scale method

based on transforms with basis functions that are localized both in Fourier space and physical space

is required (e.g., Meneveau, 1991; Farge, 1992). Furthermore, the knowledge of geometry of turbu-

lent structures can inform a vorticity-based, small-scale description of turbulence (Lundgren, 1982;

Pullin & Saffman, 1993) from which subgrid-scale models suitable for LES can be constructed (e.g.,

Misra & Pullin, 1997; Chung & Pullin, 2009).

At the level of diagnostics of large numerical databases obtained from both experiment and di-

rect numerical simulation (DNS), several non-local methodologies have recently been developed for
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the purpose of identifying structures in turbulence. A scheme for defining ‘Lagrangian coherent

structures’ in three-dimensional flows was constructed by Haller (2001) using direct Lyapunov expo-

nents along fluid trajectories. An extended structural and fractal description of turbulence has been

proposed by Moisy & Jiménez (2004) utilizing a box-counting method applied to sets of points of

intense vorticity and strain-rate magnitude. Extended dissipation elements were defined by Wang

& Peters (2006) as the ensemble of grid cells from which the same pair of extremal points of the

scalar field can be reached.

A topic closely related to the Lagrangian description is scalar advection-diffusion at very high

Schmidt numbers in turbulence where mixing of passive tracers occurs with an extremely small

molecular diffusivity. Recent work has confirmed the existence of intermittently distributed sheet-

like structures for scalar gradients (Ruetsch & Maxey, 1992; Brethouwer, Hunt & Nieuwstadt, 2003)

or scalar variance dissipation (Schumacher, Sreenivasan & Yeung, 2005). Some iso-contour plots can

mimic geometry properties in Lagrangian turbulence but not in a rigorous sense, because there is

no smallest scale in Lagrangian scalar dispersion without diffusion and the topology of iso-surfaces

of the Lagrangian field must be invariant in evolution.

In this chapter, we address the multi-scale geometric analysis of Lagrangian structures in isotropic

turbulence through direct numerical simulations. In § 2.2, a systematic framework is introduced to

describe Lagrangian structures by the Lagrangian field in turbulence. In § 2.3, we will describe a

backward particle-based method for tracking Lagrangian structures. In § 2.4, based on numerical

results and theoretical estimations, we then consider the area growth rate of Lagrangian surfaces and

discuss the formation of stretched and rolled-up structures with local flow patterns. § 2.5 describes

our application of the multi-scale geometric analysis developed by Bermejo-Moreno & Pullin (2008)

to investigate the non-local geometry of Lagrangian structures in time evolution at different length

scales. Some conclusions are drawn in § 2.6.

2.2 Description of Lagrangian structures in turbulence

2.2.1 Lagrangian dynamic equations for incompressible flow

Because the Lagrangian description is related directly to motion of individual fluid particles, it

can provide a different perspective to the Eulerian description for the study of turbulent transport

or the deformation of material surfaces and lines in a turbulent flow (see Monin & Yaglom, 1975).

In this section, we will present a brief literature survey on the description of Lagrangian structures

in turbulence and establish a formal theoretical framework in this study.

The trajectory of a fluid particle can be calculated by solving the kinematic equation

∂X

∂t
= V , (2.1)
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where X = X(X0, t0|t) is the location at time t of the fluid particle that was located at X0 at

the initial time t0 with X = (X1, X2, X3) and X0 = (X01, X02, X03), and V = V (X0, t0|t) is the

velocity at time t of the fluid particle with V = (V1, V2, V3). We use an upper case letter to denote a

Lagrangian variable and a lower case letter letter for an Eulerian variable. The Lagrangian dynamic

equation of incompressible flow is (see Monin & Yaglom, 1975)

∂V

∂t
=

1

ρ
[Xj, Xk, p] + ν

{[
X2, X3,

[
X2, X3,

∂Xi

∂t

]]

+

[
X3, X1,

[
X3, X1,

∂Xi

∂t

]]
+

[
X1, X2,

[
X1, X2,

∂Xi

∂t

]]}
, (2.2)

where ρ is the constant fluid density, p is the pressure, ν is the kinematic viscosity, and the abbre-

viated notation for the Jacobians is

[A,B,C] =
∂(A,B,C)

∂(X01, X02, X03)
. (2.3)

The numerical solution of either (2.1) and (2.2) or the equations of the equivalent continuum-

mechanics formulation (e.g., Marsden & Hughes, 1994) is formidable owing to the cubic and fifth-

order nonlinearity for the pressure term and the viscous term, respectively, in the right-hand side of

(2.2). Alternatively, the Lagrangian velocity for a fluid particle can be expressed as its local Eulerian

velocity

V (X0, t0|t) = u(X(X0, t0|t), t) (2.4)

which can be solved for individual particles using a prior solution of the Navier–Stokes equation in

Eulerian coordinates.

2.2.2 Lagrangian infinitesimal line and surface elements

The evolution of Lagrangian infinitesimal line elements l = X(1) −X(2) between a pair of fluid

particles and (vector) surface elements A = l(1) × l(2) in turbulence was first analyzed by Batchelor

(1952b). Because the volume of closed Lagrangian surfaces is conserved and any material line

is stretched because of the convective nature of turbulence, the surface area A(t) of Lagrangian

structures will increase with time in evolution. Batchelor (1952b) proposed the exponential growth

of the surface area for infinitesimal material elements

A(t) ∼ A0 exp(ξt), (2.5)

where ξ is the growth rate and A0 ≡ A(t = 0), which was then verified numerically by Girimaji &

Pope (1990).

By tracking the Cauchy–Green tensor of deformation in isotropic turbulence, Girimaji & Pope
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(1990) found that an initially spherical infinitesimal volume of fluid deforms into an ellipsoid with

tube-like or sheet-like shapes in a finite time. Similar results were obtained by Pumir et al. (2000)

using Lagrangian tetrahedrons. The evolution of infinitesimal elements and the Lagrangian models

based on local velocity gradient tensors can provide valuable insight into the geometry of small-scale

Lagrangian structures. These approaches cannot however, elucidate the geometry of finite-sized

Lagrangian structures that could exhibit multiple scales with differing local geometries in evolution.

2.2.3 Lagrangian field and finite-sized Lagrangian structures

Because two fluid particles, however close initially, tend to separate in turbulent flow (see Sawford,

2001), a finite-sized Lagrangian structure cannot be described by the product of infinitesimal line

elements for long times. Its motion can be expressed as that of an ensemble of particles comprising a

material surface where each particle is marked by a constant scalar value in evolution in the interval

t0 to t

φ(X(X0, t0|t), t) = φ(X0, t0). (2.6)

A scalar field can be associated with these particles

φ(x, t) =

∫
ψ(x, t)φ(X(X0, t0|t), t)dX, (2.7)

by the Lagrangian position function

ψ(x, t) ≡ δ(x−X(X0, t0|t)). (2.8)

From (2.6) and (2.7), the initial scalar field at t = t0 can be written as

φ(x, t0) =

∫
ψ(x, t0)φ(X0, t0)dX0 (2.9)

where (see Pope, 2000)

ψ(x, t0) = δ(x−X0). (2.10)

The Lagrangian position function ψ(x, t) is determined by the particle trajectory X(x0, t0|t), solving

(2.1) either forward or backward in time. Thus, from (2.7)–(2.10) an instantaneous scalar field can

be mapped to the initial scalar field as

φ(x, t)←→ φ0 ≡ φ(x, t0), (2.11)

by an ensemble of marked particles at t0 and t and their trajectories or Lagrangian characteristics

represented by Lagrangian position functions ψ(x, t).
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In fact the motion of marked particles can be related to a kind of scalar diffusion (Batchelor,

1952a). Differentiating (2.8) with respect to time yields the equation of motion for ψ

∂ψ

∂t
= −∂Xi

∂t
δ′i(x−X), (2.12)

where

δ′1(x−X) = δ′(x1 −X1)δ(x2 −X2)δ(x3 −X3),

with

δ′(x1 −X1) =
∂

∂x1
δ(x1 −X1).

Substituting (2.1) and (2.4) into (2.12), we obtain

Dψ
Dt

=
∂ψ

∂t
+ ui

∂ψ

∂xi
= 0. (2.13)

Next, integrating (2.13) with an ensemble of marked particles φ(X0, t0) at any initial time t0 as

∫
Dψ
Dt

φ(X0, t0)dX0 =
D
Dt

∫
ψ(x, t0)φ(X0, t0)dX0 = 0 (2.14)

together with the mapping (2.11) of φ(x, t) between two time instants shows that the marked particle

problem is a special case of the passive scalar dispersion without molecular diffusion

∂φ

∂t
+ u · ∇φ = 0. (2.15)

In this work, we will use the term ‘Lagrangian field’ to denote the non-diffusive passive scalar φ(x, t)

whose evolution is described by (2.15). The multi-scale geometric analysis of Lagrangian structures

will later be obtained from the statistical geometry of iso-surfaces of φ(x, t) at different scales.

2.2.4 Spectrum of the Lagrangian field

Under the straining motion of a velocity field u(x, t), Lagrangian material surfaces that are iso-

surfaces of φ(x, t) governed by (2.15) are stretched and folded, which will generally amplify the local

scalar gradient and thereby cause the characteristic length scale of the scalar field to continually

decrease. To investigate this cascade process of the Lagrangian field in a periodic domain we first

consider the Fourier expansions

u(x, t) =
∑

k

û(k, t)eik·x, (2.16)

φ(x, t) =
∑

k

φ̂(k, t)eik·x. (2.17)
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Substituting into (2.15) then gives

∂

∂t
φ̂(k, t) + ikm

∑

k=p+q

ûm(p, t)φ̂(q, t) = 0, (2.18)

which expresses the interaction of wavenumber triads, k, p, and q. The equation of the scalar

spectrum density

Φ(k, t) = 〈φ̂(k, t)φ̂(−k, t)〉 (2.19)

can then be obtained from (2.18) by multiplying φ̂(−k, t) and averaging

∂

∂t
Φ(k, t) + ikm

∑

k=p+q

〈ûm(p, t)φ̂(q, t)φ̂(−k, t)〉 = 0. (2.20)

In general, in high-Reynolds-number turbulence, the Lagrangian scalar cascade transports Φ(k, t)

to higher and higher wavenumbers by the nonlinear interaction of wavenumber triads k = p + q

without dissipation, which implies that the Lagrangian field with a smooth initial condition may

develop exponentially small structures as t → ∞. Furthermore, the Lagrangian field is still able to

develop exponentially small-scale structures even in a steady, low-Reynolds-number flow, which is

referred as ‘chaotic advection’ (Aref, 1984).

In the sequel, we distinguish between Lagrangian turbulence dynamics and kinematics. The

Kolmogorov–Obukhov–Corrsin theory (Monin & Yaglom, 1975) states that, in high-Reynolds-number

flow, the cascade process of a passive scalar is controlled by the large eddy turnover time Te inde-

pendent of molecular viscosity. This implies that for t > Te, the cascade is dominated by motions

with scales smaller than the Kolmogorov length scale, which may be of lesser importance for the

Lagrangian dynamics of turbulence. We therefore choose Te as the largest time in the investiga-

tion of the time evolution of Lagrangian structures. Although the analysis above indicates that

the characteristic scale of Lagrangian structures decreases as time increases, Fourier-space repre-

sentation is not well suited to an investigation of the finite geometry of the Lagrangian field and

corresponding non-local Lagrangian structures. This issue will be addressed in § 2.4.2 by analysis of

the scalar-gradient alignment and in § 2.5 by multi-scale geometric decomposition.
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2.3 Simulation overview

2.3.1 Direct numerical simulation

The Navier–Stokes equations for forced homogeneous and isotropic turbulence in a periodic box

of side L = 2π are written in the general form

∂u

∂t
= u× ω −∇

(
p

ρ
+

1

2
|u|2

)
+ ν∇2u+ f(x, t),

∇ · u = 0,





(2.21)

where ω ≡ ∇ × u is the vorticity. In this study, the flow was driven by a random forcing f(x, t)

which is non-zero for the Fourier modes with the wavenumber magnitude less than two.

The DNS of isotropic and homogeneous turbulence was performed using a standard pseudo-

spectral method on a 2563 grid. The flow domain was discretized uniformly into N3 grid points.

Aliasing errors were removed using the two-thirds truncation method. A stationary turbulence was

generated by maintaining constant total energy in each of the first two wavenumber shells, with the

energy ratio between the two shells consistent with k−5/3. The spatial resolution in spectral simu-

lation is evaluated as kmaxη, where η ≡ (ν/ǫ)1/4 is the Kolmogorov length scale and the maximum

wavenumber kmax is about N/3. Proper resolution of the Kolmogorov scale requires kmaxη > 1. The

value of kmaxη was typically larger than 4.3 in our simulation to ensure that we obtained accurate

velocity fields for further Lagrangian computations. The Fourier coefficients of the flow velocity

were advanced in time using a second-order Adams–Bashforth method. The time step was chosen

to ensure that the Courant–Friedrichs–Lewy (CFL) number was less that 0.5 for numerical stability

and accuracy.

Table 3.1 lists parameters of the DNS flow fields used in this study, and figure 2.1 plots the

resulting energy spectrum. Corresponding Lagrangian statistics for the same box-isotropic turbulent

flow at similar Reynolds numbers in DNS and LES are reported in Yang, He & Wang (2008). To

demarcate Lagrangian dynamics and Lagrangian kinematics discussed in § 2.2.4, we will investigate

the time evolution of Lagrangian structures in two separate cases. The first, referred to as a ‘turbulent

velocity field’, consists of u(x, t) obtained from the previously described DNS in 0 ≤ t ≤ Te.

The second, described as a ‘frozen velocity field’ consists of an instantaneous field from the DNS

u(x, t = 0). The frozen field was the result of running the DNS for t < 0 of the order of several

Te. It is therefore an instantaneous snapshot from a fully developed stationary turbulent field but

remains frozen in time for the purposes of solving (2.15). The instantaneous energy spectrum of

u(x, t = 0) is quantitatively similar to figure 2.1.
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Table 2.1: Summary of DNS parameters for isotropic turbulence

Total kinetic energy Etot = 〈
∑

k ûû
∗〉/2 0.915

Mean dissipation rate ǫ = 2ν〈
∑

k k
2ûû

∗〉 0.141
Root-mean-square velocity fluctuation u′ = (2Etot/3)

1/2 0.781
Taylor micro length scale λT = (15νu′2/ǫ)1/2 0.804
Taylor Reynolds number Reλ = u′λT /ν 62
Kolmogorov length scale η = (ν3/ǫ)1/4 0.052
Kolmogorov time scale τη = (ν/ǫ)1/2 0.266
Spatial resolution kmaxη 4.3
Integral length scale Le =

π
2u′2

∫
dkE(k)/k 1.76

Eddy turnover time Te = Le/u
′ 2.26

100 101 10210-12
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Figure 2.1: Energy spectrum of turbulence

2.3.2 Backward-particle-tracking method

Equation (2.15) is equivalent to the diffusion-less limit of the advection-diffusion equation in

Eulerian form. The Eulerian finite-difference method for this pure hyperbolic equation exhibits

significant numerical dissipation when the scalar gradient is high (e.g., LeVeque, 1992), which is

common in the evolution of Lagrangian fields. To avoid this, we convert the Eulerian equation (2.15)

to a set of ordinary differential equations (ODEs) as (2.1) to compute trajectories of fluid particles,

which is equivalent to tracing characteristics of (2.15). Another potential problem is that if particles

are tracked forward in time from t0, they will be distributed almost randomly in space at later times,

making it hard to reconstruct a continuous scalar field with satisfactory resolution on a Cartesian
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grid.

Instead, to obtain the Lagrangian field at a particular time t, we applied a backward-particle-

tracking method, which is absolutely stable, to deal with the convection term (e.g., Stam, 1999;

Nahum & Seifert, 2006). At time t, particles are placed at the grid points of N3
p , where Np could

be greater than the grid number N of velocity field, i.e., the resolution of the Lagrangian field could

be higher than the velocity field. In this study, Np = 1024, which is four times the resolution of

the velocity field. Then, particles are released and their trajectories calculated by solving (2.1). A

three-dimensional forth-order Lagrangian interpolation scheme is used to calculate fluid velocity at

the location of a particle. The trajectory of a particle is then obtained by the explicit second-order

Adams–Bashforth scheme. The time increment is selected to capture the finest resolved scales in

the velocity field. All the accuracy of numerical schemes and parameters in this study for particle

tracking satisfies the criteria proposed by Yeung & Pope (1988) so that the computation of particle

trajectories or Lagrangian characteristics are sufficiently accurate.

It is noted that the Eulerian velocity field here is reversed in time. In the simulation, we save the

Eulerian velocity fields from DNS on disk at every time step and subsequently perform backward

tracking from the particular time t to the initial time t0 with the reversed Eulerian velocity fields

saved previously. After the backward tracking, we can obtain initial locations of particles X0, which

is equivalent to obtaining the Lagrangian position function ψ(x, t) for each particle located at the

grid at t. From a given initial condition consisting of a smooth Lagrangian field φ(x, t0), we can

obtain the Lagrangian field at time t on the Cartesian grid by (2.6) and (2.7), or the simple mapping

(2.11) with Lagrangian coordinates and position functions.

In implementation, we store the position X0 at t = 0 and X(X0, t0|t) at a given time for each

particle with the same index as binary files after the backward tracking, which is equivalent to

saving the information of ψ(x, t) of all the particles. Then we can apply arbitrarily many different

initial conditions to obtain corresponding Lagrangian fields at the particular t from the same particle

position files X0 and X(X0, t0|t) in a single run. The tradeoff is that independent simulations are

required for each time t at which φ(x, t) is sought. Because φ(x, t) is obtained via the direct mapping

(2.11) from the initial field, the probability density function (PDF) of φ(x, t) is invariant with time

and the scalar fluctuation variance

Var(φ) ≡ 〈(φ(x, t)− 〈φ(x, t)〉)2〉

is also invariant with time. Hence, in principle there is no numerical dissipation in the computation

of the Lagrangian field by the backward-particle-tracking method.

As t → ∞, the Lagrangian field with a smooth initial condition may become discontinuous or

else develop exponentially small structures. If the backward particle integration from t to t0 was
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exact for each particle, then the solution values on the N3
p grid would correspond to

φ(i∆x, j∆y, k∆z, t) =

∫ L

0

∫ L

0

∫ L

0

φ(x, y, z, t)δ(x− i∆x)δ(y − j∆y)δ(z − k∆z)dxdydz

i = 1, · · · , Np, j = 1, · · · , Np, k = 1, · · · , Np (2.22)

where φ(x, y, z, t) on the right-hand side is the exact continuous solution. Thus our calculation of

φ at time t on the discrete field would be exact but interpolated values may have O(1) errors for

sufficiently large t. In practice, we find that the largest time for which we can obtain accurate,

smooth, and well-resolved Lagrangian fields simulated at the present resolution 10243 is the large-

eddy turnover time Te defined in table 3.1.

To illustrate the Lagrangian field at longer times using higher resolution with the backward-

particle-tracking method, we place particles at one cross-section (or any desired sub domain) of the

entire three-dimensional field prior to tracking. We can then obtain the Lagrangian field in a plane-

cut. Figure 2.2(a) shows the Lagrangian field on a plane cut 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π, z = π with a

40962 grid at t = 2.5Te from a smooth initial condition φ0 = cosx at t = t0 = 0 driven by a turbulent

velocity field. The scalar field has become extremely convoluted with signature stretched and spiral

structures. The effects of resolution for a detail of the scalar field, in the sense of (2.22), are shown in

figures 2.2(b)–(d). This demonstrates the effectiveness of the backward-particle-tracking method in

capturing the finest scale features with increasing particle numbers for large t. The scalar field with

the same initial condition and the same time lapse in the frozen velocity field is shown in figure 2.3.

This shows substantially less detailed structure than for the turbulent flow. Because straining and

vortex motions in the frozen field are fixed, the stretched and spiral structures are concentrated only

in a small number of local regions.

2.3.3 Three initial conditions of the Lagrangian field

In this study, we investigated the evolution of Lagrangian fields with three different initial con-

ditions φ(i)0 in the same domain of the velocity field. The iso-surfaces of these initial fields are closed

surfaces. These are as follows:

i. φ(1)0 = g(x0)g(y0)g(z0) where the Gaussian function

g(x) = exp(−0.5(x− π)2).

The iso-surfaces of φ(1)0 are concentric spheres/blob-like surfaces.
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(a) Plane-cut of the full three-dimensional scalar field with resolution 40962, 0 ≤ x ≤ 2π and 0 ≤ y ≤ 2π.

(b) 10242 (c) 20482 (d) 40962

Figure 2.2: The x–y plane-cut at z = π from the three-dimensional Lagrangian field at t = 2.5Te
with the initial condition φ0 = cosx in the forced stationary homogeneous and isotropic turbulence,
and zoomed parts of plane-cuts at a small region 2.5 ≤ x ≤ 2.9 and 3.6 ≤ y ≤ 4 with increasing
resolutions
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Figure 2.3: The x–y plane-cut at z = π from the three-dimensional Lagrangian field at t = 2.5Te
with the initial condition φ0 = cosx and resolution 40962 in the frozen turbulent field

ii. φ(2)0 = g(x0)g(y0)F0 where the filter function F0 = f(x0)f(y0)f(z0) with

f(x) = exp

(
−6
(
x− π
π

)6
)
,

which corresponds to iso-surfaces that are coaxial and tube-like in the z-direction. The filter

function F0 used here makes the corners of iso-surfaces curved for improved identification

(Bermejo-Moreno & Pullin, 2008).

iii. φ(3)0 = g(x0)F0, which corresponds to mostly parallel planes along the x-axis.
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(a) g(x0)g(y0) (b) g(x0)f(y0)

Figure 2.4: Typical plane-cuts with iso-contour lines of three initial Lagrangian fields

Two typical plane-cuts of these three initial fields are shown in figure 2.4. The characteristic length

scale of the initial fields is comparable with the integral length scale Le in turbulence. It is noted that

topological properties of Lagrangian structures are invariant in time. For example, if an iso-surface

is topological sphere (i.e., simply connected) at t = 0, then it remains so for all finite t.

2.4 Evolution of Lagrangian fields

2.4.1 Growth rate of the surface area of Lagrangian structures

The particle simulations for the Lagrangian fields were done with 10243 and correspond to an

evolution time from initial conditions φ(i)0 , i = 1, 2, 3, from t = 0 to t = Te. At times t = αTe, where

α = {1/16, 1/8, 1/4, 1/2, 3/4, 1}, Lagrangian fields φ(x, αTe) were obtained with three different

initial conditions. For example, the evolution of the Lagrangian structure with the blob-like initial

condition φ
(1)
0 corresponding to the iso-surface φ = 0.3 in turbulence is shown in figure 2.5. From

a simple sphere, after a finite time, the iso-surface is distorted to a highly convoluted shape with

small-scale rolled-up structures. The spreading or widening of the spectrum of φ(t) in figure 2.6

shows a cascade process from large scales to small scales for the φ(t) field in stationary isotropic

turbulence and the frozen turbulent field. The difference between spectra from two cases is very

small at the early time, but then becomes noticeable with increasing time. The Lagrangian scalar

cascade in turbulence is faster than that in the frozen field by dynamic convection motions. At a

longer time, the difference in spectra should be more apparent as implied in figure 2.2 and figure 2.3.

The exponential growth of the surface area A(t) of Lagrangian structures, initially proposed by

Batchelor (1952b) for infinitesimal material elements, was also verified numerically by Goto & Kida

(2007) using finite-sized material surfaces. To validate this in the present study, typical Lagrangian
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(a) t = 0 (b) t = Te/16 (c) t = Te/8

(d) t = Te/4 (e) t = Te/2 (f) t = 3Te/4

Figure 2.5: Iso-surfaces (φ = 0.3) of three-dimensional Lagrangian fields with the blob-like initial

φ
(1)
0 at different times

structures were selected as iso-surfaces at iso-contour levels φ = {0.1, 0.2, ..., 0.9}. Each iso-surface is

discretized on a triangular mesh, and the total area is the sum of areas of all the individual triangles.

The area growth rate

ξ(t) =
1

t
log

(
A(t)

A0

)
(2.23)

is computed by (2.5) and then the average growth rate 〈ξ(t)〉 at a particular time was presently

obtained by taking an average over iso-surfaces of φ at nine contour levels. As shown in figure 2.7,

following a rapid, monotonic growth in 2–3 Kolmogorov times, the average stretching rate approaches

a statistical stationary state around ξ = (0.33±0.4)τ−1
η in turbulence. This observation is consistent

with that of Goto & Kida (2007).

2.4.2 Alignment of the Lagrangian scalar gradient in turbulent and frozen

flows

The evolutionary geometry of Lagrangian structures may be related to the turbulent velocity

field or vorticity field by preferred alignments of the scalar gradient with the background vector
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Figure 2.6: Spectra of Lagrangian fields with the blob-like initial φ(1)0 at different times in stationary
isotropic turbulence (�) and the frozen turbulent field (#)
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t/τη

〈ξ
〉τ
η

Figure 2.7: Temporal evolution of the average stretching rate 〈ξ〉 rescaled by the reciprocal of
the Kolmogorov time scale τη of Lagrangian structures that are obtained from iso-surfaces of φ =

{0.1, 0.2, ..., 0.9} with φ(1)0 in stationary isotropic turbulence
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fields. Batchelor (1952b) predicted that the vorticity ω and the Lagrangian scalar gradient ∇φ tend

to become perpendicular. To investigate the time evolution of this alignment, we define the cosine

of the angle between these vectors as

λω =
ω · ∇φ
|ω||∇φ| . (2.24)

Similarly, the cosine of the angle between u and ∇φ can be defined as

λu =
u · ∇φ
|u||∇φ| . (2.25)

Figure 2.8 shows the temporal evolution of PDFs of |λω | and |λu| for both the turbulent (upper row)

and the frozen (lower row) velocity fields. The PDFs of |λω | in isotropic turbulence in figure 2.8(a)

indicates evolution from an almost uniform distribution in the initial condition at t = 0 towards a

strong peak at π/2. We also find that ∇φ tends to become normal to the local velocity as illustrated

in figure 2.8(b) showing the PDFs of |λu|. The time evolution of PDFs of |λω| and |λu| in the

frozen turbulent field is shown in figures 2.8(c, d). A comparison of figure 2.8(a) with figure 2.8(b)

shows that Lagrangian surfaces in stationary turbulence tend to align with vortex lines rather than

streamlines at t = Te. In contrast, as shown in figures 2.8(c, d), Lagrangian surfaces advected by

the frozen velocity field over long times appear to preferentially align with streamlines rather than

vortex lines.

2.4.3 Transport equations for alignment angles

These observations on alignment angles can be understood by analysis of the transport equations

for |λω| and |λu|. We assume 〈u〉 = 0. From (2.15), we can obtain the vector identity for ∇φ, u,

and a vector v
D
Dt

(v · ∇φ) =
(
∂v

∂t
+ u · ∇v − v · ∇u

)
· ∇φ, (2.26)

and then transport equations for ω · ∇φ and u · ∇φ

D
Dt

(ω · ∇φ) =
(
∂ω

∂t
+∇× (ω × u)

)
· ∇φ, (2.27)

D
Dt

(u · ∇φ) =
(
∂u

∂t

)
· ∇φ. (2.28)

Introducing the unit vector nφ = ∇φ/|∇φ|, we can obtain the transport equation for |∇φ| from

(2.15)
D|∇φ|

Dt
= −(nφ · S · nφ)|∇φ|, (2.29)

where S = 1
2 (∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain tensor. In an unsteady flow, from (2.27),
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Figure 2.8: Temporal evolution of PDFs of |λω | and |λu| obtained from the Lagrangian field with
φ
(1)
0 in stationary isotropic turbulence (upper row) and the frozen turbulent field (lower row), where
λω is the cosine of the angle between ω and ∇φ, and λu is the cosine of the angle between u and
∇φ

(2.28), and the vorticity equation in a viscous flow

Dω

Dt
= ω · ∇u+ ν∇2ω, (2.30)

we can derive equations for λω and λu

Dλω
Dt

=

(
nφ · S · nφ −

1

|ω|
D|ω|
Dt

)
λω +

ν

|ω|∇
2ω · nφ, (2.31)

Dλu
Dt

=

(
nφ · S · nφ −

1

|u|
D|u|
Dt

)
λu +

1

|u|

(
∂u

∂t

)
· nφ. (2.32)
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In the frozen velocity field, ∂u/∂t = 0, and then

D
Dt

(ω · ∇φ) = (∇× (ω × u)) · ∇φ, (2.33)

D
Dt

(u · ∇φ) = 0, (2.34)

so the equations for λω and λu become

Dλω
Dt

=

(
nφ · S · nφ −

1

|ω|u · ∇|ω|
)
λω +

1

|ω| (∇× (ω × u)) · nφ, (2.35)

Dλu
Dt

= (nφ · S · nφ − nu · ∇|u|)λu, (2.36)

where nu = u/|u|.
On a fluid particle, the solution of (2.29) is given by

|∇φ(t)| = |∇φ(t0)| exp
(
−
∫ t

t0

nφ · S · nφ dt′
)
. (2.37)

For both the turbulent and the frozen velocity fields we may write for the scalar gradient

〈|∇φ(t)|〉 =
(
2

∫ ∞

0

k2Eφ(k, t)dk

)1/2

. (2.38)

A consequence of the widening scalar spectrum Eφ(k, t) discussed in § 2.2.4 and (2.38), where the

integral is weighted by k2, is the progressive amplification of 〈|∇φ(t)|〉. This implies that in (2.37),

statistically

〈nφ · S · nφ〉 < 0. (2.39)

Let the principal strain rates for S be Γα, Γβ , Γγ , with corresponding unit vectors along the

principal axes of strain eα, eβ , eγ . In incompressible flow, Γα + Γβ + Γγ = 0 and we specify the

order Γα ≥ Γβ ≥ Γγ . Ashurst et al. (1987) showed that statistically Γα > Γβ > 0 and Γγ < 0

in isotropic turbulence. In addition, the alignment vector λi = nφ · ei is defined as the cosine of

the angle between nφ and ei. Because the passive scalar gradient tends to align with the most

compressive strain direction in turbulent flow (e.g., Ashurst et al., 1987; Ruetsch & Maxey, 1992;

Brethouwer et al., 2003) and referring to (2.39), we hypothesize that in turbulent flow or the frozen

turbulent flow,

〈nφ · S · nφ〉 = 〈Γαλ2α〉+ 〈Γβλ2β〉+ 〈Γγλ2γ〉 ∼ O(Γγ) < 0. (2.40)

The magnitude of the term 〈nu · ∇|u|〉 in (2.36) can be reasonably assumed small in comparison

with that of 〈nφ ·S ·nφ〉, because there is no preferred alignment between nu and ∇|u|. Thus, from

(2.36) and (2.40), in general the volume-averaged |λu| can be expected to decrease exponentially
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with time in the frozen turbulent field as

〈|λu|〉 ∼ 〈|λu0|〉 exp(Γt), (2.41)

with Γ < 0 and λu0 ≡ λu(t = 0). In other words, the Lagrangian field in the frozen velocity field is

attracted to a stream-surface field whose iso-surfaces are stream surfaces comprised of steady stream

lines.

On the other hand, D〈|ω|〉/Dt ≈ 0 for stationary turbulence, which implies that (2.31) could be

simplified as
Dλω
Dt
≈ (nφ · S · nφ)λω + νO(Rω), (2.42)

where ν is small in high Reynolds number turbulent flow and Rω = |∇2ω|/|ω|. By (2.42) the

approximation for the volume-averaged |λω | in turbulent flow could be

〈|λω |〉 ∼ 〈|λω0|〉 exp(Γt) + ν
O(Rω)

Γ
(1− exp(Γt)), (2.43)

with Γ < 0 and λω0 ≡ λω(t = 0). The exponential decay in (2.43) appears to be similar as that

in (2.41) for small time t, which is then attenuated for larger t owing to the cumulative effect

of the small, inhomogeneous viscous term. Hence the analysis suggests that the Lagrangian field

in stationary turbulence may tend initially to be attracted towards a vortex-surface field whose

iso-surfaces are vortex surfaces comprised of vortex lines, but that perfect, long-time alignment is

inhibited owing to small but persistent viscous effects.

Furthermore, the last inhomogeneous terms in both (2.32) and (2.35) could be nontrivial. Hence,

the evolution of 〈|λu|〉 in turbulence may perhaps be described qualitatively by the model

〈|λu|〉 ∼ 〈|λu0|〉 exp(Γt) + 〈fu(λu)〉, (2.44)

with a similar model for the evolution of 〈|λω |〉 in the frozen field

〈|λω |〉 ∼ 〈|λω0|〉 exp(Γt) + 〈fω(λω)〉. (2.45)

Here, the functions 〈fu(λu)〉 and 〈fω(λω)〉 are not expected to be as small as the last term in (2.43)

due to the additional nontrivial inhomogeneous terms in the governing equations of λω and λu. This

suggests that the Lagrangian field appears to show only a weak tendency to be attracted to the

stream-surface field in turbulence and to the vortex-surface field in the frozen field for long times.

The temporal evolution of the normalized volume-averaged statistics,

λ̃ω ≡ 〈|λω |〉/〈|λω0|〉 and λ̃u ≡ 〈|λu|〉/〈|λu0|〉
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is plotted in figure 2.9. As shown in (2.41), the evolution of λ̃u in the frozen field shows strong

exponential decay from t = 0 to t = Te, which implies that Lagrangian structures are progressively

attracted to frozen stream surfaces. The evolution of λ̃ω in isotropic turbulence shows even faster

exponential decay from t = 0 to t = Te/2 than that of λ̃u in the frozen field, but then as estimated in

(2.43), the viscous effect tends to slow down the decay corresponding to the tendency that Lagrangian

structures become attracted to vortex surfaces in turbulence. Furthermore, the evolution of λ̃u in

isotropic turbulence and λ̃ω in the frozen field rapidly approaches a statistical stationary state as

shown in the approximations (2.44) and (2.45), which implies relatively weak alignments in both

cases. These evolutions of alignments and corresponding tendencies of attractions of stream surfaces

or vortex surfaces at early and late stages are summarized in table 2.2. Here, we remark that the

numerical results for the alignment issue are based on the initial condition φ(1) with the large initial

length scale Le. The corresponding results with initial conditions φ(2) and φ(3) show quantitatively

similar behaviors.

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8
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t/Te

λ̃ω in turbulence
λ̃u in turbulence
λ̃ω in the frozen field
λ̃u in the frozen field

Figure 2.9: The log–linear plot of the temporal evolution of λ̃ω and λ̃u in stationary isotropic
turbulence and the frozen turbulent field

2.4.4 Formation of spiral and stretched Lagrangian structures

An interesting observation from figure 2.5 is the rolled-up or spiral structures at later stages of

the Lagrangian evolution. This phenomenon was discussed by Ruetsch & Maxey (1992) as multiply

layered sheets or spiral structures of strong passive scalar gradient when Sc ≫ 1. Previous studies



25

Table 2.2: Summary of the evolution of alignments for the Lagrangian field

Cases Approximation Attractor Tendency (early → late)

λ̃ω in stationary isotropic turbulence (2.43) Vortex surface Strong → weak
λ̃u in stationary isotropic turbulence (2.44) Stream surface Medium → weak
λ̃ω in the frozen turbulent field (2.45) Vortex surface Medium → weak
λ̃u in the frozen turbulent field (2.41) Stream surface Strong → strong

(e.g., Ruetsch & Maxey, 1992; Brethouwer et al., 2003) observed that vortex tubes are surrounded

by scalar gradient sheets over a wide range of Prandtl or Schimdt numbers. It is notable that rolled-

up structures, perhaps generated by vortex tubes, have themselves been observed mainly in scalar

simulations at high Schmidt numbers. These highly convoluted Lagrangian structures were denoted

as ‘folding effects’ by Goto & Kida (2007), who argued that the folding is produced by coherent

counter-rotating eddy pairs. Presently, we hypothesize that the formation of spiral structures of φ

in eddies corresponding to rolled-up shapes of Lagrangian structures can be also explained as the

alignment discussed in §§ 2.4.2 and 2.4.3 between the gradient of φ and other vectors obtained from

the local velocity field.

A simple kinematic model can be constructed: consider a two-dimensional exact solution of the

scalar dispersion (e.g., Rhines & Young, 1983). The governing equations for scalar φ(r, θ, t), vorticity

ω(r, θ, t), and stream function ψ(r, θ, t) in two-dimensional polar coordinates are

∂φ

∂t
+

1

r

(
∂ψ

∂θ

∂φ

∂r
− ∂φ

∂θ

∂ψ

∂r

)
= 0, (2.46)

∂ω

∂t
+

1

r

(
∂ψ

∂θ

∂ω

∂r
− ∂ω

∂θ

∂ψ

∂r

)
= 0, (2.47)

ω =

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)
ψ. (2.48)

For illustrative purposes we consider initial conditions corresponding to a linear scalar gradient

embedded within an axisymmetric vortex

φ(r, θ, 0) = r sin θ, ω(r, θ, 0) =
1

r

d

dr
r2Ω, Ω = e−r

2

, (2.49)

but emphasize that the following scenario is more general. The vortex remains steady while φ evolves

as

φ(r, θ, t) = r sin(θ − Ωt). (2.50)

The evolution of (2.50) is plotted in figure 2.10, where it is seen that the linear scalar gradient
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(a) t = 0 (b) t = 10 (c) t = 25
∇φ

u

ω

Figure 2.10: Evolution of spiral structures for the two-dimensional solution (2.50). The illustration
of orthogonality between u and ∇φ is shown in the rightmost subfigure

is wound into tight spirals by convective action of the vortex. It is straightforward to obtain λu as

λu = − cos(θ − Ωt)√
cos2(θ − Ωt) + (sin(θ − Ωt) + 2Ωr2t cos(θ − Ωt))2

. (2.51)

At t = 0, |λu| = | cos θ| where the probability of θ is uniformly distributed in 0 ≤ θ < 2π, so the PDF

of x = |λu| in the entire two-dimensional plane is a monotonic increasing function (2/π)(1−x2)−1/2

with 0 ≤ x < 1. As t → ∞, from (2.51), |λu| → 0 everywhere, so the PDF of |λu| is asymptotic to

a delta function δ(x − ǫ), ǫ → 0. The evolution of the PDF of |λu| in this two-dimensional case is

qualitatively consistent with that shown in figures 2.8(b) and 2.8(d). Since Lagrangian structures

are topologically invariant, then starting from any φ0 except u · ∇φ0 = 0, this model supports the

hypothesis that the spiral is the most probable structure within eddies. In figure 2.11, we can visually

observe spatial coincidences between spiral Lagrangian structures represented by iso-contour lines

of φ(t = Te) and vortical structures represented by regions of high enstrophy (ωiωi)
1/2 in isotropic

turbulence. Additionally, elongated Lagrangian structures induced by strong stretching motions are

observed to wrap vortex tubes.

2.4.5 Lagrangian R–Q analysis

The local topology of flow field can be classified by the invariants Q and R of the velocity gradient

tensor Aij = ∂ui/∂xj (Chong, Perry & Cantwell, 1990), where

Q = −1

2
AijAij , R = −1

3
AijAjkAki. (2.52)

One way to quantify the relation between Lagrangian structures and local flow patterns in turbulence

is to use the mean value of the norm of the scalar gradient |∇φ| conditioned on Q and R at t = Te.

We denote this by 〈|∇φ| |Q,R〉. As shown in figure 2.12, the curve (27/4)R2 +Q3 = 0 divides the

R–Q plane into four regions, each with different local flow structure. Details of the local flow pattern
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Figure 2.11: Iso-contour lines of φ(t = Te) and contours of the enstrophy at t = Te on the x–y

plane-cut at z = π with the blob-like initial φ(1)0 in stationary isotropic turbulence

for each region are described by Brethouwer et al. (2003) and references therein. Because the number

of samples is too small outside the pear-shaped contour to determine an accurate 〈|∇φ| |Q,R〉, the

values in the white regions are ignored. We observe steep scalar gradients in regions dominated by

bi-axial strains, which is consistent with the result obtained by scalar simulation with Sc = 0.7 from

Brethouwer et al. (2003). This result corresponds to the scenario of stretched Lagrangian structures

in straining regions. In particular, we also observe strong scalar gradients in regions inside stretched

vortex tubes, which could correspond to the scenario of spiral Lagrangian structures in eddies as

shown in figures 2.2 and 2.11.

2.5 Multi-scale geometric analysis of Lagrangian structures

2.5.1 Description of the methodology

In this section, we apply the multi-scale geometric methodology of Bermejo-Moreno & Pullin

(2008) to explore the non-local geometry of Lagrangian structures at different length scales. Starting

from a given periodic three-dimensional field, this methodology has three main steps: extraction,

characterization, and classification. The extraction of structures is itself done in two main stages. In

the first stage, the curvelet transform (see Candès et al., 2006) applied to the full three-dimensional

Lagrangian field at an instant in time provides a multi-scale decomposition into a finite set of
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Figure 2.12: The mean value of the gradient |∇φ| of the Lagrangian field conditioned on Q and R at
t = Te in stationary isotropic turbulence. The whole plane is divided into four regions by the curve
(27/4)R2 +Q3 = 0. The local flow patterns for each region are: upper left: stretched vortex; upper
right: compressed vortex; lower left: axial strain; lower right: bi-axial strain

component three-dimensional fields, one per scale. Second, by iso-contouring each component field

at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represent the structures

at that scale.

The basis functions of the curvelet transform, curvelets, are oriented needle-shaped elements in

space and a wedge in frequency, and they are localized in scale (Fourier space), position (physical

space), and orientation. The projection of the scalar field onto the curvelet basis produces a set of

decomposed fields, each characterized by a radial (in Fourier space) index j. Let the number of grid

points in each spatial direction be 2n. Then for each scale j = j0, . . . , je, with j0 = 2, je = log2(n/2),

the associated curvelet radial basis function has support near the dyadic corona [2j−1, 2j+1] in Fourier

space. This gives a multi-scale decomposition of the original scalar field into a total of je − j0 + 1

scale-dependent fields. For convenience we will subsequently label scale-dependent fields by the

index i = j−2, i = 0, . . . , je−2, with i = 0 corresponding to the largest-scale field and i = je−2 the

smallest resolved-scale field. Curvelets are naturally suited for detecting, organizing, or providing

a compact representation of multi-dimensional structures. The latest studies on applications of

curvelets to turbulence were reported by Bermejo-Moreno et al. (2009) and Ma et al. (2009).

The characterization stage begins with the joint PDF, in terms of area coverage on each individual

surface, of two differential-geometry properties, the absolute value of the shape index S and the
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dimensionless curvedness C,

S ≡
∣∣∣∣−

2

π
arctan

(
κ1 + κ2
κ1 − κ2

)∣∣∣∣ , C ≡ 3
V

A

√
κ21 + κ22

2
, (2.53)

where κ1 and κ2 are principal curvatures, A is the surface area, and V is the volume contained

within the three-dimensional surface. Characterization is based on the construction of a finite set

of parameters defined by algebraic functions of dimensionless forms of first and second moments of

the joint PDF of S and C for each individual surface. An additional parameter,

λ ≡ 3
√
36π

V 2/3

A
, (2.54)

measures the geometrical global stretching of the individual surface. Taken together, this parameter

set defines the geometrical signature of the iso-surface by specifying its location as a point in a

multidimensional ‘feature-space’.

A subset of the feature space is the so-called ‘visualization space’. This comprises a subspace

of three parameters (Ŝ, Ĉ, λ) where feature centers Ŝ and Ĉ are respectively dimensionless forms

of weighted first-order moments of the joint PDF of S and C. Each closed iso-surface is then

represented by a single point in the visualization space (Ŝ, Ĉ, λ). At each scale, the cloud of points

in visualization space represents all structures at that scale, for a specified iso-contour value. We

remark that, for the full field, iso-surfaces of φ are topologically invariant in time. This is not

the case for the multi-scale component fields after curvelet decomposition, where, in general, many

individual disconnected iso-surfaces are generated. Nonetheless, the set of iso-surfaces at each scale

can be interpreted as containing information on the statistical geometry of structures at that scale.

Finally, the geometry of a structure is classified by its location (Ŝ, Ĉ, λ) in the visualization

space. An analysis of a generic surface shows that different regions in the visualization space can

be viewed as representing different geometry shapes. Blob-like structures occupy the region near

the point (1, 1, 1) that corresponds to spheres. Tube-like structures are localized near the (1/2, 1, λ)

axis where λ is an indication of how stretched the tube is, and the transition to sheet-like structures

occurs as Ĉ and λ decrease. An illustration for three typical geometry shapes in the present study

and corresponding feature centers on the Ŝ–Ĉ plane with the predominantly blob-, tube-, and sheet-

like regions sketched are shown in figure 2.13. More details on the classification and the visualization

space (Ŝ, Ĉ, λ) are shown in figures 6 and 7 of Bermejo-Moreno & Pullin (2008). The clustering

algorithm in the original methodology was not applied in this study.
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(a) blob case (b) tube case (c) sheet case 0 0.5 1
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Figure 2.13: Iso-surfaces of three initial fields for the contour level φc0 = 0.95 and corresponding
feature centers on the Ŝ–Ĉ plane with the predominantly blob-, tube- and sheet-like regions sketched

2.5.2 Multi-scale diagnostics

Next, we analyze the non-local geometry in the evolution of φ(1)0 of § 2.3.3 corresponding to

Lagrangian blobs. Figures 2.14 and 2.15 show x–y plane-cuts at z = π of the full Lagrangian fields

with color intensity proportional to φ, 0 < φ ≤ 1 for sphere/blob-like initial φ(1)0 at different times

αTe in stationary isotropic turbulence and the frozen turbulent field, respectively. The evolution of

φ in the two cases is similar in the early stages at t = Te/16 and t = Te/8. Then the Lagrangian

structures in turbulence are stretched or wound by dynamic turbulent motions, producing alignment

between Lagrangian surfaces and vortex lines as discussed in §§ 2.4.2 and 2.4.4. In contrast, in the

frozen turbulent field, Lagrangian structures are attracted onto a frozen stream surface and are

therefore strained only in fixed regions to form more nearly-singular local structures, as shown in

(2.41).

The multi-scale methodology described in § 2.5.1 was applied to the three-dimensional Lagrangian

fields at each instantaneous time. For the given resolution of 10243 grid points, we will analyze the

first six scales provided by the curvelet transform. They will be denoted by a scale number, from 0

to 5. Increasing values of the scale number correspond to smaller scales. For example, the plane-cuts

of φ at t = Te in turbulence for each one of the filtered scales resulting from the multi-scale analysis

are shown in figure 2.16, which corresponds to the original field shown in figure 2.14 (f).

Volume-data PDFs obtained for the Lagrangian field for each one of the filtered scales are shown in

figure 2.17. The widening of the PDFs at small scales indicates that there is an increasing population

of small-scale structures appearing in the Lagrangian field with increasing time: this corresponds to

the cascade process in Fourier space as illustrated in figure 2.6. In figure 2.18, exponential tails in

normalized PDFs at intermediate and small scales are observed. This shows the strong intermittency

in the Lagrangian field at t = Te, which corresponds to the sheet-like small-scale structures as shown

in figures 2.14(f) and 2.16(d–f). The spectra of φ at t = Te associated with the original scalar field

for each one of the filtered scales are shown in figure 2.19. Combined with figure 2.16, we observe



31

(a) t = Te/16 (b) t = Te/8 (c) t = Te/4

(d) t = Te/2 (e) t = 3Te/4 (f) t = Te

Figure 2.14: Plane-cuts normal to the z-axis at its midpoint of the original three-dimensional La-
grangian fields with the blob-like initial φ(1)0 in stationary isotropic turbulence at different times

localization in both Fourier and physical domains through the curvelet filtering.

2.5.3 Geometry of Lagrangian structures

Iso-surfaces of φ(x, αTe) with three different initial conditions of § 2.3.3 were obtained for each of

the filtered scales after the multi-scale decomposition. The contour values φci at scale i are computed

from the volume PDFs as

φci = 〈φi〉+ 2
√

Var(φi) + ∆, i = 1 ∼ 5, (2.55)

with ∆ = |φmax − φmin| × 5%. This choice eliminates artificial, tiny high-frequency oscillations

induced by the curvelet transform near the boundary of computational domain. We argue that

the sample of iso-surfaces corresponding to the same relative contour value represents the typical

statistical geometric properties at each scale. An additional step in the extraction is applied to

periodically reconnect those structures which penetrate the box boundaries, to properly account for

their geometry.

The largest scale i = 0 strongly depends on the initial conditions. This is of less relevance in this
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(a) t = Te/16 (b) t = Te/8 (c) t = Te/4

(d) t = Te/2 (e) t = 3Te/4 (f) t = Te

Figure 2.15: Plane-cuts normal to the z-axis at its midpoint of the original three-dimensional La-
grangian fields with the blob-like initial φ(1)0 in the frozen turbulent field at different times

analysis and the contouring for scale 0 was only applied for the iso-contour level φc0 = 0.95 at t = 0

and t = Te/16 to show the difference among three initial conditions. Corresponding iso-surfaces

of three initial fields and feature centers on the Ŝ–Ĉ plane are shown in figure 2.13. A minimum

number of points, Nmin = 1500, is considered a threshold for a structure to be analyzed, so that

it is sufficiently smooth for a reliable calculation of its differential-geometry properties. We remark

that this number is higher than Nmin = 300 used in Bermejo-Moreno & Pullin (2008) and Bermejo-

Moreno et al. (2009), because near-singular structures tend to be more relevant in Lagrangian fields

than in Eulerian scalar or enstrophy fields with a finite viscosity. This threshold avoids spurious

features from fragmentation while retaining most sample structures in the characterization step for

this case.

The structures at each scale in turbulence are now characterized and represented in the visu-

alization space (Ŝ, Ĉ, λ) as described in § 2.5.1. Figures 2.20 and 2.21 show the depiction of the

multi-scale iso-surfaces in visualization space and the Ŝ–Ĉ plane, a corresponding subspace, with

increasing t. Each component graph shows all iso-surfaces across all scales color coded for scale as

indicated in the captions. Sizes of symbols in these figures are scaled by the logarithm of the surface
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(a) scale 0 (b) scale 1 (c) scale 2

(d) scale 3 (e) scale 4 (f) scale 5

Figure 2.16: Plane-cuts normal to the z-axis at its midpoint of the Lagrangian field at t = Te for
the blob-like initial φ(1)0 in stationary isotropic turbulence for each one of the filtered scales resulting
from the multi-scale analysis

area of the structures. At t = Te/16, there are only a few iso-surfaces that are clustered in the

upper-right of the visualization space in the view shown. This corresponds to blob-like structures.

As t increases, progressively, most structures are stretched towards the sheet-like region with low Ĉ

and λ, while we find only a few structures that appear to migrate first through the tube-like region

near the axis {Ŝ = 1/2, Ĉ = 1, λ}. For example, at t = Te/2, structures with low values of Ĉ are

dominant, and a few get close to the tube-like region in figure 2.21(d). This could be interpreted

as the evolutionary breakdown of Lagrangian blobs that first distort, while a few portions might

be rolled up into tube-like structures, and then are either broken down or stretched laterally into

sheets, or else are perhaps part of vortices whose velocity fields strain small-scale structures into

sheet-like form.

Furthermore, it seems the appearance of tube-like structures occurs later in that time evolution.

In figures 2.21(e) and (f), between t = 3Te/4 and t = Te, more structures appear in the vicinity of

the tube-like region. Details of the multi-scale decomposition within the visualization space of the

component fields at t = Te with the blob-like initial condition φ
(1)
0 are shown in figure 2.22. This

depicts clouds of points, corresponding to each of scales 1 through 5 in the Ŝ–Ĉ plane. We observe
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Figure 2.17: Volume-data PDFs of Lagrangian component scalar fields of different scales with φ
(1)
0

at different times in stationary isotropic turbulence
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Figure 2.18: Normalized volume-data PDFs of Lagrangian component scalar fields of different scales
with φ(1)0 at t = Te in stationary isotropic turbulence



35

100 101 10210-8

10-7

10-6

10-5

10-4

10-3

10-2

All scales
Scale 0
Scale 1
Scale 2
Scale 3
Scale 4
Scale 5

k

E
φ
(k
)

Figure 2.19: Spectra of the full Lagrangian field and component fields with φ(1)0 at t = Te

a geometrical progression from blobs through tubes to sheet-like structures with decreasing length

scale. Here, we note that a spiral-like sheet of small thickness could fill a substantial volume with the

space in between its turns deformed into a tube-like geometry as the sheet rolls up. After filtering,

this composite structure would appear as a virtual tube with a larger cross-sectional scale, in terms

of averaged radius, than the thickness of the sheet itself.

It is notable that the region of visualization space occupied by the cloud of all Lagrangian scale-

structures at t = Te is similar in shape to the region of visualization space occupied by the Eulerian

enstrophy and dissipation across all scales in figures 12 and 13 of Bermejo-Moreno et al. (2009). The

former is a consequence of Lagrangian evolution whilst the latter are instantaneous Eulerian fields.

There are differences, however, in which Lagrangian structures tend to show more sheet-like geometry

at intermediate and small scales. The cloud of Lagrangian structures at scale 1 in the visualization

space occupies a similar region of the visualization space to that of the Eulerian enstrophy at scale

3 (Bermejo-Moreno et al., 2009), and a passive scalar with Sc = 0.7 at scale 4 (Bermejo-Moreno &

Pullin, 2008). The corresponding wavenumber range of scale 1 is approximately between 3 and 20.

This implies that the geometry transition of Lagrangian structures from blob-like shape to sheet-

like shape begins earlier in scale space than for Eulerian fields. This is possibly due to the lack

of viscous dissipation for Lagrangian evolution. As described in § 2.4.4, Lagrangian structures are

exposed by persistent straining motions and wound by vortices, but are not subject to smoothing by

a dissipation mechanism. The dominant sheet-like structures with strong scalar gradients have an
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Figure 2.20: Visualization space for Lagrangian structures with the blob-like initial φ(1)0 at different
scales in stationary isotropic turbulence (# scale 0; � scale 1; △ scale 2; ▽ scale 3; ⊲ scale 4; 3

scale 5). The sizes of symbols are scaled by the log of surface area
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Figure 2.21: Ŝ–Ĉ plane of the visualization space for Lagrangian structures with the blob-like initial
φ
(1)
0 at different scales in stationary isotropic turbulence (# scale 0; � scale 1; △ scale 2; ▽ scale 3;

⊲ scale 4; 3 scale 5). The sizes of symbols in this figure are scaled by the log of surface area
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Ŝ

Ĉ
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Ŝ

Ĉ
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Figure 2.22: Ŝ–Ĉ plane of the visualization space for each one of the filtered scales with the blob-like
initial field φ(1)0 at t = Te in stationary isotropic turbulence (upper row in each sub-figure) and the
frozen turbulent field (lower row in each sub-figure). The sizes of symbols in this figure are scaled
by the log of surface area



39

0 0.5 10

0.5

1

Ŝ
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Ŝ

Ĉ
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Figure 2.23: Ŝ–Ĉ plane of the visualization space for Lagrangian structures with the blob-like initial
φ
(1)
0 at different scales in the frozen turbulent field (� scale 1; △ scale 2; ▽ scale 3; ⊲ scale 4; 3

scale 5). The sizes of symbols are scaled by the log of surface area

impact on accelerating passive scalar variance dissipation with a finite diffusivity and cause strong

intermittency in passive scalar statistics (see Warhaft, 2000). Furthermore, the similar-shaped clouds

at scales 4 and 5 in figure 2.22 might imply the self-similar geometry of Lagrangian structures at

small scales, which could provide some support for structure-based subgrid scale modeling. To

better investigate this possible self-similar geometry feature, simulations of φ in higher Reynolds

number turbulence with a larger inertial range could be helpful. This requires, however, much

higher resolution for both the turbulent field and the Lagrangian field than is employed presently.

Results from the multi-scale geometric analysis applied to Lagrangian structures in the frozen

turbulent field are shown in figures 2.22 and 2.23. We find a similar geometry transition as that

in turbulence but with less small-scale structures at the later stages, which is consistent with the

comparison of spectra shown in figure 2.6. Moreover, in general smaller Ŝ and Ĉ at intermediate and

small scales indicate that Lagrangian structures in the frozen velocity field exhibit more sheet-like

shapes. These observations can be better understood by considering average feature centers over

all the structures obtained from the extraction step in the multi-scale decomposition for each scale.

The three average geometric feature centers in visualization space are plotted in figure 2.24. The

differences of 〈Ĉ〉i, 〈Ŝ〉i, and 〈λ〉i in the two flow cases show that near-singular structures tend to be

formed more easily in the frozen turbulent field, because strong straining regions are always located

at the same spatial regions as clearly indicated in figures 2.3 and 2.15.

The evolution of Lagrangian structures with the tube-like and sheet-like initial Lagrangian fields

corresponding to φ(2)0 and φ(3)0 of § 2.3.3 in turbulence is shown in figures 2.25 and 2.26, respectively.

At early times, the geometries of large-scale structures represented by the feature centers at scale 0 at

t = Te/16 are different in all three cases. But we observe that all fields evolve so as to produce similar-
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Figure 2.24: Average feature centers at different scales for the Lagrangian field with different initial
conditions at t = Te in stationary isotropic turbulence (solid lines) and the frozen turbulent field
(dashed lines)

shaped clouds of structures at t = Te, which is verified by similar average feature centers at each

scale shown in figure 2.24. This suggests that the cloud shape shown in figure 2.21 (f) is a Lagrangian

attractor that is sensibly independent of the details of initial φ. In this interpretation, the memory of

the initial geometric property of the Lagrangian fades after the Lagrangian integral time TL ≈ 3Te/4

in chaotic motion, where TL is obtained from the Lagrangian velocity autocorrelation (Yang et al.,

2008). An alternative, but perhaps related, explanation is that the similarity in visualization space

at late times of all three present evolved Lagrangian fields and instantaneous Eulerian fields could be

a consequence of the statistically steady character of the underlying forced box turbulence DNS, i.e.,

Lagrangian structures tend to follow and to be attracted to vortex surfaces in high-Reynolds-number

turbulence.
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Ĉ

(b) t = Te/4

0 0.5 10

0.5

1

Ŝ
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Figure 2.25: Ŝ–Ĉ plane of the visualization space for Lagrangian structures with the tube-like initial
φ
(2)
0 at different scales in stationary isotropic turbulence (# scale 0; � scale 1; △ scale 2; ▽ scale 3;

⊲ scale 4; 3 scale 5). The sizes of symbols are scaled by the log of surface area

2.6 Results and discussion

In this study, the backward-particle-tracking method was applied to the computation of the tem-

poral evolution of high-resolution Lagrangian fields φ(x, t) in velocity fields from unsteady, forced,

stationary isotropic turbulence and also from a velocity field obtained from a turbulence simulation

but frozen in time. Lagrangian structures were extracted as iso-surfaces of the Lagrangian field

φ(x, t). From the evolution of finite-sized Lagrangian structures in turbulence, exponential surface

area growth is verified, and the growth rate normalized by the reciprocal of the Kolmogorov time

scale is approximately 0.33± 0.4. Stretched structures are observed in highly straining flow regions

and rolled-up structures are found in stretched vortex tubes. The formation of rolled-up or spiral

structures in the Lagrangian field is consistent with observed alignment between the scalar gradient
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Figure 2.26: Ŝ–Ĉ plane of the visualization space for Lagrangian structures with the sheet-like initial
φ
(3)
0 at different scales in stationary isotropic turbulence (# scale 0; � scale 1; △ scale 2; ▽ scale 3;

⊲ scale 4; 3 scale 5). The sizes of symbols are scaled by the log of surface area

and vorticity, and the moderate normal alignment scalar gradient and the local velocity. A simple

two-dimensional model of a scalar field wound by an axisymmetric vortex reproduces these features.

We find that iso-surfaces of the Lagrangian field are attracted to steady stream surfaces in the

frozen velocity field. In contrast, these tend to follow and almost attach to vortex surfaces for the

turbulent velocity field, but ultimate, long-time alignment is repressed by the cumulative action of

viscous effects. Furthermore, the tendency for the formation of near-singular, sheet-like Lagrangian

structures is more apparent in the frozen versus the turbulent velocity field owing to the presence

of time-invariant straining regions in the former. It is expected that these two differing alignment

scenarios would lead to quite different long-time behaviors and that this constitutes a principal dis-

tinction separating the kinematics from the turbulent dynamics of Lagrangian structures. Moreover

we suggest that this could lend support to hypotheses both concerning geometric similarities be-
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tween Lagrangian fields and corresponding vorticity fields, and also the independence of geometric

signatures of Lagrangian structures on initial conditions of the Lagrangian field.

A multi-scale geometric analysis (Bermejo-Moreno & Pullin, 2008) was used to study the statis-

tical, evolutionary geometry of the Lagrangian field for both the turbulent and the frozen velocity

fields. The evolutionary breakdown of Lagrangian blobs, from t = 0 to t = Te, was represented in

a space of reduced geometrical parameters representative of the shape of individual structures. As

time increases, we observed that, for the turbulent velocity field, multi-scale structures appear to

migrate from the blob-like region to the sheet-like region of that space. A few large-scale, tube-like

structures appear at later times because of the roll-up phenomenon. Somewhat similar behavior

was qualitatively observed for the frozen field but the population of small-scale structures at t = Te

was found to be much diminished in comparison with the turbulent velocity field. In comparison

with instantaneous passive scalar and enstrophy fields in turbulence studied by Bermejo-Moreno &

Pullin (2008) and Bermejo-Moreno et al. (2009), Lagrangian structures show predominantly more

sheet-like geometry in intermediate and small scales, perhaps owing to the lack of viscous dissi-

pation. Moreover, the geometry of Lagrangian structure from blob-like, tube-like, and sheet-like

initial Lagrangian fields is very similar at t = Te. This could imply that the geometry of Lagrangian

structures at the later stage does not depend on initial configurations.

A natural line of extension of the work presented in this chapter is to the study on the geometry of

Lagrangian structures in a turbulent wall-bounded flow, which will be addressed in § 3. Furthermore,

the methodology for the geometric analysis is applicable to experimental data sets. The multi-scale

decomposition in the extraction step is based on the curvelet transform and is currently implemented

to treat domain boundaries by periodization. The characterization and classification of educed

structures (Bermejo-Moreno & Pullin, 2008) can then be immediately applied. Another direction is

the investigation of the evolution of vortex surfaces. We will discuss this issue in §§ 4 and 5.



44

Chapter 3

Lagrangian and Eulerian structures in

turbulent channel flow

3.1 Background and objectives

Coherent motions or structures with identifiable tube-like shapes that appear to contain con-

centrated vorticity have been extensively observed and reported for wall-bounded turbulent flows.

Although the role played by turbulent coherent structures is still not fully understood, many studies

have provided evidence supporting the hypothesis that these structures constitute, in some statisti-

cal sense, basic elemental vortices that participate in the dynamics of near-wall turbulence, and are

important for drag reduction, turbulent control, and other applications (see Robinson, 1991; Panton,

2001). In what follows, we will generally use the term ‘quasi-streamwise vortices’, which has been

hypothesized in the cited references, to denote individual inclined structures or objects that exist in

near-wall turbulence. In the present work, we describe geometry-based metrics that further support

the existence of these structures.

Both Lagrangian- and Eulerian-based approaches have been used to study wall turbulence. La-

grangian methods typically track trajectories of fluid particles, often using visualization techniques.

Particle tracers such as hydrogen bubbles (e.g., Kline et al., 1967) or passive scalars such as smoke

or dye (e.g., Head & Bandyopadhyay, 1981) show evolving flow structures. These visual studies

revealed rich geometries in turbulent structures but remain mainly qualitative (Robinson, 1991).

Eulerian methodologies benefited from the development of DNS (e.g., Kim, Moin & Moser, 1987)

and experimental particle-image velocimetry (PIV) (e.g., Liu et al., 1991) that provide full, two- or

three-dimensional instantaneous velocity fields. The Eulerian structures are usually extracted using

either iso-surfaces of vorticity magnitude or popular vortex identification criteria (e.g., Hunt, Wray

& Moin, 1988; Chong, Perry & Cantwell, 1990; Jeong & Hussain, 1995).

Major observations on coherent structures in wall turbulence include that the streamwise velocity

field close to the wall is organized into alternating narrow streaks of high- and low-speed velocity
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(Kline et al., 1967) and that candidate hairpin- or Λ-like vortices may exist in the logarithmic

region, while the turbulent motion appears to be less active in the outer layer. The conceptual

model of the hairpin vortex was developed by Theodorsen (1952) and supported by experiment

(Head & Bandyopadhyay, 1981) and computation visualizations (Moin & Kim, 1982). The modern

model of the hairpin vortex is usually described as a combination eddy composed of a hairpin body

and two relatively short counter-rotating quasi-streamwise vortices that create low-speed streaks in

the buffer layer (Adrian, 2007). Furthermore, recent DNS and PIV studies provide evidence that

hairpin-like structures can autogenerate to form packets that occupy a significant volume fraction

of the boundary layer (e.g., Zhou et al., 1999).

Although observation of Eulerian structures can perhaps elucidate turbulence flow physics at a

time instant, the Lagrangian approach seems better suited for investigation of the temporal evolution

of turbulent coherent structures and their dynamical role in turbulent transition and mixing. This

issue was discussed by Green, Rowley & Haller (2007) who showed the evolution of single vortex-like

structures into a packet of similar structures in turbulent channel flow by identifying ‘Lagrangian

coherent structures’ (Haller, 2001). In § 2, we illustrated and quantified the evolutionary geometry

in the breakdown of initially large-scale Lagrangian structures in isotropic turbulence using a multi-

scale geometric analysis.

Consensus on the accepted geometry of vortical structures in wall-bounded turbulence remains

elusive. From flow visualization studies of the turbulent boundary layer, Falco (1977) showed that

large-scale structures of the smoke concentration field, with typical length scales from δ to 3δ, in-

clined to the wall at a characteristic angle 20◦–25◦, while Head & Bandyopadhyay (1981) measured

an inclination angle 40◦–50◦ for candidate hairpins. Using LES and correlation studies, Moin & Kim

(1985) obtained a most probable inclination angle of local vorticity vector as 45◦, while Honkan &

Andreopoulos (1997) found that the vorticity is inclined at 35◦ from multi-probe, hot wire measure-

ments. Using PIV experiments and statistical tools, Ganapathisubramani et al. (2006) identified

individual vortex cores most frequently inclined at 45◦. The model developed by Bandyopadhyay

(1980) gives that the inclination angle of candidate hairpin packets is 18◦. Christensen & Adrian

(2001) found an inclination angle of 12◦–13◦ for the envelope of a series of swirling motions. In

contrast, contour-dynamics simulation (Pullin, 1981) of a two-dimensional uniform vorticity layer

adjacent to a wall showed inclined structures that resemble flow features observed in the smoke

visualization (Falco, 1977) of the interface between turbulent and non-turbulent fluid in the outer

part of a turbulent boundary layer. This suggests that at least these outer features may not be gen-

erated entirely by three-dimensional effects. Open questions remain whose resolution may depend

on the scale of structures, Reynolds numbers and the usage of Lagrangian or Eulerian methods in

investigations.

The geometry of eddies is also of interest for structure-based models of near-wall turbulence.
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Predictive models have been developed, based on the attached eddy hypothesis (Townsend, 1976),

that utilize random superpositions of hierarchies of either hairpins (Perry & Chong, 1982; Perry,

Henbest & Chong, 1986; Perry & Marusic, 1995) or hairpin packets (Marusic, 2001). A particular

geometry or shape of hairpin or Λ-like vortices is assumed. Additionally, geometrical issues may

inform near-wall, subgrid-scale modeling for LES based on small-scale vortical structures (Chung

& Pullin, 2009). The existence of coherent structures with characteristic geometric features may

suggest a possible sparse representation for reconstructing a whole channel flow with a greatly

reduced number of optimal basis functions utilizing either a wavelet- or curvelet-based extraction

method (e.g., Okamoto et al., 2007; Ma et al., 2009).

In this chapter, the multi-scale geometric analysis of both Lagrangian and Eulerian structures

in isotropic turbulence (see § 2) is extended to turbulent channel flow by introducing the multi-

directional decomposition and mirror-extended data. The extended geometric analysis, which is

based on the mirror-extended curvelet transform (see Candès et al., 2006; Demanet & Ying, 2007),

will include both multi-scale and multi-directional decompositions of a specific scalar field with

non-periodic boundary conditions in wall turbulence. This provides quantitative statistics on the

orientation of turbulent structures at different locations, scales, and Reynolds numbers. Phenomena

in wall turbulence to be investigated include the follwing: first, the detailed geometry of quasi-

streamwise vortices and other structures in the near-wall region (about 5δν to 0.3δ); second, the

structural evolution of near-wall vortices, with initially almost spanwise orientation within the buffer

region very close to the wall, into possible Λ-like or hairpin vortices at a larger wall distance; third,

the existence and geometry of packets, based on statistical evidence obtained from the multi-scale

analysis.

We begin in § 3.2 by giving a simulation overview for the DNS, using a spectral method, and the

computation of Lagrangian fields with the backward-particle-tracking method. In § 3.3, a systematic

framework is introduced to quantify geometries including averaged inclination and sweep angles of

flow structures at multiple scales. § 3.4 shows the application of the multi-scale and multi-directional

geometric analysis to investigate the geometry of Lagrangian structures at different length scales in

time evolution. In § 3.5 we investigate the geometry of multi-scale, Eulerian structures and provide

statistical evidence supporting the formation of structure packets. Finally, some conclusions are

drawn in § 3.6.

3.2 Simulation overview

3.2.1 Direct numerical simulation

For turbulent channel flow in a domain with sides Lx × Ly × Lz and grids Nx × Ny × Nz, the

incompressible Navier–Stokes equations are non-dimensionalized by the channel half-height δ and
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the friction velocity uτ as

∂u

∂t
+ u · ∇u = −∇p+ P 0 +

1

Reτ
∇2u,

∇ · u = 0.





(3.1)

Here, the friction Reynolds number is defined as Reτ = uτδ/ν, where the friction velocity is uτ =
√
τw/ρ. The viscous, near-wall length scale is δν = ν/uτ , with wall shear stress τw. In the present

simulations, we set δ = 1 and uτ ≈ 1. A constant pressure gradient P 0 in (3.1) is used to drive the

flow. A diagram of the computational domain is shown in figure 3.1, where U is the mean velocity

in the streamwise direction.

xy

z

U
(0, 0, 0)

(Lx, Ly, Lz)

α+
α−

β+
β− x–y

plane

x–z plane

Figure 3.1: Diagram of the computational domain and definition of characteristic angles of structures.
Possible structures are sketched by dashed lines

The DNS is performed using a spectral method (see Kim, Moin & Moser, 1987): Fourier series in

the streamwise x- and spanwise y-directions, and the Chebyshev polynomial expansion in the wall-

normal z-direction. Aliasing errors are removed using the two-thirds truncation method. The low-

storage third-order semi-implicit Runge–Kutta method (Spalart, Moser & Rogers, 1991) is applied

for the temporal discretization and the CFL number

∆tmax

( |ux|
∆x

,
|uy|
∆y

,
|uz|
∆z

)

was set to unity, where ∆t is the time step size and ∆x, ∆y, and ∆z are the mesh sizes in three

directions. A summary of DNS parameters is listed in table 3.1, where Uc is the mean centerline
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velocity at z = δ and the superscript ‘+’ denotes a non-dimensional quantity scaled by δν . It is noted

that the runs with Lx = 2πδ were mainly used to investigate the geometric statistics of structures

at intermediate and small scales in the present study. On the other hand, large Lx in runs L1 and

L2 were chosen for the investigation of hypothesized long structures that may extend over 10δ in the

streamwise direction (e.g., Kim & Adrian, 1999; Jiménez et al., 2004; Guala et al., 2006). Statistical

steady state, mean velocity profiles for Reτ = 180, 395, 590, 950 are shown in figure 3.2, which agree

with the results in Moser, Kim & Mansour (1999) and del Álamo et al. (2004).

Table 3.1: Summary of DNS parameters for turbulent channel flows

Run Reτ Lx/δ Ly/δ Lz/δ Nx Ny Nz δν Uc/uτ ∆x+ ∆y+

S1 180 4π 2π 2 192 192 193 0.00556 18.28 11.77 5.89
S2 395 2π π 2 384 192 193 0.00253 20.02 6.47 6.47
S3 590 2π π 2 384 384 385 0.00165 21.27 9.92 4.96
S4 950 2π π 2 768 576 385 0.00105 22.68 7.77 5.18

L1 180 16π 2π 2 768 192 97 0.00556 18.15 11.77 5.89
L2 395 16π 2π 2 1536 384 193 0.00253 19.93 12.93 6.47
L3 590 8π π 2 1152 384 385 0.00165 21.16 12.87 4.96
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U
+

z+

ln z+/0.41 + 5.2

Figure 3.2: Mean velocity profiles from the DNS. Symbols denote the results at Reτ = 950 in del
Álamo et al. (2004)

3.2.2 Backward-particle-tracking method

The three-dimensional Lagrangian field φ(x, t) is computed from the scalar convection equation

(2.15) by the backward-particle-tracking method described in § 2.3.2. First, the Navier–Stokes equa-
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tions (3.1) are solved numerically on the Nx ×Ny ×Nz grid in some time interval from t0 to t > t0

and the full Eulerian velocity field is saved on disk in this simulation period. The time increment is

selected to capture the finest resolved scales in the velocity field. At time t at the end of the solution

period, particles are placed at the uniform grid points of NL
x ×NL

y ×NL
z . Presently, the resolution of

the Lagrangian field is two times that of the velocity field in order to capture fine-scale Lagrangian

structures in the evolution. Then, particles are released and their trajectories calculated by solving

(2.1) backwards in time. A three-dimensional, fourth-order Lagrangian interpolation scheme was

used to calculate fluid velocity at the particle location. The trajectory of each particle was then

obtained using an explicit, second-order Adams–Bashforth scheme. For each particle the backward

tracking is performed from t to the initial time t0 with the reversed Eulerian velocity fields saved

previously. After the backward tracking, initial locations of particles x0 can be obtained. From a

given initial condition consisting of a smooth Lagrangian field φ(x0, t0) we can then obtain φ(x, t)

on the Cartesian grid by a simple mapping (2.11) with Lagrangian coordinates.

3.3 Multi-scale and multi-directional methodology

3.3.1 Multi-scale and multi-directional filter based on curvelet transform

When a scalar field has preferential orientations, e.g., streaks in an image, the Fourier transform

of the scalar field should have high intensities at some particular localized regions in Fourier space.

Thus, the directional decomposition of the scalar field can be obtained by spectral directional/fan fil-

ters, which have been used in computer vision, seismology, and image compression (e.g., Bamberger

& Smith, 1992). Presently, to obtain statistical, geometric information on preferential orientations

in a three-dimensional field at different scales, we apply a multi-scale directional filter based on the

curvelet transform (see Candès et al., 2006, and references therein) to a sequence of two-dimensional

plane-cuts and then compute the angular spectrum and corresponding averaged angles.

An arbitrary two-dimensional scalar field ϕ(x) can be represented by the Fourier expansion

ϕ(x) =
∑

k

ϕ̂(k) eik·x, (3.2)

where x = (x1, x2), k = (k1, k2), and the Fourier coefficient

ϕ̂(k) =
1

2π

∫
ϕ(x) e−ik·x dx. (3.3)

In the numerical implementation, ϕ(x1, x2) is discretized on a rectangular domain of side L1 × L2

using an N1 ×N2 grid with indices (n1, n2) in physical space. The corresponding Fourier space can

be discretized on the grid N1 × N2 with indices (m1,m2). The discrete Fourier transform (DFT)
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and inverse DFT of ϕ(x) are

ϕ̂(k1,m1
, k2,m2

) =
1

N1

1

N2

N1−1∑

n1=0

N2−1∑

n2=0

ϕ(x1,n1
, x2,n2

) e−i(k1,m1
x1,n1

+k2,m2
x2,n2

), (3.4)

ϕ(x1,n1
, x2,n2

) =

N1−1∑

m1=0

N2−1∑

m2=0

ϕ̂(k1,m1
, k2,m2

) ei(k1,m1
x1,n1

+k2,m2
x2,n2

), (3.5)

respectively, with

ki,mi = mi∆ki, xi,ni = ni∆xi, ∆xi = Li/Ni, ∆ki = 2π/Li. (3.6)

A filtered ϕ(x) at scale j and along the direction l can then be extracted from ϕ̂(k) in Fourier

space by the frequency window function

Uj(r, θ) = 2−3j/4W (2−jr)V (tl(θ)), (3.7)

in polar coordinates (r, θ) with r =
√
k21 + k22 and θ = arctan(k2/k1). The frequency window

function Uj(r, θ) is based on the curvelet transform (Candès et al., 2006), which is a combination of

the radial window function (e.g., Ma et al., 2009)

W (r) =





cos(πµ(5 − 6r)/2), 2/3 ≤ r ≤ 5/6,

1, 5/6 ≤ r ≤ 4/3,

cos(πµ(3r − 4)/2), 4/3 ≤ r ≤ 5/3,

0, else,

(3.8)

and the angular window function

V (tl) =





1, |tl| ≤ 1/3,

cos(πµ(3|tl| − 4)/2), 4/3 ≤ tl ≤ 5/3,

0, else,

(3.9)

with the smoothing function µ(x) = 3x2 − 2x3 satisfying

µ(x) =





1, x ≤ 0,

0, x ≥ 1,
µ(x) + µ(1− x) = 1. (3.10)

Both radial and angular window functions satisfy the admissibility conditions:

∞∑

r=−∞

W 2(2jr) = 1, r > 0, (3.11)
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∞∑

tl=−∞

V 2(tl) = 1. tl ∈ R. (3.12)

The frequency window functions in Fourier space are plotted in figure 3.3. Each is supported on a

region bounded by two neighboring circular wedges in the range of wavenumbers 2j−1 ≤ r ≤ 2j+1.

The localization of Uj(r, θ) in Fourier space implies that the corresponding spatial structure in

physical space is a needle-shaped element (‘curvelet’), whose envelope has the geometric scaling

relation (Candès et al., 2006)

length ≈ 2−j/2, width ≈ 2−j. (3.13)

From (3.13), the characteristic length scale is Lj ≈ 2−j at scale j, which is the characteristic width

of the ‘curvelet’ at scale j in physical space. The breakdown of the normalized characteristic length

scales of structures after the multi-scale decomposition is given in table 3.2.
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Figure 3.3: Frequency window functions Uj(r, θ) supported on circular wedges in Fourier space

The frequency windows cover the whole Fourier domain at characteristic length scales

2−j, j = −1, 0, 1, 2, 3, . . . (3.14)
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Table 3.2: Breakdown of characteristic length scales for the filtered scales j in terms of the half-height
δ and viscous length scale δν in turbulent channel flow.

Reτ Length 1 2 3 4 5 6 7 8

Lj/δ 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039

180 Lj/δν 90.0 45.0 22.50 11.25 5.625 2.813 1.406 0.703
395 Lj/δν 197.5 98.75 49.38 24.69 12.34 6.172 3.086 1.543
590 Lj/δν 295.0 147.5 73.75 36.88 18.44 9.219 4.609 2.305
950 Lj/δν 475.0 237.5 118.8 59.38 29.69 14.84 7.422 3.711

and the equidistant sequence of rotation angles

θj,l ≡ πl2−⌈j/2⌉/2, l = 0, 1, . . . , 4 · 2⌈j/2⌉ − 1, (3.15)

where ⌈x⌉ gives the smallest integer greater than or equal to x.

3.3.2 Multi-scale and multi-directional decomposition

By applying the radial window function W (r) on the Fourier coefficients ϕ̂(k) and then using

the inverse Fourier transform as

ϕj(x) =

∫
ϕ̂(k)W (2−jr) eik·x dx, (3.16)

for each scale j = j0, . . . , je, with j0 = 0 and je = log2(min(N1∆k1, N2∆k2)/2), we can obtain a

multi-scale decomposition of the original scalar field ϕ(x) into a total of je − j0 +1 scale-dependent

fields. For convenience we will subsequently label scale-dependent fields by the index j = 0, . . . , je,

with j = 0 corresponding to the largest-scale field and j = je the smallest resolved-scale field.

Subsequently, and according to table 3.2, Lj > 0.2δ will be referred to as ‘large scale’, Lj < 10δν as

‘small scale’, and in between as ‘intermediate scale’. The filter for the largest scale is defined as

|W0(r)|2 = 1−
∑

j≥1

|W (2−jr)|2. (3.17)

The characteristic direction l′ of ϕ(x) in physical space is orthogonal to that in Fourier space.

The discrete deviation angle away from the horizontal axis in physical space

∆θ = 2−⌈j/2⌉ πl
′

2
, l′ = −2⌈j/2⌉, . . . ,−1, 0, 1, . . . , 2⌈j/2⌉, (3.18)

is sketched in figure 3.4(a) for scale j. The multi-scale orientation information of ϕ(x) can be defined
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as the normalized angular spectrum

Φj(∆θ) ≡
∫
ϕ̂(k)Uj(r, θ)dk∫
Uj(r, θ)dk

, −π
2
≤ ∆θ ≤ π

2
(3.19)

at scale j and direction l, where tl = (π2 − θ + θj,l′)/θj,1 for the angular window function V (tl) in

Uj(r, θ).

x1

x2

∆θ

(a) Deviation angle

x1

x2

〈∆θ〉−j

〈∆θ〉+j

(b) Averaged deviation angles

Figure 3.4: Diagram of the deviation angles away from the horizontal axis in physical space

The averaged deviation angles away from the horizontal direction are sketched in figure 3.4(b).

They can be obtained as

〈∆θ〉+j ≡
∑l′max

l′=0 Φj(∆θ)∆θ
∑l′max
l′=0 Φj(∆θ)

and 〈∆θ〉−j ≡
∑0

l′=l′
min

Φj(∆θ)∆θ
∑0

l′=l′
min

Φj(∆θ)
(3.20)

where l′max = 2⌈j/2⌉ and l′min = −2⌈j/2⌉, which we take to define characteristic angles of a two-

dimensional scalar field in the statistical sense. As an example, the scale decomposition of an image

of a cross

ϕ(x′, y′) = exp(−100x′2) + exp(−100y′2)− exp(−100(x′2 + y′2)) (3.21)

with

x′ = x cos 45◦ − y sin 45◦ and y′ = x sin 45◦ + y cos 45◦

is shown in figure 3.5. The angular spectrum from the directional decomposition and averaged

deviation angles defined in (3.20) are shown in figure 3.6, which show characteristic angles ±45◦ of

the image.

We remark that the multi-scale and multi-directional decomposition in the present study is based

on the continuous curvelet transform rather than the fast discrete curvelet transform (see Candès

et al., 2006). This is because we find that using the frequency window functions in the continuous

curvelet transform, e.g., (3.8) and (3.9) supported on the circular wedges as shown in figure 3.3, gives
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(a) Original (b) Scale 1 (c) Scale 3 (d) Scale 5

Figure 3.5: Scale decomposition of an image of the cross
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Figure 3.6: Directional decomposition of an image of the cross at different scales

more accurate multi-scale angular spectra (3.19) than those from the window functions supported

on the sheared trapezoid wedges in the fast discrete curvelet transform algorithm.

When a scalar field has nonperiodic boundaries, e.g., ϕ on the x–z plane in channel flows, the

DFT in (3.4) may result in numerical-oscillatory artifacts near boundaries. This can be resolved by

using the discrete cosine transform instead of the DFT in the direction with nonperiodic boundaries.

This is equivalent to applying the DFT or the fast Fourier transform (FFT) to the mirror-extended

scalar field and corresponds to the mirror-extended curvelet transform (Demanet & Ying, 2007).

Presently, before the FFT, we copy and flip the two-dimensional scalar field by the one-dimensional

mirror extension in the wall-normal direction with non-periodic boundary conditions as

{ϕ1, ϕ2, ..., ϕN−1, ϕN} → {ϕ1, ϕ2, ..., ϕN−1, ϕN , ϕN−1, ..., ϕ2}. (3.22)
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3.4 Lagrangian structures in turbulent channel flow

3.4.1 Geometry of Lagrangian structures on the x–z (streamwise and

wall-normal) plane

By tracking the three-dimensional Lagrangian field φ(x, t) in turbulent channel flow, Lagrangian

structures are extracted as iso-contours of φ at different times. In this section, we will use a time

series of Eulerian velocity fields from runs S1 and S2 (see table 3.1) for two Reynolds numbers to solve

the φ-equation (2.15). It is noted that the investigation of Lagrangian structures is computationally

intensive, requiring storage of sequences of time-resolved Eulerian velocity fields for the backward-

particle-tracking method.

Previous studies showed that the important geometric feature of leaning or slanting vortex struc-

tures is that they tend to incline at an angle to the streamwise direction in the logarithmic law

region (see Adrian, 2007). For studying Lagrangian structures on the x–z plane, we utilize an initial

Lagrangian field φ0 ≡ φ(x, t = 0) = sin 3x sinπz, with length scale equal to the half-height δ = 1.

To distinguish turbulent dynamics and kinematics, we choose the largest time tc = 4 for tracking

the Lagrangian field φ according to the typical period of the ‘cyclic’ process of the evolving near-wall

turbulent structures (see Hinze, 1975), where the large-scale, non-dimensional time is tc = t Uc/δ.

Since a large-scale Lagrangian structure is imposed by the initial condition, next we investigate only

structures with scales j ≥ 3.

The temporal evolution of the Lagrangian field with color intensity proportional to φ ∈ [−1, 1]
on the x–z plane in turbulent channel flow at Reτ = 395 is shown in figure 3.7. We can see that

the initial regular, periodical blob-like objects are stretched into ramp-shaped structures by the

mean shear and small-scale turbulent motions. Unlike the scalar properties for previous smoke

visualization in turbulent boundary layer experiments (e.g., Head & Bandyopadhyay, 1981), the

Lagrangian scalar field is non-diffusive, so we can visualize and analyze fine structures with a high

resolution grid for φ. In figure 3.7, the vivid contrast evident between smooth and chaotic regions

illustrates the strong intermittency present in the Lagrangian field for the present turbulent channel

flow.

As shown in figure 3.1, we define the inclination angle α between an inclined structure projected

on the x–z plane and the x-direction. In terms of the variables in the multi-scale and multi-directional

method as shown in figure 3.4, we have φ(x, y = yp, z) ↔ ϕ, x ↔ x1, z ↔ x2, α+ ↔ 〈∆θ〉+ and

α− ↔ 〈∆θ〉−. Evolution of individual components of the Lagrangian field can be obtained following

the scale decomposition of φ on the x–z plane by (3.16). These are shown, at Reτ = 395, for the

intermediate scale j = 4 and small scale j = 6 in figures 3.8 and 3.9, respectively. The characteristic

length scale for each scale index j is quantified in table 3.2. Then, the orientation information of

φ(x, t) on the x–z plane at different scales can be obtained by the normalized angular spectra Φj(∆θ)
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(a) tc = 0.5

(b) tc = 1

(c) tc = 2

(d) tc = 4

Figure 3.7: Evolution of Lagrangian structures on the x–z plane (0 ≤ x ≤ 2π, 0 ≤ z ≤ 2) in
turbulent channel flow for Reτ = 395 (run S2)
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(a) tc = 0.5 (b) tc = 1

(c) tc = 2 (d) tc = 4

Figure 3.8: Evolution of Lagrangian structures at scale 4 on the x–z plane (0 ≤ x ≤ 2π, 0 ≤ z ≤ 2)
in turbulent channel flow for Reτ = 395 (run S2)

(a) tc = 0.5 (b) tc = 1

(c) tc = 2 (d) tc = 4

Figure 3.9: Evolution of Lagrangian structures at scale 6 on the x–z plane (0 ≤ x ≤ 2π, 0 ≤ z ≤ 2)
in turbulent channel flow for Reτ = 395 (run S2)

defined in (3.19), which are shown in figure 3.10 at tc = 1 and tc = 4. The increasing Φj(∆θ) at

scales j ≥ 3 shows a cascade process from large scales to small scales for φ in the temporal evolution.

At each time, smaller-scale structures appear to show a greater tendency to ‘attach’ to the wall than

larger structures in the sense of the predominance of small deviation angles in Φ(∆θ) for large j.

As shown in figure 3.10, the angular spectra are almost symmetric for all scales. Therefore,

assuming the symmetry of inclined structures with the centerline on the x–z plane in the statistical

sense, we define the averaged inclination angle 〈α〉 = (〈α+〉 + 〈α−〉)/2. Figure 3.11(a) shows the

temporal evolution of 〈α〉 for Lagrangian structures at intermediate and small scales (also refer

to figures 3.8 and 3.9). Here, the additional averaging on 〈α〉 was taken over 50 x–z planes at

y = yp uniformly distributed between y = 0 and y = Ly. As shown in figure 3.9(a), the small-scale

structures with small 〈α〉 appear at early times, around tc = 0.5, produced by intense near-wall shear

motions. Then, the small-scale structures are up-lifted as shown in figures 3.9(b) and 3.9(c), which
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Figure 3.10: Angular spectra of Lagrangian fields at different scales on the x–z plane in turbulent
channel flow for Reτ = 395 (run S2). The deviation angle ∆θ is illustrated in the upper-right of
figure 3.10(a)

may signal ejections of low-speed fluid outward from the wall. Finally, some small-scale structures

are bent downwards to the wall, which may be imprints of the sweeps of high-speed fluid towards

the wall. In figure 3.11(a), 〈α〉 grows with increasing time; the trend is slightly slower for tc > 3.

These observations are consistent with the conceptual ejection-sweep-burst-inrush process (Hinze,

1975). At tc = 1 and tc = 4, 〈α〉 at different scales is shown in figure 3.11(b). We find that 〈α〉
of Lagrangian structures at scales smaller than 20δν are higher for Reτ = 395 than for Reτ = 180,

which may imply stronger turbulent transport in higher-Reynolds-number flows by coherent motions

that eject more fluid from the viscous sublayer to the logarithmic region.

In addition, from simulations using different initial fields, e.g., φ0 = sin 3x and φ0 = πz (not

shown), we find that the resulting Lagrangian structures produce quantitatively similar averaged

inclination angles at intermediate scales and small scales for long times to those described above.

This suggests that an attractor for geometries of Lagrangian structures, discussed in §§ 2.4 and 2.5

for forced isotropic turbulence, may also exist in a turbulent channel flow.

3.4.2 Geometry of Lagrangian structures on the x–y (streamwise and

spanwise) plane

Quasi-streamwise vortices within candidate hairpin- or Λ-vortices show, in addition to the wall

inclination, another geometric feature that can be characterized by the sweep angle β between the

elongated structure and the x-direction on the x–y plane at z = zp (see figure 3.1). In terms of the

variables in the multi-scale and multi-directional method as shown in figure 3.4, we have φ(x, y, z =

zp) ↔ ϕ, x ↔ x1, y ↔ x2, β+ ↔ 〈∆θ〉+ and β− ↔ 〈∆θ〉−. Although an individual structure may
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Figure 3.11: Evolution of the averaged inclination angle (degrees) of Lagrangian structures on the
x–z plane in turbulent channel flow for Reτ = 180 (run S1) and Reτ = 395 (run S2)

have asymmetrical legs in low-Reynolds-number flows (Robinson, 1991), we find that the difference

of 〈β+〉 and 〈β−〉 is typically less than 10% for each plane. Hence, we assume statistically symmetry

over structures in the channel and define the averaged sweep angle 〈β〉 = (〈β+〉+ 〈β−〉)/2.
For investigating the evolutionary geometry of Lagrangian structures on the x–y plane, the initial

Lagrangian field is chosen as φ0 = sin 3x. Starting from streaks with characteristic scale δ normal

to the streamwise direction, at a typical time tc = 2, figure 3.12 shows different geometries of

Lagrangian structures on the x–y plane in different regions as characterized by Pope (2000). In

the viscous sublayer, spiky-like, long narrow streaks in the x-direction are observed, which may be

generated by the shear motion from high- and low-speed alternating streamwise velocity streaks

very close to the wall. We can see that the structures are still relatively smooth, which shows that

turbulent fluctuations are relatively small in the viscous sublayer (Kline et al., 1967). In the buffer

layer and the logarithmic region, we find obvious predominant Λ-like structures, while structures in

the buffer layer with active turbulent energy production that exhibit the ‘bursting process’ (Kline

et al., 1967) appear to be more chaotic than those in the logarithmic region. In comparison, structures

in the outer layer are much smoother and less perturbed than those in the inner layer.

The averaged sweep angle 〈β〉 for two Reynolds numbers is plotted in figure 3.13. We find that,

in general, 〈β〉 at all scales increases with wall distance z+ as revealed in figure 3.12. Using hot-wire

measurements, Ong & Wallace (1998) found that the sweep angle of vorticity vectors increased with

distance from the wall, which is consistent with our results for Lagrangian structures. The averaged

sweep angle 〈β〉 of structures at several scales increases rapidly with increasing z+ in the buffer layer

with 5 ≤ y+ ≤ 30, and in the logarithmic law region with y+ ≥ 30 and y/δ ≤ 0.3, and grows slower

in the outer layer with y+ > 50. This might be related to active turbulent production occurring
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(a) z+ = 5, viscous sublayer (b) z+ = 30, buffer layer

(c) z+ = 60, logarithm law region (d) z+ = 120, outer layer

Figure 3.12: Lagrangian structures on the x–y plane (0 ≤ x ≤ 2π, 0 ≤ y ≤ π) at tc = 2 in turbulent
channel flow for Reτ = 395 (run S2)
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Figure 3.13: Averaged sweep angle (degrees) of Lagrangian structures on the x–y plane at tc = 2 in
turbulent channel flow for Reτ = 180 (run S1) and Reτ = 395 (run S2)

in this region, with less activity in the outer layer (e.g., Adrian, 2007). On the other hand, the

growth of 〈β〉 at the intermediate scale around 50δν is slower than those at smaller scales. The

corresponding visual inspection is also shown in figure 3.14.

The temporal evolution of Lagrangian structures on the x–y plane in the buffer layer of turbulent

channel flow at Reτ = 395 and at different times is shown in figure 3.15. Starting with smooth

tube-like shapes, we can see the Λ-shape structures induced by the near-wall, low-speed streaks at
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(a) Scale 3, z+ = 5, viscous sublayer (b) Scale 6, z+ = 5, viscous sublayer

(c) Scale 3, z+ = 30, buffer layer (d) Scale 6, z+ = 30, buffer layer

(e) Scale 3, z+ = 60, logarithm law region (f) Scale 6, z+ = 60, logarithm law region

Figure 3.14: Lagrangian structures on the x–y plane (0 ≤ x ≤ 2π, 0 ≤ y ≤ π) at tc = 2 and different
scales in turbulent channel flow for Reτ = 395 (run S2)

early time followed by intense fluctuations at later time, which shows active energy production and

transfer in the buffer layer. In figure 3.16, the corresponding temporal evolution of 〈β〉 in the channel

flow at Reτ = 395 shows that the averaged sweep angle of Lagrangian structures grows with time.

Combined with the results shown in § 3.4.1, we show that, starting from initial smooth large-scale

blob- or tube-like shapes, Lagrangian structures may break down and evolve into possible hairpin-

or Λ-like shapes at intermediate and small scales.

3.5 Eulerian structures in turbulent channel flow

3.5.1 Geometry of Eulerian structures on the x–z plane or x–y plane

We extract Eulerian structures as iso-contours of the instantaneous swirling strength field λci in

turbulent channel flow. Here, λci is the imaginary part of the complex eigenvalue of the velocity
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(a) tc = 0.5 (b) tc = 1

(c) tc = 2 (d) tc = 4

Figure 3.15: Evolution of Lagrangian structures at z+ = 45 on the x–y plane (0 ≤ x ≤ 2π, 0 ≤ y ≤ π)
in turbulent channel flow for Reτ = 395 (run S2)
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Figure 3.16: Evolution of the averaged sweep angle (degrees) of Lagrangian structures on the x–y
plane in the turbulent channel flow for Reτ = 395 (run S2)

gradient tensor ∇u (see Zhou et al., 1999), which is often used to identify vortical structures in wall

turbulence. Similarities and differences between the swirling strength and other vortex identification

criteria were discussed in Chakraborty, Balachandar & Adrian (2005). Remarkably similar looking

vortical structures, obtained using their criteria with the given proposed usage of threshold, were

observed in a canonical turbulent flow example. The visualization of iso-surfaces at λci/λci,max = 0.1

in turbulent channel flows is shown in figure 3.17. Numerous tube-like structures extended in the
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streamwise direction and inclined to the wall, can be seen. Some appear to form complete or

incomplete hairpin- or Λ-like structures. Similar observations were also made by Adrian & Liu

(2002) and Ganapathisubramani et al. (2006).

(a) Reτ = 395 (run L2)

(b) Reτ = 590 (run S3)

Figure 3.17: Snapshots of Eulerian structures (iso-surfaces at λci/λci,max = 0.1) in turbulent channel
flows. The color on the surfaces is coded by z

After interpolating λci on a uniform grid with resolution 2Nx × Ny × Nz, the multi-scale and

multi-directional methodology described in § 3.3 is applied on a sequence of λci-fields on the x–y

or x–z planes. In this subsection, we will use Eulerian velocity fields from runs L1, L2, S3, and

S4 (see table 3.1) for four Reynolds numbers. The scale decomposition of Eulerian structures on

each plane is obtained by (3.16), where the scalar field φ = λci(x, y = yp, z). For example, the scale

decomposition of the λci-field on the x–z plane for Reτ = 590 is shown in figure 3.18. Clearly evident

are decreasing characteristic length scales with increasing scale indices, as quantified in table 3.2.

The λci-field on the x–z plane with non-periodic boundaries is mirror-extended as (3.22) for the
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purpose of further analysis. The averaged inclination angle 〈α〉 of Eulerian structures on the x–z

plane at different scales and Reynolds numbers is shown in figure 3.19(a). Additional averaging on

〈α〉 was taken over 50 x–z planes at y = yp uniformly distributed between y = 0 and y = Ly from

five independent realizations of the DNS. We can see that the averaged inclination angles, 〈α〉, of

large-scale Eulerian structures are small, while structures at intermediate scales have maxima 〈α〉 in

the range 40◦–45◦, while small-scale structures have moderate 〈α〉 around 30◦. In figure 3.19(b), the

〈α〉 profiles, in terms of the viscous scale δν , appear to collapse for all four Reynolds numbers, in a

way similar to inner-scaling for turbulent velocity or vorticity profiles (e.g., Moser et al., 1999). The

maximum 〈α〉 corresponds to the scale around 20δν . Combined with the visualizations in figure 3.18,

we conclude that the quasi-streamwise vortices represented by iso-surfaces of λci exhibit an inclined

geometry with intermediate scale 20δν , 〈α〉 ≈ 45◦ and with ‘curved legs’ leading to scale 5δν and

〈α〉 ≈ 30◦ near the wall.

(a) Original (b) Scale 2

(c) Scale 3 (d) Scale 4

(e) Scale 5 (f) Scale 6

Figure 3.18: Scale decomposition of Eulerian structures on the x–z plane (0 ≤ x ≤ 2π, 0 ≤ z ≤ 2)
in turbulent channel flow for Reτ = 590 (run S3)

After averaging over results from five realizations of the DNS, the averaged sweep angle 〈β〉 of

Eulerian structures on the x–z plane as a function of the wall distance z+ for four Reynolds numbers

is also shown in figure 3.20. This resembles the equivalent results for Lagrangian structures shown

in § 3.4. The rapid change of the sweep angle in the near-wall region implies high curvature of

three-dimensional small-scale Eulerian structures (e.g., Adrian, 2007).
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Figure 3.19: Averaged inclination angle (degrees) of Eulerian structures on the x–z plane
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Figure 3.20: Averaged sweep angle (degrees) of Eulerian structures on the x–y plane at different z+

3.5.2 Statistical evidence of structure packets

Recent DNS and PIV studies have provided evidence that near-wall vortices may group together

to form large-scale packets (Zhou et al., 1999; Christensen & Adrian, 2001; Adrian & Liu, 2002). We

observed that similar long and narrow structures appear to be organized by a number of individual

small-scale structures in figure 3.17. To investigate this issue by quantified statistics, we use the

cross-correlation coefficients between the λci fields on the x–z plane at scale i and scale j:

γij =
〈(|λ(i)ci (x)| − 〈|λ

(i)
ci (x)|〉)(|λ

(j)
ci (x)| − 〈|λ

(j)
ci (x)|〉)〉

σ(i)σ(j)
, (3.23)
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where i < j and the standard deviation of each scalar field is

σ(j) =

√
〈(|λ(j)ci (x)| − 〈|λ

(j)
ci (x)|〉)2〉. (3.24)

In the multi-scale geometric methodology, the structures are represented by fluctuations of λ(j)ci .

Thus, high γij means possible coincidence of structures at scales i and j appearing within the

same region. In figure 3.21, γij is computed by (3.23) on the x–z plane in channel flows for four

Reynolds numbers. We can see noticeable cross-correlations between large-scale structures with

the characteristic height 0.25δ and small-scale structures with the length around 5δν in both long

channel (runs L1, L2, and L3) and short channel (runs S2, S3, and S4), which implies that candidate

structure packets may exist in the near-wall region of channel flows at a range of Reynolds numbers.

This feature can be observed from visualizations of the x–z plane-cuts in figure 3.22. The small-scale

structures presented by the fluctuations of the background shading of λ(5)ci for Reτ = 180 or λ(6)ci for

Reτ = 395 are grouped in large-scale packets presented by dashed contour lines of λ(2)ci .
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Figure 3.21: Cross-correlation coefficients between Eulerian structures at scale i and scale j from
different runs

Additionally, in long channel flows with Lx ≈ 50δ at Reτ = 180 and Reτ = 395 (runs L1 and

L2), as shown in figure 3.23, large-scale structures in the higher-Reynolds-number flow are much

longer in the streamwise direction than those in the lower-Reynolds-number flow. A characteristic

length of structures at scale j in the x-direction can be defined as the integral length scale

L(j)
x =

∫ Lx/2

0

R(j)
x (rx)drx, (3.25)
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(a) Reτ = 180 (run L1), i = 2, j = 5

(b) Reτ = 395 (run L2), i = 2, j = 6

Figure 3.22: Interactions between Eulerian large-scale structures at scale i (contour lines:

λ
(i)
ci /λ

(i)
ci,max = 0.15, 0.2, 0.25) and small-scale structures at scale j (background shading) on the

x–y plane in a long channel

where the correlation in the streamwise direction is

R(j)
x (rx) =

〈(λ(j)ci (x)− 〈λ
(j)
ci (x)〉)(λ

(j)
ci (x+ rx, y = yp, z)− 〈λ(j)ci (x)〉)〉

〈(λ(j)ci (x)− 〈λ
(j)
ci (x)〉)2〉

. (3.26)

We find that the maximum L
(j)
x are obtained when j = 2 in both Reynolds-number flows, while

L
(2)
x ≈ 4δ in the flow at Reτ = 180 and L

(2)
x ≈ 14δ in the flow at Reτ = 395, which might imply

that it is easier to form very long structure packets in higher-Reynolds-number flows than in low-

Reynolds-number flows. The latter result is reminiscent of that obtained from the streamwise spectra

in the experiments of turbulent pipe flow over a range of Reynolds numbers (e.g., Kim & Adrian,

1999; Guala, Hommema & Adrian, 2006).

x
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(a) Reτ = 180 (run L1)

x
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(b) Reτ = 395 (run L2)

Figure 3.23: Eulerian structures (contour lines: λ
(j)
ci /λ

(j)
ci,max = 0.2) at scale 2 on the x–z plane

(0 ≤ x ≤ 16π, 0 ≤ z ≤ 2) in long channel flows
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3.5.3 Comparisons of Lagrangian and Eulerian structures

Eulerian structures show many geometric features that are qualitatively similar to those of La-

grangian structures. This similarity also supports the existence of quasi-streamwise vortices in

turbulent channel flow. There are nonetheless notable differences in our analysis of these two classes

of fields. Some of these, for example the averaged inclination and sweep angles of structures, may

result from the Lagrangian/Eulerian identification methods themselves, while other may have a

more physical basis. Lagrangian structures tend to be stretched by the persistent shear motions,

thereby generating elongated, curved structures partially attached to the wall as illustrated in figure

3.8. In Eulerian fields, the swirling-strength field appears to identify vortex cores in the logarithmic

region with relatively short geometry as shown in figure 3.18. This can be expected to produce

smaller averaged inclination angles for Lagrangian objects than those seen for Eulerian structures

at intermediate scales.

Another notable difference is that, in contrast to the observation of structure packets in terms of

correlations for Eulerian structures (figure 3.21), we do not presently find substantial cross correla-

tions between large- and small-scale components of Lagrangian objects. This could be a consequence

of the limited time over which we are able to track the latter, which may not be sufficiently long for

inter-scale Lagrangian correlations to develop. An alternative is that the Eulerian correlations are

in fact a consequence of the collective vortex dynamics of near-wall flows. Presently we do not have

a suitable method available for the long-time tracking of a Lagrangian field that is unambiguously

related to identifiable vortex structures; see further discussion below.

One clear distinction between Lagrangian and Eulerian fields is that the former are the result

of evolution from essentially arbitrary initial conditions, while the latter follow from iso-surfaces of

scalar quantities chosen at least in part based on vorticity physics. In § 2.5, we found Lagrangian

structures in isotropic turbulence that were broadly independent of initial fields with blob-like,

tube-like or sheet-like iso-surfaces. Presently we find a similar trend for a turbulent channel flow.

A connection between Lagrangian and Eulerian field geometries could perhaps be educed by

choice of initial conditions for the Lagrangian simulation that correspond to a physically interesting

Eulerian field. In order to investigate Lagrangian mechanisms and vortex dynamics, we will introduce

the vortex-surface field φ = φv in § 4 satisfying λω = 0, where λω the cosine of the angle between

ω and ∇φ is defined in (2.24). In a strictly inviscid flow, the Helmholtz vorticity theorem shows

that φ(x, t = 0) satisfying λω = 0 at t = 0 will do so for t > 0. This fails for a viscous flow.

Furthermore, for a given vorticity field, there are open existence and uniqueness questions concerning

the determination of φ satisfying λω = 0. A surrogate field may nevertheless be useful. For the

present turbulent channel flows, we find that the choice φ = λci or φ = |ω| obtained from the

instantaneous Eulerian velocity field gives 〈|λω |〉 ≈ 0.5. While neither of these is then close to a

vortex-surface field, they may nevertheless provide interesting initial Lagrangian fields. Hence, in
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addition to the initial Lagrangian fields described in §§ 3.4.1 and 3.4.2 we also performed simulations

of Lagrangian structures evolving from initial conditions defined by the three-dimensional, filtered

λci-field at scale 2. This produced Lagrangian fields at a later time similar to those presented in

§§ 3.4.1 and 3.4.2.

3.6 Results and discussion

We have developed a general multi-scale, multi-directional methodology based on the mirror-

extended curvelet transform to investigate the geometry of Lagrangian and Eulerian structures,

extracted respectively from a time sequence of the Lagrangian fields and from the instantaneous

swirling-strength field in turbulent channel flow, for low and moderate Reynolds numbers. This is

used to quantify the statistical geometry, including the averaged inclination and sweep angles, of

both classes of structures over a range of scales varying from the half-height of the channel to several

viscous length scales. Quasi-streamwise Lagrangian and Eulerian vortical structures were detected in

the near-wall region and their geometries quantified. These comprise inclined objects, the averaged

inclination angle of which is 35◦–45◦ principally within the logarithmic region. The averaged sweep

angle is 30◦–40◦ and the characteristic scale is 20δν. ‘Curved legs’ are found in the viscous sublayer

and buffer layer, for which the averaged inclination angle is 20◦–30◦, the averaged sweep angle is

15◦–30◦ and the scale is 5δν–10δν. The sweep angle of both structures increases rapidly in the buffer

and logarithmic regions and grows mildly in the outer layer. The temporal evolution of Lagrangian

structures shows increasing inclination and sweep angles with time. The increasing magnitude in

terms of both angles varies from 10◦ to 20◦ within the typical ‘cyclic’ period from tc = 0.5 to tc = 4.

This may quantify the lifting process of quasi-streamwise vortices and the conceptional ejection-

sweep-burst-inrush scenario. Both structures have slightly different geometries in flows for different

Reynolds numbers. Although the averaged geometrical features of these objects are consistent with

the expected signatures of conceptual structures previously characterized as hairpin or Λ-vortices, we

remark that the current methodology cannot distinguish between hairpin-like structures composed

of two connected tubes and inclined tube-like structures that are not connected to each other via

vortex lines.

The evidence for the existence of large-scale, Eulerian structure packets, comprising collections

of individual small-scale geometrical objects, was obtained by finite cross-correlations between large-

and small-scale Eulerian structures. The large-scale packets are located within the near-wall region

with the typical height 0.25δ and may extend over 10δ in the streamwise direction in moderate-

Reynolds-number, long channel flows.

The current methodology is based on a sequence of plane-cuts normal or parallel to the streamwise

direction in channel flows, and so may also be suitable and convenient for analyzing experimental PIV
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data. The extension to fully three-dimensional data could be achieved using the three-dimensional

curvelet transform (Ying et al., 2005). The fast discrete curvelet transform algorithm with circular

frequency window functions may be required for this. In addition, combined with the mirror-

extension, the multi-scale geometric analysis (Bermejo-Moreno & Pullin, 2008) using the fast three-

dimensional curvelet transform can, in principle, be applied to detect coherent structures in wall

turbulence in order to study alternative non-local geometry signatures based on principal curvatures.

This could provide a means of testing an assumed structure in simplified models for wall turbulence

(e.g., Perry & Chong, 1982; Perry et al., 1986), structure-based subgrid models for the LES of near-

wall channel (Chung & Pullin, 2009) or boundary layer flows, and the possible sparse representation

of wall turbulence with the curvelet-based extraction method.

While the data analyzed in this study are from low to moderate Reynolds-number channel flows,

the present multi-scale and multi-directional methodology can easily be applied to high-Reynolds-

number data (e.g., Marusic et al., 2010) for turbulent channel, or boundary layer flows to explore

more geometric features such as the superstructures in the outer layer (e.g., Hutchins & Marusic,

2007) and the structural evolution in the turbulent transition (e.g., Wu & Moin, 2009). Moreover,

since high-Reynolds-number wall turbulence exhibits scale separation, it would be interesting to

investigate various inter-scale interactions such as the large-scale modulation of small-scale motions

and Reynolds stresses using the curvelet multi-scale decomposition with quadrant analysis (e.g.,

Wallace, Brodkey & Eckelman, 1972).
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Chapter 4

Lagrangian and vortex-surface fields

in Taylor–Green and Kida–Pelz flows

4.1 Background and objectives

In order to explore basic Lagrangian mechanisms of turbulence and vortex dynamics, an inter-

esting choice of the initial Lagrangian field is to choose its iso-surfaces to be vortex surfaces in some

particular initial flow fields. Here, the vortex surface is a smooth surface or manifold embedded

within a three-dimensional velocity field, which has the property that the local vorticity vector is

tangent at every point on the surface. In this chapter, we will develop a theoretical formulation on

the construction and evolution of such a three-dimensional smooth scalar field called vortex-surface

field (VSF). Iso-surfaces of the VSF define vortex surfaces.

In dynamical system theory, the construction of vortex surfaces from a given velocity field is

related to finding two-dimensional invariant manifolds of a three-dimensional vector field. Although,

in general, global manifolds cannot be found analytically, there are several numerical methods under

development for computing a manifold of a vector field (see Krauskopf et al., 2005). In the present

study, we find that flows that begin from Taylor–Green (TG) and Kida–Pelz (KP) initial conditions

are good candidates for the study of vortex surfaces, because their initial topology is relatively

simple and both of these periodic flows have many symmetries to facilitate construction of initial

vortex surfaces. In particular, we will develop a high-accuracy method for finding space-filling,

VSFs for these two defined velocity fields. At the same time, the recent development of tracking

methodologies for the Lagrangian field (see § 2.3.2) and finite-sized Lagrangian structures (e.g.,

Lindsay & Krasny, 2001; Goto & Kida, 2007) offer effective approaches to numerically simulate the

evolution of vortex surfaces in a high-Reynolds-number flow or even an inviscid flow with the aid of

substantial computational resources.

In general, a vortex surface will be persistently stretched in inviscid and perhaps high-Reynolds-

number flows, which causes the growth of vorticity. This mechanism is crucial for the cascade process
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and dissipation distribution in turbulence. To express them in mathematical form, Taylor & Green

(1937) proposed a divergence-free velocity field with Fourier basis functions, as the initial condition

of the Navier–Stokes equations to show that, when the Reynolds number is high, the mean-squared

vorticity increased at the early stage and reached a maximum after a finite time. Subsequently

this so-called TG flow was investigated by Brachet et al. (1983) using numerical simulations. From

this simple sinusoidal vector field with certain reflectional and rotational symmetries, Brachet et al.

(1983) found that a TG flow can develop characteristics of Kolmogorov statistics of turbulence at

a later stage in a high-Reynolds-number flow. Another typical flow with simple initial conditions,

the KP flow, was introduced by Kida (1985), who showed that it contains more symmetries than

the TG flow. Flows with KP initial conditions have been studied in both viscous and inviscid cases

(e.g., Boratav & Pelz, 1994; Pelz, 2001).

The topology and geometry in evolution of VSFs and vortex surfaces are important for many

aspects in theoretical fluid mechanics. From the Helmholtz vorticity theorem, for a strictly inviscid

flow, a vortex surface is a Lagrangian structure (material surface), which is topologically invariant

in time provided that the velocity field remains smooth. The nature of solutions of the three-

dimensional Euler equations remains a challenging open problem (e.g., Majda & Bertozzi, 2001;

Kerr, 1993). Some studies showed that nearly singular, sheet-like vortex structure may deplete the

growth of nonlinearity so as to prevent finite-time singularity formation in Euler flows (e.g., Hou

& Li, 2008). Constantin, Majda & Tabak (1994) introduced a two-dimensional analogy using a

scalar gradient as the analog of vorticity and level sets of the scalar field as the analog of vortex

lines. Their analysis showed that flow in the vicinity of hyperbolic saddles is highly nonlinear and

potentially singular. Describing the evolution of vortex surfaces in general three-dimensional flow,

however, appears to pose difficulties. It is expected that the topology of vortex surfaces will change

when the Reynolds number is finite owing to vortex reconnection, for example in the collapse of two

vortex tubes under excessive straining (see Kida & Takaoka, 1994). Subsequent roll-up of vortex

sheets induced by Kelvin–Helmholtz instability may provide an agent of transition from laminar

flow to turbulent flow. In these scenarios, knowledge of the geometry of vortex surfaces may help

us to construct vortex models of the inertial-range and fine-scale range of high-Reynolds-number

turbulence (Pullin & Saffman, 1998).

Unlike the velocity, which can be rapidly redistributed over all space by the pressure field, an

initially localized distribution of vorticity tends to remain localized, which implies that the vorticity

field may contain persistent structures. An agreed-upon definition for vortical structures, however,

remains elusive. Iso-surfaces of vorticity magnitude provides one method for visualizing instanta-

neous vortical structures, but this may be inadequate, in particular, for detecting coherent structures

in wall-bounded and homogeneous shear flows (Jeong & Hussain, 1995). Hence several popular cri-

teria to identify vortical structures are presently available, most based on invariants or eigenvalues
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of the local velocity gradient tensor, for example the Q-criterion (Hunt, Wray & Moin, 1988), the

∆-criterion (Chong, Perry & Cantwell, 1990) and the λ2-criterion (Jeong & Hussain, 1995). Simi-

larities and differences between these criteria were discussed in Chakraborty, Balachandar & Adrian

(2005). An alternative to these Eulerian measures is provided by the frame-independent criterion

(Haller, 2005), which, in a Lagrangian sense, appears to be capable of exposing detailed vortical

structures. According to the Helmholtz theorem, a primitive approach based on the identification of

vortex surfaces has a clear physical meaning and unique topological and geometrical interpretation.

It will, however, be seen that for a given vorticity field, the set of vortex surfaces is not unique.

Nonetheless, observation of the evolution of three-dimensional vortex surfaces might be helpful in

clarifying some aspects of vortex identification.

In this chapter, we begin in § 4.2 by introducing a systematic methodology for constructing VSFs

for both TG and KP initial velocity fields. Equations describing the evolution of VSFs are then

obtained in § 4.3 and their existence and uniqueness properties are discussed for both inviscid and

viscous incompressible flows. In § 4.4, we review the numerical methods used presently for tracking

Lagrangian structures, including the pseudo-spectral method for the Eulerian velocity field and

the backward-particle-tracking method for the Lagrangian field. The growth of the divergence of

evolving Lagrangian fields away from their VSF initial conditions in a high-Reynolds-number viscous

flow is studied and quantified in § 4.5. Finally, we investigate the non-local and local geometries of

approximate vortex surfaces in time evolution. Some conclusions are drawn in § 4.6.

4.2 Construction of vortex-surface fields

4.2.1 Partial-differential-equation formulation

We develop a methodology for construction of VSFs for some simple given velocity fields. A

discussion of their evolution in time and their relation to Lagrangian fields is postponed until § 4.3.

A vortex line is defined by
dX
ds

=
ω

|ω| , (4.1)

where s is arclength along the vortex line. For the given vorticity field we now assume the existence

of a smooth, space-filling scalar function φ(x) that has the property that the vorticity vector is

tangent to iso-surfaces of φ(x) everywhere except perhaps at a finite number of critical points. It

follows that
dφ
ds

=
dφ
dX

dX
ds

= 0. (4.2)
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Substituting (4.1) into (4.2) yields the constraint for φ

ω · ∇φ = ωx(x, y, z)
∂φ

∂x
+ ωy(x, y, z)

∂φ

∂y
+ ωz(x, y, z)

∂φ

∂z
= 0. (4.3)

We will take (4.3) as our fundamental definition of a VSF. For given ω we can view this as a

homogeneous first-order partial differential equation (PDE) for φ. We will see that (4.3) does not

admit unique solutions, but it may admit useful solutions. Equation (4.3) is similar to the PDE

formulation proposed by Dieci et al. (1991) for computing numerical approximations to invariant

tori corresponding to ODEs like (4.1). An alternative form of this PDE formulation is to find a

two-dimensional invariant manifold in a three-dimensional real space with a local parametrization

(x, y, g(x, y)). Then the graph of g(x, y) should be tangential to a given vector field f(x, y, g(x, y))

as (
∂

∂x
g(x, y),

∂

∂y
g(x, y),−1

)
· f(x, y, g(x, y)) = 0. (4.4)

The major difference between our proposed relation (4.3) and (4.4) is that, from (4.3), we seek a set

of invariant manifolds as space-filling iso-surfaces of φ within the whole domain of some particular

vector field, while only an individual invariant manifold can be found from (4.4).

Equation (4.4) was solved by finite difference methods and Newton’s iteration in Dieci et al.

(1991), while Mingyu et al. (1997) showed that a Fourier method is more accurate for computing

invariant tori of a vector field with periodic boundary conditions. To find a φ satisfying (4.3) in

the present study, at an initial time for a class of simple vorticity fields with periodic boundary

conditions, we expand ω and φ as Fourier series

ωα =
∑

k1,k2,k3

Ωαk1,k2,k3e
ikβxβ , α = 1, 2, 3, β = 1, 2, 3, (4.5)

φ =
∑

k1,k2,k3

Φk1,k2,k3e
ikβxβ , β = 1, 2, 3, (4.6)

where Ωαk1,k2,k3 are given by the vorticity, Φk1,k2,k3 are to be determined, and kβxβ denotes the

summation convention over β. Substituting both Fourier expansions into (4.3) and then collecting

coefficients of each Fourier mode by symbolic manipulation yields

∑

k1,k2,k3

Πk1,k2,k3e
ikβxβ = 0, (4.7)

where Πk1,k2,k3 is a linear polynomial in terms of unknown Φk1,k2,k3 . Substituting all Πk1,k2,k3 = 0

into (4.7), we obtain a system of homogenous linear equations

CΦ = 0, (4.8)
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where C is the mc×nc coefficient matrix for Φk1,k2,k3 with rank rc, and Φ is a suitably constructed

Fourier coefficient vector in (4.6). If there exists a VSF φ(x) exactly satisfying the relation (4.3),

the corresponding homogeneous system (4.8) with rc < nc must have nc − rc nontrivial solutions.

Otherwise, if rc = nc we have to seek an approximate solution of (4.8). We now show how to

construct such initial VSFs for three typical simple flows using this methodology.

4.2.2 Taylor–Green flow

The generalized initial condition u(x, y, z, t = 0) of the TG flow is given by, up to an arbitrary

real multiplicative constant of θ (see Brachet et al., 1983)

ux =
2√
3
sin

(
θ +

2π

3

)
sinx cos y cos z,

uy =
2√
3
sin

(
θ − 2π

3

)
cosx sin y cos z, (4.9)

uz =
2√
3
sin θ cosx cos y sin z.

The corresponding vorticity is

ωx = −(
√
3 sin θ + cos θ) cosx sin y sin z,

ωy = (
√
3 sin θ − cos θ) sinx cos y sin z, (4.10)

ωz = 2 cos θ sinx sin y cos z.

Based on the mirror and rotational symmetries in the TG flow, the region 0 ≤ x, y, z ≤ 2π is

conventionally termed the ‘periodicity box’; the region 0 ≤ x, y, z ≤ π is termed the ‘impermeable

box’; the region 0 ≤ x, y, z ≤ π/2 is termed the ‘fundamental box’ (see Brachet et al., 1983).

From (4.10), the wavenumbers for the Fourier expansion of ωα are ±1 in the TG flow at t = 0.

Assume that the corresponding φ has the same Fourier modes, namely

φ =
∑

k1,k2,k3=±1

Φk1,k2,k3e
ikβxβ . (4.11)

The expansion (4.5) for the vorticity is obtained from (4.10) by symbolic manipulation. Substituting

(4.5) and (4.11) into (4.3) and then setting all the Fourier coefficients in (4.7) equal to zero leads to

an 18 × 8 coefficient matrix C with rc = 7 in (4.8). Thus, we can obtain a nontrivial fundamental

solution (1, 1, 1, 1, 1, 1, 1, 1)T . If we let Φ1,1,1 = 1/8 in (4.11), then we have the solution

φTG = cosx cos y cos z, (4.12)
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and every iso-surface of φTG is a vortex surface for the TG flow with an arbitrary θ at the initial

time. An example of a vortex surface as an iso-surface of (4.12) is shown in figure 4.1(a). All the

vortex lines computed by (4.1) and (4.10) with θ = 0 lie on the surface. The special case with θ = 0

in (4.9) was discussed at length in Brachet et al. (1983), and this will be used for all computations

in this paper.

We note that (4.12) is not unique. Since φTG satisfies (4.3) then, by the chain rule, so does any

function Q(φTG). If φTG → Q is 1− 1 this is just a relabeling so that iso-surfaces φTG(x, y, z) = C

and Q(x, y, z) = Q(C) are identical geometrically. But for a given vorticity field it appears that

vortex lines can be bundled or arranged on smooth surfaces in infinitely many different ways. Hence

we cannot rule out solutions to (4.3) that are continuous scalar fields not equivalent to either a

relabeling of φTG or to a mapping under the symmetries of the TG flow, and whose iso-surfaces

could therefore have a different topology or geometry. The existence of additional classes of VSFs

that are not connected by relabeling mappings may enable the construction of nontrivial Clebsch

potentials (e.g., Lamb, 1932). This issue is revisited in § 4.2.5.

In some special cases such as θ = ±π/6,±π/2,±5π/6 in (4.9), one vorticity component in (4.10)

is zero. For example, as θ = ±π/2, ωz = 0, the constraint (4.3) is reduced to

ωx(x, y, z)
∂φ

∂x
+ ωy(x, y, z)

∂φ

∂y
= 0. (4.13)

Therefore, as long as φ(x, y) satisfies (4.13), φ(x, y)f(z) can be the initial VSF satisfying (4.3). Here,

f(z) is an arbitrary function, which implies iso-surfaces of this VSF have a nonunique topology. From

our methodology, two fundamental solutions, cosx cos y exp(±iz), can be obtained from (4.8) for this

case. The real part of this solution is equivalent to (4.12). Thus, presently we will take (4.12) as our

basic VSF solution of (4.3) for the TG initial vorticity field with θ = 0. The issue of nonuniqueness

for both the definition of φ and its evolution will be revisited subsequently.

In addition, it is obvious that for a given three-dimensional vorticity field with only one nontrivial

component, the VSF must exist and its topology is nonunique. For example, in cylindrical coordi-

nates (r, θ, z), consider the initial vorticity field of a vortex ring centered at (0, 0, 0) with radius R

and vorticity ωV R = (0, e−((r−R)2+z2), 0). Any regular scalar field φ(r, z) can satisfy ωV R · ∇φ = 0,

such as φ = e−((r−R)2+z2) with the topology of the torus in figure 4.1(b) or φ = e−(r2+z2) with the

topology of the sphere.

4.2.3 Kida–Pelz flow

The TG flow is a special case for which we can find a simple scalar field (4.12) satisfying the

constraint (4.3). For other vorticity fields with more Fourier modes, for example, the KP flow, we

are unable to find a simple exact solution, because it appears that rc = nc in (4.8) with a finite set
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(a) TG flow (b) vortex ring

(c) KP flow (d) ABC flow (integrable)

Figure 4.1: Typical vortex surfaces and vortex lines in simple flows at the initial time

of Fourier modes. The initial condition of the KP flow is defined as

ux = sinx(cos 3y cos z − cos y cos 3z),

uy = sin y(cos 3z cosx− cos z cos 3x), (4.14)

uz = sin z(cos 3x cos y − cosx cos 3y),

and the corresponding vorticity is

ωx = −2 cos 3x sin y sin z + 3 cosx(sin 3y sin z + sin y sin 3z),

ωy = −2 cos 3y sin z sinx+ 3 cos y(sin 3z sinx+ sin z sin 3x), (4.15)

ωz = −2 cos 3z sinx sin y + 3 cos z(sin 3x sin y + sinx sin 3y).

We now develop an optimization methodology for obtaining φKP that approximately satisfies (4.3)

for the KP flow at the initial time. We note that the scale of this problem mainly depends on the
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number of unknown coefficients in (4.8)

nc = NF = (2KF + 1)3, (4.16)

where KF is the maximum wavenumber in (4.6). The cubic growth of NF with increasing KF in the

Fourier expansion generally makes the convergence rate very slow. The scale of this problem solved

by a direct method used for the TG initial condition is thus unaffordable for the KP case.

Equation (4.15) implies that vortex lines in the KP flow have reflectional and octahedral sym-

metries (see Kida, 1985; Pelz, 2001). In particular, as shown in figure 4.2, we find a family of

closed and unknotted vortex lines that is confined within a fundamental tetrahedron with vertices

at, e.g., (0, 0, 0), (−π/2, π/2,−π/2), (−π/2,−π/2,−π/2), and (0, 0,−π/2). Four fundamental tetra-

hedrons with rotational symmetries can constitute a pyramid drawn in solid thick lines in figure

4.2. The box drawn in dotted lines lies in −π/2 ≤ x, y, z ≤ π/2. It comprises six pyramids with

rotational and reflectional symmetries. Finally, the box with periodic boundary conditions lies in

−π/2 ≤ x, y, z ≤ 3π/2 consisting of eight such boxes in dotted lines with additional rotational

and reflectional symmetries. This box with side 2π thus has 192 fundamental tetrahedrons. These

symmetries suggest the construction of new orthogonal basis functions ψ̃i to obtain faster conver-

gence. Presently, the development of ψ̃i utilizes a tailored numerical scheme, described in detail in

appendix A. A sparse representation, φKP can then be expanded in these basis functions as

φKP =

Nψ∑

i=1

Ψiψ̃i. (4.17)

The expansion (4.17) can be converted to Fourier space by symbolic manipulations

φKP =

KF∑

k1,k2,k3

ΦKPk1,k2,k3e
ikβxβ , β = 1, 2, 3, (4.18)

where ΦKPk1,k2,k3 is a linear polynomial in terms of the unknown coefficient Ψi in (4.17) and KF is

the maximum wavenumber.

Substituting (4.17) and (4.5) with the vorticity (4.15) into (4.3), we can obtain an expansion

as in (4.7). Note that Πk1,k2,k3 is a linear polynomial in terms of the coefficient Ψi of the basis

function ψ̃i rather than ΦKPk1,k2,k3 in the Fourier expansion (4.18). This leads to a significantly faster

convergence rate for obtaining an accurate approximate solution. From appendix A, the number of

coefficients for ψ̃i with the same KF in (4.18) is

Nψ = (K4
F + 24K2

F − 112)/2048. (4.19)
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(−π2 ,−π2 ,−π2 )

(0, 0, 0)

(0,−π2 ,−π2 )

(π2 ,−π2 ,−π2 )

(−π2 , π2 ,−π2 )

x

z

y

Figure 4.2: Symmetries of vortex lines in the KP flow. Some vortex lines are integrated from random
points in a fundamental tetrahedron. The dotted box lies in −π/2 ≤ x, y, z ≤ π/2

Compared with the equivalent Fourier coefficient number (4.16), we can find that when KF is not

too large, Nψ ≪ NF for the same resolution expressed by KF .

Setting Πk1,k2,k3 = 0 in (4.7) with Ψi, we have a homogenous linear system

CΨ = 0, (4.20)

where Ψ is the corresponding coefficient vector in (4.17). The overdetermined system (4.20) with a

finite number of coefficients appears to have only a trivial solution. To obtain a nontrivial coefficient

vector Ψ, we let Ψ1 = 1 in (4.17), which is equivalent to assuming the full octahedral symmetry on

large-scale structures in the approximate solution, noting that ψ̃1 (see appendix A) is proportional

to

(cos 3x cos y − cosx cos 3y)(cos 3y cos z − cos y cos 3z)(cos 3z cosx− cos z cos 3x).

Let C = (−b A) and Ψ = (Ψ1 Ψ
′)T . Then we can obtain a nonhomogeneous overdetermined system

AΨ
′ = b. (4.21)
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This system may have a least-squares solution by

min
Ψ′

‖AΨ
′ − b‖22, (4.22)

where ‖ · ‖2 denotes the L2 norm. As shown in figure 4.3, the residual ‖AΨ
′ − b‖2 decreases

exponentially with increasing Nψ, which shows a strong convergence rate. Satisfactory accuracy

could be obtained with Nψ = 666 with the corresponding KF = 34, while in the full Fourier

expansion (4.6), the equivalent unknown coefficient number NF = 328, 509. This shows a significant

scale reduction in this optimization problem using the proposed basis function ψ̃i.

0 200 400 600
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100
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‖A
Ψ

′
−
b
‖ 2

Figure 4.3: Convergence rate with Nψ for the approximate solution of the initial scalar field in the
KP flow φKP , where Nψ is computed from Kψ = 3, 5, · · · , 17 by (A.2) and (A.6)

In implementation of the optimization method, we found that the iso-surface of φKP from (4.22)

at very small contour levels may exhibit non-smoothness. This could be a numerical consequence

of non-uniqueness of solutions to (4.3) or perhaps to instability in solving the large-scale linear

system as Nψ is large. For Nψ = 666, the matrix A with size 53,536 by 665 is sparse. Hence, an

additional constraint on ‖Ψ′‖2 was applied in this least-squares problem which will both improve the

smoothness of the approximate solution at very small contour levels and at the same time provide
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uniqueness at the numerical level. This results in a quadratic optimization problem

min
Ψ′

‖AΨ
′ − b‖22 + λ‖Ψ′‖22, (4.23)

where the ridge parameter λ = 3.75 × 10−8 is introduced to obtain the local minimum value of

|∇φKP |max. This ridge regression problem has an analytical solution (see Golub & Van Loan, 1996)

Ψ
′ = (ATA+ λI)−1AT b. (4.24)

To solve this quadratic optimization problem numerically by the highly efficient driver routine with

the QR method in LAPACK (Anderson et al., 1999), (4.23) is converted to a linear least-squares

problem

min
Ψ

′

∥∥∥∥∥∥


 A
√
λI


Ψ

′ −


 b

0




∥∥∥∥∥∥

2

2

.

Finally, φKP was obtained from (4.18) by the inverse FFT. The volume-averaged |∇φKP · ω| is
very small as O(10−7) and |φKP |max ≈ 0.648, which shows that φKP obtained by the optimization

methodology is an accurate nontrivial solution for (4.3). The spectrum of φKP in figure 4.4 also

illustrates the good spectral convergence of this solution. An iso-surface of φKP in a fundamental

tetrahedron with vortex lines on it is shown in figure 4.1(c), which can represent a vortex surface

in the KP flow at the initial time. The code for the methodology in §§ 4.2.2 and 4.2.3 was written

in Mathematica (Wolfram Research, 2008) for symbolic manipulations and Fortran 90 for matrix

computations. Furthermore, the optimization methodology in this section can also be utilized for

the TG initial condition to uniquely determine the VSF (4.12).

4.2.4 Arnold–Beltrami–Childress flow

Another well-known simple flow is the Arnold–Beltrami–Childress (ABC) flow. The velocity field

is

ux = A sin z + C cos y,

uy = B sinx+A cos z, (4.25)

uz = C sin y +B cosx.



82

0 20 40 60
10-25

10-20

10-15

10-10

10-5

100

k

E
φ
(k
)

Figure 4.4: The spectrum of φKP

The streamlines, which are equivalent to vortex lines, in the ABC flow are chaotic for most values

of the parameters A, B, and C (Dombre et al., 1986). For the integrable case, where

u = (A sin z,B sinx+A cos z,B cosx),

we can find a scalar field φABC = B sinx + A cos z to satisfy the constraint (4.3). The iso-surface

of φABC corresponds to a simple vortex tube as shown in figure 4.1(d). However, even for nearly

integrable cases, the vortex lines become chaotic so that it appears to be difficult to find such a

scalar field exactly satisfying (4.3), and in fact no such φ may exist. Moreover, we note that the

ABC flow is stationary, so we cannot study the dynamics of vortex surfaces in this flow. The general

problem of the existence of some nontrivial φ satisfying (4.3) for an arbitrary, spatially periodic

vorticity field of the type encountered at a time instant in either forced or decaying homogeneous

(box) turbulence, remains, to the best of our knowledge, an open problem.

4.2.5 Vortex-surface fields and Clebsch potentials

VSFs are also helpful in representing the full Eulerian velocity field in terms of Lagrangian

variables. Clebsch (1859) established an appealing Hamiltonian formulation as a compromise be-

tween Eulerian and Lagrangian descriptions of fluid dynamics (see also Lamb, 1932; Truesdell, 1954;



83

Salmon, 1988). In the Clebsch representation, the incompressible fluid velocity at any time instant

can be expressed locally in terms of three scalar fields as

u(x) = ϕ1∇ϕ2 −∇ϕ3 (4.26)

where ϕ1(x) and ϕ2(x), which can evolve as Lagrangian fields, are often called Clebsch potentials,

and ϕ3 is used for the solenoidal projection. Sometimes ϕ1∇ϕ2 is referred to as the ‘impulse’ variable

(e.g., Russo & Smereka, 1999). It follows that the vorticity can be expressed by

ω(x) = ∇ϕ1 ×∇ϕ2, (4.27)

with the interesting geometric interpretation that vortex lines are the intersection of iso-surfaces of

ϕ1 and ϕ2.

The global existence of the Clebsch potentials is, however, restricted to inviscid flows with van-

ishing helicity H ≡
∫
u ·ω dx (see Salmon, 1988). When H = 0, e.g., in inviscid TG and KP flows,

it is easy to verify from (4.27) that nontrivial ϕ1, ϕ2, and ϕ3 satisfy the constraint for the VSF (4.3).

This suggests that we can construct explicit Clebsch potentials from multiple independent VSFs, if

the latter exist, for a given velocity field. We note that, when H 6= 0, it is still possible to find VSFs

in some particular flows, such as the integrable ABC flow.

For the TG initial velocity field we seek n > 1 independent VSFs of the form

φ(i) = Ai cos
ai x cosbi y cosci z, i = 1, 2, . . . , n, (4.28)

where ai, bi, and ci should be integers larger than or equal to zero for smooth and real VSFs and

satisfy, using (4.3) and (4.10),

(ai + bi − 2ci) cos θ +
√
3(ai − bi) sin θ = 0. (4.29)

Hence, the geometry of vortex lines in figure 4.1(a) can be expressed by the intersections of iso-

surfaces of two independent VSFs as shown in figure 4.5.

Any three VSFs cannot be guaranteed to satisfy the Clebsch representation (4.26). We therefore

take ϕ1 = φ(1) and ϕ2 = φ(2). Then, from (4.26), (4.27), and (4.29), we can find families of

independent solutions for the Clebsch representation of the general TG initial field (4.9) of the form

ϕ1 = A1 cos
a1 x cosb1 y cosc1 z, ϕ2 = A2 cos

a2 x cosb2 y cosc2 z, ϕ3 = A3 cosx cos y cos z, (4.30)



84

(a) φ(1) = 0.5 and φ(2) = 0.5 (b) φ(1) = 0.5 and φ(2) = 0.4

Figure 4.5: Examples of the vortex lines in figure 4.1(a) expressed by intersections of iso-surfaces
of two independent VSFs φ(1) = cosx cos3 y cos2 z (dark surface) and φ(2) = cos3 x cos y cos2 z (light
surface) for the TG initial field (4.9) with θ = 0

where

a1 = d0, a2 = 1− d0, b1 = d0 −
2 cos θ

A1A2
, b2 = 1− d0 +

2 cos θ

A1A2
,

c1 = d0 +

√
3 sin θ − cos θ

A1A2
, c2 = 1− d0 −

√
3 sin θ − cos θ

A1A2
,

A3 = A1A2(1− d0)−
√
3

3
sin θ + cos θ,

with arbitrary constants d0, A1, and A2. We can verify that (4.30) must have singularities or

imaginary values in some spatial domains. Taking θ = 0, d0 = 1, and A1 = A2 =
√
2, for example,

(4.30) becomes ϕ1 =
√
2 cosx

√
cos z and ϕ2 =

√
2 cos y

√
cos z. This particular solution was given

in Nore, Abid & Brachet (1997), and the sign function was then introduced to remove imaginary

values to obtain TG Clebsch potentials with weak singularities.

It is difficult to determine Clebsch potentials from approximate numerical solutions for VSFs

such as those obtained presently for the KP flow in § 4.2.3. Explicit KP Clebsch potentials with

singularities or imaginary values are known (Ohkitani, 2008) but are generally not useful for the

construction of smooth VSFs for investigating the evolutionary geometry of the vorticity in physical

space.

Finally, a comparison of some properties of VSFs and Clebsch potentials is given in table 4.1.

Both VSFs and Clebsch potentials exist perhaps only in some subsets of general flows, in particular,

flows with the simple topology and geometry.
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Table 4.1: Comparisons between VSFs and classical Clebsch potentials

VSFs Clebsch potentials

Global existence when H = 0 Possible Possible
Global existence when H 6= 0 Possible No
Satisfying ω · ∇φ = 0 when H = 0 Yes Yes
Requirement on the global smoothness Yes No

4.3 Evolution of Lagrangian and vortex-surface fields

4.3.1 Evolution equations

As described in § 2.2.3, we define a Lagrangian field φ(x, t) satisfying (2.15) as one for which

iso-surfaces φ = C, for each constant C, φmin ≤ C ≤ φmax, are always composed of the same

particles. Iso-surfaces of φ are then referred to as material or Lagrangian surfaces. In this section,

for a given velocity/vorticity field, we use φv(x, t) to denote a VSF, which we distinguish from the

Lagrangian field φ(x, t). In the sequel these two fields will generally be taken to be identical at an

initial time t = 0.

Now, in an incompressible flow, consider ω(x, t) and φv(x, t) that, respectively, satisfy (2.30)

and
Dφv
Dt

= L1 + νL. (4.31)

In order to define an evolution of a VSF, we seek φv(x, t) with L1 and L such that

D
Dt

(ω · ∇φv) = 0, (4.32)

with an initial condition that satisfies

ω · ∇φv(x, t = 0) ≡ 0 (4.33)

for all x. It follows that if (4.33) is satisfied at t = 0, then it is preserved for t > 0. Hence, φv(x, t)

evolves as a VSF. It is noted that (4.32) is equivalent to Ertel’s theorem (Ertel, 1942), when φv = φ,

and it also satisfies (2.15).

From (2.30) it can be shown that

D
Dt

(ω · ∇φv) = ν∇φv · ∇2ω + ω · ∇
(

Dφv
Dt

)
, (4.34)

and using (4.31)
D
Dt

(ω · ∇φv) = ν∇φv · ∇2ω + ω · ∇ (L1 + νL) . (4.35)
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Comparing (4.35) with (4.32) it follows that for φv(x, t) to describe the evolution of a VSF, we

require that

ν
(
∇φv · ∇2ω + ω · ∇L

)
+ ω · ∇L1 = 0. (4.36)

4.3.2 Inviscid incompressible flow

First, consider the inviscid case ν = 0. Equation (4.36) becomes

ω · ∇L1 = 0, (4.37)

with solution L1(x) = F (φv(x, t)) where F is any smooth function. Hence φv(x, t) must evolve as

Dφv
Dt

= F (φv(x, t)). (4.38)

Comparison of (4.38) with (2.15) shows that the choice F = 0 makes φv a Lagrangian field for

t > 0. This is the Helmholtz vorticity theorem. In our terminology, this states that a Lagrangian

surface (Lagrangian field) that is a vortex surface (VSF) at some initial time remains so for all time.

Hence to track the evolution of a VSF in an inviscid flow it is sufficient to determine φv(x, t = 0)

that satisfies (4.33), choose φ(x, t = 0) = φv(x, t = 0), and solve (2.15) for t > 0 along with the

velocity/vorticity dynamics.

Any non-zero F (φv), however, also provides an evolution for a VSF with the initial condition

φv(x, t = 0) that satisfies (4.33). Iso-surfaces of φv(x, t) then remain vortex surfaces for t > 0, but

φv = C for some C is then not a Lagrangian surface, and so φv is not a Lagrangian field. This

demonstrates nonuniqueness of the evolution of a VSF from an initial condition that satisfies (4.33).

Thus, an initial VSF does not have a unique evolution for t > 0 but there exists a unique evolution

for which φv is also a Lagrangian field namely F = 0. In other words, in inviscid incompressible

flow, a Lagrangian field that was initially a VSF remains so for all time. But one can define the

evolution of VSFs that are not Lagrangian fields. We remark that this nonuniqueness appears to be

distinct from that associated with the definition of φv at t = 0. The latter is a relabeling

We can, however, show that solutions to (4.38) for a reasonable but arbitrary choice of F are

equivalent to a relabeling of the Lagrangian field from the same initial condition. First, consider

φ(x, t) satisfying (2.15) with φ(x, t = 0) = φ0(x), given φ0, and second, φv(x, t) satisfying (4.38),

given F (φv). Choose φv(x, t = 0) = φ0. Next consider the change of variables φv ↔ φ given by

G(φv) = t+G(φ), G(η) ≡
∫

dη
F (η)

, (4.39)

where F (φ) satisfies the (strong) condition that (4.39) is regular and 1–1 for all t. Then it is

straightforward to show that under (4.39), (4.38) is mapped to (2.15). Further, from (4.39) at t = 0,
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φv(x, t = 0) = φ(x, t = 0) = φ0(x). It follows that, given a solution at time t of (2.15) with

φ(x, t = 0) = φ0(x), the solution of (4.38) at time t with the same initial condition is

φv(x, t) = G−1 (t+G(φ(x, t)) , (4.40)

where G−1 denotes the inverse function. In particular iso-surfaces of φv and φ are mapped into each

other by (4.40). Nonuniqueness then exists only up to a relabeling: at t > 0 the fields φv and φ

are geometrically isomorphic in that the geometry of iso-surfaces for respective constants satisfying

(4.39) are identical. In this sense, F has been scaled out of the evolution. As an example, the choice

F = φv gives φv(x, t) = exp(t)φ(x, t) and is regular for all t. We remark that choices of F for which

(4.39) is singular for some t > 0 implies that the evolution of φv can develop a singularity in a finite

time. An example is F = φ2v. This has no physical significance.

4.3.3 Viscous incompressible flow

In the viscous case, ν > 0, we can, without loss of generality, either put L1 ≡ 0 or absorb L1

into L in (4.36) so that, for φv(x, t) to be a VSF for t > 0 we must solve

Dφv
Dt

= νL, (4.41)

along with the velocity–vorticity equations, where L(φv,ω) is determined by

∇φv · ∇2ω + ω · ∇L = 0. (4.42)

While there is clearly no solution for φv which is a Lagrangian field, given ω and φv satisfying (4.33)

at some t, say t = 0, it is of interest to enquire if there exist solutions to (4.42) that define the

evolution of φv(x, t) as a VSF for t > 0. In particular can a unique solution be defined that is in

some sense the continuation in ν > 0 of the inviscid case? Equation (4.42) is an inhomogeneous,

non-constant coefficient equation for L. If solutions exist, it is easy to show that they are not unique:

for if Lp is a particular solution, then since by (4.33) the homogeneous form of (4.42) is satisfied by

an arbitrary function H(φv), Lp +H(φv) is also a solution. Unlike the inviscid case it appears that

this cannot be reduced to a geometrical isomorphism.

Furthermore, from (2.30), (4.41), and (4.42), we can obtain transport equations for |ω| and |∇φv|

D|ω|
Dt

= (nω · S · nω + νRωnω · n∆ω) |ω|, (4.43)

D|∇φv|
Dt

= (−nv · S · nv − νRωnω · n∆ω)|∇φv |, (4.44)

where the rate-of-strain tensor S has entries Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi), and unit vectors and a
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dimensionless ratio, respectively, are

nω =
ω

|ω| , n∆ω =
∇2ω

|∇2ω| , nv =
∇φv
|∇φv|

, Rω =
|∇2ω|
|ω| . (4.45)

The evolution of the spatial averaged |ω| and |∇φv| can then be expressed as

〈|ω(t)|〉 = 〈|ω0|〉 exp
(∫ t

t0

〈nω · S · nω〉+ 〈νRωnω · n∆ω〉dt′
)
, (4.46)

〈|∇φv(t)|〉 = 〈|∇φv0|〉 exp
(∫ t

t0

−〈nv · S · nv〉 − 〈νRωnω · n∆ω〉dt′
)
. (4.47)

Here, in general a viscous flow, statistically the enstrophy production rate 〈nω · S · nω〉 in (4.46) is

positive owing to predominant vortex stretching. It follows that the viscous term 〈νRωnω · n∆ω〉
should be negative to keep 〈|ω|〉 finite. But this implies that the same viscous term would increase

〈|∇φv|〉 in (4.47). Without the viscous mechanism, it appears to be difficult to give an estimation

on the upper bound of 〈|∇φv |〉, which may cause numerical issues in the computation of evolving

VSFs in a viscous flow.

Thus, for viscous flow with TG and KP initial conditions, we will presently follow Lagrangian

fields φ whose evolution is defined by (2.15) and which are VSFs at t = 0 as determined in § 4.2. We

will show that, for small viscosity or large Reynolds number, such a Lagrangian field can remain a

good approximation to a VSF before significant topological changes, for example vortex reconnection.

The problem of the evolution of VSFs in a viscous flow at low and intermediate Reynolds numbers

is discussed further in § 5 and appendix B.

4.4 Simulation overview

4.4.1 Eulerian velocity field in Taylor–Green and Kida–Pelz flows

A VSF as defined presently can be considered as a Lagrangian field only in an inviscid flow.

However, considering the requirement of huge computational resources and open issues concerning

unresolved computations in the simulation of the Euler equation (see Hou & Li, 2008), in § 4.5, we

will investigate the approximation of vortex surfaces in a slightly viscous flow. The corresponding

Navier–Stokes equations for incompressible TG and KP flows in a periodic box of side L = 2π are

written in the general form

∂u

∂t
= u× ω −∇

(
p

ρ
+

1

2
|u|2

)
+ ν∇2u,

∇ · u = 0.





(4.48)

The numerical simulations were performed using a standard pseudo-spectral method (see § 2.3.1).
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Figure 4.6: Dissipation rate

Table 4.2: Parameters of the study for TG and KP flows

Run TG1 TG2 KP1 KP2
Re 200 1600 500 1000
N3 2563 5123 5123 5123

The flow domain was discretized uniformly into N3 grid points. Aliasing errors were removed using

the two-thirds truncation method. The Fourier coefficients of the flow velocity were advanced in

time using a second-order Adams–Bashforth method for the nonlinear term and an exact integration

for the linear viscous term. The time step was chosen to ensure that the CFL number was 0.25 or

less for numerical stability and accuracy. An important feature of both flows is that the dissipation

rate ε = ν〈∇u : ∇u〉 is increased at early time and approaches a peak after a finite time as shown

in figure 5.1. This reproduced the results in Brachet et al. (1983) and Boratav & Pelz (1994). More

details about the computation of TG and KP flows can be found in these two references. Parameters

of runs carried out in this study are listed in table 5.1, where Re = 1/ν, considering that the length

and velocity scales in (4.9) and (4.14) are O(1).

4.4.2 Lagrangian field

To solve the governing equation (2.15) of the Lagrangian field, the backward-particle-tracking

method, which is stable, topology preserving and without numerical dissipation, was used. Details

of this method are demonstrated in § 2.3.2.

First, the Navier–Stokes equations (4.48) are solved numerically on the N3 grid in some time

interval t0, t > t0 and the full Eulerian velocity field in the impermeable box is saved on disk at

every time step over this simulation period. The time increment is selected to capture the finest
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resolved scales in the velocity field. At time t at the end of the solution period, particles are placed

at the grid points of N3
p in the periodicity box. As discussed in § 2.3.2, here Np is greater than

the grid number N of velocity field to capture some nearly singular Lagrangian structures in the

evolution. Then, particles are released and their trajectories calculated by solving (2.1) backwards

in time. When particles run out of the impermeable box, the reflectional symmetries in u(x, t)

need to be considered (see Brachet et al., 1983). After the backward tracking, we can then obtain

the Lagrangian field at time t on the Cartesian grid from a given initial smooth Lagrangian field

φ(x0, t0) by a simple mapping (2.11) with Lagrangian coordinates.

Next, initial conditions φTG and φKP developed in §§ 4.2.2 and 4.2.3 are, respectively, applied

to obtain the corresponding Lagrangian field in TG and KP flows at the particular time by (2.11).

Additional interpolations from φKP are required in the computation of (2.11) for the KP flow.

Taking an advantage of symmetries in both flows, we can simulate φ only in the fundamental box

with resolution (Np/4 + 1)3, where Np = 4096 in the present study. Then, φ in the impermeable

box can be reconstructed by following steps with rotational symmetries

φ(x, y, z) = −φ(y, π − x, z), π/2 ≤ x ≤ π, 0 ≤ y ≤ π/2, 0 ≤ z ≤ π/2,

φ(x, y, z) = −φ(π − y, x, z), 0 ≤ x ≤ π/2, π/2 ≤ y ≤ π, 0 ≤ z ≤ π/2,

φ(x, y, z) = φ(π − x, π − y, z), π/2 ≤ x ≤ π, π/2 ≤ y ≤ π, 0 ≤ z ≤ π/2,

φ(x, y, z) = φ(x, π − y, π − z), 0 ≤ x ≤ π, 0 ≤ y ≤ π, π/2 ≤ z ≤ π.

Finally φ in the periodicity box can be obtained from φ in the impermeable box by reflectional

symmetries with the planes x, y, z = π. In addition, φ can be simulated only in the fundamental

tetrahedron for the KP flow to make a further reduction on the computation size.

4.5 Numerical simulation and results

4.5.1 Error estimation in the evolution of the vortex-surface field

If the flow is inviscid, an iso-surface of the Lagrangian field φ(x, t) is a vortex surface. When the

viscosity is nonzero, even very small, a Lagrangian surface that was a vortex surface at the initial

time, will, in general no longer remain a vortex surface. Iso-surfaces of φ, however, which started

as vortex surfaces could still be a good approximation to a vortex surface within a finite time for a

high-Re flow. We presently investigate this approximation.

A measure of the deviation of a Lagrangian surface φ = constant from a vortex surface φv =

constant is the cosine of the angle χ between ω and ∇φ, i.e., λω ≡ cosχ where λω is defined in

(2.24). Using (2.15) and (2.30) and replacing φv by φ in (4.34) provide a corresponding transport
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equation for λω
Dλω
Dt

= Aλω + B, (4.49)

where

A(x, t) = nφ · S · nφ − nω · S · nω − νRωnω · n∆ω, (4.50)

B(x, t) = νRωnφ · n∆ω, (4.51)

with notations in (4.45) and nφ = ∇φ/|∇φ|. On a fluid particle, the solution of (4.49) has the form

of

λω(t) = λω0 exp

(∫
A(t)dt

)
+ exp

(∫
A(t)dt

)∫
exp

(
−
∫
A(t)dt

)
B(t)dt, (4.52)

with λω0 ≡ λω(t = 0).

For the initial VSF, ω is normal to ∇φ and λω0 = 0 everywhere, and (4.52) becomes

λω(t) = exp

(∫
A(t)dt

)∫
exp

(
−
∫
A(t)dt

)
B(t)dt. (4.53)

Therefore, λω is always zero in an inviscid flow with B = 0. In viscous TG and KP flows, although

B(t = 0) = 0 for both TG and KP initial conditions, the transport equation for ∇φ · ∇2ω,

D
Dt

(∇φ · ∇2ω) =

(
∂

∂t
∇2ω +∇× (∇2ω × u)

)
· ∇φ (4.54)

implies that |B(t)| > 0 and then |λω(t)| should increase with time after t = 0. The relative error can

be defined by the normalized deviation angle between the tangent plane and the vorticity at each of

its points on the iso-surface of φ

∆χ = (1 − 2|χ|/π)× 100%, |χ| ≤ π/2. (4.55)

The time evolution of the volume-averaged quantity 〈|λω |〉 in TG and KP flows is plotted in

figure 4.7. Here, 〈|λω |〉 for the KP flow is computed only in the region with φ̂ ≥ 10−3 to avoid the

effect of errors in the approximate solution φKP at small contour levels on the evolution of |λω |.
Here, the normalized iso-contour level is defined by

φ̂ = φ/|φ|max. (4.56)

Exponential increase of 〈|λω|〉 is observed in both flows at different Reynolds numbers, and 〈|λω |〉 in

a low-Re flow grows faster than in a high-Re flow due to the effect of viscosity. However, the errors

before t = 4 in the TG flow at Re = 1600, and t = 2 in the KP flow at Re = 1000 are relatively small

(∆χ < 5%). Therefore, we may reasonably assume that vortex surfaces are still well approximated
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by Lagrangian surfaces at the early stages of both high-Re flows because the vortex dynamics in

high-Re flows are essentially inviscid (Brachet et al., 1983).

All vortex surfaces at the initial time are simply connected closed surfaces in TG and KP flows.

In viscous flows, this topology will be maintained until vortex reconnection. The issue of formation

of a finite-time singularity for an inviscid Euler flow remains an important open question (see Majda

& Bertozzi, 2001). Without assuming singularity formation for an inviscid flow, we will nonetheless

subsequently use the symbol t∗ to refer to estimates of possible singularity formation time for both

TG and KP initial conditions. According to Brachet et al. (1992) and Boratav & Pelz (1994), t∗ ≈ 4

and t∗ ≈ 2 for inviscid TG and KP flows, respectively. As pointed out in Kida & Takaoka (1994),

vortex reconnection in the inviscid limit requires the occurrence of a finite-time singularity, which

suggests that violent topological changes may occur at about t∗ in a viscous flow. The topology,

however, is invariant for Lagrangian structures. This contradiction appears to lead to noticeable

errors (∆χ is around or larger than 5%) near or after t∗ in figure 4.7.
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Figure 4.7: Temporal evolution of the volume-averaged |λω |. The horizontal dashed line denotes the
relative error ∆χ = 5% and the vertical dashed line denotes the approximate potential singularity
time t∗

The PDF of |λω | in a TG flow at Re = 1600 (figure 4.8(a)) shows that the distribution of the

deviation |λω | at later times, t = 4 and t = 5, is intermittent. To investigate the source of the error,

|λω | conditioned on the scalar gradient |∇φ| is plotted in figure 4.8(b). When the scalar gradient is

high, the deviation is also large accordingly. This observation emphasizes the distinction between

Lagrangian surfaces and vortex surfaces when they are in close vicinity within a viscous flow. The

topologically invariant Lagrangian surfaces cannot reconnect whereas vortex surfaces can change

topology during a reconnection event. The latter then leads to increases in |λω |, corresponding to

tilting of the vorticity vector off the Lagrangian surface, which are correlated with the corresponding
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increases of |∇φ| within the Lagrangian field.
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Figure 4.8: PDFs of |λω | at different times (left) and the conditional mean of |λω | on |∇φ| (right)
in the TG flow at Re = 1600

On the basis of our error estimation, we will next assume that Lagrangian structures that were

initially vortex surfaces in high-Re flows, e.g., the TG flow at Re = 1600 and the KP flow at

Re = 1000 can, before t∗, be approximated as vortex surfaces with relative error ∆χ < 5%. The

temporal evolution of cross-sections of a set of vortex surfaces from two views in the TG flow at

Re = 1600 represented by contour lines of φ(x, t) are shown in figures 4.9 and 4.10. The initially

blob-like vortex surfaces are progressively distorted into sheet-like surfaces and neighboring vortex

surfaces approach each other. We observe that the thickness of vortex surfaces and the minimum

distance between neighboring ones decay from t = 0 to t = 4. The latter produces high gradients of

φ near t = t∗ and suggests the onset of vortex reconnection in the viscous flow.

After t = t∗, in figure 4.11 we plot two y–z plane-cuts at x = π/16 in the fundamental box

with resolution 81922 for the periodicity box. These show more complicated multi-layered spiral

Lagrangian surfaces in the TG flow at the later stages of the numerical simulation. The extremely

large |∇φ| generated within these spiral layers is an example of the exponentially small structures

produced within the evolving Lagrangian field. The Lagrangian surfaces can then no longer be

considered as a good approximation to vortex surfaces.

For long times, both TG and KP flows become decaying turbulence after transitions (Brachet

et al., 1983; Boratav & Pelz, 1994). The preferred alignment between the passive scalar gradient

and the most compressive strain direction of S in turbulence implies that 〈nφ · S · nφ〉 < 0, and

the preferred alignment between the vorticity and the intermediate stretching strain direction of S

implies that 〈nω · S · nω〉 > 0 (e.g., Ashurst et al., 1987; Ruetsch & Maxey, 1992). Thus, in (4.52)

and (4.53), statistically A(t) < 0 and B(t) ∼ O(νRω) for a long time. Using dimensional analysis,
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 4

Figure 4.9: Iso-contour lines of φ̂ = {±0.1,±0.3,±0.5,±0.7,±0.9} on the x–y plane-cut at z = 0 in
the periodicity box for the TG flow at Re = 1600

at a moderate Reynolds number, we can obtain an estimate for the inhomogeneous term as

B(t) ∼ ǫ/E, (4.57)

where the total energy of flow E = |u|2/2. This implies that, as shown in figure 4.7(a) and figure 4.12,

the evolution of |λω| with the initial VSF |λω0| = 0 increases exponentially in the early stage of

evolution owing to violation of the Helmholtz theorem in a viscous flow, whereafter the increasing

trend is mitigated at later times. Finally, this appears to move towards a stationary stage, which

might be controlled by O(B(t)), as shown in figure 4.12 and implied in (4.53). In contrast, § 2.4
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 4

Figure 4.10: Iso-contour lines of φ̂ = {±0.1,±0.3,±0.5,±0.7,±0.9} on the x–z plane-cut at y = 0
in the periodicity box for the TG flow at Re = 1600

showed that a Lagrangian field, starting from an arbitrary initial condition with a moderate |λω0|
in stationary isotropic turbulence, appeared to exhibit a tendency to move towards a VSF of the

evolving flow, but this is mitigated by cumulative viscous effects. In the TG flow, from an arbitrary

initial Lagrangian field φ0 = sinx sin y sin z, we also observed a similar decreasing trend for |λω| in
figure 4.12. Together, these results suggest that there may exist an intermediate state or ‘attractor’

for the long-time behavior of the alignment angle between ω and ∇φ with different initial scalar

fields.
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(a) t = 5 (b) t = 6

Figure 4.11: Iso-contour lines of φ on the y–z plane-cut at x = π/16 in the fundamental box for the
TG flow at Re = 1600
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Figure 4.12: Temporal evolution of the volume-averaged |λω | in the TG flow with the initial VSF
φ0 = cosx cos y cos z and an arbitrary initial condition φ0 = sinx sin y sin z

4.5.2 Geometry of vortex surfaces in evolution

The geometry in evolution of vortex lines and surfaces is important for quantifying local vorticity

growth and subsequent instability phenomenon and transition in flows with smooth initial conditions.
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Figure 4.13: Exponential growth of the surface area of vortex surfaces in the TG flow

The collective geometry properties of vortex surfaces at a particular time were presently obtained

by taking an average over iso-surfaces of φ at contour levels φ̂ = 0.1, 0.2, ..., 0.9. Since the volume of

vortex surfaces is conserved, the surface area A(t) will increase with time in evolution by stretching.

The exponential growth of the normalized surface area A by the initial area A0, averaged as described

above, is shown in figure 4.13(a) and the corresponding stretching rate ξ defined in (2.23) is shown in

figure 4.13(b). It is apparent that in the high-Re flow, the stretching rate is higher than the low-Re

flow after t ≈ 2, indicating that the flattening process of vortex surfaces is faster in the higher Re

flow.

In addition to the surface area growth, measures of curvature on the Lagrangian surface can

characterize the local topology. To quantify the non-local geometry (in the surface sense), we utilize

two differential geometry properties, the absolute value of the shape index S and dimensionless

curvedness C defined in (2.53). The local topology can be represented by S where 0 ≤ S ≤ 1. An

umbrella-like shape, e.g., the spherical cap or dome, is represented by high S; a parabolic shape, e.g.,

a ridge, is represented by medium S; and a hyperbolic shape, e.g., a symmetrical saddle or a saddle

ridge, is represented by low S (Koenderink & Van Doorn, 1992). The evolution of three-dimensional

vortex surfaces is visualized in figure 4.14. The corresponding area-based joint PDFs of S and C,

with color intensity to express the joint PDF from low to high, are shown below the corresponding

visualization of vortex surfaces. The non-local geometry of the surface can be represented by the

feature centers (Ŝ, Ĉ) marked by ⊞ in figure 4.14, which are respectively dimensionless forms of the

weighted first-order moments of the joint PDF of S and C. For details, a number of representative

shapes and the corresponding S–C joint PDFs are shown in figure 13 in Bermejo-Moreno & Pullin

(2008). The S–C joint PDF at t = 4 in figure 4.14 shows that the distribution of C is intermittent.

Most surface elements are very flat with low curvatures except for a small number of elements with



98

very high curvatures. From figure 4.14(d), we can see very thin and flat large-scale structures in

the middle surrounded by thin edges with very sharp corners. There is a preponderance of surface

elements on the vortex surface with hyperbolic or parabolic shapes near t∗, while most shapes of

elements at the early stage are umbrella-like or parabolic. This observation is also visualized as the

appearance of rolled-up structures at the edge of the vortex surface in figure 4.14(d).

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

S

C

0
0 1

2

S

C

0
0 1

2

S

C

0
0 1

2

S

C

0
0 1

2

Figure 4.14: Vortex surfaces (iso-surfaces of φ̂ = 0.4) in the TG flow at Re = 1600 and corresponding
feature centers (Ŝ, Ĉ) are marked by ⊞ in S–C joint PDFs at the bottom

To quantify these observations in the evolution, 〈Ĉ〉 and 〈Ŝ〉 are averaged over vortex surfaces

at nine contour levels from 0.1 to 0.9 in the TG flow at Re = 1600. As shown in figure 4.15(a), we

can see that the averaged curvedness 〈Ĉ〉 of vortex surfaces decreases exponentially with increasing

time, which shows the strong flattening process of vortex surfaces corresponding to the growth of

surface area, but in the sense of curvatures of surfaces. From figure 4.15(b), we find the averaged

absolute value of the shape index 〈Ŝ〉 appears to decrease with time and the value approaches to 0.5

at t = 4. Furthermore, lower 〈Ĉ〉 and 〈Ŝ〉 are obtained in the high-Re flow. This indicates that the

vortex surfaces in the high-Re flow tend to be more nearly singular than those in the low-Re flow,

which may imply extreme, near-singular structures in the inviscid flow when t→ t∗.

4.5.3 Relations between vortex-surface fields and vorticity fields

As shown in figure 4.16, the geometry of vortex surfaces differs from that of the iso-surfaces

of vorticity magnitude in the TG flow. In particular, in figure 4.16(b), the ‘vorticity pancakes’

represented by the high vorticity regions as shown in Brachet et al. (1992) appear to be generated

between neighboring vortex surfaces when they approach each other. The sheet-like structure of
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Figure 4.15: Averaged feature centers 〈Ĉ〉 and 〈Ŝ〉 at different times in the TG flow

the high vorticity region in simulations with other initial conditions (e.g., Pumir & Siggia, 1990;

Kerr, 1993) could be induced by the similar approaching process of paired vortices. Referring to

figure 4.10, vortex surfaces appear to reveal strong dynamics in the evolution of vortical structures,

including stretching and subsequent roll-up. Since, for inviscid flow, a vortex surface is topologically

invariant, tracking the Lagrangian structure unfolds a continuous dynamic process. In contrast, the

vorticity-magnitude iso-surface obeys no continuous dynamical form. Its instantaneous geometry

thus results in many segmented structures with less implications for dynamics.

Compared with the TG flow, the vortex surface in the KP flow shows more interesting vortex

dynamics in producing predominant large-scale spiral signatures. The evolution of eight vortex

surfaces which lie in the x–y plane with −π/2 ≤ x, y ≤ π/2 at z = 0 is shown in figure 4.17 and

the corresponding cross-sections of vortex surfaces are shown in figure 4.18. At the initial time,

eight head-to-tail connected (without contact) vortex surfaces form a ring. The neighboring vortex

surfaces are not shown for clarity. We remark that, at a particular iso-contour level, there are 192

vortex surfaces with certain symmetries in the box with −π/2 ≤ x, y, z ≤ 3π/2. We can find two

evolutionary geometries of vortex surfaces in the KP flow, which are, respectively, represented by

white and black in figure 4.17. The blob-like vortex surfaces are progressively distorted into two

types of shell-like shapes. As shown in figure 4.17(d), each white vortex surface is wrapped by a

black one and connected with another black one. The rolled-up structure will appear at the edge

of vortex surfaces as indicated in figure 4.18(d). From the iso-contour lines in figure 4.18, we can

see that the geometry of vortex surfaces is more regular than the vorticity contour lines shown in

Boratav & Pelz (1994) and better exemplify the vortex dynamics. All the vortex surfaces are wound

in the clockwise direction on the x–y plane-cut at z = 0. In figure 4.18(d), multi-layered structures

are generated at the joint of vortex surfaces at the later stages of our simulation.
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(a) x–y plane-cut at z = 0 (b) y–z plane-cut at x = 0

Figure 4.16: Relations between vortex surfaces and vorticity fields at t = 4 in the TG flow at
Re = 1600. Vortex surface cross-sections are expressed by contour lines of ϕ and the magnitude of
|ω| in shadings on the plane-cuts in the fundamental box

The accumulation of vorticity may be related to the local geometry of vortex surfaces. Using a

two-dimensional analogy, Constantin et al. (1994) found that rapid growth of vorticity appears to

be induced at hyperbolic saddles of vortex lines. By solving the Euler–Lagrange equations for the

associated variational problem, Lu & Doering (2008) observed that vorticity is concentrated at the

same place where vortex stretching occurs in a three-dimensional flow with the estimation of the

maximum enstrophy growth rate. From figure 4.16(b) and figure 4.19, local hyperbolic or stretched

shapes are also observed in the vicinity of high vorticity regions in the present three-dimensional

flows. This suggests that highly localized vorticity intensification may be produced by the roll-up of

vortex surfaces induced by non-parallel stretched vortex lines that comprise them. Thus, in terms

of vortex-surface evolution, transition from the smooth initial flow condition to a flow state with

almost-singular structures, or even subsequent turbulent flow, can perhaps be understood in the

following scenario: initially, blob-like vortices are stretched and they approach each other. The

edges of stretched vortex surfaces are then gradually rolled up. Very high vorticity appears within

the rolled-up structures at their edges and at the interface between neighboring vortex surfaces. The

hyperbolic structures near the high vorticity regions might then become more unstable by viscosity-

induced instabilities. This scenario is observed in the experiment of the head-on collision of two

vortex rings (e.g., Lim & Nickels, 1993), in which the role of the dye is analogous to the vortex-

surface scalar field used in the present study to identify the vortical structures in the Lagrangian

sense.
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(a) t = 0 (b) t = 0.25

(c) t = 0.5 (d) t = 1

Figure 4.17: Vortex surfaces (iso-surfaces of ϕ̂ = ±0.015) in the KP flow at Re = 1000. These
surfaces lie in the x–y symmetry plane at z = 0, where −π/2 ≤ x, y ≤ π/2

4.6 Results and discussion

In this study, we have developed a systematic methodology for the construction of VSFs for both

TG and KP initial velocity–vorticity fields. The spatial constraint on a three-dimensional scalar field

ϕ is converted to a system of linear homogenous equations with Fourier expansions. In particular,

although it appears that an exact and unique ϕ for the KP flow with a finite set of Fourier modes

cannot be found, we can construct a least-squares solution through an optimization problem with

proposed basis functions that satisfy all KP symmetries. The somewhat elaborate scheme required

to obtain vortex surfaces corresponding to the relatively simple KP initial vorticity field is surprising
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

Figure 4.18: Iso-contour lines of ϕ̂ = {±0.001,±0.01,±0.1,±0.5,±0.9} on the x–y plane-cut at z = 0
in the impermeable box for the KP flow at Re = 1000

and unexpected. We remark that the methodology presented in § 4.2 may not be applicable for every

spatially periodic Eulerian vorticity field, for example, the nonintegrable ABC flow. The TG and

KP flows are periodic and have relatively simple topology. All their vortex lines are closed and

unknotted at the initial time. General three-dimensional periodic vorticity fields could exhibit such

complex topologies that a ϕ, even itself non-spatially periodic, which satisfies the constraint (4.3),

may not in general exist. This appears to be an open problem. In addition, the relations and

differences between VSFs and the classical Clebsch representation are discussed.

The evolution equations of the VSF in both inviscid and viscous incompressible flows are derived

in § 4.3. In the inviscid case, with a well-defined initial VSF, the VSF is equivalent to the Lagrangian
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(a) x–y plane-cut at z = 0 (b) x–y plane-cut at z = π/2

Figure 4.19: Relations between vortex surfaces and vorticity fields at t = 1.5 in the KP flow at
Re = 1000. Vortex surface cross-sections are expressed by contour lines of ϕ and the magnitude of
|ω| in shadings on the plane-cuts in the fundamental box

field and the nonuniqueness of the solution exists only up to relabeling. In the viscous case, solutions

of equations describing a VSF, if they exist, are showed to be nonunique.

From our quantitative estimates, the relative error of vortex surfaces as Lagrangian surfaces is

typically less than 5% in high-Reynolds-number TG and KP flows prior to times typical of a potential

singularity time t∗. The error appears to be mainly associated with the topological constraint

that prevents reconnection of Lagrangian structures, except possibly at singularities in a strictly

Euler flow. This has the consequence that, for slightly viscous flows, vortex surfaces can be well

approximated as Lagrangian structures prior to vortex reconnection. In temporal evolution, initial

blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighboring vortex

surfaces approach each other. This flattening process of vortex surfaces is quantified by the growth

rate of the surface area and the averaged curvedness ⟨Ĉ⟩. The local topology of vortex surfaces is

well represented by the averaged absolute value of the shape index ⟨Ŝ⟩, which indicates that more

local hyperbolic shapes on the surfaces appear near a potential t∗ than at the early stages of the

evolution. We observed that local rolled-up shapes are predominantly located in the vicinity of high

vorticity regions, which might be related to the subsequent transition to turbulence. Furthermore,

visualization of the evolution of vortex surfaces shows a continuous dynamic process of vortex roll-

up with certain symmetries, which was not observed in visualizations of iso-surfaces of vorticity

magnitude.

An interesting problem suggested by the present study is the development of general numerical
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methods for the identification and tracking vortex surfaces in other flows, including viscous flows. In

particular, the identification of vortex surfaces in vortex reconnection is important but challenging

(Kida & Takaoka, 1994). This issue will be addressed in § 5. In addition, recent progress on the

computation of invariant manifolds (e.g., see Krauskopf et al., 2005; Branicki & Wiggins, 2009) may

shed light on the construction or identification of vortex surfaces. Another extension of the present

study may address the relationship between the geometry of vortex surfaces and potential finite-time

singularity in Euler flows (see Hou & Li, 2008). This, however, requires much higher resolution for

both the Eulerian velocity field and the Lagrangian field than is employed presently. An adaptive

mesh for φ in the Euler flow should be considered owing to the intermittently distributed nearly

singular structures in vortex surfaces close to a potential t∗. Finally, the evolution of vortex surfaces

may provide a reference for the development of vortex dynamics in a Lagrangian framework and

new objective criteria for identifying vortical structures.
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Chapter 5

Evolution of vortex-surface fields in

viscous Taylor–Green and Kida–Pelz

flows

5.1 Background and objectives

Conceptual vortex tubes and sheets have long been utilized as basic vortical structures or elements

of the vortex-dynamic paradigm in fluid mechanics (e.g., Saffman, 1992; Batchelor, 1967). In

particular, intermittency in high-Reynolds-number turbulence has been hypothesized to be related

to the organized vortical structures with candidate tube-like or sheet-like geometries (see Pullin &

Saffman, 1998). In a general sense, an open or closed vortex surface can be defined as a smooth

surface or manifold embedded within a three-dimensional velocity field, which has the property that

the local vorticity vector is tangent at every point on the surface. Although coherent bundles of

vortex lines with strong vorticity and tube-like geometry have been observed (e.g., She et al., 1990;

Jimenez et al., 1993) and analyzed (see Constantin, Procaccia & Segel, 1995) in turbulence, the

existence of globally smooth vortex surfaces in general three-dimensional flows remains an open

problem. Within the Clebsch representation (see Lamb, 1932; Truesdell, 1954), in § 4 we defined

a vortex-surface field (VSF) as a smooth scalar field whose iso-surfaces are vortex surfaces and

developed VSFs for both initial TG (see Taylor & Green, 1937; Brachet et al., 1983) and KP (see

Kida, 1985; Boratav & Pelz, 1994) velocity fields which display simple topology and geometry.

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity

theorem shows that Lagrangian material surfaces or Lagrangian fields which are vortex surfaces or

VSFs, respectively, at time t = 0, remain so for t > 0. On the other hand, the breakdown of the

frozen motion of vortex lines in viscous flow owing to violation of the Helmholtz theorem (e.g., Kida

& Takaoka, 1994; Chen et al., 2006) underscores a fundamental problem associated with identifying

vortex surfaces at different times in real flows and turbulence in particular. This can perhaps be
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interpreted as the root cause of numerical obstacles in the implementation of Lagrangian formulations

of Navier–Stokes dynamics (e.g., Ohkitani & Constantin, 2003). As shown in § 4, although a

Lagrangian field evolving from a VSF initial condition can provide an interesting approximation to

a VSF for a short period in high-Reynolds-number flows, it cannot be used to identify signature

topological changes in vortex lines or surfaces such as the vortex reconnection that is a crucial

mechanism in turbulent transition and enstrophy generation (see Kida & Takaoka, 1994).

In this chapter, we consider the VSF evolution in viscous incompressible flows for which initial

VSFs exist. Our examples are TG and KP flows. The level sets of a VSF at different times will

be shown to reveal vortex dynamics in the sense of the geometry and topology of vortex surfaces.

We begin in § 5.2 by obtaining equations governing VSFs for viscous incompressible flows. In § 5.3,

we develop the numerical methods used presently for computing VSF evolution. The convergence

properties of the proposed numerical scheme is then analyzed. The evolution of VSFs in both

three-dimensional viscous TG and KP flows is presented in § 5.4 together with discussion of the

corresponding vortex dynamics. Some conclusions are drawn in § 5.5.

5.2 Theoretical framework of the vortex-surface field

5.2.1 Governing equations

In a three-dimensional incompressible viscous flow, the velocity field is determined by the Navier–

Stokes equations (4.48) with appropriate initial and boundary conditions. The definition of a VSF

φv(x, t) requires that the cosine of the angle between the vorticity ω and ∇φv satisfies

λω ≡
ω · ∇φv
|ω||∇φv|

= 0, (5.1)

pointwise within the domain of interest for all time. If (5.1) holds uniformly within the domain at

t = 0 then the temporal evolution of the VSF is described for t ≥ 0 by (4.32), where the material

derivative is defined as
D
Dt
≡ ∂

∂t
+ u · ∇.

From the equation of vorticity (2.30) and (4.32) and referring to the equation for the evolution of

the Lagrangian field φ (2.15), in § 4.3 we obtained the equations governing the VSF φv as (4.41) and

(4.42). In principal, given the evolution of u and ω, one can solve (4.41) for φv, where, at each t the

function L is given by the solution of the hyperbolic partial differential equation (4.42). We show

in appendix B, however, that a necessary condition for the existence and uniqueness of solutions to

equations of the type (4.42) is not satisfied (see Mingyu et al., 1997). Hence, this approach explicitly

fails for the computation of VSF evolution.



107

5.2.2 Restoration of uniqueness and approximate numerical solutions

To restore uniqueness we introduce a time-like variable τ , with the dimension [time/length], and

let φv = φ(x, t; τ) and L = L(x, t; τ). We seek solutions

φv = lim
τ→∞

φv(x, t; τ) and L = lim
τ→∞

L(x, t; τ), (5.2)

where L(x, t; τ) satisfies
D
Dt

(ω · ∇φv) + ν
∂L
∂τ

= 0, (5.3)

for all x at fixed t. Equation (5.3) now replaces (4.32). From (2.30), (4.41), and (5.3) it can be then

be shown that
DL
Dτ = −∇φv · ∇2ω, (5.4)

where the left-hand side is expressed in terms of the pseudo material-like ‘vorticity’ derivative defined

as
D
Dτ ≡

∂

∂τ
+ ω · ∇ (5.5)

based on the pseudo time τ and the frozen vorticity ω(x, t) at fixed t.

Now consider
Dφv
Dτ = Q, (5.6)

where Q is a function to be chosen subsequently. Differentiating (4.41) with respect to τ and (5.6)

with respect to t and equating expressions for ∂2φv(x, t; τ)/(∂t∂τ) with ∂u(x, t)/∂τ = 0 then yields

∂

∂t
(ω · ∇φv) + ν

∂L
∂τ

=
∂Q

∂t
+ u · ∇

(
∂φv
∂τ

)
. (5.7)

From the above and using (5.3) and (5.6) we can obtain

D
Dt

(ω · ∇φv) + ν
∂L
∂τ

=
DQ
Dt

= 0. (5.8)

It seems that Q can be any Lagrangian field φ satisfying (2.15). In particular we can choose Q = 0,

and then (5.6) becomes
Dφv
Dτ ≡

∂φv
∂τ

+ ω · ∇φv = 0. (5.9)

With ω given at fixed t, (5.4) and (5.9) then define the evolution for τ > 0 of φv(x, t; τ) and

L(x, t; τ). While it is expected that integration forward in τ for these equations would lead to

exponentially small structures as τ →∞ without diffusion terms, they have unique viscosity solutions

(Crandall & Lions, 1983) for given smooth initial conditions. Hence, we regularize both equations
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as

DL
Dτ = −∇φv · ∇2ω + ǫ∇2L, (5.10)

Dφv
Dτ = ǫ∇2φv, (5.11)

where ǫ≪ 1. At fixed t, the limit (5.2) can be obtained by solving (5.10) and (5.11) simultaneously.

It remains to be demonstrated that this limit is ‘steady’ in τ .

5.3 Numerical overview

5.3.1 Numerical methods

The Navier–Stokes equations (4.48) in a periodic box of side 2π were computed by a standard

pseudo-spectral method on a uniform grid N3 for the Reynolds number Re = 1/ν in the period from

t = 0 to t = tmax. The aliasing error was removed by use of a 16th-order exponential filter (Shu

et al., 2005). The scalar equations (4.41) and (5.9) were advanced in t and τ , respectively, using

the third-order TVD Runge–Kutta method and the convection terms were treated by the fifth-order

weighted essentially non-oscillatory (WENO) scheme (Jiang & Shu, 1996). The time steps ∆t and

∆τ were chosen to ensure that the corresponding CFL numbers

CFLt =
∆t

∆x
max(|ux|, |uy|, |uz|) and CFLτ =

∆τ

∆x
max(|ωx|, |ωy|, |ωz|),

for (4.41) and (5.9) were 0.5 or less for numerical stability and accuracy, where ∆x = 2π/N . It is

noted that ∆τ could be much less than ∆t when |ω| ≫ |u| at some time.

For TG flows, the initial fields for (4.48) and (4.41) were chosen as

u(x, t = 0) = (sinx cos y cos z,− cosx sin y cos z, 0), (5.12)

and

φv(x, t = 0) = (cos 2x− cos 2y) cos z. (5.13)

For KP flows, u(x, t = 0) is given in (4.14) and φv(x, t = 0) was obtained numerically in § 4.2.3

by an expansion based on optimal basis functions with the same octahedral symmetries as the KP

initial field. In addition, the TG and KP symmetries (Brachet et al., 1983; Kida, 1985) were utilized

to reduce the computational time and scale. Parameters of the runs in the present study are listed

in table 5.1. As shown in figure 5.1, the dissipation rate ε in both flows increases at early time and

approaches a peak after a finite time, which can indicate the transition from initial smooth flow to

turbulent flow at high Reynolds numbers (Brachet et al., 1983; Boratav & Pelz, 1994).



109

Table 5.1: Parameters of the study for TG and KP flows

Run TG1 TG2 TG3 TG4 TG5 KP1 KP2
Re 50 100 200 400 800 200 400
N3 1283 2563 2563 5123 5123 5123 5123

tmax 10 10 10 10 10 3 3
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Figure 5.1: Dissipation rate

5.3.2 Numerical implementation for computing the vortex-surface field

The exact solution of the VSF satisfies (5.1) for all time. However, from (4.47) it appears that

|∇φv| tends to become unbounded for long times in evolution even from a smooth initial field. In

other words, we might not be able to find a globally smooth φv with a finite resolution for all time.

Hence, we introduce a filtering or artificial dissipation mechanism for a smooth VSF in the evolution

and at the same time keep the volume averaged 〈|λω |〉 as small as possible. It is noted that the

implicit numerical viscosity in the finite-difference WENO scheme can keep |∇φv| finite as shown in

(5.11), where ǫ = ǫWENO(x) depends on the smoothness of the discretized local φv that is determined

by local ∇φv and resolution N (Jiang & Shu, 1996). Other regularization methods, e.g., using an

explicit numerical viscosity or a subgrid scale model for the diffusion term, would be also helpful to

solve (5.11) with a finite resolution.

In the implementation, we solved (4.41) and (4.48) with L = 0 simultaneously in time t. For

each time step, only (5.11) was computed for a period Tτ = Nτ∆τ in the pseudo time τ to implicitly

determine L in (4.42) by (5.8) rather than solving (5.10) and (5.11) simultaneously. This can avoid

discretized errors for the term ∇φv · ∇2ω with high order derivatives in (5.10). Therefore, within a
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single time step the VSF was computed as

∂φ∗v(x, t)

∂t
+ u(x, t) · ∇φ∗v(x, t) = ǫWENO(x, t)∇φ∗v(x, t), t ≥ 0, (5.14)

and then at fixed time t

∂φv(x, t; τ)

∂τ
+ ω(x, t) · ∇φv(x, t; τ) = ǫWENO(x, t; τ)∇φv(x, t; τ), 0 ≤ τ ≤ Tτ , (5.15)

with

φv(x, t; τ = 0) = φ∗v(x, t) (5.16)

to obtain the approximate solution for (5.2). Finally, φ∗v(x, t) in (5.14) is updated by φv(x, t; τ = Tτ )

for every time step. As sketched in figure 5.2, (5.14) serves as the prediction step and (5.15) as the

correction step.

Figure 5.2: Sketch of the numerical implementation for computing the VSF. Solid curve: solution
of the VSF; dashed arrow: prediction step (5.14); solid arrow: correction step (5.15)

5.3.3 Convergence of numerical solutions

For a fixed time t, finite 〈|λω |〉 could be generated in (5.14) because of the deviation between the

temporary scalar field φ∗v and the VSF φv, while 〈|λω |〉 can be reduced by using (5.15). Next we will

analyze the convergence of the correction step (5.15) onto the approximate VSF.

Using (5.11) and ∂ω(x, t)/∂τ = 0 at fixed t, and following a line of analysis applied in §§ 2.4.3

and 4.5.1 to a Lagrangian field, we can show, after some algebra, that

D|∇φv|
Dτ =

1

|∇φv|
(−(∇φv · Sω · ∇φv) + ǫ∇φv · ∇2∇φv), (5.17)

D
Dτ (ω · ∇φv) = ǫω · ∇2∇φv. (5.18)

The equation of λω, the cosine of the angle between ω and ∇φv as a function of the pseudo time τ
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can then be obtained as
Dλω
Dτ = Aλω + B, (5.19)

with

A(x, τ) = nv · Sω · nv − nω · ∇|ω| − ǫRΦnv · nΦ, (5.20)

B(x, τ) = ǫRΦnω · nΦ, (5.21)

where the symmetric part of the vorticity-gradient tensor Sω has entries Sω,ij = 1
2 (∂ωi/∂xj +

∂ωj/∂xi), and unit vectors and a dimensionless ratio are, respectively,

nω =
ω

|ω| , nv =
∇φv
|∇φv |

, nΦ =
∇2∇φv
|∇2∇φv |

, RΦ =
|∇2∇φv|
|∇φv|

. (5.22)

Since ∇ ·ω = 0, the eigenvalues of Sω satisfy Γα+Γβ +Γγ = 0. By analogy with the analysis in

§ 2.4.3, we then expect that ∇φv will tend to align with eigenvectors of Sω with negative eigenvalues.

Since there is no preferred alignment between nω and ∇|ω|, the leading term 〈nv · Sω · nv〉 in 〈A〉
should be statistically negative. This suggests that the solution of (5.11) will take the form

〈|λω(t, τ)|〉 ∼ 〈|λω(t, τ = 0)|〉 exp(〈A〉τ) +O(ǫRΦ), 0 ≤ τ ≤ Tτ . (5.23)

Hence, for an initial φv with a finite 〈|λω |〉, the solution of (5.11) appears to show exponential

decaying at the beginning, but this trend appears to be mitigated by the inhomogeneous term

B ∼ O(ǫRΦ) in (5.19) controlled by the numerical viscosity that depends on the resolution at late τ .

5.3.4 Numerical experiments on the convergence of numerical solutions

Using the initial condition given by an exact VSF (5.13), the temporal evolution of 〈|λω |〉 in the

TG flow for Re = 100 and N = 256 is shown in figure 5.3(a). At fixed t we find that 〈|λω |〉 decreases

to a small value with increasing computational period Tτ for (5.15) obtained by increasing Nτ . We

define the L∞ error norm ‖〈|λω|〉‖∞ as the maximum value of 〈|λω |〉 in the evolution of φv from t = 0

to t = tmax. Figure 5.3(b) shows the effect of the resolution on the convergence of the VSF solution.

We can see that smaller ‖〈|λω|〉‖∞ for the same Nτ are obtained in the runs with larger N because

the numerical viscosity ǫ is reduced by increasing grid resolution (Jiang & Shu, 1996). This implies

a longer period with exponential decay dominated by the first term in the right-hand side of (5.23).

The time history of 〈|λω |〉 in TG and KP flows at different Reynolds numbers is shown in figure 5.4,

where Nτ = 50 for all runs and values of N are used as listed in table 5.1. These are chosen to

ensure that the maximum ‖〈|λω|〉‖∞ ≈ 0.03 which is equivalent to 3% of the possible maximum |λω |.
For comparison, also displayed in figure 5.4 are temporal evolutions of 〈|λω|〉 for Lagrangian fields φ

governed by (2.15) with the same initial conditions for the VSF simulations. The increase in 〈|λω |〉
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with time in the evolution of Lagrangian fields occurs because the Helmholtz vorticity theorem is

violated for viscous flow. In contrast, 〈|λω |〉 in the VSF simulations are substantially reduced by

solving (5.14) and (5.15).
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Figure 5.3: Convergence studies of the numerical solutions for the VSF in the TG flow at Re = 100
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Figure 5.4: Temporal evolution of 〈|λω |〉 in TG and KP flows at different Reynolds numbers (�:
Lagrangian field with the initial VSF; #: VSF)
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5.4 Numerical simulation and results

5.4.1 Evolution of vortex-surface fields in Taylor–Green flows

The evolution of vortex surfaces obtained from the VSF φv in the TG flow at Re = 400 within

the periodic domain 0 ≤ x, y, z ≤ 2π is shown in figure 5.5. Vortex surfaces can be extracted as

iso-surfaces of the VSFs at different times. Here, the scaled contour level is defined as (4.56). Color

on the extracted vortex surfaces is rendered by 0 ≤ |ω| ≤ 12 from blue to red. We remark that

since φv is not conserved in the evolution, its range may change as a result of numerical dissipation

in (5.14) and (5.15). Some vortex lines are integrated from points on the iso-surfaces of φv. We can

see that all lie almost on the vortex surfaces owing to very small 〈|λω |〉 in the simulation.

As shown in figure 5.5(a), all the closed and unknotted vortex lines have the same direction

on each surface. All the surfaces have the same dynamics but they move in different directions

under the TG symmetries (Brachet et al., 1983). In figures 5.5(b) and 5.5(c), the vortex surfaces

are stretched and gradually approach to each other but the topology of both the vortex surfaces

and vortex lines on the surfaces is unchanged. In figure 5.5(d), incipient vortex reconnection, which

is usually characterized by topological changes of vortex lines and surfaces (see Kida & Takaoka,

1994), appears to begin at impermeable planes (e.g., x = π) (Brachet et al., 1983) and junctions

between anti-parallel vortex surfaces roughly from t = 4 to t = 5. Just prior to reconnection the

directions of vortex lines on neighboring vortex surfaces (see figure 5.5(c)) are opposite, indicating

that reconnection at the impermeable faces is the result of a simple vorticity cancelation as sketched

in figure 3 (a) in Kida & Takaoka (1994).

In figure 5.5(e), vortex tubes (actually vortex rings in the whole periodic domain) are rolled up

at the edges of vortex surfaces around t = 5. We can see that significant vorticity intensification

occurs near the joint of anti-parallel vortex tubes (e.g., Siggia, 1985; Kerr, 1993). Based on the

directionality of vorticity on these tubes in figure 5.6(a) combined with qualitative interpretation of

the Biot–Savart law, we conclude that the vortex tubes, exhibiting a high-degree of symmetry, are

stretched by the induced velocity from neighboring ones as sketched in figure 5.6(b).

In addition, the vortex tubes appear twisted either by self-induced dynamics or interaction with

others. Figure 5.5(f) shows a tangle of interacting vortex surfaces and tubes at a late time t = 7.

This may be interpreted as exemplifying a common archetypal picture of turbulence in terms of

vortices or vortex tubes. To obtain the VSF at a full turbulent-like state with the Kolmogorov

five-third scaling of the velocity spectrum, we would need to simulate the TG flow for Re ≥ 1600

at t = 8 ∼ 9 (Brachet et al., 1983). The resolution for the corresponding VSF simulation with an

acceptably small 〈|λω |〉 would be N3 = 20483 or higher.

Using results obtained from simulations listed in table 5.1 we find that vortex surfaces at different

Reynolds numbers appear to have similar topology and evolutionary geometries in 0 ≤ t ≤ 4.
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(a) t = 1 (b) t = 1.5

(c) t = 3 (d) t = 4.5

(e) t = 5 (f) t = 7

Figure 5.5: Evolution of the VSF in the TG flow at Re = 400. Some vortex lines are integrated and
plotted on the iso-surfaces at ϕ̂ = 0.5 (a–e) and ϕ̂ = 0.4 (f). Color on the surfaces is rendered by
0 ≤ |ω| ≤ 12 from blue to red
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(a) typical vortex lines with strong vorticity (b) configuration of the intensification of vortex lines
(solid lines at the top and dashed lines at the bottom,
induced velocity shown in red arrows)

Figure 5.6: Interacting vortex lines on the tube-like vortex-surfaces at t = 5 in the TG flow at
Re = 400 in figure 5.5(e). Color on the lines is rendered by 0 ≤ |ω| ≤ 12 from blue to red. The
rapid local intensification of the vorticity could be explained by the interaction of anti-parallel vortex
tubes and the Biot–Savart law

However, as shown in figure 5.7, the rolling-up of vortex tubes around t = 5 observed for all

simulations with Re ≥ 100 is not seen in the low-Reynolds-number TG flow at Re = 50. This

suggests that the tube-rolling event is a dynamical requirement for the transition from a smooth

velocity field to turbulence in the TG flow. From t = 4 to t = 8, the vortex surfaces at Re = 200

to Re = 800 appear to have the same topology while the geometry of vortex surfaces in high-Re

flows is more complicated than that in low-Re flows. For instance, the vortex surfaces for TG flow

at Re = 400 and Re = 800 are compared at t = 7.5 in figure 5.8.

(a) t = 5 (b) t = 6

Figure 5.7: Evolution of the VSF in the TG flow at Re = 50. Some vortex lines are integrated and
plotted on the iso-surfaces at ϕ̂ = 0.5. Color on the surfaces is rendered by 0 ≤ |ω| ≤ 12 from blue
to red
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(a) Re = 400

(b) Re = 800

Figure 5.8: Vortex surfaces in TG flows for different Reynolds numbers at t = 7.5
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We can see that the vortex tubes at Re = 800 show more obvious helical geometry (e.g., Ricca,

1994; Fukumoto & Okulov, 2005), which can generate more intense small-scale velocity fields, than

that at Re = 400.

In § 2.5 and § 3.4, we found that the geometry of Lagrangian structures at a late time appears

to be insensible to their initial shapes in isotropic turbulence and turbulent channel flow. Likewise,

as shown in figures 5.9(a)–5.9(c), the VSFs from independent initial VSFs ϕ0, such as (5.13), ϕ0 =

cosx cos y cos z, and ϕ0 = cosx cos3 y cos2 z can produce very similar vortex-surface geometries in

the same TG flow after a long time. Additionally, in figure 5.9(d), intersections of different vortex

surfaces from independent ϕ0, as the Clebsch potentials (e.g., Lamb, 1932), can represent vortex

lines. This provides a possible method to study the evolution of vortex lines in simple viscous flows

using a Lagrangian formulation.

5.4.2 Evolution of vortex-surface fields in Kida–Pelz flows

The evolution of iso-surfaces of the VSF in the KP flow at Re = 200 is shown in figure 5.10

within a sub domain π/2 ≤ x ≤ 3π/2 and 0 ≤ y, z ≤ π. The vortex surfaces in other subdomains

have the same dynamics but move in different directions under the KP symmetries (Kida, 1985). In

contrast to the initial vortex surfaces for the TG flow in figures 5.5(a), in the KP flow the vortex

lines on neighboring vortex surfaces have the same direction in figure 5.10(a). Again appealing to

an interpretation of the sense of the velocities induced by the Biot–Savart law indicates that all

the vortex surfaces are wound in the same direction and rotate with the z-axis at the center. This

produces the predominant large-scale spiral signatures for the vortex surfaces in the KP flow. In

the structural evolution, eight head-to-tail connected vortex surfaces initially form a ring and the

blob-like vortex surfaces are progressively distorted into two types of shell-like shapes prior to vortex

reconnection. As shown in figure 5.10(d), rolled-up structures appear at the edge of vortex surfaces

in the evolution. The neighboring vortex surfaces are reconnected around t = 2 in figure 5.10(e) and

stretched structures with complicated geometries are generated at the joint of vortex surfaces at the

later stage in figure 5.10(f). The evolutionary geometry of vortex surfaces in both TG and KP flows

clearly reveal a scale cascade from large scales with blob-like geometry to small scales with tube-like

or sheet-like geometry in the breakdown process.

5.5 Results and discussion

In the present study, we have developed a numerical method for computing VSF evolution in some

simple viscous incompressible flows. Our starting point is the expansion of the space of independent

co-ordinates of a set of equations that formally describe the temporal evolution of a VSF, to an

extended domain containing a pseudo-time co-ordinate. This appears to restore uniqueness to the
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(a) ϕ0 = (cos 2x− cos 2y) cos z (b) ϕ0 = cos x cos y cos z (c) ϕ0 = cosx cos3 y cos2 z

(d) Vortex surfaces from three independent ϕ0 (shown above). Some vortex lines are integrated and plotted on the
surfaces, in particular, on the intersections between different vortex surfaces from independent ϕ0.

Figure 5.9: Vortex surfaces from three independent initial VSFs (white: ϕ0 = (cos 2x− cos 2y) cos z;
light blue: ϕ0 = cosx cos y cos z; red: ϕ0 = cosx cos3 y cos2 z) in the TG flow for Re = 400 at t = 7.5.
The surfaces are shown in the sub domain 0 ≤ x, y, z ≤ π

otherwise indeterminate initial boundary-value problem and can be interpreted as a correction step

on the original VSF governing equations. There is then some similarity with generic level set

methodologies (e.g., Osher & Fedkiw, 2003). In the absence of a physical diffusion term, by analogy

to the scalar advection equation describing a Lagrangian field, solutions of the extended equation

set for VSFs are expected to develop exponentially small scales in the long pseudo-time limit. In

numerical implementation, this is handled presently through regularization provided by the implicit

numerical dissipation inherent in the numerical WENO scheme used. Our numerical method shows

exponential convergence in terms of the pseudo time up to an error threshold that is a function of
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(a) t = 0, ϕ̂ = 0.15 (b) t = 0.5, ϕ̂ = 0.15

(c) t = 1.0, ϕ̂ = 0.15 (d) t = 1.5, ϕ̂ = 0.1

(e) t = 2.0, ϕ̂ = 0.05 (f) t = 2.5, ϕ̂ = 0.025

Figure 5.10: Evolution of the VSF in the KP flow at Re = 200. Some vortex lines are integrated
and plotted on the iso-surfaces at ϕ̂. Color on the surfaces is rendered by 0 ≤ |ω| ≤ 15 from blue to
red
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the grid resolution used for the vortex-surface equations.

The present scheme has been applied in TG and KP flows for real-time periods such that the L∞

error norm remains at a level sufficiently small that smoothed vortex surfaces, obtained as iso-surfaces

of the continuous VSFs, can be extracted. The simulation durations are long enough to reveal

the continuous evolutionary geometry of vortex-surface evolution motion from smooth, laminar-like

behavior flows through a ‘transition’ to a turbulent-like state. The signature of this transition is

the onset of topological and geometrical changes in the vortex-surface structure. Pictorially this

corresponds to some typical scenarios of vortex dynamics in turbulence, e.g., the collapse of vortex

surfaces and vortex reconnection, rolling-up of vortex tubes, vorticity intensification between anti-

parallel vortex tubes, and vortex stretching and twisting.

Presently we have numerically simulated VSF evolution only for simple viscous flows with strong

symmetries. The computational cost of the correction step in pseudo time with the current algorithm

occupies the major part in the simulation. In order to be applied generally to more complex vortical

flows, a technique for accelerated convergence in pseudo-time would probably be required both for

generating an initial VSF from a given initial vorticity field and also for tracking the subsequent VSF

evolution. Without this it seems unlikely that the present method would provide a viable alternative

to existing schemes for the purposes of generic, instantaneous flow visualization.

Our approach nevertheless enables, in a novel way, the observation of the timewise evolution of

smoothed VSFs in viscous flows, which, to the best of our knowledge has hitherto been thought to

have no dynamical meaning as an initial-boundary value problem. For this reason alone the applica-

tion of the present algorithm to special cases of interesting canonical flows, at some computational

cost, may be justified. In addition, relevant topological methods based on contact structures (Ghrist

& Komendarczyk, 2002) or vector segments (Wang, 2010) might be useful to improve the current

methodology for more general flows.

Finally, we remark that globally smoothed VSFs may not exist in general flows when the vorticity

field is not integrable, in which case a surrogate field with acceptably small 〈|λω |〉 could be obtained

by using (5.11).
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Chapter 6

Conclusions

6.1 Lagrangian structures in homogenous isotropic turbulence

With the introduction of the Lagrangian description of fluid dynamics, we report the multi-scale

geometric analysis of Lagrangian structures in forced isotropic turbulence and also with a frozen

turbulent field. A particle-backward-tracking method, which is stable and topology preserving, was

applied to obtain the Lagrangian field φ governed by the pure advection equation in the Eulerian

form ∂tφ + u · ∇φ = 0. The temporal evolution of Lagrangian structures was first obtained by

extracting iso-surfaces of φ with resolution 10243 at different times, from t = 0 to t = Te. The

surface area growth rate of the Lagrangian structure was quantified and the formation of stretched

and rolled-up structures observed in straining regions and stretched vortex tubes, respectively.

The multi-scale geometric analysis of Bermejo-Moreno & Pullin (2008) has been applied to the

evolution of φ to extract structures at different length scales and to characterize their non-local

geometry in a space of reduced geometrical parameters. In this multi-scale sense, we observed, for

the evolving turbulent velocity field, an evolutionary breakdown of initially large-scale Lagrangian

structures that first distort and then either themselves are broken down or stretched laterally into

sheets. Moreover, after a finite time, this progression appears to be insensible to the form of the

initially smooth Lagrangian field. In comparison with the statistical geometry of instantaneous

passive scalar and enstrophy fields in turbulence obtained by Bermejo-Moreno & Pullin (2008) and

Bermejo-Moreno et al. (2009), Lagrangian structures tend to exhibit more prevalent sheet-like shapes

at intermediate and small scales. For the frozen flow, the Lagrangian field appears to be attracted

onto a stream-surface field and it develops less complex multi-scale geometry than found for the

turbulent velocity field. In the latter case, there appears to be a tendency for the Lagrangian field

to move towards a vortex-surface field (VSF) of the evolving turbulent flow but this is mitigated by

cumulative viscous effects.
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6.2 Lagrangian and Eulerian structures in turbulent channel

flow

For wall turbulence, we report the detailed multi-scale and multi-directional geometric study of

both evolving Lagrangian and also instantaneous Eulerian structures in turbulent channel flow at

low and moderate Reynolds numbers. The Lagrangian structures were obtained by tracking the

Lagrangian field, and Eulerian structures were extracted from the swirling strength field at a time

instant. The multi-scale and multi-directional geometric analysis, based on the mirror-extended

curvelet transform, was developed to quantify the geometry, including the averaged inclination and

sweep angles, of both structures at up to eight scales ranging from the half-height δ of the channel

to several viscous length scales δν . Here, the inclination angle is on the plane of the streamwise and

wall-normal directions, and the sweep angle is on the plane of streamwise and spanwise directions.

The results showed that coherent quasi-streamwise structures in the near-wall region are com-

posed of inclined objects with averaged inclination angle 35◦–45◦, averaged sweep angle 30◦–40◦,

and characteristic scale 20δν , and ‘curved legs’ with averaged inclination angle 20◦–30◦, averaged

sweep angle 15◦–30◦, and length scale 5δν–10δν. The temporal evolution of Lagrangian structures

showed increasing inclination and sweep angles with time, which may correspond to the lifting pro-

cess of near-wall quasi-streamwise vortices. The large-scale structures that appear to be composed

of a number of individual small-scale objects were detected using cross-correlations between Eulerian

structures with large and small scales. These packets are located at the near-wall region with the

typical height 0.25δ and may extend over 10δ in the streamwise direction in moderate-Reynolds-

number, long channel flows. In addition, the effects of the Reynolds number and comparisons

between Lagrangian and Eulerian structures were discussed.

6.3 Lagrangian and vortex-surface fields in Taylor–Green and

Kida–Pelz flows

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity

theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0, remain

so for t > 0. In this study, a systematic methodology was developed for constructing smooth scalar

fields φv(x, y, z, t = 0) for TG and KP velocity fields, which at t = 0, satisfy ω ·∇φv = 0. We referred

to such fields as VSFs. Then, for some constant C, iso-surfaces φv = C define vortex surfaces. It

was shown that, given the vorticity, our definition of a VSF admits nonuniqueness and this is

presently resolved numerically using an optimization approach. In addition, the relations between

VSFs and the classical Clebsch presentation were discussed for flows with the zero helicity. Equations
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describing the evolution of VSFs were then obtained for both inviscid and viscous incompressible

flows. Both uniqueness and the distinction separating the evolution of VSFs and Lagrangian fields

were discussed.

By tracking φv as a Lagrangian field in slightly viscous flows, we showed that the well-defined

evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to

vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields,

we observed that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes

so that neighboring portions approach each other, with subsequent rolling up of structures near the

interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude.

The non-local geometry in the evolution was quantified by two differential geometry properties.

Rolled-up local shapes were found in the Lagrangian structures that were initially vortex surfaces

close to the time of vortex reconnection. It was hypothesized that this is related to the formation

of the very high vorticity regions.

In order to investigate continuous vortex dynamics based on a Lagrangian-like formulation, we

developed a theoretical framework and a numerical method for computation of the evolution of

a VSF in viscous incompressible flows with simple topology and geometry. Vortex surfaces were

then extracted as iso-surfaces of the VSFs at different times. This clarifies the vortex dynamics

of VSF evolution in viscous TG and KP flows including the collapse of vortex surfaces and vortex

reconnection, rolling-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes,

and vortex stretching and twisting. A possible scenario for explaining the transition from a smooth

laminar flow to turbulent flow in terms of topology of vortex surfaces was discussed.
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Appendix A

Orthogonal basis functions with

Kida–Pelz symmetries

We propose an expansion of the VSF φKP based on the following fundamental functions, or

linear combinations thereof, which satisfy the symmetries (Kida, 1985) in the KP flow

f0(M,N,L) = (cosm1x cosm0y − cosm0x cosm1y)

×(cosn1y cosn0z − cosn0y cosn1z) (A.1)

×(cos l1z cos l0x− cos l0z cos l1x),

where the wavenumber pairs

M = {m0,m1}, N = {n0, n1}, L = {l0, l1}

are chosen by the following procedure:

i. Each wavenumber pair M , N , or L contains two different odd wavenumbers with 1 ≤ m0 < m1,

1 ≤ n0 < n1, and 1 ≤ l0 < l1. Let

Kψ = max(m1) = max(n1) = max(l1),

and the maximum wavenumber KF = 2Kψ in all the f0(M,N,L) considered for the approxi-

mation. The corresponding number of wavenumber pairs is

Npr = (K2
ψ − 1)/8. (A.2)

ii. A list of wavenumber pairs obtained in the last step is built and sorted by the sum Σp =

2m0 + m1 for each pair. Then each wavenumber pair is labeled by a pair index number Ip

from 1 to Npr by the sequence in the list. When a number of wavenumber pairs have the same
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Table A.1: List of wavenumber pairs (Kψ = 17)

Index number Ip 1 2 3 4 5 6 . . . 35 36
Wavenumber pair (1, 3) (1, 5) (1, 7) (1, 9) (3, 5) (1, 11) . . . (13, 17) (15, 17)

Σp 5 7 9 11 11 13 . . . 43 47

Σp, the pair with a smaller m0 has a smaller Ip. For example, a list of wavenumber pairs for

Kψ = 17 is shown in table A.1. Here, we remark that the sequence in the list of wavenumber

pairs may slightly affect the final solution quality and the convergence rate.

iii. Each basis function ψi is based on two types of combinations of the fundamental solution

(A.1). The first type is

ψi = f0(Mi, Ni, Li), 1 ≤ i ≤ Npr (A.3)

where the wavenumber pair is determined by its subscript corresponding to the pair index

number Ip. The second type is

ψi = f0(Ma, Nb, Lb) + f0(Mb, Na, Lb) + f0(Mb, Nb, La), Npr + 1 ≤ i ≤ Nψ, (A.4)

with

i = aNpr −
1

2
a(a+ 1) + b, 1 ≤ a ≤ Npr − 1, a+ 1 ≤ b ≤ Npr, (A.5)

and the total number of the basis functions

Nψ =
1

2
Npr(Npr + 1). (A.6)

We find that both types of ψi satisfy the reflectional symmetry about all three zero planes, and the

rotational symmetry is expressed by the permutation symmetry:

ψi(x, y, z) = ψi(z, x, y) = ψi(y, z, x).

In other words, the basis function ψi is invariant under the action of the full octahedral symmetry

group to match the same symmetry property in the KP flow (Pelz, 2001).

Finally, orthogonal basis functions ψ̃i are obtained from ψi by the Gram–Schmidt orthogonal-

ization,

ψ̃1 = ψ1/‖ψ1‖, (A.7)

with

‖f‖ =
(∫ 2π

0

∫ 2π

0

∫ 2π

0

f dxdy dz

)1/2

,
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and then

ψ′
i = ψi −

i−1∑

j=1

〈ψi, ψ̃j〉ψ̃j , i ≥ 2,

ψ̃i = ψ′
i/‖ψi‖,

(A.8)

with

〈f1, f2〉 =
(∫ 2π

0

∫ 2π

0

∫ 2π

0

f1f2 dxdy dz

)1/2

.
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Appendix B

Computation of vortex-surface fields

in incompressible viscous flow using

the spectral method

From § 4.3, for φv to evolve as the VSF in a viscous flow satisfying (4.32), we must solve (4.41),

(4.42), and (4.48) simultaneously. Here, (4.42) is a special case of the generalized first-order PDE:

ωj(x)
∂L(x)
∂xj

+B(x)L(x) = f(x). (B.1)

With the finite Fourier expansion

L(x) =
∑

k

L̂(k)eik·x, (B.2)

(B.1) could be computed by a spectral method (see Mingyu et al., 1997). By multiplying e−ik′·x on

both sides of (B.1), we can obtain the k′-th equation for a linear system

∑

k

(ikjω̂j(k
′ − k) + B̂(k′ − k))L̂(k) = f̂(k′), (B.3)

where

ω̂j(k
′ − k) =

1

(2π)3

∫
ωj(x)e−i(k′−k)·xdx,

B̂(k′ − k) =
1

(2π)3

∫
B(x)e−i(k′−k)·xdx,

f̂(k′) =
1

(2π)3

∫
f(x)e−ik

′·xdx.

The PDE system (B.1) is said to be dissipative if the following condition holds (Mingyu et al., 1997):

〈(
B − 1

2
(∇ · ω)

)
η,η

〉
> 0, ∀η ∈ R

n. (B.4)
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Then (B.1) and the discrete system (B.3) have a unique solution. For (4.42), f = −∇φ ·∇2ω, B = 0,

∇·ω = 0, and the condition (B.4) for existence and uniqueness is not satisfied. We have nonetheless

numerically demonstrated the existence of solutions to (B.1) with B = f = 0 defining a VSF for the

KP vorticity (4.15) by using an optimization formulation in § 4.2.3.

Some explorative solutions have been performed for the VSF in the TG flow. The Navier–Stokes

equations (4.48) were solved by the pseudo-spectral method, using the TG initial conditions (4.9)

with θ = 0 and at Reynolds numbers Re = 25 and Re = 50 on the grids 643. For each simulation,

two separate scalar simulations were performed, both with initial scalar fields given by the TG

VSF (4.12). In the Lagrangian simulation, (2.15) was calculated as a Lagrangian field φ using the

backward-particle-tracking method as described in § 2.3.2. For this case, φ = φv at t = 0 but does

not remain a VSF. In the vortex-surface simulation, (4.41) and (4.42) were solved for φv and L. Since

(4.41) contains a source term, the backward-tracking-particle method cannot be utilized. Instead

this equation was solved by a finite-difference method where the convection term was treated using

a fifth-order WENO scheme (Jiang & Shu, 1996). The spectral method (see (B.3)) was utilized to

solve (4.42). This produces a linear system

AL = b, (B.5)

where L is the 1 × n vector of Fourier coefficients for L and n is determined by the number of

effective Fourier modes after dealiasing. It is noted that considering the TG symmetries (Brachet

et al., 1983), the Fourier representation for L in the TG flow could be

L(x) =
∑

k1

∑

k2

∑

k3

L̂(k1, k2, k3) cos k1x cos k2y cos k3z (B.6)

and L̂ vanishes unless k1, k2, k3 are either all even or all odd integers.

Owing to nonuniqueness of (4.42), the n×n matrix A becomes rank-deficient and ill-conditioned.

Further conditions on solutions of (4.42) are therefore required. Integrating the difference between

(4.41) and (2.15) over a (2π)3 domain in physical space with periodic boundary conditions on all

quantities gives

∫ 2π

0

∫ 2π

0

∫ 2π

0

(
Dφv
Dt
− Dφ

Dt

)2

dxdy dz = ν2
∫ 2π

0

∫ 2π

0

∫ 2π

0

L2dxdy dz. (B.7)

For ν = 0, the volume integral of L2 is zero in the Lagrangian case. A reasonable choice for ν 6= 0

could then be minimizing the integral of |L|. With the Fourier method, the minimum norm solution

was obtained which minimizes ‖L‖2 in (B.5) using the singular value decomposition in LAPACK

(Anderson et al., 1999). Here, A = UΣV T , where U and V are n × n satisfying UTU = I and
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V TV = I, respectively, and Σ = diag(σ1, . . . , σn) where singular values σ1 ≥ · · · ≥ σn ≥ 0. In the

implementation, singular values σi ≤ rσσ1 are treated as zero, where rσ is a small number.

The volume-averaged |λω | for the Lagrangian simulation and |λvω| for the vortex-surface simula-

tion are plotted in figure B.1, where λvω is the cosine of the angle between ω and ∇φv. It may be

seen that 〈|λvω|〉 in the vortex-surface simulation is substantially less than 〈|λω |〉 in the Lagrangian

simulation, but that this is not sufficiently small. Visual inspection of iso-surfaces of the scalar fields

(not shown), however, indicate that the attachment of vortex lines to the iso-surface is substantially

superior for the vortex-surface simulations than for the Lagrangian simulations. More investigations

on the evolution of VSFs in a viscous flow are addressed in § 5.
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0.15
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t
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Figure B.1: Temporal evolution of the volume-averaged |λω | for Lagrangian simulations and |λvω | for
vortex-surface simulations in the viscous TG flow at low Reynolds numbers
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