CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 12 March 2010

Crystal Structure Analysis of:

1-Ir(dmap)₂

(shown below)

For	Investigator: Joshua Palmer		ext. 6332
	Advisor: H. B. Gray		ext. 6500
	Account Number:	HGB.BP-1-B	P.AMOCO
By	Michael W. Day	116 Beckman	ext. 2734
		e-mail: mikeday@	caltech.edu

Contents

Table 1. Crystal data

Figures Minimum overlap, unit cell contents

Table 2. Atomic coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Observed and calculated structure factors (available upon request)

1-Ir(dmap)₂

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and have been placed on hold pending further instructions from me. The deposition number is 769414. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 769414".

Empirical formula $C_{51}H_{28}F_{15}N_8Ir \bullet 0.748(C_6H_{12})$ Formula weight 1292.78 Dichloromethane/hexanes Crystallization solvent Crystal habit Blade 0.21 x 0.06 x 0.03 mm³ Crystal size Crystal color Dichroic - green/red **Data Collection** Bruker KAPPA APEX II Type of diffractometer 0.71073 Å MoKa Wavelength 100(2) K Data collection temperature q range for 9914 reflections used in lattice determination 2.19 to 29.48° a = 10.9258(5) Å Unit cell dimensions $a = 70.957(2)^{\circ}$ b = 14.9693(7) Å $b = 78.529(2)^{\circ}$ c = 17.7416(8) Å $g = 69.831(2)^{\circ}$ 2562.5(2) Å³ Volume Ζ 2 Triclinic Crystal system Space group P-1 1.676 Mg/m^3 Density (calculated) F(000) 1276 q range for data collection 1.22 to 30.41° Completeness to $q = 30.41^{\circ}$ 88.1 %

Table C-4-1. Crystal data and structure refinement for **1-Ir(dmap)**₂ (CCDC 769414)

Index ranges	$-14 \le h \le 15, -21 \le k \le 19, -24 \le l \le 24$
Data collection scan type	ω scans; 9 settings
Reflections collected	38630
Independent reflections	13679 [R _{int} = 0.0679]
Absorption coefficient	2.708 mm ⁻¹
Absorption correction	None
Max. and min. transmission	0.9232 and 0.6002

Table C-3-1 cont.

Structure Solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F^2
Data / restraints / parameters	13679 / 0 / 705
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.537
Final R indices [I>2s(I), 10722 reflections]	R1 = 0.0488, wR2 = 0.0732
R indices (all data)	R1 = 0.0766, wR2 = 0.0766
Type of weighting scheme used	Sigma
Weighting scheme used	$w = 1/\sigma^2(\text{Fo}^2)$
Max shift/error	0.001
Average shift/error	0.000
Largest diff. peak and hole	3.371 and -2.654 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

The crystal contains methylcyclopentane as a solvent of crystallization. It was refined isotropically and without geometry restraints to a final occupancy of 0.748.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt), etc., and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles, and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	Х	у	Z	U eq	Occ	
Ir(1)	7000(1)	2834(1)	2994(1)	17(1)	1	
F(1)	3846(2)	6561(2)	3060(2)	35(1)	1	
F(2)	3388(3)	8523(2)	2824(2)	58(1)	1	
F(3)	5420(4)	9302(2)	2369(2)	66(1)	1	
F(4)	7894(3)	8117(2)	2156(2)	54(1)	1	
F(5)	8346(2)	6172(2)	2403(2)	40(1)	1	
F(6)	8868(3)	4004(2)	32(2)	37(1)	1	
F(7)	9381(3)	4161(2)	-1530(2)	51(1)	1	
F(8)	8163(3)	3395(2)	-2235(2)	51(1)	1	
F(9)	6284(3)	2549(2)	-1356(2)	40(1)	1	
F(10)	5588(2)	2551(2)	172(1)	29(1)	1	
F(11)	10107(2)	-1073(2)	3330(2)	33(1)	1	
F(12)	10407(3)	-3040(2)	3732(2)	42(1)	1	
F(13)	8311(3)	-3713(2)	4299(2)	40(1)	1	
F(14)	5905(3)	-2437(2)	4498(2)	36(1)	1	
F(15)	5588(2)	-474(2)	4129(2)	32(1)	1	
N(1)	7377(3)	1775(3)	3983(2)	18(1)	1	
N(2)	6913(3)	3582(3)	3736(2)	19(1)	1	
N(3)	6605(3)	4025(3)	2075(2)	18(1)	1	
N(4)	7158(3)	1914(3)	2355(2)	18(1)	1	
N(5)	5023(3)	3008(3)	3314(2)	18(1)	1	

Table C-4-2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **1-Ir(dmap)**₂ (CCDC 769414). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

N(6)	8973(3)	2667(3)	2660(2)	14(1)	1
N(7)	1046(3)	3381(3)	4045(2)	22(1)	1
N(8)	12936(4)	2411(3)	1905(2)	26(1)	1
C(1)	7589(4)	782(3)	4135(3)	19(1)	1
C(2)	7759(4)	358(4)	4984(3)	23(1)	1
C(3)	7591(4)	1125(4)	5289(3)	24(1)	1
C(4)	7340(4)	2021(3)	4661(2)	17(1)	1
C(5)	7047(4)	3073(3)	4520(2)	19(1)	1
C(6)	6835(4)	3802(3)	4926(3)	21(1)	1
C(7)	6555(4)	4719(4)	4371(2)	22(1)	1
C(8)	6600(4)	4593(3)	3596(3)	20(1)	1
C(9)	6377(4)	5229(3)	2819(2)	18(1)	1
C(10)	6388(4)	4976(3)	2118(2)	19(1)	1
C(11)	6236(4)	5614(3)	1314(2)	22(1)	1
C(12)	6397(4)	5041(3)	818(3)	22(1)	1
C(13)	6656(4)	4020(3)	1302(2)	19(1)	1
C(14)	6967(4)	3158(3)	1059(2)	20(1)	1
C(15)	7204(4)	2169(3)	1553(2)	18(1)	1
C(16)	7552(4)	1256(3)	1340(2)	19(1)	1
C(17)	7702(4)	497(3)	2022(2)	21(1)	1
C(18)	7473(4)	891(3)	2687(3)	19(1)	1
C(19)	7630(4)	375(3)	3504(2)	18(1)	1
C(20)	6103(4)	6306(3)	2728(2)	21(1)	1
C(21)	4858(4)	6925(4)	2847(3)	26(1)	1
C(22)	4612(5)	7931(4)	2731(3)	37(1)	1
C(23)	5650(6)	8325(4)	2498(3)	38(1)	1
C(24)	6896(5)	7729(4)	2385(3)	32(1)	1

C(25)	7114(4)	6739(3)	2507(3)	25(1)	1
C(26)	7205(4)	3275(3)	176(2)	21(1)	1
C(27)	8157(5)	3679(4)	-291(3)	28(1)	1
C(28)	8453(5)	3747(4)	-1106(3)	35(1)	1
C(29)	7841(5)	3359(4)	-1461(3)	36(1)	1
C(30)	6903(4)	2947(4)	-1015(3)	29(1)	1
C(31)	6573(4)	2934(3)	-225(3)	26(1)	1
C(32)	7836(4)	-714(3)	3724(2)	19(1)	1
C(33)	9053(4)	-1391(3)	3625(2)	21(1)	1
C(34)	9222(4)	-2398(4)	3818(3)	28(1)	1
C(35)	8156(5)	-2747(3)	4110(3)	27(1)	1
C(36)	6935(4)	-2090(3)	4217(3)	25(1)	1
C(37)	6790(4)	-1096(3)	4027(2)	21(1)	1
C(38)	4543(4)	2235(3)	3564(2)	17(1)	1
C(39)	3235(4)	2330(3)	3809(2)	18(1)	1
C(40)	2322(4)	3262(3)	3804(2)	17(1)	1
C(41)	2848(4)	4061(3)	3547(2)	21(1)	1
C(42)	4161(4)	3908(3)	3311(2)	18(1)	1
C(43)	528(4)	2539(3)	4286(3)	24(1)	1
C(44)	128(4)	4366(4)	3989(3)	30(1)	1
C(45)	9875(4)	1784(3)	2696(2)	20(1)	1
C(46)	11187(4)	1649(3)	2458(2)	21(1)	1
C(47)	11652(4)	2490(3)	2148(2)	20(1)	1
C(48)	10701(4)	3414(3)	2118(2)	21(1)	1
C(49)	9418(4)	3467(3)	2379(2)	21(1)	1
C(50)	13910(4)	1439(4)	2003(3)	33(1)	1
C(51)	13365(4)	3294(4)	1602(3)	30(1)	1

C(61)	1155(16)	-139(13)	718(9)	185(7)	0.748(6)	
C(62)	1929(19)	650(14)	470(11)	173(7)	0.748(6)	
C(63)	957(15)	1618(12)	205(9)	142(5)	0.748(6)	
C(64)	1928(12)	2180(10)	-91(8)	119(5)	0.748(6)	
C(65)	3279(11)	1524(10)	-168(7)	106(4)	0.748(6)	
C(66)	3299(18)	479(15)	79(10)	194(8)	0.748(6)	

Ir(1)-N(1)	1.946(3)N(1)-Ir(1)-N(2)	78.76(15)	
Ir(1)-N(2)	1.959(3)N(1)-Ir(1)-N(3)	172.38(15)	
Ir(1)-N(3)	1.968(4)N(2)-Ir(1)-N(3)	93.62(14)	
Ir(1)-N(4)	1.997(3)N(1)-Ir(1)-N(4)	93.85(14)	
Ir(1)-N(5)	2.067(3)N(2)-Ir(1)-N(4)	172.60(15)	
Ir(1)-N(6)	2.069(3)N(3)-Ir(1)-N(4)	93.76(14)	
	N(1)-Ir(1)-N(5)	89.16(13)	
	N(2)-Ir(1)-N(5)	87.94(13)	
	N(3)-Ir(1)-N(5)	90.74(13)	
	N(4)-Ir(1)-N(5)	92.51(13)	
	N(1)-Ir(1)-N(6)	91.45(13)	
	N(2)-Ir(1)-N(6)	92.37(13)	
	N(3)-Ir(1)-N(6)	88.69(13)	
	N(4)-Ir(1)-N(6)	87.25(13)	
	N(5)-Ir(1)-N(6)	179.36(15)	

Table C-4-3. Selected bond lengths [Å] and angles [°] for **1-Ir(dmap)**₂ (CCDC 769414)

Ir(1)-N(1)	1.946(3)	N(3)-C(13)	1.364(5)
Ir(1)-N(2)	1.959(3)	N(3)-C(10)	1.386(5)
Ir(1)-N(3)	1.968(4)	N(4)-C(15)	1.343(5)
Ir(1)-N(4)	1.997(3)	N(4)-C(18)	1.392(5)
Ir(1)-N(5)	2.067(3)	N(5)-C(38)	1.342(5)
Ir(1)-N(6)	2.069(3)	N(5)-C(42)	1.351(6)
F(1)-C(21)	1.333(5)	N(6)-C(45)	1.340(6)
F(2)-C(22)	1.338(6)	N(6)-C(49)	1.354(5)
F(3)-C(23)	1.343(6)	N(7)-C(40)	1.341(5)
F(4)-C(24)	1.342(5)	N(7)-C(44)	1.454(6)
F(5)-C(25)	1.335(5)	N(7)-C(43)	1.462(5)
F(6)-C(27)	1.337(5)	N(8)-C(47)	1.359(5)
F(7)-C(28)	1.342(5)	N(8)-C(51)	1.456(5)
F(8)-C(29)	1.336(5)	N(8)-C(50)	1.457(6)
F(9)-C(30)	1.360(5)	C(1)-C(19)	1.427(6)
F(10)-C(31)	1.357(4)	C(1)-C(2)	1.454(6)
F(11)-C(33)	1.343(4)	C(2)-C(3)	1.367(6)
F(12)-C(34)	1.336(5)	C(3)-C(4)	1.417(6)
F(13)-C(35)	1.330(5)	C(4)-C(5)	1.439(6)
F(14)-C(36)	1.340(4)	C(5)-C(6)	1.426(6)
F(15)-C(37)	1.340(5)	C(6)-C(7)	1.377(6)
N(1)-C(4)	1.358(5)	C(7)-C(8)	1.437(6)
N(1)-C(1)	1.363(5)	C(8)-C(9)	1.408(6)
N(2)-C(5)	1.360(5)	C(9)-C(10)	1.410(6)
N(2)-C(8)	1.378(5)	C(9)-C(20)	1.494(6)

Table C-4-4. Bond lengths [Å] and angles [°] for **1-Ir(dmap)**₂ (CCDC 769414)

C(10)-C(11)	1.439(6)	C(35)-C(36)	1.378(7)
C(11)-C(12)	1.367(6)	C(36)-C(37)	1.372(6)
C(12)-C(13)	1.447(6)	C(38)-C(39)	1.380(5)
C(13)-C(14)	1.404(6)	C(39)-C(40)	1.405(6)
C(14)-C(15)	1.416(6)	C(40)-C(41)	1.409(5)
C(14)-C(26)	1.497(6)	C(41)-C(42)	1.372(5)
C(15)-C(16)	1.441(6)	C(45)-C(46)	1.375(5)
C(16)-C(17)	1.355(6)	C(46)-C(47)	1.421(6)
C(17)-C(18)	1.427(6)	C(47)-C(48)	1.407(6)
C(18)-C(19)	1.416(6)	C(48)-C(49)	1.370(5)
C(19)-C(32)	1.492(6)	C(61)-C(62)	1.583(17)
C(20)-C(21)	1.378(6)	C(62)-C(63)	1.46(2)
C(20)-C(25)	1.396(5)	C(62)-C(66)	1.49(2)
C(21)-C(22)	1.387(7)	C(63)-C(64)	1.489(14)
C(22)-C(23)	1.386(7)	C(64)-C(65)	1.473(16)
C(23)-C(24)	1.364(7)	C(65)-C(66)	1.474(18)
C(24)-C(25)	1.367(6)		
C(26)-C(27)	1.379(5)	N(1)-Ir(1)-N(2)	78.76(15)
C(26)-C(31)	1.385(6)	N(1)-Ir(1)-N(3)	172.38(15)
C(27)-C(28)	1.395(6)	N(2)-Ir(1)-N(3)	93.62(14)
C(28)-C(29)	1.363(7)	N(1)-Ir(1)-N(4)	93.85(14)
C(29)-C(30)	1.361(6)	N(2)-Ir(1)-N(4)	172.60(15)
C(30)-C(31)	1.372(6)	N(3)-Ir(1)-N(4)	93.76(14)
C(32)-C(33)	1.386(6)	N(1)-Ir(1)-N(5)	89.16(13)
C(32)-C(37)	1.388(5)	N(2)-Ir(1)-N(5)	87.94(13)
C(33)-C(34)	1.385(6)	N(3)-Ir(1)-N(5)	90.74(13)
C(34)-C(35)	1.378(6)	N(4)-Ir(1)-N(5)	92.51(13)

N(1)-Ir(1)-N(6)	91.45(13)	C(47)-N(8)-C(50)	120.3(4)
N(2)-Ir(1)-N(6)	92.37(13)	C(51)-N(8)-C(50)	119.2(4)
N(3)-Ir(1)-N(6)	88.69(13)	N(1)-C(1)-C(19)	120.4(4)
N(4)-Ir(1)-N(6)	87.25(13)	N(1)-C(1)-C(2)	105.8(4)
N(5)-Ir(1)-N(6)	179.36(15)	C(19)-C(1)-C(2)	133.8(4)
C(4)-N(1)-C(1)	111.6(4)	C(3)-C(2)-C(1)	107.1(4)
C(4)-N(1)-Ir(1)	118.5(3)	C(2)-C(3)-C(4)	108.8(4)
C(1)-N(1)-Ir(1)	129.8(3)	N(1)-C(4)-C(3)	106.7(4)
C(5)-N(2)-C(8)	113.1(4)	N(1)-C(4)-C(5)	112.3(4)
C(5)-N(2)-Ir(1)	117.7(3)	C(3)-C(4)-C(5)	141.0(4)
C(8)-N(2)-Ir(1)	128.9(3)	N(2)-C(5)-C(6)	105.7(4)
C(13)-N(3)-C(10)	110.8(4)	N(2)-C(5)-C(4)	112.6(4)
C(13)-N(3)-Ir(1)	125.0(3)	C(6)-C(5)-C(4)	141.7(4)
C(10)-N(3)-Ir(1)	123.8(3)	C(7)-C(6)-C(5)	108.1(4)
C(15)-N(4)-C(18)	111.8(4)	C(6)-C(7)-C(8)	108.9(4)
C(15)-N(4)-Ir(1)	124.8(3)	N(2)-C(8)-C(9)	120.1(4)
C(18)-N(4)-Ir(1)	122.4(3)	N(2)-C(8)-C(7)	104.3(4)
C(38)-N(5)-C(42)	116.9(4)	C(9)-C(8)-C(7)	135.6(4)
C(38)-N(5)-Ir(1)	122.0(3)	C(8)-C(9)-C(10)	128.2(4)
C(42)-N(5)-Ir(1)	121.0(3)	C(8)-C(9)-C(20)	115.7(4)
C(45)-N(6)-C(49)	116.3(4)	C(10)-C(9)-C(20)	116.1(4)
C(45)-N(6)-Ir(1)	123.0(3)	N(3)-C(10)-C(9)	125.3(4)
C(49)-N(6)-Ir(1)	120.7(3)	N(3)-C(10)-C(11)	106.1(4)
C(40)-N(7)-C(44)	120.6(4)	C(9)-C(10)-C(11)	128.5(4)
C(40)-N(7)-C(43)	120.7(4)	C(12)-C(11)-C(10)	108.4(4)
C(44)-N(7)-C(43)	118.4(4)	C(11)-C(12)-C(13)	107.8(4)
C(47)-N(8)-C(51)	120.3(4)	N(3)-C(13)-C(14)	124.1(4)

N(3)-C(13)-C(12)	106.7(4)	C(24)-C(23)-C(22)	120.2(5)
C(14)-C(13)-C(12)	129.1(4)	F(4)-C(24)-C(23)	119.9(5)
C(13)-C(14)-C(15)	127.5(4)	F(4)-C(24)-C(25)	120.6(5)
C(13)-C(14)-C(26)	116.8(4)	C(23)-C(24)-C(25)	119.5(4)
C(15)-C(14)-C(26)	115.4(4)	F(5)-C(25)-C(24)	118.1(4)
N(4)-C(15)-C(14)	123.9(4)	F(5)-C(25)-C(20)	119.3(4)
N(4)-C(15)-C(16)	106.1(4)	C(24)-C(25)-C(20)	122.6(4)
C(14)-C(15)-C(16)	130.1(4)	C(27)-C(26)-C(31)	114.8(4)
C(17)-C(16)-C(15)	108.3(4)	C(27)-C(26)-C(14)	121.2(4)
C(16)-C(17)-C(18)	108.7(4)	C(31)-C(26)-C(14)	123.9(4)
N(4)-C(18)-C(19)	126.1(4)	F(6)-C(27)-C(26)	120.5(4)
N(4)-C(18)-C(17)	105.1(4)	F(6)-C(27)-C(28)	116.9(4)
C(19)-C(18)-C(17)	128.6(4)	C(26)-C(27)-C(28)	122.6(4)
C(18)-C(19)-C(1)	127.3(4)	F(7)-C(28)-C(29)	120.3(4)
C(18)-C(19)-C(32)	115.8(4)	F(7)-C(28)-C(27)	119.6(4)
C(1)-C(19)-C(32)	116.9(4)	C(29)-C(28)-C(27)	120.0(4)
C(21)-C(20)-C(25)	116.5(4)	F(8)-C(29)-C(30)	121.5(4)
C(21)-C(20)-C(9)	122.5(4)	F(8)-C(29)-C(28)	119.7(4)
C(25)-C(20)-C(9)	120.9(4)	C(30)-C(29)-C(28)	118.8(4)
F(1)-C(21)-C(20)	119.7(4)	F(9)-C(30)-C(29)	119.8(4)
F(1)-C(21)-C(22)	118.4(4)	F(9)-C(30)-C(31)	119.8(4)
C(20)-C(21)-C(22)	121.9(4)	C(29)-C(30)-C(31)	120.4(4)
F(2)-C(22)-C(23)	120.0(5)	F(10)-C(31)-C(30)	117.1(4)
F(2)-C(22)-C(21)	120.8(5)	F(10)-C(31)-C(26)	119.7(4)
C(23)-C(22)-C(21)	119.2(5)	C(30)-C(31)-C(26)	123.2(4)
F(3)-C(23)-C(24)	120.1(5)	C(33)-C(32)-C(37)	116.6(4)
F(3)-C(23)-C(22)	119.7(5)	C(33)-C(32)-C(19)	122.7(4)

C(37)-C(32)-C(19)	120.7(4)	C(48)-C(47)-C(46)	115.9(4)
F(11)-C(33)-C(34)	118.3(4)	C(49)-C(48)-C(47)	120.3(4)
F(11)-C(33)-C(32)	119.8(4)	N(6)-C(49)-C(48)	123.8(4)
C(34)-C(33)-C(32)	121.9(4)	C(63)-C(62)-C(66)	119.5(16)
F(12)-C(34)-C(35)	119.3(4)	C(63)-C(62)-C(61)	105.9(15)
F(12)-C(34)-C(33)	120.9(4)	C(66)-C(62)-C(61)	124.1(17)
C(35)-C(34)-C(33)	119.8(4)	C(62)-C(63)-C(64)	95.2(13)
F(13)-C(35)-C(36)	120.4(4)	C(65)-C(64)-C(63)	112.2(12)
F(13)-C(35)-C(34)	120.1(4)	C(64)-C(65)-C(66)	110.6(12)
C(36)-C(35)-C(34)	119.5(4)	C(65)-C(66)-C(62)	96.1(15)
F(14)-C(36)-C(37)	121.2(4)		
F(14)-C(36)-C(35)	119.0(4)		
C(37)-C(36)-C(35)	119.8(4)		
F(15)-C(37)-C(36)	118.4(4)		
F(15)-C(37)-C(32)	119.1(4)		
C(36)-C(37)-C(32)	122.4(4)		
N(5)-C(38)-C(39)	123.0(4)		
C(38)-C(39)-C(40)	121.0(4)		
N(7)-C(40)-C(39)	122.7(4)		
N(7)-C(40)-C(41)	122.2(4)		
C(39)-C(40)-C(41)	115.2(4)		
C(42)-C(41)-C(40)	120.5(4)		
N(5)-C(42)-C(41)	123.5(4)		
N(6)-C(45)-C(46)	124.5(4)		
C(45)-C(46)-C(47)	119.3(4)		
N(8)-C(47)-C(48)	121.7(4)		

	U11	U ²²	U ³³	U23	U13	U ¹²	
Ir(1)	137(1)	160(1)	235(1)	-51(1)	-33(1)	-58(1)	
F(1)	187(14)	480(20)	352(15)	-146(14)	0(11)	-55(13)	
F(2)	510(20)	480(20)	630(20)	-340(18)	-201(16)	256(16)	
F(3)	1070(30)	161(19)	780(20)	-163(18)	-410(20)	-17(18)	
F(4)	730(20)	380(20)	660(20)	-52(17)	-199(18)	-388(18)	
F(5)	233(15)	355(19)	654(19)	-154(16)	-5(14)	-155(13)	
F(6)	340(16)	394(19)	472(17)	-201(15)	70(13)	-214(14)	
F(7)	540(20)	510(20)	480(18)	-161(17)	220(15)	-296(17)	
F(8)	620(20)	630(30)	259(15)	-170(16)	68(14)	-185(18)	
F(9)	412(17)	490(20)	367(15)	-224(15)	-104(13)	-90(15)	
F(10)	255(14)	377(18)	301(14)	-109(13)	-39(11)	-148(12)	
F(11)	162(13)	290(18)	521(17)	-96(14)	-9(12)	-64(12)	
F(12)	308(16)	274(18)	574(18)	-165(15)	-55(14)	72(13)	
F(13)	600(20)	145(16)	473(17)	-80(14)	-131(15)	-96(14)	
F(14)	404(17)	286(18)	484(17)	-58(14)	-38(13)	-256(14)	
F(15)	176(13)	246(17)	527(17)	-97(14)	-7(12)	-84(12)	
N(1)	116(17)	150(20)	258(19)	-47(16)	-10(14)	-28(15)	
N(2)	116(17)	210(20)	211(18)	-45(17)	-13(14)	-18(16)	
N(3)	155(18)	160(20)	254(19)	-62(17)	-4(15)	-71(16)	
N(4)	140(18)	190(20)	191(18)	-44(16)	-35(14)	-39(16)	

Table C-4-5. Anisotropic displacement parameters $(Å^2 x \ 10^4)$ for **1-Ir(dmap)**₂ (CCDC 769414). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k \ a^* \ b^* \ U^{12}]$.

N(5)	152(18)	170(20)	195(18)	-19(16)	-29(15)	-65(16)
N(6)	135(18)	140(20)	150(17)	-16(15)	-23(14)	-55(16)
N(7)	127(18)	220(20)	310(20)	-48(18)	-25(15)	-54(17)
N(8)	155(19)	280(30)	350(20)	-100(20)	15(16)	-100(20)
C(1)	110(20)	140(20)	280(20)	-30(20)	20(17)	-52(18)
C(2)	290(30)	160(30)	230(20)	-10(20)	-25(19)	-90(20)
C(3)	250(20)	250(30)	230(20)	-70(20)	-8(19)	-90(20)
C(4)	140(20)	230(30)	190(20)	-43(19)	-23(16)	-105(19)
C(5)	110(20)	210(30)	240(20)	-60(20)	-6(17)	-41(18)
C(6)	160(20)	240(30)	240(20)	-110(20)	12(18)	-51(19)
C(7)	150(20)	230(30)	280(20)	-110(20)	-15(18)	-36(19)
C(8)	90(20)	150(30)	380(30)	-90(20)	-28(18)	-24(18)
C(9)	110(20)	150(20)	280(20)	-60(20)	-3(17)	-36(18)
C(10)	140(20)	180(30)	260(20)	-50(20)	-14(17)	-63(18)
C(11)	220(20)	150(30)	270(20)	-10(20)	-31(18)	-61(19)
C(12)	180(20)	190(30)	210(20)	-20(20)	-32(18)	-10(20)
C(13)	150(20)	190(30)	230(20)	-60(20)	-32(17)	-61(18)
C(14)	160(20)	230(30)	220(20)	-60(20)	-31(17)	-70(19)
C(15)	110(20)	240(30)	220(20)	-80(20)	-2(16)	-89(19)
C(16)	170(20)	200(30)	220(20)	-100(20)	-38(18)	-28(19)
C(17)	180(20)	190(30)	280(20)	-110(20)	-15(18)	-71(19)
C(18)	130(20)	160(30)	320(20)	-80(20)	-38(18)	-67(18)
C(19)	96(19)	180(30)	270(20)	-50(20)	-15(17)	-55(18)
C(20)	210(20)	170(30)	240(20)	-70(20)	-34(18)	-51(19)
C(21)	250(20)	240(30)	280(20)	-100(20)	-60(20)	-10(20)
C(22)	390(30)	300(30)	330(30)	-160(30)	-140(20)	140(20)
C(23)	680(40)	160(30)	330(30)	-80(20)	-200(30)	-90(30)

C(24)	430(30)	250(30)	350(30)	-70(20)	-110(20)	-150(30)
C(25)	290(30)	170(30)	290(20)	-60(20)	-60(20)	-70(20)
C(26)	190(20)	180(30)	250(20)	-60(20)	-20(18)	-34(19)
C(27)	300(30)	240(30)	320(30)	-90(20)	0(20)	-90(20)
C(28)	380(30)	260(30)	330(30)	-50(20)	110(20)	-120(30)
C(29)	450(30)	330(30)	230(20)	-80(20)	20(20)	-60(30)
C(30)	310(30)	270(30)	300(30)	-100(20)	-60(20)	-60(20)
C(31)	270(20)	230(30)	260(20)	-40(20)	-47(19)	-80(20)
C(32)	230(20)	170(30)	190(20)	-29(19)	-62(18)	-68(19)
C(33)	180(20)	230(30)	230(20)	-60(20)	-24(18)	-75(19)
C(34)	290(30)	200(30)	310(20)	-100(20)	-70(20)	30(20)
C(35)	450(30)	120(30)	280(20)	-30(20)	-90(20)	-120(20)
C(36)	280(30)	180(30)	310(20)	-10(20)	-70(20)	-120(20)
C(37)	180(20)	170(30)	260(20)	-60(20)	-52(18)	-33(19)
C(38)	150(20)	150(30)	200(20)	-52(19)	-3(17)	-28(18)
C(39)	180(20)	150(30)	220(20)	-18(19)	-41(18)	-90(19)
C(40)	150(20)	180(30)	190(20)	-17(19)	-30(17)	-69(19)
C(41)	160(20)	200(30)	260(20)	-70(20)	-19(18)	-51(19)
C(42)	140(20)	180(30)	260(20)	-70(20)	-27(18)	-74(19)
C(43)	170(20)	270(30)	340(30)	-130(20)	2(19)	-100(20)
C(44)	110(20)	280(30)	490(30)	-130(30)	0(20)	-20(20)
C(45)	230(20)	130(30)	240(20)	-30(20)	-44(19)	-70(20)
C(46)	180(20)	140(30)	320(20)	-90(20)	-60(19)	-22(19)
C(47)	160(20)	260(30)	180(20)	-60(20)	-36(18)	-70(20)
C(48)	190(20)	170(30)	260(20)	0(20)	-42(18)	-80(20)
C(49)	220(20)	190(30)	220(20)	-50(20)	-9(18)	-80(20)
C(50)	190(30)	370(30)	440(30)	-170(30)	-30(20)	-50(20)

C(51) 200(20) 430(30) 290(20) -100(20) 30(20) -170(20)

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 12 March 2010

Crystal Structure Analysis of:

1-Ir(NH₃)₂

(shown below)

For	Investigator: Theis Brock	ext. 6332	
	Advisor: H. B. Gray		ext. 6500
	Account Number:	HBG.BP-1	-BP.AMOCO
By	Michael W. Day	116 Beckman	ext. 2734
		e-mail: mikeday	@caltech.edu

Contents

Table 1. Crystal data

Figures Minimum overlap, unit cell contents

Table 2. Atomic coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Observed and calculated structure factors (available upon request)

1-Ir(NH₃)₂

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and have been placed on hold pending further instructions from me. The deposition number is 769388. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 769388".

Table C-5-1. Crystal data and structure refinement for $1-Ir(NH_3)_2$ (CCDC 769388)

Empirical formula	$C_{37}H_{14}F_{15}N_6Ir$
Formula weight	1019.74
Crystallization solvent	Dichloromethane/hexanes
Crystal habit	Fragment
Crystal size	0.30 x 0.12 x 0.07 mm ³
Crystal color	Black
Data Colle	ction
Type of diffractometer	Bruker KAPPA APEX II
Wavelength	0.71073 Å MoKa

. . .

Type of diffractometer	DIUKEI KAPPA APEA II
Wavelength	0.71073 Å MoKa
Data collection temperature	100(2) K
q range for 9859 reflections used	
in lattice determination	3.01 to 32.11°
Unit cell dimensions	a = 17.9079(6) Å
	$b = 7.0034(3) \text{ Å}$ $b = 102.528(2)^{\circ}$
	c = 27.0846(10) Å
Volume	3316.0(2) Å ³
Z	4
Crystal system	Monoclinic
Space group	P 2 ₁ / <i>c</i>
Density (calculated)	2.043 Mg/m ³
F(000)	1960
Data collection program	Bruker APEX2 v2009.7-0
q range for data collection	1.16 to 32.14°

Completeness to $q = 32.14^{\circ}$	99.6 %
Index ranges	$-26 \le h \le 26, -10 \le k \le 10, -40 \le l \le 40$
Data collection scan type	ω scans; 11 settings
Data reduction program	Bruker SAINT-Plus v7.66A
Reflections collected	67007
Independent reflections	11625 [R _{int} = 0.0633]
Absorption coefficient	4.153 mm ⁻¹
Absorption correction	Gaussian
Max. and min. transmission	0.7532 and 0.5082

Structure Solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Patterson method
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	11625 / 0 / 534
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.953
Final R indices [I>2s(I), 9482 reflections]	R1 = 0.0374, wR2 = 0.0556
R indices (all data)	R1 = 0.0524, wR2 = 0.0571
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(\text{Fo}^2)$

Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	3.497 and -3.184 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (*w*R) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt), etc., and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles, and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	Х	у	Z	Ueq	
Ir(1)	7129(1)	-800(1)	3129(1)	15(1)	
F(1)	9824(1)	721(3)	2408(1)	34(1)	
F(2)	10506(1)	2679(3)	1778(1)	46(1)	
F(3)	9673(1)	4887(3)	1037(1)	55(1)	
F(4)	8125(1)	5065(3)	923(1)	57(1)	
F(5)	7441(1)	3191(3)	1565(1)	41(1)	
F(6)	9513(1)	1159(3)	4684(1)	34(1)	
F(7)	10160(1)	3191(3)	5512(1)	34(1)	
F(8)	9346(1)	5923(3)	5869(1)	37(1)	
F(9)	7906(1)	6778(3)	5356(1)	44(1)	
F(10)	7280(1)	4880(3)	4502(1)	34(1)	
F(11)	4617(1)	-467(3)	3853(1)	39(1)	
F(12)	3571(1)	-1587(4)	4366(1)	59(1)	
F(13)	3592(1)	-5235(4)	4719(1)	63(1)	
F(14)	4696(1)	-7682(3)	4579(1)	57(1)	
F(15)	5756(1)	-6561(3)	4065(1)	37(1)	
N(1)	6295(1)	-2626(4)	2928(1)	17(1)	
N(2)	7195(1)	-1293(3)	2429(1)	18(1)	
N(3)	8000(1)	987(3)	3244(1)	17(1)	
N(4)	6939(1)	-526(3)	3817(1)	15(1)	
N(5)	6407(1)	1517(4)	2898(1)	24(1)	

Table C-5-2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **1-Ir(NH₃)**₂ (CCDC 769388). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

N(6)	7862(1)	-3038(4)	3382(1)	27(1)
C(1)	5798(2)	-3341(4)	3193(1)	15(1)
C(2)	5303(2)	-4625(4)	2860(1)	20(1)
C(3)	5534(2)	-4614(4)	2395(1)	18(1)
C(4)	6162(2)	-3341(4)	2442(1)	16(1)
C(5)	6678(2)	-2552(4)	2154(1)	18(1)
C(6)	6831(2)	-2561(5)	1659(1)	23(1)
C(7)	7425(2)	-1322(4)	1654(1)	24(1)
C(8)	7652(2)	-489(4)	2149(1)	18(1)
C(9)	8200(2)	895(4)	2363(1)	17(1)
C(10)	8370(2)	1583(4)	2873(1)	17(1)
C(11)	8926(2)	2956(4)	3098(1)	18(1)
C(12)	8880(2)	3177(4)	3594(1)	18(1)
C(13)	8281(2)	1948(4)	3683(1)	16(1)
C(14)	7983(2)	1740(4)	4126(1)	16(1)
C(15)	7364(2)	591(4)	4188(1)	17(1)
C(16)	7035(2)	352(4)	4631(1)	21(1)
C(17)	6436(2)	-864(4)	4506(1)	20(1)
C(18)	6366(2)	-1445(4)	3986(1)	16(1)
C(19)	5836(2)	-2731(4)	3701(1)	17(1)
C(20)	8608(2)	1881(4)	2008(1)	20(1)
C(21)	9390(2)	1793(4)	2048(1)	23(1)
C(22)	9754(2)	2800(5)	1725(1)	30(1)
C(23)	9324(2)	3903(5)	1350(1)	34(1)
C(24)	8548(2)	3994(5)	1292(1)	33(1)
C(25)	8201(2)	3007(5)	1619(1)	26(1)
C(26)	8365(2)	2897(4)	4576(1)	17(1)

C(27)	9102(2)	2537(5)	4841(1)	21(1)
C(28)	9437(2)	3563(5)	5271(1)	23(1)
C(29)	9030(2)	4955(5)	5443(1)	26(1)
C(30)	8301(2)	5399(5)	5188(1)	26(1)
C(31)	7984(2)	4378(5)	4755(1)	23(1)
C(32)	5228(2)	-3463(5)	3952(1)	18(1)
C(33)	4649(2)	-2275(5)	4030(1)	28(1)
C(34)	4104(2)	-2847(6)	4287(1)	36(1)
C(35)	4125(2)	-4654(6)	4465(1)	38(1)
C(36)	4676(2)	-5907(6)	4392(1)	35(1)
C(37)	5221(2)	-5311(5)	4132(1)	25(1)

Ir(1)-N(2)	1.957(2)	N(2)-Ir(1)-N(1)	79.51(9)
Ir(1)-N(1)	1.952(2)	N(2)-Ir(1)-N(4)	172.25(10)
Ir(1)-N(4)	1.975(2)	N(1)-Ir(1)-N(4)	92.77(9)
Ir(1)-N(3)	1.971(2)	N(2)-Ir(1)-N(3)	93.06(9)
Ir(1)-N(6)	2.064(3)	N(1)-Ir(1)-N(3)	172.55(9)
Ir(1)-N(5)	2.084(2)	N(4)-Ir(1)-N(3)	94.67(9)
		N(2)-Ir(1)-N(6)	91.16(10)
		N(1)-Ir(1)-N(6)	89.32(10)
		N(4)-Ir(1)-N(6)	89.29(10)
		N(3)-Ir(1)-N(6)	90.29(10)
		N(2)-Ir(1)-N(5)	90.56(10)
		N(1)-Ir(1)-N(5)	92.24(10)
		N(4)-Ir(1)-N(5)	89.18(9)
		N(3)-Ir(1)-N(5)	88.35(10)
		N(6)-Ir(1)-N(5)	177.86(10)

Table C-5-3. Selected bond lengths [Å] and angles [°] for $1-Ir(NH_3)_2$ (CCDC 769388)

Ir(1)-N(2)	1.957(2)	N(3)-C(13)	1.363(3)
Ir(1)-N(1)	1.952(2)	N(3)-C(10)	1.384(3)
Ir(1)-N(4)	1.975(2)	N(4)-C(15)	1.368(3)
Ir(1)-N(3)	1.971(2)	N(4)-C(18)	1.371(3)
Ir(1)-N(6)	2.064(3)	C(1)-C(19)	1.429(4)
Ir(1)-N(5)	2.084(2)	C(1)-C(2)	1.435(4)
F(1)-C(21)	1.339(3)	C(2)-C(3)	1.408(4)
F(2)-C(22)	1.325(4)	C(3)-C(4)	1.419(4)
F(3)-C(23)	1.346(3)	C(4)-C(5)	1.444(4)
F(4)-C(24)	1.344(4)	C(5)-C(6)	1.426(4)
F(5)-C(25)	1.343(4)	C(6)-C(7)	1.375(4)
F(6)-C(27)	1.338(3)	C(7)-C(8)	1.437(4)
F(7)-C(28)	1.344(3)	C(8)-C(9)	1.411(4)
F(8)-C(29)	1.351(3)	C(9)-C(10)	1.430(4)
F(9)-C(30)	1.335(3)	C(9)-C(20)	1.498(4)
F(10)-C(31)	1.345(3)	C(10)-C(11)	1.423(4)
F(11)-C(33)	1.351(4)	C(11)-C(12)	1.370(4)
F(12)-C(34)	1.350(4)	C(12)-C(13)	1.437(4)
F(13)-C(35)	1.354(3)	C(13)-C(14)	1.423(4)
F(14)-C(36)	1.340(4)	C(14)-C(15)	1.409(4)
F(15)-C(37)	1.339(4)	C(14)-C(26)	1.498(4)
N(1)-C(1)	1.354(3)	C(15)-C(16)	1.456(4)
N(1)-C(4)	1.380(3)	C(16)-C(17)	1.355(4)
N(2)-C(8)	1.353(3)	C(17)-C(18)	1.446(4)
N(2)-C(5)	1.374(4)	C(18)-C(19)	1.410(4)

Table C-5-4. Bond lengths [Å] and angles $[^{\circ}]$ for **1-Ir(NH₃)**₂ (CCDC 769388)

C(19)-C(32)	1.492(4)	N(1)-Ir(1)-N(6)	89.32(10)
C(20)-C(21)	1.382(4)	N(4)-Ir(1)-N(6)	89.29(10)
C(20)-C(25)	1.388(4)	N(3)-Ir(1)-N(6)	90.29(10)
C(21)-C(22)	1.390(4)	N(2)-Ir(1)-N(5)	90.56(10)
C(22)-C(23)	1.373(5)	N(1)-Ir(1)-N(5)	92.24(10)
C(23)-C(24)	1.365(5)	N(4)-Ir(1)-N(5)	89.18(9)
C(24)-C(25)	1.374(4)	N(3)-Ir(1)-N(5)	88.35(10)
C(26)-C(27)	1.383(4)	N(6)-Ir(1)-N(5)	177.86(10)
C(26)-C(31)	1.386(4)	C(1)-N(1)-C(4)	111.9(2)
C(27)-C(28)	1.388(4)	C(1)-N(1)-Ir(1)	130.24(18)
C(28)-C(29)	1.358(4)	C(4)-N(1)-Ir(1)	117.82(18)
C(29)-C(30)	1.375(4)	C(8)-N(2)-C(5)	112.4(2)
C(30)-C(31)	1.384(4)	C(8)-N(2)-Ir(1)	129.84(19)
C(32)-C(33)	1.381(4)	C(5)-N(2)-Ir(1)	117.58(18)
C(32)-C(37)	1.385(4)	C(13)-N(3)-C(10)	109.9(2)
C(33)-C(34)	1.376(4)	C(13)-N(3)-Ir(1)	125.55(18)
C(34)-C(35)	1.352(5)	C(10)-N(3)-Ir(1)	124.27(19)
C(35)-C(36)	1.366(5)	C(15)-N(4)-C(18)	111.2(2)
C(36)-C(37)	1.386(4)	C(15)-N(4)-Ir(1)	124.51(18)
		C(18)-N(4)-Ir(1)	124.32(18)
N(2)-Ir(1)-N(1)	79.51(9)	N(1)-C(1)-C(19)	120.0(2)
N(2)-Ir(1)-N(4)	172.25(10)	N(1)-C(1)-C(2)	106.6(2)
N(1)-Ir(1)-N(4)	92.77(9)	C(19)-C(1)-C(2)	133.4(3)
N(2)-Ir(1)-N(3)	93.06(9)	C(3)-C(2)-C(1)	107.3(3)
N(1)-Ir(1)-N(3)	172.55(9)	C(2)-C(3)-C(4)	107.7(3)
N(4)-Ir(1)-N(3)	94.67(9)	N(1)-C(4)-C(3)	106.4(2)
N(2)-Ir(1)-N(6)	91.16(10)	N(1)-C(4)-C(5)	112.3(2)

C(3)-C(4)-C(5)	141.3(3)	C(16)-C(17)-C(18)	108.5(2)
N(2)-C(5)-C(6)	105.6(3)	N(4)-C(18)-C(19)	125.5(2)
N(2)-C(5)-C(4)	112.8(2)	N(4)-C(18)-C(17)	106.3(2)
C(6)-C(5)-C(4)	141.6(3)	C(19)-C(18)-C(17)	128.2(3)
C(7)-C(6)-C(5)	108.2(3)	C(18)-C(19)-C(1)	127.1(2)
C(6)-C(7)-C(8)	108.1(2)	C(18)-C(19)-C(32)	116.2(2)
N(2)-C(8)-C(9)	120.4(2)	C(1)-C(19)-C(32)	116.6(2)
N(2)-C(8)-C(7)	105.7(2)	C(21)-C(20)-C(25)	116.2(3)
C(9)-C(8)-C(7)	133.9(3)	C(21)-C(20)-C(9)	123.8(3)
C(8)-C(9)-C(10)	127.7(2)	C(25)-C(20)-C(9)	120.0(3)
C(8)-C(9)-C(20)	116.4(2)	F(1)-C(21)-C(20)	120.0(3)
C(10)-C(9)-C(20)	115.7(2)	F(1)-C(21)-C(22)	117.7(3)
N(3)-C(10)-C(9)	124.4(3)	C(20)-C(21)-C(22)	122.3(3)
N(3)-C(10)-C(11)	106.9(2)	F(2)-C(22)-C(23)	120.6(3)
C(9)-C(10)-C(11)	128.7(2)	F(2)-C(22)-C(21)	120.3(3)
C(12)-C(11)-C(10)	108.2(2)	C(23)-C(22)-C(21)	119.1(3)
C(11)-C(12)-C(13)	107.5(3)	F(3)-C(23)-C(24)	120.3(3)
N(3)-C(13)-C(14)	123.3(3)	F(3)-C(23)-C(22)	119.4(3)
N(3)-C(13)-C(12)	107.3(2)	C(24)-C(23)-C(22)	120.3(3)
C(14)-C(13)-C(12)	129.3(3)	F(4)-C(24)-C(23)	120.5(3)
C(15)-C(14)-C(13)	127.4(3)	F(4)-C(24)-C(25)	119.9(3)
C(15)-C(14)-C(26)	116.4(2)	C(23)-C(24)-C(25)	119.6(3)
C(13)-C(14)-C(26)	116.2(2)	F(5)-C(25)-C(24)	118.1(3)
N(4)-C(15)-C(14)	124.5(2)	F(5)-C(25)-C(20)	119.3(3)
N(4)-C(15)-C(16)	106.3(2)	C(24)-C(25)-C(20)	122.6(3)
C(14)-C(15)-C(16)	129.3(3)	C(27)-C(26)-C(31)	116.1(3)
C(17)-C(16)-C(15)	107.8(3)	C(27)-C(26)-C(14)	122.7(3)

C(31)-C(26)-C(14)	121.1(3)
F(6)-C(27)-C(28)	118.2(3)
F(6)-C(27)-C(26)	119.6(3)
C(28)-C(27)-C(26)	122.1(3)
F(7)-C(28)-C(29)	120.3(3)
F(7)-C(28)-C(27)	120.2(3)
C(29)-C(28)-C(27)	119.6(3)
F(8)-C(29)-C(30)	119.5(3)
F(8)-C(29)-C(28)	119.9(3)
C(30)-C(29)-C(28)	120.7(3)
F(9)-C(30)-C(29)	120.5(3)
F(9)-C(30)-C(31)	120.8(3)
C(29)-C(30)-C(31)	118.7(3)
F(10)-C(31)-C(30)	117.6(3)
F(10)-C(31)-C(26)	119.6(3)
C(30)-C(31)-C(26)	122.7(3)
C(33)-C(32)-C(37)	116.3(3)
C(33)-C(32)-C(19)	120.6(3)
C(37)-C(32)-C(19)	123.0(3)
F(11)-C(33)-C(34)	118.2(3)
F(11)-C(33)-C(32)	119.0(3)
C(34)-C(33)-C(32)	122.8(3)
F(12)-C(34)-C(35)	121.4(3)
F(12)-C(34)-C(33)	119.6(4)
C(35)-C(34)-C(33)	119.0(3)
F(13)-C(35)-C(34)	119.7(4)
F(13)-C(35)-C(36)	119.4(4)

C(34)-C(35)-C(36)	121.0(3)
F(14)-C(36)-C(35)	120.1(3)
F(14)-C(36)-C(37)	120.5(4)
C(35)-C(36)-C(37)	119.4(3)
F(15)-C(37)-C(36)	118.4(3)
F(15)-C(37)-C(32)	120.1(3)
C(36)-C(37)-C(32)	121.5(3)

	U ¹¹	U ²²	U33	U23	U13	U12	
Ir(1)	164(1)	178(1)	115(1)	-11(1)	46(1)	-16(1)	
F(1)	265(10)	384(12)	379(10)	59(9)	119(9)	85(10)	
F(2)	406(13)	455(14)	646(14)	-104(12)	360(11)	-85(12)	
F(3)	920(19)	400(13)	470(13)	13(11)	487(13)	-197(14)	
F(4)	861(18)	477(14)	312(11)	219(10)	18(12)	-52(14)	
F(5)	352(12)	445(14)	367(11)	131(9)	-42(10)	15(11)	
F(6)	312(11)	421(13)	252(9)	-36(8)	-4(9)	133(10)	
F(7)	257(10)	482(13)	230(9)	-5(9)	-70(8)	-5(10)	
F(8)	372(12)	436(13)	242(9)	-140(9)	-41(9)	-74(11)	
F(9)	391(12)	429(14)	444(12)	-244(10)	-15(10)	54(11)	
F(10)	252(10)	380(11)	331(10)	-129(9)	-42(9)	92(10)	
F(11)	433(13)	476(14)	302(10)	98(9)	165(10)	227(11)	
F(12)	311(12)	1190(20)	307(11)	-32(12)	157(10)	186(14)	
F(13)	486(14)	1130(20)	336(12)	-57(13)	241(11)	-416(15)	
F(14)	845(18)	471(15)	423(13)	62(11)	215(12)	-360(14)	
F(15)	433(13)	252(11)	433(12)	84(9)	92(10)	4(10)	
N(1)	191(13)	169(13)	166(11)	-7(10)	65(10)	-14(11)	
N(2)	211(13)	220(14)	137(11)	-19(9)	72(10)	-22(11)	
N(3)	174(12)	206(14)	136(10)	37(10)	39(9)	60(11)	
N(4)	139(12)	185(14)	122(10)	-9(9)	44(9)	-23(10)	

Table C-5-5. Anisotropic displacement parameters (Å²x 10⁴) for **1-Ir(NH₃)**₂ (CCDC 769388). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

N(5)	267(15)	257(14)	155(12)	-6(10)	-17(11)	-20(13)
N(6)	245(15)	263(16)	323(15)	-20(11)	122(12)	-8(13)
C(1)	152(15)	133(14)	176(13)	7(11)	37(11)	17(12)
C(2)	184(15)	164(17)	247(15)	32(11)	57(13)	9(12)
C(3)	192(15)	145(16)	176(13)	-19(10)	6(12)	11(12)
C(4)	193(15)	149(15)	149(13)	-15(11)	29(12)	15(13)
C(5)	195(15)	168(15)	177(13)	-34(11)	28(12)	6(14)
C(6)	268(17)	263(17)	144(13)	-32(12)	30(12)	-26(15)
C(7)	291(18)	285(18)	154(14)	-6(12)	86(13)	-20(15)
C(8)	198(15)	213(18)	157(13)	0(11)	70(12)	-33(13)
C(9)	180(15)	183(15)	169(12)	21(12)	67(11)	0(14)
C(10)	174(15)	180(15)	159(13)	6(11)	46(12)	-22(13)
C(11)	166(15)	167(16)	202(14)	11(11)	60(12)	-14(12)
C(12)	159(15)	181(16)	176(14)	-15(11)	20(12)	-35(13)
C(13)	152(14)	153(15)	164(13)	12(10)	26(11)	18(12)
C(14)	171(15)	169(15)	134(13)	1(10)	17(11)	19(13)
C(15)	188(15)	192(16)	139(12)	12(11)	32(11)	38(13)
C(16)	259(17)	257(18)	110(12)	1(11)	55(12)	27(14)
C(17)	217(15)	246(16)	139(12)	34(12)	79(11)	-9(15)
C(18)	175(15)	177(15)	151(13)	23(11)	53(12)	18(13)
C(19)	158(14)	192(16)	171(13)	58(11)	50(11)	24(13)
C(20)	275(18)	197(17)	132(13)	-18(11)	69(12)	-43(14)
C(21)	296(18)	232(18)	181(14)	-6(12)	98(13)	-3(15)
C(22)	360(20)	271(19)	342(18)	-69(15)	234(16)	-57(17)
C(23)	600(30)	240(20)	249(16)	0(13)	258(18)	-108(18)
C(24)	520(20)	280(20)	184(15)	86(14)	50(16)	-12(19)
C(25)	304(19)	260(19)	225(15)	22(13)	47(14)	-11(16)

C(26)	199(16)	201(16)	120(13)	5(11)	38(12)	-18(13)
C(27)	230(16)	233(16)	157(13)	-3(12)	33(12)	38(15)
C(28)	190(16)	318(18)	150(14)	36(12)	-15(12)	-29(15)
C(29)	297(19)	288(17)	164(14)	-22(13)	6(13)	-114(16)
C(30)	294(19)	251(19)	223(15)	-69(12)	50(14)	5(15)
C(31)	187(16)	264(18)	207(14)	-7(13)	-4(12)	20(15)
C(32)	165(15)	263(16)	120(13)	3(11)	17(11)	-34(14)
C(33)	282(18)	400(20)	163(14)	49(14)	54(13)	18(17)
C(34)	209(18)	720(30)	154(15)	-28(17)	47(14)	50(20)
C(35)	300(20)	700(30)	162(15)	-29(16)	92(15)	-250(20)
C(36)	420(20)	410(20)	210(15)	36(16)	50(15)	-210(20)
C(37)	242(17)	290(20)	203(15)	22(12)	-1(13)	-51(15)