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Abstract

This thesis consists of four chapters, including an introduction.

In Chapter 2, we take an averaging approach to the question of the distribution of

supersingular primes of degree one, for elliptic curves over a number field. We begin by

modifying the Lang-Trotter heuristic to address the case of an abelian extension, then

we show that it holds on average (up to a constant) for a family of elliptic curves by

using ideas of David-Pappalardi.

In Chapter 3, we prove constructively that there exists an infinite number of (ar-

bitrarily) thin families of rational elliptic curves for which the Lang-Trotter conjecture

holds on average, in part by using techniques of Fouvry-Murty.

In Chapter 4, we obtain a result related to the strong multiplicity one theorem

for non-dihedral cuspidal automorphic representations for GL(2), with trivial central

character and non-twist-equivalent symmetric squares. Given a real algebraic number

γ, we also find a lower bound for the lower density of the set of finite places v for which

av 6= γ.
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Chapter 1

Introduction

This thesis consists of research conducted in the context of two particular notions:

the Lang-Trotter predictions for supersingular primes and a refinement of the strong

multiplicity one theorem for GL(2). We introduce each aspect of the thesis in turn.

The common theme to both is the occurrence of suitable L-functions.

1.1 The Lang-Trotter conjecture - congruence class bias

and thin families

Given an elliptic curve E defined over some number field F and a prime p of good

reduction, let

ap = Np + 1− |E(Fp)|.

One says that p is supersingular for E if ap ≡ 0 (mod p). Given Hasse’s bound of

2
√
p on |ap|, this occurs for Np > 3 iff ap = 0.

In 1976, Lang and Trotter [LT] conjectured the distribution of supersingular primes

for a non-CM elliptic curve E over Q to be

∼ cE
√
x

log x

for some positive constant cE . In the CM case, one knows by Deuring [Deu] that the

density of supersingular primes is 1/2.

In 1968, Serre [Ser3] proved that the density of supersingular primes for a non-CM

elliptic curve is zero, which brings up the question of whether such primes are infinite in
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number for any E/F . This was answered for F = Q by N. Elkies in 1987 [Elk1], when

he demonstrated that there is an infinite number of supersingular primes for any elliptic

curve E/Q. In 1989, Elkies [Elk2] extended his result to an elliptic curve E over any

number field with a real embedding.

It is not in general known for the other fields K, even in the case of imaginary

quadratic fields. Some examples are provided by Elkies and Jao, in the cases where the

absolute norm of j(E)− 1728 has a prime factor congruent to 1 (mod 4) that has odd

exponent [Elk1] and for elliptic curves parameterised by the X0(p)/wp for certain small

odd primes p [Jao], which does include some elliptic curves with imaginary quadratic

j-invariant. For example, the elliptic curve with j-invariant

j =
−489229980611− 42355313

√
−84567

4096

has infinitely many supersingular primes. This curve was mentioned by Jao, which arises

in his paper when considering X0(11)/w11. It does not seem that the result on Q can

be used to deduce it for K, though this may be possible if one can show that infinitely

many of the supersingular primes over Q have a degree one divisor over K.

This is certainly not always true, as in the case of an elliptic curve with a torsion

subgroup of order four (for example X1(15), which can be represented by the affine

equation y2 + xy + y = x3 + x2) and K being the imaginary quadratic field Q(i):

recall the theorem on torsion injection which states that for sufficiently large p,

E(Q)tors ↪→ E(Fp),

which in our case implies

ap = p+ 1− |E(Fp)|

≡ p+ 1 (mod 4)

and so p supersingular ⇒ p ≡ 3 (mod 4) for sufficiently large p. Thus E does not have

an infinite number of supersingular primes that split in Q(i).

Given an elliptic curve E over a number field F and a finite extension L of F , we



3

will construct a heuristic for the asymptotic distribution of supersingular primes of E

with degree one divisors in L.

In 1996, Fouvry and Murty [FM] demonstrated that the Lang-Trotter asymptotic

for supersingular primes held on average for a family of elliptic curves over Q. David

and Papparlardi [DP] later established asymptotic expressions on average for any given

trace of Frobenius. We will use their techniques to establish a result for a congruence

class of primes, averaging over a family of elliptic curves. Such techniques were used

in a similar manner by Kevin James in [Jam], however the aim of that paper is quite

different from our goal here.

The surprise of the findings is that whilst the prediction is true up to a constant,

the nature of the specific constant is not what is expected.

Fix L to be an abelian extension and let π0(L,Ea,b, x) be the number of rational

primes less than x that split (totally) in L and are supersingular for Ea,b, where Ea,b is

the elliptic curve represented by the equation Y 2 = X3 + aX + b. We will show

Theorem A. For A,B > x1/2+ε, AB > x3/2+ε we have

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(L,Ea,b, x) ∼ CL
√
x

log x

as x→∞, where CL is an explicit positive constant that is addressed in section 2.3.

For example, if we set L = Q(
√
−3), then

1

4AB

∑
|a|≤A

∑
|b|≤B

π0

(
Q
(√
−3
)
, Ea,b, x

)
∼ π

9

√
x

log x
.

Remark 1. Note that the constant above of π/9 is less than half of CQ = π/3, suggesting

a slight bias against the occurrence of supersingular primes that split in Q(
√
−3). In

section 2.4, we will discuss the existence of this bias in the averaging result.

The double sum in the theorem above does include supersingular primes from CM

elliptic curves, however this contribution does not affect the asymptotic.

We have already published this result in [Wal2]; we will give more detail of the proof

in this thesis.
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We plan to investigate elsewhere the reasons for this bias, which we believe holds for

any non-CM elliptic curve, with the exact nature of the bias depending on the index of

the Galois representation of the elliptic curve in GL2(Ẑ).

In another direction, in Chapter 3 we will demonstrate that there exist infinitely

many (arbitrarily) thin families over elliptic curves over Q for which the result of Fouvry-

Murty [FM] holds.

We will construct a sequence {cn} such that the terms grow faster than a given

function f (so cn > f(n) for all positive integers n) and use this to define a ‘thin’ family

S of elliptic curves, where S = {Ei,j : y2 = x3 + cix
2 + cj}.

We will then establish that this family satisfies the Lang-Trotter conjecture on av-

erage, using the approach of Fouvry-Murty [FM]. Denote the number of supersingular

primes for Ea,b that are less than x by π0(Ea,b, x).

Theorem B. Given the conditions and notations above, we have

∑
|a|≤A

∑
|b|≤B

π0(Ea,b, x) =
2π

3
AB

∫ x

2

dt√
t log t

+O

(
(A+B)x3/2 + x5/2 +AB

√
x

(log x)c

)
.

Under the conditions A,B ≥ x1/2+ε, AB ≥ x3/2+ε, this gives

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(Ea,b, x) ∼ε
π

3

√
x

log x
.

1.2 A refinement of strong multiplicity one

Let F be a number field, and let A0(GL2(AF )) be the set of cuspidal automorphic

representations π = ⊗′vπv of GL2(AF ). Given π ∈ A0(GL2(AF )), for any place v of F

where π is unramified we denote the Langlands conjugacy class by A(πv) ⊂ GL2(C),

which we will represent by the diagonal matrix diag{α1,v, α2,v}. Let av(π) be the trace
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of this matrix.

Given π, π′ ∈ A0(GL2(AF )), one can compare local data to determine whether π, π′

are globally isomorphic. In this context we ask the following question: If we have a set

S such that av(π) = av(π
′) for all v 6∈ S, what property of S is sufficient to establish

that π ' π′?

One approach involves establishing a condition on the size of S. The strong multi-

plicity one theorem of Jacquet-Shalika [JS1] states that it is sufficient for S to be finite.

In 1994, D. Ramakrishnan [Ram] proved that a set S of density less than 1/8 is suffi-

cient. Furthermore this result was determined to be sharp, by an example of J.-P. Serre.

One can also interpret this theorem as the statement that given any two non-isomorphic

cuspidal automorphic representations π, π′ for GL2(AF ), there exists a set S = S(π, π′)

of density greater or equal to 1/8 such that av(π) 6= av(π
′) for all v ∈ S.

Recall that for a set S of primes of a number field F , the lower Dirichlet density

δ(S) of S is

δ(S) = lim
s→1+

inf

∑
p∈S Np−s

− log(s− 1)
.

When S admits a Dirichlet density, then it must coincide with its lower Dirichlet density.

In the context of the above we will show

Theorem C. Let π, π′ ∈ A0(GL2(AF )) be non-dihedral representations, with trivial

central character and symmetric squares that are not twist-equivalent. For finite places

v where π and π′ are unramified, set av = Tr(A(πv)), bv = Tr(A(π′v)), and let S = {v |

av 6= bv}. Then

δ(S) ≥ 2

5
,

where δ(S) is the lower Dirichlet density of the set S.

Another question of interest is the following: Given π ∈ A0(GL2(AF )) and a real

number γ, what can we say about the set of places v for which the associated Hecke

eigenvalue of π is not equal to γ? We will prove
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Theorem D. Let π be a non-dihedral cuspidal automorphic representation over a num-

ber field F , with trivial central character. We define Sγ = {v | av 6= γ}, where γ is a

real scalar and let δ(Sγ) represent the lower Dirichlet density of Sγ. Then

δ(Sγ) ≥ (γ2 + 1)2

γ4 + 6γ2 + 2
.

Corollary. In particular, the set of finite places where av is non-zero has lower Dirichlet

density greater or equal to 1/2.

Remark 2. For F = Q and π defined by a non-CM holomorphic newform of weight

k > 1, by J.-P. Serre we know the stronger result that Sγ has density 1 [Ser2]. This does

not apply to the case k = 1 because the Galois representation has finite image.

In the case of Maass forms of eigenvalue λ, there is no known Galois representation

(except in simple situations), none expected when λ > 1/4, and the Ramanujan conjec-

ture has not been proved, so their lacunarity is not well understood. Thus there is no

analogue of Serre’s result.

Our approach involves refining the method of D. Ramakrishnan in [Ram], though it

is not a straightforward extension of his proof. We also use results of Kim-Shahidi [KS1,

KS2] on the existence of, and a cuspidal criterion for, the symmetric third and fourth

powers of cuspidal automorphic representations of GL(2).

In order to assess the strength of theorem C in the tetrahedral case, we also construct

an example of two tetrahedral cuspidal representations π,π′, that have symmetric squares

that are not twist-equivalent and whose set S of all places at which av(π) 6= av(π
′) has

density 15/32. This is within 11/160 of the lower bound of 2/5 given by theorem C.

Our work appears to extend to the case where the central character of the cuspidal

automorphic representations are unitary, which we are addressing in a paper [Wal1]

under preparation.

In the context of theorem C, we note the result of Murty-Rajan [MR], which states

that for two cuspidal automorphic representations π1, π2 of GL2(AQ), if one assumes

the expected, but far from known, analytic properties of the Rankin-Selberg convolu-

tion L-functions of Symm(π1) and Symn(π2) for all n and m, then #{p ≤ x | ap(π1) =

ap(π2)} = O
(
x5/6+ε

)
.
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Finally, we mention the existence of another approach to determining a sufficient

condition on S: One can establish a constant C depending on the conductors and

infinity types of π and π′, such that if av(π) = av(π
′) for all v satisfying Nv ≤ C, then

π ' π′. See the paper of J. Liu and Y. Wang [LW] and the references therein for the

current status of this approach.
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Chapter 2

Supersingular distribution and
congruence class bias

This part of the thesis has already been published in [Wal2]. The version we present

here includes more detail.

Introduction

Define Ea,b to be the elliptic curve that can be represented by Y 2 = X3 + aX + b,

with a, b ∈ Z, and given a set of rational primes P , let π0(P,Ea,b, x) be the number of

supersingular primes for Ea,b that are elements of P and that are less than x.

When P is determined by a congruence condition (which we will write as p ≡ c

(mod m) with (c,m) = 1 then we will prove

Theorem 2.1. For A,B > x1/2+ε, AB > x3/2+ε we have

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(P,Ea,b, x) ∼ CP
√
x

log x

as x→∞, for an explicitly determined positive constant CP that depends only on P .

We briefly describe the structure of this chapter. In section 2.1 we provide some back-

ground on the Sato-Tate conjecture, which is a crucial component in our heuristic. In

section 2.2 we construct the heuristic, using a similar approach to that of Lang-Trotter.

We then turn to averaging over a family of elliptic curves in section 2.3, expressing the

average in terms of sums of Hurwitz numbers. We interpret these using L-functions and
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obtain an asymptotic expression. In section 2.4 we discuss the results when applied to

certain examples of number fields, and lastly in section 2.5 we explain how to refine the

averaging, using an idea of Fouvry-Murty.

2.1 Background on Sato-Tate

The heuristic will rely on a variant of the Sato-Tate conjecture. Before introducing this,

we cover some relevant background on equidistribution:

Definition. Let X be a compact topological space and C(X) the space of continuous

complex-valued functions on X with the supremum norm (i.e., ||f || = supx∈X |f(x)|).

For x ∈ X, we have the associated Dirac measure δx, where δx(f) = f(x) for f ∈ C(X).

Notation 1. Given a sequence of points {xi}i≥1, let

µn =
1

n

n∑
i=0

δi.

Definition. Let µ be a Radon measure on X. One says that the sequence is µ-

equidistributed if µn → µ weakly as n→∞.

Remark 3. This means that µ must be positive and normalized. Furthermore, it must

satisfy

µ(f) = lim
n→∞

1

n

n∑
i=1

f(xi)

for all f ∈ C(X).

An l-adic representation associated to an elliptic curve E and a number field K is a

continuous homomorphism ρ : Gal(K/K)→ Aut(Tl(E)). Let ΣK be the set of places of

K and let S be the set of places at which ρ is ramified, as well as those places v where

Nv = l (N = NK/Q). For any v 6∈ S, we have the associated Frobenius conjugacy class

in Aut(Tl(E)).

Lemma 2.2. The eigenvalues of this Frobenius conjugacy class, when embedded into C,

are πv and πv, where

πv = (Nv)1/2eiφv where φv ∈ [0, π].
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Proof. See p136 [Sil].

Conjecture. (Sato-Tate for Σ) Let Σ be a subset of ΣK . Then the angles φv, v ∈ Σ of

the Frobenius elements are equidistributed with respect to the measure 2
π sin2 φ dφ.

Remark 4. Strictly speaking, equidistribution relates to a sequence rather than a set.

It is implicit that we take Σ to be ordered by non-decreasing norm. Note that even

though a finite number of elements of Σ may have the same norm (which thus allows

for various orderings of Σ with non-decreasing norm), because there is a uniform bound

on the number of elements sharing any given norm, the result will still stand regardless

of the ordering chosen.

Proposition 2.3. We have the hypotheses:

1. ∏
v∈Σ

1

1− (Nv)−s

converges for Re(s) > 1 and can be extended to a meromorphic function on Re(s) ≥ 1

with the only zero or pole in the region being a simple pole at s = 1

2.

L(s, ρ) =
∏
v∈Σ

1

det(1− ρ(xp)(Nv)−s)

(where ρ is the Galois representation associated to the elliptic curve) extends to a non-

zero holomorphic function on Re(s) ≥ 1.

If both 1 and 2 hold, then the Sato-Tate conjecture for Σ is true.

Proof. I 22–26 of [Ser3] .

Given an abelian extension L/Q and assuming the Sato-Tate conjecture for ΣL, it is

possible to derive the Sato-Tate conjecture for the set of degree one primes of L through

the use of some straightforward complex analysis.
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2.2 The heuristic

In 2.2.1 we will set up the heuristic in the same manner as in Lang-Trotter, and then

in 2.2.2 we will construct an approximation model. The difference between this and

the standard Lang-Trotter model is that we include a term that takes into account the

torsion of the elliptic curve. In subsection 2.2.3, we determine the asymptotic behaviour

of the model and reduce it down to considering the behaviour of one of the terms in the

model, which has already been addressed in the standard Lang-Trotter heuristic, as we

will explain in 2.2.4.

We do need a condition on PF involving the order k of the torsion subgroup of the

elliptic curve, namely that {p ∈ PF | Np + 1 ≡ 0 (mod k)} must have positive density

β. Note that this condition is to avoid obstruction arising from the torsion of the elliptic

curve, as shown in the example in the introduction.

2.2.1 Setup

Given a non-CM elliptic curve E, we have a representation

ρ : Gal(Q/Q)→
∏
l

GL2(Zl)

where the product is over the good rational primes l of E.

Notation 1. Fix a positive integer M and reduce
∏

GL2(Zl) modulo M to obtain the

representation

ρ(M) : G→ GL2(Z/MZ)

Then we can define

G(M) := G/Kerρ(M)

and

G(M)t := {g ∈ G(M)|trace(g) ≡ t (mod M)}.

Definition. M splits ρ if we have

ρ(G) ∼=
∏
l 6|M

GL2(Zl)×GM
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where G is the Galois group and GM is the projection of ρ(G) into
∏
l|M GL2(Zl).

Definition. M stabilizes ρ if

GM = r−1
M (G(M))

where rM is the reduction map

rM :
∏
l|M

GL2(Zl) −→ GL2(Z/MZ).

Lemma 2.4. From Serre [Ser1] we know that we can always have a representation

arising from some non-CM E that has some M which ‘stabilizes’ and ‘splits’ ρ.

This is the type of M that we fix.

We want to consider the distribution of tp for p ∈ PF .

Assumption 1. tp can be considered as a random variable, independent of other tp′ , and

its behaviour as a random variable is determined by the Sato-Tate conjecture and a

consequence of the general form of Chebotarev’s density theorem.

Definition. Let

FM (t) = M
|G(M)t|
|G(M)|

.

Remark 5. M is in the formula so that

1

M

∑
t mod M

FM (t) = 1,

i.e., the average value of FM is 1.

From [Mar] we have that the set PF has a density, which we will denote as α.

Lemma 2.5. The density of primes p ∈ PF such that tp ≡ t (mod M) is

α
|G(M)t|
|G(M)|

.
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By Hasse’s inequality, we know that tp ∈ (−2
√
p, 2
√
p). Thus we define ξ(t, p) = t/2

√
p

so that ξ ∈ [−1, 1]. Write ξ(t, p) = cos θ(t, p), and so θ(t, p) ∈ [0, π].

Now we have, by the Sato-Tate result, that the distribution of θ(t, p) is determined

by the density function 2
π sin2 θ on [0, π]. Thus the relative density of primes p ∈ PF

that lie in an interval [θ1, θ2] is ∫ θ2

θ1

2

π
sin2 θdθ.

Now if we change variables to ξ = cos θ so that we have a density function g(ξ) on

[−1, 1], we get that

g(ξ) =
2

π

√
1− ξ2.

2.2.2 Approximation model

Let k be the order of the torsion in the Mordell-Weil group of the elliptic curve. One

knows that for sufficiently large primes p we have |E(Fp)| ≡ 0 (mod k).

Definition. Let

fM (t, p, k) = probM{ap = t, and ap ≡ Np + 1 (mod k)}.

Remark 6. Note that we need
∑

t fM (t, p, k) = 1.

Our main assumption for this model is that

fM (t, p, k) = cp · g(ξ(t, p)) · FM (t) · h(t, k, p),

where h(t, k, p) is equal to k if t ≡ Np + 1 (mod k) and 0 otherwise.

Remark 7. The FM (t) is for consistency with the Chebotarev density theorem, g(ξ(t, p))

is to ensure compatibility with the Sato-Tate result (via the law of large numbers), cp

is chosen so that
∑

t fM (t, p, k) = 1, and lastly h(t, p, k) accounts for the congruence

obstruction from torsion injection.

We now address the asymptotic behaviour of cp.



14

Lemma 2.6. If
∑

t fM (t, p, k) = 1, then

cp ∼
1

2
√
Np

as Np→∞.

Proof. Note that ∫ 1

−1
g(ξ)dξ = 1

We consider its approximating Riemann sums (where t is still an integer):

1

2
√
Np
· k ·

∑
−2
√
Np<t<2

√
Np, t≡Np+1 (mod k)

g(ξ(t, p))

Fix an integer t0 and note that when taking the limit,

lim
Np→∞

M
k

2
√
Np

∑
t≡t0 (mod M), |t|<2

√
Np, t≡Np+1 (mod k)

g(ξ(t, p)) = 1

provided that the congruence conditions on t are compatible (see below for the incom-

patible case).

We multiply by FM (t0) to get

lim
Np→∞

k

2
√
Np

∑
t≡t0 (mod M), |t|<2

√
Np, t≡Np+1 (mod k)

g(ξ(t, p))FM (t0) =
FM (t0)

M

and so by construction of FM (t0), when we sum over congruence classes we get

lim
Np→∞

k

2
√
Np

∑
|t|<2

√
Np, t≡Np+1 (mod k)

g(ξ(t, p))FM (t) = 1

and thus

lim
Np→∞

1

2
√
Np

∑
|t|<2

√
Np

g(ξ(t, p))FM (t)h(t, k, p) = 1

as required.

In the case where incompatible congruence conditions arise (for some t0), the last

three equations above still follow as before, due to the fact that for the t0 in question

we will have F (t0) = 0.



15

Remark 8. Now let R be the set of degree one primes of an abelian extension L. If

we have incompatibility between the congruence arising from torsion injection and the

congruences satisfied by the norms of the elements of R, then the set Q = {p ∈ R |

Np + 1 ≡ 0 (mod k)} may only have a finite number of elements (as in the example

mentioned in the introduction). Thus from here on we only consider the cases where

this does not occur (i.e., when (k, discL) = 1). In this case the set Q′ of rational primes

lying under those primes in Q will have density 1/nk, where we recall that n is the

degree of the field L and k is the order of the rational torsion group of the elliptic curve.

2.2.3 Asymptotic Behaviour

The working in this subsection mainly consists of determining the behaviour of FM (t)

as M →∞ (ordered by divisibility).

Note that as Np→∞,

cp ∼
1

2
√
Np

and

g(ξ(t0, p))→ g(0) =
2

π

√
1− 02

=
2

π
.

Thus

probM{tp = t0, tp ≡ Np + 1 (mod k)} ∼ 1

2
√
p

2

π
FM (t0).h(t0, k, p).

Notation 2. Let

lim
Np→∞

FM (t) = F (t).

Now if we take the limit as M →∞ we should get the probability that tp = t0:

lim
M→∞

probM{tp = t0, tp ≡ Np + 1 (mod k)}

=prob{tp = t0, tp ≡ Np + 1 (mod k)}

=
1

2
√
Np

2

π
F (t0).h(t0, k, p).
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Thus in our case, the distribution function for all the tp of E that satisfy tp = t0 and

p ∈ PF is (as x→∞):

Nt0(x) ∼ 2

π
F (t0)

∑
p∈PF ,Np≤x

1

2
√
Np

.h(t0, k, p)

Now the series ∑
p∈PF ,Np≤x,to≡Np+1 (mod k)

1

2
√
Np

k

has the following asymptotic behaviour (given that we picked a suitable F with respect

to the order k of the torsion subgroup):

∑
p∈PF ,Np≤x,to≡Np+1 (mod k)

k
1

2
√
Np
∼ k

∫
x

1

2
√
Np

d

(
1

β
π(x)

)

where π(x) is the prime-counting function, and thus

∑
p∈PF ,Np≤x,Np+1 (mod k)

k
1

2
√
Np
∼
∫
x

1

2
√
Np

k

β

dx

log x
.

Now integrate by parts, setting u = 1
log x and v =

√
x, to get

∫
x

1

2
√
Np

k

β

dx

log x
=
k

β

√
x

log x
.

What remains is to consider F (t0), in particular for t0 = 0 as it is the supersingular

case.

2.2.4 Investigating F (t0)

Determining the existence and value of F (t0) is done in [LT] (it is the exact same F (t0)

that we consider), but for completeness, we will place the details of taking the limit for

M →∞ here.

We need to consider FM (t). We have the following lemmas:
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Lemma 2.7. Let M = M1M2, where (M1,M2) = 1, and G(M) = G(M1) × G(M2).

Then FM (t0) = FM1(t0)FM2(t0).

Lemma 2.8. Say that M0 is stable, M0|M , the same primes divide M0 and M , and

s ≡ t (mod M)0. Then |G(M)s| = |G(M)t| and FM (t) = FM0(t).

Corollary 2.9. If M is stable, then FMn(t) = FM (t).

Remark 9. Therefore limn→∞ FMn(t) exists, and let us define this to be FM∞(t).

We then get:

Lemma 2.10. Assume ρl(G/Ker(ρl)) = GL2(Zl). Then (by counting the number of

matrices) we get

Fl∞(0) = Fl(0) =
1

1− 1/l2

Theorem 2.11. Let Nt0,R(x) be the number of primes p ∈ R such that Np ≤ x and

tp = t0. Then

Nt0,R(x) ∼ 2

π
FM (t0)

 ∏
(l,M)=1

Fl(t0)

 k
∑
Np≤x
p∈R

Np+1≡0(k)

1

2
√
Np

,

where l is a rational prime. When t0 = 0, we have (given that M splits ρ)

N0,R(x) ∼ 2

π
FM (0)ζ(2)

∏
l|M

(1− 1/l2)

 k
∑
Np≤x
p∈R

Np+1≡0(k)

1

2
√
Np

.

We consider this in the context of rational primes. Let R′ be the set of rational

primes that lie under the primes in R; this has density 1/n. Thus

N0,R′(x) ∼ 2

π
FM (0)ζ(2)

∏
l|M

(1− 1/l2)

 1

n

√
x

log x
.

Remark 10. Comparing the above with the Lang-Trotter conjecture of

N0(x) ∼ 2

π
FM (0)ζ(2)

∏
l|M

(1− 1/l2)

 √
x

log x
,
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we see that R′ has an asymptotic proportion of supersingular primes of 1/n (when there

is no congruence obstruction). However, later in this chapter we shall see that on average

there is in fact a bias in the proportion of supersingular primes, reflected in the value of

the constant, which is contrary to the expectations of the heuristic.

2.3 Proof of the conjecture on average

2.3.1 Setup

We recall notation from the beginning of the chapter.

Denote Ea,b to be the elliptic curve that can be represented by Y 2 = X3 + aX + b

with a, b ∈ Z, let P be a set of rational primes, and set π0(P,Ea,b, x) to be the number

of supersingular primes for Ea,b that are elements of P and that are less than x.

When P is determined by a congruence condition (which we will write as p ≡ c

(mod m) with (c,m) = 1, in this section we will prove

Theorem A. For A,B > x1/2+ε, AB > x3/2+ε we have

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(P,Ea,b, x) ∼ CP
√
x

log x

as x→∞, for an explicitly determined positive constant CP that depends only on P .

By Deuring, the set of supersingular primes for a CM elliptic curve over Q has

density 1/2. Thus we must check whether the constant in the asymptotic is affected by

the contribution from CM curves.

Now there are exactly thirteen isomorphism classes of CM elliptic curves over Q.

Two of these classes are of the form Ea,0 and E0,b, where a and b can be any non-zero

integers, and the other eleven classes are of the form Ecit2,dit3 , where t is any non-zero

integer and (ci, di) is, depending on its index i, one of eleven distinct pairs of integers.

Thus given elliptic curves over Fp, we note that they may be lifted to CM curves of

the form Ea,0, of which there are 2A, given the bounds of A,B on the coefficients a, b of

the affine equation (respectively). Similarly, there are 2B CM curves of the form E0,b,

and 11 ·min(A1/2, B1/3) curves of the form Ecit2,dit3 . Given that the CM curves have a
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density of supersingular primes of 1/2, we have the following:

∑
|a|≤A

∑
|b|≤B

Ea,b is CM

π0(P,Ea,b, x)

=O

(
1

2
· x

log x
2A

)
+O

(
1

2
· x

log x
2B

)
+O

(
11 · 1

2
· x

log x
·min(A1/2, B1/3)

)
=O

(
x

log x
·max(A,B)

)
,

which we note will not affect the asymptotic expression under the conditions A,B >

x1/2+ε, AB > x3/2+ε.

We will later choose some examples of abelian extensions and use congruence con-

ditions to determine the set of rational primes lying under the degree one primes of the

extension. This will enable us to obtain explicit asymptotic expressions.

2.3.2 Lifting supersingular elliptic curves

For p a prime greater than three and for any integer r ≤ 2
√
p, the number of isomorphism

classes of elliptic curves over Fp with ap = r can be expressed using the Hurwitz number

H(r2 − 4p) = 2
∑

f2|(r2−4p)
d≡0,1(4)

h(d)

w(d)
(2.1)

where h(d) is the class number of, and w(d) the number of units in, the order Z[(d +
√
d)/2] of discriminant d. f and r are integers and d = (r2 − 4p)/f2.

We define

δf (x) =

{
3 < p ≤ x

∣∣∣∣r2 − 4p ≡ 0(f2), and
r2 − 4p

f2
≡ 0 or 1 (4)

}
.

Note that the r = 0 case only allows for two values of f , either one or two. Thus

d = −4p or −p.

Now because the Hurwitz number only tells us about the number of isomorphism

classes, we need to consider the possible sizes of an isomorphism class:

Given an affine equation y2 = x3 + ax + b over Fp, its isomorphism class is {y2 =
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x3 + at4x + bt6 | t ∈ F×p }. We need to determine the size of this set under various

conditions. When a, b 6= 0, we note that y2 = x3 + at4x+ bt6 and y2 = x3 + at′4x+ bt′6

have the same coefficients when t4 = t′4 and t6 = t′6, which together are equivalent to

having t2 = t′2, i.e., 1 = (t′/t)2. Since every Fp has a non-trivial square root of unity,

we have that the affine equations are the same exactly when t = ±t′, thus the size of

the isomorphism class is (p− 1)/2.

In the case of a 6= 0, b = 0, we have two different cases. Note that here we consider

affine equations y2 = x3 + at4x + 0 and y2 = x3 + at′4x + 0, which are the same when

t4 = t′4, i.e., 1 = (t′/t)4, so we need to consider whether there are fourth roots of unity

in Fp.

In the case when p 6≡ 1 (mod 4), we note that if there were (proper) fourth roots of

unity, then they would generate an order 4 subgroup of F×p . But then 4 | |F×p | = p− 1,

which implies p− 1 = 0 (mod 4), a contradiction of our assumption for this case. Thus

there are no fourth roots of unity and so t4 = t′4 iff t = ±t′, so again we have (p− 1)/2

to be the size of our isomorphism class.

In the case when p ≡ 1 (mod 4), since F×p is a cyclic group of order p− 1, there is a

generator g of order p − 1, and thus g(p−1)/4 is an element of order 4 in F×p . Thus our

isomorphism class has size (p− 1)/4.

The case of a = 0, b 6= 0 is treated similarly. We have y2 = x3 + 0x + bt6 and

y2 = x3 + 0x + bt′6, which are the same when t6 = t′6 and thus here we consider sixth

roots of unity. We obtain that there are not any when p 6≡ 1 (mod 6), and thus the size

of the isomorphism class is (p− 1)/2, and that they do exist in Fp when p ≡ 1 (mod 6),

and so the size of the isomorphism class is then (p − 1)/6. (The condition 1 (mod 6)

can of course be replaced by 1 (mod 3) since we are only considering primes ≥ 5.)

Thus the number of supersingular elliptic curves over Fp is

p− 1

2
(H(−4p) +O (1)) +

p− 1

4
O (1) +

p− 1

6
O (1)

where the error terms are to account for the possibility that some of the supersingular

elliptic curves may belong to an isomorphism class that has affine equations with either

a = 0 or b = 0 in conjunction with the fact that p may be 1 (mod 4) and/or 1 (mod 6).
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Below we will see that H(−4p)� √p log p, so we can rewrite our expression above as

p

2
H(−4p) +O (p) .

We obtain

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(P,Ea,b, x) =
1

4AB

∑
p≤x,p∈P

(
2A

p
+O(1)

)
·
(

2B

p
+O(1)

)
(2.2)

·
(p

2
H(−4p) +O(p)

)
+O(1)

where the last error term is to account for possible supersingularity of 2 and 3, as well

as the case when p is supersingular for an elliptic curve with a non-minimal equation

that is in the kernel of the reduction map to Fp.

This gives

1

2

∑
3<p≤x,p∈P

H(−4p)

p
+O

 ∑
3<p≤x,p∈P

H(−4p)

(
1

A
+

1

B
+

p

AB

)
+O (log log x) +O (1) .

To bound the error terms, we note that H(−4p) = h(−p) + h(−4p), and using the

Dirichlet class number formula

h(d) =
w(d)

√
|d|

2π
L(1, χd)

when d ≡ 0 or 1 (mod 4), and where w(d) = 6, 4, 2 for d = 3, 4, or ≥ 7 (respectively).

Partial summation and the Polya-Vinogradov inequality gives

L(1, χd)� log |d|

⇒ h(d)�
√
|d| log |d|

⇒ H(−4p)� √p log p. (2.3)
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We use this to consider

O

 ∑
3<p≤x,p∈P

H(−4p)

(
1

A
+

1

B
+

p

AB

)
= O

(
(1/A+ 1/B)

∫ x

2

√
t log t

dt

log t
+

1

AB

∫ x

2

√
t log t

dt

log t

)
= O

(
(1/A+ 1/B)x3/2 +

1

AB
x5/2

)
,

which gives us

1

4AB

∑
|a|≤A
|b|≤B

π0(P,Ea,b, x) =
1

2

∑
3<p≤x,p∈P

H(−4p)

p

+O

(
(1/A+ 1/B)x3/2 +

1

AB
x5/2 + log log x

)
.

Using the Dirichlet class number formula in conjunction with (2.1) gives:

1

2
H(−4p) =

∑
f=1,2
d≡0,1(4)

w(d)
√
|d|L(1, χd)

w(d)2π

=
∑
f=1,2
d≡0,1(4)

√
| − 4p/f2|L(1, χd)

2π

=
∑
f=1,2
d≡0,1(4)

√
pL(1, χd)

fπ

=
1

π

∑
f=1,2
d≡0,1(4)

1

f

√
pL(1, χd).

We thus substitute in for H(−4p) to get

1

2

∑
3<p≤x,p∈P

H(−4p)

p
=

1

π

∑
f=1,2

1

f

∑
p∈δf (x),p∈P

L(1, χd)√
p

 . (2.4)
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Partial summation for

∑
f=1,2

1

f

∑
p∈δf (x)
p∈P

L(1, χd)√
p

gives us

1√
x log x

∑
f=1,2

1

f

∑
p∈δf (x),p∈P

L(1, χd) log p

−
∫ x

2

∑
f=1,2

 1

f

∑
p∈δf (x),p∈P

L(1, χd) log p

 d

dt

(
1√
t log t

)
dt. (2.5)

At this point we need

Theorem 2.12.

∑
f=1,2

1

f

∑
p∈δf (x)
p∈P

L(1, χd) log p = KPx+O

(
x

logC x

)
(2.6)

where KP is a constant depending only on P .

Proof. Using the series expression for the L-function and applying the Polya-Vinogradov

inequality, we obtain

L(1, χd) =
∑
n≥1

(
d

n

)
1

n

=
∑
n≤U

(
d

n

)
1

n
+O

(√
|d| log |d|
U

)

for some positive parameter U = U(x). To assess the overall contribution of the error
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term above, we observe

∑
f=1,2

1

f

∑
p∈δf (x),p∈P

O

(√
p log p

U

)
log p

=O

∑
p≤x

√
p log2 p

U


=O

(
1

U

∫ x

2

√
t log2 t

dt

log t

)
=O

(
x3/2 log x

U

)
.

Thus the left-hand side of (2.6) becomes

∑
f=1,2

1

f

∑
n≤U

1

n

∑
p∈δf (x),p∈P

(
d

n

)
log p+O

(
x3/2 log x

U

)
. (2.7)

We shall now consider the cases f = 1 and f = 2 separately.

2.3.2.1 The case f = 1

This implies that d = −4p and so we have

∑
n≤U

1

n

∑
p∈δ1(x),p∈P

(
d

n

)
log p =

∑
n≤U

1

n

∑
p∈δ1(x),p∈P

(
−4p

n

)
log p (2.8)

=
∑

odd n≤U

1

n

∑
p∈δ1(x),p∈P

(
−p
n

)
log p

where we noted that for even n the Jacobi symbol will be zero, and so the outer sum

can be restricted to odd n.

At this point we introduce the notation a(n)∗, which when used with a sum will

signify that we are summing over all the invertible elements of Z/nZ.

For the inner sum, in grouping the Jacobi symbols according to congruence conditions

on p we get

∑
b(n)∗

(
b

n

) ∑
p∈δ1(x)
p∈P
−p≡b(n)

log p,
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which we rewrite as

∑
b(n)∗

(
b

n

) ∑
3<p≤x
p∈P

p≡−b(n)

log p

=
∑
b(n)∗

(
b

n

)


∑
p≤x
p∈P

p≡−b(n)

log p+O (1)



=
∑
b(n)∗

(
b

n

)


∑
p≤x
p∈P

p≡−b(n)

log p

+O (ϕ(n))

where the error term arises from including primes 2 and 3 in the sum.

We note that the overall contribution of the error term above is

O

∑
n≤U

1

n
ϕ(n)


=O

∑
n≤U

1


=O (U) .

Now we will need (see p169 of [Dav])

Theorem 2.13. (Gallagher) Given (a, n) = 1, let

ψ(x, n, a) =
∑

p≤x,p≡a(n)

log p

E(x, n, a) = ψ(x, n, a)− x

ϕ(n)
.

Then for any C > 0, and Q such that x/logC x ≤ Q ≤ x

∑
n≤Q

∑
a(n)∗

E2(x, n, a)� Qx log x.
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So we have

∑
odd n≤U

1

n

∑
b(n)∗

(
b

n

) ∑
p≤x
p∈P

p≡−b(n)

log p. (2.9)

At this point we replace p ∈ P by the congruence condition p ≡ c(m). Define k(n) to be

the greatest common factor of m and n. When it is clear from context, we will suppress

the variable and write k for k(n). Thus (2.9) becomes

∑
odd n≤U

1

n

∑
b(n)∗

−b≡c(k)

(
b

n

) ∑
p≤x

p≡−b′(mn/k)

log p

where −b′ is the unique element of Z/ (mn/k)Z that satisfies −b′ ≡ −b(n) and −b′ ≡

c(m), by the Chinese remainder theorem.

Using the notation in the theorem, we rewrite the third sum

∑
odd n≤U

1

n

∑
b(n)∗

b≡−c(k)

(
b

n

)(
x

ϕ(mnk )
+ E

(
x,
mn

k
,−b′

))

=x
∑

odd n≤U

1

n

∑
b(n)∗

b≡−c(k)

(
b

n

)
1

ϕ(mnk )
+

∑
odd n≤U

∑
b(n)∗

b≡−c(k)

1

n

(
b

n

)
E
(
x,
mn

k
,−b′

)
. (2.10)

We consider the second term in (2.10) and use Cauchy-Schwarz to obtain a bound of

 ∑
odd n≤U

∑
b(n)∗

b≡−c(k)

1

n2


1/2 ∑

odd ≤U

∑
b(n)∗

b≡−c(k)

E2
(
x,
mn

k
,−b′

)
1/2

≤

∑
n≤U

∑
b(n)∗

1

n2

1/2∑
n≤U

∑
b′(mn/k)∗

E2
(
x,
mn

k
,−b′

)1/2
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≤

∑
n≤U

ϕ(n)

n2

1/2∑
n≤U

∑
b′(mn/k)∗

E2
(
x,
mn

k
,−b′

)1/2

≤

∑
n≤U

1

n

1/2∑
n≤U

∑
b′(mn/k)∗

E2
(
x,
mn

k
,−b′

)1/2

≤ (logU + 1)1/2

∑
n≤U

∑
b′(mn/k)∗

E2
(
x,
mn

k
,−b′

)1/2

.

This puts us in a position to use the theorem by Gallagher (setting Q = U), and so

obtaining the asymptotic bound

� (logU + 1)1/2 (Ux log x)1/2

�(Ux logU log x)1/2,

and for

U ≤ x

log2C+5 x

we have

(Ux logU log x)1/2 � x

logC x
.

We now consider the first expression in (2.10):

x
∑

odd n≤U

1

n

∑
b(n)∗

b≡−c(k)

(
b

n

)
1

ϕ(mnk )

In order to interpret this, we will start with a lemma.

Lemma 2.14. Given that (n,m) = k,

ϕ
(nm
k

)
=
ϕ(n)ϕ(m)

ϕ(k)
.

Proof. Write k = pα1
1 . . . pαll . Thus pαii |n,m but either pαii - u or pαii - n (otherwise the
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greatest common denominator of m and n would be larger than k). Thus given any pi,

either pi - (n/pαii ) or pi - (m/pαii ).

We consider this for each prime divisor of k, and obtain the result

p1, . . . , pq -
n

pα1
1 . . . p

αq
q

=: n′ (2.11)

and

pq+1, . . . , pl -
m

p
αq+1

q+1 . . . pαll
=: m′ (2.12)

where we have relabelled the primes appropriately.

Note that there are no common factors of n′ and m′ otherwise they would also divide

k, which would be in contradiction to the prime decomposition of k. Thus (n′,m′) = 1,

and note that n′m′ = nm/k.

So

ϕ
(nm
k

)
= ϕ(n′m′) = ϕ(n′)ϕ(m′).

Split up k:

k = pα1
1 . . . p

αq
q · pαq+1

q+1 . . . pαll = a′ · b′.

Now (a′, b′) = 1, furthermore (a′, n′) = 1 and (b′,m′) = 1, using (2.11) and (2.12),

so we have

ϕ(k)ϕ
(nm
k

)
=ϕ(a′)ϕ(b′)ϕ(m′)ϕ(n′)

=ϕ(a′n′)ϕ(b′m′)

=ϕ(n)ϕ(m),

which proves our lemma.
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We apply this to the first expression in (2.10) to get

x
∑

odd n≤U

1

n

∑
b(n)∗

b≡−c(k)

(
b

n

)
1

ϕ(m)ϕ(n)/ϕ(k)

=
x

ϕ(m)

∑
odd n≤U

 ∑
b(n)∗

b≡−c(k)

(
b

n

)
1

(nϕ(n)/ϕ(k))

 . (2.13)

Now we consider

∑
b(n)∗

b≡−c(k)

(
b

n

)
. (2.14)

Since k|n, write n = lk (note that k|l only if k - mk ).

We have (given the conditions of the sum above)

(
b

n

)
=

(
b

lk

)
=

(
b

l

)(
b

k

)
=

(
b

l

)( c
k

)
and so (2.14) becomes

( c
k

) ∑
b(n)∗

b≡−c(k)

(
b

l

)
. (2.15)

Decompose l into its prime factors as (pα1
1 . . . pαll ).(p

αl+1

l+1 . . . p
αq
q ), where p1, . . . , pl|k

and pl+1, . . . , pq - k. Let lk = pα1
1 . . . pαll and ls = p

αl+1

l+1 . . . p
αq
q .

Then

(
b

l

)
=

(
−c
p1

)αl
. . .

(
−c
pl

)αl ( b

p
αl+1

l+1 . . . p
αq
q

)
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and so (2.15) becomes

(
−c
k

)(
−c

p
αl+1

l+1 . . . p
αq
q

) ∑
b(n)∗

b≡−c(k)

(
b

l

)

=

(
−c
lk

) ∑
b(n)∗

b≡−c(k)

(
b

ls

)
.

Lemma 2.15. If ls is a square, then

∑
b(n)∗

b≡−c(k)

(
b

ls

)
=
ϕ(n)

ϕ(k)
(2.16)

otherwise the sum takes the value zero.

Proof. When ls is a square, we have

∑
b(n)∗

b≡−c(k)

(
b

ls

)
=

∑
b(n)∗

b≡−c(k)

1

=
ϕ(n)

ϕ(k)
.

If on the other hand if ls is not a square, write ls = q1 · · · · · qw · h2, where the qi are odd

primes (n is odd so ls is also odd). Then

∑
b(n)∗

b≡−c(k)

(
b

ls

)
=

∑
b(n)∗

b≡−c(k)

(
b

q1

)
. . .

(
b

qw

)
·
(
b

h

)2

=
ϕ(n)

ϕ(k)ϕ(q1 . . . qw)

∑
b(q1...qw)∗

(
b

q1

)
. . .

(
b

qw

)
,

which by the Chinese remainder theorem gives us

ϕ(n)

ϕ(k)ϕ(q1 . . . qw)

∑
b(q1)∗

(
b

q1

) . . .

 ∑
b(qw)∗

(
b

qw

)
and we have that
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∑
b(q1)∗

(
b

q1

)
= 0,

so the left-hand side of (2.16) is zero.

Applying all this to (2.13) we have

x

ϕ(m)

∑
odd n≤U

 ∑
b(n)∗

b≡−c(k)

(
b

n

)
1

nϕ(n)/ϕ(k)

 =
x

ϕ(m)

∑
odd n≤U
ls a square

((
−c
klk

)
ϕ(n)/ϕ(k)

nϕ(n)/ϕ(k)

)

=
x

ϕ(m)

∑
odd n≤U
ls a square

(
−c
klk

)
1

n
.

Now we want to split up this sum according to the different values of k. In order to do

so, we first need to extend the range of summation:

x

ϕ(m)

∑
odd n≤U
ls a square

(
−c
klk

)
1

n
=

x

ϕ(m)

∑
odd n≥1
ls a square

(
−c
klk

)
1

n

+
x

ϕ(m)
·O

 ∑
odd n≥U
ls a square

1

n

 .

Fix the parameter U as
√
x logC+1 x and note that this gives

x

ϕ(m)
·O

 ∑
odd n≥U
ls a square

1

n

 =O

x ∑
odd square n≥U

1

n


=O

( x
U

)
=O

( √
x

logC+1

)
,
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where the first equality follows because

∑
n≤U

ls a square

1

n

is equal to

∏
p|m

(
1− p−1

)−1 ∑
ls≥1

1

l2s
.

Now we can split the main term into a double sum

x

ϕ(m)

∑
odd n≥1
ls a square

(
−c
klk

)
1

n
=

x

ϕ(m)

∑
odd k|m

∑
odd m≥1
ls a square
(m,m/k)=1

(
−c
klk

)
1

mk
(2.17)

where the coprime condition on m arises from the fact that we have k = (n,m), which

is equivalent to (n/k,m/k) = 1, which in turn is equivalent to (l,m/k) = 1. Note that

the first sum is over all divisors of m, including 1 and m.

In order to interpret this, we consider the possible values of the divisors lk and ls of

l (recall that we have l = lkls). In the first case, we note that primes p such that p|k

and p - m/k are exactly those primes that might divide lk.

Thus we can re-express the sum of all the reciprocals of lk:

∑
lk

1

lk
=

∏
p|k,p-m/k

∞∑
w=1

1

pw

=
∏

p|k,p-m/k

(
1− 1

p

)−1

.

And including the Jacobi symbol (which we need to do since it occurs in (2.17)),

∑
lk

(
−c
lk

)
lk

=
∏

p|k,p-m/k

∞∑
w=1

(
−c
p

)w
pw

=
∏

p|k,p-m/k

1−

(
−c
p

)
p

−1

.
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Now we address the second divisor of l. Recall that ls is the largest divisor of l such

that (ls, k) = 1. We also have that (l,m/k) = 1 in the first sum of the right-hand side

of (2.17), and so (ls,m/k) = 1. Thus (ls, (u/k) · k) = 1⇒ (ls,m) = 1.

So ls is any square positive integer that satisfies (ls,m) = 1 and therefore we can

write

∑
odd l≥1
(ls,m)=1

1

ls
= ζ(2)

∏
p|2m

(
1− 1

p2

)
.

where p is a prime.

Putting all this together, we get that (2.8) is equal to

x

ϕ(m)
ζ(2)

∏
p|2m

(
1− 1

p2

) ∑
odd k|m

(
−c
k

)
1

k

∏
p|k,p-m/k

1−

(
−c
p

)
p

−1

+O

(
x

logC x

)
.

2.3.2.2 The case f = 2

From (2.7) for f = 2 we have

1

2

∑
n≤U

1

n

∑
p∈δ2(x),p∈P

(
d

n

)
log p. (2.18)

The inner sum of (2.18) can be decomposed as

∑
b(4n)

(
b

n

) ∑
p∈δf (x)
p∈P

d≡b(4n)

log p.

In this case we have that d = −p ≡ 0, 1(4) and thus p ≡ 3(4). So the expression above

becomes

∑
b(4n)∗,b≡1(4)

(
b

n

) ∑
3<p≤x
p∈P

p≡−b(4n)

log p.
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We put in an error term to account for summation over primes 2 and 3:

∑
n≤U

1

n

∑
b(4n)∗,b≡1(4)

(
b

n

) ∑
3<p≤x
p∈P

p≡−b(4n)

log p =
∑
n≤U

1

n

∑
b(4n)∗,b≡1(4)

(
b

n

) ∑
p≤x
p∈P

p≡−b(4n)

log p+O (U)

Now at this point we will consider the odd and even cases of m separately.

I) Odd m

Given

∑
n≤U

1

n

∑
b(4n)∗

b≡1(4)

(
b

n

) ∑
p≤x
p∈P

p≡−b(4n)

log p (2.19)

again we write the condition p ∈ P as the congruence condition p ≡ c(m), and this time

we define k = (4n,m) to get

∑
n≤U

1

n

∑
b(4n)∗

b≡1(4)
−b≡c(k)

(
b

n

) ∑
p≤x

p≡−b′(4mn/k)

log p

where −b′ is the unique element in Z/(4nm/k)Z such that −b′ ≡ −b(4n) and −b′ ≡ c(m)

by the Chinese remainder theorem.

Note that we need −b ≡ c(k) in the second sum so that the two initial congruence

conditions are compatible.

As m is odd, k is also odd, and furthermore k = (4n,m) = (n,m). Since (k, 4) = 1,

we use the Chinese remainder theorem to combine the conditions of the second sum,

namely b ≡ 1(4) and b ≡ −c(k), into b ≡ −c′(4k), for some unique c′ ∈ Z/4kZ.
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We re-express the third sum in the expression above:

∑
n≤U

1

n

∑
b(4n)∗

b≡−c′(4k)

(
b

n

)(
x

ϕ(4nm
k )

+ E

(
x,

4nm

k
,−b′

))

=
∑
n≤U

1

n

∑
b(4n)∗

b≡−c′(4k)

(
b

n

)(
x

ϕ(4nm
k )

)
+
∑
n≤U

∑
b(4n)∗

b≡−c′(4k)

1

n

(
b

n

)
E

(
x,

4nm

k
,−b′

)
(2.20)

We consider the second expression on the right-hand side of (2.20) and using Cauchy-

Schwarz we bound it with

∑
n≤U

∑
b(4n)∗

b≡−c′(4k)

1

n2


1/2∑

n≤U

∑
b(4n)∗

b≡−c′(4k)

E2

(
x,

4mn

k
, b′
)

1/2

≤

∑
n≤U

∑
b(4n)∗

1

n2

1/2∑
n≤U

∑
−b′(4mn/k)∗

E2

(
x,

4mn

k
,−b′

)1/2

≤

∑
n≤U

ϕ(4n)

n2

1/2∑
n≤U

∑
−b′(4mn/k)∗

E2

(
x,

4mn

k
,−b′

)1/2

≤

∑
n≤U

4

n

1/2∑
n≤U

∑
−b′(4mn/k)∗

E2

(
x,

4mn

k
,−b′

)1/2

≤2 (logU + 1)1/2

∑
n≤U

∑
−b′(4mn/k)∗

E2

(
x,

4mn

k
,−b′

)1/2

.

Applying the theorem by Gallagher, we obtain the asymptotic bound

� (logU + 1)1/2 (Ux log x)1/2

�(Ux logU log x)1/2
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and since U =
√
x/logC+1 x we have

(Ux logU log x)1/2 � x

logC x
.

Now consider the first term in (2.20). Noting that lemma 2.14 implies

ϕ

(
4n.m

k

)
=
ϕ(4n)ϕ(m)

ϕ(k)
,

we apply this to get

x

ϕ(m)

∑
n≤U

∑
b(4n)∗

b≡−c′(4k)

1

n

(
b

n

)
1

ϕ(4n)/ϕ(k)
. (2.21)

Since k = (n,m), we write n = lk and observe that

∑
b(4n)∗

b≡−c′(4k)

(
b

n

)
=

∑
b(4n)∗

b≡−c′(4k)

(
b

l

)(
b

k

)

=

(
−c′

k

) ∑
b(4n)∗

b≡−c′(4k)

(
b

l

)
.

As before we decompose l into two factors lk and ls, so we get

(
−c′

k

)(
−c′

lk

) ∑
b(4n)∗

b≡−c′(4k)

(
b

ls

)
.

Lemma 2.16.

∑
b(4n)∗

b≡−c′(4k)

(
b

ls

)

is equal to ϕ(4n)/ϕ(4k) if ls is a square, and zero otherwise.

Proof. We split up n, ls, and k into their odd and even parts and so write n = 2αn′,
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ls = 2βl′s, k = 2γk′. We have

∑
b(4n)∗

b≡−c′(4k)

(
b

ls

)
=

∑
b(4·2αn′)∗

b≡−c′(4·2βk′)

(
b

2β

)(
b

l′s

)

and by the Chinese remainder theorem

∑
b(4·2α)∗

b≡−c′(4·2βk′)

(
b

2β

) ∑
b(n′)∗

b≡−c′(k′)

(
b

l′s

)
.

So if l′s is a square, then the inner sum will have value ϕ(n′)/(k′), whereas if it is not a

square, then lemma 2.15 implies that the inner sum is zero.

For the l′s square case, we now have to consider

∑
b(4·2α)∗

b≡−c′(4·2βk′)

(
b

2β

)
.

If β is even, then the sum has value ϕ(4 ·2β)/ϕ(4 ·2γ) and so overall for square ls we get

ϕ(4 · 2β)

ϕ(4 · 2γ)
· ϕ(n′)

(k′)
=
ϕ(4n)

ϕ(4k)
.

If β is odd, then ls must be even. Thus since k and ls are coprime, we have that k is

odd and thus γ = 0. This leaves us with having to consider

∑
b(4·2α)∗

b≡1(4)

(
b

2

)
.

Note that α ≥ β, and since β ≥ 1 we have

∑
b(8·2α−1)∗

b≡1(4)

(
b

2

)
,

so we are summing 2α−1 pairs of elements where the first in the pair is congruent to 1

(mod 8) and the second to 5 (mod 8). Thus the Jacobi symbols of each pair will cancel

out, giving us a value of zero for the sum.
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We put all the above together to get that the sum in the statement of the lemma is

equal to ϕ(4n)/ϕ(4k) if and only if ls is a square.

Remark 11. This lemma also applies for even values of m, provided that we alter the

value of k suitably. Therefore this result will be also used in the even case.

So (2.20) is equal to

x

ϕ(m)

∑
n≤U

ls a square

(
−c′

klk

)
ϕ(4n)

ϕ(4k)

1

nϕ(4n)/ϕ(k)

=
x

ϕ(m)

1

2

∞∑
n=1

ls a square

(
−c′

klk

)
1

n
+O

 x

ϕ(m)

1

2

∑
n≥U

n a square

1

n

 (2.22)

where we have used the fact that m is odd and thus k is odd, implying that

ϕ(4k) = 2ϕ(k).

We consider the error term and note that

O

 x

ϕ(m)

1

2

∑
n≥U

n a square

1

n

 =O

(
x.

1

U

)

=O

(
x

√
x logC+1 x

)
=O

( √
x

logC+1 x

)
.

So we take the first term from (2.22) and re-express it as a double sum:

x

2ϕ(m)

∑
k|m

∑
l≥1

ls a square
(l,m/k)=1

(
−c′

klk

)
1

lk
. (2.23)

As before, lk can be any positive integer composed of exactly those primes p that satisfy
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p|k and p - (m/k). Thus we get

∑
lk

(
−c′

lk

)
1

lk
=

∏
p|k,p-m/k

∞∑
w=1

(
−c′

p

)
1

pw

=
∏

p|k,p-m/k

(
1−

(
−c′

p

)
1

p

)−1

and since c ≡ c′(k) and k is odd, this is equivalent to

∏
p|k,p-m/k

1−

(
−c
p

)
p

−1

.

Now recall that ls is any square positive integer that satisfies (ls,m) = 1, and we therefore

have (for l a prime)

∑
l≥1

(ls,m)=1

1

ls
= ζ(2)

∏
p|m

(
1− 1

p2

)
.

We put all this together to get that (2.18) is equal to

x

4ϕ(m)
ζ(2)

∏
p|m

(
1− 1

p2

)
∑
k|m

(
−c
k

) ∏
p|k,p-m/k

1−

(
−c
p

)
p

−1
+O

(
x

logC x

)
.

II) Even m

If m is only divisible by 2 once, i.e., if we are given a congruence condition of the form

p ≡ c(m) where m = 2m′ for m′ odd, then this can be decomposed into the conditions

p ≡ c(m′) and p ≡ 1(2) (since (c,m) = 1 by assumption) and thus the second condition

can basically be ignored — all it does is exclude the prime 2, and thus does not affect

the asymptotic expression. So we can assume that 4|m.

We start with
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∑
n≤U

1

n

∑
b(4n)∗

b≡1(4)

(
b

n

) ∑
p≤x

p≡−b(4n)
p∈P

log p.

Again we let P be defined by the congruence condition p ≡ c(m), and we set

k = (4n,m):

∑
n≤U

1

n

∑
b(4n)∗

b≡1(4)
b≡−c(k)

(
b

n

) ∑
p≤x

p≡−b′(4mn/k)

log p

with b′ defined as before.

Note that m is even and furthermore is divisible by 4, so k is also divisible by 4. We

consider whether the congruence conditions in the second sum are indeed compatible,

i.e., whether −c ≡ 1(4).

If this is not satisfied, then there is no contribution to the asymptotic from the f = 2

case.

If this is satisfied, then we can omit the condition b ≡ 1(4) as it is included in the

b ≡ −c(k) condition. We proceed with this case.

We rewrite the third sum in the expression above to get

∑
n≤U

1

n

∑
b(4n)∗

b≡−c(k)

(
b

n

)(
x

ϕ(4nm
k )

+ E

(
x,

4nm

k
,−b′

))

=
∑
n≤U

1

n

∑
b(4n)∗

b≡−c(k)

(
b

n

)(
x

ϕ(4nm
k )

)
+
∑
n≤U

∑
b(4n)∗

b≡−c(k)

1

n

(
b

n

)
E

(
x,

4nm

k
,−b′

)
. (2.24)

The second term above can be bounded with the use of Cauchy-Schwarz and the theorem

by Gallagher, as before, to give that

∑
n≤U

∑
b(4n)∗

b≡−c(k)

1

n

(
b

n

)
E

(
x,

4nm

k
,−b′

)
� x

logC x
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given that U is set as
√
x logC+1 x.

We apply lemma 2.14 to the main term in (2.24) to get

x

ϕ(m)

∑
n≤U

∑
b(4n)∗

b≡−c(k)

(
b

n

)
1

nϕ(4n)/ϕ(k)
. (2.25)

Since k = (4n,m), let us write k′ = k/4, where k′ will be an integer. So k′ = (n,m/4).

Note that m/4 and thus k′ may still be even.

So (n,m/4) = k′ and thus let us write n = k′.l. Now

(
b

n

)
=

(
b

k′

)(
b

l

)
=

(
−c
k′

)(
b

l

)

and so

∑
b(4n)∗

b≡−c(k)

(
b

n

)
=

(
−c
k′

) ∑
b(4n)∗

b≡−c(k)

(
b

l

)
.

Split l into the two factors lk′ and l′s, where k′ is as before, and ls′ is the largest factor

of l that is coprime to k′. We get

(
−c
k′

)(
−c
lk′

) ∑
b(4n)∗

b≡−c(k)

(
b

ls′

)

and applying lemma 2.16, we see that this equals

(
−c
k′lk′

)
ϕ(4n)

ϕ(k)

if ls′ is a square, and zero otherwise.
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Therefore (2.25) is equal to

x

ϕ(m)

∑
n≤U

ls a square

(
−c
k′lk′

)
ϕ(4n)

ϕ(k)

1

nϕ(4n)/ϕ(k)

=
x

ϕ(m)

∞∑
n=1

ls a square

(
−c
k′lk′

)
1

n
+O

 x

ϕ(m)

1

2

∑
n≥U

n a square

1

n

 (2.26)

and again the error term can be replaced by

O

( √
x

logC+1 x

)
.

The main term of (2.26) can now be re-expressed as

x

ϕ(m)

∑
k′|m/4

∑
l≥1

ls a square
(l,m/k)=1

(
−c
k′lk′

)
1

lk′

=
x

ϕ(m)

∑
k|m

(
−c
k′

)
1

k′

∑
l≥1

ls a square
(l,m/k)=1

(
−c
lk′

)
1

l
, (2.27)

where we have noted that the condition k′|(m/4) in the first sum is equivalent to the

condition k|u.

Now lk can be any positive integer composed of exactly those primes p that satisfy

p|k′ and p - (m/k). Thus we get

∑
lk

(
−c
lk

)
1

lk
=

∏
p|k,p-m/k

∞∑
w=1

(
−c
p

)
1

pw

=
∏

p|k,p-m/k

(
1−

(
−c
p

)
1

p

)−1

.

Given that ls is any square positive integer that satisfies (ls,m/4k
′) = 1 and (ls, k

′) = 1,
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together these are equivalent to (ls,m/4) = 1, so we have

∑
l≥1

(ls,m/4)=1

1

ls
= ζ(2)

∏
p|m/4

(
1− 1

p2

)
.

Thus for the even case we have that (2.7) is equal to

x

2ϕ(m)
ζ(2)

 ∏
p|m/4

(
1− 1

p2

)
 ∑
k′|m/4

(
−c
k′

)
1

k′

∏
p|k′,p-m/k

1−

(
−c
p

)
p

−1
 .

So we have proved that

∑
f=1,2

1

f

∑
p∈δf (x)
p∈P

L(1, χd)
√
p log p = KPx+O

(
x

logC x

)

for some constant KP .

We apply the above to (2.5) to get

1√
x log x

(
KPx+O

(
x

logC x

))
−
∫ x

2

(
KP t+O

(
t

logC t

))(
1√
t log t

)′
dt

and noting that

(
1√
t log t

)′
= −

1
2 log t+ 1

t3/2 log2 t

we obtain

KP

√
x

log x
+O

( √
x

logC+1 x

)
+KP

∫ x

2

1√
t log2 t

dt

+KP

∫ x

2

1

2
√
t log t

dt+O

(∫ x

2

1√
t logC+1 t

)

and so we have

2KP

√
x

log x
+ o

( √
x

log x

)
.
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We substitute back into (2.4) to get

1

2

∑
3<p≤x

H(−4p)

p
=

2

π
KP

√
x

log x
+ o

( √
x

log x

)
(2.28)

and thus have CP = 2
πKP .

2.3.3 The value of KP

So for odd m we get

KP =
1

ϕ(m)
ζ(2)

∏
p|2m

(
1− 1

p2

)∑
k|m

1

k

(
−c
k

) ∏
p|k,p-m/k

(
1−

(
−c
p

)
1

p

)−1

+
1

4ϕ(m)
ζ(2)

∏
p|m

(
1− 1

p2

)∑
k|m

1

k

(
−c
k

) ∏
p|k,p-m/k

(
1−

(
−c
p

)
1

p

)−1

=
1

ϕ(m)
ζ(2)

∏
p|m

(
1− 1

p2

)∑
k|m

1

k

(
−c
k

) ∏
p|k,p-m/k

(
1−

(
−c
p

)
1

p

)−1

,

and for m divisible by 4 we get

KP =
1

ϕ(m)
ζ(2)

∏
p|m

(
1− 1

p2

) ∑
odd k|m

(
−c
k

)
1

k

∏
p|k,p-m/k

(
1−

(
−c
p

)
1

p

)−1

+
I(c)

2ϕ(m)
ζ(2)

 ∏
p|m/4

(
1− 1

p2

) ∑
k′|m/4

(
−c
k′

)
1

k′

∏
p|k′,p-m/k

(
1−

(
−c
p

)
1

p

)−1

where I(c) = 1 if c is congruent to 3 (mod 4) and is zero otherwise.
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2.4 Applications

2.4.1 Imaginary quadratic fields

Recall that, by way of example, we mentioned the imaginary quadratic field Q(
√
−3) in

the introduction (which is equivalent to setting P = {p | p ≡ 1 (mod 3)}). This gave us

the asymptotic

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(Q(
√
−3), Ea,b, x) ∼ π

9

√
x

log x

for A,B ≥ x1/2+ε and AB ≥ x3/2+ε.

Remark 12. For P = {p prime | p ≡ 2 (mod 3)} we have CP = 2π/9, and thus

it appears that the occurrence of supersingular primes p ≡ 2 (mod 3) is significantly

greater, whereas our heuristic does not distinguish between the constants for the 1

(mod 3) case and the 2 (mod 3) case.

In general, we have the following constants for imaginary quadratic fields L =

Q(
√
−q): if q ≡ 3 (mod 4), then

CL =
π

3
· 1

2

(
q − 1

q

)
,

whereas if q ≡ 1 (mod 4), then

CL =
π

3
· 1

2

(
q − 1

4

q

)
.

Remark 13. Thus for any imaginary quadratic field there is a bias against the occurrence

of supersingular primes that split in that field.
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2.4.2 Real quadratic fields

For L = Q(
√
q), if q ≡ 3 (mod 4),

CL =
π

3
· 1

2

(
q + 1

4

q

)
,

whereas if q ≡ 1 (mod 4), then

CL =
π

3
· 1

2

(
q + 1

q

)
.

Remark 14. Here we observe a bias toward the occurrence of supersingular split primes.

Note that these biases will still be present in the refined averaging of the next section.

Remark 15. We can summarise our results on quadratic fields of the form L = Q(
√
±q)

(where q is prime), as

CL =
π

3
· 1

2

(
D + 1

D

)

where D is the discriminant of the quadratic field.

2.4.3 Cyclotomic fields

We could also take a cyclotomic field such as Q(ζ15), in which case the set of split primes

is P = {p prime | p ≡ 1 (mod 15)}, and so

KP =
1

8
ζ(2)

(
1− 1

9

)(
1− 1

25

)[
1− 1

4
+

1

4
+

1

16

]
=ζ(2)

1

10
,

and so CP =
1

30
π.

Thus

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(P,Ea,b, x) ∼ π

3
· 1

10

(
4

5

) √
x

log x

for A,B ≥ x1/2+ε and AB ≥ x3/2+ε.
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Remark 16. The sum of the CP -coefficients for the various congruence relations modulo

15 is π/3, and thus the mean value is π/24, which is larger than the coefficient in the

asymptotic above. So again it appears that we have a smaller than average occurrence

of supersingular primes that split totally in the number field.

Remark 17. The bias in the distribution of supersingular primes, as seen in these exam-

ples, can be traced back to the L-functions of section 2.3. Consider the inner sum, for

f = 1 say, of the right-hand side of equation (2.4) and express this using Euler products

to get

∑
p∈δ1(x)
p∈P

1
√
p
·
∏

prime q

1−

(
−p
q

)
q

−1

.

Define Q to be the set of (rational) primes congruent to 2 (mod 3) and R the set of

primes congruent to 1 (mod 3). If P = Q, the second factor in the Euler product would

be
(
1− 1

3

)−1
= 3/2, whereas if P = R, that same factor would be

(
1 + 1

3

)−1
= 3/4.

This suggests that choosing a set of primes such as Q leads to a larger constant in the

averaging expression. Furthermore, we note that the ratio of the two factors is greater

(and thus the bias more pronounced) when q is a smaller prime.

2.5 A refined averaging

The averaging that we carried out included more than one elliptic curve from each

isomorphism class. This can be avoided using a construct of Fouvry-Murty.

Define a ‘set of minimality’

M = {(a, b) ∈ Z2 | p2|a⇒ p3 - b}.

A straightforward extension of a theorem from ([F-M]) gives

Theorem 2.17. For A, B such that A,B > x1+ε and AB > x2+ε ·min(A1/4, B1/6), we
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have

∑
|a|≤A

∑
|b|≤B

(a,b)∈M

π0(P,Ea,b, x) =
2AB

ζ(10)

∑
p≤x
p∈P

H(−4p)

p

(
1 +O

(
p−1
)

+O
(
log−4 x

))

+O (AB log x)

where we note that the sum is now no longer over multiple representatives of a given

Q-isomorphism class (in the case of elliptic curves with j-invariants 6= 0, 1728).

We bound the error terms using (2.3), and then using (2.28) we get

Theorem 2.18. As x→∞

∑
|a|≤A

∑
|b|≤B

(a,b)∈M

π0(P,Ea,b, x) ∼ 4AB

ζ(10)
CP

√
x

log x
.

for A,B ≥ x1+ε and AB > x2+εmin(A1/4, B1/6), and where CP is the same constant as

mentioned earlier.

We plan to investigate elsewhere the occurrence of congruence class bias for individ-

ual elliptic curves, rather than on average for a family of elliptic curves as we have done

here, in part through a careful examination of the mod p Galois representations.
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Chapter 3

Supersingular distribution for
thin families of elliptic curves

In this chapter we construct (arbitrarily) thin families of elliptic curves for which the

Lang-Trotter conjecture holds on average, when averaging over the Weierstrass equations

of the curves.

3.1 Weierstrass equations

We first note that, using averaging techniques of Fouvry-Murty, one can demonstrate

that Lang-Trotter holds on average for elliptic curve families of the form y2 = x3 +ax+b

where a, b ∈ {kn+ c | n ∈ Z}, for fixed integers k and c. However, one can obtain much

thinner families than this.

Construct a sequence {an} of integers as follows. First we choose a function f(n)

and impose the condition that an > f(n) for all n. This condition should always be

assumed to stand in the description below.

Now choose a1, a2, a3 such that they all have different congruence classes mod 3.

Next, choose a4, . . . , a15 such that a1, . . . , a15 are evenly distributed across congruence

classes mod 3 and mod 5. We continue by choosing a16, . . . , a3·5·7 such that they are

evenly distributed across congruence classes mod 3, mod 5, and mod 7. We thus

construct our sequence in this manner, so that given any (large) prime p, we have

α1 < α2 < α3 < . . . such that {a1, . . . , aαi} is evenly distributed mod p, for all i.
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Note that given such a sequence {an}, we have sequences {an + c}, for a fixed integer

c, which also satisfy the conditions above. Furthermore, sequences {kan + c}, for fixed

integers k and c, satisfy the conditions above for all but finitely many primes (i.e., those

coprime to k).

So let S = {Ei,j : y2 = x3 + aix
2 + aj} be our family of elliptic curves, and note that

if f(n) is a degree two polynomial or an exponential function, then S is a thinner family

than any of those mentioned in the first paragraph of this section.

We will establish that this family satisfies the Lang-Trotter conjecture on average,

using techniques of Fouvry-Murty [FM]. Denote the number of supersingular primes for

Ea,b that are less than x by π0(x; a, b).

Theorem 3.1. Given the conditions and notations above, we have

∑
|a|≤A

∑
|b|≤B

π0(x; a, b) =
2π

3
AB

∫ x

2

dt√
t log t

+O

(
(A+B)x3/2 + x5/2 +AB

√
x

(log x)c

)
.

Under the conditions A,B ≥ x1/2+ε, AB ≥ x3/2+ε, this gives

1

4AB

∑
|a|≤A

∑
|b|≤B

π0(x; a, b) ∼ε
π

3

√
x

log x
.

3.2 Proof

Proof. The proof basically follows from Fouvry-Murty [FM], however we include (a more

detailed version of) the argument here for the sake of completeness.
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The same considerations as in (2) lead us to

∑
|a|≤A

∑
|b|≤B

π0(x; a, b)

=
1

2

∑
5≤p≤x

(
2A

p
+O (1)

)
·
(

2B

p
+O (1)

)
· p · (H(−4p) +O (1)) +O (AB)

=2AB
∑

5≤p≤x

H(−4p)

p
+O

(
(A+B)

x3/2

log x
+AB log log x+

x5/2

log x

)

where O (AB) is to account for the possibility that 2 and 3 may be supersingular for

various elliptic curves, and for the primes p that may be supersingular for curves with

non-minimal equation Ea′p4,b′p6 .

Now we note that

H(−4p) = h(−4p) + h(−4p)

where the Dirichlet class number formula tells us

h(−d) =
w
√
d

2π
L(1, χ−d)

where d ≡ 0 or 3 (mod 4) and w is the number of units in the quadratic field to which

the order is associated, thus w = 6, 4, 2 when d = 3, 4,≥ 7 respectively.

This leads us to consider the expression

2AB

π

 ∑
5≤p≤x

p≡3 mod 4

L(1, χ−p)√
p

+ 2
∑

5≤p≤x

L(1, χ−4p)√
p

 (3.1)

+O
(

(A+B)x3/2 +AB log x+ x5/2
)
.

Note that we will repeatedly use partial summation in our analysis below. In order

to fix notation in this context, let us recall the following statement:
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Given a sum of the form

r∑
n=k

anf(n)

where an is a sequence and f(n) is a continuously differentiable function on [k, r], then

this is equal to

A(r)f(r)−
∫ r

k
A(t)f ′(t)dt

where A(y) =
∑y

n=k an.

We also recall the Polya-Vinogradov inequality, which states that for a non-principal

character χ on Z/nZ and for any positive integer h, we have

∣∣∣∣∣
h∑
k=1

χ(k)

∣∣∣∣∣ ≤ 2
√
n log n.

We will handle the two sums in (3.1) separately.

3.2.1 First sum

Now we consider

L(1, χ−p) =
∑
n≥1

χ−p(n)

n

=
∑
n≤U

χ−p(n)

n
+
∑
n>U

χ−p(n)

n
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and we apply partial summation to the second sum with an = χ−p(n) and f(n) = 1/n

to obtain

∑
n>U

χ−p(n)

n
= lim

r→∞

(
A(r)f(r)−

∫ r

U
A(t)f ′(t)dt

)

= lim
r→∞

 ∑
U<n≤r

χ−p(n)

 1

r
−
∫ r

U

 ∑
U<n≤t

χ−p(n)

 −1

t2
dt

 .

By Polya-Vinogradov we have∣∣∣∣∣∑
n>U

χ−p(n)

n

∣∣∣∣∣ ≤ lim
r→∞

(
1

r
· 2√p log p+ 2

√
p log p

[
1

t

]r
U

)
=

1

U
· 2√p log p.

Thus as p→∞ we have

L(1, χ−p) =
∑
n≤U

χ−p(n)

n
+O

(√
p log p

U

)
.

We will specify U as a function of x later.

Note that for p ≡ 3 (mod 4) we can express χ−p(n) as the Legendre symbol
(
n
p

)
.

Thus

∑
5≤p≤x

p≡3 mod 4

L(1, χ−p)√
p

=
∑

5≤p≤x
p≡3 mod 4

 1
√
p

∑
n≤U

(
n

p

)
1

n
+O

(
log p

U

)
=
∑
n≤U

∑
5≤p≤x

p≡3 mod 4

(
n

p

)
1

n
√
p

+O
( x
U

)
.

We estimate the contribution from the portion of the sum when n is a perfect square:

∑
n=m2≤U

1

m2

∑
5≤p≤x

p≡3 mod 4

1
√
p
.
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Fix m and consider

∑
p-m,p≡3 mod 4

1
√
p
.

We apply partial summation with ap = 1 exactly when p ≡ 3 (mod 4) and p - m,

and with f(p) = 1/
√
p to get that the sum above is equal to

1√
x
A(x)−

∫ x

2

(
−1

2
t−3/2

)
A(t)dt (3.2)

where A(x) =
∑

p≤x ap. Recall Dirichlet’s theorem on arithmetic progressions in this

context, which tells us that

π3,4(x) =
1

2
li(x) +O

(√
x · exp(−a

√
log x)

)
where π3,4(x) is the number of primes congruent to 3 (mod 4) that are less than x, and

where a is some positive integer (for example, the equation above is known to hold for

a = 1/15).

Thus we obtain that the contribution from the inner sum when n is a perfect square

is

1

2

∫ x

2

dt√
t log t

+O
(√

x · exp(−a
√

log x)
)
.

The contribution from the outer sum under this condition is

∑
m2≤U

1

m2
=
π2

6
−
∑
m2>U

1

m2
.
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Note that, as U →∞,

∑
m2>U

1

m2
∼
∫ ∞
U

1

t2
dt

=

[
−1

t

]∞
U

=
1

U
;

thus

∑
m2≤U

1

m2
=
π2

6
+O

(
1

U

)
.

So when n is a perfect square, the corresponding contribution is

(
π2

6
+O

(
1

U

))
·
(

1

2

∫ x

2

dt√
t log t

+O
(√

x · exp(−a
√

log x)
))

=
π2

12

∫ x

2

dt√
t log t

+O

(
π2

6
·
√
x · exp(−a

√
log x)

)
+O

(
1

U
·
√
x

log x

)
+O

(√
x

U
exp(−a

√
log x)

)
=
π2

12

∫ x

2

dt√
t log t

+O
(√

x · exp(−a
√

log x)
)

where in the last line (and from here on) we fix U to be x3/4.

Now we need to consider the contribution when n is not a perfect square. We first

note that if x1 = x · exp(−c
√

log x) for some positive c, then

′∑
n≤U

1

n

×∑
p≤x1

(
n

p

)
1
√
p
�

′∑
n≤U

1

n

×∑
p≤x1

1
√
p

� (logU) ·
∫ x1

2

dt√
t log t

�
√
x1

log x1

� (logU) ·
√
x · exp

(
−c
2

√
log x

)

where the prime on the sum indicates that we are summing over non-square n, and the



56

× indicates that we are summing over primes congruent to 3 (mod 4).

To the outer sum in the expression

′∑
n≤U

1

n

×∑
x1<p≤x

(
n

p

)
1
√
p

we now apply dyadic decomposition to obtain, for a suitable V ≤ U ,

′∑
n≤U

1

n

×∑
x1<p≤x

(
n

p

)
1
√
p
� (log x)|T1(V )| (3.3)

where T1 = T1(V ) is

′∑
V≤n<2V

1

n

×∑
x1<p≤x

(
n

p

)
1
√
p
.

Apply partial summation to the inner sum above with

ap =

(
n

p

)
log p and f(p) =

1
√
p log p

to obtain that

×∑
x1<p≤x

(
n

p

)
1
√
p

=
1√

x log x

×∑
x1<p≤x

log p

(
n

p

)

−
∫ x

x1

(
1√
t log t

) ×∑
t1<p≤t

log p

(
n

p

)
dt

≤

∣∣∣∣∣∣ 1√
x log x

×∑
x1<p≤x

log p

(
n

p

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ x

x1

(
1√
t log t

)′ ×∑
t1<p≤t

log p

(
n

p

)
dt

∣∣∣∣∣∣ ,
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and summing over n,

T1 ≤
1√

x log x

′∑
V≤n<2V

1

n

∣∣∣∣∣∣
×∑

x1<p≤x
log p

(
n

p

)∣∣∣∣∣∣
+

∫ x

x1

∣∣∣∣( 1√
t log t

)′∣∣∣∣ ′∑
V≤n<2V

1

n

∣∣∣∣∣∣
×∑

t1<p≤t
log p

(
n

p

)∣∣∣∣∣∣ dt
≤ 1√

x log x

′∑
V≤n<2V

1

V

∣∣∣∣∣∣
×∑

x1<p≤x
log p

(
n

p

)∣∣∣∣∣∣
+

∫ x

x1

∣∣∣∣( 1√
t log t

)′∣∣∣∣ ′∑
V≤n<2V

1

V

∣∣∣∣∣∣
×∑

t1<p≤t
log p

(
n

p

)∣∣∣∣∣∣ dt;

thus

V T1 ≤
1√

x log x

′∑
V≤n<2V

∣∣∣∣∣∣
×∑

x1<p≤x
log p

(
n

p

)∣∣∣∣∣∣
+

∫ x

x1

∣∣∣∣( 1√
t log t

)′∣∣∣∣ ′∑
V≤n<2V

∣∣∣∣∣∣
×∑

t1<p≤t
log p

(
n

p

)∣∣∣∣∣∣ dt. (3.4)

At this stage we need (see Lemma 8 of [Jut])

Lemma 3.2. Let

S(D,x) :=
′∑

|d|≤D

∣∣∣∣∣∣
∑

3≤n≤x
Λ(n)

(
d

n

)∣∣∣∣∣∣
where Λ(n) is the Von Mangoldt function and the prime on the summation symbol in-

dicates that the sum is to be taken over non-square values of d.

Then for all c > 0, uniformly for 3 ≤ D ≤ x49/50,

S(D,x)� xD

(log x)c
.

We note that this also holds if the sum over n is restricted to n = 3 (mod 4) (or
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n ≡ 1 (mod 4)). This can be achieved by detecting suitable n using 1
2

(
1−

(−1
n

))
(or

1
2

(
1 +

(−1
n

))
for the 1 (mod 4) case).

We now need to determine that the same estimates apply if we restrict the inner

sum to prime values of n (rather than powers of primes).

′∑
V≤d<2V

∣∣∣∣∣∣
∑

3≤p≤x
log p

(
d

p

)∣∣∣∣∣∣
≤

′∑
|d|≤2V=D

∣∣∣∣∣∣
∑

3≤p≤x
log p

(
d

p

)∣∣∣∣∣∣
=S(D,x)−

′∑
|d|≤D

∣∣∣∣∣∣
∑

3≤pα≤x,α 6=1

log p

(
d

pα

)∣∣∣∣∣∣

and note that we have set D to be 2V .

Now ∣∣∣∣∣∣
∑

3≤pα≤x,α 6=1

log p

(
d

pα

)∣∣∣∣∣∣
≤

∑
3≤pα≤x,α 6=1

log p

≤ log(x1/2) · π(x1/2) + log(x1/3) · π(x1/3) + · · ·+ log(x1/w)π(x1/w)

where w is the least integer greater than log2 x, and so we can bound the expression

above as

�
√
x+ x1/3 log2 x

�
√
x.

Thus

′∑
|d|≤D

∣∣∣∣∣∣
∑

3≤pα≤x,α 6=1

log p

(
d

pα

)∣∣∣∣∣∣� 2
√
x · 2V.

This is dominated by the xV/(log x)c term and so does not affect the asymptotic.
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Therefore we have that

′∑
V≤d<2V

∣∣∣∣∣∣
∑

3≤p≤x
log p

(
d

p

)∣∣∣∣∣∣� xV

(log x)c
.

So for (3.4) we have

V T1 ≤
1√

x log x
· xV

(log x)c

+

∫ x

x1

∣∣∣∣( 1√
t log t

)′∣∣∣∣ · tV

(log t)c
dt.

Now

∫ x

x1

∣∣∣∣( 1√
t log t

)′∣∣∣∣ tV

(log t)c
dt

=V

∫ x

x1

t−1/2 · 1

(log t)c+1

(
1

2
+

1

log t

)
≤V

∫ x

x1

t−1/2 · 1

(log t)c+1

(
1

2
+
c+ 1

log t

)
=V

[
t1/2 · 1

(log t)c+1

]x
x1

� x1/2V

(log x)c+1
.

Thus

V T1 �
1√

x log x
· xV

(log x)c
+

x1/2V

(log x)c+1

and so

T1 �
√
x

(log x)c+1
.

Applying this to (3.3), we have

′∑
n≤U

1

n

×∑
x1<p≤x

(
n

p

)
1
√
p
�

√
x

(log x)c
.
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Combining all the results above, we obtain

∑
p≤x,p≡3 mod 4

L(1, χ−p)√
p

=
π2

12

∫ x

2

dt√
t log t

+O
( x
U

)
+O

(√
x · exp(−

√
log x)

)
+O

(√
x

U

)
+O

(√
x · exp(− c

2

√
log x) logU

)
+O

(
log x ·

√
x

(log x)c+1

)

and note that the right-hand side can be simplified to

π2

12

∫ x

2

dt√
t log t

+O

( √
x

(log x)c

)

where, as mentioned earlier, we have set U = x3/4.

This concludes our analysis of the first sum.

3.2.2 Second sum

The analysis of the second sum follows in a similar way to that of the first. We briefly

highlight the main steps.

The Polya-Vinogradov inequality and partial summation give

L(1, χ−4p) =
∑
n≤U

χ−4p(n)

n
+O

(√
p log p

U

)

and note that

χ−4p(n) =

(
2

n

)2

(−1)
p+1
2

n−1
2

(
n

p

)
.

Thus the expression we consider is

∑
odd n≤U

∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
1
√
p
. (3.5)

If n is an odd perfect square, then n = m2 ≡ 1 (mod 4) and so (−1)
p+1
2

n−1
2 = +1 and
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so the inner sum is

∑
p≤x

1
√
p

=

∫ x

2

dt

log t
+O

(√
x · exp(−a

√
log x)

)
.

The outer sum is

∑
odd m2≤U

1

m2
=

∏
odd primes p

(
1− 1

p2

)−1

−
∑

odd m2>U

1

m2

=
3

4
· π

2

6
+O

(
1

U

)

where the estimate for the sum over odd m2 > U arises from the same result in the

previous subsection.

Thus the contribution for when n is square in expression (3.5) is

(
3

4
· π

2

6
+O

(
1

U

))
·
(∫ x

2

dt

log t
+O

(√
x · exp(−a

√
log x)

))
=
π2

8

∫ x

2

dt√
t log t

+O

( √
x

log x
· 1

U

)
+O

(√
x · exp(−a

√
log x)

)
+O

(
x

U log x
· exp(−a

√
log x)

)
.

Now we consider the contribution from the non-square n.

We want to estimate

′∑
odd n≤U

∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
1
√
p

where the prime on the outer sum indicates that we are summing over non-square n.

Dyadic decomposition gives

′∑
odd n≤U

∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
1
√
p
� log x |T2(V )|

for some 3 ≤ V ≤ U , where

T2(V ) =

′∑
V≤odd n≤2V

1

n

∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
1
√
p
.
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Applying partial summation to the inner sum, we obtain

1√
x log x

∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
log p−

∫ x

2

(
1√
t log t

)′∑
p≤t

(−1)
p+1
2

n−1
2

(
n

p

)
log p dt

and therefore

V T2(V )� 1√
x log x

′∑
V≤odd n≤2V

∣∣∣∣∣∣
∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
log p

∣∣∣∣∣∣
+

∫ x

2

(
1√
t log t

)′ ′∑
V≤odd n≤2V

∣∣∣∣∣∣
∑
p≤t

(−1)
p+1
2

n−1
2

(
n

p

)
log p dt

∣∣∣∣∣∣ .
Now we seek to bound

′∑
V≤odd n≤2V

∣∣∣∣∣∣
∑
p≤x

(−1)
p+1
2

n−1
2

(
n

p

)
log p

∣∣∣∣∣∣
≤

′∑
V≤odd n≤2V

∣∣∣∣∣∣∣∣
∑
p≤x

p≡3 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣+
′∑

V≤odd n≤2V

∣∣∣∣∣∣∣∣(−1)
n−1
2

∑
p≤x

p≡1 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣ .
Applying the consequences of Lemma 3.2, derived in the previous subsection, we

obtain, for D = 2V ,

2
xD

(log x)C
�

′∑
|d|≤D

∣∣∣∣∣∣∣∣
∑

3≤p≤x
p≡3 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣+

′∑
|d|≤D

∣∣∣∣∣∣∣∣
∑

3≤p≤x
p≡1 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣
≥

′∑
V≤odd n≤2V

∣∣∣∣∣∣∣∣
∑
p≤x

p≡3 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣+
′∑

V≤odd n≤2V

∣∣∣∣∣∣∣∣
∑
p≤x

p≡1 mod 4

(
n

p

)
log p

∣∣∣∣∣∣∣∣ .
Thus we obtain

T2(V )�
√
x

(log x)c
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and so combining the results from this subsection, we have

2
∑
p≤x

L(1, χ−4p)√
p

=
π2

4

∫ x

2

dt√
t log t

+O

( √
x

(log x)c

)
.

3.2.3 The asymptotic

Combining the results from the previous two subsections, we have

∑
|a|≤A

∑
|b|≤B

π0(x; a, b)

=2AB
∑

5≤p≤x

H(−4p)

p
+O

(
(A+B)

x3/2

log x
+AB log log x+

x5/2

log x

)

=
2AB

π

π2

3

∫ x

2

dt√
t log t

+O

(
(A+B)x3/2 +AB log x+ x5/2 +AB

√
x

(log x)c

)
=

2π

3
AB

∫ x

2

dt√
t log t

+O

(
(A+B)x3/2 + x5/2 +AB

√
x

(log x)c

)

as required.
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Chapter 4

A refinement of strong
multiplicity one

Introduction

Given a number field F , let A0(GLn(AF )) be the set of cuspidal automorphic represen-

tations π = ⊗′vπv of GLn(AF ). For π ∈ A0(GLn(AF )), for any place v of F where π

is unramified we denote the Langlands conjugacy class by A(πv) ⊂ GLn(C), which we

will represent by the diagonal matrix diag{α1,v, α2,v, . . . , αn,v}. Let av(π) be the trace

of this matrix.

For n = 2, we will prove the following two theorems.

Theorem 4.1. Let π, π′ ∈ A0(GL2(AF )) be non-dihedral representations, with trivial

central character and symmetric squares that are not twist-equivalent. For finite places

v where π and π′ are unramified, set av = Tr(A(πv)), bv = Tr(A(π′v)), and let S = {v |

av 6= bv}. Then

δ(S) ≥ 2

5

where δ(S) is the lower Dirichlet density of the set S.

Theorem 4.2. Let π be a non-dihedral cuspidal automorphic representation over a

number field F , with trivial central character. We define Sγ = {v | av 6= γ}, where γ is
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a real scalar and let δ(Sγ) represent the lower Dirichlet density of Sγ. Then

δ(Sγ) ≥ (γ2 + 1)2

γ4 + 6γ2 + 2
.

We feel that both theorems 4.1 and 4.2 could be extended, with some care, to the

case of cuspidal automorphic representations for GL(2) with non-trivial unitary central

character. Presenting these theorems here for the case of trivial central character allows

us to simplify the notation in the proofs.

The structure of this chapter is as follows: In section 4.1, we establish some no-

tation and recall relevant theorems on the cuspidality of known symmetric powers; in

section 4.2, we prove the result relating to the strong multiplicity one theorem; in sec-

tion 4.3, we address the occurrence of a fixed real algebraic number as the value taken

by the trace of the Langlands conjugacy class of π at place v; lastly, in section 4.4 we

consider an example relevant to theorem 4.1.

4.1 Preliminaries

We begin by introducing some notation. Let F be a number field and let S be a set of

primes in F . Then the lower Dirichlet density of S is

δ(S) = lim
s→1+

inf

∑
p∈S Np−s

− log(s− 1)
.

For π ∈ A0(GLn(AF )) we have the associated L-function L(s, π) =
∏
v Lv(s, πv)

where for πv unramified we have

Lv(s, πv) = det
(
In −A(πv)Nv

−s)−1
=

n∏
j=1

(
1− αj,vNv−s

)−1
.

Let T be the set of all ramified and infinite places. Define the incomplete L-function

LT (s, π) =
∏
v 6∈T

Lv(s, πv),
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and the ‘incomplete Dedekind zeta function’

ζTF (s) =
∏
v 6∈T

(1−Nv−s)−1.

Given π ∈ A0(GLn(AF )) and π′ ∈ A0(GLm(AF )), we have the Rankin-Selberg L-

function L(s, π×π′) =
∏
v Lv(s, πv×π′v), where for v such that πv and π′v are unramified,

we have

Lv(s, πv × π′v) = det
(
Inm −

(
A(πv)⊗A(π′v)

)
Nv−s

)−1
.

We also note the following cuspidality results that we will use in the next few sections:

Given a cuspidal automorphic representation π forGL2(AF ), by Jacquet-Shalika [JS1]

and Shahidi [Sha] one knows that the symmetric second, third, and fourth power repre-

sentations are isobaric sums of unitary cuspidal automorphic representations. One also

knows that Sym2π is cuspidal iff π is non-dihedral [GJ] and that Sym3π is cuspidal iff

π is not dihedral or tetrahedral [KS1]. One also knows that L(s, π′) is non-vanishing on

Re(s) = 1 for any cuspidal automorphic representation π′ for GLn(AF ) [JS2].

Note that for π ∈ A0(GLn(AF )), π′ ∈ A0(GLm(AF )), the Rankin-Selberg L-function

L(s, π×π′) has a pole at s = 1 if π′ ' π∨ [JS1], and otherwise is holomorphic in Re(s) ≥ 1

and non-vanishing on Re(s) = 1 [Sha].

For π that is not dihedral or tetrahedral one knows that the completed L-functions of

the symmetric square and cube are entire. Furthermore, for such π one also knows that

the L-function of the symmetric fourth has no pole at s = 1 and in fact is non-vanishing

at that point. These standard facts follow from the Clebsch-Gordon decomposition of

tensor powers of representations — we include the details below for completeness.

Specifically, one can consider LT (s, Sym3π × π) (where T is defined as above) and

note that since Sym3π is cuspidal, this incomplete Rankin-Selberg L-function does not

have a pole at s = 1. Now we show that

LT (s, Sym3π × π) = LT (s, Sym4π)LT (s, Sym2π).
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Fix v 6∈ T and write αj,v as αj . Since π has trivial character, we have that α1α2 = 1

and so we will use the notation α, α−1 for α1, α2, respectively.

Consider A(Sym3π)⊗A(π), which can be represented by


α3

α

α−1

α−3

⊗
 α

α−1



∼



α4

α2

α2

1

1

α−2

α−2

α−4



∼



α4

α2

1

α−2

α−4


⊕


α2

1

α−2



and thus A(Sym3π)⊗A(π) is equivalent to A(Sym4π)⊕A(Sym2π). So we have

LT (s, Sym3π × π) = LT (s, Sym4π)LT (s, Sym2π).

Since (as mentioned) the incomplete L-function on the left-hand side has no pole at

s = 1 and the incomplete L-function associated to the symmetric square is non-zero, we

have that LT (s, Sym4π) has no pole at s = 1.

Furthermore, note that since the symmetric third and fourth powers of π are known

to be isobaric sums of unitary cuspidal automorphic representations, by Jacquet-Shalika [JS1]
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and Shahidi [Sha] we know that the associated L-function is non-vanishing at s = 1.

Similar properties of these incomplete L-functions also hold when π is tetrahedral.

We have addressed this case in section 4.5.

From here on we assume that π and π′ are not dihedral.

4.2 Proof of theorem 4.1 in the non-tetrahedral case

Given that π has trivial central character, we have that av ∈ R for all v (since in general

π ' π ⊗ ω−1, where ω is the central character of π). Let c = cS be the characteristic

function of the set S = {v | av 6= bv}. We have, for real s > 1,

∑
v

a2
v

Nvs
−
∑
v

2avbv
Nvs

+
∑
v

b2v
Nvs

=
∑
v

(av − bv)2

Nvs

=
∑
v

(av − bv)2c(v)

Nvs

≤

(∑
v

(av − bv)4

Nvs

)1/2(∑
v

c(v)2

Nvs

)1/2

=

(∑
v

a4
v

Nvs
−
∑
v

4a3
vbv

Nvs
+
∑
v

6a2
vb

2
v

Nvs
−
∑
v

4avb
3
v

Nvs
+
∑
v

b4v
Nvs

)1/2

·

(∑
v∈S

1

Nvs

)1/2

(4.1)

where the inequality above arises from applying Cauchy-Schwarz.

In order to establish the asymptotic behaviour of each side of the inequality above

for real s→ 1+, we make use of

Lemma 4.3. Let T and the incomplete L-functions be defined as in the previous section.

For non-dihedral cuspidal GL(2) automorphic representations π, π′, with trivial central

character and symmetric squares that are not twist-equivalent, we have the following
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identities:

LT (s, π × π) =LT
(
s, Sym2(π)

)
ζTF (s)

LT (s, π × π × π × π) =LT
(
s, Sym4(π)

)
LT
(
s, Sym2(π)

)3
ζTF (s)2

LT (s, π × π × π × π′) =LT
(
s, Sym3(π)× π′

)
LT
(
s, π × π′

)2
LT (s, π × π × π′ × π′) =LT

(
s, Sym2(π)× Sym2(π′)

)
LT
(
s, Sym2(π)

)
· LT

(
s, Sym2(π′)

)
ζTF (s).

Proof. This follows from the Clebsch-Gordon decomposition of tensor powers of two-

dimensional representations. However, we include the details for completeness.

Fix v 6∈ T and write αj,v as αj . As in the previous section, because π has trivial

character, we will write α and α−1 for α1 and α2, respectively.

First equation

Consider A(πv)⊗A(πv), which can be represented by

 α

α−1

⊗
 α

α−1



∼


α2

1

α−2

⊕ 1.
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Thus

Lv(s, πv × πv)−1 =det

(
I4 −

A(πv)×A(πv)

Nvs

)

=det

I4 −


α2

1

1

α−2

Nv−s



=det

I3 −


α2

1

α−2

Nv−s

 · det
(
1−Nv−s

)

=Lv
(
s, Sym2πv

)
·
(
1−Nv−s

)
.

Given that this identity holds for all v ∈ T , we can take the product over all such v

to obtain

LT (s, π × π) = LT
(
s, Sym2(π)

)
· ζTF (s).

Second equation

Consider A(πv)
⊗4, which can be represented by

 α

α−1

⊗4

∼




α2

1

α−2

⊕ 1


⊗2

∼


α2

1

α−2


⊗2

⊕


α2

1

α−2


⊕2

⊕ 1.
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At this point we note


α2

1

α−2


⊗2

∼



α4

α2

1

α−2

α−4



⊕


α2

1

α−2

⊕ 1.

Substituting into the equation above, we obtain



α4

α2

1

α−2

α−4


⊕


α2

1

α−2


⊕3

⊕ 1⊕2.

As before, we use this to interpret the local factors, and thus obtain

LT (s, π × π × π × π) = LT
(
s, Sym4(π)

)
LT
(
s, Sym2(π)

)3
ζTF (s)2.

Third equation

We keep the same notation for A(πv) and we represent A(π′v), having fixed a v 6∈ T ,
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by diag{β, β−1}. Thus we note that A(πv)
⊗3 ⊗A(π′v) can be represented by

 α

α−1

⊗3

⊗

 β

β−1



∼




α3

α

α−1

α−3

⊕
 α

α−1

⊕2

⊗
 β

β−1



thus

LT (s, π × π × π × π′) = LT
(
s, Sym3(π)× π′

)
LT
(
s, π × π′

)2
.

Fourth equation

We have A(πv)
⊗2 ⊗A(π′v)

⊗2, which can be represented by




α2

1

α−2

⊕ 1

⊗



β2

1

β−2

⊕ 1



∼




α2

1

α−2

⊗


β2

1

β−2




⊕


α2

1

α−2

⊕


β2

1

β−2

⊕ 1

which gives us

LT (s, π × π × π′ × π′) =LT
(
s, Sym2(π)× Sym2(π′)

)
LT
(
s, Sym2(π)

)
· LT

(
s, Sym2(π′)

)
ζTF (s).
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Remark 18. The purpose of the lemma above is to be able to establish asymptotic be-

haviour of the completed L-functions as s → 1+. Note that it is enough to compare

incomplete L-functions as the number of ramified and infinite places is finite, and thus

the incomplete L-function associated to the unramified finite places has the same type

of pole at s = 1 as the complete L-function.

We now continue with our proof of theorem 4.1 for the non-tetrahedral case.

By considering the behaviour of the incomplete L-functions, for π, π′ that are not

dihedral or tetrahedral, as real s→ 1+, we obtain

∑ aivb
j
v

Nvs
=k(i, j) · log

(
1

s− 1

)
+ o

(
log

(
1

s− 1

))

where

k(i, j) =


0 for (i, j) = (1, 1) or (3, 1)

1 for (i, j) = (2, 0) or (2, 2)

2 for (i, j) = (4, 0),

as real s→ 1+.

Now if we divide inequality (4.1) by log (1/(s− 1)) and take lims→1+ inf of both

sides, we obtain

2 ≤ 101/2 · δ(S)1/2

2

5
≤ δ(S).
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4.3 Proof of theorem 4.2 in the non-tetrahedral case

Recall from the introduction that Sγ = {v ∈ ΣF | av 6= γ}, where γ is a real scalar and

let δ(Sγ) represent the lower Dirichlet density of Sγ .

Let c be the characteristic function of the set Sγ , and consider

∑
v

a2
v

Nvs
−
∑
v

2avγ

Nvs
+
∑
v

γ2

Nvs

=
∑
v∈Sγ

(av − γ)2

Nvs

=
∑
v

(av − γ)2c(v)

Nvs

≤

(∑
v

(av − γ)4

Nvs

)1/2(∑
v

c(v)2

Nvs

)1/2

=

(∑
v

a4
v

Nvs
−
∑
v

4a3
vγ

Nvs
+
∑
v

6a2
vγ

2

Nvs
−
∑
v

4avγ
3

Nvs
+
∑
v

γ4

Nvs

)1/2

·

∑
v∈Sγ

1

Nvs

1/2

. (4.2)

We have

Lemma 4.4. For real s→ 1+ we have the following identities:

∑ a3
v

Nvs
= o

(
log

(
1

s− 1

))
∑ av

Nvs
= o

(
log

(
1

s− 1

))
.

Proof. We can take a similar approach to that taken in the proof of lemma 4.3 from the

previous section. We include the details for completeness.

First equation

We note that A(πv)
⊗3 can be represented by
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 α

α−1

⊗3

∼




α2

1

α−2

⊕ 1

⊗
 α

α−1



∼



α3

α

α

α−1

α−1

α−3


⊕

 α

α−1



∼


α3

α

α−1

α−3

⊕
 α

α−1

⊕2

and thus we have

LT (s, π × π × π) = LT
(
s, Sym3(π)

)
LT (s, π)2.

Since π is a cuspidal automorphic representation that is not dihedral or tetrahedral,

we know that the first L-function on the right-hand side has no pole, and the cuspidality

of π tells us that the second L-function on the right-hand side also has no pole. Thus

∑ a3
v

Nvs
= o

(
log

(
1

s− 1

))
.

Second equation

This simply follows from the fact that π is cuspidal, thus

∑ av
Nvs

= o

(
log

(
1

s− 1

))
.
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We divide inequality (4.2) by log (1/(s− 1)) and take lims→1+ inf of both sides; we

obtain

(1 + γ2) ≤ (2 + 6γ2 + γ4)1/2 · (δ(Sγ))1/2

and thus

δ(Sγ) ≥ (γ2 + 1)2

γ4 + 6γ2 + 2
.

4.4 An example

In this section we will consider an example due to J.-P. Serre that demonstrates that

D. Ramakrishnan’s strong multiplicity one theorem [Ram] is sharp, and we will verify

that theorem 4.1 is compatible with this result.

Consider the quaternion group Q8. It has a unique two-dimensional complex irre-

ducible representation, which we will denote as τ . Now we let G = Q8 × {±1} and we

define two representations of G, denoted by ρ and ρ′, as τ ⊗ 1 and τ ⊗ sgn, respectively.

We note that ρ, ρ′ are irreducible representations.

Now Q8 (and thus G) is known to appear as a Galois group of a finite extension of

number fields. Therefore any representation of G can be lifted to a representation of

Gal(Q/Q).

Let S be the set {(±1,−1)}. Then the traces of ρ, ρ′ agree exactly outside S, and

furthermore we note that |S|/|G| = 2/24 = 1/8.

Since G is nilpotent, by Arthur-Clozel [AC] the strong Artin conjecture holds for ρ

and ρ′. So there exist cuspidal automorphic representations π, π′ ∈ GL2(AF ), a Galois

extension K/F with group G, and a finite set T of places of F (that includes the ramified
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primes for ρ, ρ′, π and π′) such that

Lv(s, ρ) = Lv(s, π)

Lv(s, ρ
′) = Lv(s, π

′)

for all v 6∈ T .

Thus the theorem is sharp.

In the context of theorem 4.1, we note that since the cuspidal automorphic repre-

sentations ρ, ρ′ are locally isomorphic for a set of places of density, and thus of lower

density, greater than 3/5, the representations must have symmetric squares that are

twist-equivalent.

Indeed, we note that the representations themselves are twist-equivalent. If we tensor

ρ′ = τ ⊗ sgn with the one-dimensional representation 1⊗ sgn we obtain (τ ⊗ sgn)⊗ (1⊗

sgn) = τ ⊗ 1 = ρ. Thus ρ, ρ′ are twist-equivalent.

4.5 The tetrahedral case

Here we prove theorem 4.1 in the tetrahedral case.

In the case of theorem 4.2 for the tetrahedral case, we will not prove it explicitly,

but we note that it simply follows from combining the approach used in section 4.3 with

that of this section.

For π tetrahedral, one knows that Sym2π is cuspidal, but Sym3π and Sym4π are

not.

We will begin by showing

Proposition 4.5. The L-function associated to Sym4π has no pole at s = 1.

Proof. This simply follows from the Clebsch-Gordon decomposition of tensor products

of representations of dimension two, and is certainly well-known to the experts; we are

including the details here for completeness.

We will use
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Lemma 4.6. Let T be the set of ramified and infinite places. Then for a cuspidal

automorphic representation π, we have

LT (s, Sym2π × Sym2π) = LT (s, Sym4π)LT (s, Sym2π)ζF (s).

Proof. Fix v ∈ T and write αj,v as αj .

Note that A(Sym2πv)⊗A(Sym2πv) can be represented by


α2

1

α−2

⊗


α2

1

α−2



which can be expressed as

α4

α2

α2

1

1

1

α−2

α−2

α−4



∼



α4

α2

1

α−2

α−4


⊕


α2

1

α−2

⊕ 1
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thus A(Sym2πv)⊗ A(Sym2πv) is equivalent to A(Sym4πv)⊕ A(Sym2πv)⊕ 1 for all un-

ramified v, and so we obtain the identity of the lemma.

We return to the proof of the proposition. Now given that Sym2 is a GL(3) cusp form

with trivial character, the corresponding L-function has no pole at s = 1 and furthermore

is non-zero at that point. We also know that the Rankin-Selberg L-function on the left-

hand side of the L-function identity from the lemma has a simple pole at s = 1. The

same holds for the Dedekind zeta function ζF (s) at s = 1.

Thus examining the identity from the lemma, we obtain that the symmetric fourth

power L-function has no pole at s = 1 and is non-zero at that point.

Thus the proposition holds.

We also note, by Jacquet-Shalika [JS1] and Shahidi [Sha], that the L-function associ-

ated to the symmetric fourth power is non-vanishing at s = 1 since the symmetric fourth

power automorphic representation is an isobaric sum of unitary cuspidal automorphic

representations.

We now prove

Theorem 4.7. Let π, π′ ∈ A0(GL2(AF )) be tetrahedral representations with trivial cen-

tral character and symmetric squares that are not twist-equivalent. For finite places v

where π and π′ are unramified, set av = Tr(A(πv)), bv = Tr(A(π′v)), and let S = {v |

av 6= bv}. Then

δ(S) ≥ 2

5

where δ(S) is the lower Dirichlet density of the set S.
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Proof. From inequality (4.1)

∑
v

a2
v

Nvs
−
∑
v

2avbv
Nvs

+
∑
v

b2v
Nvs

≤

(∑
v

a4
v

Nvs
−
∑
v

4a3
vbv

Nvs
+
∑
v

6a2
vb

2
v

Nvs
−
∑
v

4avb
3
v

Nvs
+
∑
v

b4v
Nvs

)1/2

·

(∑
v∈S

1

Nvs

)1/2

≤

(∑
v

a4
v

Nvs
+
∑
v

6a2
vb

2
v

Nvs
+
∑
v

b4v
Nvs

)1/2

·

(∑
v∈S

1

Nvs

)1/2

.

Using the proposition above and results from earlier in this chapter, we have the

following:

∑ a4
v

Nvs
= 2 log

(
1

s− 1

)
+ o

(
log

(
1

s− 1

))
∑ a2

vb
2
v

Nvs
= log

(
1

s− 1

)
+ o

(
log

(
1

s− 1

))
.

Applying this and earlier results to the inequality above, we obtain

2 ≤ 101/2 · δ(S)1/2

2

5
≤ δ(S).

4.6 The tetrahedral case: an example

We will construct two tetrahedral cuspidal automorphic representations whose sym-

metric squares are not twist-equivalent and whose Hecke eigenvalues agree on a set on

density 17/32.

We achieve this by constructing two representations of dimension two of the binary

tetrahedral group Ã4 with suitable properties. Since Ã4 is well-known to appear as a

Galois group over Q, we can lift such representations to Gal(Q/Q). Then we apply



81

Arthur-Clozel [AC] to obtain the existence of automorphic representations as described

in the paragraph above.

4.6.1 The binary tetrahedral group

We will present the binary tetrahedral group G := Ã4 as follows. Let i, j, k be the

quaternions and let ω = −1
2(1 + i+ j + k). Note that ω has order 3. G is generated by

i, j, ω, with the following relations:

ωiω−1 =j

ωjω−1 =k

ωkω−1 =i.

Thus we can express G as the semi-direct product Q oφ C where C is the order 3

subgroup generated by ω, φ : C → AutQ with φ(ω) = φω : q 7→ ωqω−1, where the

conjugate satisfies the relations mentioned above. Thus G has 24 elements; the only

(non-trivial) normal subgroup, other than Q, is {±1}.

Note that the conjugacy classes of this group are

{1}, {−1}, {±i,±j,±k}, {ω,−iω,−jω,−kω}, {−ω, iω, jω, kω},

{ω2,−iω2,−jω2,−kω2}, {−ω2, iω2, jω2, kω2}.

Thus the 24 elements are distributed over 7 conjugacy classes.

4.6.2 Irreducible representations

We have three one-dimensional irreducible representations coming from the irreducible

representations on C, so that leaves us with four irreducible representations whose de-

grees ni give
∑
n2
i = 24−3 = 21. We need at least one three-dimensional representation

to help achieve this number, and two of them would lead to the remaining ones satis-

fying n2 + n′2 = 3 which is not possible. Thus we have exactly one three-dimensional

representation. This leaves n2 + n′2 + n′′2 = 12 thus the remaining three irreducible

representations must all be two-dimensional.



82

Starting with the one-dimensional representations, we note that this is based on C,

where we map the generator of this subgroup to 1, ζ or ζ2, where ζ is the primitive root

of unity e2πi/3.

The three-dimensional representation can be found using SO(3). We do not need the

details of this particular representation for the purposes of this section, but, for com-

pleteness, we will still include its character table below.

This leaves the three two-dimensional representations. First, we have the represen-

tation ρ, under which

i 7→

 i

−i


ω 7→ −1

2

 1 + i −1 + i

1 + i 1− i

 .

The other two can be obtained by twisting ρ by the two non-trivial one-dimensional

characters.

Thus the character table is:

{1} {−1} [i] [ω] [−ω] [ω2] [−ω2]

χ0 1 1 1 1 1 1 1

χ1 1 1 1 ζ ζ ζ2 ζ2

χ2 1 1 1 ζ2 ζ2 ζ ζ

ρ 2 -2 0 -1 1 -1 1

ρ⊗ χ1 2 -2 0 −ζ ζ −ζ2 ζ2

ρ⊗ χ2 2 -2 0 −ζ2 ζ2 −ζ ζ

ψ 3 3 -1 0 0 0 0

4.6.3 Galois structure

We are interested in the image in GL2(C) of a tetrahedral representation, which is

isomorphic to the binary tetrahedral group Ã4. This allows us to establish the nature
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of the (smallest) Galois group that the representation factors through. Let us denote

this Galois group as Gal(K/Q). We have the following structure of Galois fields:

K

F

2

k

4

Q

3

Note that F/Q is Galois since {±1} C Ã4 and furthermore its Galois group is iso-

morphic to A4. Similarly, we have that k/Q is also Galois with group isomorphic to

Z/3Z.

4.6.4 Combined Galois structures for two different tetrahedral Artin

representations

We would like to determine how similar (in terms of agreement on traces of Frobenius)

two Artin representations ρ1, ρ2 can be without having symmetric squares that are twist-

equivalent.

For each representation ρi we have a structure

Ki

Fi

2

ki

4

Q

3

and we will add the condition that k1 = k2 = k with the intention of increasing the
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amount of agreement on the traces of Frobenius. Note that we could also require

F1 = F2, which gives us representations with 5/8 of Frobenius traces in common (as-

suming that K1 6= K2), but they will have twist-equivalent symmetric squares, which is

not what we want. Therefore we will specify that F1 6= F2 and K1 6= K2.

In order to establish the density of primes such that Frobenius traces are equal for

both representations, we need to consider:

K1K2

K1 K2

F1 F2

k

Q

Thus we not only need to establish the degree of the compositum extension, but its

Galois group.

4.6.5 The compositum

We recall the following theorem:

Given two Galois extensions E,F of K, we have that E ∩F and EF are Galois over K.

Furthermore, we have a map

Gal(EF/K) ↪→ Gal(E/K)×Gal(F/K)

σ 7→ (σ|E , σ|F )

(note that the kernel would be any element of Gal(EF/K) that fixes both E and F , but

then this would mean that EF is fixed; thus the map is injective).

The image of this map is H = {(φ, ψ) | φ|E∩F , ψ|E∩F }.
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Thus we need to use this theorem to determine (using the notation from the previous

section) Gal(K1K2/Q). This gives us an explicit form for the group, which is made up

of the following elements:

• pairs of the form (a, b) where a, b ∈ {±1,±i,±j,±k},

• pairs of the form (a, b) where a, b ∈ {±ω,±iω,±jω,±kω},

• pairs of the form (a, b) where a, b ∈ {±ω2,±iω2,±jω2,±kω2}.

We note that this Galois group thus has size 3 · 82 = 192.

We can consider the representation ρ1×ρ2 : Gal(K1K2/Q)→ GL2(C)×GL2(C). Given

a conjugacy class of this Galois group, if we take the trace of the individual components

and observe them to be equal, then that will correspond to a set of rational primes P

of given positive density d where trρ1(Frobp) = trρ2(Frobp).

4.6.6 Counting

We will count these occurrences, which can be achieved by listing those elements of

Gal(K1K2/Q) that satisfy this condition on the traces:

• pairs (1, 1) and (−1,−1)

• pairs (a, b) where a, b ∈ {±i,±j,±k}

• pairs (a, b) where a, b ∈ {ω,−iω,−jω,−kω}

• pairs (a, b) where a, b ∈ {−ω, iω, jω, kω}

• pairs (a, b) where a, b ∈ {ω2, iω2, jω2, kω2}

• pairs (a, b) where a, b ∈ {−ω2,−iω2,−jω2,−kω2}

These pairs have traces in common of 2, −2, 0, −1, 1, −1 and 1, respectively.

Counting the number of these pairs (1 + 1 + 36 + 16 + 16 + 16 + 16) we obtain a density
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of 17/32 (using the Chebotarev density theorem) for those primes that have traces of

Frobenius that agree under the two different representations.

Since we can lift such representations to Gal(Q/Q), by Arthur-Clozel [AC] we obtain

the existence of tetrahedral cuspidal automorphic representations π, π′ such that the set

{v | a(πv) = a(π′v)} has a density of 17/32.

4.6.7 Symmetric squares

We now need to establish that the two representations do not have twist-equivalent

symmetric squares.

First we determine the character table of the symmetric square representations.

Using the formula χSym2(g) = 1
2(χ(g)2 + χ(g2)),we obtain the following table:

{1} {−1} [i] [ω] [−ω] [ω2] [−ω2]

χSym2 3 3 -1 0 0 0 0

Using the same idea as that in the previous subsection, we now examine pairs (as

elements of Gal(K1K2/Q)) to determine those that have different traces. The issue is

to examine whether there exists a character ψ such that ρ1 ⊗ ψ ' ρ2.

We note the element (1, i), where the individual components have traces 3 and −1,

respectively. However, since ψ must only take complex values of norm 1, there is no

such character that will enable the above isomorphism to exist. Thus the symmetric

squares are not twist-equivalent.
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