
Towards Open Ended Learning: Budgets, Model

Selection, and Representation

Thesis by

Ryan Geoffrey Gomes

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended January 18, 2011)

ii

c© 2011

Ryan Geoffrey Gomes

All Rights Reserved

iii

For my family.

iv

Acknowledgements

My time at Caltech has been like no other in my life. I am grateful for having had

the opportunity to immerse myself in such an intellectually stimulating environment,

all while enjoying the beautiful Southern Californian weather and lifestyle. As I

finish this thesis I have the pleasure of recounting the people that have shaped my

experience; indeed, they have shaped and sharpened the very manner in which I

think.

I’d first like to thank my thesis adviser Prof. Pietro Perona. Pietro is a great source

of wisdom and ideas, and I have had tremendous fun engaging in brainstorming and

research sessions with him. I was always amazed at his ability to understand me,

even when I didn’t understand my ideas well enough myself to express them properly.

Indeed, Pietro has taught me a great deal about how best to communicate complex

research. Because of his guidance, the Vision Lab at Caltech is a wonderful place to

work. I have had the opportunity to meet and interact with many highly distinguished

researchers in the fields of computer vision and machine learning, who make it a point

to visit his lab.

I have had the privilege of collaborating with two other professors, from whom I

have learned a great deal. Max Welling has an infectious enthusiasm for research and

was a great source of encouragement. I benefited significantly from working with Max,

as well as reading his papers and technical notes. It has also been a pleasure working

with Andreas Krause, a talented young professor of machine learning. On many

occasions his insight has provided me with the right perspective to solve challenging

issues, and I admire his focus on attacking practical problems while maintaining

theoretical rigour.

v

My fellow members of the Vision Lab have enriched my time at Caltech as intel-

lectual peers and as friends. Merrielle and I shared many a wry laugh as we navigated

the currents of graduate school, both of us having entered the Computation and Neu-

ral Systems program and the Vision Lab at the same time. I enjoyed many interesting

conversations with Piotr and Peter over the time we shared as labmates, and they

have very much shaped my ideas on computer vision. Marco’s sense of humor and

helpful advice have been much appreciated as well. To the rest of the members of the

lab, past and present, thank you!

I’d like to thank my great group of friends, many of whom I’ve known since

high school or college, for keeping me sane and providing welcome respite from the

challenges of pursuing my Ph.D. Finally, I wish to thank my wonderful family. My

father and mother have encouraged and supported me every step of the way, and

they have provided me with the foundation and freedom to follow my interests. My

brother and sister have also been a great source of encouragement, and I very much

love being their big brother.

vi

Abstract

Biological organisms learn to recognize visual categories continuously over the course

of their lifetimes. This impressive capability allows them to adapt to new circum-

stances as they arise, and to flexibly incorporate new object categories as they are

discovered. Inspired by this capability, we seek to create artificial recognition systems

that can learn in a similar fashion.

We identify a number of characteristics that define this Open Ended learning ca-

pability. Open Ended learning is unsupervised: object instances need not be explicitly

labeled with a category indicator during training. Learning occurs incrementally as

experience ensues; there is no training period that is distinct from operation and the

categorization system must operate and update itself in a timely fashion with lim-

ited computational resources. Open Ended learning systems must flexibly adapt the

number of categories as new evidence is uncovered.

Having identified these requirements, we develop Open Ended categorization sys-

tems based on probabilistic graphical models and study their properties. From the

perspective of building practical systems, the most challenging requirement of Open

Ended learning is that it must be carried out in an unsupervised fashion. We then

study the question of how best to represent data items and categories in unsupervised

learning algorithms in order to extend their domain of application.

Finally, we conclude that continuously learning categorization systems are likely

to require human intervention and supervision for some time to come, which sug-

gests research in how best to structure machine-human interactions. We end this

thesis by studying a system that reverses the typical role of human and machine in

most learning systems. In Crowd Clustering, humans perform the fundamental image

vii

categorization tasks, and the machine learning system evaluates and aggregates the

results of human workers.

viii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Object Categorization and Machine Learning 1

1.2 Open Ended Learning . 2

1.2.1 Related Work . 5

1.3 Thesis Organization . 6

I Incremental Unsupervised Learning with Budgets 9

2 Incremental Learning of Nonparametric Bayesian Mixture Models 10

2.1 Abstract . 10

2.2 Introduction . 10

2.3 Background . 13

2.3.1 Dirichlet Process Mixture Model 13

2.3.2 Exponential Family and Sufficient Statistics 14

2.4 Existing Approaches . 15

2.4.1 Online Variational Bayes . 15

2.4.2 Particle Filters . 16

2.5 Our Approach . 16

2.5.1 Model Building Phase . 20

2.5.2 Compression Phase . 22

ix

2.6 Experimental Results . 26

2.7 Discussion and Conclusions . 30

3 Memory-Bounded Inference in Topic Models 32

3.1 Abstract . 32

3.2 Introduction . 32

3.3 Topic Models . 34

3.4 A Memory-Bounded Variational Topic Model 35

3.4.1 The Variational Topic Model 36

3.4.2 Optimizing the Number of Topics K 38

3.4.3 Clumping Data-Items and Documents 39

3.5 Incremental Learning with a Memory Constraint 40

3.5.1 Model Building Phase . 40

3.5.2 Compression Phase . 41

3.6 Experiments . 44

3.6.1 Joint Image Segmentation . 44

3.6.2 Object Recognition and Retrieval 48

3.7 Conclusion . 50

3.7.1 Appendix . 52

4 Budgeted Nonparametric Learning from Data Streams 53

4.1 Abstract . 53

4.2 Introduction . 53

4.3 Problem Statement . 54

4.4 Examples of Online Budgeted Learning 56

4.5 StreamGreedy for Budgeted Learning from Data Streams 59

4.6 Theoretical Analysis . 61

4.7 Experimental Results . 63

4.8 Related Work . 71

4.9 Conclusions . 72

4.10 Appendix I: Proofs . 73

x

4.11 Appendix II: Implementation Details 77

4.11.1 Clustering . 77

4.11.2 GP Regression . 78

4.11.3 Adaptive Stopping Rule . 79

II Discriminative Clustering 80

5 Discriminative Clustering by Regularized Information Maximiza-

tion 81

5.1 Abstract . 81

5.2 Introduction . 81

5.3 Regularized Information Maximization 83

5.4 Example Application: Unsupervised Multilogit Regression 85

5.4.1 Model Selection . 87

5.5 Example Application: Unsupervised Kernel Multilogit Regression . . 88

5.6 Extensions . 89

5.6.1 Semi-Supervised Classification 89

5.6.2 Encoding Prior Beliefs about the Label Distribution 90

5.7 Experiments . 91

5.7.1 Unsupervised Learning . 91

5.7.2 Semi-Supervised Classification 96

5.8 Related Work . 97

5.9 Conclusions . 98

III Postscript 99

6 Closing Thoughts on Open Ended Learning 100

7 Crowd Clustering 103

7.1 Introduction . 103

7.2 The Crowd Clustering Problem . 104

xi

7.2.1 Notation . 106

7.3 Our Approach . 107

7.3.1 Bayesian Crowd Clustering . 107

7.3.1.1 Algorithm . 109

7.3.1.2 Worker Confusion Analysis 113

7.3.2 Crowd Clustering via Matrix Factorization 113

7.3.2.1 Algorithm . 115

7.4 Sampling Methods . 116

7.5 Experiments . 117

7.5.1 Greebles . 117

7.5.2 Bird Pose . 118

7.5.3 Scenes . 120

7.6 Discussion . 126

7.7 Appendix . 126

Bibliography 129

1

Chapter 1

Introduction

1.1 Object Categorization and Machine Learning

Visual object categorization is a problem of central importance in vision science.

Behaving organisms categorize their visual world in order to survive. As an engineer-

ing goal, automatic visual object categorization would enable an untold number of

applications, and would change the world in ways that we can scarcely imagine today.

While humans can effortlessly categorize objects, it has proven fiendishly difficult

to build artificial systems with the same capabilities. Recently, the computer vision

community has identified Machine Learning as a promising route towards automated

recognition systems. Rather than relying on human expertise to explicitly codify

category definitions, the machine learning approach uses training examples to guide

the selection of a classifier from a large parameterized set of alternative classifiers;

the hope being that the selected classifier will correctly perform the categorization

task not only on the training images but also on novel object instances.

The application of machine learning to object categorization has led to practical

success in constrained settings. For example, the problem of detecting faces can be

cast as a constrained categorization task: classify an image window into the “face”

category if it contains a face, or the “not face” category if it does not. The Viola

and Jones face detector [VJ01] is an impressive milestone of computer vision and

forms the basis of a number of commercial systems. There is recent promising work

in object detection of more complex articulated categories such as pedestrians, e.g.,

2

Felzenszwalb et al. [FMR08]. There is still quite a ways to go [DWSP09].

Numerous challenges remain in extending this success to systems capable of han-

dling multiple categories. Currently, systems capable of detecting objects in cluttered

natural scenes require a large number of closely cropped training image windows. The

substantial supervisory effort required to collect such a data set is a barrier towards

building systems that can handle a large number of object categories. Ongoing work

has focused on reducing the required amount of supervision. For example, Weber et

al. [WWP00] introduce the notion of weak supervision: a training image need only

have an instance of the category to be learned, the effort to precisely locate it in

the image is not necessary. An additional challenge in constructing multi-category

recognition systems is that each object category is unique and is best identified by

a set of properties specific to that category. The work of Varma and Ray [VR07]

addresses this by learning category-specific weightings of multiple image kernels.

It is clear that artificial systems lag behind biological organisms in terms of cat-

egorization accuracy and in the number of recognized classes. In addition, biological

systems display a flexibility of adaptation and learning that is not present in our

engineered solutions. Most artificial object categorization systems involve learning

according to a standard paradigm which we define here. First, a batch training set is

collected that has instances of every category that the system needs to learn. Train-

ing is typically supervised in that an indication of each training image’s category is

available (see [GD06] for an exception.) Once the recognition system is trained on

this batch data set, it is fixed. During operation of the system (known as the test

phase), the system estimates the category membership of test images, but does not

learn anything new from them. The system is fixed and can not adapt. Existing

categories can not be refined, nor are new categories added as they are encountered.

1.2 Open Ended Learning

In contrast to this standard paradigm, biological systems do not make a distinction

between a training and testing phase and do not require a batch training set. An

3

organism would be at a significant disadvantage if it had to be exposed to training

examples from every category before it could recognize objects! Instead, learning is

incremental: visual information arrives continuously, and categorization and learning

happen simultaneously. New visual information may lead to refinement of existing

categories. For example, we may learn over time that the dog category includes

poodles. New categories may be added: a mammal is sure to recognize a new type

of predator in the future after a close call. Perhaps most significantly, biological

organisms appear to require little in the way of explicit supervision to recognize novel

objects.

Such adaptive learning would be very useful in a number of engineering applica-

tions as well. Consider a surveillance camera that surveys a scene. Over time, new

objects could be introduced and the system would first recognize them as novel (per-

haps triggering an alarm.) These novel object categories would then be incorporated

into the collection of known categories. This might be generalized to learning cate-

gories of object activities and behaviors as well. It would be beneficial to have much

of this learning happen in an unsupervised fashion, rather than requiring operator

effort to provide feedback on all visual information or detected objects.

The Internet may be viewed as a constantly evolving collection of images. A “we-

bcrawler” software agent could explore the web, examining and categorizing images

and flexibly adding and revising categories as necessary. This type of exploratory

system might be part of a larger system of organizing visual information into a type

of visual encyclopedia such as that proposed by Perona [Per10].

In support of such applications, we define the notion of Open Ended learning

systems, which have the following set of characteristics:

• Incremental learning. There is no distinction between training and test

phases; learning and category prediction are performed simultaneously. Open

Ended learning systems may process data instances one at a time or in small

batches. This is also sometimes referred to as online learning.

• Computational Resource Budgets. Incremental learning should occur un-

4

der the constraint of computational resource budgets. Naively, an incremental

learning system could be constructed from a batch learner by storing in memory

every training instance ever encountered. The batch learning process would be

run from scratch each time new data is added to the collection. This is undesir-

able because the memory required to store examples would grow without bound

over the life span of the system. The amount of time required to update the

system with new evidence would also increase (perhaps dramatically) over the

life span of the system. Therefore, we impose the notion of limited memory or

time budgets that the learning system may not exceed when updating the sys-

tem with new evidence. Biological systems must also operate under analogous

finite resource budgets.

• Unsupervised learning. Open Ended systems must be able to handle unla-

beled data instances that are not provided with a ground truth value indicating

the item’s true category membership. Optionally, an Open Ended system may

be operated with partial labels, which is known as semi-supervised learning

in the literature [CSZ06]. However, in contrast with existing semi-supervised

learning approaches, an Open Ended system must be able to handle latent

categories that do not have a single labeled instance.

• Model Selection. An Open Ended learning system must be able to flexibly

update the number of categories as evidence arrives. Categories may be created

or destroyed as determined by the structure of the data itself. This is often

referred to as Model Selection in the statistical literature [CB] [Zuc00].

The performance of an Open Ended learning system may be quantitatively mea-

sured according to methods used in standard unsupervised learning. This involves

measuring the system’s performance on held out data that is not used to update

the learning system. Performance measures may be based on the system’s ability to

predict the held out data; examples of predictive measures include data likelihood

(see Section 2.6) or quantization performance relative to a distance measure (see Sec-

tion 4.7). Alternatively, we need not make use of held out data. If ground truth

5

category labels are available for our data, then we may compare the unsupervised

categorization produced by the learning system to the true category memberships of

the training data. A number of measures exist for this purpose (see Section 5.7.1.)

The astute reader may notice an apparent contradiction in our definition of Open

Ended learning. We desire learning systems that may add new categories as they are

discovered during operation, yet we require that our systems operate under finite re-

source budgets. Won’t the resource budget eventually place a limit on the complexity

of the categorization system that may be learned, in effect limiting its ability to add

new categories indefinitely? Indeed, this is likely to be the case. However, in practice

we are concerned with systems that may add categories and grow in complexity for

as long as possible, given their finite resource limits. We show that it is possible to

build learning systems that manage this tradeoff much more effectively than existing

work.

1.2.1 Related Work

There have been proposals in the literature that are related to our notion of Open

Ended learning. Thrun and Mitchell [TM95] define Lifelong Learning as an approach

to robotic control problems. Lifelong Learning is concerned with transferring expe-

rience learned from one robotic control task to another, in an attempt to reduce the

difficulty of learning the subsequent task. We agree that transfer learning is likely

of central importance in terms of incrementally learning collections of large object

categories. Ideally, the large number of training examples necessary for learning the

first categories can be leveraged to reduce the effort associated with learning later

categories. See [OPZ06] for an account in the vision literature. However, Lifelong

Learning differs from Open Ended learning in that it is concerned with reinforcement

learning problems in which performance feedback is available as an implicit supervi-

sory signal. In contrast, we are concerned with unsupervised learning of categorization

systems.

Within the visual recognition literature, the Ph.D thesis of Justus Piater [Pia01]

6

makes similar observations about the closed nature of the standard machine learning

paradigm as applied to visual recognition, and they advocate a continuous learning

approach. While their system has no fixed limit on the number of object categories

(they learn a naive Bayes classifier for each category), they operate in the supervised

learning framework. Their contribution is an online learning system for supervised

visual feature selection and classifier training.

Carlson et al.’s Never Ending Language Learning (NELL) system [CBK+10] is very

recent work by Mitchell’s group that meets much of our definition of Open Ended

learning. The system takes language examples from the Web, and uses them to learn

a growing knowledge base of noun phrase categories, as well as logical relations such

as “X plays for Y” or “X is mayor of Y” between noun phrase categories. The system

is capable of proposing and accepting new categories, which may be interpreted as

being an instance of model selection.

While the system bootstraps itself from some labeled examples, it is able to handle

induction of categories without requiring labeled instances of the new category. The

system does make use of 10 to 15 minutes of human interaction per day, which are

aimed at pruning out mistaken categories induced by the system (see the Postscript

for a discussion of human interaction in Open Ended learning.) NELL learns from

a fixed corpus of text, so it is unclear how the system scales computationally as

the corpus size increases. NELL is based in part on years of specialized research in

language concept induction. This thesis is aimed at developing Open Ended learning

systems for general purpose pattern categorization.

1.3 Thesis Organization

This thesis is organized as a series of chapters (2, 3, 4 & 5) that are adapted from

self-contained articles that were previously published in other formats. We end with a

Postscript that includes our conclusions about the prospects for Open Ended learning

and future research directions, as well as preliminary research along a direction that

may be interpreted as a counterpoint to the core of this thesis.

7

Ch. 2 & Ch. 3 Ch. 4 Ch. 5
unsupervised X X X

incremental with budget X X
model selection X X

data Euclidean Arbitrary objects Arbitrary objects
representation points with “distance” with PSD kernels

category Gaussian Prototype Discriminative
representation Distribution Example Classifier

Table 1.1: Thesis organization: Chapters 2, 3, 4, and 5 are self contained articles that
investigate aspects of Open Ended learning as well as issues of data and category
representation in unsupervised learning.

Our general approach towards realizing Open Ended learning is to begin from a

foundation based on unsupervised learning methods, and then to extend them into

Open Ended learning algorithms. Chapter 2 involves an Open Ended variant of the

statistical mixture model, which is a simple model for categorizing data items that lie

in a Euclidean feature space. Chapter 3 details an Open Ended variant of the Topic

Model, which is an hierarchical extension of the mixture model that is suitable for

handling images and documents which may be collections of more than one category.

Our algorithms continuously adapt and expand their collection of categories as data

arrives, while maintaining fixed computational budgets. We show that our approach

outperforms other online learning algorithms, and performs nearly as well as batch

algorithms that have complete access to the entire data history. Both chapters are

joint work with Max Welling and Pietro Perona.

Because unsupervised learning forms the bedrock of our approach, we then study

the extent to which data and category representation in unsupervised learning can

impact the performance of our learning systems. Chapters 4 and 5 represent work

in which we relax some of the requirements of Open Ended learning for the sake

of studying alternate representations that are more flexible than the Gaussian dis-

tributed categories and Euclidean feature spaces of Chapter 2 and Chapter 3.

Chapter 4 (joint work with Andreas Krause) develops a general framework for se-

lecting data examples from streaming data sources, while maintaining computational

budgets. These selected instances may be used as prototype examples in nonparamet-

8

ric learning algorithms, and we develop algorithms for unsupervised categorization

and supervised regression problems. In the case of unsupervised categorization, data

items may have any structure that has a “pseudo-distance” defined over pairs. This

pseudo-distance need not be a metric, and so in principle our method can handle

complex representations suitable for difficult application domains. We prove theo-

retical performance guarantees for our algorithms, and demonstrate their efficacy on

large scale problems.

Chapter 5 (with Andreas Krause and Pietro Perona) further explores data and

category representation in unsupervised learning. We develop a probabilistic tech-

nique for training discriminative multi-category classifiers without supervisory labels.

Rather than making constructive or generative definitions of categories, we model

the decision boundaries between them. This results in a rich and flexible category

representation. The framework is also capable of handling data items with arbitrary

structure, provided they have a positive semi-definite kernel function defined between

pairs of items. We show that the resulting algorithm outperforms other approaches

on numerous real world datasets.

The inter-relationships between the core chapters are summarized in Table 1.1.

Part III contains the Postscript, with concluding thoughts about the limitations of

current approaches to unsupervised learning in real world applications. We then

suggest research directions that might lead past these limitations by exploring Open

Ended learning systems which involve efficient use of human expertise. The final

chapter (with Peter Welinder, Andreas Krause, and Pietro Perona) presents a sys-

tem in which human expertise is treated as a foundational computational block for

categorization rather than as a scarce resource. The system may be used to learn

a representation of images while categories emerge naturally without having to be

pre-defined.

9

Part I

Incremental Unsupervised

Learning with Budgets

10

Chapter 2

Incremental Learning of
Nonparametric Bayesian Mixture
Models

2.1 Abstract

Clustering is a fundamental task in many vision applications. To date, most clus-

tering algorithms work in a batch setting and training examples must be gathered in

a large group before learning can begin. Here we explore incremental clustering, in

which data can arrive continuously. We present a novel incremental model-based clus-

tering algorithm based on nonparametric Bayesian methods, which we call Memory

Bounded Variational Dirichlet Process (MB-VDP). The number of clusters are de-

termined flexibly by the data and the approach can be used to automatically discover

object categories. The computational requirements required to produce model updates

are bounded and do not grow with the amount of data processed. The technique is

well suited to very large datasets, and we show that our approach outperforms exist-

ing online alternatives for learning nonparametric Bayesian mixture models.

2.2 Introduction

Discovering visual categories automatically with minimal human supervision is per-

haps the most exciting current challenge in machine vision [WWP00, SRE+05]. A

11

related problem is quantizing the visual appearance of image patches, e.g., to build

dictionaries of visual words in order to train recognition models for textures, objects,

and scenes [LM99, VNU03, DS03, FFP05, JT05]. This second problem is easier, be-

cause the features (e.g., pixels, SIFT coordinates) have been agreed upon in advance

and do not need to be discovered as part of the process. In both cases unsupervised

clustering is an important building block of the system.

Unsupervised clustering is usually carried out in batch on the entire training set.

Here we consider instead ‘incremental’ or ‘on line’ unsupervised clustering. There are

two reasons why incremental clustering or category learning may be useful. First of

all, an organism, or a machine, has a competitive advantage if it can immediately

use all the training data collected so far— rather than wait for a complete training

set. Second, incremental methods usually have smaller memory requirements: new

training examples are used to update a ‘state’ and then the examples are forgotten.

The state summarizes the information collected so far – it typically consists of a

parametric model and it thus occupies a much smaller amount of memory than a

full-fledged training set. So: when the system has to operate while learning, when

the memory available is small (as in an embedded system), or when the training data

are very voluminous, an incremental method is the way to go. It has to be expected

that an on-line method is not as efficient in extracting information from the data as

a batch method. This is because decisions must often be taken without the benefit

of future information.

A challenge for clustering methods, one that is often swept under the rug, is

determining the complexity of the final model: “How many clusters should I plan

for?” Batch methods have the luxury of solving this question by trial-and-error:

fit many models, from simple to complex, and pick the one that maximizes some

criterion, e.g., the likelihood on a validation set. Estimating the complexity of the

model is much harder for on-line methods. Furthermore, the complexity is likely

to grow with time, as more training examples are acquired and stronger evidence is

available for subtler distinctions.

We present a new approach for learning nonparametric Bayesian mixture models

12

Figure 2.1: Top: A sample of the inputs to the incremental learning process. Middle:
Cluster means discovered by incremental algorithm after 6000, 12000, and 30000
digits processed. As expected, the model complexity increases as data arrives. The
computational burden per model update is not a function of the number of data points
processed; it grows more slowly with the number of clusters discovered. Bottom Left:
Cluster centers produced by incremental algorithm after visiting all 60000 digits,
with effective memory size of 6000 digits. Bottom Right: Cluster centers produced
by batch algorithm. Clusters are ordered according to size, from top left to bottom
right. Our incremental algorithm requires substantially less memory and is faster than
the comparable batch algorithm. See Section 2.5 for a description of the algorithm
and Section 2.6 for more information about the experimental results.

13

incrementally. Our approach has a number of desirable properties: it is incremental,

it is non-parametric in the number of components of the mixture, its memory use

is parsimonious and bounded. Empirically, we find that it makes good use of the

information provided by the training set, almost as good as a batch method, while

being faster and able to tackle problems the size of which a batch method is unable

to approach.

Section 2.3 provides background on the Dirichlet Process mixture model and suf-

ficient statistics. Section 2.4 briefly describes existing approaches to the problem

and Section 2.5 explains our approach. Section 2.6 shows experimental results on

an object recognition problem, clustering of MNIST digits, and a large image patch

clustering experiment. Discussions and conclusions may be found in Section 2.7.

2.3 Background

We start by reviewing the Dirichlet Process mixture model (DPMM) [Ant74].

2.3.1 Dirichlet Process Mixture Model

The DPMM extends the traditional mixture model to have an infinite number of

components. Data points xt are assumed to be drawn i.i.d. from the distribution:

p(xt) =
∞∑

k=1

πkp(xt|φk), (2.1)

where φk are component parameter vectors and πk are a set of mixing weights that

sum to 1. During inference, the mixing weights and the component parameter vectors

are treated as random quantities. A probabilistic structure known as the Dirichlet

Process [Fer73] defines a prior on these random variables.

The component parameters φk are assumed to be independent samples from a

probability distribution H. The mixture weights πk may be constructed from a count-

14

ably infinite set of stick breaking random variables Vk [Set94] according to

πk = Vk

k−1∏
i=1

(1− Vi). (2.2)

The stick breaking variables are distributed independently according to Vk ∼ Beta(1, α),

where α > 0 is the concentration parameter of the Dirichlet Process. When α is small,

there is a bias towards a small number of large mixing weights (clusters), and when

it is large there is a tendency to have many small weights. The mixing weights are

guaranteed to sum to one, as required to make a well-defined mixture model.

It is convenient to introduce a set of auxiliary assignment variables Z = {z1, . . . , zN},

one for each data point xt. zt ∈ N designates the mixture component that generated

data point xt. The assignment variables Z specify a clustering or partition of the

data.

In learning, we are interested in estimating the posterior p(Z,Φ, V |X,α,H) given

a set of observations X = {x1, . . . , xN}. We assume that the component parameter

prior H and concentration parameter α are known.

2.3.2 Exponential Family and Sufficient Statistics

We will restrict ourselves to component distributions that are members of the ex-

ponential family [BS94], because they have a number of well known properties that

admit efficient inference algorithms. Exponential family distributions have the form:

p(x|φ) = g(x) exp{φTF (x) + a(φ)}, (2.3)

where F (x) is a fixed length vector sufficient statistic, φ is the natural parameter

vector, and a(φ) is a scalar valued function of φ that ensures that the distribution

normalizes to 1. The exponential family includes the Gaussian, Multinomial, Beta,

Gamma, and other common distributions.

We also require an additional restriction that the component prior distribution H

15

be conjugate to the component distributions [BS94]. It must be of the form:

H = p(φ|ν, η) = h(η, ν) exp{φTν + ηa(φ)}. (2.4)

η and ν are the natural parameters for the conjugate prior distribution.

The following fact is fundamental to our approach: If a set of observations X are

all assigned to the same mixture component (zi = k for all i such that xi ∈ X), then

the posterior distribution of the component parameter φk is determined by

S =
∑
xi∈X

F (xi), (2.5)

which is the sum of the sufficient statistic vectors of each observation xi ∈ X. The

significance of this fact is that if a set of assignment variables are constrained to be

equal (i.e., their corresponding observations are assumed to be generated by the same

mixture component), their inferential impact can be fully summarized by S, a vector

whose length does not increase with the number of observations.

2.4 Existing Approaches

We briefly review existing approaches for online learning of Bayesian Mixture Models.

Existing approaches have in common that they explicitly consider a number of alter-

native clusterings or mixture models in parallel, and update each of these hypotheses

independently as new data arrives.

2.4.1 Online Variational Bayes

Sato [Sat01] derives recursive update rules for Variational Bayesian learning of mix-

ture models. The alternative models are stored in memory, and each data point is

discarded after it is used to update each parallel hypothesis. A “forgetting factor” is

used in order to decay the contribution of “old” data points, since they are likely to

be incorrectly assigned to components. Empirically, the forgetting factor means that

16

much more data is needed to learn a model when compared with a batch technique.

This makes the forgetting factor undesirable from the standpoint of our requirement

to have an incremental algorithm that outputs results substantially close to the results

that a batch algorithm would output given the total data seen. Finally, model param-

eters must be stored for each alternative hypothesis, and this becomes prohibitively

expensive as the number of models increases.

2.4.2 Particle Filters

Fearnhead [Fea04] developed a particle filter learning algorithm for the DPMM. This

approach approximates p(ZT |XT) with a set of M weighted particles (clustering hy-

potheses). Upon arrival of a new data point, the M particles are extended to include

a new assignment zT+1 and none of the assignments for the previous observations

change. In order to prevent combinatorial explosion over time, only M of these de-

scendant particles are retained. In our experiments, this approach behaves poorly for

large datasets. Unseen observations can have a drastic effect on the relative rankings

of the assignments ZT . The algorithm greedily keeps only the top ranked clusterings

at time T , and those that it discards can never be considered in the future. No two

particles are identical, but the assignments tend to vary from one another for only a

small number of data points and so do not cover a wide enough set of hypotheses.

2.5 Our Approach

We observe that the chief difficulty with existing approaches is that they must ex-

plicitly enumerate and update a very large number of alternative clusterings in order

to produce accurate results (the number of potential clusterings of N points grows as

the Bell number BN). We wish to avoid this explicit enumeration, while at the same

time keeping a large number of alternatives alive for consideration. Our approach

must also require bounded time and space requirements to produce an update given

new data: the computational requirements must not scale with the total number of

data seen.

17

Figure 2.2: A schematic depiction of a two-dimensional clustering problem. Alterna-
tive clustering solutions are displayed on their own coordinate axes, and the model
clusters are represented by green ellipses. The set of clump constraints consistent with
all solutions are displayed as red ellipses. The implicit set of clustering solutions un-
der consideration are those that can be composed of the clumps, which is much larger
than other online clustering methods that explicitly enumerate alternative clustering
hypotheses.

18

Figure 2.2 shows how multiple clustering hypotheses can be combined into a single

set of assignment constraints. Rather than explicitly fixing the assignments in each

parallel branch, the constraints now take the form of points that are grouped together

in every alternative. We will call these groups of points “clumps”. We define sets

of indices Cs such that if i ∈ Cs and j ∈ Cs for some s, then data points xi and

xj are assigned to the same component in all of the alternative clusterings. The

sets Cs are disjoint, meaning that no data point can exist in more than one clump.

The collection of clumps C is the partition with the fewest number of sets that

can compose each of the alternative clustering hypotheses. In the language of lattice

theory, the clump partition C is the greatest lower bound or infimum of the alternative

clustering hypotheses. A similar scheme was pursued in [BFR98] for scaling the k-

means algorithm (where the number of clusters is assumed to be known) to large

databases.

A single optimization procedure done under the clump constraints will yield the

best clustering mode (modulo local minima issues) that is compatible with the im-

plicit ensemble of alternatives inherent in the constraints. The implicit ensemble of

alternatives is very large; it is composed of every possible grouping of the clumps,

and is much larger than could be explicitly modeled.

This raises the question: How can these clump constraints be computed without

first explicitly computing a number of plausible solutions? We observe that alter-

native models, while distinct, have considerable redundancy. The reason is that the

clustering of data points in one region of space has little impact on the clustering

assignments of data in a distant part of space. Any two alternatives will tend to vary

from one another only for a subset of data points. Our approach is to partition the

clustering problem into a series of independent subproblems. This is carried out in a

top down fashion, as illustrated in Figure 2.3. This forms a tree of possible groupings

of data, and the bottom level of this tree defines our clump constraints. Variational

Bayes techniques provide a convenient framework for carrying out this procedure (see

Section 2.5.2).

Our algorithm processes data in small batches which we refer to as epochs, each

19

Figure 2.3: Top down compression: Clump constraints are discovered by recursive
splitting in a top down fashion. This process is well suited to discovering groups of
points that are likely to belong to the same model cluster across multiple plausible
clustering alternatives.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Document 4

Get data.
Build clustering model.

Do compression.
Keep clumps, discard

summarized data.

Get more data.
Build clustering model.

Do compression.
Keep clumps, discard

summarized data.

Figure 2.4: A sketch of the algorithm. Data arrives in small batches or epochs, and the
current best estimate mixture model is computed in the model building phase (here,
the model is represented by green ellipses). Next, clump constraints are computed
in the compression phase, and summarized by their associated sufficient statistics
(represented by red ellipses). The summarized data are discarded and the process
continues.

one of which contains E data points. We first compute the current best estimate

mixture model as described in Section 2.5.1. Then we carry out a compression phase

(explained in Section 2.5.2) in which clump constraints are computed in a top down

recursive fashion, and this phase halts when a stopping criterion is met. Data points

that belong to the same clump are summarized by their average sufficient statistics

(see Section 2.3.2), and the E individual data points are discarded. The clumps are

each given an assignment variable zs and can be treated in the same way as data

points in the next round of learning. We bound the computational time and space

requirements in each learning round by controlling the number of clumps discovered

during the compression phase. The algorithm is summarized in Figure 2.4.

20

2.5.1 Model Building Phase

Learning rounds begin by computing a current best estimate mixture model using

Variational Bayes (VB) [Att99]. In the Variational Bayes approach, intractable

posterior distributions are approximated with simpler proxy distributions that are

chosen so that they are tractable to compute. Blei and Jordan [BJ05] extended this

technique to the DPMM.

Given the observed data XT , the batch VB algorithm optimizes the variational

Free Energy functional:

F(XT ; q) =

∫
dW

q(V,Φ, ZT) log
p(V,Φ, ZT , XT |η, ν, α)

q(V,Φ, ZT)
, (2.6)

which is a lower bound on the log-evidence log p(XT |η, ν, α). The proxy distributions

q(V,Φ, ZT) =
K∏

k=1

q(Vk; ξk,1, ξk,2)q(φk; ζk,1, ζk,2)
T∏

t=1

q(zt) (2.7)

are products of beta distributions for the stick-breaking variables (with hyperparame-

ters ξ), component distributions (with hyperparameters ζ), and assignment variables,

respectively. Update equations for each proxy distribution can be cycled in an itera-

tive coordinate ascent and are guaranteed to converge to a local maximum of the free

energy. The true DPMM posterior allows for an infinite number of clusters, but the

proxy posterior limits itself to K components. Kurihara et al. [KWV07] showed that

K can be determined by starting with a single component, and repeatedly splitting

components as long as the free energy bound F(XT ; q) improves.

Like the batch approach, our algorithm optimizes F(XT ; q) during model building,

but this optimization is carried out under the clump constraints discovered during

previous learning rounds. The resulting Free Energy bound is a lower bound on the

optimal batch solution. (In practice, the batch process itself may not achieve the

optimal bound because of local optima issues.) Formally this can be expressed as:

Property 1. The MB-VDP model-building phase optimizes F(XT ; q) subject to the

21

constraints that q(zi) = q(zj) for all i ∈ Cs and all j ∈ Cs and all clump constraints

Cs. The resulting solution lower bounds the optimal batch solution: maxq FMB(XT ; q) ≤

maxq′ F(XT ; q′).

The bound follows because solutions to the constrained problem are in the space

of feasible solutions of the unconstrained optimization problem. Hyperparameter

update equations that optimize the constrained Free Energy FMB are:

ξk,1 = 1 +
∑

s

|Cs|q(zs = k) (2.8)

ξk,2 = α+
∑

s

|Cs|
K∑

j=k+1

q(zs = j)

ζk,1 = η +
∑

s

|Cs|q(zs = k)〈F (x)〉s

ζk,2 = ν +
∑

s

|Cs|q(zs = k)

q(zs = k) ∼ exp(Ssk)

where we define

Ssk = Eq(V,φk) log{p(zs = k|V)p(〈F (x)〉s|φk)} (2.9)

〈F (x)〉s =
1

|Cs|
∑
i∈Cs

F (xi) (2.10)

which (critically) depend only on 〈F (x)〉s, the sufficient statistics of the points in each

clump.

After executing the update equations for q(zs = k), the constrained Free Energy

may be expressed in the following form:

FMB(XT ; q) = Flikelihood(X
T ; q(V), q(Φ))−Fcomplexity(q(V), q(Φ)). (2.11)

We find that FMB decomposes into a likelihood term that measures the extent to

22

which the current model fits the compressed data:

Flikelihood =
∑

s

ns log
K∑

k=1

exp(Ssk) (2.12)

as well as a complexity penalty

Fcomplexity =
K∑

k=1

KL(q(vk)||p(vk|α)) +
K∑

k=1

KL(q(φk)||p(φk|λ)) (2.13)

which penalizes models according to the Kullback-Leibler divergence between the

model parameters’ proxy posterior distributions and their respective prior distribu-

tions. The complexity penalty increases with the number of clusters K expressed

by the current model. Intuitively, the constrained Free Energy balances the goal of

finding models that explain the observed data while preventing overfitting with overly

complex models.

The constrained Free Energy FMB was first given in Kurihara et al. [KWV07], in

which DPMM learning is augmented with a kd-tree in order to speed up inference

(also [VNV06] for EM learning). Sufficient statistics of data points were cached at

nodes of the kd-tree and used to perform approximate inference. Our approach differs

from these algorithms in several ways. We do not use a kd-tree to compute clump

constraints but instead build a tree by greedily splitting collections of data points

according to a Free Energy-based cost function, as discussed in the next section. We

process data in sequential rounds and recompute clump constraints after each round.

We irreversibly discard individual data points that are summarized by clump statistics

in order to maintain storage costs below a pre-assigned bound, whereas [KWV07]

and [VNV06] always have the option of working with individual data points if it leads

to improvement in a Free Energy bound.

2.5.2 Compression Phase

The goal of the compression phase is to identify groups of data points that are likely

to belong to the same mixture component, no matter the exact clustering behavior of

23

the rest of the data. Once these groups are summarized by their sufficient statistics,

they are irreversibly constrained to have the same assignment distribution during

future learning rounds. Therefore we must take into account unseen future data

when making these decisions in order to avoid locking into suboptimal solutions.

We must find collections of points that are not only likely to be assigned to the same

component given the first T data points, but also at some target time N , with N ≥ T .

We estimate this future clustering behavior by using the empirical distribution of

data seen so far (up to time T) as a predictive distribution for future data:

p̂(xT+1, · · · ,xN) =
N∏

i=T+1

1

T

T∑
t=1

δ(xi − xt) (2.14)

and define the following modified Free Energy

FC(XT ; r) = Ep̂(xT+1,··· ,xN)FMB(XN ; r) (2.15)

by taking the expectation of the constrained Free Energy FMB over the unobserved

future data. We also define a new proxy distrbution r(V,Φ, ZN) used during the

compression phase, which is identical in form to Eq. 2.7 estimated during the Model

Building phase.

Proposition 1. Iteration of the following parameter update equations results in con-

vergence to a local maximum of Fc:

ξk,1 = 1 +
N

T

∑
s

|Cs|r(zs = k) (2.16)

ξk,2 = α+
N

T

∑
s

|Cs|
K∑

j=k+1

r(zs = j)

ζk,1 = η +
N

T

∑
s

|Cs|r(zs = k)〈F (x)〉s

ζk,2 = ν +
N

T

∑
s

|Cs|r(zs = k)

Ssk = Er(V,φk) log{p(zs = k|V)p(〈F (x)〉s|φk)}

24

r(zs = k) ∼ exp(Ssk).

After performing the updates for r(zs = k), it holds that:

FC =

(
N

T

)
Flikelihood(X

T ; r(V), r(Φ))−Fcomplexity(r(V), r(Φ)). (2.17)

The above update equations differ from those in the model building phase by a

data magnification factor N
T

. The indices s range over the current clump constraints;

we need not compute assignment distributions r(zs = k) for unobserved future data.

We also find that the compression phase objective can be interpreted as re-scaling

the data likelihood term by N
T

.

As indicated in Figure 2.3, we compute clump constraints in a top down fashion.

We start the process with the clustering estimate determined during the preceding

model building phase; that is, r(zs = k) = q(zs = k). We then evaluate splitting each

partition k by first splitting it along the principal component defined by the clumps

in the partition. We then iterate the update equations (Eqs. 2.16) in order to refine

this split. Each potential partition split is then ranked according to the resulting

change in FC (Eq. 2.15). We then greedily choose the split that results in the largest

change. The process repeats itself, until a halting criterion is met (see below). We

update the clump constraints according to Cl = {s : argmaxk r(zs = k) = l}.

Property 2. The maximum attainable Free Energy during the MB-VDP model build-

ing phase increases monotonically with the number of clump constraints discovered

during the compression phase.

The reasoning is similar to Property 1. Each time the compression phase splits

an existing partition into two, the space of feasible solutions in the model building

optimization problem has been increased, but the previous set of solutions (all data

in the two new partitions constrained to have equal assignment distributions) is still

available. Therefore, the maximum attainable Free Energy cannot decrease.

We must restrict the number of clumps that are retained in order to ensure that

the time and space complexity is bounded in the next round of learning. A stopping

25

Algorithm 1 Memory Bounded Variational DPMM

while There is more data do
Model building phase according to sec. 2.5.1
Initialize compression phase: r(zs = k) = q(zs = k)
while MC < M (eq. 2.18) do

for k = 1 to K do
Split partition k and refine (eqs. 2.16)
S(k) = ∆FC (change in eq. 2.17)

end for
Split partition arg maxk S(k)
K = K + 1

end while
Cl = {s : argmaxk r(zs = k) = l}
Retain clump statistics 〈F (x)〉l into next round
Discard summarized data points

end while

criterion determines when to halt the top down splitting process. A number of criteria

are possible, depending on the situation.

When learning DPMMs with full-covariance Gaussian components, each clump

requires d2+3d
2

+ 1 values to store sufficient statistics (mean, symmetric covariance

matrix, and number of data points summarized). It is convenient to express the

stopping criterion as a limit on the amount of memory required to store the clumps.

From this perspective, it makes sense to replace a clump with its sufficient statistics

if it summarizes more than d+3
2

data points. If a clump summarizes fewer points,

then the individual data points are retained instead. We refer to these individual

retained data points as singlets. The clump memory cost for mixture models with

full covariance matrices is therefore

MC =

(
d2 + 3d

2
+ 1

)
Nc + dNs, (2.18)

where Nc is the number of clumps and Ns is the number of singlets. An upper limit on

clump memory cost M is defined, and the compression phase halts when MC ≥M .

The MB-VDP algorithm is summarized in Algorithm 1. The time required for

the algorithm to learn the entire data set is typically less than the batch variational

26

DPMM approach outlined in [KWV07]. This is because full variational updates in

the batch procedure require O(KN), where K is the number of clusters and N is the

number of data points. The MB-VDP algorithm requires only O(K(Nc + Ns + E))

for an iteration during the model building phase.

We have implemented a number of measures in the compression phase in order to

reduce computational overhead. The first is to hard assign clumps to partitions, i.e.,

r(zs) = δ(zs − as) where as = argmaxk Ssk, rather than maintaining full assignment

distributions. The second is to refine split partitions by optimizing Fc restricted only

to the data and parameters associated with the partition, rather than performing

complete updates with all data and parameters (this also allows us to cache the can-

didate partition splits rather than re-computing them during each iteration). When

these speed up heuristics are in place, the compression phase can no longer be inter-

preted as optimization of FC , however experimental results in Section 2.6 show that

the algorithm performs well and that the time required during the compression phase

is quite modest when compared to the model building phase.

Vasconcelos and Lippman [VL99] learn a hierarchy of EM mixture model solutions

using a bottom up procedure (although they did not investigate this approach in the

context of incremental learning). We find that a bottom up approach to learn clump

constraints is inappropriate in our situation. Variational updates for the DPMM are

sensitive to initial conditions, and our top down method sidesteps this initialization

problem.

Our implementation of MB-VDP may be found at: http://vision.caltech.

edu/∼gomes.

2.6 Experimental Results

We test our algorithm with three experiments. The first experiment compares our

algorithm against the particle filter in [Fea04] on a small image clustering task of

four categories from Caltech 256. The second experiment compares our algorithm

against [KWV07] on the larger MNIST digit dataset. Finally, we demonstrate our

27

approach on 330K image patches from the Corel image database, which was too large

for the batch approach.

The first set of experiments compares the performance of our method with that

of Fearnhead’s particle filter. The data set consists of four categories (Airplanes,

Motorbikes, Faces, and T-Shirts) from Caltech 256 [GHP07] that are projected to

a 20 dimensional feature space using Kernel PCA with the Spatial Pyramid Match

Kernel of Lazebnik et al. [LSP06]. There are 1400 data points (images) in total.

The hyperparameters for Normal Inverse Wishart prior on cluster parameters (H)

were chosen by hand, based on prior knowledge about the scale of the data, and the

concentration parameter α was set to 1. The batch algorithm tends to find 12 to 15

clusters in this setting. The clusters discovered respect the categories, that is, very

few objects from different classes are clustered together. This was tested by assigning

labels to clusters by looking at five examples from each. Images from the training

set were classified according to the label of the cluster with highest responsibility.

Average classification performance was 98%. However, the algorithm divides each

category into sub-categories according to perceptually relevant differences. Figure 2.5

shows some example images from six of the discovered clusters.

The algorithms were judged quantitatively according to predictive likelihood. 1300

of the 1400 images were chosen at random as a training set, and the algorithm is

trained on a complete pass through the data in random order. The average likelihood

of the remaing data points was computed as a measure of generalization performance.

The particle filter was tested at different numbers of particles. The amount of memory

was varied for our algorithm. In our algorithm, the memory value represents the

memory required to store both the clumps from earlier rounds of memory and the

current small batch of points. In all cases, the data epoch size E are chosen to be one-

half of the memory size, so for an effective memory of 200, the algorithm progesses

through the data in epochs of 100 points. Note that at memory of 200, the algorithm

is unable to store all 12 to 15 clusters inherent in the data.

Table 2.1 shows the performance of the particle filter, and Table 2.2 shows the

performance of our algorithm. Our algorithm beats the particle filter in terms of

28

O
n
e

T
w

o
T

h
re

e
F
ou

r
F
iv

e
S
ix

Figure 2.5: Example images from some clusters discovered in the T-Shirts, Airplanes,
Faces, and Motorbike categories from Caltech 256. The clusters typically do not
mix images from different categories and the algorithm discovers relevant distinctions
within categories. For example, the Airplanes category is split into airplanes in the sky
and on the ground, and the Motorbikes category is split into segmented motorbikes
and motorbikes in clutter.

29

Particles Ave Predictive Log-Likelihood Runtime
100 4.99± 0.34 5.94× 102 s
1000 5.43± 0.28 2.856× 103 s
10000 5.80± 0.22 2.484× 104 s

Table 2.1: Particle filtering predictive performance and runtime

Memory Ave Predictive Log-Likelihood Runtime
200 6.37± 0.32 73.3 s
400 6.93± 0.32 57.08 s
600 6.99± 0.31 57.76 s

Table 2.2: MB-VDP predictive performance and runtime. Batch performance was
7.04± 0.28 with runtime 71.4s on 1300 data points.

generalization accuracy at all parameter values. Our algorithm produces generaliza-

tion results that are close to the performance of the batch algorithm. The runtime

advantage of our approach is very significant over that of the particle filter.

In the second experiment, our approach is compared against the batch algorithm

of [KWV07]. The 60000 hand-written digits from the MNIST training set were re-

duced to 50 dimensions using PCA in a preprocessing step. Our algorithm was set to

have a memory size equivalent to 6000 data points, which is an order of magnitude

smaller than the size of the data set. Our algorithm processes data in epochs of 3000.

The second row of Figure 2.1 shows the cluster means discovered by our algorithm

as it passes through more data. Since the DPMM is nonparametric, the model com-

plexity increases as more data is seen. The bottom row of Figure 2.1 shows the cluster

centers discovered by our approach after processing the entire data set compared to

those produced by the batch algorithm. The clusters are qualitatively quite similar,

and the two algorithms discover a comparable number of clusters (88 for the batch

approach, 90 for our algorithm).

The run time for the batch algorithm was 31.5 hours, while for our approach it

was 20 hours for a complete pass through. Note that we can likely achieve greater

speedup by initializing each learning round with the previous round’s model estimate

and using a split-merge procedure [UNGH99], although we did not pursue this here.

30

We compare the free energy bounds produced by the two approaches. The ratio

of these two values is 0.9756 meaning that our incremental algorithm produces a

slightly worse lower bound on the likelihood. Our approach is more accurate than

the kd-tree accelerated algorithm in [KWV07] which produced a free energy ratio of

0.9579 relative to the standard batch approach. Recognition was performed on 10000

MNIST test digits, in the same way as the Caltech 4 dataset but labels were assigned

by observing only the cluster means. Performance for the incremental algorithm

was 88.5% and 91.2% for batch. Note that this approach only requires labeling

of approximately 90 images, compared to 60000 training labels used by traditional

approaches.

Finally, we demonstrate our algorithm on a clustering task of 330,000 7 pixel by

7 pixel image patches from the Corel image database. We preprocess the data by

discarding patches with standard deviation below a threshold, and normalize all re-

maining patches to unit norm. We use Gaussian components with diagonal covariance

matrices. The batch approach in [KWV07] was unable to cluster this data due to

memory requirements. We use an effective memory size of 30000 data points. Cluster

centers are shown in Figure 2.6 after 30K, 150K, and 330K patches were processed. As

expected, the model complexity increases as more data is processed and the clusters

represent greater diversity in the data. The total memory required by the incremental

algorithm was 109 MB to store the best estimate model, the clumps, and the respon-

sibilities. In contrast, the batch approach would require 773 MB. The incremental

algorithm required approximately 2 hours per epoch of 15000 data points. Again this

could be substantially reduced by initializing each round with the previous estimate,

rather than beginning from scratch each time.

2.7 Discussion and Conclusions

We have introduced an incremental clustering algorithm with a number of favorable

properties. The key idea (summarized by Figure 2.3) is to find clustering arrange-

ments (clumps) that alternative models are likely to have in common, rather than to

31

Figure 2.6: Cluster centers from the Corel patch experiment after 30K, 150K, and
330K patches

explicitly enumerate and independently update a set of alternatives. This idea leads

to an algorithm that outperforms other online approaches in terms of run time and

accuracy, and is suitable for use on large datasets. Our algorithm’s nonparametric

Bayesian framework allows for automatic determination of the number of clusters,

and model complexity adjusts as more data is acquired. Future work includes ex-

tending these lessons to build systems capable of learning complex object categories

incrementally and with little human supervision.

32

Chapter 3

Memory-Bounded Inference in
Topic Models

3.1 Abstract

What type of algorithms and statistical techniques support learning from very large

datasets over long stretches of time? We address this question through a memory-

bounded version of a variational EM algorithm that approximates inference in a topic

model. The algorithm alternates two phases: “model building” and “model compres-

sion” in order to always satisfy a given memory constraint. The model building phase

expands its internal representation (the number of topics) as more data arrives through

Bayesian model selection. Compression is achieved by merging data-items in clumps

and only caching their sufficient statistics. Empirically, the resulting algorithm is

able to handle datasets that are orders of magnitude larger than the standard batch

version.

3.2 Introduction

Consider a collection of surveillance cameras monitoring at an airport. The cameras

learn a model of their environment without supervision. Moreover, they learn for

many years without significant interruption. Gradually, as more data is captured,

the cameras build a joint model of visual object categories.

This problem is akin to the way children learn to understand the world through

33

the continuous process of mostly unsupervised learning. As children grow up they

build an increasingly sophisticated internal representation of object categories that

continuously restructures itself.

In this paper we ask ourselves: What statistical techniques are suitable for this

Open Ended learning task? First, we need a class of models that can naturally expand

as more data arrives, i.e., its capacity should not be bounded a priori. Second, these

models should allow efficient learning algorithms, both in terms of time and space.

For instance, we should not have to store every single piece of information that has

been captured. Our technique must produce a sequence of model estimates that

reflect new information as it arrives, and the time required to produce each model

update must scale modestly as more data is acquired. Finally, we require that the

sequence of learned models are sufficiently similar to those that would be produced

by a batch algorithm with access to the entire history of data observed at the time

of each model update.

Nonparametric Bayesian techniques such as the Dirichlet Process (DP) [Fer73] and

the Hierarchical Dirichlet Process (HDP) [TJBB06] satisfy our first desideratum, in

that they naturally increase their model complexity with the available data. However,

most existing nonparametric Bayesian approaches are batch algorithms: they require

every single data-point to be stored and revisited during learning. A batch algorithm

could be naively applied to the continuous learning scenario, but all data would need

to be cached and a new batch learning process would be run on the entire dataset to

produce each model update. This would violate our second criterion in that the time

and space requirements would increase unacceptably as the system ages.

Here we propose a more flexible setup, where we impose a bound on the available

memory but still allow the model order to increase with more data. We compress

the data and the internal representation of the model without losing much in terms

of model accuracy. The effect is that time and space requirements scale much more

gradually over the lifetime of the system. The memory bound does impose a limit

on the total capacity of the model, but this trade-off is flexible and can be adjusted

online, i.e., as the model is learned. Experiments with a memory-bounded variational

34

xij!

"j

zij

#

xi!

"

zi

Mixture Model Topic Model

Figure 3.1: Graphical model representations of the mixture model (left) and the topic
model (right)

approximation to HDP show that this technique can handle datasets many times

larger than the standard implementations and results in substantially shorter run-

times.

3.3 Topic Models

The topic model is an hierarchical extension of the standard statistical mixture model.

Figure 3.1 shows the graphical model representations of the mixture model (left)

and the topic model (right). The mixture model assumes that observed data xi are

sampled from one of a (potentially countably infinite) set of component distributions

with parameter ηk. The discrete assignment variable zi indicates the component that

generated xi. π represents the mixture probabilities; that is, the probability that xi

is sampled from the component distribution with parameter ηk (i.e. zi = k) is πk.

Whereas the mixture model treats all data points xi as being identically dis-

tributed from the same mixture (which can be seen by marginalizing out the assign-

35

ment variables zi), the topic model assumes that data xij are organized in groups

indexed by j. For example, xij may represent the i-th word in document j, or the

i-th pixel or feature in image j. Like the mixture model, each data item is assumed

to be a sample from one of a set of component distributions with parameter ηk. How-

ever, the data items in document j are assumed to be drawn from a document-specific

mixture model with mixture proportions πj. Intuitively, the component distribution

parameters ηk may be thought of as defining topics that are shared across the entire

data corpus, and each document j may be modeled as a unique mixture of topics. α

represents the proportion of the topics over the corpus as a whole.

The topic models we will explore are most closely related to Latent Dirichlet

Allocation (LDA) (introduced by [BNJ03]) and its nonparametric Bayesian extension

known as the Hierarchical Dirichlet Process (HDP) [TJBB06] (which allows for a

countably infinite set of possible component distributions).

3.4 A Memory-Bounded Variational Topic Model

At a high level the idea is to develop a variational approximation [Att99] for ap-

proximating inference in a topic model. We then achieve memory and computational

savings by ‘clumping’ together data-cases. That is, we constrain groups of datapoints

to have equal topic assignment variational distributions: q(zij) = q(zi′j′) = q(zc)

when points xij and xi′j′ are members of the clump c. This allows us to achieve

memory savings, because variational optimization performed under this constraint

requires only the sufficient statistics of the data-cases in a clump, and the system

can forget the exact identities of the summarized data points. Similarly, we will also

clump entire documents (or images) by tying their variational distributions over top-

ics: q(πj) = q(πj′) = q(πs) if document j and j′ belong to the same document group

s. This tying of variational distributions guarantees that learning optimizes a lower

bound to the exact Free Energy objective function, where the bound is increasingly

loose with more tying. This idea was also leveraged in [BFR98] to accelerate the

k-means algorithm and in [VNV03] and [KWV07] to accelerate learning mixtures of

36

Gaussians and DP mixtures of Gaussians by using KD-trees.

In the following we will talk about documents, but we note that this refers to

other structured objects such as images as well.

3.4.1 The Variational Topic Model

The following Bayesian topic model is our starting point,

p(x, z,η,π,α) =
∏
ij

p(xij|zij; η) πj,zij
(3.1)[∏

k

p(ηk|β)

][∏
j

D(πj; α)

][∏
k

p(αk)

]

where xij is word i in document j and zij denotes the topic that generated xij. πj

denotes the mixture of topics that generated the words in document j, with
∑

k πjk =

1. πj are distributed according to a Dirichlet distribution with parameter α. Boldface

symbols denote vector valued quantities. In this expression we will assume that

p(x|z,η) is in the exponential family1,

p(x|z = k,η) = exp

[∑
l

ηkl φl(x)− Ak(ηk)

]
(3.2)

and p(η|β) is conjugate to p(x|z,η),

p(ηk|β) = exp

[∑
l

βlηkl − β0Ak(ηk)−B(β)

]
. (3.3)

The posterior distributions over π,η, z are approximated variationally as

q(η) =
∏

k

q(ηk; ξk) (3.4)

1Strictly speaking, the exponential family includes additional multiplicative terms h(x) in the
expression for p(x|η) and g(η) in the expression for p(η|β). We have left these terms out to simplify
the derivation and because for most well known distributions they are simply 1. However, it is
straightforward to include them.

37

q(π) =
∏

j

D(πj; ζj) (3.5)

q(z) =
∏
ij

q(zij) (3.6)

where we have introduced variational parameters {ξkl, ζkj, qijk}, the latter subject to∑
k qijk = 1. Furthermore, D denotes a Dirichlet distribution while q(ηk; ξk) is also

conjugate to p(x|z = k,η),

q(ηk; ξk) = exp

[∑
l

ξklηkl − ξk0Ak(ηk)−Bk(ξk)

]
. (3.7)

By writing down the variational Free Energy and minimizing it over ξ, ζ we find the

following intuitive updates,

ξkl = Fkl + βl; Fkl ,
∑
ij

qijk φl(xij) (3.8)

ξk0 = Nk + β0; Nk ,
∑
ij

qijk (3.9)

ζkj = Nkj + αk; Nkj ,
∑

i

qijk (3.10)

and

qijk ←
1

Zij

exp [
∑

l E[ηkl|ξkl] φl(xij)]

exp [E[Ak(ηk)|ξk0]]
exp [ψ(ζkj)] (3.11)

where Zij enforces the constraint
∑

k qijk = 1 and the expectations are over q(η). To

learn the parameters {αk} we first introduce gamma priors,

p(α) =
∏

k

G(αk; a, b). (3.12)

Using the bounds in [Min00] we can derive the following updates if we first insert

the updates for ξ and ζ into the Free Energy,

αk ←
(a− 1) + αk

∑
j [ψ(ζkj)− ψ(αk)]

b+
∑

j [ψ(ζj)− ψ(α)]
(3.13)

38

with ζj =
∑

k ζkj and Nj =
∑

k Nkj.

3.4.2 Optimizing the Number of Topics K

Our strategy to search for a good value of K is to truncate the topic distributions

as q(zij > K) = 0 (see also [TKW08]). This will have the effect that most terms

in the Free Energy with k > K will cancel, the exception being the prior terms

p(αk), k > K. For these terms we know that the value for αk minimizing the Eree

Energy is given by the MAP value of the gamma-prior αk = a−1
b
, k > K. Inserting

this back into the Free Energy we accumulate Kmax −K terms

Λ = a log b− log Γ(a) + (a− 1) log
a− 1

b
− (a− 1) (3.14)

where Kmax is the maximum number of topics.

It is guaranteed that there exists a solution with lower Free Energy if we increase

K. The reason is that we relax a self-imposed constraint on variational parameters

(that q(zij > K) = 0). As K increases the relative improvement in Free Energy

quickly attenuates. The final value for K is obtained by thresholding this relative

improvement.

The nesting property (models with larger K are better) is the same for variational

approximations to the DP in [KWV07] and HDP [TKW08]. This raises the question

whether we can take the infinite limit for our model as well. The problem is that

(Kmax−K)Λ→∞ as Kmax →∞. This can be traced back to the fact that we should

have added a proper prior p(K) which would have diminished the contribution at large

K. Instead we choose an improper, constant prior to avoid the need to estimate likely

values for K a priori. However, it is still possible to work with infinite free energies

because we are only interested in the relative change in Free Energy after increasing

K, which is a finite quantity.

In our experiments we chose a = 1 and b = 0.5, so that the MAP prior value of

αk is 0.

39

3.4.3 Clumping Data-Items and Documents

We will now tie some of the variational distributions {qijk} across different data-items

within and across documents (images) to a ‘clump distribution’ qck. Similarly, we will

tie some document-specific distributions over topics {q(πj)} into a document group

q(πs). Note that since we impose constraints on the variational distributions this has

the effect of loosening the variational bound.

Define Ds to be the number of documents in a document group, Nc the number

of data-items in a word clump, Ncs the number of words in document group s and

word clump c, and finally Φc
l ,

∑
ij∈c φl(xij). In terms of these we further define,

Nks ,
∑

c

qckNcs (3.15)

Nk ,
∑

c

qckNc (3.16)

Fkl ,
∑

c

qck Φc
l (3.17)

With these definitions we derive the following ‘clumped’ update rules for the varia-

tional parameters ξkl and ζks,

ξkl = Fkl + βl (3.18)

ξk0 = Nk + β0 (3.19)

ζks = Nks

Ds
+ αk (3.20)

and

qck ←
1

Zc

exp
[∑

l E[ηkl|ξkl]
Φc

l

Nc

]
exp [E[Ak(ηk)|ξk0]]

exp

[∑
s

Nsc

Nc

ψ(ζks)

]
. (3.21)

The update for α becomes

αk ←
(a− 1) + αk

∑
sDs [ψ(ζks)− ψ(αk)]

b+
∑

sDs [ψ(ζs)− ψ(α)]
. (3.22)

40

An expression for the Free Energy, after inserting expressions 3.18, 3.19, and 3.20,

is given by Eq. 3.29 in the appendix.

3.5 Incremental Learning with a Memory Constraint

Our algorithm processes data in small groups composed of E documents, which we

refer to as epochs. After the arrival of each epoch the algorithm proceeds in two

stages: a model building phase during which a new model estimate is produced, and

a compression phase in which decisions are made as to which words and documents to

clump. The sufficient statistics of each clump are computed and data summarized by

clumps are purged from memory. The assignment distributions q(z) of purged data

and topic distributions of merged documents q(π) are discarded as well. The clump

sufficient statistics are retained along with the current model estimate, which serves

as a starting point for the next round of learning.

3.5.1 Model Building Phase

The model building phase optimizes the Free Energy under the parameter tying con-

straints induced by the choice of clumps in previous compression phases. We perform

a split-merge procedure similar to [UNGH99] to determine the number of topics, us-

ing the heuristics in that work to rank topic suitability for split or merge. In our

experiments we use Gaussian topic distributions, so splits are proposed along the

principal component of the topic. The split proposals are refined by restricted vari-

ational updates. That is: Eqs. 3.21, 3.18, 3.19, 3.20, and 3.22 are iterated but

only for data-points whose highest responsibility is to the split topic, and the points

may be assigned only to the two descendent topics. Merges are carried out by in-

stantiating a new topic with the data-points with highest responsibility to the merged

topics. A total of 10 splits and 10 merges are proposed, and evaluated by the resultant

change in Free Energy (Eq. 3.29). The top ranked change is then used to initialize full

variational updates (which involve all data points). The model building phase halts

once the change in Free Energy divided by its previous value is below a threshold,

41

Algorithm 2 Model Building Phase (Algorithm 3.1)

Input: Previous model {ξkl, ζks, αk,Φ
c
kl, Ncs, Ds}, and current epoch of E docu-

ments.
Initialize ζjk = αk for j = |S|+ 1, · · · , |S|+ E
Iterate eqs. 3.21, 3.18, 3.19, 3.20, and 3.22 until convergence
repeat

Rank splits and merges according to criteria in [UNGH99]
for i = 1 to 10 do

Split i-th ranked candidate topic along principal component
Restricted iteration of eqs. 3.21, 3.18, 3.19, and 3.20 until convergence
Evaluate change in eq. 3.29 resulting from split

end for
for i = 1 to 10 do

Merge i-th ranked pair of topics
Evaluate change in eq. 3.29 resulting from merge

end for
Select split or merge that yielded largest change in eq. 3.29
Iterate eqs. 3.21, 3.18, 3.19, and 3.20 until convergence

until Change in eq. 3.29 is less than threshold

which was chosen to be 1E − 5 in our experiments. The procedure is summarized in

Algorithm 3.5.1.

3.5.2 Compression Phase

The goal of the compression phase is to determine groups of data-points that are

to be summarized by clumps, and to identify documents that are to be merged into

document groups.

Clumps are identified using a greedy top down splitting procedure. Because data-

points summarized by clumps are ultimately discarded, the compression process is

irreversible. Therefore it is of fundamental importance to predict the locations of

future data when deciding which points to clump. In order to estimate this, we

rank cluster splits according to a modified Free Energy (eq. 3.30) in which the data

sample size is artificially increased by a factor TptsP
c Nc

and the number of documents

is scaled by TdocsP
s Ds

, where Tpts and Tdocs are the target number of data-points and

documents expected during the lifetime of the system. This is equivalent to using

42

the data empirical distribution as a predictive model of future data (see Section 2.5.2

for more information.) If we determine clumps using the standard Free Energy, then

the algorithm fails to split large groups of points that are likely to split once more

data has arrived. Instead, it wastes memory by placing “stray” points in their own

clumps.

We initialize the process by hard assigning each clump or data-point to the clus-

ter with highest responsibility during the previous model building phase. We then

proceed through each cluster and split it along the principal component, and refine

this split by iterating restricted variational updates equations for the points in the

cluster. The updates are modified by the data magnification factors:

ξkl =

(
Tpts∑

cNc

)
Fkl + βl (3.23)

ξk0 =

(
Tpts∑

cNc

)
Nk + β0 (3.24)

αk ←
(a− 1) +

(
TdocsP

s Ds

)
αk

∑
j [ψ(ζks)− ψ(αk)]

b+
(

TdocsP
s Ds

)∑
s [ψ(ζs)− ψ(α)]

. (3.25)

Updates for qck and ζks are unchanged. After the clusters are refined, the data-

points are then hard assigned to the sub-cluster with greatest responsibility, and the

proposed split is ranked according to the resultant change in Eq. 3.30. We then

greedily split the cluster with highest rank. The process repeats itself, with new

clusters ranked in the same way described above. We cache the results of each split

evaluation to avoid redundant computation. After we have reached a given memory-

bound we extract the partitions resulting from this recursive splitting procedure as

our new clumps.

Each clump must store sufficient statistics for full covariance Gaussian components

which require d2+3d
2

values, where d is the dimension of the feature space. In addition,

|S| (the number of document groups) values must be stored to represent the counts

Ncs for each clump. Note that from this perspective, it only makes sense to create

clumps within a cluster if it contains more than d+3
2

+ 1
d

data-points. If not, then it is

43

Algorithm 3 Clump Compression (Algorithm 3.2)

Input: Output from model building phase: {qck,Φc
kl, Ncs, Ds}, current epoch of E

documents and memory-bound M .
Hard partition clumps: rc = arg maxk qck
while MC < M (eq. 3.26) do

for i = 1 to K do
Split i-th cluster along principal component
Iterate data magnified restricted updates until convergence
Hard partition clumps into child clusters
Evaluate change in eq. 3.30 resulting from split

end for
Select split that yielded largest change in eq. 3.30
K = K + 1

end while

more efficient to store the individual data-points and we refer to them as “singlets”.

The total memory cost of summarizing the data is then

MC =

(
d2 + 3d

2

)
|Nc > 1|+ |S||Nc > 1|+ d|Nc = 1|, (3.26)

where |Nc > 1| is the number of clumps with more than 1 data-item in them, and

|Nc = 1| is the number of singlets. The clump compression procedure is summarized

in Algorithm 3.5.2.

Document merging provides another way of controlling the memory cost, by re-

ducing the number of image groups |S|. We use the following simple heuristic to rank

the suitability of merging document groups s and s′:

DMs,s′ =

∑
k E[πsk]E[πs′k]

‖E[πs]‖‖E[πs′]‖
. (3.27)

Clumping and document merging enable a number of potential schemes for con-

trolling space and time costs, depending on the application. We note that the time

complexity per variational iteration scales as O(K(|Nc > 1|+ |Nc = 1|) + |S|K) and

the space required to store q(zc) distributions is O(K(|Nc > 1|+ |Nc = 1|)).

44

3.6 Experiments

We test our approach with two machine vision experiments. The first is an image

segmentation task, and the second is an object recognition and retrieval task.

3.6.1 Joint Image Segmentation

Our first experient is a joint image segmentation problem. The dataset is the Faces-

Easy category of the Caltech 101 image dataset [FFFP04] consisting of 435 images.

Each image contains a face centered in the image, but the lighting conditions and

background vary. In terms of the vocabulary of the preceding sections, each image

is a document and each pixel in the image is a word. Pixels are represented as five

dimensional vectors of the following features: X and Y position relative to the center

of the image, and three color coordinates in the CIELAB colorspace. The goal of

our experiment is to find similar image regions across the multiple images, in an

unsupervised way. We emphasize that our main objective is to study the efficiency

of our algorithm, not to produce a state of the art image segmentation algorithm.

The images were scaled to be 200 by 160 pixels in size. Thus, the total size of

the dataset is 32,000 pixels per image, times 435 images, times 5 features per pixel

equals 69,600,000 real numbers. Each pixel requires an assignment distribution. Our

baseline implementation (i.e., a batch algorithm that processes all images in memory

at once and does not use pixel clumping or image merging) was only able to jointly

segment 30 images simultaneously before running out of memory. The majority of

memory is used to store the assignment distributions of pixels, and this is problematic

as the number of topics increases during learning, since the space requirements scale

as O(NK), where N is the total number of pixels and K is the number of topics.

We first compare the memory-bounded approach to the baseline implementation

on a joint segmentation task of 30 images in order to judge the impact of the pixel

clumping approximation. We vary the upper limit on the number of clumps used

to summarize the data during the compression phase, and compare the Free En-

ergy bounds produced by the memory-bounded algorithm to those produced by the

45

0 100 200 300
0.95

0.96

0.97

0.98

0.99

1

Number of clumps

F
re

e
E

ne
rg

y
R

at
io

 v
s.

 B
at

ch

0.2 0.4 0.6 0.8 1
0.975

0.98

0.985

0.99

0.995

1

of groups/total images processed

F
re

e
E

ne
rg

y
R

at
io

 v
s.

 B
at

ch

Figure 3.2: Image segmentation experiment. Left: Free Energy ratio as a function
of the number of clumps permitted by the memory bound. Right: Free Energy ratio
versus the number of image groups relative to the total number of images processed.

baseline implementation. We define the Free Energy ratio as 1− FEbatch−FEmb

|FEbatch|
. This

process was repeated for different subsets of 30 images from the dataset. In the

memory-bounded approach, images were processed in epochs of five images at a time.

Figure 3.2 summarizes the results. We find that performance tends to saturate beyond

a certain number of clumps.

We also note a significant run time advantage of the memory bounded algorithm

over the batch method. The average run time of the batch method was 3.09 hours

versus 0.68 hours for the memory-bounded approach.

Next we study the impact of image (document) merges on the relative performance

of the memory-bounded algorithm versus the baseline batch algorithm, while varying

the maximum number of image (document) groups permitted. The results are shown

in Figure 3.2.

We find little qualitative difference between segmentations produced by the base-

line and memory-bounded algorithms. The possible exception is in the case when the

memory-bounded algorithm is run with a large number of image merges, in which case

the algorithm seemed to discover fewer topics than the batch and memory-bounded

algorithm with only word clumping. Example image segmentations and clump dis-

tributions are shown in Figure 3.3.

46

Figure 3.3: Top row: From left to right: an example segmentation produced by
the baseline method, memory-bounded algorithm with 30% of total images and 125
clumps, and the memory-bounded algorithm with no images merged and 125 clumps.
Row 2: Example clump distributions. Pixels of the same color are summarized in a
single clump. Row 3: segmentations corresponding to clumps in row 2.

Finally, we demonstrate the memory-bounded algorithm on the full dataset of 435

images, which is more than an order of magnitude larger than can be handled with the

baseline algorithm. We process images in epochs of 10 images at a time, for a total of

44 learning rounds. The upper limit on the number of clumps was set to 1000, which

was likely many more than required since there were only 85 inferred topics. Because

the number of documents was relatively small, we chose not to use document merges.

The total run time of the algorithm was 15 hours. Figure 3.4 shows the number of

topics as a function of the number of images processed, and the run time required

during each image round. The run time is longer during learning rounds in which

47

0 100 200 300 400
20

40

60

80

of
 M

od
el

 C
om

po
ne

nt
s

of images processed
0 10 20 30 40

0

10

20

30

40

50

M
in

ut
es

 p
er

 le
ar

ni
ng

 r
ou

nd

Learning round

Figure 3.4: Joint segentation of 435 faces. The left plot shows the number of topics
recovered as the system processes images. The right plot shows the run time for each
learning round. This fluctuates with the number of new topics discovered during each
round and tends to increase gradually with the total number of topics.

more new topics are discovered, because more split-merge operations are necessary.

The memory required for the memory-bounded algorithm was 22 MB to store the

current image epoch and clumps, less than 1MB for the current model estimate, and

235 MB for assignment distributions, for a total of 257 MB. In contrast, the baseline

batch implementation would have required 531 MB to store all 435 images, 8.8155

GB to store assignment distributions for each pixel assuming 85 topics, and less than

1 MB for the model, for a total of 9.3 GB. (All memory amounts assume double

precision floating point.) The memory-bounded implementation, therefore, achieved

a memory savings factor of about 38 with very little loss in accuracy.

Figure 3.5 shows example joint segmentations produced by the memory-bounded

algorithm. These images were retrieved by first computing responsibilities for every

image in the dataset, with respect to the final model estimate produced by the MB

algorithm. Then, the images were sorted according to those that have the most pixels

assigned to the largest topic. The largest topic indeed corresponds to a face, and is

represented by the olive green segment in the figure. Other topics shared across

images include hair and certain backgrounds.

48

Figure 3.5: Examples of joint segmentation produced after processing all Caltech Face
images. Pixels that are the same color have highest responsibility to the same topic.
These images were retrieved by sorting images according to those that have the most
pixels assigned to the largest topic, which is the olive green colored face segment in
each image.

3.6.2 Object Recognition and Retrieval

Our object recognition and retrieval experiment involves all 101 object categories in

the Caltech 101 dataset. We randomly select 3000 training images and 1000 test

images. We extract 128-dimensional SIFT [Low04] local appearance descriptors from

500 randomly chosen locations in each image. The scale of each feature is also chosen

randomly. In the language of topic models, each feature descriptor is a word, and

the collection of feature descriptors in an image forms a document. This image

representation is known as ‘bag-of-features’, because images are modeled as unordered

collections of feature descriptors whose geometric positions are ignored. This dataset

proved too large to compare directly to the batch algorithm

We train a single topic model on all training images, using epochs of 60 images at a

time. Because hundreds of topics are discovered we use diagonal covariance Gaussians

49

and adjust Eq. 3.26 accordingly. Given a test image x̃, retrieval is performed by

ranking each training image’s similarity to the test image. To develop the similarity

measure we begin with log
∏

i p(x̃ij|x), which is the log-probability that the detections

in the test image were generated by training image j given the training set. Then

we variationally lower bound this quantity to obtain a test Free Energy and drop all

constant terms not involving the test image and index j. Finally we lower bound this

quantity by assuming that detections in the test image are hard assigned to the topic

with highest responsibility (this leads to an expression that is much faster to evaluate

with neglible impact on retrieval performance.) The retrieval score is:

score(j) =
∑

i

max
k

{∑
l

E[ηkl|ξkl] φl(x̃ij) (3.28)

− E[Ak(ηk)|ξk0] + ψ(ζkj)

− ψ(
∑

k

ζkj)
}

where the expectations are with respect to q(η) learned during training and ξkl and

ζkj are from training as well. ζkj are re-estimated for images that were merged into a

document group during training. We compute nearest neighbor (1-NN) classification

accuracy by classifying the test image to the class label of the highest scoring image

in the training set.

Figure 3.6 shows the training set Free Energy and 1-NN classfication accuracy

as a function of the memory bound M (measured as the equivalent number of data

points that could be stored in the same space.) Because we used diagonal covariance

matrices, there were enough clumps even at low levels of memory to maintain com-

parable classification performance. We note that the training Free Energy increases

with memory as expected, and that the 1-NN accuracy tends to saturate as memory

increases.

Figure 3.7 shows the 1-NN accuracy and training Free Energy when the percentage

of document groups relative to the number of total images processed is varied (the

memory bound M is held fixed at 10000). We note that the classification performance

50

0 0.5 1 1.5 2

x 10
4

−7.12

−7.1

−7.08

−7.06

x 10
8

Memory Bound

F
re

e
E

ne
rg

y

0 0.5 1 1.5 2

x 10
4

0.32

0.34

0.36

0.38

Memory Bound

1−
N

N
 A

cc
ur

ac
y

Figure 3.6: Object Recognition and Retrieval. Left: Training set Free Energy as a
function of the memory bound. Right: 1-NN classification accuracy as a function
of memory bound (measured as the equivalent number of data-points that could be
stored in the same space)

suffers substantially when only small numbers of document groups are permitted. We

use a heuristic for determining documents to merge (Eq. 3.27). It is possible that

a well-motivated criterion (perhaps derived from the Free Energy) would give better

performance.

3.7 Conclusion

Machine learning has largely focussed on algorithms that run for a relatively short

period of time, fitting models of finite capacity on a data-set of fixed size. We believe

that this scenario is unrealistic if we aim at building truly intelligent systems. We

have identified nonparametric Bayesian models as promising candidates that expand

their model complexity in response to new incoming data. The flip-side is that non-

parametric Bayesian algorithms are ‘example-based’ and as such require one to cache

and process repeatedly every data-case ever seen. The objectives of infinite, adaptive

model capacity on the one hand, and efficiency, both in time and space, on the other

therefore seem to be fundamentally at odds with each other.

In this paper we have made a first step towards resolving this issue by introducing

a class of models that can adapt their model complexity adaptively but are able to do

51

0 0.5 1
−7.085

−7.08

−7.075

−7.07

−7.065

−7.06
x 10

8

F
re

e
E

ne
rg

y

of groups/total images processed
0 0.5 1

0.26

0.28

0.3

0.32

0.34

0.36

0.38

of groups/total images processed

1−
N

N
 A

cc
ur

ac
y

Figure 3.7: Object Recogniton and Retrieval. Left: Training set Free Energy versus
the ratio of document groups to the total number of images processed. Right: 1-NN
classification accuracy versus the ratio of document groups to total number of images
processed

so at a fraction of the memory requirements and processing times necessary for their

batch counterparts. There is no magic of course: with a fixed memory budget there is

a limit to how complex the model can be, but we have shown that one can learn much

larger models reliably with much less memory than a naive implementation would

allow. Moreover, our learning algorithms allow a flexible tradeoff between memory

requirements and model complexity requirements that can be adapted online.

Intuitively, our method may be thought of as a two level clustering process. At

the bottom level, data is clustered into clumps in order to limit time and space

costs. At the top level, clumps are clustered to form topics in order to ensure good

generalization performance.

Potential application areas of the techniques introduced here are manyfold. For

instance, we can imagine learning topic models from very large text corpora or the

world wide web to understand its structure and facilitate fast searching algorithms.

Another exciting direction is to build a taxonomy of visual object categories from a

continuous stream of video data captured by surveillance cameras.

52

3.7.1 Appendix

The following expressions for the Free Energy are used in the main text. Note that

they are only valid after the updates for ξ and ζ have been performed.

F = KB(β)−
∑

k

Bk(Fk + β) +
∑
ks

Ds log

(
Γ(αk)/Γ(αk +

Nks

Ds

)

)
(3.29)

−
∑

s

Ds log

(
Γ(α)/Γ(α+

Ns

Ds

)

)
+
∑
ck

Ncqck log qck

−
∑

k

(
(a− 1)

∑
k

log(αk)− b
∑

k

αk

)

−(Kmax −K)

(
(a− 1) log

a− 1

b
− (a− 1)

)
−Kmax (b log(a)− log Γ(a))

Fc =KB(β)−
∑

k

Bk(

(
Tpts∑

cNc

)
Fk + β) (3.30)

+

(
Tdocs∑

sDs

)∑
ks

Ds log

(
Γ(αk)/Γ(αk +

Nks

Ds

)

)
−
(
Tdocs∑

sDs

)∑
s

Ds log

(
Γ(α)/Γ(α+

Ns

Ds

)

)
+

(
Tpts∑

cNc

)∑
ck

Ncqck log qck

−
∑

k

(
(a− 1)

∑
k

log(αk)− b
∑

k

αk

)

− (Kmax −K)

(
(a− 1) log

a− 1

b
− (a− 1)

)
−Kmax (b log(a)− log Γ(a))

53

Chapter 4

Budgeted Nonparametric Learning
from Data Streams

4.1 Abstract

We consider the problem of extracting informative exemplars from a data stream. Ex-

amples of this problem include exemplar-based clustering and nonparametric inference

such as Gaussian process regression on massive data sets. We show that these prob-

lems require maximization of a submodular function that captures the informativeness

of a set of exemplars, over a data stream. We develop an efficient algorithm, Stream-

Greedy, which is guaranteed to obtain a constant fraction of the value achieved by

the optimal solution to this NP-hard optimization problem. We extensively evaluate

our algorithm on large real-world data sets.

4.2 Introduction

Modern machine learning is increasingly confronted with the challenge of very large

data sets. The unprecedented growth in text, video, and image data demands tech-

niques that can effectively learn from large amounts of data, while still remaining

computationally tractable. Streaming algorithms [GZK05, DH00, GMM+03, COP03]

represent an attractive approach to handling the data deluge. In this model the

learning system has access to a small fraction of the data set at any point in time,

and cannot necessarily control the order in which the examples are visited. This is

54

particularly useful when the data set is too large to fit in primary memory, or if it is

generated in real time and predictions are needed in a timely fashion.

While computational tractability is critical, powerful methods are required in or-

der to learn useful models of complex data. Nonparametric learning methods are

promising because they can construct complex decision rules by allowing the data to

‘speak for itself’. They may use complex similarity measures that capture domain

knowledge while still providing more flexibility than parametric methods. However,

nonparametric techniques are difficult to apply to large datasets because they typi-

cally associate a parameter with every data point, and thus depend on all the data.

Therefore, most algorithms for nonparametric learning operate in batch mode. To

overcome this difficulty, nonparametric learning methods may be approximated by

specifying a budget: a fixed limit on the number of examples that are used to make

predictions.

In this work, we develop a framework for budgeted nonparametric learning that

can operate in a streaming data environment. In particular, we study sparse Gaussian

process regression and exemplar-based clustering under complex, non-metric distance

functions, which both meet the requirements of our framework. The unifying concept

of our approach is submodularity, an intuitive diminishing returns property. When

a nonparametric problem’s objective function satisfies this property, we show that a

simple algorithm, StreamGreedy, may be used to choose examples from a data

stream. We use submodularity to prove strong theoretical guarantees for our algo-

rithm. We demonstrate our approach with experiments involving sparse Gaussian

process regression and large scale exemplar-based clustering of 1.5 million images.

4.3 Problem Statement

We consider the problem of extracting a subset A ⊆ V of k representative items from

a large data set V (which can, e.g., consist of vectors in Rd or other objects such as

graphs, lists, etc.). Our goal is to maximize a set function F that quantifies the utility

F (A) of any possible subset A ⊆ V . We give examples of such utility functions in

55

Section 4.4. Intuitively, in the clustering example, F (A) measures, e.g., the reduction

in quantization error when selecting exemplars A as cluster centers. In Gaussian

process (GP) regression, F (A) measures the prediction performance when selecting

the active set A. As we show below, many utility functions, such as those arising in

clustering and GP regression, satisfy submodularity, an intuitive diminishing returns

property: Adding a cluster center helps more if we have selected few exemplars so

far, and less if we have already selected many exemplars. Formally, a set function F

is said to be submodular, if for all A ⊆ B ⊆ V and s ∈ V \ B it holds that

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B).

An additional natural assumption is that F is monotonic, i.e., F (A) ≤ F (B) whenever

A ⊆ B ⊆ V .

Since the data set V is large, it is not possible to store it in memory, and we hence

can only access a small number of items at any given time t. Let B1, . . . ,BT , . . . be

a sequence of subsets of V , where Bt is the set of elements in V that are available

to the algorithm at time t. Typically |Bt| = m � n = |V|. For example, hardware

limitations may require us to read data from disk, one block Bt of data points at a

time.

We only assume that there is a bound ρ, such that for each element b ∈ V , if

b /∈ Bt ∪ · · · ∪Bt+`, then ` < ρ, i.e., we have to wait at most ρ steps until b reappears.

This assumption is satisfied, for example, if Bt is a sliding window over the data set

(in which case ρ = n), or V is partitioned into blocks, and the Bt cycle through these

blocks (in which case ρ is n/(mini |Bi|)). Our goal is to select at each time t a subset

At ⊆ At−1∪Bt, |At| ≤ k, in order to maximize F (AT) after some number of iterations

T . Thus, at each time t we are allowed to pick any combination of k items from both

the previous selection At−1 and the available items Bt, and we would like to maximize

the final value F (AT).

Our streaming assumptions mirror those of [COP03], in that we assume a finite

data set in which data items may be revisited although the order is not under our

56

control. For certain submodular objectives (FV and FC but not FH , see Section 4.4)

we require the additional assumption that we may access data items uniformly at

random (see Section 4.5).

Note that even if B1 = · · · = BT = V , i.e., access to the entire data set is always

available, the problem of choosing a set

A∗ = argmax
|A|≤k

F (A)

maximizing a submodular function F is an NP-hard optimization problem [Fei98].

Hence, we cannot expect to efficiently find the optimal solution in general. The

setting where Bt (V is strictly more general and thus harder. In this paper, we will

develop an efficient approximation algorithm with strong theoretical guarantees for

this problem.

4.4 Examples of Online Budgeted Learning

In this section, we discuss concrete problem instances of the streaming budgeted

learning problem, and the corresponding submodular objective functions F .

Active set selection in GPs. Gaussian processes have been widely used as a

powerful tool for nonparametric regression [RW06, Cre91]. Formally, a Gaussian

process (GP) is a joint probability distribution P (XV) over a (possibly infinite) set of

random variables XV indexed by a set V , with the property that every finite subset

XA for A = {s1, . . . , sk}, A ⊆ V is distributed according to a multivariate normal

distribution, P (XA = xA) = N (xA;µA,ΣAA), where µA = (M(s1), . . . ,M(sk)) is the

prior mean and

ΣAA =

K(s1, s1) . . . K(s1, sk)

...
...

K(sk, s1) . . . K(sk, sk)

57

is the prior covariance, parameterized through the positive definite kernel function K.

In GP regression, each data point s ∈ V is interpreted as a random variable in a GP.

Based on observations XA = xA of a subset A of variables, the predictive distribution

of a new data point s ∈ V is a normal distribution P (Xs | XA = xA) = N (µs|A;σ2
s|A),

where

µs|A = µs + ΣsAΣ−1
AA(xA − µA) (4.4.1)

σ2
s|A = σ2

s − ΣsAΣ−1
AAΣAs, (4.4.2)

and ΣsA = (K(s, s1), . . . ,K(s, sk)) and ΣAs = ΣT
sA. Computing the predictive dis-

tributions according to (4.4.1) is expensive, as it requires ‘inverting’ (finding the

Cholesky decomposition) of the kernel matrix ΣAA, which, in general requires Θ(|A|3)

floating point operations. Reducing this computational complexity (and thereby

enabling GP methods for large data sets) has been subject of much research (see

[RW06]).

Most approaches for efficient inference in GPs rely on choosing a small active set

A of data points for making predictions. For example, the informative vector machine

(IVM) uses the set A that maximizes the information gain

FH(A) = H(XV)−H(XV | XA), (4.4.3)

or, equivalently, the entropy H(XA) of the random variables associated with the

selected data points A. It can be shown, that this criterion is monotonic and sub-

modular [See04]. While efficiently computable, the IVM criterion FH only depends

on the selected data points, and does not explicitly optimize the prediction error of

the non-selected examples V \ A.

An alternative is to choose data points which minimize the prediction accuracy

on the non-selected data: L̂(A) =
∑

s∈V\A(xs−µs|A)2. If the data points V are drawn

from some distribution P (s), then this criterion can be seen as a sample approximation

58

to the expected variance reduction,

L̂(A) ≈
∫
P (s)

∫
P (xs | xA)(xs − µs|A)2dsdxs

=

∫
P (s)σ2

s|Adxs = L(A).

It can be shown, that under certain assumptions on the kernel function, the expected

variance reduction

FV (A) = L(∅)− L(A) (4.4.4)

is a monotonic submodular function.

Exemplar-based clustering with complex distance functions on data streams.

In exemplar clustering problems, the goal is to select a set of examples from the data

set that are representative of the data set as a whole. Exemplar clustering is partic-

ularly relevant in cases where choosing cluster centers that are averages of training

examples (as in the k-means algorithm) is inappropriate or impossible (see [DF07] for

examples). The k-medoid [KR90] approach seeks to choose exemplars that minimize

the average dissimilarity of the data items to their nearest exemplar:

L(A) =
1

|V|
∑
s∈V

min
c∈A

d(xs,xc). (4.4.5)

This loss function can be transformed to a monotonic submodular utility function by

introducing a phantom exemplar x0 which may not be removed from the active set,

and defining the utility function

FC(A) = L({x0})− L(A ∪ {x0}). (4.4.6)

This measures the decrease in the loss associated with the active set versus the loss

associated with just the phantom exemplar, and maximizing this function is equiva-

lent to minimizing (4.4.5). The dissimilarity function d(x,x′) need only be a positive

function of x and x′, making this approach potentially very powerful.

59

4.5 StreamGreedy for Budgeted Learning from

Data Streams

If, at every time, full access to the entire data set V is available, a simple approach

to selecting the subset AT would be to start with the empty set, A0 = ∅, and, at

iteration t, greedily select the element

st = argmax
s∈V

F (At−1 ∪ {s}) (4.5.1)

for t ≤ k, and At = At−1 for t > k. Perhaps surprisingly, this simple greedy algorithm

is guaranteed to obtain a near-optimal solution: [NWF78] prove that for the solution

AT , for any T ≥ k, obtained by the greedy algorithm it holds that F (AT) ≥ (1 −

1/e) max|A|≤k F (A), i.e., it achieves at least a constant fraction of (1 − 1/e) of the

optimal value. In fact, no efficient algorithms can provide better approximation

guarantees unless P=NP [Fei98].

Unfortunately, the greedy selection rule (4.5.1) requires access to all elements of

V , and hence cannot be applied in the streaming setting. A natural extension to

the streaming setting is the following algorithm: Initialize A0 = ∅. For t ≤ k, set

At ← At−1 ∪ {st}, where

st = argmax
s∈Bt

F (At−1 ∪ {s}). (4.5.2)

For t > k, let

(s′, s) = argmax
s′∈At−1,s∈At−1∪Bt

F (At−1 \ {s′} ∪ {s}), (4.5.3)

and set At = At−1 \ {s′} ∪ {s}, i.e., replace item s′ by item s in order to greedily

maximize the utility. Stop after no significant improvement (at least η for some small

value η > 0) is observed after a specified number ρ of iterations. StreamGreedy is

summarized in Algorithm 4.

60

Algorithm 4 StreamGreedy

Initialize active set A0 = ∅; Bound ρ on wait time
for t = 1 : k do

Set st = argmaxs∈Bt
F (At−1 ∪ {s})

Set At ← At−1 ∪ {st}
end for
Set NI = 0
while NI ≤ ρ do

Set (s′, s) = argmax
s′∈At−1,s∈At−1∪Bt

F (At−1 \ {s′} ∪ {s})

Set t← t+ 1; At = At−1 \ {s′} ∪ {s}
if F (At) > F (At−1) + η then

Set NI = 0
else

Set NI = NI + 1
end if

end while

Dealing with limited access to the stream. So far, we have assumed that

StreamGreedy can evaluate the objective function F for any candidate set A.

While the IVM objective FH(A) for active set selection in GPs (see Section 4.4) only

requires access to the selected data points A, evaluating the objectives FC and FV

requires access to the entire data set V . However, these objective functions share

a key property: They additively decompose over the data set. Hence, they can be

written in the form

F (A) =
1

|V|
∑
s∈V

f(A,xs)

for suitable function f such that f(·,xs) is submodular for each input xs. If we assume

that data points xs are generated i.i.d. from a distribution and f is a measurable

function of xs, then f(A,xs) are themselves a series of i.i.d. outcomes of a random

variable. Moreover, the range of random variables f(A,xs) is bounded by some

constant B (for clustering, B is the diameter of the data set; for GP regression, B

is the maximum prior marginal variance). We can construct a sample approximation

F̂ (A) = 1
|W|
∑

s∈W f(A,xs) by choosing a validation setW uniformly at random from

the stream V .

The following corollary of Hoeffding’s inequality adapted from [SMS99] bounds

61

the deviation between F̂ (A) and F (A):

Corollary 1 ([SMS99]). Let c =
B2 log(2

δ
)

2|V|ε2 and δ > 0. Then, with probability 1− δ for

|W| = c
1+c
|V|: ∣∣∣∣ 1

|W|
F̂ (A)− 1

|V|
F (A)

∣∣∣∣ < ε

.

The result relates the level of approximation to the fraction of the data set that is

needed for validation. As the number of elements in the stream |V| increases, smaller

fractions are needed to reach a given accuracy. Because this result holds for any

(bounded) data distribution, it is usually pessimistic; in practice, smaller validation

sets often suffice. Furthermore, this sample-based approximation only requires a

constant amount of memory: When xs arrives from the stream, f(A,xs) may be

added to a sufficient statistic and xs itself may be discarded.

4.6 Theoretical Analysis

Clustering-consistent objectives. For clarity of notation, we will consider the

setting where Bt = {bt} contains only a single element bt ∈ V . The results generalize

to sets Bt containing more elements.

We first show that for an interesting class of submodular functions, the algorithm

actually converges to the optimal solution. Suppose, the data set V can be partitioned

into a set of clusters, i.e., V = C1 ∪ · · · ∪ CL, where Ci ∩ Cj = ∅. We call a monotonic

submodular function F clustering-consistent for a particular clustering C1, . . . , CL, if

the following conditions hold:

1. F (A) =
∑L

`=1 F (A ∩ C`), i.e., F decomposes additively across clusters.

2. Whenever for two sets A,B ⊆ V such that B = A ∪ {s} \ {s′}, s ∈ Ci, s′ ∈ Cj,

i 6= j it holds that if |A ∩ Cj| > 1 and A ∩ Ci = ∅, then F (A) ≤ F (B).

Intuitively, a submodular function F is clustering-consistent, if it is always preferable

62

to select a representative from a new cluster than having two representatives of the

same cluster.

Proposition 2. Suppose F is clustering-consistent for V and k ≤ L. Then, for

T = 2ρ it holds for all sets At, t ≥ T returned by StreamGreedy (for η = 0) that

F (At) = max
|A|≤k

F (A).

The proofs can be found in this chapter’s Appendix. Thus, for clustering-consistent

objectives F , if the data set really consists of L clusters, and we use StreamGreedy

to select a set of k ≤ L exemplars, then StreamGreedy converges to the optimal

solution after at most two passes through the data set V .

A key question is which classes of objective functions are clustering-consistent.

In the following, suppose that the elements in V are endowed with a metric d. The

following proposition gives interesting examples:

Proposition 3. Suppose V = C1 ∪ · · · ∪ CL, |Ci| < α|Cj| for all i, j. Further suppose

that

max
i

diam(Ci) < βmin
i,j

d(Ci, Cj)

for suitable constants α and β, where d(Ci, Cj) = minr∈Ci,s∈Cj
d(r, s) and diam(Ci) =

maxr,s∈Ci
d(r, s). Then the following objectives from Section 4.4 are clustering-consistent

with V = C1 ∪ · · · ∪ CL:

• The clustering objective FC, whenever maxx∈Ci
d(x,x0) ≤ minj d(Ci, Cj) for all

i, j, where x0 is the phantom exemplar.

• The entropy FH and variance reduction1 FV for Gaussian process regression

with squared exponential kernel functions with appropriate bandwidth σ2, and

where d is the Euclidean metric in Rd.

Intuitively, Propositions 2 and 3 suggests that in situations where the data actually

exhibits a well-separated, balanced clustering structure, and we are interested in

1under the condition of conditional suppressor-freeness [DK08]

63

selecting a number of exemplars k consistent with the number of clusters L in the

data, we expect StreamGreedy to perform near-optimally.

General submodular objectives. However, the assumptions made by Proposi-

tions 2 and 3 are fairly strong, and likely violated by the existence of outliers, overlap-

ping and imbalanced clusters, etc. Furthermore, when using criteria such as FC and

FV (Section 4.4), it is not possible to evaluate F (A) exactly, but only up to additive

error ε. Perhaps surprisingly, even in such more challenging settings, the algorithm

is still guaranteed to converge to a near-optimal solution:

Theorem 4. Let η > 0. Suppose F is monotonic submodular on V, and we have

access to a function F̂ such that for all A ⊆ V, |A| ≤ 2k it holds that |F̂ (A)−F (A)| ≤

ε. Furthermore suppose F is bounded by B. Then, for T = ρB/η it holds for all sets

At, t ≥ T selected by StreamGreedy applied to F̂ that

F (At) ≥
1

2
max
|A|≤k

F (A)− k(ε+ η).

Thus, e.g., in the case where bt = st mod n, i.e., if StreamGreedy sequentially

cycles through the data set V , at most B/η passes (typically it will stop far earlier)

through the data set will suffice to produce a solution that obtains almost half the

optimal value. The proof relies on properties of the pairwise exchange heuristic for

submodular functions [NWF78]. See this chapter’s Appendix for details.

4.7 Experimental Results

Exemplar-based streaming clustering. Our exemplar-based clustering experi-

ments involve StreamGreedy applied to the clustering utility FC (Eq. 4.4.6) with

d(x,x′) = ||x−x′||2. The implementation can be made efficient by exploiting the fact

that only a subset of the validation points (see Section 4.5) change cluster member-

ship for each candidate swap. We have also implemented an adaptive stopping rule

that is useful when determining an appropriate size of the validation set. Please see

64

0 0.5 1 1.5 2

x 10
5

1

1.2

1.4

1.6

1.8
x 10

4

U
til

ity

Points processed

StreamGreedy

Online k−meansBatch k−means

0 0.5 1 1.5 2

x 10
5

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

U
til

ity

Points processed

Online K−means (nearest medoid)

Batch K−means (nearest medoid)

StreamGreedy

0 0.2 0.4 0.6 0.8 1 1.2

0.94

0.96

0.98

1

T
es

t U
til

ity
 r

el
at

iv
e

to
 fu

ll
da

ta
 s

et

Validation Set Size (percentage of full data set)

K=200

K=100

K=20

K=50

Figure 4.1: Top and Center: Convergence rates on MNIST data set. The y-axis
represents the clustering utility evaluated on the training set. The x-axis shows the
number of data items processed by StreamGreedy and online k-means. K-means’
unconstrained centers yield better quantization performance. When k-means’ centers
are replaced with the nearest training set example, the advantage disappears (center).
Bottom: Test performance versus validation set size. It is possible to obtain good
generalization performance even using relatively small validation sets. The validation
set size is varied along the x-axis. The y-axis shows test utility divided by the test
utility achieved with the entire data set used for validation. As K increases, more
validation data is needed to achieve full performance.

65

this chapter’s Appendix II for details.

Our first set of experiments uses MNIST handwritten digits with 60,000 training

images and 10,000 test images.2 The MNIST digits were preprocessed as follows: The

28 by 28 pixel images are initially represented as 784 dimensional vectors, and the

mean of the training image vectors was subtracted from each image; then the resulting

vectors are normalized to unit norm. PCA was performed on the normalized training

vectors and the first 50 principal components coefficients were used to form feature

vectors. The same normalization procedure was performed on the test images and

their dimensionality was also reduced using the training PCA basis.

Figure 4.1 compares the performance of our approach against batch k-means and

online k-means [Das09] with the number of exemplars set to K = 100. We chose the

origin as the phantom exemplar in this experiment, since this yielded better overall

quantization performance than choosing a random exemplar. To unambiguously as-

sess convergence speed we use the entire training set of 60,000 points as the validation

set. We assess convergence by plotting (4.4.6) against the number of swap candidates

(
∑T

t=1 |Bt|) considered. We find that our algorithm converges to a solution after ex-

amining nearly the same number of data points as online k-means, and is near its final

value after a single pass through the training data. Similar convergence was observed

for smaller validation sizes. The top plot in Figure 4.1 shows that k-means performs

better in terms of quantization loss. This is probably because StreamGreedy must

choose exemplar centers from the training data, while k-means center locations are

unconstrained. When the k-means’ centers are replaced with the nearest training

example (center plot), the advantage disappears. The bottom plot in Figure 4.1 ex-

amines the impact of validation set size on quantization performance on the held out

test set, measured as test set utility ((4.4.6) where V is the test set). It is possible

to obtain good generalization performance even when using a small validation set.

The y-axis indicates test performance relative to the performance attained with the

full data set at the specified value of K (1.0 indicates equal performance, values less

than one indicate worse performance than the full set), and the x-axis is plotted as

2MNIST was downloaded from http://yann.lecun.com/exdb/mnist/.

66

50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

4

C
lu

st
er

 s
iz

e
(#

m
em

be
rs

)

Cluster rank
50 100 150 200

0

2

4

x 10
4

Cluster rankC
lu

st
er

 s
iz

e
(#

m
em

be
rs

)

Figure 4.2: Tiny Image data set. Top Left: Cluster exemplars discovered by Stream-
Greedy, sorted according to descending size. Top Right: Cluster centers from online
kmeans (singleton clusters omitted). Bottom Left: Cluster sizes (number of mem-
bers) for our algorithm. Bottom Right: Cluster sizes for online k-means. Online
k-means finds a poor local minima with many of the 200 clusters containing only a
single member.

the relative size of the validation set versus the full set. We find that as the number

of centers K increases, a larger fraction of the data set is needed to approach the

performance with the full set. This appears to be because as K increases, the numer-

ical differences between FC(At−1 \ {s′} ∪ {s}) for alternative candidate swaps (s, s′)

decrease, and more samples are needed in order to stably rank the swap alternatives.

Our second set of experiments involves approximately 1.5 million Tiny Images3

(described in [TFF08]), and is designed to test our algorithm on a large scale dataset.

Each image in the dataset was downloaded by Torralba et al. from an Internet search

engine and is associated with an English noun query term. The 32 by 32 RGB pixel

images are represented as 3,072 dimensional vectors. Following [TFF08], we subtract

from each vector its mean value (average of all components), then normalize it to

unit norm. No dimensionality reduction is performed. We generate a random center

3http://people.csail.mit.edu/torralba/tinyimages/

67

Figure 4.3: Examples from Tiny Image cluster 26. Left: 100 examples nearest to
exemplar 26. Right: 100 randomly sampled images from cluster 26

to serve as the phantom exemplar for this experiment, since we find that this leads to

qualitatively more interesting clusters than using the origin4.

Figure 4.2 (left) shows K = 200 exemplars discovered by our algorithm. Clusters

are organized primarily according to non-semantic visual characterstics such as color

and basic shape owing to the simple sum of squared differences similarity measure

employed (Figure 4.3). We set the validation size to one-fifth of the data set. This was

determined by examining the stability of argmaxs′∈At−1,s∈At−1∪Bt
FC(At−1 \{s′}∪{s})

as validation data was progressively added to the sums in FC , which tends to stabilize

well before this amount of data is considered. The algorithm was halted after 600

iterations (each considering |Bt| = 1, 000 candidate centers). This was determined

based on inspection of the utility function, which converged before a single pass

through the data. We compare against the online k-means algorithm with 200 centers

initialized to randomly chosen images, and run through a single pass over the data.

We find that online k-means converges to a suboptimal solution in which many of the

clusters are empty or contain only a single member (see Figure 4.2.)

4We find that a random phantom exemplar is unlikely to be chosen as a prototype, while one
near the origin is the prototype for a significant fraction of the data.

68

5 10 15 20 25 30 35 40
1.76

1.78

1.8

1.82

1.84x 10
6

U
til

ity

Run time (hours)

Online K−means

StreamGreedy

Figure 4.4: Utility score versus run time on the Tiny Images data set. We find that the
performance of StreamGreedy tends to saturate with run time, which is determined
by varying the number of items presented by the stream at each iteration (|Bt|) and
the validation set size (|W|). StreamGreedy outperforms online K-means at all
run time settings.

69

200 400 600 800 1000

0.1

0.05

0.03

0.02

K (active set size)

Te
st

 M
SE

|W|=2000
|W|=6000
|W|=10000
FH

Figure 4.5: Gaussian process regression. The y-axis is the mean squared prediction
error evaluated over the held out test set. The x-axis is the size of the active set.
Performance is plotted for the FV objective at varying validation set sizes (|W|). We
find that when the active set size is small the performance is similar across validation
size settings. As the active set size increases, performance is enhanced as the valida-
tion set size increases. The FH objective (circles) does not require a validation set,
and the performance gap between FV decreases as the active set size increases.

70

In Figure 4.4 we assess the tradeoff between run time and performance by varying

the parameter |Bt| = {500, 1000, 2000} and the validation set size as {10%, 20%, 40%}

of the data set. The number of centers and iterations are fixed at 200 and 600,

respectively. Our Matlab StreamGreedy implementation was run on a quad-core

Intel Xeon server. Performance for each parameter setting is visualized as a point

in the test utility versus run time plane, and only the Pareto optimal points are

displayed for clarity. Online k-means is also shown for comparison. We find that

StreamGreedy achieves higher utility at less running time, and a clear saturation

in performance occurs as run time increases.

Online active set selection for GP regression. Our Gaussian process regres-

sion experiments involve specialization of StreamGreedy for the objective function

FV in Section 4.4. The implementation can be made more efficient by using Cholesky

factorization on the covariance matrix combined with rank one updates and down-

dates. Please see this chapter’s Appendix for details. We used the KIN40K dataset5

which consists of 9 attributes generated by a robotic arm simulator. We divide the

dataset into 10,000 training and 30,000 test instances. We follow the preprocess-

ing steps outlined by [SWL03] in order to compare our approach to the results in

that study. We used the squared exponential kernel with automatic relevance de-

termination (ARD) weights and learn the hyperparameters using marginal likelihood

maximization [RW06] on a subset of 2,000 training points, again following [SWL03].

Figure 4.5 shows the mean squared error predictive performance 1
2

∑
s(ys − µs)

2

on the test set as a function of the size of the active set. Comparing our results to the

experiments of [SWL03], we find that our approach outperforms the info-gain criterion

for active set size K = {200, 400, 600} at all values of the validation set size |W| =

{2000, 6000, 10000}. At values K = {800, 1000} our approach outperforms info-gain

for |W| = {6000, 10000}. Our performance matches [SB00] at K = {200, 400} but

slightly underperforms their approach at larger values of K. We find that even for

|W| = 2, 000, the algorithm is able to gain predictive ability by choosing more active

5Downloaded from http://ida.first.fraunhofer.de/ anton/data.html

71

examples from the data stream. The performance gap between |W| = 6, 000 and

|W| = 10, 000 is quite small.

4.8 Related Work

Specialization of StreamGreedy to the clustering objective FC (4.4.6) yields an

algorithm which is similar to the Partitioning Around Medoids (PAM, [KR90]) algo-

rithm for k-medoids, and related algorithms CLARA [KR90] and CLARANS [NH02].

Like our approach, these algorithms are based on repeatedly exchanging centers for

non-center data points if the swap improves the objective function. Unlike our ap-

proach, however, no performance guarantees are known for these approaches. PAM

requires access to the entire data set, and every data point is exhaustively examined

at each iteration, leading to an approach unsuitable for large databases. CLARA

runs PAM repeatedly on subsamples of the data set, but then makes use of the entire

dataset when comparing the results of each PAM run. Like our algorithm, CLARANS

evaluates a random subset of candidate centers at each iteration, but then makes use

of the entire data set to evaluate candidate swaps. Our approach takes advantage of

the i.i.d. concentration behavior of the clustering objective in order to eliminate the

need for accessing the entire data set, while still yielding a performance guarantee.

[DH01] exploit the concentration behavior of the (non-exemplar) k-means objective

in a similar way. While there exist online algorithms for k-medoids with strong theo-

retical guarantees [COP03], these algorithms require the distance function d to be a

metric, and the memory to grow (logarithmically) in |V|. In contrast, our approach

uses arbitrary dissimilarity functions and the memory requirements are independent

of the data set size.

Specialization of StreamGreedy to sparse GP inference is an example of the

subset of datapoints class of sparse Gaussian process approximations [RW06], in which

the GP predictive distribution is conditioned on only the datapoints in the active set.

[SWL03] also use a subset of datapoints approach that makes use of a submodu-

lar [See04] utility function (the entropy of the Gaussian distribution of each site in

72

the active set). This approach is computationally cheaper than ours in that the eval-

uation criterion does not require a validation set, but depends only on the current

active set. Seeger et al.’s approach also fits the framework proposed by this paper,

and our approach could be used to optimize this objective over data streams. [SB00]

use a subset of regressors approach. Their criterion for greedy selection of regressors

has the same complexity as our approach if we use the entire data set for validation.

Our approach is cheaper when we make use of a limited validation set. [CO02] develop

an approach for online sparse GP inference based on projected process approximation

that also involves swapping candidate examples into an active set, but without per-

formance guarantees. See [RW06] for a survey of other methods for sparse Gaussian

process approximation.

StreamGreedy’s structure is similar to the algorithm by [WBB05] for online

learning of kernel perceptron classifiers, in that both approaches make use of a fixed

budget of training examples (the active set) that are selected by evaluating a loss

function defined over a limited validation set.

[NWF78] analyzed the greedy algorithm and a pairwise exchange algorithm for

maximizing submodular functions. As argued in Section 4.5, these algorithms do not

apply to the streaming setting. [SG08] develop an online algorithm for maximizing

a sequence of submodular functions over a fixed set (that needs to be accessed every

iteration). Our approach, in contrast, maximizes a single submodular function on a

sequence of sets, using bounded memory.

4.9 Conclusions

We have developed a theoretical framework for extracting informative exemplars from

data streams that led to StreamGreedy, an effective algorithm with strong theo-

retical guarantees. We have shown that this framework can be successfully specialized

to exemplar-based problems and nonparametric regression with Gaussian processes.

In the case of clustering, our experiments demonstrate that our approach is capable of

discovering meaningful clusters in large high-dimensional data sets, while remaining

73

computationally tractable. Our sparse Gaussian process regression algorithm is com-

petitive with respect to other approaches and is capable of operating in a streaming

data environment. Future work involves discovering other machine learning problems

that fit the framework (including classification) and exploring alternative ways to

approximately evaluate submodular functions without full access to a large data set.

4.10 Appendix I: Proofs

Proof of Proposition 2. Suppose F is clustering-consistent for clustering C1, . . . , CL.

We prove Proposition 2 in two steps:

Let T1 be such that at least one element b ∈ Ci has been encountered for each

cluster Ci. Then, for the solution AT1 it holds that |Ci ∩AT1| ≤ 1 for each i, i.e., AT1

contains at most one representative of each cluster: Let ti be the smallest index such

that bti ∈ Ci (i.e., the first iteration where a representative of cluster i appears in the

stream). W.l.o.g., assume that t1 < t2 < · · · < tL ≤ T1. For any set A ⊆ V , let

r(A) = |{i : Ci ∩ A 6= ∅}|

denote the number of clusters from which at least one representative has been selected.

By definition of clustering-consistency, it can be seen that for the sequence of sets

A1, . . . ,AT chosen by StreamGreedy it holds that r(A1) ≤ · · · ≤ r(AT), i.e., it

is never preferable to remove a single representative s of cluster Ci in order to have

multiple representatives of some cluster Cj. Moreover, it can be seen that

r(At`) = min{`, k}.

Note that T1 ≤ ρ.

For the second step, note that for each t ≥ T1, it holds that r(At) = k, i.e., k

clusters will be represented, i.e., no set At will contain more than one exemplar from

74

any cluster i. Let

s∗i = argmax
s∈Ci

F ({s})

be the (w.l.o.g. unique) highest scoring representative of cluster i. Assume, w.l.o.g.,

that F ({s∗1}) ≥ F ({s∗2}) ≥ · · · ≥ F ({s∗L}). Due to the first condition of cluster-

consistency (additive decomposition), it can be seen that

F ({s∗1, . . . , s∗k}) = max
|A|≤k

F (A).

Let t∗i ≥ T1 be the smallest integer such that bt∗i = s∗i where the element s∗i appears

in the stream. It can be seen that, for all ` ≤ k and for all t ≥ t∗` it holds that

s∗` ∈ At, hence at time T = tk it must hold that F (AT) = max|A|≤k F (A). Note that

T ≤ 2ρ.

Proof of Proposition 3. First consider the clustering objective F = FC . Let

Li(A) =
∑
s∈Ci

min
c∈A∪{x0}

d(xs,xc)

be the loss associated with cluster Ci. Let A ⊆ Ci. Note that if s ∈ Cj for j 6= i,

then Li(A ∪ {s}) = Li(A), since d(xs′ ,x0) ≤ d(xs′ ,xs) for all s′ ∈ Ci. Hence, for any

A ⊆ V , F (A) =
∑L

`=1 F (A ∩ C`). Now suppose A ⊆ Ci and s ∈ Ci \ A. Then

F (A ∪ {s})− F (A) ≤ |Ci| diam(Ci).

On the other hand, if s ∈ Cj, then

F ({j}) ≥ |Cj|(d(x0, Cj)− diam(Cj)).

Hence, choosing

α =
mini d(x0, Ci)−maxj diam(Cj)

mini diam(Ci)

75

suffices to prove cluster-consistency of FC . Choosing

β =
mini d(x0, Ci)
mini,j d(Ci, Cj)

suffices to ensure that α > 0.

Now let us consider active set selection on GP regression. Under the squared

exponential kernel with bandwidth h,

K(s, s′) = η2 exp(−d(s, s′)2/h2),

for any ε > 0, there is a constant c, such that for two sets A,B with d(A,B) > ch, it

holds that |H(XA,XB)−H(XA)−H(XB)| < ε, and similarly |σ2
s−σ2

s|A| ≤ ε, whenever

s ∈ B. This proves the additive decomposition property (up to arbitrarily small error

ε; Proposition 2 can be generalized to accommodate this arbitrarily small error). Let

Li(A) =
∑

s∈Ci
[σ2

s − σ2
s|A]. Now, there exists a constant c′ such that if diam(Ci) < c′h

then for any s ∈ Ci and γ < 1 it holds that Li({s}) < γ|Ci|η2, and thus

F ({s}) > (1− γ)|Ci|.

Similarly, for any A ⊆ Ci and s ∈ Ci \ A,

F (A ∪ {s})− F (A) < γ|Ci|,

proving cluster-consistency for appropriate choice of α. A similar reasoning can be

used to prove cluster-consistency of the IVM objective FH .

Proof of Theorem 4. StreamGreedy can be interpreted as an instance of the pair-

wise exchange heuristic for submodular functions, which iteratively replaces a se-

lected element by a non-selected element until no further improvement in score is

possible, with the difference that the choice of candidate elements for replacement is

determined by the data stream. The proof of Theorem 4 is thus analogous to the

analysis of the pairwise exchange heuristic for submodular functions by [NWF78],

76

exploiting the key insight that the ordering in which pairwise exchanges are per-

formed is immaterial for the performance guarantee of the pairwise exchange heuris-

tic. The proof below also accommodates the fact that F is only evaluated up to

small additive error ε (by means of F̂), and improvement of at least η is required

for each exchange. Let T be index such that At = AT for all sets At, t ≥ T ,

chosen by StreamGreedy. Such a T must exist, since F (At+1) ≥ F (At) for

all t, and At+1 6= At only if F (At+1) ≥ F (At) + η, and F (V) is bounded. Con-

struct an ordering s1, . . . , sk such that si ∈ argmaxs∈AT
F ({s1, . . . , si−1, s}). Also let

A∗ = {r1, . . . , rk} such that F (A∗) = max|A|≤k F (A). Let S = {s1, . . . , sk−1}, and

δi = F ({s1, . . . , si}) − F ({s1, . . . , si−1}). Note that δi ≤ δi−1, due to submodularity

and the fact that s1, . . . , sk are in greedy order. Now, due to submodularity and

monotonicity of F it holds that

F (A∗) ≤ F (A∗ ∪ S)

≤ F (S) +
k∑

i=1

[F (S ∪ {ri})− F (S)]

≤ F (S) + k (δk + ε+ η) (4.10.1)

≤ F (S) +
k∑

i=1

δi (4.10.2)

= F (S) + F (S ∪ {sk})

≤ 2F (AT)

where inequality (4.10.1) follows from the fact that StreamGreedy did not replace

sk by any element ri from the optimal solution A∗. Note that after ρ iterations, F (At)

must increase by at least η, or StreamGreedy will stop. Hence, T ≤ ρF (V)/η ≤

ρB/η.

77

4.11 Appendix II: Implementation Details

4.11.1 Clustering

When determining the swap to perform at iteration t > K, we maintain the following

quantities from iteration t− 1:

• The distance of each validation point i ∈ W to its cluster exemplar:

mi = min
c∈At−1∪{x0}

d(xi,xc). (4.11.1)

• The identity of each validation point’s exemplar:

zi = arg min
c∈At−1∪{x0}

d(xi,xc). (4.11.2)

• The distance of each validation point to its second nearest exemplar

oi = min
c∈At−1∪{x0}\zi

d(xi,xc). (4.11.3)

We then compute the dissimilarity of each candidate in Bt to the points in the vali-

dation setW which requires O(|Bt||W|cost{d}) operations (where cost{d} is the cost

associated with computing the dissimilarity d(x,x′)). We then score each of the K|Bt|

potential swaps (indexed by s ∈ Bt and s′ ∈ At−1) by computing

L(At−1 \ {s′} ∪ {s,x0})

= L(At−1 \ {s′} ∪ {s,x0})− L(At−1 ∪ {s,x0})

+ L(At−1 ∪ {s,x0})− L(At−1 ∪ {x0})

+ L(At−1 ∪ {x0}).

78

This can be done in O(|W|) operations since the decrease in loss due to adding center

s

L(At−1 ∪ {s,x0})− L(At−1 ∪ {x0})

=
∑

i:d(xi,xs)<mi

d(xi,xs)−mi

and the increase in loss associated with removing center s′

L(At−1 \ {s′} ∪ {s,x0})− L(At−1 ∪ {s,x0})

=
∑

i:zi=s′∧[d(xi,xs′)<d(xi,xs)]

oi −mi

require O(|W|). The third term L(At−1 ∪ {x0}) =
∑

i∈W mi doesn’t depend on s or

s′. The total cost for iteration t is O(K|Bt||W|+ |Bt||W|cost{d}).

4.11.2 GP Regression

At each iteration t we retain from iteration t − 1 the Cholesky decomposition of

ΣAt−1,At−1 = RT
t−1Rt−1, where Rt−1 is an upper right triangular matrix, as well as

the output of the kernel function K evaluated between points in W and At−1. We

compute K between each member of Bt and W as well as between Bt and At−1 in

O((|W|+K)|Bt|cost(K)).

For each candidate swap indexed by s ∈ Bt and s′ ∈ At−1, we compute R
(s,s′)
t−1

which is the Cholesky decomposition of ΣAt−1\s′∪{s},At−1\s′∪{s} with a downdate of

element s′ and update of element s performed in O(K2) operations. The prediction

weight vector

Σ−1
At−1\s′∪{s},At−1\s′∪{s}xAt−1\s′∪{s}

can be computed in O(K2) operations using two forward substitutions, which corre-

sponds to matrix right division in Matlab:

R
(s,s′)
t−1 \([R

(s,s′)
t−1]T\xAt−1\s′∪{s}).

79

The candidate swaps are scored according to
∑

i∈W(xi − µi|At−1\s′∪{s})
2 in O(K|W|).

The total cost for iteration t is O((|W|+K)|Bt|cost(K)+K3|Bt|+K2|Bt||W|). We

are exploring ways to reduce this cost that involve identifying and evaluating only a

fraction of the K|Bt| possible swaps, while still maintaining convergence guarantees.

4.11.3 Adaptive Stopping Rule

We have implemented an adaptive stopping rule based on updating a sufficient statis-

tic F̂ (At−1 ∪ {s} \ {s′}) =
∑

i∈W f(At−1 ∪ {s} \ {s′},xi) for each swap candidate

(indexed by s ∈ Bt and s′ ∈ At−1). Each time a data point xi arrives from the

stream, f(At−1 ∪ {s} \ {s′},xi) is added to its corresponding sufficient statistic. We

define an algorithm failure probablity δ̂, and use Lemma 1 with δ = δ̂
A

where A is the

maximum number of times the bound will be used during the course of the algorithm.

This establishes confidence bands εs,s′ around each statistic depending on the number

of samples summarized so far by the sufficient statistics, as well as confidence band

εAt−1 on F̂ (At−1) (the current utility). We halt when one of two conditions are met:

• There exists a swap (s, s′) such that F̂ (At−1∪{s}\{s′})−εs,s′ > F̂ (At−1)+εAt−1 .

We then perform swap (s, s′) and move on to the next iteration t+ 1.

• For all swaps (s, s′), F̂ (At−1 ∪ {s} \ {s′}) + εs,s′ < F̂ (At−1)− εAt−1 . No swap is

performed and we move on to the next iteration t+ 1.

This setup is similar to Hoeffding Racing [MM94]. We have experimented with this

rule on the Tiny Images data set. We find that in the early iterations, it can cut

down the number of validation samples used by a factor between 3 and 10. However,

as the algorithm proceeds, the difference in utility between swap candidates becomes

smaller and eventually the entire data set is used. We observe that this approach is

pessimistic: arg maxs,s′ F̂ (At−1 ∪ {s} \ {s′}) stablizes with many fewer samples than

required by the stopping rule.

80

Part II

Discriminative Clustering

81

Chapter 5

Discriminative Clustering by
Regularized Information
Maximization

5.1 Abstract

Is there a principled way to learn a probabilistic discriminative classifier from an

unlabeled data set? We present a framework that simultaneously clusters the data

and trains a discriminative classifier. We call it Regularized Information Maxi-

mization (RIM). RIM optimizes an intuitive information-theoretic objective function

which balances class separation, class balance, and classifier complexity. The approach

can flexibly incorporate different likelihood functions, express prior assumptions about

the relative size of different classes and incorporate partial labels for semi-supervised

learning. In particular, we instantiate the framework to unsupervised, multi-class ker-

nelized logistic regression. Our empirical evaluation indicates that RIM outperforms

existing methods on several real data sets, and demonstrates that RIM is an effective

model selection method.

5.2 Introduction

Clustering algorithms group data items into categories without requiring human su-

pervision or definition of categories. They are often the first tool used when explor-

82

ing new data. A great number of clustering principles have been proposed, most of

which can be described as either generative or discriminative in nature. Generative

clustering algorithms provide constructive definitions of categories in terms of their

geometric properties in a feature space or as statistical processes for generating data.

Examples include k-means and Gaussian mixture model clustering. In order for gen-

erative clustering to be practical, restrictive assumptions must be made about the

underlying category definitions.

Rather than modeling categories explicitly, discriminative clustering techniques

represent the boundaries or distinctions between categories. Fewer assumptions about

the nature of categories are made, making these methods powerful and flexible in

real-world applications. Spectral graph partitioning [NJW01] and maximum margin

clustering [XS05] are example discriminative clustering methods. A disadvantage of

existing discriminative approaches is that they lack a probabilistic foundation, making

them potentially unsuitable in applications that require reasoning under uncertainty

or in data exploration.

We propose a principled probabilistic approach to discriminative clustering, by for-

malizing the problem as unsupervised learning of a conditional probabilistic model.

We generalize the work of Grandvalet and Bengio [GB04] and Bridle et al. [BHM92] in

order to learn probabilistic classifiers that are appropriate for multi-class discrimina-

tive clustering, as explained in Section 5.3. We identify two fundamental, competing

quantities, class balance and class separation, and develop an information theoretic

objective function which trades off these quantities. Our approach corresponds to

maximizing mutual information between the empirical distribution on the inputs and

the induced label distribution, regularized by a complexity penalty. Thus, we call our

approach Regularized Information Maximization (RIM).

In summary, our contribution is RIM, a probabilistic framework for discrimina-

tive clustering with a number of attractive properties. Thanks to its probabilistic

formulation, RIM is flexible: it is compatible with diverse likelihood functions and

allows specification of prior assumptions about expected class proportions. We show

how our approach leads to an efficient, scalable optimization procedure that also pro-

83

vides a means of automatic model selection (determination of the number of clusters).

RIM is easily extended to semi-supervised classification. Finally, we show that RIM

performs better than competing approaches on several real-world data sets.

5.3 Regularized Information Maximization

Suppose we are given an unlabeled dataset of N feature vectors (datapoints) X =

(x1, · · · ,xN), where xi = (xi1, . . . , xiD)T ∈ RD are D-dimensional vectors with com-

ponents xid. Our goal is to learn a conditional model p(y|x,W) with parameters W

which predicts a distribution over label values y ∈ {1, . . . , K} given an input vector

x. Our approach is to construct a functional F (p(y|x,W);X, λ) which evaluates the

suitability of p(y|x,W) as a discriminative clustering model. We then use standard

discriminative classifiers such as logistic regression for p(y|x,W), and maximize the

resulting function F (W;X, λ) over the parameters W. λ is an additional tuning

parameter that is fixed during optimization.

We are guided by three principles when constructing F (p(y|x,W);X, λ). The first

is that the discriminative model’s decision boundaries should not be located in regions

of the input space that are densely populated with datapoints. This is often termed

the cluster assumption [CZ04], and also corresponds to the idea that datapoints should

be classified with large margin. Grandvalet & Bengio [GB04] show that a conditional

entropy term − 1
N

∑
iH{p(y|xi,W)} very effectively captures the cluster assumption

when training probabilistic classifiers with partial labels. However, in the case of

fully unsupervised learning this term alone is not enough to ensure sensible solutions,

because conditional entropy may be reduced by simply removing decision boundaries

and unlabeled categories tend to be removed. We illustrate this in Figure 5.1 (left)

with an example using the multilogit regression classifier as the conditional model

p(y|x,W), which we will develop in Section 5.4.

In order to avoid degenerate solutions, we incorporate the notion of class bal-

ance: we prefer configurations in which category labels are assigned evenly across the

84

Grandvalet & Bengio [GB04] Bridle et al. [BHM92] RIM
D

ec
is

io
n

R
eg

io
n
s

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

C
on

d
.

E
n
tr

op
y

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

0.1

0.2

0.3

0.4

0.5

0.6

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

x
1

x 2

−2 −1 0 1 2
−2

−1

0

1

2

0.2

0.4

0.6

0.8

1

Figure 5.1: Example unsupervised multilogit regression solutions on a simple
dataset with three clusters. The top and bottom rows show the category label
arg maxy p(y|x,W) and conditional entropy H{p(y|x,W)} at each point x, respec-
tively. We find that both class balance and regularization terms are necessary to learn
unsupervised classifiers suitable for multi-class clustering.

dataset. We define the empirical label distribution

p̂(y;W) =

∫
p̂(x)p(y|x,W)dx =

1

N

∑
i

p(y|xi,W),

which is an estimate of the marginal distribution of y. A natural way to encode

our preference towards class balance is to use the entropy H{p̂(y;W)}, because it is

maximized when the labels are uniformly distributed. Combining the two terms, we

arrive at

IW{y;x}=H{p̂(y;W)}− 1

N

∑
i

H{p(y|xi,W)} (5.3.1)

which is the empirical estimate of the mutual information between x and y under the

conditional model p(y|x,W).

Bridle et al. [BHM92] were the first to propose maximizing IW{y;x} in order to

learn probabilistic classifiers without supervision. However, they note that IW{y;x}

85

may be trivially maximized by a conditional model that classifies each data point

xi into its own category yi, and that classifiers trained with this objective tend to

fragment the data into a large number of categories, see Figure 5.1 (center). We there-

fore introduce a regularizing term R(W;λ) whose form will depend on the specific

choice of p(y|x,W). This term penalizes conditional models with complex decision

boundaries in order to yield sensible clustering solutions. Our objective function is

F (W;X, λ) = IW{y;x} −R(W;λ) (5.3.2)

and we therefore refer to our approach as Regularized Information Maximization

(RIM), see Figure 5.1 (right). While we motivated this objective with notions of

class balance and seperation, our approach may be interpreted as learning a condi-

tional distribution for y that preserves information from the data set, subject to a

complexity penalty.

5.4 Example Application: Unsupervised Multilogit

Regression

The RIM framework is flexible in the choice of p(y | x;W) and R(W;λ). As an

example instantiation, we here choose multiclass logistic regression as the conditional

model.

Specifically, if K is the maximum number of classes, we choose

p(y = k|x,W) ∝ exp(wT
k x + bk) and R(W;λ) = λ

∑
k

wT
k wk, (5.4.1)

where the set of parameters W = {w1, . . . ,wK ; b1, . . . , bK} consists of weight vectors

wk and bias values bk for each class k. Each weight vector wk ∈ RD is D-dimensional

with components wkd. The regularizer is the squared L2 norm of the weight vectors,

and may be interpreted as an isotropic normal distribution prior on the weights W.

The bias terms are not penalized.

86

In order to optimize Eq. 5.3.2 specialized with Eqs. 5.4.1, we require the gradients

of the objective function. For clarity, we define pki ≡ p(y = k|xi,W), and p̂k ≡ p̂(y =

k;W). The partial derivatives are

∂F

∂wkd

=
1

N

∑
ic

∂pci

∂wkd

log
pci

p̂c

− 2λwkd and
∂F

∂bk
=

1

N

∑
ic

∂pci

∂bk
log

pci

p̂c

. (5.4.2)

Naive computation of the gradient requires O(NK2D), since there are K(D + 1)

parameters and each derivative requires a sum over NK terms. However, the form of

the conditional probability derivatives for multi-logit regression are:

∂pci

∂wkd

= (δkc − pci)pkixid and
∂pci

∂bk
= (δkc − pci)pki,

where δkc is equal to one when indices k and c are equal, and zero otherwise. When

these expressions are substituted into Eq. 5.4.2, we find the following expressions:

∂F

∂wkd

=
1

N

∑
i

xidpki

(
log

pki

p̂k

−
∑

c

pci log
pci

p̂c

)
− 2λwkd (5.4.3)

∂F

∂bk
=

1

N

∑
i

pki

(
log

pki

p̂k

−
∑

c

pci log
pci

p̂c

)
.

Computing the gradient requires onlyO(NKD) operations since the terms
∑

c pci log pci

p̂c

may be computed once and reused in each partial derivative expression.

The above gradients are used in the L-BFGS [LN89] quasi-Newton optimization

algorithm1. We find empirically that the optimization usually converges within a few

hundred iterations. When specialized to multilogit regression, the objective function

F (W;x, λ) is non-concave. Therefore the algorithm can only be guaranteed to halt

at locally optimal stationary points of F . In Section 5.4.1, we explain how we can

obtain an initialization that is robust against local optima.

1We used Mark Schmidt’s implementation at http://www.cs.ubc.ca/∼schmidtm/Software/
minFunc.html.

87

5.4.1 Model Selection

Setting the derivatives (Eq. 5.4.3) equal to zero yields the following condition at

stationary points of F :

wk =
∑

i

α′kixi (5.4.4)

where we have defined

α′ki ≡
1

2λN
pki

(
log

pki

p̂k

−
∑

c

pci log
pci

p̂c

)
. (5.4.5)

The L2 regularizing function R(W;λ) in Eq. 5.4.1 is additively composed of penalty

terms associated with each category: wT
k wk =

∑
ij α

′
kiα

′
kjx

T
i xj. It is instructive to

observe the limiting behavior of the penalty term wT
k wk when datapoints are not

assigned to category k; that is, when p̂k = 1
N

∑
i pki → 0. This implies that pki → 0

for all i, and therefore α′ki → 0 for all i. Finally, wT
k wk =

∑
ij α

′
kiα

′
kjx

T
i xj → 0. This

means that the regularizing function does not penalize unpopulated categories.

We find empirically that when we initialize with a large number of category weights

wk, many decay away depending on the value of λ. Typically as λ increases, fewer

categories are discovered. This may be viewed as model selection (automatic deter-

mination of the number of categories) since the regularizing function and parameter

λ may be interpreted as a form of prior on the weight parameters. The bias terms bk

are unpenalized and are adjusted during optimization to drive the class probablities

p̂k arbitrarily close to zero for unpopulated classes. This is illustrated in Figure 5.2.

This behavior suggests an effective initialization procedure for our algorithm. We

first oversegment the data into a large number of clusters (using k-means or other

suitable algorithm) and train a supervised multi-logit classifier using these cluster la-

bels. (This initial classifier may be trained with a small number of L-BFGS iterations

since it only serves as a starting point.) We then use this classifier as the starting

point for our RIM algorithm and optimize with different values of λ in order to obtain

solutions with different numbers of clusters.

88

0 20 40
0

0.2

0.4

0.6

Class Probabilities

Class Index
0 20 40

−30

−20

−10

0

10

20
Bias

Class Index

b k

0 20 40
0

5

10

15
Weight Vector Norms

w
T k
 w

k

Class Index

Figure 5.2: Demonstration of model selection on the toy problem from Figure 5.1. The
algorithm is initialized with 50 category weight vectors wk. Upon convergence, only
three of the categories are populated with data examples. The negative bias terms of
the unpopulated categories drive the unpopulated class probabilities p̂k towards zero.
The corresponding weight vectors wk have norms near zero.

5.5 Example Application: Unsupervised Kernel Mul-

tilogit Regression

The stationary conditions have another interesting consequence. Eq. 5.4.4 indicates

that at stationary points, the weights are located in the span of the input datapoints.

We use this insight as justification to define explicit coefficients αki and enforce the

constraint wk =
∑

i αkixi during optimization. Substituting this equation into the

multilogit regression conditional likelihood allows replacement of all inner products

wT
k x with

∑
i αkiK(xi,x), whereK is a positive definite kernel function that evaluates

the inner product xT
i x. The conditional model now has the form

p(y = k|x, α,b) ∝ exp
(∑

i

αkiK(xi,x) + bk

)
.

Substituting the constraint into the regularizing function
∑

k wT
k wk yields a natural

replacement of wT
k wk by the Reproducing Hilbert Space (RKHS) norm of the function∑

i αkiK(xi, ·):

R(α) =
∑

k

∑
ij

αkiαkjK(xi,xj). (5.5.1)

89

We use the L-BFGS algorithm to optimize the kernelized algorithm over the coeffi-

cients αki and biases bk. The partial derivatives for the kernel coefficients are

∂F

∂αkj

=
1

N

∑
i

K(xj,xi)pki

(
log

pki

p̂k

−
∑

c

pci log
pci

p̂c

)
− 2λ

∑
i

αkiK(xj,xi)

and the derivatives for the biases are unchanged. The gradient of the kernelized al-

gorithm requires O(KN2) to compute. Kernelized unsupervised multilogit regression

exhibits the same model selection behavior as the linear algorithm.

5.6 Extensions

We now discuss how RIM can be extended to semi-supervised classification, and to

encode prior assumptions about class proportions.

5.6.1 Semi-Supervised Classification

In semi-supervised classification, we assume that there are unlabeled examples XU =

{xU
1 , · · · ,xU

N} as well as labeled examples XL = {xL
1 , · · · ,xL

M} with labels Y =

{y1, · · · , yM}.

We again use mutual information IW{y;x} (Eq. 5.3.1) to define the relationship

between unlabeled points and the model parameters, but we incorporate an additional

parameter τ which will define the tradeoff between labeled and unlabeled examples.

The conditional likelihood is incorporated for labeled examples to yield the semi-

supervised objective:

S(W; τ, λ) =τIW{y;x} −R(W;λ) +
∑

i

log p(yi|xL
i ,W).

The gradient is computed and again used in the L-BFGS algorithm in order to op-

timize this combined objective. Our approach is related to the objective in [GB04],

which does not contain the class balance term H(p̂(y;W)).

90

5.6.2 Encoding Prior Beliefs about the Label Distribution

So far, we have motivated our choice for the objective function F through the notion

of class balance. However, in many classification tasks, different classes have different

number of members. In the following, we show how RIM allows flexible expression of

prior assumptions about non-uniform class label proportions.

First, note that the following basic identity holds

H{p̂(y;W)} = log(K)−KL{p̂(y;W)||U} (5.6.1)

where U is the uniform distribution over the set of labels {1, · · · , K}. Substituting

the identity, then dropping the constant log(K) yields another interpretation of the

objective

F (W;X, λ) = − 1

N

∑
i

H{p(y|xi,W)} −KL{p̂(y;W)||U} −R(W;λ). (5.6.2)

The term −KL{p̂(y;W)||U} is maximized when the average label distribution is

uniform. We can capture prior beliefs about the average label distribution by substi-

tuting a reference distribution D(y; γ) in place of U (γ is a parameter that may be

fixed or optimized during learning). [JMJ99] also use relative entropy as a means of

enforcing prior beliefs, although not with respect to class distributions in multi-class

classification problems.

This construction may be used in a clustering task in which we believe that the

cluster sizes obey a power law distribution as, for example, considered by [Teh06] who

use the Pitman-Yor process for nonparametric language modeling. Simple manipula-

tion yields the following objective:

F (W;X, λ, γ) = IW{x; y} −H{p̂(y;W)||D(y; γ)} −R(W;λ)

where H{p̂(y;W)||D(y; γ)} is the cross entropy −
∑

k p̂(y = k;W) logD(y = k; γ).

We therefore find that label distribution priors may be incorporated using an addi-

91

tional cross entropy regularization term.

5.7 Experiments

We empirically evaluate our RIM approach on several real data sets, in both fully

unsupervised and semisupervised configurations.

5.7.1 Unsupervised Learning

Kernelized RIM is initialized according to the procedure outlined in Section 5.4.1,

and run until L-BFGS converges. Unlabeled examples are then clustered accord-

ing to arg maxk p(y = k|x,W). We compare RIM against the spectral clustering

(SC) algorithm of [NJW01], the fast maximum margin clustering (MMC) algorithm

of [ZTK07], and kernelized k-means [STC04]. MMC is a binary clustering algorithm.

We use the recursive scheme outlined by [ZTK07] to extend the approach to multiple

categories. The MMC algorithm requires an initial clustering estimate for initializa-

tion, and we use SC to provide this.

We evaluate unsupervised clustering performance in terms of how well the dis-

covered clusters reflect known ground truth labels of the dataset. We report the

Adjusted Rand Index (ARI) [HA85] between an inferred clustering and the ground

truth categories. ARI has a maximum value of 1 when two clusterings are identical.

We evaluated a number of other measures for comparing clusterings to ground truth

including mutual information, normalized mutual information [SG02], and cluster

impurity [CWK05]. We found that the relative rankings of the algorithms were the

same as indicated by ARI.

We evaluate the performance of each algorithm while varying the number of clus-

ters that are discovered, and we plot ARI for each setting. For SC and k-means the

number of clusters is given as an input parameter. MMC is evaluated at {2, 4, 8, · · · }

clusters (powers of two, due to the recursive scheme.) For RIM, we sweep the regular-

ization parameter λ and allow the algorithm to discover the final number of clusters.

92

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of clusters

A
dj

us
te

d
R

an
d

In
de

x

Caltech Images

MMC

k−means

RIM

SC

2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

0.1

0.15

0.2

of clusters

A
dj

us
te

d
R

an
d

In
de

x

DandD Graphs

RIM

k−means

MMC

SC

2 4 6 8 10 12 14 16 18 20 22
0

0.01

0.02

0.03

0.04

0.05

0.06

of clusters

A
dj

us
te

d
R

an
d

In
de

x

NCI109 Graphs

RIM

k−means

SCMMC

Figure 5.3: Unsupervised Clustering: Adjusted Rand Index measures the similarity
of inferred clusters to a reference ground truth clustering, and is plotted as a function
of the number of inferred clusters. Results shown for Caltech Images (top), D&D
molecular graphs (center), and NCI109 (bottom) datasets. We find that our method
(RIM) outperforms max-margin clustering (MMC) and spectral clustering (SC) at
all settings. Our method outperforms k-means when discovering small numbers of
clusters, and the performances tend to converge when the algorithms discover large
numbers of clusters.

93

Image Clustering. We test the algorithms on an image clustering task with 350

images from four Caltech-256 [GHP07] categories (Faces-Easy, Motorbikes, Airplanes,

T-Shirt) for a total of N = 1400 images. We use the Spatial Pyramid Match ker-

nel [LSP06] computed between every pair of images. We sweep RIM’s λ parameter

across [0.125
N
, 4

N
]. The results are summarized in Figure 5.3 (top). Overall, the cluster-

ings that best match ground truth are given by RIM when it discovers four clusters.

We find that RIM outperforms both SC and MMC at all settings. RIM outperforms

kernelized k-means when discovering between 4 and 8 clusters. Their performances

are comparable for other numbers of clusters. Figure 5.4 shows example images taken

from clusters discovered by RIM. Our RIM implementation takes approximately 110

seconds per run on the Caltech Images dataset on a quad core Intel Xeon server. SC

requires 38 seconds per run, while MMC requires 44–51 seconds per run depending

on the number of clusters specified.

Molecular Graph Clustering. We further test RIM’s unsupervised learning per-

formance on two molecular graph datasets. D&D [DD03] contains N = 1178 protein

structure graphs with binary ground truth labels indicating whether or not they

function as enzymes. NCI109 [WK06] is composed of N = 4127 compounds labeled

according to whether or not they are active in an anti-cancer screening. We use

the subtree kernel developed by [SB10] with subtree height of 1. For D&D, we sweep

RIM’s lambda parameter through the range [0.001
N
, 0.05

N
] and for NCI we sweep through

the interval [0.001
N
, 1

N
]. Results are summarized in Figure 5.3 (center and bottom). We

find that of all methods, RIM produces the clusterings that are nearest to ground

truth (when discovering 2 clusters for D&D and 5 clusters for NCI109). RIM out-

performs both SC and MMC at all settings. RIM has the advantage over k-means

when discovering a small number of clusters and is comparable at other settings. On

NCI109, RIM required approximately 10 minutes per run. SC required approximately

13 minutes, while MMC required on average 18 minutes per run.

94

C1

C2

C3

C4

C5

Figure 5.4: Randomly chosen example images from clusters discovered by unsuper-
vised RIM on Caltech Image. Clusters are composed mainly of images from a single
ground truth category. When RIM splits a ground truth category into two clusters
(e.g. clusters C4 and C5), it does so along perceptually relevant lines. Here, C4
contains images of airplanes in the sky, and C5 contains images of airplanes on the
ground.

95

Average Waveform Most Uncertain Waveform

Figure 5.5: Left, Tetrode dataset average waveform. Right, the waveform with the
most uncertain cluster membership according to the classifier learned by RIM

Cluster 1 Cluster 2

W
av

e
W

ts
.

Figure 5.6: Two clusters discovered by RIM on the Tetrode data set. Top row:
Superimposed waveform members, with cluster mean in red. Bottom row: The dis-
criminative category weights wk associated with each cluster. The discriminative
weights indicate how the cluster’s members differ from the average waveform.

Neural Tetrode Recordings. We demonstrate RIM on a large scale data set of

319, 209 neural activity waveforms recorded from four co-located electrodes implanted

in the hippocampus of a behaving rat. The waveforms are composed of 38 samples

from each of the four electrodes and are the output of a neural spike detector which

aligns signal peaks to the 13th sample; see the average waveform in Figure 5.5 (left).

We concatenate the samples into a single 152-dimensional vector and preprocess by

subtracting the mean waveform and divide each vector component by its variance.

We use the linear RIM algorithm given in Section 5.4, initialized with 100 cat-

egories. We set λ to 4
N

and RIM discovers 33 clusters and finishes in 12 minutes.

There is no ground truth available for this dataset, but we use it to demonstrate

RIM’s efficacy as a data exploration tool. Figure 5.6 shows two clusters discovered

by RIM. The top row consists of cluster member waveforms superimposed on each

other, with the cluster’s mean waveform plotted in red. We find that the clustered

waveforms have substantial similarity to each other. Taken as a whole, the clusters

give an idea of the typical waveform patterns. The bottom row shows the learned

classifier’s discriminative weights wk for each category, which can be used to gain

96

0 50 100 150

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of labeled examples

T
es

t A
cc

ur
ac

y

Classification Performance

Grandvalet & Bengio

Supervised

RIM

Figure 5.7: Semi-supervised learning on Caltech Images. Unlabeled examples improve
test performance significantly. Our method makes use of prior information on class
size proportions, which leads to a gain in performance relative to [GB04].

a sense for how the cluster’s members differ from the dataset mean waveform. We

can use the probabilistic classifier learned by RIM to discover atypical waveforms

by ranking them according to their conditional entropy H{p(y|xi,W)}. Figure 5.5

(right) shows the waveform whose cluster membership is most uncertain.

5.7.2 Semi-Supervised Classification

We test our semi-supervised classification method described in Section 5.6.1 against [GB04]

on the Caltech Images dataset. The methods were trained using both unlabeled and

labeled examples, and classification performance is assessed on the unlabeled portion.

As a baseline, a supervised classifier was trained on labeled subsets of the data and

tested on the remainder. Parameters were selected via cross-validation on a subset of

the labeled examples. The results are summarized in Figure 5.7. We find that both

semi-supervised methods significantly improve classification performance relative to

97

the supervised baseline when the number of labeled examples is small. Additionally,

we find that RIM outperforms Grandvalet & Bengio. This suggests that incorpo-

rating prior knowledge about class size distributions (in this case, we use a uniform

prior) may be useful in semi-supervised learning.

5.8 Related Work

Our work has connections to existing work in both unsupervised learning and semi-

supervised classification.

Unsupervised Learning. The information bottleneck method [TPB00] learns a

conditional model p(y|x) where the labels y form a lossy representation of the in-

put space x, while preserving information about a third “relevance” variable z. The

method maximizes I(y; z)− λI(x; y), whereas we maximize the information between

y and x while constraining complexity with a parametric regularizer. The method

of [SATB05] aims to maximize a similarity measure computed between members

within the same cluster while penalizing the mutual information between the clus-

ter label y and the input x. Again, mutual information is used to enforce a lossy

representation of y|x. Song et al. [SSGB07] also view clustering as maximization of

the dependence between the input variable and output label variable. They use the

Hilbert-Schmidt Independence Criterion as a measure of dependence, whereas we use

Mutual Information.

There is also an unsupervised variant of the Support Vector Machine, called max-

margin clustering. Like our approach, the works of [XS05] and [BH07] use notions

of class balance, seperation, and regularization to learn unsupervised discriminative

classifiers. However, they are formulated in the max-margin framework rather than

our probabilistic approach. Ours appears more amenable to incorporating prior be-

liefs about the class labels. Unsupervised SVMs are solutions to a convex relaxation

of a non-convex problem, while we directly optimize our non-convex objective. The

semidefinite programming methods required are much more expensive than our ap-

98

proach.

Semi-supervised Classification. Our semi-supervised objective is related to [GB04],

as discussed in Section 5.6.1. Another semi-supervised method [CJ03] uses mutual

information as a regularizing term to be minimized, in contrast to ours which at-

tempts to maximize mutual information. The assumption underlying [CJ03] is that

any information between the label variable and unlabeled examples is an artifact of

the classifier and should be removed. Our method encodes the opposite assumption:

there may be variability (e.g., new class label values) not captured by the labeled

data, since it is incomplete.

5.9 Conclusions

We considered the problem of learning a probabilistic discriminative classifier from

an unlabeled data set. We presented Regularized Information Maximization (RIM),

a probabilistic framework for tackling this challenge. Our approach consists of op-

timizing an intuitive information theoretic objective function that incorporates class

separation, class balance, and classifier complexity, which may be interpreted as maxi-

mizing the mutual information between the empirical input and implied label distribu-

tions. The approach is flexible, in that it allows consideration of different likelihood

functions. It also naturally allows expression of prior assumptions about expected

label proportions by means of a cross-entropy with respect to a reference distribu-

tion. Our framework allows natural incorporation of partial labels for semi-supervised

learning. In particular, we instantiate the framework to unsupervised, multi-class ker-

nelized logistic regression. Our empirical evaluation indicates that RIM outperforms

existing methods on several real data sets, and demonstrates that RIM is an effective

model selection method.

99

Part III

Postscript

100

Chapter 6

Closing Thoughts on Open Ended
Learning

In this thesis, we have explored unsupervised learning as a foundation for autonomous

categorization systems that can continuously learn and refine their collection of cate-

gories over time, while remaining computationally tractable. What are the prospects

for practical object recognition systems capable of functioning in this way? As en-

visioned in this thesis, an Open Ended learning system makes use of a fixed data

representation, upon which categories are defined. As might be expected, a system

constructed in this way can only perform as well as its data representation allows.

Specifically, categories must correspond to clusters of data items in the (implicit) data

representation space.

Our experiments in unsupervised visual object categorization (see Section 5.4 and

Section 2.5) made use of the Spatial Pyramid Match Kernel [LSP06] as the underlying

data representation. This is a simple approach that encodes texture and an image’s

loose geometric properties. While we find that we can accurately recover simple

categories with large numbers of training examples, extending these experiments to

larger numbers of more complex visual categories [GHP07] proved impossible. Our

hope in exploring discriminative clustering (see Chapter 5) was that rich category

representations (defined by discriminative classifiers rather than parametric distribu-

tions) would lead to better extraction of categories. While our experiments bear this

out to a certain extent, it is clear that the cluster assumption (see Section 5.3) is still

101

limiting as it often does not hold for visually complex categories in this representa-

tion. In other cases there were too few training examples to define regions of space

with meaningful density.

This leads us to conclude that data representation (rather than category repre-

sentation) is the key limitation in achieving Open Ended learning. Therefore, any

research breakthrough in terms of representation of visual objects will lead to im-

proved prospects for Open Ended learning. In fact, it is our opinion that issues of

image representation are the key problem of computer vision today. In addition,

progress might be made by removing the restriction of a fixed data representation

all together. Unsupervised learning may be used to tune the lower level image com-

putations in order to change the representation over time. While we have focused

on learning from independently sampled data, it may be possible to learn an object

representation without supervision by making use of temporally coherent video se-

quences, since there is evidence that the human visual system makes use of dynamic

cues during learning [SOM06].

It is likely that, for the forseeable future, autonomous categorization systems will

require significant human intervention in order to overcome limitations in the under-

lying data representation.1 We propose two research directions focused on making

the best use of limited human intervention in Open Ended learning systems:

• Incremental Data Representation Learning. Since we conclude that data

representation is the key bottleneck towards Open Ended learning, we propose

to use human provided categorical labels to adjust this representation itself.

The representation should be adjusted so that data items that are labeled with

the same category are ‘close’ to each other, while items that are in different

categories are ‘far’ from each other. Essentially, we propose to use human la-

beling effort to improve the cluster assumption so that categories can then be

defined as clusters of unlabeled points. See [LCB+04] and [XNJR02] for ex-

1Additionally, meaningful category distinctions are likely dependent on the overall functional task
supported by the categorization system. External reinforcement or intervention may be necessary
in defining functionally useful categories.

102

amples of kernel and metric learning, respectively. We require algorithms that

incrementally update the data representation as labeled instances are acquired.

A moment’s thought reveals an additional computational difficulty: each time

the data representation changes, the implied location of each unlabeled point

also changes. We therefore require clever methods that can accomplish these up-

dates and appropriately adjust categories without violating the computational

resource budgets required in Open Ended learning.

• Incremental Active Learning. The category labels of some data items may

be more informative than others, and ideally an Open Ended learning system

would select the most informative examples for human labeling. We advocate

research in active learning [TC01] specifically focused on the problems inherent

in continuously adapting categorization systems. Much existing work in active

learning takes a pool based approach [MN98], in which a representative pool

of unlabeled examples is available all at once. In contrast, we require active

learning algorithms compatible with incremental learning systems that do not

have access to a fully representative pool. We also require algorithms tailored

to the case where the number of categories is unknown which, to the best of

our knowledge, has yet to be explored.

A complete system would ideally combine both research directions.

We conclude by suggesting that automated categorization systems should make

use of interactions between humans and machines in order to improve performance.

While this thesis has been concerned with minimizing the requirement for human

intervention, the final chapter of this thesis explores a system that lies on the other

end of the spectrum of human-machine interaction. In this work, humans are treated

as fundamental computational building blocks and the machine takes the supervisory

role of distributing tasks, as well as evaluating and aggregating the results of human

workers.

103

Chapter 7

Crowd Clustering

7.1 Introduction

The Internet has enabled a new means of outsourcing information processing tasks

to large groups of anonymous workers. Crowdsourcing services, such as Amazon’s

Mechanical Turk, have emerged as a convenient way to purchase Human Intelligence

Tasks (HITs). Recently, the computer vision community has leveraged this capability

to annotate large sets of images and video in order to use them as training data for

supervised learning of computer vision systems [SF08].

Here, we instead examine the possibility of using crowdsourcing services to per-

form large scale data analysis tasks which are typically the domain of automated

systems. Our question is: can we use crowdsourcing services to reliably categorize

large collections of human-interpretable patterns? We therefore view crowdsourcing

as a means of carrying out distributed human computation [Zit08]. Our goal is to

distribute a categorization task among a large set of workers, and then to use an

automated algorithm to assemble the individual HITs into a complete solution. This

may be viewed as an inversion of the typical machine learning paradigm in which

computers do the majority of the work, overseen by a human supervisor. Here, hu-

mans are treated as the basic computational building block and a machine acts as a

supervisor that distributes tasks and evaluates the results.

104

7.2 The Crowd Clustering Problem

Suppose we possess a large collection of unorganized images and wish to categorize

them into clusters of related images. How can we hope to accomplish this? Since we

have a large number (perhaps several thousand or more) of images, it is not realis-

tic to expect a single person to perform the categorization task. We may choose to

use an automated data clustering algorithm to perform the task, yet unsupervised

categorization of images is unfortunately a problem that is far from solved. We can

not reasonably expect an automated algorithm to organize the images in a satisfac-

tory fashion. Here, we explore the possibility of dividing the images into groups of

reasonable size, and distributing them as HITs to a large pool of human workers.

The workers will then perform the HITs by categorizing these images into clusters.

Finally, we will aggregate these restricted clusterings into a complete clustering of the

full dataset.

We propose Crowd Clustering, an approach to clustering that may be used when

the set of data items have the following characteristics:

• The data items are human-interpretable such that people are able to group

them into sensible categories, yet no automated clustering algorithm is known

to perform well on them. The set of data may be images of complex scenes or

objects, passages of text, audio samples, or other type of pattern. Unfortunately,

arbitrary high dimensional data vectors are likely excluded since humans may

be unable to naturally group them.

• The set of data is too large for a single human to perform the categorization

task. This is likely to be the case when the items number in the thousands or

more.

• Human workers may have different ideas or schools of thought about how to

organize the items. For example, workers may choose to group objects according

to different attributes such as height or color. Workers may also have different

notions about the number of categories. Given a collection of natural scenes,

105

one worker might decide to group them according to whether they are taken

indoors or outdoors. Another may choose to draw finer distinctions, dividing

indoor images into kitchen, living room, and bedroom categories.

Three questions naturally arise. The first is: How do we best structure the tasks

that we assign to workers, and what type of information do we expect workers to

provide? Existing work in data visualization, known as Multidimensional Scaling

(MDS) [Kru64] makes use of human provided similarity values defined between pairs

of data items. In practice, these distances may be elicited from workers by asking

them to rate the similarity of a pair of objects on a discrete scale. Because we are

explicitly interested in forming categories, we choose instead to structure HITs as a

categorization task of M items, presented simultaneously. The worker then groups

the M items into clusters of his choosing. In general, we do not explicitly predefine

categories, the user is free to cluster the items into as many or few groups as he sees

fit. Likewise, an item may be placed in its own cluster if it is unlike the others in the

HIT.

We do not expect different workers to agree on their definitions of categories. In

fact, even a single worker may not be entirely consistent in his notion of categories

when performing multiple HITs. We therefore avoid the complex problem of explicitly

associating categories across HITs. Instead, we represent the results of a HIT as a

series of M(M − 1)/2 binary labels defined between all pairs of images in the HIT. If

two items are grouped in the same cluster in the HIT, then their associated pairwise

label takes the value 1, if they are in different groups then the label takes value −1.

The next question is: How do we best divide the data items into reasonable size

collections when distributing them to workers? Our problem may be considered an

object distributed clustering problem [SG02], where we must work with clusterings of

only a subset of the data. [SG02] use a random sampling scheme to divide data

items into groups before clustering them with automated algorithms. Their scheme

controls the level of sampling redundancy (the degree to which a data item is present

in multiple clustering tasks) with a single parameter. With the exception of this

method, we find a relative dearth of ideas in the machine learning literature about

106

tackling this problem. We also expect that ideas from human psychology may inform

our approach.

Finally: Once we have obtained clusterings from workers, how do we aggregate

them into a single clustering? There is an extensive literature in machine learning

on the problem of combining multiple alternative clusterings of data. This problem

is known as consensus clustering [MTMG03], clustering aggregation [GMT07], or

cluster ensembles [SG02]. However, existing approaches focus on producing a single

“average” clustering from a set of clusterings.

In contrast, we are not merely interested in the average clustering produced by

a crowd of workers. Instead, we are interested in understanding the ways in which

different individuals may categorize the data. We wish to produce a master clustering

of the data that may be combined in different ways in order to describe the tendencies

of individual workers. We refer to these groups of data as platonic clusters, since

they are meta-concepts that may be used to form the workers’ differing notions of

categories.

For example, suppose one worker groups objects into a cluster of tall objects and

another of short objects, while a different worker groups the same objects into a cluster

of red objects and another of blue objects. Then, our method should recover four

platonic clusters: tall red objects, short red objects, tall blue objects, and short blue

objects. The behavior of the two workers may then be summarized using a confusion

table of the platonic clusters (see Section 7.3.1.2). The first worker groups the first

and third platonic cluster into one category and the second and fourth platonic cluster

into another category. The second worker groups the first and second platonic clusters

into a category and the third and fourth platonic clusters into another category.

7.2.1 Notation

Before continuing to our technical approach, we define some relevant notation in-

volving vectors, matrices, and tensors. 1 represents the matrix with value 1 in every

entry, and I represents the identity matrix. The notation [v]d refers to the d-th entry

107

of vector v and [M]d1d2 is the entry at row d1 and column d2 in matrix M. We extend

this notation to higher order tensors (e.g., [T]d1d2d3d4 refers to the element at location

(d1, d2, d3, d4) of fourth order tensor T.) The operator v = diag{M} yields a column

vector with the diagonal elements of M, that is [v]d = [M]dd. A◦B refers to element-

wise multiplication of vectors, matrices, or tensors. The operator v = vecp{M} yields

a column vector v from the upper triangular portion of M by “stacking” the partial

columns of M, according to the ordering [v]1 = [M]11, [v]2 = [M]12, [v]3 = [M]22, etc.

7.3 Our Approach

We give two methods for aggregating the results of HITs as well as modeling the

specific characteristics of each worker. We assume that there are N total items

(indexed by i) and J total workers (indexed by j.) These methods take as input the

collection of binary labels produced by each HIT. Formally, we treat this as a set

of binary variables L, with elements lt ∈ {−1,+1} indexed by a positive integer t.

Associated with the t-th label is a triple (at, bt, jt), where jt ∈ {1, . . . , J} indicates

the worker that produced the label, and at ∈ {1, . . . , N} and bt ∈ {1, . . . , N} indicate

the two data items compared by the label.

7.3.1 Bayesian Crowd Clustering

Here we propose an approach in which data items are represented as points in a

Euclidean space and workers are modeled as binary classifiers in this space. Platonic

clusters are then obtained by clustering these inferred points using the mixture model

approach from Ch. 2. The advantage of an intermediate Euclidean representation is

that it provides a compact way to capture the characteristics of each data item. For

example, two images may be similar along certain axes (perhaps relating to an object’s

color) but different along another (e.g., the object’s pose.) A similar approach was

proposed by Welinder et al. [WBBP10] for the analysis of classification labels obtained

from crowdsourcing services. This method does not apply to our problem, since it

involves binary labels applied to single data items rather than to pairs, as in our case.

108

Our Model

l!j

xi

Wj

abj

Annotators

Data Items

Pairwise Labels

σx
0

σw
0

στ
0

Figure 7.1: Our model for modeling image and worker characteristics in the Crowd
Clustering problem. Known variables are colored gray, and fixed hyper-parameters
are given in rounded boxes.

Their method therefore requires that categories be defined a priori and agreed upon

by all workers, which is incompatible with the Crowd Clustering problem.

We propose a novel probabilistic latent variable model that relates pairwise binary

labels to hidden variables associated with both workers and images. The graphical

model is shown in Figure 7.1. xi is a D dimensional vector, which encodes item i’s

location in the platonic space RD. Symmetric matrix Wj ∈ SD×D and bias τj ∈ R are

used to model worker j’s behavior.

The joint distribution is

p(X,W,τ,L) = (7.3.1)∏
i

p(xi|σx
0)
∏

j

p(vecp{Wj}|σw
0)p(τj|στ

0)
∏

t

p(lt|xat ,xbt ,Wjt , τjt).

The conditional distributions are defined as follows:

p(xi|σx
0) =

∏
d

Normal([xi]d; 0, σ
x
0) (7.3.2)

p(vecp{Wj}|σw
0) =

∏
d1≤d2

Normal([Wj]d1d2 ; 0, σ
w
0)

109

p(τj|στ
0) = Normal(τj; 0, σ

τ
0),

p(lt|xat ,xbt ,Wjt , τjt) =
1

1 + exp(−ltAt)

where (σx
0 , σ

τ
0 , σ

w
0) are fixed hyper-parameters, and we define the activity:

At = xT
at
Wjtxbt + τjt . (7.3.3)

The key term is the pairwise quadratic logistic regression likelihood (which is novel

to the best of our knowledge) that captures worker j’s tendency to label the pair

of images at and bt with lt. Symmetry of Wj ensures that p(lt|xat ,xbt ,Wjt , τjt) =

p(lt|xbt ,xat ,Wjt , τjt). This form of likelihood yields a compact and tractable method

of representing classifiers defined over pairs of points in Euclidean space. In practice,

we find that our algorithm (see Section 7.3.1.1) tends to find positive definite matrices

Wj associated with each worker, which define an inner product xT
a Wjxb between a

pair of vectors. Pairs of vectors with large inner product tend to be classified as

being in the same category, and in different categories otherwise. (We choose not

to explicitly enforce a positive definite constraint on Wj, since it would significantly

increase algorithmic complexity to do so and we find it unnecessary for our purpose.)

We find that this form of likelihood leads to tightly grouped clusters of points xi

that are then easily discovered by mixture model clustering. In principle, mixture

of gaussian clusters could be estimated jointly by extending our graphical model to

include them (Figure 7.2), and we will explore this in the future.

7.3.1.1 Algorithm

Exact posterior inference in this model is known to be intractable, since computing it

involves integrating over variables with complex dependencies. We therefore develop

an inference algorithm based on the Variational Bayes method [Att99]. The high level

idea is to work with a factorized proxy posterior distribution that does not model the

full complexity of interactions between variables; it instead represents a single mode

of the true posterior. Because this distribution is factorized, integrations involving it

110

labj!j

xi

Wj

zi

abj

Annotators

Data Items

Pairwise Labels

"k

Vk

“Platonic” clusters

Figure 7.2: Extended Crowd Clustering model with joint estimation of platonic clus-
ters. Hyper-parameters omitted for clarity.

become tractable. We define the proxy distribution

q(X,W, τ) =
∏

i

q(xi; µ
x
i ,σ

x
i)
∏

j

q(vecp{Wj}; µw
j ,σ

w
j)q(τj;µ

τ
j , σ

τ
j) (7.3.4)

using parametric distributions of the following form:

q(xi; µ
x
i ,σ

x
i) =

∏
d

Normal([xi]d; [µ
x
i]d, [σ

x
i]d) (7.3.5)

q(vecp{Wj}; µw
j ,σ

w
j) =

∏
d1≤d2

Normal([Wj]d1d2 ; [µ
w
j]d1d2 , [σ

w
j]d1d2)

q(τj;µ
τ
j , σ

τ
j) = Normal(τj;µ

τ
j , σ

τ
j).

µx
i and σx

i are variational mean and variance parameters associated with data item i.

µw
j and σw

j are symmetric matrix variational mean and variance parameters associated

with worker j, and µτ
j and στ

j are variational mean and variance parameters for the

bias τj of worker j. We use diagonal covariance Normal distributions over Wj and xi

in order to reduce the number of parameters that must be estimated.

Next, we define a cost function which allows us to determine the variational pa-

111

rameters. We use Jensen’s inequality in order to develop a lower bound to the log

evidence:

log p(L|σx
0 , σ

τ
0 , σ

w
0) (7.3.6)

= log

∫
p(X,W, τ,L)dXdWdτ

= log

∫
q(X,W, τ)

p(X,W, τ,L)

q(X,W, τ)
dXdWdτ

≥
∫
q(X,W, τ) log

p(X,W, τ,L)

q(X,W, τ)
dXdWdτ

=Eq log p(X,W, τ,L) +H{q(X,W, τ)}.

H{q(X,W, τ)} is the entropy of the proxy distribution, and Eq log p(X,W, τ,L) +

H{q(X,W, τ)} is know as the Free Energy. It can be shown that the difference

between the log evidence and the Free Energy lower bound is

KL{q(X,W, τ)||p(X,W, τ |L, σx
0 , σ

τ
0 , σ

w
0)}.

Therefore, maximizing the lower bound corresponds to minimizing the KL divergence

between the proxy distribution and the true posterior.

However, the Free Energy above still involves intractable integration, because the

normal distribution priors over variables Wj, xi, and τj are not conjugate [BS94] to

the logistic likelihood term. We therefore substitute the left hand side of the following

inequality for the likelihood

g(∆t) exp{(ltAt −∆t)/2 + λ(∆t)(A
2
t −∆2

t)} ≤ p(lt|xat ,xbt ,Wjt , τjt) (7.3.7)

which is adapted from [JJ96] to our case of quadratic pairwise logistic regression,

in order to obtain a fully tractable lower bound. Here g(x) = (1 + e−x)−1 and

λ(∆) = [1/2 − g(∆)]/(2∆). This expression introduces an additional variational

parameter ∆t for each label, which are optimized in order to tighten the lower bound.

112

Our cost function is therefore:

F =Eq log p(X,W, τ) +H{q(X,W, τ)} (7.3.8)

+
∑

t

log g(∆t) +
lt
2
Eq{At} −

∆t

2
+ λ(∆t)(Eq{A2

t} −∆2
t)

Intermediate terms required to evaluate this expression are given in this chapter’s

Appendix (Eq. 7.7.4).

Optimization of variational parameters is carred out in a coordinate ascent pro-

cedure, which exactly maximizes each variational parameter in turn while holding all

others fixed. It is guaranteed to converge to a local maximum of the cost function.

The update equations are

[σx
i]d =

(
1/σx

0 +
∑

t:at=i

2|λ(∆t)|
[
Eq{Wjtxbtx

T
bt
Wjt}

]
dd

(7.3.9)

+
∑
t:bt=i

2|λ(∆t)|
[
Eq{Wjtxatx

T
at
Wjt}

]
dd

)−1

µx
i = (I−Ui ◦ (1− I))−1vi

στ
j =

(
1/στ

0 +
∑

t:jt=j

2|λ(∆t)|
)−1

µτ
j = στ

j

∑
t:jt=j

lt/2 + 2λ(∆t)(µ
x
at

)T µw
j µx

bt

[σw
j]d1d2 =

(
1/σw

0 +
∑

t:jt=j

2|λ(∆t)|
[
Eq{Yatbt}

]
d1d2d1d2

)−1

vecp{µw
j } = (I−Bj ◦ (1− I))−1cj

∆t = (Eq{A2
t})1/2

Expressions for the intermediate quantities Bj, cj, Ui, vi, as well as the expecations

Eq{Wjxax
T
a Wj} and Eq{Yab} are given in the Appendix. We iterate the above

update equations until Eq. 7.3.8 converges.

113

7.3.1.2 Worker Confusion Analysis

Upon convergence, we use a Dirichlet process mixture model to cluster the mean

locations of the image items µx
i , and to determine the appropriate number of clusters.

We use the mean parameter values Φk = {µk,Σk} of the discovered platonic clusters.

We are interested in the predicted confusion matrix Cj for worker j, where

[Cj]k1k2 = (7.3.10)∫
p(l = 1|xa,xb,Wj, τj)p(xa|µk1

,Σk1)p(xb|µk2
,Σk2)

q(vecp{Wj}; µw
j ,σ

w
j)q(τj;µ

τ
j , σ

τ
j)dxadxbdWjdτj

which expresses the probability that worker j assigns data items sampled from pla-

tonic cluster k1 and k2 to the same cluster. p(xa|µk1
,Σk1) and p(xb|µk2

,Σk2) are

Normal distributions. This integration is intractable, however, we can again use

Jensen’s inequality and Eq. 7.3.7 to yield a tractable lower bound. Maximizing this

bound over ∆ yields

[Ĉj]k1k2 = g(∆̂k1k2j) exp{(µT
k1

µw
j µk2

+ µτ
j − ∆̂k1k2j)/2} (7.3.11)

which we use as our approximate confusion matrix, where ∆̂k1k2j is given in the

Appendix.

7.3.2 Crowd Clustering via Matrix Factorization

We develop an alternative approach to Crowd Clustering based on non-negative ma-

trix factorization in order to form a baseline measure to compare against our Bayesian

model. This approach does not learn a location in a Euclidean space for data items,

but instead directly estimates their platonic cluster membership. In addition, here

we explicitly specify the number of platonic clusters K. No other hyper-parameters

are required.

We represent the binary labels lt and their associated triples (at, bt, jt) in matrix

114

form, where there is an N × N matrix Lj associated with each worker. The entries

of the matrix are the average binary label provided by worker j for the pair of data

items (a, b):

[Lj]ab =
1

Njab

∑
t:jt=j∧[(at,bt)=(a,b)∨(at,bt)=(b,a)]

(lt + 1)/2, (7.3.12)

where Njab = #{t : jt = j ∧ [(at, bt) = (a, b)∨ (at, bt) = (b, a)]} is the number of times

that worker j has labeled the pair (a, b). Note that we map the binary labels from

the set {−1, 1} to {0, 1}, and also that matrices Lj are symmetric. We allow the

label matrices Lj to be incomplete, so that worker j need not compare every pair of

images. We define binary matrices Pj, where entry [Pj]ab = 1 if worker j has labeled

pair (a, b) at least once and [Pj]ab = 0, otherwise. Incomplete entries in Lj may take

an arbitrary value.

It is useful to review the consensus clustering problem posed in [LDJ07]. Consen-

sus clustering finds a clustering of the N data items that is close to the average of

a number of alternative clusterings. Given a set of complete label matrices Lj (with

no missing values), consensus clustering may be formulated as the following matrix

factorization problem:

argmin
W,Z

∥∥∥∥∥ 1

J

∑
j

Lj − ZWZT

∥∥∥∥∥
2

F

(7.3.13)

s.t. ZTZ = I

W ≥ 0

Z ≥ 0.

The N × K matrix Z is constrained to be orthogonal with non-negative entries,

and [LDJ07] show that it may therefore be interpreted as a clustering, where [Z]ik > 0

means that data item i is a member of cluster k. The matrix W is a K×K diagonal

matrix (although the diagonality constraint is relaxed in practice) where entry [W]kk

yields the number of data items in cluster k. The objective is to find a clustering

115

that is close (in the sense of Frobenius norm) to the average pairwise relations of the

constituent clusterings: 1
J

∑
j Lj.

In Crowd Clustering, we are instead interested in learning a set of K platonic

clusters that may be recombined to model the diverse categorization behavior of

the workers. Each worker is modeled with a K ×K confusion matrix Wj (no longer

expected to be diagonal) and Z represents the platonic clustering. Assuming complete

matrices Lj, we formulate Crowd Clustering as the following optimization problem:

argmin
∀jWj ,Z

1

J

∑
j

‖Lj − ZWjZ
T‖2F (7.3.14)

s.t. ZTZ = I

∀j,Wj ≥ 0

Z ≥ 0.

While similar in form to the consensus clustering problem, Crowd Clustering finds a

platonic clustering that is not merely close to the average behavior of the crowd, but

one that may be used to facilitate modeling of the variety of behaviors exhibited by

the workers.

7.3.2.1 Algorithm

Given a set of complete label matrices Lj, iterative update equations for the optimiza-

tion problem specified by Eqs. 7.3.14 may be developed by modifying the arguments

given in [DLPP06]. However, we wish to operate using incomplete label matrices,

so that we need not exhaustively sample every pair of images for each worker. We

take the EM-like approach of [ZWFM06] developed for non-negative matrix factor-

ization of incomplete matrices. We first complete the label matrices using the current

estimates of Z and Wj (akin to the ‘E-step’ of the EM algorithm):

L̂j = Pj ◦ Lj + (1−Pj) ◦ ZWjZ
T . (7.3.15)

116

We then update Z and Wj using the completed label matrices L̂j (akin to the ‘M-step’

of the EM algorithm):

[Z]ik = [Z]ik

√√√√ [∑
j L̂jZWj

]
ik[

ZZT (
∑

j L̂jZWj)
]
ik

(7.3.16)

[Wj]k1k2 = [Wj]k1k2

√√√√ [
ZT L̂jZ

]
k1k2[

ZTZWjZTZ
]
k1k2

.

We alternate Eq. 7.3.15 and Eqs. 7.3.16 until convergence.

7.4 Sampling Methods

We have given two methods for aggregating the categorization results of workers into

a platonic clustering, as well as a means of analyzing worker behavior in terms of

confusion matrices. However, as mentioned in Section 7.2, we must first decide how

to distribute images to workers before we may aggregrate their results. Since we have

chosen to structure HITs as clustering tasks of M data items, we must specify the M

data items in each HIT.

As a baseline method, we use the distributed sampling scheme outlined in [SG02]

in order to distribute data items into HITs. This scheme is parameterized by a

constant V , which designates the (expected) number of HITs in which a data item

appears. In this approach, there are a total of dNV
M
e HITs. First, the N images are

distributed deterministically among the HITs, so that there are dM
V
e items in each

HIT. Then the remaining M −dM
V
e items in each HIT are filled by sampling without

replacement from the N − dM
V
e items that are not yet allocated to the HIT.

We are currently exploring adaptive methods which attempt to gain more in-

formation with fewer HITs by selecting items intelligently. These methods have in

common that they operate in a sequential fashion in which HITs in later rounds are

constructed depending on the results from earlier rounds.

117

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Embedding

−1

0

1

−1

0

1

−0.5

0

0.5

Embedding

Figure 7.3: Embeddings µx
i learned via Bayesian Crowd Clustering for the Greeble

dataset. The color of the datapoint indicates its ground truth cluster label. In two
dimensions (left), the four ground truth clusters are reproduced. In three dimensions
(right) the original four clusters are split into eight clusters along an additional axis,
capturing the uninstructed tendency of some workers to categorize based on Greeble
dot color.

7.5 Experiments

In our preliminary experiments we generate HITs using the sampling scheme outlined

in Section 7.4, using the value V = 6. We then distribute these HITs to Amazon

Mechanical Turk such that each HIT is completed by 10 different workers.

7.5.1 Greebles

As a synthetic baseline experiment, we generate N = 200 “Greeble” images (see ex-

amples in Figure 7.4) using a method which maps a two-dimensional vector (g1, g2)

to an image. Coordinate g1 ∈ [−1, 1] controls the Greeble’s height (with 1 indicating

tall and −1 indicating short) and g2 ∈ [−1, 1] controls the color of the Greeble’s body

(with 1 indicating a green body and −1 indicating a yellow body.) Dots, whose color

(either blue or red) and size are randomly selected, are superimposed on the Gree-

bles. We generate four clusters of Greebles from Gaussian distributions with means

(µg1 , µg2) = (±1,±1) and standard deviation 0.1. Half of the workers were instructed

to cluster Greebles based on their height, while the other half were instructed to

cluster based on body color.

118

The resulting mean embedding µx
i of the data items inferred by Bayesian Crowd

Clustering are shown in Figure 7.3. In two dimensions (D = 2), we find that the four

ground truth clusters are relatively well seperated, and the coordinate axes correspond

to height and body color. In three dimensions (D = 3), we find that the clusters are

split additionally along a third axis to yield a total of eight platonic clusters. No

additional platonic clusters were discovered when D > 3.

Figure 7.4 shows high confidence exemplars from the nine platonic clusters dis-

covered via mixture model clustering. We find that the additional axis of variability

encodes the color of the Greeble’s dots, which we did not instruct the workers to use

as a categorization criterion. We observed similar platonic clusters when using the

NMF Crowd Clustering method with K = 8. (Detailed comparison of the methods

is left for future work.)

How do we explain this spontaneous “discovery” of the algorithm? Figure 7.5

shows the worker confusion matrices Ĉj for three workers. As expected, many of

the workers are shown to be sensitive to Greeble height and body color (which can

be inferred based on examples from the platonic clusters that they assign to the

same cluster.) However, there is a third type of worker that spontaneously chose to

categorize based on dot color, despite the fact that we did not explicitly instruct them

to do so. We find this result encouraging in that we are able to use our aggregation

methods to interpret the variety of behaviors of different workers in the crowd.

7.5.2 Bird Pose

Our next experiment involves N = 976 images of Ring-billed Gulls from the Caltech-

UCSD Birds-200 dataset [WBM+10]. Workers were instructed to categorize the im-

ages according to pose, defined loosely as the viewpoint orientation or activity of the

bird. Beyond that, no instructions were given in terms of the definition or number of

pose categories.

Figures 7.6 and 7.7 show high confidence examples from platonic clusters inferred

by Bayesian Crowd Clustering. The number of categories was inferred automatically

119
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1: short, yellow body, red dots 2: tall, green body, blue dots
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

3: short, yellow body, blue dots 4: tall, yellow body, red dots
1 1 1

1 1 0.99999

0.99999 0.99999 0.99999

1 1 1

1 1 1

1 1 1

5: short, green body, red dots 6: tall, green body, red dots
1 1 1

1 1 1

1 1 1

0.99528 0.99327 0.9858

0.98486 0.98407 0.98218

0.98179 0.98154 0.97186

7: tall, yellow body, blue dots 8: short, green body, blue dots
1 1 1

0.99808 0.99139

9: tall, yellow body, blue dots

Figure 7.4: High confidence Greeble cluster examples. Each cluster may be described
as a combination of three Greeble attributes: height, body color, and dot color.

120

Ann: 1, # of HITs: 34

1 3 5 8 6 2 7 9 4

1

3

5

8

6

2

7

9

4
0

0.2

0.4

0.6

0.8

1
Ann: 33, # of HITs: 1

1 4 9 7 3 6 8 2 5

1

4

9

7

3

6

8

2

5
0

0.2

0.4

0.6

0.8

1
Ann: 36, # of HITs: 33

1 5 4 6 8 7 9 2 3

1

5

4

6

8

7

9

2

3
0

0.2

0.4

0.6

0.8

1

Figure 7.5: Confusion matrices Ĉj for three types of workers in the Greeble exper-
iment. Cluster indices were sorted to yield approximate block diagonal structure.
Left: Worker cued to categorize based on Greeble height. Center: Worker cued to
categorize based on Greeble body color. Only a single HIT was performed by this
worker, and there is greater uncertainty about his categorization tendencies. Right:
Some workers spontaneously decided to cluster based on the color of the Greeble’s
dots.

by mixture model clustering the resultant mean embedding µx
i . We find that a

number of sensible categories emerge, which capture the basic activity (flying versus

standing) and viewpoint orientation (left, right, center) of the birds. In addition, the

fourth platonic cluster captures the majority of images whose pose is ambiguous.

Figure 7.8 shows example confusion matrices Ĉj for two workers in the experiment.

See the caption for details. We find that the confusion matrices are valuable for

interpreting worker behavior.

7.5.3 Scenes

Our final experiment involvesN = 1001 images from the scene dataset used in [FFP05].

Workers were instructed to categorize the images according to the type of scene.

High confidence examples from platonic clusters are shown in Figures 7.9 and 7.10.

We find that they correspond to reasonable categories. However, with the exception

of Bedroom scenes (platonic cluster 7), the indoor scenes are grouped together into

platonic cluster 1. There are in fact three ground truth categories (office, living room,

and kitchen) present in this cluster.

We postulate that this is a result of the ambiguity of the image categorization

121

1: Standing Center

2: Standing Right

3: Standing Left

4: Assorted

5: Flying Left

6: Flying Right

Figure 7.6: Bird Pose dataset: High confidence examples from inferred platonic clus-
ters 1-6

122

7: Flying Center

8: Head Right

9: Head Left

10: Flying Right

11: Flying Center

Figure 7.7: Bird Pose dataset: High confidence examples from inferred platonic clus-
ters 7-11

123

Figure 7.8: Confusion matrices Ĉj for two workers in the Bird Pose experiment.
Cluster indices were sorted to yield approximate block diagonal structure. Left: This
worker divides images into two pose categories corresponding to birds in flight and
birds on the ground. Right: This worker further divides birds on the ground into
Standing pose and close up Head images. Note that the workers show uncertainty in
grouping platonic cluster 4, which contains assorted images with poorly defined pose.

problem: there are many reasonable ways to categorize these images. The categoriza-

tion behavior of workers is likely influenced by the implicit context of the task. For

example, if a worker is presented with a HIT consisting of a few indoor scenes and

a number of outdoor scenes, it is quite reasonable to use indoor versus outdoor as a

discriminating factor. However, given a collection of purely indoor scenes in a HIT,

it is likely that workers would draw finer distinctions that discriminate among indoor

scene types such as living room and office.

We believe that intelligent sampling methods (mentioned in Section 7.4) may

be used to counteract the effects of context. A “coarse-to-fine” scheme could be

implemented in which workers first perform HITs according to the random sampling

scheme given in 7.4, which would yield a coarse platonic clustering. Then, HITs are

constructed which are composed of only members of a single (coarse) cluster, which

would yield a refinement of the cluster into subcategories. This divisive clustering

could be continued until a stopping criterion is met.

124

1: Indoor

2: Forest

3: Tall Building

4: Street

5: Mountain

Figure 7.9: Scene dataset: High confidence examples from inferred platonic clusters
1-5

125

6: Suburb

7: Bedroom

8: Coast

9: Highway

10: Assorted

Figure 7.10: Scene dataset: High confidence examples from inferred platonic clusters
6-10

126

7.6 Discussion

We have defined the problem of Crowd Clustering: using crowdsourcing to categorize

and analyze large collections of human-intepretable patterns. We have proposed two

machine learning methods that may be used to aggregate clusterings of subsets of the

data. In distinction from consensus clustering methods, ours may be used to model

the multiple views or schools of thought among the crowd of workers.

Our experimental evaluation indicates that the methods are promising, and re-

search on this topic is ongoing. Future work includes development of adaptive meth-

ods for selecting data items for HITs, experimental evaluation on large scale datasets

where we expect a large number of platonic clusters, and quantitative experimental

comparisons of the alternative Crowd Clustering and consensus clustering methods

with respect to the item sampling redundancy factor V (see Section 7.4).

7.7 Appendix

The intermediate quantities necessary to compute the updates for µx
i and σx

i are

[Ui]d1d2 = σx
id1

(∑
t:at=i

2λ(∆t)
[
Eq{Wjtxbtx

T
bt
Wjt}

]
d1d2

(7.7.1)

+
∑
t:bt=i

2λ(∆t)
[
Eq{Wjtxatx

T
at
Wjt}

]
d1d2

)
vi = σx

i ◦
(∑

t:at=i

(
lt/2 + 2λ(∆t)µ

τ
jt

)
µw

jt
µx

bt

)
+
∑
t:bt=i

(
lt/2 + 2λ(∆t)µ

τ
jt

)
µw

jt
µx

at

))
Eq{Wjxix

T
i Wj} = µw

j Eq{xix
T
i }µw

j + Eq{xix
T
i } ◦ σw

j ◦ (1− I)

Eq{xix
T
i } = µx

i (µ
x
i)

T + diag{σx
i }

An alternative way to write the activity At which incorporates the symmetry

127

constraint on Wj is

At = vecp{Wjt}T vecp{yatbt}+ τjt

where yatbt = xatx
T
bt

+xbtx
T
at
◦ (1− I). We make use of this form of the activity when

deriving updates for µw
j and σw

j . The intermediate terms required are:

cj = vecp
{

σw
j ◦
(∑

t:jt=j

(lt/2 + 2λ(∆t)µ
τ
j)Eq{yatbt}

)}
(7.7.2)

Eq{yab} = µx
aµ

x
b + µx

bµ
x
a ◦ (1− I)

Bj = matp{Tj}

[Tj]d1d2d3d4 = σw
jd1d2

∑
t:jt=j

2λ(∆t)
[
Eq{Yatbt}

]
d1d2d3d4

[Eq{Yab}]d1d2d3d4 = (1− δd1d2 − δd3d4 + δd1d2δd3d4)
[
Eq{xax

T
a } ⊗ Eq{xbx

T
b }
]
d1d3d2d4

+ (1− δd1d2)
[
Eq{xax

T
a } ⊗ Eq{xbx

T
b }
]
d1d4d2d3

+ (1− δd3d4)
[
Eq{xax

T
a } ⊗ Eq{xbx

T
b }
]
d2d3d1d4

+
[
Eq{xax

T
a } ⊗ Eq{xbx

T
b }
]
d2d4d1d3

where Bj = matp{Tj} reorganizes the fourth-order tensor [T]d1d2d3d4 into a matrix

[B]n1n2 such that index n1 corresponds to the ordering of d1 and d2 produced by

vecp{·} and index n2 corresponds to the ordering on d3 and d4 produced by vecp{·}. ⊗

represents the tensor product, and δij is the Kronecker delta. Finally, Yab = yab⊗yab

are the correlation terms associated with yab.

The following expectation is required to update ∆t:

Eq{A2
t} = Eq{(xT

at
Wjtxbt + τjt)

2} (7.7.3)

= tr{Eq{xbtx
T
bt
}µw

jt
Eq{xatx

T
at
}}

+ diag{Eq{xatx
T
at
}}T σw

jt
diag{Eq{xbtx

T
bt
}}

+ 1TE1− tr{E}

where E = Eq{xatx
T
at
} ◦ Eq{xbtx

T
bt
} ◦ σw

jt
, and tr{·} is the matrix trace operator.

Intermediate terms necessary to evaluate the cost function (Eq. 7.3.8) are as fol-

128

lows:

Eq log p(X,W, τ) = −ND
2

log(2πσx
0)− 1

2σx
0

∑
i

(µx
i)

T µx
i + 1T σx

i (7.7.4)

− J

2
log(2πστ

0)− 1

2στ
0

∑
j

(µτ
j)

2 + στ
j

− J(D2 +D)

4
log(2πσw

0)

− 1

2σw
0

∑
j

(vecp{µw
j })T vecp{µw

j }+ 1T vecp{σw
j }

H{q(X,W, τ)} =
1

2

∑
i

∑
d

log(2πe[σx
i]d)

+
1

2

∑
j

(
log(2πeστ

j) +
∑

d1≤d2

log(2πe[σw
j]d1d2)

)
Eq{At} = (µx

at
)T µw

jt
µx

bt
+ µτ

jt

The expression for ∆̂k1k2j (used for approximating the worker confusion matrix)

is

∆̂k1k2j =
√
E{A2

k1k2j}

where

E{A2
k1k2j} = tr{(µk1

µT
k1

+ Σk1)µ
w
j (µk2

µT
k2

+ Σk2)} (7.7.5)

+ diag{µk1
µT

k1
+ Σk1}T σw

j diag{µk2
µT

k2
+ Σk2}

+ 1TF1− tr{F}

where F = (µk1
µT

k1
+ Σk1) ◦ (µk2

µT
k2

+ Σk2) ◦ σw
j .

129

Bibliography

[Ant74] CE Antoniak. Mixtures of dirichlet processes with applications to

bayesian nonparametric problems. The Annals of Statistics— Institute

of Mathematical Statistics, 1974.

[Att99] Hagai Attias. A variational baysian framework for graphical models. In

NIPS, pages 209–215, 1999.

[BFR98] Paul S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clustering

algorithms to large databases. In KDD, pages 9–15, 1998.

[BH07] Francis Bach and Zäıd Harchaoui. DIFFRAC: a discriminative and flex-

ible framework for clustering. In John C. Platt, Daphne Koller, Yoram

Singer, and Sam T. Roweis, editors, NIPS. MIT Press, 2007.

[BHM92] John S. Bridle, Anthony J. R. Heading, and David J. C. MacKay. Unsu-

pervised classifiers, mutual information and ‘phantom targets’. In John E.

Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Advances

in Neural Information Processing Systems, volume 4, pages 1096–1101.

Morgan Kaufmann Publishers, Inc., 1992.

[BJ05] David M. Blei and Michael I. Jordan. Variational inference for dirichlet

process mixtures. Journal of Bayesian Analysis, 1(1):121–144, 2005.

[BNJ03] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

[BS94] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, 1994.

130

[CB] Adrian Corduneanu and Christopher M. Bishop. Plenary papers 27, vari-

ational Bayesian model selection for mixture distributions.

[CBK+10] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam

R. Hruschka Jr., and Tom M. Mitchell. Toward an architecture for never-

ending language learning. In Maria Fox and David Poole, editors, AAAI.

AAAI Press, 2010.

[CJ03] A. Corduneanu and T. Jaakkola. On information regularization. In UAI,

2003.

[CO02] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes.

Neural Computation, 14(3):641–668, 2002.

[COP03] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algo-

rithms for clustering problems. In STOC, pages 30–39, 2003.

[Cre91] N. A. C. Cressie. Statistics for Spatial Data. Wiley, 1991.

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learn-

ing. MIT Press, Cambridge, MA, 2006.

[CWK05] Y. Chen, J. Ze Wang, and R. Krovetz. CLUE: cluster-based retrieval

of images by unsupervised learning. IEEE Trans. Image Processing,

14(8):1187–1201, 2005.

[CZ04] Olivier Chapelle and Alexander Zien. Semi-supervised classification by

low density separation, September 2004.

[Das09] S. Dasgupta. Lecture notes on online clustering. Technical report,

http://www-cse.ucsd.edu/∼dasgupta/291/lec6.pdf, 2009.

[DD03] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from

non-enzymes without alignments. J. Mol. Biol., 330:771–783, Jul 2003.

131

[DF07] D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised

image categorization. In ICCV, pages 1–8, 2007.

[DH00] P. Domingos and G. Hulten. Mining high-speed data streams. In KDD,

2000.

[DH01] P. Domingos and G. Hulten. A general method for scaling up machine

learning algorithms and its application to clustering. In ICML, 2001.

[DK08] A. Das and D. Kempe. Algorithms for subset selection in linear regression.

In STOC, 2008.

[DLPP06] Chris H. Q. Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal

nonnegative matrix t-factorizations for clustering. In Tina Eliassi-Rad,

Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD,

pages 126–135. ACM, 2006.

[DS03] G. Dorko and C. Schmid. Selection of scale-invariant parts for object

class recognition. In International Conference on Computer Vision, pages

634–640, 2003.

[DWSP09] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A

benchmark. In CVPR, June 2009.

[Fea04] P. Fearnhead. Particle filters for mixture models with an unknown num-

ber of components. Journal of Statistics and Computing, 14:11–21, 2004.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. Journal of the

ACM, 45(4):634–652, July 1998.

[Fer73] Thomas S. Ferguson. A Bayesian analysis of some nonparametric prob-

lems. The Annals of Statistics, 1973.

[FFFP04] L. Fei-Fei, R. Fergus, and Pietro Perona. Learning generative visual

models from few training examples: An incremental bayesian approach

132

tested on 101 object categories. In IEEE CVPR Workshop of Generative

Model Based Vision (WGMBV), 2004.

[FFP05] Li Fei-Fei and Pietro Perona. A Bayesian hierarchical model for learn-

ing natural scene categories. In CVPR, pages 524–531. IEEE Computer

Society, 2005.

[FMR08] Pedro F. Felzenszwalb, David A. McAllester, and Deva Ramanan. A

discriminatively trained, multiscale, deformable part model. In CVPR.

IEEE Computer Society, 2008.

[GB04] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy min-

imization. In NIPS, 2004.

[GD06] Kristen Grauman and Trevor Darrell. Unsupervised learning of categories

from sets of partially matching image features. In CVPR (1), pages 19–

25, 2006.

[GHP07] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.

Technical Report 7694, California Institute of Technology, 2007.

[GMM+03] Guha, Meyerson, Mishra, Motwani, and O’Callaghan. Clustering data

streams: Theory and practice. IEEE TKDE, 15, 2003.

[GMT07] Gionis, Mannila, and Tsaparas. Clustering aggregation. In ACM Trans-

actions on Knowledge Discovery from Data, volume 1. 2007.

[GZK05] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy.

Mining data streams: a review. SIGMOD Record, 34(2):18–26, June 2005.

[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of

Classification, 2:193–218, 1985.

[JJ96] Tommi S. Jaakkola and Michael I. Jordan. A variational approach to

Bayesian logistic regression models and their extensions, August 13 1996.

133

[JMJ99] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination.

In NIPS, 1999.

[JT05] Frédéric Jurie and Bill Triggs. Creating efficient codebooks for visual

recognition. In ICCV, pages 604–610. IEEE Computer Society, 2005.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduc-

tion to Cluster Analysis. Wiley, 1990.

[Kru64] J. B. Kruskal. Multidimensional scaling by optimizing goodness-of-fit to

a nonmetric hypothesis. PSym, 29:1–29, 1964.

[KWV07] Kenichi Kurihara, Max Welling, and Nikos Vlassis. Accelerated varia-

tional dirichlet process mixtures. In B. Schölkopf, J. Platt, and T. Hoff-

man, editors, Advances in Neural Information Processing Systems 19.

MIT Press, Cambridge, MA, 2007.

[LCB+04] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El

Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidefi-

nite programming. Journal of Machine Learning Research, 5:27–72, 2004.

[LDJ07] Tao Li, Chris H. Q. Ding, and Michael I. Jordan. Solving consensus and

semi-supervised clustering problems using nonnegative matrix factoriza-

tion. In ICDM, pages 577–582. IEEE Computer Society, 2007.

[LM99] T. Leung and J. Malik. Recognizing surfaces using three-dimensional

textons. In Proceedings of the 7th IEEE International Conference on

Computer Vision (ICCV-99), volume II, pages 1010–1017, Los Alamitos,

CA, September 20–27 1999. IEEE.

[LN89] D. C. Liu and J. Nocedal. On the limited memory BFGS method for

large scale optimization. Mathematical Programming, 45:503–528, 1989.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

134

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories. In CVPR,

2006.

[Min00] T. Minka. Estimating a dirichlet distribution. Technical report, 2000.

[MM94] Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating model

selection search for classification and function approximation. In NIPS,

1994.

[MN98] Andrew McCallum and Kamal Nigam. Employing EM and pool-based

active learning for text classification. 1998.

[MTMG03] Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus

clustering: A resampling-based method for class discovery and visualiza-

tion of gene expression microarray data. Machine Learning, 52(1–2):91–

118, 2003.

[NH02] R. T. Ng and J. Han. CLARANS: A method for clustering objects for

spatial data mining. IEEE Trans. Knowl. Data Eng, 14(5):1003–1016,

2002.

[NJW01] A. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and

an algorithm. In NIPS, 2001.

[NWF78] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approx-

imations for maximizing submodular set functions. Math. Programming,

14(1):265–294, December 1978.

[OPZ06] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object

detectors using a visual shape alphabet. In CVPR, pages I: 3–10, 2006.

[Per10] P. Perona. Vision of a visipedia. Proceedings of the IEEE, 98(8):1526

–1534, Aug. 2010.

135

[Pia01] Justus H. Piater. Visual feature learning. PhD thesis, University of

Massachusetts at Amherst, 2001.

[RW06] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine

Learning. Adaptive Computation and Machine Learning. The MIT Press,

2006.

[Sat01] Masaaki Sato. Online model selection based on the variational Bayes.

Neural Computation, 13(7):1649–1681, 2001.

[SATB05] N. Slonim, G. S. Atwal, G. Tkacik, and W. Bialek. Information-based

clustering. Proc Natl Acad Sci U S A, 102(51):18297–18302, December

2005.

[SB00] Alex J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process

regression. In NIPS, pages 619–625. MIT Press, 2000.

[SB10] N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs.

In NIPS, 2010.

[See04] M. Seeger. Greedy forward selection in the informative vector machine.

Technical report, University of California at Berkeley, 2004.

[Set94] J Sethuraman. A constructive definition of dirichlet priors. Statist. Sinica,

4:639–650, 1994.

[SF08] A. Sorokin and D. A. Forsyth. Utility data annotation with Amazon

Mechanical Turk. In Internet Vision, pages 1–8, 2008.

[SG02] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—A knowledge

reuse framework for combining multiple partitions. Journal of Machine

Learning Research, 3:583–617, 2002.

[SG08] Matthew Streeter and Daniel Golovin. An online algorithm for maximiz-

ing submodular functions. In NIPS, pages 1577–1584, 2008.

136

[SMS99] Alex J. Smola, Olvi L. Mangasarian, and Bernhard Scholkopf. Sparse

kernel feature analysis, 1999.

[SOM06] Pawan Sinha, Yuri Ostrovsky, and Ethan Meyers. Parsing visual scenes

via dynamic cues. Journal of Vision, 6(6):95, 2006.

[SRE+05] Josef Sivic, Bryan C. Russell, Alexei A. Efros, Andrew Zisserman, and

William T. Freeman. Discovering objects and their localization in images.

In ICCV, pages 370–377, 2005.

[SSGB07] Le Song, Alex Smola, Arthur Gretton, and Karsten M. Borgwardt. A

dependence maximization view of clustering. In ICML ’07: Proceedings

of the 24th International Conference on Machine Learning, pages 815–

822. ACM, 2007.

[STC04] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern

Analysis. Cambridge University Press, New York, NY, USA, 2004.

[SWL03] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection

to speed up sparse Gaussian process regression. In AISTATS, 2003.

[TC01] Simon Tong and Edward Y. Chang. Support vector machine active learn-

ing for image retrieval. In ACM Multimedia, pages 107–118, 2001.

[Teh06] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor

processes. In ACL, 2006.

[TFF08] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:

A large data set for nonparametric object and scene recognition. IEEE

PAMI, 30(11):1958–1970, November 2008.

[TJBB06] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei.

Hierarchical Dirichlet processes. Journal of the American Statistical As-

sociation, 101(476):1566–1581, December 2006.

137

[TKW08] Y. W. Teh, K. Kurihara, and M. Welling. Collapsed variational infer-

ence for HDP. In Advances in Neural Information Processing Systems,

volume 20, 2008.

[TM95] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics

and Autonomous Systems, 15(1–2):25–46, 1995.

[TPB00] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck

method. CoRR, physics/0004057, 2000.

[UNGH99] N. Ueda, R. Nakano, Z. Gharamani, and G. Hinton. Smem algorithm for

mixture models, 1999.

[VJ01] Paul A. Viola and Michael J. Jones. Robust real-time face detection. In

ICCV, page 747, 2001.

[VL99] Nuno Vasconcelos and Andrew Lippman. Learning mixture hierarchies.

In Proceedings of the 1998 Conference on Advances in Neural Information

Processing Systems II, pages 606–612. MIT Press, 1999.

[VNU03] Michel Vidal-Naquet and Shimon Ullman. Object recognition with infor-

mative features and linear classification. In ICCV, pages 281–288. IEEE

Computer Society, 2003.

[VNV03] J. Verbeek, J. Nunnink, and N. Vlassis. Accelerated variants of the em

algorithm for Gaussian mixtures. Technical report, University of Ams-

terdam, 2003.

[VNV06] Jakob J. Verbeek, Jan Nunnink, and Nikos A. Vlassis. Accelerated em-

based clustering of large data sets. Data Min. Knowl. Discov., 13(3):291–

307, 2006.

[VR07] Manik Varma and Debajyoti Ray. Learning the discriminative power-

invariance trade-off. In ICCV, pages 1–8. IEEE, 2007.

138

[WBB05] Jason Weston, Antoine Bordes, and Léon Bottou. Online (and offline)

on an even tighter budget. In AISTATS, pages 413–420, 2005.

[WBBP10] Peter Welinder, Steve Branson, Serge Belongie, and Pietro Perona. The

multidimensional wisdom of crowds. In Neural Information Processing

Systems Conference (NIPS), 2010.

[WBM+10] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and

P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-

001, California Institute of Technology, 2010.

[WK06] Nikil Wale and George Karypis. Comparison of descriptor spaces for

chemical compound retrieval and classification. In ICDM, pages 678–

689, 2006.

[WWP00] Markus Weber, Max Welling, and Pietro Perona. Towards automatic

discovery of object categories. In CVPR, 2000.

[XNJR02] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Rus-

sell. Distance metric learning with application to clustering with side-

information. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer,

editors, NIPS, pages 505–512. MIT Press, 2002.

[XS05] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class

support vector machines. In AAAI, 2005.

[Zit08] J. Zittrain. Ubiquitous human computing. Royal Society of London Philo-

sophical Transactions Series A, 366:3813–3821, October 2008.

[ZTK07] K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering

made practical. In ICML, 2007.

[Zuc00] W. Zucchini. An Introduction to Model Selection. Journal of Mathemat-

ical Psychology, 44(1):41–61, March 2000.

139

[ZWFM06] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. Learning

from incomplete ratings using non-negative matrix factorization. In Joy-

deep Ghosh, Diane Lambert, David B. Skillicorn, and Jaideep Srivastava,

editors, SDM. SIAM, 2006.

