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ABSTRACT

A theoretical analysis of the incompressible bending-torsion
flutter of a two-dimensional airfoil with nonlinear structural
character;stics is presented. The Method of Slowly Varying
Parameters of Kryloff and Bogoliuboff is applied, and the steady-
state oscillations ars found. The stability of the steady-state
cseillation is analyzed through the use of perturbation equations.
A quasi-steady asrodynamic approximation is used, and closed-form
solutions for the steady-state oscillations are found for the case
of elastic torsicnal nonlinearities. A numerical example of a
gsoft-hard stiffness characteristic is treated, and the steady~

state and stability results given.
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I. INTRCDUCTION

Important aspects of the Ilutter phenomsnon are basically none
lirear in nature and tims camnot be explainsd by the usual (linear)
flutter theory. For example, linssr theory predicts that once the
eritical flutter speed is reached any small disturbance will initiate
amplitude build-up without limit. However, limited amplitude flutter
is a commonly encountered experimental fact. So also is the depen~
dence of the stability upon the size of the imitial disiurbaneﬁ.
so that stability often persists beyond the lipesr eritical speed
until a sufficiently large and sharp disturbance is encountersd.
These phenomena are typical of nonlinear systems ;n general, and
indicate that the methods of nonlinear mechanics must be invoked to
study such effects in detail.

Previous work, both theoretical and expsrimentsal, has been
done on nonlinear flutter problems. Anslog computer studies of the
effects of several typical structural nonlinearities on flutter
were made by Woolston, et al. {1,2). A theoretical investigation,
using the Method of Equivalent linearization of sryloff and
Bogoliuboff, has been carried out by Shen and Hsu {3,4) and compares
favorably with the analog c¢omputsations.

/ﬁn aspect of the problem not previously considered is the
stabllity of the various parts of the steady«sstate amplitude~
velociiy curve. This iz imporiant becasuse nonlinearitles resulting
in multiple-valued amplitudes are often encountered. 4 particulsrly
gonvenient techique for the stabllity analysis is found in the
 Method of Slowly Varying Parameters, also by Kryloff and Bogoliuwboff.
In this method the problem is reduced to the aelntioh of first order

ordinary differential equations in ths amplitudes and phases, so
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that the perturbations about the steady state are governed by first
order linear ordinary differential equations with constant coefa
ficients. These equations are distinctly easisr to study than the
Hathieu-Hill equations resulting from ths perturbation of the
original second order equations for the displacements.

In this study the application of the Methoed of Slowly Varyling
Parameters to the nonlinear flutter problea is treated, ineluding
both the stesdy-state and the stabllity analysis. Specifically,
the incompressible bending-torsion flutter of & two-dimensional
airfoil with structural nonlinearities is considered. A linear
quasi-steady sercdynanmic theory is used, allowing & closed«form
solution to be obtained., A clossed~form solution for the case of
uncoupled elastic torsional nonlinearities is presented, and a

specific nemerical example is worked out.



3
II. EQUATIONS OF MOTION

The equations of motion for iths bending-torsion of a twoe

dimensional airfoll are

Fs+mh+myba+L = o (1)
' M5+I¢&2+m7&bﬁ—mz o ()

translational ("bending®) structural force, positive
upward

L
]
®
m"%
t

=
&

rotational ("torsicn®) structural moment, positive
sounter-clociwise

mass of the airfoil

B
#

I = mass m&mant of inertia about center of rotation

o8
]

aerodynamle 1ift, positive upward
M = serodynanic moment, positive clockwise;

the remaining symbols are shown in fig, 1.
2b y
b~ ab-qa-h.ahb —]
]~———————*- - "”"""F"'"—'_——-;;1:::§i:
' Mean position
-<=::::::::::::::;::: l Displaced

Elastic axis

"]

Center of gravity

Fig. 1 Description of system
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The serodynamic and structurasl forces may be linear or nonlinear
as eqgs. 1 aend 2 stand. In the present study structural nonlinearities
only sre considered, and a linear guagi-steady theory is used for the

asrodynasiec forces.

Small nonlinearities in the structural forces are gonsidered.
These nonlinearities may be dependent on h, o, b and/orc, and thus

may be slastie, damping, coupled; or a combination.

F = wﬁm[k-& €4 (h,o, "u,&)] (3}

M= u2T [o( + €q9(h o, h, cx)] (&)

oL

The smallness of the nonlinearity is characterized by £, The precise

state&mnﬁ is

h o
L —— EK —mMmM
/£< {0, B, ) g, o, k&) 52

In the sbove aquations «?w and ©’1  are the spring constants in
vending and torsion, respectively.
3.

The air forces used in this study are a quasi-steady approxi-
mation to incompressible, unstesdy air forces. 7The approximation is
that of Dugundji's, in reference 5. Briefly, the Theodorsen function
iz set equal to unity and the density ratio./_f, is assumed high enough
to 'psmit neglecting the apparent mass contribution to the hh and &

termg, Full detalls are given in the sppendix.
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‘The use of the quasi-steady approximaticns allows a closed-form
solution to be obtained. Of course, the presence of the Theodorsen
function precludes this for the complete unsteady formulation.

The quasi-steady 1ift and moment are given Ly
L= (QFTTBU"')o( r (zpub) R + (QﬂgU)Z(\-a-)& «-((owaa)& (6)
m = (7(’“52[12)(-%_4-4)@( + (Z(DfoZU)(—‘z-a—a)l:x A
et Ua)(§-a) & + (pvtla) it ("

whers o is the air density, and U the air speed.
b,

Using the above expressions for the forees the equations of

motion become
-
wimh+ef,oh &)) + wh + mrbo + 2pnbUx +

QPﬂbUFL + eu’bz\IIZ(\—a-)o'c - pﬂ‘bga,.o.é = O (8)

2

W, I [t eqho R + L& + mah- QP“;}L{(.%M)OL_

2ot U(% +@h -2pnP Ud(3-a)& —prbah =0 (9)

The eguations are nondimensionalized in the usual manner for
flutter analysie, vig., define a nondimensional time, T = % t, denote

derivatives with respect tc T by primes, and divide eg. 8 by pﬁb3w2
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and eq. 9 by pﬂkﬁa)z. Grouping terms, the eguations become:

%H"+ ';:'2(/"3"1)"‘”* Zh'+ 2 ((—4.)0: +RXub + k,oc + eu€X = 0 (10)
0] (z) (3 ) (s) @ Q)] &

Lo R+ G Kped =5 g )R — L (G-an +

(4) (o) 1)) a2) u®)
(X‘Qjﬂ - _E:‘(% +a.):\0( + E/@X =0 (i1)
%)) (\5) (16)

The new syambols in egs. 10 and 11 are standard flutter notation, and

are defined helow,

M= ~§- ¢ the mass ratio

ﬂpb

ko= E%;“, the reduced frequency, or Strovhal nusber.

r, = {;ﬂ + the nondimensional radius of gyration.

&
TN

B =

% S|

€
I

bl
8

g 8
8
e ol o

g = g

It is of intersst to identify the corigin bf each of the terms in eys.

10 and 11. The numbsrs below aach term refer to the following list:



7
(1) translational inertia due to bending acceleration
(2) +translational inertla due to torsional acceleration
(3) apparent mass due to torsional acceleration
() 14£t at the + - cbord due to %
(5) combination of 14ft at the § - chord due to 2% gng
l4ft at the &'a chord due to gpparent mass arising from Ud
(6) 1linear structural restoring force in bending
(7) 1ift at the ¢ - chord due %o instantanecus angle of attack
(8) mnonlinear structural force in bending |
(9) rotational inertia due to bending acceleration
(10) apparent mpment of inertia due to bending acceleration
(i1) rotational inertia due to torsional acceleration
{12) aserodycamic moment arising froam term (&) abéve
(13) aerodynamic moment associated with term (5) above
(18) 1linear structural restoring moment in torsion
{15) aerodynamic moment arising frow term (7) above
{16} nonlinear structural force in torsion
It ie necesgary thalt sgs. 10 and 11 be "uncoupled® in the second

derivatives for the applieation of the method of slowly varying para-
2 2

moters, Maltiplying eq. 10 by %=z and eq. 11 by - £=% , defining

zZ= %, - ﬁ and adding results in an equation in Y only. Hultiply-
2 2 '

ing eq. 10 by - ,%-*2'; and 8q. 11 by %’ and adding results in an

eguation in o only. 7The twe equations zre:



(-0 + L e RGral R
2E0-0) + B G-ad] o’ + KZRXR +

{212+ 205 +a] - CRAER] + eFXEF-2D =0 )

(r2- £2)a” - 73—(%+a+7i,“)ﬁ/ -
%[a(%-a) v Z(1-a)]e’ - K% RXh +
[k*x/;x——( ra+® o + ek2X( -z ) =o (13)

This is the final form of the equations of motion to which the method
of slowly varying paramsiers will be applied.
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III. METHOD OF SOLUTIOHN

1. Introduction
The Method of Slowly Varying Parameters 1s well known in the

theory of nonlinear oseillations (ses references (6) and (7) for
exsmple). It is variously kmown as the Method of the First ipproxi-
mation of Kryloff and Bogoliuboff, the Method of Slowly Varying
Amplitude and Phase, and by the name used in this'stm&y. It should
not be confused with the Method of Bquivalent linearization, also by
Eryloff and Bogoliuboff,

The S.V.P.* method requires that the equaltions to be studied be
gquasi-linear, i.e.,, that the nonlinearities be smell. This makes the
harmonic (first) spproximation to tbo‘motian quite good and lesadg:to
the slow variation of the asmplitude and phase. Approximations of
higher order can be made but for practical purposes the first approxi-
mation is almost always sufficient.

While the S.V.P, mesthod is tGsually applied to single degree of -
freedom systems, the methods of solution remsin essentially the seme
for moltiple degree of {reedom systems. First, the displacements
corresponding to the p degrees of freedom are replaced by the ampli-
tudes and phase angles. This changes the system of p second order
nﬁdati@n to one of Zn first order eguations, the dependent variables
being pn amplitudes, (n - 1) phases (since one phase is arbitrary
in the free vibration problem) and the freguency. Second, all quantities
are aversged over é gycle, which leads to the harmonie motion approxi-

mation to the more complex exact motion. This "first spproximetion”

* For convenisence abireviate Slowly Varying Parasmeters to 3.V¥.P.
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contains all the significant nonlinear behavior of quasi-linear systems,
such as limit oyeles and amplitude dependence.
The simplified first order equations resulting from the averaging

process are used to study the steady-state oscillations by setting tbe

T derivatives equal to zero. The resulting set of 1
linear simultanecus equations is solved for the steady-state amplitudes,
phases, =znd frequency.

The stabllity of the steady.state 18 studied by perturbing the
steady-state solutions. 3ince only small perturbations are considered
the p first order equationsbecowe linear in amplitude and phase perw
turbations. Furthermore since the dependent variables are amplitude
and phase, rather than displacement, the equati@ﬁa have constant
coefficients. Thus relatively simple linear theory can be used in the
stablility anslysis,

It will be noted that the oseillations considered are “single-
frequency”, i.e. only one frequency is agsociated with the multiple
degree of freedom system. In an ordinary vibration problem this might
be a‘eonsiderable restriction, since one would expeet to find as many
characteristic frequencies as there are degrees of freedom. Fortunately,
flutter oscillations are peculiarly suited to a single-frequency analy-
sis. It is a well-documented fact (see references (8), (9), (10)) that
vending-torsion flutter systems manifest "frequency coalescence® as
the eritical flutter speed is approached. Foroced vibration studies,
both experimental and theoretieal, indicate thet the twoe characteristic
frequencies approach a common frequency at or near flutter. Thus the
requirement of single-frequency cscillations is not restrietive in the

present casze.
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Change dependent variables h{7T) and ®(7T) in egs. 10 and 11

as follows:
h(D = 2,(t) sinkT + @ (01} {14)

a(t)= a2 5in kT + &) (15)

Since four new varisbles have been introduced to replace the originsl

two, four relations must be defined. The remaining two avre:

k(D) = a0 kcos [kt +6 (0] (16)
0/ (7) = 42(T) keosfkt + € (D)) (17)
Since a, and ("i ere functions of T wegs. 16 and 17 require
a,/sin(kt+ @) + @' a, cos(kT+@) = © (18)
;' sn(kt+ @2) + @ a2 cos(kt+@) =0 {19)

Differentiating eqs. 16 and 17 to obtain the expressions for the
second derivatives, and substituting into egs. 12 and 13 yields

two first order equations. let @, =k7T + @ and 9, = kT + @,.
(-R)alk B - aelirer)oin O] + ZUE+ T (5 +a]a ks +
— ‘
%[/l:(l—&) +% (F-a)a)a,k cos 8, + L4 RXa 5B, +

(20 4440 RN} aa5in®y ¢ £RET-£3) =0 o)
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k’t.",i“‘) 2}k 059z — ak(k+ @, )5inG] - 3(L+a+ Z)ak cosB -

(at & M2 X
Zla(z-a) + B (-aarkes O, - PE PR a s +

[EXA2 - B(4+ari)) 2z onE, + X @E-%F)=o (21)

The sbove equations and egs. 18 and 19 form the set of four first
order equations. Explicit expressions for a{ . az', (0; , and @/
can be obtained Ly slgebralc menipulation.

The four explicit first order equations are

(- 2! = —~Z A2+ % (5+4)] 2, cos’, — %[h},(t—d) +X a(5-dl] 2,036, c0s6,~
K[ZRX- (A -Z0Y] 4, SnB, 050, -
(BB 5+ ] -KEATX 2 cox 50, - ek X (T-E ) coss,  (22)
(ﬁ:—ij)ag = 73—(124'4.1—'23‘301‘ 056, b + %[d (F-2)+ K1 -af}a ,05%6), +
ki @K a, sin 8, 2056, - {k [EX- (A2-%D)] - (_ ratE)} e, sinb; 056, —

EkR(3-%F) s B, {23)

B = G B aralend ot + 24T, (- a1 3 506, sy +

Qirg-o2 2068 + IR B0 Al - EAK] Lo sl + (20)

&ld( Z KE-%3) sin9,
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(2 2G = - F(+ar D) g 0B 5By - ZTA(5-2) B (18] s, cos8, -

% rzxﬁa'.; sinG sinb, +{k[/z:x— ({'—'7? )]- l‘f—k(-fz rAFE, )} 5?6, +

kX g% %) sinB, (25)

Kote that these eguations are exact. The a@proxjmétion arisss in
the averaging wiich follows.

Since the amplitudes and phases are slowly varying®, they may
be regarded as constant during & cycle, and egs. 22 to 25 may be
averaged over a cycle. This eliminates explicit dependence om T,
and simplifies the equations condiderably. Denote the average

value of the nonlinear expressiocns as follows:

£kX (/;25 %,3) cos 9, 46, )

N\c"‘—""‘

kX mo_
Nee= 1 (3-%%) cos 6, 46,
? > (26)

Nig = ek)k (A’{ a) sin6, 40,

(<]

| 2
k - == s
N2g= —iﬂ'x (3-%,5) sinb; dé, .

b J

The averaged equations are

E-B)a) = - AL+ T (54 a)]e, —;{—[ﬁj(l—a) +% 4(5-4) 2,050 +

{ e+ Z+a)] - S kx /z’X} 4; sin¢ — Nie (27)
* see p. 1&& regarding slow variation assumption




is

(B-F)as = b+ as B2 5 + ze(5-2) %, (1-a) 2z +

'lz‘ k'iszd.g(;tW - Nz¢ (28}

4, (R-2)q = /_l-[/gf(u-a) +E4L-d)a, sin @ +-E[Q2RX-(2-%)) 2, +

{/-;'-k[/ijf Z (5] -gkg AKX} @y cos@ + Nis (29)

LT G = G(Erat B a sine- LT RL2 cos®+

{%[ :X_(A:'i:ﬂ—ﬂl—k(%—' +a,+7;")}az + Nag {BQ}V
viere ¢ = ¢, -, = § -8,
The above equations are the baslic results of the Hethod of Slowly
Varying Parameters, and are used to study the steady-state oscilla~
tions and their stability.
For future convenience, the equations may be written in simpler

form with the definition of some new symbols. Let the oquat&omﬁ be

Qd,' = Ba, + (—-C51'n.(0+ DCOSQ’)Qz— N(c (31}
®a; = (Esm@+ Feos@)a, + Ha, =N, (32)
.Q¢ = -Aa,~ (Dsiu® + Ceos¢)a, + Ny (33)

2,R¢ = (Fsin-Ecos@)a, - Ga, + Ny {3%)
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where A= Tziﬁ[/*z'zx (%] |
B = - glA+ %5+
C = ~{ IR gra] - g7 AN
0 = [ﬁz I-a) + X 4(‘ -a)] ~ {35)
I, EY,
E = i (Gta+%)
6 = - {EIREX-(2-T]- (5 + oD}
= Jlel-a) +R0-0) ; Q= AFET

Hote that this form exhibits variables a, 8, and € but not

varigbles k and Y. This turns out to be convenisnt for later use.

The steady-state oscillations, i.e., at constant amplitudss
and phases, are the nonlinear equivalent of the flutler condition.
Setting al. az. amd(pg all equal to zero in eqs. 27 to 30
results in four alg@bx‘,aia simultaneous squations in the five varisbles
& 85, @ 4 k and X. Hote that in the free vilbwation problem ane
- phase is arbitrary and thus only the phase difference is significant.
The equations can be solved to give veloecity as a funoction of
amplitude, i.6., a closed-form solution, for the case of elastic
nonlinesrities in one of the degrees of freedom, and such & golution ’
is carried out in Parts IV and V. PFor more coﬁplia&t@d ¢8868, COnSi-
derable algebraic reduction can still be achieved, however, some

iteration may be necessary to obtain numerical results.



The procedure in the preceding psragraphs generates relations
between amplitudea, phase, frequency, asnd veloeciiy which may exist
at steady-state, but makes no statement regarding the stability of
small perturbations from the steady state., If, in fact, parts of
the stesdy-state relations are unstable in the above sense they
will not be encountered in practice, since they are perhaps more
accurately described a® criticsl energy levels, which separate
motions converging on different amplitudes, or limit cyocles. Unw
gtable portions of the amplitude--velocity curve arlse frequently
due to soft«hard or similar types of stiffnesses, which result in
miltiple-valued amplitudes for certain ranges of veloeity. Tius an
investigation of the stabllity is seen to be an important part of
the nonlinear flutter problem.

Assume the steady-state equatione have been solved and dencte
the steady-state valuss by 800 800 990, ko and Kb' The
perturbations are defined as follows:

a,=a,+k,
2z = dg, + &,
\ (36)
b“=@,+m,
=%+m 5 te, n=n-n,
Pz‘:{’za*‘ N2 ’ J

The perturbations are assumed to ocour at constant velocity and the

frequency perturtations are accounted for by 7N . 80 that Xk

—
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and X do not require parturbation.
Substituting eqs. 36 into egqs. 31 to 34 yields

Q' = B(2,+ &)~ C(a,, +52) sin(g+7) + D@y, +52) cos(@, +7) -

Nu

: Bu‘cigz + %E_‘_S ° T ] {37)

D
[N“.- (#1,82,0) + 5

a, ‘o

Qb= E(a+E)an(Gan) + F(a +5)cos(@am) + H(Z,,+ Ex) —

[NZC (ala az., E) M?c BN‘Z:\ ‘§ + )NZCL-)‘_‘_ ) ] (38)

(@8R = -A@+8)~D( %45y si(Gen)— C(a, 3 &,) @s(Br) +

[NlS(ah, Ze, a + AN‘S(E \Ez >le‘ 7{+ . J (393

3&1 o pled

(ﬂz,i-gz)Q)?z F(amg,);m(‘?n,) L:(a‘ E‘}d@ahﬂ_ G(QZ;“ Ez) +

[NzS(a.,z. ‘NBK m“{ Bt “zsl N ] (40)

To first order in the perturbations, and with the subkraction of
sums equal to zerc Ly virtue of the fact that a0 &0 P Koo
and KD are solutions of the steady-state equations, the perturbation

equations becons

le,: (B—BNlcl>§| (—CS.\K(&*'D.COS%-aN‘C )5;

( Cdzo csF, - Vaz,;m‘e,-— ““‘ )17 {B1)
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RE, = (Es\'n(ﬁ + Fcas?c”bNu‘ )E\ H‘ @—u\ )EZ +
(E 2,05, - Falosihce’ - M:(;‘l.a) lyl (h2)
E N N
@y = (A - Esing v E g v 230 o L By
: N b
(—%osm%_ 5@ +Z zo+z-;-hm-—‘z-?L_ L Nz.rl )Ez

Ca Fdio Ea iy L Mg 12N
(D"2°cos€+ 0 ~ & b0 cogp, — E% '"{‘3'*«, a{(‘[ i M;f[ )"Z. (53)

Hote that, again, since only 7 = ’rzl -772 is significant there are
only three equations.

The above equations detsrmine the stability of small perturbations
about the steady state. Jince they are linear differential esquations
with constant ccefficlents they can be molved by standard techniques.

Specifioally, it can be asswsed that

- AT - AT AT
B, E=E< =7

Then eqs. 41 to &3 becoms
M= wE rBE N
A, = a2 & + 6.5, t 2%
M o= skt B3 E, + Yy

where Uy &i and B’i are defined in an obvious manner. For none

trivial solutions the determinant of the coefficients must be gzero.
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The determinant generstes a cubic polynemial in A . The stabile
ity, i.e., resl part of A greater than or less than szero, may
then be studied with the aid of Routh's oriteria for cubic poly-
nomials, or by actually solving for the roots.

In addition to stability studies, the perturbation eguations
provide an a _posterjor) check on the assumption of slow variations.
Since A characterizes the rate of change of the perturbations, its
magnitude is the oritical factor, and the roots of the cubic in A
give this information.

It is not always necessary that all the roots be small, however,
gsince some may be assoociasted with initial transients which do not
affect the significant pert of the perturbation motion. The example
in Part V illustrates this point. There the three roots consist of
one real, small root which determines the stability, and two rather
large, complex conjugate roots (negative real part) which correspond
to a highly damped oscillatory mode which will be in evidence only
for a ghort time after the perturbation is initiated.

Since the 3§lutions obtained are approximate, the gquestion
arises as to whether scme undesirable large roots may have been
precluded by the averaging spproximation itself. Such questions
generally accompany § posteriori Justifications of this kind, and
are usually answered on physical grounds. For the present case of
quasi-linear systems thers appears to be litile danger that such
values of A have been precluded.

Purther analysis of the stability in these general terms is
beyond the scope of this study. In any specific numerical example,
hOHBVer.‘thB procadura is sﬁraightforward. In Part V auch a cale

culation will be carried out,
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I¥. CLOSED-FORM SCLUTION FOR ELASTIC TORSIONAL RONLINEARITY
Solution of the set of four simultaneous nonlinear algebraic
ecuations for the steady-state oscillations (egqs. 27 tc 30 or 31
to 3%) appears to be a formidable task, however, there is a rels-
tively simple procedure which yields closed-form results in some
casas, and almost closed-form results in other cases. The ¢losed-
fora gsolutions are possible for the important case of nonlinearities
in one degree of freedom, which are dependent only on the amplitude
of that degree of freedom, i.e., for single, uncoupled, elastioc
nonlinearities. The procedure will be shown for an elastic, une

coupled nonlinearity in torsion.

For an elastic torsional aonlinearity the functions Eic‘ 329.
His' and ggg. defined in eqs. 26, take on & simple form.
2 - .2 20
%, [ _ ekX % 2 :
Nie = — €kX %y 3 cos9db = — ——XZ [ g(a;5nbp) cos€ 4B,
21T 21
o . To '
. 5 L 26-¢
Nie = — %ﬁ_‘f/ g(az sin &) [cos & cos¥— sin G, sin@] 40,
-¢
N“-_ = 2,“40‘6!'11.@ aq (%)
Sizilarly,
Ny =0 (&5)

- Z ko ws¥ a,

z
A
it

(46)



Ngg= ko, (47)
whare
R 3
7= EXA"/ g(a 5inth) sin,d 6, (48)
2T a2 Lo

Note that ¢ is a function of &,, torsional amplitude.

wWith the definitions of eqs. 44 to 47 the steady-state eguations
corresponding to eqs. 31 to 34 become

Pa, + [—(CH’%LkO')Sin‘F + V¥ a, =0

(49)
[Esing + Faos@la, + Hae = © (50)
Aa, + (Ds(n(e + (C+ %K) cosela, =0 (51)
[Fsine- € cose] a, - (G-k) &z =0 {52)
Working with eqa. 49 lanﬁd 51 leads to the system
(-Bsiu@+ Acx@)a, + (C+ Fke)az =0 (53)
(Beos@ + Acin @) &, + Pz, =0 (54)
(Escin® + Fes¥)a, + Ha: = © {55}

(Ecos@ - Fsm@)a, + (6-ka)a;=0 (56)



22
From eqs. 5% and 55 an expression for the amplitude ratio, in terms

of ¢ only, is obtained.

a D o H
az B cos@+ Asinte E sih@ + Fcos {57}
Frou sqn. 57
Taw‘? = M
AH- DE
Gn@ = DF-BH
J(De- BH)Z+ (AR -DEY
05 Pz AH-DE > (58)
J(DF-8BH)2+ (Al-DE)?
& _ JvF-BHY*+ (An-DEY?
Az BE-AF ]

Substituting eqs. 58 into eqs. 53 and 56 yields

~B(DF-BH) + A(AH-DE) — (AF-BEXC+% ko) = ©
E(AH-DE) - F(DF-BH) ~ (AF-BE)(G-ke) =0 (59)

Working with eqs. 59 yislds finally

BH-DF + (c+Z k) E- (6-ko)A=0 (60)

DE- HA + (c+ "%‘kcr) F-(6-ka)B=0o (61)
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When the definitions from ogqs. 35 are substituted into eqs. 60 and 61
only oollection of terms 48 necessary to obtain relations bwiween

flutter frequency, flutter velocity, and torsional ampiitude. BEqua-

tion 61 yields
1wt Ay+R(a-p)a 42435 )
— ;‘; —
X o /2:*'27::“*'“2“"'2(’5&*“')

Bquation 60 yields

v AR gE - X[+ (-R) ¢ 2(1-'R) 8]

e % 63)
2T 2k (5 4 - [ re e )] ‘

In the above
Xa2 ~ 7ua g (a1s5nb) sinGrd6p = z only)

From eqs. 62 and 63 one obtains
2

(bw) = (bu))z"'u_) = TZ;T(

(v )"' w| Tl £ A-ED) - oA (1-%) + 243 (% -R)s

wa

2 L/ )
x(z+a+%-5) - R(a+3) (65)
dince é is a given funotion of a,, X, and henoe U, can bs found
directly from eqs. 62 and 65, thus forming a closed-form solution.
In carrying out a caleulation the procedure would be as follows.

1) Assume a valus of 8,, tima determining & . 2) Using 5.,
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compute X. 3) Using X, compute U/bwj, and k. 4) Phase diffe.
‘ a
rencs, _‘f o and amplitude ratio, -a-;'". can then be computed from

the following formalas, derived from eqs. 58,

i’an(f = -
HE[%, (1-4) + (- RR)(E - 22)] ee)
a Ae(1-2) + Fa(z-2) (67)
az

ME[AZ- %1-RRAL 5 - (B2 + G (L +a)]coste

Bquations 62, 65, 66, and 67 constitute a complete solution for the
steady-state oscillations in the nonlinear flutter problem for an
elastic torsional nonlinearity®. A numerical example is worked out

in Part V.

iy

® Hote tha.tﬁwhen» S = 0 (the linear case) egs. 62 and 65 reduce
to eqgs. 3 and 4 of reference (5).
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¥. HRUMBRICAL BXAMPLE: S0FT-HARD QUINTIC CHARACTERISTIC

The example chosen for this study is particularly interesting
from the point of vlew of stability, since it manifesis multiple-
valued steady-state amplitudes over part of the velociiy range.
The perturbation analysis shows that the limit cycles corresponding
to these smplitudes vary alternately in their stability, a result
one might intuitively expect from single degree of freedom theory.
Such multiple~valusdness axﬁ.sea' from the fact that the relative
sizge of the nonlinearity, -%5 s i not s momotonie function of
the amplitude. Bxsmples of stiffness characteristics of this type
are shown in fig. 2 , together with the relative sigze of the none
linearity.

The specific characteristic chosen is a soft-hard guintiec,

given by
Mg = “).;Im(oz—“/oc3 +3205) (68)
Hence

£G = —4a® + 324 (69)

It is plotied in fig. 3J.

The system parameters sre

o ‘
A% =015, —@::o,z, 2=-04, %Z,=ol\, m=\o. (70)
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Fig.3. Sott-hard quintic nonlinearity: Mg = [& - 40+ 320°|w,21,
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They are taken from reference {11), fig. I-A (m), where the linear
case is worked out for the full unsteady imcompressible serodynamics.
The linear (a, = 0) case worked here indicstes that the quasi-
steady spproximation results in a reduction in the eriticsl velocity
of sbout 25%. For the present purposes this error is reasonable,
since it should have no direct bearing on the effect of the none

linsarilty.

Using the values given in eqs. 69 and 70 the governing fore
malas (eqs. 62 to 67) become as follows

b =as(-1.5 + 10a?) (71)
i- = 0617 +1.175 (72)
| 1 £
(__U_)Z _ x (30 -1152 %) - 0.05 +2.5(x 0.04)$ )
by oML — 0 o004
X
7 1 [bwy\? .
k = x (—u—w“’) (74)
k(.64 — 0. 144XK) (75)
a0 | 02996 (76)

22~ L(1162 - 0.05K) sinp — 0264 Coste

The caleulations for each point are begun by choosing & value
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of az, then é and all other quantities follow in succesion.
The results are plotted in fig. 4.
3

Once the steady state sclution has been obtained the coefficients
of the perturbation equations, eqs. 41 to 43, are determined for any
given amplitude. The amplitudes a, = 0.4658 and 8y, = 0.3499
aere chosen as representative; they both ecorrespond to a value of

ufu of 0.963, and their corresponding coefficients differ only

linsar
where é R a,o and azo are involved. The two setsz of perturbation

equations, characteristic equaticns, and roots are as follows

8pp = 0.16%8:

Parturbation eguations.

0.2304%/ = —0.0264E, + 0.0332%,+ 0.00%307

0.2304E; = 00\%5 §,—0.0164 E, - 0.00404 Y f (77)

0.290‘/’)" = - 05348 +0.434 €, c.04P2 N

J

Assuming &= E.eh- eto. and forming the determinant of the

coefficients yields the sharacteristis equation

)\3+ 0.645)2 + 01245 ) — 0. 0co00\B=0. (78)

The roots are:

A = o.cofo 5 Ag.g = -0.198 * 0 29,. (797
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85, = Qa9

Perturbation equations:

0.230% E] = -0.0264&,+ 00271 &, + ©.01927
0.2804 €L = ©.0135& - 0064, - 0.00852y

0.2304 ) = —o.l168E8, + 00565E,~ 00982 N

Characteristic equations:
)\3+ 0.395 X%+ 01015 A + 0.0c0128 = O
Roote:

Ay = — 0.0\15; 32,5 =-clql + 0.26¢(

y (80)

(81)

(82)

The steady-state amplitude--velocity curve is double~valued in

amplitude at speeds 0.937 < (U/U;, . ) < 1. That this should be

the case is clear from fig. 3, where it is seen that & is double-

* galued in %f and S . Since Y 4is dependent on S only, it

follows thet & will be double-velued in J.

The stability of the steady-state is détermined by the signe

of the roots of the characteristic equations corresponding to the

perturbation egquations at each amplitude. For each amplitude

studised a real root and two complex conjugate rcots are found.

For a, = 0.3499 the real parts are all negative, and the psrturs
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bations decay exponentially, so that the steady-state oseillation
is stsble. For a, = 0,1658 the real root is positive hence the
perturbations diverge and the steady-state oscillation is unstable.
By computing and plotting the coefficients {(or the roots} of the
characteristic equation, the stability can be established for any

range of swmplitudes of interest.

osteriory check on the slowness of the variation of the
smplitudes and phase has received previous comment in Part ITI.4%,
There it was stated that, although in gemeral the roots A must
be small, large velues will not disqualify the assumption of slow
variation if they sre associated with highly damped initial trangé
sients. The present exsmple is a good illustration. The resl
root at both amplitudes iz the critical stability root, and is
small, so that the nmumber of cycles ( of basis motion ) required
for double { or half )} amplitude to be attsined are
ay, = 0.1658: 44.5 cycles to double amplitude
a,, = 034091 3.56 aycles to half amplitude.
Considering the least favorable of the sbove, 8y = 03459, it
is seen that the perturbation changes amplitude at a rate of sbout
158 of its initial amplitude per cyele (during the imitisl part of
the motion). Assuming the perturbations are limited to 10% of the
basic amplitude, then thers will be 2 maximum variation of about
14% per cycle in the basic smplitude, which adwits with little
arror tha.averaging approximstion. Thus these perturbation modes
ere glowly vnrying.
The complex conjugate roots are kather large, and thus
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correspord to a mode in which the perturbations vary rapidly.
Howevey, the real part is negative, so that after only one oycle
this mode has damped to 6% of its initial amplitude, and hence has
essentially disappeared after a short time., The subsequent per
turbstion motion consists of essentially only the slowly-varying
mode, and it is this part of the wotion whioh is of major concermn.

Thus the original assumption is justified.
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VI. GENERAL DISCUSSION AND CONCLUSIONS

It hes been seen that the Method of Slowly Varying Parausters
yields rather concise closed-form solutions for the nocnlinear bend-
ing-torsion flutter problem using the simplified aserodynamics of
the quasi-steady approximation. In additlion, the steady-state
equations are in a form that makes the perturbation equations excep-
tionally easy to analyze, thus providing a stralghtforward stability
analysis.

The results of the stability analysis confirm what other non-
linear flutter investigations have indicated, and what intuition
leads one to expect. In references (3) and (&) bending-torsion
flutter with fréa play in the torsional stiffmness was analyzed Ly
the Method of Equivalent Linearization. Multipls-valued amplitudes
were found, but the gquestion of stability of the limit cycles did
not enter since essentially linear theory was used. In this theory
the linear flutter velocity is found for the equivalent stifinesses
gorresponding to the amplitude under consideration. Thus the region
to the right of the steady-state curve is termed unstable, as shown

in fig. 5.
85| stable

Unstable

U U

linear

Fig. 5 Equivalent linearization stability result
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If such regions of “instability” are regarded as ranges of amplitudes,
for a given velocity, whers the oscillations are converging on &
limit eycle of higher amplitude, then the results of both analyses
are identical. However, besides the difference in point of view,
the present analysis is the more rigorous. The rigor is not without
cost, however. A4s the member of degrees of freedosm considered ine
creases, and if multiple nonlinearities are to be considered, and
if nonsteady aerodynamics theory is used, then the solution of the
steady-state equations becomes much more difficult. For this reason,
it may well be that for complicated cases the method of equivalent
linesrization would be preferable, at least from the standpoint of
the practicing flutter engineer,

The appliaability of the 35.V.P., method is of course not limited
to elastic noniinearities, or, for that matter, to structural none
1inearities; ﬁxfruitfulvriald for future research would be the
investigation of the effects of varicus types of damping and @erc-
dynamic nonlinearities.

2.

The steady-state amplitude-veloclity curve is of course directly
dependent on the type of nonlinearity under consideration, and there
will be as many type of curves as there are nonlinsarities. However,
it is seen from eqs. 62 and 65 that § can conveniently be regarded
ag a funetion of é,. the sveraged relative size of the nonlinearity,
and for a given system [ can be plotted against & . Then from
the amplitude-~ O ocurves corresponding to the nonlinearity under
conslderation rapid eross~plotting will yield the amplitude-«veloc-

ity curves. 3Since for woderate ranges of é the Qﬁﬁél relation
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will be approximately limear, the shape of the amplitude~-veloecity
curves <ean bs qualitatively or quantitatively determined cnce the
amplitude~.= & relation is given. Thus the steady-state results
are relatively easily found and interpreted.

The stability analysis does not yield so easily to rigorous
generalization. | However, intuition predicts that the limit oycles
will alternate in their stability, and the specific example treated
lends further support o such expectations. |

Justification of the assumption of slow
variations introducee an interesting concept. The perturbation
motion was seen to be composed of a slowly varying "stability® mode
and a highly damped escillatory mode, which affected neither the
stability nor the assumption of slow variations. Such secondary
modes are not uncommon in multiple degree of freedom nonlinear
systems, and their study may well lead to fuller understanding of

auch systems,
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VIII. APPENDIX: QUASI-ST#ADY AERCDYNAMICS APPROXIMATION

The approximation to the aerodynamic forces used in this study -
is due to Dugundji, and is described in reference (5). In this
reference the detsils are not too clear, however, since approxima.
tion is made after the air forces have been put intce the equations
of motion. Therefore a derivation will be shown here,

The aepproximation differs from the ususl quasi-steady theory,
as given in reference (8), in that one starts with the full un-
steady expressions and reduces them to a much simpler, essentially
guasi-steady, form. The unsteady expressions for harmonic motions

are given by eqs. 9, 3ection 6.9 of reference 8, and are repeated

below
i{'f) e-i/é'&' ,(;E-Z
—_— = =}2(le_ ke
pr? K(F-am) + ke, +
2 C0(a, + Lhh, + (L-ayikay] (L)
m@ e “F i C il
W = (f+a) 2UB[a + pkh, +(5-a)ika] -
ko . [
gﬂ-(*g"ﬂ“,)—-(%—d.)l.ka’-kga:a (42)
——
(2) €))

In the above, C(k) is the Theodorsen function, and hb and o,
are complex amplitudes in bending and torsion, respectively.
Bssentially two spproximations are made. First, the Theodorsen

function is set equal to unity, its limiting value as k approaches
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zerc. Jecond, the contribution of bending acceleration to the
‘apparent mass, term (1), and the contribution of torsional accel-
eration to the a@parent moment of inertia, terms (2) and (3), are
neglected. This approximstion will be good if ité(l .

With the above approximations, and reverting to general time

derivatives where

eqs. Al and AZ becowe

L) L. b h l b .
ovpuzs fwe® T g+ 2fxrg tzmega]

’m‘t) VL b . ab . b . "™
e 2(graar Lt (gt Th-Gage W

Collecting teras yields eqs. 8 and 9 of Part 1l.



