
Searching for Minimum Storage Regenerating Codes

Daniel Cullina

Professor Tracey Ho

Department of Electrical Engineering

California Institute of Technology

1

Acknowledgments

I would like to thank my thesis advisor, Professor Tracey Ho for introducing me to this topic and guiding

me throughout the year. I would also like to thank Dr. Georgios Dimakis for helping me to understand his

results regarding the problem and for sending me in fruitful directions. Special thanks to Sherwin Doroudi

for his help during a variety of discussions throughout the year, to Mason Smith for his help with linear

algebra, and to Shengbo Xu for his help during the writing process.

1

Abstract

Regenerating codes allow distributed storage systems to recover from the loss of a storage node while

transmitting the minimum possible amount of data across the network. We search for examples of

Minimum Storage Regenerating Codes. To exhaustively search the space of potential codes, we reduce

the potential search space in several ways. We impose an additional symmetry condition on codes that

we consider. We specify codes in a simple alternative way, using additional recovered coefficients rather

than transmission coefficients. We place codes into equivalence classes to avoid redundant checking. We

find MSR codes for the parameters n = 5 and k = 3 in various fields. We demonstrate that it is possible

for such codes to be composed of vectors in general position.

2

Contents

1 Introduction

2 Definitions and Notation

2.1 Lower bound on recovery bandwidth

2.2 Notation ...

2.3 Independence . .

2.4 Recovery

2.5 General Position

3 Rotationally Symmetric Codes

3.1 Recovery Condition ...

3.2 Independence Condition

3.3 Example.........

4 Additional Recovered Coefficients

4.1 Unrecovered Coefficients

4.2 Example: Obtaining B from Y ..

5 Transformations of codes and equivalence classes

5.1 Row transformations

5.2 Column transformations ..

5.3 Example: Systematic Form

6 Search Procedur.e

7 Search results

7.1 n = 4, k = 2 .

7.2 n = 5, k = 3 .

7.3 n = 6, k = 3 .

8 Appendix

8.1 Rotation Matrices

8.2 Rotation Matrices with too many eigenvalues equal to 1

8.3 Unrecovered Coefficients when n = 4, k = 2

8.4 (5,3) code over GF(3)

8.5 (5,3) code over GF(7)

8.6 General Position (5,3) code over GF(17) .

3

4

4

4

5

5

5

6

6

6

7

7

8

8

8

10

10

10

11

12

12

12

12

12

13

13

13

14

15

15

16

1 Introd uction

Distributed storage systems allow data to be stored with much higher reliability than that of the individual

components. They do this by recovering from the failure of individual components without the loss of data.

When a node is lost, the network must provide a replacement node with the data that was stored on the

original node. There are a variety of storage and recovery schemes that can be used to implement distributed

storage. Data replication is the simplest such scheme. When a node is lost, nodes elsewhere in the network

can transmit their copies of the lost data to a replacement node. The amount of data transmitted is equal

to the size of the lost node.

Erasure codes can match the level of reliability achieved by replication while improving on the ,amount of

storage space used. In an Maximum Distance Separable (MDS) code, any k nodes contain enough information

to recreate all of the s~urce data. When a node is lost, the simplest procedure to is to transmit the contents

of k nodes to the replacement node. The replacement node can rebuild all of the source data and use it

to construct the contents of the lost node. An amount of data equal to the size of the source must be

transmitted across the network during this procedure.

However, there are codes that can recover a lost node while transmitting less data than this [Dimakis et aI., 2007].

Regenerating codes require storage nodes to transmit a linear combination of different parts of their contents

to a replacement node during the recovery process. This allows the information theoretic lower bound of

network bandwidth to be achieved. Minimum Storage Regenerating (MSR) codes are MDS codes that use

the minimal network repair bandwidth.

We are interested in finding examples of MSR codes. To exhaustively search the space of potential

codes in feasible amounts of time, we reduce the search space in several ways. We impose an additional

condition that restrict the type of codes that we consider. This allows us to consider only highly symmetric

codes that can be more concisely specified. We specify a code in a simple alternative way, using additional

recovered coefficients rather than transmission coefficients. The space of codes can be searched more easily

and efficiently when codes are specified this way. Finally, we use linear transformations to relate codes

to each other and place them into equivalence classes. This allows us to check only one code from each

equivalence class

2 Definitions and Notation

The storage networks that we are concerned with contain n equivalent storage nodes. We wish to store M
bits of data in the network, where M is k times the size of one of the storage nodes. Because of this, we say

that the network has k source nodes.

2.1 Lower bound on recovery bandwidth

During the recovery process, k(d~k~l) bits of data must be transmitted, where d is the number of nodes

providing data [Dimakis et ai., 2007]. We are interested in the case where d = n - 1, so this bound becomes

~~n_-S. There are n - 1 nodes that each contain ';;, so each node is transmitting n~k of its contents.

Because of this, we store n - k packets of data in each storage node. We break the source data up into

4

packets of the same size and each storage packet will be some linear combination of the k(n - k) packets of

source data.

2.2 Notation

We use several matrices to represent the data and coefficients used in an MSR code.

Ai (n- k) x k(n - k) matrix of storage coefficients

B· . ',J 1 x (n -k) row vector of transmission coefficients

Ci (n- k) x (n -1) matrix used to rebuild storage node i

D k(n- k) x x matrix of source data

The ith storage node contains AiD, the original data multiplied by the storage coefficients for that node.

2.3 Independence

The storage nodes of the code are independent if any k nodes can reproduce the original data. That is, for

all combinations of k storage nodes, there is a matrix M such that

D = M (~:~:;) D

AC(k)

or equivalently

Each combination of nodes must produce a full rank matrix.

2.4 Recovery

(

AC(l))
Ac(2)

det

AC(k)

;0

When node j fails, the ith node transmits Bi,jAiD. The code allows the recovery of node j if there is a

matrix C i that recreates the lost node from the transmitted vectors:

Bi,jAj - l

Bi,jAJ+l
D or equivalently Aj = C j

Bj-l,jAj - l

BJ+l,jAj +1

D drops out of both the independence and recovery conditions. We can thus talk about the coefficients only.

We can also ignore the C i matrices. From the recovery condition, we can see that in a working code the

C i matrices are fully specified by the Ai and Bi,j matrices. With these two conditions, we can determine

whether a set of Ai and Bi,j matrices form a code.

5

2.5 General Position

A stronger version of the independence condition is also interesting. A collection of n-dimensional vectors

is in general condition if every combination of n vectors is full rank. To apply this condition to a code, we

c(on~id)er C::b~::~O:s :ev::o:a::~:~::tv::t;~~; r~:k~r:::l~:::rt~s:e th(e ~~~e~:~de)n:::;:::~o:e t:~~::~:
k k(n- k)

for the vectors of the code to be in general position.

3 Rotationally Symmetric Codes

To reduce the total number of coefficients, we consider codes whose Ai matrices are related to each other

by a simple transformation.

Let R be an k(n - k) x k(n - k) matrix such that Rn = I, and let Ai = ARi.

For a discussion of the R matrices themselves, see the appendix. This reduces the number of storage

coefficients needed to specify a code by a factor of n, reducing the search space exponentially.

3.1 Recovery Condition

This makes the recovery condition

B1,jAR
1

Cj
Bj_1,jARj-l

Bj+l,jARj+l

Bn,jARn

B1,jAR
1

A Cj
Bj_1,jARj-l Rn-j
Bj+l,jARj+l

Bn,jARn

B1,jARn-j+l

Cj
Bj_1,jARn - 1

Bj+l,jARl

B ·ARn-j n,)

6

We can replace Bi,j with B i - j , reorder the rows of the transmitted coefficient matrix, and replace C j with

C. Now there is only one recovery condition.

This is an improvement of a factor of n.

3.2 Independence Condition

Similarly, when checking independence, we only need to check combinations that include the first node.

ARc(2) ARc(2)-c(I)+1

(

ARc(l)) (ARI)

de' AR
o
{') ~ de' ARO(';-O{')+' de' ROO)

This reduces the number of conditions from This is an improvement of a factor (nk) to (nk-_ 1l).
of ~.

3.3 Example

(~ ~)
Al (~ 0 0 ~) A3 (0 0 1 0) 1 0

1 1 1 0 0 1

R
0 1

0 0

(~ ~) () A2 =
1 0

A4
0 0 0 1

0 0
0 1 1 1 0 0

The Bi matrices gives us the transmitted vectors.

BIA2 (1 o) (~ 1 0 ~) (0 1 00)
0 1

B2A 3 (1 o) (~ 0 1 ~) (0 0 10)
0 0

B3A 4 (0 1) (
0 0 0 ~) (1 00) 1
1 1 0

7

From these we can complete the code by calculating C.

(B,A,) (~ ~ n ~C, U 1 0 n C 1 = (~) 0 -1 0
A1 = C B2A3 0 1

1 1 1
B3A4 1 0

4 Additional Recovered Coefficients

The Bi,j matrices cannot be eliminated in a similarly simple manner, but their contribution to the code to

be represented in alternative way. During recovery n - 1 vectors are transmitted to the lost no~e, but the

original Ai matrix has only n - k rows. Thus k -1 additional vectors of coefficients are recovered. Specifying

these vectors allows the Bi,j matrices to be determined.

Let Zj be the k - 1 x k(n - k) matrix that contains the additional rows recovered when node j is lost.

Let Xj = (~) be the n - 1 x k(n - k) matrix that contains all of the rows recovered when node j is lost.

Then X'J (Xj Xj) -1 Xj projects vectors into span X j . A row vector v is in span Xj if the projection does

not change the vector,or v(Xj(Xj Xj)- lXj) = v. This can be rewritten as v(I - Xj(Xj Xj)- lX j) = o.
1- Xj(Xj Xj)- lXj gives the difference between the original vector and the projection. This is a

projection to the (k - 1) (n - k - 1)-dimensional space Ifn / span X j . The only potentially useful vectors to

transmit during recovery are those in span X j ' so we need to ensure that the transmitted vector Bi,j Ai

must satisfy Bi,jAi(I - X'J(XjXj)- lX j) = O. Thus the choices for Bi,j are the vectors in the nulls pace of

Ai(I - X'J(XjXj)- lXj).

4.1 Unrecovered Coefficients

Let Y j refer to a basis that spans Ifn / span Xj. Now we can rewrite the projection as 1- X'J(Xj Xj)-l Xj =
Y'J(Yj YJ}-lyj . Now we can say Bi,jAi must satisfy Bi,jAiYj(Yj Yj)- lYj = 0, which reduces to

Bi,jAiY'J = O. Thus the null space of Ai(I - Xj(XjXj)- lXj) is the same as the nullspace of AiY'J.

AiY'J is a (n - k) x (k - 1)(n - k - 1) matrix, so its nullity is at least (n - k) - (k - l)(n - k - 1) or

1 + (n - k - 1)(2 - k). However, if 2 < k < n - 1, this bound does not force the nullity to be positive. This

bound does explain why it is so easy to find codes when k = 2.

4.2 Example: Obtaining B from Y

Now we can see how the Bi,j vectors were discovered in the previous example. Let Y 1 = (0 0 0 1).

Note that A1 Yi = 0 as required. We apply Yi to the other Ai matrices and find the Bi,j vectors that

8

satisfy Bi,jAiYJ = o.

A2Yi (~) BI (10)

A3Yi (~) B2 (10)

A4Yi = (~) B3 = (0 1)

Let YI = (0 1 -1 0) instead, another vector that satisfies Al Yi = o.

A2Yi (~1) BI (1 1) BIA2 (0 1 1 1)

A3Yi (~1) B2 (01) B2A3 (1001)

A4Yi (~) B3 (1 0) B3A4 (0001)

c = (0 1 -1)
1 0 -1

We obtain a new unique code. For the n = 4, k = 2 case, nearly all choices for Y j produce a working code.

This is not the case for larger coefficients. For n = 4, k = 2, the Y j vectors that produce working codes

form a vector space. The proof of this is in the appendix.

9

5 Transformations of codes and equivalence classes

5.1 Row transformations

Suppose we have an invertible (n- k) x (n- k) matrix T and a working code defined by Ai and Bi,j matrices.

Then the matrices TAi and Bi,jT-1 also define a working code. For recoverability we have

and for independence we have

(TAo",)
T

TAc(2) 0
det = det

TAc(k) 0

Bj_l,jT-lTAj_l

Bj+l,jT-1TAj+l

Bj-1,jAj - 1

Bj+l,jAj+l

0 0

T

0

0 T

det (~:~:;) = (det T)k det (~::::) # 0

AC(k) AC(k)

The row transformation is applied to the A matrices from the left and the rotation matrix in a rotationally

symmetric code is applied from the right. Thus, applying the transformation to a rotationally symmetric

code results in another rotationaliy symmetric code that uses the same rotation matrix. We can define codes

to be equivalent if they are related by a row transformation. Testing only one code from each equivalence

class reduces the search space by k 2 dimensions.

5.2 Column transformations

The same technique can be applied to the columns. If we have an invertible k(n - k) x k(n - k) matrix T

and a working code defined by Ai and Bi,j matrices, then the matrices AiT and Bi,j also define a working

code. For recoverability we have

AjT = C j
Bj-1,jAj-1T

= C j
Bj-1,jAj - 1

T
Bj+l,jAj+1T B j +1,jAj+l

Bn,jAnT Bn,jAn

10

and for independence we have

(

Ac(l)T) (Ac(l))
det Ac(2) T = det Ac(2) det T =I- 0

AC(k) T AC(k)

In a rotationally symmetric code, the column transformation and the rotation are both applied from the

right, so they interact.

So the new code is rotationally symmetric with a different rotation matrix, T-1 RT. This means that we can

use a simple rotation matrix when searching for codes and simultaneously check all rotationally symmetric

codes that use similar rotation matrices.

This also makes it possible to put any rotationally symmetric code into systematic form. When a code

is in systematic form, the first k storage matrices can be stacked to form an identity matrix.

Finding the transformation that puts a code into systematic form is simple. It is simply the inverse of the

stack of first k storage matrices.

T= (::f
5.3 Example: Systematic Form

(~
0 0

~) (
1 0 0 0

) (~:) 1 1
(~:) -1

0 0 1 0
T=

1 0 0 1 -1 0

0 1 0 -1 1 1

The same B vectors as before will work for recovery.

B1A2T (1 o) (~ 0 1 ~) (0 0 o) 1
0 0

B2A 3T (1) (~ 1 -1 ~) (0 o) 0 1 -1
-1 1

(0 1) (
0 -1 1 1) (1 o) B3A 4T 0 1
1 0 1 0

11

The same C matrix as before will also work.

(~
6 Search Procedure

000

100) = (~1
1

-1

1

When searching for codes of a given nand k over a finite field, this procedure was used. Iterate over A

matrices in a way that ensures that exactly one matrix from each row transformation equivalence class is

produced. For each A matrix, produce the collection of n Ai matrices using a single simple column rotation

matrix. Then test the independence condition. Test it before the recovery condition because it requires only

Ai matrices. If the independence condition is met, iterate over the space of potential additional recovered

coefficients. For each Xj matrix produced by this process, check the recovery condition. If the condition is

met, this is a code.

7 Search results

7.1 n = 4, k = 2

These coefficients are small enough to all several fields to be searched exhaustively. We have searched the

prime fields up to GF(13). There are no codes in GF(2), but in all larger fields codes are extremely easy

to find. In all of these fields, nearly all of the potential codes that satisfy the independence condition also

satisfy the recovery condition. As the field size increases, larger and larger fractions of the potential codes

satisfy the independence condition. In GF(3), 22% of potential codes satisfy the independence condition,

and of these all satisfy the recovery condition. In GF(13), 78% of potential codes satisfy the independence

condition and of these 92% also satisfy the recovery condition.

7.2 n = 5, k = 3

For these coefficients, codes were not previously known. We have exhaustively searched GF(2), GF(3),

GF(4), and GF(5) and randomly searched in larger fields. We found codes in GF(3), GF(4), GF(7), and

larger fields, but none in GF(2) or GF(5). While the codes we have found in smaller fields are not composed

of vectors in general position, we found a code in GF(17) that is. Several of these codes are given in the

appendix.

7.3 n = 6, k = 3

For these coefficients, I have yet to find any codes. In GF(3), only about 1% of potential codes satisfy the

independence condition. In GF(4) this number is about 14% and in GF(5) it is about 30%.

12

References

[Dimakis et al., 2007] Dimakis, A., Godfrey, P., Wainwright, M., and Ramchandran, K. (2007). Network

coding for distributed storage systems. In Proc. of IEEE INFO COM.

8 Appendix

8.1 Rotation Matrices

The simplest way to construct a matrix R with period n is to have it rotate n of columns of an.y matrix it

is applied to. If the dimension is also n, this matrix is

Call this kind of rotation matrix a simple rotation matrix. If the dimension of the matrix is larger than the

period, we can build the matrix by stringing multiple basic rotation matrices together along the diagonal.

R=
o

o 0 Rc

The period of the entire matrix will be the least common multiple of the periods of the basic rotation matrices

(a, b, and c).

If a matrix satisfies R n = I, then it satisfies (detR)n = 1. We are only interested in real matrices so

det R = 1 for odd nand det R = ±1 for even n. Thus its eigenvalues satisfy n Ai = ±1. Additionally,

trace R E Q which implies that (L:: Ai) E Q. Thus all of the eigenvalues must be roots of unity and they

must occur in sets that sum to a rational number. This greatly restricts the number of classes of rotation

matrices.

The eigenvalues of a simple rotation matrix of period n are the n roots of unity. When a rotation matrix

is built from simple rotation matrices, each simple matrix contributes one eigenvalue equal to 1.

8.2 Rotation Matrices with too many eigenvalues equal to 1

If more than k of the eigenvalues of the rotation matrix R are equal to 1, it is impossible to use the R to

construct a code that satisfies the independence condition. Suppose j of the eigenvalues of R are equal to 1.

Decompose R as R = VAV" where the columns of V are the eigenvectors of R and A is a diagonal matrix

of the eigenvalues with all of the 1 's in the upper left. Thus A has the form A = (I 0) .
o A'

Let A = A'V". Now Ai = ARi = A'V"(VAV")i = A' AiV". Now let A' = (All All') where

A" contributes the left j columns and Alii contributes the right k(n - k) - j columns. Thus A' Ai =

13

(All Alii A'i). The matrix obtained by stacking Al through Ak is

This matrix must be full rank for the independence condition to be satisfied. U* is full rank so we can

ignore it. The other part of the matrix can be transformed by row operations into

AIIIA')
AIII(A/~ - A')

AIII(A'k - A')

If j > k, the block of zeros in the lower left includes at least one entry on the diagonal. Then further

row operations can be performed on the upper left and lower right blocks independently to make the whole

matrix upper triangular. At this point, the determinant of the matrix is the product of the values on the

diagonal. At least one of these values is 0, so the determinant is O. This means that the independence

condition cannot be satisfied if j > k and no codes can be constructed using such a R matrix.

As a result of this restriction, there are pairs of nand k for which it is impossible to construct a workable

R matrix by putting together simple rotation matrices. n = 7 and k = 4 are such a pair. 7 is prime so there

are no shorter cycles that can be used in the construction of the matrix. k(n - k) = 12 is the dimension

of R, do that leaves 5 entries on the diagonal that can only be filled with 1 'so Thus any R matrix will will

have at least 6 eigenvalues equal to 1.

8.3 Unrecovered Coefficients when n = 4, k = 2

Suppose that you have Ai along with Bi,j that recovers Ifn / span Y j and B;,j that recovers Ifn / span Yj.

Then we know that Bi,jAiYj = 0 and B;,jAiYj = o. If we let Y'j = aYj + {3Yj with a,{3 E If, then the

set of coefficients B;~j = aB;,jAiYjBi,j - {3Bi,jAiYjB;,j recovers Ifn / span Y'j:

(aB~,jAiYjBi,j - (3Bi,jAiYjB;)Ai(aYj + (3Yj)

a2(B;,jAiYj)(Bi,jAiYj) + a{3(B:,jAiY j)(Bi,jAiYj)

-a{3(Bi,jAiYj)(B:,jAiY j) - (32(Bi,jAiYj)(B;,jAiYj)

a 2(B;,jAiYj)(0) + a{3(B:,jAiY j)(Bi,jAiYj)

-a{3(BLAiY j)(Bi,jAiYj) - (32(Bi,jAiYj) (0)

o

Thus for a given Ai, the Y j vectors that create a working code form a vector space.

14

8.4 (5,3) code over GF(3)

Al (~~ ~ ~ ~ ~)

ZI = (~ ~ ~ ~ ~ ~)

10100
1

)
o 1 1 0

(0 2 100 1)

(1 0) (~ ~ ~ ~ ~ ~) (0 0 1 0 10)

00100
1

)
000 1

(1 000 1 1)

(1 1) (~ ~ ~ ~ ~ ~) (1 200 1 1)

8.5 (5,3) code over GF(7)

Al (~~ ~ ~ ~ ~)

ZI (: ~ ~ ~ ~ ~)

15

(0 1) (~ ~ ~ ~ ~ ~)

(2 1) (~ ~ ~ ~ ~ ~)

(5 1) (~ ~ ~ ~ ~ ~)

(6 1) (~ ~ ~ ~ ~ ~)

8.6 General Position (5,3) code over GF(17)

(2 0 1 0 00)

(0 2 2 1 02)

(0 0 2 5 1 5)

(1 002 6 6)

At = (115 111 ~ 11
3

: ~~)

11 0 13

161

13 9 1 11

1 5 15 1

16

16)
11

16)
11

(14 16 12 6 14 10)

(16 1 7 15 6 2)

11 10 14

(11 6 2 7 2 7)

17

8) (~:
16 12 6 14

1 7 15 6

15 6 4 11 10 14

11 6 2 7 2

