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ABSTRACT 

Part I 

The temperature dependence of single-crystal elastic constants 

of synthetic stoichiometric MgA1 204 spinel has been measured by the 

light-sound scattering technique in the Raman-Nath region. The crystal 

is set into forced vibration by a single crystal LiNb03 transducer 

coupled to one crystal face. A He-Ne laser beam is diffracted by the 

stress-induced birefringence inside the crystal. The diffraction 

angle is determined from the distance of two spots exposed on a photo­

graphic plate by the first order diffracted beams as measured by a 

microdensitometer. The sound wavelength inside the crystal is then 

inferred from the laser diffraction angle. Combining the sound wave­

length with the measured transducer driving frequency, the velocity 

inside the crystal is determined typically to a precision of 0.05%. In 

this method, the measurement of velocity is not dependent on either 

the determination of sample length or on phase shifts at samp1e­

transducer interface. Velocities of four pure modes, L//[OOlJ, 

T//[OOl], L//[llO], and T//[llO] (P//[110]) are measured in the temper-

ature range between 293K and 423K. A linear temperature dependence is 

fit to the data by a least square method. Values obtained at 25°C from 

this linear fit are Vp[OOlJ = 8.869 ± 0.013 km/sec, (~~)p = 

-(3.14 ± 0.13) x 10-4km/sec-K; Vs[OOlJ = 6.5666 ± 0.0055 km/sec, 

(~~\ = -(1.47 ± 0.10) x 10-4km/sec-K; Vp[llO] = 10.199 ± 0.011 km/sec, 

(~~) = -(3.20 ± 0.15) x 10-4km/sec-K; Vs[llO][P// [llOJ) = 4.2101 ± 
p 

0.0043 km/sec, (~~\ = -(2.07 ± 0.06) x 1O-4km/sec-K. The temperature 
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dependence of the adiabatic elastic constants and bulk and shear (VRH 

average) moduli is computed using the density and literature value of 

thermal expansion coefficient. 
s ClC ll (---aT) = - 0.258 ± 0.018 kb/K; 

p 

Values obtained are: s Cll = 2814 ± 8 kb, 

ClC~ 2 
(ar) = 

p 

-0.107 ± 0.019 kb/K; C~4 = 1543 ± 3 kb, 
ClKs 

-0.101 ± 0.010 kb/K; 

Ks = 1969 ± 6 kb, (ay-) = -0.157 ± 0.014 kb/K; ~VRH = 1080 ± 5 kb, 
P 

Cl~VRH 
(ClT ) = -0.094 ± 0.008 kb/K 

p 
A comparison with previous measure-

ments by pulse superposition and ultrasonic interferometry methods is 

made. Disagreement, when present, is discussed in terms of the 

separate measuring techniques. An attempt has also been made to meas­

ure the pressure dependence of elastic constants of spinel with the 

same technique. It failed because of the large spurious diffraction 

introduced by the fluctuation in index of refraction of the pressure 

fluid. A method to eliminate this spurious effect is discussed. An 

optical interferometry method is devised to measure the pressure window 

distortion effect in the pressure dependence measurement. Finally, 

the present method with its possibility for further improvement is 

evaluated as a new method to measure temperature and pressure depend-

ence of elastic constants. Other methods using light-sound scattering 

to measure sound velocities are also reviewed. 

Part II 

It is known that the anelastic properties of the earth charac­

terized by a "Q" structure will affect the periods of free oscillation. 

It is generally considered that the effect is negligible compared to 
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the other perturbing effects due to rotation, ellipticity, and lateral 

inhomogeneities. Nevertheless, it is of some interest to investigate 

the precise magnitude of this effect for the observed free oscillation 

modes since it could provide us with another constraint in the deter­

mination of the Q structure of the Earth. An application of perturba­

tion theory provides us with a good estimate of the magnitude of the 

changes in the periods of an elastic model due to inclusion of anelas­

tic effects. Calculations based on currently accepted elastic and 

anelastic models for the Earth show that the shift in period due to 

anelasticity is at most 0.023 percent for the toroidal modes from 

oT2 to oT99' the maximum occurring near oT60' This is smaller by a 

factor of five than the present observational accuracy. Compared to 

the other perturbing effects, the anelastic effect, when important, is 

larger than the effect of ellipticity considered alone but smaller by 

an order of magnitude when compared with ellipticity and rotational 

effects coupled together or with the continent-ocean lateral inhomo­

geneity. Since the frequency shift due to anelasticity is scaled by 

(1/Q)2, the anelastic effect can be within observational accuracy and 

comparable to other perturbing effects for more extreme, yet acceptable, 

Q models. 
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PART I 
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1. Introduction 

The most accurately determined local parameters in the interior 

of the Earth are density, compressional velocity, and shear velocity. 

These are found by inversion of body wave, surface wave, and free 

oscillation data, e.g., Jordan and Anderson (1974). From the density 

profile, the pressure at different depths can be calculated using 

straightforward integration. Temperature estimates for the Earth's 

interior depend upon assumptions regarding the distribution of heat 

source, conductivity, and initial and boundary conditions, and are not 

well determined. 

The purpose of laboratory experimental geophysics is to repro­

duce the pressure and temperature conditions inside the Earth in order 

to measure the physical properties of various minerals. Together with 

experimental petrological studies, constraints can then be put on the 

composition and crystal structures of the material at various depths 

inside the Earth. 

Since sound wave velocities in the Earth are so well determined 

from seismology, measurement of sound velocities is an important pro­

gram in experimental geophysics. 

Unfortunately, direct measurement of velocities as a function of 

temperature and pressure is possible only over a limited range of these 

parameters. To date, the practical limit of pressure measurement is 

30 kb (Christensen 1974) and that of simultaneous pressure and tem­

perature measurement is 10 kb and BOOK (e.g., Spetzler 1970); the 

latter condition corresponds roughly to a depth of 30 km. 
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In order to use measurements of such limited experimental range, 

averaging schemes to determine sound velocities of aggregates from 

measured component minerals, extrapolation using lattice dynamics 

(Sammis 1972), and finite strain theories (Anderson, Sammis and Jordan 

1972) must be employed to infer the physical and chemical states at 

greater depths. As extrapolation is involved in this procedure, the 

measurement of pressure and temperature dependence of sound velocities 

must be precise enough to yield meaningful constraints at greater 

depths. To date, the method with the highest precision for measuring 

pressure and temperature dependence of sound velocities in solids is 

by ultrasonic interferometry (McSkimin 1961; McSkimin and Andreatch 

1962; Spetzler 1970). Natural rocks, because of porosity and grain 

boundary scattering of ultrasonic pulse trains, cannot be subjected to 

this method of measurement. Some artificially sintered polycrystalline 

samples, notably A1 203 and MgO polycrystalline aggregates, although 

measurable by this method, show hysteresis when cycled in pressure and 

temperature. It seems that single crystals are the only samples that 

can be measured reliably by the method of ultrasonic interferometry,and 

data on various geophysically important minerals measured by this 

method already exist (Anderson, Schreiber, Liebermann and Soga 1968; 

Graham and Barsch 1969; Spetzler 1970; O'Connel and Graham 1971; 

Frisillo and Barsch 1972; Chang and Barsch 1973). 

Although the method of ultrasonic interferometry has very high 

precision, systematic errors arising from the boundary condition at the 

crystal-transducer or crystal-buffer rod interface are difficult to 
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ascertain and measurements on pressure and temperature dependence of 

sound velocities from different laboratories on the same mineral differ 

sometimes by as much as 25%. Clearly, this is a basic limitation on 

extrapolation of laboratory measurements to mantle conditions. 

The present work is an attempt to use an independent method, 

the method of light-sound scattering in the Raman-Nath region, to 

measure the pressure and temperature dependence of single crystal sound 

velocities. 

The interaction of light and sound in the Raman-Nath region was 

first observed in liquid by Debye and Sears (1932) and in solid by 

Schaefer and Bergmann (1934). This method was employed at that time 

to determine the elastic constants of various crystals and the results 

are summarized in Bergmann (1954). Their experimental accuracy was 

limited by the technology at that time which lacked a coherent laser 

light source, a fast and high resolution photographic plate, and a 

photographic density readout instrument with high positional accuracy. 

As a consequence, neither temperature nor pressure dependence of single 

crystal elastic constants has ever been measured by this technique 

until the present work. 

Temperature dependence of sound velocities in single crystal 

spinel (MgA1 204), chosen because of the availability of high quality 

synthetic spinel crystal, the existence of previous measurements by 

ultrasonic interferometry methods, and its geophysical importance, was 

successfully measured in the present experiment. The temperature 

dependence of the elastic constants was determined from these data. 
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The methods and results of these measurements will be described in 

detail in Sections 3 and 5. Pressure dependence measurements on the 

same crystal, on the other hand, showed much scatter. The methods used 

in the pressure measurements, the reasons for the scatter, and a pos­

sible technique to reduce the experimental scatter, will be presented 

in Section 7. 
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2. Interact; on between Li ght and Sound--A Theoreti ca 1 Background 

1968) 

The index of refraction ellipsoid in its general form is (Yariv 

2(_1) yz + 2(;) zx 
n2 yz n zx 

+ 2(~) xy = 1 (1.2-1) 
n xy 

L t B - (1 ) B (1 ) B33 -_- (L2) B (1 ) t d e 11 = 2 ' 22:: 2 ' , 23:: 2 ,e c. , an 
n xx n yy n zz n yz 

use the notation x + xl' y + x2' z + x3' 11 + 1, 22 + 2, 33 + 3, 

23 + 4, 31 + 5, 12 + 6. Assume also that the indicatrix is diagon-

alized in the absence of external stress. 

In the presence of external stress, the change in Bj~ is 

(1.2-2) 

where s tress tensor, Emn: strain tensor 

TIj~mn: piezo-optical coefficients, 

Pj~n: elasto-optical coefficients 

Spinel, a cubic crystal belonging to space group O~(Fd3m), has 

piezo-optical coefficients of the form (Nye 1957) 
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TIll Tl12 Tl12 

TIl 2 TIll Tl12 

Tl12 TIl 2 TIll 

Tl44 
Tl44 

Tl44 

For example, a uniaxial compressional stress of magnitude 0 applied 

in the xl-direction would give the change in (Bjt ) as 

8Bl 
8B2 

8B3 
= 

8B4 

8B5 

8B6 

which implies 

TIll Tl12 Tl12 

Tl12 TIll Tl12 

Tl12 Tl12 TIll 

Tl44 

Tl44 

1{O)3 1{o)3 8nl = - 2 n 8Bl = - 2 n Tlllo 

8n = 8n = 8n = 0 456 

a 

0 

0 
(I.2-4) 

0 

0 

Tl44 

(I.2-5) 

i.e., the crystal becomes birefringent, but the indicatrix has the same 

principal axes. In the more general case, the principal axes would 

have been rotated as well. 
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When the external stress has a sinusoidal dependence ( a stress 

wave) an indicatrix variation wave also passes through the crystal. 

This periodic change in the index of refraction inside the crystal dif­

fracts light as a grating and is the basis of scattering of light by 

sound. 

The index of refraction tensor is related to the dielectric 

tensor by 

The displacement vector is given by (in esu units) 

D = E + 4'ITP - -
where 

E: electric vector 

P: polarization vector 

In the component form 

The change in polarization due to external stress is 

When j =;(, • for examp 1 e • j = ;(, = 1 

8(_1 ) 
n2 11 

= 8(_1_) 
Ell 

(I.2-6) 

(I. 2-7) 

(I.2-7a) 

(1.2-8) 

(I.2-9) 
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When j; 1 , the relationship between O£j1 and o(~) can be de­
n j1 

rived as follows: 

The index of refraction ellipsoid is derived from 

87TW = E· D = L£ .. E. = D.8 .. D. 
e - - 1 lJ J 1 lJ J 

where we is the energy density. Therefore 

For i ~ j , for example, i= 1, j= 2 

(1.2-10) 

(1.2-11) 

(1.2-12) 

Assume £j1« £11'£22'£33 ' i.e., the effect of stress is small on 
jf1 

the indicatrix 

(1. 2-l2a) 

Combining equations (1.2-2), (1.2-9), and (1.2-l2a) 

(1.2-13) 

Equation (1.2-8) becomes, with superscript i to indicate incident 

light, 

(1.2-14) 

which is the nonlinear source term in Maxwell's equations that couples 
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sound wave amn and incident light Ei i ) to generate the diffracted 

light. 

The diffracted light can be represented in terms of scalar and 

vector potentials ~,A respectively as 

(I.2-15) 

with 

1J'·a~{~',t') Ix-x'i 
~ = - J d3x' J dt' a (t '- t + - c - ) 

I~ - ~'I 

I I 
daP(X',t) Ix-x'I, I. 

~ = ~ d3x' dt' - at' a(t'- t + - c- V I~-(I (1.2-16) 

Let both incident light and acoustic wave be monochromatic plane waves. 

(Since the diffracted light field is linear in the amplitudes of inci­

dent and acoustic fields, more general fields can be represented by 

superposition) 

(I. 2-17) 

E (d) (r , t) = E (d) exp[ i (k (d) • r _ w (d) t ) ] - - - --

On substituting (1.2-17) into (1.2-16), then into (1.2-15), Hope (1968) 

for example, showed 



w(d) = w(i) + ~ 

k(d) = k(i) + tK t: integer or zero (I.2-18) 

These are conservation laws of energy and pseudomomentum. The 

same conservation laws can also be derived by quantum mechanical means 

if one quantizes the acoustic and electromagnetic fields, expresses 

the interaction between acoustic and electromagnetic fields as a per­

turbation Hamiltonian, and solves the equation of motion for the boson 

operators. However, the classical treatment is sufficient for the 

present purpose. 

The conservation laws hold regardless of crystal symmetry. 

In isotropic crystals or in anisotropic crystals when the dif-

fracted light h~ the same index of refraction as the incident light, 

(this would be true, for instance, when the diffracted light has the 

same polarization as the incident light) the light-sound scattering 

takes the relatively simple form of normal Bragg diffraction, and in 

the long acoustic wavelength limit, Raman-Nath (or Debye-Sears) scat­

tering. 

The more complicated case of scattering in an anisotropic cry­

stal when the diffracted light experiences a different index of 

refraction from the incident light is discussed by Dixon (1967a) and 

by Hope (1968). The results are omitted here because the experimental 

technique of the present study is derived from Raman-Nath scattering. 

The difference between normal Bragg scattering and Raman-Nath 

scattering has been discussed by Extermann and wannier (1936), by 
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Willard (1949), and by Klein and Cook (1967). The results can be sum-

marized as follows: 

The important parameters are 

where on: amplitude of index of refraction variation 
(experienced by the polarization vector) 

Ao: light wavelength in vacuum 

t· width of acoustic wave column 

A: acoustic wavelength 

8: angle between light wave vector and sound wave front 

no: index of refraction (experienced by the polarization vector) 
in the absence of sound wave 

The Raman-Nath region is defined by 

Qv 
2 

<~ 
- 4 and Q « 2 

The normal Bragg region is defined by 

(1. 2-19) 

(1. 2-20) 

Refer to Figure 1. From energy and momentum conservations (1.2-18), 

sin CPt = (k sin 8 +tK)/(w+trI)/c = sin8+ t ~ (1.2-21) 

since rI./w = 3 x 107 / 3 x 10
10

_4 = 0.63 x 10-7 «1 for 30 MHz acoustic 
/ 0.63 x 10 

wave scattering light at 0.63 ~m wavelength. 
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Raman-Nath region 

(i) Many diffraction orders are observed, with intensities given 

by 

2 sin (') 
1~ = J~[v ~ J, J~: Bessel function of order ~ (1.2-22) 

2 

(ii) The diffraction intensity pattern is symmetric at all 

angles of incidence, since 1~ = 1_~ . 

(iii) Oblique incidence has the effect of reducing the value of 

v by sin(Qa/2)/(Qa/2). 

Normal Bragg region 

Only the negative first order ~=-l is observed when 
/ 

i.e., sin e = A/2A. From equation (1.2-19) 

sin ~ = - ~ + sin e = - ~ = -sin e '¥-l ft 2ft 

which is the familiar Bragg condition. 

Transition region 

1 
a-- "2 ' 

(1.2-23) 

Between Raman-Nath region and Bragg region, equation (1.2-19) 

still holds. The intensity pattern is generally asymmetric for positive 

and negative orders~ Also no simple analytic solution can be given to 

the intensity of different orders of diffracted light. 

Physically, the distinction between the regions is that, in the 

normal Bragg region, the width of the sound wave front is not negligible 

and no resulting diffracted light can be observed unless light scattered 
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from different parts of the same wave front are in phase. 

Equation (1.2-19), derived from conservation principles, is 

valid for all ranges of variables Q, a, and v, and is the basis of 

the present measuring technique. 
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t 
Urnn 

Figure 1-2-1. Schematic representation of light-sound scattering in 
the Raman-Nath region. 
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3. Experimental Technique 

The experimental setup is illustrated schematically in Figure 

I.3-1. The light source is derived from a Spectra Physics model 

135-3 mW helium-neon laser (Spectra Physics, Mountain View, California) 

which has random polarization and operates in the TEMOO mode. The 

laser beam is spatial filtered by a Wild microscope objective (magni­

fication 20:1, N.A. 0.45) which focuses the beam through a 25 micron 

pinhole. After spatial filtering, the laser beam is focused on the 

photographic plate by a second microscope objective (Leitz-Wetzlar, 

magnification 3.2:1, N.A. 0.12). The microscope objectives are 

mounted on angular orientation devices with horizontal and vertical 

rotational axes. These angular orientation devices are in turn 

mounted on translation stages with three degrees of translation free­

dom. The pinhole is mounted on two translation stages stacked to 

provide freedom in two directions perpendicular to the laser beam. The 

microscope objectives are aligned with their lens axes coinciding with 

the centroid of the laser beam. The reflecting mirror, flat to l/lOA, 

is mounted in an angular orientation device with horizontal and verti­

cal rotation axes which is in turn mounted on a translation stage. 

The sample, a spinel parallelepiped with (100) and (110) 

faces, is spring loaded in a sample holder. The sample holder has two 

parts, and is shown in detail in Figure 1.3-2. The sample holder is 

spring loaded in a tubular furnace with one spacer block at each end. 

The spacer block is shown in Figure 1.3-3 and components of the tubular 
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furnace are shown in Figure 1.3-4 through Figure 1.3-8. The cross­

section of the furnace assembly through the two thermocouples is shown 

in Figure 1.3-9. The furnace is latched with springs on two V-blocks 

(Figure 1.3-10) which are bolted to a Lansing model 20.127 translation 

stage (Lansing Research Corporation, Ithaca, N.Y.) with translation 

direction perpendicular to the laser beam. Finally, the translation 

stage is bolted to the base plate of a vacuum tank. The translation 

stage and leveling screws on the base plate are used to position the 

crystal such that the laser beam would go through inside the crystal 

once it is aligned perpendicular to the crystal face. The vacuum tank, 

a cylinder 8 inches inside diameter and 12 inches high, is made of 304 

stainless steel. Two openings 1-1/2 inches in diameter are drilled 

opposite to each other in the tank to weld the two short 1-1/2 inch 

outside diameter 304 stainless steel tubings. Flanges for O-ring seal 

are welded to the tank as well as to the short tubings. Details of 

the vacuum tank are shown in Figure 1.3-11. One hole threaded with 1/8 

inch pipe thread is drilled in the center of the top plate for a thermo­

couple vacuum gauge sensor. Fourteen holes are drilled in the base 

plate to solder the vacuum electrical feedthroughs. The top and base 

plates are shown in Figure 1.3-12. The electrical feedthroughs are 

Fusite glass to steel hermetically sealed terminals. Two terminals are 

used for heater power, two for shutter control, and six are used for 

thermocouple feedthroughs. The thermocouple feedthroughs have a hollow 

tube as central electrode, while all the others have solid central elec­

trodes. The thermocouples are fed through these tubes before being 
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silver soldered to them to provide for the vacuum seal. The ground 

electrodes of feedthrough terminals are soldered to the base plate 

using 50/50 lead-tin solder. An aluminum housing for the optical 

window is bolted and sealed by O-ring to one end of the vacuum tank 

extension. Details of this window housing are shown in Figure I.3-13. 

The window is an optical flat of fused silica two inches in diameter, 

half an inch thick, flat to l/lOA and having faces parallel to better 

than 10 seconds of arc. A section of Cajon 321 stainless steel bellows, 

3 inches long and 1-1/2 inches outside diameter (Cajon 321 x24-3, 

Cajon Company, Cleveland, Ohio) welded with flanges at both ends, is 

bolted and sealed with O-ring to the other vacuum tank extension. A 

Uniblitz model 225-0 shutter (Vincent Associates, Rochester, N.V.) is 

fixed by screws to the inside of one of the flanges. Details of this 

shutter housing are shown in Figure I.3-14. A long 304 stainless steel 

tubing, 1-1/2 inches outside diameter and approximately 84 inches long, 

is connected and sealed to the shutter end of the bellows section with 

O-ring and flange. The flange for a vacuum butterfly valve (Cajon CFR 

rotatable 1-1/2 inch flange, part no. 304L-24 CFR-275) is welded to 

the farther end of this long tubing. Another rotatable flange is 

welded to a bellows section with a photographic plate holder welded to 

the other end. The long tubing and the end bellows section are con­

nected by a Nupro 1-1/2 inch O-ring sealed butterfly vacuum valve (part 

no. 304-24 VFO) sealed with copper gaskets (Cajon CU-CF-275-2). One 

hole, 1/4 inch diamete~ is drilled in the long tubing and also in the 

end bellows section for vacuum pumping and bleed valve connections. 
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All optical components and vacuum system are rigidly glued to 

a granite table (8" x 36" x 108") by epoxy for stability. 

The vacuum system is sealed at one end by the optically flat 

window. and at the other end by a photographic plate in the photo­

graphic plate holder. The photographic plate holder is coupled to an 

anchoring block by screws, and nuts are used,when pushing against the 

vacuum pull, to orient the photographic plate plane parallel to the 

sample. Details of the photographic plate holder are shown in Figure 

1.3-15. and the relationship between the photographic plate holder and 

the anchoring block in Figure 1.3-16. 

The purpose of the evacuated tank is to have the light path 

between sample and recording photographic plate under partial vacuum 

so as to reduce index of refraction fluctuation which would otherwise 

introduce random error in the data. A Duo-seal mechanical vacuum 

pump (Sargent-Welch Scientific Company, Skokie, Illinois) with a 

liquid nitrogen cold trap is used to evacuate the system. The working 

vacuum during the experiment is between 85 and 180 microns as measured 

by a type GTC-100 thermocouple vacuum gauge (Consolidated Electrodyn­

amics, Rochester, N.Y.). The butterfly valve is employed to avoid 

letting air into the whole system during photographic plate change. 

While changing the photographic plate both butterfly valve and bleed 

valve no. 2 (refer to Figure I.3-l) are shut off to keep the tank and 

the long tubing under vacuum. Bleed valve no. 1 is then opened to let 

air into the end bellows section. After photographic plate change, 

bleed valve no. 1 is closed and only the end bellows section needs to 
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be pumped down. The butterfly valve is then opened to let laser beam 

through during the experiment. 

An ultrasonic standing wave inside the sample is generated by 

a lithium niobate transducer (30 MHz center frequency) coupled to the 

sample with Nonaq stopcock grease (S-530, Fisher Scientific Company, 

Fair Lawn, N.J.) and spring loaded through a Webber gauge block by a 

leaf spring made of Vasco Max 350 high temperature steel (Teledyne 

Vasco Company, Latrobe, Pa.). Details of transducer loading are shown 

in Figure 1.3-17. The sample is gold coated in a configuration shown 

in Figure 1;3~18 to provide ground connection of the transducer through 

one-half of the sample holder. The RF signal is generated by a 

Heathkit model DX-60B variable frequency oscillator (Heath Company, 

Benton Harbor, Mich.), whose output frequency is synchronized to a 

Schomandl model ND30M frequency synthesizer (Rohde and Schwarz Sales 

Company, Passaic, N.J.) by coupling the synthesizer output through a 

100 pf capacitor into the oscillator tube grid of the VFO. The output 

of the VFO is used to drive a Heathkit model DX-60B transmitter, which 

also quadruples the VFO frequency. The output of the transmitter is 

fed into the vacuum system to the transducer leads through a section of 

Uniform Tubes UT-250SS vacuum tight coaxial cable (Uniform Tubes, 

Collegeville, Pa.) which is sealed on the outside to the vacuum tank by 

a Swagelok SS-400-1-2 vacuum fitting (Crawford Fitting Company, Cleve­

land, Ohio). The frequency of the RF signal is measured by a Systron­

Uonner model 7018 frequency counter (Systron-Donner Corporation. 

Concord, Cal.). 
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The Uniblitz shutter is controlled by two relays and a 

Uniblitz model 100 power supply and drive unit. The relays control 

the time interval during which a 5-volt signal is applied to the 

switching circuit which keeps the shutter open. A DPDT switch is used 

to switch both the transmitter and the shutter relays. The first 

relay is delayed 50 msec relative to the closing of the switch. Since 

the transmitter has a rise time of 3/10 of a millisecond, a standing 

wave is well setup inside the crystal at the opening of shutter by the 

first relay. The shutter time can be adjusted from 10 msec to 4 sec 

for photographic plate exposure. 

The furnace power is controlled by a Variac whose primary 

voltage is regulated to stay stable at 115 volts. 

Temperatures insiae tte furnac~ar.e measured by two A1ume1-

Chrome1 thermocouples (see Figure 1.3-9). These two thermocouples are 

located about 1 mm from the sample. During a separate calibration run, 

a third thermocouple is pasted with Sauereisen cement directly on the 

sample surface where the laser beam would leave the crystal, to measure 

the temperature difference at the sample and at the tHermocouple sites. 

The calibration results are presented in Section 5. A Pace Wiancko 

model LRT47-8TT-1508 thermocouple reference junction is used to provide 

a stable 1500F reference temperature. The thermocouple voltage output 

is read with a Hewlett-Packard 3450A multifunction meter. 

During the experiment, the laser beam is aligned perpendicular 

to the crystal face by the angular orientation device holding the 

mirror. The photographic plate plane is then aligned parallel to the 
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crystal face by sealing the end bellows section with an optical flat 

(l/lOA flat, parallel to better than 10 seconds of arc) and using an 

auxiliary mirror behind the optical flat. The beam reflected from the 

auxiliary mirror is maie to coincide with the i~ident beam. Part of 

the reflected beam is reflected again at the optical flat sealing the 

end bellows section. This reflected beam is used to guide the adjust­

ment of the plate holder orientation screws. With relative ease, the 

parallelism between photographic plate and crystal surface and the 

perpendicularity between laser beam and crystal surface can be ad­

justed to within 1 milliradian. 

The synthesizer frequency is adjusted approximately for stand­

ing wave condition of the sample at different temperatures. This can 

be judged by the intensity of the diffracted light. After the evacua­

tion of the optical path between crystal and photographic plate, the 

OPDT switch is thrown and the photographic plate is exposed to the 

diffracted beams. The undiffracted centpal laser beam is blocked off 

before it reaches the photographic plate. The photographic plates 

used in the experiment are Agfa-Gavaert 8E-75 high resolution (3000 

lines/mm) and 10E-75 (2800 lines/mm) photographic plate with anti­

halation back coating. The size of the plates is 4 inches by 5 inches. 

Immediately after exposure, the plate is processed in Kodak 0-19 

developer for 6 minutes, in glacial acetic acid stop bath for 30 sec­

onds, in Kodak Rapid Fix for 5 minutes, and followed by washing for 

30 minutes. 
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The distance between photographic plate and sample is measured 

with Starrett tubular inside micrometers model 121B, model 823B, a 

Starrett depth micrometer model 513, and a Brown and Sharpe 1" microm­

eter. 
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Figure 1-3-1. Schematic diagram showing experimental setup for light­
sound scattering measurement of temperature dependence 
of single crystal elastic constants. 
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2 HOLES DRILL 3/8 (.375 DIA.) THRU 
(

DRILL 1/16 C062DIA.lTHRU 

.647DIA.8.C. r·6i r·550SYM. 

- --- ]Jo 
- ~ 

L!:.:: COPPER WIRE 
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IA. 
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J:l 
45° ;r·=2=V4=-J=t-:~~_ .. 394 i 

iW.G~O COPPER WIRE 
SILVER SOLDERED IN PLACE 

MAT'L: COPPER 

Figure 1-3-2. Drawing showing two halves that comprise the sample 
holder. The 1/16" holes are for alumina locating pins. 
When assembled, the sample is surrounded by copper on 
all sides, except for a hole for laser beam and two 
slots for thermocouples. This is to reduce temperature 
gradient across the sample. Dimensions are in inches. 
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.375 DIA. THRU 

MAT'L: 
PYROPHYLLITE 
HEAT TO 2000°F, NOT EXCEEDING 
200°/ HOUR. HOLD FOR 4 HOURS 

Figure 1-3-3. Drawing showi~g pyrophyllite spacer block for sample 
holder. Dimensions are in inches. 
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\oor~----- 3.800 ----------.;-1 

24 PITCH SINGLE THREAD 
.015 THREAD DEPTH 

MAT'L: 
PYROPHYLLITE 
HEAT TO 2000°F, NOT EXCEEDING 
200o/HOUR. HOLD FOR 4 HOURS 

Figure 1-3-4. Drawing showing furnace heater core. Dimensions are in 
inches. 
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MAT'L: 
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HEAT TO 2000° F, NOT EXCEEDING 
2000/HOUR. HOLD FOR 4 HOURS 

Figure 1-3-5. Drawing showing furnace heater sleeve. Dimensions are 
in inches. 
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MAT'L: 
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HEAT TO 2000°F, NOT EXCEEDING 
2000 1HOUR. HOLD FOR 4 HOURS 

Figure 1-3-6. Drawing showing heater cover. Dimensions are in 
inches. 
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1.563 DIA. B.C. MAT'L: 
PYROPHYLLITE 
HEAT TO 2000°F, NOT EXCEEDING 
200° / HOUR. H OLD FOR 4 HOURS 

Figure 1-3-7. Drawing showing furnace main body. Dimensions are in 
inches. 
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DRILL 5/32 Ll5 6 DIA. lTHRU 
C'SINK 82· TO .28 DIA . 
4 PLACES AT 90· ON 

1. 563DIA. B.C. 
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.
188 1 r 

45·' LJ 
+--11-++ +--H-J I .375DIA. 

1.315t A. ,-

DRILL N0.42L093DIA.)THRU 
4 HOLES AT 90· ON .675DIA.B.C. 

MAT'L : 

PYROPHYLLITE 
HEAT TO 2000· F, NOT 
EXC EEDING 200·/ HOUR . 
HOLD FOR 4 HOURS 

Figure 1-3-8. Drawing showing furnace end caps. The step in the 
central cap of the figure is for spring loading. 
Dimensions are in inches. 
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Figure 1-3-9. Furnace cross-section through thermocouple s with 
sample in place. 
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Figure 1 - 3-10. Drawing showing furnace mounting block. Dimensions are 
in inches . 
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Figure 1-3 -1 1. Drawing showing main vacuum tank . Dimensions arc in 
inches. 
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DRILL 1/4 (.250 DIA.)THRU 
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.
37ir 
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10.500DIA. 
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DRILL 3/8 (.375 DIA .)THRU 
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10.500DIA. 

L 
DRILL 1/4 (.250 DIA.)THRU 
6 HOLES AT 60° 

DRILL 3/16(.187 DIA.)THRU 
6 HOLES 

BASE PLATE 
MAT'L: 304 STAINLESS STEEL 

Figure 1-3-12. Drawi ng showing vacuum tank top and base plates. 
Dimensions are in inches. 
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~-ORILL 1/4 (.2500IA.lTHRU 
6 HOLES AT 60· 

1.000 - 4_---1 

.625 -4---

/ 

II 
/ 160 J 

4 .5000IA. B.C. 2 3/8-20NS-2 THREAO---.l .102 

MAT'L: 304 STAINLESS STEEL 

Figure 1- 3-13. Drawing showing vacuum tank optical window housing. 
Dimensions are in inches. 
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.250 r 1.000fl 
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l 
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- f- -- - -
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6 HOLES AT 60 0 

MAT'L : 

304 STAIN L ESS STEEL 

Figure 1-3-14. Drawing showing shutter housing. Dimensions are in 
inches. 
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4 HOLES 

MAT 'L ' 304 STAINLESS STEEL 

Fi gure 1-3-15. Drawing showing photographic plate holder. Dimensions 
are in inches. 
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Figure 1-3-16. Diagram showing relationship between photographic 
plate holder and its anchoring block . 
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VASCO MAX 350 LEAF SPRING 

VASCO MAX 350 FLAT 
STEEL SPACER 

L iNb03 TRANSDUCER 

WEBBER GAUGE BLOCK 

COPPER SAMPLE HOLDER 

Figure 1-3-17. Schematic drawing showing spring loading of LiNb03 
transducer to spinel sample . 
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GOLD COATED FOR 
CONDUCT IV ITY 
LESS THAN 5 OHMS 

AROUND CORNER 

5/16 

Figure 1-3-18. Configuration of sample electrode coating. Dimensions 
are in inches. 
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4. Sample Description 

The sample is a single crystal stoichiometric MgA1 204 spinel 

grown by Czochra1ski method and furnished by Crystal Products Division 

of Union Carbide Corporation. After ~ough cut, the boule is lapped 

into a prism with two sets of faces parallel to (001) and (110) respec­

tively. The crystal orientation is detennined to be 5± 5' parallel to 

(001) and 9± 5' parallel to (1l0) by Laue back reflection method. (The 

X-ray work is done by Dr. E. K. Graham, now at Pennsylvania State Uni­

versity). The final polish of the two sets of faces to 1/10 wavelength 

{sodium 1igh~f1at and laser finish is done by Crystal Optics (Ann 

Arbor, Mich.). The parallelism between the polished faces is less than 

10 seconds of arc. The dimension of the sample is 0.8923± 0.0002 cm 

(between (001) faces) x 1.1793± 0.0002 cm (between (1l0) faces) x 

1. 2578 r± :lhOOQ2 Cirl'16etweiHf' the -ulJpeti sbed . :(11 0) faces). The dens i ty 

of the sample is measured by immersion method using distilled water as 

immersion liquid. At 180C the density is measured to be 3.5790 gm/cm3. 

The density is computed to be 3.5784 gm/cm3 at 250C using 

a = 6.93 x 10-6/K for linear thenna1 expansion coefficient (Rigby et a1 

1946). The sample is also placed between two crossed po1arizers and 

illuminated by a diffused light source to examine for residual stress. 

No residual stress is found within the sample between the two sets of 

faces both before and after the experiment. 
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5. Data and Data Reduction 

The data as recorded (raw data) are two dark spots exposed by 

the diffracted laser beam on a photographic plate. A contact print 

made from such a photographic plate is shown in Figure 1.5-1. The 

distance between the two spots is measured on the optical density 

readout recorder chart from a Joyce-Loeb1 double beam microdensitom­

eter (model MkIIICS, serial no. 497, Joyce, Loeb1 and Company, 

Burlington, Mass.). The details of the distance measurement are des­

cribed below. The photographic plate is placed on the microdensitom­

eter stage with its bottom edge pushed against the bottom edge of the 

recessed stage. The direction defined by the two spots on the photo­

graphic plate is aligned parallel to the scanning direction of the 

microdensitometer by rotating the stage and observing the images of 

the two spots with respect to a cross hair on the microdensitometer 

viewing screen. Alignment error is ±0.1°. The angle between the 

direction defined by the spots and bottom edge of the photographic 

plate y is read off the stage rotation table. A Starrett no. 360 

precision protractor (L. S. Starrett Company, Athol, Mass.) is then 

placed on top of the photographic plate with its square frame set 

against the edge of the microdensitometer stage. The protractor angle 

is set at the angle y but in an opposite sense. The vernier on the 

Starrett no. 362 protractor reads to 1/1 2 of a degree. An Ameri can 

Optical Corporation A01400 stage micrometer (Scientific Instrument 

Division, American Optical Corporation, Buffalo, N.Y.) is laid on top 

of the two spots and against the blade of the precision protractor. 
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The positioning of the protractor angle puts the scale divisions on 

stage micrometer perpendicular to the microdensitometer travel direc­

tion. The purpose of the stage micrometer is to put fiducial marks 

on the microdensitometer readout chart for distance measurement. The 

photographic plate, Starret protractor, and the stage micrometer are 

fixed in position on the microdensitometer stage by spring clips. An 

example of the microdensitometer readout with this arrangement is 

shown in Figure I.S-2a and Figure I.S-2b. Since it is the change of 

distance that is important in the temperature dependence measurement, 

the two spikes marked "4 rrm" and "14 rrm" are used as fixed fiducial 

marks in an entire suite of measurements. (For example, Vp[lOO] from 

293 to 423K). The two density profiles are then matched on a light 

table and a pencil mark is put on both charts at the same {but arbi­

trar~ location. The distance between the spots is therefore equal to 

a fixed distance (distance between the fiducial marks "4 mm" and "14 

mm") plus the distance from the pencil mark on Figure I.S-2a to "4 mm" 

and the distance from the pencil mark on Figure I.S-2b to "14 mm". 

The scale on the c~arts is provided by the distance between the fidu-

cial marks "3 mm" and "4 rrm", and "14 mm" and "lS 1l111", respectively. 

These distances are calibrated by American Optical Corporation to be 

0.1 ± O.OOOS cm. The use of fiducial marks is necessitated by the 

limited travel of the microdensitometer stage at such a large magnifi ­

cation (approximately 200 to 1). The distance between the two spots 

in Figures I.S-2a and I.S-2b is then read as 
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( 9.23 ± 0.01 
(6.98) ± 0.01 

i= lOmn+ + 6.71 ) mm 
19.75 ± 0.01 19.81 ± 0.01 

where 10 mn is the distance between the fixed fiducial marks "4 mn" 

and "14 mn". 9.23 is the distance in centimeters on the chart from 

the pencil mark on Figure I.5-2b to the "14 mn" marker. 19.75 is the 

distance in centimeters on the chart between the fiducial marks 

"14 mn" and "15 mn" on the same figure. The corresponding readings 

on Figure I.5-2a are (~:~~), and 19.81. There are two readings, 6.98 

and 6.71 because there are two pencil marks on Figure I.5-2a. There 

are two pencil marks on Figure I.5-2a because the two density profiles 

are not identical, and there is a latitude in which "matching" of the 

two density profiles can be considered as equally good. In the pres­

ent case 6.98 is the distance in centimeters on the chart from the 

pencil mark to the "4 mm" marker when matching is by the top part of 

the density profiles. 6.71 is the corresponding distance when match­

ing is by the bottom part of the density profiles. These are illus­

trated in Figures 1.5-3 and 1.5-4. This latitude in matching i s 

indeed the major source of experimental uncertainty, and will be dis-

cussed in detail later. A measure of the reproducibility of the 

microdensitometer readout is provided by the repeated optical density 

readouts of divisions on the stage micrometer used as fiducial 

markers. Histograms of the distribution of repeated readout of dis-

tance between pairs of markers are shown in Figure 1.5-5. It is 

estimated from these histograms that the repeatability of intensity 

profiles is within 0.05 cm on the microdensitometer recorder chart. 
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Note that in Figure 1.5-5 the distance between the two markers "5 mm" 

and "6 mrn" in the data readout for Vs[OOl] differs from that in the 

data readout for Vp[llOJ. This is because the ratio arm connecti ng 

the microdensitometer specimen table and recorder chart table is re­

moved between the two readouts, and slight variation in the setting of 

the ratio arm in its socket causes the difference in the two readouts. 

Since the error in aligning the two spots with the microdensitometer 

stage travel direction is ±O.lo, and the error in aligning the stage 

micrometer with the two spots is also ±O.lo, the error in distance 

measurement between the two spots due to angular misalignment i s 

t (l - cos 0.140 ) ~ 5 x 10-6t ~ 0.05 pm , equivalent to 0.001 cm on the 

readout chart, and is negligible compared to the latitude in densit-y 

prof:~He~tching as discussed above. 

Consider now the problem of the difference in the two density 

profiles on the same photographic plate. Note first that the degree 

of disparity varies from one photographic plate to another. Indeed, 

t he two density profiles in Figures I.5-2a and I.5-2b are dne of t he 

worst cases. An example of two density profiles which match bett er is 

illustrated by Figures I.5-6a, I.5-6b, and 1.5-7. Note secondly , that 

whenever "bad" matching exists, the matching of one profile with t he 

mirror image of the other profile is generally better . This is i l l us ­

trated in Figure 1.5-8 wi th the profile i n Figure I.5-2a ma tching the 

mirror image of the profile in Figure I.5-2b. There are density pro­

file distortions introduced during photographic processing, such as 

unevenness in plate emulsion and water stain marks during drying, and 

electronic noises introduced during the microdensitometer readout . 
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These distortions and noises are, however, insufficient to account 

for the disparity, when it exists, between the two density profiles. 

The reason for this disparity is that the stress-induced birefringence 

inside the crystal does not assume a plane wave front parallel to the 

sample faces. Temperature gradient inside the sample, edge and corner 

effects, lack of perfect parallelism between sample faces, positioning 

of the transducer (not exactly at the center of sample face) and 

transducer radiation pattern all cause the steady state birefringence 

pattern~to deviate from a plane standing wave. However, the steady 

state birefringence pattern induced by forced vibration of the 

crystal can be decomposed into plane waves in different directions. 

These plane waves will be divided into those whose wave vectors are 

perpendicular to the light wave vector and those which do not belong 

to the class just described for separate discussions. For plane 

waves whose wave vector are perpendicular to the light wave vector, 

the diffracted light intensity is given by equation (1.2-22) with 
2 a = 0, i.e., 11= Jl(v). By adjusting the transducer driving fre-

quency, however, only plane waves whose wave vector lies nearly per­

peodtcular to the polished faces (on one of which the transducer is 

mounted) can enjoy the condition of constructive interference. The 

result is demonstrated in Fig. 1.5-1. Since all photographic plates 

are pushed with bottom edge against the film holder bottom orienting 

screws during exposure, the direction defined by the two spots rela-

tive to the photographic bottom edge serves to check the maximum 

deviation in direction from pure mode of the sound wave velocity 
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which each photographic plate measures. The microdensitometer table 

angle readings in Tables 1.5-1 to 1.5-4 are exactly these data. 

Since to compute, from pure mode velocity, sound velocities of 

modes whose directions deviate slightly from a pure mode involves cor-

rection factors proportional to the square of the cosine of the 

deviation angle (for example, Neighbours and Schacher 1967) and 

1 - cos20.6° = 1.08 x 10-4, where 0.60 is the maximum deviation angle 

in Tables 1 through 4, the error involved in this respect is at most 

one-fifth of that arising from disparity of density profHes·, - . In 

the more typical case, the deviation angle is 0.20 and 1 - cos 20.2° = 

1.2 x 10-5. Now consider those waves in whose wave front the light 

wave vector does not lie. The diffracted light intensity from these 

( ) . _ 2[ sin(QaL2)] waves is given by equation 1.2-22 wlth a r 0, 11- J l v (Qa/2) . 

The intensity distribution J~[v slQ£?2)2)] as a function of a is 

plotted in Klein and Cook (1967) and has zeros at On = 2mm where m 

is any non-zero integer. The intensity is significant only for values 

of a less than the first zero. The first zero occurs at a = 2n/Q . 
A 

Recall Q = 2n ~ t , a =_n ~ sin e • where e is the angle between 
A2 no 0 AO 

sound wave front and light wave vector. On = 2n implies Isin el = A/ t. 

Take t to be width of the sample e ~ 1030' for Vp[lOO] measure­

ments, 10 for Vs[lOO] measurements, 20 for Vp[llO] measurements, 

and 00 50 ' for Vs[llO] measurements. Since the characteri stic curve 

(Hurter-Driffield curve) of the Agfa-Gavaert 8E75 and 10E75 plates 

shown in Figure 1.5-9 is such that exposure for energy density below 

the "toe" is greatly depressed, the effective angular range in which 
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light diffracted from these waves is recorded on the photographic 

plate is even less than the angles listed above. Nevertheless, this 

does have the effect of causing disparity between the two density pro­

files and explains also why in case of disparity, the match between 

one density profile with mirror image of the other profile is better 

than the match between the two profiles themselves. 

The data interpreted as described above are listed in Tables 

1.5-1 through 1.5-4. Each table provides data for velocity measurement 

as a function of temperature of a pure mode. There are two spot 

separation readings for each photographic plate. The first reading is 

the separation when matching the top part of the two profiles and the 

second reading is the separation when matching bottom part of the two 

profiles. The first reading is not consistently greater than the 

second, nor is it true vice versa. It depends rather on the detailed 

excitation of off-pure mode plane waves which in turn depends on exact 

sample geometry, positioning of transducer, transducer driving fre­

quency, and temperature gradient inside the sample. In computing these 

distances, the distance between the fixed markers is taken as the cali-

brated distance shown on the stage micrometer. Any error in this 

distance affects only the absolute velocity but not the temperature 

dependence of velocity measurements. In summary, the errors discussed 

in the measurement of the distance between the two spots on the photo-

graphic plates by the microdensitometer readout are: 

(1) Error due to m1crodensitometer and stage micrometer mis­
alignment. This is about ~.l ~m; 

(2) Pencil marker and recorder pen trace thickness on the 
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microdensitometer readout chart. This error is less 
than 1 ~; 

(3) Reproducibility of microdensitometer readout, which is 
within 2.5 ~m. 

(4) The error involved when the direction defined by the two 
spots, relative to the photographic plate bottom edge, fluc­
tuates from plate to plate. This error is typically one 
order of magnitude smaller than and at most one-fifth of the 
uncertainty in profile matching. 

(5) Error involved in profile matching, on the average~ 5 ~m. 

Item (1) is negligible compared to item (5). Items (2) and (3) have a 

Gaussian probability distribution and their contribution to the stand­

ard deviation of temperature dependence of velocity is negligible 

compared to item (5). Item (4) is one order of magnitude smaller than 

item (5), which leaves item (5) as the major contributing factor in 

experimental error. 

Note also in Table 1.5-1,0-2,0-4,0-5,0-6, and 0-7 all meas-

ure the same velocity at room temperature, only that the 0-5, 0-6, 0-7 

measurements have one more half-wavelength inside the sample than the 

0-2, 0-4 measurements. Also in Table 1.5-2, E-14, E-16, E-17 all 

measure the velocity at nearly the same temperature, but E-14 has a 

slightly different frequency than E-16 and E-17. This is also the case 

in Table 1.5-3 between F-l, F-2, and F-6. These variations are used to 

check if this method would depend on the number of half wavelengths 

inside the sample, or the selection of transducer driving frequency. 

From the readings of the ratio of transducer driving frequency and spot 
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separation as listed in Tables 1.5-1 to 1.5-4, these factors do not 

show any effect within the experimental error. It should also be 

noted that the effect of random index of refraction fluctuation along 

the partially evacuated light path has not been taken into account in 

the data analysis. Figures 1.5-10 to 1.5-13 are plots of the ratio of 

transducer driving frequency and spot separation vs. temperature con­

structed from Tables 1.5-1 to 1.5-4, respectively. In these figures 

the short end of each error bar indicates density profile matching by 

top, while the long end indicates density profile matching by bottom. 

A linear temperature dependence is fit to the quantity f/~ 

in Figures 1.5-10 through 1.5-13 by a least square method. The method 

is to minimize the sum of the distance from center of each error bar 

to the straight line squared. The intercept at OOC and slope of each 

least square fit straight line are labeled in each figure. 

The standard deviation of the parameters of any least square 

fit scheme depends on the meaning of error bar at each individual data 

point. For example, if the error bar represents one standard devia­

tion of a Gaussian distribution from repeated measurements at the same 

given value of the independent variable, the standard deviation of the 

parameters in the least square fit can be calculated, for example, 

according to Mathews and Walker (1965a). The error bars in the present 

case, as explained earlier, however, represent the latitude in the 

matching of the two density profiles, and the probability distribution 

inside the error bars is not necessarily Gaussian. The assignment of 

standard deviation to the parameters is therefore difficult. Instead, 
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a measure of uncertainty in these parameters is assigned by a consis­

tency check which will be discussed later. 

Before computing the velocity and its temperature dependence 

from these results, two more possible sources of error must be consid­

ered. The first is error in temperature measurement. As stated in 

the Experimental Techniques section, the temperatures are measured at 

two sites located at diagonally opposite corners of the sample. Each 

temperature reading listed in Tables 1.5-1 through 1.5-4 is an average 

of the temperatures at the two thermocouple sites. At room temperature 

the two thermocouples give identical readings. At higher temperatures 

the two readings differ. This difference is ~50C at 150oC. The cause 

for this difference is that the center of the sample holder assembly 

deviates slightly from the furnace center. This means that the temper­

ature reading is uncertain to ±2.50C at 150oC. Since room temperature 

is ~20oC for all measurements, this would introduce an error of 

±2.50/130o = ±2% to the slopes in Figures 1.5-10 through 1.5-13. 

Another possible source of error comes from the lensing effect at the 

exit sample face if a radial temperature gradient exists in the furnace. 

A separate test is conducted to determine the upper limit of this radial 

thermal gradient. A fused silica 1 cm x 1 cm x 1 cm is placed inside 

the furnace in place of the spinel sample. A third thermocouple is 

pasted at tee center of the exit face (face toward the shutter) by 

Sauereisen cement. At ~lOOoC, the three thermocouple readings are 

1.466 mV (thermocouple at one corner of the exit face), 1.660 mV 

(thermocouple at the diagonally opposite corner) and 1.256 mV 
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(thermocouple at center of the exit face). Since 0.1 mV corresponds to 

2.220e and since the third thermocouple, placed inside the tubular 

furnace, provides a conduction path between high temperature region of 

the furnace and low temperature region outside the furnace (which is 

absent during the optical measurement), the maximum radial temperature 

difference existing in the optical measurement is estimated to be 

o 3.25 0c 1 0e 4.44 e x 22.65 = 0.63 at '\, 00 . 3.25/22.65 is the ratio of 

tbermal conductivity of fused silica and spinel (Horai 1971). The 

lensing effect of the exit face can be estimated as the following. 

Refer to Figure 1.5-14, x = 6.93 x 10-6 ~T, where 6.93 x 10-6/K is 

the linear thermal expansion coefficient of spinel (Rigby et al 1946), 

b • 0.8 cm is the distance between corner thermocouple and center 

thermocouple. The curvature a is given by a = b2/2x = 0.64/{2 x 

6.93 x 10-6 ~T). The change in diffraction angle due to lensing effect 

is then (for example, Yariv 1971a) ~e = (nSPinel - 1) f = 0.719 f = 15.6 

x ·10-6r~r,. Tbe corresponding change in spot separation on the photographic 

plate is ~i = L~e = 15.6 x 10-6 r~TL ,where L is the distance be­

tween sample and photographic plate. Take Vs[OOlJ measurement, for 
A -4 6 

example, r = 'Ao x 1.179 cm = 0.6328 x 10 x 30.85 x 10 x 1.179 cm = 
6.57 x 105 

3.50 x 10-3cm , L = 257.7 cm, ~i = 1.41 x 10-5 ~T cm/oe, i = 1.54 cm, 

~t/i = 0.91 x 10-5 ~T. With d~~>~~/dT = 0.22 x 10-4 °e, the lensing 
-5 

effect introduces an error of 0.91 x 10 x 0.63 = 0.3% between room 
0.22 x 10-4 80 

temperature and 1000e. This is neglected in comparison with other 

sources of error. 
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The velocity and its temperature dependence are computed from 

the values fi t by the equations 

t f 
v = fA = (L + 2n . ) no (r) 

splnel 

where t is the sample thickness; 

and 

AO is the laser wavelength in vacuum, AO = 0.6328 ~m, 

the stability of He-Ne wavelength is within ~Ao/Ao = 
9 

~f/f = 1.5 x 10 = 3.16 x 10-6 , ~f being He-Ne laser 
4.74 x 1014 

Dopp,ter wi dth. 

~TV)P = (L + t ) 2A a{f~t)) 
a 2nspinel 0 a p 

{I. 5-1) 

(1. 5-2) 

The values of velocity of the four pure modes at 250C and their tem­

perature derivatives, together with values of Land t are listed 

in Table 1.5-5. 

The four pure mode velocities are given by 

(1. 5-3) 

where s s s Cll' C12 and C44 are the three adiabatic elastic constants of 

spinel and p its density. 
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It follows from equation ( 1.5-3 ) that 

= 2 + v2 v3 4 (1.5-4) 

and 

(1.5-5) 

These two equations serve for consistency check of the experimental 

results . From Table 5, V~ + V~ = (78.65 + 43.12)km2/sec2 = 

121. 77 km2/ sec£ ,- and--v~ + v~ = (l 04. 01 + 17~ 73) km2 /sec2 = 121. 74 km2/ 

sec2, the agreement is within 0.03%. The reason that the consistency 

check shows a closer agreement than the individual errors in velocity 

(as listed in Table 5) would indicate that the major contribution to 

the individual errors in Table 5 comes from the systematic calibration 

error.: o~~1400 ' ~tage micrometer which contributes only to the second 

order in error in a consistency check. For the consistency check on 
av 

temperature derivatives of velocity, Table 1.5-5 gives vl( aT l ) + av p 
v2(~)P = -(27.85 + 9.65) x 10-4km2/sec2K = -37.50 x 10-4km2/sec2K, 

aV3 aV4 4 2 2 
and v3(aT)p + v4(ar-)p = -(32.64 ± 8.72) x 10- km /sec K = 
-41.36 x 10-4km2/sec2K. The disagreement is 9.6%. It has been re­

marked previously that it is difficult in the present experi ment to 

ascertain the standard deviation of the temperature derivatives from 

individual error bars . The consistency check provides an alternative 

way to assign a measure of experimental 

Since the absolute value of velocities 

vl , v2' v3 and v4 are accurate to better than 0.1%, the disagreement 

can be considered to arise from the velocity derivatives alone. Note 
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also that in Figures 1.5-10 through 1.5-13 the four temperature deriv­

atives have different errors. A strategy to assign weighing factors 

to these temperature derivatives is as follows: Assume that the error 

involved in profile matching is the same for all four velocity measure­

ments. A check on the spot separation column in Tables 1.5-1 through 

1.5-4 indicates this to be a good approximation. Denote this matching 

error by £. The percentage error in slope of the quantity f/~ vs. 

T in Figures 1.5-10 through 1.5-13 (which is also the percentage error 

of (*)p) is then I(f/~) t/Uf)1500C - (f)20ocJI . From this expres­

sion, the percentage error for (ovl/oT)p is calculated to be 217£ ; 

that for (ov2/oT)p 342£; for (oV3/oT)p 245£ and for (ov4/ oT)p 

156£ . . Let [(217)2 + (342)2+ (245)2+ (156)2J1/2£ = ±9.6%. Solving for 

£ , the resulting percentage errors for the four velocity temperature 

derivatives are ±4.2% for vl ' ±6.6% for v2' ±4.7% for v3' and 

±3.0% for v4 . These values are certainly allowed within the error 

bars as indicated in Figures 1.5-10 through 1.5-13. The adiabat i c 

elastic constants C~~, C;2' C~4 and the adiabatic bulk modulus 

s l( s s ) . K = 3 C11 + 2C12 of splnel can be calculated from equation (1.5-3) 

with p = 3.5784 gm/cm3 at 250C. The temperature derivative of t he 

elastic constants are calculated from 

oC~ ov. 
~)p = pV i [2( oT

1
)p - 3aviJ i=1,2,3,4 (1. 5-6 ) 

where a is linear thermal expansion coefficient. 
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Cs - CS CS 
- CS CS 

- l{Cs + CS + 2Cs ) d CS - l{Cs Cs ) 1 ;:: 11 ' 2;:: 44' 3 ;:: 2" 11 12 44' an 4 ;:: 2" 11 - 1 2 

The temperature derivative of the adiabatic bulk modulus is calculated 

from 

(1.5-7) 

These values are listed in Table I.5-6. 



-58-

TABLE 1-5-1 

Experimental Data for Determination of Vp(OOl) and Its Temperature 
Dependence 

Photo- Vacuum Temper- Transducer Microdensitom- Spot Ratio of 
graph- Gauge ature Driving eter Table Separa- Transducer 
ic Reading CC) Frequency Angle Reading tion Driving 

Plate (pm) (MHz) (Degree) (cm) Frequency 
Desig- and Spot 

nation Separation 
(MHz/cm) 

lJ-2 130 20.29 28.87804 21. 75 1.0628 27.171 
1.0623 27.183 

D-3 120 20.34 28.87804 21. 75 1.0624 27.182 
1. 0619 27.195 

D-5 130 20.49 29.37592 21. 75 1.0803 27.193 
1. 0797 27.208 

D-6 150 21. 67 29.37592 p.75 1.0796 27.210 
1.0802 27.196 

D-7 100 20.07 29.37592 21. 75 1.0805 27.188 
1.0809 27.177 

D-8 150 57.08 29.34020 21. 75 1.0805 27.155 
1.0812 27.136 

D-9 150 59.83 29.34020 21. 75 1.0806 27.152 
1.0820 27.117 

D-I0 150 80.64 29.31250 21. 75 1.0807 27.125 
1.0801 27.139 

D-11 150 80.09 29.31250 21. 75 1.0822 27.087 
1.0813 27.110 

D-12 175 119.33 29.26488 21. 70 1.0806 27.083 
1. 0796 27 . 108 

D-13 175 120.50 29.26488 21. 70 1.0805 27.084 
1.0799 27.099 

D-14 175 145.83 29.23100 21.60 1. 0792 27.087 
1.0803 27.059 

D-15 180 146.80 29.23100 21.60 1.0801 27 . 063 
1.0796 27 .075 

D-17 90 80.93 28.81502 21. 75 1.0625 27.120 
1.0622 27.128 
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TABLE 1-5-2 

Experimental Data for Determination of Vs (000 and Its Temperature 
Dependence 

Photo- Vacuum Temper- Transducer Microdensitom- Spot Ratio of 
graph- Gauge ature Driving eter Table Separa- Transducer 
ic Reading (. C) Frequency Angle Reading tion Driving 

Plate (pm) (MHz) (Degree) (cm) Frequency 
Desig- and Spot 

nation Separation 
(MHz/cm) 

E-2 130 21.81 30.95130 22.60 1.5398 20.101 
1. 5391 20.109 

E-4 140 21.92 30.95130 22.60 1. 5391 2"0.111 
1.5388 20.115 

E-5 115 21. 95 30.95130 22.60 1.5400 20.099 
1. 5395 20.105 

E-6 105 21.59 30.95130 22.60 1.5386 20.116 
1.5390 20.111 

E-8 110 49.22 30.92020 22.40 1. 5381 20.102 

" 1.5378 20.107 
E-9 120 49.37 30.92020 22.60 1.5384 20.099 

1.5377 20.108 
E-ll 125 80.44 30.89004 22.60 1.5377 20.089 

1.5374 20.092 
E-12 100 80.96 30.89004 22.60 1.5374 20 . 093 

1. 5369 20.099 
E-13 100 80.81 30.89004 22.40 1.5380 20.084 

1.5376 20.089 
E-14 130 120.90 30.83805 22:40 1. 5375 20 . 057 

1.5380 20.051 
E~16 130 118.91 30.84604 22.50 1.5366 20.075 

1.5372 20.066 
E-17 100 118.89 30.84604 22 . 40 1.5392 20.041 

1.5377 20.060 
E-19 150 145.08 30.81604 22.60 1. 5353 20.071 

1.5369 20 . 051 
E-20 130 146.17 30.81604 22.50 1.5359 20.064 

1. 5364 20 . 057 
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TABLE 1-5-3 

Experimental Data for Determination of Vp(llO) and Its Temperature 
Dependence 

Photo- Vacuum Temper- Trancducer Microdensitom- Spot Ratio of 
graph- Gauge ature Driving eter Table Separa- Transducer 
ic Reading (" C) Frequency Angle Reading tion Driving 

Plate (p.m) (MHz) (Degree) (cm) Frequency 
Desig- and Spot 

nation Separation 
(MHz/cm) 

F-1 120 18.50 30.96020 18.60 0.9918 31. 216 
0.9927 31.188 

F-2 100 18.57 30.96020 18.60 0.9921 31.208 
0.9925 31. 196 

F-3 110 49.95 30.94500 19.20 0.9930 31. 162 
0.9927 31.173 

F-4 95" 49.31 30.94500 19.20 0.9927 31.171 
0.9938 31.140 

F-5 100 49.04 30.94500 19.20 0.9932 31.157 
.... 0.9926 31.177 

F-6 95 17.87 30.97000 18.60 0.9927 31. 199 
0.9932 31. 183 

F-7 120 78.46 30.91620 19.20 0.9939 31. 105 
0.9930 31.135 

F-8 130 79.13 30.91620 19.20 0.9922 31.160 
0.9927 31.144 

F-10 130 113.53 30.88058 19.20 0.9925 31.114 
0.9929 31. 102 

F-ll 140 113.49 30.88058 19.20 0.9926 31.112 
0.9928 31.104 

F-12 150 145.98 30.84830 18.60 0.9929 31.069 
0.9934 31.053 

F-13 150 147.87 30.84830 18.60 0.9924 31. 086 
0.9929 31. 070 
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TABLE 1-5-4 

Experimental Data ",for Determination of Vs (110) (p//Clio)) and Its 
Temperature Dependence 

Photo- Vacuum Temper- Transducer Microdensitom- Spot Ratio of 
graph- Gauge ature Driving eter Table Separa- Transducer 
ic Reading ( · C) Frequency Angle Reading tion Driving 

Plate (11m) (MHz) (Degree) Frequency 
Desig- and Spot 

nation Separation 
(MHz/cm) 

G-4 140 17.09 31.10572 20.40 2.4128 12.892 
2.4136 12.888 

G-5 130 16.37 31.10572 20.40 2.4134 12.889 
2 .4139 12.886 

G-6 120 48.12 31.05112 20.40 2.4140 12.863 
2.4144 12 .861 

G-7 140 47.81 31.05112 20.40 2.4136 12.865 

" 2.4142 12.862 
G-8 110 48.29 31.05112 20.40 2.4156 12.855 

2.4149 12.858 
G-9 90 80.62 30.99005 20.40 2.4119 12.849 

2.4116 12.851 
G-10 100 80.40 30.99005 20.40 2.4141 12 . 837 

2.4133 12.841 
G-11 100 119.02 30.93251 20.40 2.4125 12.822 

2.4117 12.826 
G-12 85 118.90 30.93251 20.60 2.4110 12.830 

2.4111 12 .82 9 
G-13 115 149.05 30.87503 20.60 2.4128 12 .796 

2.4132 12.795 
G-14 120 149.11 30.87503 20.60 2.4122 12.800 

2.4120 12.801 
G-15 110 149.29 30.87503 20.60 2.4117 12 .802 

2.4122 12.799 
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TABLE 1-5-5 
Ultrasonic Velocities and Their Isobaric Temperature Derivatives of 
Spinel at 2S'C 

Mode Velocity Isobaric Temperature Distance Sample Thick-
at 25'C, Derivative, (ov/oT)p between ness at 25' C, 

v' (l0-4kml sec-K) Sample & t 
(km/sec) Plate, L (em) 

(em) 

LI I [OO~ 8.869 -3.14 257.46 1.1793 
+0.013 +0.13 (,:t4.2%) +0.03 +0.0003 

TI I [001] 6.5666 -1.47 257.67 1.1793 
+0.0055 +0.10 (.±6.6%) +0.03 +0.0003 

LI I [llO] 10.199 .-3.20 258.36 0":-8923 
+O.Oll +0.15 (.±4.7%) +0.03 +0.0003 

TI I [1l0~ 4.2101 -2.07 258.02 0.8923 
(PI 1[11 +0.0043 +0.06 (,:t3.0%) +0.03 ,+0.0003 

lbe error in the absolute velocity includes Americam Optical Corpora­
tion A01400 stage micrometer calibration error, photographic density 
profile matching error, sample thickness measurement error, and error 
in length measurement between sample and~hotographic plate. 
The uncertainties in isobaric temperature derivatives of velocity are 
assigned from consistency check. 
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TABLE 1-5-6 

Adiabatic Elastic Constants, Bulk Modulus, and Their Isobaric 
TemEerature Derivatives 

s s s 

( C; ,:::2) Q~;i 
s 

ec~~ (~:1p Cll C44 C12 (~~4i aT p a 

(kb) (kb) (kb) (kb/K) (kb/K) (kb/K) (10- 6/K) (kb) (kb/K) 

2814 1543 1546* 1969* -0.258 -0.101 -0.107* -0.157* 6.93++ 
+8 +3 +9 +6 +0.018 +0.01 +0.019 +0.014 

1544T 1967 t -0.1611- -0. 1931-
+19 +13 +0.052 +0.035 

*Va1ues calculated from V//[llO] (PI! [110]) ~easurement. 
tVa1ues calculated from V //[110] measurement. 
ttLinear thermal expansioR coefficient from Rigby et al. (1946) 
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Figure 1-5- 1. Contact print made from a data photographic plate. 
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0-9 Spot 1 

3 mm 4 mm 

~-~--- - -------~ 
II 

14mm Spot 2 15 mm 

~ 5 em 

Figure I-S-2(a). Microdensitometer trace out of photographic plate 
D-9, spot 1. 

(b). Microdensitometer trace out of photographic plate 
D-9, spot 2. 
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Figure 1-5-3. Matching the cwo density profiles of photographic 
plate D-9 by top. 



-67-

Figure 1 - 5-4. Matching of the two density profiles of photographic 
plate D- 9 by bottom. 



11 14 mm ll a "15 mm" 
FROM DATA READOUT 
FOO Vp lOOl] 
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19.71 19.72 19.73 19.74 1 9.7~ 19.76 19.77 19.78 19.79 1980 

"3mm" a "4mm" 
FROM DATA READOUT 
FOO VplOOIJ 

19.74 1 9.7~ 19.76 19.77 19.78 19.79 19.8 0 19.81 19B2 

"20mmlt a "2Imm" 
FROM DATA READOUT 
FOO Vs [OOIJ 

"5mmll a "Smmll 
FROM DATA READOUT 
FOR Vs [OOIJ 

"1 5mm
ll a "1 6mmll 

FROM DATA READOUT 
FOR Vp [110) 

"Smm " 8 II Smm" 
FROM DATA REA DOUT 
FOR Vp [110] 

1 9~9 19.~0 I~ I 1!I'2 1 ~3 1 9.~4 19." 

19.48 19.49 I9.SO I9.SI 1!l52 1 9~3 19.' 4 

o 
19.74 19.75 19.76 19.77 19.78 19.7 9 19.80 19.8 1 

o 
19.77 19.78 19.79 1980 1981 19.82 19.83 19.84 

Fi gure 1-5-5. Hi stogram gi ving a measure of reproducibit y of dens ity 
,-ea dou t by a J oyce - Loe bl Mk111CS microdenl:!itometer . 
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l 1 
6 mm 5 mm 

0.2" E - 11 -(0.3") Spot 1 

~V-I( 
~ 5 em r--- ~ 

21 mm 20 mm 

0.8" -(0.9 ") 

}I,I.'\ 
Spot 2 

\ 
\ 

~-
Figure 1-5-6(a). Microdensitometer trace out of photographic plate 

E-ll, spot 1. 
(b). Microdensitome trr trace out of photographic plate 

E-ll, spot 2 . 
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Figure 1 - 5 - 7 . Matching of the two density pr ofiles of photographic 
plate E- l1. 
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Figure 1-5-8. Matching of one density profile of phtographic plate 
D-9 with the mirror image of the other dens ity profile. 
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IOE75 

10
2 

Exposure , erg /em 2 

8E75 

Figure 1 - 5- 9. Characteristic curve f or Agfa - Gavaert film 8E75 and 
l OE7 5 . 
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Slape =-9.6078~10-4 
Intercept = 27.205 
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Temperature, O( 

Figure 1-5-10. Ratio of transducer driving frequency and spot 
separation vs. temperature for Vp (00l) measurements. 
The short end of each error bar indicates density 
profile matching by top. The long end indicates 
density profile matching by bottom. 



E 
u 
"­
N 

-74-

20.20 .------.------.-------.------.------.------,.------.----. 

20./ 5 

I 
~ 20./0 

20.05 
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Intercept = 20.121 
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Figure 1-5-11. Ratio of transducer driving frequency and spot 
separation vs. temperature for Vs (bol) mC.:lsurC'ments . 
The short end of each error bar indicates density 
profile matching by top. The long end indicated 
density profile matching by bottom. 



E 
u 
'-
N 

I 
~ 

~ 

'-... 
'+--

-75-

31.25 ,-----,----,-----,----,-----,----,-----,------, 
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31.10 l~l Slope = -9.7769 x 10- 4 

Intercept = 3 1. 215 
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Temperature, °C 
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Figure 1-5-12. Ratio of transducer driving frequency and spot 
separa tion vs . tempera ture for V p (110) measurements. 
The short end of each error bar ~ndicates density 
profile matching by top. The long end indicates 
density profile matching by bottom. 
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T 

12.80 --------r ~ 
12.75 

Slope =-6.3319x IO- 4 

Intercept = 12 .896 

12 .70 
0 100 120 140 

Temperoture, °c 

Figure 1-5-13. Ratio of transducer driving frequency and spot 
separation vs. temperature for Vs(llO)(P//(lio)) 
measurements . The short end of ea~ error bar 
indicate s density pr ofile matching by top . The 
long end indica tes density profile matching by 
bottom. 
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RADIUS OF CURVATURE7 

b 

Figure 1-5-14. Illustration of lensing effect of crystal face due to 
temperature gradient. 
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6. Data Interpretation and Comparison with Other 
Measurements on Single Crystal Spinel Elastic 
Constants and Their Temperature Dependence 

In order to apply the temperature dependence data of single 

crystal elastic constants to the interpretation of Earth's mantle com-

position, the data must be put into several different forms and 

utilized in several calculations. The Debye temperature of single 

crystal spinel can be calculated from elastic constants according to 

methods summarized by Alers (1965). The calculated value is e spinel= 

8830 K using either de Launay's formula or Marcus' graph. The thermal 

Gruneisen's parameters are calculated to be: 

_ SKs _ 6 9 ~ 7 
Yth - pCp - 6.93 x 3 x 10- x 1969 x 10 / (3.5784 x 0.815 x 10 ) 

= 1. 40 (1. 6-1) 

for the first GrUneisen parameter, and 

1 a Ks -6 
8th = - SKs (ay-)p = 0.157/(6.93 x 10 x 1969 x 3) = 3.84 (1.6-2) 

for the Anderson-GrUneisen parameter, where S is volume thermal expan-

sion coefficient and Cp = 0.815 J/gm-K is the specific heat at 

constant pressure with the value given by Bonnickson (1955). The 

isothermal bulk modulus is given by 

(I.6-3) 

and its temperature derivative is given by differentiating (1.6-3) 
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(I. 6-4) 

is measured to be 1.20 x 10-8K- 1 by Rigby et a1 (1946). Anderson 

showed that for oxide compounds 

(1.6-5 ) 

where Vo is the volume at absolute zero. 

Anderson's derivation assumes that the thermal GrUneisen param­

eters are identical to the mode gammas in lattice dynamics and that 

the Gruneisen parameters are temperature independent. Chang and Barsch 

(1973) concluded that for single crystal spinel, the first assumption 

is bad. Based on Achar and Barsch (1971) and Barsch and Achar (1972), 

Chang and Barsch concluded that the second assumption in Anderson's 

derivation is valid for T ~ ~. In short, equation (1.6-5) holds in 

the form 

for T.t ~ (1.6-6) 

independent of assumptions regarding Gruneisen parameters. Since 

Cv = 3R[40{x) - 3x{ex-1 r 1] , x = e/T (1.6-7) 

where O{x) is the Oebye function, and Cv = 3R = 5.961 ca1/mo1-K 

at high temperatures (T » e), equation (1.6-7) can be used to ca l cu­

late the temperature dependence of bulk modulus at high temperatures. 

Take {:~s)p = -0.157 ± 0.014 kb-K-1, at T = (293 2 423) ~ 65K = 

(358 ± 65)K , e/T = 2.47 ± 0.45 , Cv{S/T) = 4.485 ± 0.435 ca1/mo1-K. 
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Substituting these values into equation (1.6-7), 

aKs -1 
(ar-)p = -0.209 ± 0.028 kb-K for T» e (1.6-8) 

The bulk modulus of spinel is identical for both single crystal and its 

polycrystalline aggregates. The shear modulus for a polycrystalline 

aggregates can be expressed in terms of Voi gt, Reuss, and Hi 11 averages. 

These and their temperature derivatives are calculated according to ex-

pressions given by Chung (1967); 

l(s s s) ~v = 5 Cll - C12+ 3C44 = 1179 kb ± 3 kb 

~R = 5(C~1- C~2)C~4/[3(C~1- C~2) + 4C~4] = 981 kb ± 10 kb 

~VRH = i(~v+ ~R) = 1080 kb ± 5 kb 

s s s 
a~v 1 aCll aC 12 aC44 +_ 0.008 kb-K-l 

(ar}p = 5(ar - ar + 3 ar)p = -0.091 

s s s 
a~R 4 ~R 2 aCll aC12 3 ~R 2 aC44 

(ar)p = 5(C - C ) (ar - ar)p + 5(C) (ar)p 
11 12 44 P 

= -0.097 ± 0.013 kb/K 

(1.6-9) 

The shear modulus obeys an equation similar to equation (1.6-6) only 

if the Poisson's ratio is independent of temperature (Anderson 1966). 

These various temperature derivatives given above can then be applied 

to density and velocity calculations inside Earth's mantle using 

various averaging schemes and extrapolation based on temperature 
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dependent equations of state. The significance of various averaging 

schemes are discussed, for example, in Kumazawa (1969) and in Thomsen 

(1972a,b). One example of discussing the composition of Earth's upper 

mantle in terms of temperature and pressure dependence of elasticity is 

given by Graham (1970). 

The elastic constants of stoichiometric single crystal spinel 

have been measured by Chang and Barsch (1973), O'Connel and Graham 

(1971) and Lewis (1966). The elastic constants of non-stoichiometric 

spinel have been measured by Schreiber (MgO.2.61A1 203, Anderson et al 

1968) and by Verma (MgO.3.5A1 203, 1960). Chang and Barsch (1973), 

O'Connel and Graham (1971), and Schreiber (Anderson et al 1968) also 

measured their pressure and temperature dependence. These results, 

together with their methods of measurement, are listed in Table 1.6-1. 

The three most recent measurements especially merit a comparison, since 

all of them are obtained from single crystal samples grown by Union 

Carbide, Crystal Products Division, and two of them (the present work 

and that of O'Connel and Graham 1971) are obtained from the same sample. 

It is seen from Table 1.6-1 that the absolute velocity measurements 

agree within experimental error but the temperature dependence of 

velocities generally disagree among the three measurements. It should 

be pointed out, however, that the error bounds of the present work in 

Table 1.6-1 are assigned from the consistency check as di scussed in 

Section 5. The range of temperature derivatives of velocity allowed by 

the uncertainty of individual measurements as shown 1.5-10 

through 1.5-13 are: aV1 _ -2.18 -4 
(ar-)p - (-3.82) x 10 km/sec-K, 

in Figures 
aV 2 

(ar-)p = 
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(-0.82) 10-4km/ K (
av

3) (-_42 .. 4
1
9
2

) x 10-4 kIn/ K d -1.69 x sec- , aT p = sec- , an 
aV4 (-) = 
aT p 

(-2 05 -4 
-2:41) x 10 km/sec-K. Comparing the values of present work and Chang 

av 
and Barsch (1973), (~)p agree within experimental error as listed in 

aV2 aV3 av4 . 
Table 1.6-1. (ar-)p' (ar-)p' and (ar-)p dlsagree in Table 1.6-1, but 

the values given by Chang and Barsch lie within the range allowed by 

individual uncertainties as listed above. Therefore, the results of 

the present work are consistent with the measurements obtained by Chang 

and Barsch (1973). Comparing the values Qf the 
aV3 obtained by O'Conne1 and Graham (1971), (ar-)p 

present work and those 

agree within experi-
aV1 aV2 

Values of (ar-)p' (aT)p' and mental error as listed in Table 1.6-1. 
aV4 (ar-)p calculated from O'Conne1 and Graham's data lie even outside the 

range of values allowed by uncertainty in individual measurements. The 

conclusion is that the experimental values as obtained from t he present 

method disagree with those obtained from ultrasonic interferometry by 

O'Conne1 and Graham. Discussions of possible systematic error in the 

ultrasonic methods are presented in Section 8. 
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TABLE I-6-1 (continued) 

The values of O'Connel and Graham are calculated from CS =2821+1 kb 
C~2=1551±1 kb, C~4=1542±1 kb; (aCh/oT)p =-O. 31±O.002 kbN, (dC!4/0T)P 

=-O.136±O.OOl kb/K, GJ(C~l+Cs +2C4s4)/20~=-O.342±O.03 kb /K ,and 
s s 12 3 

[O(C1I-C12)/2~~=-O.0544±O.0003 kb/K, P=3.5783 gm/cm , and linear 
P -6 

thermal expansion coefficient d=6.93xlO /K (Rigby et al. 1946) 
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7. Attempt of Using the Same Technique for Pressure 

Dependence Measurement of Single Crystal Spinel 
Elastic Constants 

Before the temperature dependence measurement of spinel elastic 

constants, an attempt was made to measure their pressure dependence. 

The pressure is generated by a revised version of a 10 kb hand- . 

pump designed by Daniels (1966). The high pressure optical cell 

employed in the experiment is designed by Stromberg and Schock (1970). 

The pressure medium is an optical grade vacuum pump fluid, Octoi1-S, 

(Bendix Corporation, Rochester, New York) and the pressure is measured 

by a Heise gauge (model C, 0-7.5 kb pressure range, Heise-Bourdon 

Tube Co., Newtown, Conn.). The pressure circuit is shown schematically 

in Figure 1. 7-l. 

The optical cell is a thick-walled cylinder with two plugs 

sealing the ends. One sapphire window, in the shape of a truncated 

cone, is seated against a matching cone in each plug with a pyrophy1-

lite layer in between to seal the pressure fluid and to evenly 

distribute the stress. The spinel crystal is spring loaded, but 

separated by a Webber gauge block spacer, onto the end face of one 

sapphire cone. Details of the plug and sapphire cone are illustrated 

in Figures 1.7-2 and 1.7-3 respectively. Figure 1.7-4 illustrates the 

high pressure cell and the relationship between the sample and the two 

windows. A LiNb03 360 rotated Y-cut transducer (1.1 cm x 1.1 cm, 

28.5 MHz center frequency) is bonded to the sample using Ara1dite epoxy 

(Ciba-Geigy Ltd., Plastic Division, Duxford, Cambridge, England). Leads 
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are bonded to the transducer electrodes (in Tab configuration) with 

Tra-duct 2924 conductive epoxy (Tra-Con Inc., Medford, Mass . ) and are 

soldered to the electrical feedthroughs of the high pressure cell 

plug. The electronics are identical to those used in the temperature 

dependence measurement. 

After being diffracted by the ultrasonic beam inside the crys­

tal, the laser beams travel through the pressure medium and sapphire 

window before reaching the recording photographic plate. Since the 

diffraction angle of laser beam carries the information of sound wave­

length inside the crystal, any effect changing the diffraction angle 

of laser beam in the pressure medium and the sapphire window must be 

corrected. 

The window axis is aligned to coincide with the crystal C-axis 

within half a degree. Under pressure loading, the window deforms in 

t he following manner: the two faces become curved. When the pressure 

is small compared to the elastic moduli, the curved surface can be 

approximated by spherical surfaces. Since the maximum pressure in the 

present experiment is 5 kb ' " this condition is being satisfied. Also , 

the surfaces are symmetric about the window axis. 

The effect of internal elastic strain on the opti cal indicatri x 

is to turn it from uniaxial to biaxial with its z ax i s general ly dif­

ferent from the window axis. We use cylindrical 'pol ar coor dinate 

system and take the z-axis along the window axis. For a ray entering 

the window at distance ro from the window axis whose displacement 

vector makes an angle Po with the z-axis and an angle ~o with the 
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x-axis of the indicatrix at the point of entrance, the index of refrac-

tion seen by this ray throughout the window can be written as 

(1.7-l) 

where p' is the angle between the polarization vector and the optical o 
axis of the uniaxial indicatrix before elastic deformation. Equation 

(1.7-1) is the first three terms of expansion in r in axially sym-

metric medium of the expression 

. 2 2 . 2 . 2 2 1/2 n = (sln p cos ¢ + Sln p Sln p + cos p)- (1.7-2) 
a2 S2 y2 

where a ,S.y are the three principal indices of refraction. From 

1 equation (1.2-2). ~(:2) .. = TIijk£ 0k£' Also 
n 1 J 

(1.7-3) 

where (5 ) is the 'stiffness tensor. rsk£ 

For a - A'203' Nye (1957). for example. gives 
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Pll P12 P13 P14 

P12 Pll P1 3 -P14 

P3l P3l P33 0 
(Pijrs) = 1. 7-4) 

P4l -P4l 0 P44 

P44 2P4l 

P14 (Pll-P12 )/2 

Dixon (1967b) measured the photoelastic tensor (Pijkt) for a - A1 203 
'\, '\, 

with the results Pll = 0.20, P12 = 0.08, P44 = 0.085, P31 = P13 = 0, 

P33 = 0.252, P14 ~ 0, P41 ~ O . Take the stiffness of a - A1 203 
measured by Wachtman et a1 (1960) with components 511 =2.35, s33=2.17 

s44 = 6.94, s12 = -0.72, s13 = -0.36, s14 = 0.49 (unit 10-13cm2/dyne), 
-13 2 TI44 = P44s44 = 0.59x10 cm /dyne, for example. Assume a maximum 

shear stress of 10 kb inside the window (when loaded by a hydrostatic 

pressure of 5 kb on the window inside face) ~(~)44 = TI440 4 = 0.59 x 
n 

10-3. The smallness of this magnitude justifies the expans i on (1.7-1). 

Fixing attention on a ray with a particular polari zation, 

therefore treating po' ~o,ro as parameters, equation (1.7-1) is now 

written as 

(1.7-5) 

The ray equation, given by Born and Wolf (1970a), for exampl e, i s 

d dR 
ds (n ifs) = Vn (1.7-6) 

where R is the position vector and s the ray parameter. The origin 
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of the cylindrical polar coordinate is taken at the intersection of 

the window axis with the window inside face. Use paraxial approximation 

d d~ d dr A d dz A 

ds (n CiS) = dz (n dz) ~r + dZ (n dz) !}z (I. 7-7) 

where ~r and ~z are unit vectors in the rand z directions, 

respectively. Take inner product with ~r on both sides of the ray 

equation, and the result ;s 

or 

dn dr + n d
2
r = E.!!. 

dz dz dz2 ar 

= n2(z)r (1.1-8) 

However, no» nl(z) + n2(z)r2/2 by two orders of magnitude, as shown 

in the last paragraph. Also, compared with dnl/dz, the rate of change 

of index of refraction in the z direction, the term ~~ n2(z)r2] 
2 

= ~(l~ r2), which is the change in the z direction of the 
- dz 2 ar2 r=O,z 
rate of change of index of refraction in the r direction, is of second 

order. (A rigorous justification of this i s difficult. A possible way 

to do this is to calculate the stress in the high press ure ce ll , 

window plug, and window by the finite element method and use the photo­

elastic tensor to calculate the indicatrix throughout the window.) The 

ray equation then becomes 
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Let r{z) = v{z) p{z) where 

-n1/2no p{z) = e 

p"(z) 

(1. 7-9) 

where prime denotes differentiation with respect to z. Substituting 

r{z) = v{z) p{z) into equation (1.7-9), 

or 
n' n nil 

v" - [1 (_1)2 + ...1. + _l-J v = 0 
2 no no 2no 

(1.7-10) 

Let 
n' n nil 

h{z) == 1{_1)2 + ...1. + _1_ 
no no 2no 

(1.7-11) 

the WKBJ solution of the equation (Mathews and Walker (1965b» is 
z z 

f IliTzT dz - f YhTZT dz 
v (z) = a eO + b e 0 

!h(z)!1/4 !h(z) !1/4 

where a,b are constants of integration. 

Therefore, 
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r(z) = v(z) p(z) 

nl z 
- 2i1 + J YhTzJ dz 

= a e 0 0 

Ih(z)1 1/ 4 

nl z 
-~ - J Jfi(Zf dz 

b no 0 

+ 1 h (z) 11/4 e 
(1.7-13) 

The condition of validity for WKBJ approximation is 

I~) I « ~ h(z) 1 (1.7-14) 

as given by Mathews and Walker (1965b). The verification of the condi-

tion of validity also awaits a numerical calculation of the indica-

trices inside the window. Assuming equation (1.7-14) 

nl z 

r' = a 
Ih(z)l l / 4 

n ' - - + J ,tl1fZT dz 
1 2n 0 

(- - + v1iTZT) e 0 
2no 

At z = 0 

r = r = o 

r' = r' = o 

nl z 
n' - 2r1 - J /Fi1ZT dz 

( __ 1 __ YiiTZT) e 0 0 

2no 

a e 
Ih(o)l l / 4 

n' (0) 
a (- 1n +~) e 

Ih(O)l l / 4 
0 

nl (0) 
. 2n 

o 

(1.7-15) 



Let 

ct :: 

Equation (1.7-16) becomes 

y = ct + f3 o 

Solving for ct and f3 
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Finally, the solution to the ray equation (1.7-9) is given by 

n (O)/2n 
r = Ihill1

1/ 4 e 1 0 
hTZT Y1+ Y2 

(1.7-16) 

(1.7-17) 

(1. 7-18) 

(1.7-19) 
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n1(z) _ JZ JfiTZT dz - n21n(z) + JZ JfiTZT dZ]1 

[ 

- 2no 0 
+ r~ e - e 0 0 (1.7-20) 

Its derivative is given, from equation (1.7-16), by 

(1.7-21) 

'" n1(z) = n(O) + n1(0)z = n1(0) 

and n1(z) n1(0) 
- +-;.-

2no 2no 1~l l/4 ~ 1 e 

The expressions for rand r ' are therefore 
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z 
-J A1TzT dZ] 

e 0 

Z Z 

[ 
-J MzT dz J 1h---rzJ dZ] 1 

+ r' e 0 _ eO 
o 

(I.7-22) 

For this particular ray, the window can be characterized by the matrix 

equation 

where 

c::) = C :) c::) 
L 

(Yl+ Y2+ Y2 J JnTZT dz - Yl 
o 

L 

J JnTZT dz) ~ 1 
o 

l 
Jh (z) dz 
o 

(1.7-23) 

(1.7-24) 
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where L is the distance between the two window faces. 

Sidetracking for the moment we consider solution of the ray 

equation in the medium with index of refraction variation in only one 

dimension 

The ray equation in this case is 

The integration factor for this differential equation is 

Multiplying by this factor, the equation can be written as 

or 

where C is the constant of integration. Integrate once more, 

r -Nl(z)/No 
r = C b e dz + D 

At z = 0 , r = r r' = 0' 
r' o . These two conditions imply 

Nl (O)/No C = r' e o ' 

Equation (1.7-28) can be written as 

D = r o 

r = r' e 0 e 0 
Nl (0 )/N ~z -Nl (z )/N 

o dz + r o 

(1. 7-25) 

(1. 7-26) 

(1. 7-27) 

(1. 7-28) 

(1.7-29) 
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The matrix characterization of the medium is by the following equation: 

Z 
Nl (O)/NO J -Nl(z)/No 

rout e e dz r· ln 
0 

= 
(1. 7-30) 

e[N l (0)- Nl (Z)]/No 
r' 0 r~ out ln 

where Z is total length of the medium. Expand in Taylor's series 

about z = 0 

Z 
Nl(O)/No f -Nl(z)/No e e 

o 

[til (0) - Nl (Z ) ]/No e = 

Equation (1.7-30) becomes 

1 
Nl (0) 2 

Z - 2N Z 
o 

r' out 

= 
o 

(1.7-31) 

Recall that the matrix characterizing a thin lens of focal length f is 

(for example, Yariv 1971a): 

o 

Equating 
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1 A : ) (I.7-32) 

o 
= 

c 1 o 

gives 

Nl (0) 2 2 L

J Z - 2N l = - + h\zT dz 
o Yl Y2 o 

N'(O) y _ y L 
1 - 1 'Z = 1 + 1 2 J h\zT dz 

No Yl+ Y2 o 
(1. 7-33) 

f = 

Nl (0) 
From these equations Z., N ,and f can be solved in terms of Yl' 

o 
Y2' and h(z). Equations (1.7-32) and (1.7-33) state that the effect 

of window internal strain on a linearly polarized ray, subject to the 

conditions 

n' n nil 
Ih' (z) / IhTZTI « Ih( z) I ' [h(z) == ~(f)2 + n 

2 
+ 2~ J 

000 

is equivalent to a medium under one-dimensional strain followed by a 

thin lens, whose focal length depends on the parameters Po' ~o' ro 

characterizing the ray at its point of entrance. This is illustrated 
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schematically in Figure 1.7-5a. As given by Yariv (1971a), a dielec-

tric interface with radius of curvature R , separating dielectric with 

index of refraction nl on the left and dielectric with index of 

refraction n2 on the right, is characterized by the matrix 

1 0 

(1. 7-34) 

for rays impinging on the interface from the 1 eft. When R becomes 

very large and approaches infinity, i.e., a plane dielectric interface, 

the matrix becomes 

( 
1 

n, ~n2 ) 0 

Since 

1 0 0 1 0 

= 

0 
nl n2-n l 1 

n2-n l nl 
n2 nlR n2R n2 

1 1 

= (1. 7-35) 

1 o 

a dielectric interface with radius of curvature R is equivalent to a 

thin lens juxtapositioned with a straight dlelectric interface. The 

equivalent focal length of the thin lens depends on the two indices of 
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refraction, radius of curvature of the interface, and in which dielec-

tric the thin lens is located. Equation (1.7-35) is illustrated 

schematically in Figure I.7-5b. 

In summary, the sapphire window under pressure loading by the 

pressure fluid from inside is optically equivalent to one thin lens in 

the pressure fluid followed by a medium with plane parallel boundaries 

under one-dimensional strain, and this followed by two thin lenses in 

the air, the first due to the internal strain in the window and the 

second representing the effect of window outside curvature. Schemati-

cally, this is shown in Figure- I.7-5c. Since the change of index of 

refraction inside the window under strain is small by two orders of 

magnitude compared to the index of refraction, the indicatrix used to 

calculate the equivalent focal length of the window curvature can be 

approximated by the uniaxial indicatrix in the absence of stress. For 

the uniaxial indicatrix 

(1.7-36) 

where e is the angle between optic axis and displacement vector, 

or 
2 2 

n = w[l + (W -2£ ) cos2eJ-l/2 
£ 

Write e = I + ~e ,and ~e ~ 10-2 i n the experi me nt 

2 2 
n z w[l + £ - 2 (~e)2 

2£ 

(1 .7-37) 

(1.7-38) 

Sapphire is optically negative with birefringence of 0.008 in the 
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visible region. At 632aR, W = 1.766 (Malitson 1962), therefore, 

2 2 
£ - W '\, £ - W -0. 008 ~ 4 5 1 0-3 

2 = -- = 1 . 758 . x 
2£ £ 

Equation (1.7-38) shows that n = w(l - 4.5 x 10-7) and n = w is a 

very good approximation in calculating the equivalent focal length of 

the window curvature. 

The optical path of diffracted laser beams between crystal and 

photographic plate is shown in Figure 1.7-6. The representation of 

the sapphire window is identical to Figure I.7-5c. In the figure, 

= R. - D 6.8 

since -3 81,8_1 ~ 2 x 10 and 6.8 = 81 + 18 _11, or 

R. - (t:.r)out 
!:J.8 = ---,::--=~ 

D (1. 7-39) 

Also, 

(1. 7-40) 

Tracing rays through the one-dimensional strain medium using Snell ' s 

1 aw 

(1. 7-41) 

where nR. is index of refraction of pressure liquid, 

and na is index of refraction of air. 
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Also, 

(1. 7-42) 

and 

n D. 8 = n D.8 i y spinel spinel 
= 2Ao 2Ao 

nspine1 An = -X-
spinel (I.7-43) 

where n . 1 splne is index of refraction of spinel 

AO is light wavelength in vacuum 

A is the sound wavelength inside crystal 

Combining equations (I.7-39), (I.7-40), (I.7-41), (I.7-42), and (I.7-43) 

(1. 7-44) 

When quantities on the right hand side of equation (1.7-44) are known, 

the sound wavelength A inside the crystal can be computed. The 

measuremen~of these quantities are discussed in the following: 

na : index of refraction of air, can be found in handbook 

D: distance between photographic plate and optical window 
outside surface, can be measured with an inside micrometer 

i : distance between laser beams as recorded on the photo­
graphic plate, can be measured by microdensitometer, as 
in the case of temperature dependence measurement 

n
t

: index of refraction of the pressure liquid, can be measured 
with Abbe refractometer. Knowing compressibility of the 
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liquid, the pressure dependence of n
i 

can be taken into 

account by Lorenz-Lorentz relation. 

(~r)in=~ey T+~espine1t/2=2~oT/An~+ Aot/Anspine1 

2A 
= 2 F(L + t ) 

v ni 2nspine1 

where t is the thickness of the crystal, T is the 

thickness of the spacer block between crystal and window, 

and v is the velocity of sound in crystal excited by 

transducer driven at frequency F • 
1 dv", 

Since vC$" = 

5 x 10-4/ kb 

-1O-4/kb. 

(Chang and Barsch 1973) and dnspine1/dp '" 

(K. Vedam, personal communication), room temper-

ature, atmos pheric pressure values of v , D, t, and 

nspine1 will yiel d accurate determination of (6r)in' 

(6r)out: can be determined by an auxiliary experiment as illustrated 

in Figure 1.7-7. The two mirrors are aligned parallel to 

the optical window and the photographic plate. (This can 

be accomplished, for example, by a comparison autoco11i-

mator) , The laser beam is first focused such that the 

spots have minimum size when separated by i ' on the 

photographic plate. Secondly, the laser beam is focused 

such that the spots have minimum s i ze when separated by 

i" on the photographic plate. From Figure I.7-7 and equa­

tion (1. 7-39) 
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R,"- R,' R, - (t.r)out t.e = = __ -.--.....:o..::c...;.. 
d 0 (1. 7-45) 

where d is the separation between the two mirrors. 

(t.r)out can be solved from equation (1.7-45). The 50% 

beam splitter can be mounted on a translation stage and 

moved in and out of the laser beams during different parts 

of the experiment. 

This leaves us with the task of determining the focal lengths f l , f2' 

and f 3 . 

fl ,f2,and f3: The focal length fl can be characterized adequately by 

the curvature of window inside face, the index of refrac-

tion of the pressure fluid, and the index of refraction 

w of sapphire when free of external stress, as discussed 

previously. Similarly, the focal length f3 can be 

characterized by the window outside curvature, index of 

refraction of air, and w. The focal length f2 ' how­

ever , depends on the internal elastic strain of the window 

and on the particular ray which travels through the window. 

The dependence on the particular ray which travels through 

the window, however, is very weak (equation (1.7-38)), and 

can be neglected in the following auxiliary experiment. The 

experimental setup is essenti ally a Twyman-Green interfer-

ometer with chopped laser beam (laser chopped by a Bulova 

tuning fork chopper at 800 Hz) for lock-in detection. The 

details of the setup are shown in Figure 1.7-8. For 
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determination of window outside face curvature, hence 

f3 ' the window outside surface is coated by evaporation 

with aluminum. A Webber gauge block flat to 1/10A is 

used as the reference mirror. The laser beam, after being 

chopped, is expanded and collimated by a microscope 

objective (Wild 20 magnification, N.A. 0.45), a 25 ~m 

pinhole, and a long focal length lens (Wo11ensak f/4.5, 

209 mm focal length). Intensity profiles are measured 

by a photomultiplier (EMI type no. 9558B) masked by a 

25 ~m pinhole and scanned by a synchronous motor driven 

translation stage at 0.025" per second. Three profiles 

are taken, one when the reference beam is blocked, 

another when the beam from beam splitter to window is 

blocked, and a third when the reference beam and the beam 

reflected from the window are allowed to interfere with 

each other. Examples of the three profiles are illus­

trated in Figure 1.7-9. The high frequency noise in the 

reference beam profile comes from fine polishing streaks 

in the gauge block. While not presenting any intrinsic 

problem in data interpretation, this can be avoided in 

future experiments by using glass mirror instead. The 

intensity profile of the interference pattern is given in 

terms of the reference and window beam intensity profiles, 

complex degree of temporal coherence ~T(T) of the 1ase~ 

and phase difference between window and reference beams 
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by, e.g ., Collier, Buckhardt and Lin (1971) 

(1. 7-46) 

where ,= 6t/c , 6t: difference in path lengths of 

the two interfering beams, c is speed of light, 

S = 8 + ~(,) , 8 = phase difference between inter­

fering beams, and s('): phase of the complex quan­

tity ~+(T) = ~T(T) exp{-2ni fo'). The quantity fo 

will be defined below. The complex degree of tem­

poral coherence is defined by 

= <V(t+T) v*(t» 
~T(') <v{t} v*(t}> (1. 7-47) 

where v{t) is the complex electric field 
T 

and <v(t+,)v*{t» = lim ~T f v(t+T)v*(t)dt 
T+"" -T 

Born and Wolf (l970b') showed that equation (1. 7-47) can 

be transformed into 

+"" 
~T(T) = J ~(f) exp{2ni (1. 7-48) 

_"" 

where ~(f) is the power spectrum of the electric 

field. 

For Spectra Physics 135 laser which has only three 

longitudinal modes at fo ' f l , and f2' with f2- fl = 

f l - fo = ~t where l is the laser cavity length. 
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(1. 7-49) 

Substituting ~(f) into equation (1.7-48) 

(1. 7-50) 

ao' al , and a2, which give the relative excitation 

of the three longitudinal modes, are at most slowly 

varying functions of time. The last equation shows 

that both I~T(6i)1 and the phase of ~+(~i) = 
ao+ alexp(ni 6ii) + a2exp(2ni ~i) are also at most 

slowly varying functions of time. Therefore, ~T(6i) 

and ~T(~i) can be considered as constant during a 

single pressure measurement. For spherical curva­

ture on the window outside surface 

kr2 
o = 00+ 0lr + ~ 

where k is light wave vector in air, R is the 

radius of curvature of the window outside surface, 

and r is the distance from the window axis. 

The linear term comes from the slight nonparallelism 

between the two beams. The square term comes from 

the window curvature (Yariv 1971b). From the three 

intensity profiles, equation (1.7-46) can be solved 

for 0 as a quadrati c functi on of the di stance along 
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the photomultiplier scanning path. The coefficient of 

the square term in distance gives the value k/R. 

From the value R, the equivalent focal length f3 

can be computed according to equation (1.7-35). The 

determination of fl and f2 are more involved. Inter­

ference profiles are taken between a reference beam 

and the reflected beam from (i) window with outside 

surface clear and inside surface coated with aluminum 

by evaporation, and (i1) window with both surfaces 

clear but with a Webber gauge block in place of the 

spinel crystal. The gauge block is subjected to hydro­

static pressure and maintains its surface flatness at 

high pressures. Since 

'( \ 0) (1 
- - 1 0 

f2 

z N1(0)Z , N1(0) 
r 1· n(1- -f - 2N f-) + r. (Z - 2N -I) 

1 0 1 ln 0 

1 1 Nl (O)Z Z Nl (0) z2 . 
- r. (-f +-f ) +r~ + r, ( N f +-f f - 2N ~) (1.7-51) 

In 1 2 ln In 0 1 12 0 111 2 

N'(O)Z N'(0)Z2 
_ r ~ ( 1 + .Z 1 ) 

ln No r - 2N f 202 

For normal incidence, r~ = 0 and the right hand side ln 
of equation (1.7-51) becomes 
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Z Ni (0) Z2 
r in (l - r-

1 
- 2N ~) 

o 1 

1 1 Ni(O) Z Z Ni(O) Z2 
r in (fl+12) + rin( No 1l+TjT2 - 2No f1f2) 

(1. 7-52) 

. Z Z -2 ZNi(O) -3 
Slnce r-' r-~ 10 , N ~ 10 ,at most, the 

2 1 0 
expression (1.7-52) becomes 

( 
rin ) (1. 7-53) 

- r 1n(t- + t-) 
1 2 

i.e., the effect of the one-dimensional strain medium 

in Figure 1.7b can be neglected in these two measure­

ments. From the two interference profiles (i) and 

(ii), which give equations of linear combinations of 

t- and t:' the two equivalent focal lengths fl and 
1 2 

f2 can be determined. This, however, is complicated 

by the reflections at the clear window faces and in­

stead of equation (1.7-46), an equation describing 

interference of multiple beams must be used to inter­

pret the results. This has not been worked out for 

the present experiment for the unfortunate fact that 

the laser beam separation t as recorded on the 

photographic plates showed large scatter in data under 

identical pressure conditions. 



-109-

The data of the laser beam separation t as a function of 

pressure (read out on a microdensitometer at the University of Cali­

fornia Lawrence Livermore Laboratory by Dr. R. N. Schock) are pre­

sented in Figure 1.7-10 and Table 1.7-1. The cause of the wide scatter 

in data is suspected to be the index of refraction fluctuation in the 

pressure medium. Indeed, it is observed that if a rf power of ~5 watts 

is kept on the transducer, the diffraction pattern of laser beams 

begins to appear distorted to the eye in 10 seconds, and in one minute 

the pattern is lost to the eye because the laser beam has been dif­

fused to a great extent by the index of refraction fluctuation associ­

ated with fluid convection inside the high pressure cell. During the 

experiment, although the cell is left to reach thermal equilibrium with 

room temperature for about half an hour after each pressure change and 

associated adiabatic heating, the conditions that the room temperature 

is regulated to ±20C and that the change 

pressure dependence of elastic constants 

of diffraction angle due to 

is small (8 = l = Af 
A v' 

A: light wavelength , A: sound wavelength in crystal, v: velocity of 
A dv ~ -6 . sound, f: sound frequency, de/dp = - :2 f ~ = -10 radlans/kb, using 
f p 

data from Chang and Barsch (1973) for compressional velocity and its 

pressure derivative in [100] direction) imply thermal and density (due 

to impurity in the pressure fluid) fluctuation in the index of refrac­

tion of the pressure fluid could easily overwhelm the effect of pressure 

dependence of elastic constants on the laser diffraction angle. 

In view of these difficulties , it seems that it probably would 

be futile to try the experiment further without significantly improving 
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the experimental setup. Following are the improvements which shoul d 

be implemented before the experiment is tried again . 

1. Instead of using synthetic si ngle crystal sapphire as 

optical window, synthetic single crys tal spi nel, wh i ch is optically 

isotropic when free of external stress , should be used. 

2. Instead of the cone configurati on of the optical window 

as used by Stromberg and Schock (1970) , which has the advantage of 

being easy to seal, the old Poulter seal design (for example, as des­

cribed in Fishman and Drickamer (1956 ) ) , which is a direct lap seal of 

window onto the steel plug, should be used . The reason is that the 

pyrophyllite cone i n the Stromberg-Schock seal might still flow even 

after several pressure cycl es and this would make the effective window 

focal lengths change as a functi on of time . 

3. The thickness of the spacer block between sample and win­

dow should be reduced as much as possible in order to reduce the effect 

of index of refraction fluctuation in the pressure fluid. 

4. The whole pressure cell should be enclosed in a constant 

temperature bath and the light path between the pressure cell and the 

photographic plate should be evacuated. 
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TABLE 1-7-1 

Separation of First Order Diffracted Laser Beams as Recorded on the 
Photographic Plate in the Setup Shown in Figure 1-7-6 at Different 
Pressures. Compress ional Sound Wave Propagates in the (001) Direction 
of the Crystal 

Photographic 
Plate 
Designation 

P-l 
P- 2 
P-3 
P-4 
P- 5 
P-6 
P-7 
P-8 
P-9 
P-I0 
P-ll 
P-12 
P-13 
P-14 
P-15 
P-16 
P-17 
P-18 
P-19 
P-20 
P-21 
P-22 
P-23 
P-24 

Pressure 
(kb) 

0 . 509 
1.555 
1.555 
2.502 
2.502 
3.502 
3.502 
4.505 
4.505 
5.004 
5.004 
5.003 
5.003 
3.991 
3.991 
3.991 
3.991 
3.010 
3.010 
3.010 
1.996 
1.990 
1.992 
0.998 

Transducer Driving 
Frequency 

(MHz) 

28.88994 
28.91343 
28.91343 
28.93695 
28.93695 
28.96049 
28.96049 
28.98403 
28.98403 
28.99600 
28.99600 
28.99600 
28.99600 
28.97245 
28.97245 
28.97245 
28.97245 
28.94891 
28.94891 
28.94891 
28.92538 
28 . 92538 
.28 . 92538 
28.90186 

Spot Separation 
(cm) 

1.106 
1.092 
1.065 
1.068 
1.078 
1.064 
1.064 
1.066 
1.096 
1.073 
1.068 
1.122 
1.134 
1.134 
1.134 
1.128 
1.131 
1.082 
1.105 
1.066 
1.066 
1.067 
1.066 
1.061 
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RESERVOIR 
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Figure 1-7-1. Schematic diagram showing pressure circuit for the 
pressure dependence measurement of spinel elastic 
constants. 
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(4) PlCS. EQ . 
SPCD. ON .937 OB.c. 
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Figure 1-7-2. Drawing of high pressure optical cell window plug . 
Dimensions are in inches. 



-114-
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~-1. 220 - __ -.I 

WINDOW AX IS COINCIDE 
WITH OPTICAL AXIS 
(C-AXIS) OF SAPPHIRE. 

Figure 1-7-3. Drawing of the high pressure optical cell sapphire 
window. Dimensions are in inches. 
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TOOL - STEEL PLUG 
SPRING LOADING DIRECTION 

OPTICAL WINDOW 

WEBBER GAUGE 
BLOCK SPACER 

PYROPHYLLITE CONE 

Figure I-7-4. The high pressure optical cell and positioning of 
sample inside the cell. Drawing of high pressure cell 
is after Stromberg and Schock (1970). 
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n=no+nl(z)+ 

~ n2(z)r 2 

a) :: 

WINDOW AIR 
PRESSURE 

FLUID 

c) ~ 
r~ WINDOW WITH 

~ ONE DIMENSIONAL AIR 
PRESSURE STRAIN 

FLUID 

f, fi3 

Figure 1 - 7-5. Optical equivalents of (a) window with cylindrically 
symmetric internal strain, (b) spherical dielectric 
interface , and (c) window with cylindrical symmetric 
internal strain and curved endfaces. 
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Figure 1-7- 6. Optical path between sample and photographic plate in 
the pressure dependence measurement of spinel elastic 
constants. 
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~7 
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r 
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Figure 1-7-7. Setup of auxiliary experiment for measuring (~)out. 



-119-

~-----+~~----------~--~---
Wlt400W SO-.I[AM 

SPLITTER 

HEWLETT 
PACKARD 
IlJAL 
CHAHh£C 
RECOROt: 

Figure 1-7-8. Experiment setup of an optical interferometer for 
pressure window deformation measurement . 



-120-

Displacement. In. 
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S=500 fL V 

INTERFERENCE BE­
TWEEN WINDOW AND 
REFERENCE BEAMS 

S=I mV 

Figure 1-7-9. Three intensity profiles for window deformation 
determination at 5.006kBar. (Window outside face 
coated with aluminum.) 
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Figure 1-7-10. Separation of first order sound-diffracted laser beams 
as recorded on the photographic plate vs. pressure. A 
representative error bar is indicated on the left -most 
data point. The sound wave propagates in the crys tal 
(001) direction. 
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8. Evaluation of Light-Sound Scattering as a Method 
to Measure Elastic Constants 

The present experiment is an attempt to use light-sound scat-

tering in the Raman-Nath region to determine pressure and temperature 

dependence of sound velocities in solids. The temperature dependence 

of the sound velocities in single crystal spinel was successfully 

measured. Some of the results are different from those determined from 

ultrasonic measurements, as discussed in Section 6. The two high pre­

cision ultrasonic methods for measuring these quantities are (1) Pulse 

Superposition (McSkimin 1961, McSkimin and Andreatch 1962), and 

(2) Ultrasonic Interferometry through a buffer rod (Spetz1er 1970). 

Measurements on the same samples with these two methods yield different 

results (Spetz1er 1969). 

In the pulse superposition method, the phase shifts at the 

sample-transducer interface must be corrected for. This correction 

involves (McSkimin and Andreatch 1962) the acoustical impedances of 

bond and transducer, their thicknesses and phase shift constants. 

Several difficulties, which limit the accuracy of the measurement, are 

(1) The resonance peak of transducer is not sharp and deteriorates with 

temperature and pressure, which makes transducer phase shift constant 

difficult to determine. (2) The bond (most common ly used i s Nonag 

stopcock grease) impedance changes with pressure and temperature and 

this is usually not allowed for. Also, in the shear wave measurements, 

the acoustical impedance of the thin film grease bond depends on its 

viscosity (Thurston 1964) and is generally unaccounted for. (3) Effect 
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of transducer radiation pattern and side reflections. The buffer rod 

technique of Spetzler assumes zero phase shift at the lapped sample­

buffer rod interface. Side reflections from the wffer rod and sample 

are not taken into consideration. Also, in picking the maxima and 

minima interference conditions, the frequency response of the trans­

ducer and the effect of electronic bandwidth, which envelope modulate 

the maxima and minima conditions, are neglected in the analysis. Both 

methods require exact sample length determination at all temperatures 

and pressures. The method of light-sound scattering in the Raman-Nath 

region, however, is free from these corrections. Since the interaction 

takes place inside the sample and the light samples only that portion 

of the sound wave which lies in its path, the exact manner in which 

sound is coupled into the crystal is immaterial. The only error intro­

duced by the boundaries of the sample, as discussed in the Data and 

Data Reduction section, is the profile distortion of the diffracted 

light intensities. This distortion can be accounted in detail 

if instead of standing \'aves, travel 1 ing waves are LS ed as the 

diffracting grating . In a setup as shown in Figure 1.8-1, with the 

sample shaped at one end in a wedge and the wedge end bounded to an 

absorber (usually a soft metal, which attenuates effectively ultrasound 

with frequencies above 20 MHz). The sound wave launched at the trans­

ducer is absorbed at the farther end of the crystal. The acoustic wave 

will not feel the presence of the sides if the transducer is smaller 

than the sample face on which it is mounted and if the transducer fre­

quency is high enough (Morse 1948). This will truly be a setup to 
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measure accurately sound propagation velocity in an infinite medium. 

Wlidl has not been done. With I:oundary effects removed, the accuracy 

of veloci'ly meas urement can be extended to 5xlO -5. The temperature 

dependence of sound velocities in solids can 00 measured to 6i'O°C 

with LiNl:03 transducer and a cold -\..eld gold -indium I:ond (Sittig and 

Cook 1 %8). lh e successful meas urement of preis ure dependence of 

sound Wlve velocities I?I Raman -Nath scattering awaits the solution 

of experimental difficultie; as listed in the las t section. 

- Although the present work 1s- the first measuremerif of-tempera:--­

ture dependence of ultrasonic velocities in a solid by light-sound 

scattering in the Raman-Nath region, the same phenomenon has been used 

to determine elastic constants of various materials with less experi-

mental accuracy. The early work is reviewed in Bergmann (1954). More 

recently Barnes and Hiedemann (1956) measured elastic constants of 

various glasses and Mayer and Hiedemann (1958) determined elastic con-

stants of single crystal sapphire with Raman-Nath diffraction of light 

by ultrasound. 

The same scattering also takes place between light and surface 

waves, as first reported by Schaefer and Bergmann (1936). This tech-

nique can be used to measure elastic constants of opaque materials. 

Recently Auth and Mayer (1967) determined surface wave velocities for 

glass and aluminum and Krokstad and Svaasand (1967) measured surface 

velocity on crystalline quartz sample using laser light diffracted from 

acoustic surface waves. The former work quotes an experimental accuracy 
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of 5% and no experimental error is given in the latter. It should be 

possible to improve the experimental accuracy, therefore, to measure 

temperature dependence of surface wave sound velocities with the more 

efficient sound coupling method (White and Voltmer 1965) and a more 

accurate method of diffraction angle determination such as the one 

used in the present work. 

Light-sound scattering in the Bragg region can also be used to 

measure sound velocities. Krischner (1968) measured sound velocities 

in LaF3 with Bragg scattering to an accuracy of 0.2%. The Bragg scat­

tering requires a different, perhaps more expensive technique from 

that of the Raman-Nath scattering method. The ultimate accuracy in 

both experiments are comparabl e since both involve an accurate angle 

measurement. However, the Bragg scattering technique may have the 

advantage of being able to measure temperature dependence of sound 

velocities in very small samples (2 mm x 2 mm x 2 mm). When applied 

to pressure dependence measurement, the Bragg scattering technique en­

counters the same problem of pressure window deformation and pressure 

fluid index of refraction fluctuation as does the Raman-Nath technique. 

If one proceeds in sound frequency to hypersound, the 

Brillouin scattering of light by thermal phonons can be used to 

measure sound velocities. Brillouin scattering measurements of sound 

velocities in solids are summarized by Anderson, Phinney and Sammis 

(1969). The measurements summarized in this article are generally 

accurate at best to 0.5%. Pine (1972) improved the Brillouin scatter­

ing method to an accuracy of 0.1% by using a single mode laser and a 
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high resolution tandem spectrometer with two Fabry-Perot interferom­

eters, and measured the temperature dependence of hypersound velocity 

along the C-axis of CdS from 1000 K to 400oK. Discrepancies exist 

between the temperature dependence of velocities of single crystal CdS 

as measured by Brillouin scattering and as measured by ultrasonic pulse 

superposition (Gerlich 1967) even after dispersion is accounted for 

(Pine 1972) . Brillouin scattering offers a method to measure both 

pressure and temperature dependence of sound wave velocities since the 

experimentally determined quantities are Brillouin frequency shifts of 

the single mode laser and are independent of any pressure cell window 

deformation. The sample can be spring loaded directly to the pressure 

cell window to eliminate any effect arising from the fluctuation of 

pressure fluid index of refraction, which causes the fluctuation of 

collection angle in the Brillouin scattering experiment. A separate 

experiment to determine temperature and pressure dependence of index 

of refraction of the solid whose velocities are being measured is 

necessary to determine the elastic constants from Brillouin scattering 

results. This is straightforl'«lrd, hO\\ever. With pulsed laser, 

stimulated Brillouin scattering can te used to measured sound 

velocities in solids. The stimulated Brillouin scattered light 

teing coherent, it should be pass i ble to attain an experimental 

accuracy several orders of magnitude higher than thermal Brillouin 

scattering by using heterodyne technique to measure the Brillouin 

frequency shift. To the author's knowledge, this has not yet been 

done. 
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TRANSDUCER 

CRYSTAL 

SOFT METAL 
ABSORBER 

Figure 1-8-1. Schematic drawing showing transducer and absorber 
arrangement for travelling sound wave scattering 
of laser beam. 
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9. Conclusion 

The temperature dependence of single-crystal elastic constants 

of synthetic stoichiometric MgA1 204 , spinel, has been measured by the 

light-sound scattering in the Raman-Nath region. The crystal is set 

into forced vibration by a single crystal LiNb03 transducer coupled to 

one crystal face. A He-Ne laser beam is diffracted by the stress­

induced birefringence inside the crystal. The diffraction angle is 

determined from the distance of two spots exposed on a photographic 

plate by the first order diffracted beams as measured by a microdens­

itometer. The sound wavelength inside the crystal is then inferred 

from the laser diffraction angle. Combining the sound wavelength with 

the measured transducer driving frequency, the velocity inside the 

crystal is determined typically to a precision of 0.05%. In this 

method, the measurement of velocity is not dependent on either the 

determination of sample length or on phase shifts at sample-transducer 

interface. Velocities of four pure modes, L// [OOlJ, T//[OO1], 

L//[llOJ, and T//[llOJ{P//[lToJ) are measured in the temperature range 

between 293K and 423K. A linear temperature dependence is fit to the 

data by a least square method. Values obtained at 250C from this 

linear fit are Vp[OOlJ = 8.869 ± 0.013 km/sec, {~~)p = -(3.l4± 0.13) 

x 10-4km/sec-K; Vs[OOlJ = 6.5666 ± 0.0055 km/sec, {aV/aT)p = -(1.47 

) -4 ± 0.10 x 10 km/sec-K; Vp[ll0J = 10.199 ± 0.011 km/sec, 

{av/aT)p = -(3.20 ± 0.15) x 10-4km/sec-K; Vs[110J{P//[lTO]) = 4.2101 

± 0.0043 km/sec, {aV/aT)p = -(2.07 ± 0.06) x 10-4km/sec-K. The 

uncertainties in the velocity derivatives are assigned from a 
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consistency check. The temperature dependence of the adiabatic elas­

tic constants and bulk and shear (VRH average) moduli is computed 

using the density and literature value of t hermal expansion coeffici ­

ent. Values obtained are: C~l= 2B14±B kb , (dC~l/ dT )p = -0.25B ± 

O.OlB kb/K; C~2= 1546±9 kb , (dC~2/ dT ) p = -0. 107 ± 0.019 kb/K; 

C~4= 1543 ± 3 kb, (dC~4/dT)p = -0.1 01 ± 0.010 kb/K; Ks = 1969 ± 6 kb, 

( d K~/dT)p = -0.157 ± 0.014 kb/K ; ~VRH = l OBO ± 5 kb, ( d ~VRH/ dT)p = 

-0.094 ± O.OOB kb/K. A compari son with previous measurements on 

stoichiometric single crystal spi ne l by pul se supe rposition and ultra­

sonic interferometry methods is made. The results of the present work 

are consistent with measurement s obt ained by Chang and Barsch (1973) 

by pulse superposition method whil e disagreei ng with the results ob­

tained by O'Conne1 and Graham (1971) by ultrasonic interferometry 

through a buffer rod. 

An attempt has also been made to measure the pressure depend­

ence of elastic constants of spinel with the same t echn ique. It 

failed because of the large spurious diffracti on i ntroduced by the 

fluctuation in index of refraction of the pressure fluid. A me t hod t o 

eliminate this spurious effect is discussed. An opti cal interferom­

etry method is devised to measure the pressure wi ndow di st orti on effect 

in the pressure dependence measurement. Finally, the present method 

with its possibility for further improvement i s eva luated as a new 

method to measure temperature and pressure dependence of elastic con-

stants. Other methods usi ng l i ght-sound scattering to measure sound 

velocities are also reviewed. 
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PART II 

EFFECT OF ANELASTICITY ON EARTH'S FREE 

OSCILLATION PERIODS (TOROIDAL MODES) 
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1. Introduction 

The ane1asticity of the Earth's interior gives rise to a 

variety of important phenomena in solid earth geophysics. Examples 

are: the short period effects such as seismic wave attenuation and 

tidal dissipation; the long term phenomena such as response of Earth's 

crust and mantle to loading and unloading on the surface ("isostasy") 

or the transverse movements of large segments of Earth's upper layer. 

("plate tectonics"). The mechanisms responsible for the anelastic 

behavior of the Earth' s interior are largely controlled by defect 

structure of the crystals making up the rock minerals. A host of such 

mechanisms, thought applicable to geophysics, are reviewed and listed 

in the literature (Gordon and Nelson 1966, Jackson and Anderson 1970). 

Further experimentation under high pressure and temperature pertinent 

to mantle conditions are necessary to decide their relative importance. 

Recently, the attenuation of seismic body and surface waves at 

different frequencies have been measured. Jackson and Anderson (1970) 

summarize this information up to 1970. This information from seismol­

ogy, when carefully interpreted, can serve to put a constraint on the 

physical mechanisms of ane1asticity operating in the Earth's interior. 

It will be shown in the present work that ane1asticity, as in­

ferred from the seismic wave attenuation data, also produces a non­

negligible shift on the periods of Earth' s toroidal oscillations. This 

result implies that in constructing velocity and density models of the 

Earth using free oscil1at1on data, one has to invert thelll together w1th 

ane1astic structure when the free oscillation period measurements have 

an accuracy limit less than the shift due to anelasticity. Computations 
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in this work show this limit to be I~T/TI ~ 2. 3 x 10-4 for the toroidal 

oscillations. Dziewonski and Gilbert (1 972) recently determined the 

free oscillation periods excited by the 1964 Alaskan earthquake. The 

resolution of the fundamental toroidal modes oTt reported by them 

varies between 0.031% and 0.262% and i s generally about 0.1 % for the 

higher frequency toroidal modes oTt at which the ane1astic shift 

becomes important. The magni t ude of present observational error is 

about five times bigger than the shift of f ree oscillation period due 

to ane1asticity. 
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2. Derivation of Equations for Shift in Earth's 
Toroidal Free Oscillations Due to Ane1asticity 

The equation of motion for the elastic-gravitational oscilla­

tion of a nonrotating earth with lateral heterogeneity is given by 

(II.2-l) 

and 
(II.2-2) 

where Po: equilibrium density distribution 

~~i: displacement field of free oscillation characterized 

by the mode numbers k, i , and m 

w~i: angular oscillation frequency 

Pl = -V·{Po~kt)' change in density due to displacement 

$ = $0+ $1 ' total gravitational potential 

$0 equilibrium gravitational potential 

$1 change in gravitational potential due to free oscilla­

tion 

G : gravitational constant. 

The operator H is defined by its components in Cartesian coordinates 

(Dahlen 1968) by 

[H {~,$)Ji = -dj (rijkt 0kt) + di [poSjdj$oJ - V' ( po~) di$o 

+ Podi$l - di[SkdjT~jJ + dj(SkdkT~j] + dj[l T~ l {diSt- di Si)] 

(II.2-3) 
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The mode numbers are suppressed in the above equation. In equation 

(I 1. 2- 3) where 

TO: static stress field tensor 
::: 

~o _ lo - ~ro)ii ~ , is the static stress deviator tensor 

E elastic stress tensor .. 
and the stress-strain relationship (in Cartesian coordinates) 

has been used in the equation of motion to obtain the expression for 

operator H (?,cjl) in equation (11.2-3). r;jkR. in equation (11.2-4) 

are components of the elastic coefficient tensor. The boundary condi­

tions are (Alterman, Jarosch and Pekeris 1959; Backus 1967) 

S continuous, except at mantle-core boundary where 
only ~.? needs to be continuous 

cjll continuous 

~ • Vcjll + ? • ~ 47TG Po conti nuous 

~ . 
n • E cont, nuous 

(11.2-5) 

where n is the outward normal to a undeformed surface of continuity. 

Since equation (11.2-2) can be integrated , to express cjll (~) in terms 

of the displacement field S 
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4>1 (~) = -G J 'V • (po?) g(!.'.:,) dV' 

+ G J Po (!:') 9 (~.!.") S (:' ) • ~' dS' (I I. 2-6) 

The operator H is hermitian when the density Po is laterally 

homogeneous. It is not hermitian when the density possesses a lateral 

heterogeneity. This is discussed by Saito (1971) and the adjoint opera­

tor H of the operator H has been constructed by him. The eigenvalue 

equation of the adjoint operator is 

(11.2-7) 

with 

J 
-m m' 

Po~kR, • ~k' R,' dV = 0 if k 1 k'. R, 1 R,' or m 1 m' 

~~t is the adjoint solution of ~~R, If H is hermitian. H = H • 
m _ m -m ~ 

YkR, - wkR, • and ?kR, =?k • where denotes complex conjugation. 

The straightforward way of introducing anelasticity into the 

equation of motion is to assume a constitutive relation which contains 

dissipation factors. The simplest such constitutive relation results 

from introducing complex moduli of elasticity into the linear stress­

strain relation as expressed by equation (II.2-4). Anderson and 

Archambeau (1964). As an illustration. consider the stress-strain rela-

tion of a visco-elastic solid. 
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(IL2-8) 

where A,A ', ~ ,~ ' are real quantities. In the frequency domain (or in 

response to sinusoidal disturbance) the stress-strain relation (11.2-8) 

takes the fonn 

(I 1. 2-9) 

which shows that a pure imaginary part in the elastic moduli would ac-

count for this specific ane1astic behavior. Further; a wider class of 

anelastic behavior can be represented in this manner. In an anisotropic 

medium, the more general equation corresponding to equation (11.2-9) ;s 

(I1.2-10) 

* where rijk~ is a tensor with pure imaginary components and having the 

same fonn as the elastic tensor rijk~. In an isotropic material, the 

operator A takes the form 

A = -( A*+2~*) V{V· ) + ~*{v x (V x » - (n*) {VJ 

-(V~*) • (V + V) (I1.2-11) 
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as _ x 
ell - :Ix ' 

1 as as 
e12 = 2(a/' + a!-), etc. in the dyadic notation. 

With this anelastic operator A ,the eigenvalue equation describing 

the Earth's free oscillations becomes 

(11.2-12) 

Restricting the treatment to an isotropic stress-strain relation, con-

sider the anelastic behavior as a perturbation. The perturbation expan­

sion for angular frequency and displacement field are 

(I1.2-13) 

Substituting equation (II.2-13) into equation (II.2-12), the zeroth 

order equation is 

(11.2-14) 

i.e., the e1asto-gravitationa1 oscillation of a non-rotating Earth. The 

first order equation is 

(11.2-15) 
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(l)m 
~ kt can be expanded in terms of the zeroth order eigenfunctions as 

+ L eel) S(o)m 
tift tt ' kt' 

(II. 2-16) 

Now take the dot product of equation (11.2-15) with ~(o):t' the adjoint 

solution of ~(o):t' and integrate over the volume. By definition of 

the adjoint solution, 

{I1.2-17} 

and equation (11.2-7). the first order equation reduces to 

w(l)m = J S(o)m • A s(o)m dV /(2w(O)m J p s(o)m .s(o)m dV) . 
kt _ kt _ kt kt 0 _ kt _ kt 

I (11.2-18) 
_(o)m 

Take dot product of equation (11.2-15) and ~ kt' m'fm , and since 

(I1.2-19) 

equation (11.2-15) becomes 

m' m m m' 
[(y(0)k

n
)2 - ((0) )2J J S(l) • S(o) dV 

N W kt Po- kt _ kt 

(11.2-20) 
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Substituting equation (11.2-16) into equation (Il.2-20) gives 

m' 
a = J S(o) • mm' - kR, 

m' m' 
x J P S(o) • S(o) dV} 

0_ kR, - kt (I I. 2-21) 

Similarly, expressions for 

products of equations with 

bkk , and CR,R,' are obtained by taking dot 

s(o)m, and s(o)m, respectively and 
- k R, - kR, 

integrating the resulting equation over the entire volume of the Earth. 

The second order perturbation equation is then 

N t k h d d t f t · (11.2-22) w,'th -?(o)mko ow a e t e ot pro uc 0 equa lon _ N and i nte-

grate over the entire volume, with 

(I I. 2-23) 

equation (11.2-22) becomes 
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= [(w(l)m )2 + 2w(0)m w(2)m J f p S(O)m _S(O)m dV 
k1 k1 k1 0- k1 - k1 

(I 1. 2-24) 

or 

(I1.2-25) 

This general result is now applied to the toroidal oscillations of the 

Earth. The displacement field of an elastically i~tropic and laterally 

homogeneous Earth model is taken as the zeroth unperturbed eigenfunc-

tion. The operator H associated with such an Earth model is hermi-

tian. Therefore, H = H -m."m m m 
, ~k1 = ~k1 ' and y k1 = wkt · The zeroth 

order displacement field is then (Alterman, Jarosch, and Pekeris 1959) 

(11.2-26) 
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whe re em (9 ,$) is the vector spherical harmonics defined by 
- i 

"-

(11.2-27) 

~r' ~9 ' ~$ are unit vectors in spherical polar coordinates, and 

monic function. Wkt(r) is solution to the equation 

for a layered Earth model where ~~o) and p~o) are rigidity and 

density inside the layer of index s , s=1,2,···N. The boundary con-

ditions for equation (1~.2-28) are continuity of Wkt(r) and 

(~(o) ~r Wki (r) - Wki(r)) at layer boundaries. The adjo int displace­

ment field is given by 

(I 1. 2-29) 

Assuming a laterally homogeneous ane1asticity in the Earth model, 

(0) 2 J L (0) () () (w ki ) ., (0) p Wki r Wki r dV 
).i 

(11.2-30) 
and 

Substituting equation (11.2-30) into equations (11.2-18), (11.2-21) 
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and (11.2-25) we get 

and 

(l)m _ 
w kR.-

J ~* (0) )J2} (0) { ~ p [WkR.(r dV W kR. 
II 

(2)m _ () 1 
W kO - (w ok") ,,- y 

'< N C. irk 

( (0))2 i W iR. 1 (l)m 2 

( (0) )2_ ( (0))2 + 2( (0))2 (w kR.) 
W iR. W kt W kR. 

(2) (1) 2 

_ (w~~)) {~+ ~(\kR.) } 

(I!. 2-31) 

(11.2-32) 

The attenuation factor (Q~R.) of the toroidal oscillation is given by 

(2 )m 
and the frequency shift is given by W kR.. 

(I!. 2-33) 
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3. Numerical Calculations and Results 

In actual computation, a laterally homogeneous Earth model con­

sisting of seismic velocities Vp' Vs ' and density p{o) as a function 

of radius is fed into a normal mode program to generate the displace­

ment function Wkt{r) and angular frequency w{~l for kTt' k=O,l; 

t=2,3,··· ,99. (m is degenerate for a laterally homogeneous, non­

rotating, spherical Earth model). These, together with an intrinsic 

Q-model as a function of radius, are used to compute the free oscilla­

tion dissipation factor {Qk=O,t)-l and the frequency shift due to 

anelasticity w{~~O,t Equations (11.2-31), (11.2-32), and (11.2-33) 

are employed in these computations. Note from equation (11.2-32) 

{2} _ co 

y k=O " - .1: , ., 1=1 

(11.3-1) 
{ (O})2 _ {(o) )2 
w it w k=O,t 

Y(~~O,t is a summation of positive terms since 

to) to) 
wit> wk=O, t i-l ,2"" {11.3-2} 

The actually computed value 
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( (0) )2 
wk=l,i 

(w ( 0 ) ) 2 _ (w ( 0 ) ) 2 
k=l,i k=O,i 

(11.3-3) 

is the first term of the series (11.3-1) and is the lower limit of the 

summation. However, as the number of zeros in Wki(r) increases with 

k , the first term of the series is also the largest. 

Two laterally homogeneous Earth models are used in the computa-

tion, one characteristic of the Basin and Range mantle province 

(CITlll) after Archambeau et al (1969) and the other characteristic of 

an oceanic structure (Oceanic Series 304702). These models are de-

scribed in Tables 11.3-1, 11.3-2, and Figure 11.3-1. 

Five intrinsic Q models are employed for the Basin and Range 

Earth model. Two of them are frequency independent with their low Q 

zone corresponding to the low velocity channel of the Earth. The only 

difference between these two Q models, Q(Hl ) and Q(L l ), is in their 

numerical values inside the low Q zone. This type of frequency-indepen­

dent Q-model was adopted in the early work to construct intrinsic 

Q-models in the Earth's interior (Anderson and Archambeau 1964). The 

next two intrinsic Q models, Q(w)l and Q(w)2 are based on a single 

relaxation mechanism for seismic energy dissipation. They are fre­

quency dependent and, except for a scaling factor, are after Jackson's 

model 10-04 (Jackson 1969). The last intrinsic Q-model for Basin and 
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Range Earth model Q(w)3' is constructed after Solomon (1972). In 

this model, the Q is independent of frequency above the low velocity 

zone and is the result of two relaxation mechanisms (one of which is 

attributed to partial melting) in the low velocity zone. It is fre­

quency dependent through only one relaxation mechanism below the low 

velocity zone and above the core-mantle boundary. Only frequency 

independent Q models, Q(L2) and Q(H2), are employed for the oceanic 

Earth model. The Basin and Range Q-models are listed in Table 11.3-3. 

The oceanic Q-models are listed in Table 11.3-4. The frequency inde­

pendent Q-models are also shown in Figure 11.3-2. 

The computed free oscillation quality factor Qk=O,t for 

various Earth models and for various intrinsic Q-mode1s is plotted in 

Figures 11.3-3 and 11.3-4. The attenuation data for free oscillations 

and surface waves up to 1970 have been collected by Jackson and 

Anderson (1970). The toroidal oscillation and Love wave attenuation 

data reproduced in Figures 11.3-3 and 11.3-4 with the various computed 

Qk=O,t are from this collection except for the twelve points at the 

lower right corner, which are from Solomon (1972). The attenuation 

data included in Figures 11.3-3 and 11.3-4 are Nowroozi (1968; oTt )' 

Alsop et al (1961; 0\)' MacDonald and Ness (1961; oTt)' Smith (1961; 

0\)' Solomon (1972; Love wave), Savarenskii et al (1966; Love wave), 

Ba th and Lopez-Arroyo (1962; Love wave), Press et a 1 (1961; Love wave), 
~ 

Sato (1958; Love wave), Wilson (1940; Love wave), Gutenberg (1924; Love 

wave). It appears that the intrinsic Q-models Q(H l ), Q(H2), and 

Q(w)l give seismic attenuation which agrees well with the observed 
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data. However, noting the wide scatter of seismic attenuation data 

and some recent results of surface wave attenuation in the western 

United States (Solomon 1972), the low Qk=O,~ values produced by the 

intrinsic Q models, Q{L l ), Q{L2), and Q{w)2' cannot be ruled out as 

unreasonable. Values of Qk=O.~ calculated from Q{w)3' the most 

sophisticated among the Q~odels, matches well both the long period 

free oscillation attenuation data and short period Love wave attenua­

tion data in the western United States. Shifts in free oscillation 

periods calculated from this intrinsic Q-mode1, Q{w)3' are taken to 

be representative. The period shift 

(1I.3-4) 

and the percentage period shift. li=l {OT)k=O,~/\=o,~1 , as calculated 

from various Earth and intrinsic Q-models are plotted in Figures 11.3-5 

and 11.3-6. The maximum values of 10T/TI and the modes at which they 

occur are listed in Table 11.3-5 for various Earth and intrinsic Q 

models. When appropriate (~ » 1), the shift in free oscillation 

period is also expressed in shift in phase and group velocities of 

surface waves according to Press (1964). The phase and group veloci­

ties of the two Earth models are plotted in Figure 11.3-7. The shift 

in phase and group velocities for various Earth and intrinsic Q-mode1s 

are plotted in Figures 11.3-8 and 11.3-9. 
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TABLE II-3-l 

crT III Basin , and Range Earth Elastic Model 

+UJ_~~_ = _____ ~~_s_ !.~ _ ~_~J: __ ~A~_G.~ ________________ ________________________________________________ _ 

HH , __ __ _____ _ U J __________ ___ __ "-q,-"-L~ , ___ __ J g _______________ _________ ______ ____ ______________ __ ____ _ 

'l\UEX R.6U ll,. S DE .'SIH vF v. GRA\/ lTV 

1 ---- -.3~-o ---- --_ .. -------·-f:i6icc-~ --~ i--- -- i: i t3-js-e --oi --- --- i,-: c-- -- -------- -- --· c. c 
_____ ~ _______ ~_._K,9_~E _?L _____ l, 4a~_e_,- GL ___ J.I q 1'_~ _ Ol ______ .c. .~ ___ ___________ J . 18>-1. ~E _ C2 

3 8.J~OOOE J2 1. 25123E D1 1.Ll 3 1~E 01 G.e 2.~t191t 02 
" 1.C1E49!: 1.13 1.Z"202E 0 1 l.Lt315E Ot o.e 3 . 8C51!»E 02 

11 2.5t202~ 03 1.13001E 0 1 q . 16~66E OJ e.e E.4~804E 02 
12 2.8c2~2E v3 1.CS163E 01 ~ .7o q34E 00 o .c S.3 1bt2E 02 -- ---i "3-- ------3-.-2 czif2 e--ifj ------i:-o,,-i3Te --~-C -----a~j- 5-e-3 -i E -·00· ---- -oj" ~ o· ---- ----- ------ - r ~ t To 10 E 0-3 

14 3 .4 79JOE 03 l.C05vCE 01 ~.O~OCCE GJ G.O l .l t~!~i ~3 
is 3"4i~l,-J~- 03 -"--- -5~~lccc-f--50 ---- - I~30-iioE --Ol - 7.J-ocfc(le --OC-- --- -l.CI:Z!o4tE C3 
16 3.o!:t~3( 03 ~."H5C;E: 00 1. • .ic18'E 01 1.Zo8S6E GC l .C:73€t: 03 
17 3.dSt~3t: 03 5.2~1 2~ E UU 1 . J31~cE Ul l.1~"S"E CG 1.(3l36E 0 3 
18 ".13t ~3E C3 5.117lS~ 00 1.3~2~ltE 01 7 . C3151 E CC 1. C1539E 03 ---- -19-- - -----~~-57"1i."}5E- -o ~------ -~:"ij"~f;-bl._E --oo-- -- ---l~"i5-5-cc-E - -6 i --- f-:f-t;E-cc-e- c-c" "s-.:s E-5 It-tJE 02 " 
20 4.111J~( ~3 4.64782E uu l.l33v~E 01 t.16~"E ,C S.S5dllE CZ 

-----ir- -- ---4-:E -.,-i(i~E--()j ------~~-j(fi.2ii--oo-- -- --i~~-2-ioc-E --Or----- 6-:Yil-ccfe -00--·- S: S478i e-- 0-2 
22 4.~110JE 03 It.1lt15Ce co 1.lQMCCE 01 f.t61CC~ CC q.S~]It~E 02 
23 5.L11o~E 03 ~ .o E~51E 00 1.1940ile 0 1 6.621CC£ C( 9.~"2S0E C2 

~ ____ ,_"- ___ . __ _ ~_ .... Ll19_~~ __ 9_~ ______ ~ ___ t:!~_~9_~ ;: __ 9_Q. _____ _ ~ __ J ~_Q9_Q~ _JH " ___ ___ ~! _5_5~3t~_t; __ <!G____ 'io . S41t 26 t: 02 
25 S.Z71JOE 03 4.57531E o~ l.lo80vc. ~1 t.4~6C'E CC - ~";S-~930E " 02 
2t ~.~11U~E ~3 4.55347E ~o 1.165COE 01 c.It~OOOE CC S.S51;5~ C2 --- --i-i --- ----5-. j-11ooE-cij------4-:ss-cffse-- !fo ------i:-[ ~-8(ioE--01" -- --- -6~-i14COE - +dc- - --- -q .. e;" ~ 3-7 ()e -02 
2e 5 .. 3S

'
JOE J3 • • ~050CE vJ 1 .1 2 3'C~ U1 6.2.6'CE '0 ~ .. S5802~ OZ 

2~ 5 •• ;10JE 03 ~.~dOC(e JO 1 . 1Z100E 01 t.22~CO E OC ~.~t1~~E 02 
30 5.41100< 03 4.4!)4iE OC 1.1 11(e. 01 •• 223e e E ce ' . St5S0.02 
31 ;.~q1UJ( Q3 4.~3 ~ 85 E w, 1.11600E ~l t.~17'CE vC ~.~bl~~E ~2 
lZ 5.511U U. OJ 4 •• 245 0< DO 1.ll'~OE 01 • • 2090U' OC ,.s ••••• 02 
II 5.!JlOJC UJ " 'C~ U't uu loll 10Ct 01 •• tCueo. C( '.S10 ~ 8t 02 
~_y.'l LUU l. vI "dl0~J!.I1_~_J .J~~~E_U_I __ ~.!)l "~~Ct. 1,)1.. ".I,!~llE.._~ 

35 S.'''lJOE OJ • • 3.~9jt tC 1 .. 1C~;OE 01 b .. 1~oCUt tC ~.~l~e~~ 02 
j6 5 . t1 1u~E u3 ~.~310!E OC l.10300E 01 b. 13~ OUt CC \.S11~OE ul 
37 5.bjlOJ~- oj - 4.31092E e.o 1.10000E 01 b~1l8-ClJe 0('; ".~167bl: 02 
3E 5 .. 6~lJOt: 03 4 .2 90ltCe au l .~ 91u~E 01 6.(~!~OE GC ~ . ~79~6E 02 

- --j';-- -- --- !l~bii c):5E C-3 4.~69CyE - 00" -"- - 1~j9bCOE 01 -- b~ c ~icc-e -ce--- - S-~S-bn8t:-- OZ 

.0 5.691)0£ O~ 4.2~50Cc OC 1 . 09~OOE 01 t.CbbCCE C, s .sS 'O. E 02 
41 5 .1 11uJc 03 4.~2~11E CO l.~93C~E 01 b .. C61C~E" S.SE3~2~ 02 
~z 5 .1 ZtOOE 03 ... 1~~5CE 00 l.J.30vE 01 5.i14CCE CC S. 'ij355E 38 
43 5:i~ (OJ,:=" 0)- -~ . lli;fE --6l> --- --l.u(;O ·)(:)t - 01 --5.5-jt;;Ct-E --CC "----- ~-~s-t: "' SCt: ()2 

____ 4'!. _ , . 71h-JOe tJ3 't.13olt1C 0.,) 9 .. 95JtuE 00 5.50CCCE CC S . Sb438E 02 
~!:I 5 . d2lUOE 03+----- ~-:04-0d2E-" ()O '1.9CCCCE -Oil 5.4b';c(fe -CC-"- ~ . S~348 E 02 
4f 5 .. d1100E 03 3.S3S95E OJ 9.d50CUE O~ 5 .~1 eO~~ ~l s .~ 7~a3E 02 
41 5 . ;~lOJE C3 } a81CCCE 00 9.bOCOOt 00 5.313CO E C( G .~ 1~S7E 02 
48 S. S1100E 03 ~.661~CE 00 S . 15CC'E 00 5.329COE ac ~ .~6 Z~Ot 02 
4" "S.S1300E -0 -.1 ~- "i.b1-iSGc UI..i 9.1uvOUE U~ - 4.~14-CCE-- ,," S .. C,t 2t.0{ C2 
,( ,.99bO·)c. __ 9J" 3.63427E ",,0 &.13COOI: 0) 4 .. 1a4CCE ~H':' C, .C; 557 cE 02 
:: 1 6. oJ 210J C 0 = --~ -:5q-~Oif --OC-------H~;-3C-OC-E --O~) --- -- "I; ; -i 62-' c-~ -it---- -" s". ~-4&-c: -lE--C2-" 
52 6.(7100E 03 ~ . ~;OO(E 00 8 .~3C~O~ OJ ~.63~C O E CC " . 'i3)~1E 02 
!3 6.12100E 03 }.4825~E 0 0 d.43SvJE 00 4 . 564C(1: GC q.~1751E CZ 
~4 6.17100E O~ 3 .45 COOE Q~ d . ~bOvu~ OV ~.~oS~tE ~G S . ~C15cE C2 
:5 o.1~100E C3 3.44C3CE 00 d.3'tOCOE 00 ~ .. 4 34CC~ CC S . 8"!:IleE 02 
~b o.2010~E O} } . 4315CE 00 ~.33~OCE 00 4.4~ZCCE CC ~ .8 ~22~E 02 

- -:J1 -- t-:22-5;:'-j~ -0)" ----- 3:-434JCE i,;0 6.32 500E 00 - -4-.41SC't: ,C ~.H"C~E G2 
5e t.2250vc C3 3.434CCE CO 7.9CCOOE 00 ~.19~COE oc ~. dE SC 5f 02 
SS b.Z3100t 03 - i:43350E co 7.dcc-co-e Oil --- '-~ljSCOE -rc -- f:o.bc310E 38 
6C b.l~10vE L~ 3.43127~ ~U 7 .14LOCE VO It .l0S00E OC S . S8C S7E 02 
61 b .2 !10JE 03 ~ . 4301~E CO 1.72,OOE O~ ".1 0 1C O£ OC ~ .e713b E 02 
tl 6 . ZS 1JJt: 03 3.42~ S.C O~ 1.71~CC E OJ ".1~~CCE'~ ~ aEt 91tiE 02 
e3 - b.Z;llOJI: 03 l ."-2:'C;4( "00 7.71~OCE CJ "".lB1lJOE CC r;.ttb~2 E 02 
t4 e.~1100E 03 3.43J2tE 00 1.115CCe OJ 4.2t~COt CC 'i. d~11ZE 02 
is e . :!ii~uf: '"', 3a43U2bE \.tu 7.7190U E: ou 4.~nC C E (,i( 1i.t:5125E u2 
t6 6.3~300t: o~ 3.42flCE 00 7.1 ~CC OE 00 ~ .. 35C;CO~ O~ ~ .b;~1 0E 02 
t7 6 . 3lt300~ 03 3.42E10E UO 6.tCOCGE OJ ~ .. IE3CCE CC ~.e531 0 E 02 
ea 6.jS1u~E ~3 3.~27q~E JtJ a .b ~O~~ E 00 ).7~7COE CC ~.8~~12E 02 
c~ c.3~10\l E - OJ !.~l1~S-E -00 6 . rtc-ccft~ - -6o- ----- 3-. ~-iTcc t: - c-O - (;;65012£ ~-i. 

1 0 6 .3110JE J3 !.421~tE 00 a.OO CeOE OJ 3.~ C 7CCE c~ ~.E.836E C2 - - ---- ---- - - - -- ------------------------------------ --------------- -- --------- - - " ---



-154-

TABLE II-3-2 

Oceanic Earth Elastic Model 
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59 6.36600E 03 1.03JOUE OU 1.S1000E 00 0.0 9.84836E 02 
60 6.17100E 03 1.0l000E 00 1.~1000E 00 0.0 9.84836E 02 



Depth,z 
(km) 

0-28 
28-45 
45-60 
60-80 
80-140 
140-146 
146-170 
170-180 
180-200 
200-250 
250-300 
300-350 
350-375 
375-398 
398-400 
400-450 
450-500 
500-550 
550-600 
600-630 
630-645 
645-660 
660-680 
680-700 
700-720 
720-740 
740-760 
760-780 
780-800 
800-849 
840-860 
860-880 
880-900 
900-940 
940-980 
980-1054 
1054-2892 
2892 -637 1 
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TABLE U-3-3 

Basin & Range Intrinsic Q Models 

200 
120 
35 
20 
10 
15 
315 
615 
655 
755 
860 
965 
1078 
1190 
1443 
1645 
1695 
1745 
1795 
1835 
1858 
1973 
2090 
2110 
2130 
2150 
2170 
2190 
2210 
2240 
2270 
2290 
2310 
2340 
2370 
2390 
2400 
o 

200 
130 
55 
43 
36 
38 
325 
615 
655 
755 
860 
965 
1078 
1190 
1443 
1645 
1695 
1745 
1795 
1835 
1858 
1973 
2090 
2110 
2130 
2150 
2170 
2190 
2210 
2240 
2270 
2290 
2310 
2340 
2370 
2390 
2400 
o 

Q (w) 2 Q (w) 3 

-1 -1 1000 
Q (w)=Q (W;A,TO,E*,V*) Q-1=0 1~ /(1~ .. 2 2)+ 

=AuYT / (1+w2T2) . L(l)1'12 t oUJ T 1 
T=Toexp[(E*+PV*)/RT] WT2/(1~ T2~ 
T-0.4 sec -4 t 
E*-lO kcal/mole T2-4xlO Tl 
V*=4 cm3 /mole 
Pressure Mode1:Bu11en -1 2 2 
Model B (Bullen 1965) Q =0.1(l)1'3/(1+w T3) 

Temperature Model: T3=2 sec 
MacDonald Model 19 
(MacDonald 1959) 

A=0.032 A=0.060 

t T1 =20expj-(500E*+584V*)/1239+(500E*+4zV*)/T]sec; E*=57kca1/mole, 
V~=1.0cm /mole; Temperature Model 200029 after Minster&Archambeau 
(1971) 
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TABLE II-3-4 

Oceanic Frequency-independent Intrinsic 
Q Models 

Depth 
(km) 

0-5 
5-48 
48-200 
200-395 
395-446 
446-825 
825-1155 
1155-2892 
2892 -63 71 

o 
200 
10 
80 
100 
300 
800 
1600 
o 

o 
200 
35 
80 
100 
300 
800 
1600 
o 
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TABLE II-3-5 

Maximum Percentage Shift of Toroidal Free Oscillation Period Calcu-
lated from Various Earth Elastic and Intrinsic Q Models 

Earth Earth Free Oscil- Calculated Maxlmum Value of 
Elastic Intrinsic 1ation Mode Free Oscil- Percent~fe Shift 
Model Q Model at Which 1ation xlO 

Maximum Oc- Period 
curs (sec) 

Oceanic Q(L2 ) OT92 92.89 -13.104 

Oceanic Q(H2) OT99 86.63 -1.0936 

Basin & Q(L1) OT62 140.43 -5.4140 
Range 

Basin & Q(H1) OT68 129.29 -0.7396 
Range 

Basin & Q (m\ OT30 261. 68 -0.3815 
Range 

Basin & Q (m) 2 OT30 261.68 -1.3412 
Range 

Basin & Q (m) 3 OT60 144.59 -2.3022 
Range 
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-- OCEANIC MODEL 
----- BASIN AND RANGE MODEL 

v 

p 

4000 3000 2000 1000 
RADIUS, km 

Figure 11-3-1. Laterally homogeneous Earth elastic models used in the 
perturbation calculations. 
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T I I I 

-

- MODEL Q (L 1) 

----- MODEL Q (H ) -
1 

MODEL Q (L2) 
.. .... ... MODEL Q (H

2
) -

\ -
\ ._ ._ ._ ._ ._ ._ ._ ._ . 

-

I I I I 

5000 4000 3000 2000 1000 
RADIUS, km 

Figure II-3-2. The frequency-independent Earth intrinsic Q models used 
in the perturbation calculations. Numerical values of 
these Q models are listed in Tables II-3-3 and II-3-4 . 



a 

400 

300 

200 

100 

• 

\ 
\ 

\ 
\ 
\ 
\ 

• 

\ 
\ 
\ 

-160-

INTRINSIC 
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Figure 11-3-3. Free osc illation quality factor (fundamental toroidal 
modes) calculated from various Earth elastic and in­
trinsic Q models as compared wi"th the observational 
data. The observational data are from Gutenberg(l924), 
Wilson(19 40 ) , Sat8(l958), Alsop et al. (1961), Press et 
ul.(IQ6') , MAcDonald and Ness(1961) , Smith(1961), Blth 
and Lopez-Arroyo( 19h2), Nowroozi ( 19h8), and Solomon (1972), 
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Figure 11-3-4. Free oscillation quality factor (fundamental toroidal 
modes) calculated from the Earth Basin and Range 
elastic model and the frequency-dependent intrinsic Q 
model, Q(W)3' as compared with the same observational 
data as those in figure 11-3-3. The fit is much better 
than those in figure 11-3-3. 
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Figure 11-3-5. Shift in toroidal free oscillation (fundamental modes) 
periods, DT, due to anelasticity as calculated from 
various Earth elastic and intrinsic Q models. 
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Figure 11 -3-6. Percentage shift i n f undamental toroidal free oscil­
lation periods, DT / T, due to anelasticity as calcu­
l ated from various Earth elastic and intr i nsic Q 

e 
models. The values a 1 E calculated by Dahlen (1968) 
are the percentage ~hif~ of toroidal oscillation 
periods due to ellipticity alone. 
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Figure 11-3-7. Love wave phase velocity , Vp , and group velocity, V
G

, as 
calculated from the two Earth elastic models used in the 
pe rturba t ion calculat i ons . 



-165-

1~2r---.---------r---------r---------.---------r-------~ 

- ' - ' - ' - ' - - .-._. 
- ~- .-- '- '-'-'--'­ '-'--

--~:-----

---------

-' -' 

100 200 

...... .. .. ...... ......... 

. - "- -' - " _ .' ....:::-:-.=..::-. =-~ .--. .---= . ~---= . .:..-

EARTH MODEL INTRINSIC Q MODEL 

-- BAS IN AND RANGE 
----- BASIN AND RANGE 

OCEANIC 
OCEANIC 
BASIN AND RANGE 
BASIN AND RANGE 

300 400 

PERIOD. sec 

Q (L
1

) 

Q (H I) 
Q (L2 ) 

Q (H2 ) 

Q (W}I 
Q (W}2 

500 600 

Figure 11-3-8. Shift in Love wave phase velocity, DVp, due to 
anelasticity calculated from various Earth Elastic 
and intrinsic Q models. 
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4. Discussion 

The range of toroidal oscillations for which the maximum per­

centage period shift occurs depends on the Earth elastic and intrinsic 

Q-structure model, but in general it is controlled by the low velocity 

zone where anelastic behavior is an outstanding feature. This is 

apparent in Table II.3-5, where the longest period {calculated from 

various Earth elastic and intrinsic Q models} at which the maximum per­

centage shift occurs is 261.68 seconds. The period at which the maxi­

mum percentage shift occurs is 144.59 seconds for the most representa­

tive Q model, Q{w}3. The longer period free oscillations of oT~ have 

most of their displacement field outside of the low velocity zone. For 

much shorter period free oscillations oT~, the displacement field 

does not sample much of the low velocity zone. 

The maximum percentage shift in Table II.3-5 is -1.31 x 10-3 for 

an Oceanic Earth model with a slightly extreme intrinsic Q model, 

Q{L l }. The maximum percentage shift for the more representative 

intrinsic Q structure, Q{w}3' on a Basin and Range Earth model is 

-2.30 x 10-4. Are percentage shifts of these magnitudes resolvable 

from observation? Dziewonski and Gilbert {1972} recently determined 

the free oscillation periods excited by the 1964 Alaskan earthquake. 

The resolution of the fundamental toroidal modes oT~ reported by 

them varies between 0.031 % and 0.262 %, and is generally about 0.1 % for 

the higher frequency toroidal modes oT~ at which the ane1astic shift 

becomes important. This kind of resolution, although comparable to the 

maximum percentage period shift produced by the slightly extreme Q-mode1, 
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Q(L l ), is generally five times larger than the maximum percentage period 

shift produced by the more representative Q-model Q(w)3. It is there­

fore not necessary to correct for anelastic effects for free oscillation 

periods at the present level of observational accuracy. 

The observed free oscillation spectrum generally consists of 

multiplets in individual modes because the degeneracy in mode number m 

of kT~, present for a spherical, nonrotating and laterally homogeneous 

Earth model, is removed for free oscillation of the real Earth. Data in 

Dziewonski and Gilbert (1972) are average periods of these multiplets. 

How does the percentage period shift due to anelasticity compare with 

the effect of ellipticity, rotation, and lateral heterogeneity? Dahlen 

(1968) calculated up to OT10 for ellipticity and rotational effects. 

The percentage shifts in period of the central line of the multiplet 

(m=O) due to ellipticity alone na~Ea ' as calculated by Dahlen (1968), 

are plotted on Figure 11.3-6 together with percentage shifts caused by 

anelasticity. The trend shows that at modes where anelasticity effects 

are important, the effect of ellipticity alone on the shift in period 

of the central line of the multiplet (m=O) is less than the anelastic 

effects (model Q(w)3). The rotational effect, considered alone, does 

not produce any period shift in the central line (m=O). When rotation 

and ell ipticity are considered together, the effects couple and the 

total effects are one order of magnitude la rger than those produced by 

anelasticity model Q(w)3 (Dahlen 1968; Luh 1973). Luh (1973) calculated 

the free oscillation modes of an Earth model which includes ellipticity, 

rotational effects and continent-ocean lateral inhomogeneity. The 
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effect of the continent-ocean lateral heterogeneity alone is larger 

by an order of magnitude than the effect of ane1asticity model Q(w)3 

at modes where ane1astic effects are important. 

The numerical calculation of the present study is carried out 

only for toroidal oscillations of the Earth. Two reasons are respon­

sible. Firstly, toroidal oscillations do not involve gravity. As a 

consequence the numerical calculation is simpler for toroidal modes 

than for spheroidal modes. Secondly, the ane1astic effect is more 

pronounced for toroidal modes than for spheroidal modes. This is be­

cause toroidal oscillations involve shear motion only for which seismic 

dissipation is most effective. However, Dziewonski and Gilbert (1972) 

reported that the observational accuracy of spheroidal free oscillation 

periods are generally two orders of magnitude higher than those of the 

toroidal modes. This can be understood at least partially from the 

fact that spheroidal modes have higher quality factor than the toroidal 

modes. It is therefore important to calculate the shifts in free 

oscillation periods for spheroidal modes, which probably have the same 

relative importance as for the toroidal free oscillations. 
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