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Abstract 

 

The addition and removal of the monosaccharide N-acetyl-D-glucosamine 

(GlcNAc) to serine and threonine residues of proteins has emerged as a critical regulator 

of cellular processes.  However, studies of O-GlcNAc in such complex systems as the 

brain have been limited, in part due to the lack of tools.  Here we report the development 

of new tools for studying O-GlcNAc, and the application of these and other tools for 

studying the roles of O-GlcNAc in the brain.  

 

Working from a previously established chemoenzymatic method, we designed an 

isotopic labeling strategy for probing the dynamics of O-GlcNAc glycosylation using 

quantitative proteomics.  With this tool, we show that O-GlcNAc is dynamically 

modulated on specific proteins by excitatory stimulation of the brain in vivo.  Separately, 

we improved this chemoenzymatic strategy by integrating [3+2] azide-alkyne 

cycloaddition chemistry to attach biotin and fluorescent tags to O-GlcNAc residues.  

These tags allow for the direct fluorescence detection, proteomic analysis, and cellular 

imaging of O-GlcNAc modified proteins.  With this strategy, we identified over 146 

novel glycoproteins from the mammalian brain.   

 

The transcription factor cAMP-response element binding protein (CREB) is 

critical for numerous functions in the brain, including neuronal survival, neuronal 

development, synaptic plasticity, and long-term memory.  We show that CREB is highly 

glycosylated in the brain and discover new glycosylation sites on CREB in neurons.  One 
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of these sites is dynamically modulated by neuronal activity and is important for 

regulating CREB.  Removal of this glycosylation site accelerates axon and dendrite 

development in vitro and long-term memory consolidation in vivo.  These studies are the 

first demonstration that O-glycosylation at a specific site on a specific protein is critical 

for neuronal function and behavior. 

 

Chondroitin sulfates (CS) are sulfated linear polysaccharides important in 

neuronal development and viral invasion.  Depending on their sulfation patterns, CS 

molecules differ dramatically in their functions.  We developed a computational method 

to model the structure and function of CS.  Using this approach, we show that different 

CS tetrasaccharides have distinct solution structures.  We also modeled the CS binding 

site on a variety of proteins and discovered that CS may be important in modulating the 

interaction between specific growth factors and their receptors.   
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Portions of this chapter are from Rexach, J.E., Clark, P.M. & Hsieh-Wilson, L.C. 
Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat. Chem. 
Biol. 4, 97-106 (2008). 
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Over the past five years, new chemical approaches have been developed to 

meet the specific challenges associated with studying O-GlcNAc glycosylation in the 

brain.  Methods for chemically tagging and identifying O-GlcNAc proteins have 

vastly expanded the number of neuronal proteins known to be O-GlcNAc modified.  

New pharmacological inhibitors of the O-GlcNAc enzymes have been discovered 

that may overcome some of the limitations of genetic approaches.  Quantitative 

proteomics strategies designed to accommodate post-mitotic neurons and brain 

tissue have been used to monitor changes in glycosylation levels in response to 

neuronal stimuli.  Combined with recent advances in mass spectrometry, these 

powerful tools have provided an unprecedented opportunity to explore the O-

GlcNAc proteome, manipulate glycosylation levels, and study the dynamics of this 

modification in vivo. 

 

O-GlcNAc glycosylation is the covalent attachment of the monosaccharide β-N-

acetyl-D-glucosamine to the hydroxyl group of serine and threonine residues (Fig. 1).  

Recent advances in our 

understanding of the cellular 

functions of O-GlcNAc have 

been accelerated by the 

development of chemical 

tools for studying the 

modification.  Although O-

GlcNAc glycosylation was 

Figure 1: O-GlcNAc glycosylation is the addition of 
β-N-acetylglucosamine to serine or threonine residues 
of proteins. 
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discovered over twenty years ago1, its extent and functional significance are only 

beginning to be fully understood.  A major challenge has been the difficulty of detecting 

and studying the modification in vivo.  Like other PTMs, O-GlcNAc is often dynamic, 

substoichiometric, targeted to specific subcellular compartments, and prevalent on low-

abundance regulatory proteins2,3.  The sugar is also enzymatically and chemically labile, 

being subject to reversal by cellular glycosidases and cleavage on a mass spectrometer2.  

As with many protein kinases, the lack of a well-defined consensus sequence for OGT 

has precluded the determination of in vivo modification sites based on primary sequence.  

Here, we highlight some chemical approaches designed to overcome these challenges and 

advance a fundamental understanding of O-GlcNAc. 

 

Rapid, sensitive detection 

Traditional methods for detecting O-GlcNAc glycosylation include the use of 

wheat germ agglutinin (WGA) lectin4, pan-specific O-GlcNAc antibodies5,6, or 

radiolabeling using β-1,4-galactosyltransferase (GalT)7, which transfers [3H]-Gal from 

UDP-[3H]-galactose to terminal GlcNAc groups.  Although these approaches have 

greatly facilitated studies of the modification, many O-GlcNAc proteins still elude their 

detection.  For instance, tritium labeling suffers from low sensitivity, often necessitating 

exposure times of several days to months.  O-GlcNAc antibodies and lectins have limited 

binding affinity and specificity, and thus are best suited for highly glycosylated proteins 

with multiple modification sites.  Recently, chemical approaches have been developed to 

tag O-GlcNAc proteins with reporter groups such as biotin to enable more rapid, sensitive 

detection.  Khidekel and coworkers designed an unnatural substrate for GalT containing a 
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ketone moiety at the C2 position of UDP-galactose (Fig. 2a)8.  An engineered enzyme 

with a single Y289L mutation that enlarges the binding pocket9 was used to transfer the 

ketogalactose sugar onto O-GlcNAc proteins of interest.  Once transferred, the ketone 

functionality was reacted with an aminooxy biotin derivative and detected by 

chemiluminescence using streptavidin conjugated to horseradish peroxidase.  This 

approach provides a significant improvement in sensitivity, enabling detection of proteins 

Figure 2: Strategy for chemically tagging O-GlcNAc proteins.  (a) The UDP-
ketogalactose substrate is used with an engineered mutant GalT enzyme to transfer the 
ketogalactose sugar onto O-GlcNAc proteins.  Once transferred, the ketone 
functionality is reacted with an aminooxy biotin derivative.  Tagged O-GlcNAc 
glycoproteins are then detected by chemiluminescence or isolated by streptavidin 
affinity chromatography. (b) Detection of αA-crystallin using the ketogalactose-biotin 
tagging approach and comparison with other methods.  The chemical tagging 
approach provides significantly improved sensitivity relative to antibodies and lectins. 
(c) The aminooxy biotin tag can be replaced with an aminooxy PEG tag to afford 
rapid detection of O-GlcNAc stoichiometries and dynamics. 
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beyond the reach of traditional methods (Fig. 2b).  The biotin handle also facilitates 

isolation of the glycoproteins from cell or tissue extracts, thus circumventing the need to 

develop purification procedures for each protein of interest.  As such, virtually any 

protein can be readily interrogated for the modification, and comparisons can be made 

across specific functional classes.  For instance, Tai and coworkers have applied the 

approach to demonstrate that numerous transcriptional regulatory proteins are O-GlcNAc 

glycosylated in vivo, including transcription factors, transcriptional coactivators and 

corepressors10.  A variant of this method has recently been developed in which the biotin 

handle is replaced by a heavy poly-ethylene glycol tag.  This tag increase the overall 

weight of the O-GlcNAc-modified fractions on a protein, allowing for rapid detection of 

O-GlcNAc stoichiometry and dynamics (Fig. 2c)11.  

A complementary strategy involves tagging O-GlcNAc modified proteins through 

metabolic labeling of living cells with N-azidoacetylglucosamine12.  Vocadlo and 

coworkers showed that the azido sugar is processed by enzymes in the hexosamine 

salvage pathway and incorporated into O-GlcNAc modified proteins.  The bio-orthogonal 

azide moiety can then be derivatized with a FLAG peptide or biotin tag using the 

Staudinger ligation.  Treatment of Jurkat cells with peracetylated N-

azidoacetylglucosamine led to labeling of the highly glycosylated nuclear pore protein 

p62, as detected by immunoprecipitation of p62 and Western blotting.  Although the 

labeling efficiency and sensitivity of this approach could not be evaluated and may 

depend on cell type, the ability to incorporate bio-orthogonal groups selectively into O-

GlcNAc proteins represents a powerful strategy for the detection of O-GlcNAc proteins 

in living cells. 
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Mapping O-GlcNAc glycosylation sites   

Mapping the sites of O-GlcNAc glycosylation within proteins is essential for 

elucidating the functional roles of O-GlcNAc in specific biological contexts.  

Unfortunately, direct observation of the O-GlcNAc moiety by mass spectrometry during 

collision-induced dissociation (CID) is difficult as the glycosidic linkage is labile and 

readily cleaved, providing little peptide fragmentation13.  Moreover, although OGT seems 

to favor sequences rich in proline, serine, and threonine residues13, there is no apparent 

consensus sequence that directs the action of OGT.  

The development of chemical tools coupled to mass spectrometry has greatly 

facilitated the localization of O-GlcNAc to short peptide sequences within proteins and 

can sometimes be used to determine 

exact glycosylation sites.  One 

approach, which relies on β-

elimination followed by Michael 

addition with dithiothreitol 

(BEMAD), results in replacement of 

the labile GlcNAc moiety with a 

more stable sulfide adduct (Fig. 3)14.  As this adduct is not cleaved upon CID, sites of 

glycosylation can be more readily determined.  However, selectivity controls must be 

performed to distinguish O-GlcNAc from O-phosphate and other O-linked carbohydrates.  

Extension of BEMAD to proteomic studies for the high-throughput mapping of O-

GlcNAc sites is an important future goal.  

N
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O
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O

S

!-Elimination

HS
SH

SH

OH

HO
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N
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Figure 3: The BEMAD strategy for mapping 
glycosylation sites.  In this approach, the 
GlcNAc sugar undergoes a β-elimination 
reaction.  Michael addition with dithiothreitol 
produces a sulfide adduct that is stable to 
MS/MS analysis. 
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A second approach capitalizes on the ability to selectively biotinylate O-GlcNAc 

proteins using ketone- or azido-containing UDP-galactose sugars as described above 

(Fig. 2).  In addition to isolating intact proteins, the biotin handle can be used to enrich 

O-GlcNAc peptides following proteolytic digestion13.  This enrichment step is essential 

for mass spectrometric detection as the O-GlcNAc-modified species represents only a 

small fraction of the total peptides.  Unlike BEMAD, the approach enables direct 

detection of the O-GlcNAc moiety by mass spectrometry, with the GlcNAc-

ketogalactose-biotin tag providing a unique fragmentation pattern for unambiguous 

identification of O-GlcNAc peptides13.  Notably, the strategy has been applied to both 

individual proteins and complex mixtures to localize the modification to short sequences 

within over 50 different proteins.  However, mapping exact glycosylation sites remains 

challenging in most cases due to the lability of the O-glycosidic linkage.  As a potential 

solution to this problem, Khidekel and coworkers demonstrated that this ketogalactose-

biotin tagging approach could be combined with BEMAD to identify specific 

glycosylation sites on the HIV-1 Rev binding protein13.  Similarly, Wang and coworkers 

recently used azidogalactose-biotin tagging in conjunction with BEMAD to map 

glycosylation sites on vimentin15.  

Newer mass spectrometry approaches such as electron transfer dissociation (ETD) 

and electron capture dissociation (ECD) promise to greatly accelerate our ability to 

identify O-GlcNAc modification sites.  ETD and ECD produce sequence-specific 

fragmentation of peptides without the loss of labile PTMs such as phosphorylation and 

glycosylation16.  As such, these approaches are ideal for mapping O-GlcNAc 

glycosylation sites.  Vosseller and coworkers demonstrated that ECD could be employed 
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to identify modification sites on several neuronal proteins following enrichment of the 

glycopeptides by lectin weak affinity chromatography (LWAC)17. Khidekel and 

coworkers applied the ketogalactose-biotin tagging approach in conjunction with ETD to 

map glycosylation sites on proteins from rat brain lysates (discussed in detail next 

chapter).  More recently, Wang and coworkers have combined ETD with a 

photocleavable biotin tag to map glycosylation sites from a tau-enriched sample from rat 

brain18 and HeLa cells19, and Chalkley and coworkers have combined ETD with LWAC 

to map glycosylation sites from the post-synaptic density of mouse brain20. With further 

methodological refinements and advances in database search algorithms for fragment 

ions, we anticipate that ETD and ECD will become an increasingly powerful tool for the 

study of O-GlcNAc glycosylation. 

 

Proteome-wide analyses  

As described earlier, the analysis of O-GlcNAc on a proteome level has begun to 

reveal exciting functional roles for O-GlcNAc in the brain.  Chemical strategies to tag, 

enrich, and detect O-GlcNAc peptides and proteins have been instrumental in this regard, 

enabling the first proteome-wide studies of O-GlcNAc.  Specifically, the ketogalactose-

biotin tagging approach has been applied in combination with high-throughput LC-

MS/MS analysis to identify over 25 O-GlcNAc glycosylated proteins from the 

mammalian brain13.  Direct detection of the modified species was observed in each case, 

which permitted mapping of the glycosylation sites to short peptide sequences.  Notably, 

many of the proteins identified participate in the regulation of gene expression (e.g., 

CCR4-NOT, Sox2, HCF, TLE-4), neuronal signaling (WNK-1, bassoon, PDZ-GEF), and 
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synaptic plasticity (synaptopodin), suggesting that O-GlcNAc may contribute to neuronal 

communication processes.  A similar approach employing a photo-cleavable biotin tag 

was used to identify 8 and 141 O-GlcNAc glycosylation sites from a tau-enriched sample 

from rat brain18and HeLa cells19, respectively.  In another approach, Nandi and co-

workers metabolically labeled HeLa cells with N-(2-azidoacetyl)glucosamine21.  Tryptic 

digestion of the captured proteins led to the identification of 199 putative O-GlcNAc-

modified proteins.  As the presence of the GlcNAc moiety was inferred rather than 

detected directly, independent confirmation of the modification by immunoprecipitation 

was required and demonstrated for 23 of the proteins.   

Recently, biochemical tools such as antibodies and lectins have been exploited for 

proteomic analyses of O-GlcNAc.  Vosseller and co-workers used a uniquely packed, 39-

foot lectin affinity column to enrich O-GlcNAc peptides and identified 18 proteins from 

the postsynaptic density fraction of murine brain17.  Antibody affinity chromatography 

using traditional O-GlcNAc antibodies successfully identified 45 putative O-GlcNAc 

proteins from COS7 cells15.  Additionally, Wells and co-workers developed new O-

GlcNAc antibodies and identified over 200 O-GlcNAc proteins from HEK293T cells and 

rat liver22.  The challenge with both approaches is that the weak binding affinity of 

antibodies and lectins necessitates gentle washing conditions and can lead to false 

positives, such as interacting proteins or non-specific binding proteins.  In many cases, 

further confirmation of the presence of the modification can be provided by evaluating 

individually immunoprecipitated proteins or by directly detecting O-GlcNAc peptides by 

mass spectrometry analysis.  
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Together, proteome-wide studies have revealed that O-GlcNAc is a ubiquitous 

and abundant modification, with considerable functional significance and breadth.  In less 

than 5 years, the number of known O-GlcNAc proteins in the brain has expanded from 

tens to hundreds, with many more proteins yet to be discovered. 

 

Small molecule inhibitors of OGT and OGA 

Historically, genetic manipulation of OGT and OGA activity in vivo has proven 

difficult.  Whole animal and conditional deletions of the OGT gene have revealed that 

OGT is essential for cell survival and mouse embryogenesis23,24.  Modulation of OGT 

using siRNA is complicated by the long half-life of the protein and often produces only 

partial knockdown of OGT25.  Although deletion of OGA in C. elegans leads to 

metabolic changes and increased dauer formation26, no mammalian knockout of OGA has 

yet been reported.  These features have challenged efforts to study O-GlcNAc 

glycosylation and have limited the use of conventional genetic tools to elucidate its role 

in cellular processes. 

 A complementary approach involves the generation of pharmacological agents to 

inhibit OGT and OGA.  A well-established inhibitor of OGT, alloxan, exhibits multiple 

non-specific effects, such as inhibition of OGA27, glucokinase inhibition28, and formation 

of superoxide radicals29.  By screening a 64,416-member library of compounds using a 

novel fluorescence-based assay, Gross and coworkers identified several promising new 

compounds that inhibit OGT activity in vitro (Fig. 4a, Compounds 1–3)30.  These 

compounds were selective in inhibiting OGT but not another related enzyme MurG, 

which also uses UDP-GlcNAc as a substrate.  Recently, a benzoxazolinone compound 
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(Fig. 4a, Compound 1) was shown to inhibit OGT activity in oocytes where it prevents 

meiotic progression31.  In the future, these numerous, chemically-distinct OGT inhibitors 

might be used in parallel to distinguish the potential non-specific effects of individual 

inhibitors in vivo.  

As with OGT, 

many of the early OGA 

inhibitors such as 

PUGNAc exhibit non-

specific activity toward 

β-hexosaminidase32 and 

only partially inhibit the 

short isoform of OGA33.  

Recently, several labs 

have designed more 

selective OGA inhibitors 

that are either structural 

variants of early 

hexosaminidase 

inhibitors and/or have 

been rationally designed 

using information about 

the OGA active site.  For 

instance, Macauley et al. 

Figure 4: Small molecule inhibitors of OGT and OGA. (a) 
OGT inhibitors (1–3) identified by screening a 64,416-
member library of compounds.  The benzoxazolinone 
compound 1 inhibits OGT activity in oocytes and prevents 
meiotic progression.  (b) Representative OGA inhibitors (4–
9) with enhanced selectivity for OGA over β-
hexosaminidase 
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and Knapp et al. functionalized the non-specific hexosaminidase inhibitor GlcNAc-

thiazoline with longer alkyl chains, fluoro, or azido groups to generate new OGA 

inhibitors that show greater than 3000-fold selective inhibition of OGA over β-

hexosaminidase (Fig. 4b, Compounds 4–6)34,35.  In other studies, extending the N-acyl 

group of PUGNAc led to the creation of new inhibitors with greater than 10-fold 

selectivity for OGA over β-hexosaminidase32,36.  A drawback of these compounds is that 

they inhibit OGA more weakly than PUGNAc.  In response to this problem, Dorfmeuller 

and coworkers designed a nagstatin derivative based on the crystal structure of NagJ, a 

bacterial homologue of human OGA (Fig. 4b, Compound 7)37.  The isobutanamido group 

at the N8 position provides improved selectivity by fitting into a pocket that is larger than 

the corresponding pockets in other hexosaminidases, while the phenethyl group at the C2 

position offered stronger inhibition (Ki = 4.6 ± 0.1 pM) for the bacterial homologue of 

OGA by interacting with a solvent-exposed tryptophan residue.  Nonetheless, a related 

nagstatin derivative still showed weaker inhibition toward human OGA than PUGNAc38.  

More recently, Kim and coworkers designed a compound that strongly inhibits the short 

isoform of OGA (Fig. 4, Compound 8)33, an isoform that is only partially inhibited by 1 

mM PUGNAc.  However, selectivity may be an issue with this compound as 

thiosulphonate moieties have been shown to react with exposed cysteine residues of 

proteins39.  Notably, compounds 4 and 7 have been tested in cell culture and were shown 

to increase overall cellular O-GlcNAc levels although none of these compounds were 

shown to have efficacy in vivo.  Using a mechanism-inspired approach, Yuzwa and 

coworkers developed thiamet-G a nanomolar inhibitor (Ki = 21 ± 3 nM) of OGA with 

low or no activity towards human lysosomal β-hexosaminidase and other glycoside 
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hydrolases and, important, showed that it increases O-GlcNAc levels in the brain in vivo 

(Fig. 4b, Compound 9)40. 

The discovery of potent, selective inhibitors of OGT and OGA provides powerful 

tools for perturbing O-GlcNAc glycosylation in cells and in vivo.  Application of these 

inhibitors in specific contexts should reveal new insights into the functional roles of O-

GlcNAc and cellular mechanisms for the regulation of OGT and OGA. 

 

Monitoring O-GlcNAc dynamics 

The dynamic nature of O-GlcNAc is a unique characteristic that distinguishes it 

from other forms of glycosylation.  As described earlier, this feature has important 

implications for the regulation of protein structure and function and the interplay with 

other PTMs.  An exciting challenge in the future will be to understand the cellular 

dynamics of the modification, as well as the signaling pathways and mechanisms by 

which O-GlcNAc is regulated on specific proteins.  Toward this end, several groups have 

developed chemical approaches to monitor changes in O-GlcNAc glycosylation levels in 

response to cellular stimuli. 

Carrillo and coworkers designed a FRET-based sensor for the detection of O-

GlcNAc dynamics in living cells41.  Their sensor consisted of two fluorophores 

(enhanced cyan and yellow fluorescent protein) separated by a known peptide substrate 

for OGT and an O-GlcNAc lectin (GafD).  Upon O-GlcNAc glycosylation, the lectin was 

expected to bind the glycosylated peptide substrate and bring the two fluorophores in 

close proximity, producing a stronger FRET signal (Fig. 5).  As anticipated, an increase 

in FRET (7–30%) was observed upon stimulation of transfected HeLa cells with 
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PUGNAc and glucosamine.  In the future, it will be interesting to examine changes in 

OGT activity in response to a variety of cellular stimuli. 

In addition to monitoring OGT activity, identifying the intracellular signaling 

pathways and dynamics of O-GlcNAc glycosylation on specific protein substrates 

represents an important, challenging goal.  General O-GlcNAc antibodies (CTD110.6 and 

RL-2) have been extremely valuable for measuring global changes in glycosylation in 

response to cellular stimuli5,6.  However, a limitation of these antibodies is that they 

detect only a small subset of the O-GlcNAc-modified proteins8,42.  Moreover, it remains 

difficult to identify the specific proteins that undergo changes in glycosylation. In 

response to these challenges, Khidekel and coworkers have developed a method to probe 

the dynamics of O-GlcNAc glycosylation in vivo using quantitative proteomics 

(discussed in more detail next chapter).  More recently, Wang and coworkers used 

immunoaffinity chromatography or chemoenzymatic labeling in conjunction with SILAC 

(stable isotope labeling with amino acids in cell culture), a well-established method for 

Figure 5: Chemical tools for monitoring O-GlcNAc dynamics.  A FRET-based sensor 
designed to detect the dynamics of O-GlcNAc glycosylation in living cells.  Upon 
glycosylation, binding of the GafD lectin to the O-GlcNAc moiety induces a 
conformational change and produces a stronger FRET signal. CFP, enhanced cyan 
fluorescent protein; YFP, yellow fluorescent protein  
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quantitative proteomics43, to study the dynamic interplay between O-GlcNAc and 

phosphorylation by glycogen synthase kinase-3 (GSK-3)15 or cytokinesis19.  In the GSK-

3 study, heavy and light isotope-labeled cells were treated with LiCl to inhibit GSK-3, 

and O-GlcNAc proteins of interest were isolated by affinity chromatography using a 

general O-GlcNAc antibody.  Forty-five putative O-GlcNAc glycosylated proteins were 

identified by mass spectrometry, ten of which showed enrichment after LiCl treatment, 

suggesting that these proteins underwent increases in O-GlcNAc glycosylation.  In four 

of the cases, the glycosylation increases that were observed indirectly by mass 

spectrometry were confirmed by immunoprecipitation.  Interestingly, other proteins 

exhibited no change or decreases in glycosylation, suggesting that a complex interplay 

likely exists between phosphorylation and O-GlcNAc glycosylation within signaling 

networks. 

With these new tools, in-depth studies of the dynamics of O-GlcNAc within cells 

are now within reach.  Understanding the molecular mechanisms by which this dynamic 

signaling comes about and regulates specific proteins is a future challenge that promises 

to propel the field in exciting new directions.  

 

Conclusion and Future Challenges  

Many of the new discoveries in the field of O-GlcNAc have been accelerated by 

the development of new chemical tools, such as those for detecting the modification in 

cells and for inhibiting OGT and OGA.  Combined with advances in mass spectrometry, 

these new technologies have provided an unprecedented opportunity to define the O-
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GlcNAc proteome, manipulate O-GlcNAc enzymes, and explore the dynamics of this 

modification in vivo.   

The development of new chemical tools to produce homogeneously glycosylated 

proteins will represent an important step toward this goal.  Unlike phosphorylation, O-

GlcNAc glycosylation cannot be readily mimicked by any naturally occurring amino 

acid.  The current state-of-the-art involves alanine mutagenesis of specific glycosylation 

sites within proteins to effect changes in function.  Chemical methods such as native 

chemical ligation44 may allow for the construction of O-GlcNAc glycosylated proteins in 

vitro and in cells.  In the future, these methods may provide new insights into whether 

and how O-GlcNAc glycosylation affects protein structure, modulates protein-protein 

interactions, and influences other post-translational modifications.  

One of the central challenges of neuroscience is to understand the unique 

molecular and cellular heterogeneity of the brain as it relates to systems level phenomena, 

such as learning and memory.  Sensitive methods to detect the modification on small 

subpopulations of cells or proteins will be required to dissect the role of O-GlcNAc in 

fear, addiction, and other complex learning and memory models.  Despite significant 

progress, faster, higher-throughput methods are still needed to identify O-GlcNAc 

proteins and study O-GlcNAc dynamics in vivo.  For instance, the ability to directly 

monitor the glycosylation status of specific proteins using chemical tagging approaches 

or site-specific O-GlcNAc antibodies will be essential.  To facilitate the production of O-

GlcNAc antibodies, facile synthetic routes to access O-GlcNAc-modified peptides are 

needed.  Moreover, the continued development of methods to precisely map 

16



glycosylation sites, particularly on small quantities of material and on selected proteins of 

interest, will be critical for any functional studies.   

New sensitive and selective OGT and OGA inhibitors will be important tools for 

finely dissecting the role of each enzyme in neuronal function and dysfunction.  Given 

the diversity of OGT and OGA substrates and the lethality of deleting the OGT gene in 

mice, creative new genetic or chemical approaches are still needed to more selectively 

target functional subsets of OGT and OGA by interfering, for instance, with the enzymes 

in certain subcellular compartments.  

From the time of its discovery, the appeal of O-GlcNAc has been both the intrigue 

of understanding its unique biology and the great technical challenges associated with its 

study.  Over the last five years, we have seen a surge of new chemistry designed to meet 

these obstacles.  Strengthened by an arsenal of chemical tools, the future of O-GlcNAc is 

primed for new and exciting discoveries. 
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Chapter 2: The Roles of O-GlcNAc Glycosylation in the Brain 
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O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on 

intracellular proteins of all multicellular organisms.  Studies suggest that O-GlcNAc 

represents a key regulatory modification in the brain, contributing to 

transcriptional regulation, neuronal communication, and neurodegenerative 

disease.  Here, we highlight some of the emerging roles for O-GlcNAc in the nervous 

system and describe the challenges in understanding and studying the biology 

behind O-GlcNAc. 

 

O-GlcNAc glycosylation, the covalent attachment of β-N-acetyl-D-glucosamine to 

serine or threonine residues of proteins, is an unusual form of protein glycosylation (Fig. 

1)1.  Unlike other types of glycosylation, this single sugar modification occurs on 

intracellular proteins and is not elaborated further into complex glycans.  The O-GlcNAc 

transferase (OGT) enzyme is a soluble protein that is found in the cytosol, nucleus, and 

mitochondria2 rather than in the endoplasmic reticulum or Golgi.  The dynamics of O-

GlcNAc are also unique among sugar modifications, being cycled on a time scale shorter 

than protein turnover3.  

Thus, in many respects O-

GlcNAc is more akin to 

phosphorylation than to 

conventional forms of 

glycosylation. 

Several reviews have 

described the roles of O-

Figure 1: O-GlcNAc glycosylation is the addition of 
β-N-acetylglucosamine to serine or threonine residues 
of proteins 
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GlcNAc in cellular processes, such as transcription2,4, the stress response5,6, apoptosis7,8, 

signal transduction2,9, glucose-sensing5,10, and proteasomal degradation5.  Only a few 

reviews have highlighted the importance of O-GlcNAc glycosylation in the nervous 

system, and those reports have focused on its potential impact on neurodegenerative 

diseases11,12.  However, multiple lines of evidence suggest that O-GlcNAc plays critical 

roles in both neuronal function and dysfunction. The enzymes responsible for the 

modification are most highly expressed in the brain13,14 and are enriched at neuronal 

synapses15,16.  Neuron-specific deletion of the OGT gene in mice leads to locomotor 

defects and neuronal dysfunction, resulting in neonatal death17.  The O-GlcNAc 

modification is abundant in the brain and present on many proteins important for 

transcription, neuronal signaling, and synaptic plasticity, such as cAMP-responsive 

element binding protein (CREB)18, synucleins19, and β-amyloid precursor protein 

(APP)20.  An intriguing interplay between O-GlcNAc and phosphorylation has been 

observed in cerebellar neurons, wherein activation of certain kinase pathways reduced O-

GlcNAc levels on cytoskeletal-associated proteins21.  Finally, recent studies suggest that 

O-GlcNAc can modulate calcium signaling and affect long-term potentiation22,23.  

Here we will describe emerging functions for O-GlcNAc glycosylation in the 

nervous system.   

 

The enzymes OGT and OGA   

OGT and β-N-acetylglucosaminidase (OGA or O-GlcNAcase) catalyze the 

reversible addition and removal of O-GlcNAc, respectively.  Both enzymes are most 

highly expressed in the brain and exist as multiple different isoforms2,24.  Three distinct 
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isoforms of OGT have been identified, including a 110-kDa and 78-kDa isoform that can 

assemble into a multimer25,26, and a smaller mitochondrial isoform.  Each isoform 

contains the C-terminal catalytic domain, but differs in the number of tetratricopeptide 

repeats (TPRs) within its N-terminal domain.  The TPRs serve as protein-protein 

interaction modules that appear to target OGT to accessory proteins and potential 

substrates, such as the GABAA receptor interacting factor-1 (GRIF-1)27 and the related O-

GlcNAc transferase interacting protein (OIP106)27, which have been implicated in 

mitochondrial trafficking to synapses28,29, and the transcriptional repressor complex 

mSin3A-histone deacetylase 1 (HDAC1)30.  In addition, OGT forms a complex with 

protein phosphatase-1 (PP1) in the brain31.  The association between OGT and PP1 is 

particularly intriguing as it may provide a direct mechanism to couple O-GlcNAc 

glycosylation to dephosphorylation of specific substrates.  Although OGT is found in the 

nucleus, cytosol, and mitochondria, it is particularly enriched in the nucleus15 and the 

soluble synaptic compartment16.  

Like OGT, OGA appears to be highly active at neuronal synapses16, and it is also 

found in the nucleus and cytosol32.  OGA contains an N-terminal glycosidase domain and 

a putative C-terminal histone acetyltransferase (HAT) domain33.  Two distinct isoforms 

of OGA exist, a 130-kDa and 75-kDa variant, which share the same catalytic domain but 

differ in their C-terminus34.   The potential HAT activity of OGA may provide an 

intriguing mechanism for coupling deglycosylation of nuclear proteins to transcriptional 

activation.  As with OGT, OGA has been shown to interact with specific proteins, 

including calcineurin/protein phosphatase-2B, amphiphysin, and dihydropyrimidinase-

related protein 2 (DRP-2)32.  
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Transcriptional regulation   

Early studies revealed that the O-GlcNAc modification is enriched on chromatin35 

and is found on RNA polymerase II and a large number of its transcription factors36.  As 

described in several reviews2,4,37, O-GlcNAc glycosylation has been shown both to 

enhance and suppress the activity of transcription factors.  O-GlcNAc can function to 

disrupt protein-protein interactions, as in the case of Sp1, whose glycosylation represses 

transcription at Sp1-driven promoters38 39.  In other cases, it can promote protein-protein 

interactions, as in the case of STAT5A, whose glycosylation enhances its activity by 

recruiting the transcriptional coactivator CREB-binding protein (CBP)40.  O-GlcNAc may 

also play a more general role in transcriptional repression through a mechanism involving 

the targeting of OGT to an HDAC1 complex by the corepressor mSin3A30.  In addition to 

altering protein-protein interactions, O-GlcNAc can affect posttranslational 

modifications.  For instance, glycosylation stabilized the tumor suppressor protein p53 by 

decreasing its phosphorylation and subsequent degradation by the proteasome41.   

Much less information is known about the roles of O-GlcNAc in regulating 

transcription in the brain.  However, CREB, a transcription factor important for neuronal 

survival, long-term memory storage, and drug addiction42,43, was shown to be O-GlcNAc 

glycosylated in the rodent brain18.  Glycosylation occurred at two major sites within the 

Q2 transactivation domain of CREB and disrupted binding of CREB to TAFII130, a 

component of the basal transcriptional machinery.  As a result, glycosylation repressed 

the transcription of CRE-mediated genes both in vitro and in cells18.  It will be interesting 

to investigate whether glycosylation of CREB is dynamically regulated in neurons and 
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whether it down-regulates specific genes associated with memory storage and cell 

survival.  

Proteomic studies of O-GlcNAc modified-proteins from the brain have also 

underscored the importance of O-GlcNAc in regulating transcription.  Approximately 

one-quarter of the neuronal O-GlcNAc proteins known to date are transcriptional 

regulatory proteins (Fig. 2)44.  This includes numerous transcription factors (e.g., Sox2, 

ATF-2), as well as transcriptional coactivators (SRC-1), repressors (MeCP219, p66β, 

BHC80) and corepressors (TLE-4, CCR4-NOT).  For instance, Sox2 is a member of the 

high mobility group box (HMG) superfamily of minor groove DNA-binding proteins, and 

it functions to regulate transcription on different promoters depending on its interactions 

with different protein partners45.  Sox2 interacts with proteins through its highly 

conserved HMG DNA-binding domain, which also contains its O-GlcNAc modification 

site44.  One of the well-established functions of Sox2 is its critical role in the maintenance 

of embryonic stem cell pluripotency in partnership with OCT3/446.  In the adult rat brain, 

Sox2 expression has been reported to occur in actively dividing adult neuronal precursor 

cells and in neurogenic astrogoglia47.  Another example of the expanding role of O-

GlcNAc in transcription is the modification of two proteins (including a ubiquitin ligase) 

in carbon catabolite repression 4-negative on TATA-less (CCR4-NOT)44, a large protein 

complex involved in mRNA metabolism and the global control of gene expression48.  

Together with earlier studies demonstrating glycosylation of RNA polymerase II, these 

findings suggest that O-GlcNAc may participate in regulating multiple aspects of 

transcription.  
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Synaptic proteins and neuronal communication   

Consistent with the observation that OGT and OGA are highly active at synapses, 

proteomic studies have uncovered a significant number of synaptic proteins in the O-

GlcNAc proteome (Fig. 2)44,49-51.  Many of these proteins are enriched in the postsynaptic 

density where they participate in the regulation of dendritic spine morphology and 

associate with the cytoskeleton.  For instance, synaptopodin44, SH3 and multiple ankyrin 

repeat domains protein 2 (shank2)49 are critical for the normal formation of dendritic 

spine apparatuses52-54.  Synaptopodin and δ-catenin have been shown to play important 

roles in learning and memory52,55.  

O-GlcNAc modifications are also highly abundant in presynaptic terminals.  

Several proteins involved in neurotransmitter release or synaptic vesicle endocytosis, 

such as bassoon44, piccolo49, synapsin49, and clathrin assembly protein (AP180)56, are O-

Figure 2: O-GlcNAc proteome from rodent brain.  Approximately 24% of the known 
O-GlcNAc proteins participate in transcriptional regulation, 31% are involved in 
neuronal communication and signaling, and 21% are associated with forming 
cytoskeletal structures.  Proteins were classified according to categories described by 
Schoof et al.119  
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GlcNAc glycosylated.  The O-GlcNAc-modified protein, collapsin response mediator 

protein 2 (CRMP-2)16, plays key roles in axon formation, elongation, and branching57.  

Moreover, many cytoskeletal proteins themselves are known to be glycosylated, 

including tau58, the neurofilament proteins NF-H59, NF-L49 and NF-M49, and the 

microtubule-associated proteins MAP1B44 and 2B44.   

Recently O-GlcNAc has been shown to regulate and modify processes important 

for neuronal communication.  Inducing glycosylation by inhibiting OGA decreases the 

number of axonal filopodia whereas decreasing glycosylation by overexpressing OGA 

increases the number of filopodia as well as the percentage of neurons exhibiting axon 

branching in cultured primary chicken forebrain neurons60.  Furthermore the O-GlcNAc 

modification on neuronal inositol 1,4,5-trisphosphate receptor type 1 decrease channel 

activity23.  Finally elevation or reduction of O-GlcNAc levels enhances or blocks long 

term potentiation in acute hippocampal slices22. 

Additional functional studies are needed to define the mechanisms by which O-

GlcNAc regulates these proteins.  Nonetheless, the prevalence of O-GlcNAc on proteins 

intricately involved in neurotransmitter release and cytoskeletal rearrangements 

underlying synaptic plasticity suggests roles for the modification in regulating key 

neuronal functions.  As described below, emerging evidence indicates that O-GlcNAc 

levels can be dynamically modulated in response to neuronal stimuli.  Moreover, the 

potential interplay between O-GlcNAc and kinase pathways in neurons may provide a 

powerful means to control protein function and modulate neuronal communication 

processes. 
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Neurodegenerative disease   

O-GlcNAc glycosylation has been implicated in several neurodegenerative 

diseases, such as Alzheimer’s58,61,62 and amyotrophic lateral sclerosis (ALS)63.  The genes 

encoding OGA and OGT map to chromosomal regions associated with late-onset 

Alzheimer’s disease64 and dystonia-Parkinsonism syndrome65, respectively.  Moreover, 

O-GlcNAc levels are abnormally altered in the brains of Alzheimer’s disease patients, 

although the magnitude and direction of the change appears to depend on the subcellular 

protein fraction61,62.   

In the pathology of Alzheimer’s disease, the microtubule protein tau becomes 

hyperphosphorylated, which in turn, causes it to aggregate and form neurofibrillary 

tangles that are hallmarks of the disease66.  Tau is extensively O-GlcNAc glycosylated in 

the adult rat brain, although the estimated 12 or more modification sites have yet to be 

mapped58.  Importantly, several studies suggest that O-GlcNAc glycosylation of tau 

negatively regulates its ability to be phosphorylated.  For instance, inducing tau 

glycosylation with OGA inhibitors or by overexpression of OGT decreases tau 

phosphorylation at specific sites62,67,68.  Conversely, stimulation of hyperphosphorylated 

tau using the phosphatase inhibitor okadaic acid leads to hypoglycosylated tau in human 

neuroblastoma cells69.  Neuron-specific deletion of the OGT gene in mice17 or inhibition 

of O-GlcNAc biosynthesis in rats70 induces hyperphosphorylated tau similar to that found 

in Alzheimer’s disease.  As impaired glucose uptake/metabolism has been linked to 

Alzheimer’s disease and appears to worsen as the disease progresses71, one theory is that 

tau glycosylation becomes reduced in Alzheimer’s patients and leads to 

hyperphosphorylated tau.  Consistent with this view, mouse models of starvation that 
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mimic this impaired glucose metabolism display reduced tau glycosylation and a 

corresponding increase in tau phosphorylation at specific sites62,72. 

Abnormal O-GlcNAc glycosylation may also contribute to neurodegenerative 

diseases in more diverse ways.  The amyloid precursor protein (APP), which forms the β-

amyloid plaques characteristic of the disease, is both O-GlcNAc glycosylated and 

phosphorylated20.  In an animal model of ALS, the O-GlcNAc levels of neurofilament 

protein M are decreased at the same time as its phosphorylation levels are increased63.  

Finally, O-GlcNAc glycosylation has been demonstrated to inhibit the proteasome73, thus 

providing a mechanism to couple ubiquitin-mediated protein degradation to the general 

metabolic state of the cell.  Blocking the removal of O-GlcNAc from the proteasome 

leads to increased protein ubiquitination73 and possibly neuronal apoptosis74.  

Proteasomal dysfunction and ubiquitinated inclusion bodies are found in the diseased 

tissue of ALS, Parkinson’s, Huntington’s, and Alzheimer’s disease patients75.  Thus, 

aberrations in glucose metabolism and the O-GlcNAc glycosylation of specific proteins 

have been associated with several neurodegenerative disorders.  It will be important in 

the future to determine the extent to which these changes are critical to the development 

and progression of such diseases. 

 

O-GlcNAc dynamics and cycling  

A unique feature of O-GlcNAc glycosylation is its ability to undergo dynamic 

cycling in contrast to other, more static forms of protein glycosylation.  Studies have 

shown that O-GlcNAc levels are altered by extracellular stimuli on a time scale similar to 

phosphorylation.  For instance, a transient increase in glycosylation of the transcription 
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factor nuclear factor activated T-cells (NFAT) was observed within 5 minutes after T or 

B cell activation76.   

O-GlcNAc levels are highly responsive to glucose concentrations and influx 

through the hexosamine biosynthesis pathway (HBP) in neurons and other cell types77,78.  

Approximately 2-5% of all cellular glucose is metabolized through the HBP pathway to 

generate UDP-GlcNAc79.  As OGT activity is exquisitely sensitive to UDP-GlcNAc 

concentrations80, O-GlcNAc glycosylation may act as a sensor for the general metabolic 

state of the cell.  Consistent with this notion, O-GlcNAc appears to be intricately linked 

to cell survival17 and is induced by many forms of cell stress81.  

In the brain, phosphorylation serves as a central mechanism for neuronal 

communication by regulating ion channels, neurotransmitter receptors, gene 

transcription, and synaptic vesicle release82,83.  Protein kinases and phosphatases work 

together to coordinate different forms of synaptic plasticity, and they are necessary for 

the induction and maintenance of postsynaptic long-term potentiation and long-term 

depression84.  Thus, the potential interplay between O-GlcNAc glycosylation and 

phosphorylation has exciting implications for many neuronal functions.  Early studies 

showed that activation of protein kinase C (PKC) or cAMP-dependent protein kinase 

(PKA) significantly decreased overall O-GlcNAc glycosylation levels in the cytoskeletal 

protein fraction of cultured cerebellar neurons21.  Conversely, inhibition of PKC, PKA, 

cyclin-dependent protein kinases or S6 kinase increased overall O-GlcNAc levels in these 

fractions.  A more complex relationship was observed with tyrosine kinases and 

phosphatases.  Inhibition of tyrosine phosphatases led to a decrease in overall O-GlcNAc 

levels, while inhibition of tyrosine kinases induced both increases and decreases in O-
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GlcNAc, depending on the protein fraction.  More recent studies showed that elevation of 

O-GlcNAc levels in the brain increased in activating-phosphorylation sites on ERK 1/2 

and CaMKII22and elevation of O-GlcNAc in culture affected the phosphorylation of PKA 

substrates in response to forskolin60.  

Together, emerging evidence suggests that O-GlcNAc represents a key regulatory 

modification in the brain.  Not only is it present on a large number of functionally 

important neuronal proteins, it appears to be reversible, differentially regulated, and 

responsive to neuronal activity.  Further studies are needed to elucidate the molecular 

mechanisms involved and how activation of specific signaling pathways leads to the 

regulation of OGT and OGA.  Moreover, changes in O-GlcNAc glycosylation have been 

monitored only on a global level, and the specific proteins undergoing dynamic changes 

in glycosylation  as well as how those changes affect the protein function remain largely 

unknown.  

 

Conclusion and Future Challenges  

Over the past decade, a surge of discoveries in O-GlcNAc glycosylation has 

revealed new roles for this modification in the nervous system.  O-GlcNAc is abundant in 

the brain and present on many diverse proteins involved in transcription, neuronal 

signaling, and synaptic plasticity.  Indeed, recent studies have begun to uncover the 

functional roles of O-GlcNAc, its complex dynamics in the brain, and the interplay 

between O-GlcNAc and phosphorylation.  

Although the pace and scope of understanding O-GlcNAc has expanded 

considerably, much still remains to be discovered.  Due to the challenge of studying the 
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modification, evidence linking O-GlcNAc to specific biological functions has often been 

indirect or correlative.  This is particularly true in the brain, where the complexity of the 

nervous system and its unique technical challenges (e.g., post-mitotic cells, multiple cell 

types, blood-brain barrier, complex organization) render O-GlcNAc more difficult to 

investigate.  Nonetheless, in-depth functional studies on proteins will be essential in the 

future to determine the roles of O-GlcNAc in neuronal-specific contexts.  
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The addition of the monosaccharide β-N-acetyl-D-glucosamine to proteins 

(O-GlcNAc glycosylation) is an intracellular, post-translational modification that 

shares features with phosphorylation.  Here, we demonstrate a new strategy for 

monitoring the dynamics of O-GlcNAc glycosylation using quantitative mass 

spectrometry-based proteomics.  Our method, termed QUIC-tag, combines 

selective, chemoenzymatic tagging of O-GlcNAc proteins with an efficient isotopic 

labeling strategy.  A key advantage of the approach is that it can be applied to post-

mitotic cells such as neurons after in vivo stimulation.  Using the method, we detect 

changes in O-GlcNAc glycosylation on several proteins involved in the regulation of 

transcription and mRNA translocation.  We also provide the first evidence that O-

GlcNAc glycosylation is dynamically modulated by excitatory stimulation of the 

brain in vivo.  Finally, we employ electron transfer dissociation (ETD) mass 

spectrometry to identify exact sites of O-GlcNAc modification.  Together, our 

studies suggest that O-GlcNAc glycosylation occurs reversibly in neurons and, akin 

to phosphorylation, may play important roles in mediating the communication 

between neurons. 

 

The QUIC-Tag Strategy for O-GlcNAc Peptide Identification and Quantification 

 As the majority of peptides from a biological sample are not post-translationally 

modified, detection of a specific modification by MS requires an enrichment strategy to 

isolate peptides containing the modification of interest from other species.  We reasoned 

that our chemoenzymatic strategy (Chapter 1, Fig. 2a)1 could be combined with 

differential isotopic labeling to allow for the first direct, high-throughput quantification of 
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O-GlcNAc dynamics on specific proteins.  In this approach, which we have termed 

Quantitative Isotopic and Chemoenzymatic Tagging (QUIC-Tag), lysates from two 

cellular states (e.g., stimulated vs. unstimulated, diseased vs. normal) were 

chemoenzymatically labeled and proteolytically digested (Scheme 1).  A modified 

dimethyl labeling strategy2 incorporated stable isotopes into peptide N-terminal amines 

and ε-amino groups of lysine residues by reductive amination for subsequent MS 

quantification.  Treatment with either formaldehyde/NaCNBH3 or deuterated 

formaldehyde/NaCNBD3 created mass differences of 6 x n between the peptides from the 

two cell populations, where n is the number of primary amine functionalities in the 

peptide.  This allowed for complete resolution of isotopic envelopes even at higher 

charge states (i.e., +4) during MS analysis.  Following isotopic labeling, we combined 

Scheme 1: QUIC-Tag strategy for quantitative O-GlcNAc proteomics.  O-GlcNAc 
proteins from two different cell states are selectively tagged, proteolyzed and 
differentially labeled with ‘light’ or ‘heavy’ isotopes.  The mixtures are combined, and 
O-GlcNAc peptides of interest are specifically enriched by avidin chromatography for 
selective quantification by LC-MS. 
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and enriched the peptides from both populations by affinity chromatography for the 

presence of O-GlcNAc.  Relative quantification of O-GlcNAc glycosylation in the two 

cellular states was accomplished by calculation of the chromatographic peak area as 

determined by the MS response to each eluting glycosylated pair of peptide ions. 

 

Quantification of Known O-GlcNAc Peptides from Complex Mixtures 

Nelly Khidekel first evaluated the effectiveness of the dimethyl labeling strategy 

using the model protein α-casein.  α-casein was digested with trypsin, and the resulting 

peptides were reacted with formaldehyde and NaCNBH3 at pH values ranging from 5-8.  

Liquid chromatography-mass spectrometry (LC-MS) analysis of the labeled peptides 

indicated that reductive amination proceeded quantitatively for both lysine and N-

terminal primary amines in less than 10 min at pH 7 (data not shown).  In contrast to 

previous studies2, we observed that higher pH values were necessary to achieve complete 

labeling of basic lysine residues.  

Having established the optimal conditions for dimethyl labeling, Nelly 

investigated our ability to capture and quantify known O-GlcNAc peptides3, 4 from 

complex mixtures.  Known amounts of the proteins α-crystallin (ca. 300 pmol) and OGT 

(ca. 10 pmol) were added to two samples of rat brain lysate.  We chose to examine α-

crystallin because of its low stoichiometry of glycosylation (<10%) and because it has 

represented a formidable challenge for detection by several methods1, 5.  The samples 

were chemoenzymatically labeled, proteolytically digested, isotopically labeled and 

combined as described in Scheme 1.  Following avidin capture of the O-GlcNAc 

peptides, Scott Ficarro performed relative quantification of glycosylated peptide pairs 
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using an orbitrap mass spectrometer6, which provided accurate mass (<20 ppm) and high 

resolution (100,000 at m/z 400) ion measurements.  Precursor peptide cations that 

exhibited the signature loss of the labile ketogalactose-biotin and GlcNAc-ketogalactose-

biotin groups during MS/MS were subjected to further fragmentation via MS4.  

In these experiments, Nelly and Scott reproducibly captured and quantified 3 α-

crystallin peptides that encompass all of the known glycosylation sites on both the A and 

B forms of α-crystallin3, 7.  Additionally, Nelly captured 8 OGT peptides representing all 

Figure 1: Accurate quantification of known O-GlcNAc peptides from complex mixtures 
using the QUIC-Tag approach.  (a) Extracted ion chromatogram of the heavy and light 
forms of two representative O-GlcNAc glycosylated peptides, α-crystallin peptide 
158AIPVSREEKPSSAPSS173 (top) and OGT peptide 390ISPTFADAYSNMGNTLK406 
(bottom).  Co-elution by reversed-phase liquid chromatography was observed.  (b) 
Quantification from the isotopic cluster of the heavy (m/z 810.061) and light (m/z 
806.416) forms of the α-crystallin peptide yields a heavy:light ratio of 0.97 – 0.09, 0.97 
+ 0.10 (g.s.d. of 1.10).  Quantification of the heavy (m/z 1308.605) and light (m/z 
1302.569) forms of the OGT peptide yields a heavy:light ratio of 0.93 – 0.12, 0.93 + 
0.14 (g.s.d. of 1.15).  Prior to labeling, both proteins were added to neuronal lysates at a 
ratio of 1:1.  n = 7.  
 

43



 

of the known glycosylation sites on OGT4.  The results for two such peptides, 

158AIPVSREEKPSSAPSS173 from α-crystallin and 390ISPTFADAYSNMGNTLK406 from 

OGT, are highlighted in Figure 1.  The deuterated and non-deuterated peptides generally 

co-eluted during reversed-phase chromatography (Fig. 1a), minimizing the isotope 

resolution effects during LC previously reported to interfere with deuterium-labeled 

peptides2,8.  To quantify the relative amounts of each peptide, Nelly compared the ratio of 

signal intensities from the heavy to the light forms, across the entire chromatographic 

profile of each peptide (Fig. 1b).  She observed the α-crystallin peptide at a mean 

heavy:light ratio of 0.97 – 0.09, 0.97 + 0.10 (geometric standard deviation (g.s.d) of 1.10) 

and the OGT peptide at a mean heavy:light ratio of 0.93 – 0.12, 0.93 + 0.14 (g.s.d. of 

1.15).  The geometric mean ratio and standard deviation obtained for each of the α-

crystallin and OGT peptides is found in Table 1a, and the mean ratio of all quantified 

peptides for each of seven independent experiments is shown in Table 1b.  The mean 

ratio across all peptides over the seven experiments was 0.91 – 0.17, 0.91 + 0.21 (g.s.d. 

of 1.23), which compares favorably with the quantitative accuracy of other approaches 

such as iTRAQ and SILAC (mean observed ratios of 1.03 ± 0.16 and 1.03 ± 0.17 for an 

expected 1:1 ratio, respectively)9, 10.  

Table 1b
Mean ratios of all peptides

b

a  Geometric mean
b Maximum absolute standard

   deviation (s.d.) calculated from g.s.d.

Table 1a   Mean ratios of individual peptides
from !-crystallin and OGT

a b

a Geometric mean
b Maximum absolute standard deviation (s.d.) calculated from g.s.d.

Protein Peptide Sequence n Ratio s.d.

crystallin 1 AIPVSREEKPSSAPSS 7 0.97 ± 0.10

crystallin 2 AIPVSREEKPSSAPS 7 0.90 ± 0.13

crystallin 3 EEKPVVTAAPK 4 0.81 ± 0.11

OGT1 IKPVEVTESA 7 0.91 ± 0.33

OGT 2 AIQINPAFADAHSNLASIHK 7 0.77 ± 0.15

OGT 3 ISPTFADAYSNMGNTLK 7 0.93 ± 0.14

OGT 4 EMQDVQGALQCYTR 5 0.98 ± 0.11

OGT 5 AIQINPAFADAHSNLASIHKDSGNIPEAIASYR 4 1.01 ± 0.29

OGT 6 AIQINPAFADAHSNLASIHKDSGNIPEAIAS 3 0.72 ± 0.15

OGT 7 AATGEEVPRTIIVTTR 7 0.96 ± 0.18

OGT 8 EAIRISPTFADAYSNMGNTLK 2 1.12 ± 0.18

a
Experiment Ratio s.d.

1 0.83 ± 0.07

2 0.90 ± 0.28

3 0.80 ± 0.15

4 1.01 ± 0.27

5 0.94 ± 0.17

6 0.96 ± 0.20

7 0.89 ± 0.17
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Probing the Reversibility of O-GlcNAc Glycosylation in Neurons using QUIC-Tag 

We next applied the approach to study the reversibility of the O-GlcNAc 

modification in neurons.  Although studies have suggested that O-GlcNAc levels can be 

modulated in various cell types11, 12, the neuronal proteins that undergo reversible 

glycosylation are largely unknown.  Nelly treated cultured cortical neurons from 

embryonic day-18 rats with the OGA inhibitor PUGNAc (O-(2-acetamido-2-deoxy-D-

glucopyranosylidene)amino-N-phenylcarbamate)13 for 12 h.  PUGNAc has been shown to 

Figure 2: O-GlcNAc glycosylation is reversible in cultured cortical neurons.  (a) 
Treatment of cortical neurons with the OGA inhibitor PUGNAc for 12 h enhances 
overall O-GlcNAc glycosylation levels in both nuclear and cytoplasmic fractions, as 
measured by immunoblotting with an anti-O-GlcNAc antibody.  (b-d) Peptide mass 
spectra of three proteins displaying distinct activation profiles.  O-GlcNAc glycosylation 
of the peptide in b was up-regulated in response to PUGNAc treatment, whereas the 
glycosylation level was unchanged for the peptide in c and was down-regulated for the 
peptide in d. 
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up-regulate global O-GlcNAc levels in neutrophils11, kidney12, and other cells by 

preventing the de-glycosylation of O-GlcNAc proteins.  Consistent with these studies, 

Nelly found that PUGNAc strongly enhanced the overall levels of O-GlcNAc 

glycosylation in both the nuclear and S100 cytoplasmic fractions of cortical neurons, as 

demonstrated by Western blotting with an anti-O-GlcNAc antibody (Fig. 2a).  To 

identify the proteins undergoing changes, neurons stimulated with and without PUGNAc 

were lysed and treated as outlined in Scheme 1.  Prior to chemoenzymatic labeling, Nelly 

added known quantities of the standards α-crystallin and OGT into each lysate.  

Subsequent MS quantification focused on precursor ions that demonstrated characteristic 

Figure 3: Sequencing of tagged O-GlcNAc peptides regulated by PUGNAc treatment 
using CAD.  (a) MS spectrum of a representative peptide whose glycosylation level is 
significantly increased by PUGNAc treatment of cortical neurons.  (b) MS/MS 
spectrum of the deuterated peak (m/z = 862.389), showing loss of a ketogalactose-
biotin moiety (m/z = 1208.4) and GlcNAc-ketogalactose-biotin moiety (m/z = 1005.3).  
(c-d) Fragmentation during MS4 analysis yielded numerous internal cleavages and 
several prominent b and y ions that identified the peptide as 158AQPPSSASSR173 from 
eIF4G.  The MS/MS spectrum of a derivatized synthetic peptide matched the MS4. 
spectrum from the lysates, confirming the sequence assignment.  Potential 
glycosylation sites are indicated in bold. 
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ketogalactose-biotin and GlcNAc-ketogalactose-biotin signature fragmentation patterns.  

To obtain the relative change in glycosylation on specific peptides, we corrected the 

heavy:light ratios using a normalization factor derived from the linear regression of the 

α-crystallin and OGT standard ratios within each sample.  Analysis of standard peptides 

suggests that we could detect 1.15-fold changes in the nuclear sample and 1.70-fold 

changes in the cytoplasmic sample with 95% confidence (see Methods for statistical 

analysis).  The peptide standards formed a normal distribution around the mean standard 

ratio as measured by the D’Agostino-Pearson omnibus test, suggesting that ratios greater 

than 2 standard deviations (σ) of the mean ratio are likely significant.  

Using these criteria, 22 peptides from the nuclear sample and 11 peptides from the 

corresponding cytoplasmic sample showed an increase in O-GlcNAc glycosylation upon 

PUGNAc stimulation (Fig. 2b).  Interestingly, we found that the presence of PUGNAc 

did not result in increased O-GlcNAc glycosylation on all proteins.  For example, in the 

same nuclear sample, 4 O-GlcNAc peptides showed no measurable change in 

glycosylation, whereas in the cytoplasmic sample 16 peptides showed no measurable 

change (Fig. 2c).  We also observed decreases in glycosylation on 5 nuclear and 4 

cytoplasmic O-GlcNAc peptides (Fig. 2d).  These site-dependent differences suggest 

differential regulation of the modification in cells, with some proteins being more 

susceptible to reversible cycling than others.   

  

Identification of Proteins Subject to Reversible Glycosylation in Neurons 

To identify the neuronal proteins undergoing reversible glycosylation, Scott 

targeted a portion of the O-GlcNAc peptides for sequencing by MS4 analysis.  A 
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representative ESI-MS spectrum of an O-GlcNAc peptide whose glycosylation state was 

elevated upon PUGNAc treatment is shown (Fig. 3a).  The CAD MS2 spectrum of the 

deuterated, triply charged peptide (m/z = 862.389) displays a characteristic loss of a 

ketogalactose-biotin moiety (m/z = 1208.4) and GlcNAc-ketogalactose-biotin moiety (m/z 

= 1005.3) (Fig. 3b).  MS4 analysis generated a series of b- and y-type product ions and 

internal cleavages that enabled definitive sequencing of the peptide (Fig. 3c,d).  Database 

searching identified the peptide as belonging to the protein translation elongation 

initiation factor 4G (eIF4G).   

To sequence O-GlcNAc-containing peptides and locate the exact sites of 

glycosylation, Nelly and Danielle Swaney also employed a recently reported 

fragmentation method, electron transfer dissociation (ETD)14, 15.  ETD utilizes small 

molecule radical anions to deliver electrons to isolated peptide precursor cations.  After 

receiving the electron, the odd-electron peptide cation undergoes backbone fragmentation 

with minimal cleavage of amino acid side chains.  This results in the production of 

sequence-specific c- and z-type product ions without the loss of labile post-translational 

modification — dissociation pathways that can dominate CAD spectra.  As ETD has been 

successfully used to elucidate exact sites of phosphorylation14 and N-glycosylation16, we 

envisioned that it might be a powerful approach for mapping O-GlcNAc glycosylation 

sites.  A representative ETD tandem mass spectrum of an O-GlcNAc-modified peptide 

whose glycosylation level was increased in the PUGNAc-treated sample is shown (Fig. 

4a). ETD provided near complete sequence coverage for this peptide (Fig. 4b), belonging 

to the transcriptional repressor p66β.  Importantly, the O-GlcNAc linkage was preserved 

during ETD fragmentation, and we observed the added mass corresponding to the tagged 
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O-GlcNAc moiety on the c-type product ion series.  The tagged O-GlcNAc-modified c3 

ion narrowed the O-GlcNAc glycosylation site to the N-terminal Ser-584 or Ser-586 of 

this peptide (Fig. 4c).  ETD was highly effective for the fragmentation of lower m/z 

GlcNAc-ketogalactose-biotin peptide precursor cations (e.g., < ~800), but was less 

effective for precursors above this m/z value.  Recent work suggests supplemental 

collisional activation of the electron transfer product species can help counter this 

problem17. 

Using a combination of CAD and ETD, Scott and Danielle sequenced 7 of the O-

GlcNAc peptides that undergo significant increases in glycosylation upon PUGNAc 

treatment (Table 2).  In addition, Danielle identified another peptide by ETD that was not 

observed in the orbitrap MS analysis and thus could not be quantified.  Among the O-

GlcNAc proteins subject to reversible glycosylation are the transcriptional coactivator 

SRC-1 and the zinc finger RNA-binding protein, which we had previously identified as 

O-GlcNAc glycosylated3.  Here, we extend those findings by identifying the exact site of 

glycosylation on both proteins using ETD and by showing that glycosylation at those 

Figure 4: Sequencing of tagged O-GlcNAc peptides regulated by PUGNAc treatment 
using ETD.  (a) MS spectrum of a second representative peptide whose glycosylation 
level is significantly enhanced in response to PUGNAc treatment of cortical neurons.  
(b, c) MS/MS analysis of the deuterated peak (m/z = 607.639) yielded c and z ions that 
identified the peptide as 584SISQSISGQK593 from the transcriptional repressor p66β.  
The presence of the tagged GlcNAc moiety on the c series of ions narrowed the site of 
glycosylation to Ser-584 or Ser-586. 
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sites occurs reversibly in neurons.  We also identified an O-GlcNAc peptide on the RNA-

binding protein nucleoporin 153, which had been previously shown to be O-GlcNAc 

glycosylated18, but whose glycosylated peptides were unknown.  In addition to these, we 

identified reversible sites of modification on several new proteins, including the 

transcriptional repressor p66β, translation factor eIF4G, and the neuron-specific 

transcriptional repressor BHC80.  Finally, we found that the enzyme OGA is O-GlcNAc 

glycosylated in neurons, which is consistent with the ability of OGT to glycosylate OGA 

in vitro19.  Inhibition of OGA using PUGNAc led to a robust increase in OGA 

glycosylation at Ser-405, raising the possibility that OGA activity may be regulated by 

OGT.  Interestingly, OGT and OGA were recently shown to form a stable transcriptional 

regulatory complex, and Ser-405 is located within a region of OGA required for 

association with OGT20. 

50



 

To rule out the possibility that the observed increases in O-GlcNAc glycosylation 

are due to altered protein expression, I immunoblotted cell lysates from neurons treated in 

the presence or absence of PUGNAc with all obtainable antibodies against the proteins of 

interest.  Minimal changes in protein expression were detected upon PUGNAc treatment 

(Fig. 5a), suggesting that the observed changes are due to increased glycosylation.  As 

further confirmation of our approach, I quantified the changes in O-GlcNAc levels using 

an alternative method.  Specifically, I chemoenzymatically labeled O-GlcNAc proteins 

Figure 5: Quantification of O-GlcNAc glycosylation on intact proteins by 
immunoblotting and infrared imaging detection.  (a) Minimal changes in the 
expression of SRC-1, OGA, and p66β were observed upon PUGNAc treatment 
of cortical neurons.  Values represent quantification of 4-6 replicates, and a 
representative Western blot is shown for each protein.  Data are mean ± standard 
deviation (s.d). (b) O-GlcNAc glycosylation of SRC-1, OGA and p66β was 
stimulated upon PUGNAc treatment by 1.9 ± 0.3-, 22.8 ± 7.0-, and 43.3 ± 9.8-
fold, respectively. O-GlcNAc proteins from the lysates were 
chemoenzymatically labeled with the ketogalactose-biotin tag and selectively 
captured using streptavidin beads.  Quantification was performed as described in 
the Methods, and values were corrected for any minor changes in protein 
expression levels shown in Fig. 5a.  Data are mean ± standard deviation (s.d).  
Statistical analysis was performed using the Student’s t-test, n = 3, *P < 0.05. 
Input, lysates prior to streptavidin capture; Eluent, O-GlcNAc proteins 
captured by streptavidin 
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from cells treated with or without PUGNAc and captured the biotinylated proteins using 

streptavidin agarose.  Following elution, I immunoblotted for specific proteins and 

quantified changes in O-GlcNAc based on the relative amounts of glycosylated protein 

captured by streptavidin.  I found that PUGNAc treatment of neurons induced a 1.9 ± 0.3-

fold increase in O-GlcNAc glycosylation of SRC-1, consistent with the results obtained 

using our quantitative proteomics approach (Fig. 5b).  Similarly, O-GlcNAc 

glycosylation was stimulated approximately 22.8 ± 7.0-fold on OGA and 43.3 ± 9.8-fold 

on p66β.  These results validate the quantitative proteomics methodology and highlight 

Figure 6:  O-GlcNAc glycosylation is dynamically modulated by robust excitatory 
stimulation of the brain in vivo using kainic acid. (a) Overall O-GlcNAc glycosylation 
levels on several proteins in the cerebral cortex (indicated by arrows) are elevated at 6 
h post-injection and then return to basal levels after 10 h, as measured using an anti-O-
GlcNAc antibody.  Data are mean ± standard deviation (s.d).  Statistical analysis was 
performed using the Student’s t-test, n = 3, *P < 0.05.  (b) Proteins identified using the 
QUIC-Tag method whose O-GlcNAc glycosylation levels increase by greater than 
1.5-fold upon kainic acid stimulation.  Cortical cell lysates were harvested at 6 h post-
injection.  Data are mean ± s.d.  Statistical analysis was performed using the Student’s 
t-test, n = 2 - 4. 
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the versatility of the chemoenzymatic platform for the detection of O-GlcNAc peptides or 

proteins by both MS and immunoblotting.  

 

O-GlcNAc Glycosylation Is Regulated by Excitatory Stimulation In Vivo 

Having demonstrated the reversibility of the O-GlcNAc modification in neurons, 

we next investigated whether O-GlcNAc glycosylation is induced in vivo by neuronal 

stimulation.  Jessica Rexach and I intraperitoneally injected rats with kainic acid, a 

kainate-type glutamate receptor agonist that produces a robust excitatory stimulus of the 

brain.  Kainic acid has been used to study excitatory pathways that induce gene 

expression and synaptic plasticity21 and to invoke seizures as a well-characterized model 

for temporal lobe epilepsy22.  We dissected the cerebral cortices of kainic acid-treated rats 

at distinct behavioral time points: 2.5 h post-injection at peak of seizure, 6 h post-

injection when animals had resumed some normal resting behavior, and 10 h post-

injection when animals showed nearly identical behavior to saline-injected controls.  

Global changes in O-GlcNAc levels were measured by immunoblotting the cortical cell 

lysate with an anti-O-GlcNAc antibody.  I found that O-GlcNAc levels on several 

proteins were elevated at 6 h post-injection and returned to basal levels by 10 h post-

injection (Fig. 6a).  

To identify proteins undergoing changes in O-GlcNAc glycosylation in response 

to kainic acid, Nelly applied our quantitative proteomics strategy to cortical lysates 

obtained 6 h post-injection.  Thirteen of 83 O-GlcNAc peptides detected by MS 

underwent a robust, reproducible increase in response to kainic acid stimulation of rats.  

Specifically, the changes for these peptides were greater than 2 σ over the mean of the 1:1 
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standard peptides for multiple experiments.  Using CAD tandem mass spectrometry, Scott 

successfully identified 4 of these proteins as eIF4G, the transcription factor early growth 

response-1 (EGR-1), the trafficking protein Golgi reassembly stacking protein 2 

(GRASP55), and the HIV-1 Rev-binding protein (Hrb; Fig. 6b and Table 3).  

Interestingly, the same peptide of eIF4G that undergoes reversible glycosylation upon 

PUGNAc treatment also undergoes a change in glycosylation in response to kainic acid.  

Scott also sequenced 3 O-GlcNAc peptides that did not undergo reproducible changes in 

glycosylation (Table 3). 

I confirmed that the observed increases in O-GlcNAc glycosylation were not due 

to enhanced protein expression by immunoblotting cortical lysates of kainic acid-treated 

or control PBS-treated rats with available antibodies against the proteins of interest.  

Consistent with previous reports that EGR-1 expression is upregulated approximately 

twofold in the cerebral cortex following kainic acid administration23, I found that EGR-1 

expression was elevated 1.8 ± 0.2-fold at 6 h post-injection (Fig. 7).  Given that O-

GlcNAc glycosylation of EGR-1 is enhanced by 10.7-fold, protein expression changes 

Protein NCBI Entry Fold Change s.d. n Function Peptide Sequence Residues

EGR-1 6978799 10.1 ± 0.9 2 gene transcription, stress response ALVETSYPSQTTR 87-99

eIF4G 62658155 5.3 ± 0.2 2 translation elongation AQPPSSAASR 63-72

GRASP55 51259254 1.8 ± 0.1 2 membrane protein transport, golgi stacking VPTTVEDR 423-430

Hrb 90101424 1.6 ± 0.4 4 RNA trafficking SSSADFGSFSTSQSHQTASTVSK 291-313

bassoon 9506427 1.3 ± 0.3 4 synaptic vesicle cycling SPSTSSTIHSYGQPPTTANYGSQ- 1402-1440

TEELPHAPSGPAGSGR

bassoon 9506427 1.5 ± 0.1 2 synaptic vesicle cycling ASGAGGPPRPELPAGGAR 2283-2300

inositol polyphosphate-4-phosphatase 13591898 1.2 ± 0.6 4 lipid phosphatase SDQQPPVTR 177-186

a b

c

 a Fold change represents the observed heavy:light ratio averaged over all experiments.  See Supplementary Methods for details on statistical analysis.

 b Maximum absolute standard deviation (s.d.) calculated from g.s.d.

 c Peptide is also phosphorylated.  See text for additional details.

Table 3   Identification and quantification of changes in O-GlcNAc glycosylation induced by kainic acid

Figure 7: Expression levels of EGR-1, GRASP55, and eIF4G 
following kainic acid treatment of rats.  Cortical neuronal 
lysates were obtained 6 h post-injection of kainic acid or PBS.  
EGR-1 expression changed by 1.8 ± 0.2, GRASP55 expression 
by 0.61 ± 0.09, and eIF4G expression by 1.5 ± 0.1.  Data 
represent the mean ± s.d. for 3 experiments. 
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alone cannot account for the sizeable effect of kainic acid on EGR-1 glycosylation.  

Similarly, the change in eIF4G expression was modest (1.5 ± 0.1) relative to the change 

in its O-GlcNAc level (4.9 ± 0.7), and GRASP55 underwent a decrease in protein 

expression level with kainic acid treatment (0.61 ± 0.09).  To our knowledge, these data 

represent the first demonstration that extracellular stimuli beyond glucose concentrations 

in the brain contribute to the dynamics of O-GlcNAc glycosylation. 

 

Expanding the O-GlcNAc Proteome of the Brain  

In addition to obtaining quantitative information on the dynamics of O-GlcNAc 

glycosylation, we also identified 20 O-GlcNAc peptides corresponding to 6 new and 12 

previously characterized O-GlcNAc proteins from the brain (Table 4).  Although changes 

in their glycosylation levels could not be accurately quantified due to low signal-to-noise 

ratios, these proteins further expand the O-GlcNAc proteome of the brain and highlight 

the abundance of the O-GlcNAc modification in neurons.  For instance, we identified a 

glycosylated peptide on the collapsin response mediator protein-2 (CRMP-2), a protein 

critical for proper axonal development in neurons.  We also observed the O-GlcNAc 

modification on several peptides of the large presynaptic scaffolding protein bassoon as 

well as the phosphatidylinositol-binding clathrin assembly protein.  Finally, we found 

Protein NCBI Entry Function Peptide Sequence Residues

bassoon 9506427 synaptic vesicle cycling VTQHFAK 1338-1444

CCR4-NOT4 34855140 global transcriptional regulation, mRNA metabolism SNPVIPISSSNHSAR 329-343

CRMP-2 599966 axonal guidance, neuronal polarity TVTPASSAK 512-520

erythrocyte protein band 4.1-like 1, isoform L 11067407 cytoskeletal protein DVLTSTYGATAETLSTSTTTHVTK 1460-1483

HCF 109511332 chromatin-associated factor QPETYHTYTTNTPTTAR 1232-1248

LMP-1 62988302 contains PDZ and LIM domain AQPAQSKPQK 28-37

MAP2b 547890 dynamic assembly of microtubles at dendrites VADVPVSEATTVLGDVHSPAVEGFVGENISGEEK 380-413

O -GlcNAcase 18777747 N -acetyl-D-glucosaminidase QVAHSGAK 401-408

PDZ-GEF 34857578 GTP/GDP exchange factor for RAP1/2 SSIVSNSSFDSVPVSLHDER 1215-1233

phosphatidylinositol-binding clathrin assembly protein 16758324 regulation of clathrin assembly SSGDVHLPISSDVSTFTTR 436-454

Rab3 GDP/GTP exchange protein 1947050 regulation of GTP/GDP exchange for Rab3 subfamily G proteins SSSSTTASSSPSTIVHGAHSEPADSTEVGDK 699-729

Rad23b 60422770 translocation ubiquitinated proteins AAAATTTATTTTTSGGHPLEFLR 176-198

SH3p8 2293466 SH3 domain binding protein, synaptic vesicle cycling ITASSSFR 283-290

SRC-1 34863079 coactivation of nuclear receptor transcription INPSVNPGISPAHGVTR 188-204

SynGAP 34098355 inhibitory regulation of Ras pathway, synaptic strength regulation QHSQTPSTLNPTMPASER 1121-1138

Ythdf3 109466336 contains YtH domain IGGDLTAAVTK 145-155

a

Table 4   O-GlcNAc glycosylated proteins identified from the cerebral cortex of kainic acid-stimulated rats

a Peptide is also phosphorylated.  See text for additional details.
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several new O-GlcNAc-modified proteins such as the Rab3 guanine nucleotide exchange 

protein.  

 

We have developed the first quantitative proteomics method to study the 

dynamics of O-GlcNAc glycosylation in vivo.  Our QUIC-Tag approach combines the 

ability to selectively biotinylate and capture O-GlcNAc-modified proteins with a simple 

and efficient isotopic labeling strategy.  When combined with tandem mass spectrometry, 

the method enables unambiguous identification and simultaneous quantification of 

individual O-GlcNAc glycosylation sites.  Notably, the chemoenzymatic tagging method 

does not perturb endogenous O-GlcNAc glycosylation levels, unlike previously reported 

metabolic labeling approaches24.  The cells are rapidly lysed under denaturing conditions, 

and the physiological glycosylation state of proteins is preserved and captured by transfer 

of the ketogalactose-biotin tag.  The isotopic labeling strategy has the advantage of being 

fast, high yielding and inexpensive relative to other methods.  As it does not require 

metabolic labeling or multiple cell divisions for incorporation, the strategy can be readily 

applied to post-mitotic cells such as neurons or pancreatic islets, as well as to tissues 

harvested after in vivo stimulation.  This enables O-GlcNAc glycosylation to be studied 

in more physiological settings and in key cell types where the modification is most highly 

abundant25, 26.   

Our approach has distinct advantages over existing methods for monitoring O-

GlcNAc glycosylation levels.  Although a few examples of site-specific O-GlcNAc 

antibodies have been reported27, 28, such antibodies are limited in scope and are time-

consuming and difficult to generate.  As a result, many studies have utilized general O-
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GlcNAc antibodies to detect global changes in O-GlcNAc glycosylation by 

immunoblotting11, 12.  These general O-GlcNAc antibodies are powerful for many 

applications, but they have limited sensitivity and do not enable direct identification of 

specific proteins or sites of modification.  Recently, BEMAD (beta-elimination followed 

by Michael addition with dithiothreitol), a chemical derivatization technique used to 

identify O-GlcNAc and phosphorylation sites, has been coupled to isotopic labeling to 

study phosphorylation sites in complex mixtures following phosphatase treatment29.  

However, the inherent promiscuity of β-elimination for any modified O-linked serine or 

threonine residues requires extensive internal controls to determine which O-linked 

species is being quantified.  Overall, the scarcity of methods available for quantifying O-

GlcNAc levels highlights the need for the development of new tools for identifying the 

proteins and pathways that regulate O-GlcNAc glycosylation.  

In this study, we identified O-GlcNAc peptides of interest using two modes of 

peptide dissociation, CAD and ETD.  By CAD, the chemoenzymatic tag produces a 

unique fragmentation pattern that permits definitive detection of O-GlcNAc-modified 

peptides.  Peptides displaying the signature are then targeted for sequencing by MS4.  In 

contrast to CAD, ETD generates product ions that retain the O-GlcNAc modification and 

thus can be used to identify exact sites of glycosylation within peptides.   Moreover, 

because sequencing is conducted at the MS/MS stage, ETD forgoes the need for multiple 

additional stages of MS, which incur loss of signal at each stage.  Unlike the related 

electron capture dissociation (ECD) strategy recently employed to map glycosylation 

sites that requires the use of FT instrumentation30, ETD may be performed directly in 

appropriately modified ion trap mass spectrometers whose speed, sensitivity, and 
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accessibility to most laboratories make ETD an ideal emerging technology.  Here, we 

report the first use of ETD technology to study O-GlcNAc glycosylation and demonstrate 

both sequencing and site identification of O-GlcNAc peptides from complex mixtures. 

Our studies indicate that PUGNAc treatment of cortical neurons induces dramatic 

changes in O-GlcNAc glycosylation on specific proteins.  These results suggest that O-

GlcNAc glycosylation is highly reversible and may be rapidly cycled within neurons.  

Notably, we found that only a fraction of the O-GlcNAc-modified proteins undergo 

reversible glycosylation.  Thus, OGT and OGA may be subject to complex cellular 

regulation analogous to that of kinases and phosphatases, such as the influence of 

interacting partners, subcellular targeting and post-translational modifications.  The 

cycling of O-GlcNAc on certain substrates, coupled with more inactive, perhaps 

constitutive, forms of O-GlcNAc glycosylation, may allow for the finely-tuned, selective 

regulation of protein function in response to neuronal stimuli.   

 One of the proteins whose glycosylation level is significantly increased by 

PUGNAc treatment is the transcriptional repressor p66β.  p66β interacts with histone 

tails and mediates transcriptional repression by the methyl-CpG-binding domain protein 

MBD231.  Our observation that p66β is reversibly O-GlcNAc glycosylated reinforces 

growing evidence that O-GlcNAc plays an important role in the regulation of gene 

expression3, 4, 18, 25, 32, 33.  As p66β appears to be sumoylated in vivo in a manner that 

affects its repression potential34, our results also highlight a growing network of post-

translational modifications that may be fundamental for the regulation of transcription, 

and it provides a new target with which to study this process.  
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We also identified changes in glycosylation on several proteins involved in the 

transport and translocation of mRNA.  Such processes are of particular interest in 

neurons, where regulated transport of mRNA from the cell body to dendrites and 

dendritic translation of mRNA are involved in changes in synaptic strength that give rise 

to synaptic plasticity35.  In particular, we found reversible O-GlcNAc glycosylation on 

the zinc finger RNA-binding protein, which is associated with staufen2 granules in 

neurons36 and may be important in the early stages of RNA translocation from the 

nucleus to the dendrites.  We also observed enhanced glycosylation of a peptide from the 

C-terminal domain of nucleoporin 153, a protein necessary for docking and trafficking of 

mRNA37.   

 In addition to studying the reversibility of O-GlcNAc in neurons, we 

demonstrated for the first time that O-GlcNAc glycosylation is regulated in vivo by 

robust excitatory stimulation.  For example, we found that EGR-1, an immediate early 

gene and transcription factor important for long-term memory formation38 and cell 

survival39, undergoes a tenfold increase in glycosylation upon kainic acid stimulation.  As 

the site of glycosylation resides in the N-terminal transactivation domain of EGR-1, one 

possibility is that O-GlcNAc may influence the transactivation potential of EGR-1 and 

modulate the expression of genes such as the synapsins and proteasome components40, 

which play critical roles in synaptic plasticity.   

We also observed an increase in O-GlcNAc glycosylation on the translation factor 

eIF4G upon kainic acid stimulation.  As kainic acid treatment induces excitoxicity in 

addition to synaptic potentiation41 and suppressed translation is a known marker for 

neuronal excitoxicity42, the potential regulation of eIF4G by O-GlcNAc glycosylation 
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may represent a stress-induced response.  It will be important to examine whether other 

cellular stresses induce glycosylation of eIF4G and other proteins to modulate translation 

and neuronal survival.  Consistent with this possibility, other components of the 

translational machinery have been shown to be O-GlcNAc modified, such as p67, which 

binds to the eukaryotic initiation factor 2α (eIF2α) in its glycosylated form and promotes 

protein synthesis by preventing inhibitory phosphorylation of eIF2α43.   

The ability of O-GlcNAc to respond to specific extracellular stimuli suggests a 

potential role for the modification in mediating neuronal communication.  This notion is 

supported by the identification of a growing number of O-GlcNAc glycosylated proteins 

involved in neuronal signaling and synaptic plasticity3, 30.  In the present study, we further 

expand the O-GlcNAc proteome of the brain to include proteins involved in synaptic 

vesicle trafficking, including Rab3 GEP, a protein involved in neurotransmitter release, 

and phosphatidylinositol clathrin protein, which mediates synaptic vesicle endocytosis.  

In keeping with recent work by Vosseller and colleagues30, we find that the presynaptic 

protein bassoon, which is necessary for the creation of stable synapses and proper 

neuronal communication, is O-GlcNAc modified.  We also identify O-GlcNAc 

glycosylation on signal transduction proteins such as the kinase AAK1, which is involved 

in clathrin-mediated synaptic vesicle endocytosis, and the synaptic Ras GTPase 

activating protein SynGAP, which plays a critical role in AMPA (alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptor trafficking and synapse formation.  

Finally, our work highlights the emergent interplay between O-GlcNAc 

glycosylation and phosphorylation.  For example, we identified a glycosylated peptide on 

bassoon that is likewise phosphorylated in vivo44.  Moreover, the axonal guidance protein 
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CRMP-2 is phosphorylated at two residues within the glycopeptide identified in our 

studies45.  Interestingly, when hyperphosphorylated within the residues of this peptide, 

CRMP-2 appears as a component of the neurofibrillary tangles associated with 

Alzheimer’s disease (AD).  This is reminiscent of the microtubule-associated protein tau, 

which is also O-GlcNAc glycosylated but exists in hyperphosphorylated form in the AD 

brain46.  Deciphering the mechanisms that regulate the interplay of glycosylation and 

phosphorylation for these and other proteins may have important ramifications for the 

study of neuronal signaling and neurodegenerative disorders. 

In summary, we demonstrate a new quantitative proteomics strategy for studying 

the dynamics of O-GlcNAc glycosylation.  Our findings reveal that the O-GlcNAc 

modification is reversible and dynamically regulated in neurons, and is found on many 

proteins essential for synaptic function.  These observations, along with the discovery 

that excitatory stimulation can induce O-GlcNAc glycosylation in the brain, suggest that 

O-GlcNAc may represent an important post-translational modification for the regulation 

of neuronal communication.  We envision that further application of this methodology 

will significantly advance our understanding of the regulation of O-GlcNAc 

glycosylation in the nervous system.  

 

Methods 

 

PUGNAc treatment of cortical cultures.  Cortical neuronal cultures were prepared from 

embryonic day 18 or 19 Sprague Dawley rats as described47. Cells (8-12 x 106) were 

plated on 100-mm culture dishes coated with a 0.1 mg ml-1 sterile-filtered, aqueous 
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solution of poly-DL-lysine (Sigma).  Cells were maintained for 4 days at 5% CO2/37 ºC.  

The media was replaced on the second day and immediately prior to PUGNAc treatment.  

PUGNAc (Toronto Research Chemicals) was added to the cells at a final concentration of 

100 µM (10 mM aqueous stock, sterile-filtered).  After 12 h of incubation, the cells were 

scraped off the plates and pelleted.  The media was removed by aspiration, and the cell 

pellet was washed with 1 ml of HEPES-buffered saline and lysed as described below.  

Basal neurons were treated identically, except that a water control was used instead of 

PUGNAc. 

  

Kainic acid administration.  Male Long Evans rats (7 weeks–old, 190–200 g) were 

injected intraperitoneally with either 10–11 mg kg-1 of kainic acid (5 mg ml-1 in 

phosphate buffered saline (PBS); Axxora) or PBS as a control.  Animals were housed 

separately and closely monitored for behavioral changes characteristic of seizure activity.  

Animals were sacrificed at 3 time points, with paired animals demonstrating similar 

kainic-acid induced behavior: 2.5 h post-injection, when animals were displaying class 4 

seizure behavior, 6 h post-injection, when seizure activity was subsiding and animals 

were displaying some similarity to controls, and 10 h post-injection, when animals were 

largely indistinguishable from controls.  At each time point, the cortices were dissected, 

flash frozen in liquid N2 and stored at -80 ºC until further use.  All animal protocols were 

approved by the Institutional Animal Care and Use Committee at Caltech, and the 

procedures were performed in accordance with the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals. 
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Dimethyl labeling.  Protein extracts from PUGNAc-treated cortical neurons and kainic-

acid treated brain samples were prepared, chemonenzymatically labeled, and 

proteolytically digested as described below.  Digested extracts were desalted using a Sep-

Pak C18 cartridge (1 cc bed volume; Waters).  Peptides were eluted in 500 µl of 60% 

aqueous CH3CN, concentrated by speedvac to a volume of 50 µl, and diluted with 450 µl 

of 1 M HEPES pH 7.5.  To begin the reactions, the samples were mixed with 40 µl of a 

600 mM stock of NaCNBH3 or NaCNBD3 (Sigma) in water, followed by 40 µl of 4% 

aqueous formaldehyde (Mallinckrodt Chemicals) or 40 µl of 4% aqueous formaldehyde-

d2 (Sigma).  The reactions were briefly vortexed, allowed to proceed for 10 min at room 

temperature, and then quenched by acidification with 100% AcOH to a pH <4.5.  

Dimethylated peptides were desalted using a Sep-Pak C18 cartridge (1 cc bed volume), 

and the eluents (500 µl in 60% aqueous CH3CN, 0.1% AcOH) were concentrated by 

speedvac to a volume of 100 µl. 

 

Cation exchange and avidin chromatography.  Cation exchange chromatography 

(Applied Biosystems) was performed on dimethylated peptides as described by the 

manufacturer, except that peptides were eluted with a step gradient of 100 mM, 250 mM, 

and 350 mM KCl in 5 mM KH2PO4 containing 25% CH3CN.  Fractionated peptides were 

enriched via monomeric avidin chromatography (Applied Biosystems) as follows: 

peptides were loaded onto the avidin column as described by the manufacturer and 

washed with 2 ml of 2X PBS (1X PBS final concentration: 10.1 mM Na2HPO4, 1.76 mM 

KH2PO4,, 137 mM NaCl, 2.7 mM KCl, pH 6.7), 2 ml of 1X PBS, 1.5 ml of manufacturer 
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wash buffer 2 and 1 ml of ddH20.  Avidin-enriched peptides were eluted as described by 

the manufacturer. 

 

Orbitrap MS analysis and ETD analysis.  Automated nanoscale reversed-phase 

HPLC/ESI/MS was performed as described below and previously3.  For data-dependent 

experiments, the mass spectrometer was programmed to record a full-scan ESI mass 

spectrum (m/z 650–2000, ions detected in orbitrap mass spectrometer with a resolution 

set to 100000) followed by five data-dependent MS/MS scans (relative collision energy = 

35%; 3.5 Da isolation window).  Precursor ion masses for candidate glycosylated 

peptides were identified by a computer algorithm (Charge Loss Scanner; developed in-

house with Visual Basic 6.0) that inspected product ion spectra for peaks corresponding 

to losses of the ketogalactose-biotin and GlcNAc-ketogalactose-biotin moieties.  Up to 

eight candidate peptides at a time were analyzed in subsequent targeted MS4 experiments 

to derive sequence information.   

For all MS experiments, the electrospray voltage was set at 1.8 kV and the heated 

capillary was maintained at 250 °C.  For database analysis to identify O-GlcNAc 

proteins, Bioworks Browser 3.2SR1 (ThermoElectron) software was used to create files 

from MS4 data and ETD MS/MS data.  These files were then directly queried, using the 

SEQUEST algorithm (ThermoElectron), against amino acid sequences in the NCBI 

rat/mouse protein database. 

Quantification was conducted by generating single ion chromatograms from the 

orbitrap MS scans for candidate O-GlcNAc peptides.  Peak areas of isotopic clusters were 

derived using Xcalibur 1.4 software (ThermoElectron) and relative ratios were 
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normalized against the mean relative ratio of standard peptides.  Statistical analysis is 

described in detail below. 

MS/MS experiments by ETD were conducted on a modified LTQ mass 

spectrometer.  A chemical ionization source was added to the rear side of the LTQ to 

allow for the introduction of fluoranthene radical anions for ETD reactions.  For data-

dependent experiments, the mass spectrometer was programmed to record a full-scan ESI 

mass spectrum (m/z 650–2000) followed by five data-dependent MS/MS scans (70–100 

ms ETD activation; 3.5 Da isolation window).  In some cases, targeted MS/MS was 

conducted on up to eight candidate peptides that had demonstrated the signature 

ketogalactose-biotin loss during CAD MS/MS.  All sequenced peptides were manually 

verified. 

 

Chemoenzymatic labeling and streptavidin capture of O-GlcNAc proteins.  

Chemoenzymatic labeling was performed on neuronal lysates as described above.  After 

reaction with the aminooxy biotin derivative, proteins were dialyzed (1 x 10 h, 2 x 3 h) 

into 7 M urea, 10 mM HEPES, pH 7.5 at room temperature followed by 10 mM HEPES 

pH 7.5, 100 mM NaCl, 0.2% Triton-X 100 (2 x 2 h, 1 x 10 h) at 4 °C.  Fresh PMSF (1 

mM) was added at each stage of dialysis.  Proteins were captured on streptavidin beads as 

previously described4 and probed by immunoblotting. 

 

Western blotting.  Lysates were resolved by SDS-PAGE, transferred to nitrocellulose 

membranes and immunoblotted as described previously4.  Total O-GlcNAc levels were 

monitored using the anti-O-GlcNAc antibody CTD110.6 (Covance, 1:5000).  The 
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following primary antibodies were also used: EGR-1 (Upstate Biotechnology, 1:1000), 

GRASP-55 (BD Transduction Laboratories, 1:1000), eIF4G (Santa Cruz, 1:100), OGA (a 

kind gift from Prof. Sidney Whiteheart, University of Kentucky, 1:1000), p66β (Upstate, 

1:500), and SRC-1 (Santa Cruz, 1:100).  After incubation with the secondary antibodies 

IRDye 800 goat anti-rabbit (Rockland Immunochemicals) or Alexa Fluor 680 goat anti-

mouse (Molecular Probes), proteins were visualized and quantified using the Odyssey 

infrared imaging system (LI-COR Biosciences).  To quantify differences in O-GlcNAc 

levels, we measured the relative intensities of the input bands (lysate prior to streptavidin 

capture) and eluent bands (lysate after streptavidin capture) using Odyssey imaging 

software (Version 2.1).  For each sample, we normalized the eluent signals to the input 

signals, and the resulting values from control reactions lacking GalT were subtracted 

from those values obtained from reactions containing GalT to correct for any nonspecific 

background.   

 

Statistical analysis.  Quantification was conducted by generating single ion 

chromatograms from the orbitrap MS scans for candidate O-GlcNAc peptides.  Peak 

areas of isotopic clusters were derived using Xcalibur 1.4 software.  Mean values, 

standard deviations and confidence intervals were calculated using the program Excel on 

log-transformed ratios and reported in the original scale as previously described2,3.  We 

used the geometric standard deviation (g.s.d.) to calculate maximum absolute standard 

deviations. Standard peptide ratios were tested for goodness of fit to the log-normal 

distribution via the D’Agostino-Pearson omnibus test and were used to determine the 

confidence with which changes in experimental peptides could be detected.  
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Experimental peptide ratios were normalized against the slope of the linear regression 

produced by the heavy vs. light forms of standard peptides within experiments.  
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We report an advanced chemoenzymatic strategy for the direct fluorescence 

detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins.  

O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an 

engineered galactosyltransferase enzyme and [3+2] azide-alkyne cycloaddition 

chemistry.  We demonstrate that this approach can be used for direct in-gel 

detection and mass spectrometric identification of O-GlcNAc proteins, identifying 

146 novel glycoproteins from the mammalian brain.  Furthermore, we show that the 

method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels 

and to image O-GlcNAc glycosylated proteins within cells.  As such, this strategy 

enables studies of O-GlcNAc glycosylation that were previously inaccessible and 

provides a new tool for uncovering the physiological functions of O-GlcNAc. 

 

 
Understanding posttranslational modifications to proteins is critical for 

elucidating the functional roles of proteins within the dynamic environment of cells.  O-

linked β-N-acetylglucosamine (O-GlcNAc) glycosylation has emerged as important for 

the regulation of diverse cellular processes, including transcription, cell division, and 

glucose homeostasis1-3.  While new chemical tools have provided rapid, sensitive 

methods for detecting the modification and enabled better control over the activity of O-

GlcNAc enzymes1, 4-10, significant challenges remain with regard to elucidating the 

functions of O-GlcNAc in cells.  For instance, a robust method for the direct fluorescence 

detection of O-GlcNAc proteins in gels would permit monitoring of changes in 

glycosylation levels in response to cellular stimuli and greatly extend the reach of 

existing technologies.  Furthermore, new tools for imaging O-GlcNAc glycosylated 
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proteins would enable the expression and dynamics of the modification to be monitored 

in cells and tissues.  Here, we report an advanced chemoenzymatic labeling strategy that 

addresses these important needs. 

Previous studies have shown that an engineered β-1,4-galactosyltransferase 

enzyme (Y289L GalT) efficiently transfers a ketogalactose moiety from an unnatural 

UDP substrate selectively onto O-GlcNAc-modified proteins.  Treatment with aminooxy-

biotin followed by streptavidin capture and elution allowed for identification of O-

GlcNAc-modified proteins4, 11.  However when I tried applying this strategy to more in-

depth studies of O-GlcNAc proteins such as assaying O-GlcNAc dynamics across 

multiple conditions, I found that this was not an ideal system.  First, the aminooxy-biotin 

reagent appeared to have strong nonspecific protein interactions.  For example, robust 

streptavidin signal was detected in the control (- GalT) lane following in vitro labeling of 

α-crystallin even after three days of dialysis to remove the excess aminooxy biotin.  

Similarly after considerable optimization, I found that quantitative streptavidin capture 

was achieved only when using a large excess of streptavidin beads, in our case equal to 

half the reaction volume, to capture the biotin-labeled proteins in the presence of the 

Figure 1: Chemoenzymatic labeling of O-GlcNAc proteins using [3+2] 
cycloaddition chemistry.  R = biotin or TAMRA.  
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excess free biotin, again even after three days of dialysis.  Second, the aminooxy–ketone 

reaction required conditions of pH 4.5 for 24 hours in the presence of 5 M Urea.  Yet in 

many cases, this prolonged reaction with low pH caused up to 50% of the proteins to 

precipitate out of solution. 

 We therefore investigated whether Y289L GalT 

would accept the UDP-azidogalactose substrate 1 (UDP-

GalNAz), which would allow for labeling of O-GlcNAc 

proteins using [3+2] azide-alkyne cycloaddition chemistry 

(Fig. 1)12-14.  In addition to providing alternative dyes to 

potentially reduce nonspecific interactions, this Cu(I)-

catalyzed cycloaddition reaction would have the advantage of being performed more 

rapidly and at physiological pH.   

I tested the approach using α-crystallin, a known O-GlcNAc-modified protein 

with a low extent (~10%) of glycosylation.  α-Crystallin was treated with 1 and Y289L 

GalT, followed by reaction with 

CuSO4, sodium ascorbate, and the 

biotin-alkyne derivative 2 for 1 h 

at 25 °C.  Analysis by gel 

electrophoresis and blotting with streptavidin conjugated to an IR680 dye showed robust, 

selective labeling of a-crystallin, with no nonspecific labeling in the absence of GalT, 1 

or 2 (Fig. 2). Notably, as little as 250 fmol of a-crystallin  (~25 fmol of glycosylated 

protein) was detectable, highlighting the sensitivity of the approach.  In contrast, other 

Streptavidin-IRDye 680

Anti-α Crystallin

+ – + +
+ + – +
+ + + –

GalT
UDP-GalNAz
Biotin

Figure 2: Selective 
labeling of α-crystallin 

Figure 3: Detection sensitivity of the 
chemoenzymatic approach 
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methods such as O-GlcNAc antibodies or lectins failed to detect the O-GlcNAc 

modification on a-crystallin (Fig. 3)4. 

I next examined whether this approach could be used for direct in-gel 

fluorescence detection and proteome-wide analyses of O-GlcNAc glycosylated proteins.  

Nuclear and cytosolic protein fractions from rat forebrain were azide-labeled and then 

Figure 4: Enrichment and in-gel fluorescence detection of O-GlcNAc-modified 
proteins in 1D (top and middle) and 2D (bottom) gels.  For the 1D gels, 15 µg 
of nuclear (top) or cytoplasmic (middle) protein was loaded in the input and FT 
lanes; material captured from 470 µg of protein was loaded in the eluent lanes. 
FT = flow-through. 
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reacted with the tetramethyl-6-carboxyrhodamine (TAMRA)-alkyne derivative 3.  The O-

GlcNAc proteins were immunoprecipitated using an anti-TAMRA antibody to remove 

non-glycosylated proteins from the lysate, resolved by 1D or 2D gel electrophoresis, and 

visualized by in-gel fluorescence imaging (Fig. 4).  Importantly, minimal nonspecific 

labeling was detected with the TAMRA-alkyne dye (Fig. 4, -GalT control lanes), and I 

observed efficient capture and enrichment of the TAMRA-labeled proteins (+GalT, 

eluent and flow-through lanes).  

To identify O-GlcNAc proteins, bands from the gel were excised, proteolytically 

digested, and subjected to nanoLC-MS/MS analysis.  The data acquisition and 

subsequent database searching methodologies employed are detailed in the methods 

section.  In total, Daniel Mason and I identified 213 proteins, representing 67 previously 

known and 146 novel, putative O-GlcNAc modified proteins (Table 1).  The majority of 

the proteins identified participate in neuronal signaling and synaptic function, suggesting 

important functional roles for O-GlcNAc in neuronal communication (Fig. 5).  

Surprisingly, in contrast to previous proteomic analyses of brain tissue5,15,16, we identified 

many proteins involved in metabolism and biosynthesis, consistent with roles for O-

GlcNAc in nutrient sensing and cell survival observed in other tissues1-3.  Interestingly, 

the metabolic proteins included 9 of the 10 enzymes required for glycolysis, suggesting a 

previously unidentified level of control by O-GlcNAc of this pathway.  Thus, the 

approach enables the identification of a large number of unique O-GlcNAc modified 

proteins and has the advantages of ease and accessibility (e.g., short incubation times, 

simple gel-based detection and separation versus multiple chromatography steps, high-

throughput analyses, commercially available reagents).  
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Understanding the cellular 

dynamics of O-GlcNAc glycosylation 

will be critical for elucidating its 

functional roles in both physiological 

and diseased states.  However, few 

methods exist for quantifying changes 

in O-GlcNAc glycosylation in 

response to cellular stimuli.  

Glycosylation levels are typically 

monitored by immunoblotting with a 

general O-GlcNAc antibody17, which 

detects only a limited number of O-

GlcNAc proteins and affords no 

opportunity to identify proteins 

undergoing changes in glycosylation.  

We examined whether our 

chemoenzymatic approach could 

overcome such limitations.   

 HeLa cells were stimulated with 

PUGNAc (O-(2-acetamido-2-deoxy-D-

glucopyranosylidene)amino-N-

phenylcarbamate), an inhibitor of the β-N-acetylglucosaminidase enzyme that removes 

O-GlcNAc, and the O-GlcNAc-modified proteins were labeled and analyzed as before.  

Figure 5: Functional classification of O-
GlcNAc proteins from rat brain identified by 
MS 

Figure 6: Direct detection of changes 
in O-GlcNAc glycosylation levels upon 
cellular stimulation. Tubulin controls 
indicate equal loading of protein in 
each lane. 
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PUGNAc treatment resulted in a 163 ± 3% increase in overall O-GlcNAc glycosylation 

levels, and interestingly, ranged from 136–176%, depending on the specific protein (Fig. 

6).  The varying extent to which O-GlcNAc is induced upon cellular stimulation may 

indicate complex regulatory control of the modification.  Thus, this approach provides a 

new method to visualize and quantify dynamic changes in protein O-GlcNAc 

glycosylation which, when coupled with in-gel digestion and MS analyses as described 

above, will enable the identification of specific proteins undergoing those changes.  

O-GlcNAc is known to modify a variety of components of the transcriptional 

machinery, including RNA polymerase II18, CREB19, and histone lysine 

methyltransferase MLL520.  Furthermore proteomic studies have demonstrated that 

transcription factors are over-represented among identified O-GlcNAc proteins1, 5.  Thus I 

next examined whether our approach could be used to investigate O-GlcNAc on 

chromatin.  DNA and proteins were cross-linked with formaldehyde, the chromatin was 

fragmented, and the lysate was azide-labeled and then reacted with 3.  The O-GlcNAc 

proteins were immunoprecipitated using an anti-TAMRA antibody, the associated DNA 

was separated from the proteins, and the DNA was amplified by PCR.  I observed an 

enrichment of eluent signal on the POMC promoter specifically in the presence of 

GalNAz and TAMRA antibody but no enrichment on the control 18S ribosomal RNA 

promoter (Fig. 7).  This suggests that our approach can be used to identify specific gene 

promoters that are enriched in O-GlcNAc levels.  To more broadly identify such 

promoters, in collaboration with Jessica Rexach and Rosemarie Tsoa, 

immunoprecipitated O-GlcNAc-associated chromatin and then assayed the results on a 

promoter array.  Using this approach, we identified 154 promoters in which O-GlcNAc 
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levels were specifically enriched (Table 2).  These enriched promoters are distributed 

evenly across the mouse chromosomes (Fig. 8) and are over-represented in genes 

important for neural tube development as well as genes important in cell-cell adhesion 

and alkali metal ion binding.  In particular, O-GlcNAc levels were enriched on the 

promoter of four different potassium channels: Kcnt1, Kcnab1, Kcne3, and Kcnj14.  Thus 

this approach enables the identification of chromatin regions enriched in O-GlcNAc 

levels and could be used to identify dynamic changes in O-GlcNAc levels on the 

chromatin.  Furthermore this approach could be expanded upon with a second 

immunoprecipitation step to determine colocalization of O-GlcNAc and specific proteins 

or other modifications on a specific region of DNA.   

Finally, Jessica Dweck examined whether O-GlcNAc modified proteins could be 

POMC

IgG

GalNAz

TAMRA Ab

–

+

+ –

– +

– + +

–

+

+ –

– +

– + +

–

+

+ –

– +

– + +

Input Eluent Input Eluent

18S Ribosomal RNA

–

+

+ –

– +

– + +

Figure 7: Detection of O-GlcNAc levels on chromatin 

Chr1

Chr2

Chr3

Chr4

Chr5

Figure 8: O-GlcNAc levels are distributed evenly across the mouse chromosomes. 
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chemoenzymatically tagged and 

imaged in cells.  HeLa cells and 

cultured cortical neurons were fixed, 

permeabilized, and labeled with 1 and 

Y289L GalT, followed by biotin-

alkyne 2 or TAMRA-alkyne 3. The 

biotin-treated cells were further 

incubated with a streptavidin-

AlexaFluor 488 conjugate.  Notably, 

addition of exogenous GalT and 1 to 

the cells led to robust labeling of O-

GlcNAc glycosylated proteins (Fig. 

9).  Although the TAMRA-alkyne 3 

produced background labeling in the absence of 1 (data not shown), strong staining and 

minimal background labeling were observed using biotin-alkyne 2.  Consistent with the 

reported localization of O-GlcNAc enzymes1,3, O-GlcNAc glycosylated proteins were 

found in both the nucleus and cytoplasm.  Moreover, Jessica observed robust staining of 

proteins along neuronal processes, corroborating our mass spectrometric identification of 

many O-GlcNAc proteins involved in synaptic signaling.  This is the first example of 

exploiting chemical tagging methods to image O-GlcNAc-modified proteins within cells.  

The approach affords high labeling sensitivity without perturbing physiological pathways 

and should be amenable to tissue samples — features that may complicate other 

strategies such as metabolic labeling.  

Figure 9: Fluorescence imaging of O-
GlcNAc proteins (green) in HeLa cells 
(left) or cortical neurons (right).  Nuclei 
were stained with DAPI (blue).  Scale 
bars = 10 µm (HeLa) and 25 µm 
(neurons). 
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In summary, we describe an advanced chemoenzymatic labeling approach that 

exploits [3+2] cycloaddition chemistry to attach fluorescent and biotin tags to O-GlcNAc 

residues.  This method enables studies of O-GlcNAc glycosylation that were previously 

inaccessible.  The ability to label proteins selectively with a fluorescent reporter group 

permits rapid and direct in-gel detection of O-GlcNAc proteins, facilitating proteomic 

analyses and providing a new method to quantify dynamic changes in glycosylation.  

Covalent labeling of proteins allows for cellular imaging of O-GlcNAc proteins in their 

native biological environment.  Finally, this approach was developed in conjunction with 

researchers at Invitrogen with the goal of providing commercially available reagents that 

are now accessible to the wider research community.  We anticipate that this new 

approach will be a powerful tool for advancing our understanding of the physiological 

functions and dynamic regulation of O-GlcNAc glycosylation within cells.  
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Table 1: O-GlcNAc glycosylated proteins identified by mass spectrometry. Proteins 
are tabulated by function, and the accession number and number of peptides (# Pep.) 
found for that protein are listed.  Previously identified O-GlcNAc proteins are indicated.  
† represents proteins that have been previously identified as O-GlcNAc proteins by any 
method.  †† represents proteins that have been previously validated to contain O-GlcNAc 
either by direct identification of the O-GlcNAc modification by mass spectrometry or by 
radioactive GalT labeling.  
 

Protein Accession Number # Pep. Known 
        
Cell Organization / Dynamics       

ACTA2 Actin alpha-2 chain 
IPI00008603.1, IPI00021428.1, 
IPI00023006.1, IPI00025416.3, 
IPI00110827.1 

8 † 

ACTB Actin beta chain IPI00021439.1, IPI00021440.1, 
IPI00848058.1 27 † 

Ank2 Similar to Ankyrin 2 isoform 1 IPI00554111.2 10   
Ank3 Ankyrin 3 IPI00199445.2 19 †† 
ANXA2 Annexin A2 IPI00797556.1, IPI00848164.1 3   
Anxa6 Annexin A6 IPI00421888.3, IPI00831745.1 7   
ARPC2 Actin-related protein 2/3 complex 
subunit 2 

IPI00005161.3, IPI00661414.2, 
IPI00764535.2 3   

CAPZB Isoform 1 of F-actin capping protein 
subunit beta 

IPI00026185.5, IPI00191444.3, 
IPI00218782.2, IPI00269481.7, 
IPI00365283.1, IPI00406800.4, 
IPI00474883.2, IPI00642256.1, 
IPI00776140.1 

8 †† 

Ckap5 Cytoskeleton associated protein 5 
IPI00317134.3, IPI00337930.4, 
IPI00764313.1, IPI00764540.1, 
IPI00767392.1, IPI00769262.1 

4   

Crym Mu-crystallin homolog IPI00214448.1 14   
Cyln2 CAP-Gly domain-containing linker 
protein 2 IPI00195929.1 5   

Dnm1 Isoform 1 of Dynamin-1 
IPI00272878.6, IPI00331293.3, 
IPI00413140.3, IPI00657691.2, 
IPI00816287.2 

18   

Dync1h1 Dynein heavy chain, cytosolic IPI00327630.1 29 † 

Epb4.1l1 Isoform S of Band 4.1-like protein 1 IPI00203237.2, IPI00203239.2, 
IPI00561718.1 19   

Epb4.1l3 Type II brain 4.1 minor isoform 
IPI00204503.1, IPI00204506.1, 
IPI00556956.2, IPI00558692.1, 
IPI00561669.1, IPI00568756.1 

14 † 

Fscn1 Fascin IPI00353563.4, IPI00763106.1, 
IPI00767873.1 13 † 

Ina Alpha-internexin IPI00135965.2, IPI00211936.2, 
IPI00848753.1 6 † 

LOC367171 Microtubule-associated protein 4 
isoform 1 IPI00421342.2 15 †† 

Map1b similar to Microtubule-associated 
protein 1B IPI00372009.3 13 †† 

Mtap1a Microtubule-associated protein 1A IPI00199693.2 14   
Mtap2 Isoform MAP2x of Microtubule-
associated protein 2 

IPI00206171.1, IPI00231051.1, 
IPI00328017.4 42 †† 
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Mtap6 STOP protein IPI00210119.1, IPI00734617.2 14   

Myh10 Myosin, heavy polypeptide 10 

IPI00338604.4, IPI00391300.3, 
IPI00397526.2, IPI00479307.3, 
IPI00515398.1, IPI00757312.1, 
IPI00790503.2 

4   

Myo5a Myosin-Va IPI00118120.1, IPI00214038.1, 
IPI00390377.2, IPI00776221.1 5 † 

NCKAP1 Nck-associated protein 1 

IPI00031982.1, IPI00214442.2, 
IPI00319320.4, IPI00409684.2, 
IPI00656204.1, IPI00755241.1, 
IPI00766452.1 

7   

Rad23b UV excision repair protein RAD23 
homolog B 

IPI00008223.3, IPI00108774.1, 
IPI00210495.1 23 †† 

RP1-14N1.3 Ifapsoriasin IPI00397801.4, IPI00787398.1 3   
Snip SNAP25-interacting protein IPI00190619.3 9   
Spna2 Spectrin alpha chain, brain IPI00209258.4 4   
Spnb2 Isoform 1 of Spectrin beta chain, brain 
1 IPI00319830.7, IPI00555287.2 51 †† 

SPTAN1 Spectrin alpha, non-erythrocytic 1 
IPI00478292.3, IPI00744706.1, 
IPI00745092.1, IPI00843765.1, 
IPI00844215.1 

3   

TUBA4A Tubulin alpha-4A chain IPI00007750.1, IPI00794663.1 18 †† 
TUBB Tubulin beta chain IPI00011654.2 16 † 
TUBB2A Tubulin beta-2A chain IPI00013475.1 26 † 
TUBB2B Tubulin beta-2B chain IPI00031370.3 155   
TUBB2C Tubulin beta-2C chain IPI00007752.1 65 † 
TUBB3 Tubulin beta-3 chain IPI00013683.2 10   
TUBB4 Tubulin beta-4 chain IPI00023598.2 42 † 

Wasf1 WAS protein family member 1 IPI00022007.1, IPI00213598.1, 
IPI00471372.2 6   

Wdr1_predicted WD repeat protein 1 IPI00215349.5 8   
        
Cellular Communication / Signal 
Transduction       

Amph1 Amphiphysin IPI00196508.1 3   

Ap2a1 Isoform A of AP-2 complex subunit 
alpha-1 

IPI00108780.6, IPI00203346.4, 
IPI00567919.2, IPI00622911.1, 
IPI00764057.1, IPI00765430.1, 
IPI00778656.1 

10 †† 

Ap2a2 AP-2 complex subunit alpha-2 IPI00310131.5, IPI00471901.3, 
IPI00753468.1 8   

Ap2b1 Isoform 1 of AP-2 complex subunit 
beta-1 

IPI00119689.1, IPI00220991.2, 
IPI00231502.3, IPI00333383.2, 
IPI00378063.1, IPI00389753.1, 
IPI00784156.1, IPI00784366.1, 
IPI00790702.1 

6   

Ap3b2_predicted Similar to Adaptor-related 
protein complex 3 beta 2 subunit IPI00368200.2 6 †† 

Bsn Protein bassoon IPI00212553.3, IPI00556925.1 98 †† 

Cadps Calcium-dependent secretion activator 
1 

IPI00199577.5, IPI00199604.4, 
IPI00297412.4, IPI00330163.3, 
IPI00374128.3, IPI00384808.2, 
IPI00478178.4, IPI00668903.1, 
IPI00670114.1, IPI00747400.1 

13   

CAMK2A Isoform A of Calcium/calmodulin- IPI00215715.3, IPI00550056.1 51   
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dependent protein kinase type II alpha chain 
Camkv CaM kinase-like vesicle-associated 
protein IPI00205056.1 5   

Coro1a Coronin-1A IPI00210071.3 13 † 
Crmp1 Crmp1 protein IPI00312527.4, IPI00561065.2 8   

CSNK2A1 Casein kinase 2 alpha 1 
polypeptide 

IPI00016613.2, IPI00120162.1, 
IPI00192586.1, IPI00408176.2, 
IPI00744507.1 

14 †† 

Ctnnd2 Isoform 1 of Catenin delta-2 IPI00136135.1, IPI00228632.1, 
IPI00553941.3 5 †† 

Cyfip2 Cytoplasmic FMR1-interacting protein 
2 

IPI00405625.9, IPI00719600.4, 
IPI00763802.1, IPI00769269.1, 
IPI00789699.2 

10   

Dclk1 Isoform 1 of Serine/threonine-protein 
kinase DCLK1 IPI00468380.4, IPI00778626.1 8   

Dctn1 Dynactin subunit 1 IPI00196703.1 8   

Dpysl3 Dihydropyrimidinase-related protein 3 IPI00029111.2, IPI00122349.1, 
IPI00203250.1, IPI00556970.1 7   

Dpysl4 Similar to Dihydropyrimidinase-related 
protein 4 

IPI00366087.1, IPI00558008.1, 
IPI00779982.1 9   

Dpysl5 Dihydropyrimidinase-related protein 5 IPI00331981.7 6   

Erc1;LOC100048600 Isoform 1 of 
ELKS/RAB6-interacting/CAST family member 
1 

IPI00117731.1, IPI00117733.1, 
IPI00171230.5, IPI00181684.4, 
IPI00201791.3, IPI00216719.1, 
IPI00331792.4, IPI00374976.1, 
IPI00457547.1, IPI00557326.1, 
IPI00558224.1 

8   

Gdi1 Rab GDP dissociation inhibitor alpha IPI00324986.1 52   
GIT1 Isoform 1 of ARF GTPase-activating 
protein GIT1 

IPI00384861.3, IPI00470095.1, 
IPI00649373.1, IPI00795611.1 4   

Gnaq Guanine nucleotide binding protein 
alpha q polypeptide IPI00228618.5,IPI00230868.4 4   

GNB1 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta 1 IPI00026268.3, IPI00120716.3 3   

Gnb2l1 Guanine nucleotide-binding protein 
subunit beta 2-like 1 

IPI00317740.5, IPI00641950.3, 
IPI00848226.1 5   

Homer1 Isoform 1 of Homer protein homolog 
1 IPI00210570.1 6   

Jup Junction plakoglobin IPI00229475.1, IPI00554711.2, 
IPI00789324.1 4 † 

LOC315676 Similar to Dmx-like 2 IPI00369671.3 9   
LOC681252 Similar to Myristoylated alanine-
rich C-kinase substrate IPI00371946.3, IPI00480687.2 4   

LOC685144;LOC681927 Similar to SEC24 
related gene family, member C isoform 3 

IPI00365299.2, IPI00388782.2, 
IPI00763148.1, IPI00767454.1, 
IPI00769013.1 

4 † 

Ncdn NORBIN IPI00205396.1, IPI00331299.9, 
IPI00549543.1, IPI00555661.1 11   

NSF Vesicle-fusing ATPase IPI00006451.6, IPI00210635.2, 
IPI00656325.2 10   

Ogt UDP-N-acetylglucosamine - peptide N-
acetylglucosaminyltransferase 110 kDa 
subunit 

IPI00231503.4, IPI00420870.4, 
IPI00845528.1 10 †† 

Pacsin1 Protein kinase C and casein kinase 
substrate in neurons protein 1 IPI00208245.1 7   
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Pclo Isoform 1 of Protein piccolo IPI00203018.1, IPI00231831.1, 
IPI00758462.1 37 †† 

Picalm Isoform 2 of Phosphatidylinositol-
binding clathrin assembly protein IPI00194959.5 19 †† 

Plcb1 1-phosphatidylinositol-4,5-
bisphosphate phosphodiesterase beta 1 

IPI00192534.1, IPI00468121.1, 
IPI00558422.1 3   

Ppp1r12a Isoform 1 of Protein phosphatase 1 
regulatory subunit 12A 

IPI00183002.6, IPI00211695.1, 
IPI00397730.3, IPI00400680.1, 
IPI00400681.1, IPI00413191.2, 
IPI00779684.1 

21   

Ppp3ca Isoform 1 of Serine/threonine-protein 
phosphatase 2B catalytic subunit alpha 
isoform 

IPI00121545.1, IPI00179415.4, 
IPI00201410.1, IPI00559849.1, 
IPI00747748.1, IPI00756703.1 

17   

Prkacb Isoform 1 of cAMP-dependent protein 
kinase beta-catalytic subunit 

IPI00263822.7, IPI00560492.1, 
IPI00742329.1, IPI00742400.1, 
IPI00742438.1 

3   

Prkwnk1 Serine/threonine-protein kinase 
WNK1 IPI00200557.1, IPI00561348.1 8 †† 

Ptpn23 Protein tyrosine phosphatase non-
receptor type 23 IPI00782007.1 23   

Rap1gds1_predicted Similar to RAP1, GTP-
GDP dissociation stimulator 1 

IPI00369496.3, IPI00763518.1, 
IPI00777342.1, IPI00778032.1 8   

Rapgef2_predicted Similar to Rap guanine 
nucleotide exchange factor 2 IPI00368346.3 7   

RGD1562629_predicted Similar to Protein 
neurobeachin IPI00567941.2 5   

RGD1563580_predicted Similar to AP2 
associated kinase 1 

IPI00556943.2, IPI00559288.2, 
IPI00786812.1 8   

Rims1 Isoform 1 of Regulating synaptic 
membrane exocytosis protein 1 

IPI00200893.1, IPI00206312.1, 
IPI00568548.2, IPI00780218.1 3   

Rph3a Rabphilin-3A IPI00189927.1, IPI00389991.3 3   
Sec23ip Similar to Sec23 interacting protein IPI00359906.2 7   
Sec31l1 Isoform 1 of Protein transport protein 
Sec31A IPI00210147.2, IPI00515833.1 15   

Shank2 Isoform 2 of SH3 and multiple ankyrin 
repeat domains protein 2 

IPI00231759.3, IPI00231761.1, 
IPI00400661.2, IPI00470293.3, 
IPI00475709.1 

17 †† 

SNAP91 Isoform 1 of Clathrin coat assembly 
protein AP180 

IPI00006612.2, IPI00122409.1, 
IPI00215134.1, IPI00230165.1, 
IPI00408269.4, IPI00646376.2, 
IPI00652215.1, IPI00653617.1 

41 †† 

Syn1 Isoform IA of Synapsin-1 IPI00191335.1 4 †† 

Synj1 Similar to Synaptojanin-1 IPI00210153.3, IPI00229626.7, 
IPI00231602.2, IPI00850983.1 12   

Ywhab Isoform Long of 14-3-3 protein 
beta/alpha IPI00230837.5, IPI00760126.1 4   

YWHAE 14-3-3 protein epsilon IPI00000816.1 6   
YWHAG 14-3-3 protein gamma IPI00220642.7 5   
Ywhaq Isoform 1 of 14-3-3 protein theta IPI00408378.4, IPI00656269.1 7 † 
        
Intracellular Transport       
ATP2A2 Isoform SERCA2A of 
Sarcoplasmic/endoplasmic reticulum calcium 
ATPase 2 

IPI00468900.4 9   

ATP6V0A1 Isoform 1 of Vacuolar proton IPI00465178.5, IPI00743576.1, 15 † 
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translocating ATPase 116 kDa subunit A 
isoform 1 

IPI00796045.1 

ATP6V1A Vacuolar ATP synthase catalytic 
subunit A 

IPI00007682.2, IPI00373076.1, 
IPI00407692.3, IPI00844689.1 32   

Atp6v1b2 Vacuolar ATP synthase subunit B 
brain isoform IPI00119113.3, IPI00199305.1 39   

Dnm1l Isoform 4 of Dynamin-1-like protein IPI00193568.3, IPI00208284.3 9   
Gorasp2 Golgi reassembly stacking protein 2  IPI00362488.1 7 †† 
NAPA Alpha-soluble NSF attachment protein IPI00009253.2, IPI00189925.1 4   
Nup153 Similar to Nuclear pore complex 
protein Nup153 IPI00480641.3, IPI00768316.1 5 †† 

Pacs1 Isoform PACS-1a of Phosphofurin 
acidic cluster sorting protein 1 IPI00324270.4 4   

SEPT5 Septin-5 IPI00017731.1, IPI00559449.2, 
IPI00655290.2 4   

Sept6_predicted 49 kDa protein 
IPI00363930.4, IPI00420385.4, 
IPI00454142.5, IPI00454143.3, 
IPI00780333.1 

3   

SEPT7 Isoform 1 of Septin-7 IPI00033025.8, IPI00204899.2, 
IPI00224626.3, IPI00816201.1 3   

Sept11 Isoform 3 of Septin-11 IPI00420385.4, IPI00454142.5 19   
Slc25a12 Calcium-binding mitochondrial 
carrier protein Aralar1 IPI00308162.3 15   

Slc25a4 ADP/ATP translocase 1 IPI00115564.5, IPI00231927.11, 
IPI00676622.1 4   

SLC25A5 ADP/ATP translocase 2 
IPI00007188.5, IPI00127841.3, 
IPI00200466.3, IPI00363182.2, 
IPI00558425.2, IPI00565507.2 

3   

Srprb Signal recognition particle receptor B 
subunit 

IPI00196656.2, IPI00476177.2, 
IPI00679202.2 6   

VCP Transitional endoplasmic reticulum 
ATPase 

IPI00022774.3, IPI00622235.5, 
IPI00676914.1 12 † 

Vdac2 Voltage-dependent anion-selective 
channel protein 2 IPI00122547.1, IPI00198327.2 5   

        
Metabolism / Biosynthesis       

Acot7 Isoform B of Cytosolic acyl coenzyme 
A thioester hydrolase 

IPI00125939.2, IPI00213571.1, 
IPI00230588.1, IPI00284094.4, 
IPI00326904.5, IPI00566122.1, 
IPI00672508.1 

3   

Aldoal1 Fructose-bisphosphate aldolase 
IPI00195851.1, IPI00221402.7, 
IPI00231734.5, IPI00465439.5, 
IPI00796333.1 

4   

Aldoc Fructose-bisphosphate aldolase C IPI00231736.9 15   
Atp5a1 ATP synthase subunit alpha, 
mitochondrial precursor IPI00396910.1 11 † 

ATP5B ATP synthase subunit beta, 
mitochondrial precursor IPI00303476.1, IPI00551812.1 13   

Ctbp1 Isoform 1 of C-terminal-binding protein 
1 

IPI00128155.2, IPI00392657.1, 
IPI00754844.1, IPI00780254.1, 
IPI00845557.1 

34   

Dlat Dihydrolipoyllysine-residue 
acetyltransferase component of pyruvate 
dehydrogenase complex, mitochondrial 
precursor 

IPI00231714.3, IPI00765153.1 3   
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Eno1 Alpha-enolase IPI00462072.3, IPI00464815.11 40 † 
Eno2 Gamma-enolase IPI00326412.4 7 † 
Fasn Fatty acid synthase IPI00200661.1 4 † 
Gda Guanine deaminase IPI00325884.5, IPI00851130.1 16   

Glud1 Glutamate dehydrogenase 1, 
mitochondrial precursor 

IPI00016801.1, IPI00027146.1, 
IPI00114209.1, IPI00324633.2, 
IPI00753095.1 

8   

Glul Glutamine synthetase IPI00324020.6, IPI00626790.2 10   
Got1 Aspartate aminotransferase, 
cytoplasmic IPI00421513.8 11   

Got2 Aspartate aminotransferase, 
mitochondrial precursor IPI00210920.1 17   

Gpi Glucose-6-phosphate isomerase IPI00364311.1 3   
Hk1 Hexokinase-1 IPI00202543.1 22   
Hmgcs1 Hydroxymethylglutaryl-CoA 
synthase, cytoplasmic IPI00188158.1 4   

IDH3A Isoform 1 of Isocitrate dehydrogenase 
[NAD] subunit alpha, mitochondrial precursor 

IPI00030702.1, IPI00198720.1, 
IPI00459725.2 3 † 

LOC316632 NADH dehydrogenase 1 alpha 
subcomplex 10-like protein IPI00189759.1, IPI00561513.1 3   

LOC360975 2-oxoglutarate dehydrogenase 
E1 component, mitochondrial precursor 

IPI00215093.1, IPI00390995.2, 
IPI00782594.1 3   

Ndufs1 NADH-ubiquinone oxidoreductase 75 
kDa subunit, mitochondrial precursor IPI00358033.1 56   

Ndufs2 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 2, mitochondrial precursor 

IPI00128023.3, IPI00471647.1, 
IPI00830766.1 3   

Oxr1 Similar to Oxidation resistance 1 IPI00199013.7, IPI00764149.1 3   
Pdha1 Pyruvate dehydrogenase E1 
component alpha subunit somatic form, 
mitochondrial precursor 

IPI00191707.4, IPI00337893.2, 
IPI00393034.3, IPI00764176.1, 
IPI00768086.2 

3   

Pdhb Pyruvate dehydrogenase E1 
component subunit beta, mitochondrial 
precursor 

IPI00194324.2 7   

Pfkm 6-phosphofructokinase muscle type IPI00331541.5 12   
Pfkp 6-phosphofructokinase type C IPI00231954.5 4   

Pgam1 Phosphoglycerate mutase 1 
IPI00421428.9, IPI00453476.2, 
IPI00457898.3, IPI00549725.6, 
IPI00740800.1 

9 † 

Pgk1 Phosphoglycerate kinase 1 IPI00231426.6, IPI00372910.2, 
IPI00555069.3 9 † 

Phgdh D-3-phosphoglycerate dehydrogenase IPI00225961.5, IPI00475835.3 3 † 
Pkm2 Isoform M1 of Pyruvate kinase 
isozymes M1/M2 IPI00231929.6 11 † 

Psat1 Phosphoserine aminotransferase IPI00331919.5 6   
Pygb Glycogen phosphorylase brain form IPI00229796.3, IPI00357945.1 6   
Taldo1 Transaldolase IPI00124692.1, IPI00190377.2 3   
Tpi1 Triosephosphate isomerase IPI00231767.5,IPI00339162.1 7 † 
Tst Thiosulfate sulfurtransferase IPI00366293.3, IPI00566218.1 3   
        
mRNA / Protein Processing       

Carm1 Isoform 1 of Histone-arginine 
methyltransferase CARM1 

IPI00125950.2, IPI00279931.1, 
IPI00366497.3, IPI00412880.2, 
IPI00568674.2, IPI00639957.2, 
IPI00650083.2, IPI00655258.2, 

5   
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IPI00830611.1 

Cct2 T-complex protein 1 subunit beta IPI00366218.3 3   
Cct8_predicted Similar to T-complex protein 1 
subunit theta IPI00370815.3 28 † 

Fbxo2 F-box only protein 2 IPI00153176.2, IPI00209303.1 3   
Fkbp4 Similar to FK506-binding protein 4 IPI00358443.3, IPI00767393.1 3   

HNRPA1 Isoform A1-B of Heterogeneous 
nuclear ribonucleoprotein A1 

IPI00215965.2, IPI00224251.5, 
IPI00465365.4, IPI00553777.2, 
IPI00748262.1, IPI00797148.1 

9 † 

Hnrpa2b1_predicted Heterogeneous nuclear 
ribonucleoproteins A2/B1 

IPI00212969.2, IPI00358211.3, 
IPI00396378.3, IPI00405058.6, 
IPI00414696.1, IPI00622847.2, 
IPI00828488.1, IPI00853914.1 

7 † 

Hnrpa3 Isoform 1 of Heterogeneous nuclear 
ribonucleoprotein A3 

IPI00269661.1, IPI00269662.1, 
IPI00419373.1, IPI00455134.1, 
IPI00459722.2, IPI00461800.1, 
IPI00466185.3, IPI00470076.5, 
IPI00623731.1, IPI00660502.1, 
IPI00664047.1, IPI00664791.1 

12 † 

Hnrpc Heterogeneous nuclear 
ribonucleoprotein C 

IPI00130343.2, IPI00187860.3, 
IPI00216592.2, IPI00223443.1, 
IPI00223444.1, IPI00477313.3, 
IPI00759596.1, IPI00759870.1, 
IPI00759886.1, IPI00781839.1 

4   

Hnrpk Hnrpk protein 

IPI00194974.2, IPI00216049.1, 
IPI00216746.1, IPI00223253.1, 
IPI00224575.1, IPI00514561.1, 
IPI00777007.1, IPI00780608.1, 
IPI00807545.1 

37 † 

Hnrpul2 Heterogeneous nuclear 
ribonucleoprotein U-like protein 2 

IPI00222208.2, IPI00360386.3, 
IPI00561756.2, IPI00565127.2, 
IPI00756515.1, IPI00849047.1 

4   

Hsp110 Isoform HSP105-alpha of Heat shock 
protein 105 kDa 

IPI00123802.5, IPI00224109.2, 
IPI00471835.1, IPI00568014.2, 
IPI00778569.1, IPI00779326.1, 
IPI00830204.1 

3   

Hspa12a_predicted Similar to Heat shock 
protein 12A IPI00358537.2 6   

Hspa4 Heat shock 70 kDa protein 4 IPI00387868.2 10 †† 

Hspd1 Isoform 1 of 60 kDa heat shock 
protein, mitochondrial precursor 

IPI00308885.6, IPI00339148.2, 
IPI00472102.3, IPI00763910.1, 
IPI00784154.1, IPI00790763.1 

36 †† 

Hsph1 Heat shock protein 105 kDa IPI00218993.1, IPI00471835.1, 
IPI00513743.1, IPI00514983.3 8   

Huwe1 HECT, UBA and WWE domain 
containing 1 IPI00463909.3, IPI00655012.2 37   

NPEPPS Puromycin-sensitive 
aminopeptidase 

IPI00026216.4, IPI00130000.1, 
IPI00372700.1, IPI00608097.1, 
IPI00767572.1, IPI00768609.1 

8 † 

Otub1;LOC100046081 Ubiquitin thioesterase 
OTUB1 

IPI00154004.1, IPI00371462.3, 
IPI00755837.1 4   

PABPC1 Isoform 1 of Polyadenylate-binding 
protein 1 

IPI00008524.1, IPI00124287.1, 
IPI00189074.3, IPI00331552.4, 6 † 
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IPI00410017.1, IPI00478522.1, 
IPI00796945.1 

PCBP2 Poly(rC)-binding protein 2 isoform b 

IPI00012066.2, IPI00127707.1, 
IPI00216689.2, IPI00221796.1, 
IPI00221799.1, IPI00470509.2, 
IPI00796337.1 

4 † 

Pdia3 Protein disulfide-isomerase A3 
precursor IPI00324741.2 9   

Rbm12 Swan IPI00421433.1, IPI00560597.1 12   

Rbmx Heterogeneous nuclear 
ribonucleoprotein G 

IPI00124979.2, IPI00304692.1, 
IPI00370207.3, IPI00474144.1, 
IPI00559910.1, IPI00604873.2, 
IPI00663587.1, IPI00763272.1, 
IPI00766882.1, IPI00775821.1, 
IPI00775899.1 

6   

Sf3a1_predicted Similar to Splicing factor 3 
subunit 1 IPI00215030.1, IPI00408796.3 5   

SFPQ Isoform Long of Splicing factor, 
proline- and glutamine-rich 

IPI00010740.1, IPI00129430.1, 
IPI00627068.1, IPI00752791.1, 
IPI00755611.1, IPI00767277.1, 
IPI00849080.1 

3 † 

Thop1 Thimet oligopeptidase 1 IPI00564198.2 4   
Ubqln2_predicted Similar to ubiquilin 2 IPI00362791.3 66   
Uqcrc1 Ubiquinol-cytochrome-c reductase 
complex core protein 1, mitochondrial 
precursor 

IPI00471577.1 6   

Uqcrc2 Ubiquinol-cytochrome-c reductase 
complex core protein 2, mitochondrial 
precursor 

IPI00188924.4 3   

USP5 Isoform Long of Ubiquitin carboxyl-
terminal hydrolase 5 

IPI00024664.1, IPI00207657.1, 
IPI00375145.1, IPI00767186.1, 
IPI00768802.1 

4   

        
Transcription / Translation       
Hcfc1_predicted Similar to Host cell factor C1 IPI00367724.3, IPI00765252.1 13 †† 

CAND1 Isoform 1 of Cullin-associated 
NEDD8-dissociated protein 1 

IPI00100160.3, IPI00205466.1, 
IPI00420562.5, IPI00746694.1, 
IPI00753059.1 

3   

CNOT1 CCR4-NOT transcription complex 
subunit 1 isoform A 

IPI00166010.6, IPI00359049.4, 
IPI00673465.1, IPI00674283.1, 
IPI00752506.1, IPI00757812.1 

17 †† 

DDX17 DEAD box polypeptide 17 isoform 1 
IPI00023785.6, IPI00396797.2, 
IPI00651653.1, IPI00651677.1, 
IPI00653307.1 

4   

DDX5 Probable ATP-dependent RNA 
helicase DDX5 

IPI00017617.1, IPI00420363.2, 
IPI00464718.1 3   

Eef1a1 Elongation factor 1-alpha 1 
IPI00195372.1, IPI00307837.5, 
IPI00396485.3, IPI00472724.1, 
IPI00551729.1 

5 † 

EEF2 Elongation factor 2 IPI00186290.6, IPI00203214.6, 
IPI00466069.3, IPI00849291.1 4 †† 

EG268795 Similar to 60S ribosomal protein 
L7a (Surfeit locus protein 3) isoform 1 

IPI00265107.4, IPI00299573.12, 
IPI00330363.8, IPI00354363.3, 
IPI00397676.4, IPI00462006.3, 

3   
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IPI00462453.4, IPI00478896.2, 
IPI00479315.2, IPI00622160.3 

Eif4a2 Eukaryotic initiation factor 4A-II 
IPI00193595.3, IPI00328328.3, 
IPI00400432.2, IPI00409717.1, 
IPI00409918.1 

3   

Eif4g3_predicted Similar to Eukaryotic 
translation initiation factor 4 gamma 3 IPI00365284.3, IPI00767350.1 6   

pur-beta Transcriptional activator protein Pur-
beta IPI00189358.2 3   

RGD1560833_predicted Similar to 
MKL/myocardin-like 2 IPI00765655.1 2   

Ripx Protein RUFY3 IPI00204065.1, IPI00206350.3 3   

RPS3 40S ribosomal protein S3 IPI00011253.3, IPI00134599.1, 
IPI00212776.1 4 † 

RPS8 40S ribosomal protein S8 

IPI00216587.9, IPI00231202.6, 
IPI00274175.1, IPI00466820.4, 
IPI00475203.1, IPI00621229.1, 
IPI00645201.1, IPI00671398.1, 
IPI00756488.1, IPI00756959.1, 
IPI00828628.1, IPI00849948.1 

3 † 

Vezf1_predicted 22 kDa protein IPI00780927.1 4   
Zfr Similar to Zinc finger RNA binding protein IPI00367952.3, IPI00765814.1 8 †† 
        
Uncharacterized       

Hnrpul2 Heterogeneous nuclear 
ribonucleoprotein U-like protein 2 

IPI00222208.2, IPI00360386.3, 
IPI00561756.2, IPI00565127.2, 
IPI00756515.1, IPI00849047.1 

4   

Immt 82 kDa protein IPI00364895.4, IPI00566985.1, 
IPI00777695.1 8   

LOC314432 Similar to Ubiquitin-protein ligase 
(EC 6.3.2.19) E1-mouse IPI00368347.2 7   

LOC501546 LOC501546 protein IPI00201213.3 3   
MGC93707 Mitochondrial antiviral-signaling 
protein IPI00364200.1 3   

RGD1562348_predicted Similar to Ankyrin 
repeat domain protein 17 isoform B IPI00361795.2, IPI00388314.3 9   

RGD1563977_predicted Similar to Protein 
4.1G 

IPI00191995.2, IPI00192909.2, 
IPI00368431.2, IPI00388101.1, 
IPI00393242.1 

3   

RGD1566064_predicted Similar to HBxAg 
transactivated protein IPI00363856.3 13   

SH3GLB2 Isoform 1 of SH3 domain GRB2-
like protein B2 

IPI00024540.3, IPI00153832.1, 
IPI00398828.1, IPI00626834.2, 
IPI00756786.1, IPI00776533.1, 
IPI00779094.1, IPI00828453.1 

16   

Ubap2_predicted Similar to Ubiquitin-
associated protein 2 IPI00190431.4 13   

Ubap2l Isoform 5 of Ubiquitin-associated 
protein 2-like 

IPI00407835.1, IPI00412535.2, 
IPI00514856.4, IPI00761937.1 6   
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Table 2: Promoters enriched in O-GlcNAc levels.  The corresponding gene name and 
description for each promoter are listed.  The location of the promoter and the log ratio of 
the chromatin immunoprecipitation eluent over input are also listed.  
 

Gene Name Description Location LogRatio 

Rfwd2 Ring finger and WD repeat domain 2 chr1:161066116-
161066175 1.12E+00 

Arl6ip1 ADP-ribosylation factor-like 6 interacting 
protein 1 

chr7:117911348-
117911397 1.05E+00 

Gpr21 G protein-coupled receptor 21 chr2:037340628-
037340687 1.01E+00 

Bhlhb5 Basic helix-loop-helix family, member e22 chr3:018243837-
018243896 9.98E-01 

Pde6b Phosphodiesterase 6B, cGMP, rod 
receptor, beta polypeptide 

chr5:108630597-
108630649 9.94E-01 

Gapdh Glyceraldehyde-3-phosphate 
dehydrogenase 

chr6:125131691-
125131742 9.51E-01 

Slc4a4 Solute carrier family 4 (anion exchanger), 
member 4 

chr5:090007481-
090007540 9.05E-01 

Kcnab1 Potassium voltage-gated channel, shaker-
related subfamily, beta member 1 

chr3:065195669-
065195719 8.92E-01 

Hspb7 Heat shock protein family, member 7 
(cardiovascular) 

chr4:140694790-
140694840 8.88E-01 

Phf13 PHD finger protein 13 chr4:150833827-
150833886 8.73E-01 

Hivep3 Human immunodeficiency virus type I 
enhancer binding protein 3 

chr4:119307364-
119307417 8.58E-01 

Ifnb1 Interferon beta 1, fibroblast chr4:087991861-
087991916 8.49E-01 

Spg20 Spastic paraplegia 20 (Troyer syndrome) chr3:055222441-
055222497 8.46E-01 

Pin1 Peptidylprolyl cis/trans isomerase, NIMA-
interacting 1 

chr9:020401004-
020401061 8.46E-01 

Tmc7 Transmembrane channel-like gene family 7 chr7:118377551-
118377610 8.31E-01 

Trp53inp2 Tumor protein p53 inducible nuclear protein 
2 

chr2:155073250-
155073294 8.30E-01 

Sgcb Sarcoglycan, beta (dystrophin-associated 
glycoprotein) 

chr5:073912548-
073912601 8.27E-01 

NC2_00099332 Unknown NC2_00099332 8.24E-01 

Mmp8 Matrix metallopeptidase 8 chr9:007558381-
007558437 8.19E-01 

Kcnj14 Potassium inwardly-rectifying channel, 
subfamily J, member 14 

chr7:045690923-
045690982 8.11E-01 

Pde3a Phosphodiesterase 3A, cGMP inhibited chr6:141210944-
141210995 8.07E-01 

Ccdc106 Coiled-coil domain containing 106 chr7:004654767-
004654811 8.00E-01 

Gpsm1 G-protein signaling modulator 1 (AGS3-like, 
C. elegans) 

chr2:026137783-
026137827 7.86E-01 

NC2_00099332 Unknown NC2_00099332 7.81E-01 

Snrp70 Small nuclear ribonucleoprotein 70 chr7:045263625-
045263669 7.72E-01 

Aspm Asp (abnormal spindle)-like, microcephaly chr1:141271216- 7.69E-01 
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associated 141271266 
NC2_00099332 Unknown NC2_00099332 7.58E-01 

Ltb4dh Prostaglandin reductase 1 chr4:059078901-
059078954 7.55E-01 

NC2_00099332 Unknown NC2_00099332 7.50E-01 
Rexo4-
Adamts13 Unknown chr2:026795163-

026795217 7.49E-01 

Aox3 Aldehyde oxidase 3 chr1:058058797-
058058847 7.48E-01 

NC2_00099332 Unknown NC2_00099332 7.40E-01 

Sema3c Semaphorin 3c chr5:017086294-
017086338 7.31E-01 

Gucy2c Guanylate cyclase 2c chr6:136750955-
136751011 7.28E-01 

Krtap5-5 Keratin associated protein 5-5 chr7:142043215-
142043274 7.20E-01 

Itm2c Integral membrane protein 2C chr1:087720489-
087720548 7.12E-01 

Kcnt1 Potassium channel, subfamily T, member 1 chr2:025700956-
025701003 7.10E-01 

Fbxl13 F-box and leucine-rich repeat protein 13 chr5:021054005-
021054064 7.04E-01 

Snrpn Small nuclear ribonucleoprotein N chr7:059883275-
059883319 6.96E-01 

2600010E01Rik Proline rich 5 like chr2:101598189-
101598234 6.95E-01 

Myo3b Myosin IIIB chr2:070085726-
070085785 6.74E-01 

Lrch4 Leucine-rich repeats and calponin 
homology (CH) domain  

chr5:137860009-
137860054 6.71E-01 

Bai3 Brain-specific angiogenesis inhibitor 3 chr1:025776261-
025776316 6.67E-01 

Il11 Interleukin 11 chr7:004383274-
004383318 6.61E-01 

Gm1040 Nucleolar protein with MIF4G domain 1 chr5:029766349-
029766408 6.61E-01 

1200015F23Rik-
Gchfr Unknown chr2:118854850-

118854901 6.59E-01 

Coq10b Coenzyme Q10 homolog B chr1:054999769-
054999828 6.50E-01 

Tas2r139 Taste receptor, type 2, member 139 chr6:042071031-
042071090 6.47E-01 

Rab23 RAB23, member RAS oncogene family chr1:033664505-
033664560 6.47E-01 

Ralb V-ral simian leukemia viral oncogene 
homolog B 

chr1:121334415-
121334464 6.44E-01 

BC026590 Unknown chr4:056900096-
056900155 6.43E-01 

Ndufs2 NADH dehydrogenase (ubiquinone) Fe-S 
protein 2 

chr1:173071744-
173071801 6.43E-01 

chr6:054357273-
054357332 Unknown chr6:054357273-

054357332 6.40E-01 

Klk1b11 Kallikrein 1-related peptidase b11 chr7:043860709-
043860757 6.40E-01 

Chn1 Chimerin (chimaerin) 1 chr2:073460953- 6.38E-01 
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073461012 

Fn1 Fibronectin 1 chr1:071585152-
071585211 6.37E-01 

Hrh3 Histamine receptor H3 chr2:180037363-
180037418 6.37E-01 

Arid1a AT rich interactive domain 1A (SWI-like) chr4:133027660-
133027704 6.37E-01 

Sepn1 Selenoprotein N, 1 chr4:133817519-
133817563 6.36E-01 

4931406C07Rik Unknown chr9:015049879-
015049938 6.35E-01 

Kcne3 Potassium voltage-gated channel, Isk-
related subfamily, gene 3 

chr7:100047744-
100047792 6.34E-01 

Prss3-
EG436523 Unknown chr6:041317008-

041317067 6.32E-01 

Sult2b1 Sulfotransferase family, cytosolic, 2B, 
member 1 

chr7:045626168-
045626227 6.30E-01 

Nanos2 Nanos homolog 2 (Drosophila) chr7:018146282-
018146328 6.25E-01 

Nadk NAD kinase chr4:154404524-
154404575 6.24E-01 

Scly Selenocysteine lyase chr1:093150219-
093150267 6.20E-01 

EG229862 Unknown chr3:137487520-
137487579 6.17E-01 

Olfr666 Olfactory receptor 666 chr7:104767985-
104768044 6.14E-01 

D430042O09Rik Unknown chr7:125502534-
125502585 6.12E-01 

Lmo4 LIM domain only 4 chr3:144147353-
144147412 6.00E-01 

Iqsec3 IQ motif and Sec7 domain 3 chr6:121437055-
121437114 5.99E-01 

chr7:062089379-
062089438 Unknown chr7:062089379-

062089438 5.91E-01 

9130221D24Rik Unknown chr3:133170194-
133170253 5.91E-01 

Sh2d2a SH2 domain protein 2A chr3:087934416-
087934460 5.90E-01 

Tmcc2 Transmembrane and coiled-coil domains 2 chr1:134217724-
134217783 5.88E-01 

Ccdc9 Coiled-coil domain containing 9 chr7:015445399-
015445449 5.86E-01 

Capn5 Calpain 5 chr7:098018304-
098018355 5.80E-01 

Rab43 RAB43, member RAS oncogene family chr6:087781399-
087781454 5.73E-01 

2610209A20Rik Lipoyl(octanoyl) transferase 2 (putative) chr7:100034032-
100034090 5.71E-01 

Csn1s2b Casein alpha s2-like B chr5:088895459-
088895518 5.68E-01 

Mag Myelin-associated glycoprotein chr7:030626049-
030626105 5.68E-01 

Cort Cortistatin chr4:147968893-
147968944 5.66E-01 
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F2rl3 Coagulation factor II (thrombin) receptor-like 
3 

chr8:075653052-
075653097 5.64E-01 

Tlx2 T-cell leukemia, homeobox 2 chr6:083034418-
083034462 5.60E-01 

2310038H17Rik Unknown chr1:064549300-
064549347 5.59E-01 

C1qc Complement component 1, q 
subcomponent, C chain 

chr4:136162907-
136162966 5.58E-01 

Madd MAP-kinase activating death domain chr2:090983205-
090983264 5.57E-01 

Kdelc1 KDEL (Lys-Asp-Glu-Leu) containing 1 chr1:044046571-
044046615 5.55E-01 

Inpp1 Inositol polyphosphate-1-phosphatase chr1:052761859-
052761903 5.54E-01 

Gm973 Predicted gene 973 chr1:059459724-
059459783 5.53E-01 

Fhod1 Formin homology 2 domain containing 1 chr8:108237017-
108237065 5.51E-01 

Gpr109a G protein-coupled receptor 109A chr5:124125079-
124125129 5.51E-01 

Cnr2 Cannabinoid receptor 2 (macrophage) chr4:135181859-
135181915 5.50E-01 

Syt6 Synaptotagmin VI chr3:103706243-
103706302 5.47E-01 

Rpn1 Ribophorin I chr6:088050301-
088050345 5.47E-01 

Stoml3 Stomatin (Epb7.2)-like 3 chr3:053572971-
053573030 5.46E-01 

Hdac4 Histone deacetylase 4 chr1:093978609-
093978663 5.45E-01 

Tesk2 Testis-specific kinase 2 chr4:116220557-
116220616 5.44E-01 

Isg20l1 Apoptosis enhancing nuclease chr7:078761115-
078761174 5.42E-01 

Il8rb Interleukin 8 receptor, beta chr1:074089611-
074089670 5.42E-01 

Cpsf3l Cleavage and polyadenylation specific 
factor 3-like 

chr4:154732636-
154732695 5.41E-01 

Dbndd2 Dysbindin (dystrobrevin binding protein 1) 
domain containing 2 

chr2:164183228-
164183287 5.39E-01 

Yipf7-Guf1 Unknown chr5:069830810-
069830869 5.37E-01 

2010315L10Rik Vesicle transport protein USE1 isoform 3 chr8:074298265-
074298309 5.37E-01 

Ank1 Ankyrin 1, erythroid chr8:024519526-
024519585 5.37E-01 

Igsf21 Immunoglobin superfamily, member 21 chr4:139519948-
139519992 5.36E-01 

Calcr Calcitonin receptor chr6:003719766-
003719819 5.35E-01 

Siglec1 Sialic acid binding Ig-like lectin 1, 
sialoadhesin 

chr2:130780557-
130780616 5.33E-01 

Nmur1 Neuromedin U receptor 1 chr1:088217036-
088217084 5.32E-01 

Shroom3 Shroom family member 3 chr5:093758832- 5.30E-01 

93



093758876 

Clic3 Chloride intracellular channel 3 chr2:025276329-
025276385 5.29E-01 

Lim2 Lens intrinsic membrane protein 2 chr7:043296801-
043296855 5.29E-01 

Otud6b OTU domain containing 6B chr4:014753291-
014753341 5.29E-01 

A930008G19Rik Family with sequence similarity 53, member 
B 

chr7:132651633-
132651677 5.29E-01 

Chrm4 Cholinergic receptor, muscarinic 4 chr2:091728313-
091728369 5.27E-01 

chr4:102789696-
102789755 Unknown chr4:102789696-

102789755 5.27E-01 

Cblc Casitas B-lineage lymphoma c chr7:018955195-
018955239 5.24E-01 

Gem GTP binding protein (gene overexpressed 
in skeletal muscle) 

chr4:011628685-
011628729 5.24E-01 

Cryge Crystallin, gamma E chr1:064986389-
064986435 5.21E-01 

Cyp26b1 Cytochrome P450, family 26, subfamily b, 
polypeptide 1 

chr6:084559974-
084560027 5.21E-01 

Ceacam9 Carcinoembryonic antigen-related cell 
adhesion molecule 9 

chr7:015875265-
015875309 5.20E-01 

Mcm3 Minichromosome maintenance complex 
component 3 

chr1:020804983-
020805042 5.20E-01 

Il15ra Interleukin 15 receptor, alpha chr2:011624220-
011624274 5.19E-01 

Slmo2 Slowmo homolog 2 chr2:174114425-
174114484 5.17E-01 

Calr3 Calreticulin 3 chr8:075372337-
075372395 5.17E-01 

Slc6a17 Solute carrier family 6, member 17 chr3:107651018-
107651077 5.14E-01 

Gatad2a GATA zinc finger domain containing 2A chr8:072924369-
072924421 5.14E-01 

Pax3 Paired box gene 3 chr1:078083580-
078083635 5.13E-01 

Aldh1b1 Aldehyde dehydrogenase 1 family, member 
B1 

chr4:045817830-
045817881 5.12E-01 

Col27a1 Collagen, type XXVII, alpha 1 chr4:062702912-
062702961 5.12E-01 

Casp6 Caspase 6, apoptosis-related cysteine 
peptidase 

chr3:129888382-
129888441 5.11E-01 

Tspan2 Tetraspanin 2 chr3:102864758-
102864809 5.11E-01 

Wdr54 WD repeat domain 54 chr6:083121238-
083121294 5.10E-01 

Defb9 Defensin beta 9 chr8:023352585-
023352644 5.10E-01 

Slc39a10 Solute carrier family 39 (zinc transporter), 
member 10 

chr1:046797981-
046798031 5.09E-01 

Fzd7 Frizzled homolog 7 chr1:059426879-
059426925 5.09E-01 

Cyb5r2 Cytochrome b5 reductase 2 chr7:107550066-
107550125 5.08E-01 
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Lrp1b Low density lipoprotein receptor-related 
protein 1B 

chr2:042476511-
042476570 5.08E-01 

Lcn8 Lipocalin 8 chr2:025476940-
025476998 5.07E-01 

Pcdh7 Protocadherin 7 chr5:058004012-
058004063 5.07E-01 

Smad1 SMAD family member 1 chr8:082300818-
082300874 5.06E-01 

Gnb2 Guanine nucleotide binding protein (G 
protein), beta 2 

chr5:137761013-
137761064 5.06E-01 

Slc25a34 Solute carrier family 25, member 34 chr4:140895902-
140895946 5.06E-01 

Trim46 Tripartite motif-containing 46 chr3:089329908-
089329967 5.06E-01 

Melk Maternal embryonic leucine zipper kinase chr4:044321192-
044321251 5.05E-01 

Olfr1336 Olfactory receptor 1336 chr7:006059882-
006059930 5.04E-01 

Olfr71 Olfactory receptor 71 chr4:043732351-
043732410 5.04E-01 

Casc4 Cancer susceptibility candidate 4 chr2:121559691-
121559750 5.04E-01 

Slc25a40 Solute carrier family 25, member 40 chr5:008432144-
008432203 5.03E-01 

Gpr175 G protein-coupled receptor 175 chr6:088869789-
088869848 5.03E-01 

C430003P19Rik BRISC complex subunit Abro1 chr7:132714914-
132714973 5.02E-01 

Qrfp Pyroglutamylated RFamide peptide chr2:031634928-
031634987 5.01E-01 

Abca2 ATP-binding cassette, sub-family A (ABC1), 
member 2 

chr2:025251853-
025251912 5.00E-01 
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Methods 

 

General Reagents and Methods: 

Unless otherwise noted, reagents were purchased from the commercial suppliers Fisher 

(Fairlawn, NJ) or Sigma-Aldrich (St. Louis, MO).  Protease inhibitors were purchased 

from Roche Applied Sciences (Indianapolis, IN), sequencing grade trypsin was from 

Promega (Madison, WI), agarose-conjugated protein G was from Pierce (Rockford, IL), 

and Immobilon-FL PDVF membrane was from Millipore (Billerica, MA).  Dulbecco's 

modified Eagle media (DMEM), B27, fetal bovine serum (FBS) and penicillin/ 

streptomycin were from Gibco (Carlsbad, CA).  The anti-α-crystallin (ab5595) and anti-

β-tubulin antibodies were from Abcam and Sigma, respectively.  Click-It™ O-GlcNAc 

Enzymatic Labeling System, Click-It™ Biotin Glycoprotein Detection Kit, Click-It™ 

Tetramethylrhodamine (TAMRA) Glycoprotein Detection Kit, anti-TAMRA antibody, 

4-12% NuPAGE® Bis-Tris Mini gels, pH 4-7 Zoom IPG strips, and lithium dodecyl 

sulfate (LDS) buffer were from Invitrogen (Carlsbad, CA).  Peptide N-glycosidase F 

(PNGase F) was purchased from New England Biolabs (Beverly, MA).  The anti-O-

GlcNAc antibodies CTD110.6 and RL-2 were from Covance (Princeton, NJ) and Affinity 

Bioreagents (Golden, CO), respectively.  Wheat germ agglutinin (WGA) lectin was from 

EY laboratories (San Mateo, CA). The secondary goat anti-rabbit antibody conjugated to 

IRDye800 was from Rockland Immunochemicals (Gilbertsville, PA), and the 

streptavidin-IR680 conjugate was from Li-COR Bioscences (Lincoln, NE).  Sprague-
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Dawley and Long Evans rats were from Charles River Laboratories (Wilmington, MA).  

All protein concentrations were measured using the BCA protein assay (Pierce).  Western 

blots were visualized and quantified using an Odyssey infrared imaging system (LI-COR 

Biosciences).  In-gel fluorescence detection was performed using a FujiFilm FLA-3000 or 

FLA-5100 scanner, and the fluorescence was displayed in green pseudocolor. 

 

Chemoenzymatic Labeling of α-Crystallin.  α-Crystallin from the Click-It™ O-

GlcNAc Enzymatic Labeling System (20 µg) was labeled with UDP-GalNAz 1 and biotin 

alkyne 2 as per the Click-It™ O-GlcNAc Enzymatic Labeling System and Click-It™ 

Biotin Glycoprotein Detection Kit instructions.  Negative controls were performed under 

identical conditions, except GalT, 1, or 2 were left out of the reactions.  α-Crystallin (10 

pmol from each reaction) was resolved on a 1.5 mm, 10-well NuPAGE 4-12% Bis-Tris 

gel and transferred to PDVF.  The membrane was blocked with 5% BSA in 50 mM Tris-

HCl pH 7.4, 150 mM NaCl containing 0.1% Tween (TBST) for 1 h at RT followed by 1 

h incubation with a streptavidin-IR680 conjugate (1:10,000) in TBST.  After four washes 

for 15 min in TBST, the membrane was visualized using an Odyssey imaging system.  

The same membrane was then blotted with an anti-α-crystallin antibody (1:1000) in 5% 

nonfat milk / TBST for 1 h at RT.  Following three washes in TBST for 5 min, the 

membrane was incubated with a goat anti-rabbit antibody conjugated to IRDye800 

(1:10,000) in the same buffer for 1 h at RT, washed three more times for 10 min, and then 

visualized using an Odyssey imaging system.  To examine the detection sensitivity, 25, 

10, 5, 1, 0.5, and 0.25 pmol of labeled α-crystallin were resolved by SDS-PAGE, 
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transferred to PDVF, and immunoblotted with a streptavidin-IR680 conjugate (1:10,000).  

For comparison, unlabeled α-crystallin (25 pmol) was resolved by SDS-PAGE, 

transferred to PDVF, and immunoblotted with the CTD110.6 antibody (1:1000), RL-2 

antibody (1:1000), or WGA lectin (10 µg/mL) for 1 h at RT. 

 

Chemoenzymatic Labeling of Rat Forebrain Extracts.  The forebrains from three 

adult rats (~150 g, male Sprague Dawley) were extracted and fractionated using the 

Qproteome Cell Compartment Kit (Qiagen).  Fractions 1 (the cytoplasmic fraction) and 3 

(the nuclear fraction) were precipitated with 4 volumes ice-cold acetone followed by 

overnight incubation at -20 ºC and redissolved in 2% SDS plus Complete™ protease 

inhibitors.  Protein from each fraction (1.5 mg for the 2D gel labeling, 0.5 mg for the 1D 

gel labeling) was precipitated and labeled at 1 mg/mL as per the Click-It™ O-GlcNAc 

Enzymatic Labeling System instructions except that Complete™ protease inhibitors were 

added during the labeling reaction, followed by labeling with the TAMRA-alkyne dye 3 

as per the Click-It™ TAMRA Glycoprotein Detection Kit instructions except that 

EDTA-free Complete™ protease inhibitors were added during the TAMRA labeling 

reaction.  For the 1D gels, negative controls were performed under identical conditions 

except that GalT was omitted from the labeling reaction. 

  

Immunoprecipitation of TAMRA-Labeled O-GlcNAc Proteins.  Labeled samples were 

precipitated using methanol/chloroform/water, brought up to a concentration of 2 mg/mL 

in 1% SDS plus Complete™ protease inhibitors, and boiled.  The SDS was then quenched 
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with 1 volume of NETFD buffer (100 mM NaCl, 50 mM Tris-HCl pH 7.4, 5 mM 

EDTA, 6% NP-40) plus protease inhibitors, and the lysate was precleared against 

washed protein G sepharose beads (1 mL/1.5 mg of protein) at 4 ºC for 1 h.  After 

centrifugation, the supernatant was collected and incubated with an anti-TAMRA 

antibody (100 µg/1.5 mg of protein) at 4 ºC for 4 h.  The samples were then added to pre-

washed protein G sepharose beads (1 mL/1.5 mg of protein) at 4 ºC for 1.5 h.  Following 

centrifugation, the beads were washed once with 4 column volumes of NETFD buffer and 

three times with 4 column volumes of NETF buffer (100 mM NaCl, 50 mM Tris-HCl pH 

7.4, 5 mM EDTA).  After washing, the beads were boiled in elution buffer (200 mM Tris 

pH 6.8, 400 mM DTT, 8% SDS, 50 µL buffer/100 µL beads).  The supernatant was 

collected after centrifugation and precipitated by adding 4 volumes of ice-cold acetone and 

incubating at -20 ºC for 16 h. 

 

1D Gel Electrophoresis and Silver Staining.  The precipitated eluents (cytoplasmic, 

nuclear, and controls) from above, along with the input (before immunoprecipitation) and 

flow-through fractions (15 µg) were separated on a 1.5 mm, 10-well NuPAGE 4–12% 

Bis-Tris gel.  The gels were imaged using a FujiFilm FLA-3000 or FLA-5100 scanner and 

silver stained using a protocol adapted from Blum, Shevchenko, and co-workers21,22. 

Briefly, the gels were fixed in an aqueous solution of 50% MeOH, 10% acetic acid for 30 

min and then again in 5% MeOH, 1% acetic acid for 15 min.  The gels were then washed 3 

x 10 min with H2O and sensitized for 90 s with Na2S2O3•5H2O (20 mg/100 mL).  After 

rinsing for 3 x 30 sec with H2O, the gels were exposed to AgNO3 (200 mg/100 mL) for 30 
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min and rinsed for 3 x 60 s with H2O.  Finally, the gels were developed for 2.5 min in a 

solution containing Na2CO3 (6 g/100 mL), 37% formaldehyde (50 µL/100 mL), 

Na2S2O3•5H2O (0.4 mg/100 mL).  The reaction was stopped with 6% acetic acid.  Twelve 

equally-spaced gel pieces were excised from each of the eluent lanes (cytoplasmic, 

nuclear, and –GalT controls), spanning the full height of the gel.  Individual gel pieces 

were destained in a solution containing 0.4 g K3Fe(CN)6 in 200 mL of an aqueous sodium 

thiosulphate solution (0.2 g Na2S2O3•5H2O in 1L of H2O) for 15 min, and washed 4 times 

for 15 min and 1 time for 16 h with H2O. 

 

2D Gel Electrophoresis.  Precipitated eluents (cytoplasmic, nuclear) were resuspended 

in 100 mM Tris, pH 8.0, 1% SDS, and then reduced and alkylated with tributyl phosphine 

(200 mM) and N,N-Dimethylacrylamide (0.5%) by heating at 65° C for 10 min, followed 

by rotation end-over-end at RT for 20 min.  The samples were precipitated with 

methanol/chloroform/water and resuspended in 7 M urea, 2 M thiourea, 2% CHAPS, 2% 

ASB-14 (Sigma) buffer (173.5 µL), and 2 M DTT (5.5 µL) plus pH 4–7 ampholytes (1 

µL) were added.  The samples were centrifuged at 20,000 rpm for 3 min, the supernatant 

was loaded onto pH 4–7 strips, and the sample was rehydrated for 90 min.  The strips 

were focused for 20 min at 200V, 25 min at 450V, 20 min at 700V, and 55 min at 2000V, 

after which they were incubated in 1x LDS sample buffer plus 50 mM DTT, and resolved 

on a NuPAGE 4–12% Bis-Tris gel.  The gel was imaged using a fluorescence scanner, and 

the fluorescent spots were excised from the gel and fixed in an aqueous solution of 50% 

MeOH, 7% acetic acid overnight. 
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In-Gel Digestion of Captured O-GlcNAc Proteins.  Individual gel pieces (cytoplasmic, 

nuclear, and –GalT controls) from the 1D and 2D gels were dehydrated with CH3CN (2 x 

5 min) and then rehydrated with dithiothreitol (1.5 mg/mL in 100 mM NH4HCO3, pH 

8.0) for 30 min.  The excess dithiothreitol was removed and iodoacetamide (10 mg/mL in 

100 mM NH4HCO3, pH 8.0) was added in the dark for 30 min.  Excess iodoacetamide 

was removed and the gels were washed twice with 100 mM NH4HCO3, pH 8.0 and dried 

with CH3CN before being dried using a speed vac.  Trypsin (20 ng/µL in 50 mM 

NH4HCO3, pH 8.0; 50 µL) was added to each gel piece, and the gel pieces were allowed 

to swell on ice.  After 30 min, excess trypsin was removed, 50 mM NH4HCO3, pH 8.0 

(15 µL for the 2D gel pieces; 30 µL for the 1D gel pieces) was added, and the digestions 

were incubated at 37 ºC.  After 16 h, the peptides were extracted with H2O (30 µL for the 

2D gel pieces; 60 µL for the 1D gel pieces) for 30 min, and the gel pieces were washed 

twiced with an aqueous solution of 5% formic acid containing 50% CH3CN (25 µL for the 

2D gel pieces; 40 µL for the 1D gel pieces) for 10 min.  The combined extract and washes 

were concentrated using a speed vac for 1 h to remove the CH3CN. 

 

LC-MS Analysis of Captured O-GlcNAc Proteins.  Nano LC-MS of in-gel tryptic 

digests was performed on a Thermo Fisher Surveyor MS plus HPLC and LTQ XL ion 

trap mass spectrometer using a modified vented column setup and data-dependent 

scanning23.  Samples were loaded onto a 360 x 100 µm precolumn (2 cm, 5 µm Monitor 

C18) and desalted prior to placing the precolumn in-line with the analytical column.  
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Peptides were then eluted with a linear gradient of 0% to 40% B in 30 min (A, 0.1M 

aqueous HOAc; B, 0.1M HOAc in CH3CN), a flow rate of 250 nL/min and using a 360 x 

75 µm self-packed column with integrated electrospray emitter (10 cm of 5 µm Monitor, 

C18).  MS scans were as follows:  1 full scan followed by 5 MS/MS scans of the most 

intense ions from the full scan using data-dependent analysis with dynamic exclusion.  

Dynamic exclusion parameters:  repeat count — 1; repeat duration — 15s; exclusion 

duration — 30s.   

MS/MS spectra were searched against a human, rat and mouse subset of the 

European Bioinformatics Institute — International Protein Index (EBI-IPI) database 

(downloaded 08-01-2007), with an appended reversed database and using Sequest 3.0.  A 

fixed modification of Cys (+57), a variable modification of Met (+16) and trypsin 

cleavage were specified.  Search results were compiled and filtered in Scaffold 2.0 

(Proteome Software, Inc, Portland, OR).  For analysis of 2D gel bands, a protein 

identification was accepted if it was established with a 99% probability of a correct 

identification and a minimum of 2 peptides (90% probability of a correct identification) 

were matched to the protein.  For analysis of 1D gel bands, a protein identification was 

accepted if a minimum of 3 peptides were matched to the protein and peptide 

identifications satisfied XCorr versus m/z thresholds of +1/1.8, +2/2.5, and +3/3.5, and a 

DeltaCn threshold of 0.1.  Proteins published as putative O-GlcNAc proteins were chosen 

by taking the list of proteins identified in the experimental eluent lane and subtracting out 

those proteins found in the corresponding control lane, as well as any extracellular 

proteins that contaminated the protein fractionations. 

 

In-Gel Fluorescence Detection of O-GlcNAc Dynamics.  HeLa cells were grown to 80–
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90% confluence in DMEM containing 10% FBS and penicillin/streptomycin (100 U/mL) 

and harvested.  Cells were incubated in DMEM with PUGNAc (100 µM) or H2O for 9 h 

at 37 deg and 5% CO2.  The cells were lysed in boiling 1% SDS, sonicated, and boiled 

for 5 min.  The resulting lysate (200 µg) was chemoenzymatically labeled with 1, 

followed by 3, as described above.  A negative control was performed under identical 

conditions, except that 1 was omitted from the reaction mixture.  After TAMRA-labeling, 

protein (21 µg) was resolved on a 1.0 mm, 12-well NuPAGE 4-12% Bis-Tris Gel.  The 

gel was imaged using a FLA-5100 scanner.  Western blotting was done as described for 

α-crystallin above but using an anti-tubulin antibody (1:10,000). 

Total changes in O-GlcNAc glycosylation levels with PUGNAc were quantified 

using Multi Gauge software (Fujifilm).  Quantification was determined by taking the 

ratio of the total fluorescent signal of the PUGNAc lane to the total fluorescent signal of 

the control lane, corrected to tubulin levels.  Quantification represents the mean ± 

standard deviation for n=2 experiments.  The range over which PUGNAc changed O-

GlcNAc glycosylation levels was determined by taking the ratio of the fluorescent signal 

of the PUGNAc lane to the fluorescent signal of the control lane for the 18 strongest 

bands, corrected for tubulin levels.   

 

Chromatin Immunoprecipitation (ChIP). Cortical neuronal cultures were prepared 

from embryonic day 15 C57BL/6 mice as described24.  Neurons were cultured for four 

days in Neurobasal media (Invitrogen), 2 mM Glutamax (Invitrogen), 

penicillin/streptomycin (Invitrogen, 100 U/ml), 2% B-27 (Invitrogen) for five days, after 

which the media was removed and the cells were fixed with 1% formaldehyde / PBS 
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(0.01 M phosphate, 0.138 M NaCl, 0.0027 M KCl, pH 7.4) for 20 min at RT.  The 

formaldehyde was quenched with 50 µl / ml of 2.5 M glycine, the cells were washed 

three times with 1X PBS, collected in 1X PBS, and then pelleted by centrifugation at 

23,500 x g for 5 min at 4 °C.  Cells were resuspended in cell lysis buffer (25 mM HEPES 

pH 7.8, 1.5 mM MgCl2, 10 mM KCl, 0.1% NP-40, 1 mM DTT; 200 µl / 10 cm dish of 

cells) and incubated on ice for 10 min.  The nuclei were pelleted by centrifugation at 

10,000 x g for 5 min at 4 °C.  The supernatant was removed and the nuclear pellet was 

resuspended in nuclear lysis buffer (50 mM HEPES pH 7.9, 140 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% Sodium deoxycholate, 0.1% SDS, 200 µl / 10 cm dish) 

and incubated on ice for 10 min.  The samples were sonicated on ice 5 x 30 sec at 40% 

amplitude using a Sonics Vibra Cell sonicator, centrifuged for 10 min at 22,000 x g, and 

the supernatant was retained as the nuclear lysate. 

Protein concentration from the nuclear lysate was determined by BCA protein 

concentration assay.  Nuclear lysate (200 µg) was supplemented with nuclear lysis buffer 

to 165 µl and 4 µl of Complete™ protease inhibitors (50X), 11 µl of MnCl2 (100 mM), 

10 µl UDP-GalNAz (0.5 mM), 10 µl GalT.  GalT was left out of the control reaction as 

indicated.  The samples were incubated end-over-end overnight at 4°C and then the 

samples were precipitated by addition of 20 µl NaOAc (5 M, pH 5.2) followed by 1750 

µl of ice-cold EtOH (100%).  The samples were quickly vortexed, placed at -20°C for 1 

hr, and then centrifuged at 23,500xg for 15 minutes.  The supernatant was discarded and 

the pellets were resuspended in 50 µl of 1% SDS, 50 mM Tris pH 8. Labeling with the 

TAMRA-alkyne dye 3 was performed per the Click-It™ TAMRA Glycoprotein 
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Detection Kit instructions except for the samples were EtOH precipitated as described 

above. 

The samples were resuspended in 20 µl of 0.5% SDS with Complete™ protease 

inhibitors followed by addition of 173 µl of nuclear lysis buffer and 1 µl of 100% Triton 

X-100.  Protein A Sepharose beads (20 µl), salmon sperm DNA (4 µl, 2 mg/ml), and 

normal rabbit IgG (5 µl, 0.4 mg/ml) were added to lysate and the samples were rotated 

end-over-end for 1 h at 4°C.  The beads were spun down on a benchtop centrifuge for 30 

sec, the supernatant was transferred to a new tube, 10% was saved for input, 2 µg of 

TAMRA antibody or normal rabbit IgG were added to the remaining sample as indicated, 

and the samples were rotated end-over-end overnight at 4 °C. 

After overnight incubation, 20 µl of Protein A Sepharose beads was added to each 

sample, and the samples were rotated end-over-end for 1 h at 4 °C.  The beads were then 

spun down on a benchtop centrifuge for 30 sec and wash successively with 1 ml of 

nuclear lysis buffer, nuclear lysis buffer supplemented with 360 µl NaCl, wash buffer (20 

mM Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% Sodium deoxycholate), 

and TE (20 mM Tris pH 8.0, 1 mM EDTA).  The final wash was removed, 100 µl of TE, 

1% SDS was added the beads, and the beads were rotated end-over-end for 10 min at 65 

°C.  The beads were centrifuged, the first eluent was saved, 160 µl TE, 0.67% SDS was 

added to the sample, and the beads were again rotated end-over-end for 10 min at 65 °C.  

The beads were centrifuged and the second eluent was combined with the first.  TE and 

SDS was added to the input such that the final input SDS concentration in the inputs was 

0.81% and the eluents and inputs were decrosslinked by incubating them at 65 °C for 4 
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hours.  After decrosslinking, 250 µl TE and 10 µl Proteinase K (10 mg/ml) were added 

and the reactions were incubated for 2 h at 37°C shaking at 235 RPM. 

56 µl of 4 M LiCl in TE was added to each sample and the DNA was extracted 

with 560 µl of Phenol:Chloroform:Isoamyl Alcohol (25:24:1) followed by 560 µl 

chloroform.  56 µl of NaOAc (5 M, pH 5.2), 1.5 ml ethanol (100%, ice-cold), and 1 µl 

glycogen (20 mg/mL) was added to each sample, the sample were vortexed and then 

incubated at -20°C overnight.  After overnight incubation, the samples were centrifuged 

for 30 minutes at 22,000 x g, the supernatant was discarded, the pellets were allowed to 

air dry, and the pellets were redissolved in 60 µL DNase-free H2O.  These samples were 

either taken on to PCR or given to Rosemary Tao in the Sun lab (UCLA) for analysis on 

a promoter microarray. 

 

PCR.  2 µl of DNA from the ChIP experiments was combined with 14.5 µl DNase-free 

H2O, 0.5 µl PCR Nucleotide Mix (10 mM), 0.75 µl MgCl2 (50 mM), 2.5 µl 10X 

Enhancer, 2.5 µl 10X Amplifier, 2 µl primers (10 µM, forward and reverse mix), and 

0.25 µl Taq polymerase.  The samples were then heated in a thermocycler using the 

following heating profile: 95 °C, 1 min (1x), 95 °C, 30 sec, annealing temperature, 1 min, 

72 °C, 1 min, 30 sec (36x), 72 °C, 7 min (1x), 4 °C, unlimited hold.  5 µl of 6x gel 

loading dye was added to each sample, and the DNA was resolved on a 2% agarose / 

TEA gel.  The following primers were used for ChIP: 

Gene Forward Primer Reverse Primer 

Pomc TACCTCCAAATGCCAGGAAG CGCTGGTGGT TAGGAAGAAC 

18S Ribosomal RNA CGCGGTTCTATTTTGTTGGT AGTCGGCATCGTTATGGTC 
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Chemoenzymatic Labeling and Fluorescence Imaging of O-GlcNAc Proteins in 

Cells.  HeLa cells were counted, diluted into DMEM containing 10% FBS and 

penicillin/streptomycin (100 U/mL) and seeded on poly-D-lysine-coated (0.1 mg/mL 

poly-D-lysine in 50 mM sodium borate, pH 10, 100 µL/coverslip for 30 min at 37 °C) 15 

mm glass coverslips (Carolina Biologicals) at a density of 75 cells/mm2 (100 

µL/coverslip).  After 30 min, 400 µL of media was added to each coverslip, and the 

cultures were incubated at 5% CO2 at 37 °C for 6 h.   

Cortical neuronal cultures were prepared from embryonic day 18 Long Evans rats 

as described24.  Neurons were counted, diluted into supplemented Basal Media Eagle 

(BME, Sigma; 450 mL media, 10 mL L-glutamine (200 mM), 5 mL penicillin/streptomycin 

(10,000 U/mL), 10 mL B-27 serum-free supplement (50X stock),  25 mL FBS) and seeded 

on poly-DL-ornithine-coated 18-mm glass coverslips (Carolina Biologicals) at a density of 

100 cells/mm2 (150 µL/coverslip).  After 30 min, 350 µL of supplemented BME media was 

added to each coverslip.  The cultures were incubated in 5% CO2 at 37 °C for 7 days.   

To image O-GlcNAc glycosylated proteins, the media was removed, and the 

coverslips were rinsed one time with PBS, fixed in 4% paraformaldehyde for 20 min at 

RT, washed twice with PBS, permeabilized in 0.3% Triton X-100 for 5 min at RT, and 

washed twice with enzymatic labeling buffer (50 mM HEPES, 125 mM NaCl, pH 7.9).  

Reaction mixtures and negative controls without UDP-GalNAz 1 were prepared as 

described in the Click-It™ O-GlcNAc Enzymatic Labeling System instructions except 

that Component C, the enzymatic labeling buffer, was replaced with a buffer containing 
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125 mM NaCl, 50 mM HEPES, pH 7.9.  These mixtures were added to each coverslip 

(50 µL), and the coverslips were incubated at 4 °C for 14–20 h.  For the HeLa cells, 

PNGase F (2500 U/mL) was added to the enzymatic labeling reaction mixture; no 

difference in staining was observed in the presence or absence of PNGaseF.  Coverslips 

were washed one time with 125 mM NaCl, 50 mM HEPES, pH 7.9 and twice with 50 

mM Tris, pH 8.0.  Biotin labeling reaction mixtures were prepared as per the Click-It™ 

Biotin Glycoprotein Detection Kit instructions using 50 mM Tris, pH 8.0 without SDS, 

added to each coverslip (50 µL), and the reaction allowed to proceed for 1 h at RT.  For 

TAMRA labeling, TAMRA-alkyne 3 was substituted above for biotin-alkyne 2.  The 

TAMRA-alkyne 3 produced high background labeling in the absence of GalT, likely due 

to noncovalently sticking of 3 to hydrophobic regions of membranes and proteins.  The 

background could be reduced by washing the cells with organic solvents (similar to the 

precipitation steps after TAMRA labeling on lysates), but these solvents also distorted 

and destroyed the fixed cells. 

After the reaction was finished, the coverslips were washed once with PBS, three 

times with 0.1% Triton-X100 in PBS, and once with PBS.  Following the PBS wash, 

nonspecific binding was blocked by incubating with 3% BSA in PBS for 1 h at RT and 

then rinsing once with PBS.  Cells were then incubated with streptavidin-AlexaFluor 488 

(1:800; Molecular Probes) in 3% BSA in PBS for 1 h at 37 °C.  Coverslips were rinsed 

three times with 0.2% Triton-X100 in PBS and once with PBS.  The coverslips were 

mounted onto glass slides using Vectashield mounting medium with DAPI (2 µL; Vector 

Labs) and sealed with clear nail polish.  Cells were imaged using a Nikon Eclipse 
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TE2000-S inverted microscope, and images were captured with Metamorph software 

using a 40x plan fluor oil objective.   
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Chapter 5: CREB — A Key Transcription Factor in the 

Nervous System 
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cAMP response element binding protein (CREB) is a complex transcription 

factor that integrates various cellular signals and outputs specific transcriptional 

programs.  In response to extracellular stimuli, CREB is post-translationally 

modified, most notably by phosphorylation.  This, in turn, alters CREB-dependent 

transcription and affects such processes as neuronal development and survival, drug 

addiction, and learning and memory.  Here, we review the literature on CREB 

regulation and function in the nervous system. 

 
 Cyclic-AMP response element binding protein (CREB) is a key transcription 

factor that translates extracellular stimuli into specific gene programs1-3.  CREB is 

expressed in all cells in the brain3 and complete knockout of CREB in mice is lethal4.  

CREB is a member of a family of transcription factors that includes CREB, CREM, and 

ATF-1 and binds as a homo- or heterodimer to cyclic-AMP response elements (CREs) 

containing the DNA sequence TGACGTCA1.  CREB consists of four domains: glutamine 

rich Q1 and Q2 domains, a central kinase inducible domain (KID) and a bZIP domain.  

The KID domain contains the majority of known CREB phosphorylation sites2, including 

the major phosphorylation site at Ser133, and is necessary for phosphorylation-induced 

CREB activity.  The bZIP domain is necessary for CREB to bind the DNA.  The Q2 

domain, primarily, and the Q1 domain, secondarily, are important for interactions with 

the basal transcriptional machinery and have been shown to mediate CREB 

transactivation independent on stimulus5.   
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Post-Translational Modifications of CREB 

Phosphorylation.  The best-studied post-translational modification of CREB is 

phosphorylation of CREB at Ser133.  Many different kinases, including CaMK, PKA, 

PCK, PKG, Rsk, and MEK, and many different stimuli, including growth factors, 

neurosignalling molecules, cytokines, and environmental stress2 all phosphorylate CREB 

at Ser133.  This phosphorylation event promotes the interaction between CREB and the 

coactivators CREB binding protein (CBP) and its paralogue p300, dramatically enhances 

CREB activity, and drives the expression on different CREB-mediated gene programs.  

Although phosphorylation at this site has been extensively studied and is often associated 

with CREB activation, it appears to be neither necessary6 nor sufficient2 for CREB 

activation. 

CREB is phosphorylated at Ser142 by CaMKII7 and this phosphorylation is 

modulated by a number of different stimuli, including formalin injection into the spinal 

cord, a model for peripheral noxious stimulation8, circadian rhythm, light, and glutamate 

in the suprachiasmatic nucleus (SCN)9, and calcium influx in cultured cortical neurons 

(which also leads to phosphorylation of Ser143)10.  Ser142 phosphorylation is necessary 

for complete light-induced expression of c-fos and mPer1 and for light-induced phase 

shifts of the circadian clock in the SCN9.  Ser142Ala CREB, mutants show enhanced, 

while Ser142Ala / Ser143Ala double mutants show repressed, CREB activity in response 

to neuronal depolarization but no effect on CREB activity in response to increased cAMP 

levels compared to WT CREB10.  Mechanistically, Ser142 phosphorylation has been 

shown to cause the dissociation of CREB dimers7 as well as to block the interaction 

between CREB and the KIX domain of CBP10. 
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Hypoxia induces hyperphosphorylation of CREB at sites other than Ser13311, 

although the exact sites are unknown.  Ionizing radiation, which causes DNA damage, 

promotes the phosphorylation of a cascade of CREB phosphorylation sites by ATM, 

CK1, and CK2 starting with Ser111 followed by Ser108, Ser114, Ser117, and Ser121, 

which finally blocks the interaction between CREB and CBP12.  Alternatively, CREB 

undergoes cell-cycle-dependent phosphorylation at Ser108, Ser111, and Ser114, and 

CREB with Ser111 and Ser114 mutated to glutamic acid to mimic phosphorylation show 

enhanced transcription on non-induced CREB13.  Furthermore, DNA damage leads to 

CREB phosphorylation at Ser271 by HIPK2, which enhances CREB transactivation by 

recruiting CBP14.  Finally GSK-3 phosphorylates CREB at Ser129 subsequent to 

phosphorylation of Ser133, and this phosphorylation event is required for CREB 

transactivation by forskolin in PC12 cells15. 

 

Other Post-Translational Modifications.  Along with phosphorylation, CREB is also 

modified by acetylation, glycosylation, ubiquitination, and SUMO-ylation.  CREB is 

acetylated by CBP at Lys91, Lys96, and Lys136, and mutations that replace these lysines 

with alanines or arginines enhance both basal and PKA-induced CREB activity16.  CREB 

is glycosylated in vivo within amino acids 259–26117.  Finally, following onset of 

hypoxia, CREB is phosphorylated, ubiquitinated, and degraded11, but after prolonged 

hypoxia, CREB is SUMO-ylated at Lys285 and Lys304, which stabilizes CREB, and in 

the case of Lys304 SUMO-ylation, may lead to increased nuclear localization18.  Taken 

together, the abundance of post-translational modifications on CREB suggests that CREB 

is tightly controlled in response to stimuli and that, although Ser133 phosphorylation may 
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be a predominant post-translational modification for activating CREB, these other 

modifications may be important for the finely tuned modulation of CREB activity. 

 

CREB-Interacting Proteins 

 CREB interacts directly with a variety of different proteins that either activate or 

repress CREB activity.  Two of the most widely studied CREB-interacting proteins are 

CBP / p300 and transducer of regulated CREB activity (TORCs).  CBP / p300 are 

transcriptional transactivators that interact with multiple transcription factors, including 

CREB.  The interaction between CREB and CBP is modulated by phosphorylation of 

CREB at Ser133, which is necessary but not sufficient for CBP to bind CREB19.  CBP / 

p300 promote the recruitment of RNA polymerase II through RNA helicase A and have 

histone acetyltransferase activity, which facilitates the opening of chromatin to allow 

access to the DNA20. 

TORCs are a recently discovered family of proteins that coactivate CREB 

transcription independent of CREB Ser133 phosphorylation6,21 and have been shown to 

contribute to important physiological and disease processes such as gluconeogenesis22 

and diabetes23.  TORCs bind to the bZIP domain of CREB, likely through ionic 

interactions24, and have been proposed to enhance CREB transactivation by promoting 

the interaction between CREB and TAFII130, a component of the basal transcriptional 

machinery6.  TORCs are actively shuttled out of the nucleus, and thus, in untreated cells, 

TORCs are found predominantly although not exclusively in the cytoplasm25.  TORCs 

are modified by phosphorylation and O-GlcNAc glycosylation.  In response to low-

energy signals such as low ATP levels or low glucose levels, AMPK in hepatic cells and 
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the hypothalamus and SIK in hepatic cells phosphorylate TORC2 at Ser17122,26, and in 

response to low glucose in islet cells, MARK2 phosphorylates TORC2 at Ser27527.  Both 

of these phosphorylation events recruit the 14-3-3 protein, which causes TORC to be 

sequestered in the cytoplasm.  Alternatively, in response to high glucose, TORC2 is O-

GlcNAc glycosylated at Ser70 and Ser17123 in hepatic cells or dephosphorylated by 

calcineurin in islet cells24,27, which blocks the interaction with 14-3-3, and allows TORC2 

to accumulate in the nucleus and enhance CREB activity.  In neurons, TORC1 and 

TORC2 translocate into the nucleus downstream of calcinuerin in response to neuronal 

depolarization28, where they are required for activity-dependent gene expression of SIK, 

activity-dependent dendritic growth29, stress sensitivity30, and maintenance of L-LTP in 

the Schaffer collateral–CA1 pathway28. 

 CREB can also interact with other proteins both to alter CREB activity as well as 

to alter the activity of the other protein.  For example, CREB binds TAFII130/135, which 

interacts with the Q2 domain of CREB and activates CREB31, as well as YY-1, which 

inhibits CREB activity by bending the DNA around CREB and thus blocking the 

interaction between CREB and the basal transcriptional machinery32.  Alternatively, 

CREB interacts with MeCP2, which modulates MeCP2 function such that it activates 

rather than represses genes33, and CREB bridges p53 and CBP, thereby enhancing p53 

transcriptional activation34. 

 

CREB Targets 

The complement of confirmed and predicted CREB target genes is extensive and 

continues to grow.  1349 mouse and 1663 human putative CREB binding sites have been 
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identified35 and 6302 CREB loci have been mapped from PC12 cells using a serial 

analysis of chromatin occupany (SACO) approach36.  CREB has been shown to regulate 

the expression of many different classes of proteins, including proteins important in 

neurotransmitter release, cell structure, signal transduction, and metabolism1.  

Furthermore, microarray analysis of CREB knockdown in myeloid leukemia cells37, 

CREB overexpression in the nucleus accumbens, and S133A CREB overexpession in the 

nucleus accumbens38 identified many transcripts whose expression was modified in 

response to modified CREB activity. 

 

Specificity of CREB Signal 

 CREB integrates a diversity of extracellular signals and translates them into 

unique gene programs.  Yet how CREB differentiates each of these signals and 

transcribes the correct set of genes for the correct time period and for a given signal 

within a given cell type remains an open and pressing question in the field.  For example, 

tyrosine hydroxylase, a CREB-dependent gene, is expressed in only specific cell types 

throughout the brain39 and c-fos expression has a distinct time-course that returns to basal 

levels within an hour, independent of stimulation time, in 3T3 cells40.  The post-

translational modifications of CREB (discussed above), which can be induced or 

repressed in response to different stimuli, may account for some of these effects.  

Nevertheless other signals and events are also likely required to differentiate the set of 

targets transcribed following CREB activation. 

The exact duration of CREB Ser133 phosphorylation may in part contribute to 

CREB transactivation.  H2O2 induces transient (15 min) CREB phosphorylation without 

117



CREB transactivation, whereas estradiol induces prolonged (5 hr) CREB phosphorylation 

and CREB activation41.  Nevertheless the kinetics of CREB phosphorylation are not the 

sole mediator of CREB activity as forskolin, which activates PKA, and phorbol 12-

tetradecanoate 13-acetate (TPA), which activates PKC; both phosphorylate CREB 

equally in NIH3T3 cells but only forskolin induces CREB activity42, and, similarly, 

forskolin and TPA both produce comparable levels of CREB phosphorylation in PC12 

cells, but only forskolin induces expression of the CREB target gene Icer43.  Interestingly, 

in the latter case, only forskolin was found to promote the formation of a nuclear CREB–

CBP complex although both forskolin and TPA promoted the formation of cytoplasmic 

CREB–CBP complexes43. 

Chromatin modification and accessibility may also contribute to stimuli-specific 

differences in CREB-mediated transcription.  CREB forms a stable complex with 

HDAC1 and PP1, which is disrupted by forskolin44.  Furthermore, treatment with 

Trichostatin A (TSA), an HDAC inhibitor, enhances the expression of a subset of CREB-

mediated genes, including c-fos and NUR77, following forskolin treatment while 

blocking the activation of a different subset of CREB-mediated genes, including ICER 

and NOR-145.  Similarly, BDNF, a CREB-target gene, has exon-specific changes in 

chromatin modifications on its promoter following NMDA treatment46.  Finally, CREB 

occupancy of different promoters, including the somatostatin promoter, differs depending 

on the cell type, possibly in response to different availability of the promoter for protein 

binding47. 

Finally, post-translational modifications of CREB coactivators or corepressors 

may specify which stimuli activate CREB transcription.  CBP is phosphorylated48, 
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methylated49, SUMO-ylated50, and glycosylated51.  CBP Ser301 phosphorylation is 

induced by NMDA in hippocampal neurons and is required for full CREB 

transactivation48.  Furthermore, methylation at Arg300 blocks the interaction between 

CREB and CBP and represses CREB transcription.  Finally, CBP can be SUMO-ylated at 

Lys999, Lys1034, and Lys1057, which recruits the transcriptional corepressor Daxx and 

represses CBP transcriptional activity50.  Thus, signals that modify the duration of CREB 

phosphorylation, the chromatin modifications around CREB target genes, and the activity 

of CREB coactivator and corepressor, in addition to activating CREB, may be important 

in differentiating specific stimuli and activating unique CREB-dependent gene programs. 

 

Pathways that Activate CREB Following Neuronal Activity 

 Three major kinase pathways regulate CREB activity in neurons in response to 

neuronal activity — PKA, CaMK, and Ras/ERK.  PKA is regulated by cAMP levels, 

which are themselves regulated by adenylate cyclase activity.  Adenylate cyclase activity 

can be regulated downstream of G-protein-coupled receptors (GPCRs) for 

neurotransmitters as well as directly through Ca2+ flux1,52.  Ca2+ flux also activates both 

MAPK and calmodulin.  MAPK and calmodulin further active Rsk kinases and CaMK, 

respectively, which directly phosphorylate CREB53.  Once phosphorylated, two 

phosphatases are able to directly dephosphorylate CREB, PP1 and PP2A1.  Inhibition of 

calcineurin is also known to enhance CREB phosphorylation but calcineurin has yet to be 

shown to directly dephosphorylate CREB in vivo54.  
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Functions of CREB in the Nervous System 

 CREB performs a number of different functions in the nervous system.  Among 

the best studied include its role in neuronal development and survival, in drug addiction, 

and in learning and memory. 

 

CREB and Neuronal Development and Survival.  Inhibition of CREB family members in 

vitro and CREB knockout studies in vivo substantiate a critical role for CREB in neuronal 

survival55-58.  In vitro transfection with a dominant-negative CREB construct blocks 

BDNF-mediated cell survival in cerebellar granular neurons55 and NGF-mediated cell 

survival in sympathetic neurons56.  Furthermore, overexpression of a constitutively-active 

CREB construct was sufficient to promote sympathetic neuron survival in the absence of 

NGF56.  Finally, CREB null mice have a reduction in the size of the corpus callosum and 

the anterior commissures, as well as enhanced apoptosis of sensory and sympathetic 

neurons57, and dentate gyrus neuronal survival following ischemic insult depends on 

CREB-dependent gene expression58. 

 CREB has also been shown to contribute to neuronal development.  Studies have 

shown that CREB, through the expression of Wnt-2, in hippocampal neurons59 and 

CREB and TORC1 in cortical neurons29,60 are necessary for activity-dependent dendrite 

growth both in vitro.  Furthermore, CREB knockout studies indicate axonal growth 

defects in DRG neurons57. 

 

CREB and Drug Addiction.  CREB activation, expression, and activity appear intricately 

linked to the process of drug addiction.  Multiple regions of the brain demonstrate up-
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regulation of the cyclic AMP pathway following opiate addiction61.  In the locus 

coeruleus, morphine administration inhibits, whereas morphine withdrawal activates, 

CREB phosphorylation62.  Alternatively morphine and cocaine administration induces 

CREB activity in the nucleus accumbens and striatum63,64.  Furthermore, mice lacking 

CREB in the entire brain show decreased development of morphine dependence65.  More 

specifically, overexpression of a dominant-negative form of CREB in the nucleus 

accumbens or the caudal ventral tegmental area (VTA) increases the rewarding effects of 

morphine and cocaine whereas overexpression of WT CREB decreases them66-68.  

Alternatively, overexpression of WT CREB in the rostral VTA makes cocaine more 

rewarding and overexpression of a dominant-negative form of CREB makes cocaine less 

rewarding68. 

 

CREB and Memory.  CREB is a key transcription factor for regulating long-term memory 

across many different species.  Long-term facilitation, a model of memory, can be 

blocked or induced in Aplysia by injecting CRE oligonucleotides or phosphorylated 

CREB, respectively, demonstrating that CREB is necessary and sufficient for this 

process69.  Additionally, activation of long-term facilitation activates CREB-mediated 

transcription in Aplysia70.  Induction of a dominant negative CREB transgene blocks 

while induction of a CREB activator isoform enhances long-term memory in 

Drosophila71,72.  In mice, learning tasks are associated with an increase in CREB 

phosphorylation at Ser13373,74.  Furthermore, injection of CREB antisense oligos into the 

hippocampus of WT CREB causes deficits in spatial memory75,76.  Moreover, CREB αΔ 

knockout mice show a deficit in long-term but not short-term memory following 
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contextual and cued fear conditioning76 and social transmission of food preferences77 as 

well as a deficit in the Morris Water maze test, which could be caused by learning or 

memory impairment76.  Although follow-up experiments have shown that these effects 

depend, in part, on the specific mouse strain used for the study and may require knockout 

of additional CREB isoforms78,79, they nevertheless suggest a significant role for CREB 

in long term memory formation.   Similarly, induction of a dominant-negative CREB 

blocks consolidation of long-term memory whereas overexpression of WT CREB 

enhances this consolidation80,81.  Taken together, these studies demonstrate that CREB 

contributes to critical and complex functions in the brain. 

 

Conclusions 

CREB is a complex transcription factor that is activated by multiple, distinct 

signaling pathways in neurons and that is essential for many critical neuronal functions.  

Although CREB has been well studied, a number of open questions remain:  How does 

CREB distinguish between the different pathways that induce phosphorylation at Ser133?  

Do other CREB post-translational modifications contribute, and if so, what are these 

other modifications, how are they regulated, and how do they affect CREB function?  

Finally, given a variety of inputs, how does CREB activate transcriptional programs 

specific for the context?  Addressing these questions will provide in-depth information on 

the function of CREB in neurons.  Moreover, insofar as CREB is a model for other 

transcription factors, additional data of CREB will more broadly inform our 

understanding of transcription. 
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O-Glycosylation of proteins with N-acetyl-D-glucosamine (O-GlcNAc) is an 

abundant post-translational modification that shares key features with protein 

phosphorylation; however, its precise functions in the brain are not well understood.  

We show that O-GlcNAc glycosylation regulates cAMP-response element binding 

protein (CREB), a transcription factor critical for neuronal activity-dependent gene 

expression, neuronal development, and long-term memory storage.  Glycosylation of 

CREB was dynamically induced by membrane depolarization and repressed CREB-

dependent transcription by impairing the association of CREB with the CREB-

regulated transcriptional co-activator (CRTC/TORC).  Blocking glycosylation of 

CREB at a single amino acid site promoted axonal and dendritic growth and 

enhanced long-term memory consolidation.  Our studies reveal that O-GlcNAc 

glycosylation plays a major role in essential neuronal processes and higher-order 

brain functions. 

 

Dynamic O-GlcNAc glycosylation of intracellular proteins is emerging as a 

crucial regulatory post-translational modification1-5.  Attachment of this simple glycan, 

N-acetylglucosamine (GlcNAc), to serine or threonine residues occurs on more than 

1,000 proteins, including transcription factors, translational regulators, cytoskeletal 

components, and other nucleocytoplasmic proteins1-3,6.  The fact that O-GlcNAc 

glycosylation shares key features with protein phosphorylation, which regulates neuronal 

processes such as cell signaling, synaptic plasticity, and learning and memory7, suggests 

similar, critical roles for O-GlcNAc in the brain.  Moreover, several studies have linked 

O-GlcNAc to various neuropathologies, particularly Alzheimer's disease1-3,8,9.  Despite 

129



this intriguing body of evidence, little is known about the specific contributions of O-

GlcNAc to fundamental neuronal functions.  Thus, there is a strong rationale to explore 

how site-specific protein O-glycosylation may serve as a critical regulator of higher-order 

brain function. 

To determine specific roles for O-GlcNAc in the nervous system, we examined 

glycosylation of CREB, a transcription factor important for neuronal development and 

survival, circadian rhythms, drug addiction, and long-term memory consolidation10-14.  

Jessica Rexach chemoenzymatically labeled proteins with terminal GlcNAc sugars with a 

2,000-Da polyethylene glycol (PEG) mass tag and immunoblotted with an anti-CREB 

antibody to visualize the glycosylated species (Fig. 1).  We found that a large fraction of 

CREB (44– 48%) was mono-glycosylated in both cultured cortical neurons and various 

brain regions of adult mice.  To map the glycosylation sites, I transiently expressed 

CREB in neuro2a cells, immunoprecipitated it, and subjected it to electron transfer 

dissociation mass spectrometry (ETD-MS) analysis.  In addition to the three sites initially 

identified (Thr259, Ser260, Thr261)15, O-GlcNAc glycosylation was mapped to Ser40 

and Thr227 or Thr228 within the Q1 and Q2 domains (Figs. 2, 3).  Jessica found that 

expression of a mutant form of CREB, in which Ser40 was mutated to alanine (S40A), 

led to a large reduction in CREB glycosylation levels in cortical neurons (56%), whereas 

mutation of both Thr227 and Thr228 (TT227-8AA) led to a smaller decrease in 

glycosylation (36%; Fig. 4).  CREB was also glycosylated within Thr259, Ser260, and 

Thr261 at low levels (TST259-61AAA; 13%), and simultaneous mutation of all six sites 

(A6) abolished the glycosylation of CREB.  These results demonstrate that CREB is 
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highly glycosylated in neurons, identify all major glycosylation sites on neuronal CREB, 

and establish Ser40 as the predominant site of O-GlcNAc glycosylation. 

 

Figure 1: CREB is O-GlcNAc glycosylated in neurons.  Detection of O-GlcNAc 
glycosylated CREB in neurons by chemoenzymatic labeling with a 2000-Da mass tag 

Figure 2: CREB is 
O-GlcNAc 
glycosylated at Ser40 
and Thr227 or 
Thr228.  Mass 
spectrum of 
chymotrypsin 
digested FLAG-
CREB from Neuro2a 
cells.  Electron 
transfer dissociation 
mass spectrometry 
(ETD-MS) was 
performed on the m/z 
651.9 ion (a) and the 
m/z 781.3 ion (b).  
Shown are annotated 
spectra for two 
peptides identified to 
contain the O-
GlcNAc 
modification.  The c 
and z fragment ions 
observed were used 
to map the 
glycosylation sites to 
the residues indicated 
in red. The 
methionine in the top 
spectrum is oxidized. 
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Figure 3: CREB glycosylation sites.  
Glycosylation sites on CREB mapped by 
ETD-MS 

  Next, Jessica determined if 

CREB glycosylation is 

dynamically modulated by 

neuronal activity.  Membrane 

depolarization of cortical neurons 

by treatment with KCl induced 

glycosylation of CREB.  CREB 

glycosylation levels increased 

steadily by 42.0 ± 4.8% over the 

course of 6 h, in contrast to the 

rapid induction of CREB 

phosphorylation at Ser133 (Fig. 

5).  Mutation of Ser40 to alanine 

blocked depolarization-induced 

CREB glycosylation, while 

mutation of the other 

glycosylation sites had no effect 

(Fig. 4).  Given the slow 

kinetics of glycosylation, I 

examined whether CREB 

glycosylation is dependent on 

new protein synthesis.  Treatment 

with the protein synthesis inhibitor 

Figure 4: CREB is O-GlcNAc glycosylated at Ser40 
in response to neuronal activity.  Glycosylation 
levels of Flag-tagged WT CREB and various alanine 
mutants after expression in cultured cortical neurons.  
Neurons were depolarized with KCl where indicated.  
(n = 7 for WT and S40A CREB; n = 3–5 for other 
mutants; *P < 0.01 compared to WT, unstimulated 
cells; **P < 0.05; NS, not significant).  Error bars, 
means, and standard errors of the mean in this and 
subsequent figures. 
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cycloheximide did not block the increase in glycosylation (Fig. 6), suggesting that 

glycosylation is triggered directly by signal transduction pathways.  Jessica showed that 

inhibition of L-type calcium channels with nimodipine abolished the depolarization-

induced glycosylation of CREB, indicating a requirement for voltage-sensitive calcium 

influx (Fig. 7).  Moreover, inhibition of Ca2+/calmodulin-dependent protein kinases 

(CaMKs) or mitogen-activated protein kinase (MAPK) blocked the increase in CREB 

glycosylation, while inhibitors of protein kinase C or protein phosphatases PP-2B or PP-

1/2A had no effect (Fig. 7).  Together, these results show for the first time that neuronal 

activity stimulates O-GlcNAc glycosylation and specifically induces CREB glycosylation 

at Ser40 in a calcium- and kinase-dependent manner.    

 CaMKs and MAPK are known to phosphorylate CREB at Ser133, which leads to 

Figure 5:  Kinetics of endogenous CREB 
glycosylation and Ser133 phosphorylation 
upon depolarization of cortical neurons.  
Levels of glycosylation or phoshorylation are 
plotted relative to the maximum signal for 
each modification.  (n = 4–6). 

Figure 6: The protein synthesis 
inhibitor cycloheximide does not 
block depolarization-induced 
glycosylation of CREB.  
Glycosylation levels of 
endogenous CREB.  Neurons 
were pretreated with 
cycloheximide (Cyclo) or 
DMSO vehicle (Veh) and then 
incubated in the presence or 
absence of KCl (55 mM) (n = 3, 
*P < 0.01).  
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recruitment of the coactivator CREB-binding protein (CBP) and activation of CREB-

mediated transcription16,17.  As these same kinases are necessary for activity-dependent 

glycosylation of CREB, Jessica determined whether Ser133 phosphorylation is required 

for CREB glycosylation.  Mutation of Ser133 to Ala (S133A) blocked the KCl-induced 

increase in CREB glycosylation (Fig. 8).  However, I showed that forskolin-mediated 

stimulation of Ser133 phosphorylation via the cAMP pathway failed to induce CREB 

glycosylation (Fig. 9), suggesting that phosphorylation at Ser133 may be required but is 

not sufficient to activate CREB glycosylation.  We recently reported a rapid, 

chemoenzymatic strategy to probe the interplay between phosphorylation and O-GlcNAc 

glycosylation on target proteins18.  Using this approach, Jessica examined the 

interdependence of Ser133 phosphorylation and Ser40 glycosylation on CREB.  Cortical 

neuronal lysates were labeled with a 2,000-Da mass tag and immunoblotted with a 

Figure 7: CREB glycosylation is modulated by 
specific kinase pathways.  Glycosylation levels 
of endogenous CREB in unstimulated or KCl-
stimulated cortical neurons upon treatment with 
inhibitors of L-type calcium channels 
(nimodipine; nimo), CaMKs (KN-62),  MAPK 
(U0126), protein kinase C (calphostin C; CalC), 
PP-2B (cyclosporin A; CyA), or PP-1/2A 
(okadaic acid; OA).  (n = 3–6, *P < 0.02). 

Figure 8: Glycosylation is not 
induced on S133A CREB.  
Glycosylation levels were 
analyzed on Flag-tagged WT or 
S133A CREB expressed in 
cortical neurons.  (n = 22, *P < 
0.001). 
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phospho-Ser133-specific or total CREB antibody to enable visualization of four distinct 

subpopulations: (1) mono-glycosylated, (2) nonglycosylated, (3) mono-glycosylated and 

Ser133-phosphorylated, and (4) nonglycosylated and Ser133-phosphorylated CREB (Fig. 

10).  A significant subpopulation of endogenous CREB was simultaneously 

phosphorylated and glycosylated in both unstimulated and depolarized neurons (Fig. 10), 

consistent with the notion that phosphorylation and glycosylation cooperatively regulate 

CREB activity.  Moreover, I showed that WT CREB and a mutant form (A5), in which 

all glycosylation sites except Ser40 were mutated to alanine, showed comparable levels 

of phospho-Ser133 induction when expressed in neurons, and both Ser40 glycosylation 

and Ser133 phosphorylation occurred concomitantly on the same protein molecule (Fig. 

11).  Notably, Jessica found that the kinetics of Ser133 phosphorylation upon KCl 

depolarization was similar for both the glycosylated and nonglycosylated subpopulations 

of endogenous CREB (Fig. 10, 12), indicating that Ser133 phosphorylation occurs 

independent of the glycosylation state.  However, glycosylation was more rapidly 

induced on the Ser133-phosphorylated subpopulation compared to the total population of 

endogenous CREB (Fig. 10, 13).  Collectively, these results strongly suggest that 

neuronal activity-dependent glycosylation of CREB at Ser40 is induced preferentially on 

the Ser133-phosphorylated subpopulation.  
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Figure 9: Forskolin induces CREB phosphorylation (a) but not 
CREB glycosylation (b) in cortical neurons.  Neurons were 
treated with forskolin or DMSO vehicle and lysates were either 
immunoblotted for pSer133 CREB or chemoenzymatically 
labeled with a polyethylene glycol mass tag and immunoblotted 
for CREB to visualize the glycosylated CREB subpopulation.  (n 
= 3, *P < 0.01; NS, not significant). 

Figure 10:  Chemoenzymatic labeling of 
endogenous CREB for visualizing 
phosphorylation and glycosylation within 
the same protein molecule and for 
quantifying the levels of each modification 
within distinct post-translationally 
modified subpopulations 
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 To determine whether glycosylation modulates CREB activity, I compared the 

ability of wild-type (WT) and S40A mutant CREB to regulate CRE-dependent gene 

expression.  A short hairpin RNA (shRNA) was used to knockdown endogenous CREB 

in neuro2a neuroblastoma cells, and shRNA-resistant WT or S40A mutant CREB was 

overexpressed (Fig. 14).  Replacement of endogenous CREB with the S40A mutant 

resulted in increased CRE-luciferase activity (Fig. 15), suggesting that glycosylation 

represses the transcriptional activity of CREB.  The S40A substitution also upregulated 

expression of endogenous CREB target genes, including CDKN1A, NR4A2, and OPA3 

Figure 11: CREB is 
simultaneously 
phosphorylated at Ser133 
and glycosylated at Ser40.  
Quantification of pSer133 
levels on Flag-tagged WT 
or A5 mutant CREB 
following 10-min 
depolarization. (n = 3).  

Figure 12: Kinetics of 
Ser133 phosphorylation for 
specific post-translationally 
modified subpopulations of 
endogenous CREB. (n = 4, 
*P < 0.03). 

Figure 13: Kinetics of 
glycosylation for specific 
post-translationally modified 
subpopulations of 
endogenous CREB. (n = 4, 
*P < 0.03). 
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(Fig. 16).  To investigate the mechanism, I evaluated whether glycosylation affects the 

ability of CREB to associate with DNA or transcriptional co-activators.  Binding of 

CREB to the CRE promoter was unaffected by the S40A mutation in an electrophoretic 

mobility shift assay (Fig. 17).  However, binding of CREB to CRTC2, a co-activator that 

stimulates both basal and induced CREB transcription in neurons19, was significantly 

enhanced by the S40A mutation in reciprocal co-immunoprecipitation assays (Fig. 18). 

Figure 14: Knockdown of endogenous 
CREB and overexpression of shRNA-
resistant, Flag-tagged WT or S40A 
CREB in neuro2a cells.  a, pLEMPRA-
CREB construct used to knockdown 
endogenous CREB and express Flag-
tagged CREB. b, Knockdown of 
endogenous CREB using a vector 
containing the shRNA sequence.  c, 
Overexpression of shRNA-resistant 
CREB from the pLEMPRA construct. 
Western blots are representative of five 
independent experiments. 
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Furthermore, knockdown of CRTC2 expression in neuro2a cells abolished the observed 

increases in CDKN1A, NR4A2, and OPA3 transcript levels for S40A CREB compared to 

Figure 17: WT and S40A CREB show similar 
binding to the CRE promoter in vitro.  Neuro2a cells 
were transfected with WT or S40A CREB, lysed, and 
an electrophoretic mobility shift assay was performed 
using IRDye 700-labeled oligos containing a CRE 
promoter sequence. (n = 3; NS, not significant).  

Figure 18: Glycosylation at 
Ser40 blocks the interaction 
between CREB and CRTC2.  Co-
immunoprecipitation of the 
CREB-CRTC2 complex from 
neuro2a cells expressing WT or 
S40A CREB.  (n = 4).  

Figure 15:  
Glycosylation at 
Ser40 represses 
CREB activity. 
CRE-luciferase 
activity in neuro2a 
cells expressing 
WT or S40A 
CREB.  (n = 11, 
*P < 0.01).  

Figure 16:  Glycosylation at Ser40 represses CREB 
activity. Quantitative polymerase chain reaction (qPCR) 
analysis of CDKN1A, NR4A2, and OPA3 expression in 
cells transfected with the indicated shRNAs or expression 
vectors using RPL3 as an internal control (n = 8, *P < 
0.01).  
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WT CREB (Fig. 16).  Together, these findings indicate that glycosylation impairs the 

ability of CREB to activate transcription by disrupting the CREB-CRTC interaction. 

 I next determined whether glycosylation at Ser40 regulates neuronal gene 

expression, focusing on well-characterized genes involved in brain development and 

memory consolidation20-24.  Relative to WT CREB, expression of S40A CREB in cortical 

neurons increased the levels of BDNF exon IV, Arc, Cdk5, c-fos, and Wnt2 transcripts 

(Fig. 19).  Taking into account the contribution of CREB to the expression of each gene, 

as measured using CREB siRNA, the observed increases correspond approximately to a 

2.5–3.6-fold induction in CREB-dependent transcription (Fig. 20).  Consistent with a 

mechanism involving direct regulation of these genes through modulation of the CREB- 

Figure 19: 
Glycosylation at 
Ser40 represses 
CREB activity via a 
CRTC-dependent 
mechanism in 
neurons. qPCR 
analysis of BDNF 
exon IV, Arc, Cdk5, 
c-fos, and Wnt2 
expression in 
cultured cortical 
neurons 
electroporated with 
the indicated 
siRNAs or 
expression vectors  
using RPL3 as an 
internal control.  (n 
= 4–9, *P < 0.01). 
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CRTC interaction, both CREB and O-GlcNAc transferase (OGT) were bound to the 

promoters of each gene, and WT and S40A CREB showed comparable levels of promoter 

occupancy in chromatin immunoprecipitation assays (Fig. 21, 22).  Moreover, siRNA-

mediated knockdown of CRTC1 reversed the effects of S40A CREB on neuronal gene 

expression (Fig. 19).  Interestingly, no increases in the transcript levels of ATF3, PEPCK, 

or UCP1 were detected even though CREB was bound to their promoters (Fig. 23), 

suggesting that O-glycosylation at Ser40 may confer specificity in the regulation of a 

subset of CREB-dependent genes.  Finally, I investigated the effects of Ser40 

Figure 20: S40A CREB produces approximately a 2.5–3.6-fold increase in 
mRNA expression relative to WT CREB.  a, Cortical neurons were 
electroporated with scramble or CREB siRNA and the mRNA levels of each 
gene were measured by quantitative RT-PCR.  (n = 14, *P < 0.05). b, Cortical 
neurons were electroporated with WT CREB or S40A CREB and the mRNA 
levels of each gene were measured by quantitative RT-PCR.  The fold-change 
was calculated by subtracting the transcript level of each gene in neurons 
transfected with CREB siRNA from the transcript levels of each gene in WT or 
S40A CREB-expressing neurons and then normalizing the WT CREB levels to 
1. (n = 9, *P < 0.01).  
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Figure 21: Both CREB and OGT occupy 
the BDNF exon IV, Arc, Cdk5, c-fos, and 
Wnt2 promoters. Chromatin 
immunoprecipitation with an anti-CREB, 
anti-OGT, or IgG antibody was followed 
by PCR for the indicated promoters.  (n = 
3).  

Figure 22: WT and S40A CREB show 
comparable levels of promoter occupancy 
on BDNF exon IV, Arc, Cdk5, c-fos, and 
Wnt2 promoters. Cortical neurons were 
electroporated with WT or S40A Flag-
tagged CREB. Chromatin 
immunoprecipitation with an anti-FLAG 
or IgG antibody was followed by PCR 
for the indicated promoters.  (n = 3).  

Figure 23: S40A CREB regulates a subset of CREB-mediated genes.  a, Cortical neurons 
were electroporated with CREB siRNA, WT CREB, or S40A CREB as noted.  
Quantitative PCR was performed on the indicated genes. (n = 4, *P < 0.05).  b, Chromatin 
immunoprecipitation was performed with an anti-CREB or IgG control antibody.  PCR 
was carried out using primers specific for the promoters of the indicated genes. 
Representative gels from three independent experiments are shown. 
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glycosylation on activity-dependent gene expression.  Consistent with the observation 

that neuronal activity enhances CREB glycosylation, blocking glycosylation of CREB at 

Ser40 increased the levels of BDNF exon IV and c-fos transcripts to a greater extent in 

membrane-depolarized neurons compared to unstimulated neurons (Fig. 24).  Taken 

together, the results indicate that CREB glycosylation at Ser40 modulates both basal and 

activity-dependent gene expression, thereby regulating genes important for neuronal 

development, survival, and synaptic plasticity.  

CREB has critical roles in several aspects of 

neuronal development, including axon growth, 

activity-dependent dendrite development, and 

synaptogenesis10,22,25.  To assess the functional 

consequences of Ser40 glycosylation on neuronal 

growth, Jessica assayed axonal and dendritic 

extension in cortical neurons expressing WT or 

Figure 24: Blocking 
glycosylation enhances BDNF 
IV and c-fos expression even 
more after depolarization.  qPCR 
analysis of BDNF exon IV and 
c-fos expression after membrane 
depolarization of cultured 
cortical neurons expressing WT 
or S40A CREB.  (n = 10, *P < 
0.01).  

Figure 25:  WT and S40A 
Flag-tagged CREB are 
expressed at similar levels in 
cortical neurons.  Cortical 
neurons were electroporated 
with WT or S40A CREB.  
After 3 DIV, the lysate was 
immunoblotted for Flag-
tagged CREB.   
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 S40A mutant CREB (Fig. 25).  Dendrites of neurons expressing WT CREB or a GFP 

control exhibited similar lengths, and as expected, their growth was stimulated by 

membrane depolarization (Fig. 26).  In contrast, neurons expressing S40A CREB had 

significantly longer dendrites than WT CREB-expressing neurons (2.77-fold increase), 

displaying lengths comparable to those of depolarized neurons, and their dendrites 

showed no further elongation upon membrane depolarization (Fig. 26).  Additionally, 

neurons expressing S40A CREB had significantly longer axons compared to WT CREB- 

and GFP-expressing controls (Fig. 27).  Therefore, preventing CREB glycosylation at 

Ser40 enhances the outgrowth of both axons and dendrites in vitro, indicating that 

glycosylation has a large, chronic repressive effect on multiple developmental pathways.  

Figure 26: CREB glycosylation at 
Ser40 represses dendritic growth.  
Relative total dendrite lengths of 
cortical neurons expressing GFP, 
WT CREB or S40A CREB.  (n = 90 
from three independent experiments, 
*P < 0.001; NS, not significant).  

Figure 27:  Expression of 
S40A CREB enhances axon 
outgrowth.  Relative axon 
lengths of cortical neurons 
expressing, GFP, WT 
CREB or S40A CREB (n = 
90 from three independent 
experiments, *P < 0.001). 
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To confirm further that these effects are occurring directly through O-

glycosylation of CREB, Jessica performed OGT gain- and loss-of-function experiments.  

OGT-null neurons were generated from OGT floxed mice26 by expression of CRE 

Figure 28: OGT 
expression represses 
while OGT knockout 
enhances axon length.  
Relative axon lengths of 
OGT floxed cortical 
neurons expressing GFP, 
Flag-tagged OGT, or Cre 
recombinase (OGT KO). 
Neurons were also 
transfected with scramble 
or CREB siRNA as 
indicated.  (n = 90 from 
three independent 
experiments, *P < 
0.001). 

Figure 29:  OGT knockout decreases O-GlcNAc levels, and OGT overexpression 
increases O-GlcNAc levels.  a, Neurons from OGT floxed mice electroporated with a 
GFP construct (control) or with GFP and CRE recombinase constructs (OGT KO).  b, 
Neurons from WT mice electroporated with a GFP construct (control) or with an OGT 
construct containing GFP (OGT overexpression).  Cells were immunostained for 
overall O-GlcNAc levels using the pan-specific O-GlcNAc antibodies CTD110.6 and 
RL2, respectively. 
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recombinase in cultured cortical neurons.  Knocking out OGT reduced overall O-GlcNAc 

glycosylation levels and stimulated axonal growth, whereas OGT overexpression 

enhanced O-GlcNAc glycosylation levels and attenuated axonal growth (Fig. 28, 29).  In 

both cases, siRNA-mediated knockdown of endogenous CREB reversed the effects of 

OGT knockout or overexpression and restored axon lengths to those of GFP-expressing 

neurons (Fig. 28), indicating that O-GlcNAc glycosylation modulates axonal growth 

through a CREB-dependent mechanism. 

 

 

Figure 30: CREB glycosylation at Ser40 
represses dendritic growth through 
overexpression on Wnt2.  Relative dendrite 
lengths of unstimulated neurons transfected 
with WT or S40A CREB, Wnt2 signaling 
inhibitors (Wnt2 siRNA, Dickkopf-1 (Dkk-1), 
Ncad(intra)) or CRTC1 siRNA as indicated.  
The BDNF signaling inhibitor TrkB-Fc was 
added in solution to neurons.  (n = 90 from 
three independent experiments, *P < 0.001).  
Lengths are shown relative to unstimulated 
GFP-expressing neurons in Figure 26.  
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To investigate the molecular mechanisms further, Jessica and I considered known 

mediators of CREB-dependent dendrite and axon elongation.  Activation of CREB drives 

the expression of the secreted mitogen Wnt2 to regulate activity-dependent dendritic 

growth, whereas application of the neurotrophin BDNF leads to axon elongation22,27.  

Both Wnt2 and BDNF transcript levels were significantly increased in cortical neurons 

expressing S40A CREB as compared to WT CREB (Fig. 19).  I showed that knockdown 

of Wnt2, overexpression of the Wnt2 antagonist Dickkopf-1, or overexpression of the β-

catenin sequestrant Ncad(intra) reversed the stimulatory effects of both S40A CREB 

(Fig. 30) and neuronal depolarization (Fig. 31) on dendritic growth.  Alternatively, 

Jessica showed that treatment with the BDNF/NT-4/5 scavenger TrkB-Fc blocked the 

effects of S40A CREB specifically on axon growth, but not dendrite growth (Fig. 30, 32).  

Moreover, knockdown of CRTC1 abolished the S40A CREB-dependent increases in 

Wnt2/BDNF gene expression (Fig. 19), dendritic growth (Fig. 30), and axonal growth 

Figure 31:  Depolarization-induced 
dendrite growth is blocked by Wnt2 
siRNA, Dkk-1, and Ncad(intra).  Relative 
axon lengths of cortical neurons were 
electroporated with Flag-tagged WT or 
S40A CREB constructs containing GFP, 
along with scramble siRNA, Wnt2 
siRNA, Dkk-1, or Ncad(intra) constructs 
and treated with KCl as indicated.  
Lengths relative to neurons expressing 
WT CREB in the absence of KCl 
stimulation are shown. (*P < 0.001 
relative to scramble siRNA for each 
respective genotype). 
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(Fig. 32).  Thus, CREB glycosylation modulates 

dendrite and axon elongation via the CRTC-

dependent downregulation of Wnt2 and BDNF 

signaling, respectively.  These findings strongly 

suggest that O-glycosylation of CREB functions 

as a critical regulator of neuronal growth.  By 

controlling the basal threshold levels of key 

genes, glycosylation of CREB exerts a chronic 

repressive effect on neuronal growth and enables 

appropriate stimuli-induced growth responses.  

Having shown that O-GlcNAc 

glycosylation modulates important CREB-

dependent cellular processes, we next examined 

the role of CREB glycosylation in higher-order 

brain functions in vivo.  CREB-dependent 

transcription is essential for the consolidation of 

long-term conditioned fear memories14,28.  Jessica 

and I first examined whether glycosylation is 

induced on endogenous CREB in response to 

auditory fear conditioning.  Specifically, the glycosylation levels of CREB were 

compared in the lateral amygdala of fear-conditioned mice and tone-only trained controls. 

 An increase in glycosylation (13.6 ± 0.3%) was detected specifically within the activated 

CREB subpopulation (phosphorylated at Ser133; Fig. 33), indicating that glycosylation 

Figure 32:  The enhanced axon 
outgrowth caused by expression 
of S40A CREB is blocked by 
TrkB-Fc or CRTC1 knockdown.  
Cortical neurons were 
electroporated with Flag-tagged 
WT or S40A CREB constructs 
containing GFP, along with 
CRTC1 or scramble siRNA as 
indicated. TrkB-Fc (0.7 µg/ml) or 
vehicle was added after 1 DIV 
where indicated.  (n = 90 from 
three independent experiments, 
*P < 0.0001). 
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of CREB is induced following activation of amygdala neurons in vivo.  To determine 

whether CREB glycosylation affects memory formation in vivo, Jessica bilaterally 

microinjected replication-defective herpes simplex viral (HSV) vectors expressing WT 

CREB and GFP, S40A CREB and GFP, or GFP alone into the lateral amygdala of mice 

before fear conditioning (Fig. 34), and assessed memory 30 min, 2 h, and 24 h after 

training.  Similar to previous experiments29,30, mice infused with WT CREB vector had 

enhanced memory compared to GFP vector-infused mice after 24 h, but not after 30 min 

or 2 h (Fig. 35; F1,25 = 4.34, P = 0.048), indicating that CREB overexpression increases 

long-term fear memory.  Notably, Jessica found that mice infused with S40A CREB 

vector exhibited significant memory enhancement 2 h after training compared to mice 

infused with WT CREB or GFP (Fig. 35; F2,45 = 9.70, P = 0.0003).  To test whether this 

effect represents enhanced long-term memory, a CREB-dependent process that requires 

de novo mRNA and protein synthesis 14,28, Jessica injected the mice with the protein 

synthesis inhibitor, anisomycin, at various points after training and then assessed 

memory.  Inhibiting protein synthesis immediately after training blocked the memory 

enhancement of S40A CREB at 2 h (Fig. 36; F1,12 = 24.57, P = 0.0003), while inhibiting 

protein synthesis 2 h after training failed to block the memory enhancement at 24 h (Fig. 

37; F1,13 = 0.23, P = 0.64).  These results indicate that mice expressing S40A CREB have 

enhanced, consolidated long-term memory at 2 h.  As with the neurite outgrowth studies, 

we observed an accelerated response upon removing the repressive effects of 

glycosylation.  Limited information is known about the genes and mechanisms that 

control the rate of memory consolidation.  However, our results are consistent with the 

requirement for de novo gene expression and suggest that blocking CREB glycosylation 
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leads to the accumulation of plasticity-related transcripts and the facilitation of rapid 

long-term memory consolidation.  More broadly, these findings provide the first direct 

demonstration that O-GlcNAc glycosylation plays a role in higher-order brain functions.  

Figure 33: CREB glycosylation is induced 
following activation of neurons in vivo. 
Glycosylation levels of activated Ser133-
phosphorylated CREB and total CREB in 
the amygdala 15 min after auditory fear 
conditioning. (n = 3, *P < 0.01).  

Figure 34:  Herpes simplex virus (HSV) 
infection of the lateral amygdala of mice. 
The lateral amygdala [AP = -1.3, ML = 
+/-3.3, V = -4.8 from bregma] of 9–10 
week old male C57BL/6 mice was 
injected with WT CREB, S40A CREB, 
or GFP HSV (1.5 ml) for 25 min. a,  
Bright field image of a representative 
brain section infused with WT CREB 
vector showing an outline of the lateral 
amygdala.  b,  FITC image of injection 
site.  c, DAPI image of (b) 

Figure 35: CREB glycosylation at Ser40 
modulates long-term conditioned fear 
memory. Freezing behavior after auditory 
fear conditioning of mice infused with 
HSV vectors expressing GFP, WT or 
S40A CREB.  (n = 11 for GFP, n = 16 for 
WT, and n = 20 for S40A at 2 h and 24 h, 
n = 6 for all vectors at 30 min. *P < 0.05 
compared to GFP after 24 h, **P < 0.0005 
compared to WT and GFP at 2 h).  
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The importance of dynamic O-GlcNAc glycosylation in the regulation of glucose 

homeostasis and insulin signaling is well appreciated1,3-5.  Our study expands the scope of 

Figure 36: Inhibition of protein synthesis immediately after training 
blocks the memory enhancement of S40A CREB at 2 h.  Replication-
defective HSV vectors expressing WT CREB and GFP, S40A CREB 
and GFP, or GFP alone were bilaterally microinjected into the lateral 
amygdala of mice 3 days prior to auditory fear conditioning training.  
Mice were injected with anisomycin or saline 5 min after fear 
conditioning, and freezing behavior was assessed after 2 h. (n = 6 for 
WT, n = 7 for S40A, *P < 0.0005; NS, not significant) 

Figure 37:  Inhibition of protein synthesis 2 h after training blocks the 
memory enhancement of WT CREB at 24 h, but not that of S40A 
CREB. Replication-defective HSV vectors expressing WT CREB and 
GFP, S40A CREB and GFP, or GFP alone were bilaterally 
microinjected into the lateral amygdala of mice 3 days prior to 
auditory fear conditioning training.  Mice were injected with 
anisomycin or saline 2 h after fear conditioning, and freezing behavior 
was assessed after 24 h.  The memory enhancement of S40A CREB at 
24 h was anisomycin-resistant.  (n = 6 for WT, n = 8 for S40A 
anisomycin, n = 7 for S40A saline, *P < 0.005; NS, not significant). 
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cellular regulation by O-glycosylation to the brain and demonstrates that it serves 

functions in the brain comparable to other major posttranslational modifications such as 

phosphorylation.  We show that O-glycosylation is dynamically modulated by neuronal 

signaling pathways and works cooperatively with Ser133 phosphorylation to allow for 

graded suppression of the activated CREB subpopulation.  O-Glycosylation also 

suppresses the constitutive transcriptional activity of CREB in quiescent neurons and 

limits basal gene expression levels, allowing for a larger dynamic range of induction and 

proper activity-induced responses such as neuronal growth and memory consolidation.  In 

these ways, glycosylation enables the fine-tuned, exquisite coupling of extracellular 

stimuli to transcriptional regulation in ways not achieved by phosphorylation or 

transcriptional repressors.  Collectively, our results demonstrate how site-specific protein 

O-glycosylation contributes to complex neuronal processes and reveal its potential as a 

critical regulator of higher-order brain function.  

 

Methods 

Construction of expression plasmids and viruses.  All constructs were generated using 

standard molecular biology methods and verified by DNA sequencing.  

 

pLEMPRA CREB.  Rat CREB cDNA, containing an N-terminal Flag tag, was cloned into 

the lentiviral expression vector pLEMPRA-GOI (provided by M. Greenberg) 

immediately following the GFP-IRES sequence.  Subsequently a CREB shRNA cassette 

(described below) was subcloned into the pLEMPRA vector.  The CREB sequence was 

made shRNA-resistant by introducing the following five silent mutations (lower case 
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letters): GGAGagcGTGGATAGcGTg.  Various CREB alanine mutations were created 

from the resulting vector using the QuikChange Lightning Mutagenesis kit (Stratagene).  

   

pLenti CREB.  The pLenti WT and alanine mutant CREB plasmids were created by 

subcloning Flag-tagged WT and alanine mutant CREB sequences from the pLEMPRA 

CREB vectors in place of the H2B sequence in the lentiviral expression plasmid pLenti 

PGK:H2B:mCherry (provided by R. Lansford).  A T2A sequence was inserted between 

the CREB and mCherry sequences.  

 

shRNA.  shRNA sequences targeting mouse CREB (5’-GGAGTCTGTGGATAGTGTA-

3’31), mouse CRTC2 (5’-GATGCTAAAGTCCCTGCTATT-3’) or no mouse transcript 

(5’-CAACAAGATGAAGAGCACC-3’; scramble) were inserted into the lentiviral 

expression vector pLLX-shRNA32.    

 

HSV CREB.  The S40A HSV CREB plasmid was constructed by cloning S40A rat CREB 

cDNA in place of WT CREB into the bicistronic HSV amplicon p1005+:CREB 

(provided by S. Josselyn), in which CREB and eGFP expression are driven by IE4/5 and 

T7 promoters, respectively.  The amplicons were packaged as previously described30. 

 

pA2UCOE-OGT.  Rat OGT cDNA was first cloned into the pLEMPRA-GOI vector 

immediately following the GFP-IRES-Flag sequence.  Subsequently the entire GFP-

IRES-Flag-OGT sequence was subcloned in place of the EGFP sequence in the lentiviral 

expression vector pA2UCOE-EGFP33. 
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Cell cultures and transfection.  Neuro2a cells were maintained in DMEM supplemented 

with 10% fetal bovine serum (FBS) and penicillin/streptomycin (100 U ml-1).  

Transfections were performed using Lipofectamine LTX and PLUS reagents according to 

the manufacturer’s protocol (Invitrogen). 

 

Cortical neuronal cultures were prepared as previously described18, except that neurons 

from E15-16 timed-pregnant C57BL/6 mice were plated onto poly-DL-lysine coated 

plates or coverslips.  For pharmacological treatment and ChIP experiments, neurons were 

cultured in Neurobasal medium (NBM) supplemented with 2 mM Glutamax-I, 

penicillin/streptomycin (100 U ml-1), and 2% B-27 (Invitrogen).  For reverse transcription 

PCR (RT-PCR) and neurite outgrowth experiments, neurons were cultured in NBM 

supplemented with 10% FBS and 2 mM Glutamax-I.  Neurons were electroporated with 

vectors and siRNA using the program K-09 on the Nucleofector Device (Lonza) 

according to the manufacturer’s instructions. 

 

Quantification of O-GlcNAc glycosylation and Ser133 phosphorylation levels on 

CREB.  For those experiments using exogenously expressed CREB mutants (Figs. 4, 8, 

11), WT or mutant pLenti CREB constructs were electroporated into neurons.  Neurons 

were treated with the following after 4-6 DIV:  KCl (55 mM, 2 h for Figs. 4, 6, 7, 8; 10 

min for Fig. 11; 10 min–9 h for Figs. 5, 10, 12, 13), forskolin (10 µM, 2 h). Prior to KCl 

treatments, both treated and control neurons were silenced overnight with tetrodotoxin 

(TTX, 1 µM; Tocris Biosciences).  Where indicated, cells were treated with the following 
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inhibitors for 30 min prior to the addition of KCl:  nimodipine (5 µM), KN-62 (5 µM), 

U0126 (10 µM), calphostin C (2.5 µM), cyclosporin A (5 µM), okadaic acid (50 nM), 

cycloheximide (0.3 mg ml-1) or vehicle (water, EtOH, or DMSO).  All drugs except KCl 

and TTX were from Axxora Alexis.  

 

Cultured neurons or dissected brain tissues were lysed and chemoenzymatically labeled 

with a PEG mass tag as previously described18.  The lysates were subjected to 4–12% 

SDS-PAGE (Invitrogen) and immunoblotted.  Anti-CREB (Chemicon) and anti-phospho-

Ser133 CREB (Affinity BioReagents) antibodies were used to quantify the percentage of 

glycosylation on endogenous CREB (Figs. 1, 5, 6, 7, 9, 10, 12, 13).  An anti-Flag 

(Sigma) antibody was used to quantify the percentage of glycosylation on exogenously 

expressed CREB mutants (Figs. 4, 8, 11).  Relative levels of S133 phosphorylation were 

measured by normalizing phospho-Ser133 levels to total CREB levels. Western blots 

were visualized and quantified using an Odyssey Infrared Imaging System and software 

(Li-Cor, Version 2.1).    

 

Identification of O-GlcNAc glycosylation sites on CREB.  Neuro2a cells transfected 

with WT pLEMPRA CREB were treated with O-(2-acetamido-2-deoxy-D-

glucopyranosylidene)amino N-phenylcarbamate (PUGNAc, 100 µM, 6 h; Toronto 

Research Chemicals) to inhibit β-N-acetylglucosaminidase and lysed in 1.5% SDS-

containing protease inhibitor cocktail (PIC; Roche) and 5 µM PUGNAc.  The lysate (7.5 

mg) was diluted 1.5-fold, quenched with one volume of NETFS buffer (100 mM NaCl, 

50 mM Tris-HCl pH 7.4, 5 mM EDTA, PIC, 5 µM PUGNAc) containing 6% (v/v) NP-
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40 and then was further diluted to 2 mg ml-1 with NETFS buffer.  The sample was passed 

over 400 µl of anti-Flag M2 affinity gel three times, washed three times with 10 ml of 

NETFS containing 1% (v/v) NP-40, washed twice with 10 ml of NETFS, eluted in 400 µl 

of 4% SDS, 100 mM Tris pH 7.9, and concentrated to a volume of 20 µl.  After SDS-

PAGE (4–12% Bis-Tris gels), the CREB band was excised and manually digested in-gel 

with chymotrypsin as previously described34.  Nano LC-MS of peptides was performed 

as previously described using a 60-min linear gradient on an LTQ XL (Thermo Fisher)35.  

MS/MS spectra were collected in both CID and ETD modes using separate analyses.  MS 

/MS were searched using Mascot 2.2 against a custom database containing Flag-CREB 

and 200 other proteins.  ETD spectra were first converted to *.DTA files using 

RawXtract (Version 1.9.1) and allowing charge states up to +5 prior to conversion to the 

MGF file format using Bioworks (Version 3.3.1).  Searches were performed with an 

enzyme specificity of chymotrypsin at one terminus only, fixed modification of 

carbamidomethyl (C), and variable modifications of oxidation (M) and GlcNAc (S,T).  

The search results were evaluated by applying a Mascot Ion Cutoff score of 20 and then 

manually evaluating each putative GlcNAc modified peptide.  Raw CID data was further 

evaluated for the prominent neutral loss of GlcNAc using SALSA35.   

 

Luciferase reporter assays.  Neuro2a cells were transfected with WT or S40A 

pLEMPRA CREB, pCRE-Luc (Stratagene), pRL-TK (Promega), and CREB shRNA 

vectors as indicated.  The cells were cultured for 72 h, and luciferase activities were 

measured with the Dual-Glo Luciferase Assay System (Promega) on a Victor 3 plate 

reader (Perkin Elmer).  pRL-TK containing Renilla luciferase was used to normalize for 
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transfection efficiency.  Lysates from neuro2a cells transfected with CREB or scramble 

shRNA, and WT or S40A pLEMPRA CREB were immunoblotted for CREB to confirm 

endogenous CREB knockdown and equal levels of WT and S40A CREB expression. 

 

Electrophoretic mobility shift assay (EMSA).  Neuro2a cells were transfected with WT 

or S40A pLEMPRA CREB and CREB shRNA vectors or the pMaxGFP (Lonza) control 

vector alone.  The nuclear fractions were isolated36, and the DNA-binding reaction was 

performed for 30 min at room temperature in the dark.  The 20-µl reaction consisted of 

protein (5 µg), 10 mM Tris pH 7.5, 150 mM KCl, 10 mM DTT, 0.25 mM EDTA, 

Poly(dIdC) (2 µg; Pierce), 20 µM PUGNAc, 2% glycerol, and IRDye 700-labeled EMSA 

oligos containing a CRE sequence (1 µl; Li-COR).  The samples were resolved on a 10% 

polyacrylamide gel, and bands were quantified using an Odyssey Infrared Imaging 

System. 

 

Co-immunoprecipitation of the CREB-CRTC complex.  Neuro2a cells were 

transfected with WT or S40A pLEMPRA CREB and CREB shRNA vectors.  After 72 h, 

the cells were lysed in 25 mM Tris pH 7.8, 1 mM EDTA, 150 mM NaCl, 0.5% NP-40, 5 

µM PUGNAc, and protease inhibitors.  After pre-clearing the lysate with protein A 

sepharose beads (GE Healthcare), the lysates were immunoprecipitated with anti-Flag 

M2 affinity gel or an anti-CRTC2 antibody (Calbiochem).  The co-immunoprecipitated 

complexes were resolved by 4–12% SDS-PAGE and immunoblotted for Flag-CREB and 

CRTC2. For the Flag IP control, nontransfected samples were immunoprecipitated with 
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anti-Flag M2 affinity gel.  For the CRTC2 IP control, transfected samples were 

immunoprecipitated with a rabbit IgG antibody (Santa Cruz).   

 

Quantitative RT-PCR (qPCR).  For neuro2a gene expression experiments, the cells 

were transfected with WT or S40A pLEMPRA CREB, CREB shRNA, and scramble or 

CRTC2 shRNA.  For neuronal gene expression experiments, cortical neurons were 

electroporated with WT or S40A pLEMPRA CREB and scramble 

(UUCUCCGAACGUGUCACGUdTdT) or CRTC1 

(CGAACAAUCCGCGGAAAUUdTdT) siRNA37.  To measure the contribution of 

CREB to the expression of each gene, neurons were electroporated with scramble or 

CREB siRNA (UACACUAUCCACAGACUCCdTdT)31.  After 3–4 days, neurons were 

pretreated overnight with TTX and depolarized with KCl for 6 h (where indicated), and 

the mRNA was extracted and purified using an RNeasy kit (Qiagen) and reverse-

transcribed with SuperScript III and random primers (Invitrogen) according to the 

manufacturer’s protocol.  Quantitative PCR was performed with FastStart Universal 

SYBR Green Master (Rox; Roche) using an ABI 7300 real-time instrument, version 1.2.  

Relative quantities of mRNA were normalized to the ribosomal protein L3 (RPL3) 

mRNA content.  PCR primers are described in Table 1. 

 

Chromatin Immunoprecipitation (ChIP).  For experiments with exogenously 

expressed CREB mutants (Fig. 23), WT or S40A pLenti CREB constructs were 

electroporated into neurons.  ChIP was performed as previously described38, except that 

the neurons were fixed for 20 min, the samples were treated with proteinase K (10 mg  
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ml-1) for 2 h at 37 °C after elution, and the DNA was isolated by phenol/chloroform 

extraction followed by ethanol precipitation.  Samples were immunoprecipitated using 

protein A sepharose beads and anti-OGT (provided by G. Hart), anti-CREB (Upstate), 

anti-Flag M2, and anti-rabbit IgG (Santa Cruz) antibodies.  In the case of the Flag IP, a 

control IP of nontransfected lysate with anti-Flag antibody was performed. Purified DNA 

samples were subjected to PCR for 36 cycles. PCR primers are described in Table 2.  
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Neurite Outgrowth.  Neurons were electroporated with WT or S40A pLEMPRA, 

pMaxGFP, pcDNA3-Dkk-1-Flag (provided by X. Yu), or Ncad(intra) (provided by X. 

Yu) vectors and scramble, CRTC1, or Wnt-2 siRNA (Santa Cruz) as indicated and then 

plated at a density of 25,000 neurons cm-2.  Neurons from B6.129-Ogttm1Gwh/J mice 

(Jackson Laboratories) were electroporated with pMaxGFP, the CRE recombinase 

pBOB-CAG-iCRE-SD (Addgene), or pA2UCOE-OGT vector, along with scramble or 

CREB siRNA as indicated.  One day prior to imaging for dendrites, neurons were 

depolarized with KCl (50 mM) where indicated.  After 1 DIV, neurons were treated with 

TrkB-Fc (R&D Biosystems; 0.7 µg ml-1) where indicated.  After 4–5 DIV, all neurons 

were fixed with 4% paraformaldehyde (PFA) for 20 min at room temperature, washed 

twice with PBS, once with H2O, and mounted onto glass slides.  Transfected GFP-

expressing cells were imaged using a Nikon Eclipse TE2000-S inverted microscope 

equipped with Metamorph software.  Neurite lengths were quantified with NeuronStudio 

(Version 0.9.92)39.  Lysates from neurons electroporated with WT or S40A CREB were 

immunoblotted for Flag-CREB to confirm equal levels of CREB expression.  Neurons 

from B6.129-Ogttm1Gwh/J or C57BL/6 mice were immunostained with an anti-OGT 

(Sigma) or anti-O-GlcNAc antibody (CTD110.6, Covance or RL2, Pierce) to confirm the 

effects of OGT knockdown and overexpression on OGT and O-GlcNAc levels, 

respectively. 

 

Auditory fear conditioning.  Surgery: 9–10 week old male C57BL/6 mice (Charles 

River) were anesthetized with isofluorane and placed in a stereotaxis frame.  Holes were 
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drilled in the skull above the lateral amygdala [AP = -1.3, ML = +/-3.3, V = -4.8 from 

bregma according to previous methods30].  Bilateral injections of WT, S40A, or control 

(p1005+ vector without CREB) HSV (1.5 µl) were delivered through a Hamilton syringe 

over 25 min.  The syringe was left in place for an additional 10 min prior to retraction.  

Mice were trained 3 days after the injections. 

Training: Mice were placed into a conditioning chamber and, after 2 min, a tone (85 dB, 

2000 Hz) was played for 30 s and co-terminating with a footshock (2 s, 0.75 mA).  This 

protocol was chosen because it afforded robust yet non-ceiling levels of freezing.  

Immediately following or 2 h after training, mice were administered 150 mg kg-1 

intraperitoneal anisomycin (Sigma) or saline where indicated. 

Conditioning: After 30 min, 2 h, or 24 h, mice were placed into a new cage.  After 3 min, 

a tone (85 dB, 2000 Hz) was played continuously for 3 min.  The mice were recorded and 

monitored for freezing (defined as no movement except breathing) every 5 s during the 

first 3 min (pre-tone freezing) and the last 3 min (post-tone freezing) by two independent 

observers, one of whom was blind to the experimental conditions.  The percentage 

freezing was calculated as the mean from both observers divided by the total number of 

observations.  No significant differences were measured in pre-tone freezing scores 

across all experiments.  Following conditioning, mice were perfused with 4% PFA.  The 

brains were embedded in 2% agarose, cut into 50 µm sections with a vibratome (Leica 

VT1000s), and imaged for GFP to confirm the correct injection site.   

 

Quantification of CREB glycosylation levels after auditory fear conditioning.  Mice 

were placed into a conditioning chamber.  After 2 min, a tone (85 dB, 2000 Hz) was 
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played for 30 s and co-terminated with a footshock (2 s, 0.75 m).  After an additional 2 

min, the above sequence was repeated.  Control mice were subjected to the above 

sequence without the shock.  Mice were placed back in their transport cage for 15 min, 

after which they were quickly euthanized with an overdose of isofluorane and 

decapitated.  Brains were removed, the amygdala dissected on ice, and the samples 

processed for chemoenzymatic labeling as described above.  

 

Statistics.  P values were calculated from Student’s paired t-test when comparing within 

groups and from Student’s unpaired t-test when comparing between groups.  ANOVA 

was used to analyze in vivo data.  All calculations were performed using the program 

Excel. 
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Glycosaminoglycans (GAGs) are sulfated linear polysaccharides that are 

important in neuronal development, viral invasion, and cancer.  Recent work in our 

lab has shown that chondroitin sulfate (CS) tetrasaccharides, a type of GAG, are 

able to promote neuronal outgrowth in a manner that depends on the pattern of 

their sulfation.  Here, we use computational approaches to better understand how 

the CS sulfation patterns affect their activity.  We modeled the solution structure of 

CS-A, CS-C, CS-E, and CS-R and found that each CS tetrasaccharide favors a 

distinct set of torsion angles and presents a unique electrostatic surface.  We further 

employed computational docking algorithms to determine the CS-E binding sites on 

a variety of proteins, including BDNF, NGF, and TNF.  We found that CS-E binds 

to a general CS-E binding site characterized by two closely placed basic amino acids 

and a more distant third basic amino acid.  Based on the modeled CS-E binding 

sites, we predict that CS-E stabilizes the interaction between certain NGF family of 

neurotrophins and their Trk receptors, results that were supported using 

carbohydrate microarrays. 

 

Introduction 

 Glycosaminoglycans (GAGs) are a set of diverse sulfated carbohydrates that are 

important in numerous biological processes including neuronal development1,2, 

angiogenesis3, and viral invasion4.  They have also been implicated in a number of 

diseases including cancer5, spinal cord injury6,7, and Alzheimer’s disease8.  GAGs are 

linear polysaccharides that are composed of repeating disaccharide units.  These linear 

polysaccharides are usually found on the cell surface or in the extracellular matrix and are 
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attached to a protein core as a post-translational modification9.  Different GAGs have 

been shown to bind to a wide variety of proteins, and it is through these interactions that 

the GAGs have their effects10. 

There are multiple classes of GAGs, with the two most heavily studied being 

heparin sulfate (HS) or heparin and chondroitin sulfate (CS).  HS and heparin consists of 

repeating units of D-glucosamine and D-glucuronic acid (GlcA) or L-iduronic acid 

whereas CS consists of repeating units of N-acetylglucosamine (GlcN) and GlcA.  Within 

the linear GAG polysaccharide, any free hydroxyl group can be sulfated11, leading to a 

diverse combination of sulfate motifs, and the pattern of sulfation uniquely identifies 

each disaccharide unit9.  For example, Chondroitin Sulfate A (CS-A) consists of a CS 

disaccharide with a sulfate group on C-4 position of the GlcN residue whereas 

Chondroitin Sulfate C (CS-C) consists of a CS disaccharide with a sulfate group on the 

C-6 position of the GlcN residue.  Recent work in our lab has begun to show that the 

molecular level activity of these GAGs depends intimately on their sulfation pattern.  

Tetrasaccharides of CS-E have been shown to produce neurite outgrowth whereas 

tetrasaccharides of CS-C or CS-A do not12.  Similarly CS-E tetrasaccharides have been 

shown to inhibit the interaction between Tumor Necrosis Factor α (TNF- α) and Tumor 

Necrosis Factor Receptor 1 (TNF-R1)13. 

 Because GAGs control their activity through intricately positioned molecular 

interactions, they have interested structural biologists who want to study how these 

sulfate groups affect CS or HS structure and their interactions with different protein 

targets14-17.  Crystallographers performed some of the early studies on the molecular level 

interactions between GAGs and their binding partners.  Doug Rees and his group 
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discovered the crystal structures of heparin bound to fibroblast growth factor 1 and 2 

(FGF-1 and FGF-2)18,19.  More recent studies have focused on the ternary complex 

between FGF-1, heparin, and its receptor20, and FGF-2, heparin, and its receptor21 as well 

as heparin bound to other proteins including antithrombin III22, annexin V23, and annexin 

II24.   

 These crystallography studies point to some common themes in GAG–protein 

interactions25.  Confirming experimental evidence, the structures indicate that the 

positions of the GAG sulfate groups are critical for specific interactions with key lysine 

and arginine residues on the protein surface.  Yet in those cases where the GAGs bind to 

a protein monomer, all of the sulfate groups on the GAG are not positioned to interact 

with the protein, but rather many of the GAG sulfate groups are positioned out into 

solution where they interact with salts and water.  Furthermore, unlike small molecule–

protein interactions, which usually occur in a deep pocket of the protein, GAG–protein 

interactions occur much closer to the surface of the protein and in shallow pockets.   

 Computational chemists have also studied GAGs and their interactions with 

proteins.  Computational approaches are particularly useful in this field as they are able to 

elucidate molecular details that would be otherwise difficult to obtain experimentally.  

Some of the first computational studies looked at the structure of GAGs in solution.  

Perez et al.26 used molecular dynamics to look at the lowest energy torsion angles 

between the GlcA monomer and the GlcN monomer for CS-A and CS-C.  Similarly 

Mulloy et al. employed molecular modeling, in combination with limited NMR data, to 

investigate the conformation of heparin in solution27.  These molecular models indicated 

168



that CS and heparin form repeating helical chains in solution, and that the degree of 

rotation of these chains depends on the sulfation pattern. 

 Recently 

a number of methods 

have been reported for 

determining the binding 

site of heparin to 

different proteins28-31.  

Most of these methods work by identifying potential binding sites around the protein and 

sampling each of these sites with a heparin saccharide to assay which site affords the 

lowest complex energy or highest surface complementarities.  However, it is not known 

whether similar methods could be used to model the relationship of less highly charged 

CS with proteins.  Additionally how these methods could be used to investigate larger 

GAG protein ternary complexes remains unknown.  New validated methods for 

determining the interactions between CS and individual proteins or larger protein 

complexes are needed.  

Here, I describe work I have done to elucidate the solution structures of CS-A, 

CS-C, CS-E, and an unnatural CS motif, CS-R tetrasaccharides (Fig. 1).  These 

tetrasaccharides have been previously synthesized in our laboratory, and they have been 

shown to have different biological activity from one another.  Next, I describe a 

computational method I developed for determining chondroitin sulfate binding sites on 

proteins and show that it correctly predicts the binding sites of heparin on FGF-1 and 

FGF-2, as well as the likely binding site of CS-E on midkine.  Finally, I use this method 
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Figure 1: CS-A, CS-C, CS-E, and CS-R tetrasaccharides 
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to predict the CS-E binding sites on a number of proteins.  These binding sites 

demonstrate a common CS-E binding motif and predict a role for CS-E in stabilizing 

complexes between neurotrophins and their receptors.   

 

Results and Discussion 

Solution Structures of CS-A, CS-C, CS-E, and CS-R.  To understand how the different 

chondroitin sulfate molecules exert their unique effects, we chose to first model the 

solution structure of the CS-A, CS-C, CS-E, and CS-R tetrasaccharides.  By examining 

the CS solution structures, we reasoned that we could see how the sulfate groups could 

affect the structure.  We build each of the tetrasaccharides (CS-A, CS-C, CS-E, and CS-

R) into the Cerius2 program (Accelrys Inc.), charged them, and minimized them in 

vacuum within the confines on the Dreiding force field, which had to be first modified to 

accommodate the sulfate groups.  Although each tetrasaccharide carries a formal charge 

of -4 or -6, we chose to afford each atom of the tetrasaccharide with partial charges but to 

keep the tetrasaccharide overall neutral.  This was done to account for the fact that actual 

tetrasaccharides are in polarizable water with counter-ions that would dampen the 

charges of the sulfate and carboxyl groups32. 

 Once the tetrasaccharides had been built and minimized, each was subject to a 

Boltzmann jump algorithm to create 1000 different conformations.  A Boltzmann jump 

works by taking the original conformation of a molecule and rotating a specific set of 

torsions to create a new conformation.  If the new conformation is lower in energy than 

the original conformation, the Boltzmann jump algorithm accepts the new conformation.  

If the new conformation has a higher energy than the original conformation, then the 
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Boltzmann jump algorithm accepts the new conformation at a probability of exp(-ΔE/RT) 

where ΔE is the difference in energy between the old and the new conformation.  The 

Boltzmann jump algorithm continues to follow this method until it reaches a predefined 

number of conformations.  In our case that limit was 1000 conformations.   

 Once the 1000 conformations of a given tetrasaccharide had been created, these 

conformations were sorted into five groups based upon the RMSD to each other.  The 

five groups were chosen in such a way as to maximize the average RMSD between each 

group.  This was done to ensure that over the next steps, a diverse set of structures would 

be explored to enhance the probability that the global minimum energy structure was 

indeed reached.  We scored the energy of all of the structures in each of the five groups 

and chose the top two lowest-energy structures from each of the groups to bring on to the 

next step.  We then took each of these ten structures, immersed them in a water box, and 

ran 300 ps of molecular dynamics on each of the structures to allow them to find their 

minimum energy structure.  The structures from the last 100 ps of a given run were 

averaged and the energy of this average structure was calculated.  We used the lowest-

energy structure among these ten to represent the predicted solution structure for each 

tetrasaccharide (Fig. 2). 

We found that each CS tetrasaccharide favors a distinct set of torsion angles and 

presents a unique electrostatic and van der Waals surface for interaction with proteins. 

Whereas the negatively charged sulfate and carboxylate groups on CS-C point toward 

either the top or bottom face of the molecule, as oriented in Figure 2a, the same charges 

on CS-A point in several different directions. Similarly, although CS-E and CS-R have 

the same number of sulfate groups, the relative orientation of these groups along the 
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carbohydrate backbone leads to distinctly different predicted solution structures. Whereas 

the CS-R tetrasaccharide has the sulfate groups distributed along several faces of the 

molecule, the CS-E tetrasaccharide presents all four sulfate groups along a single face, 

which may position the groups to interact with basic residues characteristic of 

glycosaminoglycan binding sites on proteins25. 

 

Figure 2: Top: The lowest energy structures of CS-A, CS-C, CS-E, and CS-R 
tetrasaccharides.  Bottom: Electrostatic representations of these structures 
 

Predicting CS Binding Sites on Proteins.  CS interacts with a variety of different proteins, 

including VAR2CSA33, TNF-α13, BDNF12, and NGF34.  Thus having determined the 

solution structure of CS molecules, we next wanted to investigate the CS binding sites on 

these and other proteins. 

 
Method Development and Confirmation. The program ScanBindSite has previously been 

employed to correctly predict the binding sites of small molecules into proteins35,36.  Thus 

we chose to use this program to investigate CS binding sites on proteins.  The input for 

ScanBindSite is a protein and a ligand file.  ScanBindSite calculates the molecular 

surface of the protein and then determines the surface innervations from the negative 

image of the molecular surface.  These innervations are represented by spheres and are 

(A) 

(B) 
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grouped into potential binding sites.  ScanBindSite then maps the ligand atoms onto the 

spheres in each of these binding sites and calculates the energy of that docked 

conformation.  At the end these energies are tabulated and can be used to determine 

which of the potential regions is the likely site for the ligand to bind. 

 To test whether we could use ScanBindSite to predict the binding sites of GAG 

tetrasaccharides, we first predicted the GAG binding sites on structures for which the 

GAG binding sites are known.  We improved and then validated the method using two 

heparin–protein co-crystal structures, heparin binding to the FGF-2 monomer and heparin 

binding to the FGF-1 dimer37,38, and two domains of the protein VAR2CSA, DBL3X and 

DBL6ε, for which the CS-A binding site has been proposed by mutagenesis33.  We 

reasoned that these would be good structures to test our approach as they represent the 

interaction between charged GAG polysaccharides and proteins, which is similar to the 

system we were interested in exploring. 

(A) (B)

Figure 3: a, Predicted heparin binding site of FGF-2 from 1BFB using default 
ScanBindSite parameters.  b, Predicted heparin binding site of FGF-2 from 1BFB 
using modified ScanBindSite parameters 

a b 
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 ScanBindSite requires a number of input parameters that can be optimized for a 

given application.  To determine the correct parameters to use for predicting CS binding 

sites on proteins, we tested which set of parameters best predicted the binding site of the 

heparin tetrasaccharide onto the surface of FGF-2.  Initially, we found that the default 

ScanBindSite parameters failed to predict the heparin binding site on FGF-2 (Fig. 3a).  

Further analysis indicated that ScanBindSite failed to even identify the heparin binding 

site as a potential binding site, instead favoring more innervated regions of the protein.  

We also found that the potential binding sites determined by the program were much 

smaller than the size of a tetrasaccharide.  To expand the potential binding sites 

determined by the ScanBindSite program, we changed the radmax parameter from 4.0 to 

Figure 4: a, Heparin binding site on FGF-2 (from 1BFB).  b, Predicted heparin 
binding site (from 1BFB crystal structure).  c, Predicted heparin binding site (from 
1BLA crystal structure). 
 

a          b      c 
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5.0, which favors the formation of larger binding regions and the dotlim parameter from 

0.0 to -0.5, which favors the formation of potential binding sites within the flatter surface 

regions of the protein that characterize GAG binding sites.  Using these new parameters 

on the same heparin–FGF-2 systems, we correctly determined the heparin binding site of 

FGF-2 (Fig. 3b).  Further optimization of these parameters by changing the radmax to 

6.0 and the dotlim to -0.75 and -1.0 gave worse results. 

 

Table 1: Residues that interact with heparin from the 1BFB crystal structure and in 
the predicted heparin binding site from FGF-2 in the 1BFB and 1BLA crystal 
structure.  * Eight was subtracted from each residue number to make the 1BLA 
residue numbers align with the 1BFB residue numbers.  
 

Residues within four 

angstroms of heparin in 

the 1BFB crystal structure 

Residues within four 

angstroms of heparin in 

the computationally 

determined binding site 

from 1BFB 

Residues within four 

angstroms of heparin in 

the computationally 

determined site from 

1BLA 

 Lys 2 7   

Asn 28 Asn 28 Asn 28 

 Gly 29 Gly 29 

  Leu 1 1 9  

Lys 1 2 0  Lys 1 2 0  Lys 1 2 0  

Arg 1 2 1  Arg 1 2 1  Arg 1 2 1  

 Thr 1 2 2  Thr 1 2 2  

Lys 1 2 6  Lys 1 2 6  Lys 1 2 6  

  Lys 1 3 0  

  Pro 133 

 Gly 134 Gly 134 

Glcn 135 Gln 1 3 5  Gln 1 3 5  

 Lys 1 3 6  Lys 1 3 6  

Ala 1 3 7  Ala 1 3 7  Ala 1 3 7  

 Leu 1 3 9   

 

* 
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 We next wanted to investigate whether the protein residues with which the GAG 

interacts could be extracted from the calculated binding sites.  To do this, we examined 

the five lowest-energy heparin–FGF-2 structures within the calculated binding site and 

determined which residues interact with the docked heparin molecules in these structures.  

We found that our models predicted all of the residues that heparin interacts with in the 

crystal structure while predicting a limited number of extra residues (Fig. 4a, b, Table 1).  

Furthermore to determine whether the GAG binding site could be correctly predicted 

from the apoprotein as well as the co-crystal structure, the binding site of heparin was 

predicted from a crystal structure of the FGF-2 apoprotein, which differs from the heparin 

(A) (B)

Figure 5: a, Heparin binding site on FGF-1 (from 2AXM).  b, Predicted heparin 
binding site 

 

a b 
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–FGF-2 co-crystal structure by an RMSD of 1.172 angstroms.  We found that the 

calculated binding site of heparin on the FGF-2 apoprotein structure was similar to the 

binding site calculated from the co-crystal structure (Fig. 4c).  Furthermore this binding 

site correctly predicted all of the residues that interact with heparin in the co-crystal 

structure while predicting few extra residues with which heparin does not interact (Table 

1). 

 To test whether these modified parameters worked more generally for predicting 

glycosaminoglycan binding sites, we predicted the heparin binding site on FGF-1.  No 

crystal structure of a heparin tetrasaccharide bound to FGF-1 exists, so we extracted the 

central heparin tetrasaccharide from the FGF-1–heparin hexasaccharide crystal structure.  

We then used this tetrasaccharide and the FGF-1 structure to predict the heparin binding 

site on FGF-1 (Fig. 5a, b).  Again we successfully identified the heparin binding site on 

FGF-1 and predicted all but one of the amino acids with which the heparin 

tetrasaccharide interacts in the crystal structure (Table 2).  This suggests that the 

modified ScanBindSite program could successfully predict GAG binding site on proteins. 

 Finally, we wanted to determine whether our approach could successfully predict 

the binding sites of CS on proteins.  CS-A binds to two domains on the protein 

VAR2CSA, DBL3X and DBL6ε33.  Crystal structures of these domains are available and 

previous work has proposed the CS-A binding sites by mutagenesis33.  We predicted the 

CS-A binding site on DBL3X and DBL6ε using ScanBindSite (Fig. 6, Table 3, 4).  

Excitingly, the predicted CS-A binding site on DBL3X contains seven of the eight basic  
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Residues within four 

angstroms of heparin in 

the 2AXM crystal 

structure 

Residues within four 

angstroms of heparin in 

the predicted binding site 

from 2AXM 

 Ser 17, Chain A 

Asn 18, Chain A Asn 18, Chain A 

 Gly 19, Chain A  

Leu 111, Chain A  

Lys 112, Chain A Lys 112, Chain A 

Lys 113, Chain A Lys 113, Chain A  

 Asn 114, Chain A  

Lys 118, Chain A Lys 118, Chain A  

 Arg 119, Chain A 

 Arg 122, Chain A 

 His 124, Chain A  

 Tyr 125, Chain A  

Gly 126, Chain A Gly 126, Chain A  

Gln 127, Chain A Gln 127, Chain A  

Lys 128, Chain A Lys 128, Chain A  

Ala 129, Chain A Ala 129, Chain A  

Asn 18, Chain B Asn 18, Chain B  

 Gly 19, Chain B  

 His 21, Chain B 

 Arg 35, Chain B  

Lys 112, Chain B Lys 112, Chain B  

Lys 113, Chain B Lys 113, Chain B 

Asn 114, Chain B Asn 114, Chain B  

 Ser 116, Chain B  

 Cys 117, Chain B 

Lys 118, Chain B Lys 118, Chain B 

Arg 119, Chain B Arg 119, Chain B 

Arg 122, Chain B Arg 122, Chain B 

 Gln 127, Chain B  

 Lys 128, Chain B 

Ala 129, Chain B Ala 129, Chain B 

 

Table 2: Residues that 
interact with heparin 
from the 2AXM crystal 
structure and in the 
predicted heparin 
binding site from FGF-1 
in the 2AXM crystal 
structure 
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residues shown previously to be important for CS-A binding.  Furthermore, the predicted 

CS-A binding site on DBL6ε contains the two basic amino acids shown to be most 

important for CS-A binding, K2392 and K2395.  Although the predicted CS-A binding 

site did not span all of the residues shown to be important for CS-A binding in the 

DBL6ε mutagenesis experiments, the extra residues not predicted to be part of the 

binding site by our program were found by mutagenesis studies using endogenous CS, 

(A)

(B)

Figure 6: a, Residues important for CS-A binding to DLB3X (left) and 
DLB6 (right), as previously determined by mutagenesis experiments 
(Khunrae et al. 2009).  b, Predicted CS-A binding site on DLB3X (left) 
and DLB6 (right) 
 

a 

b 
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which is likely to be longer than a tetrasaccharide, and indeed the residues not found by 

our predictions are 19.4 angstroms and 26.9 angstroms from the major CS-E binding site 

and thus are unlikely to interact with a CS-A tetrasaccharide.  Furthermore, based on 

other experimental evidence, Khunrae and coworkers propose that K2392 and K2395 

represent the true CS-A binding site whereas the other amino acids determined by 

mutagenesis are likely an artifact of using only the DBL6ε domain for binding studies33.  

Predicted CS-A 

Binding Site
Mutagenesis Kd

WT 33 mM

Asp 1236

Gly 1237

Lys 1238 

Phe 1240 

Gly 1242

Lys 1243 Lys1243Ala 367 mM

Gly 1244

Glu 1246 

Thr 1317

Gly 1318

Thr 1319

Lys 1324 K1324A 122 mM

Lys 1328 Lys1328Ala 89 mM

Gly 1329

Arg 1467 Arg1467Ala 122 mM

Tyr 1468

Arg 1503

Lys 1504 Lys1504Ala 172 mM

Lys 1507 Lys1510Ala 193 mM

Lys 1510

Lys1515Ala 488 mM

Predicted CS-A 

Binding Site
Mutagenesis Kd

WT 80 mM

Lys2346Ala 190 mM

Ile 2384

Cys 2385

Lys 2388

Arg 2389

Pro 2391 Lys2392Ala ND

Lys 2392 Lys2395Ala ND

Lys 2395

Tyr 2399 

Arg2408Ala 151 mM

Lys 2451

Ile 2452

Leu 2453

Gly 2454

Lys 2462

Lys 2465

Trp 2466

Met 2469

Lys2565Ala 215 mM

Lys2567Ala 440 mM

c

c

c
CS-A bound these mutants too weakly to

accurately determine a Kd value

a a

a
Mutagenesis values from Khunrae et al, 2009 a

Mutagenesis values from Khunrae et al, 2009

b

b
Residue is not resolved in the crystal structure

Table 3: Predicted CS-A binding site on 
DBL3X and residues experimentally 
determined important for CS-A binding 

Table 4: Predicted CS-A binding site on 
DBL6 and residues experimentally 
determine important for CS-A binding 
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Finally CS-A has been co-crystallized with cathepsin K39.  Again using ScanBindSite, we 

successfully predicted the CS-A binding site on cathepsin K (Fig. 7) as well as many of 

the CS-A interacting residues (Table 5). This suggests that our method for predicting 

GAG binding sites is successful at predicting known binding sites and can be used to 

predict GAG binding sites on protein where the site is unknown. 

Figure 7: a, Crystal structure CS-A binding site on Cathepsin K (blue).  b, 
Computationally-predicted CS-A binding site on Cathepsin K (blue) 

 

a                                                        b 

181



 Given our success at predicting the binding sites of heparin of FGF-1 and FGF-2 

and CS-A on DBL3 and DBL6ε, we decided to employ our approach to predict the 

binding site of CS-E on a number of proteins with which it is known to interact, including 

TNF-α, BDNF, NGF, NT-3, NT-4/5, TrkA, TrkB, TrkC, midkine, GDNF receptor alpha 

1, Nogo-66, and Nogo receptor (S. Tully, C. Rogers, unpublished data). 

Residues within four 

angstroms of CS-A in the 

3C9E crystal structure  

Residues within four 

angstroms of CS-A in the 

predicted binding site 

from 3C9E 

Pro 2, Chain A  Pro 2, Chain A  

Ser 4, Chain A Ser 4, Chain A 

Val 5, Chain A Val 5, Chain A 

Asp 6, Chain A Asp 6, Chain A 

Tyr 7, Chain A  

Lys 9, Chain A Lys 9, Chain A 

Lys 10, Chain A Lys 10, Chain A 

Gly 11, Chain A Gly 11, Chain A 

Tyr 12, Chain A Tyr 12, Chain A 

 Lys 39, Chain A 

 Lys 40, Chain A 

 Lys 41, Chain A 

 Gly 43, Chain A 

 Lys 44, Chain A 

Asp 6, Chain B  

Arg 8, Chain B  

Lys 9, Chain B Lys 9, Chain B 

Tyr 145, Chain B  

Ser 146, Chain B  

Lys 147, Chain B Lys 147, Chain B 

Gly 148, Chain B Gly 148, Chain B 

Ile 171, Chain B Ile 171, Chain B 

Gln 172, Chain B Gln 172, Chain B 

Lys 173, Chain B Lys 173, Chain B 

His 177, Chain B  

Ile 179, Chain B  

Gly 189, Chain B Gly 189, Chain B 

Asn 190, Chain B Asn 190, Chain B 

Lys 191, Chain B Lys 191, Chain B 

Tyr 193, Chain B  

Ile 194, Chain B  

Leu 195, Chain B  

  

 

Table 5: Residues that 
interact with CS-A from 
the 3C9E crystal structure 
and in the predicted CS-A 
binding site from 
Cathepsin K in the 3C9E 
crystal structure 
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TNF-α.  TNF-α is a molecule important in the pathogenesis of such diseases as 

rheumatoid arthritis, Chrohn's diease, and psoriasis40.  TNF-α interacts with two 

receptors TNF-R1 (p55) or TNF-R2 (p75) that modulate its biological functions.  We 

predicted the CS-E binding site from the TNF-α structure in 1TNF, which consists of 

amino acids 6 through 157 of human TNF-α (Fig. 8a, b).  The CS-E binding site on the 

TNF trimer spans two of the three monomers and includes basic amino acids on the first 

monomer — Arg103 and Arg138 — as well as basic amino acids on the second monomer 

— Lys65 and Lys112.   

 We next wanted to know how the interaction between CS-E and TNF-α might 

affect the interaction between TNF-α and its receptors.  To determine how TNF-α 

interacts with TNF-R1, we constructed a homology model of this complex based on the 

crystal structure of TNF-β and TNF-R141.  This model, along with other mutagenesis 

a         b           c   d 
(A) (B) (C) (D)

Figure 8: a, Crystal structure of TNF trimer (from 1TNF).  b, Predicted CS-E binding 
site on TNF trimer.  c, Overlay between predicted CS-E binding site (slate) and 
predicted TNF-R1 (green, from 1TNR) complex.  d, Overlay between predicted CS-E 
binding site (slate) and residues important for TNF-R2 (green) binding 
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studies42, indicates that TNF-R1 interacts with TNF-α at the same interface as CS-E 

interacts with TNF-α (Fig. 8c).  Thus one would predict from the CS-E binding site that 

the CS-E might block the interaction between TNF-α and TNF-R1.  Alternatively, 

mutagenesis studies indicate that TNF-R2 interacts with TNF-α on a different part of the 

protein from the predicted CS-E binding site42 suggesting that CS-E should not block the 

interaction between TNF-α and TNF-R2 (Fig. 8d).  Excitingly, previous work by Tully 

and coworkers13,34 has demonstrated that CS-E blocks the interaction between TNF-α and 

TNF-R1 but not TNF-R2, confirming the computational predictions. 

 
Neurotrophins and Trk Receptors.  The NGF family of neurotrophins contains BDNF, 

NGF, NT-3, and NT-4/5 and shows a high degree of structural homology between these 

structures (average RMSD for Cα atoms = 0.926 angstroms).  Neurotrophins function 

generally to regulate growth, survival, and differentiation of neurons43 and have been 

shown to signal predominantly through the common p75 neurotrophin receptor and 

through distinct Trk receptors, TrkA, TrkB, and TrkC.  CS-E has been shown to bind to 

Figure 9: a, BDNF monomer crystal structure (from 1BND).  b, CS-E binding site 
(slate).  c, Homology model of BDNF dimer crystal structure (wheat and cyan).  d, 
CS-E binding site (slate) 

    a         b           c          d 
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all four members of this family44.   

 
BDNF.  BDNF is an important molecule for synaptic plasticity and learning and memory 

and functions, in part, through its interaction with the high-affinity TrkB receptor45.  We 

predicted the CS-E binding site from the BDNF structure in 1BND, which contains 

amino acids 8 through 116 of human BDNF.  The CS-E binding site on the BDNF 

monomer is predominantly across a beta-sheet and within a charged loop region that 

contains three basic residues — Lys41, Lys46, and Lys50 (Fig. 9a, b).  The CS-E binding 

site was also predicted from a homology model of the BDNF dimer (Fig. 9c, d, Table 6).  

The CS-E binding site on the dimer structure is within a similar region to the BDNF 

monomer but also contains amino acids from the second dimer molecule.  This includes 

basic residues Arg88, Arg97, and Arg101 on the second BDNF molecule. 

 
NT-3.  NT-3 contributes to neuronal survival, neurotransmission, and synaptic 

plasticity46.   NT-3 interacts preferentially with TrkC although it has also been shown to 

signal through TrkA and TrkB in certain cellular contexts47.  We predicted the CS-E  

Figure 10: a, NT-3 monomer crystal structure (from 1BND).  b, CS-E binding site 
(slate).  c, NT-3 dimer crystal structure (from 1NT3).  d, CS-E binding site (slate) 
 

    a      b   c   d 
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BDNF NGF NT-4/5 NT-3 

Chain A, Lys41 Chain A, Asn46 Chain A, Asp32 Chain A, Ile28 
Chain A, Lys46 Chain A, Ser47 Chain A, Leu33 Chain A, Arg56 
Chain A, Gln48 Chain A, Val48 Chain A, Arg34 Chain A, Cys57 
Chain A, Leu49 Chain A, Phe49 Chain A, Arg36 Chain A, Glu59 
Chain A, Lys50 Chain A, Lys50 Chain A, Arg98 Chain A, Ala60 
Chain A, Tyr52 Chain A, Tyr52 Chain A, Asp103 Chain A, Arg61 
Chain B, Met31 Chain B, Lys32 Chain A, Gln105 Chain A, Asn76 
Chain B, Arg88 Chain B, Lys34 Chain A, Arg107 Chain A, Gln78 
Chain B, Asp93 Chain B, Lys88 Chain A, Val108 Chain A, Lys80 
Chain B, Arg97 Chain B, Asp93 Chain A, Gly109 Chain A, Thr81 
Chain B, Ile98 Chain B, Gly94 Chain A, Trp110 Chain A, Gln83 
Chain B, Gly99 Chain B, Lys95 Chain A, Arg111 Chain A, Arg103 
Chain B, Trp100 Chain B, Gln96 Chain A, Trp112 Chain A, Asp105 
Chain B, Arg101 Chain B, Ala98 Chain B, Trp23 Chain A, Ala111 
Chain B, Phe102 Chain B, Trp99 Chain B, Ala47 Chain A, Leu112 
  Chain B, Arg100 Chain B, Leu52 Chain A, Ser113 
  Chain B, Phe101 Chain B, Arg53 Chain A, Lys115 
    Chain B, Tyr55 Chain B, Arg8 
      Chain B, Glu10 
      Chain B, Tyr11 

binding site on NT-3 from NT-3 in 1BND, which contains amino acids 8 through 116 of 

human NT-3.  The predicted CS-E binding site on the NT-3 monomer is predominantly 

within a loop region between the fourth and fifth beta sheet of the structure and contains 

four basic amino acids — Lys58, Arg61, Lys64, and Lys80  (Fig. 10a, b).  Interestingly, 

although NT-3 has a high degree of structural homology to BDNF (RMSD 0.967 

angstroms), the CS-E binding site on NT-3 is different from the CS-E binding site on 

BDNF.  The preference for one binding site over the other is likely due to changes in 

basic residues in the loop regions of BDNF and NT-3 (Fig. 11).  In particular, the loop 

that contains the CS-E binding site in BDNF is very different from the homologous loop 

within NT-3, with Lys41 and Lys46 in BDNF being homologous to Glu40 and Asn45 in 

NT-3.  Similarly the CS-E binding site in NT-3 contains Lys62, which is homologous to 

Table 6: Predicted CS-E binding sites on BDNF, NGF, NT-4/5, and NT-3 
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Gly63 in BDNF.  The CS-E binding site on the NT-3 dimer is similar to the CS-E binding 

site on the NT-3 monomer but fails to contain Lys58 and Arg64, although it does contain 

other basic residues such as Arg103 and Lys115 on the first NT-3 monomer and Arg8 on 

the second one (Fig. 10c, d, Table 6). 

 
 

NGF.  NGF is also a neurotrophin that is involved in maintenance and survival of 

peripheral and sensory neurons48 and has been shown to signal through TrkA.  We 

predicted the CS-E binding site on the NGF monomer from NGF in chain E of 2IFG, 

Figure 12: a, NGF monomer crystal structure (from 2IFG).  b, CS-E binding site 
(slate).  c, NGF dimer crystal (from 2IFG).  d, CS-E binding site (slate) 

 

     a        b     c         d 

Figure 11: Cationic amino acids (yellow) in the respective CS-E binding sites.  

BDNF            ----HSDPARRGQLSVCDSISEWVTAADKKTAVDMSGGTVTVLEKVPVSKGQ-LKQYFYE 55  

NGF             --SSSHPIFHRGEFSVCDSVSVWVG--DKTTATDIKGKEVMVLGEVNINNSV-FKQYFFE 55  

NT-4/5          GVSETAPASRRGELAVCDAVSGWVT--DRRTAVDLRGREVEVLGEVPAAGGSPLRQYFFE 58  
NT-3            ---YAEHKSHRGEVSVCDSESLWVT--DKSSAIDIRGHQVTVLGEIKTQNSP-VKQYFYE 54 

 

BDNF            TKCNPMGYTKEG-------CRGIDKRHWNSQCRTTQSYVRALTMDSKKRIGWRFIRIDTS 108  

NGF             TKCRDPNPVDSG-------CRGIDSKHWNSYCTTTHTFVKALTMDG-KQAAWRFIRIDTA 107  

NT-4/5          TRCKADNAEEGGPGAGGGGCRGVDRRHWVSECKAKQSYVRALTADAQGRVGWRWIRIDTA 118  
NT-3            TRCKEARPVKNG-------CRGIDDKHWNSQCKTSQTYVRALTSENNKLVGWRWIRIDTS 107 

 

BDNF            CVCTLTIKRGR-- 119  

NGF             CVCVLSRKAVRRA 120  

NT-4/5          CVCTLLSRTGRA- 130  
NT-3            CVCALSRKIGRT- 119 

 

Beta Sheets 
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which contains amino acids 2 through 115 of human NGF. CS-E binds to two hairpin 

loops and the adjacent beta sheets and contains five basic amino acids — Lys32, Lys34, 

Lys88, Lys95, and Arg100 (Fig. 12a, b).  The CS-E binding site on NGF is distinct from 

the CS-E binding site both on BDNF as well as NT-3.  Again this can be attributed to 

differences in the amino acid sequences in the loops with which CS-E interacts (Fig. 11).  

For example, the homologous amino acids to Lys41 and Lys46 in the CS-E binding site 

of BDNF are Glu41 and Asp46 on NGF, and the homologous amino acids to Arg61 and 

Lys64 in the CS-E binding site of NT-3 are Asn62 and Asp64 in NGF.  Correspondingly, 

Lys32 and Lys34 that make up the CS-E binding site on NGF are homologous to Arg31 

and His33 in NT-3 and homologous to Ser32 and Gly34 in BDNF, respectively. 

Although CS-E interacts with different loops of the NGF and BDNF monomers, CS-E 

interacts with the same loops of the NGF and BDNF dimers (Fig. 12c, d, Table 6).  This 

is due, in part, to the fact that when the NGF and BDNF dimers form, loops that are 

distant from each other in the monomer structures and now close to each other in the 

dimer structure. 

Figure 13: a, NT-4/5 monomer crystal structure (from 1HCF).  b, CS-E binding site 
(slate).  c, NT-4/5 dimer crystal (from 1HCF).  d, CS-E binding site (slate) 

a   b   c          d 
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NT-4/5.  NT-4/5 is a neurotrophin that has been shown to promote peripheral sensory and 

symphathetic neuronal survival, and, like BDNF, signals through TrkB49.  We predicted 

the CS-E binding site on NT-4/5 from the structure of the NT-4/5 monomer in 1HCF, 

which contains amino acids 1 through 127 of human NT-4/5. CS-E binds predominantly 

in two loop regions between the second and third beta-sheet and the seventh and eighth 

beta-sheet of NT-4/5 (Fig. 13a, b).  The CS-E binding site contains five basic amino 

acids — Arg34, Arg36, Arg98, Arg107, and Arg111 — and is very similar to the CS-E 

binding site on NGF.  Indeed, four of the five basic residues are homologous between the 

CS-E binding sites on NGF and NT-4/5 (Fig. 11).  The CS-E binding site on the NT-4/5 

dimer is also similar to the CS-E binding site on the NGF dimer and BDNF dimer and 

includes further interaction with the second NT-4/5 molecule including with Arg53 (Fig. 

13c, d, Table 6). 

 
The predicted neurotrophin CS-E binding sites share are number of common features.  

Although different in its exact binding site, CS-E predominantly binds in the loops that 

connect that beta sheets.  In the case of NT-3, this corresponds to loop 3, while in the 

remaining neurotrophins, this corresponds to loops 1, 2, and 4.  Furthermore, none of the 

binding sites fall within the dimerization interface or the actual or predicted Trk or p75 

receptor interface, suggesting that CS-E would not block these interactions.  In the dimer 

structures, the CS-E binding site is always across the face of the two neurotrophins with 

potential electrostatic interactions between CS-E and both monomers in the complex.  

For example, in the NGF monomer, CS-E is predicted to interact with Lys32, 34, 88, and 

95, and Arg100 while in the NGF dimer, CS-E is predicted to interact with these amino 
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acids on the first protein in the monomer as well as Lys 50 on the second protein.  

Similarly in the NT-3 monomer, CS-E is predicted to interact with Arg 61 and 103 and 

Lys 80 and 115 while in the NT-3 dimer, CS-E is predicted to also interact with Arg 8 on 

the second NT-3 molecule.  Since neurotrophins are suggested to exist predominantly as 

dimers in nature50, this data suggests that CS-E may primarily interact with the 

neurotrophin dimers rather than contribute to dimer formation.  

 

Trk Receptors.  The Trk family of proteins, which includes TrkA, TrkB, and TrkC, are 

one set of receptors for the NGF family of neurotrophins and interact weakly with CS-E. 

We modeled the CS-E binding sites on TrkA, TrkB, and TrkC proteins from their crystal 

structures in 1WWW, which contain amino acids on 282 through 382 of human TrkA,  

1HCF, which contain amino acids 286 through 383 of human TrkB, and 1WWC, which 

contain amino acids 300 through 404 of human TrkC (Fig. 14, Table 7).  TrkA and TrkB  

(A) TrkA (B) TrkB (C) TrkC

Figure 14: CS-E binding sites on the Trk family of receptors. a, TrkA b, TrkB c, 
TrkC 

 

a, TrkA           b, TrkB         c, TrkC 

190



TrkA TrkB TrkC 

Ser312 Ala314 Arg343 
Leu313 Gln316 Ser345 
Arg314 Phe318 Lys346 
Gly319 Ala322 Ile347 
Ser320 Ile323 Asn366 
Val321 Asn325 Lys367 
Leu362 Ile362 Pro368 
Ala364 Lys364 Thr369 
Asn365 Lys369 Tyr371 
Pro366     
Gly368     
Gln369     

have similar CS-E binding sites, which reside mostly across the face of three beta sheets.  

The TrkA binding site contains only one basic residue — Arg314 — whereas the TrkB 

binding site contains two basic residues — Lys364 and 369.  The CS-E binding site on 

TrkC, however, is in a different region of the protein from the homologous sites on TrkA 

and TrkB.  The CS-E binding site on TrkC is near the top of the β-barrel structure and 

contains three basic residues – Arg343, Lys346, and Lys367. 

 

Table 7: Predicted CS-E binding sites on TrkA, TrkB, and TrkC 
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Complex Formation.  Heparin polysaccharides interact with multiple proteins in a protein 

complex20,21 and facilitate in signaling51.  CS-E binds to neurotrophins such as NT-4/5 

and NGF as well as weakly to their receptors, including TrkA and TrkB34,44.  To 

investigate whether CS-E might facilitate or stabilize these neurotrophin - receptor 

complexes, we plotted the CS-E binding sites for the neurotrophin dimers and the Trk 

proteins onto predicted or actual crystal structures of the neurotrophin - Trk complexes, 

including NT-3 / TrkC, NT-4/5 / TrkB, BDNF / TrkB, and NGF / TrkA (Fig. 15).  In the 

case of the predicted NT-3 / TrkC complex, the CS-E binding site for TrkC falls within 

the NT-3 / TrkC protein-protein interaction interface, thus making it unlikely that CS-E 

would facilitate the complex formation (although at the same time, the interaction 

between CS-E and TrkC would appear too weak to block the formation of the NT-3 / 

TrkC complex).  In every case besides the NT-3 / TrkC complex, however, the CS-E 

binding sites on the neurotrophin dimer and the Trk protein occur on the same face of the 

protein complex.  Thus, one long CS molecule, with CS-E motifs spaced at the correct 

 (A) NGF - TrkA

(C) NT-4/5 - TrkB

(B) BDNF - TrkB

(D) NT-3 - TrkC

Figure 15: CS-E binding sites for the neurotrophins (slate) and Trk receptors (green), 
projected onto the neurotrophin (wheat) – receptor (cyan) complexes.  a, NGF – TrkA, 
b, BDNF – TrkB, c, NT-4/5 – TrkB, d, NT-3 – TrkC 
 

 

  

a, NGF – TrkA    b, BDNF – TrkB   

c, NT-4/5 – TrkB    d, NT-3 - TrkC 
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distance, could potentially span both the CS-E binding site on the Trk protein and the CS-

E binding site on the neurotrophin dimer.  Furthermore, the distance between the basic 

amino acids on the neurotrophin dimer binding sites and those of the Trk binding sites is 

such that these amino acids would be correctly positioned to interact with the sulfate 

groups on repeating CS units.  For example, the average distance between the exposed 

basic amino acids within the CS-E binding site on NGF and TrkA is 25.9 angstroms, 

which is approximately twice the distance between the sulfate groups on the four position 

of CS-E or approximately the distance between the furthermost four sulfate groups on a 

CS-E hexasaccharide.  This suggests that CS-E might facilitate the formation or 

stabilization of the neurotrophin / Trk protein complex.  Indeed, previous studies have 

reported that mutations of residues within the predicted CS-E binding site on NGF — in 

particular, Lys32, Lys34, and Glu35 to alanine or Lys32, and Arg95 to alanine —

decreased binding of NGF to a fibroblast cell line that expresses only TrkA by 45 and 

60% even though none of these residues make direct side-chain contacts with TrkA52.  

Nevertheless, the CS-E binding sites on the Trk molecules do not contain a high density 

of basic amino acids that is characteristic of traditional CS-E binding sites and thus are 

more likely secondary binding sites of CS-E molecules, suggesting that CS-E may not 

necessarily assist in bringing the neurotrophin and the Trk receptor together but rather 

may stabilize the preformed neurotrophin-Trk complex.  
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Other Proteins 
 

Residues whose NMR 

chemical shift changes 

with addition of 

Heparin 12-mer 

Predicted CS-E 

Binding Site 

  Tyr 64 

  Phe 66 

Glu 67   

Asn 68 Asn 68 

Trp 69 Trp 69 

  Gly 70 

  Ala 71 

Lys 79 Lys 79 

Val 80   

Arg 81 Arg 81 

Leu 85   

Lys 86 Lys 86 

Lys 87 Lys 87 

Ala 88 Ala 88 

Arg 89 Arg 89 

Tyr 90  Tyr 90 

Asn 91   

    

Cys 94   

  Lys 102 

 

Table 8: Residues that 
interact with heparin as 
previously determined by 
NMR (Iwasaki 1997) and the 
predicted CS-E binding site 

(A) (B)

Figure 16: a, Midkine (from 1MKN).  b, Predicted CS-E binding site (slate) 
 

a,          b, 
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Midkine.  Midkine is a 13 kDa protein whose expression is regulated by retinoic acid and 

which has been shown to enhanced neurite outgrowth and survival53.  We predicted the 

CS-E binding site using the structure of midkine from 1MKN, which contains amino 

acids 23 through 81 of human midkine.  The predicted CS-E binding site is within the N-

terminal region of the protein and spans most of one face of the protein (Fig. 16).  The 

binding site contains five basic amino acids and contains nine of the fourteen amino acids 

whose NMR chemical shifts53 were affected upon the addition of a heparin 12mer (Table 

8). 

 
GDNF.  GDNF is a neuronal survival factor that is structurally distinct from the NGF 

family of neurotrophins.  GDNF has been implicated in neuronal differentiation, survival, 

and protection54.  We predicted the binding site on CS-E based on the structure of GDNF 

from 2V5E, which contains amino acids 34 through 134 of human GDNF and chain D of 

3FUB, which contains amino acids 32 through 134 of human GDNF.  The CS-E binding 

site on GDNF is near the N-terminus of the protein and within a long stretch of basic 

amino acids, RRGQRGKNR, that is devoid of traditional secondary structure (Fig. 17, 

Table 9).  The two GDNF structures are from different crystallization of GDNF, one as a 

monomer and the other as a dimer, and although they differ significantly (RMSD = 1.480 

angstroms), they have similar CS-E binding sites, with the largest difference in the 

binding site being a consequence of differences in the placement of the alpha helix in the 

protein structure.  This suggests that our method is robust to differences in protein 

structure such as might occur during different crystallization processes.  Furthermore 

since the GDNF structure appears very mobile around the CS-E binding site, this may 

indicate a role for CS-E in stabilizing specific structural conformations. 
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GDNF Receptor.  The GDNF-family receptor α 1 binds to GDNF and signals through the 

receptor tyrosine kinase RET55.  We predicted the CS-E binding site on the GDNF 

receptor from the structure of the GDNF receptor from Chain C in 3FUB, which contains 

amino acids 150 through 384 of the rat GDNF receptor.  The predicted CS-E binding site 

on the isolated GDNF receptor is on the surface on two alpha helixes and is close to but 

separate from the binding interface between GDNF and the GDNF receptor (Fig. 18a, b, 

(A) (B)

(C) (D)

Figure 17: a, GDNF crystal structure (from 2V5E).  b, Predicted CS-E binding site on 
GDNF from (a) (slate and yellow).  c, GDNF crystal structure (from Chain D 3FUB).  
d, Predicted CS-E binding site on GDNF (slate and yellow) from (c).  Residues 
predicted to be in the CS-E binding site for both GDNF crystal structures are yellow; 
those predicted to be in the CS-E binding site for only one GDNF crystal structure are 
colored slate. 

 

a b 

c d 
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Table 9).  The CS-E binding site consists of four charged residues — Lys169, Lys191, 

Lys194, and Lys202.  The CS-E binding site on the GDNF protein - receptor complex is 

shifted slightly toward GDNF compared with the binding site on isolated GDNF receptor 

and overlaps with the binding site of the heparin mimic sucrose octasulfate found in the 

GDNF - GDNF receptor crystal structure (Fig. 18c).   

 Unlike the neurotrophins and their receptors, the CS-E binding site on GDNF and  

Figure 18: a, GDNF protein–receptor complex (wheat and 
cyan, from 3FUB).  b, Predicted CS-E binding site (slate).  
c, Binding site of heparin mimic sucrose octasulfate (slate) 
as determined from the co-crystal structure (2V5E) 

 

 

 

 

a 
 
 
 
 
 
 
 
 
 
 
b 
 
 
 
 
 
 
 
c 
 
 
 
 
 
 
 
 
 
 
(C) 
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GDNF Monomer 
(3FUB) 

GDNF Monomer 
(2V5E) 

GDNF 
Receptor 

Nogo 

Arg32 Gln34 Lys169 Thr243 
Gly33 Arg35 Tyr170 Leu246 
Gln34 Gly36 Ala173 Ala247 
Arg35 Lys37 Thr176 Pro248 
Gly36 Asn38 Pro177 Leu249 
Lys37 Arg39 Asn188 Arg250 
Asn38 Gly40 Arg190 Ala251 
Arg39 Ser71 Lys191 Gln253 
Val42 Asp73 Lys194 Arg269 
Leu43 Ala74 Ala195 Pro270 
Thr44 Ala75 Gln198 Ala273 
Ala45 Lys81 Lys202 Trp274 
Ile46 Lys84  Lys277 
Tyr67 Asn85   Phe278 
Ser69 Arg88   Arg279 
Gly70      
Ser71       

its receptor are not close to each other but rather on opposite sides of the protein, and 

even the binding site on the adjacent receptor appears to be in the wrong orientation to 

allow one CS-E molecule to span both binding sites (Fig. 19).  Thus it does not look 

likely that CS-E would facilitate or necessarily stabilize a complex between GDNF and 

its receptor.  Nevertheless since the CS-E binding site on GDNF is within an unstructured 

region of the protein that is structurally different in different crystallizations, it is possible 

that the CS-E binding site on GDNF could orient in such a way as to interact with the CS-

E binding site on the GDNF receptor. 

Table 8: CS-E binding site on GDNF monomer (3FUB, 2V5E crystal structure), GDNF 
receptor, and Nogo 
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Nogo Receptor.  The Nogo receptor interacts with Nogo and is important for axonal 

regeneration in the adult vertebrae central nervous system56.  The Nogo receptor consists 

of a signal peptide followed by eight leucine-rich repeats (LRR), a leucine-rich region C-

terminal domain (LRRCT), and a predicted transmembrane / 

glycosylphosphatidylinositol linkage57.  We predicted the CS-E binding site from the 

Nogo receptor structure in 1P8T, which contains amino acids 27–311 of the human Nogo 

receptor.  The CS-E binding site is at the end of the final LRR and within the LRRCT and 

contains four basic residues — Arg250, Arg269, Lys277, and Arg279 (Fig. 20, Table 9).  

This binding site is also separate from the predicted ligand-binding regions on the 

protein56, suggesting that CS-E is not likely to block the interaction between the Nogo 

receptor and its ligands. 

Figure 19: CS-E binding sites (slate) on GDNF (wheat) and CS-E binding sites 
(yellow) on the GDNF receptor (cyan) as mapped onto the GDNF – GDNF 
receptor complex (3FUB) 
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CS-E Binding Site Characteristics.  Although CS-E binds to a variety of different 

proteins with distinct structural motifs, we found that certain general features characterize 

many of the CS-E binding sites.  CS-E binding sites are enriched in basic residues, as 

might be expected given the six acidic groups on the CS-E tetrasaccharide.  Of the 

proteins modeled that strongly interact with CS-E, the median number of basic residues 

in the CS-E binding sites is four.  Furthermore, some of the CS-E binding sites are 

characterized in primary sequence by two basic amino acids that are usually within a few 

Figure 20: a, Nogo receptor crystal structure (from 1P8T).  b, CS-E binding 
site (slate) 

(A) (B)  a        b 
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residues from one another and a third basic amino acid that is more distant from the first 

two.  One example of this type of binding site is the NT-4/5 dimer.  The CS-E binding 

site on the NT-4/5 dimer consists of two arginine residues at amino acid positions 34 and 

36 on the first protein and then a third arginine at amino acid position 53 on the second.  

Nevertheless, this binding site also contains additional basic residues that do not fit 

within this simplified tetrasaccharide binding site motif and may be important in further 

stabilizing the CS-E tetrasaccharide or for making extra contacts with longer CS-E 

chains. 

 Further analysis of the secondary structure of the CS-E binding sites reveals more 

similarities between proteins.  The secondary structure of the CS-E binding sites are 

characterized by two basic amino acids that are approximately 5 Å from each other and a 

third basic amino acid approximately 15 Å away from the first two but that can be 

connected by a line to the first two without bisecting the protein.  Thus, in the NT-4/5 

dimer, the average distance between the terminal nitrogen of the guanidinium groups of 

Arg34 and Arg36 is 4.1 Å while the terminal nitrogen of the guanidinium group of Arg53 

are an average of 16.9 Å from the terminal nitrogen of the guanidinium group of Lys34.  

Similarly in the BDNF dimer, the terminal nitrogen of the guanidinium groups of Arg97 

and Arg101 are an average of 7.0 Å from each other and the epsilon nitrogen of Lys46 is 

an average 14.7 Å from the terminal nitrogen of the guanidinium group of Arg97.  

Interestingly, these distances correspond quite closely to the distances between the sulfate 

groups on the CS-E tetrasaccharide.  The distance between the sulfur atoms on the four 

and the six position of the same sugar is on average 5.5 Å while the furthest distance 

between the sulfate atoms on the four position of the first sugar and the six position of the 
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third sugar is 15.0 Å and the average distance between the sulfate atoms on the two 

sugars is 12.9 Å.  Indeed, these characteristic distances between the positively charged 

side chains more accurately characterize the CS-E binding site than does the primary 

sequence characterization.  For example, the CS-E binding site on the TNF trimer 

structure contains four positively charged residues, Arg103 and Arg138 on one monomer 

of the trimer and Lys65 and Lys112 on a second monomer of the trimer, which does not 

fit well into the proposed primary sequence identification of a CS-E binding site.  Yet, 

the distance between the epsilon nitrogen of Lys65 and Lys112 is 4.9 Å and the average 

distance between epsilon nitrogen on Lys112 in the first monomer and the terminal 

guanidinium nitrogen on Arg138 in the second monomer is 15.5 Å, again corresponding 

well to the distances between sulfate groups on CS-E. 

 Yet, surprisingly the third basic amino acid that lies approximately 15 Å away 

from the first two is almost exclusively found at a minimum of 10 Å away from any other 

basic amino acids in the CS-E binding site.  This suggests that CS-E may need a strong 

positively charged region, consisting of two or more basic residues, to anchor it and then 

other, less positively charged regions, to orient it.  Indeed the mutations that distinguish 

the CS-E binding sites on BDNF, NGF, NT-3, and NT-4/5 occur within one or both of 

the two closely positioned basic amino acids, whereas the third more distantly placed 

basic amino acids is more conserved between the proteins.   Such a situation could 

explain the preference of these proteins for CS-E molecules over other chondroitin sulfate 

molecules with less concentrated charge.  In particular, it would suggest that CS-E is able 

to most strongly bind to these proteins due to the ability of the negatively-charged 

sulfates on the four and six positions of the GlcN sugar to make strong salt bridges with 
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two correctly positioned positively-charged amino acids in the CS-E binding site for 

these proteins.  This strong salt bridge may be required, in part, because unlike other 

small molecules, GAGs do not bind into a deep binding pocket and thus fail to make the 

full set of molecular interactions that they would otherwise make in a deep pocket.  This 

would imply that a full CS-E tetrasaccharide may not be necessary for binding to these 

molecules but rather a tetrasaccharide consisting of one CS-E disaccharide unit and 

another singly charged CS-motif may be sufficient. 

 
Non-traditional binding sites.  The predicted CS-E binding sites for the Nogo receptor 

and the GDNF receptor do not immediately fit within this CS-E binding site rubric.  The 

distance between any two of the positively-charged amino acids in these binding sites is 

greater than 10 Å, making them too far away to make meaningful contacts with the 

sulfate groups on the four and six position of a CS-E sugar.  Nevertheless these binding 

sites each have amino acids that could rotate upon CS-E binding to afford a more 

characteristic CS-E binding site that would provide strong interactions between the CS-E 

sulfate groups and basic residues. 

 
Limitations.  Since the predicted CS-E binding sites are based on calculations, they suffer 

from a number of limitations.  Beyond the inherent limitations in trying to model a 

complex system with a limited number of equations and variables, other limitations exist 

in this system.  In particular, for most of the proteins, a greater region of the protein was 

used for the CS-E binding experiments than was resolved in the crystal structure.  That is, 

CS-E could be binding to parts of the protein not found in the crystal structures and thus 

the predicted CS-E binding site based on the crystal structure would be incorrect.  An 
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example of where this almost becomes a problem is in the case of GDNF.  The CS-E 

binding studies were performed of amino acids 1 – 134 of GDNF, whereas the crystal 

structures of GDNF begin at amino acids 40, 32, and 34 and end at amino acids 134, 134, 

and 134 for chain B of 3FUB, chain D of 3FUB, and 2V5E, respectively.  The predicted 

CS-E binding site based on the structures that start at amino acids 32 and 34 predict that 

CS-E interacts heavily with the amino acids 32 through 40 thus making this region a key 

part of the predicted CS-E binding site.  Indeed, calculating the CS-E binding site based 

on the GDNF structure that starts at amino acid 40 predicts that the CS-E binding site is 

on the opposite side of the protein to that predicted from the structures that start at amino 

acids 32 and 34.  Thus, if only the structure for GDNF that starts at amino acid 40 were 

available, then the predicted binding site would likely be incorrect. 

 

Methods 

Forcefields: The Dreiding force field58, adapted to include sulfate groups, was used 

throughout the calculations.  The force field was modified by optimizing the bond lengths 

and angles of a model CH3OSO3Na system through quantum mechanics (Jaguar)59 and 

adjusting the Dreiding force field parameters based on this optimum geometry.  All 

charges for the ligands were calculated using the charge equilibrium (QEq)60 method.  

CHARM2261 charges were used for the protein.  

 
Molecular dynamics simulations: For each tetrasaccharide, charge equilibrium (QEq)60 

charges were assigned and 1,000 conformations were generated using a Boltzmann jump 

method with rotation around the glycosidic bonds followed by structural minimization. 

The resulting conformations were sorted into five groups by root mean square deviation 
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in coordinates and ranked by their potential energies. 300 ps of explicit water molecular 

dynamics was run at 300 K on the two lowest-energy conformations from each of the five 

groups. For each of the ten molecular dynamics runs, the tetrasaccharide conformations 

were averaged from the last 100 ps and their potential energies were calculated with 

explicit solvation.  The lowest-energy structure among these ten was used to represent the 

predicted solution structure.  All Boltzmann jumps and the molecular dynamics 

calculations were performed using Cerius2 (Accelrys Inc.)62.  

 
Preparation of the Proteins:  The pdb file for each protein was downloaded from the 

RCSB Protein Data Bank (www.pdb.org).  Water and other non-protein molecules were 

removed, missing residues were added using Swiss PDB Viewer, and hydrogen were 

added using the WhatIf program.  CHARM22 charges were added, NaCl atoms were 

added to neutralize the protein, and the protein was minimized using the MPSim program 

in SGB implicit solvation.   

 
Binding Site Calculations:  We determined the binding sites as per previously described63 

with the following changes: We used a buried surface criteria of 10%, the parameter 

‘Grow’ rather than ‘Pass’, the radmax = 5.0, and the dotlim = -0.5.  Once the potential 

binding sites were identified and the top docked conformations and corresponding 

binding sites were ranked by energy, the predicted GAG binding site was identified by 

the following.  The top twenty-five docked conformations and corresponding binding 

sites were tabulated and the sum of the inverse energy ranks for each binding site was 

determined.  Any binding site in which this value was greater than zero was considered a 

GAG binding site.  To determine which residues contributed to the predicted binding site, 
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the five lowest-energy dock conformations for GAG binding site were determined and 

those residues within 4 Å of any of those conformations were taken to be part of the 

potential GAG binding site.  Similarly to determine the heparin binding site from the 

heparin containing crystal structures, residues within 4 angstroms of heparin were 

determined and were considered to contribute to the heparin binding site. 
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 CREB and O-GlcNAc glycosylation have both independently been shown to 

be critical for beta cell function and dysfunction.  Yet little is known about the role 

of O-GlcNAc glycosylation on CREB in beta cell function.  Here we show that 

CREB is highly glycosylated at Ser40 and that CREB glycosylation can be induced 

by high glucose, glucosamine, and PUGNAc in pancreatic beta cells.  We 

furthermore show that CREB glycosylation represses induced CREB activity on a 

CRE luciferase construct and on IRS-2, a protein known to be critical for beta cell 

survival.  This data suggests a mechanism wherein hyperglycemia induces CREB 

glycosylation, which leads to enhanced beta cell death. 

 
Introduction 

CREB is a key regulator of both beta cell function and dysfunction.  CREB 

mediates the levels of anti-apoptotic genes bcl-2 and IRS-2 in response to prosurvival 

signals such as GIP and GLP1, 2, and CREB overexpression in cultured beta cell lines 

protects these cells against cytokine-induced cell death3.  Alternatively, suppression of 

CREB-dependent IRS-2 gene expression has been implicated in beta cell death1. 

Furthermore overexpression of a dominant negative form of CREB in human islets leads 

to increased apoptosis4, and transgenic animals with a beta-cell-specific expression of 

either a repressive isoform of CREB or a dominant negative form of CREB develop 

severe diabetes and exhibit decreased beta cell mass1, 5.      

 Previous studies have indicated a role for O-GlcNAc in diabetes.  Approximately 

2–5% of all cellular glucose is metabolized through the hexosamine biosynthesis pathway 

(HBP) to generate UDP-GlcNAc, and OGT activity is particularly sensitive to UDP-

GlcNAc concentrations6.  O-GlcNAc modifies many of the proteins important for insulin 
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signaling, including IRS-1, IRS-2, and GLUT 47-9, and increased O-GlcNAc levels have 

been shown to cause insulin resistance in a number of cell types including adipocytes and 

skeletal muscle10, 11.  Studies have also shown that in vivo glucosamine (GlcN) injections 

lead to insulin resistance in normoglycemic rats but not in diabetic rats12.  Furthermore 

overexpression of OGT in vivo in skeletal muscle and fat or in hepatic cells leads to 

insulin resistance13,14 whereas overexpression of OGA in the liver of diabetic mice 

improves glucose homeostasis15.  Similarly O-GlcNAc has been shown to regulate 

transcription factors important for glucose homeostasis, including FoxO1, NeuroD1, 

MafA, and PDX-116, 17.   

More recently, flux through the HBP which leads to increased O-GlcNAc levels 

has been shown to contribute to high glucose-induced beta cell death.  OGT expression is 

highest in beta cells, and beta cell O-GlcNAc levels respond rapidly to changes in 

glucose levels in vivo18.  OGT and O-GlcNAc levels are significantly induced in the islets 

of diabetic rats as compared to control rats19.  Furthermore, inhibiting glucose flux 

through the HBP or inhibiting O-glycosylation blocks high glucose-induced apoptosis of 

human islets and cultured rat insulinoma cells8.  Similarly, blocking the removal of O-

GlcNAc from proteins in beta cells in vivo leads to beta cell death after exposure to high 

glucose, an affect that is abrogated by inhibiting flux through the HBP18. 

 Given the important roles of both CREB and O-GlcNAc in beta cell function, we 

sought to determine how O-GlcNAc glycosylation downstream of hyperglycemia may 

regulate CREB activity. 
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Results and Discussion 

 We first sought to determine whether CREB was O-GlcNAc glycosylated in 

pancreatic cells.  Pancreases from WT euglycemic rats were isolated and the proteins 

were chemoenzymatically labeled followed by reaction with aminooxy-PEG to 

specifically label the O-GlcNAc-modified proteins.  Although the standard protocol for 

this technique is to immediately resolve the PEG-labeled lysate by SDS-PAGE, we found 

that immunoblotting for CREB on such a gel gave numerous background bands, making 

it difficult to identify the PEG-shifted O-GlcNAc-modified CREB population.  Thus we 

immunoprecipitated CREB to better isolate it from the surrounding protein before 

resolving the sample by SDS-PAGE.  Immunoblotting for CREB showed two clear 

bands, representing nonglycosylated and glycosylated CREB (Fig. 1a).  From this gel, we 

could see that CREB is highly glycosylated (36.5 ± 4.90%) in the pancreas.  Furthermore 

only one PEG-shifted band could be detected for CREB, indicating that CREB is 

predominantly monoglycosylated in the pancreas.  Nevertheless the background antibody 

signal, near where a second, doubly PEG-shifted CREB signal would reside, makes it 

difficult to rule out a very low abundant doubly-glycoslated CREB subpopulation such as 

seen in neurons (see Chapter 5).    
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 General O-GlcNAc levels fluctuate with glucose concentration in beta cells, so we 

wanted to determine whether CREB glycosylation was affected by changes in glucose 

concentration.  We cultured the pancreatic cell line MIN6 in the presence of 5.5 mM or 

33 mM glucose for 96 hours and then assayed the levels of O-GlcNAc on CREB by 

Figure 1: Hyperglycemia induces CREB glycosylation.  (a) Rat pancreases were 
removed and the lysate was chemoenzymatically labeled followed by reaction with 
aminooxy-PEG and immunoprecipitation of CREB.   Eluents were resolved by SDS-
PAGE and immunoblotted for CREB.  (b) MIN6 cells were cultured in the presence of 
5.5 or 33 mM glucose for 96 hours.  Cell lysates were chemoenzymatically labeled 
followed by reaction with aminooxy-biotin and capture by streptavidin.  Input and 
eluent to the streptavidin capture was resolved by SDS-PAGE and immunoblotted for 
CREB. n = 3, * P < 0.0002.  (c) HIT-T15 cells were treated with GlcN, PUGNAc, or 
fsk as indicated.  Cell lysates were treated as in (b) except that the labeled lysate was 
immunoprecipitated for CREB. n = 3, * P < 0.01.  (d) Euglycemic and hyperglycemic 
GK rat pancreases were processed as in (a).  n = 3, * P < 0.01. (e) Euglycemic and 
hyperglycemic STZ-treated rat pancreases were processed as in (a).  n = 3, * P < 0.1. 
 

a 

b 

c 

e 

d 
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chemoenzymatic labeling followed by biotinylation and streptavidin pulldown (Fig. 1b).  

We found that high glucose induced CREB levels and further induced CREB 

glycosylation levels.  Correcting for the increase in CREB levels, high glucose induced 

O-GlcNAc glycosylation on CREB by 1.97 ± 0.30-fold compared to low glucose.  

Previously we have shown that neuronal depolarization induces CREB glycosylation 

downstream of Ca2+ influx (see Chapter 5), and glucose is known to depolarize beta cells 

leading to Ca2+ influx20, so it may be that similar pathways are activated in both cell 

types.  Furthermore, GlcN as well as PUGNAc induced CREB glycosylation in the 

pancreatic cell line HIT-T15 (Fig. 1c).  Taken together, this data indicates that in vitro, 

glucose, GlcN, and PUGNAc induce CREB glycosylation levels.   

To determine whether hyperglycemia induces CREB glycosylation in vivo, we 

assayed CREB glycosylation levels in a number of different animal models of diabetes, 

including streptozocin-induced hyperglycemia as well as Goto-Kakizaki (GK) and 

Zucker Diabetic Fatty (ZDF) rat genetic models of diabetes.  In each of these models, the 

blood glucose level of the experimental, diabetic rats were all over 300 mg / dL compared 

with control rats, which had blood glucose levels around 100 mg / dL.  Again here we 

PEG labeled the O-GlcNAc-modified population of the protein before 

immunoprecipitating and Western blotting for CREB.  We found in the case of the GK 

and STZ rat models that hyperglycemia induced CREB glycosylation levels 16.9 ± 0.01% 

and 15.4 ± 0.09% respectively (Fig. 1d, e).  Hyperglycemia did not induce CREB 

glycosylation in the ZDF rats (1.03 ± 0.12%).  These studies suggest that at least in 

certain animal models, hyperglycemia is linked to increased CREB glycosylation.   
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 We have previously identified Ser40 as the major dynamic site of glycosylation in 

Neuro2A cells and embryonic neurons (see Chapter 5), so we next investigated whether 

Ser40 glycosylation was also the major dynamic site in beta cells.  We transfected HIT-

T15 cells with WT, TST259-261AAA, and S40A FLAG-CREB and assayed their 

glycosylation levels before and after GlcN treatment.  The S40A mutant blocked the vast 

majority (95 ± 7%) of FLAG-CREB glycosylation while the TST259-261AAA FLAG-

CREB mutant had no effect on FLAG-CREB glycosylation levels in HIT-T15 cells (Fig. 

2).  Furthermore, GlcN induced CREB glycosylation on both WT and TST259-261AAA 

FLAG-CREB (81% ± 14%, 83% ± 9%, respectively) but had no effect on CREB 

Figure 2: CREB is dynamically glycosylated at Ser40 in HIT-T15 cells.  WT, 
TST259-261AAA, and S40A FLAG-CREB were transfected into HIT-T15 cells 
and the cells were treated with glucosamine (GlcN) as indicated.  Lysates were 
chemoenzymatically labeled, reacted with aminooxy PEG, and immunoblotted for 
FLAG.  n = 3, * p < 0.01 compared to WT CREB for each condition. 

216



glycosylation of S40A FLAG-

CREB (-0.008% ± 0.05%), 

indicating that Ser40 is the only 

CREB glycosylation site 

dynamic to GlcN. 

 Having shown that 

CREB glycosylation could be 

dramatically modulated in 

response to glucose, GlcN, and 

PUGNAc, we next examined the 

effect of glycosylation on CREB 

activity.  We transfected HIT-

T15 cells with a CRE-luciferase 

reporter and then tested CREB 

activity in the presence or 

absence of GlcN, to enhance 

CREB glycosylation, or 

forskolin (fsk), to enhance 

CREB phosphorylation.  

Interestingly, we found that 

GlcN had no effect on CREB 

activity in non-induced cells, 

which is different than in 

Figure 3: O-GlcNAc glycosylation represses 
CREB transcriptional activity.  (a) HIT-T15 cells 
were transfected with CRE-luciferase and 
incubated with or without GlcN.  Fsk was added 
to the medium for the times indicated, the 
harvested cells were lysed, and luciferase activity 
was quantified.  n = 3–7, * P < 0.05.  (b) HIT-
T15 cells were incubated with GlcN prior to the 
addition of Fsk.  Cells were harvested and the 
lysate was analyzed by immunoblotting with an 
anti-phospho-S133 CREB antibody.  (c) Cells 
were prepared as in (a) except that they were 
treated with PUGNAc rather than GlcN. n = 3, * 
P < 0.0005. 

a 

b 

c 

217



neurons, where removal of glycosylation increased non-induced CREB activity (see 

Chapter 5).  Non-induced nuclear TORC levels differ depending on the cell type21, and 

we have previously shown that CREB glycosylation blocks the interaction with the 

TORC coactivator (see Chapter 5), so one explanation for this difference could be that 

the amount of nuclear TORC in HIT-T15 cells is lower than in neurons.  Indeed although 

the absolute amount of TORC in the nucleus was not measured, previous studies have 

shown that only approximately 15% of non-induced HIT-T15 cells have TORC2 

localized to the nucleus22 whereas approximately 40% of TORC1 is localized to the 

nucleus in non-induced neurons23.  Although glycosylation had little effect on non-

induced CREB levels, glycosylation depressed induced CREB activity in a time-

dependent manner, reducing CREB activity 39 ± 10% after 6 hours (Fig. 3a).  Similar 

effects were seen following 9 hour PUGNAc treatment (Fig. 3b).  As seen in neurons, 

changes in CREB glycosylation had no effect on phospho-Ser133 levels (Fig. 3c).  This 

data suggests that induced CREB glycosylation blocks induced CREB activity 

independent on changes in phospho-Ser133 levels. 

 CREB has been shown to be critical for regulating IRS-2 levels that support beta 

cell survival1, thus we wanted to know whether CREB glycosylation could effect IRS-2 

mRNA levels in beta cells.  Beta cells were treated with GlcN for 9 hours and forskolin 

for 3 hours.  This time GlcN had a significant affect on both non-induced as well as 

induced levels of IRS-2 (Fig. 4a).  To determine whether this could be a direct effect of 

CREB and OGT on the IRS-2 promoter, we performed a chromatin immunoprecipitation 

assay.  We found that both CREB and OGT were enriched on the IRS-2 promoter but not 
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on the GAPDH promoter (Fig. 4b).  This indicates that CREB glycosylation may have an 

important effect on IRS-2 levels. 

 Taken together, this data suggests a new model for the role of CREB 

glycosylation in hyperglycemia-induced beta cell death.  In this model, hyperglycemia 

causes increased CREB glycosylation at Ser40.  This increased glycosylation leads to 

decreased IRS-2 levels in both non-induced and induced CREB.  These lower IRS-2 

levels, then, enhance the susceptibility of beta cells to apoptosis.   

 

Methods 

Materials.  All reagents were purchased from Fisher Scientific unless otherwise 

specified. RPMI-1640, DMEM, Hank’s Buffered Saline Solution (HBSS), fetal bovine 

serum (FBS) and penicillin/streptomycin were purchased from Invitrogen (Carlsbad, 

CA). CREB and insulin receptor substrate 2 (IRS-2) antibodies were purchased from 

Upstate (Charlottesville, VA). OGT and a-tubulin antibodies were purchased from 

Figure 4: The IRS-2 gene is a direct 
target for regulation by CREB and 
OGT.  (a) Cells were treated with or 
without GlcN.  Fsk was added to the 
medium 3 h after addition of GlcN, 
and the cells were incubated for an 
additional 6 h.  IRS-2 expression was 
analyzed by immunoblotting of cell 
lysates using an anti-IRS-2 antibody 
and corrected to protein concentration 
as measured by an anti-atubulin 
antibody.  n = 4, * P < 0.03. (b) 
Chromatin immunoprecipitation was 
performed on HIT-T15 cells using 
antibodies against CREB and OGT.  
PCR was performed on the IRS-2 or 
GAPDH promoter. 

a 

b 
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Sigma-Aldrich (St. Louis, MO).  Anti-OGT (AL28) ascites was a generous gift of G.W. 

Hart (The Johns Hopkins University School of Medicine, Baltimore, MD). O-(2-

acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) was 

purchased from Toronto Research Chemicals (Toronto, Canada). Forskolin (Fsk) was 

purchased from Axxora (San Diego, CA), and glucosamine (GlcN) was purchased from 

Fluka (St. Louis, MO). 

 

Cell Culture.  HIT-T15 cells (American Type Culture Collection) were grown in RPMI-

1640 supplemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/ml streptomycin (RPMI-

1640 complete).  Cell passages 66–79 were used for experiments, and cells were 

subcultured every 6–8 days.  MIN6 cells (a generous gift from Dr. Marc Montminy, Salk 

Institute, La Jolla, CA) were grown in DMEM supplemented with 10% FBS, 100 U/ml 

penicillin, 0.1mg/ml streptomycin (DMEM complete) and cell passages 25–35 were used 

for experiments. 

 

Pancreatic Isolation. 150–200 g male Sprague-Dawley rats (Charles River) were 

euthanized with CO2 in accordance with IACUC guidelines at the California Institute of 

Technology.  The pancreases were removed and immediately lysed in 2% SDS with 2x 

protease inhibitor cocktail (Roche) with sonication.   

 

Diabetic Rat Models.  Homozygous Goto-Kakizaki rats (11 weeks old) and Wistar 

Hanover GALAS control rats (11 weeks old) were obtained from Taconic and maintained 

on a NIH-31 diet formulation (Taconic) and the pancreases were harvested after one 
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week.  Homozygous obese diabetic Zucker diabetic fatty rats (10 weeks old) and 

heterozygous lean Zucker rats (10 weeks) were obtained from Charles River and the 

pancreases were harvested after one week.  150–200 g male Sprague-Dawley rats 

(Charles River) were i.p. injected with 50 mg / kg streptozocin dissolved at 10 mg / mL 

in 100 mM sodium citrate, pH 4.5.  The pancreases were harvested after 72 hours. 

 

Plasmids.  pFC6a-CREB, pFC6a-CREB(AAA), pFC6a-CREB(S40A) were generated by 

subcloning wild-type CREB, TST259-261AAA, and S40A mutant CREB from the 

respective pET23b+ vectors into the pFLAG-CMV-6a E. coli and mammalian expression 

vector (Sigma-Aldrich) using primers with 5’ EcoRI and 3’ BamHI restriction sites. 

   

Drug Treatments. GlcN and Fsk treatments were performed as follows.  HIT-T15 and 

MIN-6 cells were used at 50–75% confluence.  Cells were pretreated with RPMI-1640 

complete (HIT-T15 cells) or DMEM complete (MIN6 cells) supplemented with 10 mM 

GlcN in 2 mM HEPES, pH 7.5 for 3–12 h as indicated before treatment with the 

appropriate media supplemented with 10 mM Fsk or vehicle (DMSO) with or without 10 

mM GlcN in 2 mM HEPES, pH 7.5 for indicated times.  

PUGNAC treatments were performed as follows. Cells were pretreated for 3–12 h 

as indicated with the appropriate media supplemented with 100 mM PUGNAc before the 

addition of 10 mM Fsk for indicated times. 

 

Chemoenzymatic Labeling and Detection of O-GlcNAc Glycosylation. 

Chemoenzymatic and PEG labeling was performed as previously described (see Chapter 
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5) except that 2X Complete™ (Roche) and 2X Halt™ (Pierce) protease inhibitors were 

added at each step.  CREB was immunoprecipitated from the PEG reaction as described 

below.  Chemoenzymatic and biotin labeling followed by streptavidin capture and elution 

was performed as previously described (see Chapter 2).  Chemoenzymatic and biotin 

labeling followed by CREB immunoprecipitation is described here:  After drug treatment, 

cells were harvested and the cell pellet was lysed in boiling lysis buffer (1% SDS 

supplemented with protease inhibitors (Complete Protease Inhibitor Cocktail Tablets, 

Roche, Indianapolis, IN), sonicated for 5 s, and boiled for 8 min.  After centrifugation at 

21,500 x g for 5 min, the supernatant was collected, and the protein concentration was 

measured using the BCA assay (Pierce, Rockford, IL).  One volume of denatured cell 

extract was diluted into four volumes of dilution buffer (10 mM HEPES pH 7.9, 1.8% 

Triton X-100, 100 mM NaCl, 10 mM MnCl2, containing protease inhibitors (5 mg/ml 

pepstatin, 5 mg/ml chymostatin, 20 mg/ml leupeptin, 20 mg/ml aprotinin and 20 mg/ml 

antipain) and 1 mM phenylmethylsulfonyl fluoride (PMSF).  Diluted extract was then 

supplemented with 1.25 mM adenosine 5’-diphosphate, 0.5 mM analogue 1 and 20 

µg/mL mutant Y289L GalT (64).  Control reactions were prepared lacking enzyme or 

analogue 1 to measure any nonspecific reactivity of streptavidin-HRP (see Fig. 1).  The 

reaction mixture was incubated at ~5–7o C for 10–12 h, and dialyzed into 10 mM 

HEPES, pH 7.9 containing 5 M urea at ~5–7o C (3 x 3 h).  Following dialysis the sample 

was acidified to pH 4.8 by adding NaOAc pH 3.9 (50 mM final concentration).  The 

reaction was initiated with the addition of N-(aminoxyacetyl)-N’-(D-biotinoyl) hydrazine 

(2.5 mM final concentration, Dojindo, Gaithersburg, MD) and incubated at room 

temperature for 16–20 h, the sample was then dialyzed into CREB immunoprecipitation 
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(IP) buffer (10 mM HEPES pH 7.9, 100 mM KCl, .2% Triton X-100 and 1mM EDTA) 

(1x overnight and 2 x 2 h).  After dialysis, the sample was centrifuged for 5 min at 21,500 

x g, and protein concentration was measured.  Lysate was supplemented with protease 

inhibitors (5 mg/ml pepstatin, 5 mg/ml chymostatin, 20 mg/ml leupeptin, 20 mg/ml 

aprotinin, and 20 mg/ml antipain) and volumes were normalized such that equivalent 

amounts and concentrations of lysate were used for immunoprecipitation.  Lysate was 

first precleared for 1 h at ~5–7o C with protein A sepharose and the supernatant was 

incubated with rabbit anti-CREB antibody (Upstate) for 3-4 h at ~5–7o C.  Protein A 

sepharose was then added and incubated with the lysate for 1 h at ~5–7o C.  The 

supernatant was collected as flowthrough, and the protein A sepharose was washed with 

CREB IP buffer (3 X), PBS (3 X) and 50 mM Na2HPO4 (1 X). The immunoprecipitated 

protein was eluted using SDS-PAGE loading buffer, resolved by SDS-PAGE, and 

analyzed by Western blotting. 

 

Luciferase Assay.  HIT-T15 cells transfected using Targefect F2 transfection reagent (3 

mg/ml, Targeting Systems, Santee CA) following the manufacturers instructions. Briefly, 

HIT-T15 cells were grown to ~75% confluence in 60 mm dishes.  In studies of 

endogenous CREB activity, cells were co-transfected with 1 µg/ml pCRE-Luc 

(Stratagene) and 0.5 µg/ml pSV-βGal using the Targefect F2 transfection reagent.  In 

control Gal4 reactions, cells were co-transfected with 1 µg/ml pFR-Luc (Stratagene), 0.5 

µg/ml pcDNA3.1-Gal4, and 0.5 µg/ml pSV-βGal.  Cells were treated with Fsk/GlcN or 

Fsk/PUGNAc ~24 h post-transfection. 
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Harvested cells were lysed in 1 x Reporter Lysis Buffer (Promega) with brief 

sonication on ice.  Samples were centrifuged for 5 min at 21,000 x g.  Supernatant was 

used for the measurement of luciferase and β-galactosidase and Western blot analysis. 

Luciferase activity was measured using Bright-GloTM luciferase assay system (Promega) 

on an Opticom 1 luminometer (MGM instruments, Hamden, CT).  Luciferase activity and 

transfection efficiency were corrected by measurement of β-galactosidase activity.   

 

Western Blotting Analysis.  Total cell lysates were prepared by cell lysis in boiling 1% 

SDS with protease (5 µg/ml pepstatin, 5 µg/ml chymostatin, 20 µg/ml leupeptin, 20 

µg/ml aprotinin and 20 µg/ml antipain) and phosphatase inhibitors (20 mM NaF, 1 mM 

Na3VO4, 0.05 mM Na2MO4) by sonication. Samples were resolved by 10% SDS-PAGE 

or by 4–12% Bis-Tris PAGE and transferred to nitrocellulose. The following antibodies 

were used for Western blot analysis: anti-CREB antibody (1 µg/ml), anti-phospho-

CREB(Ser133) antibody (1 µg/ml), anti-IRS-2 antibody (1 µg/ml), and anti-OGT (1 

µg/ml), anti-α−tubulin (0.2 µg/ml). Blots were visualized by chemiluminesence 

(Supersignal West Pico, Pierce) on Hyperfilm ECL chemiluminescent film (GE 

Healthcare Bio-Sciences).  Relative band intensity was quantified by analysis of scanned 

images using NIH Image 1.52 software.  

 

Chromatin Immunoprecipitation (ChIP).  ChIP was performed as previously described 

(see Chapter 5).  The following primers were used. IRS-2 (NM_001081212) primers 5’-

CCCGCCAGCACTCGCTC-3’ and 5’-CGGACGTCATCAGAGCC-3’ amplify a 174 bp 

product corresponding to bp –343 to –169. 
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RNA isolation and RT-PCR. HIT-T15 cells were grown in 60 mm dishes to a 

confluence of 50–75% (~5–7x105 cells).  Cells were pretreated with either RPMI-1640 

complete supplemented with 10 mM GlcN in 2 mM HEPES pH 7.5 or RPMI-1640 

complete for 3 h before treatment with RPMI-1640 complete supplemented with 10 µM 

Fsk and 10 mM GlcN in 2 mM HEPES pH 7.5 or 10 µM Fsk for 1 h, respectively. 

RNA was isolated using Qiagen RNeasy mini-columns following the 

manufacturer’s procedure for the isolation of cytoplasmic RNA from animal cells 

(Qiagen).  cDNA was prepared using olgo dT12-18 primers (Invitrogen) and Transcriptor 

reverse transcriptase (Roche). IRS-2 (NM_001081212) primers 5’-

GAGCATGGATAGACCCTGA-3’ and 5’-GCAGAGGCGACCTGAACTAC-3’ amplify 

a 211 bp product corresponding to bp +1617 to +1817. Mouse β-actin (NM_ 007393.3) 

primers 5’-TGTTACCAACTGGGACGACA-3’ and 5’-

GGGGTGTTGAAGGTCTCAAA-3’ amplify a 165 bp product corresponding to bp +225 

to +390.  Samples were analyzed with 25–38 cycles of semi-quantitative PCR using Taq 

PCRX DNA polymerase (Invitrogen). PCR products were loaded onto 2% 

agarose/ethidium bromide gels and visualized on an AlphaImager 3400 (Alpha Innotech 

Corp., San Leandro CA).  Band intensity was quantified using software AlphaEaseFC 

software version 4.0.1 (Alpha Innotech Corp.). 

 

Statistical Analysis. All experiments were repeated a minimum of three times.  Results 

are presented as the mean value +/- one standard error of the mean (SEM).  Statistical 

significance was calculated using the Student’s T-test. 
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