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ABSTRACT

A general theory is presented for the calculation of the total
forces acting on purely supersonic wings. The method applies to wings
having an arbitrary downwash distribution (stationary or non-station-
ary) and is vazlid whenever all of the wing edges are supersonic, 'The
general three-dimensional non-stationary problem is reduced to an
equivalent two-dimensional pfoblem. In the case of harmonic cscilla-
~ tions the aerodynamic coefficients are expressed in terms of known or
tabulated functions, The specific'example of an oscillating delta
wing 1is considefed and values of the azerodynsmic coefficients for
plunging, pitching, and rolling oscillations aré‘calculated for two

Mach numbers,
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I. INTRODUCTION

With the advent of high performance aircraft and the poegsibility of
supersonic flight, the problem of flutter and aerodynamic stability of
airfoils moving at supersonic speeds has become of increasing importance.
Consequently, much attention has been directed to the problem of an oscil-
lating airfoil in a supersonic stream.

As in the case of the subsconic theory developed by Glauert (Ref. 1),
von Karman and Sears (Ref.‘Z), and others, the approach to the supersonic
non~-stationary problem has generally been made through the use of the
linearized equations of motion. It is well known that if one considers a
non-viscous, non-heat-conducting fluid with the assumptions of irrotation-
ality and smsll disturbances, the equations which govern the disturbed mo-
tion of the flulid msy be reduced to the wave equation. Under these condl-
tions it is possible to find general solutions of the wave equation which
may be superimposed to satisfy the boundary condition of tangential flow
on the wing surface.

Possio (Ref. 3) and Borbely (Ref. 4) have both treated the two-dimen-
sional airfoil in this manner. These authors have obtained sclutions for
the pressures on an airfoil due to an arbitrary chordwise downwash distri-
bution which exhibits a harmonie time dependence, These solutions are ex—
pressed as integrals which cannot be evaluated in terms of known functions.
However, Schwarz (Ref, 5) has calculated these integrals by numerical
methods for a sufficlent range of the parsmeters to make the use of this

theory practical.



Garrick and Rubinow (Ref. 6), and recently Miles (Ref. 7), following
the early work of Possio and Borbely, have treated the two-dimensional
theory as applied specifically to the flutter problem, These authors have
obtained analytical expressions for the flutter derivatives in terms of in-
tegrals tabulated by Schwarz.

The work of Garrick and Rubinow, which includes some nnﬁeriCal,results,
indicates that for a certain range of Mach numbers the aerodynamic damping
due to torsional oscillations becomes negative; hence the motion is un-
stable, This point is of paramount interest to the desigmer, and the queé-
tion naturally arises as to what further instabilities may arise in the case
of a finite wing.

Miles (Ref. 8) has carried out an approximate solution of the prodlem
of an oscillating delta wing, including only terms of first order in fre-
quency. This analysis indicates that the instabilities found by Garrick
and Rubinow may also occur for wings of finite span.

" Recently Stewart and ii (Ref. 9) have obtained the solution for an
oscillating rectangular wing. They have found that there is a marked
change in the nature of the damping of certain modes due to the finite as-
pect ratio. » |

The general solution for an oscillating threeadimensionai wing with

supersonic edges* may easily be expressed in terms of elementary solutions

®* It is common practice to refer to a wing boundary as being either sub-
sonic or supersonic according to whether the normal component of the free

stream Mach number is greater or less than 1.



of the wave equation; however, even for relatively simple planforms, the
calculation of the pressures involves integrals much too difficult‘to
evaluate. Fortunately, knowledge of pressure distributions is not of prime
importance in the application of the theory. On the contrary, interest is
centered on the nature of the totél forces acting on the wing.

Miles (Ref. 10) has pointed out that it is possible to reduce the
problem of calculating the forces acting on an oscillating delta wing to
an equivalent two-dimensional problem. It is the purpose of this paper to
present a general solution for the arbitrary motion of any three~-dimensional
wing having supersonic edges in terms of an equivalent two-dimensional prob-
lem. In the case of harmonic oscillations the solution is expressed in
terms of the familiar two-dimensional functions tabulated by Schwarz. This -
reduction is possible only if the trailing edge of the wing is straight and
perpendicular to the direction éf the free stream velocity.

The specific example of an oscillating delta wing is considered. The
forces acting on the wing due to rolling, plunging, and pitching oscilla-

tions are caleculated for two Mach numbers as a function of frequency.



11, GENERAL THEORY

Consider a wing contained in the X, ¥ plane which is extremely thin
in the 7 direction and is moving in the direction of the negative X axis
with a supersonic velocity U (Fig; 1). Let the wing perform any motion of
small amplitude and smell velocity about the plane Z = 0.

If the flow is assumed to be irrotational, a velocity potential may be

introduced such that

- 0@

U= X

_0®

r= 9% (1)
0y

m:a__@
0z

where u, v, and w are the components of the velocity of the fluid in the

X, 7. and z directions, respectively.

Since the disturbances are assumed to be small, the equations of motion

for an inviscid non-heat-conducting fluid may be linearized to give

To L 30 L ¥ 1 TO _,
a)—(—a+ g.a + bzl’- Ca b?:-é "O (2)
29 _ R-P
0t Po | (3)
e _ i.P '
¢ _(df)o

where Fo and §, are the pressure and density far from the wing, and c

is the acoustic wvelocity.



The boundary condition on (P 1is expressed in terms of the downwash
necessary to produce tangential flow over the wing. If Z,= Z(X, .1
describes the altitude of points on the wing at the time t , then the

vertical velocity of the fluid adjacent to the wing will be given by

DO, - ~ = -
Fgoh=-WEGH ()
¢
where
3.5 1= - 2w |

If the edges of the wing are all supersonic no disturbances will occur in
the plane of the wing off the wing except in its wake. Farthermore, if
the trailing edge is supersonic, the pressures on the wing are independent
of‘conditions in its wake., Thus the pressures on the‘wing are completely
specified by Eqs. (2) through (5).

The problem represented by this system of equations can, in principle,
be solved. .However, in certain cases (harmonic oscillations, for example),
the integrals encountered in the calculation of the pressures are so com-
plicated that they have thus far resisted evaluation.

If only the total forces acting on the wing neéd be calculated, con-
siderable simplification can be obtained. It has already been noted that
due to the hyperdbolic naturé of the differential equation and the assump-
tion of supersonic edges, the two sides of the wing may be treated indepen-

dently.* Furthermore, since the wing is essentially a lamina, the

*  This is equivalent to the statement that there are no disturbances in

plane of the wing off the wing.



downwash on the wing will be an even function of z and hence the over
pressure will be an odd function of z. Thus it can readily be seen that

the total 1ift acting on the wing will be given by

L-—a?o” PozPs

where the integral is evaluated over the upper surface of the wing. In-

troducing Bq. (3)

X+
%.S? 5.0,%) d§ dX (6)

7(1
H'

where B*’ and E}s are the extreme left and right hand coordinates,

respectively, of the leading ledge, 2b is the chord of the wing, and

Yel01=Y.(01=0

In order to perform the integration as indicated in Eq. (6) it is necessary
to assume that the trailing edge 1s straight and perpendicular to the
X axis. In an analogous manner the pitching moment about the point X=-

and the rolling moment about the X axis can be written as

~vt+2zb B
m=-2% (>_(+U3r)} %i_f()'(,g,o,}) dg dx (7
-ut ge
~Ut+eb Ys ,
R=~ZP°S X g %(i.%,O,%)dgdf (8)
-0t Yo



Since it is known that QJ%(?,%ALE) is zero for

F<Ge 1 F7Ys
it is possible to extend the intervals of integration in the y direction
without affecting the results. Thus Egs. (6), (7), and (8) may be written

as

g,0,%)dgdx | (9)

_Uifab o
:-aPag(hU%)J b—q’(i,g,o,‘c)dg_di (10)

"'U‘E -0

-Ui+2b oo

R:~2.?o§ 8 % b—-?(?,g,,o:_l) dgdi (11)
-Ut -®

The above equations indicate that if the following two-dimensional

functions are introduced,

oct

V(X,2,%) = S Q%,3z2,0)d (12)

YV, (X,2,1) - (13)
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the total forces and moments acting on the wing may be calculated without
explicit knowledge of the solution for @ , provided that the functioms
VY, eand Y, can be evaluated. For if Egs. (12) and (13) are differen-

tiated with respect to 1 and substituted into Egs. (9), (10), and (11),

the expressions for the forces become

IITTA
L=2%o X %l_i"(i,o,ﬂ dx (1)
-Ut |
-Ut«2b
m=_zeogﬂ+vi) g_fl/'(x,oj)cli i (15)
-Ul
-visab
R=-2 % X Ve(g,0,1)dx (16)
ot
~Ut

The functions W, and Y, have an important physical interpretation.

g__EV' represents the 1ift of a spanwise element of the wing and %_\{/?- repre-
t

sents the rolling moment contributed by a spanwise element of the wing,
It is now necessary to determine, if possible, the differential
equations which these functions satisfy, and the appropriate boundary

conditions that must be imposed upon them, This can best be accomplished

* This possibility was suggested by Dr. P. A. Lagerstrom.



by examining the derivatives of ¥, and ¥V, . Consider Vv, |,

¥vi _ [ 29 43
DX j ox: ¢
*v [ ¥ 4
37~ K oz 44 (an)
XVi_ | 29 4y
a%L g [N dg—

Since from physical,considerations infinite velocities and pressures
in the flow field are not allowed, () is at least a piece-wise continuous
function of the independent variables. Therefore the integral of Eq. (12)
exists in the ordinary sense. However, (§ may have discontinuities in
its first derivatives. Therefore the integrals of Eq. (17) must be con-
sidered as Stieltjes integrals. The derivatives defined by Eq. (17) will
thus have meaning whenever the Stieitjes integrals exist.

For values of X, Z, t, such that the second derivatives of @ exist,

V4 satisfies the equation

X v, TV Xy _ (Ve L 00 _ 1 9 ) 4y
et et R "&{bi”b"‘ &) 4

9z~ ©* d%t z® C ot
-0Q
or, from Eg. (2), -
oo
bz 2 2 O
ﬁvﬁ+%‘l§-§1%¥=*& Th 4% (18)

Since the side wash must vanish at infinity, the right hand side of Bq. (18)
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may be integrated to give

2z

01»

v, azq/ _+ 0

0%t *oz- o1t © )

[l

For certain values of X, z, and ¥ terms of Eq. (19) may not be defined.
This is to be expected since Edg. (19) is a hyperbolic differential equa-

tion. The boundary condition on Y, may be obtained in a similar manner.

Consider -
oWi_ | Q@ 4y
o7 J %
-0
From Eq. (h)
%s
g_%/'(i,oﬁc)z—gw(x g = —W, (%,})
G (20)

0< X+Ut < b
where W (X%, 7, t) is the downwash on the wing, Alsc
%¥(2,0,¥)= 0O Xi+Ul<o

The solution to Egqs. (19) and (20) is well known. For points on the wing

the solutioen is

.—

X+C(X-T)
c o3 o C W, (§,T) d§ dt
V/(%,0,%) T [ T TRy (21)
o X-c(¥t-7)

The region of integration in the X, t plane is illustrated in Fig. (2).
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Now comsider Y,

aaa__ U Dig) dg
ox: X% ox: °d
baz N _
Y- (130 4 @

00
G 2.
oW _ |\ g 29 dy
5 T ¢ ov Y

—00 '
Here the presence of ¥y in the integrand introduces no convergence diffi-

culties because CQ and all of its derivatives are zero outside of a

 finite ¥ interval. From Eg. (2)

Dur (23)
and
- 09 - 3_. =0 1312 LIRZ)
The right hand side of Eq. (23) may thus be written
© L L L
0O dj 7 9®dy = go®l - |09 dg -o
|38 - Ryl - 5
L -l -~k
Therefore
FY LW . OO
oOx%2 + 6—22_ 't Q12 o (24)
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The boundary condition on Y, becomes

Q\:%'(Y,O,U = - J gw(i,%,'—k) d% =~ Wy (X,t)

0Z e

0<X+Ut¢2b (25)
@_\Vz(i,o.-_t) =0 X+Ut <o

VZ

The solution for Y, <for points on the wing may be written down
immediately as

+c(t-1)

t %
V4 (%,0,1) = } s Waly, 1) d8 d¥
o X

(26)

HIp

\F‘G-t\‘—(ﬁ-;\f
-¢l¥-1)

The original three-dimensional problem has no{v been reduced to an
equivalent two-dimensional prodlem. The methods previously used for two-
dimensional wings can be” applied to obtain the forces acting on the wing.

| The solutions represented by Eqs. (21) and (26) are quite general
and apply to any downwash distribution, such as gust loading, unit step
loading, or accelefating flight. The special casé that will be of in-

terest here is the downwash distribution which, at any point on the wing,

has a harmonic time dependence. This condition is !

2 R - dwt
gg(x,%,o.t)z-w(hvtg)e

or, from Ea. (20),

(27)
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and from Eq. (25)

5 _ _ iwt _ jwt
g

With these boundary conditions the expressions for / and y; can be

simplified. Consider Eq. (21). Using Eq. (27)

1 R+c(i-)
¥+UT) e‘“fum
(§+
\M _QI Wn
w V(- - (x-g)F (29)

0 X~¢(YI-1)

Introducing the Gallilean transformation

+
<
-t

“~ N O X
n
AU gt X

and integrating first along ¥ +UT = constant Eq. (29) yields the well

known integral relation (see, for example, Ref. Y or 7)

A\

. x -ikM{X-5)
e‘w* J K{x~5) b d
V/J(X,O.'\:)-'-' —é— w|(s) O[T} e 5 (30)
o
where
M=L
pe=m*-1
K= 2P
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and J, ig the Bessel function of the first kind of zerec order.

Similarly
ot ot Kix-syy dmlxee)
_ e RSl b
W, (X,0,) = o8 fwam Jd o ] € ds (31)

L

The calculation of | and VY, has been reduced to the .evaluyation of a
single integral. The calculation of the forces and moments requires
another integration. In many cases of interest W.(X) and W,(x) are
polynomials in X . When this is true it will be domonstrated that the
expressions for the forces and moments can be reduced tc the single in-
tegrals tabulated by Schwarz. The speciel case of an oscillating delta

wing will now be considered.
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111. THE DELTA WING

The functions W, and V4 will now be used to calculate the aero-
dynamic forces acting on an oscillating delta wing. The planform of the
wing is an isosceles triangle with a vertex angle of w-2¢ (Fig, 3).

The vertex is placed af the origin of the x, y, z coordinate system. The
maximum chord of the wing is 2b. Three types of motion will be considered:
plunging, pitching, and rolling ogcillations.

Case a: Plucging Oscillation.

This motion is characterizéd by a downwash which is the same for each
point on the wing. Analytically this is expressed by

d jwt

) P -
> (X408 =~ Wo €

or

WX, 4)= W, =-constant

The leading edge of the wing is described by the equatlons

3’, :,-7-— —_-.X__

tano
(32)
_ X
35~ tano
Now from Eqe (27)
X ’ \
tenao
Wo X
e ] wody = ved (33)
- X
tan o

Substituting Eq. (33) into Ege. (30)

. x
Jwt

¥ (x,0,t) = %%%5; I s G(x-s)ds (34)
0
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where
K {X-3) -1KM (X-3)
G\X-s)=J,[—;—~] e ° (35)

It will often be convenient to express integrals of the iype appearing
in Eq. (34) in slightly different form. A change of the variable of in-
tegration establishes the following relation

x R

[{(s)\'\(x—s)da = [f(x—s)h(S) ds (36)

Q

(-4

With the aid of the Galillean transformation introduced in the previous

section, Eq. (14) becomes

2b
= 20 oW QW
L=29 J[b_l.‘/ +U 5—\){] dx (37)

0

Substituting Bg. (34) and using the relation of Eq. (36)

£ jwt *
L= a__ b__ 2We -
oo [ Th o oo w0
[

o

or
y éw* b 4 eb x
L= 1’;’;—‘;;_0_‘1-. {ijJ(x-s)G(S)dsdx +UJ J (:(s)d.st}
[+ o ©

Since the area of the wing is
- 4b°
S tano
and the dynamic pressure 1is

(A

g =% 5V
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the 1ift coefficient becomes

ab x 2b X

Jwt
C = %{%{; {JwJ-j(x—S)G(S)dsdx-+UJ ]G(s)dsdx} (38)
o O o ¢

It is interesting to note that the (j is independent of the sweep angle o
It will be found that this is true for all of the coefficients considered
in this analysis.

Introducing the quasi-steady value for the 1ift coefficient

jw;l'
C = 4 We ©
ko BU
Bq. (38) becomes*
. 2b X . 2b %
(%°)¢1 = EJwa" J J (x-5) Gsydsdx + aLb‘ X S Gls)ds dx (39)
[- ] o o

Now if the variables of integration are changed by

X=2b%
s=2bn
then
)X I ¥
(ZC:'L ) = 4V “(z-v\) G(?-bwdnc‘ﬁ*aj lG(?-bmd'\ﬁ (ko)
Lo/g 3 1 J
where
- wb
V= U

*  Arabic letters are wused as subscripts to demote the mode of oscilla-
‘tion  (Cf. Table of Notation).
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Since integrals of this type will occur throughout this analysis, it will

be convenient to obtain a special reduction formula. Consider
' ¥

P n
I= J§ JT\ G(2bn) dnd¥

[+] [

Integrating by parts

| |
!

. n PN
I=.P-:\J % G(aby) d§ "‘;';TJE G(RbE)dE
° o

or
_ Thn _ TP-\-n-H
1= GO AR (P41} 2P¥T*E (1)
where
1
nt n

°

Eq. (UO) can now be written

(CL°)Q=JD(T—°“T|+'#T2_)+ T.-+T, (43)

C.

The stalling moment about the vertex of the wing is obtained from Ed.

(15) ot 2b X a2b x
J W
m-_-—“.:ﬁ"_‘iE__e {jmeJ(x—s)G(s)dsdx+U3x§6(s)dsdx}
B tano ) 4 V)
Now
' ™m
Cu =
" gSab

end the quasi-steady value of Cy is

Jwt
Wo €

Y

@

sz—’

-]

w
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Therefore, using Eq. (Y1) the final expression becomes
o .
(&)= 9T Tr & T3 T -f T (i

gince the wing is symﬁetrical sbout the x axis and the downwash is an
even function of y for this mode of oscillation, the total rolling moment
about the x-axis is zero.

Case b: Pitching Oscillation.

In this case the wing is assumed to be pitching about an axis a dis-
tance 2 pb downstream of the vertex. The instantaneous angle of attack
is given by

Jwt
oC =0, € (45)
where

o = constant

Therefore the z coordinate of any point on the wing is
Z.,=—(x-2pb)

and the downwash necessary to produce tangential flow over the wing is

;_"-_— g_%w+U %.%—w = —woe®t [jm(x—apb)-tU]

cJ‘c/

or
WK, Y)={1-2jVp)Uoo +jV o U £ (46)

The first term on the right hand side of Eq. (46) corresponds to the
downwash used in Case a, Therefore it is only necessary to obtain a solua-

tion for the parabolic downwash

W = QQUX
P b



From Eg., (27)

X

tanc
2
oc. U x 2 XoUX
X)= =0 S d. T et
W, { X) j & % oan o
X
ano

-~

and from Eq. (30)

Jwt X

¥ (x0,t)= ‘53_:_‘;(_;{\_? j(x-s)‘e(s)ds (47
0

Introducing Eq. (47) into Bq. (14)

2b x b »

.' jwt
L= G P xUE {ij S (x-5)"G(s)yds dx +2.UI J(X—S) G(s) dsdx }
. -pbtano A -
[} e ¢

Changing variable as before and dividing by %S

et '3 g

CLp= ;:‘;g {lsjwb4JJ(E~maG(ab*l) dndﬁﬂwbsj [(M) G(2bn) d*ld?}

o0 [- 3+

or

oot X | LU
cLP=i%-—“°e {jDJ (§-1) G(2bn) dndy +H (E—me(abn)dndE}
0 . o o

Q

Using the reduction formula of Eq. (1)

Jwit
Cop= 552 {w(n—% T+2Teg )+ 2T~ 3T+ %Ta}

A comparison of this expression with Eqs. (43) and (44) leads to the

following result
Jwt

R R ECARA AN i)
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Since the differential equations which are being solved are linear

it is permissible to superimpose solutions. Therefore, from Eq. (h6)

CLp= (1-2j0p) U_WO_? CLa +jVCip

For this case the quasi-steady Cp is given by

jwt U
'(C'-o\b: ‘LEQ&" c = O_CW_;__ (Cu)a
sc that
. . G g1V (Cm
(%Jf“‘a‘v’”“‘)) ot Pl (cm)a (49)

It is now necessary to calculate the moment about the vertex due to

the parabolic downwash. From Egs. (15) and (47)

it 2b X 2b x
m,=— EfexUe ﬂjmeJ(x—S)a‘G(s)c{sdx +aUJx X(x-s)G(s) dsdx}
P £ biano | R
By a change of variable and integraticn by parts
ot
Cop= = 1525 {J‘)(T"_—%Tu"'al.Tz.‘?}'—aT‘?-)""%n“T."';'.ET:,}

Since
. (CMb)x=o= (l—&j\)}x) g\ﬂ%" CMq +j'\) CMP

the total moment coefficient about the vertex is

it

(C“"")x:— - z;"_"e(l—aj\)y) (%?qba + iV Chp
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In the case of pitching motions it is generally desirable to calcu-
late the pitching moment about the axis of rotation. If (Cuo)u 1is the

pitching moment coefficient about the axis of rotation, then
(Cmb)” = (Crub)yo +HCuo

Since the quasi-steady value for (CMb)Pis

| J3p-g) Jot
(CMO) = i%ﬁ——’——" e

then

(&), =5 feoemmle) k)0 (&), ) o

where

(Eo )= W3- 4T +2Tem 5 Ta)+ 4T3 Tr g T, (51)

in thig case the downwash is again symmetrical about the x-axis and
the rolling moment is therefore zero.
Case ¢: Rolling Oscillation.

In this case the motion of the wing, and hencée the downwash, will be

gpecified by the rate of roll ¢ . Thus if
: jwt
¢=pe

then
Wix,4)y=P Y

Since the downwash is antisymmetrical with respect to the x-axis the 1lift

and pitching moment will be zero. It is therefore only necessary to calcu-~

late the rolling moment.
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From Eq. (28)
X
tanca 3
s _apPX
WZ (X):: JP% d%_ 3)(an30- (52)
~ X
tano
Introducing this into Eq. (31)
o jwt X -
_c2Pe. X-5) G(s) ds ‘
Ve (ko) = 5rss j( 160 (53)

[>]

The rolling moment is obtained from Eq. (16)

o 2b X eb x
JWw 2
R=- ;;g%i% ‘ij J(x-s)’G(s)dsdx +3UJ J(X——s) Gts)ds dx}
an g °

o o [*]

If the rolling moment coefficient is defined as

= R
e FSR
where
Q= &b . gpan of wing
tano
Then
Jwt Ll s - .
n=—%%—f—,§ {aw”(s-m Glebn) dnds +3Hks-m G(abmdnds}
[V ] o 0
Since the quasi-steady value for the Cp is
jwt
__apre”
“.=~ 50 (54)
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 and using Egs. (Y1) and (54) together with the results of Case a and

Cagse b the final result becomes

(&)= elele(&) (&), 5

Note that for a given span the rolling moment coefficient is independent

of the sweep angle.

Case 4: Oscillating Flap.

The final case investigated is that of a flap oscillating about its
hinge axis. The flap considered coﬁsists of the aft portion of a delta
wing (Pig. 4). fThe hinge line is perpendicular to the x~axis. The chord
of the flép is (-p)ab . The portion of the wing forward of the hinge
line remains at zero angle of attack.

Under the above conditions the expression for the downwash is

W(xy) = 0 ‘ X< apb
— . iV X
W (xp) = oo Uf1-2 jup + 52 epbax < ab
From Eg. (27)
wl(x}:‘-o X<2_Vb
W, (X) = aoc°vx(|—a'1)}i+3—m) 2pb <x <2b
' tan o ! b

and from Eq. (30)

W (X,0,t) =0 X<2pb
: Jwt X
W(x,o) = 2%Ue I(l*aj0p+:‘15)56(x—s)ds aub<x <2b  (56)
B tane b

2pb
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but the 1ift is given by

2b
L=or | (Y U ) 4
2pb
and
A

Integrating the second term of the equation for 1ift,

2b

L=2a¢ ['Juoj Vodx +U WY (ab,o‘H}

2ub
which becomes, on substituting Eq. (56),

2b
jwt 2b X

L:iﬁﬁf&!? {jwj Jp-qop+mj)ng-ﬂ&sAx+Ujh-n0p+3%§)seubﬁ)ds}
b

p tano
2pb Yib 2ub

The areas of the flap is

S - 4bTu-p®)

f tano

Introducing the new variables
s=2bn
A=2b%

The Cp based on the area of the flap becomes

Jot " ‘ ‘
C. = 2%, € {8] wB?J }(FZ.]VH-I'Q_']\')Y'()I’] Gl?_b(b‘ﬂ} dndy ++§UJ\1~&N)& +?-]1)'1)T\G[?.b(|—qﬂdr\}

T BUB LAY
, Py P
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Let ‘
n=n-p
ERL
then ,
Jwk -+ %
Sl Ty {ajoj J(wajw)n’)(n'w\ Glabts-n1] dydy’
1-p
¥ J(wajvn')m’w)Gi&b“‘*"‘\"\d“ }
Q
Finally, let
Tl;:((—p)s
¥ = (- X
then
Jwt x
o= B feioonr | [[raivtem o] oo or] ol pts ] ases
1
+\u—p)J[|+e.]13(|—p)s][('-y)5+)4] G[lbﬂ'ﬂ”"s)]ds}
or
jwt ,
_Bx.€ _ v P - k-s N G- my (k- - dsd
= Bt ﬂ)“ Nl Jo[' 2P0 s 151 |6 lenps] ds

+ J[n2.10(:~m(|-sﬂ[(x—}*)(t—s))«ﬂ G[ab (t-p) s] ds }

°
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It is now convenient to adopt the following convention. If

F=Fib)
Then
F'=F(b)
where
b'=(1-m) b

This convention makes it possible to use expressions previously obtalned,

but with the reduced frequency V' ©based on the chord of the flap.
The expression for the Cp can now be reduced in the usual manner

using Eg. (41)s The result, in terms of expressions already obtained,

is

3

CMo

4P

(&) {P[laT°'+jv'(T,’—%')»rLa(.-Na,jo'.ajo'y)(%:)'a. 419'(1-,;»(9_“ YQ |

where the quasi-steady 1ift coefficient of the flap 1is given by

Jwt

The pitching moment about the hinge axis is
ab

=-2 NLU b_‘_‘_’-] -

m P°J[ar+ | (x 2pib) dx
2Mb

The second term can be integrated by parts to give

2b , &b

Mm=-2 {]uéj(x-ayb)\y. dx + Uab (1-m) V¥, (2b,0,t) —UJ\V, d x }

2ub apb

(57)
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Using Eq. (56)

SR L 2b
Jw
7'71:_1};_"%:%_—-6 {juJ(x-ayb)J(n-aN)‘ﬂ%?)SC:(X—s)ds d x
2ub 2ub
2b
+ab(«-p)UJ(a-aj0)x+3,;2_5)sG(ab—s)ds
a}ab
2
—J j(l-ajd)a+j£.5)s(>(x~ﬁ\dsdx}
2ub 2pb '

Proceeding exactly as in the case of the (; the final result is

(Ec_,_, IWM T ivaT- 4TS )} (..p+z,om (CMJ ")2"“)(6”‘“ (58)
where
ot

i
"= - $xol2+p) €
° 3B (14M)

Here the Cy is based on the chord of the flap.
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IV. CALCULATIONS AND RESULTS

The aerodynamic coefficients obtained in the previous section have
all been expressed in terms of the functions T, (k,M) . A recurreance
formula may be obtained for T, by integrating Bq. (42) by parts. This
formula was first given by Borbely (Ref. 1&); however, the R, T. P, Trans-
lation of the paper by Borbely is in error. The correct formula is

nr, i K)o | ) -Zikm T (1 \z
VT,=2 [,Jo(ak)_ﬁJ,(a )+%J°(al«;]e +jl-2n) ln_,+ﬁ Tn-s  (59)

where J° and JI are Bessel functions of the first kind of zero and
first order, respectively. With this formula it is possible to express all
of the results for the delta wing in terms of the single function T, .
Schwarz has tabulated the values of two functioms, J/(),x), and Jc( rx),

which are related to To by the equation
otk = o [de (o2 m) =5 d, (6 2hem)] (60)

The results of the previous section have been evaluated by means of
Eqs. (59) and (60) for two values of Mach number, 1.25 and 2. The results
are plotted as polar diagrams in Figures 5 through 11. In order to inter~
pret the polar diagrams in terms of the aerodynamic damping it is convenient
to calculate the work done on the wing per cycle. This will be done for

each of the four cases.
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Case a:

The work done on the wing in one cycle is given by

)
w
Wazj l_g%%w dt

-]

For real oscillations

@;Lw =-W, Cosu)‘\'
ot
But (&\ wag of the form
CLO a
JE
(& )= he
C-Lo a

thus for real oscillations

L, =B Coslwtre) B>o

Therefore
aw

W =-8\e j(-osuﬁCos(m'} re)dloh) =-TBWs (q¢ ¢
Q w ——-—-(h>
0

Case b:

In this case the work per cycle is given by
2T
W, = doc  d(wh
b me diwt)

L]

The pitching moment may be expressed as

c JE
GANGE
and the angle of attack is
jot

(61)
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Thus for real oscillations

M=B(3p-2)Cos(wt+e) B YO

X =0oC, Cos wt

Therefore

(A

W= _Bx°(3},_a\JCos(wT+e)Smu’f dlwt) = B T(3p-2) Sime

o

(62)

Case c:

Here the work per cycle is given by

em
w

IM(:JR(})df
A v

Since the rolling moment is of the form
i€
Q) =ae
(Cﬂo c
and the rate of roll is

. jwt

p=pe

then for real oscillations

R=-B s (wt+e) B>0
¢ = p(.osw‘t
thus
(L
w
W =-Bp | Gslwi+elbsutdt =-BP™ ¢

= (63)

[+
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Case d:
This case is the same as Case b except that for real oscillations
md=—BCos(w++é) B >o
Therefore

wd:-_--Boc,,'lT‘Smé (6u4)

In Figure 8 at M = 1.25 the phase angle is negative for small values
of the reduced frequency. Since this curve is plotted for 4 = .5
Eq. (62) indicates that the damping in pitch is negative, i.e., that work
is being done on the wing, In Figurell the oscillating flap is also shown -
to be unstable at ¥ = 1,25 for small vslues of the frequency.

It is of interest to determine the Mach number at which the pitching
oscillations first become unstable for small values" of frequen;:y. This
may be done by obtaining a Taylor expansion of the Th . Thus, neglecting

terms of order k?2

anH E.'HZ )
T = S K
a4 (65)
By means of Eq. (65) the expression for (é—-"") becomes, for small values
M, :
bM
of frequency,
. 2 2
Cn) Jh  (BRu-6Pui-3R+3 -2
Cro |+M(3)1—z)( By P3P 3 -2x) (66)

The condition that the demping is positive is
z 2 2 2
BRu-6R U -3B +2-2p<0

In Figure 12 the Mach number at which the damping reverses sign is plotted

as a funciion of M o A similar region of instzbility was found in the
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two-dimensional case calculated by Garrick and Rubinow (Ref. 6). Flgure
12 shows that the maximum Mach number for instability is Y2 and that all
instability vanishes for rotations about axes aft of the three quarters
chord. These results agree with those obtained by Miles (Ref. 8).

Pigure 11 indicates that the damping in the case of the flap also be-
comes negative at M = 1.25. Using Eq. (65) the expression for

becomnes

Im\ = W {M?‘-l\ e
(ijd ‘*.M(aqn{y 5 | +3M a\ (67)

Thus the condition for positive damping is

plmi-F)eam’-g >o

The Mach number for zero damping is plotted as a function of M in
Figure 13. It is seen that for a flap of infinite aspect ratio (M = 1)
the Mach number for zerec damping is @ . This is the two-dimensicnal

result obtained by Garrick and Rubinow.
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V. CONCLUSIONS

Using the linearized equations for a compressible isentropic flow,
one can reduce any three-dimensional wing problem to an equivalent two-
dimensional problem, provided that the edges of the wing are supersonic
and that the trailing edge is normal to the flow. PFor the usual types of
planforms and downwash distributioné the forces acting on the wing can be
expressed in terms of tsbulated functions.

4s en exsmple, the forces acting on a delta wing have been calculated
for the case in which the downwash exhibits a harmonic time dependence.
All of the aerodynamic coefficients were found to be independent of the
sweep angle. Since any non~stationary motion of a rigid delta wing can
be obtained by harmonic analysis from the three modeé of oscillation con-~
sidered here, it is proved that the force coefficients for such an arbi-
trary motion are independent of the sweep angle. It is alsc found that
the pitching oscillations of a delta wing exhibit a characteristic in-
stability for small values of the frequency. This is in agreement with
the two-dimensional result obtained previously.

Finally; it should be noted that while it is cérrect to calculate
the total loads acting on the wing by strip theory, this procedure does
not necessarily give the correct spanwise loading. It is interesting,
however, that although the load distribution is disturbed by the three-
dimensional effect, the two-dimensional 1ift of a chordwise strip is pre-
served. This result is in accord with the theorem on the preservation of

1ift for steadily lifting wings given by Dr. P. A. Lagerstrom (Ref, 11).
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TABLE OF NOTATION

X,§,2 Cartesian space coordinates

ot Time

® Perturbation velocity potentisal

P - Pressure

Y | Density

C Acoustic velocity

L Lift

m Pitching moment

R Rolling moment

4o, %s Coordinates of the port and starboard

leading edges

b Semichord
w Frequency
X%, Wing coordinates
M= ch Mach number
U . Free stream velocity
V=@ b 7.
Reduced frequeney

<



K=‘)-gz
g¢=m2-,
-

S
§=39U°
C.= L

L %S
Cu= M

™ 2bg $
2

=

Cg= §?§k
(o &
P
uk
€

(Ja
( )
(e
( )y
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TABLE OF NOTATION
(continued)

Sweep angle

Wing ares

Dynamic pressure

Lift coefficient

Pitching moment coeffiéient
Span

Rolling moment coefficient
Angle of attack

Rate of rell

Work per cycle

Phase angle

Case a; plunging oscillation

Case b; pitching oscillation
Case ¢; rolling oscillation

Case d;

pitching oscillation of a flap
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Figure U.
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IABLE 1
M= 1.25
Cases b and d; 4 = .5
aim RIS T () RIS HE)RED TR [R(EDop[HEds

.b .9720 | -.0996 9665 | -.1375 | .9722 |-.0862 . 9545 .0727
1.0 9263 | -.1572| .9120 | -.2110 | .9276 |-.1277 | .8832 0919
1.k g662 | -.2035| .sWw1z | -.2611 | .8710 |-.1489 .7970 .07k2
1.8 8001 | -.2364 7647 -.2851 | .812h —.1h60 L7136 0206
2,2 7359 | -.2552 | .6922 | -.2847 | .7581 |-.1283 . 6500 0659
2.6 | .6798 | -.2612| .6314% | -.2654 | .7161 |-.0952 | .6138 | .1670
3.4 goll | -, ohuk '5576 -.1997‘ .6727 | -.01R2 .6210 . 3611
b2 .5726 | -.2119 5364 | -.1400 | .6670 .0510 .6827 RILHE:S
5.0 5613 | -.1793 5356 | -.1052 | .6686 .0968 .7271 .5703

an [RIE) (IR, [REENIED, [RIE)UE),

.6 9867 | -.0743 .9673 -.0k31 29556 | -.0k91

1.0 9694 | -.1212 9158> -.0k10 8866 | -.0523

1.4 | .guzh | -.1612 8526 | -.0343 8039 | -.0200

1.8 | .9097 |~-.1936 7903 .0086 7265 .ol79

2.2 | .8738 |-.2180 | .7391 | .0722 .6680 .1426

2.6 | .8367 |-.2343 7051 .1476 6304 2499

3.4 | .7656 |-.2460 | .6869 | ..2970 . bhl2 Jilyg

4,2 | .7096 |-.2373 | .6878 a7 .bgly .5821

5.0 | .6675 |-.2195 | .6998 .5016 .6927 .6800
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TABLE 11
M = 2.00
Cages b and d; 4 = .5
AR AR EARLEARNEAN LA (AW
.6 | .9890 |-.0389 | .9868 |-.0539 .9892 | .o0274 .9839 L1542
1.0 | .9707 |-.0618 | .9651 |-.0832 .9718 | .0521 .9591 .2685
1.4 | .ok61 |-.0804% | .9360 |-.1036 .9499 | 0853 .9300 .3971
1.8 | .9181 | -.0937 9033 -.1135 9274 | L1278 .9040 .5hok
2.2 | .8897 |-.1013 | .8708 |-.1l1l27 .9081 | .1785 . 8880 6954
2.6 | .8637 |-.1032 | .g420 |-.1025 .8951 | .2352 .8863 .8560
3.4 | ,8269 |-.0927 | .80MG |-.0538 .8919 | .3525 L9274 [1.1739
b2 | .slk4 -.0708 | .7985 |-.0205 L9117 | .bs555 .9990 |1,u240
5.0 | .8203 |-.0468 | .8135 0098 .9342 | 5356 [1.0508 |1.6285
e B2, [T(R) RIS TR, RIE) ),
.6 | .9955 | -.0296 | .9927 1848 | 9902 | .2346
1.0 .9879 | -.0L476 | .9813 .3119 | 9745 . 3966
1.b L9771 | -.0634 | .9657 A2 | gBug6 .5659
1.8 | .9638 | -.0764% | .9493 | .s5822 | .9338 | .74m
2.2 L9488 | -.08063 | .9340 L7254 | 9155 .9273
2.6 .9330 | -.0928 | .9215 .8726 | .9018 |1.1163
3l .8987 | ~.0961 | .9078 | 1.1716 | .8915 |1.4o8s
4.2 | .8758 | -.0892 | .9052, | 1.4661 | .8959 |1.8684
5.0 .8572 | -.0765 .9035 | 1.7523 | .8980 |2.2249
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